Add some more casts (1/2)
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
a14ed312 1609static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
c906108c 1612
fae299cd
DC
1613static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
801e3a5b
JB
1617static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
a14ed312 1620static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1621 struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1624 struct type *, struct dwarf2_cu *);
c906108c 1625
a14ed312 1626static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1627 struct die_info *, struct type *,
e7c27a73 1628 struct dwarf2_cu *);
c906108c 1629
a14ed312 1630static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1631 struct type *,
1632 struct dwarf2_cu *);
c906108c 1633
134d01f1 1634static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1635
e7c27a73 1636static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1637
e7c27a73 1638static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1639
5d7cb8df
JK
1640static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
22cee43f
PMR
1642static struct using_direct **using_directives (enum language);
1643
27aa8d6a
SW
1644static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
74921315
KS
1646static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
f55ee35c
JK
1648static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
38d518c9 1651static const char *namespace_name (struct die_info *die,
e142c38c 1652 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1653
134d01f1 1654static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1655
e7c27a73 1656static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1657
6e70227d 1658static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1659 struct dwarf2_cu *);
1660
bf6af496 1661static struct die_info *read_die_and_siblings_1
d521ce57 1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1663 struct die_info *);
639d11d3 1664
dee91e82 1665static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
639d11d3
DC
1668 struct die_info *parent);
1669
d521ce57
TT
1670static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
3019eac3 1673
d521ce57
TT
1674static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
93311388 1677
e7c27a73 1678static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1679
15d034d0
TT
1680static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
71c25dea 1682
15d034d0 1683static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1684
15d034d0 1685static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
ca69b9e6
DE
1689static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
e142c38c 1692static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1693 struct dwarf2_cu **);
9219021c 1694
f39c6ffd 1695static const char *dwarf_tag_name (unsigned int);
c906108c 1696
f39c6ffd 1697static const char *dwarf_attr_name (unsigned int);
c906108c 1698
f39c6ffd 1699static const char *dwarf_form_name (unsigned int);
c906108c 1700
a14ed312 1701static char *dwarf_bool_name (unsigned int);
c906108c 1702
f39c6ffd 1703static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1704
f9aca02d 1705static struct die_info *sibling_die (struct die_info *);
c906108c 1706
d97bc12b
DE
1707static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709static void dump_die_for_error (struct die_info *);
1710
1711static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
c906108c 1713
d97bc12b 1714/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1715
51545339 1716static void store_in_ref_table (struct die_info *,
10b3939b 1717 struct dwarf2_cu *);
c906108c 1718
ff39bb5e 1719static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1720
ff39bb5e 1721static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1722
348e048f 1723static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1724 const struct attribute *,
348e048f
DE
1725 struct dwarf2_cu **);
1726
10b3939b 1727static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1728 const struct attribute *,
f2f0e013 1729 struct dwarf2_cu **);
c906108c 1730
348e048f 1731static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1732 const struct attribute *,
348e048f
DE
1733 struct dwarf2_cu **);
1734
ac9ec31b
DE
1735static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1739 const struct attribute *,
ac9ec31b
DE
1740 struct dwarf2_cu *);
1741
e5fe5e75 1742static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1743
52dc124a 1744static void read_signatured_type (struct signatured_type *);
348e048f 1745
63e43d3a
PMR
1746static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
c906108c
SS
1750/* memory allocation interface */
1751
7b5a2f43 1752static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1753
b60c80d6 1754static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1755
43f3e411 1756static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1757
6e5a29e1 1758static int attr_form_is_block (const struct attribute *);
8e19ed76 1759
6e5a29e1 1760static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1761
6e5a29e1 1762static int attr_form_is_constant (const struct attribute *);
3690dd37 1763
6e5a29e1 1764static int attr_form_is_ref (const struct attribute *);
7771576e 1765
8cf6f0b1
TT
1766static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
ff39bb5e 1768 const struct attribute *attr);
8cf6f0b1 1769
ff39bb5e 1770static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1771 struct symbol *sym,
f1e6e072
TT
1772 struct dwarf2_cu *cu,
1773 int is_block);
4c2df51b 1774
d521ce57
TT
1775static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
4bb7a0a7 1778
72bf9492
DJ
1779static void free_stack_comp_unit (void *);
1780
72bf9492
DJ
1781static hashval_t partial_die_hash (const void *item);
1782
1783static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
ae038cb0 1785static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1787
9816fde3 1788static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1789 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1790
1791static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
93311388 1794
68dc6402 1795static void free_heap_comp_unit (void *);
ae038cb0
DJ
1796
1797static void free_cached_comp_units (void *);
1798
1799static void age_cached_comp_units (void);
1800
dee91e82 1801static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1802
f792889a
DJ
1803static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1c379e20 1805
ae038cb0
DJ
1806static void create_all_comp_units (struct objfile *);
1807
0e50663e 1808static int create_all_type_units (struct objfile *);
1fd400ff 1809
95554aad
TT
1810static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
10b3939b 1812
95554aad
TT
1813static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
10b3939b 1815
f4dc4d17
DE
1816static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
10b3939b
DJ
1819static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
ae038cb0
DJ
1822static void dwarf2_mark (struct dwarf2_cu *);
1823
1824static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
b64f50a1 1826static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1827 struct dwarf2_per_cu_data *);
673bfd45 1828
f792889a 1829static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1830
9291a0cd
TT
1831static void dwarf2_release_queue (void *dummy);
1832
95554aad
TT
1833static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
a0f42c21 1836static void process_queue (void);
9291a0cd
TT
1837
1838static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
15d034d0 1840 const char **name, const char **comp_dir);
9291a0cd
TT
1841
1842static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
d521ce57 1845static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
d521ce57 1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1849 int is_debug_types_section);
1850
fd820528 1851static void init_cutu_and_read_dies
f4dc4d17
DE
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
3019eac3
DE
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
dee91e82
DE
1856static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1859
673bfd45 1860static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1861
3019eac3
DE
1862static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
57d63ce2
DE
1864static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1867
1868static struct dwp_file *get_dwp_file (void);
1869
3019eac3 1870static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1872
1873static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1874 (struct signatured_type *, const char *, const char *);
3019eac3 1875
89e63ee4
DE
1876static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
3019eac3
DE
1878static void free_dwo_file_cleanup (void *);
1879
95554aad
TT
1880static void process_cu_includes (void);
1881
1b80a9fa 1882static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1883
1884static void free_line_header_voidp (void *arg);
4390d890
DE
1885\f
1886/* Various complaints about symbol reading that don't abort the process. */
1887
1888static void
1889dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_file_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900}
1901
1902static void
1903dwarf2_debug_line_missing_end_sequence_complaint (void)
1904{
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908}
1909
1910static void
1911dwarf2_complex_location_expr_complaint (void)
1912{
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914}
1915
1916static void
1917dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919{
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923}
1924
1925static void
1926dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927{
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
a32a8923
DE
1931 get_section_name (section),
1932 get_section_file_name (section));
4390d890 1933}
1b80a9fa 1934
4390d890
DE
1935static void
1936dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937{
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942}
1943
1944static void
1945dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946{
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950}
527f3840
JK
1951
1952/* Hash function for line_header_hash. */
1953
1954static hashval_t
1955line_header_hash (const struct line_header *ofs)
1956{
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958}
1959
1960/* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962static hashval_t
1963line_header_hash_voidp (const void *item)
1964{
9a3c8263 1965 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1966
1967 return line_header_hash (ofs);
1968}
1969
1970/* Equality function for line_header_hash. */
1971
1972static int
1973line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974{
9a3c8263
SM
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980}
1981
4390d890 1982\f
9291a0cd
TT
1983#if WORDS_BIGENDIAN
1984
1985/* Convert VALUE between big- and little-endian. */
1986static offset_type
1987byte_swap (offset_type value)
1988{
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996}
1997
1998#define MAYBE_SWAP(V) byte_swap (V)
1999
2000#else
2001#define MAYBE_SWAP(V) (V)
2002#endif /* WORDS_BIGENDIAN */
2003
31aa7e4e
JB
2004/* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007static CORE_ADDR
2008attr_value_as_address (struct attribute *attr)
2009{
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032}
2033
9291a0cd
TT
2034/* The suffix for an index file. */
2035#define INDEX_SUFFIX ".gdb-index"
2036
c906108c 2037/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
c906108c
SS
2041
2042int
251d32d9
TG
2043dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
c906108c 2045{
9a3c8263
SM
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
8d749320 2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2053
be391dca
TT
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
6502dd73 2057
251d32d9
TG
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
be391dca
TT
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
73869dc2 2062 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2063 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2064 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2066}
2067
2068/* Return the containing section of virtual section SECTION. */
2069
2070static struct dwarf2_section_info *
2071get_containing_section (const struct dwarf2_section_info *section)
2072{
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
c906108c
SS
2075}
2076
a32a8923
DE
2077/* Return the bfd owner of SECTION. */
2078
2079static struct bfd *
2080get_section_bfd_owner (const struct dwarf2_section_info *section)
2081{
73869dc2
DE
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
049412e3 2087 return section->s.section->owner;
a32a8923
DE
2088}
2089
2090/* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093static asection *
2094get_section_bfd_section (const struct dwarf2_section_info *section)
2095{
73869dc2
DE
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
049412e3 2101 return section->s.section;
a32a8923
DE
2102}
2103
2104/* Return the name of SECTION. */
2105
2106static const char *
2107get_section_name (const struct dwarf2_section_info *section)
2108{
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113}
2114
2115/* Return the name of the file SECTION is in. */
2116
2117static const char *
2118get_section_file_name (const struct dwarf2_section_info *section)
2119{
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123}
2124
2125/* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128static int
2129get_section_id (const struct dwarf2_section_info *section)
2130{
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136}
2137
2138/* Return the flags of SECTION.
73869dc2 2139 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2140
2141static int
2142get_section_flags (const struct dwarf2_section_info *section)
2143{
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148}
2149
251d32d9
TG
2150/* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
233a11ab
CS
2152
2153static int
251d32d9
TG
2154section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
233a11ab 2156{
251d32d9
TG
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
233a11ab
CS
2164}
2165
c906108c
SS
2166/* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170static void
251d32d9 2171dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2172{
251d32d9 2173 const struct dwarf2_debug_sections *names;
dc7650b8 2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
dc7650b8
JK
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
c906108c 2185 {
049412e3 2186 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2188 }
251d32d9 2189 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2190 {
049412e3 2191 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2193 }
251d32d9 2194 else if (section_is_p (sectp->name, &names->line))
c906108c 2195 {
049412e3 2196 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2198 }
251d32d9 2199 else if (section_is_p (sectp->name, &names->loc))
c906108c 2200 {
049412e3 2201 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2203 }
251d32d9 2204 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2205 {
049412e3 2206 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2208 }
cf2c3c16
TT
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
049412e3 2211 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
251d32d9 2214 else if (section_is_p (sectp->name, &names->str))
c906108c 2215 {
049412e3 2216 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2218 }
3019eac3
DE
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
049412e3 2221 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
251d32d9 2224 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2225 {
049412e3 2226 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2228 }
251d32d9 2229 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2230 {
049412e3 2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2233 }
251d32d9 2234 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2235 {
049412e3 2236 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2238 }
251d32d9 2239 else if (section_is_p (sectp->name, &names->types))
348e048f 2240 {
8b70b953
TT
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
049412e3 2244 type_section.s.section = sectp;
8b70b953
TT
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
348e048f 2249 }
251d32d9 2250 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2251 {
049412e3 2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
dce234bc 2255
b4e1fd61 2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2259}
2260
fceca515
DE
2261/* A helper function that decides whether a section is empty,
2262 or not present. */
9e0ac564
TT
2263
2264static int
19ac8c2e 2265dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2266{
73869dc2
DE
2267 if (section->is_virtual)
2268 return section->size == 0;
049412e3 2269 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2270}
2271
3019eac3
DE
2272/* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
dce234bc 2276 If the section is compressed, uncompress it before returning. */
c906108c 2277
dce234bc
PP
2278static void
2279dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2280{
a32a8923 2281 asection *sectp;
3019eac3 2282 bfd *abfd;
dce234bc 2283 gdb_byte *buf, *retbuf;
c906108c 2284
be391dca
TT
2285 if (info->readin)
2286 return;
dce234bc 2287 info->buffer = NULL;
be391dca 2288 info->readin = 1;
188dd5d6 2289
9e0ac564 2290 if (dwarf2_section_empty_p (info))
dce234bc 2291 return;
c906108c 2292
a32a8923 2293 sectp = get_section_bfd_section (info);
3019eac3 2294
73869dc2
DE
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
4bf44c1c
TT
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2323 {
d521ce57 2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2325 return;
dce234bc 2326 }
dce234bc 2327
224c3ddb 2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2329 info->buffer = buf;
dce234bc
PP
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
ac8035ab 2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
a32a8923
DE
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
dce234bc
PP
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
dce234bc
PP
2352}
2353
9e0ac564
TT
2354/* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361static bfd_size_type
2362dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364{
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368}
2369
dce234bc 2370/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2371 SECTION_NAME. */
af34e669 2372
dce234bc 2373void
3017a003
TG
2374dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
d521ce57 2376 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2377 bfd_size_type *sizep)
2378{
2379 struct dwarf2_per_objfile *data
9a3c8263
SM
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
dce234bc 2382 struct dwarf2_section_info *info;
a3b2a86b
TT
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
3017a003
TG
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
dce234bc 2404
9e0ac564 2405 dwarf2_read_section (objfile, info);
dce234bc 2406
a32a8923 2407 *sectp = get_section_bfd_section (info);
dce234bc
PP
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410}
2411
36586728
TT
2412/* A helper function to find the sections for a .dwz file. */
2413
2414static void
2415locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416{
9a3c8263 2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
049412e3 2423 dwz_file->abbrev.s.section = sectp;
36586728
TT
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
049412e3 2428 dwz_file->info.s.section = sectp;
36586728
TT
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
049412e3 2433 dwz_file->str.s.section = sectp;
36586728
TT
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
049412e3 2438 dwz_file->line.s.section = sectp;
36586728
TT
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
049412e3 2443 dwz_file->macro.s.section = sectp;
36586728
TT
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2ec9a5e0
TT
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
049412e3 2448 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
36586728
TT
2451}
2452
4db1a1dc
TT
2453/* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
36586728
TT
2456
2457static struct dwz_file *
2458dwarf2_get_dwz_file (void)
2459{
4db1a1dc
TT
2460 bfd *dwz_bfd;
2461 char *data;
36586728
TT
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
acd13123 2465 bfd_size_type buildid_len_arg;
dc294be5
TT
2466 size_t buildid_len;
2467 bfd_byte *buildid;
36586728
TT
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
4db1a1dc
TT
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2474 &buildid_len_arg, &buildid);
4db1a1dc
TT
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
36586728 2482 cleanup = make_cleanup (xfree, data);
dc294be5 2483 make_cleanup (xfree, buildid);
36586728 2484
acd13123
TT
2485 buildid_len = (size_t) buildid_len_arg;
2486
f9d83a0b 2487 filename = (const char *) data;
36586728
TT
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
4262abfb 2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
dc294be5
TT
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
36586728 2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2505 if (dwz_bfd != NULL)
36586728 2506 {
dc294be5
TT
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
36586728
TT
2512 }
2513
dc294be5
TT
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
36586728
TT
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
13aaf454 2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2530 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2531 return result;
2532}
9291a0cd 2533\f
7b9f3c50
DE
2534/* DWARF quick_symbols_functions support. */
2535
2536/* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541struct quick_file_names
2542{
094b34ac
DE
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
7b9f3c50
DE
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556};
2557
2558/* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561struct dwarf2_per_cu_quick_data
2562{
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
43f3e411 2570 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579};
2580
094b34ac
DE
2581/* Utility hash function for a stmt_list_hash. */
2582
2583static hashval_t
2584hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585{
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592}
2593
2594/* Utility equality function for a stmt_list_hash. */
2595
2596static int
2597eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599{
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607}
2608
7b9f3c50
DE
2609/* Hash function for a quick_file_names. */
2610
2611static hashval_t
2612hash_file_name_entry (const void *e)
2613{
9a3c8263
SM
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
7b9f3c50 2616
094b34ac 2617 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2618}
2619
2620/* Equality function for a quick_file_names. */
2621
2622static int
2623eq_file_name_entry (const void *a, const void *b)
2624{
9a3c8263
SM
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2627
094b34ac 2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2629}
2630
2631/* Delete function for a quick_file_names. */
2632
2633static void
2634delete_file_name_entry (void *e)
2635{
9a3c8263 2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648}
2649
2650/* Create a quick_file_names hash table. */
2651
2652static htab_t
2653create_quick_file_names_table (unsigned int nr_initial_entries)
2654{
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658}
9291a0cd 2659
918dd910
JK
2660/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664static void
2665load_cu (struct dwarf2_per_cu_data *per_cu)
2666{
3019eac3 2667 if (per_cu->is_debug_types)
e5fe5e75 2668 load_full_type_unit (per_cu);
918dd910 2669 else
95554aad 2670 load_full_comp_unit (per_cu, language_minimal);
918dd910 2671
cc12ce38
DE
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2dc860c0
DE
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2676}
2677
a0f42c21 2678/* Read in the symbols for PER_CU. */
2fdf6df6 2679
9291a0cd 2680static void
a0f42c21 2681dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2682{
2683 struct cleanup *back_to;
2684
f4dc4d17
DE
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
9291a0cd
TT
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
95554aad 2692 if (dwarf2_per_objfile->using_index
43f3e411 2693 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
89e63ee4
DE
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
cc12ce38 2703 && per_cu->cu != NULL
89e63ee4
DE
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
95554aad 2710 }
9291a0cd 2711
a0f42c21 2712 process_queue ();
9291a0cd
TT
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719}
2720
2721/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2fdf6df6 2724
43f3e411 2725static struct compunit_symtab *
a0f42c21 2726dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2727{
95554aad 2728 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2729 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
a0f42c21 2733 dw2_do_instantiate_symtab (per_cu);
95554aad 2734 process_cu_includes ();
9291a0cd
TT
2735 do_cleanups (back_to);
2736 }
f194fefb 2737
43f3e411 2738 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2739}
2740
8832e7e3 2741/* Return the CU/TU given its index.
f4dc4d17
DE
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
8832e7e3 2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2749
2750 ...;
2751 }
2752*/
2fdf6df6 2753
1fd400ff 2754static struct dwarf2_per_cu_data *
8832e7e3 2755dw2_get_cutu (int index)
1fd400ff
TT
2756{
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
f4dc4d17 2759 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765}
2766
8832e7e3
DE
2767/* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
f4dc4d17
DE
2770
2771static struct dwarf2_per_cu_data *
8832e7e3 2772dw2_get_cu (int index)
f4dc4d17 2773{
8832e7e3 2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2775
1fd400ff
TT
2776 return dwarf2_per_objfile->all_comp_units[index];
2777}
2778
2ec9a5e0
TT
2779/* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2fdf6df6 2781
74a0d9f6 2782static void
2ec9a5e0
TT
2783create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
9291a0cd
TT
2788{
2789 offset_type i;
9291a0cd 2790
2ec9a5e0 2791 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
74a0d9f6
JK
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
b64f50a1 2803 the_cu->offset.sect_off = offset;
9291a0cd
TT
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
8a0459fd 2806 the_cu->section = section;
9291a0cd
TT
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2811 }
9291a0cd
TT
2812}
2813
2ec9a5e0 2814/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2815 the CU objects for this objfile. */
2ec9a5e0 2816
74a0d9f6 2817static void
2ec9a5e0
TT
2818create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821{
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2828
74a0d9f6
JK
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2831
2832 if (dwz_elements == 0)
74a0d9f6 2833 return;
2ec9a5e0
TT
2834
2835 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2ec9a5e0
TT
2838}
2839
1fd400ff 2840/* Create the signatured type hash table from the index. */
673bfd45 2841
74a0d9f6 2842static void
673bfd45 2843create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2844 struct dwarf2_section_info *section,
673bfd45
DE
2845 const gdb_byte *bytes,
2846 offset_type elements)
1fd400ff
TT
2847{
2848 offset_type i;
673bfd45 2849 htab_t sig_types_hash;
1fd400ff 2850
6aa5f3a6
DE
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
8d749320
SM
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2856
673bfd45 2857 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
52dc124a
DE
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2863 void **slot;
2864
74a0d9f6
JK
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
52dc124a 2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2873 struct signatured_type);
52dc124a 2874 sig_type->signature = signature;
3019eac3
DE
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2877 sig_type->per_cu.section = section;
52dc124a
DE
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
1fd400ff
TT
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
52dc124a
DE
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
1fd400ff 2886
b4dd5633 2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2888 }
2889
673bfd45 2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2891}
2892
9291a0cd
TT
2893/* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2895
9291a0cd
TT
2896static void
2897create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898{
3e29f34a 2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
f652bce2 2924
24a55014 2925 if (lo > hi)
f652bce2 2926 {
24a55014
DE
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2929 hex_string (lo), hex_string (hi));
24a55014 2930 continue;
f652bce2 2931 }
24a55014
DE
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
24a55014 2938 continue;
f652bce2 2939 }
24a55014 2940
3e29f34a
MR
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949}
2950
59d7bcaf
JK
2951/* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2958
9291a0cd 2959static hashval_t
559a7a62 2960mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2961{
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
559a7a62
JK
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
9291a0cd
TT
2972
2973 return r;
2974}
2975
2976/* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2979
9291a0cd
TT
2980static int
2981find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983{
0cf03b49
JK
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
9291a0cd 2986 offset_type slot, step;
559a7a62 2987 int (*cmp) (const char *, const char *);
9291a0cd 2988
0cf03b49
JK
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
45280282
IB
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
0cf03b49
JK
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
a8719064 2996
72998fb3 2997 if (strchr (name, '(') != NULL)
0cf03b49 2998 {
72998fb3 2999 char *without_params = cp_remove_params (name);
0cf03b49 3000
72998fb3
DE
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
0cf03b49
JK
3006 }
3007 }
3008
559a7a62 3009 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3010 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3876f04e
DE
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3876f04e 3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
9291a0cd 3031
3876f04e 3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3033 if (!cmp (name, str))
9291a0cd
TT
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3037 do_cleanups (back_to);
9291a0cd
TT
3038 return 1;
3039 }
3040
3876f04e 3041 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3042 }
3043}
3044
2ec9a5e0
TT
3045/* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3055
9291a0cd 3056static int
2ec9a5e0
TT
3057read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
9291a0cd 3066{
948f8e3d 3067 const gdb_byte *addr;
2ec9a5e0 3068 offset_type version;
b3b272e1 3069 offset_type *metadata;
1fd400ff 3070 int i;
9291a0cd 3071
2ec9a5e0 3072 if (dwarf2_section_empty_p (section))
9291a0cd 3073 return 0;
82430852
JK
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
a32a8923 3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3078 return 0;
3079
2ec9a5e0 3080 dwarf2_read_section (objfile, section);
9291a0cd 3081
2ec9a5e0 3082 addr = section->buffer;
9291a0cd 3083 /* Version check. */
1fd400ff 3084 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3086 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3087 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3088 indices. */
831adc1f 3089 if (version < 4)
481860b3
GB
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3095 filename);
481860b3
GB
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
2ec9a5e0 3108 if (version < 6 && !deprecated_ok)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
e615022a
DE
3113 warning (_("\
3114Skipping deprecated .gdb_index section in %s.\n\
3115Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116to use the section anyway."),
2ec9a5e0 3117 filename);
481860b3
GB
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
796a7ff8 3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3129
481860b3 3130 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3131 longer backward compatible. */
796a7ff8 3132 if (version > 8)
594e8718 3133 return 0;
9291a0cd 3134
559a7a62 3135 map->version = version;
2ec9a5e0 3136 map->total_size = section->size;
9291a0cd
TT
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3139
3140 i = 0;
2ec9a5e0
TT
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
1fd400ff
TT
3144 ++i;
3145
2ec9a5e0
TT
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
987d643c 3150 ++i;
1fd400ff
TT
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3876f04e
DE
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
1fd400ff 3161 ++i;
9291a0cd 3162
f9d83a0b 3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3164
2ec9a5e0
TT
3165 return 1;
3166}
3167
3168
3169/* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172static int
3173dwarf2_read_index (struct objfile *objfile)
3174{
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3178 struct dwz_file *dwz;
2ec9a5e0 3179
4262abfb 3180 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
0fefef59 3187 /* Don't use the index if it's empty. */
2ec9a5e0 3188 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3189 return 0;
3190
2ec9a5e0
TT
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
4db1a1dc
TT
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
2ec9a5e0 3195 {
2ec9a5e0
TT
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
74a0d9f6
JK
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
1fd400ff 3215
8b70b953
TT
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
74a0d9f6
JK
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
8b70b953 3230 }
9291a0cd 3231
2ec9a5e0
TT
3232 create_addrmap_from_index (objfile, &local_map);
3233
8d749320 3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3235 *map = local_map;
9291a0cd
TT
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3241
3242 return 1;
3243}
3244
3245/* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3247
9291a0cd
TT
3248static void
3249dw2_setup (struct objfile *objfile)
3250{
9a3c8263
SM
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3253 gdb_assert (dwarf2_per_objfile);
3254}
3255
dee91e82 3256/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3257
dee91e82
DE
3258static void
3259dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3260 const gdb_byte *info_ptr,
dee91e82
DE
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
9291a0cd 3264{
dee91e82
DE
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3268 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3269 struct line_header *lh;
9291a0cd 3270 struct attribute *attr;
dee91e82 3271 int i;
15d034d0 3272 const char *name, *comp_dir;
7b9f3c50
DE
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
9291a0cd 3276
0186c6a7
DE
3277 gdb_assert (! this_cu->is_debug_types);
3278
07261596
TT
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
0186c6a7 3287 lh_cu = this_cu;
7b9f3c50
DE
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
dee91e82
DE
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3293 if (attr)
3294 {
7b9f3c50
DE
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
094b34ac
DE
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
9a3c8263 3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3308 return;
7b9f3c50
DE
3309 }
3310
3019eac3 3311 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3312 }
3313 if (lh == NULL)
3314 {
094b34ac 3315 lh_cu->v.quick->no_file_data = 1;
dee91e82 3316 return;
9291a0cd
TT
3317 }
3318
8d749320 3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
9291a0cd 3324
dee91e82 3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3326
7b9f3c50 3327 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3330 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
9291a0cd 3333
7b9f3c50 3334 free_line_header (lh);
7b9f3c50 3335
094b34ac 3336 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3337}
3338
3339/* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342static struct quick_file_names *
e4a48d9d 3343dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3344{
0186c6a7
DE
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3349
dee91e82
DE
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
0186c6a7 3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
9291a0cd
TT
3361}
3362
3363/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3364 real path for a given file name from the line table. */
2fdf6df6 3365
9291a0cd 3366static const char *
7b9f3c50
DE
3367dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
9291a0cd 3369{
7b9f3c50
DE
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3372 qfn->num_file_names, const char *);
9291a0cd 3373
7b9f3c50
DE
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3376
7b9f3c50 3377 return qfn->real_names[index];
9291a0cd
TT
3378}
3379
3380static struct symtab *
3381dw2_find_last_source_symtab (struct objfile *objfile)
3382{
43f3e411 3383 struct compunit_symtab *cust;
9291a0cd 3384 int index;
ae2de4f8 3385
9291a0cd
TT
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
9291a0cd
TT
3392}
3393
7b9f3c50
DE
3394/* Traversal function for dw2_forget_cached_source_info. */
3395
3396static int
3397dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3398{
7b9f3c50 3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3400
7b9f3c50 3401 if (file_data->real_names)
9291a0cd 3402 {
7b9f3c50 3403 int i;
9291a0cd 3404
7b9f3c50 3405 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3406 {
7b9f3c50
DE
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
9291a0cd
TT
3409 }
3410 }
7b9f3c50
DE
3411
3412 return 1;
3413}
3414
3415static void
3416dw2_forget_cached_source_info (struct objfile *objfile)
3417{
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3422}
3423
f8eba3c6
TT
3424/* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427static int
3428dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3430 const char *name, const char *real_path,
f8eba3c6
TT
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433{
43f3e411 3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3435
3436 /* Don't visit already-expanded CUs. */
43f3e411 3437 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
a0f42c21 3442 dw2_instantiate_symtab (per_cu);
f8eba3c6 3443
f5b95b50 3444 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3445 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3446}
3447
3448/* Implementation of the map_symtabs_matching_filename method. */
3449
9291a0cd 3450static int
f8eba3c6 3451dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3452 const char *real_path,
f8eba3c6
TT
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
9291a0cd
TT
3455{
3456 int i;
c011a4f4 3457 const char *name_basename = lbasename (name);
9291a0cd
TT
3458
3459 dw2_setup (objfile);
ae2de4f8 3460
848e3e78
DE
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
f4dc4d17 3463
848e3e78 3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3465 {
3466 int j;
8832e7e3 3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3468 struct quick_file_names *file_data;
9291a0cd 3469
3d7bb9d9 3470 /* We only need to look at symtabs not already expanded. */
43f3e411 3471 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3472 continue;
3473
e4a48d9d 3474 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3475 if (file_data == NULL)
9291a0cd
TT
3476 continue;
3477
7b9f3c50 3478 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3479 {
7b9f3c50 3480 const char *this_name = file_data->file_names[j];
da235a7c 3481 const char *this_real_name;
9291a0cd 3482
af529f8f 3483 if (compare_filenames_for_search (this_name, name))
9291a0cd 3484 {
f5b95b50 3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3486 callback, data))
3487 return 1;
288e77a7 3488 continue;
4aac40c8 3489 }
9291a0cd 3490
c011a4f4
DE
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
da235a7c
JK
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3499 {
da235a7c
JK
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
288e77a7 3503 continue;
da235a7c 3504 }
9291a0cd 3505
da235a7c
JK
3506 if (real_path != NULL)
3507 {
af529f8f
JK
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3510 if (this_real_name != NULL
af529f8f 3511 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3512 {
f5b95b50 3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3514 callback, data))
3515 return 1;
288e77a7 3516 continue;
9291a0cd
TT
3517 }
3518 }
3519 }
3520 }
3521
9291a0cd
TT
3522 return 0;
3523}
3524
da51c347
DE
3525/* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527struct dw2_symtab_iterator
9291a0cd 3528{
da51c347
DE
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
8943b874
DE
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
da51c347 3550};
9291a0cd 3551
da51c347
DE
3552/* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3555
9291a0cd 3556static void
da51c347
DE
3557dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563{
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
8943b874 3569 iter->global_seen = 0;
da51c347
DE
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578}
3579
3580/* Return the next matching CU or NULL if there are no more. */
3581
3582static struct dwarf2_per_cu_data *
3583dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584{
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3590 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3190f0c6
DE
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
4262abfb
JK
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3612 continue;
3613 }
3614
8832e7e3 3615 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3616
da51c347 3617 /* Skip if already read in. */
43f3e411 3618 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3619 continue;
3620
8943b874
DE
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
da51c347
DE
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664}
3665
43f3e411 3666static struct compunit_symtab *
da51c347
DE
3667dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
9291a0cd 3669{
43f3e411 3670 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3671 struct mapped_index *index;
3672
9291a0cd
TT
3673 dw2_setup (objfile);
3674
156942c7
DE
3675 index = dwarf2_per_objfile->index_table;
3676
da51c347 3677 /* index is NULL if OBJF_READNOW. */
156942c7 3678 if (index)
9291a0cd 3679 {
da51c347
DE
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3684
da51c347 3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3686 {
b2e2f908 3687 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3691
b2e2f908
DE
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
da51c347
DE
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
da51c347 3699
b2e2f908
DE
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
da51c347
DE
3706
3707 /* Keep looking through other CUs. */
9291a0cd
TT
3708 }
3709 }
9291a0cd 3710
da51c347 3711 return stab_best;
9291a0cd
TT
3712}
3713
3714static void
3715dw2_print_stats (struct objfile *objfile)
3716{
e4a48d9d 3717 int i, total, count;
9291a0cd
TT
3718
3719 dw2_setup (objfile);
e4a48d9d 3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3721 count = 0;
e4a48d9d 3722 for (i = 0; i < total; ++i)
9291a0cd 3723 {
8832e7e3 3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3725
43f3e411 3726 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3727 ++count;
3728 }
e4a48d9d 3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731}
3732
779bd270
DE
3733/* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
9291a0cd
TT
3738static void
3739dw2_dump (struct objfile *objfile)
3740{
779bd270
DE
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
9291a0cd
TT
3752}
3753
3754static void
3189cb12
DE
3755dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
9291a0cd
TT
3758{
3759 /* There's nothing to relocate here. */
3760}
3761
3762static void
3763dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765{
da51c347
DE
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
9291a0cd
TT
3785}
3786
3787static void
3788dw2_expand_all_symtabs (struct objfile *objfile)
3789{
3790 int i;
3791
3792 dw2_setup (objfile);
1fd400ff
TT
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3795 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3796 {
8832e7e3 3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3798
a0f42c21 3799 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3800 }
3801}
3802
3803static void
652a8996
JK
3804dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
9291a0cd
TT
3806{
3807 int i;
3808
3809 dw2_setup (objfile);
d4637a04
DE
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3817 {
3818 int j;
8832e7e3 3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3820 struct quick_file_names *file_data;
9291a0cd 3821
3d7bb9d9 3822 /* We only need to look at symtabs not already expanded. */
43f3e411 3823 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3824 continue;
3825
e4a48d9d 3826 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3827 if (file_data == NULL)
9291a0cd
TT
3828 continue;
3829
7b9f3c50 3830 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3831 {
652a8996
JK
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3835 {
a0f42c21 3836 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3837 break;
3838 }
3839 }
3840 }
3841}
3842
9291a0cd 3843static void
ade7ed9e 3844dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3845 const char * name, domain_enum domain,
ade7ed9e 3846 int global,
40658b94
PH
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
2edb89d3
JK
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
9291a0cd 3851{
40658b94 3852 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3855}
3856
3857static void
f8eba3c6
TT
3858dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
206f2a57
DE
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3862 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3863 enum search_domain kind,
3864 void *data)
9291a0cd
TT
3865{
3866 int i;
3867 offset_type iter;
4b5246aa 3868 struct mapped_index *index;
9291a0cd
TT
3869
3870 dw2_setup (objfile);
ae2de4f8
DE
3871
3872 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
4b5246aa 3875 index = dwarf2_per_objfile->index_table;
9291a0cd 3876
7b08b9eb 3877 if (file_matcher != NULL)
24c79950
TT
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
848e3e78
DE
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3895 {
3896 int j;
8832e7e3 3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3898 struct quick_file_names *file_data;
3899 void **slot;
7b08b9eb 3900
61d96d7e
DE
3901 QUIT;
3902
24c79950 3903 per_cu->v.quick->mark = 0;
3d7bb9d9 3904
24c79950 3905 /* We only need to look at symtabs not already expanded. */
43f3e411 3906 if (per_cu->v.quick->compunit_symtab)
24c79950 3907 continue;
7b08b9eb 3908
e4a48d9d 3909 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3910 if (file_data == NULL)
3911 continue;
7b08b9eb 3912
24c79950
TT
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
da235a7c
JK
3923 const char *this_real_name;
3924
fbd9ab74 3925 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
da235a7c
JK
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
24c79950
TT
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
9291a0cd 3955
3876f04e 3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
8943b874 3961 int global_seen = 0;
9291a0cd 3962
61d96d7e
DE
3963 QUIT;
3964
3876f04e 3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3966 continue;
3967
3876f04e 3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3969
206f2a57 3970 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
4b5246aa 3975 vec = (offset_type *) (index->constant_pool
3876f04e 3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
e254ef6a 3980 struct dwarf2_per_cu_data *per_cu;
156942c7 3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
8943b874
DE
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
3190f0c6
DE
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
156942c7
DE
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
3190f0c6
DE
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4262abfb 4032 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4033 continue;
4034 }
4035
8832e7e3 4036 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4037 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
9291a0cd
TT
4052 }
4053 }
4054}
4055
43f3e411 4056/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4057 symtab. */
4058
43f3e411
DE
4059static struct compunit_symtab *
4060recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
9703b513
TT
4062{
4063 int i;
4064
43f3e411
DE
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
9703b513 4068
43f3e411 4069 if (cust->includes == NULL)
a3ec0bb1
DE
4070 return NULL;
4071
43f3e411 4072 for (i = 0; cust->includes[i]; ++i)
9703b513 4073 {
43f3e411 4074 struct compunit_symtab *s = cust->includes[i];
9703b513 4075
43f3e411 4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082}
4083
43f3e411
DE
4084static struct compunit_symtab *
4085dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
9291a0cd
TT
4090{
4091 struct dwarf2_per_cu_data *data;
43f3e411 4092 struct compunit_symtab *result;
9291a0cd
TT
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
9a3c8263
SM
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
9291a0cd
TT
4101 if (!data)
4102 return NULL;
4103
43f3e411 4104 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4106 paddress (get_objfile_arch (objfile), pc));
4107
43f3e411
DE
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
9703b513
TT
4111 gdb_assert (result != NULL);
4112 return result;
9291a0cd
TT
4113}
4114
9291a0cd 4115static void
44b13c5a 4116dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4117 void *data, int need_fullname)
9291a0cd
TT
4118{
4119 int i;
24c79950
TT
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
9291a0cd 4123
24c79950 4124 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4125 dw2_setup (objfile);
ae2de4f8 4126
848e3e78
DE
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4130
848e3e78 4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4132 {
8832e7e3 4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4134
43f3e411 4135 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
848e3e78 4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4145 {
4146 int j;
8832e7e3 4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4148 struct quick_file_names *file_data;
24c79950 4149 void **slot;
9291a0cd 4150
3d7bb9d9 4151 /* We only need to look at symtabs not already expanded. */
43f3e411 4152 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4153 continue;
4154
e4a48d9d 4155 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4156 if (file_data == NULL)
9291a0cd
TT
4157 continue;
4158
24c79950
TT
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
7b9f3c50 4167 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4168 {
74e2f255
DE
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
7b9f3c50 4175 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4176 }
4177 }
24c79950
TT
4178
4179 do_cleanups (cleanup);
9291a0cd
TT
4180}
4181
4182static int
4183dw2_has_symbols (struct objfile *objfile)
4184{
4185 return 1;
4186}
4187
4188const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189{
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
f8eba3c6 4193 dw2_map_symtabs_matching_filename,
9291a0cd 4194 dw2_lookup_symbol,
9291a0cd
TT
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
652a8996 4200 dw2_expand_symtabs_with_fullname,
40658b94 4201 dw2_map_matching_symbols,
9291a0cd 4202 dw2_expand_symtabs_matching,
43f3e411 4203 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4204 dw2_map_symbol_filenames
4205};
4206
4207/* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210int
4211dwarf2_initialize_objfile (struct objfile *objfile)
4212{
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
0e50663e 4223 create_all_type_units (objfile);
7b9f3c50
DE
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4226
1fd400ff 4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4228 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4229 {
8832e7e3 4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4231
e254ef6a
DE
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
9291a0cd
TT
4245 return 0;
4246}
4247
4248\f
4249
dce234bc
PP
4250/* Build a partial symbol table. */
4251
4252void
f29dff0a 4253dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4254{
c9bf0622 4255
f29dff0a 4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
492d29ea 4261 TRY
c9bf0622
TT
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
492d29ea
PA
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
c906108c 4276}
c906108c 4277
1ce1cefd
DE
4278/* Return the total length of the CU described by HEADER. */
4279
4280static unsigned int
4281get_cu_length (const struct comp_unit_head *header)
4282{
4283 return header->initial_length_size + header->length;
4284}
4285
45452591
DE
4286/* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288static inline int
b64f50a1 4289offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4290{
b64f50a1 4291 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4293
b64f50a1 4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4295}
4296
3b80fe9b
DE
4297/* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303static void
4304dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305{
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
31aa7e4e 4314 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
31aa7e4e 4322 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4323 cu->base_known = 1;
4324 }
4325 }
4326}
4327
93311388
DE
4328/* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
107d2387 4331
d521ce57 4332static const gdb_byte *
107d2387 4333read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4334 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4335{
4336 int signed_addr;
891d2f0b 4337 unsigned int bytes_read;
c764a876
DE
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4342 info_ptr += bytes_read;
107d2387
AC
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
b64f50a1
JK
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
613e1657 4347 info_ptr += bytes_read;
107d2387
AC
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
8e65ff28 4352 internal_error (__FILE__, __LINE__,
e2e0b3e5 4353 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4354 cu_header->signed_addr_p = signed_addr;
c764a876 4355
107d2387
AC
4356 return info_ptr;
4357}
4358
36586728
TT
4359/* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362static struct dwarf2_section_info *
4363get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364{
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373}
4374
9ff913ba
DE
4375/* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379static void
4380error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
9ff913ba 4383{
a32a8923
DE
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
9ff913ba
DE
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
b64f50a1 4392 if (header->abbrev_offset.sect_off
36586728 4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
1ce1cefd 4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4405 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4406 filename);
4407}
4408
4409/* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
adabb602 4412
d521ce57 4413static const gdb_byte *
9ff913ba
DE
4414read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4bdcc0c1 4416 struct dwarf2_section_info *abbrev_section,
d521ce57 4417 const gdb_byte *info_ptr,
9ff913ba 4418 int is_debug_types_section)
72bf9492 4419{
d521ce57 4420 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4421 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4422
b64f50a1 4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4424
72bf9492
DJ
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
460c1c54
CC
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
b0df02fd 4429 if (is_debug_types_section)
460c1c54
CC
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
b64f50a1 4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4433
4bdcc0c1 4434 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4435
4436 return info_ptr;
4437}
4438
348e048f
DE
4439/* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
d521ce57 4442static const gdb_byte *
9ff913ba
DE
4443read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4bdcc0c1 4445 struct dwarf2_section_info *abbrev_section,
d521ce57 4446 const gdb_byte *info_ptr,
dee91e82
DE
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
348e048f 4449{
d521ce57 4450 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4451 bfd *abfd = get_section_bfd_owner (section);
348e048f 4452
b64f50a1 4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4454
9ff913ba 4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4456
9ff913ba
DE
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
dee91e82
DE
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
9ff913ba
DE
4465 info_ptr += header->offset_size;
4466
b64f50a1 4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4468
4bdcc0c1 4469 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4470
4471 return info_ptr;
348e048f
DE
4472}
4473
f4dc4d17
DE
4474/* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476static sect_offset
4477read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479{
a32a8923 4480 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4481 const gdb_byte *info_ptr;
f4dc4d17
DE
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492}
4493
aaa75496
JB
4494/* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497static void
d521ce57 4498dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4499 struct objfile *objfile)
4500{
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
fbd9ab74
JK
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
aaa75496
JB
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
8d749320
SM
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
43f3e411 4521 subpst->compunit_symtab = NULL;
aaa75496
JB
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
10b3939b 4527 the regular ones. */
58a9656e 4528 subpst->read_symtab_private = NULL;
aaa75496
JB
4529}
4530
4531/* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
d85a05f0 4533 partial symtab for each of these included files. */
aaa75496
JB
4534
4535static void
4536dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4537 struct die_info *die,
4538 struct partial_symtab *pst)
aaa75496 4539{
d85a05f0
DJ
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
aaa75496 4542
d85a05f0
DJ
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
3019eac3 4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
c6da4cef 4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4551
4552 free_line_header (lh);
4553}
4554
348e048f 4555static hashval_t
52dc124a 4556hash_signatured_type (const void *item)
348e048f 4557{
9a3c8263
SM
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
9a619af0 4560
348e048f 4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4562 return sig_type->signature;
348e048f
DE
4563}
4564
4565static int
52dc124a 4566eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4567{
9a3c8263
SM
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4570
348e048f
DE
4571 return lhs->signature == rhs->signature;
4572}
4573
1fd400ff
TT
4574/* Allocate a hash table for signatured types. */
4575
4576static htab_t
673bfd45 4577allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4578{
4579 return htab_create_alloc_ex (41,
52dc124a
DE
4580 hash_signatured_type,
4581 eq_signatured_type,
1fd400ff
TT
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586}
4587
d467dd73 4588/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4589
4590static int
d467dd73 4591add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4592{
9a3c8263
SM
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4595
b4dd5633 4596 **datap = sigt;
1fd400ff
TT
4597 ++*datap;
4598
4599 return 1;
4600}
4601
c88ee1f0
DE
4602/* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
348e048f 4610
3019eac3
DE
4611static htab_t
4612create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
348e048f 4614{
3019eac3 4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4616 htab_t types_htab = NULL;
8b70b953
TT
4617 int ix;
4618 struct dwarf2_section_info *section;
4bdcc0c1 4619 struct dwarf2_section_info *abbrev_section;
348e048f 4620
3019eac3
DE
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
348e048f 4623
4bdcc0c1
DE
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
b4f54984 4628 if (dwarf_read_debug)
09406207
DE
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
a32a8923 4631 get_section_file_name (abbrev_section));
09406207 4632
8b70b953 4633 for (ix = 0;
3019eac3 4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4635 ++ix)
4636 {
3019eac3 4637 bfd *abfd;
d521ce57 4638 const gdb_byte *info_ptr, *end_ptr;
348e048f 4639
8b70b953
TT
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
348e048f 4642
8b70b953
TT
4643 if (info_ptr == NULL)
4644 continue;
348e048f 4645
3019eac3 4646 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
3019eac3 4649
dee91e82
DE
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
8b70b953
TT
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
b64f50a1 4657 sect_offset offset;
3019eac3 4658 cu_offset type_offset_in_tu;
8b70b953 4659 ULONGEST signature;
52dc124a 4660 struct signatured_type *sig_type;
3019eac3 4661 struct dwo_unit *dwo_tu;
8b70b953 4662 void **slot;
d521ce57 4663 const gdb_byte *ptr = info_ptr;
9ff913ba 4664 struct comp_unit_head header;
dee91e82 4665 unsigned int length;
348e048f 4666
b64f50a1 4667 offset.sect_off = ptr - section->buffer;
348e048f 4668
8b70b953 4669 /* We need to read the type's signature in order to build the hash
9ff913ba 4670 table, but we don't need anything else just yet. */
348e048f 4671
4bdcc0c1
DE
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
3019eac3 4674 &signature, &type_offset_in_tu);
6caca83c 4675
1ce1cefd 4676 length = get_cu_length (&header);
dee91e82 4677
6caca83c 4678 /* Skip dummy type units. */
dee91e82
DE
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4681 {
1ce1cefd 4682 info_ptr += length;
6caca83c
CC
4683 continue;
4684 }
8b70b953 4685
0349ea22
DE
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
3019eac3
DE
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4702 dwo_tu->section = section;
3019eac3
DE
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4717 sig_type->per_cu.section = section;
3019eac3
DE
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
8b70b953 4721
3019eac3
DE
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
8b70b953
TT
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
3019eac3
DE
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
9a3c8263
SM
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
3019eac3
DE
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
9a3c8263
SM
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
3019eac3
DE
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
b3c8eb43 4744
8b70b953 4745 complaint (&symfile_complaints,
c88ee1f0 4746 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4747 " the entry at offset 0x%x, signature %s"),
3019eac3 4748 offset.sect_off, dup_offset.sect_off,
4031ecc5 4749 hex_string (signature));
8b70b953 4750 }
3019eac3 4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4752
b4f54984 4753 if (dwarf_read_debug > 1)
4031ecc5 4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4755 offset.sect_off,
4031ecc5 4756 hex_string (signature));
348e048f 4757
dee91e82 4758 info_ptr += length;
8b70b953 4759 }
348e048f
DE
4760 }
4761
3019eac3
DE
4762 return types_htab;
4763}
4764
4765/* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770static int
4771create_all_type_units (struct objfile *objfile)
4772{
4773 htab_t types_htab;
b4dd5633 4774 struct signatured_type **iter;
3019eac3
DE
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
348e048f
DE
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
6aa5f3a6
DE
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
8d749320
SM
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
1fd400ff 4794
348e048f
DE
4795 return 1;
4796}
4797
6aa5f3a6
DE
4798/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802static struct signatured_type *
4803add_type_unit (ULONGEST sig, void **slot)
4804{
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845}
4846
a2ce51a0
DE
4847/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850static void
4851fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854{
7ee85ab1 4855 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877}
4878
4879/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
a2ce51a0
DE
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891static struct signatured_type *
4892lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893{
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4898 void **slot;
a2ce51a0
DE
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
6aa5f3a6
DE
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
a2ce51a0
DE
4909
4910 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
a2ce51a0 4915
a2ce51a0 4916 find_sig_entry.signature = sig;
6aa5f3a6
DE
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
9a3c8263 4919 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4920
4921 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4931 return sig_entry;
4932
6aa5f3a6
DE
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
a2ce51a0
DE
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
9a3c8263 4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
6aa5f3a6
DE
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
a2ce51a0 4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4950 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4951 return sig_entry;
4952}
4953
a2ce51a0
DE
4954/* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
a2ce51a0
DE
4958
4959static struct signatured_type *
4960lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961{
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4966 void **slot;
a2ce51a0
DE
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
6aa5f3a6
DE
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4974 {
6aa5f3a6
DE
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4977 }
4978
6aa5f3a6
DE
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
9a3c8263 4982 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
a2ce51a0
DE
4990 if (dwp_file->tus == NULL)
4991 return NULL;
57d63ce2
DE
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
6aa5f3a6 4997 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
a2ce51a0
DE
5000 return sig_entry;
5001}
5002
380bca97 5003/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
348e048f
DE
5006
5007static struct signatured_type *
a2ce51a0 5008lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5009{
a2ce51a0
DE
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
348e048f 5023
a2ce51a0
DE
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
9a3c8263
SM
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5029 return entry;
5030 }
348e048f 5031}
42e7ad6c
DE
5032\f
5033/* Low level DIE reading support. */
348e048f 5034
d85a05f0
DJ
5035/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037static void
5038init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5039 struct dwarf2_cu *cu,
3019eac3
DE
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
d85a05f0 5042{
fceca515 5043 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5044 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5045 reader->cu = cu;
3019eac3 5046 reader->dwo_file = dwo_file;
dee91e82
DE
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
f664829e 5049 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5050 reader->comp_dir = NULL;
d85a05f0
DJ
5051}
5052
b0c7bfa9
DE
5053/* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070static int
5071read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
a2ce51a0 5075 const char *stub_comp_dir,
b0c7bfa9 5076 struct die_reader_specs *result_reader,
d521ce57 5077 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080{
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
d521ce57 5085 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
b0aeadb3
DE
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5095
b0c7bfa9
DE
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
b0c7bfa9
DE
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
a2ce51a0
DE
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
b0c7bfa9
DE
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
a32a8923 5149 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
a2ce51a0
DE
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
b0c7bfa9
DE
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
02142a6c
DE
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5204 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5211 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
b4f54984 5241 if (dwarf_die_debug)
bf6af496
DE
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
a32a8923 5245 get_section_name (section),
bf6af496
DE
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
b4f54984 5248 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5249 }
5250
a2ce51a0
DE
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
b0c7bfa9
DE
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265}
5266
5267/* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5269 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5270
5271static struct dwo_unit *
5272lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274{
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
a2ce51a0
DE
5281 gdb_assert (cu != NULL);
5282
b0c7bfa9 5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
4262abfb 5305 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
b0c7bfa9
DE
5311 return dwo_unit;
5312}
5313
a2ce51a0 5314/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
a2ce51a0
DE
5322
5323static void
6aa5f3a6
DE
5324init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
a2ce51a0
DE
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328{
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
6aa5f3a6 5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
6aa5f3a6
DE
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
8d749320 5356 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
a2ce51a0
DE
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
6aa5f3a6 5381 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5385 if (free_cu_cleanup != NULL)
a2ce51a0 5386 {
6aa5f3a6
DE
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
a2ce51a0 5392
6aa5f3a6
DE
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
a2ce51a0 5396
6aa5f3a6
DE
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
a2ce51a0 5403 }
a2ce51a0
DE
5404
5405 do_cleanups (cleanups);
5406}
5407
fd820528 5408/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5409 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5410
f4dc4d17
DE
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
dee91e82
DE
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5422 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5423
70221824 5424static void
fd820528 5425init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5426 struct abbrev_table *abbrev_table,
fd820528
DE
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
c906108c 5430{
dee91e82 5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5432 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5433 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5434 struct dwarf2_cu *cu;
d521ce57 5435 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5436 struct die_reader_specs reader;
d85a05f0 5437 struct die_info *comp_unit_die;
dee91e82 5438 int has_children;
d85a05f0 5439 struct attribute *attr;
365156ad 5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5441 struct signatured_type *sig_type = NULL;
4bdcc0c1 5442 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5446 int rereading_dwo_cu = 0;
c906108c 5447
b4f54984 5448 if (dwarf_die_debug)
09406207
DE
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
dee91e82
DE
5453 if (use_existing_cu)
5454 gdb_assert (keep);
23745b47 5455
a2ce51a0
DE
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
a2ce51a0
DE
5465 return;
5466 }
5467
dee91e82
DE
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
42e7ad6c
DE
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
dee91e82
DE
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
8d749320 5493 cu = XNEW (struct dwarf2_cu);
dee91e82 5494 init_one_comp_unit (cu, this_cu);
dee91e82 5495 /* If an error occurs while loading, release our storage. */
365156ad 5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5497 }
dee91e82 5498
b0c7bfa9 5499 /* Get the header. */
42e7ad6c
DE
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
3019eac3 5507 if (this_cu->is_debug_types)
dee91e82
DE
5508 {
5509 ULONGEST signature;
42e7ad6c 5510 cu_offset type_offset_in_tu;
dee91e82 5511
4bdcc0c1
DE
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
42e7ad6c
DE
5514 &signature,
5515 &type_offset_in_tu);
dee91e82 5516
42e7ad6c
DE
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
dee91e82
DE
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
42e7ad6c
DE
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
1ce1cefd 5527 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5532 }
5533 else
5534 {
4bdcc0c1
DE
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
dee91e82
DE
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5541 }
5542 }
10b3939b 5543
6caca83c 5544 /* Skip dummy compilation units. */
dee91e82 5545 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
dee91e82 5548 do_cleanups (cleanups);
21b2bd31 5549 return;
6caca83c
CC
5550 }
5551
433df2d4
DE
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
f4dc4d17
DE
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
dee91e82 5565 {
4bdcc0c1 5566 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
42e7ad6c
DE
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
af703f96 5574
dee91e82 5575 /* Read the top level CU/TU die. */
3019eac3 5576 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5578
b0c7bfa9
DE
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
3019eac3 5586 struct dwo_unit *dwo_unit;
b0c7bfa9 5587 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5588
5589 if (has_children)
6a506a2d
DE
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
b0c7bfa9 5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5597 if (dwo_unit != NULL)
3019eac3 5598 {
6a506a2d
DE
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
a2ce51a0 5601 comp_unit_die, NULL,
6a506a2d
DE
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
3019eac3
DE
5618 }
5619 }
5620
b0c7bfa9 5621 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
b0c7bfa9 5624 /* Done, clean up. */
365156ad 5625 if (free_cu_cleanup != NULL)
348e048f 5626 {
365156ad
TT
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
dee91e82 5632
365156ad
TT
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
dee91e82 5636
365156ad
TT
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
348e048f 5643 }
365156ad
TT
5644
5645 do_cleanups (cleanups);
dee91e82
DE
5646}
5647
33e80786
DE
5648/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
dee91e82
DE
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5653 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
3019eac3
DE
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5663
5664static void
5665init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5666 struct dwo_file *dwo_file,
dee91e82
DE
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669{
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5671 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5672 bfd *abfd = get_section_bfd_owner (section);
33e80786 5673 struct dwarf2_section_info *abbrev_section;
dee91e82 5674 struct dwarf2_cu cu;
d521ce57 5675 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
b4f54984 5681 if (dwarf_die_debug)
09406207
DE
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
dee91e82
DE
5686 gdb_assert (this_cu->cu == NULL);
5687
33e80786
DE
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
dee91e82
DE
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
3019eac3 5702 this_cu->is_debug_types);
dee91e82 5703
1ce1cefd 5704 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5709 {
dee91e82 5710 do_cleanups (cleanups);
21b2bd31 5711 return;
93311388 5712 }
72bf9492 5713
dee91e82
DE
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
3019eac3 5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723}
5724
3019eac3
DE
5725/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
dee91e82
DE
5728
5729 THIS_CU->cu is always freed when done.
3019eac3
DE
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5733
5734static void
5735init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738{
33e80786 5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5740}
0018ea6f
DE
5741\f
5742/* Type Unit Groups.
dee91e82 5743
0018ea6f
DE
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
ff013f42 5749
f4dc4d17
DE
5750static hashval_t
5751hash_type_unit_group (const void *item)
5752{
9a3c8263
SM
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
f4dc4d17 5755
094b34ac 5756 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5757}
348e048f
DE
5758
5759static int
f4dc4d17 5760eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5761{
9a3c8263
SM
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5764
094b34ac 5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5766}
348e048f 5767
f4dc4d17
DE
5768/* Allocate a hash table for type unit groups. */
5769
5770static htab_t
5771allocate_type_unit_groups_table (void)
5772{
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780}
dee91e82 5781
f4dc4d17
DE
5782/* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5787
094b34ac 5788/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791static struct type_unit_group *
094b34ac 5792create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5793{
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5795 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5796 struct type_unit_group *tu_group;
f4dc4d17
DE
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
094b34ac 5800 per_cu = &tu_group->per_cu;
f4dc4d17 5801 per_cu->objfile = objfile;
f4dc4d17 5802
094b34ac
DE
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
f4dc4d17 5823
094b34ac
DE
5824 xfree (name);
5825 }
f4dc4d17 5826
094b34ac
DE
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5829
5830 return tu_group;
5831}
5832
094b34ac
DE
5833/* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5835
5836static struct type_unit_group *
ff39bb5e 5837get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5838{
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
094b34ac
DE
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
9a3c8263 5877 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
094b34ac 5885 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891}
0018ea6f
DE
5892\f
5893/* Partial symbol tables. */
5894
5895/* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900static struct partial_symtab *
5901create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902{
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
18a94d75 5906 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918}
5919
b93601f3
TT
5920/* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923struct process_psymtab_comp_unit_data
5924{
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933};
5934
0018ea6f
DE
5935/* die_reader_func for process_psymtab_comp_unit. */
5936
5937static void
5938process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5939 const gdb_byte *info_ptr,
0018ea6f
DE
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943{
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
3e29f34a 5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
9a3c8263
SM
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5955
b93601f3 5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
b93601f3 5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
0018ea6f 5968 filename = "";
0018ea6f
DE
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
0018ea6f
DE
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
3e29f34a
MR
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6024
8763cede 6025 end_psymtab_common (objfile, pst);
0018ea6f
DE
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
8d749320
SM
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
b4f54984 6051 if (dwarf_read_debug)
0018ea6f
DE
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064}
6065
6066/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069static void
6070process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6071 int want_partial_unit,
6072 enum language pretend_language)
0018ea6f 6073{
b93601f3
TT
6074 struct process_psymtab_comp_unit_data info;
6075
0018ea6f
DE
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
0018ea6f
DE
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
b93601f3 6089 &info);
0018ea6f
DE
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093}
f4dc4d17
DE
6094
6095/* Reader function for build_type_psymtabs. */
6096
6097static void
6098build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6099 const gdb_byte *info_ptr,
f4dc4d17
DE
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103{
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6107 struct signatured_type *sig_type;
f4dc4d17
DE
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
0186c6a7
DE
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6122 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6123
0186c6a7 6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
8763cede 6137 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6138}
6139
73051182
DE
6140/* Struct used to sort TUs by their abbreviation table offset. */
6141
6142struct tu_abbrev_offset
6143{
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146};
6147
6148/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150static int
6151sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152{
9a3c8263
SM
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161}
6162
6163/* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181static void
6182build_type_psymtabs_1 (void)
6183{
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
b4f54984 6218 if (dwarf_read_debug)
73051182
DE
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
73051182 6268 do_cleanups (cleanups);
6aa5f3a6 6269}
73051182 6270
6aa5f3a6
DE
6271/* Print collected type unit statistics. */
6272
6273static void
6274print_tu_stats (void)
6275{
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6291}
6292
f4dc4d17
DE
6293/* Traversal function for build_type_psymtabs. */
6294
6295static int
6296build_type_psymtab_dependencies (void **slot, void *info)
6297{
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6301 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
f4dc4d17
DE
6304 int i;
6305
6306 gdb_assert (len > 0);
0186c6a7 6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6308
6309 pst->number_of_dependencies = len;
8d749320
SM
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6312 for (i = 0;
0186c6a7 6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6314 ++i)
6315 {
0186c6a7
DE
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6318 iter->type_unit_group = tu_group;
f4dc4d17
DE
6319 }
6320
0186c6a7 6321 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6322
6323 return 1;
6324}
6325
6326/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329static void
6330build_type_psymtabs (struct objfile *objfile)
6331{
0e50663e 6332 if (! create_all_type_units (objfile))
348e048f
DE
6333 return;
6334
73051182 6335 build_type_psymtabs_1 ();
6aa5f3a6 6336}
f4dc4d17 6337
6aa5f3a6
DE
6338/* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341static int
6342process_skeletonless_type_unit (void **slot, void *info)
6343{
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6345 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375}
6376
6377/* Traversal function for process_skeletonless_type_units. */
6378
6379static int
6380process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381{
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391}
6392
6393/* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397static void
6398process_skeletonless_type_units (struct objfile *objfile)
6399{
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
348e048f
DE
6408}
6409
60606b2c
TT
6410/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412static void
6413psymtabs_addrmap_cleanup (void *o)
6414{
9a3c8263 6415 struct objfile *objfile = (struct objfile *) o;
ec61707d 6416
60606b2c
TT
6417 objfile->psymtabs_addrmap = NULL;
6418}
6419
95554aad
TT
6420/* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422static void
6423set_partial_user (struct objfile *objfile)
6424{
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
8832e7e3 6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
36586728
TT
6433 if (pst == NULL)
6434 continue;
6435
95554aad
TT
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443}
6444
93311388
DE
6445/* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
72bf9492 6447
93311388 6448static void
c67a9c90 6449dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6450{
60606b2c
TT
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
21b2bd31 6453 int i;
93311388 6454
b4f54984 6455 if (dwarf_read_debug)
45cfd468
DE
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6458 objfile_name (objfile));
45cfd468
DE
6459 }
6460
98bfdba5
PA
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
be391dca 6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6464
93311388
DE
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6468
348e048f
DE
6469 build_type_psymtabs (objfile);
6470
93311388 6471 create_all_comp_units (objfile);
c906108c 6472
60606b2c
TT
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6479
21b2bd31 6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6481 {
8832e7e3 6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6483
b93601f3 6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6485 }
ff013f42 6486
6aa5f3a6
DE
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
b4f54984 6497 if (dwarf_read_debug)
6aa5f3a6
DE
6498 print_tu_stats ();
6499
95554aad
TT
6500 set_partial_user (objfile);
6501
ff013f42
JK
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
60606b2c 6504 discard_cleanups (addrmap_cleanup);
ff013f42 6505
ae038cb0 6506 do_cleanups (back_to);
45cfd468 6507
b4f54984 6508 if (dwarf_read_debug)
45cfd468 6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6510 objfile_name (objfile));
ae038cb0
DJ
6511}
6512
3019eac3 6513/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6514
6515static void
dee91e82 6516load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6517 const gdb_byte *info_ptr,
dee91e82
DE
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
ae038cb0 6521{
dee91e82 6522 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6523
95554aad 6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6525
ae038cb0
DJ
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6528 If not, there's no more debug_info for this comp unit. */
d85a05f0 6529 if (has_children)
dee91e82
DE
6530 load_partial_dies (reader, info_ptr, 0);
6531}
98bfdba5 6532
dee91e82
DE
6533/* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6535
dee91e82
DE
6536static void
6537load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538{
f4dc4d17
DE
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6541}
6542
ae038cb0 6543static void
36586728
TT
6544read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6550{
d521ce57 6551 const gdb_byte *info_ptr;
a32a8923 6552 bfd *abfd = get_section_bfd_owner (section);
be391dca 6553
b4f54984 6554 if (dwarf_read_debug)
bf6af496 6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6556 get_section_name (section),
6557 get_section_file_name (section));
bf6af496 6558
36586728 6559 dwarf2_read_section (objfile, section);
ae038cb0 6560
36586728 6561 info_ptr = section->buffer;
6e70227d 6562
36586728 6563 while (info_ptr < section->buffer + section->size)
ae038cb0 6564 {
c764a876 6565 unsigned int length, initial_length_size;
ae038cb0 6566 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6567 sect_offset offset;
ae038cb0 6568
36586728 6569 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
36586728 6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6574
6575 /* Save the compilation unit for later lookup. */
8d749320 6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
c764a876 6579 this_cu->length = length + initial_length_size;
36586728 6580 this_cu->is_dwz = is_dwz;
9291a0cd 6581 this_cu->objfile = objfile;
8a0459fd 6582 this_cu->section = section;
ae038cb0 6583
36586728 6584 if (*n_comp_units == *n_allocated)
ae038cb0 6585 {
36586728 6586 *n_allocated *= 2;
224c3ddb
SM
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
ae038cb0 6589 }
36586728
TT
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
ae038cb0
DJ
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
36586728
TT
6595}
6596
6597/* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600static void
6601create_all_comp_units (struct objfile *objfile)
6602{
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6606 struct dwz_file *dwz;
36586728
TT
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
8d749320 6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
4db1a1dc
TT
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
ae038cb0 6620
8d749320
SM
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
ae038cb0
DJ
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6628}
6629
5734ee8b 6630/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6635
72bf9492
DJ
6636static void
6637scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
c906108c 6640{
72bf9492 6641 struct partial_die_info *pdi;
c906108c 6642
91c24f0a
DC
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
c906108c 6646
72bf9492 6647 pdi = first_die;
91c24f0a 6648
72bf9492
DJ
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
c906108c 6652
f55ee35c 6653 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
933c6fe4 6656
72bf9492 6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
c906108c 6660 {
72bf9492 6661 switch (pdi->tag)
c906108c
SS
6662 {
6663 case DW_TAG_subprogram:
cdc07690 6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6665 break;
72929c62 6666 case DW_TAG_constant:
c906108c
SS
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
91c24f0a 6669 case DW_TAG_union_type:
72bf9492 6670 if (!pdi->is_declaration)
63d06c5c 6671 {
72bf9492 6672 add_partial_symbol (pdi, cu);
63d06c5c
DC
6673 }
6674 break;
c906108c 6675 case DW_TAG_class_type:
680b30c7 6676 case DW_TAG_interface_type:
c906108c 6677 case DW_TAG_structure_type:
72bf9492 6678 if (!pdi->is_declaration)
c906108c 6679 {
72bf9492 6680 add_partial_symbol (pdi, cu);
c906108c
SS
6681 }
6682 break;
91c24f0a 6683 case DW_TAG_enumeration_type:
72bf9492
DJ
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
c906108c
SS
6686 break;
6687 case DW_TAG_base_type:
a02abb62 6688 case DW_TAG_subrange_type:
c906108c 6689 /* File scope base type definitions are added to the partial
c5aa993b 6690 symbol table. */
72bf9492 6691 add_partial_symbol (pdi, cu);
c906108c 6692 break;
d9fa45fe 6693 case DW_TAG_namespace:
cdc07690 6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6695 break;
5d7cb8df 6696 case DW_TAG_module:
cdc07690 6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6698 break;
95554aad
TT
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
f4dc4d17
DE
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
4262abfb 6708 objfile_name (cu->objfile));
f4dc4d17
DE
6709 }
6710
95554aad 6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6712 pdi->is_dwz,
95554aad
TT
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
b93601f3 6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6718
f4dc4d17 6719 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6720 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6721 }
6722 break;
74921315
KS
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
c906108c
SS
6726 default:
6727 break;
6728 }
6729 }
6730
72bf9492
DJ
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735}
6736
6737/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6738
72bf9492 6739 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
91c24f0a 6745
72bf9492
DJ
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757/* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
15d034d0 6761static const char *
72bf9492
DJ
6762partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764{
15d034d0 6765 const char *grandparent_scope;
72bf9492 6766 struct partial_die_info *parent, *real_pdi;
91c24f0a 6767
72bf9492
DJ
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
72bf9492 6772 while (real_pdi->has_specification)
36586728
TT
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
10b3939b 6785 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6786
acebe513
UW
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6e70227d 6791 && parent->tag == DW_TAG_namespace
acebe513
UW
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
9c6c53f7
SA
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
f55ee35c 6804 || parent->tag == DW_TAG_module
72bf9492
DJ
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
680b30c7 6807 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
3e43a32a
MS
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
f55ee35c 6816 parent->name, 0, cu);
72bf9492 6817 }
72bf9492
DJ
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
e2e0b3e5 6824 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6825 parent->tag, pdi->offset.sect_off);
72bf9492 6826 parent->scope = grandparent_scope;
c906108c
SS
6827 }
6828
72bf9492
DJ
6829 parent->scope_set = 1;
6830 return parent->scope;
6831}
6832
6833/* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
4568ecf9 6835
72bf9492
DJ
6836static char *
6837partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839{
15d034d0 6840 const char *parent_scope;
72bf9492 6841
98bfdba5
PA
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
b64f50a1 6856 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6857 attr.name = 0;
6858 attr.form = DW_FORM_ref_addr;
4568ecf9 6859 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
72bf9492
DJ
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
f55ee35c 6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6871}
6872
6873static void
72bf9492 6874add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6875{
e7c27a73 6876 struct objfile *objfile = cu->objfile;
3e29f34a 6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6878 CORE_ADDR addr = 0;
15d034d0 6879 const char *actual_name = NULL;
e142c38c 6880 CORE_ADDR baseaddr;
15d034d0 6881 char *built_actual_name;
e142c38c
DJ
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6884
15d034d0
TT
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
63d06c5c 6888
72bf9492
DJ
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
c906108c
SS
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
3e29f34a 6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6896 if (pdi->is_external || cu->language == language_ada)
c906108c 6897 {
2cfa0c8d
JB
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
f47fb265 6902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6903 built_actual_name != NULL,
f47fb265
MS
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
1762568f 6906 addr, cu->language, objfile);
c906108c
SS
6907 }
6908 else
6909 {
f47fb265 6910 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6911 built_actual_name != NULL,
f47fb265
MS
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
1762568f 6914 addr, cu->language, objfile);
c906108c
SS
6915 }
6916 break;
72929c62
JB
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
f47fb265 6925 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6927 list, 0, cu->language, objfile);
72929c62
JB
6928 }
6929 break;
c906108c 6930 case DW_TAG_variable:
95554aad
TT
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6933
95554aad 6934 if (pdi->d.locdesc
caac4577
JG
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
c906108c
SS
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
95554aad 6958 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6959 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6960 built_actual_name != NULL,
f47fb265
MS
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
1762568f 6963 addr + baseaddr,
f47fb265 6964 cu->language, objfile);
c906108c
SS
6965 }
6966 else
6967 {
ff908ebf
AW
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
decbce07 6973 {
15d034d0 6974 xfree (built_actual_name);
decbce07
MS
6975 return;
6976 }
ff908ebf 6977
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
ff908ebf 6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
a02abb62 6988 case DW_TAG_subrange_type:
38d518c9 6989 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6990 built_actual_name != NULL,
176620f1 6991 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6992 &objfile->static_psymbols,
1762568f 6993 0, cu->language, objfile);
c906108c 6994 break;
74921315 6995 case DW_TAG_imported_declaration:
72bf9492
DJ
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
72bf9492
DJ
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
1762568f 7001 0, cu->language, objfile);
72bf9492 7002 break;
530e8392
KB
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
1762568f 7008 0, cu->language, objfile);
530e8392 7009 break;
c906108c 7010 case DW_TAG_class_type:
680b30c7 7011 case DW_TAG_interface_type:
c906108c
SS
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
fa4028e9
JB
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7021 {
15d034d0 7022 xfree (built_actual_name);
decbce07
MS
7023 return;
7024 }
fa4028e9 7025
63d06c5c
DC
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
38d518c9 7028 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7029 built_actual_name != NULL,
176620f1 7030 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
63d06c5c
DC
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
1762568f 7035 0, cu->language, objfile);
c906108c 7036
c906108c
SS
7037 break;
7038 case DW_TAG_enumerator:
38d518c9 7039 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7040 built_actual_name != NULL,
176620f1 7041 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
f6fe98ef
DJ
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
1762568f 7046 0, cu->language, objfile);
c906108c
SS
7047 break;
7048 default:
7049 break;
7050 }
5c4e30ca 7051
15d034d0 7052 xfree (built_actual_name);
c906108c
SS
7053}
7054
5c4e30ca
DC
7055/* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
91c24f0a 7058
72bf9492
DJ
7059static void
7060add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7062 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7063{
72bf9492 7064 /* Add a symbol for the namespace. */
e7c27a73 7065
72bf9492 7066 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7067
7068 /* Now scan partial symbols in that namespace. */
7069
91c24f0a 7070 if (pdi->has_children)
cdc07690 7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7072}
7073
5d7cb8df
JK
7074/* Read a partial die corresponding to a Fortran module. */
7075
7076static void
7077add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7079{
530e8392
KB
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
f55ee35c 7084 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7085
7086 if (pdi->has_children)
cdc07690 7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7088}
7089
bc30ff58
JB
7090/* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
cdc07690 7093 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
6e70227d 7096
cdc07690
YQ
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102static void
7103add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7105 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7106{
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
cdc07690 7115 if (set_addrmap)
5734ee8b 7116 {
5734ee8b 7117 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
5734ee8b
DJ
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7130 cu->per_cu->v.psymtab);
5734ee8b 7131 }
481860b3
GB
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
bc30ff58 7136 if (!pdi->is_declaration)
e8d05480
JB
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
bc30ff58
JB
7142 }
7143 }
6e70227d 7144
bc30ff58
JB
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160}
7161
91c24f0a
DC
7162/* Read a partial die corresponding to an enumeration type. */
7163
72bf9492
DJ
7164static void
7165add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
91c24f0a 7167{
72bf9492 7168 struct partial_die_info *pdi;
91c24f0a
DC
7169
7170 if (enum_pdi->name != NULL)
72bf9492
DJ
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
91c24f0a 7175 {
72bf9492 7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7178 else
72bf9492
DJ
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
91c24f0a 7181 }
91c24f0a
DC
7182}
7183
6caca83c
CC
7184/* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186static unsigned int
d521ce57 7187peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7188{
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192}
7193
4bb7a0a7
DJ
7194/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199static struct abbrev_info *
d521ce57 7200peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7201 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7202{
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
433df2d4 7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7213 if (!abbrev)
7214 {
422b9917
DE
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7219 }
7220
7221 return abbrev;
7222}
7223
93311388
DE
7224/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
d521ce57
TT
7228static const gdb_byte *
7229skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7230{
dee91e82 7231 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
dee91e82 7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7242 }
7243}
7244
93311388
DE
7245/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
d521ce57
TT
7251static const gdb_byte *
7252skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7253 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7254{
7255 unsigned int bytes_read;
7256 struct attribute attr;
dee91e82
DE
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
d521ce57 7259 const gdb_byte *buffer = reader->buffer;
f664829e 7260 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7261 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
dee91e82 7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7270 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7273 else
b9502d3f
WN
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
22869d73
KS
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7283 else
7284 return sibling_ptr;
7285 }
4bb7a0a7
DJ
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
4bb7a0a7 7293 case DW_FORM_ref_addr:
ae411497
TT
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
36586728
TT
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
ae411497 7304 case DW_FORM_addr:
4bb7a0a7
DJ
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
2dc7f7b3
TT
7312 case DW_FORM_flag_present:
7313 break;
4bb7a0a7
DJ
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
55f1336d 7324 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
9b1c24c8 7328 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7329 info_ptr += bytes_read;
7330 break;
2dc7f7b3 7331 case DW_FORM_sec_offset:
4bb7a0a7 7332 case DW_FORM_strp:
36586728 7333 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7334 info_ptr += cu->header.offset_size;
7335 break;
2dc7f7b3 7336 case DW_FORM_exprloc:
4bb7a0a7
DJ
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
3019eac3
DE
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
d521ce57 7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
3e43a32a
MS
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
dee91e82 7373 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7374 else
7375 return info_ptr;
7376}
7377
93311388 7378/* Locate ORIG_PDI's sibling.
dee91e82 7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7380
d521ce57 7381static const gdb_byte *
dee91e82
DE
7382locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
d521ce57 7384 const gdb_byte *info_ptr)
91c24f0a
DC
7385{
7386 /* Do we know the sibling already? */
72bf9492 7387
91c24f0a
DC
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
4bb7a0a7 7396 /* Skip the children the long way. */
91c24f0a 7397
dee91e82 7398 return skip_children (reader, info_ptr);
91c24f0a
DC
7399}
7400
257e7a09 7401/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7402 not NULL. */
c906108c
SS
7403
7404static void
257e7a09
YQ
7405dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
c906108c 7407{
257e7a09 7408 if (self->readin)
c906108c 7409 {
442e4d9c 7410 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7411 self->filename);
442e4d9c
YQ
7412 }
7413 else
7414 {
7415 if (info_verbose)
c906108c 7416 {
442e4d9c 7417 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7418 self->filename);
442e4d9c 7419 gdb_flush (gdb_stdout);
c906108c 7420 }
c906108c 7421
442e4d9c 7422 /* Restore our global data. */
9a3c8263
SM
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
10b3939b 7426
442e4d9c
YQ
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
9a619af0 7437
442e4d9c
YQ
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
b2ab525c 7441
442e4d9c 7442 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7443
257e7a09 7444 psymtab_to_symtab_1 (self);
c906108c 7445
442e4d9c
YQ
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
c906108c 7449 }
95554aad
TT
7450
7451 process_cu_includes ();
c906108c 7452}
9cdd5dbd
DE
7453\f
7454/* Reading in full CUs. */
c906108c 7455
10b3939b
DJ
7456/* Add PER_CU to the queue. */
7457
7458static void
95554aad
TT
7459queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
10b3939b
DJ
7461{
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
8d749320 7465 item = XNEW (struct dwarf2_queue_item);
10b3939b 7466 item->per_cu = per_cu;
95554aad 7467 item->pretend_language = pretend_language;
10b3939b
DJ
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476}
7477
89e63ee4
DE
7478/* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
0907af0c 7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7486
7487static int
89e63ee4 7488maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491{
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
89e63ee4
DE
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523}
7524
10b3939b
DJ
7525/* Process the queue. */
7526
7527static void
a0f42c21 7528process_queue (void)
10b3939b
DJ
7529{
7530 struct dwarf2_queue_item *item, *next_item;
7531
b4f54984 7532 if (dwarf_read_debug)
45cfd468
DE
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7536 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7537 }
7538
03dd20cc
DJ
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
cc12ce38
DE
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
f4dc4d17
DE
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7550 unsigned int debug_print_threshold;
247f5c4f 7551 char buf[100];
f4dc4d17 7552
247f5c4f 7553 if (per_cu->is_debug_types)
f4dc4d17 7554 {
247f5c4f
DE
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
f4dc4d17 7564 }
247f5c4f 7565 else
73be47f5
DE
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
247f5c4f 7570
b4f54984 7571 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
b4f54984 7579 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7581 }
10b3939b
DJ
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
45cfd468 7589
b4f54984 7590 if (dwarf_read_debug)
45cfd468
DE
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7593 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7594 }
10b3939b
DJ
7595}
7596
7597/* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601static void
7602dwarf2_release_queue (void *dummy)
7603{
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
dee91e82 7614 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624}
7625
7626/* Read in full symbols for PST, and anything it depends on. */
7627
c906108c 7628static void
fba45db2 7629psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7630{
10b3939b 7631 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7632 int i;
7633
95554aad
TT
7634 if (pst->readin)
7635 return;
7636
aaa75496 7637 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
a3f17187 7644 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7650 wrap_here (""); /* Flush output. */
aaa75496
JB
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
9a3c8263 7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7657
7658 if (per_cu == NULL)
aaa75496
JB
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
c906108c 7665
a0f42c21 7666 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7667}
7668
dee91e82
DE
7669/* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
10b3939b 7671
dee91e82
DE
7672static hashval_t
7673die_hash (const void *item)
10b3939b 7674{
9a3c8263 7675 const struct die_info *die = (const struct die_info *) item;
6502dd73 7676
dee91e82
DE
7677 return die->offset.sect_off;
7678}
63d06c5c 7679
dee91e82
DE
7680/* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
98bfdba5 7682
dee91e82
DE
7683static int
7684die_eq (const void *item_lhs, const void *item_rhs)
7685{
9a3c8263
SM
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7688
dee91e82
DE
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690}
c906108c 7691
dee91e82
DE
7692/* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
c906108c 7695
dee91e82
DE
7696static void
7697load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7698 const gdb_byte *info_ptr,
dee91e82
DE
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702{
7703 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7704 enum language *language_ptr = (enum language *) data;
6caca83c 7705
dee91e82
DE
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
e142c38c 7715
dee91e82
DE
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7721
7722 /* We try not to read any attributes in this function, because not
9cdd5dbd 7723 all CUs needed for references have been loaded yet, and symbol
10b3939b 7724 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
95554aad 7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7729}
10b3939b 7730
dee91e82 7731/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7732
dee91e82 7733static void
95554aad
TT
7734load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
dee91e82 7736{
3019eac3 7737 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7738
f4dc4d17
DE
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7741}
7742
3da10d80
KS
7743/* Add a DIE to the delayed physname list. */
7744
7745static void
7746add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749{
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757}
7758
7759/* A cleanup for freeing the delayed method list. */
7760
7761static void
7762free_delayed_list (void *ptr)
7763{
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770}
7771
7772/* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778static void
7779compute_delayed_physnames (struct dwarf2_cu *cu)
7780{
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
1d06ead6 7785 const char *physname;
3da10d80
KS
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7788 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
3da10d80
KS
7791 }
7792}
7793
a766d390
DE
7794/* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805static void
7806fixup_go_packaging (struct dwarf2_cu *cu)
7807{
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
4262abfb 7835 : objfile_name (cu->objfile)),
a766d390
DE
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
34a68019 7846 const char *saved_package_name
224c3ddb
SM
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
a766d390 7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7851 saved_package_name, objfile);
a766d390
DE
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
e623cf5d 7856 sym = allocate_symbol (objfile);
f85f34ed 7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
a766d390
DE
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870}
7871
95554aad
TT
7872/* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
43f3e411
DE
7875static struct compunit_symtab *
7876get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7877{
7878 return (dwarf2_per_objfile->using_index
43f3e411
DE
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7881}
7882
7883/* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886static void
43f3e411 7887recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7888 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7889 struct dwarf2_per_cu_data *per_cu,
43f3e411 7890 struct compunit_symtab *immediate_parent)
95554aad
TT
7891{
7892 void **slot;
7893 int ix;
43f3e411 7894 struct compunit_symtab *cust;
95554aad
TT
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
ec94af83
DE
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
43f3e411 7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7914 if (*slot == NULL)
7915 {
43f3e411
DE
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
ec94af83
DE
7920 }
7921 }
7922 else
f9125b6c 7923 {
43f3e411
DE
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
f9125b6c 7927 }
ec94af83 7928 }
95554aad
TT
7929
7930 for (ix = 0;
796a7ff8 7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7932 ++ix)
ec94af83
DE
7933 {
7934 recursively_compute_inclusions (result, all_children,
43f3e411 7935 all_type_symtabs, iter, cust);
ec94af83 7936 }
95554aad
TT
7937}
7938
43f3e411 7939/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7940 PER_CU. */
7941
7942static void
43f3e411 7943compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7944{
f4dc4d17
DE
7945 gdb_assert (! per_cu->is_debug_types);
7946
796a7ff8 7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7948 {
7949 int ix, len;
ec94af83 7950 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7953 htab_t all_children, all_type_symtabs;
43f3e411 7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7955
7956 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7957 if (cust == NULL)
95554aad
TT
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
ec94af83
DE
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
95554aad
TT
7964
7965 for (ix = 0;
796a7ff8 7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7967 ix, per_cu_iter);
95554aad 7968 ++ix)
ec94af83
DE
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7971 all_type_symtabs, per_cu_iter,
43f3e411 7972 cust);
ec94af83 7973 }
95554aad 7974
ec94af83 7975 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
8d749320
SM
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
95554aad 7980 for (ix = 0;
43f3e411
DE
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
95554aad 7983 ++ix)
43f3e411
DE
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
95554aad 7986
43f3e411 7987 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7988 htab_delete (all_children);
ec94af83 7989 htab_delete (all_type_symtabs);
95554aad
TT
7990 }
7991}
7992
7993/* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996static void
7997process_cu_includes (void)
7998{
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
f4dc4d17
DE
8006 {
8007 if (! iter->is_debug_types)
43f3e411 8008 compute_compunit_symtab_includes (iter);
f4dc4d17 8009 }
95554aad
TT
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012}
8013
9cdd5dbd 8014/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8015 already been loaded into memory. */
8016
8017static void
95554aad
TT
8018process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
10b3939b 8020{
10b3939b 8021 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8022 struct objfile *objfile = per_cu->objfile;
3e29f34a 8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8024 CORE_ADDR lowpc, highpc;
43f3e411 8025 struct compunit_symtab *cust;
3da10d80 8026 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8027 CORE_ADDR baseaddr;
4359dff1 8028 struct block *static_block;
3e29f34a 8029 CORE_ADDR addr;
10b3939b
DJ
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
10b3939b
DJ
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8036
8037 cu->list_in_scope = &file_symbols;
c906108c 8038
95554aad
TT
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
c906108c 8042 /* Do line number decoding in read_file_scope () */
10b3939b 8043 process_die (cu->dies, cu);
c906108c 8044
a766d390
DE
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
3da10d80
KS
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
fae299cd
DC
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
10b3939b 8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8059
3e29f34a
MR
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
43f3e411
DE
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
c906108c 8072
43f3e411 8073 if (cust != NULL)
c906108c 8074 {
df15bd07 8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8076
8be455d7
JK
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
43f3e411 8080 if (!(cu->language == language_c
40e3ad0e 8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
ab260dad 8096 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8097 cust->locations_valid = 1;
e0d00bc7
JK
8098
8099 if (gcc_4_minor >= 5)
43f3e411 8100 cust->epilogue_unwind_valid = 1;
96408a79 8101
43f3e411 8102 cust->call_site_htab = cu->call_site_htab;
c906108c 8103 }
9291a0cd
TT
8104
8105 if (dwarf2_per_objfile->using_index)
43f3e411 8106 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8110 pst->compunit_symtab = cust;
9291a0cd
TT
8111 pst->readin = 1;
8112 }
c906108c 8113
95554aad
TT
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
c906108c 8117 do_cleanups (back_to);
f4dc4d17 8118}
45cfd468 8119
f4dc4d17
DE
8120/* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123static void
8124process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126{
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
43f3e411 8129 struct compunit_symtab *cust;
f4dc4d17 8130 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
43f3e411 8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8163 {
43f3e411
DE
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8166
43f3e411 8167 if (cust != NULL)
f4dc4d17
DE
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
43f3e411
DE
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8176 }
8177 }
8178 else
8179 {
0ab9ce85 8180 augment_type_symtab ();
43f3e411 8181 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
43f3e411 8185 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8189 pst->compunit_symtab = cust;
f4dc4d17 8190 pst->readin = 1;
45cfd468 8191 }
f4dc4d17
DE
8192
8193 do_cleanups (back_to);
c906108c
SS
8194}
8195
95554aad
TT
8196/* Process an imported unit DIE. */
8197
8198static void
8199process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200{
8201 struct attribute *attr;
8202
f4dc4d17
DE
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
4262abfb 8208 objfile_name (cu->objfile));
f4dc4d17
DE
8209 }
8210
95554aad
TT
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
36586728 8217 int is_dwz;
95554aad
TT
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8222
69d751e3 8223 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
796a7ff8 8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8228 per_cu);
8229 }
8230}
8231
adde2bff
DE
8232/* Reset the in_process bit of a die. */
8233
8234static void
8235reset_die_in_process (void *arg)
8236{
9a3c8263 8237 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8238
adde2bff
DE
8239 die->in_process = 0;
8240}
8241
c906108c
SS
8242/* Process a die and its children. */
8243
8244static void
e7c27a73 8245process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8246{
adde2bff
DE
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
c906108c
SS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
95554aad 8260 case DW_TAG_partial_unit:
e7c27a73 8261 read_file_scope (die, cu);
c906108c 8262 break;
348e048f
DE
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
c906108c 8266 case DW_TAG_subprogram:
c906108c 8267 case DW_TAG_inlined_subroutine:
edb3359d 8268 read_func_scope (die, cu);
c906108c
SS
8269 break;
8270 case DW_TAG_lexical_block:
14898363
L
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
e7c27a73 8273 read_lexical_block_scope (die, cu);
c906108c 8274 break;
96408a79
SA
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
c906108c 8278 case DW_TAG_class_type:
680b30c7 8279 case DW_TAG_interface_type:
c906108c
SS
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
134d01f1 8282 process_structure_scope (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_enumeration_type:
134d01f1 8285 process_enumeration_scope (die, cu);
c906108c 8286 break;
134d01f1 8287
f792889a
DJ
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
c906108c 8291 case DW_TAG_subroutine_type:
72019c9c 8292 case DW_TAG_set_type:
c906108c 8293 case DW_TAG_array_type:
c906108c 8294 case DW_TAG_pointer_type:
c906108c 8295 case DW_TAG_ptr_to_member_type:
c906108c 8296 case DW_TAG_reference_type:
c906108c 8297 case DW_TAG_string_type:
c906108c 8298 break;
134d01f1 8299
c906108c 8300 case DW_TAG_base_type:
a02abb62 8301 case DW_TAG_subrange_type:
cb249c71 8302 case DW_TAG_typedef:
134d01f1
DJ
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
f792889a 8305 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8306 break;
c906108c 8307 case DW_TAG_common_block:
e7c27a73 8308 read_common_block (die, cu);
c906108c
SS
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
d9fa45fe 8312 case DW_TAG_namespace:
4d4ec4e5 8313 cu->processing_has_namespace_info = 1;
e7c27a73 8314 read_namespace (die, cu);
d9fa45fe 8315 break;
5d7cb8df 8316 case DW_TAG_module:
4d4ec4e5 8317 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8318 read_module (die, cu);
8319 break;
d9fa45fe 8320 case DW_TAG_imported_declaration:
74921315
KS
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8325 case DW_TAG_imported_module:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
d9fa45fe 8332 break;
95554aad
TT
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
c906108c 8338 default:
e7c27a73 8339 new_symbol (die, NULL, cu);
c906108c
SS
8340 break;
8341 }
adde2bff
DE
8342
8343 do_cleanups (in_process);
c906108c 8344}
ca69b9e6
DE
8345\f
8346/* DWARF name computation. */
c906108c 8347
94af9270
KS
8348/* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352static int
8353die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354{
1c809c68
TT
8355 struct attribute *attr;
8356
94af9270
KS
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
08a76f8a 8368 case DW_TAG_inlined_subroutine:
94af9270 8369 case DW_TAG_member:
74921315 8370 case DW_TAG_imported_declaration:
94af9270
KS
8371 return 1;
8372
8373 case DW_TAG_variable:
c2b0a229 8374 case DW_TAG_constant:
94af9270
KS
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
9a619af0 8383
94af9270
KS
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
1c809c68 8388 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8399 return 0;
8400 return 1;
94af9270
KS
8401
8402 default:
8403 return 0;
8404 }
8405}
8406
98bfdba5
PA
8407/* Retrieve the last character from a mem_file. */
8408
8409static void
8410do_ui_file_peek_last (void *object, const char *buffer, long length)
8411{
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416}
8417
94af9270 8418/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
94af9270 8427
af6b7be1
JB
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
94af9270
KS
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433static const char *
15d034d0
TT
8434dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8436 int physname)
8437{
bb5ed363
DE
8438 struct objfile *objfile = cu->objfile;
8439
94af9270
KS
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
2ee7123e
DE
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
2ee7123e 8458 const char *linkage_name;
f55ee35c 8459
2ee7123e
DE
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
f55ee35c
JK
8465 }
8466
94af9270
KS
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
f55ee35c 8469 && (cu->language == language_cplus || cu->language == language_java
45280282 8470 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
0d5cff50 8475 const char *prefix;
94af9270 8476 struct ui_file *buf;
34a68019
TT
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
94af9270
KS
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
f55ee35c
JK
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
9a619af0 8486
94af9270
KS
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
62d5b8da 8491 fputs_unfiltered (name, buf);
94af9270 8492
98bfdba5
PA
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
12df843f 8525 LONGEST value;
d521ce57 8526 const gdb_byte *bytes;
98bfdba5
PA
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
79d43c61 8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
3e43a32a
MS
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
98bfdba5
PA
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
3e43a32a
MS
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
98bfdba5
PA
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
94af9270
KS
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
6e70227d 8621
94af9270
KS
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
79d43c61
TT
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
94af9270
KS
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
0963b4bd 8634 names. */
94af9270
KS
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8637 0, 0, &type_print_raw_options);
94af9270
KS
8638 }
8639 else if (cu->language == language_cplus)
8640 {
60430eff
DJ
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
94af9270
KS
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
94af9270
KS
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
34a68019 8655 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
34a68019
TT
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
34a68019
TT
8671 else
8672 name = canonical_name;
9a619af0 8673
34a68019 8674 xfree (intermediate_name);
94af9270
KS
8675 }
8676 }
8677
8678 return name;
8679}
8680
0114d602
DJ
8681/* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
34a68019 8683 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
0963b4bd 8687 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8688
8689static const char *
15d034d0 8690dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8691{
94af9270
KS
8692 return dwarf2_compute_name (name, die, cu, 0);
8693}
0114d602 8694
94af9270
KS
8695/* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
0114d602 8699
94af9270 8700 The output string will be canonicalized (if C++/Java). */
0114d602 8701
94af9270 8702static const char *
15d034d0 8703dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8704{
bb5ed363 8705 struct objfile *objfile = cu->objfile;
900e11f9
JK
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
7d45c7c3
KB
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
7d45c7c3 8724 if (mangled != NULL)
900e11f9
JK
8725 {
8726 char *demangled;
8727
900e11f9
JK
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
a766d390
DE
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8de20a37
TT
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
a766d390 8751 }
900e11f9
JK
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
900e11f9
JK
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
224c3ddb
SM
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
900e11f9
JK
8799
8800 do_cleanups (back_to);
8801 return retval;
0114d602
DJ
8802}
8803
74921315
KS
8804/* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809static int
8810read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811{
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862}
8863
22cee43f
PMR
8864/* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873static struct using_direct **
8874using_directives (enum language language)
8875{
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880}
8881
27aa8d6a
SW
8882/* Read the import statement specified by the given die and record it. */
8883
8884static void
8885read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886{
bb5ed363 8887 struct objfile *objfile = cu->objfile;
27aa8d6a 8888 struct attribute *import_attr;
32019081 8889 struct die_info *imported_die, *child_die;
de4affc9 8890 struct dwarf2_cu *imported_cu;
27aa8d6a 8891 const char *imported_name;
794684b6 8892 const char *imported_name_prefix;
13387711
SW
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
794684b6 8896 const char *import_prefix;
32019081
JK
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
13387711 8899
27aa8d6a
SW
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
de4affc9
CC
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
82856980
SW
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
27aa8d6a 8950
794684b6
SW
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
de4affc9 8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8957
f55ee35c
JK
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
794684b6 8960 {
13387711
SW
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
794684b6 8963 }
13387711 8964 else if (strlen (imported_name_prefix) > 0)
12aaed36 8965 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
13387711
SW
8969 else
8970 canonical_name = imported_name;
794684b6 8971
32019081
JK
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
4262abfb 8988 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9009 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
22cee43f
PMR
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
32019081
JK
9026
9027 do_cleanups (cleanups);
27aa8d6a
SW
9028}
9029
f4dc4d17 9030/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9031
cb1df416
DJ
9032static void
9033free_cu_line_header (void *arg)
9034{
9a3c8263 9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039}
9040
1b80a9fa
JK
9041/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045static int
9046producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047{
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052}
9053
9291a0cd
TT
9054static void
9055find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9056 const char **name, const char **comp_dir)
9291a0cd 9057{
9291a0cd
TT
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
7d45c7c3
KB
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9062
7d45c7c3
KB
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9066 {
15d034d0
TT
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9291a0cd
TT
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 char *cp = strchr (*comp_dir, ':');
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085}
9086
f4dc4d17
DE
9087/* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9091
9092static void
9093handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9095{
527f3840 9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9097 struct attribute *attr;
527f3840
JK
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
2ab95328 9104
f4dc4d17
DE
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
2ab95328 9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
2ab95328 9121 {
527f3840
JK
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
2ab95328 9130
527f3840
JK
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9144 {
527f3840 9145 gdb_assert (*slot != NULL);
9a3c8263 9146 cu->line_header = (struct line_header *) *slot;
527f3840 9147 return;
dee91e82 9148 }
2ab95328 9149 }
527f3840
JK
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
2ab95328
TT
9185}
9186
95554aad 9187/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9188
c906108c 9189static void
e7c27a73 9190read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9191{
dee91e82 9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
15d034d0
TT
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
c906108c
SS
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
e142c38c 9202 CORE_ADDR baseaddr;
6e70227d 9203
e142c38c 9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9205
fae299cd 9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
2acceee2 9210 if (lowpc == ((CORE_ADDR) -1))
c906108c 9211 lowpc = highpc;
3e29f34a 9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9213
9291a0cd 9214 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9215
95554aad 9216 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9217
f4b8a18d
KW
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
3019eac3
DE
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
f4dc4d17 9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
c3b7b696 9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
43f3e411 9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
43f3e411 9266 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271}
9272
f4dc4d17
DE
9273/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9278
9279static void
f4dc4d17 9280setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9281{
f4dc4d17
DE
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
3019eac3 9287 struct attribute *attr;
f4dc4d17 9288 unsigned int i, line_offset;
0186c6a7 9289 struct signatured_type *sig_type;
3019eac3 9290
f4dc4d17 9291 gdb_assert (per_cu->is_debug_types);
0186c6a7 9292 sig_type = (struct signatured_type *) per_cu;
3019eac3 9293
f4dc4d17 9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9295
f4dc4d17 9296 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9297 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
43f3e411 9306 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
3019eac3 9312 {
f4dc4d17
DE
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9323 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9324 }
f4dc4d17 9325 return;
3019eac3
DE
9326 }
9327
f4dc4d17
DE
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
3019eac3 9330
f4dc4d17
DE
9331 if (first_time)
9332 {
43f3e411 9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9334
f4dc4d17
DE
9335 tu_group->num_symtabs = lh->num_file_names;
9336 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9337
f4dc4d17
DE
9338 for (i = 0; i < lh->num_file_names; ++i)
9339 {
d521ce57 9340 const char *dir = NULL;
f4dc4d17 9341 struct file_entry *fe = &lh->file_names[i];
3019eac3 9342
afa6c9ab 9343 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9344 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9345 dwarf2_start_subfile (fe->name, dir);
3019eac3 9346
f4dc4d17
DE
9347 if (current_subfile->symtab == NULL)
9348 {
9349 /* NOTE: start_subfile will recognize when it's been passed
9350 a file it has already seen. So we can't assume there's a
43f3e411 9351 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9352 lh->file_names may contain dups. */
43f3e411
DE
9353 current_subfile->symtab
9354 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9355 }
9356
9357 fe->symtab = current_subfile->symtab;
9358 tu_group->symtabs[i] = fe->symtab;
9359 }
9360 }
9361 else
3019eac3 9362 {
0ab9ce85 9363 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9364
9365 for (i = 0; i < lh->num_file_names; ++i)
9366 {
9367 struct file_entry *fe = &lh->file_names[i];
9368
9369 fe->symtab = tu_group->symtabs[i];
9370 }
3019eac3
DE
9371 }
9372
f4dc4d17
DE
9373 /* The main symtab is allocated last. Type units don't have DW_AT_name
9374 so they don't have a "real" (so to speak) symtab anyway.
9375 There is later code that will assign the main symtab to all symbols
9376 that don't have one. We need to handle the case of a symbol with a
9377 missing symtab (DW_AT_decl_file) anyway. */
9378}
3019eac3 9379
f4dc4d17
DE
9380/* Process DW_TAG_type_unit.
9381 For TUs we want to skip the first top level sibling if it's not the
9382 actual type being defined by this TU. In this case the first top
9383 level sibling is there to provide context only. */
3019eac3 9384
f4dc4d17
DE
9385static void
9386read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9387{
9388 struct die_info *child_die;
3019eac3 9389
f4dc4d17
DE
9390 prepare_one_comp_unit (cu, die, language_minimal);
9391
9392 /* Initialize (or reinitialize) the machinery for building symtabs.
9393 We do this before processing child DIEs, so that the line header table
9394 is available for DW_AT_decl_file. */
9395 setup_type_unit_groups (die, cu);
9396
9397 if (die->child != NULL)
9398 {
9399 child_die = die->child;
9400 while (child_die && child_die->tag)
9401 {
9402 process_die (child_die, cu);
9403 child_die = sibling_die (child_die);
9404 }
9405 }
3019eac3
DE
9406}
9407\f
80626a55
DE
9408/* DWO/DWP files.
9409
9410 http://gcc.gnu.org/wiki/DebugFission
9411 http://gcc.gnu.org/wiki/DebugFissionDWP
9412
9413 To simplify handling of both DWO files ("object" files with the DWARF info)
9414 and DWP files (a file with the DWOs packaged up into one file), we treat
9415 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9416
9417static hashval_t
9418hash_dwo_file (const void *item)
9419{
9a3c8263 9420 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9421 hashval_t hash;
3019eac3 9422
a2ce51a0
DE
9423 hash = htab_hash_string (dwo_file->dwo_name);
9424 if (dwo_file->comp_dir != NULL)
9425 hash += htab_hash_string (dwo_file->comp_dir);
9426 return hash;
3019eac3
DE
9427}
9428
9429static int
9430eq_dwo_file (const void *item_lhs, const void *item_rhs)
9431{
9a3c8263
SM
9432 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9433 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9434
a2ce51a0
DE
9435 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9436 return 0;
9437 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9438 return lhs->comp_dir == rhs->comp_dir;
9439 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9440}
9441
9442/* Allocate a hash table for DWO files. */
9443
9444static htab_t
9445allocate_dwo_file_hash_table (void)
9446{
9447 struct objfile *objfile = dwarf2_per_objfile->objfile;
9448
9449 return htab_create_alloc_ex (41,
9450 hash_dwo_file,
9451 eq_dwo_file,
9452 NULL,
9453 &objfile->objfile_obstack,
9454 hashtab_obstack_allocate,
9455 dummy_obstack_deallocate);
9456}
9457
80626a55
DE
9458/* Lookup DWO file DWO_NAME. */
9459
9460static void **
0ac5b59e 9461lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9462{
9463 struct dwo_file find_entry;
9464 void **slot;
9465
9466 if (dwarf2_per_objfile->dwo_files == NULL)
9467 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9468
9469 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9470 find_entry.dwo_name = dwo_name;
9471 find_entry.comp_dir = comp_dir;
80626a55
DE
9472 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9473
9474 return slot;
9475}
9476
3019eac3
DE
9477static hashval_t
9478hash_dwo_unit (const void *item)
9479{
9a3c8263 9480 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9481
9482 /* This drops the top 32 bits of the id, but is ok for a hash. */
9483 return dwo_unit->signature;
9484}
9485
9486static int
9487eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9488{
9a3c8263
SM
9489 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9490 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9491
9492 /* The signature is assumed to be unique within the DWO file.
9493 So while object file CU dwo_id's always have the value zero,
9494 that's OK, assuming each object file DWO file has only one CU,
9495 and that's the rule for now. */
9496 return lhs->signature == rhs->signature;
9497}
9498
9499/* Allocate a hash table for DWO CUs,TUs.
9500 There is one of these tables for each of CUs,TUs for each DWO file. */
9501
9502static htab_t
9503allocate_dwo_unit_table (struct objfile *objfile)
9504{
9505 /* Start out with a pretty small number.
9506 Generally DWO files contain only one CU and maybe some TUs. */
9507 return htab_create_alloc_ex (3,
9508 hash_dwo_unit,
9509 eq_dwo_unit,
9510 NULL,
9511 &objfile->objfile_obstack,
9512 hashtab_obstack_allocate,
9513 dummy_obstack_deallocate);
9514}
9515
80626a55 9516/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9517
19c3d4c9 9518struct create_dwo_cu_data
3019eac3
DE
9519{
9520 struct dwo_file *dwo_file;
19c3d4c9 9521 struct dwo_unit dwo_unit;
3019eac3
DE
9522};
9523
19c3d4c9 9524/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9525
9526static void
19c3d4c9
DE
9527create_dwo_cu_reader (const struct die_reader_specs *reader,
9528 const gdb_byte *info_ptr,
9529 struct die_info *comp_unit_die,
9530 int has_children,
9531 void *datap)
3019eac3
DE
9532{
9533 struct dwarf2_cu *cu = reader->cu;
9534 struct objfile *objfile = dwarf2_per_objfile->objfile;
9535 sect_offset offset = cu->per_cu->offset;
8a0459fd 9536 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9537 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9538 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9539 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9540 struct attribute *attr;
3019eac3
DE
9541
9542 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9543 if (attr == NULL)
9544 {
19c3d4c9
DE
9545 complaint (&symfile_complaints,
9546 _("Dwarf Error: debug entry at offset 0x%x is missing"
9547 " its dwo_id [in module %s]"),
9548 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9549 return;
9550 }
9551
3019eac3
DE
9552 dwo_unit->dwo_file = dwo_file;
9553 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9554 dwo_unit->section = section;
3019eac3
DE
9555 dwo_unit->offset = offset;
9556 dwo_unit->length = cu->per_cu->length;
9557
b4f54984 9558 if (dwarf_read_debug)
4031ecc5
DE
9559 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9560 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9561}
9562
19c3d4c9
DE
9563/* Create the dwo_unit for the lone CU in DWO_FILE.
9564 Note: This function processes DWO files only, not DWP files. */
3019eac3 9565
19c3d4c9
DE
9566static struct dwo_unit *
9567create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9568{
9569 struct objfile *objfile = dwarf2_per_objfile->objfile;
9570 struct dwarf2_section_info *section = &dwo_file->sections.info;
9571 bfd *abfd;
9572 htab_t cu_htab;
d521ce57 9573 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9574 struct create_dwo_cu_data create_dwo_cu_data;
9575 struct dwo_unit *dwo_unit;
3019eac3
DE
9576
9577 dwarf2_read_section (objfile, section);
9578 info_ptr = section->buffer;
9579
9580 if (info_ptr == NULL)
9581 return NULL;
9582
9583 /* We can't set abfd until now because the section may be empty or
9584 not present, in which case section->asection will be NULL. */
a32a8923 9585 abfd = get_section_bfd_owner (section);
3019eac3 9586
b4f54984 9587 if (dwarf_read_debug)
19c3d4c9
DE
9588 {
9589 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9590 get_section_name (section),
9591 get_section_file_name (section));
19c3d4c9 9592 }
3019eac3 9593
19c3d4c9
DE
9594 create_dwo_cu_data.dwo_file = dwo_file;
9595 dwo_unit = NULL;
3019eac3
DE
9596
9597 end_ptr = info_ptr + section->size;
9598 while (info_ptr < end_ptr)
9599 {
9600 struct dwarf2_per_cu_data per_cu;
9601
19c3d4c9
DE
9602 memset (&create_dwo_cu_data.dwo_unit, 0,
9603 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9604 memset (&per_cu, 0, sizeof (per_cu));
9605 per_cu.objfile = objfile;
9606 per_cu.is_debug_types = 0;
9607 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9608 per_cu.section = section;
3019eac3 9609
33e80786 9610 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9611 create_dwo_cu_reader,
9612 &create_dwo_cu_data);
9613
9614 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9615 {
9616 /* If we've already found one, complain. We only support one
9617 because having more than one requires hacking the dwo_name of
9618 each to match, which is highly unlikely to happen. */
9619 if (dwo_unit != NULL)
9620 {
9621 complaint (&symfile_complaints,
9622 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9623 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9624 break;
9625 }
9626
9627 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9628 *dwo_unit = create_dwo_cu_data.dwo_unit;
9629 }
3019eac3
DE
9630
9631 info_ptr += per_cu.length;
9632 }
9633
19c3d4c9 9634 return dwo_unit;
3019eac3
DE
9635}
9636
80626a55
DE
9637/* DWP file .debug_{cu,tu}_index section format:
9638 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9639
d2415c6c
DE
9640 DWP Version 1:
9641
80626a55
DE
9642 Both index sections have the same format, and serve to map a 64-bit
9643 signature to a set of section numbers. Each section begins with a header,
9644 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9645 indexes, and a pool of 32-bit section numbers. The index sections will be
9646 aligned at 8-byte boundaries in the file.
9647
d2415c6c
DE
9648 The index section header consists of:
9649
9650 V, 32 bit version number
9651 -, 32 bits unused
9652 N, 32 bit number of compilation units or type units in the index
9653 M, 32 bit number of slots in the hash table
80626a55 9654
d2415c6c 9655 Numbers are recorded using the byte order of the application binary.
80626a55 9656
d2415c6c
DE
9657 The hash table begins at offset 16 in the section, and consists of an array
9658 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9659 order of the application binary). Unused slots in the hash table are 0.
9660 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9661
d2415c6c
DE
9662 The parallel table begins immediately after the hash table
9663 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9664 array of 32-bit indexes (using the byte order of the application binary),
9665 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9666 table contains a 32-bit index into the pool of section numbers. For unused
9667 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9668
73869dc2
DE
9669 The pool of section numbers begins immediately following the hash table
9670 (at offset 16 + 12 * M from the beginning of the section). The pool of
9671 section numbers consists of an array of 32-bit words (using the byte order
9672 of the application binary). Each item in the array is indexed starting
9673 from 0. The hash table entry provides the index of the first section
9674 number in the set. Additional section numbers in the set follow, and the
9675 set is terminated by a 0 entry (section number 0 is not used in ELF).
9676
9677 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9678 section must be the first entry in the set, and the .debug_abbrev.dwo must
9679 be the second entry. Other members of the set may follow in any order.
9680
9681 ---
9682
9683 DWP Version 2:
9684
9685 DWP Version 2 combines all the .debug_info, etc. sections into one,
9686 and the entries in the index tables are now offsets into these sections.
9687 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9688 section.
9689
9690 Index Section Contents:
9691 Header
9692 Hash Table of Signatures dwp_hash_table.hash_table
9693 Parallel Table of Indices dwp_hash_table.unit_table
9694 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9695 Table of Section Sizes dwp_hash_table.v2.sizes
9696
9697 The index section header consists of:
9698
9699 V, 32 bit version number
9700 L, 32 bit number of columns in the table of section offsets
9701 N, 32 bit number of compilation units or type units in the index
9702 M, 32 bit number of slots in the hash table
9703
9704 Numbers are recorded using the byte order of the application binary.
9705
9706 The hash table has the same format as version 1.
9707 The parallel table of indices has the same format as version 1,
9708 except that the entries are origin-1 indices into the table of sections
9709 offsets and the table of section sizes.
9710
9711 The table of offsets begins immediately following the parallel table
9712 (at offset 16 + 12 * M from the beginning of the section). The table is
9713 a two-dimensional array of 32-bit words (using the byte order of the
9714 application binary), with L columns and N+1 rows, in row-major order.
9715 Each row in the array is indexed starting from 0. The first row provides
9716 a key to the remaining rows: each column in this row provides an identifier
9717 for a debug section, and the offsets in the same column of subsequent rows
9718 refer to that section. The section identifiers are:
9719
9720 DW_SECT_INFO 1 .debug_info.dwo
9721 DW_SECT_TYPES 2 .debug_types.dwo
9722 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9723 DW_SECT_LINE 4 .debug_line.dwo
9724 DW_SECT_LOC 5 .debug_loc.dwo
9725 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9726 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9727 DW_SECT_MACRO 8 .debug_macro.dwo
9728
9729 The offsets provided by the CU and TU index sections are the base offsets
9730 for the contributions made by each CU or TU to the corresponding section
9731 in the package file. Each CU and TU header contains an abbrev_offset
9732 field, used to find the abbreviations table for that CU or TU within the
9733 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9734 be interpreted as relative to the base offset given in the index section.
9735 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9736 should be interpreted as relative to the base offset for .debug_line.dwo,
9737 and offsets into other debug sections obtained from DWARF attributes should
9738 also be interpreted as relative to the corresponding base offset.
9739
9740 The table of sizes begins immediately following the table of offsets.
9741 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9742 with L columns and N rows, in row-major order. Each row in the array is
9743 indexed starting from 1 (row 0 is shared by the two tables).
9744
9745 ---
9746
9747 Hash table lookup is handled the same in version 1 and 2:
9748
9749 We assume that N and M will not exceed 2^32 - 1.
9750 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9751
d2415c6c
DE
9752 Given a 64-bit compilation unit signature or a type signature S, an entry
9753 in the hash table is located as follows:
80626a55 9754
d2415c6c
DE
9755 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9756 the low-order k bits all set to 1.
80626a55 9757
d2415c6c 9758 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9759
d2415c6c
DE
9760 3) If the hash table entry at index H matches the signature, use that
9761 entry. If the hash table entry at index H is unused (all zeroes),
9762 terminate the search: the signature is not present in the table.
80626a55 9763
d2415c6c 9764 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9765
d2415c6c 9766 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9767 to stop at an unused slot or find the match. */
80626a55
DE
9768
9769/* Create a hash table to map DWO IDs to their CU/TU entry in
9770 .debug_{info,types}.dwo in DWP_FILE.
9771 Returns NULL if there isn't one.
9772 Note: This function processes DWP files only, not DWO files. */
9773
9774static struct dwp_hash_table *
9775create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9776{
9777 struct objfile *objfile = dwarf2_per_objfile->objfile;
9778 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9779 const gdb_byte *index_ptr, *index_end;
80626a55 9780 struct dwarf2_section_info *index;
73869dc2 9781 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9782 struct dwp_hash_table *htab;
9783
9784 if (is_debug_types)
9785 index = &dwp_file->sections.tu_index;
9786 else
9787 index = &dwp_file->sections.cu_index;
9788
9789 if (dwarf2_section_empty_p (index))
9790 return NULL;
9791 dwarf2_read_section (objfile, index);
9792
9793 index_ptr = index->buffer;
9794 index_end = index_ptr + index->size;
9795
9796 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9797 index_ptr += 4;
9798 if (version == 2)
9799 nr_columns = read_4_bytes (dbfd, index_ptr);
9800 else
9801 nr_columns = 0;
9802 index_ptr += 4;
80626a55
DE
9803 nr_units = read_4_bytes (dbfd, index_ptr);
9804 index_ptr += 4;
9805 nr_slots = read_4_bytes (dbfd, index_ptr);
9806 index_ptr += 4;
9807
73869dc2 9808 if (version != 1 && version != 2)
80626a55 9809 {
21aa081e 9810 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9811 " [in module %s]"),
21aa081e 9812 pulongest (version), dwp_file->name);
80626a55
DE
9813 }
9814 if (nr_slots != (nr_slots & -nr_slots))
9815 {
21aa081e 9816 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9817 " is not power of 2 [in module %s]"),
21aa081e 9818 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9819 }
9820
9821 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9822 htab->version = version;
9823 htab->nr_columns = nr_columns;
80626a55
DE
9824 htab->nr_units = nr_units;
9825 htab->nr_slots = nr_slots;
9826 htab->hash_table = index_ptr;
9827 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9828
9829 /* Exit early if the table is empty. */
9830 if (nr_slots == 0 || nr_units == 0
9831 || (version == 2 && nr_columns == 0))
9832 {
9833 /* All must be zero. */
9834 if (nr_slots != 0 || nr_units != 0
9835 || (version == 2 && nr_columns != 0))
9836 {
9837 complaint (&symfile_complaints,
9838 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9839 " all zero [in modules %s]"),
9840 dwp_file->name);
9841 }
9842 return htab;
9843 }
9844
9845 if (version == 1)
9846 {
9847 htab->section_pool.v1.indices =
9848 htab->unit_table + sizeof (uint32_t) * nr_slots;
9849 /* It's harder to decide whether the section is too small in v1.
9850 V1 is deprecated anyway so we punt. */
9851 }
9852 else
9853 {
9854 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9855 int *ids = htab->section_pool.v2.section_ids;
9856 /* Reverse map for error checking. */
9857 int ids_seen[DW_SECT_MAX + 1];
9858 int i;
9859
9860 if (nr_columns < 2)
9861 {
9862 error (_("Dwarf Error: bad DWP hash table, too few columns"
9863 " in section table [in module %s]"),
9864 dwp_file->name);
9865 }
9866 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9867 {
9868 error (_("Dwarf Error: bad DWP hash table, too many columns"
9869 " in section table [in module %s]"),
9870 dwp_file->name);
9871 }
9872 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9873 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9874 for (i = 0; i < nr_columns; ++i)
9875 {
9876 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9877
9878 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9879 {
9880 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9881 " in section table [in module %s]"),
9882 id, dwp_file->name);
9883 }
9884 if (ids_seen[id] != -1)
9885 {
9886 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9887 " id %d in section table [in module %s]"),
9888 id, dwp_file->name);
9889 }
9890 ids_seen[id] = i;
9891 ids[i] = id;
9892 }
9893 /* Must have exactly one info or types section. */
9894 if (((ids_seen[DW_SECT_INFO] != -1)
9895 + (ids_seen[DW_SECT_TYPES] != -1))
9896 != 1)
9897 {
9898 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9899 " DWO info/types section [in module %s]"),
9900 dwp_file->name);
9901 }
9902 /* Must have an abbrev section. */
9903 if (ids_seen[DW_SECT_ABBREV] == -1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9906 " section [in module %s]"),
9907 dwp_file->name);
9908 }
9909 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9910 htab->section_pool.v2.sizes =
9911 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9912 * nr_units * nr_columns);
9913 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9914 * nr_units * nr_columns))
9915 > index_end)
9916 {
9917 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9918 " [in module %s]"),
9919 dwp_file->name);
9920 }
9921 }
80626a55
DE
9922
9923 return htab;
9924}
9925
9926/* Update SECTIONS with the data from SECTP.
9927
9928 This function is like the other "locate" section routines that are
9929 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9930 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9931
9932 The result is non-zero for success, or zero if an error was found. */
9933
9934static int
73869dc2
DE
9935locate_v1_virtual_dwo_sections (asection *sectp,
9936 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9937{
9938 const struct dwop_section_names *names = &dwop_section_names;
9939
9940 if (section_is_p (sectp->name, &names->abbrev_dwo))
9941 {
9942 /* There can be only one. */
049412e3 9943 if (sections->abbrev.s.section != NULL)
80626a55 9944 return 0;
049412e3 9945 sections->abbrev.s.section = sectp;
80626a55
DE
9946 sections->abbrev.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->info_dwo)
9949 || section_is_p (sectp->name, &names->types_dwo))
9950 {
9951 /* There can be only one. */
049412e3 9952 if (sections->info_or_types.s.section != NULL)
80626a55 9953 return 0;
049412e3 9954 sections->info_or_types.s.section = sectp;
80626a55
DE
9955 sections->info_or_types.size = bfd_get_section_size (sectp);
9956 }
9957 else if (section_is_p (sectp->name, &names->line_dwo))
9958 {
9959 /* There can be only one. */
049412e3 9960 if (sections->line.s.section != NULL)
80626a55 9961 return 0;
049412e3 9962 sections->line.s.section = sectp;
80626a55
DE
9963 sections->line.size = bfd_get_section_size (sectp);
9964 }
9965 else if (section_is_p (sectp->name, &names->loc_dwo))
9966 {
9967 /* There can be only one. */
049412e3 9968 if (sections->loc.s.section != NULL)
80626a55 9969 return 0;
049412e3 9970 sections->loc.s.section = sectp;
80626a55
DE
9971 sections->loc.size = bfd_get_section_size (sectp);
9972 }
9973 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9974 {
9975 /* There can be only one. */
049412e3 9976 if (sections->macinfo.s.section != NULL)
80626a55 9977 return 0;
049412e3 9978 sections->macinfo.s.section = sectp;
80626a55
DE
9979 sections->macinfo.size = bfd_get_section_size (sectp);
9980 }
9981 else if (section_is_p (sectp->name, &names->macro_dwo))
9982 {
9983 /* There can be only one. */
049412e3 9984 if (sections->macro.s.section != NULL)
80626a55 9985 return 0;
049412e3 9986 sections->macro.s.section = sectp;
80626a55
DE
9987 sections->macro.size = bfd_get_section_size (sectp);
9988 }
9989 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9990 {
9991 /* There can be only one. */
049412e3 9992 if (sections->str_offsets.s.section != NULL)
80626a55 9993 return 0;
049412e3 9994 sections->str_offsets.s.section = sectp;
80626a55
DE
9995 sections->str_offsets.size = bfd_get_section_size (sectp);
9996 }
9997 else
9998 {
9999 /* No other kind of section is valid. */
10000 return 0;
10001 }
10002
10003 return 1;
10004}
10005
73869dc2
DE
10006/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10007 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10008 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10009 This is for DWP version 1 files. */
80626a55
DE
10010
10011static struct dwo_unit *
73869dc2
DE
10012create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10013 uint32_t unit_index,
10014 const char *comp_dir,
10015 ULONGEST signature, int is_debug_types)
80626a55
DE
10016{
10017 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10018 const struct dwp_hash_table *dwp_htab =
10019 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10020 bfd *dbfd = dwp_file->dbfd;
10021 const char *kind = is_debug_types ? "TU" : "CU";
10022 struct dwo_file *dwo_file;
10023 struct dwo_unit *dwo_unit;
73869dc2 10024 struct virtual_v1_dwo_sections sections;
80626a55
DE
10025 void **dwo_file_slot;
10026 char *virtual_dwo_name;
10027 struct dwarf2_section_info *cutu;
10028 struct cleanup *cleanups;
10029 int i;
10030
73869dc2
DE
10031 gdb_assert (dwp_file->version == 1);
10032
b4f54984 10033 if (dwarf_read_debug)
80626a55 10034 {
73869dc2 10035 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10036 kind,
73869dc2 10037 pulongest (unit_index), hex_string (signature),
80626a55
DE
10038 dwp_file->name);
10039 }
10040
19ac8c2e 10041 /* Fetch the sections of this DWO unit.
80626a55
DE
10042 Put a limit on the number of sections we look for so that bad data
10043 doesn't cause us to loop forever. */
10044
73869dc2 10045#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10046 (1 /* .debug_info or .debug_types */ \
10047 + 1 /* .debug_abbrev */ \
10048 + 1 /* .debug_line */ \
10049 + 1 /* .debug_loc */ \
10050 + 1 /* .debug_str_offsets */ \
19ac8c2e 10051 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10052 + 1 /* trailing zero */)
10053
10054 memset (&sections, 0, sizeof (sections));
10055 cleanups = make_cleanup (null_cleanup, 0);
10056
73869dc2 10057 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10058 {
10059 asection *sectp;
10060 uint32_t section_nr =
10061 read_4_bytes (dbfd,
73869dc2
DE
10062 dwp_htab->section_pool.v1.indices
10063 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10064
10065 if (section_nr == 0)
10066 break;
10067 if (section_nr >= dwp_file->num_sections)
10068 {
10069 error (_("Dwarf Error: bad DWP hash table, section number too large"
10070 " [in module %s]"),
10071 dwp_file->name);
10072 }
10073
10074 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10075 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081 }
10082
10083 if (i < 2
a32a8923
DE
10084 || dwarf2_section_empty_p (&sections.info_or_types)
10085 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10086 {
10087 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10088 " [in module %s]"),
10089 dwp_file->name);
10090 }
73869dc2 10091 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10092 {
10093 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10094 " [in module %s]"),
10095 dwp_file->name);
10096 }
10097
10098 /* It's easier for the rest of the code if we fake a struct dwo_file and
10099 have dwo_unit "live" in that. At least for now.
10100
10101 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10102 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10103 file, we can combine them back into a virtual DWO file to save space
10104 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10105 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10106
2792b94d
PM
10107 virtual_dwo_name =
10108 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10109 get_section_id (&sections.abbrev),
10110 get_section_id (&sections.line),
10111 get_section_id (&sections.loc),
10112 get_section_id (&sections.str_offsets));
80626a55
DE
10113 make_cleanup (xfree, virtual_dwo_name);
10114 /* Can we use an existing virtual DWO file? */
0ac5b59e 10115 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10116 /* Create one if necessary. */
10117 if (*dwo_file_slot == NULL)
10118 {
b4f54984 10119 if (dwarf_read_debug)
80626a55
DE
10120 {
10121 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10122 virtual_dwo_name);
10123 }
10124 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10125 dwo_file->dwo_name
10126 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10127 virtual_dwo_name,
10128 strlen (virtual_dwo_name));
0ac5b59e 10129 dwo_file->comp_dir = comp_dir;
80626a55
DE
10130 dwo_file->sections.abbrev = sections.abbrev;
10131 dwo_file->sections.line = sections.line;
10132 dwo_file->sections.loc = sections.loc;
10133 dwo_file->sections.macinfo = sections.macinfo;
10134 dwo_file->sections.macro = sections.macro;
10135 dwo_file->sections.str_offsets = sections.str_offsets;
10136 /* The "str" section is global to the entire DWP file. */
10137 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10138 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10139 there's no need to record it in dwo_file.
10140 Also, we can't simply record type sections in dwo_file because
10141 we record a pointer into the vector in dwo_unit. As we collect more
10142 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10143 for it, invalidating all copies of pointers into the previous
10144 contents. */
80626a55
DE
10145 *dwo_file_slot = dwo_file;
10146 }
10147 else
10148 {
b4f54984 10149 if (dwarf_read_debug)
80626a55
DE
10150 {
10151 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10152 virtual_dwo_name);
10153 }
9a3c8263 10154 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10155 }
10156 do_cleanups (cleanups);
10157
10158 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10159 dwo_unit->dwo_file = dwo_file;
10160 dwo_unit->signature = signature;
8d749320
SM
10161 dwo_unit->section =
10162 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10163 *dwo_unit->section = sections.info_or_types;
57d63ce2 10164 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10165
10166 return dwo_unit;
10167}
10168
73869dc2
DE
10169/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10170 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10171 piece within that section used by a TU/CU, return a virtual section
10172 of just that piece. */
10173
10174static struct dwarf2_section_info
10175create_dwp_v2_section (struct dwarf2_section_info *section,
10176 bfd_size_type offset, bfd_size_type size)
10177{
10178 struct dwarf2_section_info result;
10179 asection *sectp;
10180
10181 gdb_assert (section != NULL);
10182 gdb_assert (!section->is_virtual);
10183
10184 memset (&result, 0, sizeof (result));
10185 result.s.containing_section = section;
10186 result.is_virtual = 1;
10187
10188 if (size == 0)
10189 return result;
10190
10191 sectp = get_section_bfd_section (section);
10192
10193 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10194 bounds of the real section. This is a pretty-rare event, so just
10195 flag an error (easier) instead of a warning and trying to cope. */
10196 if (sectp == NULL
10197 || offset + size > bfd_get_section_size (sectp))
10198 {
10199 bfd *abfd = sectp->owner;
10200
10201 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10202 " in section %s [in module %s]"),
10203 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10204 objfile_name (dwarf2_per_objfile->objfile));
10205 }
10206
10207 result.virtual_offset = offset;
10208 result.size = size;
10209 return result;
10210}
10211
10212/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10213 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10214 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10215 This is for DWP version 2 files. */
10216
10217static struct dwo_unit *
10218create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10219 uint32_t unit_index,
10220 const char *comp_dir,
10221 ULONGEST signature, int is_debug_types)
10222{
10223 struct objfile *objfile = dwarf2_per_objfile->objfile;
10224 const struct dwp_hash_table *dwp_htab =
10225 is_debug_types ? dwp_file->tus : dwp_file->cus;
10226 bfd *dbfd = dwp_file->dbfd;
10227 const char *kind = is_debug_types ? "TU" : "CU";
10228 struct dwo_file *dwo_file;
10229 struct dwo_unit *dwo_unit;
10230 struct virtual_v2_dwo_sections sections;
10231 void **dwo_file_slot;
10232 char *virtual_dwo_name;
10233 struct dwarf2_section_info *cutu;
10234 struct cleanup *cleanups;
10235 int i;
10236
10237 gdb_assert (dwp_file->version == 2);
10238
b4f54984 10239 if (dwarf_read_debug)
73869dc2
DE
10240 {
10241 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10242 kind,
10243 pulongest (unit_index), hex_string (signature),
10244 dwp_file->name);
10245 }
10246
10247 /* Fetch the section offsets of this DWO unit. */
10248
10249 memset (&sections, 0, sizeof (sections));
10250 cleanups = make_cleanup (null_cleanup, 0);
10251
10252 for (i = 0; i < dwp_htab->nr_columns; ++i)
10253 {
10254 uint32_t offset = read_4_bytes (dbfd,
10255 dwp_htab->section_pool.v2.offsets
10256 + (((unit_index - 1) * dwp_htab->nr_columns
10257 + i)
10258 * sizeof (uint32_t)));
10259 uint32_t size = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.sizes
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264
10265 switch (dwp_htab->section_pool.v2.section_ids[i])
10266 {
10267 case DW_SECT_INFO:
10268 case DW_SECT_TYPES:
10269 sections.info_or_types_offset = offset;
10270 sections.info_or_types_size = size;
10271 break;
10272 case DW_SECT_ABBREV:
10273 sections.abbrev_offset = offset;
10274 sections.abbrev_size = size;
10275 break;
10276 case DW_SECT_LINE:
10277 sections.line_offset = offset;
10278 sections.line_size = size;
10279 break;
10280 case DW_SECT_LOC:
10281 sections.loc_offset = offset;
10282 sections.loc_size = size;
10283 break;
10284 case DW_SECT_STR_OFFSETS:
10285 sections.str_offsets_offset = offset;
10286 sections.str_offsets_size = size;
10287 break;
10288 case DW_SECT_MACINFO:
10289 sections.macinfo_offset = offset;
10290 sections.macinfo_size = size;
10291 break;
10292 case DW_SECT_MACRO:
10293 sections.macro_offset = offset;
10294 sections.macro_size = size;
10295 break;
10296 }
10297 }
10298
10299 /* It's easier for the rest of the code if we fake a struct dwo_file and
10300 have dwo_unit "live" in that. At least for now.
10301
10302 The DWP file can be made up of a random collection of CUs and TUs.
10303 However, for each CU + set of TUs that came from the same original DWO
10304 file, we can combine them back into a virtual DWO file to save space
10305 (fewer struct dwo_file objects to allocate). Remember that for really
10306 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10307
10308 virtual_dwo_name =
10309 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10310 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10311 (long) (sections.line_size ? sections.line_offset : 0),
10312 (long) (sections.loc_size ? sections.loc_offset : 0),
10313 (long) (sections.str_offsets_size
10314 ? sections.str_offsets_offset : 0));
10315 make_cleanup (xfree, virtual_dwo_name);
10316 /* Can we use an existing virtual DWO file? */
10317 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10318 /* Create one if necessary. */
10319 if (*dwo_file_slot == NULL)
10320 {
b4f54984 10321 if (dwarf_read_debug)
73869dc2
DE
10322 {
10323 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10324 virtual_dwo_name);
10325 }
10326 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10327 dwo_file->dwo_name
10328 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10329 virtual_dwo_name,
10330 strlen (virtual_dwo_name));
73869dc2
DE
10331 dwo_file->comp_dir = comp_dir;
10332 dwo_file->sections.abbrev =
10333 create_dwp_v2_section (&dwp_file->sections.abbrev,
10334 sections.abbrev_offset, sections.abbrev_size);
10335 dwo_file->sections.line =
10336 create_dwp_v2_section (&dwp_file->sections.line,
10337 sections.line_offset, sections.line_size);
10338 dwo_file->sections.loc =
10339 create_dwp_v2_section (&dwp_file->sections.loc,
10340 sections.loc_offset, sections.loc_size);
10341 dwo_file->sections.macinfo =
10342 create_dwp_v2_section (&dwp_file->sections.macinfo,
10343 sections.macinfo_offset, sections.macinfo_size);
10344 dwo_file->sections.macro =
10345 create_dwp_v2_section (&dwp_file->sections.macro,
10346 sections.macro_offset, sections.macro_size);
10347 dwo_file->sections.str_offsets =
10348 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10349 sections.str_offsets_offset,
10350 sections.str_offsets_size);
10351 /* The "str" section is global to the entire DWP file. */
10352 dwo_file->sections.str = dwp_file->sections.str;
10353 /* The info or types section is assigned below to dwo_unit,
10354 there's no need to record it in dwo_file.
10355 Also, we can't simply record type sections in dwo_file because
10356 we record a pointer into the vector in dwo_unit. As we collect more
10357 types we'll grow the vector and eventually have to reallocate space
10358 for it, invalidating all copies of pointers into the previous
10359 contents. */
10360 *dwo_file_slot = dwo_file;
10361 }
10362 else
10363 {
b4f54984 10364 if (dwarf_read_debug)
73869dc2
DE
10365 {
10366 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10367 virtual_dwo_name);
10368 }
9a3c8263 10369 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10370 }
10371 do_cleanups (cleanups);
10372
10373 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10374 dwo_unit->dwo_file = dwo_file;
10375 dwo_unit->signature = signature;
8d749320
SM
10376 dwo_unit->section =
10377 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10378 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10379 ? &dwp_file->sections.types
10380 : &dwp_file->sections.info,
10381 sections.info_or_types_offset,
10382 sections.info_or_types_size);
10383 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10384
10385 return dwo_unit;
10386}
10387
57d63ce2
DE
10388/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10389 Returns NULL if the signature isn't found. */
80626a55
DE
10390
10391static struct dwo_unit *
57d63ce2
DE
10392lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10393 ULONGEST signature, int is_debug_types)
80626a55 10394{
57d63ce2
DE
10395 const struct dwp_hash_table *dwp_htab =
10396 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10397 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10398 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10399 uint32_t hash = signature & mask;
10400 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10401 unsigned int i;
10402 void **slot;
10403 struct dwo_unit find_dwo_cu, *dwo_cu;
10404
10405 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10406 find_dwo_cu.signature = signature;
19ac8c2e
DE
10407 slot = htab_find_slot (is_debug_types
10408 ? dwp_file->loaded_tus
10409 : dwp_file->loaded_cus,
10410 &find_dwo_cu, INSERT);
80626a55
DE
10411
10412 if (*slot != NULL)
9a3c8263 10413 return (struct dwo_unit *) *slot;
80626a55
DE
10414
10415 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10416 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10417 {
10418 ULONGEST signature_in_table;
10419
10420 signature_in_table =
57d63ce2 10421 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10422 if (signature_in_table == signature)
10423 {
57d63ce2
DE
10424 uint32_t unit_index =
10425 read_4_bytes (dbfd,
10426 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10427
73869dc2
DE
10428 if (dwp_file->version == 1)
10429 {
10430 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10431 comp_dir, signature,
10432 is_debug_types);
10433 }
10434 else
10435 {
10436 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10437 comp_dir, signature,
10438 is_debug_types);
10439 }
9a3c8263 10440 return (struct dwo_unit *) *slot;
80626a55
DE
10441 }
10442 if (signature_in_table == 0)
10443 return NULL;
10444 hash = (hash + hash2) & mask;
10445 }
10446
10447 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10448 " [in module %s]"),
10449 dwp_file->name);
10450}
10451
ab5088bf 10452/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10453 Open the file specified by FILE_NAME and hand it off to BFD for
10454 preliminary analysis. Return a newly initialized bfd *, which
10455 includes a canonicalized copy of FILE_NAME.
80626a55 10456 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10457 SEARCH_CWD is true if the current directory is to be searched.
10458 It will be searched before debug-file-directory.
13aaf454
DE
10459 If successful, the file is added to the bfd include table of the
10460 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10461 If unable to find/open the file, return NULL.
3019eac3
DE
10462 NOTE: This function is derived from symfile_bfd_open. */
10463
10464static bfd *
6ac97d4c 10465try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10466{
10467 bfd *sym_bfd;
80626a55 10468 int desc, flags;
3019eac3 10469 char *absolute_name;
9c02c129
DE
10470 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10471 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10472 to debug_file_directory. */
10473 char *search_path;
10474 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10475
6ac97d4c
DE
10476 if (search_cwd)
10477 {
10478 if (*debug_file_directory != '\0')
10479 search_path = concat (".", dirname_separator_string,
10480 debug_file_directory, NULL);
10481 else
10482 search_path = xstrdup (".");
10483 }
9c02c129 10484 else
6ac97d4c 10485 search_path = xstrdup (debug_file_directory);
3019eac3 10486
492c0ab7 10487 flags = OPF_RETURN_REALPATH;
80626a55
DE
10488 if (is_dwp)
10489 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10490 desc = openp (search_path, flags, file_name,
3019eac3 10491 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10492 xfree (search_path);
3019eac3
DE
10493 if (desc < 0)
10494 return NULL;
10495
bb397797 10496 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10497 xfree (absolute_name);
9c02c129
DE
10498 if (sym_bfd == NULL)
10499 return NULL;
3019eac3
DE
10500 bfd_set_cacheable (sym_bfd, 1);
10501
10502 if (!bfd_check_format (sym_bfd, bfd_object))
10503 {
cbb099e8 10504 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10505 return NULL;
10506 }
10507
13aaf454
DE
10508 /* Success. Record the bfd as having been included by the objfile's bfd.
10509 This is important because things like demangled_names_hash lives in the
10510 objfile's per_bfd space and may have references to things like symbol
10511 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10512 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10513
3019eac3
DE
10514 return sym_bfd;
10515}
10516
ab5088bf 10517/* Try to open DWO file FILE_NAME.
3019eac3
DE
10518 COMP_DIR is the DW_AT_comp_dir attribute.
10519 The result is the bfd handle of the file.
10520 If there is a problem finding or opening the file, return NULL.
10521 Upon success, the canonicalized path of the file is stored in the bfd,
10522 same as symfile_bfd_open. */
10523
10524static bfd *
ab5088bf 10525open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10526{
10527 bfd *abfd;
3019eac3 10528
80626a55 10529 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10530 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10531
10532 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10533
10534 if (comp_dir != NULL)
10535 {
80626a55 10536 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10537
10538 /* NOTE: If comp_dir is a relative path, this will also try the
10539 search path, which seems useful. */
6ac97d4c 10540 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10541 xfree (path_to_try);
10542 if (abfd != NULL)
10543 return abfd;
10544 }
10545
10546 /* That didn't work, try debug-file-directory, which, despite its name,
10547 is a list of paths. */
10548
10549 if (*debug_file_directory == '\0')
10550 return NULL;
10551
6ac97d4c 10552 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10553}
10554
80626a55
DE
10555/* This function is mapped across the sections and remembers the offset and
10556 size of each of the DWO debugging sections we are interested in. */
10557
10558static void
10559dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10560{
9a3c8263 10561 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10562 const struct dwop_section_names *names = &dwop_section_names;
10563
10564 if (section_is_p (sectp->name, &names->abbrev_dwo))
10565 {
049412e3 10566 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10567 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->info_dwo))
10570 {
049412e3 10571 dwo_sections->info.s.section = sectp;
80626a55
DE
10572 dwo_sections->info.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->line_dwo))
10575 {
049412e3 10576 dwo_sections->line.s.section = sectp;
80626a55
DE
10577 dwo_sections->line.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->loc_dwo))
10580 {
049412e3 10581 dwo_sections->loc.s.section = sectp;
80626a55
DE
10582 dwo_sections->loc.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10585 {
049412e3 10586 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10587 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macro_dwo))
10590 {
049412e3 10591 dwo_sections->macro.s.section = sectp;
80626a55
DE
10592 dwo_sections->macro.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->str_dwo))
10595 {
049412e3 10596 dwo_sections->str.s.section = sectp;
80626a55
DE
10597 dwo_sections->str.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10600 {
049412e3 10601 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10602 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->types_dwo))
10605 {
10606 struct dwarf2_section_info type_section;
10607
10608 memset (&type_section, 0, sizeof (type_section));
049412e3 10609 type_section.s.section = sectp;
80626a55
DE
10610 type_section.size = bfd_get_section_size (sectp);
10611 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10612 &type_section);
10613 }
10614}
10615
ab5088bf 10616/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10617 by PER_CU. This is for the non-DWP case.
80626a55 10618 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10619
10620static struct dwo_file *
0ac5b59e
DE
10621open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10622 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10623{
10624 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10625 struct dwo_file *dwo_file;
10626 bfd *dbfd;
3019eac3
DE
10627 struct cleanup *cleanups;
10628
ab5088bf 10629 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10630 if (dbfd == NULL)
10631 {
b4f54984 10632 if (dwarf_read_debug)
80626a55
DE
10633 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10634 return NULL;
10635 }
10636 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10637 dwo_file->dwo_name = dwo_name;
10638 dwo_file->comp_dir = comp_dir;
80626a55 10639 dwo_file->dbfd = dbfd;
3019eac3
DE
10640
10641 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10642
80626a55 10643 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10644
19c3d4c9 10645 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10646
10647 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10648 dwo_file->sections.types);
10649
10650 discard_cleanups (cleanups);
10651
b4f54984 10652 if (dwarf_read_debug)
80626a55
DE
10653 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10654
3019eac3
DE
10655 return dwo_file;
10656}
10657
80626a55 10658/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10659 size of each of the DWP debugging sections common to version 1 and 2 that
10660 we are interested in. */
3019eac3 10661
80626a55 10662static void
73869dc2
DE
10663dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10664 void *dwp_file_ptr)
3019eac3 10665{
9a3c8263 10666 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10667 const struct dwop_section_names *names = &dwop_section_names;
10668 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10669
80626a55 10670 /* Record the ELF section number for later lookup: this is what the
73869dc2 10671 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10672 gdb_assert (elf_section_nr < dwp_file->num_sections);
10673 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10674
80626a55
DE
10675 /* Look for specific sections that we need. */
10676 if (section_is_p (sectp->name, &names->str_dwo))
10677 {
049412e3 10678 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10679 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10680 }
10681 else if (section_is_p (sectp->name, &names->cu_index))
10682 {
049412e3 10683 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10684 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->tu_index))
10687 {
049412e3 10688 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10689 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10690 }
10691}
3019eac3 10692
73869dc2
DE
10693/* This function is mapped across the sections and remembers the offset and
10694 size of each of the DWP version 2 debugging sections that we are interested
10695 in. This is split into a separate function because we don't know if we
10696 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10697
10698static void
10699dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10700{
9a3c8263 10701 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10702 const struct dwop_section_names *names = &dwop_section_names;
10703 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10704
10705 /* Record the ELF section number for later lookup: this is what the
10706 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10707 gdb_assert (elf_section_nr < dwp_file->num_sections);
10708 dwp_file->elf_sections[elf_section_nr] = sectp;
10709
10710 /* Look for specific sections that we need. */
10711 if (section_is_p (sectp->name, &names->abbrev_dwo))
10712 {
049412e3 10713 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10714 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10715 }
10716 else if (section_is_p (sectp->name, &names->info_dwo))
10717 {
049412e3 10718 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10719 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->line_dwo))
10722 {
049412e3 10723 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10724 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->loc_dwo))
10727 {
049412e3 10728 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10729 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10732 {
049412e3 10733 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10734 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macro_dwo))
10737 {
049412e3 10738 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10739 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10742 {
049412e3 10743 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10744 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->types_dwo))
10747 {
049412e3 10748 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10749 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10750 }
10751}
10752
80626a55 10753/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10754
80626a55
DE
10755static hashval_t
10756hash_dwp_loaded_cutus (const void *item)
10757{
9a3c8263 10758 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10759
80626a55
DE
10760 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10761 return dwo_unit->signature;
3019eac3
DE
10762}
10763
80626a55 10764/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10765
80626a55
DE
10766static int
10767eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10768{
9a3c8263
SM
10769 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10770 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10771
80626a55
DE
10772 return dua->signature == dub->signature;
10773}
3019eac3 10774
80626a55 10775/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10776
80626a55
DE
10777static htab_t
10778allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10779{
10780 return htab_create_alloc_ex (3,
10781 hash_dwp_loaded_cutus,
10782 eq_dwp_loaded_cutus,
10783 NULL,
10784 &objfile->objfile_obstack,
10785 hashtab_obstack_allocate,
10786 dummy_obstack_deallocate);
10787}
3019eac3 10788
ab5088bf
DE
10789/* Try to open DWP file FILE_NAME.
10790 The result is the bfd handle of the file.
10791 If there is a problem finding or opening the file, return NULL.
10792 Upon success, the canonicalized path of the file is stored in the bfd,
10793 same as symfile_bfd_open. */
10794
10795static bfd *
10796open_dwp_file (const char *file_name)
10797{
6ac97d4c
DE
10798 bfd *abfd;
10799
10800 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10801 if (abfd != NULL)
10802 return abfd;
10803
10804 /* Work around upstream bug 15652.
10805 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10806 [Whether that's a "bug" is debatable, but it is getting in our way.]
10807 We have no real idea where the dwp file is, because gdb's realpath-ing
10808 of the executable's path may have discarded the needed info.
10809 [IWBN if the dwp file name was recorded in the executable, akin to
10810 .gnu_debuglink, but that doesn't exist yet.]
10811 Strip the directory from FILE_NAME and search again. */
10812 if (*debug_file_directory != '\0')
10813 {
10814 /* Don't implicitly search the current directory here.
10815 If the user wants to search "." to handle this case,
10816 it must be added to debug-file-directory. */
10817 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10818 0 /*search_cwd*/);
10819 }
10820
10821 return NULL;
ab5088bf
DE
10822}
10823
80626a55
DE
10824/* Initialize the use of the DWP file for the current objfile.
10825 By convention the name of the DWP file is ${objfile}.dwp.
10826 The result is NULL if it can't be found. */
a766d390 10827
80626a55 10828static struct dwp_file *
ab5088bf 10829open_and_init_dwp_file (void)
80626a55
DE
10830{
10831 struct objfile *objfile = dwarf2_per_objfile->objfile;
10832 struct dwp_file *dwp_file;
10833 char *dwp_name;
10834 bfd *dbfd;
10835 struct cleanup *cleanups;
10836
82bf32bc
JK
10837 /* Try to find first .dwp for the binary file before any symbolic links
10838 resolving. */
10839 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10840 cleanups = make_cleanup (xfree, dwp_name);
10841
ab5088bf 10842 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10843 if (dbfd == NULL
10844 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10845 {
10846 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10847 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10848 make_cleanup (xfree, dwp_name);
10849 dbfd = open_dwp_file (dwp_name);
10850 }
10851
80626a55
DE
10852 if (dbfd == NULL)
10853 {
b4f54984 10854 if (dwarf_read_debug)
80626a55
DE
10855 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10856 do_cleanups (cleanups);
10857 return NULL;
3019eac3 10858 }
80626a55 10859 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10860 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10861 dwp_file->dbfd = dbfd;
10862 do_cleanups (cleanups);
c906108c 10863
80626a55
DE
10864 /* +1: section 0 is unused */
10865 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10866 dwp_file->elf_sections =
10867 OBSTACK_CALLOC (&objfile->objfile_obstack,
10868 dwp_file->num_sections, asection *);
10869
73869dc2 10870 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10871
10872 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10873
10874 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10875
73869dc2
DE
10876 /* The DWP file version is stored in the hash table. Oh well. */
10877 if (dwp_file->cus->version != dwp_file->tus->version)
10878 {
10879 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10880 pretty bizarre. We use pulongest here because that's the established
4d65956b 10881 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10882 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10883 " TU version %s [in DWP file %s]"),
10884 pulongest (dwp_file->cus->version),
10885 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10886 }
10887 dwp_file->version = dwp_file->cus->version;
10888
10889 if (dwp_file->version == 2)
10890 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10891
19ac8c2e
DE
10892 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10893 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10894
b4f54984 10895 if (dwarf_read_debug)
80626a55
DE
10896 {
10897 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10898 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10899 " %s CUs, %s TUs\n",
10900 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10901 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10902 }
10903
10904 return dwp_file;
3019eac3 10905}
c906108c 10906
ab5088bf
DE
10907/* Wrapper around open_and_init_dwp_file, only open it once. */
10908
10909static struct dwp_file *
10910get_dwp_file (void)
10911{
10912 if (! dwarf2_per_objfile->dwp_checked)
10913 {
10914 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10915 dwarf2_per_objfile->dwp_checked = 1;
10916 }
10917 return dwarf2_per_objfile->dwp_file;
10918}
10919
80626a55
DE
10920/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10921 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10922 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10923 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10924 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10925
10926 This is called, for example, when wanting to read a variable with a
10927 complex location. Therefore we don't want to do file i/o for every call.
10928 Therefore we don't want to look for a DWO file on every call.
10929 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10930 then we check if we've already seen DWO_NAME, and only THEN do we check
10931 for a DWO file.
10932
1c658ad5 10933 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10934 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10935
3019eac3 10936static struct dwo_unit *
80626a55
DE
10937lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10938 const char *dwo_name, const char *comp_dir,
10939 ULONGEST signature, int is_debug_types)
3019eac3
DE
10940{
10941 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10942 const char *kind = is_debug_types ? "TU" : "CU";
10943 void **dwo_file_slot;
3019eac3 10944 struct dwo_file *dwo_file;
80626a55 10945 struct dwp_file *dwp_file;
cb1df416 10946
6a506a2d
DE
10947 /* First see if there's a DWP file.
10948 If we have a DWP file but didn't find the DWO inside it, don't
10949 look for the original DWO file. It makes gdb behave differently
10950 depending on whether one is debugging in the build tree. */
cf2c3c16 10951
ab5088bf 10952 dwp_file = get_dwp_file ();
80626a55 10953 if (dwp_file != NULL)
cf2c3c16 10954 {
80626a55
DE
10955 const struct dwp_hash_table *dwp_htab =
10956 is_debug_types ? dwp_file->tus : dwp_file->cus;
10957
10958 if (dwp_htab != NULL)
10959 {
10960 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10961 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10962 signature, is_debug_types);
80626a55
DE
10963
10964 if (dwo_cutu != NULL)
10965 {
b4f54984 10966 if (dwarf_read_debug)
80626a55
DE
10967 {
10968 fprintf_unfiltered (gdb_stdlog,
10969 "Virtual DWO %s %s found: @%s\n",
10970 kind, hex_string (signature),
10971 host_address_to_string (dwo_cutu));
10972 }
10973 return dwo_cutu;
10974 }
10975 }
10976 }
6a506a2d 10977 else
80626a55 10978 {
6a506a2d 10979 /* No DWP file, look for the DWO file. */
80626a55 10980
6a506a2d
DE
10981 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10982 if (*dwo_file_slot == NULL)
80626a55 10983 {
6a506a2d
DE
10984 /* Read in the file and build a table of the CUs/TUs it contains. */
10985 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10986 }
6a506a2d 10987 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 10988 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 10989
6a506a2d 10990 if (dwo_file != NULL)
19c3d4c9 10991 {
6a506a2d
DE
10992 struct dwo_unit *dwo_cutu = NULL;
10993
10994 if (is_debug_types && dwo_file->tus)
10995 {
10996 struct dwo_unit find_dwo_cutu;
10997
10998 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10999 find_dwo_cutu.signature = signature;
9a3c8263
SM
11000 dwo_cutu
11001 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11002 }
11003 else if (!is_debug_types && dwo_file->cu)
80626a55 11004 {
6a506a2d
DE
11005 if (signature == dwo_file->cu->signature)
11006 dwo_cutu = dwo_file->cu;
11007 }
11008
11009 if (dwo_cutu != NULL)
11010 {
b4f54984 11011 if (dwarf_read_debug)
6a506a2d
DE
11012 {
11013 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11014 kind, dwo_name, hex_string (signature),
11015 host_address_to_string (dwo_cutu));
11016 }
11017 return dwo_cutu;
80626a55
DE
11018 }
11019 }
2e276125 11020 }
9cdd5dbd 11021
80626a55
DE
11022 /* We didn't find it. This could mean a dwo_id mismatch, or
11023 someone deleted the DWO/DWP file, or the search path isn't set up
11024 correctly to find the file. */
11025
b4f54984 11026 if (dwarf_read_debug)
80626a55
DE
11027 {
11028 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11029 kind, dwo_name, hex_string (signature));
11030 }
3019eac3 11031
6656a72d
DE
11032 /* This is a warning and not a complaint because it can be caused by
11033 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11034 {
11035 /* Print the name of the DWP file if we looked there, helps the user
11036 better diagnose the problem. */
11037 char *dwp_text = NULL;
11038 struct cleanup *cleanups;
11039
11040 if (dwp_file != NULL)
11041 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11042 cleanups = make_cleanup (xfree, dwp_text);
11043
11044 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11045 " [in module %s]"),
11046 kind, dwo_name, hex_string (signature),
11047 dwp_text != NULL ? dwp_text : "",
11048 this_unit->is_debug_types ? "TU" : "CU",
11049 this_unit->offset.sect_off, objfile_name (objfile));
11050
11051 do_cleanups (cleanups);
11052 }
3019eac3 11053 return NULL;
5fb290d7
DJ
11054}
11055
80626a55
DE
11056/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11057 See lookup_dwo_cutu_unit for details. */
11058
11059static struct dwo_unit *
11060lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11061 const char *dwo_name, const char *comp_dir,
11062 ULONGEST signature)
11063{
11064 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11065}
11066
11067/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11068 See lookup_dwo_cutu_unit for details. */
11069
11070static struct dwo_unit *
11071lookup_dwo_type_unit (struct signatured_type *this_tu,
11072 const char *dwo_name, const char *comp_dir)
11073{
11074 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11075}
11076
89e63ee4
DE
11077/* Traversal function for queue_and_load_all_dwo_tus. */
11078
11079static int
11080queue_and_load_dwo_tu (void **slot, void *info)
11081{
11082 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11083 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11084 ULONGEST signature = dwo_unit->signature;
11085 struct signatured_type *sig_type =
11086 lookup_dwo_signatured_type (per_cu->cu, signature);
11087
11088 if (sig_type != NULL)
11089 {
11090 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11091
11092 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11093 a real dependency of PER_CU on SIG_TYPE. That is detected later
11094 while processing PER_CU. */
11095 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11096 load_full_type_unit (sig_cu);
11097 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11098 }
11099
11100 return 1;
11101}
11102
11103/* Queue all TUs contained in the DWO of PER_CU to be read in.
11104 The DWO may have the only definition of the type, though it may not be
11105 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11107
11108static void
11109queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11110{
11111 struct dwo_unit *dwo_unit;
11112 struct dwo_file *dwo_file;
11113
11114 gdb_assert (!per_cu->is_debug_types);
11115 gdb_assert (get_dwp_file () == NULL);
11116 gdb_assert (per_cu->cu != NULL);
11117
11118 dwo_unit = per_cu->cu->dwo_unit;
11119 gdb_assert (dwo_unit != NULL);
11120
11121 dwo_file = dwo_unit->dwo_file;
11122 if (dwo_file->tus != NULL)
11123 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11124}
11125
3019eac3
DE
11126/* Free all resources associated with DWO_FILE.
11127 Close the DWO file and munmap the sections.
11128 All memory should be on the objfile obstack. */
348e048f
DE
11129
11130static void
3019eac3 11131free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11132{
3019eac3
DE
11133 int ix;
11134 struct dwarf2_section_info *section;
348e048f 11135
5c6fa7ab 11136 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11137 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11138
3019eac3
DE
11139 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11140}
348e048f 11141
3019eac3 11142/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11143
3019eac3
DE
11144static void
11145free_dwo_file_cleanup (void *arg)
11146{
11147 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11148 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11149
3019eac3
DE
11150 free_dwo_file (dwo_file, objfile);
11151}
348e048f 11152
3019eac3 11153/* Traversal function for free_dwo_files. */
2ab95328 11154
3019eac3
DE
11155static int
11156free_dwo_file_from_slot (void **slot, void *info)
11157{
11158 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11159 struct objfile *objfile = (struct objfile *) info;
348e048f 11160
3019eac3 11161 free_dwo_file (dwo_file, objfile);
348e048f 11162
3019eac3
DE
11163 return 1;
11164}
348e048f 11165
3019eac3 11166/* Free all resources associated with DWO_FILES. */
348e048f 11167
3019eac3
DE
11168static void
11169free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11170{
11171 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11172}
3019eac3
DE
11173\f
11174/* Read in various DIEs. */
348e048f 11175
d389af10
JK
11176/* qsort helper for inherit_abstract_dies. */
11177
11178static int
11179unsigned_int_compar (const void *ap, const void *bp)
11180{
11181 unsigned int a = *(unsigned int *) ap;
11182 unsigned int b = *(unsigned int *) bp;
11183
11184 return (a > b) - (b > a);
11185}
11186
11187/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11188 Inherit only the children of the DW_AT_abstract_origin DIE not being
11189 already referenced by DW_AT_abstract_origin from the children of the
11190 current DIE. */
d389af10
JK
11191
11192static void
11193inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11194{
11195 struct die_info *child_die;
11196 unsigned die_children_count;
11197 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11198 sect_offset *offsets;
11199 sect_offset *offsets_end, *offsetp;
d389af10
JK
11200 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11201 struct die_info *origin_die;
11202 /* Iterator of the ORIGIN_DIE children. */
11203 struct die_info *origin_child_die;
11204 struct cleanup *cleanups;
11205 struct attribute *attr;
cd02d79d
PA
11206 struct dwarf2_cu *origin_cu;
11207 struct pending **origin_previous_list_in_scope;
d389af10
JK
11208
11209 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11210 if (!attr)
11211 return;
11212
cd02d79d
PA
11213 /* Note that following die references may follow to a die in a
11214 different cu. */
11215
11216 origin_cu = cu;
11217 origin_die = follow_die_ref (die, attr, &origin_cu);
11218
11219 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11220 symbols in. */
11221 origin_previous_list_in_scope = origin_cu->list_in_scope;
11222 origin_cu->list_in_scope = cu->list_in_scope;
11223
edb3359d
DJ
11224 if (die->tag != origin_die->tag
11225 && !(die->tag == DW_TAG_inlined_subroutine
11226 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11227 complaint (&symfile_complaints,
11228 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11229 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11230
11231 child_die = die->child;
11232 die_children_count = 0;
11233 while (child_die && child_die->tag)
11234 {
11235 child_die = sibling_die (child_die);
11236 die_children_count++;
11237 }
8d749320 11238 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11239 cleanups = make_cleanup (xfree, offsets);
11240
11241 offsets_end = offsets;
3ea89b92
PMR
11242 for (child_die = die->child;
11243 child_die && child_die->tag;
11244 child_die = sibling_die (child_die))
11245 {
11246 struct die_info *child_origin_die;
11247 struct dwarf2_cu *child_origin_cu;
11248
11249 /* We are trying to process concrete instance entries:
11250 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11251 it's not relevant to our analysis here. i.e. detecting DIEs that are
11252 present in the abstract instance but not referenced in the concrete
11253 one. */
11254 if (child_die->tag == DW_TAG_GNU_call_site)
11255 continue;
11256
c38f313d
DJ
11257 /* For each CHILD_DIE, find the corresponding child of
11258 ORIGIN_DIE. If there is more than one layer of
11259 DW_AT_abstract_origin, follow them all; there shouldn't be,
11260 but GCC versions at least through 4.4 generate this (GCC PR
11261 40573). */
3ea89b92
PMR
11262 child_origin_die = child_die;
11263 child_origin_cu = cu;
c38f313d
DJ
11264 while (1)
11265 {
cd02d79d
PA
11266 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11267 child_origin_cu);
c38f313d
DJ
11268 if (attr == NULL)
11269 break;
cd02d79d
PA
11270 child_origin_die = follow_die_ref (child_origin_die, attr,
11271 &child_origin_cu);
c38f313d
DJ
11272 }
11273
d389af10
JK
11274 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11275 counterpart may exist. */
c38f313d 11276 if (child_origin_die != child_die)
d389af10 11277 {
edb3359d
DJ
11278 if (child_die->tag != child_origin_die->tag
11279 && !(child_die->tag == DW_TAG_inlined_subroutine
11280 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11281 complaint (&symfile_complaints,
11282 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11283 "different tags"), child_die->offset.sect_off,
11284 child_origin_die->offset.sect_off);
c38f313d
DJ
11285 if (child_origin_die->parent != origin_die)
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11288 "different parents"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
c38f313d
DJ
11290 else
11291 *offsets_end++ = child_origin_die->offset;
d389af10 11292 }
d389af10
JK
11293 }
11294 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11295 unsigned_int_compar);
11296 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11297 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11298 complaint (&symfile_complaints,
11299 _("Multiple children of DIE 0x%x refer "
11300 "to DIE 0x%x as their abstract origin"),
b64f50a1 11301 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11302
11303 offsetp = offsets;
11304 origin_child_die = origin_die->child;
11305 while (origin_child_die && origin_child_die->tag)
11306 {
11307 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11308 while (offsetp < offsets_end
11309 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11310 offsetp++;
b64f50a1
JK
11311 if (offsetp >= offsets_end
11312 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11313 {
adde2bff
DE
11314 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11315 Check whether we're already processing ORIGIN_CHILD_DIE.
11316 This can happen with mutually referenced abstract_origins.
11317 PR 16581. */
11318 if (!origin_child_die->in_process)
11319 process_die (origin_child_die, origin_cu);
d389af10
JK
11320 }
11321 origin_child_die = sibling_die (origin_child_die);
11322 }
cd02d79d 11323 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11324
11325 do_cleanups (cleanups);
11326}
11327
c906108c 11328static void
e7c27a73 11329read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11330{
e7c27a73 11331 struct objfile *objfile = cu->objfile;
3e29f34a 11332 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11333 struct context_stack *newobj;
c906108c
SS
11334 CORE_ADDR lowpc;
11335 CORE_ADDR highpc;
11336 struct die_info *child_die;
edb3359d 11337 struct attribute *attr, *call_line, *call_file;
15d034d0 11338 const char *name;
e142c38c 11339 CORE_ADDR baseaddr;
801e3a5b 11340 struct block *block;
edb3359d 11341 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11342 VEC (symbolp) *template_args = NULL;
11343 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11344
11345 if (inlined_func)
11346 {
11347 /* If we do not have call site information, we can't show the
11348 caller of this inlined function. That's too confusing, so
11349 only use the scope for local variables. */
11350 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11351 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11352 if (call_line == NULL || call_file == NULL)
11353 {
11354 read_lexical_block_scope (die, cu);
11355 return;
11356 }
11357 }
c906108c 11358
e142c38c
DJ
11359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11360
94af9270 11361 name = dwarf2_name (die, cu);
c906108c 11362
e8d05480
JB
11363 /* Ignore functions with missing or empty names. These are actually
11364 illegal according to the DWARF standard. */
11365 if (name == NULL)
11366 {
11367 complaint (&symfile_complaints,
b64f50a1
JK
11368 _("missing name for subprogram DIE at %d"),
11369 die->offset.sect_off);
e8d05480
JB
11370 return;
11371 }
11372
11373 /* Ignore functions with missing or invalid low and high pc attributes. */
11374 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11375 {
ae4d0c03
PM
11376 attr = dwarf2_attr (die, DW_AT_external, cu);
11377 if (!attr || !DW_UNSND (attr))
11378 complaint (&symfile_complaints,
3e43a32a
MS
11379 _("cannot get low and high bounds "
11380 "for subprogram DIE at %d"),
b64f50a1 11381 die->offset.sect_off);
e8d05480
JB
11382 return;
11383 }
c906108c 11384
3e29f34a
MR
11385 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11386 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11387
34eaf542
TT
11388 /* If we have any template arguments, then we must allocate a
11389 different sort of symbol. */
11390 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11391 {
11392 if (child_die->tag == DW_TAG_template_type_param
11393 || child_die->tag == DW_TAG_template_value_param)
11394 {
e623cf5d 11395 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11396 templ_func->base.is_cplus_template_function = 1;
11397 break;
11398 }
11399 }
11400
fe978cb0
PA
11401 newobj = push_context (0, lowpc);
11402 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11403 (struct symbol *) templ_func);
4c2df51b 11404
4cecd739
DJ
11405 /* If there is a location expression for DW_AT_frame_base, record
11406 it. */
e142c38c 11407 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11408 if (attr)
fe978cb0 11409 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11410
63e43d3a
PMR
11411 /* If there is a location for the static link, record it. */
11412 newobj->static_link = NULL;
11413 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11414 if (attr)
11415 {
224c3ddb
SM
11416 newobj->static_link
11417 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11418 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11419 }
11420
e142c38c 11421 cu->list_in_scope = &local_symbols;
c906108c 11422
639d11d3 11423 if (die->child != NULL)
c906108c 11424 {
639d11d3 11425 child_die = die->child;
c906108c
SS
11426 while (child_die && child_die->tag)
11427 {
34eaf542
TT
11428 if (child_die->tag == DW_TAG_template_type_param
11429 || child_die->tag == DW_TAG_template_value_param)
11430 {
11431 struct symbol *arg = new_symbol (child_die, NULL, cu);
11432
f1078f66
DJ
11433 if (arg != NULL)
11434 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11435 }
11436 else
11437 process_die (child_die, cu);
c906108c
SS
11438 child_die = sibling_die (child_die);
11439 }
11440 }
11441
d389af10
JK
11442 inherit_abstract_dies (die, cu);
11443
4a811a97
UW
11444 /* If we have a DW_AT_specification, we might need to import using
11445 directives from the context of the specification DIE. See the
11446 comment in determine_prefix. */
11447 if (cu->language == language_cplus
11448 && dwarf2_attr (die, DW_AT_specification, cu))
11449 {
11450 struct dwarf2_cu *spec_cu = cu;
11451 struct die_info *spec_die = die_specification (die, &spec_cu);
11452
11453 while (spec_die)
11454 {
11455 child_die = spec_die->child;
11456 while (child_die && child_die->tag)
11457 {
11458 if (child_die->tag == DW_TAG_imported_module)
11459 process_die (child_die, spec_cu);
11460 child_die = sibling_die (child_die);
11461 }
11462
11463 /* In some cases, GCC generates specification DIEs that
11464 themselves contain DW_AT_specification attributes. */
11465 spec_die = die_specification (spec_die, &spec_cu);
11466 }
11467 }
11468
fe978cb0 11469 newobj = pop_context ();
c906108c 11470 /* Make a block for the local symbols within. */
fe978cb0 11471 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11472 newobj->static_link, lowpc, highpc);
801e3a5b 11473
df8a16a1 11474 /* For C++, set the block's scope. */
45280282
IB
11475 if ((cu->language == language_cplus
11476 || cu->language == language_fortran
11477 || cu->language == language_d)
4d4ec4e5 11478 && cu->processing_has_namespace_info)
195a3f6c
TT
11479 block_set_scope (block, determine_prefix (die, cu),
11480 &objfile->objfile_obstack);
df8a16a1 11481
801e3a5b
JB
11482 /* If we have address ranges, record them. */
11483 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11484
fe978cb0 11485 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11486
34eaf542
TT
11487 /* Attach template arguments to function. */
11488 if (! VEC_empty (symbolp, template_args))
11489 {
11490 gdb_assert (templ_func != NULL);
11491
11492 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11493 templ_func->template_arguments
8d749320
SM
11494 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11495 templ_func->n_template_arguments);
34eaf542
TT
11496 memcpy (templ_func->template_arguments,
11497 VEC_address (symbolp, template_args),
11498 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11499 VEC_free (symbolp, template_args);
11500 }
11501
208d8187
JB
11502 /* In C++, we can have functions nested inside functions (e.g., when
11503 a function declares a class that has methods). This means that
11504 when we finish processing a function scope, we may need to go
11505 back to building a containing block's symbol lists. */
fe978cb0 11506 local_symbols = newobj->locals;
22cee43f 11507 local_using_directives = newobj->local_using_directives;
208d8187 11508
921e78cf
JB
11509 /* If we've finished processing a top-level function, subsequent
11510 symbols go in the file symbol list. */
11511 if (outermost_context_p ())
e142c38c 11512 cu->list_in_scope = &file_symbols;
c906108c
SS
11513}
11514
11515/* Process all the DIES contained within a lexical block scope. Start
11516 a new scope, process the dies, and then close the scope. */
11517
11518static void
e7c27a73 11519read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11520{
e7c27a73 11521 struct objfile *objfile = cu->objfile;
3e29f34a 11522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11523 struct context_stack *newobj;
c906108c
SS
11524 CORE_ADDR lowpc, highpc;
11525 struct die_info *child_die;
e142c38c
DJ
11526 CORE_ADDR baseaddr;
11527
11528 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11529
11530 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11531 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11532 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11533 be nasty. Might be easier to properly extend generic blocks to
af34e669 11534 describe ranges. */
d85a05f0 11535 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11536 return;
3e29f34a
MR
11537 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11538 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11539
11540 push_context (0, lowpc);
639d11d3 11541 if (die->child != NULL)
c906108c 11542 {
639d11d3 11543 child_die = die->child;
c906108c
SS
11544 while (child_die && child_die->tag)
11545 {
e7c27a73 11546 process_die (child_die, cu);
c906108c
SS
11547 child_die = sibling_die (child_die);
11548 }
11549 }
3ea89b92 11550 inherit_abstract_dies (die, cu);
fe978cb0 11551 newobj = pop_context ();
c906108c 11552
22cee43f 11553 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11554 {
801e3a5b 11555 struct block *block
63e43d3a 11556 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11557 newobj->start_addr, highpc);
801e3a5b
JB
11558
11559 /* Note that recording ranges after traversing children, as we
11560 do here, means that recording a parent's ranges entails
11561 walking across all its children's ranges as they appear in
11562 the address map, which is quadratic behavior.
11563
11564 It would be nicer to record the parent's ranges before
11565 traversing its children, simply overriding whatever you find
11566 there. But since we don't even decide whether to create a
11567 block until after we've traversed its children, that's hard
11568 to do. */
11569 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11570 }
fe978cb0 11571 local_symbols = newobj->locals;
22cee43f 11572 local_using_directives = newobj->local_using_directives;
c906108c
SS
11573}
11574
96408a79
SA
11575/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11576
11577static void
11578read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11579{
11580 struct objfile *objfile = cu->objfile;
11581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11582 CORE_ADDR pc, baseaddr;
11583 struct attribute *attr;
11584 struct call_site *call_site, call_site_local;
11585 void **slot;
11586 int nparams;
11587 struct die_info *child_die;
11588
11589 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11590
11591 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11592 if (!attr)
11593 {
11594 complaint (&symfile_complaints,
11595 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11596 "DIE 0x%x [in module %s]"),
4262abfb 11597 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11598 return;
11599 }
31aa7e4e 11600 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11601 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11602
11603 if (cu->call_site_htab == NULL)
11604 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11605 NULL, &objfile->objfile_obstack,
11606 hashtab_obstack_allocate, NULL);
11607 call_site_local.pc = pc;
11608 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11609 if (*slot != NULL)
11610 {
11611 complaint (&symfile_complaints,
11612 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11613 "DIE 0x%x [in module %s]"),
4262abfb
JK
11614 paddress (gdbarch, pc), die->offset.sect_off,
11615 objfile_name (objfile));
96408a79
SA
11616 return;
11617 }
11618
11619 /* Count parameters at the caller. */
11620
11621 nparams = 0;
11622 for (child_die = die->child; child_die && child_die->tag;
11623 child_die = sibling_die (child_die))
11624 {
11625 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11626 {
11627 complaint (&symfile_complaints,
11628 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11629 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11630 child_die->tag, child_die->offset.sect_off,
11631 objfile_name (objfile));
96408a79
SA
11632 continue;
11633 }
11634
11635 nparams++;
11636 }
11637
224c3ddb
SM
11638 call_site
11639 = ((struct call_site *)
11640 obstack_alloc (&objfile->objfile_obstack,
11641 sizeof (*call_site)
11642 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11643 *slot = call_site;
11644 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11645 call_site->pc = pc;
11646
11647 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11648 {
11649 struct die_info *func_die;
11650
11651 /* Skip also over DW_TAG_inlined_subroutine. */
11652 for (func_die = die->parent;
11653 func_die && func_die->tag != DW_TAG_subprogram
11654 && func_die->tag != DW_TAG_subroutine_type;
11655 func_die = func_die->parent);
11656
11657 /* DW_AT_GNU_all_call_sites is a superset
11658 of DW_AT_GNU_all_tail_call_sites. */
11659 if (func_die
11660 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11661 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11662 {
11663 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11664 not complete. But keep CALL_SITE for look ups via call_site_htab,
11665 both the initial caller containing the real return address PC and
11666 the final callee containing the current PC of a chain of tail
11667 calls do not need to have the tail call list complete. But any
11668 function candidate for a virtual tail call frame searched via
11669 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11670 determined unambiguously. */
11671 }
11672 else
11673 {
11674 struct type *func_type = NULL;
11675
11676 if (func_die)
11677 func_type = get_die_type (func_die, cu);
11678 if (func_type != NULL)
11679 {
11680 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11681
11682 /* Enlist this call site to the function. */
11683 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11684 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11685 }
11686 else
11687 complaint (&symfile_complaints,
11688 _("Cannot find function owning DW_TAG_GNU_call_site "
11689 "DIE 0x%x [in module %s]"),
4262abfb 11690 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11691 }
11692 }
11693
11694 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11695 if (attr == NULL)
11696 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11697 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11698 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11699 /* Keep NULL DWARF_BLOCK. */;
11700 else if (attr_form_is_block (attr))
11701 {
11702 struct dwarf2_locexpr_baton *dlbaton;
11703
8d749320 11704 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11705 dlbaton->data = DW_BLOCK (attr)->data;
11706 dlbaton->size = DW_BLOCK (attr)->size;
11707 dlbaton->per_cu = cu->per_cu;
11708
11709 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11710 }
7771576e 11711 else if (attr_form_is_ref (attr))
96408a79 11712 {
96408a79
SA
11713 struct dwarf2_cu *target_cu = cu;
11714 struct die_info *target_die;
11715
ac9ec31b 11716 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11717 gdb_assert (target_cu->objfile == objfile);
11718 if (die_is_declaration (target_die, target_cu))
11719 {
7d45c7c3 11720 const char *target_physname;
9112db09
JK
11721
11722 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11723 target_physname = dwarf2_string_attr (target_die,
11724 DW_AT_linkage_name,
11725 target_cu);
11726 if (target_physname == NULL)
11727 target_physname = dwarf2_string_attr (target_die,
11728 DW_AT_MIPS_linkage_name,
11729 target_cu);
11730 if (target_physname == NULL)
9112db09 11731 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11732 if (target_physname == NULL)
11733 complaint (&symfile_complaints,
11734 _("DW_AT_GNU_call_site_target target DIE has invalid "
11735 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11736 die->offset.sect_off, objfile_name (objfile));
96408a79 11737 else
7d455152 11738 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11739 }
11740 else
11741 {
11742 CORE_ADDR lowpc;
11743
11744 /* DW_AT_entry_pc should be preferred. */
11745 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11746 complaint (&symfile_complaints,
11747 _("DW_AT_GNU_call_site_target target DIE has invalid "
11748 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11749 die->offset.sect_off, objfile_name (objfile));
96408a79 11750 else
3e29f34a
MR
11751 {
11752 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11753 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11754 }
96408a79
SA
11755 }
11756 }
11757 else
11758 complaint (&symfile_complaints,
11759 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11760 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11761 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11762
11763 call_site->per_cu = cu->per_cu;
11764
11765 for (child_die = die->child;
11766 child_die && child_die->tag;
11767 child_die = sibling_die (child_die))
11768 {
96408a79 11769 struct call_site_parameter *parameter;
1788b2d3 11770 struct attribute *loc, *origin;
96408a79
SA
11771
11772 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11773 {
11774 /* Already printed the complaint above. */
11775 continue;
11776 }
11777
11778 gdb_assert (call_site->parameter_count < nparams);
11779 parameter = &call_site->parameter[call_site->parameter_count];
11780
1788b2d3
JK
11781 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11782 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11783 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11784
24c5c679 11785 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11786 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11787 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11788 {
11789 sect_offset offset;
11790
11791 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11792 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11793 if (!offset_in_cu_p (&cu->header, offset))
11794 {
11795 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11796 binding can be done only inside one CU. Such referenced DIE
11797 therefore cannot be even moved to DW_TAG_partial_unit. */
11798 complaint (&symfile_complaints,
11799 _("DW_AT_abstract_origin offset is not in CU for "
11800 "DW_TAG_GNU_call_site child DIE 0x%x "
11801 "[in module %s]"),
4262abfb 11802 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11803 continue;
11804 }
1788b2d3
JK
11805 parameter->u.param_offset.cu_off = (offset.sect_off
11806 - cu->header.offset.sect_off);
11807 }
11808 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11809 {
11810 complaint (&symfile_complaints,
11811 _("No DW_FORM_block* DW_AT_location for "
11812 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11813 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11814 continue;
11815 }
24c5c679 11816 else
96408a79 11817 {
24c5c679
JK
11818 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11819 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11820 if (parameter->u.dwarf_reg != -1)
11821 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11822 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11823 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11824 &parameter->u.fb_offset))
11825 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11826 else
11827 {
11828 complaint (&symfile_complaints,
11829 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11830 "for DW_FORM_block* DW_AT_location is supported for "
11831 "DW_TAG_GNU_call_site child DIE 0x%x "
11832 "[in module %s]"),
4262abfb 11833 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11834 continue;
11835 }
96408a79
SA
11836 }
11837
11838 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11839 if (!attr_form_is_block (attr))
11840 {
11841 complaint (&symfile_complaints,
11842 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11843 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11844 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11845 continue;
11846 }
11847 parameter->value = DW_BLOCK (attr)->data;
11848 parameter->value_size = DW_BLOCK (attr)->size;
11849
11850 /* Parameters are not pre-cleared by memset above. */
11851 parameter->data_value = NULL;
11852 parameter->data_value_size = 0;
11853 call_site->parameter_count++;
11854
11855 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11856 if (attr)
11857 {
11858 if (!attr_form_is_block (attr))
11859 complaint (&symfile_complaints,
11860 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11861 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11862 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11863 else
11864 {
11865 parameter->data_value = DW_BLOCK (attr)->data;
11866 parameter->data_value_size = DW_BLOCK (attr)->size;
11867 }
11868 }
11869 }
11870}
11871
43039443 11872/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11873 Return 1 if the attributes are present and valid, otherwise, return 0.
11874 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11875
11876static int
11877dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11878 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11879 struct partial_symtab *ranges_pst)
43039443
JK
11880{
11881 struct objfile *objfile = cu->objfile;
3e29f34a 11882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11883 struct comp_unit_head *cu_header = &cu->header;
11884 bfd *obfd = objfile->obfd;
11885 unsigned int addr_size = cu_header->addr_size;
11886 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11887 /* Base address selection entry. */
11888 CORE_ADDR base;
11889 int found_base;
11890 unsigned int dummy;
d521ce57 11891 const gdb_byte *buffer;
43039443
JK
11892 CORE_ADDR marker;
11893 int low_set;
11894 CORE_ADDR low = 0;
11895 CORE_ADDR high = 0;
ff013f42 11896 CORE_ADDR baseaddr;
43039443 11897
d00adf39
DE
11898 found_base = cu->base_known;
11899 base = cu->base_address;
43039443 11900
be391dca 11901 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11902 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11903 {
11904 complaint (&symfile_complaints,
11905 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11906 offset);
11907 return 0;
11908 }
dce234bc 11909 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11910
11911 /* Read in the largest possible address. */
11912 marker = read_address (obfd, buffer, cu, &dummy);
11913 if ((marker & mask) == mask)
11914 {
11915 /* If we found the largest possible address, then
11916 read the base address. */
11917 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11918 buffer += 2 * addr_size;
11919 offset += 2 * addr_size;
11920 found_base = 1;
11921 }
11922
11923 low_set = 0;
11924
e7030f15 11925 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11926
43039443
JK
11927 while (1)
11928 {
11929 CORE_ADDR range_beginning, range_end;
11930
11931 range_beginning = read_address (obfd, buffer, cu, &dummy);
11932 buffer += addr_size;
11933 range_end = read_address (obfd, buffer, cu, &dummy);
11934 buffer += addr_size;
11935 offset += 2 * addr_size;
11936
11937 /* An end of list marker is a pair of zero addresses. */
11938 if (range_beginning == 0 && range_end == 0)
11939 /* Found the end of list entry. */
11940 break;
11941
11942 /* Each base address selection entry is a pair of 2 values.
11943 The first is the largest possible address, the second is
11944 the base address. Check for a base address here. */
11945 if ((range_beginning & mask) == mask)
11946 {
11947 /* If we found the largest possible address, then
11948 read the base address. */
11949 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11950 found_base = 1;
11951 continue;
11952 }
11953
11954 if (!found_base)
11955 {
11956 /* We have no valid base address for the ranges
11957 data. */
11958 complaint (&symfile_complaints,
11959 _("Invalid .debug_ranges data (no base address)"));
11960 return 0;
11961 }
11962
9277c30c
UW
11963 if (range_beginning > range_end)
11964 {
11965 /* Inverted range entries are invalid. */
11966 complaint (&symfile_complaints,
11967 _("Invalid .debug_ranges data (inverted range)"));
11968 return 0;
11969 }
11970
11971 /* Empty range entries have no effect. */
11972 if (range_beginning == range_end)
11973 continue;
11974
43039443
JK
11975 range_beginning += base;
11976 range_end += base;
11977
01093045
DE
11978 /* A not-uncommon case of bad debug info.
11979 Don't pollute the addrmap with bad data. */
11980 if (range_beginning + baseaddr == 0
11981 && !dwarf2_per_objfile->has_section_at_zero)
11982 {
11983 complaint (&symfile_complaints,
11984 _(".debug_ranges entry has start address of zero"
4262abfb 11985 " [in module %s]"), objfile_name (objfile));
01093045
DE
11986 continue;
11987 }
11988
9277c30c 11989 if (ranges_pst != NULL)
3e29f34a
MR
11990 {
11991 CORE_ADDR lowpc;
11992 CORE_ADDR highpc;
11993
11994 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11995 range_beginning + baseaddr);
11996 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11997 range_end + baseaddr);
11998 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11999 ranges_pst);
12000 }
ff013f42 12001
43039443
JK
12002 /* FIXME: This is recording everything as a low-high
12003 segment of consecutive addresses. We should have a
12004 data structure for discontiguous block ranges
12005 instead. */
12006 if (! low_set)
12007 {
12008 low = range_beginning;
12009 high = range_end;
12010 low_set = 1;
12011 }
12012 else
12013 {
12014 if (range_beginning < low)
12015 low = range_beginning;
12016 if (range_end > high)
12017 high = range_end;
12018 }
12019 }
12020
12021 if (! low_set)
12022 /* If the first entry is an end-of-list marker, the range
12023 describes an empty scope, i.e. no instructions. */
12024 return 0;
12025
12026 if (low_return)
12027 *low_return = low;
12028 if (high_return)
12029 *high_return = high;
12030 return 1;
12031}
12032
af34e669
DJ
12033/* Get low and high pc attributes from a die. Return 1 if the attributes
12034 are present and valid, otherwise, return 0. Return -1 if the range is
12035 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12036
c906108c 12037static int
af34e669 12038dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12039 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12040 struct partial_symtab *pst)
c906108c
SS
12041{
12042 struct attribute *attr;
91da1414 12043 struct attribute *attr_high;
af34e669
DJ
12044 CORE_ADDR low = 0;
12045 CORE_ADDR high = 0;
12046 int ret = 0;
c906108c 12047
91da1414
MW
12048 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12049 if (attr_high)
af34e669 12050 {
e142c38c 12051 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12052 if (attr)
91da1414 12053 {
31aa7e4e
JB
12054 low = attr_value_as_address (attr);
12055 high = attr_value_as_address (attr_high);
12056 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12057 high += low;
91da1414 12058 }
af34e669
DJ
12059 else
12060 /* Found high w/o low attribute. */
12061 return 0;
12062
12063 /* Found consecutive range of addresses. */
12064 ret = 1;
12065 }
c906108c 12066 else
af34e669 12067 {
e142c38c 12068 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12069 if (attr != NULL)
12070 {
ab435259
DE
12071 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12072 We take advantage of the fact that DW_AT_ranges does not appear
12073 in DW_TAG_compile_unit of DWO files. */
12074 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12075 unsigned int ranges_offset = (DW_UNSND (attr)
12076 + (need_ranges_base
12077 ? cu->ranges_base
12078 : 0));
2e3cf129 12079
af34e669 12080 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12081 .debug_ranges section. */
2e3cf129 12082 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12083 return 0;
43039443 12084 /* Found discontinuous range of addresses. */
af34e669
DJ
12085 ret = -1;
12086 }
12087 }
c906108c 12088
9373cf26
JK
12089 /* read_partial_die has also the strict LOW < HIGH requirement. */
12090 if (high <= low)
c906108c
SS
12091 return 0;
12092
12093 /* When using the GNU linker, .gnu.linkonce. sections are used to
12094 eliminate duplicate copies of functions and vtables and such.
12095 The linker will arbitrarily choose one and discard the others.
12096 The AT_*_pc values for such functions refer to local labels in
12097 these sections. If the section from that file was discarded, the
12098 labels are not in the output, so the relocs get a value of 0.
12099 If this is a discarded function, mark the pc bounds as invalid,
12100 so that GDB will ignore it. */
72dca2f5 12101 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12102 return 0;
12103
12104 *lowpc = low;
96408a79
SA
12105 if (highpc)
12106 *highpc = high;
af34e669 12107 return ret;
c906108c
SS
12108}
12109
b084d499
JB
12110/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12111 its low and high PC addresses. Do nothing if these addresses could not
12112 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12113 and HIGHPC to the high address if greater than HIGHPC. */
12114
12115static void
12116dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12118 struct dwarf2_cu *cu)
12119{
12120 CORE_ADDR low, high;
12121 struct die_info *child = die->child;
12122
d85a05f0 12123 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12124 {
12125 *lowpc = min (*lowpc, low);
12126 *highpc = max (*highpc, high);
12127 }
12128
12129 /* If the language does not allow nested subprograms (either inside
12130 subprograms or lexical blocks), we're done. */
12131 if (cu->language != language_ada)
12132 return;
6e70227d 12133
b084d499
JB
12134 /* Check all the children of the given DIE. If it contains nested
12135 subprograms, then check their pc bounds. Likewise, we need to
12136 check lexical blocks as well, as they may also contain subprogram
12137 definitions. */
12138 while (child && child->tag)
12139 {
12140 if (child->tag == DW_TAG_subprogram
12141 || child->tag == DW_TAG_lexical_block)
12142 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12143 child = sibling_die (child);
12144 }
12145}
12146
fae299cd
DC
12147/* Get the low and high pc's represented by the scope DIE, and store
12148 them in *LOWPC and *HIGHPC. If the correct values can't be
12149 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12150
12151static void
12152get_scope_pc_bounds (struct die_info *die,
12153 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12154 struct dwarf2_cu *cu)
12155{
12156 CORE_ADDR best_low = (CORE_ADDR) -1;
12157 CORE_ADDR best_high = (CORE_ADDR) 0;
12158 CORE_ADDR current_low, current_high;
12159
d85a05f0 12160 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12161 {
12162 best_low = current_low;
12163 best_high = current_high;
12164 }
12165 else
12166 {
12167 struct die_info *child = die->child;
12168
12169 while (child && child->tag)
12170 {
12171 switch (child->tag) {
12172 case DW_TAG_subprogram:
b084d499 12173 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12174 break;
12175 case DW_TAG_namespace:
f55ee35c 12176 case DW_TAG_module:
fae299cd
DC
12177 /* FIXME: carlton/2004-01-16: Should we do this for
12178 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12179 that current GCC's always emit the DIEs corresponding
12180 to definitions of methods of classes as children of a
12181 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12182 the DIEs giving the declarations, which could be
12183 anywhere). But I don't see any reason why the
12184 standards says that they have to be there. */
12185 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12186
12187 if (current_low != ((CORE_ADDR) -1))
12188 {
12189 best_low = min (best_low, current_low);
12190 best_high = max (best_high, current_high);
12191 }
12192 break;
12193 default:
0963b4bd 12194 /* Ignore. */
fae299cd
DC
12195 break;
12196 }
12197
12198 child = sibling_die (child);
12199 }
12200 }
12201
12202 *lowpc = best_low;
12203 *highpc = best_high;
12204}
12205
801e3a5b
JB
12206/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12207 in DIE. */
380bca97 12208
801e3a5b
JB
12209static void
12210dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12211 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12212{
bb5ed363 12213 struct objfile *objfile = cu->objfile;
3e29f34a 12214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12215 struct attribute *attr;
91da1414 12216 struct attribute *attr_high;
801e3a5b 12217
91da1414
MW
12218 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12219 if (attr_high)
801e3a5b 12220 {
801e3a5b
JB
12221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12222 if (attr)
12223 {
31aa7e4e
JB
12224 CORE_ADDR low = attr_value_as_address (attr);
12225 CORE_ADDR high = attr_value_as_address (attr_high);
12226
12227 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12228 high += low;
9a619af0 12229
3e29f34a
MR
12230 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12231 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12232 record_block_range (block, low, high - 1);
801e3a5b
JB
12233 }
12234 }
12235
12236 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12237 if (attr)
12238 {
bb5ed363 12239 bfd *obfd = objfile->obfd;
ab435259
DE
12240 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12241 We take advantage of the fact that DW_AT_ranges does not appear
12242 in DW_TAG_compile_unit of DWO files. */
12243 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12244
12245 /* The value of the DW_AT_ranges attribute is the offset of the
12246 address range list in the .debug_ranges section. */
ab435259
DE
12247 unsigned long offset = (DW_UNSND (attr)
12248 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12249 const gdb_byte *buffer;
801e3a5b
JB
12250
12251 /* For some target architectures, but not others, the
12252 read_address function sign-extends the addresses it returns.
12253 To recognize base address selection entries, we need a
12254 mask. */
12255 unsigned int addr_size = cu->header.addr_size;
12256 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12257
12258 /* The base address, to which the next pair is relative. Note
12259 that this 'base' is a DWARF concept: most entries in a range
12260 list are relative, to reduce the number of relocs against the
12261 debugging information. This is separate from this function's
12262 'baseaddr' argument, which GDB uses to relocate debugging
12263 information from a shared library based on the address at
12264 which the library was loaded. */
d00adf39
DE
12265 CORE_ADDR base = cu->base_address;
12266 int base_known = cu->base_known;
801e3a5b 12267
d62bfeaf 12268 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12269 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12270 {
12271 complaint (&symfile_complaints,
12272 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12273 offset);
12274 return;
12275 }
d62bfeaf 12276 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12277
12278 for (;;)
12279 {
12280 unsigned int bytes_read;
12281 CORE_ADDR start, end;
12282
12283 start = read_address (obfd, buffer, cu, &bytes_read);
12284 buffer += bytes_read;
12285 end = read_address (obfd, buffer, cu, &bytes_read);
12286 buffer += bytes_read;
12287
12288 /* Did we find the end of the range list? */
12289 if (start == 0 && end == 0)
12290 break;
12291
12292 /* Did we find a base address selection entry? */
12293 else if ((start & base_select_mask) == base_select_mask)
12294 {
12295 base = end;
12296 base_known = 1;
12297 }
12298
12299 /* We found an ordinary address range. */
12300 else
12301 {
12302 if (!base_known)
12303 {
12304 complaint (&symfile_complaints,
3e43a32a
MS
12305 _("Invalid .debug_ranges data "
12306 "(no base address)"));
801e3a5b
JB
12307 return;
12308 }
12309
9277c30c
UW
12310 if (start > end)
12311 {
12312 /* Inverted range entries are invalid. */
12313 complaint (&symfile_complaints,
12314 _("Invalid .debug_ranges data "
12315 "(inverted range)"));
12316 return;
12317 }
12318
12319 /* Empty range entries have no effect. */
12320 if (start == end)
12321 continue;
12322
01093045
DE
12323 start += base + baseaddr;
12324 end += base + baseaddr;
12325
12326 /* A not-uncommon case of bad debug info.
12327 Don't pollute the addrmap with bad data. */
12328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12329 {
12330 complaint (&symfile_complaints,
12331 _(".debug_ranges entry has start address of zero"
4262abfb 12332 " [in module %s]"), objfile_name (objfile));
01093045
DE
12333 continue;
12334 }
12335
3e29f34a
MR
12336 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12337 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12338 record_block_range (block, start, end - 1);
801e3a5b
JB
12339 }
12340 }
12341 }
12342}
12343
685b1105
JK
12344/* Check whether the producer field indicates either of GCC < 4.6, or the
12345 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12346
685b1105
JK
12347static void
12348check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12349{
12350 const char *cs;
38360086 12351 int major, minor;
60d5a603
JK
12352
12353 if (cu->producer == NULL)
12354 {
12355 /* For unknown compilers expect their behavior is DWARF version
12356 compliant.
12357
12358 GCC started to support .debug_types sections by -gdwarf-4 since
12359 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12360 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12361 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12362 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12363 }
b1ffba5a 12364 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12365 {
38360086
MW
12366 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12367 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12368 }
61012eef 12369 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12370 cu->producer_is_icc = 1;
12371 else
12372 {
12373 /* For other non-GCC compilers, expect their behavior is DWARF version
12374 compliant. */
60d5a603
JK
12375 }
12376
ba919b58 12377 cu->checked_producer = 1;
685b1105 12378}
ba919b58 12379
685b1105
JK
12380/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12381 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12382 during 4.6.0 experimental. */
12383
12384static int
12385producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12386{
12387 if (!cu->checked_producer)
12388 check_producer (cu);
12389
12390 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12391}
12392
12393/* Return the default accessibility type if it is not overriden by
12394 DW_AT_accessibility. */
12395
12396static enum dwarf_access_attribute
12397dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12398{
12399 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12400 {
12401 /* The default DWARF 2 accessibility for members is public, the default
12402 accessibility for inheritance is private. */
12403
12404 if (die->tag != DW_TAG_inheritance)
12405 return DW_ACCESS_public;
12406 else
12407 return DW_ACCESS_private;
12408 }
12409 else
12410 {
12411 /* DWARF 3+ defines the default accessibility a different way. The same
12412 rules apply now for DW_TAG_inheritance as for the members and it only
12413 depends on the container kind. */
12414
12415 if (die->parent->tag == DW_TAG_class_type)
12416 return DW_ACCESS_private;
12417 else
12418 return DW_ACCESS_public;
12419 }
12420}
12421
74ac6d43
TT
12422/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12423 offset. If the attribute was not found return 0, otherwise return
12424 1. If it was found but could not properly be handled, set *OFFSET
12425 to 0. */
12426
12427static int
12428handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12429 LONGEST *offset)
12430{
12431 struct attribute *attr;
12432
12433 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12434 if (attr != NULL)
12435 {
12436 *offset = 0;
12437
12438 /* Note that we do not check for a section offset first here.
12439 This is because DW_AT_data_member_location is new in DWARF 4,
12440 so if we see it, we can assume that a constant form is really
12441 a constant and not a section offset. */
12442 if (attr_form_is_constant (attr))
12443 *offset = dwarf2_get_attr_constant_value (attr, 0);
12444 else if (attr_form_is_section_offset (attr))
12445 dwarf2_complex_location_expr_complaint ();
12446 else if (attr_form_is_block (attr))
12447 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12448 else
12449 dwarf2_complex_location_expr_complaint ();
12450
12451 return 1;
12452 }
12453
12454 return 0;
12455}
12456
c906108c
SS
12457/* Add an aggregate field to the field list. */
12458
12459static void
107d2387 12460dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12461 struct dwarf2_cu *cu)
6e70227d 12462{
e7c27a73 12463 struct objfile *objfile = cu->objfile;
5e2b427d 12464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12465 struct nextfield *new_field;
12466 struct attribute *attr;
12467 struct field *fp;
15d034d0 12468 const char *fieldname = "";
c906108c
SS
12469
12470 /* Allocate a new field list entry and link it in. */
8d749320 12471 new_field = XNEW (struct nextfield);
b8c9b27d 12472 make_cleanup (xfree, new_field);
c906108c 12473 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12474
12475 if (die->tag == DW_TAG_inheritance)
12476 {
12477 new_field->next = fip->baseclasses;
12478 fip->baseclasses = new_field;
12479 }
12480 else
12481 {
12482 new_field->next = fip->fields;
12483 fip->fields = new_field;
12484 }
c906108c
SS
12485 fip->nfields++;
12486
e142c38c 12487 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12488 if (attr)
12489 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12490 else
12491 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12492 if (new_field->accessibility != DW_ACCESS_public)
12493 fip->non_public_fields = 1;
60d5a603 12494
e142c38c 12495 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12496 if (attr)
12497 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12498 else
12499 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12500
12501 fp = &new_field->field;
a9a9bd0f 12502
e142c38c 12503 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12504 {
74ac6d43
TT
12505 LONGEST offset;
12506
a9a9bd0f 12507 /* Data member other than a C++ static data member. */
6e70227d 12508
c906108c 12509 /* Get type of field. */
e7c27a73 12510 fp->type = die_type (die, cu);
c906108c 12511
d6a843b5 12512 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12513
c906108c 12514 /* Get bit size of field (zero if none). */
e142c38c 12515 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12516 if (attr)
12517 {
12518 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12519 }
12520 else
12521 {
12522 FIELD_BITSIZE (*fp) = 0;
12523 }
12524
12525 /* Get bit offset of field. */
74ac6d43
TT
12526 if (handle_data_member_location (die, cu, &offset))
12527 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12528 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12529 if (attr)
12530 {
5e2b427d 12531 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12532 {
12533 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12534 additional bit offset from the MSB of the containing
12535 anonymous object to the MSB of the field. We don't
12536 have to do anything special since we don't need to
12537 know the size of the anonymous object. */
f41f5e61 12538 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12539 }
12540 else
12541 {
12542 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12543 MSB of the anonymous object, subtract off the number of
12544 bits from the MSB of the field to the MSB of the
12545 object, and then subtract off the number of bits of
12546 the field itself. The result is the bit offset of
12547 the LSB of the field. */
c906108c
SS
12548 int anonymous_size;
12549 int bit_offset = DW_UNSND (attr);
12550
e142c38c 12551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12552 if (attr)
12553 {
12554 /* The size of the anonymous object containing
12555 the bit field is explicit, so use the
12556 indicated size (in bytes). */
12557 anonymous_size = DW_UNSND (attr);
12558 }
12559 else
12560 {
12561 /* The size of the anonymous object containing
12562 the bit field must be inferred from the type
12563 attribute of the data member containing the
12564 bit field. */
12565 anonymous_size = TYPE_LENGTH (fp->type);
12566 }
f41f5e61
PA
12567 SET_FIELD_BITPOS (*fp,
12568 (FIELD_BITPOS (*fp)
12569 + anonymous_size * bits_per_byte
12570 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12571 }
12572 }
12573
12574 /* Get name of field. */
39cbfefa
DJ
12575 fieldname = dwarf2_name (die, cu);
12576 if (fieldname == NULL)
12577 fieldname = "";
d8151005
DJ
12578
12579 /* The name is already allocated along with this objfile, so we don't
12580 need to duplicate it for the type. */
12581 fp->name = fieldname;
c906108c
SS
12582
12583 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12584 pointer or virtual base class pointer) to private. */
e142c38c 12585 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12586 {
d48cc9dd 12587 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12588 new_field->accessibility = DW_ACCESS_private;
12589 fip->non_public_fields = 1;
12590 }
12591 }
a9a9bd0f 12592 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12593 {
a9a9bd0f
DC
12594 /* C++ static member. */
12595
12596 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12597 is a declaration, but all versions of G++ as of this writing
12598 (so through at least 3.2.1) incorrectly generate
12599 DW_TAG_variable tags. */
6e70227d 12600
ff355380 12601 const char *physname;
c906108c 12602
a9a9bd0f 12603 /* Get name of field. */
39cbfefa
DJ
12604 fieldname = dwarf2_name (die, cu);
12605 if (fieldname == NULL)
c906108c
SS
12606 return;
12607
254e6b9e 12608 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12609 if (attr
12610 /* Only create a symbol if this is an external value.
12611 new_symbol checks this and puts the value in the global symbol
12612 table, which we want. If it is not external, new_symbol
12613 will try to put the value in cu->list_in_scope which is wrong. */
12614 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12615 {
12616 /* A static const member, not much different than an enum as far as
12617 we're concerned, except that we can support more types. */
12618 new_symbol (die, NULL, cu);
12619 }
12620
2df3850c 12621 /* Get physical name. */
ff355380 12622 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12623
d8151005
DJ
12624 /* The name is already allocated along with this objfile, so we don't
12625 need to duplicate it for the type. */
12626 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12627 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12628 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12629 }
12630 else if (die->tag == DW_TAG_inheritance)
12631 {
74ac6d43 12632 LONGEST offset;
d4b96c9a 12633
74ac6d43
TT
12634 /* C++ base class field. */
12635 if (handle_data_member_location (die, cu, &offset))
12636 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12637 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12638 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12639 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12640 fip->nbaseclasses++;
12641 }
12642}
12643
98751a41
JK
12644/* Add a typedef defined in the scope of the FIP's class. */
12645
12646static void
12647dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12648 struct dwarf2_cu *cu)
6e70227d 12649{
98751a41 12650 struct objfile *objfile = cu->objfile;
98751a41
JK
12651 struct typedef_field_list *new_field;
12652 struct attribute *attr;
12653 struct typedef_field *fp;
12654 char *fieldname = "";
12655
12656 /* Allocate a new field list entry and link it in. */
8d749320 12657 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12658 make_cleanup (xfree, new_field);
12659
12660 gdb_assert (die->tag == DW_TAG_typedef);
12661
12662 fp = &new_field->field;
12663
12664 /* Get name of field. */
12665 fp->name = dwarf2_name (die, cu);
12666 if (fp->name == NULL)
12667 return;
12668
12669 fp->type = read_type_die (die, cu);
12670
12671 new_field->next = fip->typedef_field_list;
12672 fip->typedef_field_list = new_field;
12673 fip->typedef_field_list_count++;
12674}
12675
c906108c
SS
12676/* Create the vector of fields, and attach it to the type. */
12677
12678static void
fba45db2 12679dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12680 struct dwarf2_cu *cu)
c906108c
SS
12681{
12682 int nfields = fip->nfields;
12683
12684 /* Record the field count, allocate space for the array of fields,
12685 and create blank accessibility bitfields if necessary. */
12686 TYPE_NFIELDS (type) = nfields;
12687 TYPE_FIELDS (type) = (struct field *)
12688 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12689 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12690
b4ba55a1 12691 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12692 {
12693 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12694
12695 TYPE_FIELD_PRIVATE_BITS (type) =
12696 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12697 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12698
12699 TYPE_FIELD_PROTECTED_BITS (type) =
12700 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12701 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12702
774b6a14
TT
12703 TYPE_FIELD_IGNORE_BITS (type) =
12704 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12705 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12706 }
12707
12708 /* If the type has baseclasses, allocate and clear a bit vector for
12709 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12710 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12711 {
12712 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12713 unsigned char *pointer;
c906108c
SS
12714
12715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12716 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12717 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12718 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12719 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12720 }
12721
3e43a32a
MS
12722 /* Copy the saved-up fields into the field vector. Start from the head of
12723 the list, adding to the tail of the field array, so that they end up in
12724 the same order in the array in which they were added to the list. */
c906108c
SS
12725 while (nfields-- > 0)
12726 {
7d0ccb61
DJ
12727 struct nextfield *fieldp;
12728
12729 if (fip->fields)
12730 {
12731 fieldp = fip->fields;
12732 fip->fields = fieldp->next;
12733 }
12734 else
12735 {
12736 fieldp = fip->baseclasses;
12737 fip->baseclasses = fieldp->next;
12738 }
12739
12740 TYPE_FIELD (type, nfields) = fieldp->field;
12741 switch (fieldp->accessibility)
c906108c 12742 {
c5aa993b 12743 case DW_ACCESS_private:
b4ba55a1
JB
12744 if (cu->language != language_ada)
12745 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12746 break;
c906108c 12747
c5aa993b 12748 case DW_ACCESS_protected:
b4ba55a1
JB
12749 if (cu->language != language_ada)
12750 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12751 break;
c906108c 12752
c5aa993b
JM
12753 case DW_ACCESS_public:
12754 break;
c906108c 12755
c5aa993b
JM
12756 default:
12757 /* Unknown accessibility. Complain and treat it as public. */
12758 {
e2e0b3e5 12759 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12760 fieldp->accessibility);
c5aa993b
JM
12761 }
12762 break;
c906108c
SS
12763 }
12764 if (nfields < fip->nbaseclasses)
12765 {
7d0ccb61 12766 switch (fieldp->virtuality)
c906108c 12767 {
c5aa993b
JM
12768 case DW_VIRTUALITY_virtual:
12769 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12770 if (cu->language == language_ada)
a73c6dcd 12771 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12772 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12773 break;
c906108c
SS
12774 }
12775 }
c906108c
SS
12776 }
12777}
12778
7d27a96d
TT
12779/* Return true if this member function is a constructor, false
12780 otherwise. */
12781
12782static int
12783dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12784{
12785 const char *fieldname;
fe978cb0 12786 const char *type_name;
7d27a96d
TT
12787 int len;
12788
12789 if (die->parent == NULL)
12790 return 0;
12791
12792 if (die->parent->tag != DW_TAG_structure_type
12793 && die->parent->tag != DW_TAG_union_type
12794 && die->parent->tag != DW_TAG_class_type)
12795 return 0;
12796
12797 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12798 type_name = dwarf2_name (die->parent, cu);
12799 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12800 return 0;
12801
12802 len = strlen (fieldname);
fe978cb0
PA
12803 return (strncmp (fieldname, type_name, len) == 0
12804 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12805}
12806
c906108c
SS
12807/* Add a member function to the proper fieldlist. */
12808
12809static void
107d2387 12810dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12811 struct type *type, struct dwarf2_cu *cu)
c906108c 12812{
e7c27a73 12813 struct objfile *objfile = cu->objfile;
c906108c
SS
12814 struct attribute *attr;
12815 struct fnfieldlist *flp;
12816 int i;
12817 struct fn_field *fnp;
15d034d0 12818 const char *fieldname;
c906108c 12819 struct nextfnfield *new_fnfield;
f792889a 12820 struct type *this_type;
60d5a603 12821 enum dwarf_access_attribute accessibility;
c906108c 12822
b4ba55a1 12823 if (cu->language == language_ada)
a73c6dcd 12824 error (_("unexpected member function in Ada type"));
b4ba55a1 12825
2df3850c 12826 /* Get name of member function. */
39cbfefa
DJ
12827 fieldname = dwarf2_name (die, cu);
12828 if (fieldname == NULL)
2df3850c 12829 return;
c906108c 12830
c906108c
SS
12831 /* Look up member function name in fieldlist. */
12832 for (i = 0; i < fip->nfnfields; i++)
12833 {
27bfe10e 12834 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12835 break;
12836 }
12837
12838 /* Create new list element if necessary. */
12839 if (i < fip->nfnfields)
12840 flp = &fip->fnfieldlists[i];
12841 else
12842 {
12843 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12844 {
12845 fip->fnfieldlists = (struct fnfieldlist *)
12846 xrealloc (fip->fnfieldlists,
12847 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12848 * sizeof (struct fnfieldlist));
c906108c 12849 if (fip->nfnfields == 0)
c13c43fd 12850 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12851 }
12852 flp = &fip->fnfieldlists[fip->nfnfields];
12853 flp->name = fieldname;
12854 flp->length = 0;
12855 flp->head = NULL;
3da10d80 12856 i = fip->nfnfields++;
c906108c
SS
12857 }
12858
12859 /* Create a new member function field and chain it to the field list
0963b4bd 12860 entry. */
8d749320 12861 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12862 make_cleanup (xfree, new_fnfield);
c906108c
SS
12863 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12864 new_fnfield->next = flp->head;
12865 flp->head = new_fnfield;
12866 flp->length++;
12867
12868 /* Fill in the member function field info. */
12869 fnp = &new_fnfield->fnfield;
3da10d80
KS
12870
12871 /* Delay processing of the physname until later. */
12872 if (cu->language == language_cplus || cu->language == language_java)
12873 {
12874 add_to_method_list (type, i, flp->length - 1, fieldname,
12875 die, cu);
12876 }
12877 else
12878 {
1d06ead6 12879 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12880 fnp->physname = physname ? physname : "";
12881 }
12882
c906108c 12883 fnp->type = alloc_type (objfile);
f792889a
DJ
12884 this_type = read_type_die (die, cu);
12885 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12886 {
f792889a 12887 int nparams = TYPE_NFIELDS (this_type);
c906108c 12888
f792889a 12889 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12890 of the method itself (TYPE_CODE_METHOD). */
12891 smash_to_method_type (fnp->type, type,
f792889a
DJ
12892 TYPE_TARGET_TYPE (this_type),
12893 TYPE_FIELDS (this_type),
12894 TYPE_NFIELDS (this_type),
12895 TYPE_VARARGS (this_type));
c906108c
SS
12896
12897 /* Handle static member functions.
c5aa993b 12898 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12899 member functions. G++ helps GDB by marking the first
12900 parameter for non-static member functions (which is the this
12901 pointer) as artificial. We obtain this information from
12902 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12903 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12904 fnp->voffset = VOFFSET_STATIC;
12905 }
12906 else
e2e0b3e5 12907 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12908 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12909
12910 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12911 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12912 fnp->fcontext = die_containing_type (die, cu);
c906108c 12913
3e43a32a
MS
12914 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12915 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12916
12917 /* Get accessibility. */
e142c38c 12918 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12919 if (attr)
aead7601 12920 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12921 else
12922 accessibility = dwarf2_default_access_attribute (die, cu);
12923 switch (accessibility)
c906108c 12924 {
60d5a603
JK
12925 case DW_ACCESS_private:
12926 fnp->is_private = 1;
12927 break;
12928 case DW_ACCESS_protected:
12929 fnp->is_protected = 1;
12930 break;
c906108c
SS
12931 }
12932
b02dede2 12933 /* Check for artificial methods. */
e142c38c 12934 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12935 if (attr && DW_UNSND (attr) != 0)
12936 fnp->is_artificial = 1;
12937
7d27a96d
TT
12938 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12939
0d564a31 12940 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12941 function. For older versions of GCC, this is an offset in the
12942 appropriate virtual table, as specified by DW_AT_containing_type.
12943 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12944 to the object address. */
12945
e142c38c 12946 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12947 if (attr)
8e19ed76 12948 {
aec5aa8b 12949 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12950 {
aec5aa8b
TT
12951 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12952 {
12953 /* Old-style GCC. */
12954 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12955 }
12956 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12957 || (DW_BLOCK (attr)->size > 1
12958 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12959 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12960 {
12961 struct dwarf_block blk;
12962 int offset;
12963
12964 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12965 ? 1 : 2);
12966 blk.size = DW_BLOCK (attr)->size - offset;
12967 blk.data = DW_BLOCK (attr)->data + offset;
12968 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12969 if ((fnp->voffset % cu->header.addr_size) != 0)
12970 dwarf2_complex_location_expr_complaint ();
12971 else
12972 fnp->voffset /= cu->header.addr_size;
12973 fnp->voffset += 2;
12974 }
12975 else
12976 dwarf2_complex_location_expr_complaint ();
12977
12978 if (!fnp->fcontext)
7e993ebf
KS
12979 {
12980 /* If there is no `this' field and no DW_AT_containing_type,
12981 we cannot actually find a base class context for the
12982 vtable! */
12983 if (TYPE_NFIELDS (this_type) == 0
12984 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12985 {
12986 complaint (&symfile_complaints,
12987 _("cannot determine context for virtual member "
12988 "function \"%s\" (offset %d)"),
12989 fieldname, die->offset.sect_off);
12990 }
12991 else
12992 {
12993 fnp->fcontext
12994 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12995 }
12996 }
aec5aa8b 12997 }
3690dd37 12998 else if (attr_form_is_section_offset (attr))
8e19ed76 12999 {
4d3c2250 13000 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13001 }
13002 else
13003 {
4d3c2250
KB
13004 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13005 fieldname);
8e19ed76 13006 }
0d564a31 13007 }
d48cc9dd
DJ
13008 else
13009 {
13010 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13011 if (attr && DW_UNSND (attr))
13012 {
13013 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13014 complaint (&symfile_complaints,
3e43a32a
MS
13015 _("Member function \"%s\" (offset %d) is virtual "
13016 "but the vtable offset is not specified"),
b64f50a1 13017 fieldname, die->offset.sect_off);
9655fd1a 13018 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13019 TYPE_CPLUS_DYNAMIC (type) = 1;
13020 }
13021 }
c906108c
SS
13022}
13023
13024/* Create the vector of member function fields, and attach it to the type. */
13025
13026static void
fba45db2 13027dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13028 struct dwarf2_cu *cu)
c906108c
SS
13029{
13030 struct fnfieldlist *flp;
c906108c
SS
13031 int i;
13032
b4ba55a1 13033 if (cu->language == language_ada)
a73c6dcd 13034 error (_("unexpected member functions in Ada type"));
b4ba55a1 13035
c906108c
SS
13036 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13037 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13038 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13039
13040 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13041 {
13042 struct nextfnfield *nfp = flp->head;
13043 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13044 int k;
13045
13046 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13047 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13048 fn_flp->fn_fields = (struct fn_field *)
13049 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13050 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13051 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13052 }
13053
13054 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13055}
13056
1168df01
JB
13057/* Returns non-zero if NAME is the name of a vtable member in CU's
13058 language, zero otherwise. */
13059static int
13060is_vtable_name (const char *name, struct dwarf2_cu *cu)
13061{
13062 static const char vptr[] = "_vptr";
987504bb 13063 static const char vtable[] = "vtable";
1168df01 13064
987504bb
JJ
13065 /* Look for the C++ and Java forms of the vtable. */
13066 if ((cu->language == language_java
61012eef
GB
13067 && startswith (name, vtable))
13068 || (startswith (name, vptr)
987504bb 13069 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13070 return 1;
13071
13072 return 0;
13073}
13074
c0dd20ea 13075/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13076 functions, with the ABI-specified layout. If TYPE describes
13077 such a structure, smash it into a member function type.
61049d3b
DJ
13078
13079 GCC shouldn't do this; it should just output pointer to member DIEs.
13080 This is GCC PR debug/28767. */
c0dd20ea 13081
0b92b5bb
TT
13082static void
13083quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13084{
09e2d7c7 13085 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13086
13087 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13088 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13089 return;
c0dd20ea
DJ
13090
13091 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13092 if (TYPE_FIELD_NAME (type, 0) == NULL
13093 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13094 || TYPE_FIELD_NAME (type, 1) == NULL
13095 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13096 return;
c0dd20ea
DJ
13097
13098 /* Find the type of the method. */
0b92b5bb 13099 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13100 if (pfn_type == NULL
13101 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13102 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13103 return;
c0dd20ea
DJ
13104
13105 /* Look for the "this" argument. */
13106 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13107 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13108 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13109 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13110 return;
c0dd20ea 13111
09e2d7c7 13112 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13113 new_type = alloc_type (objfile);
09e2d7c7 13114 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13115 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13116 TYPE_VARARGS (pfn_type));
0b92b5bb 13117 smash_to_methodptr_type (type, new_type);
c0dd20ea 13118}
1168df01 13119
685b1105
JK
13120/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13121 (icc). */
13122
13123static int
13124producer_is_icc (struct dwarf2_cu *cu)
13125{
13126 if (!cu->checked_producer)
13127 check_producer (cu);
13128
13129 return cu->producer_is_icc;
13130}
13131
c906108c 13132/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13133 (definition) to create a type for the structure or union. Fill in
13134 the type's name and general properties; the members will not be
83655187
DE
13135 processed until process_structure_scope. A symbol table entry for
13136 the type will also not be done until process_structure_scope (assuming
13137 the type has a name).
c906108c 13138
c767944b
DJ
13139 NOTE: we need to call these functions regardless of whether or not the
13140 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13141 structure or union. This gets the type entered into our set of
83655187 13142 user defined types. */
c906108c 13143
f792889a 13144static struct type *
134d01f1 13145read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13146{
e7c27a73 13147 struct objfile *objfile = cu->objfile;
c906108c
SS
13148 struct type *type;
13149 struct attribute *attr;
15d034d0 13150 const char *name;
c906108c 13151
348e048f
DE
13152 /* If the definition of this type lives in .debug_types, read that type.
13153 Don't follow DW_AT_specification though, that will take us back up
13154 the chain and we want to go down. */
45e58e77 13155 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13156 if (attr)
13157 {
ac9ec31b 13158 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13159
ac9ec31b 13160 /* The type's CU may not be the same as CU.
02142a6c 13161 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13162 return set_die_type (die, type, cu);
13163 }
13164
c0dd20ea 13165 type = alloc_type (objfile);
c906108c 13166 INIT_CPLUS_SPECIFIC (type);
93311388 13167
39cbfefa
DJ
13168 name = dwarf2_name (die, cu);
13169 if (name != NULL)
c906108c 13170 {
987504bb 13171 if (cu->language == language_cplus
45280282
IB
13172 || cu->language == language_java
13173 || cu->language == language_d)
63d06c5c 13174 {
15d034d0 13175 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13176
13177 /* dwarf2_full_name might have already finished building the DIE's
13178 type. If so, there is no need to continue. */
13179 if (get_die_type (die, cu) != NULL)
13180 return get_die_type (die, cu);
13181
13182 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13183 if (die->tag == DW_TAG_structure_type
13184 || die->tag == DW_TAG_class_type)
13185 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13186 }
13187 else
13188 {
d8151005
DJ
13189 /* The name is already allocated along with this objfile, so
13190 we don't need to duplicate it for the type. */
7d455152 13191 TYPE_TAG_NAME (type) = name;
94af9270
KS
13192 if (die->tag == DW_TAG_class_type)
13193 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13194 }
c906108c
SS
13195 }
13196
13197 if (die->tag == DW_TAG_structure_type)
13198 {
13199 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13200 }
13201 else if (die->tag == DW_TAG_union_type)
13202 {
13203 TYPE_CODE (type) = TYPE_CODE_UNION;
13204 }
13205 else
13206 {
4753d33b 13207 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13208 }
13209
0cc2414c
TT
13210 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13211 TYPE_DECLARED_CLASS (type) = 1;
13212
e142c38c 13213 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13214 if (attr)
13215 {
13216 TYPE_LENGTH (type) = DW_UNSND (attr);
13217 }
13218 else
13219 {
13220 TYPE_LENGTH (type) = 0;
13221 }
13222
422b1cb0 13223 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13224 {
13225 /* ICC does not output the required DW_AT_declaration
13226 on incomplete types, but gives them a size of zero. */
422b1cb0 13227 TYPE_STUB (type) = 1;
685b1105
JK
13228 }
13229 else
13230 TYPE_STUB_SUPPORTED (type) = 1;
13231
dc718098 13232 if (die_is_declaration (die, cu))
876cecd0 13233 TYPE_STUB (type) = 1;
a6c727b2
DJ
13234 else if (attr == NULL && die->child == NULL
13235 && producer_is_realview (cu->producer))
13236 /* RealView does not output the required DW_AT_declaration
13237 on incomplete types. */
13238 TYPE_STUB (type) = 1;
dc718098 13239
c906108c
SS
13240 /* We need to add the type field to the die immediately so we don't
13241 infinitely recurse when dealing with pointers to the structure
0963b4bd 13242 type within the structure itself. */
1c379e20 13243 set_die_type (die, type, cu);
c906108c 13244
7e314c57
JK
13245 /* set_die_type should be already done. */
13246 set_descriptive_type (type, die, cu);
13247
c767944b
DJ
13248 return type;
13249}
13250
13251/* Finish creating a structure or union type, including filling in
13252 its members and creating a symbol for it. */
13253
13254static void
13255process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13256{
13257 struct objfile *objfile = cu->objfile;
ca040673 13258 struct die_info *child_die;
c767944b
DJ
13259 struct type *type;
13260
13261 type = get_die_type (die, cu);
13262 if (type == NULL)
13263 type = read_structure_type (die, cu);
13264
e142c38c 13265 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13266 {
13267 struct field_info fi;
34eaf542 13268 VEC (symbolp) *template_args = NULL;
c767944b 13269 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13270
13271 memset (&fi, 0, sizeof (struct field_info));
13272
639d11d3 13273 child_die = die->child;
c906108c
SS
13274
13275 while (child_die && child_die->tag)
13276 {
a9a9bd0f
DC
13277 if (child_die->tag == DW_TAG_member
13278 || child_die->tag == DW_TAG_variable)
c906108c 13279 {
a9a9bd0f
DC
13280 /* NOTE: carlton/2002-11-05: A C++ static data member
13281 should be a DW_TAG_member that is a declaration, but
13282 all versions of G++ as of this writing (so through at
13283 least 3.2.1) incorrectly generate DW_TAG_variable
13284 tags for them instead. */
e7c27a73 13285 dwarf2_add_field (&fi, child_die, cu);
c906108c 13286 }
8713b1b1 13287 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13288 {
0963b4bd 13289 /* C++ member function. */
e7c27a73 13290 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13291 }
13292 else if (child_die->tag == DW_TAG_inheritance)
13293 {
13294 /* C++ base class field. */
e7c27a73 13295 dwarf2_add_field (&fi, child_die, cu);
c906108c 13296 }
98751a41
JK
13297 else if (child_die->tag == DW_TAG_typedef)
13298 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13299 else if (child_die->tag == DW_TAG_template_type_param
13300 || child_die->tag == DW_TAG_template_value_param)
13301 {
13302 struct symbol *arg = new_symbol (child_die, NULL, cu);
13303
f1078f66
DJ
13304 if (arg != NULL)
13305 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13306 }
13307
c906108c
SS
13308 child_die = sibling_die (child_die);
13309 }
13310
34eaf542
TT
13311 /* Attach template arguments to type. */
13312 if (! VEC_empty (symbolp, template_args))
13313 {
13314 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13315 TYPE_N_TEMPLATE_ARGUMENTS (type)
13316 = VEC_length (symbolp, template_args);
13317 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13318 = XOBNEWVEC (&objfile->objfile_obstack,
13319 struct symbol *,
13320 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13321 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13322 VEC_address (symbolp, template_args),
13323 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13324 * sizeof (struct symbol *)));
13325 VEC_free (symbolp, template_args);
13326 }
13327
c906108c
SS
13328 /* Attach fields and member functions to the type. */
13329 if (fi.nfields)
e7c27a73 13330 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13331 if (fi.nfnfields)
13332 {
e7c27a73 13333 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13334
c5aa993b 13335 /* Get the type which refers to the base class (possibly this
c906108c 13336 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13337 class from the DW_AT_containing_type attribute. This use of
13338 DW_AT_containing_type is a GNU extension. */
c906108c 13339
e142c38c 13340 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13341 {
e7c27a73 13342 struct type *t = die_containing_type (die, cu);
c906108c 13343
ae6ae975 13344 set_type_vptr_basetype (type, t);
c906108c
SS
13345 if (type == t)
13346 {
c906108c
SS
13347 int i;
13348
13349 /* Our own class provides vtbl ptr. */
13350 for (i = TYPE_NFIELDS (t) - 1;
13351 i >= TYPE_N_BASECLASSES (t);
13352 --i)
13353 {
0d5cff50 13354 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13355
1168df01 13356 if (is_vtable_name (fieldname, cu))
c906108c 13357 {
ae6ae975 13358 set_type_vptr_fieldno (type, i);
c906108c
SS
13359 break;
13360 }
13361 }
13362
13363 /* Complain if virtual function table field not found. */
13364 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13365 complaint (&symfile_complaints,
3e43a32a
MS
13366 _("virtual function table pointer "
13367 "not found when defining class '%s'"),
4d3c2250
KB
13368 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13369 "");
c906108c
SS
13370 }
13371 else
13372 {
ae6ae975 13373 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13374 }
13375 }
f6235d4c 13376 else if (cu->producer
61012eef 13377 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13378 {
13379 /* The IBM XLC compiler does not provide direct indication
13380 of the containing type, but the vtable pointer is
13381 always named __vfp. */
13382
13383 int i;
13384
13385 for (i = TYPE_NFIELDS (type) - 1;
13386 i >= TYPE_N_BASECLASSES (type);
13387 --i)
13388 {
13389 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13390 {
ae6ae975
DE
13391 set_type_vptr_fieldno (type, i);
13392 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13393 break;
13394 }
13395 }
13396 }
c906108c 13397 }
98751a41
JK
13398
13399 /* Copy fi.typedef_field_list linked list elements content into the
13400 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13401 if (fi.typedef_field_list)
13402 {
13403 int i = fi.typedef_field_list_count;
13404
a0d7a4ff 13405 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13406 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13407 = ((struct typedef_field *)
13408 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13409 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13410
13411 /* Reverse the list order to keep the debug info elements order. */
13412 while (--i >= 0)
13413 {
13414 struct typedef_field *dest, *src;
6e70227d 13415
98751a41
JK
13416 dest = &TYPE_TYPEDEF_FIELD (type, i);
13417 src = &fi.typedef_field_list->field;
13418 fi.typedef_field_list = fi.typedef_field_list->next;
13419 *dest = *src;
13420 }
13421 }
c767944b
DJ
13422
13423 do_cleanups (back_to);
eb2a6f42
TT
13424
13425 if (HAVE_CPLUS_STRUCT (type))
13426 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13427 }
63d06c5c 13428
bb5ed363 13429 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13430
90aeadfc
DC
13431 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13432 snapshots) has been known to create a die giving a declaration
13433 for a class that has, as a child, a die giving a definition for a
13434 nested class. So we have to process our children even if the
13435 current die is a declaration. Normally, of course, a declaration
13436 won't have any children at all. */
134d01f1 13437
ca040673
DE
13438 child_die = die->child;
13439
90aeadfc
DC
13440 while (child_die != NULL && child_die->tag)
13441 {
13442 if (child_die->tag == DW_TAG_member
13443 || child_die->tag == DW_TAG_variable
34eaf542
TT
13444 || child_die->tag == DW_TAG_inheritance
13445 || child_die->tag == DW_TAG_template_value_param
13446 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13447 {
90aeadfc 13448 /* Do nothing. */
134d01f1 13449 }
90aeadfc
DC
13450 else
13451 process_die (child_die, cu);
134d01f1 13452
90aeadfc 13453 child_die = sibling_die (child_die);
134d01f1
DJ
13454 }
13455
fa4028e9
JB
13456 /* Do not consider external references. According to the DWARF standard,
13457 these DIEs are identified by the fact that they have no byte_size
13458 attribute, and a declaration attribute. */
13459 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13460 || !die_is_declaration (die, cu))
c767944b 13461 new_symbol (die, type, cu);
134d01f1
DJ
13462}
13463
55426c9d
JB
13464/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13465 update TYPE using some information only available in DIE's children. */
13466
13467static void
13468update_enumeration_type_from_children (struct die_info *die,
13469 struct type *type,
13470 struct dwarf2_cu *cu)
13471{
13472 struct obstack obstack;
60f7655a 13473 struct die_info *child_die;
55426c9d
JB
13474 int unsigned_enum = 1;
13475 int flag_enum = 1;
13476 ULONGEST mask = 0;
13477 struct cleanup *old_chain;
13478
13479 obstack_init (&obstack);
13480 old_chain = make_cleanup_obstack_free (&obstack);
13481
60f7655a
DE
13482 for (child_die = die->child;
13483 child_die != NULL && child_die->tag;
13484 child_die = sibling_die (child_die))
55426c9d
JB
13485 {
13486 struct attribute *attr;
13487 LONGEST value;
13488 const gdb_byte *bytes;
13489 struct dwarf2_locexpr_baton *baton;
13490 const char *name;
60f7655a 13491
55426c9d
JB
13492 if (child_die->tag != DW_TAG_enumerator)
13493 continue;
13494
13495 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13496 if (attr == NULL)
13497 continue;
13498
13499 name = dwarf2_name (child_die, cu);
13500 if (name == NULL)
13501 name = "<anonymous enumerator>";
13502
13503 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13504 &value, &bytes, &baton);
13505 if (value < 0)
13506 {
13507 unsigned_enum = 0;
13508 flag_enum = 0;
13509 }
13510 else if ((mask & value) != 0)
13511 flag_enum = 0;
13512 else
13513 mask |= value;
13514
13515 /* If we already know that the enum type is neither unsigned, nor
13516 a flag type, no need to look at the rest of the enumerates. */
13517 if (!unsigned_enum && !flag_enum)
13518 break;
55426c9d
JB
13519 }
13520
13521 if (unsigned_enum)
13522 TYPE_UNSIGNED (type) = 1;
13523 if (flag_enum)
13524 TYPE_FLAG_ENUM (type) = 1;
13525
13526 do_cleanups (old_chain);
13527}
13528
134d01f1
DJ
13529/* Given a DW_AT_enumeration_type die, set its type. We do not
13530 complete the type's fields yet, or create any symbols. */
c906108c 13531
f792889a 13532static struct type *
134d01f1 13533read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13534{
e7c27a73 13535 struct objfile *objfile = cu->objfile;
c906108c 13536 struct type *type;
c906108c 13537 struct attribute *attr;
0114d602 13538 const char *name;
134d01f1 13539
348e048f
DE
13540 /* If the definition of this type lives in .debug_types, read that type.
13541 Don't follow DW_AT_specification though, that will take us back up
13542 the chain and we want to go down. */
45e58e77 13543 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13544 if (attr)
13545 {
ac9ec31b 13546 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13547
ac9ec31b 13548 /* The type's CU may not be the same as CU.
02142a6c 13549 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13550 return set_die_type (die, type, cu);
13551 }
13552
c906108c
SS
13553 type = alloc_type (objfile);
13554
13555 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13556 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13557 if (name != NULL)
7d455152 13558 TYPE_TAG_NAME (type) = name;
c906108c 13559
0626fc76
TT
13560 attr = dwarf2_attr (die, DW_AT_type, cu);
13561 if (attr != NULL)
13562 {
13563 struct type *underlying_type = die_type (die, cu);
13564
13565 TYPE_TARGET_TYPE (type) = underlying_type;
13566 }
13567
e142c38c 13568 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13569 if (attr)
13570 {
13571 TYPE_LENGTH (type) = DW_UNSND (attr);
13572 }
13573 else
13574 {
13575 TYPE_LENGTH (type) = 0;
13576 }
13577
137033e9
JB
13578 /* The enumeration DIE can be incomplete. In Ada, any type can be
13579 declared as private in the package spec, and then defined only
13580 inside the package body. Such types are known as Taft Amendment
13581 Types. When another package uses such a type, an incomplete DIE
13582 may be generated by the compiler. */
02eb380e 13583 if (die_is_declaration (die, cu))
876cecd0 13584 TYPE_STUB (type) = 1;
02eb380e 13585
0626fc76
TT
13586 /* Finish the creation of this type by using the enum's children.
13587 We must call this even when the underlying type has been provided
13588 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13589 update_enumeration_type_from_children (die, type, cu);
13590
0626fc76
TT
13591 /* If this type has an underlying type that is not a stub, then we
13592 may use its attributes. We always use the "unsigned" attribute
13593 in this situation, because ordinarily we guess whether the type
13594 is unsigned -- but the guess can be wrong and the underlying type
13595 can tell us the reality. However, we defer to a local size
13596 attribute if one exists, because this lets the compiler override
13597 the underlying type if needed. */
13598 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13599 {
13600 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13601 if (TYPE_LENGTH (type) == 0)
13602 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13603 }
13604
3d567982
TT
13605 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13606
f792889a 13607 return set_die_type (die, type, cu);
134d01f1
DJ
13608}
13609
13610/* Given a pointer to a die which begins an enumeration, process all
13611 the dies that define the members of the enumeration, and create the
13612 symbol for the enumeration type.
13613
13614 NOTE: We reverse the order of the element list. */
13615
13616static void
13617process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13618{
f792889a 13619 struct type *this_type;
134d01f1 13620
f792889a
DJ
13621 this_type = get_die_type (die, cu);
13622 if (this_type == NULL)
13623 this_type = read_enumeration_type (die, cu);
9dc481d3 13624
639d11d3 13625 if (die->child != NULL)
c906108c 13626 {
9dc481d3
DE
13627 struct die_info *child_die;
13628 struct symbol *sym;
13629 struct field *fields = NULL;
13630 int num_fields = 0;
15d034d0 13631 const char *name;
9dc481d3 13632
639d11d3 13633 child_die = die->child;
c906108c
SS
13634 while (child_die && child_die->tag)
13635 {
13636 if (child_die->tag != DW_TAG_enumerator)
13637 {
e7c27a73 13638 process_die (child_die, cu);
c906108c
SS
13639 }
13640 else
13641 {
39cbfefa
DJ
13642 name = dwarf2_name (child_die, cu);
13643 if (name)
c906108c 13644 {
f792889a 13645 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13646
13647 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13648 {
13649 fields = (struct field *)
13650 xrealloc (fields,
13651 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13652 * sizeof (struct field));
c906108c
SS
13653 }
13654
3567439c 13655 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13656 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13657 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13658 FIELD_BITSIZE (fields[num_fields]) = 0;
13659
13660 num_fields++;
13661 }
13662 }
13663
13664 child_die = sibling_die (child_die);
13665 }
13666
13667 if (num_fields)
13668 {
f792889a
DJ
13669 TYPE_NFIELDS (this_type) = num_fields;
13670 TYPE_FIELDS (this_type) = (struct field *)
13671 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13672 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13673 sizeof (struct field) * num_fields);
b8c9b27d 13674 xfree (fields);
c906108c 13675 }
c906108c 13676 }
134d01f1 13677
6c83ed52
TT
13678 /* If we are reading an enum from a .debug_types unit, and the enum
13679 is a declaration, and the enum is not the signatured type in the
13680 unit, then we do not want to add a symbol for it. Adding a
13681 symbol would in some cases obscure the true definition of the
13682 enum, giving users an incomplete type when the definition is
13683 actually available. Note that we do not want to do this for all
13684 enums which are just declarations, because C++0x allows forward
13685 enum declarations. */
3019eac3 13686 if (cu->per_cu->is_debug_types
6c83ed52
TT
13687 && die_is_declaration (die, cu))
13688 {
52dc124a 13689 struct signatured_type *sig_type;
6c83ed52 13690
c0f78cd4 13691 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13692 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13693 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13694 return;
13695 }
13696
f792889a 13697 new_symbol (die, this_type, cu);
c906108c
SS
13698}
13699
13700/* Extract all information from a DW_TAG_array_type DIE and put it in
13701 the DIE's type field. For now, this only handles one dimensional
13702 arrays. */
13703
f792889a 13704static struct type *
e7c27a73 13705read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13706{
e7c27a73 13707 struct objfile *objfile = cu->objfile;
c906108c 13708 struct die_info *child_die;
7e314c57 13709 struct type *type;
c906108c
SS
13710 struct type *element_type, *range_type, *index_type;
13711 struct type **range_types = NULL;
13712 struct attribute *attr;
13713 int ndim = 0;
13714 struct cleanup *back_to;
15d034d0 13715 const char *name;
dc53a7ad 13716 unsigned int bit_stride = 0;
c906108c 13717
e7c27a73 13718 element_type = die_type (die, cu);
c906108c 13719
7e314c57
JK
13720 /* The die_type call above may have already set the type for this DIE. */
13721 type = get_die_type (die, cu);
13722 if (type)
13723 return type;
13724
dc53a7ad
JB
13725 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13726 if (attr != NULL)
13727 bit_stride = DW_UNSND (attr) * 8;
13728
13729 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13730 if (attr != NULL)
13731 bit_stride = DW_UNSND (attr);
13732
c906108c
SS
13733 /* Irix 6.2 native cc creates array types without children for
13734 arrays with unspecified length. */
639d11d3 13735 if (die->child == NULL)
c906108c 13736 {
46bf5051 13737 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13738 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13739 type = create_array_type_with_stride (NULL, element_type, range_type,
13740 bit_stride);
f792889a 13741 return set_die_type (die, type, cu);
c906108c
SS
13742 }
13743
13744 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13745 child_die = die->child;
c906108c
SS
13746 while (child_die && child_die->tag)
13747 {
13748 if (child_die->tag == DW_TAG_subrange_type)
13749 {
f792889a 13750 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13751
f792889a 13752 if (child_type != NULL)
a02abb62 13753 {
0963b4bd
MS
13754 /* The range type was succesfully read. Save it for the
13755 array type creation. */
a02abb62
JB
13756 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13757 {
13758 range_types = (struct type **)
13759 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13760 * sizeof (struct type *));
13761 if (ndim == 0)
13762 make_cleanup (free_current_contents, &range_types);
13763 }
f792889a 13764 range_types[ndim++] = child_type;
a02abb62 13765 }
c906108c
SS
13766 }
13767 child_die = sibling_die (child_die);
13768 }
13769
13770 /* Dwarf2 dimensions are output from left to right, create the
13771 necessary array types in backwards order. */
7ca2d3a3 13772
c906108c 13773 type = element_type;
7ca2d3a3
DL
13774
13775 if (read_array_order (die, cu) == DW_ORD_col_major)
13776 {
13777 int i = 0;
9a619af0 13778
7ca2d3a3 13779 while (i < ndim)
dc53a7ad
JB
13780 type = create_array_type_with_stride (NULL, type, range_types[i++],
13781 bit_stride);
7ca2d3a3
DL
13782 }
13783 else
13784 {
13785 while (ndim-- > 0)
dc53a7ad
JB
13786 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13787 bit_stride);
7ca2d3a3 13788 }
c906108c 13789
f5f8a009
EZ
13790 /* Understand Dwarf2 support for vector types (like they occur on
13791 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13792 array type. This is not part of the Dwarf2/3 standard yet, but a
13793 custom vendor extension. The main difference between a regular
13794 array and the vector variant is that vectors are passed by value
13795 to functions. */
e142c38c 13796 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13797 if (attr)
ea37ba09 13798 make_vector_type (type);
f5f8a009 13799
dbc98a8b
KW
13800 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13801 implementation may choose to implement triple vectors using this
13802 attribute. */
13803 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13804 if (attr)
13805 {
13806 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13807 TYPE_LENGTH (type) = DW_UNSND (attr);
13808 else
3e43a32a
MS
13809 complaint (&symfile_complaints,
13810 _("DW_AT_byte_size for array type smaller "
13811 "than the total size of elements"));
dbc98a8b
KW
13812 }
13813
39cbfefa
DJ
13814 name = dwarf2_name (die, cu);
13815 if (name)
13816 TYPE_NAME (type) = name;
6e70227d 13817
0963b4bd 13818 /* Install the type in the die. */
7e314c57
JK
13819 set_die_type (die, type, cu);
13820
13821 /* set_die_type should be already done. */
b4ba55a1
JB
13822 set_descriptive_type (type, die, cu);
13823
c906108c
SS
13824 do_cleanups (back_to);
13825
7e314c57 13826 return type;
c906108c
SS
13827}
13828
7ca2d3a3 13829static enum dwarf_array_dim_ordering
6e70227d 13830read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13831{
13832 struct attribute *attr;
13833
13834 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13835
aead7601
SM
13836 if (attr)
13837 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13838
0963b4bd
MS
13839 /* GNU F77 is a special case, as at 08/2004 array type info is the
13840 opposite order to the dwarf2 specification, but data is still
13841 laid out as per normal fortran.
7ca2d3a3 13842
0963b4bd
MS
13843 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13844 version checking. */
7ca2d3a3 13845
905e0470
PM
13846 if (cu->language == language_fortran
13847 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13848 {
13849 return DW_ORD_row_major;
13850 }
13851
6e70227d 13852 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13853 {
13854 case array_column_major:
13855 return DW_ORD_col_major;
13856 case array_row_major:
13857 default:
13858 return DW_ORD_row_major;
13859 };
13860}
13861
72019c9c 13862/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13863 the DIE's type field. */
72019c9c 13864
f792889a 13865static struct type *
72019c9c
GM
13866read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13867{
7e314c57
JK
13868 struct type *domain_type, *set_type;
13869 struct attribute *attr;
f792889a 13870
7e314c57
JK
13871 domain_type = die_type (die, cu);
13872
13873 /* The die_type call above may have already set the type for this DIE. */
13874 set_type = get_die_type (die, cu);
13875 if (set_type)
13876 return set_type;
13877
13878 set_type = create_set_type (NULL, domain_type);
13879
13880 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13881 if (attr)
13882 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13883
f792889a 13884 return set_die_type (die, set_type, cu);
72019c9c 13885}
7ca2d3a3 13886
0971de02
TT
13887/* A helper for read_common_block that creates a locexpr baton.
13888 SYM is the symbol which we are marking as computed.
13889 COMMON_DIE is the DIE for the common block.
13890 COMMON_LOC is the location expression attribute for the common
13891 block itself.
13892 MEMBER_LOC is the location expression attribute for the particular
13893 member of the common block that we are processing.
13894 CU is the CU from which the above come. */
13895
13896static void
13897mark_common_block_symbol_computed (struct symbol *sym,
13898 struct die_info *common_die,
13899 struct attribute *common_loc,
13900 struct attribute *member_loc,
13901 struct dwarf2_cu *cu)
13902{
13903 struct objfile *objfile = dwarf2_per_objfile->objfile;
13904 struct dwarf2_locexpr_baton *baton;
13905 gdb_byte *ptr;
13906 unsigned int cu_off;
13907 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13908 LONGEST offset = 0;
13909
13910 gdb_assert (common_loc && member_loc);
13911 gdb_assert (attr_form_is_block (common_loc));
13912 gdb_assert (attr_form_is_block (member_loc)
13913 || attr_form_is_constant (member_loc));
13914
8d749320 13915 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13916 baton->per_cu = cu->per_cu;
13917 gdb_assert (baton->per_cu);
13918
13919 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13920
13921 if (attr_form_is_constant (member_loc))
13922 {
13923 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13924 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13925 }
13926 else
13927 baton->size += DW_BLOCK (member_loc)->size;
13928
224c3ddb 13929 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13930 baton->data = ptr;
13931
13932 *ptr++ = DW_OP_call4;
13933 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13934 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13935 ptr += 4;
13936
13937 if (attr_form_is_constant (member_loc))
13938 {
13939 *ptr++ = DW_OP_addr;
13940 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13941 ptr += cu->header.addr_size;
13942 }
13943 else
13944 {
13945 /* We have to copy the data here, because DW_OP_call4 will only
13946 use a DW_AT_location attribute. */
13947 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13948 ptr += DW_BLOCK (member_loc)->size;
13949 }
13950
13951 *ptr++ = DW_OP_plus;
13952 gdb_assert (ptr - baton->data == baton->size);
13953
0971de02 13954 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13955 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13956}
13957
4357ac6c
TT
13958/* Create appropriate locally-scoped variables for all the
13959 DW_TAG_common_block entries. Also create a struct common_block
13960 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13961 is used to sepate the common blocks name namespace from regular
13962 variable names. */
c906108c
SS
13963
13964static void
e7c27a73 13965read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13966{
0971de02
TT
13967 struct attribute *attr;
13968
13969 attr = dwarf2_attr (die, DW_AT_location, cu);
13970 if (attr)
13971 {
13972 /* Support the .debug_loc offsets. */
13973 if (attr_form_is_block (attr))
13974 {
13975 /* Ok. */
13976 }
13977 else if (attr_form_is_section_offset (attr))
13978 {
13979 dwarf2_complex_location_expr_complaint ();
13980 attr = NULL;
13981 }
13982 else
13983 {
13984 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13985 "common block member");
13986 attr = NULL;
13987 }
13988 }
13989
639d11d3 13990 if (die->child != NULL)
c906108c 13991 {
4357ac6c
TT
13992 struct objfile *objfile = cu->objfile;
13993 struct die_info *child_die;
13994 size_t n_entries = 0, size;
13995 struct common_block *common_block;
13996 struct symbol *sym;
74ac6d43 13997
4357ac6c
TT
13998 for (child_die = die->child;
13999 child_die && child_die->tag;
14000 child_die = sibling_die (child_die))
14001 ++n_entries;
14002
14003 size = (sizeof (struct common_block)
14004 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14005 common_block
14006 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14007 size);
4357ac6c
TT
14008 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14009 common_block->n_entries = 0;
14010
14011 for (child_die = die->child;
14012 child_die && child_die->tag;
14013 child_die = sibling_die (child_die))
14014 {
14015 /* Create the symbol in the DW_TAG_common_block block in the current
14016 symbol scope. */
e7c27a73 14017 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14018 if (sym != NULL)
14019 {
14020 struct attribute *member_loc;
14021
14022 common_block->contents[common_block->n_entries++] = sym;
14023
14024 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14025 cu);
14026 if (member_loc)
14027 {
14028 /* GDB has handled this for a long time, but it is
14029 not specified by DWARF. It seems to have been
14030 emitted by gfortran at least as recently as:
14031 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14032 complaint (&symfile_complaints,
14033 _("Variable in common block has "
14034 "DW_AT_data_member_location "
14035 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14036 child_die->offset.sect_off,
14037 objfile_name (cu->objfile));
0971de02
TT
14038
14039 if (attr_form_is_section_offset (member_loc))
14040 dwarf2_complex_location_expr_complaint ();
14041 else if (attr_form_is_constant (member_loc)
14042 || attr_form_is_block (member_loc))
14043 {
14044 if (attr)
14045 mark_common_block_symbol_computed (sym, die, attr,
14046 member_loc, cu);
14047 }
14048 else
14049 dwarf2_complex_location_expr_complaint ();
14050 }
14051 }
c906108c 14052 }
4357ac6c
TT
14053
14054 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14055 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14056 }
14057}
14058
0114d602 14059/* Create a type for a C++ namespace. */
d9fa45fe 14060
0114d602
DJ
14061static struct type *
14062read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14063{
e7c27a73 14064 struct objfile *objfile = cu->objfile;
0114d602 14065 const char *previous_prefix, *name;
9219021c 14066 int is_anonymous;
0114d602
DJ
14067 struct type *type;
14068
14069 /* For extensions, reuse the type of the original namespace. */
14070 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14071 {
14072 struct die_info *ext_die;
14073 struct dwarf2_cu *ext_cu = cu;
9a619af0 14074
0114d602
DJ
14075 ext_die = dwarf2_extension (die, &ext_cu);
14076 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14077
14078 /* EXT_CU may not be the same as CU.
02142a6c 14079 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14080 return set_die_type (die, type, cu);
14081 }
9219021c 14082
e142c38c 14083 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14084
14085 /* Now build the name of the current namespace. */
14086
0114d602
DJ
14087 previous_prefix = determine_prefix (die, cu);
14088 if (previous_prefix[0] != '\0')
14089 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14090 previous_prefix, name, 0, cu);
0114d602
DJ
14091
14092 /* Create the type. */
14093 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14094 objfile);
abee88f2 14095 TYPE_NAME (type) = name;
0114d602
DJ
14096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14097
60531b24 14098 return set_die_type (die, type, cu);
0114d602
DJ
14099}
14100
22cee43f 14101/* Read a namespace scope. */
0114d602
DJ
14102
14103static void
14104read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14105{
14106 struct objfile *objfile = cu->objfile;
0114d602 14107 int is_anonymous;
9219021c 14108
5c4e30ca
DC
14109 /* Add a symbol associated to this if we haven't seen the namespace
14110 before. Also, add a using directive if it's an anonymous
14111 namespace. */
9219021c 14112
f2f0e013 14113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14114 {
14115 struct type *type;
14116
0114d602 14117 type = read_type_die (die, cu);
e7c27a73 14118 new_symbol (die, type, cu);
5c4e30ca 14119
e8e80198 14120 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14121 if (is_anonymous)
0114d602
DJ
14122 {
14123 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14124
22cee43f
PMR
14125 add_using_directive (using_directives (cu->language),
14126 previous_prefix, TYPE_NAME (type), NULL,
14127 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14128 }
5c4e30ca 14129 }
9219021c 14130
639d11d3 14131 if (die->child != NULL)
d9fa45fe 14132 {
639d11d3 14133 struct die_info *child_die = die->child;
6e70227d 14134
d9fa45fe
DC
14135 while (child_die && child_die->tag)
14136 {
e7c27a73 14137 process_die (child_die, cu);
d9fa45fe
DC
14138 child_die = sibling_die (child_die);
14139 }
14140 }
38d518c9
EZ
14141}
14142
f55ee35c
JK
14143/* Read a Fortran module as type. This DIE can be only a declaration used for
14144 imported module. Still we need that type as local Fortran "use ... only"
14145 declaration imports depend on the created type in determine_prefix. */
14146
14147static struct type *
14148read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14149{
14150 struct objfile *objfile = cu->objfile;
15d034d0 14151 const char *module_name;
f55ee35c
JK
14152 struct type *type;
14153
14154 module_name = dwarf2_name (die, cu);
14155 if (!module_name)
3e43a32a
MS
14156 complaint (&symfile_complaints,
14157 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14158 die->offset.sect_off);
f55ee35c
JK
14159 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14160
14161 /* determine_prefix uses TYPE_TAG_NAME. */
14162 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14163
14164 return set_die_type (die, type, cu);
14165}
14166
5d7cb8df
JK
14167/* Read a Fortran module. */
14168
14169static void
14170read_module (struct die_info *die, struct dwarf2_cu *cu)
14171{
14172 struct die_info *child_die = die->child;
530e8392
KB
14173 struct type *type;
14174
14175 type = read_type_die (die, cu);
14176 new_symbol (die, type, cu);
5d7cb8df 14177
5d7cb8df
JK
14178 while (child_die && child_die->tag)
14179 {
14180 process_die (child_die, cu);
14181 child_die = sibling_die (child_die);
14182 }
14183}
14184
38d518c9
EZ
14185/* Return the name of the namespace represented by DIE. Set
14186 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14187 namespace. */
14188
14189static const char *
e142c38c 14190namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14191{
14192 struct die_info *current_die;
14193 const char *name = NULL;
14194
14195 /* Loop through the extensions until we find a name. */
14196
14197 for (current_die = die;
14198 current_die != NULL;
f2f0e013 14199 current_die = dwarf2_extension (die, &cu))
38d518c9 14200 {
96553a0c
DE
14201 /* We don't use dwarf2_name here so that we can detect the absence
14202 of a name -> anonymous namespace. */
7d45c7c3 14203 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14204
38d518c9
EZ
14205 if (name != NULL)
14206 break;
14207 }
14208
14209 /* Is it an anonymous namespace? */
14210
14211 *is_anonymous = (name == NULL);
14212 if (*is_anonymous)
2b1dbab0 14213 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14214
14215 return name;
d9fa45fe
DC
14216}
14217
c906108c
SS
14218/* Extract all information from a DW_TAG_pointer_type DIE and add to
14219 the user defined type vector. */
14220
f792889a 14221static struct type *
e7c27a73 14222read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14223{
5e2b427d 14224 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14225 struct comp_unit_head *cu_header = &cu->header;
c906108c 14226 struct type *type;
8b2dbe47
KB
14227 struct attribute *attr_byte_size;
14228 struct attribute *attr_address_class;
14229 int byte_size, addr_class;
7e314c57
JK
14230 struct type *target_type;
14231
14232 target_type = die_type (die, cu);
c906108c 14233
7e314c57
JK
14234 /* The die_type call above may have already set the type for this DIE. */
14235 type = get_die_type (die, cu);
14236 if (type)
14237 return type;
14238
14239 type = lookup_pointer_type (target_type);
8b2dbe47 14240
e142c38c 14241 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14242 if (attr_byte_size)
14243 byte_size = DW_UNSND (attr_byte_size);
c906108c 14244 else
8b2dbe47
KB
14245 byte_size = cu_header->addr_size;
14246
e142c38c 14247 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14248 if (attr_address_class)
14249 addr_class = DW_UNSND (attr_address_class);
14250 else
14251 addr_class = DW_ADDR_none;
14252
14253 /* If the pointer size or address class is different than the
14254 default, create a type variant marked as such and set the
14255 length accordingly. */
14256 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14257 {
5e2b427d 14258 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14259 {
14260 int type_flags;
14261
849957d9 14262 type_flags = gdbarch_address_class_type_flags
5e2b427d 14263 (gdbarch, byte_size, addr_class);
876cecd0
TT
14264 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14265 == 0);
8b2dbe47
KB
14266 type = make_type_with_address_space (type, type_flags);
14267 }
14268 else if (TYPE_LENGTH (type) != byte_size)
14269 {
3e43a32a
MS
14270 complaint (&symfile_complaints,
14271 _("invalid pointer size %d"), byte_size);
8b2dbe47 14272 }
6e70227d 14273 else
9a619af0
MS
14274 {
14275 /* Should we also complain about unhandled address classes? */
14276 }
c906108c 14277 }
8b2dbe47
KB
14278
14279 TYPE_LENGTH (type) = byte_size;
f792889a 14280 return set_die_type (die, type, cu);
c906108c
SS
14281}
14282
14283/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14284 the user defined type vector. */
14285
f792889a 14286static struct type *
e7c27a73 14287read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14288{
14289 struct type *type;
14290 struct type *to_type;
14291 struct type *domain;
14292
e7c27a73
DJ
14293 to_type = die_type (die, cu);
14294 domain = die_containing_type (die, cu);
0d5de010 14295
7e314c57
JK
14296 /* The calls above may have already set the type for this DIE. */
14297 type = get_die_type (die, cu);
14298 if (type)
14299 return type;
14300
0d5de010
DJ
14301 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14302 type = lookup_methodptr_type (to_type);
7078baeb
TT
14303 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14304 {
14305 struct type *new_type = alloc_type (cu->objfile);
14306
14307 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14308 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14309 TYPE_VARARGS (to_type));
14310 type = lookup_methodptr_type (new_type);
14311 }
0d5de010
DJ
14312 else
14313 type = lookup_memberptr_type (to_type, domain);
c906108c 14314
f792889a 14315 return set_die_type (die, type, cu);
c906108c
SS
14316}
14317
14318/* Extract all information from a DW_TAG_reference_type DIE and add to
14319 the user defined type vector. */
14320
f792889a 14321static struct type *
e7c27a73 14322read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14323{
e7c27a73 14324 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14325 struct type *type, *target_type;
c906108c
SS
14326 struct attribute *attr;
14327
7e314c57
JK
14328 target_type = die_type (die, cu);
14329
14330 /* The die_type call above may have already set the type for this DIE. */
14331 type = get_die_type (die, cu);
14332 if (type)
14333 return type;
14334
14335 type = lookup_reference_type (target_type);
e142c38c 14336 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14337 if (attr)
14338 {
14339 TYPE_LENGTH (type) = DW_UNSND (attr);
14340 }
14341 else
14342 {
107d2387 14343 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14344 }
f792889a 14345 return set_die_type (die, type, cu);
c906108c
SS
14346}
14347
cf363f18
MW
14348/* Add the given cv-qualifiers to the element type of the array. GCC
14349 outputs DWARF type qualifiers that apply to an array, not the
14350 element type. But GDB relies on the array element type to carry
14351 the cv-qualifiers. This mimics section 6.7.3 of the C99
14352 specification. */
14353
14354static struct type *
14355add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14356 struct type *base_type, int cnst, int voltl)
14357{
14358 struct type *el_type, *inner_array;
14359
14360 base_type = copy_type (base_type);
14361 inner_array = base_type;
14362
14363 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14364 {
14365 TYPE_TARGET_TYPE (inner_array) =
14366 copy_type (TYPE_TARGET_TYPE (inner_array));
14367 inner_array = TYPE_TARGET_TYPE (inner_array);
14368 }
14369
14370 el_type = TYPE_TARGET_TYPE (inner_array);
14371 cnst |= TYPE_CONST (el_type);
14372 voltl |= TYPE_VOLATILE (el_type);
14373 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14374
14375 return set_die_type (die, base_type, cu);
14376}
14377
f792889a 14378static struct type *
e7c27a73 14379read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14380{
f792889a 14381 struct type *base_type, *cv_type;
c906108c 14382
e7c27a73 14383 base_type = die_type (die, cu);
7e314c57
JK
14384
14385 /* The die_type call above may have already set the type for this DIE. */
14386 cv_type = get_die_type (die, cu);
14387 if (cv_type)
14388 return cv_type;
14389
2f608a3a
KW
14390 /* In case the const qualifier is applied to an array type, the element type
14391 is so qualified, not the array type (section 6.7.3 of C99). */
14392 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14393 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14394
f792889a
DJ
14395 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14396 return set_die_type (die, cv_type, cu);
c906108c
SS
14397}
14398
f792889a 14399static struct type *
e7c27a73 14400read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14401{
f792889a 14402 struct type *base_type, *cv_type;
c906108c 14403
e7c27a73 14404 base_type = die_type (die, cu);
7e314c57
JK
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
cf363f18
MW
14411 /* In case the volatile qualifier is applied to an array type, the
14412 element type is so qualified, not the array type (section 6.7.3
14413 of C99). */
14414 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14415 return add_array_cv_type (die, cu, base_type, 0, 1);
14416
f792889a
DJ
14417 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14418 return set_die_type (die, cv_type, cu);
c906108c
SS
14419}
14420
06d66ee9
TT
14421/* Handle DW_TAG_restrict_type. */
14422
14423static struct type *
14424read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14425{
14426 struct type *base_type, *cv_type;
14427
14428 base_type = die_type (die, cu);
14429
14430 /* The die_type call above may have already set the type for this DIE. */
14431 cv_type = get_die_type (die, cu);
14432 if (cv_type)
14433 return cv_type;
14434
14435 cv_type = make_restrict_type (base_type);
14436 return set_die_type (die, cv_type, cu);
14437}
14438
a2c2acaf
MW
14439/* Handle DW_TAG_atomic_type. */
14440
14441static struct type *
14442read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14443{
14444 struct type *base_type, *cv_type;
14445
14446 base_type = die_type (die, cu);
14447
14448 /* The die_type call above may have already set the type for this DIE. */
14449 cv_type = get_die_type (die, cu);
14450 if (cv_type)
14451 return cv_type;
14452
14453 cv_type = make_atomic_type (base_type);
14454 return set_die_type (die, cv_type, cu);
14455}
14456
c906108c
SS
14457/* Extract all information from a DW_TAG_string_type DIE and add to
14458 the user defined type vector. It isn't really a user defined type,
14459 but it behaves like one, with other DIE's using an AT_user_def_type
14460 attribute to reference it. */
14461
f792889a 14462static struct type *
e7c27a73 14463read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14464{
e7c27a73 14465 struct objfile *objfile = cu->objfile;
3b7538c0 14466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14467 struct type *type, *range_type, *index_type, *char_type;
14468 struct attribute *attr;
14469 unsigned int length;
14470
e142c38c 14471 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14472 if (attr)
14473 {
14474 length = DW_UNSND (attr);
14475 }
14476 else
14477 {
0963b4bd 14478 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14479 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14480 if (attr)
14481 {
14482 length = DW_UNSND (attr);
14483 }
14484 else
14485 {
14486 length = 1;
14487 }
c906108c 14488 }
6ccb9162 14489
46bf5051 14490 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14491 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14492 char_type = language_string_char_type (cu->language_defn, gdbarch);
14493 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14494
f792889a 14495 return set_die_type (die, type, cu);
c906108c
SS
14496}
14497
4d804846
JB
14498/* Assuming that DIE corresponds to a function, returns nonzero
14499 if the function is prototyped. */
14500
14501static int
14502prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14503{
14504 struct attribute *attr;
14505
14506 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14507 if (attr && (DW_UNSND (attr) != 0))
14508 return 1;
14509
14510 /* The DWARF standard implies that the DW_AT_prototyped attribute
14511 is only meaninful for C, but the concept also extends to other
14512 languages that allow unprototyped functions (Eg: Objective C).
14513 For all other languages, assume that functions are always
14514 prototyped. */
14515 if (cu->language != language_c
14516 && cu->language != language_objc
14517 && cu->language != language_opencl)
14518 return 1;
14519
14520 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14521 prototyped and unprototyped functions; default to prototyped,
14522 since that is more common in modern code (and RealView warns
14523 about unprototyped functions). */
14524 if (producer_is_realview (cu->producer))
14525 return 1;
14526
14527 return 0;
14528}
14529
c906108c
SS
14530/* Handle DIES due to C code like:
14531
14532 struct foo
c5aa993b
JM
14533 {
14534 int (*funcp)(int a, long l);
14535 int b;
14536 };
c906108c 14537
0963b4bd 14538 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14539
f792889a 14540static struct type *
e7c27a73 14541read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14542{
bb5ed363 14543 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14544 struct type *type; /* Type that this function returns. */
14545 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14546 struct attribute *attr;
14547
e7c27a73 14548 type = die_type (die, cu);
7e314c57
JK
14549
14550 /* The die_type call above may have already set the type for this DIE. */
14551 ftype = get_die_type (die, cu);
14552 if (ftype)
14553 return ftype;
14554
0c8b41f1 14555 ftype = lookup_function_type (type);
c906108c 14556
4d804846 14557 if (prototyped_function_p (die, cu))
a6c727b2 14558 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14559
c055b101
CV
14560 /* Store the calling convention in the type if it's available in
14561 the subroutine die. Otherwise set the calling convention to
14562 the default value DW_CC_normal. */
14563 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14564 if (attr)
14565 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14566 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14567 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14568 else
14569 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14570
743649fd
MW
14571 /* Record whether the function returns normally to its caller or not
14572 if the DWARF producer set that information. */
14573 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14574 if (attr && (DW_UNSND (attr) != 0))
14575 TYPE_NO_RETURN (ftype) = 1;
14576
76c10ea2
GM
14577 /* We need to add the subroutine type to the die immediately so
14578 we don't infinitely recurse when dealing with parameters
0963b4bd 14579 declared as the same subroutine type. */
76c10ea2 14580 set_die_type (die, ftype, cu);
6e70227d 14581
639d11d3 14582 if (die->child != NULL)
c906108c 14583 {
bb5ed363 14584 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14585 struct die_info *child_die;
8072405b 14586 int nparams, iparams;
c906108c
SS
14587
14588 /* Count the number of parameters.
14589 FIXME: GDB currently ignores vararg functions, but knows about
14590 vararg member functions. */
8072405b 14591 nparams = 0;
639d11d3 14592 child_die = die->child;
c906108c
SS
14593 while (child_die && child_die->tag)
14594 {
14595 if (child_die->tag == DW_TAG_formal_parameter)
14596 nparams++;
14597 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14598 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14599 child_die = sibling_die (child_die);
14600 }
14601
14602 /* Allocate storage for parameters and fill them in. */
14603 TYPE_NFIELDS (ftype) = nparams;
14604 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14605 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14606
8072405b
JK
14607 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14608 even if we error out during the parameters reading below. */
14609 for (iparams = 0; iparams < nparams; iparams++)
14610 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14611
14612 iparams = 0;
639d11d3 14613 child_die = die->child;
c906108c
SS
14614 while (child_die && child_die->tag)
14615 {
14616 if (child_die->tag == DW_TAG_formal_parameter)
14617 {
3ce3b1ba
PA
14618 struct type *arg_type;
14619
14620 /* DWARF version 2 has no clean way to discern C++
14621 static and non-static member functions. G++ helps
14622 GDB by marking the first parameter for non-static
14623 member functions (which is the this pointer) as
14624 artificial. We pass this information to
14625 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14626
14627 DWARF version 3 added DW_AT_object_pointer, which GCC
14628 4.5 does not yet generate. */
e142c38c 14629 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14630 if (attr)
14631 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14632 else
418835cc
KS
14633 {
14634 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14635
14636 /* GCC/43521: In java, the formal parameter
14637 "this" is sometimes not marked with DW_AT_artificial. */
14638 if (cu->language == language_java)
14639 {
14640 const char *name = dwarf2_name (child_die, cu);
9a619af0 14641
418835cc
KS
14642 if (name && !strcmp (name, "this"))
14643 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14644 }
14645 }
3ce3b1ba
PA
14646 arg_type = die_type (child_die, cu);
14647
14648 /* RealView does not mark THIS as const, which the testsuite
14649 expects. GCC marks THIS as const in method definitions,
14650 but not in the class specifications (GCC PR 43053). */
14651 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14652 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14653 {
14654 int is_this = 0;
14655 struct dwarf2_cu *arg_cu = cu;
14656 const char *name = dwarf2_name (child_die, cu);
14657
14658 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14659 if (attr)
14660 {
14661 /* If the compiler emits this, use it. */
14662 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14663 is_this = 1;
14664 }
14665 else if (name && strcmp (name, "this") == 0)
14666 /* Function definitions will have the argument names. */
14667 is_this = 1;
14668 else if (name == NULL && iparams == 0)
14669 /* Declarations may not have the names, so like
14670 elsewhere in GDB, assume an artificial first
14671 argument is "this". */
14672 is_this = 1;
14673
14674 if (is_this)
14675 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14676 arg_type, 0);
14677 }
14678
14679 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14680 iparams++;
14681 }
14682 child_die = sibling_die (child_die);
14683 }
14684 }
14685
76c10ea2 14686 return ftype;
c906108c
SS
14687}
14688
f792889a 14689static struct type *
e7c27a73 14690read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14691{
e7c27a73 14692 struct objfile *objfile = cu->objfile;
0114d602 14693 const char *name = NULL;
3c8e0968 14694 struct type *this_type, *target_type;
c906108c 14695
94af9270 14696 name = dwarf2_full_name (NULL, die, cu);
f792889a 14697 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14698 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14699 TYPE_NAME (this_type) = name;
f792889a 14700 set_die_type (die, this_type, cu);
3c8e0968
DE
14701 target_type = die_type (die, cu);
14702 if (target_type != this_type)
14703 TYPE_TARGET_TYPE (this_type) = target_type;
14704 else
14705 {
14706 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14707 spec and cause infinite loops in GDB. */
14708 complaint (&symfile_complaints,
14709 _("Self-referential DW_TAG_typedef "
14710 "- DIE at 0x%x [in module %s]"),
4262abfb 14711 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14712 TYPE_TARGET_TYPE (this_type) = NULL;
14713 }
f792889a 14714 return this_type;
c906108c
SS
14715}
14716
14717/* Find a representation of a given base type and install
14718 it in the TYPE field of the die. */
14719
f792889a 14720static struct type *
e7c27a73 14721read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14722{
e7c27a73 14723 struct objfile *objfile = cu->objfile;
c906108c
SS
14724 struct type *type;
14725 struct attribute *attr;
14726 int encoding = 0, size = 0;
15d034d0 14727 const char *name;
6ccb9162
UW
14728 enum type_code code = TYPE_CODE_INT;
14729 int type_flags = 0;
14730 struct type *target_type = NULL;
c906108c 14731
e142c38c 14732 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14733 if (attr)
14734 {
14735 encoding = DW_UNSND (attr);
14736 }
e142c38c 14737 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14738 if (attr)
14739 {
14740 size = DW_UNSND (attr);
14741 }
39cbfefa 14742 name = dwarf2_name (die, cu);
6ccb9162 14743 if (!name)
c906108c 14744 {
6ccb9162
UW
14745 complaint (&symfile_complaints,
14746 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14747 }
6ccb9162
UW
14748
14749 switch (encoding)
c906108c 14750 {
6ccb9162
UW
14751 case DW_ATE_address:
14752 /* Turn DW_ATE_address into a void * pointer. */
14753 code = TYPE_CODE_PTR;
14754 type_flags |= TYPE_FLAG_UNSIGNED;
14755 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14756 break;
14757 case DW_ATE_boolean:
14758 code = TYPE_CODE_BOOL;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 break;
14761 case DW_ATE_complex_float:
14762 code = TYPE_CODE_COMPLEX;
14763 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14764 break;
14765 case DW_ATE_decimal_float:
14766 code = TYPE_CODE_DECFLOAT;
14767 break;
14768 case DW_ATE_float:
14769 code = TYPE_CODE_FLT;
14770 break;
14771 case DW_ATE_signed:
14772 break;
14773 case DW_ATE_unsigned:
14774 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14775 if (cu->language == language_fortran
14776 && name
61012eef 14777 && startswith (name, "character("))
3b2b8fea 14778 code = TYPE_CODE_CHAR;
6ccb9162
UW
14779 break;
14780 case DW_ATE_signed_char:
6e70227d 14781 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14782 || cu->language == language_pascal
14783 || cu->language == language_fortran)
6ccb9162
UW
14784 code = TYPE_CODE_CHAR;
14785 break;
14786 case DW_ATE_unsigned_char:
868a0084 14787 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14788 || cu->language == language_pascal
14789 || cu->language == language_fortran)
6ccb9162
UW
14790 code = TYPE_CODE_CHAR;
14791 type_flags |= TYPE_FLAG_UNSIGNED;
14792 break;
75079b2b
TT
14793 case DW_ATE_UTF:
14794 /* We just treat this as an integer and then recognize the
14795 type by name elsewhere. */
14796 break;
14797
6ccb9162
UW
14798 default:
14799 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14800 dwarf_type_encoding_name (encoding));
14801 break;
c906108c 14802 }
6ccb9162 14803
0114d602
DJ
14804 type = init_type (code, size, type_flags, NULL, objfile);
14805 TYPE_NAME (type) = name;
6ccb9162
UW
14806 TYPE_TARGET_TYPE (type) = target_type;
14807
0114d602 14808 if (name && strcmp (name, "char") == 0)
876cecd0 14809 TYPE_NOSIGN (type) = 1;
0114d602 14810
f792889a 14811 return set_die_type (die, type, cu);
c906108c
SS
14812}
14813
80180f79
SA
14814/* Parse dwarf attribute if it's a block, reference or constant and put the
14815 resulting value of the attribute into struct bound_prop.
14816 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14817
14818static int
14819attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14820 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14821{
14822 struct dwarf2_property_baton *baton;
14823 struct obstack *obstack = &cu->objfile->objfile_obstack;
14824
14825 if (attr == NULL || prop == NULL)
14826 return 0;
14827
14828 if (attr_form_is_block (attr))
14829 {
8d749320 14830 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14831 baton->referenced_type = NULL;
14832 baton->locexpr.per_cu = cu->per_cu;
14833 baton->locexpr.size = DW_BLOCK (attr)->size;
14834 baton->locexpr.data = DW_BLOCK (attr)->data;
14835 prop->data.baton = baton;
14836 prop->kind = PROP_LOCEXPR;
14837 gdb_assert (prop->data.baton != NULL);
14838 }
14839 else if (attr_form_is_ref (attr))
14840 {
14841 struct dwarf2_cu *target_cu = cu;
14842 struct die_info *target_die;
14843 struct attribute *target_attr;
14844
14845 target_die = follow_die_ref (die, attr, &target_cu);
14846 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14847 if (target_attr == NULL)
14848 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14849 target_cu);
80180f79
SA
14850 if (target_attr == NULL)
14851 return 0;
14852
df25ebbd 14853 switch (target_attr->name)
80180f79 14854 {
df25ebbd
JB
14855 case DW_AT_location:
14856 if (attr_form_is_section_offset (target_attr))
14857 {
8d749320 14858 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14859 baton->referenced_type = die_type (target_die, target_cu);
14860 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14861 prop->data.baton = baton;
14862 prop->kind = PROP_LOCLIST;
14863 gdb_assert (prop->data.baton != NULL);
14864 }
14865 else if (attr_form_is_block (target_attr))
14866 {
8d749320 14867 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14868 baton->referenced_type = die_type (target_die, target_cu);
14869 baton->locexpr.per_cu = cu->per_cu;
14870 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14871 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14872 prop->data.baton = baton;
14873 prop->kind = PROP_LOCEXPR;
14874 gdb_assert (prop->data.baton != NULL);
14875 }
14876 else
14877 {
14878 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14879 "dynamic property");
14880 return 0;
14881 }
14882 break;
14883 case DW_AT_data_member_location:
14884 {
14885 LONGEST offset;
14886
14887 if (!handle_data_member_location (target_die, target_cu,
14888 &offset))
14889 return 0;
14890
8d749320 14891 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14892 baton->referenced_type = read_type_die (target_die->parent,
14893 target_cu);
df25ebbd
JB
14894 baton->offset_info.offset = offset;
14895 baton->offset_info.type = die_type (target_die, target_cu);
14896 prop->data.baton = baton;
14897 prop->kind = PROP_ADDR_OFFSET;
14898 break;
14899 }
80180f79
SA
14900 }
14901 }
14902 else if (attr_form_is_constant (attr))
14903 {
14904 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14905 prop->kind = PROP_CONST;
14906 }
14907 else
14908 {
14909 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14910 dwarf2_name (die, cu));
14911 return 0;
14912 }
14913
14914 return 1;
14915}
14916
a02abb62
JB
14917/* Read the given DW_AT_subrange DIE. */
14918
f792889a 14919static struct type *
a02abb62
JB
14920read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14921{
4c9ad8c2 14922 struct type *base_type, *orig_base_type;
a02abb62
JB
14923 struct type *range_type;
14924 struct attribute *attr;
729efb13 14925 struct dynamic_prop low, high;
4fae6e18 14926 int low_default_is_valid;
c451ebe5 14927 int high_bound_is_count = 0;
15d034d0 14928 const char *name;
43bbcdc2 14929 LONGEST negative_mask;
e77813c8 14930
4c9ad8c2
TT
14931 orig_base_type = die_type (die, cu);
14932 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14933 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14934 creating the range type, but we use the result of check_typedef
14935 when examining properties of the type. */
14936 base_type = check_typedef (orig_base_type);
a02abb62 14937
7e314c57
JK
14938 /* The die_type call above may have already set the type for this DIE. */
14939 range_type = get_die_type (die, cu);
14940 if (range_type)
14941 return range_type;
14942
729efb13
SA
14943 low.kind = PROP_CONST;
14944 high.kind = PROP_CONST;
14945 high.data.const_val = 0;
14946
4fae6e18
JK
14947 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14948 omitting DW_AT_lower_bound. */
14949 switch (cu->language)
6e70227d 14950 {
4fae6e18
JK
14951 case language_c:
14952 case language_cplus:
729efb13 14953 low.data.const_val = 0;
4fae6e18
JK
14954 low_default_is_valid = 1;
14955 break;
14956 case language_fortran:
729efb13 14957 low.data.const_val = 1;
4fae6e18
JK
14958 low_default_is_valid = 1;
14959 break;
14960 case language_d:
14961 case language_java:
14962 case language_objc:
729efb13 14963 low.data.const_val = 0;
4fae6e18
JK
14964 low_default_is_valid = (cu->header.version >= 4);
14965 break;
14966 case language_ada:
14967 case language_m2:
14968 case language_pascal:
729efb13 14969 low.data.const_val = 1;
4fae6e18
JK
14970 low_default_is_valid = (cu->header.version >= 4);
14971 break;
14972 default:
729efb13 14973 low.data.const_val = 0;
4fae6e18
JK
14974 low_default_is_valid = 0;
14975 break;
a02abb62
JB
14976 }
14977
e142c38c 14978 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14979 if (attr)
11c1ba78 14980 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14981 else if (!low_default_is_valid)
14982 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14983 "- DIE at 0x%x [in module %s]"),
4262abfb 14984 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14985
e142c38c 14986 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14987 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14988 {
14989 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14990 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14991 {
c451ebe5
SA
14992 /* If bounds are constant do the final calculation here. */
14993 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14994 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14995 else
14996 high_bound_is_count = 1;
c2ff108b 14997 }
e77813c8
PM
14998 }
14999
15000 /* Dwarf-2 specifications explicitly allows to create subrange types
15001 without specifying a base type.
15002 In that case, the base type must be set to the type of
15003 the lower bound, upper bound or count, in that order, if any of these
15004 three attributes references an object that has a type.
15005 If no base type is found, the Dwarf-2 specifications say that
15006 a signed integer type of size equal to the size of an address should
15007 be used.
15008 For the following C code: `extern char gdb_int [];'
15009 GCC produces an empty range DIE.
15010 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15011 high bound or count are not yet handled by this code. */
e77813c8
PM
15012 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15013 {
15014 struct objfile *objfile = cu->objfile;
15015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15016 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15017 struct type *int_type = objfile_type (objfile)->builtin_int;
15018
15019 /* Test "int", "long int", and "long long int" objfile types,
15020 and select the first one having a size above or equal to the
15021 architecture address size. */
15022 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15023 base_type = int_type;
15024 else
15025 {
15026 int_type = objfile_type (objfile)->builtin_long;
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15029 else
15030 {
15031 int_type = objfile_type (objfile)->builtin_long_long;
15032 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15033 base_type = int_type;
15034 }
15035 }
15036 }
a02abb62 15037
dbb9c2b1
JB
15038 /* Normally, the DWARF producers are expected to use a signed
15039 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15040 But this is unfortunately not always the case, as witnessed
15041 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15042 is used instead. To work around that ambiguity, we treat
15043 the bounds as signed, and thus sign-extend their values, when
15044 the base type is signed. */
6e70227d 15045 negative_mask =
43bbcdc2 15046 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15047 if (low.kind == PROP_CONST
15048 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15049 low.data.const_val |= negative_mask;
15050 if (high.kind == PROP_CONST
15051 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15052 high.data.const_val |= negative_mask;
43bbcdc2 15053
729efb13 15054 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15055
c451ebe5
SA
15056 if (high_bound_is_count)
15057 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15058
c2ff108b
JK
15059 /* Ada expects an empty array on no boundary attributes. */
15060 if (attr == NULL && cu->language != language_ada)
729efb13 15061 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15062
39cbfefa
DJ
15063 name = dwarf2_name (die, cu);
15064 if (name)
15065 TYPE_NAME (range_type) = name;
6e70227d 15066
e142c38c 15067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15068 if (attr)
15069 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15070
7e314c57
JK
15071 set_die_type (die, range_type, cu);
15072
15073 /* set_die_type should be already done. */
b4ba55a1
JB
15074 set_descriptive_type (range_type, die, cu);
15075
7e314c57 15076 return range_type;
a02abb62 15077}
6e70227d 15078
f792889a 15079static struct type *
81a17f79
JB
15080read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15081{
15082 struct type *type;
81a17f79 15083
81a17f79
JB
15084 /* For now, we only support the C meaning of an unspecified type: void. */
15085
0114d602
DJ
15086 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15087 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15088
f792889a 15089 return set_die_type (die, type, cu);
81a17f79 15090}
a02abb62 15091
639d11d3
DC
15092/* Read a single die and all its descendents. Set the die's sibling
15093 field to NULL; set other fields in the die correctly, and set all
15094 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15095 location of the info_ptr after reading all of those dies. PARENT
15096 is the parent of the die in question. */
15097
15098static struct die_info *
dee91e82 15099read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15100 const gdb_byte *info_ptr,
15101 const gdb_byte **new_info_ptr,
dee91e82 15102 struct die_info *parent)
639d11d3
DC
15103{
15104 struct die_info *die;
d521ce57 15105 const gdb_byte *cur_ptr;
639d11d3
DC
15106 int has_children;
15107
bf6af496 15108 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15109 if (die == NULL)
15110 {
15111 *new_info_ptr = cur_ptr;
15112 return NULL;
15113 }
93311388 15114 store_in_ref_table (die, reader->cu);
639d11d3
DC
15115
15116 if (has_children)
bf6af496 15117 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15118 else
15119 {
15120 die->child = NULL;
15121 *new_info_ptr = cur_ptr;
15122 }
15123
15124 die->sibling = NULL;
15125 die->parent = parent;
15126 return die;
15127}
15128
15129/* Read a die, all of its descendents, and all of its siblings; set
15130 all of the fields of all of the dies correctly. Arguments are as
15131 in read_die_and_children. */
15132
15133static struct die_info *
bf6af496 15134read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15135 const gdb_byte *info_ptr,
15136 const gdb_byte **new_info_ptr,
bf6af496 15137 struct die_info *parent)
639d11d3
DC
15138{
15139 struct die_info *first_die, *last_sibling;
d521ce57 15140 const gdb_byte *cur_ptr;
639d11d3 15141
c906108c 15142 cur_ptr = info_ptr;
639d11d3
DC
15143 first_die = last_sibling = NULL;
15144
15145 while (1)
c906108c 15146 {
639d11d3 15147 struct die_info *die
dee91e82 15148 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15149
1d325ec1 15150 if (die == NULL)
c906108c 15151 {
639d11d3
DC
15152 *new_info_ptr = cur_ptr;
15153 return first_die;
c906108c 15154 }
1d325ec1
DJ
15155
15156 if (!first_die)
15157 first_die = die;
c906108c 15158 else
1d325ec1
DJ
15159 last_sibling->sibling = die;
15160
15161 last_sibling = die;
c906108c 15162 }
c906108c
SS
15163}
15164
bf6af496
DE
15165/* Read a die, all of its descendents, and all of its siblings; set
15166 all of the fields of all of the dies correctly. Arguments are as
15167 in read_die_and_children.
15168 This the main entry point for reading a DIE and all its children. */
15169
15170static struct die_info *
15171read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15172 const gdb_byte *info_ptr,
15173 const gdb_byte **new_info_ptr,
bf6af496
DE
15174 struct die_info *parent)
15175{
15176 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15177 new_info_ptr, parent);
15178
b4f54984 15179 if (dwarf_die_debug)
bf6af496
DE
15180 {
15181 fprintf_unfiltered (gdb_stdlog,
15182 "Read die from %s@0x%x of %s:\n",
a32a8923 15183 get_section_name (reader->die_section),
bf6af496
DE
15184 (unsigned) (info_ptr - reader->die_section->buffer),
15185 bfd_get_filename (reader->abfd));
b4f54984 15186 dump_die (die, dwarf_die_debug);
bf6af496
DE
15187 }
15188
15189 return die;
15190}
15191
3019eac3
DE
15192/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15193 attributes.
15194 The caller is responsible for filling in the extra attributes
15195 and updating (*DIEP)->num_attrs.
15196 Set DIEP to point to a newly allocated die with its information,
15197 except for its child, sibling, and parent fields.
15198 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15199
d521ce57 15200static const gdb_byte *
3019eac3 15201read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15202 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15203 int *has_children, int num_extra_attrs)
93311388 15204{
b64f50a1
JK
15205 unsigned int abbrev_number, bytes_read, i;
15206 sect_offset offset;
93311388
DE
15207 struct abbrev_info *abbrev;
15208 struct die_info *die;
15209 struct dwarf2_cu *cu = reader->cu;
15210 bfd *abfd = reader->abfd;
15211
b64f50a1 15212 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15213 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15214 info_ptr += bytes_read;
15215 if (!abbrev_number)
15216 {
15217 *diep = NULL;
15218 *has_children = 0;
15219 return info_ptr;
15220 }
15221
433df2d4 15222 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15223 if (!abbrev)
348e048f
DE
15224 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15225 abbrev_number,
15226 bfd_get_filename (abfd));
15227
3019eac3 15228 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15229 die->offset = offset;
15230 die->tag = abbrev->tag;
15231 die->abbrev = abbrev_number;
15232
3019eac3
DE
15233 /* Make the result usable.
15234 The caller needs to update num_attrs after adding the extra
15235 attributes. */
93311388
DE
15236 die->num_attrs = abbrev->num_attrs;
15237
15238 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15239 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15240 info_ptr);
93311388
DE
15241
15242 *diep = die;
15243 *has_children = abbrev->has_children;
15244 return info_ptr;
15245}
15246
3019eac3
DE
15247/* Read a die and all its attributes.
15248 Set DIEP to point to a newly allocated die with its information,
15249 except for its child, sibling, and parent fields.
15250 Set HAS_CHILDREN to tell whether the die has children or not. */
15251
d521ce57 15252static const gdb_byte *
3019eac3 15253read_full_die (const struct die_reader_specs *reader,
d521ce57 15254 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15255 int *has_children)
15256{
d521ce57 15257 const gdb_byte *result;
bf6af496
DE
15258
15259 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15260
b4f54984 15261 if (dwarf_die_debug)
bf6af496
DE
15262 {
15263 fprintf_unfiltered (gdb_stdlog,
15264 "Read die from %s@0x%x of %s:\n",
a32a8923 15265 get_section_name (reader->die_section),
bf6af496
DE
15266 (unsigned) (info_ptr - reader->die_section->buffer),
15267 bfd_get_filename (reader->abfd));
b4f54984 15268 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15269 }
15270
15271 return result;
3019eac3 15272}
433df2d4
DE
15273\f
15274/* Abbreviation tables.
3019eac3 15275
433df2d4 15276 In DWARF version 2, the description of the debugging information is
c906108c
SS
15277 stored in a separate .debug_abbrev section. Before we read any
15278 dies from a section we read in all abbreviations and install them
433df2d4
DE
15279 in a hash table. */
15280
15281/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15282
15283static struct abbrev_info *
15284abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15285{
15286 struct abbrev_info *abbrev;
15287
8d749320 15288 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15289 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15290
433df2d4
DE
15291 return abbrev;
15292}
15293
15294/* Add an abbreviation to the table. */
c906108c
SS
15295
15296static void
433df2d4
DE
15297abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15298 unsigned int abbrev_number,
15299 struct abbrev_info *abbrev)
15300{
15301 unsigned int hash_number;
15302
15303 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15304 abbrev->next = abbrev_table->abbrevs[hash_number];
15305 abbrev_table->abbrevs[hash_number] = abbrev;
15306}
dee91e82 15307
433df2d4
DE
15308/* Look up an abbrev in the table.
15309 Returns NULL if the abbrev is not found. */
15310
15311static struct abbrev_info *
15312abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15313 unsigned int abbrev_number)
c906108c 15314{
433df2d4
DE
15315 unsigned int hash_number;
15316 struct abbrev_info *abbrev;
15317
15318 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15319 abbrev = abbrev_table->abbrevs[hash_number];
15320
15321 while (abbrev)
15322 {
15323 if (abbrev->number == abbrev_number)
15324 return abbrev;
15325 abbrev = abbrev->next;
15326 }
15327 return NULL;
15328}
15329
15330/* Read in an abbrev table. */
15331
15332static struct abbrev_table *
15333abbrev_table_read_table (struct dwarf2_section_info *section,
15334 sect_offset offset)
15335{
15336 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15337 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15338 struct abbrev_table *abbrev_table;
d521ce57 15339 const gdb_byte *abbrev_ptr;
c906108c
SS
15340 struct abbrev_info *cur_abbrev;
15341 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15342 unsigned int abbrev_form;
f3dd6933
DJ
15343 struct attr_abbrev *cur_attrs;
15344 unsigned int allocated_attrs;
c906108c 15345
70ba0933 15346 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15347 abbrev_table->offset = offset;
433df2d4 15348 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15349 abbrev_table->abbrevs =
15350 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15351 ABBREV_HASH_SIZE);
433df2d4
DE
15352 memset (abbrev_table->abbrevs, 0,
15353 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15354
433df2d4
DE
15355 dwarf2_read_section (objfile, section);
15356 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15357 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15358 abbrev_ptr += bytes_read;
15359
f3dd6933 15360 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15361 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15362
0963b4bd 15363 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15364 while (abbrev_number)
15365 {
433df2d4 15366 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15367
15368 /* read in abbrev header */
15369 cur_abbrev->number = abbrev_number;
aead7601
SM
15370 cur_abbrev->tag
15371 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15372 abbrev_ptr += bytes_read;
15373 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15374 abbrev_ptr += 1;
15375
15376 /* now read in declarations */
15377 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 while (abbrev_name)
15382 {
f3dd6933 15383 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15384 {
f3dd6933
DJ
15385 allocated_attrs += ATTR_ALLOC_CHUNK;
15386 cur_attrs
224c3ddb 15387 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15388 }
ae038cb0 15389
aead7601
SM
15390 cur_attrs[cur_abbrev->num_attrs].name
15391 = (enum dwarf_attribute) abbrev_name;
15392 cur_attrs[cur_abbrev->num_attrs++].form
15393 = (enum dwarf_form) abbrev_form;
c906108c
SS
15394 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15395 abbrev_ptr += bytes_read;
15396 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15397 abbrev_ptr += bytes_read;
15398 }
15399
8d749320
SM
15400 cur_abbrev->attrs =
15401 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15402 cur_abbrev->num_attrs);
f3dd6933
DJ
15403 memcpy (cur_abbrev->attrs, cur_attrs,
15404 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15405
433df2d4 15406 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15407
15408 /* Get next abbreviation.
15409 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15410 always properly terminated with an abbrev number of 0.
15411 Exit loop if we encounter an abbreviation which we have
15412 already read (which means we are about to read the abbreviations
15413 for the next compile unit) or if the end of the abbreviation
15414 table is reached. */
433df2d4 15415 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15416 break;
15417 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15418 abbrev_ptr += bytes_read;
433df2d4 15419 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15420 break;
15421 }
f3dd6933
DJ
15422
15423 xfree (cur_attrs);
433df2d4 15424 return abbrev_table;
c906108c
SS
15425}
15426
433df2d4 15427/* Free the resources held by ABBREV_TABLE. */
c906108c 15428
c906108c 15429static void
433df2d4 15430abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15431{
433df2d4
DE
15432 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15433 xfree (abbrev_table);
c906108c
SS
15434}
15435
f4dc4d17
DE
15436/* Same as abbrev_table_free but as a cleanup.
15437 We pass in a pointer to the pointer to the table so that we can
15438 set the pointer to NULL when we're done. It also simplifies
73051182 15439 build_type_psymtabs_1. */
f4dc4d17
DE
15440
15441static void
15442abbrev_table_free_cleanup (void *table_ptr)
15443{
9a3c8263 15444 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15445
15446 if (*abbrev_table_ptr != NULL)
15447 abbrev_table_free (*abbrev_table_ptr);
15448 *abbrev_table_ptr = NULL;
15449}
15450
433df2d4
DE
15451/* Read the abbrev table for CU from ABBREV_SECTION. */
15452
15453static void
15454dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15455 struct dwarf2_section_info *abbrev_section)
c906108c 15456{
433df2d4
DE
15457 cu->abbrev_table =
15458 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15459}
c906108c 15460
433df2d4 15461/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15462
433df2d4
DE
15463static void
15464dwarf2_free_abbrev_table (void *ptr_to_cu)
15465{
9a3c8263 15466 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15467
a2ce51a0
DE
15468 if (cu->abbrev_table != NULL)
15469 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15470 /* Set this to NULL so that we SEGV if we try to read it later,
15471 and also because free_comp_unit verifies this is NULL. */
15472 cu->abbrev_table = NULL;
15473}
15474\f
72bf9492
DJ
15475/* Returns nonzero if TAG represents a type that we might generate a partial
15476 symbol for. */
15477
15478static int
15479is_type_tag_for_partial (int tag)
15480{
15481 switch (tag)
15482 {
15483#if 0
15484 /* Some types that would be reasonable to generate partial symbols for,
15485 that we don't at present. */
15486 case DW_TAG_array_type:
15487 case DW_TAG_file_type:
15488 case DW_TAG_ptr_to_member_type:
15489 case DW_TAG_set_type:
15490 case DW_TAG_string_type:
15491 case DW_TAG_subroutine_type:
15492#endif
15493 case DW_TAG_base_type:
15494 case DW_TAG_class_type:
680b30c7 15495 case DW_TAG_interface_type:
72bf9492
DJ
15496 case DW_TAG_enumeration_type:
15497 case DW_TAG_structure_type:
15498 case DW_TAG_subrange_type:
15499 case DW_TAG_typedef:
15500 case DW_TAG_union_type:
15501 return 1;
15502 default:
15503 return 0;
15504 }
15505}
15506
15507/* Load all DIEs that are interesting for partial symbols into memory. */
15508
15509static struct partial_die_info *
dee91e82 15510load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15511 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15512{
dee91e82 15513 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15514 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15515 struct partial_die_info *part_die;
15516 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15517 struct abbrev_info *abbrev;
15518 unsigned int bytes_read;
5afb4e99 15519 unsigned int load_all = 0;
72bf9492
DJ
15520 int nesting_level = 1;
15521
15522 parent_die = NULL;
15523 last_die = NULL;
15524
7adf1e79
DE
15525 gdb_assert (cu->per_cu != NULL);
15526 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15527 load_all = 1;
15528
72bf9492
DJ
15529 cu->partial_dies
15530 = htab_create_alloc_ex (cu->header.length / 12,
15531 partial_die_hash,
15532 partial_die_eq,
15533 NULL,
15534 &cu->comp_unit_obstack,
15535 hashtab_obstack_allocate,
15536 dummy_obstack_deallocate);
15537
8d749320 15538 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15539
15540 while (1)
15541 {
15542 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15543
15544 /* A NULL abbrev means the end of a series of children. */
15545 if (abbrev == NULL)
15546 {
15547 if (--nesting_level == 0)
15548 {
15549 /* PART_DIE was probably the last thing allocated on the
15550 comp_unit_obstack, so we could call obstack_free
15551 here. We don't do that because the waste is small,
15552 and will be cleaned up when we're done with this
15553 compilation unit. This way, we're also more robust
15554 against other users of the comp_unit_obstack. */
15555 return first_die;
15556 }
15557 info_ptr += bytes_read;
15558 last_die = parent_die;
15559 parent_die = parent_die->die_parent;
15560 continue;
15561 }
15562
98bfdba5
PA
15563 /* Check for template arguments. We never save these; if
15564 they're seen, we just mark the parent, and go on our way. */
15565 if (parent_die != NULL
15566 && cu->language == language_cplus
15567 && (abbrev->tag == DW_TAG_template_type_param
15568 || abbrev->tag == DW_TAG_template_value_param))
15569 {
15570 parent_die->has_template_arguments = 1;
15571
15572 if (!load_all)
15573 {
15574 /* We don't need a partial DIE for the template argument. */
dee91e82 15575 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15576 continue;
15577 }
15578 }
15579
0d99eb77 15580 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15581 Skip their other children. */
15582 if (!load_all
15583 && cu->language == language_cplus
15584 && parent_die != NULL
15585 && parent_die->tag == DW_TAG_subprogram)
15586 {
dee91e82 15587 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15588 continue;
15589 }
15590
5afb4e99
DJ
15591 /* Check whether this DIE is interesting enough to save. Normally
15592 we would not be interested in members here, but there may be
15593 later variables referencing them via DW_AT_specification (for
15594 static members). */
15595 if (!load_all
15596 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15597 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15598 && abbrev->tag != DW_TAG_enumerator
15599 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15600 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15601 && abbrev->tag != DW_TAG_variable
5afb4e99 15602 && abbrev->tag != DW_TAG_namespace
f55ee35c 15603 && abbrev->tag != DW_TAG_module
95554aad 15604 && abbrev->tag != DW_TAG_member
74921315
KS
15605 && abbrev->tag != DW_TAG_imported_unit
15606 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15607 {
15608 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15609 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15610 continue;
15611 }
15612
dee91e82
DE
15613 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15614 info_ptr);
72bf9492
DJ
15615
15616 /* This two-pass algorithm for processing partial symbols has a
15617 high cost in cache pressure. Thus, handle some simple cases
15618 here which cover the majority of C partial symbols. DIEs
15619 which neither have specification tags in them, nor could have
15620 specification tags elsewhere pointing at them, can simply be
15621 processed and discarded.
15622
15623 This segment is also optional; scan_partial_symbols and
15624 add_partial_symbol will handle these DIEs if we chain
15625 them in normally. When compilers which do not emit large
15626 quantities of duplicate debug information are more common,
15627 this code can probably be removed. */
15628
15629 /* Any complete simple types at the top level (pretty much all
15630 of them, for a language without namespaces), can be processed
15631 directly. */
15632 if (parent_die == NULL
15633 && part_die->has_specification == 0
15634 && part_die->is_declaration == 0
d8228535 15635 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15636 || part_die->tag == DW_TAG_base_type
15637 || part_die->tag == DW_TAG_subrange_type))
15638 {
15639 if (building_psymtab && part_die->name != NULL)
04a679b8 15640 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15641 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15642 &objfile->static_psymbols,
1762568f 15643 0, cu->language, objfile);
dee91e82 15644 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15645 continue;
15646 }
15647
d8228535
JK
15648 /* The exception for DW_TAG_typedef with has_children above is
15649 a workaround of GCC PR debug/47510. In the case of this complaint
15650 type_name_no_tag_or_error will error on such types later.
15651
15652 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15653 it could not find the child DIEs referenced later, this is checked
15654 above. In correct DWARF DW_TAG_typedef should have no children. */
15655
15656 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15657 complaint (&symfile_complaints,
15658 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15659 "- DIE at 0x%x [in module %s]"),
4262abfb 15660 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15661
72bf9492
DJ
15662 /* If we're at the second level, and we're an enumerator, and
15663 our parent has no specification (meaning possibly lives in a
15664 namespace elsewhere), then we can add the partial symbol now
15665 instead of queueing it. */
15666 if (part_die->tag == DW_TAG_enumerator
15667 && parent_die != NULL
15668 && parent_die->die_parent == NULL
15669 && parent_die->tag == DW_TAG_enumeration_type
15670 && parent_die->has_specification == 0)
15671 {
15672 if (part_die->name == NULL)
3e43a32a
MS
15673 complaint (&symfile_complaints,
15674 _("malformed enumerator DIE ignored"));
72bf9492 15675 else if (building_psymtab)
04a679b8 15676 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15677 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15678 (cu->language == language_cplus
15679 || cu->language == language_java)
bb5ed363
DE
15680 ? &objfile->global_psymbols
15681 : &objfile->static_psymbols,
1762568f 15682 0, cu->language, objfile);
72bf9492 15683
dee91e82 15684 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15685 continue;
15686 }
15687
15688 /* We'll save this DIE so link it in. */
15689 part_die->die_parent = parent_die;
15690 part_die->die_sibling = NULL;
15691 part_die->die_child = NULL;
15692
15693 if (last_die && last_die == parent_die)
15694 last_die->die_child = part_die;
15695 else if (last_die)
15696 last_die->die_sibling = part_die;
15697
15698 last_die = part_die;
15699
15700 if (first_die == NULL)
15701 first_die = part_die;
15702
15703 /* Maybe add the DIE to the hash table. Not all DIEs that we
15704 find interesting need to be in the hash table, because we
15705 also have the parent/sibling/child chains; only those that we
15706 might refer to by offset later during partial symbol reading.
15707
15708 For now this means things that might have be the target of a
15709 DW_AT_specification, DW_AT_abstract_origin, or
15710 DW_AT_extension. DW_AT_extension will refer only to
15711 namespaces; DW_AT_abstract_origin refers to functions (and
15712 many things under the function DIE, but we do not recurse
15713 into function DIEs during partial symbol reading) and
15714 possibly variables as well; DW_AT_specification refers to
15715 declarations. Declarations ought to have the DW_AT_declaration
15716 flag. It happens that GCC forgets to put it in sometimes, but
15717 only for functions, not for types.
15718
15719 Adding more things than necessary to the hash table is harmless
15720 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15721 wasted time in find_partial_die, when we reread the compilation
15722 unit with load_all_dies set. */
72bf9492 15723
5afb4e99 15724 if (load_all
72929c62 15725 || abbrev->tag == DW_TAG_constant
5afb4e99 15726 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15727 || abbrev->tag == DW_TAG_variable
15728 || abbrev->tag == DW_TAG_namespace
15729 || part_die->is_declaration)
15730 {
15731 void **slot;
15732
15733 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15734 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15735 *slot = part_die;
15736 }
15737
8d749320 15738 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15739
15740 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15741 we have no reason to follow the children of structures; for other
98bfdba5
PA
15742 languages we have to, so that we can get at method physnames
15743 to infer fully qualified class names, for DW_AT_specification,
15744 and for C++ template arguments. For C++, we also look one level
15745 inside functions to find template arguments (if the name of the
15746 function does not already contain the template arguments).
bc30ff58
JB
15747
15748 For Ada, we need to scan the children of subprograms and lexical
15749 blocks as well because Ada allows the definition of nested
15750 entities that could be interesting for the debugger, such as
15751 nested subprograms for instance. */
72bf9492 15752 if (last_die->has_children
5afb4e99
DJ
15753 && (load_all
15754 || last_die->tag == DW_TAG_namespace
f55ee35c 15755 || last_die->tag == DW_TAG_module
72bf9492 15756 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15757 || (cu->language == language_cplus
15758 && last_die->tag == DW_TAG_subprogram
15759 && (last_die->name == NULL
15760 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15761 || (cu->language != language_c
15762 && (last_die->tag == DW_TAG_class_type
680b30c7 15763 || last_die->tag == DW_TAG_interface_type
72bf9492 15764 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15765 || last_die->tag == DW_TAG_union_type))
15766 || (cu->language == language_ada
15767 && (last_die->tag == DW_TAG_subprogram
15768 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15769 {
15770 nesting_level++;
15771 parent_die = last_die;
15772 continue;
15773 }
15774
15775 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15776 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15777
15778 /* Back to the top, do it again. */
15779 }
15780}
15781
c906108c
SS
15782/* Read a minimal amount of information into the minimal die structure. */
15783
d521ce57 15784static const gdb_byte *
dee91e82
DE
15785read_partial_die (const struct die_reader_specs *reader,
15786 struct partial_die_info *part_die,
15787 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15788 const gdb_byte *info_ptr)
c906108c 15789{
dee91e82 15790 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15791 struct objfile *objfile = cu->objfile;
d521ce57 15792 const gdb_byte *buffer = reader->buffer;
fa238c03 15793 unsigned int i;
c906108c 15794 struct attribute attr;
c5aa993b 15795 int has_low_pc_attr = 0;
c906108c 15796 int has_high_pc_attr = 0;
91da1414 15797 int high_pc_relative = 0;
c906108c 15798
72bf9492 15799 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15800
b64f50a1 15801 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15802
15803 info_ptr += abbrev_len;
15804
15805 if (abbrev == NULL)
15806 return info_ptr;
15807
c906108c
SS
15808 part_die->tag = abbrev->tag;
15809 part_die->has_children = abbrev->has_children;
c906108c
SS
15810
15811 for (i = 0; i < abbrev->num_attrs; ++i)
15812 {
dee91e82 15813 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15814
15815 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15816 partial symbol table. */
c906108c
SS
15817 switch (attr.name)
15818 {
15819 case DW_AT_name:
71c25dea
TT
15820 switch (part_die->tag)
15821 {
15822 case DW_TAG_compile_unit:
95554aad 15823 case DW_TAG_partial_unit:
348e048f 15824 case DW_TAG_type_unit:
71c25dea
TT
15825 /* Compilation units have a DW_AT_name that is a filename, not
15826 a source language identifier. */
15827 case DW_TAG_enumeration_type:
15828 case DW_TAG_enumerator:
15829 /* These tags always have simple identifiers already; no need
15830 to canonicalize them. */
15831 part_die->name = DW_STRING (&attr);
15832 break;
15833 default:
15834 part_die->name
15835 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15836 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15837 break;
15838 }
c906108c 15839 break;
31ef98ae 15840 case DW_AT_linkage_name:
c906108c 15841 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15842 /* Note that both forms of linkage name might appear. We
15843 assume they will be the same, and we only store the last
15844 one we see. */
94af9270
KS
15845 if (cu->language == language_ada)
15846 part_die->name = DW_STRING (&attr);
abc72ce4 15847 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15848 break;
15849 case DW_AT_low_pc:
15850 has_low_pc_attr = 1;
31aa7e4e 15851 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15852 break;
15853 case DW_AT_high_pc:
15854 has_high_pc_attr = 1;
31aa7e4e
JB
15855 part_die->highpc = attr_value_as_address (&attr);
15856 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15857 high_pc_relative = 1;
c906108c
SS
15858 break;
15859 case DW_AT_location:
0963b4bd 15860 /* Support the .debug_loc offsets. */
8e19ed76
PS
15861 if (attr_form_is_block (&attr))
15862 {
95554aad 15863 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15864 }
3690dd37 15865 else if (attr_form_is_section_offset (&attr))
8e19ed76 15866 {
4d3c2250 15867 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15868 }
15869 else
15870 {
4d3c2250
KB
15871 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15872 "partial symbol information");
8e19ed76 15873 }
c906108c 15874 break;
c906108c
SS
15875 case DW_AT_external:
15876 part_die->is_external = DW_UNSND (&attr);
15877 break;
15878 case DW_AT_declaration:
15879 part_die->is_declaration = DW_UNSND (&attr);
15880 break;
15881 case DW_AT_type:
15882 part_die->has_type = 1;
15883 break;
15884 case DW_AT_abstract_origin:
15885 case DW_AT_specification:
72bf9492
DJ
15886 case DW_AT_extension:
15887 part_die->has_specification = 1;
c764a876 15888 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15889 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15890 || cu->per_cu->is_dwz);
c906108c
SS
15891 break;
15892 case DW_AT_sibling:
15893 /* Ignore absolute siblings, they might point outside of
15894 the current compile unit. */
15895 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15896 complaint (&symfile_complaints,
15897 _("ignoring absolute DW_AT_sibling"));
c906108c 15898 else
b9502d3f
WN
15899 {
15900 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15901 const gdb_byte *sibling_ptr = buffer + off;
15902
15903 if (sibling_ptr < info_ptr)
15904 complaint (&symfile_complaints,
15905 _("DW_AT_sibling points backwards"));
22869d73
KS
15906 else if (sibling_ptr > reader->buffer_end)
15907 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15908 else
15909 part_die->sibling = sibling_ptr;
15910 }
c906108c 15911 break;
fa4028e9
JB
15912 case DW_AT_byte_size:
15913 part_die->has_byte_size = 1;
15914 break;
ff908ebf
AW
15915 case DW_AT_const_value:
15916 part_die->has_const_value = 1;
15917 break;
68511cec
CES
15918 case DW_AT_calling_convention:
15919 /* DWARF doesn't provide a way to identify a program's source-level
15920 entry point. DW_AT_calling_convention attributes are only meant
15921 to describe functions' calling conventions.
15922
15923 However, because it's a necessary piece of information in
15924 Fortran, and because DW_CC_program is the only piece of debugging
15925 information whose definition refers to a 'main program' at all,
15926 several compilers have begun marking Fortran main programs with
15927 DW_CC_program --- even when those functions use the standard
15928 calling conventions.
15929
15930 So until DWARF specifies a way to provide this information and
15931 compilers pick up the new representation, we'll support this
15932 practice. */
15933 if (DW_UNSND (&attr) == DW_CC_program
15934 && cu->language == language_fortran)
3d548a53 15935 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15936 break;
481860b3
GB
15937 case DW_AT_inline:
15938 if (DW_UNSND (&attr) == DW_INL_inlined
15939 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15940 part_die->may_be_inlined = 1;
15941 break;
95554aad
TT
15942
15943 case DW_AT_import:
15944 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15945 {
15946 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15947 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15948 || cu->per_cu->is_dwz);
15949 }
95554aad
TT
15950 break;
15951
c906108c
SS
15952 default:
15953 break;
15954 }
15955 }
15956
91da1414
MW
15957 if (high_pc_relative)
15958 part_die->highpc += part_die->lowpc;
15959
9373cf26
JK
15960 if (has_low_pc_attr && has_high_pc_attr)
15961 {
15962 /* When using the GNU linker, .gnu.linkonce. sections are used to
15963 eliminate duplicate copies of functions and vtables and such.
15964 The linker will arbitrarily choose one and discard the others.
15965 The AT_*_pc values for such functions refer to local labels in
15966 these sections. If the section from that file was discarded, the
15967 labels are not in the output, so the relocs get a value of 0.
15968 If this is a discarded function, mark the pc bounds as invalid,
15969 so that GDB will ignore it. */
15970 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15971 {
bb5ed363 15972 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15973
15974 complaint (&symfile_complaints,
15975 _("DW_AT_low_pc %s is zero "
15976 "for DIE at 0x%x [in module %s]"),
15977 paddress (gdbarch, part_die->lowpc),
4262abfb 15978 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15979 }
15980 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15981 else if (part_die->lowpc >= part_die->highpc)
15982 {
bb5ed363 15983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15984
15985 complaint (&symfile_complaints,
15986 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15987 "for DIE at 0x%x [in module %s]"),
15988 paddress (gdbarch, part_die->lowpc),
15989 paddress (gdbarch, part_die->highpc),
4262abfb 15990 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15991 }
15992 else
15993 part_die->has_pc_info = 1;
15994 }
85cbf3d3 15995
c906108c
SS
15996 return info_ptr;
15997}
15998
72bf9492
DJ
15999/* Find a cached partial DIE at OFFSET in CU. */
16000
16001static struct partial_die_info *
b64f50a1 16002find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16003{
16004 struct partial_die_info *lookup_die = NULL;
16005 struct partial_die_info part_die;
16006
16007 part_die.offset = offset;
9a3c8263
SM
16008 lookup_die = ((struct partial_die_info *)
16009 htab_find_with_hash (cu->partial_dies, &part_die,
16010 offset.sect_off));
72bf9492 16011
72bf9492
DJ
16012 return lookup_die;
16013}
16014
348e048f
DE
16015/* Find a partial DIE at OFFSET, which may or may not be in CU,
16016 except in the case of .debug_types DIEs which do not reference
16017 outside their CU (they do however referencing other types via
55f1336d 16018 DW_FORM_ref_sig8). */
72bf9492
DJ
16019
16020static struct partial_die_info *
36586728 16021find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16022{
bb5ed363 16023 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16024 struct dwarf2_per_cu_data *per_cu = NULL;
16025 struct partial_die_info *pd = NULL;
72bf9492 16026
36586728
TT
16027 if (offset_in_dwz == cu->per_cu->is_dwz
16028 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16029 {
16030 pd = find_partial_die_in_comp_unit (offset, cu);
16031 if (pd != NULL)
16032 return pd;
0d99eb77
DE
16033 /* We missed recording what we needed.
16034 Load all dies and try again. */
16035 per_cu = cu->per_cu;
5afb4e99 16036 }
0d99eb77
DE
16037 else
16038 {
16039 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16040 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16041 {
16042 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16043 " external reference to offset 0x%lx [in module %s].\n"),
16044 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16045 bfd_get_filename (objfile->obfd));
16046 }
36586728
TT
16047 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16048 objfile);
72bf9492 16049
0d99eb77
DE
16050 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16051 load_partial_comp_unit (per_cu);
ae038cb0 16052
0d99eb77
DE
16053 per_cu->cu->last_used = 0;
16054 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16055 }
5afb4e99 16056
dee91e82
DE
16057 /* If we didn't find it, and not all dies have been loaded,
16058 load them all and try again. */
16059
5afb4e99
DJ
16060 if (pd == NULL && per_cu->load_all_dies == 0)
16061 {
5afb4e99 16062 per_cu->load_all_dies = 1;
fd820528
DE
16063
16064 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16065 THIS_CU->cu may already be in use. So we can't just free it and
16066 replace its DIEs with the ones we read in. Instead, we leave those
16067 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16068 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16069 set. */
dee91e82 16070 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16071
16072 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16073 }
16074
16075 if (pd == NULL)
16076 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16077 _("could not find partial DIE 0x%x "
16078 "in cache [from module %s]\n"),
b64f50a1 16079 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16080 return pd;
72bf9492
DJ
16081}
16082
abc72ce4
DE
16083/* See if we can figure out if the class lives in a namespace. We do
16084 this by looking for a member function; its demangled name will
16085 contain namespace info, if there is any. */
16086
16087static void
16088guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16089 struct dwarf2_cu *cu)
16090{
16091 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16092 what template types look like, because the demangler
16093 frequently doesn't give the same name as the debug info. We
16094 could fix this by only using the demangled name to get the
16095 prefix (but see comment in read_structure_type). */
16096
16097 struct partial_die_info *real_pdi;
16098 struct partial_die_info *child_pdi;
16099
16100 /* If this DIE (this DIE's specification, if any) has a parent, then
16101 we should not do this. We'll prepend the parent's fully qualified
16102 name when we create the partial symbol. */
16103
16104 real_pdi = struct_pdi;
16105 while (real_pdi->has_specification)
36586728
TT
16106 real_pdi = find_partial_die (real_pdi->spec_offset,
16107 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16108
16109 if (real_pdi->die_parent != NULL)
16110 return;
16111
16112 for (child_pdi = struct_pdi->die_child;
16113 child_pdi != NULL;
16114 child_pdi = child_pdi->die_sibling)
16115 {
16116 if (child_pdi->tag == DW_TAG_subprogram
16117 && child_pdi->linkage_name != NULL)
16118 {
16119 char *actual_class_name
16120 = language_class_name_from_physname (cu->language_defn,
16121 child_pdi->linkage_name);
16122 if (actual_class_name != NULL)
16123 {
16124 struct_pdi->name
224c3ddb
SM
16125 = ((const char *)
16126 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16127 actual_class_name,
16128 strlen (actual_class_name)));
abc72ce4
DE
16129 xfree (actual_class_name);
16130 }
16131 break;
16132 }
16133 }
16134}
16135
72bf9492
DJ
16136/* Adjust PART_DIE before generating a symbol for it. This function
16137 may set the is_external flag or change the DIE's name. */
16138
16139static void
16140fixup_partial_die (struct partial_die_info *part_die,
16141 struct dwarf2_cu *cu)
16142{
abc72ce4
DE
16143 /* Once we've fixed up a die, there's no point in doing so again.
16144 This also avoids a memory leak if we were to call
16145 guess_partial_die_structure_name multiple times. */
16146 if (part_die->fixup_called)
16147 return;
16148
72bf9492
DJ
16149 /* If we found a reference attribute and the DIE has no name, try
16150 to find a name in the referred to DIE. */
16151
16152 if (part_die->name == NULL && part_die->has_specification)
16153 {
16154 struct partial_die_info *spec_die;
72bf9492 16155
36586728
TT
16156 spec_die = find_partial_die (part_die->spec_offset,
16157 part_die->spec_is_dwz, cu);
72bf9492 16158
10b3939b 16159 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16160
16161 if (spec_die->name)
16162 {
16163 part_die->name = spec_die->name;
16164
16165 /* Copy DW_AT_external attribute if it is set. */
16166 if (spec_die->is_external)
16167 part_die->is_external = spec_die->is_external;
16168 }
16169 }
16170
16171 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16172
16173 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16174 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16175
abc72ce4
DE
16176 /* If there is no parent die to provide a namespace, and there are
16177 children, see if we can determine the namespace from their linkage
122d1940 16178 name. */
abc72ce4 16179 if (cu->language == language_cplus
8b70b953 16180 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16181 && part_die->die_parent == NULL
16182 && part_die->has_children
16183 && (part_die->tag == DW_TAG_class_type
16184 || part_die->tag == DW_TAG_structure_type
16185 || part_die->tag == DW_TAG_union_type))
16186 guess_partial_die_structure_name (part_die, cu);
16187
53832f31
TT
16188 /* GCC might emit a nameless struct or union that has a linkage
16189 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16190 if (part_die->name == NULL
96408a79
SA
16191 && (part_die->tag == DW_TAG_class_type
16192 || part_die->tag == DW_TAG_interface_type
16193 || part_die->tag == DW_TAG_structure_type
16194 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16195 && part_die->linkage_name != NULL)
16196 {
16197 char *demangled;
16198
8de20a37 16199 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16200 if (demangled)
16201 {
96408a79
SA
16202 const char *base;
16203
16204 /* Strip any leading namespaces/classes, keep only the base name.
16205 DW_AT_name for named DIEs does not contain the prefixes. */
16206 base = strrchr (demangled, ':');
16207 if (base && base > demangled && base[-1] == ':')
16208 base++;
16209 else
16210 base = demangled;
16211
34a68019 16212 part_die->name
224c3ddb
SM
16213 = ((const char *)
16214 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16215 base, strlen (base)));
53832f31
TT
16216 xfree (demangled);
16217 }
16218 }
16219
abc72ce4 16220 part_die->fixup_called = 1;
72bf9492
DJ
16221}
16222
a8329558 16223/* Read an attribute value described by an attribute form. */
c906108c 16224
d521ce57 16225static const gdb_byte *
dee91e82
DE
16226read_attribute_value (const struct die_reader_specs *reader,
16227 struct attribute *attr, unsigned form,
d521ce57 16228 const gdb_byte *info_ptr)
c906108c 16229{
dee91e82 16230 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16231 struct objfile *objfile = cu->objfile;
16232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16233 bfd *abfd = reader->abfd;
e7c27a73 16234 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16235 unsigned int bytes_read;
16236 struct dwarf_block *blk;
16237
aead7601 16238 attr->form = (enum dwarf_form) form;
a8329558 16239 switch (form)
c906108c 16240 {
c906108c 16241 case DW_FORM_ref_addr:
ae411497 16242 if (cu->header.version == 2)
4568ecf9 16243 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16244 else
4568ecf9
DE
16245 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16246 &cu->header, &bytes_read);
ae411497
TT
16247 info_ptr += bytes_read;
16248 break;
36586728
TT
16249 case DW_FORM_GNU_ref_alt:
16250 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16251 info_ptr += bytes_read;
16252 break;
ae411497 16253 case DW_FORM_addr:
e7c27a73 16254 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16255 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16256 info_ptr += bytes_read;
c906108c
SS
16257 break;
16258 case DW_FORM_block2:
7b5a2f43 16259 blk = dwarf_alloc_block (cu);
c906108c
SS
16260 blk->size = read_2_bytes (abfd, info_ptr);
16261 info_ptr += 2;
16262 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16263 info_ptr += blk->size;
16264 DW_BLOCK (attr) = blk;
16265 break;
16266 case DW_FORM_block4:
7b5a2f43 16267 blk = dwarf_alloc_block (cu);
c906108c
SS
16268 blk->size = read_4_bytes (abfd, info_ptr);
16269 info_ptr += 4;
16270 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16271 info_ptr += blk->size;
16272 DW_BLOCK (attr) = blk;
16273 break;
16274 case DW_FORM_data2:
16275 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16276 info_ptr += 2;
16277 break;
16278 case DW_FORM_data4:
16279 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16280 info_ptr += 4;
16281 break;
16282 case DW_FORM_data8:
16283 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16284 info_ptr += 8;
16285 break;
2dc7f7b3
TT
16286 case DW_FORM_sec_offset:
16287 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16288 info_ptr += bytes_read;
16289 break;
c906108c 16290 case DW_FORM_string:
9b1c24c8 16291 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16292 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16293 info_ptr += bytes_read;
16294 break;
4bdf3d34 16295 case DW_FORM_strp:
36586728
TT
16296 if (!cu->per_cu->is_dwz)
16297 {
16298 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16299 &bytes_read);
16300 DW_STRING_IS_CANONICAL (attr) = 0;
16301 info_ptr += bytes_read;
16302 break;
16303 }
16304 /* FALLTHROUGH */
16305 case DW_FORM_GNU_strp_alt:
16306 {
16307 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16308 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16309 &bytes_read);
16310
16311 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16312 DW_STRING_IS_CANONICAL (attr) = 0;
16313 info_ptr += bytes_read;
16314 }
4bdf3d34 16315 break;
2dc7f7b3 16316 case DW_FORM_exprloc:
c906108c 16317 case DW_FORM_block:
7b5a2f43 16318 blk = dwarf_alloc_block (cu);
c906108c
SS
16319 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16320 info_ptr += bytes_read;
16321 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16322 info_ptr += blk->size;
16323 DW_BLOCK (attr) = blk;
16324 break;
16325 case DW_FORM_block1:
7b5a2f43 16326 blk = dwarf_alloc_block (cu);
c906108c
SS
16327 blk->size = read_1_byte (abfd, info_ptr);
16328 info_ptr += 1;
16329 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16330 info_ptr += blk->size;
16331 DW_BLOCK (attr) = blk;
16332 break;
16333 case DW_FORM_data1:
16334 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16335 info_ptr += 1;
16336 break;
16337 case DW_FORM_flag:
16338 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16339 info_ptr += 1;
16340 break;
2dc7f7b3
TT
16341 case DW_FORM_flag_present:
16342 DW_UNSND (attr) = 1;
16343 break;
c906108c
SS
16344 case DW_FORM_sdata:
16345 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16346 info_ptr += bytes_read;
16347 break;
16348 case DW_FORM_udata:
16349 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16350 info_ptr += bytes_read;
16351 break;
16352 case DW_FORM_ref1:
4568ecf9
DE
16353 DW_UNSND (attr) = (cu->header.offset.sect_off
16354 + read_1_byte (abfd, info_ptr));
c906108c
SS
16355 info_ptr += 1;
16356 break;
16357 case DW_FORM_ref2:
4568ecf9
DE
16358 DW_UNSND (attr) = (cu->header.offset.sect_off
16359 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16360 info_ptr += 2;
16361 break;
16362 case DW_FORM_ref4:
4568ecf9
DE
16363 DW_UNSND (attr) = (cu->header.offset.sect_off
16364 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16365 info_ptr += 4;
16366 break;
613e1657 16367 case DW_FORM_ref8:
4568ecf9
DE
16368 DW_UNSND (attr) = (cu->header.offset.sect_off
16369 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16370 info_ptr += 8;
16371 break;
55f1336d 16372 case DW_FORM_ref_sig8:
ac9ec31b 16373 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16374 info_ptr += 8;
16375 break;
c906108c 16376 case DW_FORM_ref_udata:
4568ecf9
DE
16377 DW_UNSND (attr) = (cu->header.offset.sect_off
16378 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16379 info_ptr += bytes_read;
16380 break;
c906108c 16381 case DW_FORM_indirect:
a8329558
KW
16382 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16383 info_ptr += bytes_read;
dee91e82 16384 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16385 break;
3019eac3
DE
16386 case DW_FORM_GNU_addr_index:
16387 if (reader->dwo_file == NULL)
16388 {
16389 /* For now flag a hard error.
16390 Later we can turn this into a complaint. */
16391 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16392 dwarf_form_name (form),
16393 bfd_get_filename (abfd));
16394 }
16395 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16396 info_ptr += bytes_read;
16397 break;
16398 case DW_FORM_GNU_str_index:
16399 if (reader->dwo_file == NULL)
16400 {
16401 /* For now flag a hard error.
16402 Later we can turn this into a complaint if warranted. */
16403 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16404 dwarf_form_name (form),
16405 bfd_get_filename (abfd));
16406 }
16407 {
16408 ULONGEST str_index =
16409 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16410
342587c4 16411 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16412 DW_STRING_IS_CANONICAL (attr) = 0;
16413 info_ptr += bytes_read;
16414 }
16415 break;
c906108c 16416 default:
8a3fe4f8 16417 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16418 dwarf_form_name (form),
16419 bfd_get_filename (abfd));
c906108c 16420 }
28e94949 16421
36586728 16422 /* Super hack. */
7771576e 16423 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16424 attr->form = DW_FORM_GNU_ref_alt;
16425
28e94949
JB
16426 /* We have seen instances where the compiler tried to emit a byte
16427 size attribute of -1 which ended up being encoded as an unsigned
16428 0xffffffff. Although 0xffffffff is technically a valid size value,
16429 an object of this size seems pretty unlikely so we can relatively
16430 safely treat these cases as if the size attribute was invalid and
16431 treat them as zero by default. */
16432 if (attr->name == DW_AT_byte_size
16433 && form == DW_FORM_data4
16434 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16435 {
16436 complaint
16437 (&symfile_complaints,
43bbcdc2
PH
16438 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16439 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16440 DW_UNSND (attr) = 0;
16441 }
28e94949 16442
c906108c
SS
16443 return info_ptr;
16444}
16445
a8329558
KW
16446/* Read an attribute described by an abbreviated attribute. */
16447
d521ce57 16448static const gdb_byte *
dee91e82
DE
16449read_attribute (const struct die_reader_specs *reader,
16450 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16451 const gdb_byte *info_ptr)
a8329558
KW
16452{
16453 attr->name = abbrev->name;
dee91e82 16454 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16455}
16456
0963b4bd 16457/* Read dwarf information from a buffer. */
c906108c
SS
16458
16459static unsigned int
a1855c1d 16460read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16461{
fe1b8b76 16462 return bfd_get_8 (abfd, buf);
c906108c
SS
16463}
16464
16465static int
a1855c1d 16466read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16467{
fe1b8b76 16468 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16469}
16470
16471static unsigned int
a1855c1d 16472read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16473{
fe1b8b76 16474 return bfd_get_16 (abfd, buf);
c906108c
SS
16475}
16476
21ae7a4d 16477static int
a1855c1d 16478read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16479{
16480 return bfd_get_signed_16 (abfd, buf);
16481}
16482
c906108c 16483static unsigned int
a1855c1d 16484read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16485{
fe1b8b76 16486 return bfd_get_32 (abfd, buf);
c906108c
SS
16487}
16488
21ae7a4d 16489static int
a1855c1d 16490read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16491{
16492 return bfd_get_signed_32 (abfd, buf);
16493}
16494
93311388 16495static ULONGEST
a1855c1d 16496read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16497{
fe1b8b76 16498 return bfd_get_64 (abfd, buf);
c906108c
SS
16499}
16500
16501static CORE_ADDR
d521ce57 16502read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16503 unsigned int *bytes_read)
c906108c 16504{
e7c27a73 16505 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16506 CORE_ADDR retval = 0;
16507
107d2387 16508 if (cu_header->signed_addr_p)
c906108c 16509 {
107d2387
AC
16510 switch (cu_header->addr_size)
16511 {
16512 case 2:
fe1b8b76 16513 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16514 break;
16515 case 4:
fe1b8b76 16516 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16517 break;
16518 case 8:
fe1b8b76 16519 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16520 break;
16521 default:
8e65ff28 16522 internal_error (__FILE__, __LINE__,
e2e0b3e5 16523 _("read_address: bad switch, signed [in module %s]"),
659b0389 16524 bfd_get_filename (abfd));
107d2387
AC
16525 }
16526 }
16527 else
16528 {
16529 switch (cu_header->addr_size)
16530 {
16531 case 2:
fe1b8b76 16532 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16533 break;
16534 case 4:
fe1b8b76 16535 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16536 break;
16537 case 8:
fe1b8b76 16538 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16539 break;
16540 default:
8e65ff28 16541 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16542 _("read_address: bad switch, "
16543 "unsigned [in module %s]"),
659b0389 16544 bfd_get_filename (abfd));
107d2387 16545 }
c906108c 16546 }
64367e0a 16547
107d2387
AC
16548 *bytes_read = cu_header->addr_size;
16549 return retval;
c906108c
SS
16550}
16551
f7ef9339 16552/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16553 specification allows the initial length to take up either 4 bytes
16554 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16555 bytes describe the length and all offsets will be 8 bytes in length
16556 instead of 4.
16557
f7ef9339
KB
16558 An older, non-standard 64-bit format is also handled by this
16559 function. The older format in question stores the initial length
16560 as an 8-byte quantity without an escape value. Lengths greater
16561 than 2^32 aren't very common which means that the initial 4 bytes
16562 is almost always zero. Since a length value of zero doesn't make
16563 sense for the 32-bit format, this initial zero can be considered to
16564 be an escape value which indicates the presence of the older 64-bit
16565 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16566 greater than 4GB. If it becomes necessary to handle lengths
16567 somewhat larger than 4GB, we could allow other small values (such
16568 as the non-sensical values of 1, 2, and 3) to also be used as
16569 escape values indicating the presence of the old format.
f7ef9339 16570
917c78fc
MK
16571 The value returned via bytes_read should be used to increment the
16572 relevant pointer after calling read_initial_length().
c764a876 16573
613e1657
KB
16574 [ Note: read_initial_length() and read_offset() are based on the
16575 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16576 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16577 from:
16578
f7ef9339 16579 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16580
613e1657
KB
16581 This document is only a draft and is subject to change. (So beware.)
16582
f7ef9339 16583 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16584 determined empirically by examining 64-bit ELF files produced by
16585 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16586
16587 - Kevin, July 16, 2002
613e1657
KB
16588 ] */
16589
16590static LONGEST
d521ce57 16591read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16592{
fe1b8b76 16593 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16594
dd373385 16595 if (length == 0xffffffff)
613e1657 16596 {
fe1b8b76 16597 length = bfd_get_64 (abfd, buf + 4);
613e1657 16598 *bytes_read = 12;
613e1657 16599 }
dd373385 16600 else if (length == 0)
f7ef9339 16601 {
dd373385 16602 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16603 length = bfd_get_64 (abfd, buf);
f7ef9339 16604 *bytes_read = 8;
f7ef9339 16605 }
613e1657
KB
16606 else
16607 {
16608 *bytes_read = 4;
613e1657
KB
16609 }
16610
c764a876
DE
16611 return length;
16612}
dd373385 16613
c764a876
DE
16614/* Cover function for read_initial_length.
16615 Returns the length of the object at BUF, and stores the size of the
16616 initial length in *BYTES_READ and stores the size that offsets will be in
16617 *OFFSET_SIZE.
16618 If the initial length size is not equivalent to that specified in
16619 CU_HEADER then issue a complaint.
16620 This is useful when reading non-comp-unit headers. */
dd373385 16621
c764a876 16622static LONGEST
d521ce57 16623read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16624 const struct comp_unit_head *cu_header,
16625 unsigned int *bytes_read,
16626 unsigned int *offset_size)
16627{
16628 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16629
16630 gdb_assert (cu_header->initial_length_size == 4
16631 || cu_header->initial_length_size == 8
16632 || cu_header->initial_length_size == 12);
16633
16634 if (cu_header->initial_length_size != *bytes_read)
16635 complaint (&symfile_complaints,
16636 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16637
c764a876 16638 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16639 return length;
613e1657
KB
16640}
16641
16642/* Read an offset from the data stream. The size of the offset is
917c78fc 16643 given by cu_header->offset_size. */
613e1657
KB
16644
16645static LONGEST
d521ce57
TT
16646read_offset (bfd *abfd, const gdb_byte *buf,
16647 const struct comp_unit_head *cu_header,
891d2f0b 16648 unsigned int *bytes_read)
c764a876
DE
16649{
16650 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16651
c764a876
DE
16652 *bytes_read = cu_header->offset_size;
16653 return offset;
16654}
16655
16656/* Read an offset from the data stream. */
16657
16658static LONGEST
d521ce57 16659read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16660{
16661 LONGEST retval = 0;
16662
c764a876 16663 switch (offset_size)
613e1657
KB
16664 {
16665 case 4:
fe1b8b76 16666 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16667 break;
16668 case 8:
fe1b8b76 16669 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16670 break;
16671 default:
8e65ff28 16672 internal_error (__FILE__, __LINE__,
c764a876 16673 _("read_offset_1: bad switch [in module %s]"),
659b0389 16674 bfd_get_filename (abfd));
613e1657
KB
16675 }
16676
917c78fc 16677 return retval;
613e1657
KB
16678}
16679
d521ce57
TT
16680static const gdb_byte *
16681read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16682{
16683 /* If the size of a host char is 8 bits, we can return a pointer
16684 to the buffer, otherwise we have to copy the data to a buffer
16685 allocated on the temporary obstack. */
4bdf3d34 16686 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16687 return buf;
c906108c
SS
16688}
16689
d521ce57
TT
16690static const char *
16691read_direct_string (bfd *abfd, const gdb_byte *buf,
16692 unsigned int *bytes_read_ptr)
c906108c
SS
16693{
16694 /* If the size of a host char is 8 bits, we can return a pointer
16695 to the string, otherwise we have to copy the string to a buffer
16696 allocated on the temporary obstack. */
4bdf3d34 16697 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16698 if (*buf == '\0')
16699 {
16700 *bytes_read_ptr = 1;
16701 return NULL;
16702 }
d521ce57
TT
16703 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16704 return (const char *) buf;
4bdf3d34
JJ
16705}
16706
d521ce57 16707static const char *
cf2c3c16 16708read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16709{
be391dca 16710 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16711 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16712 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16713 bfd_get_filename (abfd));
dce234bc 16714 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16715 error (_("DW_FORM_strp pointing outside of "
16716 ".debug_str section [in module %s]"),
16717 bfd_get_filename (abfd));
4bdf3d34 16718 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16719 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16720 return NULL;
d521ce57 16721 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16722}
16723
36586728
TT
16724/* Read a string at offset STR_OFFSET in the .debug_str section from
16725 the .dwz file DWZ. Throw an error if the offset is too large. If
16726 the string consists of a single NUL byte, return NULL; otherwise
16727 return a pointer to the string. */
16728
d521ce57 16729static const char *
36586728
TT
16730read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16731{
16732 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16733
16734 if (dwz->str.buffer == NULL)
16735 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16736 "section [in module %s]"),
16737 bfd_get_filename (dwz->dwz_bfd));
16738 if (str_offset >= dwz->str.size)
16739 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16740 ".debug_str section [in module %s]"),
16741 bfd_get_filename (dwz->dwz_bfd));
16742 gdb_assert (HOST_CHAR_BIT == 8);
16743 if (dwz->str.buffer[str_offset] == '\0')
16744 return NULL;
d521ce57 16745 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16746}
16747
d521ce57
TT
16748static const char *
16749read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16750 const struct comp_unit_head *cu_header,
16751 unsigned int *bytes_read_ptr)
16752{
16753 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16754
16755 return read_indirect_string_at_offset (abfd, str_offset);
16756}
16757
12df843f 16758static ULONGEST
d521ce57
TT
16759read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16760 unsigned int *bytes_read_ptr)
c906108c 16761{
12df843f 16762 ULONGEST result;
ce5d95e1 16763 unsigned int num_read;
c906108c
SS
16764 int i, shift;
16765 unsigned char byte;
16766
16767 result = 0;
16768 shift = 0;
16769 num_read = 0;
16770 i = 0;
16771 while (1)
16772 {
fe1b8b76 16773 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16774 buf++;
16775 num_read++;
12df843f 16776 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16777 if ((byte & 128) == 0)
16778 {
16779 break;
16780 }
16781 shift += 7;
16782 }
16783 *bytes_read_ptr = num_read;
16784 return result;
16785}
16786
12df843f 16787static LONGEST
d521ce57
TT
16788read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16789 unsigned int *bytes_read_ptr)
c906108c 16790{
12df843f 16791 LONGEST result;
77e0b926 16792 int i, shift, num_read;
c906108c
SS
16793 unsigned char byte;
16794
16795 result = 0;
16796 shift = 0;
c906108c
SS
16797 num_read = 0;
16798 i = 0;
16799 while (1)
16800 {
fe1b8b76 16801 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16802 buf++;
16803 num_read++;
12df843f 16804 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16805 shift += 7;
16806 if ((byte & 128) == 0)
16807 {
16808 break;
16809 }
16810 }
77e0b926 16811 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16812 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16813 *bytes_read_ptr = num_read;
16814 return result;
16815}
16816
3019eac3
DE
16817/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16818 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16819 ADDR_SIZE is the size of addresses from the CU header. */
16820
16821static CORE_ADDR
16822read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16823{
16824 struct objfile *objfile = dwarf2_per_objfile->objfile;
16825 bfd *abfd = objfile->obfd;
16826 const gdb_byte *info_ptr;
16827
16828 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16829 if (dwarf2_per_objfile->addr.buffer == NULL)
16830 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16831 objfile_name (objfile));
3019eac3
DE
16832 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16833 error (_("DW_FORM_addr_index pointing outside of "
16834 ".debug_addr section [in module %s]"),
4262abfb 16835 objfile_name (objfile));
3019eac3
DE
16836 info_ptr = (dwarf2_per_objfile->addr.buffer
16837 + addr_base + addr_index * addr_size);
16838 if (addr_size == 4)
16839 return bfd_get_32 (abfd, info_ptr);
16840 else
16841 return bfd_get_64 (abfd, info_ptr);
16842}
16843
16844/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16845
16846static CORE_ADDR
16847read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16848{
16849 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16850}
16851
16852/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16853
16854static CORE_ADDR
d521ce57 16855read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16856 unsigned int *bytes_read)
16857{
16858 bfd *abfd = cu->objfile->obfd;
16859 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16860
16861 return read_addr_index (cu, addr_index);
16862}
16863
16864/* Data structure to pass results from dwarf2_read_addr_index_reader
16865 back to dwarf2_read_addr_index. */
16866
16867struct dwarf2_read_addr_index_data
16868{
16869 ULONGEST addr_base;
16870 int addr_size;
16871};
16872
16873/* die_reader_func for dwarf2_read_addr_index. */
16874
16875static void
16876dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16877 const gdb_byte *info_ptr,
3019eac3
DE
16878 struct die_info *comp_unit_die,
16879 int has_children,
16880 void *data)
16881{
16882 struct dwarf2_cu *cu = reader->cu;
16883 struct dwarf2_read_addr_index_data *aidata =
16884 (struct dwarf2_read_addr_index_data *) data;
16885
16886 aidata->addr_base = cu->addr_base;
16887 aidata->addr_size = cu->header.addr_size;
16888}
16889
16890/* Given an index in .debug_addr, fetch the value.
16891 NOTE: This can be called during dwarf expression evaluation,
16892 long after the debug information has been read, and thus per_cu->cu
16893 may no longer exist. */
16894
16895CORE_ADDR
16896dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16897 unsigned int addr_index)
16898{
16899 struct objfile *objfile = per_cu->objfile;
16900 struct dwarf2_cu *cu = per_cu->cu;
16901 ULONGEST addr_base;
16902 int addr_size;
16903
16904 /* This is intended to be called from outside this file. */
16905 dw2_setup (objfile);
16906
16907 /* We need addr_base and addr_size.
16908 If we don't have PER_CU->cu, we have to get it.
16909 Nasty, but the alternative is storing the needed info in PER_CU,
16910 which at this point doesn't seem justified: it's not clear how frequently
16911 it would get used and it would increase the size of every PER_CU.
16912 Entry points like dwarf2_per_cu_addr_size do a similar thing
16913 so we're not in uncharted territory here.
16914 Alas we need to be a bit more complicated as addr_base is contained
16915 in the DIE.
16916
16917 We don't need to read the entire CU(/TU).
16918 We just need the header and top level die.
a1b64ce1 16919
3019eac3 16920 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16921 For now we skip this optimization. */
3019eac3
DE
16922
16923 if (cu != NULL)
16924 {
16925 addr_base = cu->addr_base;
16926 addr_size = cu->header.addr_size;
16927 }
16928 else
16929 {
16930 struct dwarf2_read_addr_index_data aidata;
16931
a1b64ce1
DE
16932 /* Note: We can't use init_cutu_and_read_dies_simple here,
16933 we need addr_base. */
16934 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16935 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16936 addr_base = aidata.addr_base;
16937 addr_size = aidata.addr_size;
16938 }
16939
16940 return read_addr_index_1 (addr_index, addr_base, addr_size);
16941}
16942
57d63ce2
DE
16943/* Given a DW_FORM_GNU_str_index, fetch the string.
16944 This is only used by the Fission support. */
3019eac3 16945
d521ce57 16946static const char *
342587c4 16947read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16948{
16949 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16950 const char *objf_name = objfile_name (objfile);
3019eac3 16951 bfd *abfd = objfile->obfd;
342587c4 16952 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16953 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16954 struct dwarf2_section_info *str_offsets_section =
16955 &reader->dwo_file->sections.str_offsets;
d521ce57 16956 const gdb_byte *info_ptr;
3019eac3 16957 ULONGEST str_offset;
57d63ce2 16958 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16959
73869dc2
DE
16960 dwarf2_read_section (objfile, str_section);
16961 dwarf2_read_section (objfile, str_offsets_section);
16962 if (str_section->buffer == NULL)
57d63ce2 16963 error (_("%s used without .debug_str.dwo section"
3019eac3 16964 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16965 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16966 if (str_offsets_section->buffer == NULL)
57d63ce2 16967 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16968 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16969 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16970 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16971 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16972 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16973 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16974 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16975 + str_index * cu->header.offset_size);
16976 if (cu->header.offset_size == 4)
16977 str_offset = bfd_get_32 (abfd, info_ptr);
16978 else
16979 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16980 if (str_offset >= str_section->size)
57d63ce2 16981 error (_("Offset from %s pointing outside of"
3019eac3 16982 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16983 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16984 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16985}
16986
3019eac3
DE
16987/* Return the length of an LEB128 number in BUF. */
16988
16989static int
16990leb128_size (const gdb_byte *buf)
16991{
16992 const gdb_byte *begin = buf;
16993 gdb_byte byte;
16994
16995 while (1)
16996 {
16997 byte = *buf++;
16998 if ((byte & 128) == 0)
16999 return buf - begin;
17000 }
17001}
17002
c906108c 17003static void
e142c38c 17004set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17005{
17006 switch (lang)
17007 {
17008 case DW_LANG_C89:
76bee0cc 17009 case DW_LANG_C99:
0cfd832f 17010 case DW_LANG_C11:
c906108c 17011 case DW_LANG_C:
d1be3247 17012 case DW_LANG_UPC:
e142c38c 17013 cu->language = language_c;
c906108c
SS
17014 break;
17015 case DW_LANG_C_plus_plus:
0cfd832f
MW
17016 case DW_LANG_C_plus_plus_11:
17017 case DW_LANG_C_plus_plus_14:
e142c38c 17018 cu->language = language_cplus;
c906108c 17019 break;
6aecb9c2
JB
17020 case DW_LANG_D:
17021 cu->language = language_d;
17022 break;
c906108c
SS
17023 case DW_LANG_Fortran77:
17024 case DW_LANG_Fortran90:
b21b22e0 17025 case DW_LANG_Fortran95:
f7de9aab
MW
17026 case DW_LANG_Fortran03:
17027 case DW_LANG_Fortran08:
e142c38c 17028 cu->language = language_fortran;
c906108c 17029 break;
a766d390
DE
17030 case DW_LANG_Go:
17031 cu->language = language_go;
17032 break;
c906108c 17033 case DW_LANG_Mips_Assembler:
e142c38c 17034 cu->language = language_asm;
c906108c 17035 break;
bebd888e 17036 case DW_LANG_Java:
e142c38c 17037 cu->language = language_java;
bebd888e 17038 break;
c906108c 17039 case DW_LANG_Ada83:
8aaf0b47 17040 case DW_LANG_Ada95:
bc5f45f8
JB
17041 cu->language = language_ada;
17042 break;
72019c9c
GM
17043 case DW_LANG_Modula2:
17044 cu->language = language_m2;
17045 break;
fe8e67fd
PM
17046 case DW_LANG_Pascal83:
17047 cu->language = language_pascal;
17048 break;
22566fbd
DJ
17049 case DW_LANG_ObjC:
17050 cu->language = language_objc;
17051 break;
c906108c
SS
17052 case DW_LANG_Cobol74:
17053 case DW_LANG_Cobol85:
c906108c 17054 default:
e142c38c 17055 cu->language = language_minimal;
c906108c
SS
17056 break;
17057 }
e142c38c 17058 cu->language_defn = language_def (cu->language);
c906108c
SS
17059}
17060
17061/* Return the named attribute or NULL if not there. */
17062
17063static struct attribute *
e142c38c 17064dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17065{
a48e046c 17066 for (;;)
c906108c 17067 {
a48e046c
TT
17068 unsigned int i;
17069 struct attribute *spec = NULL;
17070
17071 for (i = 0; i < die->num_attrs; ++i)
17072 {
17073 if (die->attrs[i].name == name)
17074 return &die->attrs[i];
17075 if (die->attrs[i].name == DW_AT_specification
17076 || die->attrs[i].name == DW_AT_abstract_origin)
17077 spec = &die->attrs[i];
17078 }
17079
17080 if (!spec)
17081 break;
c906108c 17082
f2f0e013 17083 die = follow_die_ref (die, spec, &cu);
f2f0e013 17084 }
c5aa993b 17085
c906108c
SS
17086 return NULL;
17087}
17088
348e048f
DE
17089/* Return the named attribute or NULL if not there,
17090 but do not follow DW_AT_specification, etc.
17091 This is for use in contexts where we're reading .debug_types dies.
17092 Following DW_AT_specification, DW_AT_abstract_origin will take us
17093 back up the chain, and we want to go down. */
17094
17095static struct attribute *
45e58e77 17096dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17097{
17098 unsigned int i;
17099
17100 for (i = 0; i < die->num_attrs; ++i)
17101 if (die->attrs[i].name == name)
17102 return &die->attrs[i];
17103
17104 return NULL;
17105}
17106
7d45c7c3
KB
17107/* Return the string associated with a string-typed attribute, or NULL if it
17108 is either not found or is of an incorrect type. */
17109
17110static const char *
17111dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17112{
17113 struct attribute *attr;
17114 const char *str = NULL;
17115
17116 attr = dwarf2_attr (die, name, cu);
17117
17118 if (attr != NULL)
17119 {
17120 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17121 || attr->form == DW_FORM_GNU_strp_alt)
17122 str = DW_STRING (attr);
17123 else
17124 complaint (&symfile_complaints,
17125 _("string type expected for attribute %s for "
17126 "DIE at 0x%x in module %s"),
17127 dwarf_attr_name (name), die->offset.sect_off,
17128 objfile_name (cu->objfile));
17129 }
17130
17131 return str;
17132}
17133
05cf31d1
JB
17134/* Return non-zero iff the attribute NAME is defined for the given DIE,
17135 and holds a non-zero value. This function should only be used for
2dc7f7b3 17136 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17137
17138static int
17139dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17140{
17141 struct attribute *attr = dwarf2_attr (die, name, cu);
17142
17143 return (attr && DW_UNSND (attr));
17144}
17145
3ca72b44 17146static int
e142c38c 17147die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17148{
05cf31d1
JB
17149 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17150 which value is non-zero. However, we have to be careful with
17151 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17152 (via dwarf2_flag_true_p) follows this attribute. So we may
17153 end up accidently finding a declaration attribute that belongs
17154 to a different DIE referenced by the specification attribute,
17155 even though the given DIE does not have a declaration attribute. */
17156 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17157 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17158}
17159
63d06c5c 17160/* Return the die giving the specification for DIE, if there is
f2f0e013 17161 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17162 containing the return value on output. If there is no
17163 specification, but there is an abstract origin, that is
17164 returned. */
63d06c5c
DC
17165
17166static struct die_info *
f2f0e013 17167die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17168{
f2f0e013
DJ
17169 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17170 *spec_cu);
63d06c5c 17171
edb3359d
DJ
17172 if (spec_attr == NULL)
17173 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17174
63d06c5c
DC
17175 if (spec_attr == NULL)
17176 return NULL;
17177 else
f2f0e013 17178 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17179}
c906108c 17180
debd256d 17181/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17182 refers to.
17183 NOTE: This is also used as a "cleanup" function. */
17184
debd256d
JB
17185static void
17186free_line_header (struct line_header *lh)
17187{
17188 if (lh->standard_opcode_lengths)
a8bc7b56 17189 xfree (lh->standard_opcode_lengths);
debd256d
JB
17190
17191 /* Remember that all the lh->file_names[i].name pointers are
17192 pointers into debug_line_buffer, and don't need to be freed. */
17193 if (lh->file_names)
a8bc7b56 17194 xfree (lh->file_names);
debd256d
JB
17195
17196 /* Similarly for the include directory names. */
17197 if (lh->include_dirs)
a8bc7b56 17198 xfree (lh->include_dirs);
debd256d 17199
a8bc7b56 17200 xfree (lh);
debd256d
JB
17201}
17202
527f3840
JK
17203/* Stub for free_line_header to match void * callback types. */
17204
17205static void
17206free_line_header_voidp (void *arg)
17207{
9a3c8263 17208 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17209
17210 free_line_header (lh);
17211}
17212
debd256d 17213/* Add an entry to LH's include directory table. */
ae2de4f8 17214
debd256d 17215static void
d521ce57 17216add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17217{
27e0867f
DE
17218 if (dwarf_line_debug >= 2)
17219 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17220 lh->num_include_dirs + 1, include_dir);
17221
debd256d
JB
17222 /* Grow the array if necessary. */
17223 if (lh->include_dirs_size == 0)
c5aa993b 17224 {
debd256d 17225 lh->include_dirs_size = 1; /* for testing */
8d749320 17226 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17227 }
17228 else if (lh->num_include_dirs >= lh->include_dirs_size)
17229 {
17230 lh->include_dirs_size *= 2;
8d749320
SM
17231 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17232 lh->include_dirs_size);
c5aa993b 17233 }
c906108c 17234
debd256d
JB
17235 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17236}
6e70227d 17237
debd256d 17238/* Add an entry to LH's file name table. */
ae2de4f8 17239
debd256d
JB
17240static void
17241add_file_name (struct line_header *lh,
d521ce57 17242 const char *name,
debd256d
JB
17243 unsigned int dir_index,
17244 unsigned int mod_time,
17245 unsigned int length)
17246{
17247 struct file_entry *fe;
17248
27e0867f
DE
17249 if (dwarf_line_debug >= 2)
17250 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17251 lh->num_file_names + 1, name);
17252
debd256d
JB
17253 /* Grow the array if necessary. */
17254 if (lh->file_names_size == 0)
17255 {
17256 lh->file_names_size = 1; /* for testing */
8d749320 17257 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17258 }
17259 else if (lh->num_file_names >= lh->file_names_size)
17260 {
17261 lh->file_names_size *= 2;
224c3ddb
SM
17262 lh->file_names
17263 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17264 }
17265
17266 fe = &lh->file_names[lh->num_file_names++];
17267 fe->name = name;
17268 fe->dir_index = dir_index;
17269 fe->mod_time = mod_time;
17270 fe->length = length;
aaa75496 17271 fe->included_p = 0;
cb1df416 17272 fe->symtab = NULL;
debd256d 17273}
6e70227d 17274
83769d0b 17275/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17276
17277static struct dwarf2_section_info *
17278get_debug_line_section (struct dwarf2_cu *cu)
17279{
17280 struct dwarf2_section_info *section;
17281
17282 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17283 DWO file. */
17284 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17285 section = &cu->dwo_unit->dwo_file->sections.line;
17286 else if (cu->per_cu->is_dwz)
17287 {
17288 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17289
17290 section = &dwz->line;
17291 }
17292 else
17293 section = &dwarf2_per_objfile->line;
17294
17295 return section;
17296}
17297
debd256d 17298/* Read the statement program header starting at OFFSET in
3019eac3 17299 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17300 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17301 Returns NULL if there is a problem reading the header, e.g., if it
17302 has a version we don't understand.
debd256d
JB
17303
17304 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17305 the returned object point into the dwarf line section buffer,
17306 and must not be freed. */
ae2de4f8 17307
debd256d 17308static struct line_header *
3019eac3 17309dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17310{
17311 struct cleanup *back_to;
17312 struct line_header *lh;
d521ce57 17313 const gdb_byte *line_ptr;
c764a876 17314 unsigned int bytes_read, offset_size;
debd256d 17315 int i;
d521ce57 17316 const char *cur_dir, *cur_file;
3019eac3
DE
17317 struct dwarf2_section_info *section;
17318 bfd *abfd;
17319
36586728 17320 section = get_debug_line_section (cu);
3019eac3
DE
17321 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17322 if (section->buffer == NULL)
debd256d 17323 {
3019eac3
DE
17324 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17325 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17326 else
17327 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17328 return 0;
17329 }
17330
fceca515
DE
17331 /* We can't do this until we know the section is non-empty.
17332 Only then do we know we have such a section. */
a32a8923 17333 abfd = get_section_bfd_owner (section);
fceca515 17334
a738430d
MK
17335 /* Make sure that at least there's room for the total_length field.
17336 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17337 if (offset + 4 >= section->size)
debd256d 17338 {
4d3c2250 17339 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17340 return 0;
17341 }
17342
8d749320 17343 lh = XNEW (struct line_header);
debd256d
JB
17344 memset (lh, 0, sizeof (*lh));
17345 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17346 (void *) lh);
17347
527f3840
JK
17348 lh->offset.sect_off = offset;
17349 lh->offset_in_dwz = cu->per_cu->is_dwz;
17350
3019eac3 17351 line_ptr = section->buffer + offset;
debd256d 17352
a738430d 17353 /* Read in the header. */
6e70227d 17354 lh->total_length =
c764a876
DE
17355 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17356 &bytes_read, &offset_size);
debd256d 17357 line_ptr += bytes_read;
3019eac3 17358 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17359 {
4d3c2250 17360 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17361 do_cleanups (back_to);
debd256d
JB
17362 return 0;
17363 }
17364 lh->statement_program_end = line_ptr + lh->total_length;
17365 lh->version = read_2_bytes (abfd, line_ptr);
17366 line_ptr += 2;
cd366ee8
DE
17367 if (lh->version > 4)
17368 {
17369 /* This is a version we don't understand. The format could have
17370 changed in ways we don't handle properly so just punt. */
17371 complaint (&symfile_complaints,
17372 _("unsupported version in .debug_line section"));
17373 return NULL;
17374 }
c764a876
DE
17375 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17376 line_ptr += offset_size;
debd256d
JB
17377 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17378 line_ptr += 1;
2dc7f7b3
TT
17379 if (lh->version >= 4)
17380 {
17381 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17382 line_ptr += 1;
17383 }
17384 else
17385 lh->maximum_ops_per_instruction = 1;
17386
17387 if (lh->maximum_ops_per_instruction == 0)
17388 {
17389 lh->maximum_ops_per_instruction = 1;
17390 complaint (&symfile_complaints,
3e43a32a
MS
17391 _("invalid maximum_ops_per_instruction "
17392 "in `.debug_line' section"));
2dc7f7b3
TT
17393 }
17394
debd256d
JB
17395 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17396 line_ptr += 1;
17397 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17398 line_ptr += 1;
17399 lh->line_range = read_1_byte (abfd, line_ptr);
17400 line_ptr += 1;
17401 lh->opcode_base = read_1_byte (abfd, line_ptr);
17402 line_ptr += 1;
8d749320 17403 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17404
17405 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17406 for (i = 1; i < lh->opcode_base; ++i)
17407 {
17408 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17409 line_ptr += 1;
17410 }
17411
a738430d 17412 /* Read directory table. */
9b1c24c8 17413 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17414 {
17415 line_ptr += bytes_read;
17416 add_include_dir (lh, cur_dir);
17417 }
17418 line_ptr += bytes_read;
17419
a738430d 17420 /* Read file name table. */
9b1c24c8 17421 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17422 {
17423 unsigned int dir_index, mod_time, length;
17424
17425 line_ptr += bytes_read;
17426 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17427 line_ptr += bytes_read;
17428 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17429 line_ptr += bytes_read;
17430 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17431 line_ptr += bytes_read;
17432
17433 add_file_name (lh, cur_file, dir_index, mod_time, length);
17434 }
17435 line_ptr += bytes_read;
6e70227d 17436 lh->statement_program_start = line_ptr;
debd256d 17437
3019eac3 17438 if (line_ptr > (section->buffer + section->size))
4d3c2250 17439 complaint (&symfile_complaints,
3e43a32a
MS
17440 _("line number info header doesn't "
17441 "fit in `.debug_line' section"));
debd256d
JB
17442
17443 discard_cleanups (back_to);
17444 return lh;
17445}
c906108c 17446
c6da4cef
DE
17447/* Subroutine of dwarf_decode_lines to simplify it.
17448 Return the file name of the psymtab for included file FILE_INDEX
17449 in line header LH of PST.
17450 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17451 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17452 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17453
17454 The function creates dangling cleanup registration. */
c6da4cef 17455
d521ce57 17456static const char *
c6da4cef
DE
17457psymtab_include_file_name (const struct line_header *lh, int file_index,
17458 const struct partial_symtab *pst,
17459 const char *comp_dir)
17460{
17461 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17462 const char *include_name = fe.name;
17463 const char *include_name_to_compare = include_name;
17464 const char *dir_name = NULL;
72b9f47f
TT
17465 const char *pst_filename;
17466 char *copied_name = NULL;
c6da4cef
DE
17467 int file_is_pst;
17468
afa6c9ab 17469 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17470 dir_name = lh->include_dirs[fe.dir_index - 1];
17471
17472 if (!IS_ABSOLUTE_PATH (include_name)
17473 && (dir_name != NULL || comp_dir != NULL))
17474 {
17475 /* Avoid creating a duplicate psymtab for PST.
17476 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17477 Before we do the comparison, however, we need to account
17478 for DIR_NAME and COMP_DIR.
17479 First prepend dir_name (if non-NULL). If we still don't
17480 have an absolute path prepend comp_dir (if non-NULL).
17481 However, the directory we record in the include-file's
17482 psymtab does not contain COMP_DIR (to match the
17483 corresponding symtab(s)).
17484
17485 Example:
17486
17487 bash$ cd /tmp
17488 bash$ gcc -g ./hello.c
17489 include_name = "hello.c"
17490 dir_name = "."
17491 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17492 DW_AT_name = "./hello.c"
17493
17494 */
c6da4cef
DE
17495
17496 if (dir_name != NULL)
17497 {
d521ce57
TT
17498 char *tem = concat (dir_name, SLASH_STRING,
17499 include_name, (char *)NULL);
17500
17501 make_cleanup (xfree, tem);
17502 include_name = tem;
c6da4cef 17503 include_name_to_compare = include_name;
c6da4cef
DE
17504 }
17505 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17506 {
d521ce57
TT
17507 char *tem = concat (comp_dir, SLASH_STRING,
17508 include_name, (char *)NULL);
17509
17510 make_cleanup (xfree, tem);
17511 include_name_to_compare = tem;
c6da4cef
DE
17512 }
17513 }
17514
17515 pst_filename = pst->filename;
17516 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17517 {
72b9f47f
TT
17518 copied_name = concat (pst->dirname, SLASH_STRING,
17519 pst_filename, (char *)NULL);
17520 pst_filename = copied_name;
c6da4cef
DE
17521 }
17522
1e3fad37 17523 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17524
72b9f47f
TT
17525 if (copied_name != NULL)
17526 xfree (copied_name);
c6da4cef
DE
17527
17528 if (file_is_pst)
17529 return NULL;
17530 return include_name;
17531}
17532
d9b3de22
DE
17533/* State machine to track the state of the line number program. */
17534
17535typedef struct
17536{
17537 /* These are part of the standard DWARF line number state machine. */
17538
17539 unsigned char op_index;
17540 unsigned int file;
17541 unsigned int line;
17542 CORE_ADDR address;
17543 int is_stmt;
17544 unsigned int discriminator;
17545
17546 /* Additional bits of state we need to track. */
17547
17548 /* The last file that we called dwarf2_start_subfile for.
17549 This is only used for TLLs. */
17550 unsigned int last_file;
17551 /* The last file a line number was recorded for. */
17552 struct subfile *last_subfile;
17553
17554 /* The function to call to record a line. */
17555 record_line_ftype *record_line;
17556
17557 /* The last line number that was recorded, used to coalesce
17558 consecutive entries for the same line. This can happen, for
17559 example, when discriminators are present. PR 17276. */
17560 unsigned int last_line;
17561 int line_has_non_zero_discriminator;
17562} lnp_state_machine;
17563
17564/* There's a lot of static state to pass to dwarf_record_line.
17565 This keeps it all together. */
17566
17567typedef struct
17568{
17569 /* The gdbarch. */
17570 struct gdbarch *gdbarch;
17571
17572 /* The line number header. */
17573 struct line_header *line_header;
17574
17575 /* Non-zero if we're recording lines.
17576 Otherwise we're building partial symtabs and are just interested in
17577 finding include files mentioned by the line number program. */
17578 int record_lines_p;
17579} lnp_reader_state;
17580
c91513d8
PP
17581/* Ignore this record_line request. */
17582
17583static void
17584noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17585{
17586 return;
17587}
17588
a05a36a5
DE
17589/* Return non-zero if we should add LINE to the line number table.
17590 LINE is the line to add, LAST_LINE is the last line that was added,
17591 LAST_SUBFILE is the subfile for LAST_LINE.
17592 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17593 had a non-zero discriminator.
17594
17595 We have to be careful in the presence of discriminators.
17596 E.g., for this line:
17597
17598 for (i = 0; i < 100000; i++);
17599
17600 clang can emit four line number entries for that one line,
17601 each with a different discriminator.
17602 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17603
17604 However, we want gdb to coalesce all four entries into one.
17605 Otherwise the user could stepi into the middle of the line and
17606 gdb would get confused about whether the pc really was in the
17607 middle of the line.
17608
17609 Things are further complicated by the fact that two consecutive
17610 line number entries for the same line is a heuristic used by gcc
17611 to denote the end of the prologue. So we can't just discard duplicate
17612 entries, we have to be selective about it. The heuristic we use is
17613 that we only collapse consecutive entries for the same line if at least
17614 one of those entries has a non-zero discriminator. PR 17276.
17615
17616 Note: Addresses in the line number state machine can never go backwards
17617 within one sequence, thus this coalescing is ok. */
17618
17619static int
17620dwarf_record_line_p (unsigned int line, unsigned int last_line,
17621 int line_has_non_zero_discriminator,
17622 struct subfile *last_subfile)
17623{
17624 if (current_subfile != last_subfile)
17625 return 1;
17626 if (line != last_line)
17627 return 1;
17628 /* Same line for the same file that we've seen already.
17629 As a last check, for pr 17276, only record the line if the line
17630 has never had a non-zero discriminator. */
17631 if (!line_has_non_zero_discriminator)
17632 return 1;
17633 return 0;
17634}
17635
252a6764
DE
17636/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17637 in the line table of subfile SUBFILE. */
17638
17639static void
d9b3de22
DE
17640dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17641 unsigned int line, CORE_ADDR address,
17642 record_line_ftype p_record_line)
252a6764
DE
17643{
17644 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17645
27e0867f
DE
17646 if (dwarf_line_debug)
17647 {
17648 fprintf_unfiltered (gdb_stdlog,
17649 "Recording line %u, file %s, address %s\n",
17650 line, lbasename (subfile->name),
17651 paddress (gdbarch, address));
17652 }
17653
d5962de5 17654 (*p_record_line) (subfile, line, addr);
252a6764
DE
17655}
17656
17657/* Subroutine of dwarf_decode_lines_1 to simplify it.
17658 Mark the end of a set of line number records.
d9b3de22 17659 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17660 If SUBFILE is NULL the request is ignored. */
17661
17662static void
17663dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17664 CORE_ADDR address, record_line_ftype p_record_line)
17665{
27e0867f
DE
17666 if (subfile == NULL)
17667 return;
17668
17669 if (dwarf_line_debug)
17670 {
17671 fprintf_unfiltered (gdb_stdlog,
17672 "Finishing current line, file %s, address %s\n",
17673 lbasename (subfile->name),
17674 paddress (gdbarch, address));
17675 }
17676
d9b3de22
DE
17677 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17678}
17679
17680/* Record the line in STATE.
17681 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17682
17683static void
17684dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17685 int end_sequence)
17686{
17687 const struct line_header *lh = reader->line_header;
17688 unsigned int file, line, discriminator;
17689 int is_stmt;
17690
17691 file = state->file;
17692 line = state->line;
17693 is_stmt = state->is_stmt;
17694 discriminator = state->discriminator;
17695
17696 if (dwarf_line_debug)
17697 {
17698 fprintf_unfiltered (gdb_stdlog,
17699 "Processing actual line %u: file %u,"
17700 " address %s, is_stmt %u, discrim %u\n",
17701 line, file,
17702 paddress (reader->gdbarch, state->address),
17703 is_stmt, discriminator);
17704 }
17705
17706 if (file == 0 || file - 1 >= lh->num_file_names)
17707 dwarf2_debug_line_missing_file_complaint ();
17708 /* For now we ignore lines not starting on an instruction boundary.
17709 But not when processing end_sequence for compatibility with the
17710 previous version of the code. */
17711 else if (state->op_index == 0 || end_sequence)
17712 {
17713 lh->file_names[file - 1].included_p = 1;
17714 if (reader->record_lines_p && is_stmt)
17715 {
e815d2d2 17716 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17717 {
17718 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17719 state->address, state->record_line);
17720 }
17721
17722 if (!end_sequence)
17723 {
17724 if (dwarf_record_line_p (line, state->last_line,
17725 state->line_has_non_zero_discriminator,
17726 state->last_subfile))
17727 {
17728 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17729 line, state->address,
17730 state->record_line);
17731 }
17732 state->last_subfile = current_subfile;
17733 state->last_line = line;
17734 }
17735 }
17736 }
17737}
17738
17739/* Initialize STATE for the start of a line number program. */
17740
17741static void
17742init_lnp_state_machine (lnp_state_machine *state,
17743 const lnp_reader_state *reader)
17744{
17745 memset (state, 0, sizeof (*state));
17746
17747 /* Just starting, there is no "last file". */
17748 state->last_file = 0;
17749 state->last_subfile = NULL;
17750
17751 state->record_line = record_line;
17752
17753 state->last_line = 0;
17754 state->line_has_non_zero_discriminator = 0;
17755
17756 /* Initialize these according to the DWARF spec. */
17757 state->op_index = 0;
17758 state->file = 1;
17759 state->line = 1;
17760 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17761 was a line entry for it so that the backend has a chance to adjust it
17762 and also record it in case it needs it. This is currently used by MIPS
17763 code, cf. `mips_adjust_dwarf2_line'. */
17764 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17765 state->is_stmt = reader->line_header->default_is_stmt;
17766 state->discriminator = 0;
252a6764
DE
17767}
17768
924c2928
DE
17769/* Check address and if invalid nop-out the rest of the lines in this
17770 sequence. */
17771
17772static void
d9b3de22 17773check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17774 const gdb_byte *line_ptr,
17775 CORE_ADDR lowpc, CORE_ADDR address)
17776{
17777 /* If address < lowpc then it's not a usable value, it's outside the
17778 pc range of the CU. However, we restrict the test to only address
17779 values of zero to preserve GDB's previous behaviour which is to
17780 handle the specific case of a function being GC'd by the linker. */
17781
17782 if (address == 0 && address < lowpc)
17783 {
17784 /* This line table is for a function which has been
17785 GCd by the linker. Ignore it. PR gdb/12528 */
17786
17787 struct objfile *objfile = cu->objfile;
17788 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17789
17790 complaint (&symfile_complaints,
17791 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17792 line_offset, objfile_name (objfile));
d9b3de22
DE
17793 state->record_line = noop_record_line;
17794 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17795 until we see DW_LNE_end_sequence. */
17796 }
17797}
17798
f3f5162e 17799/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17800 Process the line number information in LH.
17801 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17802 program in order to set included_p for every referenced header. */
debd256d 17803
c906108c 17804static void
43f3e411
DE
17805dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17806 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17807{
d521ce57
TT
17808 const gdb_byte *line_ptr, *extended_end;
17809 const gdb_byte *line_end;
a8c50c1f 17810 unsigned int bytes_read, extended_len;
699ca60a 17811 unsigned char op_code, extended_op;
e142c38c
DJ
17812 CORE_ADDR baseaddr;
17813 struct objfile *objfile = cu->objfile;
f3f5162e 17814 bfd *abfd = objfile->obfd;
fbf65064 17815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17816 /* Non-zero if we're recording line info (as opposed to building partial
17817 symtabs). */
17818 int record_lines_p = !decode_for_pst_p;
17819 /* A collection of things we need to pass to dwarf_record_line. */
17820 lnp_reader_state reader_state;
e142c38c
DJ
17821
17822 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17823
debd256d
JB
17824 line_ptr = lh->statement_program_start;
17825 line_end = lh->statement_program_end;
c906108c 17826
d9b3de22
DE
17827 reader_state.gdbarch = gdbarch;
17828 reader_state.line_header = lh;
17829 reader_state.record_lines_p = record_lines_p;
17830
c906108c
SS
17831 /* Read the statement sequences until there's nothing left. */
17832 while (line_ptr < line_end)
17833 {
d9b3de22
DE
17834 /* The DWARF line number program state machine. */
17835 lnp_state_machine state_machine;
c906108c 17836 int end_sequence = 0;
d9b3de22
DE
17837
17838 /* Reset the state machine at the start of each sequence. */
17839 init_lnp_state_machine (&state_machine, &reader_state);
17840
17841 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17842 {
aaa75496 17843 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17844 /* lh->include_dirs and lh->file_names are 0-based, but the
17845 directory and file name numbers in the statement program
17846 are 1-based. */
d9b3de22 17847 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17848 const char *dir = NULL;
a738430d 17849
afa6c9ab 17850 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17851 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17852
4d663531 17853 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17854 }
17855
a738430d 17856 /* Decode the table. */
d9b3de22 17857 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17858 {
17859 op_code = read_1_byte (abfd, line_ptr);
17860 line_ptr += 1;
9aa1fe7e 17861
debd256d 17862 if (op_code >= lh->opcode_base)
6e70227d 17863 {
8e07a239 17864 /* Special opcode. */
699ca60a 17865 unsigned char adj_opcode;
3e29f34a 17866 CORE_ADDR addr_adj;
a05a36a5 17867 int line_delta;
8e07a239 17868
debd256d 17869 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17870 addr_adj = (((state_machine.op_index
17871 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17872 / lh->maximum_ops_per_instruction)
17873 * lh->minimum_instruction_length);
d9b3de22
DE
17874 state_machine.address
17875 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17876 state_machine.op_index = ((state_machine.op_index
17877 + (adj_opcode / lh->line_range))
17878 % lh->maximum_ops_per_instruction);
a05a36a5 17879 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17880 state_machine.line += line_delta;
a05a36a5 17881 if (line_delta != 0)
d9b3de22
DE
17882 state_machine.line_has_non_zero_discriminator
17883 = state_machine.discriminator != 0;
17884
17885 dwarf_record_line (&reader_state, &state_machine, 0);
17886 state_machine.discriminator = 0;
9aa1fe7e
GK
17887 }
17888 else switch (op_code)
c906108c
SS
17889 {
17890 case DW_LNS_extended_op:
3e43a32a
MS
17891 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17892 &bytes_read);
473b7be6 17893 line_ptr += bytes_read;
a8c50c1f 17894 extended_end = line_ptr + extended_len;
c906108c
SS
17895 extended_op = read_1_byte (abfd, line_ptr);
17896 line_ptr += 1;
17897 switch (extended_op)
17898 {
17899 case DW_LNE_end_sequence:
d9b3de22 17900 state_machine.record_line = record_line;
c906108c 17901 end_sequence = 1;
c906108c
SS
17902 break;
17903 case DW_LNE_set_address:
d9b3de22
DE
17904 {
17905 CORE_ADDR address
17906 = read_address (abfd, line_ptr, cu, &bytes_read);
17907
17908 line_ptr += bytes_read;
17909 check_line_address (cu, &state_machine, line_ptr,
17910 lowpc, address);
17911 state_machine.op_index = 0;
17912 address += baseaddr;
17913 state_machine.address
17914 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17915 }
c906108c
SS
17916 break;
17917 case DW_LNE_define_file:
debd256d 17918 {
d521ce57 17919 const char *cur_file;
debd256d 17920 unsigned int dir_index, mod_time, length;
6e70227d 17921
3e43a32a
MS
17922 cur_file = read_direct_string (abfd, line_ptr,
17923 &bytes_read);
debd256d
JB
17924 line_ptr += bytes_read;
17925 dir_index =
17926 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17927 line_ptr += bytes_read;
17928 mod_time =
17929 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17930 line_ptr += bytes_read;
17931 length =
17932 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17933 line_ptr += bytes_read;
17934 add_file_name (lh, cur_file, dir_index, mod_time, length);
17935 }
c906108c 17936 break;
d0c6ba3d
CC
17937 case DW_LNE_set_discriminator:
17938 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17939 just ignore it. We still need to check its value though:
17940 if there are consecutive entries for the same
17941 (non-prologue) line we want to coalesce them.
17942 PR 17276. */
d9b3de22
DE
17943 state_machine.discriminator
17944 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17945 state_machine.line_has_non_zero_discriminator
17946 |= state_machine.discriminator != 0;
a05a36a5 17947 line_ptr += bytes_read;
d0c6ba3d 17948 break;
c906108c 17949 default:
4d3c2250 17950 complaint (&symfile_complaints,
e2e0b3e5 17951 _("mangled .debug_line section"));
debd256d 17952 return;
c906108c 17953 }
a8c50c1f
DJ
17954 /* Make sure that we parsed the extended op correctly. If e.g.
17955 we expected a different address size than the producer used,
17956 we may have read the wrong number of bytes. */
17957 if (line_ptr != extended_end)
17958 {
17959 complaint (&symfile_complaints,
17960 _("mangled .debug_line section"));
17961 return;
17962 }
c906108c
SS
17963 break;
17964 case DW_LNS_copy:
d9b3de22
DE
17965 dwarf_record_line (&reader_state, &state_machine, 0);
17966 state_machine.discriminator = 0;
c906108c
SS
17967 break;
17968 case DW_LNS_advance_pc:
2dc7f7b3
TT
17969 {
17970 CORE_ADDR adjust
17971 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17972 CORE_ADDR addr_adj;
2dc7f7b3 17973
d9b3de22 17974 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17975 / lh->maximum_ops_per_instruction)
17976 * lh->minimum_instruction_length);
d9b3de22
DE
17977 state_machine.address
17978 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17979 state_machine.op_index = ((state_machine.op_index + adjust)
17980 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17981 line_ptr += bytes_read;
17982 }
c906108c
SS
17983 break;
17984 case DW_LNS_advance_line:
a05a36a5
DE
17985 {
17986 int line_delta
17987 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17988
d9b3de22 17989 state_machine.line += line_delta;
a05a36a5 17990 if (line_delta != 0)
d9b3de22
DE
17991 state_machine.line_has_non_zero_discriminator
17992 = state_machine.discriminator != 0;
a05a36a5
DE
17993 line_ptr += bytes_read;
17994 }
c906108c
SS
17995 break;
17996 case DW_LNS_set_file:
d9b3de22
DE
17997 {
17998 /* The arrays lh->include_dirs and lh->file_names are
17999 0-based, but the directory and file name numbers in
18000 the statement program are 1-based. */
18001 struct file_entry *fe;
18002 const char *dir = NULL;
18003
18004 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18005 &bytes_read);
18006 line_ptr += bytes_read;
18007 if (state_machine.file == 0
18008 || state_machine.file - 1 >= lh->num_file_names)
18009 dwarf2_debug_line_missing_file_complaint ();
18010 else
18011 {
18012 fe = &lh->file_names[state_machine.file - 1];
18013 if (fe->dir_index && lh->include_dirs != NULL)
18014 dir = lh->include_dirs[fe->dir_index - 1];
18015 if (record_lines_p)
18016 {
18017 state_machine.last_subfile = current_subfile;
18018 state_machine.line_has_non_zero_discriminator
18019 = state_machine.discriminator != 0;
18020 dwarf2_start_subfile (fe->name, dir);
18021 }
18022 }
18023 }
c906108c
SS
18024 break;
18025 case DW_LNS_set_column:
0ad93d4f 18026 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18027 line_ptr += bytes_read;
18028 break;
18029 case DW_LNS_negate_stmt:
d9b3de22 18030 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18031 break;
18032 case DW_LNS_set_basic_block:
c906108c 18033 break;
c2c6d25f
JM
18034 /* Add to the address register of the state machine the
18035 address increment value corresponding to special opcode
a738430d
MK
18036 255. I.e., this value is scaled by the minimum
18037 instruction length since special opcode 255 would have
b021a221 18038 scaled the increment. */
c906108c 18039 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18040 {
18041 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18042 CORE_ADDR addr_adj;
2dc7f7b3 18043
d9b3de22 18044 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18045 / lh->maximum_ops_per_instruction)
18046 * lh->minimum_instruction_length);
d9b3de22
DE
18047 state_machine.address
18048 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18049 state_machine.op_index = ((state_machine.op_index + adjust)
18050 % lh->maximum_ops_per_instruction);
2dc7f7b3 18051 }
c906108c
SS
18052 break;
18053 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18054 {
18055 CORE_ADDR addr_adj;
18056
18057 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18058 state_machine.address
18059 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18060 state_machine.op_index = 0;
3e29f34a
MR
18061 line_ptr += 2;
18062 }
c906108c 18063 break;
9aa1fe7e 18064 default:
a738430d
MK
18065 {
18066 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18067 int i;
a738430d 18068
debd256d 18069 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18070 {
18071 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18072 line_ptr += bytes_read;
18073 }
18074 }
c906108c
SS
18075 }
18076 }
d9b3de22
DE
18077
18078 if (!end_sequence)
18079 dwarf2_debug_line_missing_end_sequence_complaint ();
18080
18081 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18082 in which case we still finish recording the last line). */
18083 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18084 }
f3f5162e
DE
18085}
18086
18087/* Decode the Line Number Program (LNP) for the given line_header
18088 structure and CU. The actual information extracted and the type
18089 of structures created from the LNP depends on the value of PST.
18090
18091 1. If PST is NULL, then this procedure uses the data from the program
18092 to create all necessary symbol tables, and their linetables.
18093
18094 2. If PST is not NULL, this procedure reads the program to determine
18095 the list of files included by the unit represented by PST, and
18096 builds all the associated partial symbol tables.
18097
18098 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18099 It is used for relative paths in the line table.
18100 NOTE: When processing partial symtabs (pst != NULL),
18101 comp_dir == pst->dirname.
18102
18103 NOTE: It is important that psymtabs have the same file name (via strcmp)
18104 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18105 symtab we don't use it in the name of the psymtabs we create.
18106 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18107 A good testcase for this is mb-inline.exp.
18108
527f3840
JK
18109 LOWPC is the lowest address in CU (or 0 if not known).
18110
18111 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18112 for its PC<->lines mapping information. Otherwise only the filename
18113 table is read in. */
f3f5162e
DE
18114
18115static void
18116dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18117 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18118 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18119{
18120 struct objfile *objfile = cu->objfile;
18121 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18122
527f3840
JK
18123 if (decode_mapping)
18124 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18125
18126 if (decode_for_pst_p)
18127 {
18128 int file_index;
18129
18130 /* Now that we're done scanning the Line Header Program, we can
18131 create the psymtab of each included file. */
18132 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18133 if (lh->file_names[file_index].included_p == 1)
18134 {
d521ce57 18135 const char *include_name =
c6da4cef
DE
18136 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18137 if (include_name != NULL)
aaa75496
JB
18138 dwarf2_create_include_psymtab (include_name, pst, objfile);
18139 }
18140 }
cb1df416
DJ
18141 else
18142 {
18143 /* Make sure a symtab is created for every file, even files
18144 which contain only variables (i.e. no code with associated
18145 line numbers). */
43f3e411 18146 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18147 int i;
cb1df416
DJ
18148
18149 for (i = 0; i < lh->num_file_names; i++)
18150 {
d521ce57 18151 const char *dir = NULL;
f3f5162e 18152 struct file_entry *fe;
9a619af0 18153
cb1df416 18154 fe = &lh->file_names[i];
afa6c9ab 18155 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18156 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18157 dwarf2_start_subfile (fe->name, dir);
cb1df416 18158
cb1df416 18159 if (current_subfile->symtab == NULL)
43f3e411
DE
18160 {
18161 current_subfile->symtab
18162 = allocate_symtab (cust, current_subfile->name);
18163 }
cb1df416
DJ
18164 fe->symtab = current_subfile->symtab;
18165 }
18166 }
c906108c
SS
18167}
18168
18169/* Start a subfile for DWARF. FILENAME is the name of the file and
18170 DIRNAME the name of the source directory which contains FILENAME
4d663531 18171 or NULL if not known.
c906108c
SS
18172 This routine tries to keep line numbers from identical absolute and
18173 relative file names in a common subfile.
18174
18175 Using the `list' example from the GDB testsuite, which resides in
18176 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18177 of /srcdir/list0.c yields the following debugging information for list0.c:
18178
c5aa993b 18179 DW_AT_name: /srcdir/list0.c
4d663531 18180 DW_AT_comp_dir: /compdir
357e46e7 18181 files.files[0].name: list0.h
c5aa993b 18182 files.files[0].dir: /srcdir
357e46e7 18183 files.files[1].name: list0.c
c5aa993b 18184 files.files[1].dir: /srcdir
c906108c
SS
18185
18186 The line number information for list0.c has to end up in a single
4f1520fb
FR
18187 subfile, so that `break /srcdir/list0.c:1' works as expected.
18188 start_subfile will ensure that this happens provided that we pass the
18189 concatenation of files.files[1].dir and files.files[1].name as the
18190 subfile's name. */
c906108c
SS
18191
18192static void
4d663531 18193dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18194{
d521ce57 18195 char *copy = NULL;
4f1520fb 18196
4d663531 18197 /* In order not to lose the line information directory,
4f1520fb
FR
18198 we concatenate it to the filename when it makes sense.
18199 Note that the Dwarf3 standard says (speaking of filenames in line
18200 information): ``The directory index is ignored for file names
18201 that represent full path names''. Thus ignoring dirname in the
18202 `else' branch below isn't an issue. */
c906108c 18203
d5166ae1 18204 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18205 {
18206 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18207 filename = copy;
18208 }
c906108c 18209
4d663531 18210 start_subfile (filename);
4f1520fb 18211
d521ce57
TT
18212 if (copy != NULL)
18213 xfree (copy);
c906108c
SS
18214}
18215
f4dc4d17
DE
18216/* Start a symtab for DWARF.
18217 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18218
43f3e411 18219static struct compunit_symtab *
f4dc4d17 18220dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18221 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18222{
43f3e411
DE
18223 struct compunit_symtab *cust
18224 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18225
f4dc4d17
DE
18226 record_debugformat ("DWARF 2");
18227 record_producer (cu->producer);
18228
18229 /* We assume that we're processing GCC output. */
18230 processing_gcc_compilation = 2;
18231
4d4ec4e5 18232 cu->processing_has_namespace_info = 0;
43f3e411
DE
18233
18234 return cust;
f4dc4d17
DE
18235}
18236
4c2df51b
DJ
18237static void
18238var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18239 struct dwarf2_cu *cu)
4c2df51b 18240{
e7c27a73
DJ
18241 struct objfile *objfile = cu->objfile;
18242 struct comp_unit_head *cu_header = &cu->header;
18243
4c2df51b
DJ
18244 /* NOTE drow/2003-01-30: There used to be a comment and some special
18245 code here to turn a symbol with DW_AT_external and a
18246 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18247 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18248 with some versions of binutils) where shared libraries could have
18249 relocations against symbols in their debug information - the
18250 minimal symbol would have the right address, but the debug info
18251 would not. It's no longer necessary, because we will explicitly
18252 apply relocations when we read in the debug information now. */
18253
18254 /* A DW_AT_location attribute with no contents indicates that a
18255 variable has been optimized away. */
18256 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18257 {
f1e6e072 18258 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18259 return;
18260 }
18261
18262 /* Handle one degenerate form of location expression specially, to
18263 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18264 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18265 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18266
18267 if (attr_form_is_block (attr)
3019eac3
DE
18268 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18269 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18270 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18271 && (DW_BLOCK (attr)->size
18272 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18273 {
891d2f0b 18274 unsigned int dummy;
4c2df51b 18275
3019eac3
DE
18276 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18277 SYMBOL_VALUE_ADDRESS (sym) =
18278 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18279 else
18280 SYMBOL_VALUE_ADDRESS (sym) =
18281 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18282 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18283 fixup_symbol_section (sym, objfile);
18284 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18285 SYMBOL_SECTION (sym));
4c2df51b
DJ
18286 return;
18287 }
18288
18289 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18290 expression evaluator, and use LOC_COMPUTED only when necessary
18291 (i.e. when the value of a register or memory location is
18292 referenced, or a thread-local block, etc.). Then again, it might
18293 not be worthwhile. I'm assuming that it isn't unless performance
18294 or memory numbers show me otherwise. */
18295
f1e6e072 18296 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18297
f1e6e072 18298 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18299 cu->has_loclist = 1;
4c2df51b
DJ
18300}
18301
c906108c
SS
18302/* Given a pointer to a DWARF information entry, figure out if we need
18303 to make a symbol table entry for it, and if so, create a new entry
18304 and return a pointer to it.
18305 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18306 used the passed type.
18307 If SPACE is not NULL, use it to hold the new symbol. If it is
18308 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18309
18310static struct symbol *
34eaf542
TT
18311new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18312 struct symbol *space)
c906108c 18313{
e7c27a73 18314 struct objfile *objfile = cu->objfile;
3e29f34a 18315 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18316 struct symbol *sym = NULL;
15d034d0 18317 const char *name;
c906108c
SS
18318 struct attribute *attr = NULL;
18319 struct attribute *attr2 = NULL;
e142c38c 18320 CORE_ADDR baseaddr;
e37fd15a
SW
18321 struct pending **list_to_add = NULL;
18322
edb3359d 18323 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18324
18325 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18326
94af9270 18327 name = dwarf2_name (die, cu);
c906108c
SS
18328 if (name)
18329 {
94af9270 18330 const char *linkagename;
34eaf542 18331 int suppress_add = 0;
94af9270 18332
34eaf542
TT
18333 if (space)
18334 sym = space;
18335 else
e623cf5d 18336 sym = allocate_symbol (objfile);
c906108c 18337 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18338
18339 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18340 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18341 linkagename = dwarf2_physname (name, die, cu);
18342 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18343
f55ee35c
JK
18344 /* Fortran does not have mangling standard and the mangling does differ
18345 between gfortran, iFort etc. */
18346 if (cu->language == language_fortran
b250c185 18347 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18348 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18349 dwarf2_full_name (name, die, cu),
29df156d 18350 NULL);
f55ee35c 18351
c906108c 18352 /* Default assumptions.
c5aa993b 18353 Use the passed type or decode it from the die. */
176620f1 18354 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18355 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18356 if (type != NULL)
18357 SYMBOL_TYPE (sym) = type;
18358 else
e7c27a73 18359 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18360 attr = dwarf2_attr (die,
18361 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18362 cu);
c906108c
SS
18363 if (attr)
18364 {
18365 SYMBOL_LINE (sym) = DW_UNSND (attr);
18366 }
cb1df416 18367
edb3359d
DJ
18368 attr = dwarf2_attr (die,
18369 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18370 cu);
cb1df416
DJ
18371 if (attr)
18372 {
18373 int file_index = DW_UNSND (attr);
9a619af0 18374
cb1df416
DJ
18375 if (cu->line_header == NULL
18376 || file_index > cu->line_header->num_file_names)
18377 complaint (&symfile_complaints,
18378 _("file index out of range"));
1c3d648d 18379 else if (file_index > 0)
cb1df416
DJ
18380 {
18381 struct file_entry *fe;
9a619af0 18382
cb1df416 18383 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18384 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18385 }
18386 }
18387
c906108c
SS
18388 switch (die->tag)
18389 {
18390 case DW_TAG_label:
e142c38c 18391 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18392 if (attr)
3e29f34a
MR
18393 {
18394 CORE_ADDR addr;
18395
18396 addr = attr_value_as_address (attr);
18397 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18398 SYMBOL_VALUE_ADDRESS (sym) = addr;
18399 }
0f5238ed
TT
18400 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18401 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18402 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18403 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18404 break;
18405 case DW_TAG_subprogram:
18406 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18407 finish_block. */
f1e6e072 18408 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18409 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18410 if ((attr2 && (DW_UNSND (attr2) != 0))
18411 || cu->language == language_ada)
c906108c 18412 {
2cfa0c8d
JB
18413 /* Subprograms marked external are stored as a global symbol.
18414 Ada subprograms, whether marked external or not, are always
18415 stored as a global symbol, because we want to be able to
18416 access them globally. For instance, we want to be able
18417 to break on a nested subprogram without having to
18418 specify the context. */
e37fd15a 18419 list_to_add = &global_symbols;
c906108c
SS
18420 }
18421 else
18422 {
e37fd15a 18423 list_to_add = cu->list_in_scope;
c906108c
SS
18424 }
18425 break;
edb3359d
DJ
18426 case DW_TAG_inlined_subroutine:
18427 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18428 finish_block. */
f1e6e072 18429 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18430 SYMBOL_INLINED (sym) = 1;
481860b3 18431 list_to_add = cu->list_in_scope;
edb3359d 18432 break;
34eaf542
TT
18433 case DW_TAG_template_value_param:
18434 suppress_add = 1;
18435 /* Fall through. */
72929c62 18436 case DW_TAG_constant:
c906108c 18437 case DW_TAG_variable:
254e6b9e 18438 case DW_TAG_member:
0963b4bd
MS
18439 /* Compilation with minimal debug info may result in
18440 variables with missing type entries. Change the
18441 misleading `void' type to something sensible. */
c906108c 18442 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18443 SYMBOL_TYPE (sym)
46bf5051 18444 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18445
e142c38c 18446 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18447 /* In the case of DW_TAG_member, we should only be called for
18448 static const members. */
18449 if (die->tag == DW_TAG_member)
18450 {
3863f96c
DE
18451 /* dwarf2_add_field uses die_is_declaration,
18452 so we do the same. */
254e6b9e
DE
18453 gdb_assert (die_is_declaration (die, cu));
18454 gdb_assert (attr);
18455 }
c906108c
SS
18456 if (attr)
18457 {
e7c27a73 18458 dwarf2_const_value (attr, sym, cu);
e142c38c 18459 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18460 if (!suppress_add)
34eaf542
TT
18461 {
18462 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18463 list_to_add = &global_symbols;
34eaf542 18464 else
e37fd15a 18465 list_to_add = cu->list_in_scope;
34eaf542 18466 }
c906108c
SS
18467 break;
18468 }
e142c38c 18469 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18470 if (attr)
18471 {
e7c27a73 18472 var_decode_location (attr, sym, cu);
e142c38c 18473 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18474
18475 /* Fortran explicitly imports any global symbols to the local
18476 scope by DW_TAG_common_block. */
18477 if (cu->language == language_fortran && die->parent
18478 && die->parent->tag == DW_TAG_common_block)
18479 attr2 = NULL;
18480
caac4577
JG
18481 if (SYMBOL_CLASS (sym) == LOC_STATIC
18482 && SYMBOL_VALUE_ADDRESS (sym) == 0
18483 && !dwarf2_per_objfile->has_section_at_zero)
18484 {
18485 /* When a static variable is eliminated by the linker,
18486 the corresponding debug information is not stripped
18487 out, but the variable address is set to null;
18488 do not add such variables into symbol table. */
18489 }
18490 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18491 {
f55ee35c
JK
18492 /* Workaround gfortran PR debug/40040 - it uses
18493 DW_AT_location for variables in -fPIC libraries which may
18494 get overriden by other libraries/executable and get
18495 a different address. Resolve it by the minimal symbol
18496 which may come from inferior's executable using copy
18497 relocation. Make this workaround only for gfortran as for
18498 other compilers GDB cannot guess the minimal symbol
18499 Fortran mangling kind. */
18500 if (cu->language == language_fortran && die->parent
18501 && die->parent->tag == DW_TAG_module
18502 && cu->producer
61012eef 18503 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18504 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18505
1c809c68
TT
18506 /* A variable with DW_AT_external is never static,
18507 but it may be block-scoped. */
18508 list_to_add = (cu->list_in_scope == &file_symbols
18509 ? &global_symbols : cu->list_in_scope);
1c809c68 18510 }
c906108c 18511 else
e37fd15a 18512 list_to_add = cu->list_in_scope;
c906108c
SS
18513 }
18514 else
18515 {
18516 /* We do not know the address of this symbol.
c5aa993b
JM
18517 If it is an external symbol and we have type information
18518 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18519 The address of the variable will then be determined from
18520 the minimal symbol table whenever the variable is
18521 referenced. */
e142c38c 18522 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18523
18524 /* Fortran explicitly imports any global symbols to the local
18525 scope by DW_TAG_common_block. */
18526 if (cu->language == language_fortran && die->parent
18527 && die->parent->tag == DW_TAG_common_block)
18528 {
18529 /* SYMBOL_CLASS doesn't matter here because
18530 read_common_block is going to reset it. */
18531 if (!suppress_add)
18532 list_to_add = cu->list_in_scope;
18533 }
18534 else if (attr2 && (DW_UNSND (attr2) != 0)
18535 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18536 {
0fe7935b
DJ
18537 /* A variable with DW_AT_external is never static, but it
18538 may be block-scoped. */
18539 list_to_add = (cu->list_in_scope == &file_symbols
18540 ? &global_symbols : cu->list_in_scope);
18541
f1e6e072 18542 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18543 }
442ddf59
JK
18544 else if (!die_is_declaration (die, cu))
18545 {
18546 /* Use the default LOC_OPTIMIZED_OUT class. */
18547 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18548 if (!suppress_add)
18549 list_to_add = cu->list_in_scope;
442ddf59 18550 }
c906108c
SS
18551 }
18552 break;
18553 case DW_TAG_formal_parameter:
edb3359d
DJ
18554 /* If we are inside a function, mark this as an argument. If
18555 not, we might be looking at an argument to an inlined function
18556 when we do not have enough information to show inlined frames;
18557 pretend it's a local variable in that case so that the user can
18558 still see it. */
18559 if (context_stack_depth > 0
18560 && context_stack[context_stack_depth - 1].name != NULL)
18561 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18562 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18563 if (attr)
18564 {
e7c27a73 18565 var_decode_location (attr, sym, cu);
c906108c 18566 }
e142c38c 18567 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18568 if (attr)
18569 {
e7c27a73 18570 dwarf2_const_value (attr, sym, cu);
c906108c 18571 }
f346a30d 18572
e37fd15a 18573 list_to_add = cu->list_in_scope;
c906108c
SS
18574 break;
18575 case DW_TAG_unspecified_parameters:
18576 /* From varargs functions; gdb doesn't seem to have any
18577 interest in this information, so just ignore it for now.
18578 (FIXME?) */
18579 break;
34eaf542
TT
18580 case DW_TAG_template_type_param:
18581 suppress_add = 1;
18582 /* Fall through. */
c906108c 18583 case DW_TAG_class_type:
680b30c7 18584 case DW_TAG_interface_type:
c906108c
SS
18585 case DW_TAG_structure_type:
18586 case DW_TAG_union_type:
72019c9c 18587 case DW_TAG_set_type:
c906108c 18588 case DW_TAG_enumeration_type:
f1e6e072 18589 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18590 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18591
63d06c5c 18592 {
987504bb 18593 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18594 really ever be static objects: otherwise, if you try
18595 to, say, break of a class's method and you're in a file
18596 which doesn't mention that class, it won't work unless
18597 the check for all static symbols in lookup_symbol_aux
18598 saves you. See the OtherFileClass tests in
18599 gdb.c++/namespace.exp. */
18600
e37fd15a 18601 if (!suppress_add)
34eaf542 18602 {
34eaf542
TT
18603 list_to_add = (cu->list_in_scope == &file_symbols
18604 && (cu->language == language_cplus
18605 || cu->language == language_java)
18606 ? &global_symbols : cu->list_in_scope);
63d06c5c 18607
64382290
TT
18608 /* The semantics of C++ state that "struct foo {
18609 ... }" also defines a typedef for "foo". A Java
18610 class declaration also defines a typedef for the
18611 class. */
18612 if (cu->language == language_cplus
18613 || cu->language == language_java
45280282
IB
18614 || cu->language == language_ada
18615 || cu->language == language_d)
64382290
TT
18616 {
18617 /* The symbol's name is already allocated along
18618 with this objfile, so we don't need to
18619 duplicate it for the type. */
18620 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18621 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18622 }
63d06c5c
DC
18623 }
18624 }
c906108c
SS
18625 break;
18626 case DW_TAG_typedef:
f1e6e072 18627 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18628 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18629 list_to_add = cu->list_in_scope;
63d06c5c 18630 break;
c906108c 18631 case DW_TAG_base_type:
a02abb62 18632 case DW_TAG_subrange_type:
f1e6e072 18633 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18634 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18635 list_to_add = cu->list_in_scope;
c906108c
SS
18636 break;
18637 case DW_TAG_enumerator:
e142c38c 18638 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18639 if (attr)
18640 {
e7c27a73 18641 dwarf2_const_value (attr, sym, cu);
c906108c 18642 }
63d06c5c
DC
18643 {
18644 /* NOTE: carlton/2003-11-10: See comment above in the
18645 DW_TAG_class_type, etc. block. */
18646
e142c38c 18647 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18648 && (cu->language == language_cplus
18649 || cu->language == language_java)
e142c38c 18650 ? &global_symbols : cu->list_in_scope);
63d06c5c 18651 }
c906108c 18652 break;
74921315 18653 case DW_TAG_imported_declaration:
5c4e30ca 18654 case DW_TAG_namespace:
f1e6e072 18655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18656 list_to_add = &global_symbols;
5c4e30ca 18657 break;
530e8392
KB
18658 case DW_TAG_module:
18659 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18660 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18661 list_to_add = &global_symbols;
18662 break;
4357ac6c 18663 case DW_TAG_common_block:
f1e6e072 18664 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18665 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18666 add_symbol_to_list (sym, cu->list_in_scope);
18667 break;
c906108c
SS
18668 default:
18669 /* Not a tag we recognize. Hopefully we aren't processing
18670 trash data, but since we must specifically ignore things
18671 we don't recognize, there is nothing else we should do at
0963b4bd 18672 this point. */
e2e0b3e5 18673 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18674 dwarf_tag_name (die->tag));
c906108c
SS
18675 break;
18676 }
df8a16a1 18677
e37fd15a
SW
18678 if (suppress_add)
18679 {
18680 sym->hash_next = objfile->template_symbols;
18681 objfile->template_symbols = sym;
18682 list_to_add = NULL;
18683 }
18684
18685 if (list_to_add != NULL)
18686 add_symbol_to_list (sym, list_to_add);
18687
df8a16a1
DJ
18688 /* For the benefit of old versions of GCC, check for anonymous
18689 namespaces based on the demangled name. */
4d4ec4e5 18690 if (!cu->processing_has_namespace_info
94af9270 18691 && cu->language == language_cplus)
a10964d1 18692 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18693 }
18694 return (sym);
18695}
18696
34eaf542
TT
18697/* A wrapper for new_symbol_full that always allocates a new symbol. */
18698
18699static struct symbol *
18700new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18701{
18702 return new_symbol_full (die, type, cu, NULL);
18703}
18704
98bfdba5
PA
18705/* Given an attr with a DW_FORM_dataN value in host byte order,
18706 zero-extend it as appropriate for the symbol's type. The DWARF
18707 standard (v4) is not entirely clear about the meaning of using
18708 DW_FORM_dataN for a constant with a signed type, where the type is
18709 wider than the data. The conclusion of a discussion on the DWARF
18710 list was that this is unspecified. We choose to always zero-extend
18711 because that is the interpretation long in use by GCC. */
c906108c 18712
98bfdba5 18713static gdb_byte *
ff39bb5e 18714dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18715 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18716{
e7c27a73 18717 struct objfile *objfile = cu->objfile;
e17a4113
UW
18718 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18719 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18720 LONGEST l = DW_UNSND (attr);
18721
18722 if (bits < sizeof (*value) * 8)
18723 {
18724 l &= ((LONGEST) 1 << bits) - 1;
18725 *value = l;
18726 }
18727 else if (bits == sizeof (*value) * 8)
18728 *value = l;
18729 else
18730 {
224c3ddb 18731 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18732 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18733 return bytes;
18734 }
18735
18736 return NULL;
18737}
18738
18739/* Read a constant value from an attribute. Either set *VALUE, or if
18740 the value does not fit in *VALUE, set *BYTES - either already
18741 allocated on the objfile obstack, or newly allocated on OBSTACK,
18742 or, set *BATON, if we translated the constant to a location
18743 expression. */
18744
18745static void
ff39bb5e 18746dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18747 const char *name, struct obstack *obstack,
18748 struct dwarf2_cu *cu,
d521ce57 18749 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18750 struct dwarf2_locexpr_baton **baton)
18751{
18752 struct objfile *objfile = cu->objfile;
18753 struct comp_unit_head *cu_header = &cu->header;
c906108c 18754 struct dwarf_block *blk;
98bfdba5
PA
18755 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18756 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18757
18758 *value = 0;
18759 *bytes = NULL;
18760 *baton = NULL;
c906108c
SS
18761
18762 switch (attr->form)
18763 {
18764 case DW_FORM_addr:
3019eac3 18765 case DW_FORM_GNU_addr_index:
ac56253d 18766 {
ac56253d
TT
18767 gdb_byte *data;
18768
98bfdba5
PA
18769 if (TYPE_LENGTH (type) != cu_header->addr_size)
18770 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18771 cu_header->addr_size,
98bfdba5 18772 TYPE_LENGTH (type));
ac56253d
TT
18773 /* Symbols of this form are reasonably rare, so we just
18774 piggyback on the existing location code rather than writing
18775 a new implementation of symbol_computed_ops. */
8d749320 18776 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18777 (*baton)->per_cu = cu->per_cu;
18778 gdb_assert ((*baton)->per_cu);
ac56253d 18779
98bfdba5 18780 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18781 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18782 (*baton)->data = data;
ac56253d
TT
18783
18784 data[0] = DW_OP_addr;
18785 store_unsigned_integer (&data[1], cu_header->addr_size,
18786 byte_order, DW_ADDR (attr));
18787 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18788 }
c906108c 18789 break;
4ac36638 18790 case DW_FORM_string:
93b5768b 18791 case DW_FORM_strp:
3019eac3 18792 case DW_FORM_GNU_str_index:
36586728 18793 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18794 /* DW_STRING is already allocated on the objfile obstack, point
18795 directly to it. */
d521ce57 18796 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18797 break;
c906108c
SS
18798 case DW_FORM_block1:
18799 case DW_FORM_block2:
18800 case DW_FORM_block4:
18801 case DW_FORM_block:
2dc7f7b3 18802 case DW_FORM_exprloc:
c906108c 18803 blk = DW_BLOCK (attr);
98bfdba5
PA
18804 if (TYPE_LENGTH (type) != blk->size)
18805 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18806 TYPE_LENGTH (type));
18807 *bytes = blk->data;
c906108c 18808 break;
2df3850c
JM
18809
18810 /* The DW_AT_const_value attributes are supposed to carry the
18811 symbol's value "represented as it would be on the target
18812 architecture." By the time we get here, it's already been
18813 converted to host endianness, so we just need to sign- or
18814 zero-extend it as appropriate. */
18815 case DW_FORM_data1:
3aef2284 18816 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18817 break;
c906108c 18818 case DW_FORM_data2:
3aef2284 18819 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18820 break;
c906108c 18821 case DW_FORM_data4:
3aef2284 18822 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18823 break;
c906108c 18824 case DW_FORM_data8:
3aef2284 18825 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18826 break;
18827
c906108c 18828 case DW_FORM_sdata:
98bfdba5 18829 *value = DW_SND (attr);
2df3850c
JM
18830 break;
18831
c906108c 18832 case DW_FORM_udata:
98bfdba5 18833 *value = DW_UNSND (attr);
c906108c 18834 break;
2df3850c 18835
c906108c 18836 default:
4d3c2250 18837 complaint (&symfile_complaints,
e2e0b3e5 18838 _("unsupported const value attribute form: '%s'"),
4d3c2250 18839 dwarf_form_name (attr->form));
98bfdba5 18840 *value = 0;
c906108c
SS
18841 break;
18842 }
18843}
18844
2df3850c 18845
98bfdba5
PA
18846/* Copy constant value from an attribute to a symbol. */
18847
2df3850c 18848static void
ff39bb5e 18849dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18850 struct dwarf2_cu *cu)
2df3850c 18851{
98bfdba5
PA
18852 struct objfile *objfile = cu->objfile;
18853 struct comp_unit_head *cu_header = &cu->header;
12df843f 18854 LONGEST value;
d521ce57 18855 const gdb_byte *bytes;
98bfdba5 18856 struct dwarf2_locexpr_baton *baton;
2df3850c 18857
98bfdba5
PA
18858 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18859 SYMBOL_PRINT_NAME (sym),
18860 &objfile->objfile_obstack, cu,
18861 &value, &bytes, &baton);
2df3850c 18862
98bfdba5
PA
18863 if (baton != NULL)
18864 {
98bfdba5 18865 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18866 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18867 }
18868 else if (bytes != NULL)
18869 {
18870 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18871 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18872 }
18873 else
18874 {
18875 SYMBOL_VALUE (sym) = value;
f1e6e072 18876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18877 }
2df3850c
JM
18878}
18879
c906108c
SS
18880/* Return the type of the die in question using its DW_AT_type attribute. */
18881
18882static struct type *
e7c27a73 18883die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18884{
c906108c 18885 struct attribute *type_attr;
c906108c 18886
e142c38c 18887 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18888 if (!type_attr)
18889 {
18890 /* A missing DW_AT_type represents a void type. */
46bf5051 18891 return objfile_type (cu->objfile)->builtin_void;
c906108c 18892 }
348e048f 18893
673bfd45 18894 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18895}
18896
b4ba55a1
JB
18897/* True iff CU's producer generates GNAT Ada auxiliary information
18898 that allows to find parallel types through that information instead
18899 of having to do expensive parallel lookups by type name. */
18900
18901static int
18902need_gnat_info (struct dwarf2_cu *cu)
18903{
18904 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18905 of GNAT produces this auxiliary information, without any indication
18906 that it is produced. Part of enhancing the FSF version of GNAT
18907 to produce that information will be to put in place an indicator
18908 that we can use in order to determine whether the descriptive type
18909 info is available or not. One suggestion that has been made is
18910 to use a new attribute, attached to the CU die. For now, assume
18911 that the descriptive type info is not available. */
18912 return 0;
18913}
18914
b4ba55a1
JB
18915/* Return the auxiliary type of the die in question using its
18916 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18917 attribute is not present. */
18918
18919static struct type *
18920die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18921{
b4ba55a1 18922 struct attribute *type_attr;
b4ba55a1
JB
18923
18924 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18925 if (!type_attr)
18926 return NULL;
18927
673bfd45 18928 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18929}
18930
18931/* If DIE has a descriptive_type attribute, then set the TYPE's
18932 descriptive type accordingly. */
18933
18934static void
18935set_descriptive_type (struct type *type, struct die_info *die,
18936 struct dwarf2_cu *cu)
18937{
18938 struct type *descriptive_type = die_descriptive_type (die, cu);
18939
18940 if (descriptive_type)
18941 {
18942 ALLOCATE_GNAT_AUX_TYPE (type);
18943 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18944 }
18945}
18946
c906108c
SS
18947/* Return the containing type of the die in question using its
18948 DW_AT_containing_type attribute. */
18949
18950static struct type *
e7c27a73 18951die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18952{
c906108c 18953 struct attribute *type_attr;
c906108c 18954
e142c38c 18955 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18956 if (!type_attr)
18957 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18958 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18959
673bfd45 18960 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18961}
18962
ac9ec31b
DE
18963/* Return an error marker type to use for the ill formed type in DIE/CU. */
18964
18965static struct type *
18966build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18967{
18968 struct objfile *objfile = dwarf2_per_objfile->objfile;
18969 char *message, *saved;
18970
18971 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18972 objfile_name (objfile),
ac9ec31b
DE
18973 cu->header.offset.sect_off,
18974 die->offset.sect_off);
224c3ddb
SM
18975 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18976 message, strlen (message));
ac9ec31b
DE
18977 xfree (message);
18978
18979 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18980}
18981
673bfd45 18982/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18983 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18984 DW_AT_containing_type.
673bfd45
DE
18985 If there is no type substitute an error marker. */
18986
c906108c 18987static struct type *
ff39bb5e 18988lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18989 struct dwarf2_cu *cu)
c906108c 18990{
bb5ed363 18991 struct objfile *objfile = cu->objfile;
f792889a
DJ
18992 struct type *this_type;
18993
ac9ec31b
DE
18994 gdb_assert (attr->name == DW_AT_type
18995 || attr->name == DW_AT_GNAT_descriptive_type
18996 || attr->name == DW_AT_containing_type);
18997
673bfd45
DE
18998 /* First see if we have it cached. */
18999
36586728
TT
19000 if (attr->form == DW_FORM_GNU_ref_alt)
19001 {
19002 struct dwarf2_per_cu_data *per_cu;
19003 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19004
19005 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19006 this_type = get_die_type_at_offset (offset, per_cu);
19007 }
7771576e 19008 else if (attr_form_is_ref (attr))
673bfd45 19009 {
b64f50a1 19010 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19011
19012 this_type = get_die_type_at_offset (offset, cu->per_cu);
19013 }
55f1336d 19014 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19015 {
ac9ec31b 19016 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19017
ac9ec31b 19018 return get_signatured_type (die, signature, cu);
673bfd45
DE
19019 }
19020 else
19021 {
ac9ec31b
DE
19022 complaint (&symfile_complaints,
19023 _("Dwarf Error: Bad type attribute %s in DIE"
19024 " at 0x%x [in module %s]"),
19025 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19026 objfile_name (objfile));
ac9ec31b 19027 return build_error_marker_type (cu, die);
673bfd45
DE
19028 }
19029
19030 /* If not cached we need to read it in. */
19031
19032 if (this_type == NULL)
19033 {
ac9ec31b 19034 struct die_info *type_die = NULL;
673bfd45
DE
19035 struct dwarf2_cu *type_cu = cu;
19036
7771576e 19037 if (attr_form_is_ref (attr))
ac9ec31b
DE
19038 type_die = follow_die_ref (die, attr, &type_cu);
19039 if (type_die == NULL)
19040 return build_error_marker_type (cu, die);
19041 /* If we find the type now, it's probably because the type came
3019eac3
DE
19042 from an inter-CU reference and the type's CU got expanded before
19043 ours. */
ac9ec31b 19044 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19045 }
19046
19047 /* If we still don't have a type use an error marker. */
19048
19049 if (this_type == NULL)
ac9ec31b 19050 return build_error_marker_type (cu, die);
673bfd45 19051
f792889a 19052 return this_type;
c906108c
SS
19053}
19054
673bfd45
DE
19055/* Return the type in DIE, CU.
19056 Returns NULL for invalid types.
19057
02142a6c 19058 This first does a lookup in die_type_hash,
673bfd45
DE
19059 and only reads the die in if necessary.
19060
19061 NOTE: This can be called when reading in partial or full symbols. */
19062
f792889a 19063static struct type *
e7c27a73 19064read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19065{
f792889a
DJ
19066 struct type *this_type;
19067
19068 this_type = get_die_type (die, cu);
19069 if (this_type)
19070 return this_type;
19071
673bfd45
DE
19072 return read_type_die_1 (die, cu);
19073}
19074
19075/* Read the type in DIE, CU.
19076 Returns NULL for invalid types. */
19077
19078static struct type *
19079read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19080{
19081 struct type *this_type = NULL;
19082
c906108c
SS
19083 switch (die->tag)
19084 {
19085 case DW_TAG_class_type:
680b30c7 19086 case DW_TAG_interface_type:
c906108c
SS
19087 case DW_TAG_structure_type:
19088 case DW_TAG_union_type:
f792889a 19089 this_type = read_structure_type (die, cu);
c906108c
SS
19090 break;
19091 case DW_TAG_enumeration_type:
f792889a 19092 this_type = read_enumeration_type (die, cu);
c906108c
SS
19093 break;
19094 case DW_TAG_subprogram:
19095 case DW_TAG_subroutine_type:
edb3359d 19096 case DW_TAG_inlined_subroutine:
f792889a 19097 this_type = read_subroutine_type (die, cu);
c906108c
SS
19098 break;
19099 case DW_TAG_array_type:
f792889a 19100 this_type = read_array_type (die, cu);
c906108c 19101 break;
72019c9c 19102 case DW_TAG_set_type:
f792889a 19103 this_type = read_set_type (die, cu);
72019c9c 19104 break;
c906108c 19105 case DW_TAG_pointer_type:
f792889a 19106 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19107 break;
19108 case DW_TAG_ptr_to_member_type:
f792889a 19109 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19110 break;
19111 case DW_TAG_reference_type:
f792889a 19112 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19113 break;
19114 case DW_TAG_const_type:
f792889a 19115 this_type = read_tag_const_type (die, cu);
c906108c
SS
19116 break;
19117 case DW_TAG_volatile_type:
f792889a 19118 this_type = read_tag_volatile_type (die, cu);
c906108c 19119 break;
06d66ee9
TT
19120 case DW_TAG_restrict_type:
19121 this_type = read_tag_restrict_type (die, cu);
19122 break;
c906108c 19123 case DW_TAG_string_type:
f792889a 19124 this_type = read_tag_string_type (die, cu);
c906108c
SS
19125 break;
19126 case DW_TAG_typedef:
f792889a 19127 this_type = read_typedef (die, cu);
c906108c 19128 break;
a02abb62 19129 case DW_TAG_subrange_type:
f792889a 19130 this_type = read_subrange_type (die, cu);
a02abb62 19131 break;
c906108c 19132 case DW_TAG_base_type:
f792889a 19133 this_type = read_base_type (die, cu);
c906108c 19134 break;
81a17f79 19135 case DW_TAG_unspecified_type:
f792889a 19136 this_type = read_unspecified_type (die, cu);
81a17f79 19137 break;
0114d602
DJ
19138 case DW_TAG_namespace:
19139 this_type = read_namespace_type (die, cu);
19140 break;
f55ee35c
JK
19141 case DW_TAG_module:
19142 this_type = read_module_type (die, cu);
19143 break;
a2c2acaf
MW
19144 case DW_TAG_atomic_type:
19145 this_type = read_tag_atomic_type (die, cu);
19146 break;
c906108c 19147 default:
3e43a32a
MS
19148 complaint (&symfile_complaints,
19149 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19150 dwarf_tag_name (die->tag));
c906108c
SS
19151 break;
19152 }
63d06c5c 19153
f792889a 19154 return this_type;
63d06c5c
DC
19155}
19156
abc72ce4
DE
19157/* See if we can figure out if the class lives in a namespace. We do
19158 this by looking for a member function; its demangled name will
19159 contain namespace info, if there is any.
19160 Return the computed name or NULL.
19161 Space for the result is allocated on the objfile's obstack.
19162 This is the full-die version of guess_partial_die_structure_name.
19163 In this case we know DIE has no useful parent. */
19164
19165static char *
19166guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19167{
19168 struct die_info *spec_die;
19169 struct dwarf2_cu *spec_cu;
19170 struct die_info *child;
19171
19172 spec_cu = cu;
19173 spec_die = die_specification (die, &spec_cu);
19174 if (spec_die != NULL)
19175 {
19176 die = spec_die;
19177 cu = spec_cu;
19178 }
19179
19180 for (child = die->child;
19181 child != NULL;
19182 child = child->sibling)
19183 {
19184 if (child->tag == DW_TAG_subprogram)
19185 {
7d45c7c3 19186 const char *linkage_name;
abc72ce4 19187
7d45c7c3
KB
19188 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19189 if (linkage_name == NULL)
19190 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19191 cu);
19192 if (linkage_name != NULL)
abc72ce4
DE
19193 {
19194 char *actual_name
19195 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19196 linkage_name);
abc72ce4
DE
19197 char *name = NULL;
19198
19199 if (actual_name != NULL)
19200 {
15d034d0 19201 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19202
19203 if (die_name != NULL
19204 && strcmp (die_name, actual_name) != 0)
19205 {
19206 /* Strip off the class name from the full name.
19207 We want the prefix. */
19208 int die_name_len = strlen (die_name);
19209 int actual_name_len = strlen (actual_name);
19210
19211 /* Test for '::' as a sanity check. */
19212 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19213 && actual_name[actual_name_len
19214 - die_name_len - 1] == ':')
224c3ddb
SM
19215 name = (char *) obstack_copy0 (
19216 &cu->objfile->per_bfd->storage_obstack,
19217 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19218 }
19219 }
19220 xfree (actual_name);
19221 return name;
19222 }
19223 }
19224 }
19225
19226 return NULL;
19227}
19228
96408a79
SA
19229/* GCC might emit a nameless typedef that has a linkage name. Determine the
19230 prefix part in such case. See
19231 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19232
19233static char *
19234anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19235{
19236 struct attribute *attr;
19237 char *base;
19238
19239 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19240 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19241 return NULL;
19242
7d45c7c3 19243 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19244 return NULL;
19245
19246 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19247 if (attr == NULL)
19248 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19249 if (attr == NULL || DW_STRING (attr) == NULL)
19250 return NULL;
19251
19252 /* dwarf2_name had to be already called. */
19253 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19254
19255 /* Strip the base name, keep any leading namespaces/classes. */
19256 base = strrchr (DW_STRING (attr), ':');
19257 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19258 return "";
19259
224c3ddb
SM
19260 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19261 DW_STRING (attr),
19262 &base[-1] - DW_STRING (attr));
96408a79
SA
19263}
19264
fdde2d81 19265/* Return the name of the namespace/class that DIE is defined within,
0114d602 19266 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19267
0114d602
DJ
19268 For example, if we're within the method foo() in the following
19269 code:
19270
19271 namespace N {
19272 class C {
19273 void foo () {
19274 }
19275 };
19276 }
19277
19278 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19279
0d5cff50 19280static const char *
e142c38c 19281determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19282{
0114d602
DJ
19283 struct die_info *parent, *spec_die;
19284 struct dwarf2_cu *spec_cu;
19285 struct type *parent_type;
96408a79 19286 char *retval;
63d06c5c 19287
f55ee35c 19288 if (cu->language != language_cplus && cu->language != language_java
45280282 19289 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19290 return "";
19291
96408a79
SA
19292 retval = anonymous_struct_prefix (die, cu);
19293 if (retval)
19294 return retval;
19295
0114d602
DJ
19296 /* We have to be careful in the presence of DW_AT_specification.
19297 For example, with GCC 3.4, given the code
19298
19299 namespace N {
19300 void foo() {
19301 // Definition of N::foo.
19302 }
19303 }
19304
19305 then we'll have a tree of DIEs like this:
19306
19307 1: DW_TAG_compile_unit
19308 2: DW_TAG_namespace // N
19309 3: DW_TAG_subprogram // declaration of N::foo
19310 4: DW_TAG_subprogram // definition of N::foo
19311 DW_AT_specification // refers to die #3
19312
19313 Thus, when processing die #4, we have to pretend that we're in
19314 the context of its DW_AT_specification, namely the contex of die
19315 #3. */
19316 spec_cu = cu;
19317 spec_die = die_specification (die, &spec_cu);
19318 if (spec_die == NULL)
19319 parent = die->parent;
19320 else
63d06c5c 19321 {
0114d602
DJ
19322 parent = spec_die->parent;
19323 cu = spec_cu;
63d06c5c 19324 }
0114d602
DJ
19325
19326 if (parent == NULL)
19327 return "";
98bfdba5
PA
19328 else if (parent->building_fullname)
19329 {
19330 const char *name;
19331 const char *parent_name;
19332
19333 /* It has been seen on RealView 2.2 built binaries,
19334 DW_TAG_template_type_param types actually _defined_ as
19335 children of the parent class:
19336
19337 enum E {};
19338 template class <class Enum> Class{};
19339 Class<enum E> class_e;
19340
19341 1: DW_TAG_class_type (Class)
19342 2: DW_TAG_enumeration_type (E)
19343 3: DW_TAG_enumerator (enum1:0)
19344 3: DW_TAG_enumerator (enum2:1)
19345 ...
19346 2: DW_TAG_template_type_param
19347 DW_AT_type DW_FORM_ref_udata (E)
19348
19349 Besides being broken debug info, it can put GDB into an
19350 infinite loop. Consider:
19351
19352 When we're building the full name for Class<E>, we'll start
19353 at Class, and go look over its template type parameters,
19354 finding E. We'll then try to build the full name of E, and
19355 reach here. We're now trying to build the full name of E,
19356 and look over the parent DIE for containing scope. In the
19357 broken case, if we followed the parent DIE of E, we'd again
19358 find Class, and once again go look at its template type
19359 arguments, etc., etc. Simply don't consider such parent die
19360 as source-level parent of this die (it can't be, the language
19361 doesn't allow it), and break the loop here. */
19362 name = dwarf2_name (die, cu);
19363 parent_name = dwarf2_name (parent, cu);
19364 complaint (&symfile_complaints,
19365 _("template param type '%s' defined within parent '%s'"),
19366 name ? name : "<unknown>",
19367 parent_name ? parent_name : "<unknown>");
19368 return "";
19369 }
63d06c5c 19370 else
0114d602
DJ
19371 switch (parent->tag)
19372 {
63d06c5c 19373 case DW_TAG_namespace:
0114d602 19374 parent_type = read_type_die (parent, cu);
acebe513
UW
19375 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19376 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19377 Work around this problem here. */
19378 if (cu->language == language_cplus
19379 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19380 return "";
0114d602
DJ
19381 /* We give a name to even anonymous namespaces. */
19382 return TYPE_TAG_NAME (parent_type);
63d06c5c 19383 case DW_TAG_class_type:
680b30c7 19384 case DW_TAG_interface_type:
63d06c5c 19385 case DW_TAG_structure_type:
0114d602 19386 case DW_TAG_union_type:
f55ee35c 19387 case DW_TAG_module:
0114d602
DJ
19388 parent_type = read_type_die (parent, cu);
19389 if (TYPE_TAG_NAME (parent_type) != NULL)
19390 return TYPE_TAG_NAME (parent_type);
19391 else
19392 /* An anonymous structure is only allowed non-static data
19393 members; no typedefs, no member functions, et cetera.
19394 So it does not need a prefix. */
19395 return "";
abc72ce4 19396 case DW_TAG_compile_unit:
95554aad 19397 case DW_TAG_partial_unit:
abc72ce4
DE
19398 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19399 if (cu->language == language_cplus
8b70b953 19400 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19401 && die->child != NULL
19402 && (die->tag == DW_TAG_class_type
19403 || die->tag == DW_TAG_structure_type
19404 || die->tag == DW_TAG_union_type))
19405 {
19406 char *name = guess_full_die_structure_name (die, cu);
19407 if (name != NULL)
19408 return name;
19409 }
19410 return "";
3d567982
TT
19411 case DW_TAG_enumeration_type:
19412 parent_type = read_type_die (parent, cu);
19413 if (TYPE_DECLARED_CLASS (parent_type))
19414 {
19415 if (TYPE_TAG_NAME (parent_type) != NULL)
19416 return TYPE_TAG_NAME (parent_type);
19417 return "";
19418 }
19419 /* Fall through. */
63d06c5c 19420 default:
8176b9b8 19421 return determine_prefix (parent, cu);
63d06c5c 19422 }
63d06c5c
DC
19423}
19424
3e43a32a
MS
19425/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19426 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19427 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19428 an obconcat, otherwise allocate storage for the result. The CU argument is
19429 used to determine the language and hence, the appropriate separator. */
987504bb 19430
f55ee35c 19431#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19432
19433static char *
f55ee35c
JK
19434typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19435 int physname, struct dwarf2_cu *cu)
63d06c5c 19436{
f55ee35c 19437 const char *lead = "";
5c315b68 19438 const char *sep;
63d06c5c 19439
3e43a32a
MS
19440 if (suffix == NULL || suffix[0] == '\0'
19441 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19442 sep = "";
19443 else if (cu->language == language_java)
19444 sep = ".";
45280282
IB
19445 else if (cu->language == language_d)
19446 {
19447 /* For D, the 'main' function could be defined in any module, but it
19448 should never be prefixed. */
19449 if (strcmp (suffix, "D main") == 0)
19450 {
19451 prefix = "";
19452 sep = "";
19453 }
19454 else
19455 sep = ".";
19456 }
f55ee35c
JK
19457 else if (cu->language == language_fortran && physname)
19458 {
19459 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19460 DW_AT_MIPS_linkage_name is preferred and used instead. */
19461
19462 lead = "__";
19463 sep = "_MOD_";
19464 }
987504bb
JJ
19465 else
19466 sep = "::";
63d06c5c 19467
6dd47d34
DE
19468 if (prefix == NULL)
19469 prefix = "";
19470 if (suffix == NULL)
19471 suffix = "";
19472
987504bb
JJ
19473 if (obs == NULL)
19474 {
3e43a32a 19475 char *retval
224c3ddb
SM
19476 = ((char *)
19477 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19478
f55ee35c
JK
19479 strcpy (retval, lead);
19480 strcat (retval, prefix);
6dd47d34
DE
19481 strcat (retval, sep);
19482 strcat (retval, suffix);
63d06c5c
DC
19483 return retval;
19484 }
987504bb
JJ
19485 else
19486 {
19487 /* We have an obstack. */
f55ee35c 19488 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19489 }
63d06c5c
DC
19490}
19491
c906108c
SS
19492/* Return sibling of die, NULL if no sibling. */
19493
f9aca02d 19494static struct die_info *
fba45db2 19495sibling_die (struct die_info *die)
c906108c 19496{
639d11d3 19497 return die->sibling;
c906108c
SS
19498}
19499
71c25dea
TT
19500/* Get name of a die, return NULL if not found. */
19501
15d034d0
TT
19502static const char *
19503dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19504 struct obstack *obstack)
19505{
19506 if (name && cu->language == language_cplus)
19507 {
19508 char *canon_name = cp_canonicalize_string (name);
19509
19510 if (canon_name != NULL)
19511 {
19512 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19513 name = (const char *) obstack_copy0 (obstack, canon_name,
19514 strlen (canon_name));
71c25dea
TT
19515 xfree (canon_name);
19516 }
19517 }
19518
19519 return name;
c906108c
SS
19520}
19521
96553a0c
DE
19522/* Get name of a die, return NULL if not found.
19523 Anonymous namespaces are converted to their magic string. */
9219021c 19524
15d034d0 19525static const char *
e142c38c 19526dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19527{
19528 struct attribute *attr;
19529
e142c38c 19530 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19531 if ((!attr || !DW_STRING (attr))
96553a0c 19532 && die->tag != DW_TAG_namespace
53832f31
TT
19533 && die->tag != DW_TAG_class_type
19534 && die->tag != DW_TAG_interface_type
19535 && die->tag != DW_TAG_structure_type
19536 && die->tag != DW_TAG_union_type)
71c25dea
TT
19537 return NULL;
19538
19539 switch (die->tag)
19540 {
19541 case DW_TAG_compile_unit:
95554aad 19542 case DW_TAG_partial_unit:
71c25dea
TT
19543 /* Compilation units have a DW_AT_name that is a filename, not
19544 a source language identifier. */
19545 case DW_TAG_enumeration_type:
19546 case DW_TAG_enumerator:
19547 /* These tags always have simple identifiers already; no need
19548 to canonicalize them. */
19549 return DW_STRING (attr);
907af001 19550
96553a0c
DE
19551 case DW_TAG_namespace:
19552 if (attr != NULL && DW_STRING (attr) != NULL)
19553 return DW_STRING (attr);
19554 return CP_ANONYMOUS_NAMESPACE_STR;
19555
418835cc
KS
19556 case DW_TAG_subprogram:
19557 /* Java constructors will all be named "<init>", so return
19558 the class name when we see this special case. */
19559 if (cu->language == language_java
19560 && DW_STRING (attr) != NULL
19561 && strcmp (DW_STRING (attr), "<init>") == 0)
19562 {
19563 struct dwarf2_cu *spec_cu = cu;
19564 struct die_info *spec_die;
19565
19566 /* GCJ will output '<init>' for Java constructor names.
19567 For this special case, return the name of the parent class. */
19568
cdc07690 19569 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19570 If so, use the name of the specified DIE. */
19571 spec_die = die_specification (die, &spec_cu);
19572 if (spec_die != NULL)
19573 return dwarf2_name (spec_die, spec_cu);
19574
19575 do
19576 {
19577 die = die->parent;
19578 if (die->tag == DW_TAG_class_type)
19579 return dwarf2_name (die, cu);
19580 }
95554aad
TT
19581 while (die->tag != DW_TAG_compile_unit
19582 && die->tag != DW_TAG_partial_unit);
418835cc 19583 }
907af001
UW
19584 break;
19585
19586 case DW_TAG_class_type:
19587 case DW_TAG_interface_type:
19588 case DW_TAG_structure_type:
19589 case DW_TAG_union_type:
19590 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19591 structures or unions. These were of the form "._%d" in GCC 4.1,
19592 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19593 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19594 if (attr && DW_STRING (attr)
61012eef
GB
19595 && (startswith (DW_STRING (attr), "._")
19596 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19597 return NULL;
53832f31
TT
19598
19599 /* GCC might emit a nameless typedef that has a linkage name. See
19600 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19601 if (!attr || DW_STRING (attr) == NULL)
19602 {
df5c6c50 19603 char *demangled = NULL;
53832f31
TT
19604
19605 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19606 if (attr == NULL)
19607 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19608
19609 if (attr == NULL || DW_STRING (attr) == NULL)
19610 return NULL;
19611
df5c6c50
JK
19612 /* Avoid demangling DW_STRING (attr) the second time on a second
19613 call for the same DIE. */
19614 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19615 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19616
19617 if (demangled)
19618 {
96408a79
SA
19619 char *base;
19620
53832f31 19621 /* FIXME: we already did this for the partial symbol... */
34a68019 19622 DW_STRING (attr)
224c3ddb
SM
19623 = ((const char *)
19624 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19625 demangled, strlen (demangled)));
53832f31
TT
19626 DW_STRING_IS_CANONICAL (attr) = 1;
19627 xfree (demangled);
96408a79
SA
19628
19629 /* Strip any leading namespaces/classes, keep only the base name.
19630 DW_AT_name for named DIEs does not contain the prefixes. */
19631 base = strrchr (DW_STRING (attr), ':');
19632 if (base && base > DW_STRING (attr) && base[-1] == ':')
19633 return &base[1];
19634 else
19635 return DW_STRING (attr);
53832f31
TT
19636 }
19637 }
907af001
UW
19638 break;
19639
71c25dea 19640 default:
907af001
UW
19641 break;
19642 }
19643
19644 if (!DW_STRING_IS_CANONICAL (attr))
19645 {
19646 DW_STRING (attr)
19647 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19648 &cu->objfile->per_bfd->storage_obstack);
907af001 19649 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19650 }
907af001 19651 return DW_STRING (attr);
9219021c
DC
19652}
19653
19654/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19655 is none. *EXT_CU is the CU containing DIE on input, and the CU
19656 containing the return value on output. */
9219021c
DC
19657
19658static struct die_info *
f2f0e013 19659dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19660{
19661 struct attribute *attr;
9219021c 19662
f2f0e013 19663 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19664 if (attr == NULL)
19665 return NULL;
19666
f2f0e013 19667 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19668}
19669
c906108c
SS
19670/* Convert a DIE tag into its string name. */
19671
f39c6ffd 19672static const char *
aa1ee363 19673dwarf_tag_name (unsigned tag)
c906108c 19674{
f39c6ffd
TT
19675 const char *name = get_DW_TAG_name (tag);
19676
19677 if (name == NULL)
19678 return "DW_TAG_<unknown>";
19679
19680 return name;
c906108c
SS
19681}
19682
19683/* Convert a DWARF attribute code into its string name. */
19684
f39c6ffd 19685static const char *
aa1ee363 19686dwarf_attr_name (unsigned attr)
c906108c 19687{
f39c6ffd
TT
19688 const char *name;
19689
c764a876 19690#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19691 if (attr == DW_AT_MIPS_fde)
19692 return "DW_AT_MIPS_fde";
19693#else
19694 if (attr == DW_AT_HP_block_index)
19695 return "DW_AT_HP_block_index";
c764a876 19696#endif
f39c6ffd
TT
19697
19698 name = get_DW_AT_name (attr);
19699
19700 if (name == NULL)
19701 return "DW_AT_<unknown>";
19702
19703 return name;
c906108c
SS
19704}
19705
19706/* Convert a DWARF value form code into its string name. */
19707
f39c6ffd 19708static const char *
aa1ee363 19709dwarf_form_name (unsigned form)
c906108c 19710{
f39c6ffd
TT
19711 const char *name = get_DW_FORM_name (form);
19712
19713 if (name == NULL)
19714 return "DW_FORM_<unknown>";
19715
19716 return name;
c906108c
SS
19717}
19718
19719static char *
fba45db2 19720dwarf_bool_name (unsigned mybool)
c906108c
SS
19721{
19722 if (mybool)
19723 return "TRUE";
19724 else
19725 return "FALSE";
19726}
19727
19728/* Convert a DWARF type code into its string name. */
19729
f39c6ffd 19730static const char *
aa1ee363 19731dwarf_type_encoding_name (unsigned enc)
c906108c 19732{
f39c6ffd 19733 const char *name = get_DW_ATE_name (enc);
c906108c 19734
f39c6ffd
TT
19735 if (name == NULL)
19736 return "DW_ATE_<unknown>";
c906108c 19737
f39c6ffd 19738 return name;
c906108c 19739}
c906108c 19740
f9aca02d 19741static void
d97bc12b 19742dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19743{
19744 unsigned int i;
19745
d97bc12b
DE
19746 print_spaces (indent, f);
19747 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19748 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19749
19750 if (die->parent != NULL)
19751 {
19752 print_spaces (indent, f);
19753 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19754 die->parent->offset.sect_off);
d97bc12b
DE
19755 }
19756
19757 print_spaces (indent, f);
19758 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19759 dwarf_bool_name (die->child != NULL));
c906108c 19760
d97bc12b
DE
19761 print_spaces (indent, f);
19762 fprintf_unfiltered (f, " attributes:\n");
19763
c906108c
SS
19764 for (i = 0; i < die->num_attrs; ++i)
19765 {
d97bc12b
DE
19766 print_spaces (indent, f);
19767 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19768 dwarf_attr_name (die->attrs[i].name),
19769 dwarf_form_name (die->attrs[i].form));
d97bc12b 19770
c906108c
SS
19771 switch (die->attrs[i].form)
19772 {
c906108c 19773 case DW_FORM_addr:
3019eac3 19774 case DW_FORM_GNU_addr_index:
d97bc12b 19775 fprintf_unfiltered (f, "address: ");
5af949e3 19776 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19777 break;
19778 case DW_FORM_block2:
19779 case DW_FORM_block4:
19780 case DW_FORM_block:
19781 case DW_FORM_block1:
56eb65bd
SP
19782 fprintf_unfiltered (f, "block: size %s",
19783 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19784 break;
2dc7f7b3 19785 case DW_FORM_exprloc:
56eb65bd
SP
19786 fprintf_unfiltered (f, "expression: size %s",
19787 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19788 break;
4568ecf9
DE
19789 case DW_FORM_ref_addr:
19790 fprintf_unfiltered (f, "ref address: ");
19791 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19792 break;
36586728
TT
19793 case DW_FORM_GNU_ref_alt:
19794 fprintf_unfiltered (f, "alt ref address: ");
19795 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19796 break;
10b3939b
DJ
19797 case DW_FORM_ref1:
19798 case DW_FORM_ref2:
19799 case DW_FORM_ref4:
4568ecf9
DE
19800 case DW_FORM_ref8:
19801 case DW_FORM_ref_udata:
d97bc12b 19802 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19803 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19804 break;
c906108c
SS
19805 case DW_FORM_data1:
19806 case DW_FORM_data2:
19807 case DW_FORM_data4:
ce5d95e1 19808 case DW_FORM_data8:
c906108c
SS
19809 case DW_FORM_udata:
19810 case DW_FORM_sdata:
43bbcdc2
PH
19811 fprintf_unfiltered (f, "constant: %s",
19812 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19813 break;
2dc7f7b3
TT
19814 case DW_FORM_sec_offset:
19815 fprintf_unfiltered (f, "section offset: %s",
19816 pulongest (DW_UNSND (&die->attrs[i])));
19817 break;
55f1336d 19818 case DW_FORM_ref_sig8:
ac9ec31b
DE
19819 fprintf_unfiltered (f, "signature: %s",
19820 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19821 break;
c906108c 19822 case DW_FORM_string:
4bdf3d34 19823 case DW_FORM_strp:
3019eac3 19824 case DW_FORM_GNU_str_index:
36586728 19825 case DW_FORM_GNU_strp_alt:
8285870a 19826 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19827 DW_STRING (&die->attrs[i])
8285870a
JK
19828 ? DW_STRING (&die->attrs[i]) : "",
19829 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19830 break;
19831 case DW_FORM_flag:
19832 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19833 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19834 else
d97bc12b 19835 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19836 break;
2dc7f7b3
TT
19837 case DW_FORM_flag_present:
19838 fprintf_unfiltered (f, "flag: TRUE");
19839 break;
a8329558 19840 case DW_FORM_indirect:
0963b4bd
MS
19841 /* The reader will have reduced the indirect form to
19842 the "base form" so this form should not occur. */
3e43a32a
MS
19843 fprintf_unfiltered (f,
19844 "unexpected attribute form: DW_FORM_indirect");
a8329558 19845 break;
c906108c 19846 default:
d97bc12b 19847 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19848 die->attrs[i].form);
d97bc12b 19849 break;
c906108c 19850 }
d97bc12b 19851 fprintf_unfiltered (f, "\n");
c906108c
SS
19852 }
19853}
19854
f9aca02d 19855static void
d97bc12b 19856dump_die_for_error (struct die_info *die)
c906108c 19857{
d97bc12b
DE
19858 dump_die_shallow (gdb_stderr, 0, die);
19859}
19860
19861static void
19862dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19863{
19864 int indent = level * 4;
19865
19866 gdb_assert (die != NULL);
19867
19868 if (level >= max_level)
19869 return;
19870
19871 dump_die_shallow (f, indent, die);
19872
19873 if (die->child != NULL)
c906108c 19874 {
d97bc12b
DE
19875 print_spaces (indent, f);
19876 fprintf_unfiltered (f, " Children:");
19877 if (level + 1 < max_level)
19878 {
19879 fprintf_unfiltered (f, "\n");
19880 dump_die_1 (f, level + 1, max_level, die->child);
19881 }
19882 else
19883 {
3e43a32a
MS
19884 fprintf_unfiltered (f,
19885 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19886 }
19887 }
19888
19889 if (die->sibling != NULL && level > 0)
19890 {
19891 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19892 }
19893}
19894
d97bc12b
DE
19895/* This is called from the pdie macro in gdbinit.in.
19896 It's not static so gcc will keep a copy callable from gdb. */
19897
19898void
19899dump_die (struct die_info *die, int max_level)
19900{
19901 dump_die_1 (gdb_stdlog, 0, max_level, die);
19902}
19903
f9aca02d 19904static void
51545339 19905store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19906{
51545339 19907 void **slot;
c906108c 19908
b64f50a1
JK
19909 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19910 INSERT);
51545339
DJ
19911
19912 *slot = die;
c906108c
SS
19913}
19914
b64f50a1
JK
19915/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19916 required kind. */
19917
19918static sect_offset
ff39bb5e 19919dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19920{
4568ecf9 19921 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19922
7771576e 19923 if (attr_form_is_ref (attr))
b64f50a1 19924 return retval;
93311388 19925
b64f50a1 19926 retval.sect_off = 0;
93311388
DE
19927 complaint (&symfile_complaints,
19928 _("unsupported die ref attribute form: '%s'"),
19929 dwarf_form_name (attr->form));
b64f50a1 19930 return retval;
c906108c
SS
19931}
19932
43bbcdc2
PH
19933/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19934 * the value held by the attribute is not constant. */
a02abb62 19935
43bbcdc2 19936static LONGEST
ff39bb5e 19937dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19938{
19939 if (attr->form == DW_FORM_sdata)
19940 return DW_SND (attr);
19941 else if (attr->form == DW_FORM_udata
19942 || attr->form == DW_FORM_data1
19943 || attr->form == DW_FORM_data2
19944 || attr->form == DW_FORM_data4
19945 || attr->form == DW_FORM_data8)
19946 return DW_UNSND (attr);
19947 else
19948 {
3e43a32a
MS
19949 complaint (&symfile_complaints,
19950 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19951 dwarf_form_name (attr->form));
19952 return default_value;
19953 }
19954}
19955
348e048f
DE
19956/* Follow reference or signature attribute ATTR of SRC_DIE.
19957 On entry *REF_CU is the CU of SRC_DIE.
19958 On exit *REF_CU is the CU of the result. */
19959
19960static struct die_info *
ff39bb5e 19961follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19962 struct dwarf2_cu **ref_cu)
19963{
19964 struct die_info *die;
19965
7771576e 19966 if (attr_form_is_ref (attr))
348e048f 19967 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19968 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19969 die = follow_die_sig (src_die, attr, ref_cu);
19970 else
19971 {
19972 dump_die_for_error (src_die);
19973 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19974 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19975 }
19976
19977 return die;
03dd20cc
DJ
19978}
19979
5c631832 19980/* Follow reference OFFSET.
673bfd45
DE
19981 On entry *REF_CU is the CU of the source die referencing OFFSET.
19982 On exit *REF_CU is the CU of the result.
19983 Returns NULL if OFFSET is invalid. */
f504f079 19984
f9aca02d 19985static struct die_info *
36586728
TT
19986follow_die_offset (sect_offset offset, int offset_in_dwz,
19987 struct dwarf2_cu **ref_cu)
c906108c 19988{
10b3939b 19989 struct die_info temp_die;
f2f0e013 19990 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19991
348e048f
DE
19992 gdb_assert (cu->per_cu != NULL);
19993
98bfdba5
PA
19994 target_cu = cu;
19995
3019eac3 19996 if (cu->per_cu->is_debug_types)
348e048f
DE
19997 {
19998 /* .debug_types CUs cannot reference anything outside their CU.
19999 If they need to, they have to reference a signatured type via
55f1336d 20000 DW_FORM_ref_sig8. */
348e048f 20001 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20002 return NULL;
348e048f 20003 }
36586728
TT
20004 else if (offset_in_dwz != cu->per_cu->is_dwz
20005 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20006 {
20007 struct dwarf2_per_cu_data *per_cu;
9a619af0 20008
36586728
TT
20009 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20010 cu->objfile);
03dd20cc
DJ
20011
20012 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20013 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20014 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20015
10b3939b
DJ
20016 target_cu = per_cu->cu;
20017 }
98bfdba5
PA
20018 else if (cu->dies == NULL)
20019 {
20020 /* We're loading full DIEs during partial symbol reading. */
20021 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20022 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20023 }
c906108c 20024
f2f0e013 20025 *ref_cu = target_cu;
51545339 20026 temp_die.offset = offset;
9a3c8263
SM
20027 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20028 &temp_die, offset.sect_off);
5c631832 20029}
10b3939b 20030
5c631832
JK
20031/* Follow reference attribute ATTR of SRC_DIE.
20032 On entry *REF_CU is the CU of SRC_DIE.
20033 On exit *REF_CU is the CU of the result. */
20034
20035static struct die_info *
ff39bb5e 20036follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20037 struct dwarf2_cu **ref_cu)
20038{
b64f50a1 20039 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20040 struct dwarf2_cu *cu = *ref_cu;
20041 struct die_info *die;
20042
36586728
TT
20043 die = follow_die_offset (offset,
20044 (attr->form == DW_FORM_GNU_ref_alt
20045 || cu->per_cu->is_dwz),
20046 ref_cu);
5c631832
JK
20047 if (!die)
20048 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20049 "at 0x%x [in module %s]"),
4262abfb
JK
20050 offset.sect_off, src_die->offset.sect_off,
20051 objfile_name (cu->objfile));
348e048f 20052
5c631832
JK
20053 return die;
20054}
20055
d83e736b
JK
20056/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20057 Returned value is intended for DW_OP_call*. Returned
20058 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20059
20060struct dwarf2_locexpr_baton
8b9737bf
TT
20061dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20062 struct dwarf2_per_cu_data *per_cu,
20063 CORE_ADDR (*get_frame_pc) (void *baton),
20064 void *baton)
5c631832 20065{
918dd910 20066 struct dwarf2_cu *cu;
5c631832
JK
20067 struct die_info *die;
20068 struct attribute *attr;
20069 struct dwarf2_locexpr_baton retval;
20070
8cf6f0b1
TT
20071 dw2_setup (per_cu->objfile);
20072
918dd910
JK
20073 if (per_cu->cu == NULL)
20074 load_cu (per_cu);
20075 cu = per_cu->cu;
cc12ce38
DE
20076 if (cu == NULL)
20077 {
20078 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20079 Instead just throw an error, not much else we can do. */
20080 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20081 offset.sect_off, objfile_name (per_cu->objfile));
20082 }
918dd910 20083
36586728 20084 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20085 if (!die)
20086 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20087 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20088
20089 attr = dwarf2_attr (die, DW_AT_location, cu);
20090 if (!attr)
20091 {
e103e986
JK
20092 /* DWARF: "If there is no such attribute, then there is no effect.".
20093 DATA is ignored if SIZE is 0. */
5c631832 20094
e103e986 20095 retval.data = NULL;
5c631832
JK
20096 retval.size = 0;
20097 }
8cf6f0b1
TT
20098 else if (attr_form_is_section_offset (attr))
20099 {
20100 struct dwarf2_loclist_baton loclist_baton;
20101 CORE_ADDR pc = (*get_frame_pc) (baton);
20102 size_t size;
20103
20104 fill_in_loclist_baton (cu, &loclist_baton, attr);
20105
20106 retval.data = dwarf2_find_location_expression (&loclist_baton,
20107 &size, pc);
20108 retval.size = size;
20109 }
5c631832
JK
20110 else
20111 {
20112 if (!attr_form_is_block (attr))
20113 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20114 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20115 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20116
20117 retval.data = DW_BLOCK (attr)->data;
20118 retval.size = DW_BLOCK (attr)->size;
20119 }
20120 retval.per_cu = cu->per_cu;
918dd910 20121
918dd910
JK
20122 age_cached_comp_units ();
20123
5c631832 20124 return retval;
348e048f
DE
20125}
20126
8b9737bf
TT
20127/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20128 offset. */
20129
20130struct dwarf2_locexpr_baton
20131dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20132 struct dwarf2_per_cu_data *per_cu,
20133 CORE_ADDR (*get_frame_pc) (void *baton),
20134 void *baton)
20135{
20136 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20137
20138 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20139}
20140
b6807d98
TT
20141/* Write a constant of a given type as target-ordered bytes into
20142 OBSTACK. */
20143
20144static const gdb_byte *
20145write_constant_as_bytes (struct obstack *obstack,
20146 enum bfd_endian byte_order,
20147 struct type *type,
20148 ULONGEST value,
20149 LONGEST *len)
20150{
20151 gdb_byte *result;
20152
20153 *len = TYPE_LENGTH (type);
224c3ddb 20154 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20155 store_unsigned_integer (result, *len, byte_order, value);
20156
20157 return result;
20158}
20159
20160/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20161 pointer to the constant bytes and set LEN to the length of the
20162 data. If memory is needed, allocate it on OBSTACK. If the DIE
20163 does not have a DW_AT_const_value, return NULL. */
20164
20165const gdb_byte *
20166dwarf2_fetch_constant_bytes (sect_offset offset,
20167 struct dwarf2_per_cu_data *per_cu,
20168 struct obstack *obstack,
20169 LONGEST *len)
20170{
20171 struct dwarf2_cu *cu;
20172 struct die_info *die;
20173 struct attribute *attr;
20174 const gdb_byte *result = NULL;
20175 struct type *type;
20176 LONGEST value;
20177 enum bfd_endian byte_order;
20178
20179 dw2_setup (per_cu->objfile);
20180
20181 if (per_cu->cu == NULL)
20182 load_cu (per_cu);
20183 cu = per_cu->cu;
cc12ce38
DE
20184 if (cu == NULL)
20185 {
20186 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20187 Instead just throw an error, not much else we can do. */
20188 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20189 offset.sect_off, objfile_name (per_cu->objfile));
20190 }
b6807d98
TT
20191
20192 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20193 if (!die)
20194 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20195 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20196
20197
20198 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20199 if (attr == NULL)
20200 return NULL;
20201
20202 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20203 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20204
20205 switch (attr->form)
20206 {
20207 case DW_FORM_addr:
20208 case DW_FORM_GNU_addr_index:
20209 {
20210 gdb_byte *tem;
20211
20212 *len = cu->header.addr_size;
224c3ddb 20213 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20214 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20215 result = tem;
20216 }
20217 break;
20218 case DW_FORM_string:
20219 case DW_FORM_strp:
20220 case DW_FORM_GNU_str_index:
20221 case DW_FORM_GNU_strp_alt:
20222 /* DW_STRING is already allocated on the objfile obstack, point
20223 directly to it. */
20224 result = (const gdb_byte *) DW_STRING (attr);
20225 *len = strlen (DW_STRING (attr));
20226 break;
20227 case DW_FORM_block1:
20228 case DW_FORM_block2:
20229 case DW_FORM_block4:
20230 case DW_FORM_block:
20231 case DW_FORM_exprloc:
20232 result = DW_BLOCK (attr)->data;
20233 *len = DW_BLOCK (attr)->size;
20234 break;
20235
20236 /* The DW_AT_const_value attributes are supposed to carry the
20237 symbol's value "represented as it would be on the target
20238 architecture." By the time we get here, it's already been
20239 converted to host endianness, so we just need to sign- or
20240 zero-extend it as appropriate. */
20241 case DW_FORM_data1:
20242 type = die_type (die, cu);
20243 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20244 if (result == NULL)
20245 result = write_constant_as_bytes (obstack, byte_order,
20246 type, value, len);
20247 break;
20248 case DW_FORM_data2:
20249 type = die_type (die, cu);
20250 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20251 if (result == NULL)
20252 result = write_constant_as_bytes (obstack, byte_order,
20253 type, value, len);
20254 break;
20255 case DW_FORM_data4:
20256 type = die_type (die, cu);
20257 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20258 if (result == NULL)
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, value, len);
20261 break;
20262 case DW_FORM_data8:
20263 type = die_type (die, cu);
20264 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20265 if (result == NULL)
20266 result = write_constant_as_bytes (obstack, byte_order,
20267 type, value, len);
20268 break;
20269
20270 case DW_FORM_sdata:
20271 type = die_type (die, cu);
20272 result = write_constant_as_bytes (obstack, byte_order,
20273 type, DW_SND (attr), len);
20274 break;
20275
20276 case DW_FORM_udata:
20277 type = die_type (die, cu);
20278 result = write_constant_as_bytes (obstack, byte_order,
20279 type, DW_UNSND (attr), len);
20280 break;
20281
20282 default:
20283 complaint (&symfile_complaints,
20284 _("unsupported const value attribute form: '%s'"),
20285 dwarf_form_name (attr->form));
20286 break;
20287 }
20288
20289 return result;
20290}
20291
8a9b8146
TT
20292/* Return the type of the DIE at DIE_OFFSET in the CU named by
20293 PER_CU. */
20294
20295struct type *
b64f50a1 20296dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20297 struct dwarf2_per_cu_data *per_cu)
20298{
b64f50a1
JK
20299 sect_offset die_offset_sect;
20300
8a9b8146 20301 dw2_setup (per_cu->objfile);
b64f50a1
JK
20302
20303 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20304 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20305}
20306
ac9ec31b 20307/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20308 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20309 On exit *REF_CU is the CU of the result.
20310 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20311
20312static struct die_info *
ac9ec31b
DE
20313follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20314 struct dwarf2_cu **ref_cu)
348e048f
DE
20315{
20316 struct objfile *objfile = (*ref_cu)->objfile;
20317 struct die_info temp_die;
348e048f
DE
20318 struct dwarf2_cu *sig_cu;
20319 struct die_info *die;
20320
ac9ec31b
DE
20321 /* While it might be nice to assert sig_type->type == NULL here,
20322 we can get here for DW_AT_imported_declaration where we need
20323 the DIE not the type. */
348e048f
DE
20324
20325 /* If necessary, add it to the queue and load its DIEs. */
20326
95554aad 20327 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20328 read_signatured_type (sig_type);
348e048f 20329
348e048f 20330 sig_cu = sig_type->per_cu.cu;
69d751e3 20331 gdb_assert (sig_cu != NULL);
3019eac3
DE
20332 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20333 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20334 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20335 temp_die.offset.sect_off);
348e048f
DE
20336 if (die)
20337 {
796a7ff8
DE
20338 /* For .gdb_index version 7 keep track of included TUs.
20339 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20340 if (dwarf2_per_objfile->index_table != NULL
20341 && dwarf2_per_objfile->index_table->version <= 7)
20342 {
20343 VEC_safe_push (dwarf2_per_cu_ptr,
20344 (*ref_cu)->per_cu->imported_symtabs,
20345 sig_cu->per_cu);
20346 }
20347
348e048f
DE
20348 *ref_cu = sig_cu;
20349 return die;
20350 }
20351
ac9ec31b
DE
20352 return NULL;
20353}
20354
20355/* Follow signatured type referenced by ATTR in SRC_DIE.
20356 On entry *REF_CU is the CU of SRC_DIE.
20357 On exit *REF_CU is the CU of the result.
20358 The result is the DIE of the type.
20359 If the referenced type cannot be found an error is thrown. */
20360
20361static struct die_info *
ff39bb5e 20362follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20363 struct dwarf2_cu **ref_cu)
20364{
20365 ULONGEST signature = DW_SIGNATURE (attr);
20366 struct signatured_type *sig_type;
20367 struct die_info *die;
20368
20369 gdb_assert (attr->form == DW_FORM_ref_sig8);
20370
a2ce51a0 20371 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20372 /* sig_type will be NULL if the signatured type is missing from
20373 the debug info. */
20374 if (sig_type == NULL)
20375 {
20376 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20377 " from DIE at 0x%x [in module %s]"),
20378 hex_string (signature), src_die->offset.sect_off,
4262abfb 20379 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20380 }
20381
20382 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20383 if (die == NULL)
20384 {
20385 dump_die_for_error (src_die);
20386 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20387 " from DIE at 0x%x [in module %s]"),
20388 hex_string (signature), src_die->offset.sect_off,
4262abfb 20389 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20390 }
20391
20392 return die;
20393}
20394
20395/* Get the type specified by SIGNATURE referenced in DIE/CU,
20396 reading in and processing the type unit if necessary. */
20397
20398static struct type *
20399get_signatured_type (struct die_info *die, ULONGEST signature,
20400 struct dwarf2_cu *cu)
20401{
20402 struct signatured_type *sig_type;
20403 struct dwarf2_cu *type_cu;
20404 struct die_info *type_die;
20405 struct type *type;
20406
a2ce51a0 20407 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20408 /* sig_type will be NULL if the signatured type is missing from
20409 the debug info. */
20410 if (sig_type == NULL)
20411 {
20412 complaint (&symfile_complaints,
20413 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20414 " from DIE at 0x%x [in module %s]"),
20415 hex_string (signature), die->offset.sect_off,
4262abfb 20416 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20417 return build_error_marker_type (cu, die);
20418 }
20419
20420 /* If we already know the type we're done. */
20421 if (sig_type->type != NULL)
20422 return sig_type->type;
20423
20424 type_cu = cu;
20425 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20426 if (type_die != NULL)
20427 {
20428 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20429 is created. This is important, for example, because for c++ classes
20430 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20431 type = read_type_die (type_die, type_cu);
20432 if (type == NULL)
20433 {
20434 complaint (&symfile_complaints,
20435 _("Dwarf Error: Cannot build signatured type %s"
20436 " referenced from DIE at 0x%x [in module %s]"),
20437 hex_string (signature), die->offset.sect_off,
4262abfb 20438 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20439 type = build_error_marker_type (cu, die);
20440 }
20441 }
20442 else
20443 {
20444 complaint (&symfile_complaints,
20445 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20446 " from DIE at 0x%x [in module %s]"),
20447 hex_string (signature), die->offset.sect_off,
4262abfb 20448 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20449 type = build_error_marker_type (cu, die);
20450 }
20451 sig_type->type = type;
20452
20453 return type;
20454}
20455
20456/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20457 reading in and processing the type unit if necessary. */
20458
20459static struct type *
ff39bb5e 20460get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20461 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20462{
20463 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20464 if (attr_form_is_ref (attr))
ac9ec31b
DE
20465 {
20466 struct dwarf2_cu *type_cu = cu;
20467 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20468
20469 return read_type_die (type_die, type_cu);
20470 }
20471 else if (attr->form == DW_FORM_ref_sig8)
20472 {
20473 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20474 }
20475 else
20476 {
20477 complaint (&symfile_complaints,
20478 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20479 " at 0x%x [in module %s]"),
20480 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20481 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20482 return build_error_marker_type (cu, die);
20483 }
348e048f
DE
20484}
20485
e5fe5e75 20486/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20487
20488static void
e5fe5e75 20489load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20490{
52dc124a 20491 struct signatured_type *sig_type;
348e048f 20492
f4dc4d17
DE
20493 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20494 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20495
6721b2ec
DE
20496 /* We have the per_cu, but we need the signatured_type.
20497 Fortunately this is an easy translation. */
20498 gdb_assert (per_cu->is_debug_types);
20499 sig_type = (struct signatured_type *) per_cu;
348e048f 20500
6721b2ec 20501 gdb_assert (per_cu->cu == NULL);
348e048f 20502
52dc124a 20503 read_signatured_type (sig_type);
348e048f 20504
6721b2ec 20505 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20506}
20507
dee91e82
DE
20508/* die_reader_func for read_signatured_type.
20509 This is identical to load_full_comp_unit_reader,
20510 but is kept separate for now. */
348e048f
DE
20511
20512static void
dee91e82 20513read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20514 const gdb_byte *info_ptr,
dee91e82
DE
20515 struct die_info *comp_unit_die,
20516 int has_children,
20517 void *data)
348e048f 20518{
dee91e82 20519 struct dwarf2_cu *cu = reader->cu;
348e048f 20520
dee91e82
DE
20521 gdb_assert (cu->die_hash == NULL);
20522 cu->die_hash =
20523 htab_create_alloc_ex (cu->header.length / 12,
20524 die_hash,
20525 die_eq,
20526 NULL,
20527 &cu->comp_unit_obstack,
20528 hashtab_obstack_allocate,
20529 dummy_obstack_deallocate);
348e048f 20530
dee91e82
DE
20531 if (has_children)
20532 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20533 &info_ptr, comp_unit_die);
20534 cu->dies = comp_unit_die;
20535 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20536
20537 /* We try not to read any attributes in this function, because not
9cdd5dbd 20538 all CUs needed for references have been loaded yet, and symbol
348e048f 20539 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20540 or we won't be able to build types correctly.
20541 Similarly, if we do not read the producer, we can not apply
20542 producer-specific interpretation. */
95554aad 20543 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20544}
348e048f 20545
3019eac3
DE
20546/* Read in a signatured type and build its CU and DIEs.
20547 If the type is a stub for the real type in a DWO file,
20548 read in the real type from the DWO file as well. */
dee91e82
DE
20549
20550static void
20551read_signatured_type (struct signatured_type *sig_type)
20552{
20553 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20554
3019eac3 20555 gdb_assert (per_cu->is_debug_types);
dee91e82 20556 gdb_assert (per_cu->cu == NULL);
348e048f 20557
f4dc4d17
DE
20558 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20559 read_signatured_type_reader, NULL);
7ee85ab1 20560 sig_type->per_cu.tu_read = 1;
c906108c
SS
20561}
20562
c906108c
SS
20563/* Decode simple location descriptions.
20564 Given a pointer to a dwarf block that defines a location, compute
20565 the location and return the value.
20566
4cecd739
DJ
20567 NOTE drow/2003-11-18: This function is called in two situations
20568 now: for the address of static or global variables (partial symbols
20569 only) and for offsets into structures which are expected to be
20570 (more or less) constant. The partial symbol case should go away,
20571 and only the constant case should remain. That will let this
20572 function complain more accurately. A few special modes are allowed
20573 without complaint for global variables (for instance, global
20574 register values and thread-local values).
c906108c
SS
20575
20576 A location description containing no operations indicates that the
4cecd739 20577 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20578 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20579 callers will only want a very basic result and this can become a
21ae7a4d
JK
20580 complaint.
20581
20582 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20583
20584static CORE_ADDR
e7c27a73 20585decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20586{
e7c27a73 20587 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20588 size_t i;
20589 size_t size = blk->size;
d521ce57 20590 const gdb_byte *data = blk->data;
21ae7a4d
JK
20591 CORE_ADDR stack[64];
20592 int stacki;
20593 unsigned int bytes_read, unsnd;
20594 gdb_byte op;
c906108c 20595
21ae7a4d
JK
20596 i = 0;
20597 stacki = 0;
20598 stack[stacki] = 0;
20599 stack[++stacki] = 0;
20600
20601 while (i < size)
20602 {
20603 op = data[i++];
20604 switch (op)
20605 {
20606 case DW_OP_lit0:
20607 case DW_OP_lit1:
20608 case DW_OP_lit2:
20609 case DW_OP_lit3:
20610 case DW_OP_lit4:
20611 case DW_OP_lit5:
20612 case DW_OP_lit6:
20613 case DW_OP_lit7:
20614 case DW_OP_lit8:
20615 case DW_OP_lit9:
20616 case DW_OP_lit10:
20617 case DW_OP_lit11:
20618 case DW_OP_lit12:
20619 case DW_OP_lit13:
20620 case DW_OP_lit14:
20621 case DW_OP_lit15:
20622 case DW_OP_lit16:
20623 case DW_OP_lit17:
20624 case DW_OP_lit18:
20625 case DW_OP_lit19:
20626 case DW_OP_lit20:
20627 case DW_OP_lit21:
20628 case DW_OP_lit22:
20629 case DW_OP_lit23:
20630 case DW_OP_lit24:
20631 case DW_OP_lit25:
20632 case DW_OP_lit26:
20633 case DW_OP_lit27:
20634 case DW_OP_lit28:
20635 case DW_OP_lit29:
20636 case DW_OP_lit30:
20637 case DW_OP_lit31:
20638 stack[++stacki] = op - DW_OP_lit0;
20639 break;
f1bea926 20640
21ae7a4d
JK
20641 case DW_OP_reg0:
20642 case DW_OP_reg1:
20643 case DW_OP_reg2:
20644 case DW_OP_reg3:
20645 case DW_OP_reg4:
20646 case DW_OP_reg5:
20647 case DW_OP_reg6:
20648 case DW_OP_reg7:
20649 case DW_OP_reg8:
20650 case DW_OP_reg9:
20651 case DW_OP_reg10:
20652 case DW_OP_reg11:
20653 case DW_OP_reg12:
20654 case DW_OP_reg13:
20655 case DW_OP_reg14:
20656 case DW_OP_reg15:
20657 case DW_OP_reg16:
20658 case DW_OP_reg17:
20659 case DW_OP_reg18:
20660 case DW_OP_reg19:
20661 case DW_OP_reg20:
20662 case DW_OP_reg21:
20663 case DW_OP_reg22:
20664 case DW_OP_reg23:
20665 case DW_OP_reg24:
20666 case DW_OP_reg25:
20667 case DW_OP_reg26:
20668 case DW_OP_reg27:
20669 case DW_OP_reg28:
20670 case DW_OP_reg29:
20671 case DW_OP_reg30:
20672 case DW_OP_reg31:
20673 stack[++stacki] = op - DW_OP_reg0;
20674 if (i < size)
20675 dwarf2_complex_location_expr_complaint ();
20676 break;
c906108c 20677
21ae7a4d
JK
20678 case DW_OP_regx:
20679 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20680 i += bytes_read;
20681 stack[++stacki] = unsnd;
20682 if (i < size)
20683 dwarf2_complex_location_expr_complaint ();
20684 break;
c906108c 20685
21ae7a4d
JK
20686 case DW_OP_addr:
20687 stack[++stacki] = read_address (objfile->obfd, &data[i],
20688 cu, &bytes_read);
20689 i += bytes_read;
20690 break;
d53d4ac5 20691
21ae7a4d
JK
20692 case DW_OP_const1u:
20693 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20694 i += 1;
20695 break;
20696
20697 case DW_OP_const1s:
20698 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20699 i += 1;
20700 break;
20701
20702 case DW_OP_const2u:
20703 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20704 i += 2;
20705 break;
20706
20707 case DW_OP_const2s:
20708 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20709 i += 2;
20710 break;
d53d4ac5 20711
21ae7a4d
JK
20712 case DW_OP_const4u:
20713 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20714 i += 4;
20715 break;
20716
20717 case DW_OP_const4s:
20718 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20719 i += 4;
20720 break;
20721
585861ea
JK
20722 case DW_OP_const8u:
20723 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20724 i += 8;
20725 break;
20726
21ae7a4d
JK
20727 case DW_OP_constu:
20728 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20729 &bytes_read);
20730 i += bytes_read;
20731 break;
20732
20733 case DW_OP_consts:
20734 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20735 i += bytes_read;
20736 break;
20737
20738 case DW_OP_dup:
20739 stack[stacki + 1] = stack[stacki];
20740 stacki++;
20741 break;
20742
20743 case DW_OP_plus:
20744 stack[stacki - 1] += stack[stacki];
20745 stacki--;
20746 break;
20747
20748 case DW_OP_plus_uconst:
20749 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20750 &bytes_read);
20751 i += bytes_read;
20752 break;
20753
20754 case DW_OP_minus:
20755 stack[stacki - 1] -= stack[stacki];
20756 stacki--;
20757 break;
20758
20759 case DW_OP_deref:
20760 /* If we're not the last op, then we definitely can't encode
20761 this using GDB's address_class enum. This is valid for partial
20762 global symbols, although the variable's address will be bogus
20763 in the psymtab. */
20764 if (i < size)
20765 dwarf2_complex_location_expr_complaint ();
20766 break;
20767
20768 case DW_OP_GNU_push_tls_address:
20769 /* The top of the stack has the offset from the beginning
20770 of the thread control block at which the variable is located. */
20771 /* Nothing should follow this operator, so the top of stack would
20772 be returned. */
20773 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20774 address will be bogus in the psymtab. Make it always at least
20775 non-zero to not look as a variable garbage collected by linker
20776 which have DW_OP_addr 0. */
21ae7a4d
JK
20777 if (i < size)
20778 dwarf2_complex_location_expr_complaint ();
585861ea 20779 stack[stacki]++;
21ae7a4d
JK
20780 break;
20781
20782 case DW_OP_GNU_uninit:
20783 break;
20784
3019eac3 20785 case DW_OP_GNU_addr_index:
49f6c839 20786 case DW_OP_GNU_const_index:
3019eac3
DE
20787 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20788 &bytes_read);
20789 i += bytes_read;
20790 break;
20791
21ae7a4d
JK
20792 default:
20793 {
f39c6ffd 20794 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20795
20796 if (name)
20797 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20798 name);
20799 else
20800 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20801 op);
20802 }
20803
20804 return (stack[stacki]);
d53d4ac5 20805 }
3c6e0cb3 20806
21ae7a4d
JK
20807 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20808 outside of the allocated space. Also enforce minimum>0. */
20809 if (stacki >= ARRAY_SIZE (stack) - 1)
20810 {
20811 complaint (&symfile_complaints,
20812 _("location description stack overflow"));
20813 return 0;
20814 }
20815
20816 if (stacki <= 0)
20817 {
20818 complaint (&symfile_complaints,
20819 _("location description stack underflow"));
20820 return 0;
20821 }
20822 }
20823 return (stack[stacki]);
c906108c
SS
20824}
20825
20826/* memory allocation interface */
20827
c906108c 20828static struct dwarf_block *
7b5a2f43 20829dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20830{
8d749320 20831 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20832}
20833
c906108c 20834static struct die_info *
b60c80d6 20835dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20836{
20837 struct die_info *die;
b60c80d6
DJ
20838 size_t size = sizeof (struct die_info);
20839
20840 if (num_attrs > 1)
20841 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20842
b60c80d6 20843 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20844 memset (die, 0, sizeof (struct die_info));
20845 return (die);
20846}
2e276125
JB
20847
20848\f
20849/* Macro support. */
20850
233d95b5
JK
20851/* Return file name relative to the compilation directory of file number I in
20852 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20853 responsible for freeing it. */
233d95b5 20854
2e276125 20855static char *
233d95b5 20856file_file_name (int file, struct line_header *lh)
2e276125 20857{
6a83a1e6
EZ
20858 /* Is the file number a valid index into the line header's file name
20859 table? Remember that file numbers start with one, not zero. */
20860 if (1 <= file && file <= lh->num_file_names)
20861 {
20862 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20863
afa6c9ab
SL
20864 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20865 || lh->include_dirs == NULL)
6a83a1e6 20866 return xstrdup (fe->name);
233d95b5
JK
20867 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20868 fe->name, NULL);
6a83a1e6 20869 }
2e276125
JB
20870 else
20871 {
6a83a1e6
EZ
20872 /* The compiler produced a bogus file number. We can at least
20873 record the macro definitions made in the file, even if we
20874 won't be able to find the file by name. */
20875 char fake_name[80];
9a619af0 20876
8c042590
PM
20877 xsnprintf (fake_name, sizeof (fake_name),
20878 "<bad macro file number %d>", file);
2e276125 20879
6e70227d 20880 complaint (&symfile_complaints,
6a83a1e6
EZ
20881 _("bad file number in macro information (%d)"),
20882 file);
2e276125 20883
6a83a1e6 20884 return xstrdup (fake_name);
2e276125
JB
20885 }
20886}
20887
233d95b5
JK
20888/* Return the full name of file number I in *LH's file name table.
20889 Use COMP_DIR as the name of the current directory of the
20890 compilation. The result is allocated using xmalloc; the caller is
20891 responsible for freeing it. */
20892static char *
20893file_full_name (int file, struct line_header *lh, const char *comp_dir)
20894{
20895 /* Is the file number a valid index into the line header's file name
20896 table? Remember that file numbers start with one, not zero. */
20897 if (1 <= file && file <= lh->num_file_names)
20898 {
20899 char *relative = file_file_name (file, lh);
20900
20901 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20902 return relative;
20903 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20904 }
20905 else
20906 return file_file_name (file, lh);
20907}
20908
2e276125
JB
20909
20910static struct macro_source_file *
20911macro_start_file (int file, int line,
20912 struct macro_source_file *current_file,
43f3e411 20913 struct line_header *lh)
2e276125 20914{
233d95b5
JK
20915 /* File name relative to the compilation directory of this source file. */
20916 char *file_name = file_file_name (file, lh);
2e276125 20917
2e276125 20918 if (! current_file)
abc9d0dc 20919 {
fc474241
DE
20920 /* Note: We don't create a macro table for this compilation unit
20921 at all until we actually get a filename. */
43f3e411 20922 struct macro_table *macro_table = get_macro_table ();
fc474241 20923
abc9d0dc
TT
20924 /* If we have no current file, then this must be the start_file
20925 directive for the compilation unit's main source file. */
fc474241
DE
20926 current_file = macro_set_main (macro_table, file_name);
20927 macro_define_special (macro_table);
abc9d0dc 20928 }
2e276125 20929 else
233d95b5 20930 current_file = macro_include (current_file, line, file_name);
2e276125 20931
233d95b5 20932 xfree (file_name);
6e70227d 20933
2e276125
JB
20934 return current_file;
20935}
20936
20937
20938/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20939 followed by a null byte. */
20940static char *
20941copy_string (const char *buf, int len)
20942{
224c3ddb 20943 char *s = (char *) xmalloc (len + 1);
9a619af0 20944
2e276125
JB
20945 memcpy (s, buf, len);
20946 s[len] = '\0';
2e276125
JB
20947 return s;
20948}
20949
20950
20951static const char *
20952consume_improper_spaces (const char *p, const char *body)
20953{
20954 if (*p == ' ')
20955 {
4d3c2250 20956 complaint (&symfile_complaints,
3e43a32a
MS
20957 _("macro definition contains spaces "
20958 "in formal argument list:\n`%s'"),
4d3c2250 20959 body);
2e276125
JB
20960
20961 while (*p == ' ')
20962 p++;
20963 }
20964
20965 return p;
20966}
20967
20968
20969static void
20970parse_macro_definition (struct macro_source_file *file, int line,
20971 const char *body)
20972{
20973 const char *p;
20974
20975 /* The body string takes one of two forms. For object-like macro
20976 definitions, it should be:
20977
20978 <macro name> " " <definition>
20979
20980 For function-like macro definitions, it should be:
20981
20982 <macro name> "() " <definition>
20983 or
20984 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20985
20986 Spaces may appear only where explicitly indicated, and in the
20987 <definition>.
20988
20989 The Dwarf 2 spec says that an object-like macro's name is always
20990 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20991 the space when the macro's definition is the empty string.
2e276125
JB
20992
20993 The Dwarf 2 spec says that there should be no spaces between the
20994 formal arguments in a function-like macro's formal argument list,
20995 but versions of GCC around March 2002 include spaces after the
20996 commas. */
20997
20998
20999 /* Find the extent of the macro name. The macro name is terminated
21000 by either a space or null character (for an object-like macro) or
21001 an opening paren (for a function-like macro). */
21002 for (p = body; *p; p++)
21003 if (*p == ' ' || *p == '(')
21004 break;
21005
21006 if (*p == ' ' || *p == '\0')
21007 {
21008 /* It's an object-like macro. */
21009 int name_len = p - body;
21010 char *name = copy_string (body, name_len);
21011 const char *replacement;
21012
21013 if (*p == ' ')
21014 replacement = body + name_len + 1;
21015 else
21016 {
4d3c2250 21017 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21018 replacement = body + name_len;
21019 }
6e70227d 21020
2e276125
JB
21021 macro_define_object (file, line, name, replacement);
21022
21023 xfree (name);
21024 }
21025 else if (*p == '(')
21026 {
21027 /* It's a function-like macro. */
21028 char *name = copy_string (body, p - body);
21029 int argc = 0;
21030 int argv_size = 1;
8d749320 21031 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21032
21033 p++;
21034
21035 p = consume_improper_spaces (p, body);
21036
21037 /* Parse the formal argument list. */
21038 while (*p && *p != ')')
21039 {
21040 /* Find the extent of the current argument name. */
21041 const char *arg_start = p;
21042
21043 while (*p && *p != ',' && *p != ')' && *p != ' ')
21044 p++;
21045
21046 if (! *p || p == arg_start)
4d3c2250 21047 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21048 else
21049 {
21050 /* Make sure argv has room for the new argument. */
21051 if (argc >= argv_size)
21052 {
21053 argv_size *= 2;
224c3ddb 21054 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21055 }
21056
21057 argv[argc++] = copy_string (arg_start, p - arg_start);
21058 }
21059
21060 p = consume_improper_spaces (p, body);
21061
21062 /* Consume the comma, if present. */
21063 if (*p == ',')
21064 {
21065 p++;
21066
21067 p = consume_improper_spaces (p, body);
21068 }
21069 }
21070
21071 if (*p == ')')
21072 {
21073 p++;
21074
21075 if (*p == ' ')
21076 /* Perfectly formed definition, no complaints. */
21077 macro_define_function (file, line, name,
6e70227d 21078 argc, (const char **) argv,
2e276125
JB
21079 p + 1);
21080 else if (*p == '\0')
21081 {
21082 /* Complain, but do define it. */
4d3c2250 21083 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21084 macro_define_function (file, line, name,
6e70227d 21085 argc, (const char **) argv,
2e276125
JB
21086 p);
21087 }
21088 else
21089 /* Just complain. */
4d3c2250 21090 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21091 }
21092 else
21093 /* Just complain. */
4d3c2250 21094 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21095
21096 xfree (name);
21097 {
21098 int i;
21099
21100 for (i = 0; i < argc; i++)
21101 xfree (argv[i]);
21102 }
21103 xfree (argv);
21104 }
21105 else
4d3c2250 21106 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21107}
21108
cf2c3c16
TT
21109/* Skip some bytes from BYTES according to the form given in FORM.
21110 Returns the new pointer. */
2e276125 21111
d521ce57
TT
21112static const gdb_byte *
21113skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21114 enum dwarf_form form,
21115 unsigned int offset_size,
21116 struct dwarf2_section_info *section)
2e276125 21117{
cf2c3c16 21118 unsigned int bytes_read;
2e276125 21119
cf2c3c16 21120 switch (form)
2e276125 21121 {
cf2c3c16
TT
21122 case DW_FORM_data1:
21123 case DW_FORM_flag:
21124 ++bytes;
21125 break;
21126
21127 case DW_FORM_data2:
21128 bytes += 2;
21129 break;
21130
21131 case DW_FORM_data4:
21132 bytes += 4;
21133 break;
21134
21135 case DW_FORM_data8:
21136 bytes += 8;
21137 break;
21138
21139 case DW_FORM_string:
21140 read_direct_string (abfd, bytes, &bytes_read);
21141 bytes += bytes_read;
21142 break;
21143
21144 case DW_FORM_sec_offset:
21145 case DW_FORM_strp:
36586728 21146 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21147 bytes += offset_size;
21148 break;
21149
21150 case DW_FORM_block:
21151 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21152 bytes += bytes_read;
21153 break;
21154
21155 case DW_FORM_block1:
21156 bytes += 1 + read_1_byte (abfd, bytes);
21157 break;
21158 case DW_FORM_block2:
21159 bytes += 2 + read_2_bytes (abfd, bytes);
21160 break;
21161 case DW_FORM_block4:
21162 bytes += 4 + read_4_bytes (abfd, bytes);
21163 break;
21164
21165 case DW_FORM_sdata:
21166 case DW_FORM_udata:
3019eac3
DE
21167 case DW_FORM_GNU_addr_index:
21168 case DW_FORM_GNU_str_index:
d521ce57 21169 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21170 if (bytes == NULL)
21171 {
21172 dwarf2_section_buffer_overflow_complaint (section);
21173 return NULL;
21174 }
cf2c3c16
TT
21175 break;
21176
21177 default:
21178 {
21179 complain:
21180 complaint (&symfile_complaints,
21181 _("invalid form 0x%x in `%s'"),
a32a8923 21182 form, get_section_name (section));
cf2c3c16
TT
21183 return NULL;
21184 }
2e276125
JB
21185 }
21186
cf2c3c16
TT
21187 return bytes;
21188}
757a13d0 21189
cf2c3c16
TT
21190/* A helper for dwarf_decode_macros that handles skipping an unknown
21191 opcode. Returns an updated pointer to the macro data buffer; or,
21192 on error, issues a complaint and returns NULL. */
757a13d0 21193
d521ce57 21194static const gdb_byte *
cf2c3c16 21195skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21196 const gdb_byte **opcode_definitions,
21197 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21198 bfd *abfd,
21199 unsigned int offset_size,
21200 struct dwarf2_section_info *section)
21201{
21202 unsigned int bytes_read, i;
21203 unsigned long arg;
d521ce57 21204 const gdb_byte *defn;
2e276125 21205
cf2c3c16 21206 if (opcode_definitions[opcode] == NULL)
2e276125 21207 {
cf2c3c16
TT
21208 complaint (&symfile_complaints,
21209 _("unrecognized DW_MACFINO opcode 0x%x"),
21210 opcode);
21211 return NULL;
21212 }
2e276125 21213
cf2c3c16
TT
21214 defn = opcode_definitions[opcode];
21215 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21216 defn += bytes_read;
2e276125 21217
cf2c3c16
TT
21218 for (i = 0; i < arg; ++i)
21219 {
aead7601
SM
21220 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21221 (enum dwarf_form) defn[i], offset_size,
f664829e 21222 section);
cf2c3c16
TT
21223 if (mac_ptr == NULL)
21224 {
21225 /* skip_form_bytes already issued the complaint. */
21226 return NULL;
21227 }
21228 }
757a13d0 21229
cf2c3c16
TT
21230 return mac_ptr;
21231}
757a13d0 21232
cf2c3c16
TT
21233/* A helper function which parses the header of a macro section.
21234 If the macro section is the extended (for now called "GNU") type,
21235 then this updates *OFFSET_SIZE. Returns a pointer to just after
21236 the header, or issues a complaint and returns NULL on error. */
757a13d0 21237
d521ce57
TT
21238static const gdb_byte *
21239dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21240 bfd *abfd,
d521ce57 21241 const gdb_byte *mac_ptr,
cf2c3c16
TT
21242 unsigned int *offset_size,
21243 int section_is_gnu)
21244{
21245 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21246
cf2c3c16
TT
21247 if (section_is_gnu)
21248 {
21249 unsigned int version, flags;
757a13d0 21250
cf2c3c16
TT
21251 version = read_2_bytes (abfd, mac_ptr);
21252 if (version != 4)
21253 {
21254 complaint (&symfile_complaints,
21255 _("unrecognized version `%d' in .debug_macro section"),
21256 version);
21257 return NULL;
21258 }
21259 mac_ptr += 2;
757a13d0 21260
cf2c3c16
TT
21261 flags = read_1_byte (abfd, mac_ptr);
21262 ++mac_ptr;
21263 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21264
cf2c3c16
TT
21265 if ((flags & 2) != 0)
21266 /* We don't need the line table offset. */
21267 mac_ptr += *offset_size;
757a13d0 21268
cf2c3c16
TT
21269 /* Vendor opcode descriptions. */
21270 if ((flags & 4) != 0)
21271 {
21272 unsigned int i, count;
757a13d0 21273
cf2c3c16
TT
21274 count = read_1_byte (abfd, mac_ptr);
21275 ++mac_ptr;
21276 for (i = 0; i < count; ++i)
21277 {
21278 unsigned int opcode, bytes_read;
21279 unsigned long arg;
21280
21281 opcode = read_1_byte (abfd, mac_ptr);
21282 ++mac_ptr;
21283 opcode_definitions[opcode] = mac_ptr;
21284 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21285 mac_ptr += bytes_read;
21286 mac_ptr += arg;
21287 }
757a13d0 21288 }
cf2c3c16 21289 }
757a13d0 21290
cf2c3c16
TT
21291 return mac_ptr;
21292}
757a13d0 21293
cf2c3c16 21294/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21295 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21296
21297static void
d521ce57
TT
21298dwarf_decode_macro_bytes (bfd *abfd,
21299 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21300 struct macro_source_file *current_file,
43f3e411 21301 struct line_header *lh,
cf2c3c16 21302 struct dwarf2_section_info *section,
36586728 21303 int section_is_gnu, int section_is_dwz,
cf2c3c16 21304 unsigned int offset_size,
8fc3fc34 21305 htab_t include_hash)
cf2c3c16 21306{
4d663531 21307 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21308 enum dwarf_macro_record_type macinfo_type;
21309 int at_commandline;
d521ce57 21310 const gdb_byte *opcode_definitions[256];
757a13d0 21311
cf2c3c16
TT
21312 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21313 &offset_size, section_is_gnu);
21314 if (mac_ptr == NULL)
21315 {
21316 /* We already issued a complaint. */
21317 return;
21318 }
757a13d0
JK
21319
21320 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21321 GDB is still reading the definitions from command line. First
21322 DW_MACINFO_start_file will need to be ignored as it was already executed
21323 to create CURRENT_FILE for the main source holding also the command line
21324 definitions. On first met DW_MACINFO_start_file this flag is reset to
21325 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21326
21327 at_commandline = 1;
21328
21329 do
21330 {
21331 /* Do we at least have room for a macinfo type byte? */
21332 if (mac_ptr >= mac_end)
21333 {
f664829e 21334 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21335 break;
21336 }
21337
aead7601 21338 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21339 mac_ptr++;
21340
cf2c3c16
TT
21341 /* Note that we rely on the fact that the corresponding GNU and
21342 DWARF constants are the same. */
757a13d0
JK
21343 switch (macinfo_type)
21344 {
21345 /* A zero macinfo type indicates the end of the macro
21346 information. */
21347 case 0:
21348 break;
2e276125 21349
cf2c3c16
TT
21350 case DW_MACRO_GNU_define:
21351 case DW_MACRO_GNU_undef:
21352 case DW_MACRO_GNU_define_indirect:
21353 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21354 case DW_MACRO_GNU_define_indirect_alt:
21355 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21356 {
891d2f0b 21357 unsigned int bytes_read;
2e276125 21358 int line;
d521ce57 21359 const char *body;
cf2c3c16 21360 int is_define;
2e276125 21361
cf2c3c16
TT
21362 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364
21365 if (macinfo_type == DW_MACRO_GNU_define
21366 || macinfo_type == DW_MACRO_GNU_undef)
21367 {
21368 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21369 mac_ptr += bytes_read;
21370 }
21371 else
21372 {
21373 LONGEST str_offset;
21374
21375 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21376 mac_ptr += offset_size;
2e276125 21377
36586728 21378 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21379 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21380 || section_is_dwz)
36586728
TT
21381 {
21382 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21383
21384 body = read_indirect_string_from_dwz (dwz, str_offset);
21385 }
21386 else
21387 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21388 }
21389
21390 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21391 || macinfo_type == DW_MACRO_GNU_define_indirect
21392 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21393 if (! current_file)
757a13d0
JK
21394 {
21395 /* DWARF violation as no main source is present. */
21396 complaint (&symfile_complaints,
21397 _("debug info with no main source gives macro %s "
21398 "on line %d: %s"),
cf2c3c16
TT
21399 is_define ? _("definition") : _("undefinition"),
21400 line, body);
757a13d0
JK
21401 break;
21402 }
3e43a32a
MS
21403 if ((line == 0 && !at_commandline)
21404 || (line != 0 && at_commandline))
4d3c2250 21405 complaint (&symfile_complaints,
757a13d0
JK
21406 _("debug info gives %s macro %s with %s line %d: %s"),
21407 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21408 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21409 line == 0 ? _("zero") : _("non-zero"), line, body);
21410
cf2c3c16 21411 if (is_define)
757a13d0 21412 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21413 else
21414 {
21415 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21416 || macinfo_type == DW_MACRO_GNU_undef_indirect
21417 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21418 macro_undef (current_file, line, body);
21419 }
2e276125
JB
21420 }
21421 break;
21422
cf2c3c16 21423 case DW_MACRO_GNU_start_file:
2e276125 21424 {
891d2f0b 21425 unsigned int bytes_read;
2e276125
JB
21426 int line, file;
21427
21428 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21429 mac_ptr += bytes_read;
21430 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21431 mac_ptr += bytes_read;
21432
3e43a32a
MS
21433 if ((line == 0 && !at_commandline)
21434 || (line != 0 && at_commandline))
757a13d0
JK
21435 complaint (&symfile_complaints,
21436 _("debug info gives source %d included "
21437 "from %s at %s line %d"),
21438 file, at_commandline ? _("command-line") : _("file"),
21439 line == 0 ? _("zero") : _("non-zero"), line);
21440
21441 if (at_commandline)
21442 {
cf2c3c16
TT
21443 /* This DW_MACRO_GNU_start_file was executed in the
21444 pass one. */
757a13d0
JK
21445 at_commandline = 0;
21446 }
21447 else
43f3e411 21448 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21449 }
21450 break;
21451
cf2c3c16 21452 case DW_MACRO_GNU_end_file:
2e276125 21453 if (! current_file)
4d3c2250 21454 complaint (&symfile_complaints,
3e43a32a
MS
21455 _("macro debug info has an unmatched "
21456 "`close_file' directive"));
2e276125
JB
21457 else
21458 {
21459 current_file = current_file->included_by;
21460 if (! current_file)
21461 {
cf2c3c16 21462 enum dwarf_macro_record_type next_type;
2e276125
JB
21463
21464 /* GCC circa March 2002 doesn't produce the zero
21465 type byte marking the end of the compilation
21466 unit. Complain if it's not there, but exit no
21467 matter what. */
21468
21469 /* Do we at least have room for a macinfo type byte? */
21470 if (mac_ptr >= mac_end)
21471 {
f664829e 21472 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21473 return;
21474 }
21475
21476 /* We don't increment mac_ptr here, so this is just
21477 a look-ahead. */
aead7601
SM
21478 next_type
21479 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21480 mac_ptr);
2e276125 21481 if (next_type != 0)
4d3c2250 21482 complaint (&symfile_complaints,
3e43a32a
MS
21483 _("no terminating 0-type entry for "
21484 "macros in `.debug_macinfo' section"));
2e276125
JB
21485
21486 return;
21487 }
21488 }
21489 break;
21490
cf2c3c16 21491 case DW_MACRO_GNU_transparent_include:
36586728 21492 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21493 {
21494 LONGEST offset;
8fc3fc34 21495 void **slot;
a036ba48
TT
21496 bfd *include_bfd = abfd;
21497 struct dwarf2_section_info *include_section = section;
21498 struct dwarf2_section_info alt_section;
d521ce57 21499 const gdb_byte *include_mac_end = mac_end;
a036ba48 21500 int is_dwz = section_is_dwz;
d521ce57 21501 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21502
21503 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21504 mac_ptr += offset_size;
21505
a036ba48
TT
21506 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21507 {
21508 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21509
4d663531 21510 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21511
a036ba48 21512 include_section = &dwz->macro;
a32a8923 21513 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21514 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21515 is_dwz = 1;
21516 }
21517
21518 new_mac_ptr = include_section->buffer + offset;
21519 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21520
8fc3fc34
TT
21521 if (*slot != NULL)
21522 {
21523 /* This has actually happened; see
21524 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21525 complaint (&symfile_complaints,
21526 _("recursive DW_MACRO_GNU_transparent_include in "
21527 ".debug_macro section"));
21528 }
21529 else
21530 {
d521ce57 21531 *slot = (void *) new_mac_ptr;
36586728 21532
a036ba48 21533 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21534 include_mac_end, current_file, lh,
36586728 21535 section, section_is_gnu, is_dwz,
4d663531 21536 offset_size, include_hash);
8fc3fc34 21537
d521ce57 21538 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21539 }
cf2c3c16
TT
21540 }
21541 break;
21542
2e276125 21543 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21544 if (!section_is_gnu)
21545 {
21546 unsigned int bytes_read;
21547 int constant;
2e276125 21548
cf2c3c16
TT
21549 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21550 mac_ptr += bytes_read;
21551 read_direct_string (abfd, mac_ptr, &bytes_read);
21552 mac_ptr += bytes_read;
2e276125 21553
cf2c3c16
TT
21554 /* We don't recognize any vendor extensions. */
21555 break;
21556 }
21557 /* FALLTHROUGH */
21558
21559 default:
21560 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21561 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21562 section);
21563 if (mac_ptr == NULL)
21564 return;
21565 break;
2e276125 21566 }
757a13d0 21567 } while (macinfo_type != 0);
2e276125 21568}
8e19ed76 21569
cf2c3c16 21570static void
09262596 21571dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21572 int section_is_gnu)
cf2c3c16 21573{
bb5ed363 21574 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21575 struct line_header *lh = cu->line_header;
21576 bfd *abfd;
d521ce57 21577 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21578 struct macro_source_file *current_file = 0;
21579 enum dwarf_macro_record_type macinfo_type;
21580 unsigned int offset_size = cu->header.offset_size;
d521ce57 21581 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21582 struct cleanup *cleanup;
21583 htab_t include_hash;
21584 void **slot;
09262596
DE
21585 struct dwarf2_section_info *section;
21586 const char *section_name;
21587
21588 if (cu->dwo_unit != NULL)
21589 {
21590 if (section_is_gnu)
21591 {
21592 section = &cu->dwo_unit->dwo_file->sections.macro;
21593 section_name = ".debug_macro.dwo";
21594 }
21595 else
21596 {
21597 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21598 section_name = ".debug_macinfo.dwo";
21599 }
21600 }
21601 else
21602 {
21603 if (section_is_gnu)
21604 {
21605 section = &dwarf2_per_objfile->macro;
21606 section_name = ".debug_macro";
21607 }
21608 else
21609 {
21610 section = &dwarf2_per_objfile->macinfo;
21611 section_name = ".debug_macinfo";
21612 }
21613 }
cf2c3c16 21614
bb5ed363 21615 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21616 if (section->buffer == NULL)
21617 {
fceca515 21618 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21619 return;
21620 }
a32a8923 21621 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21622
21623 /* First pass: Find the name of the base filename.
21624 This filename is needed in order to process all macros whose definition
21625 (or undefinition) comes from the command line. These macros are defined
21626 before the first DW_MACINFO_start_file entry, and yet still need to be
21627 associated to the base file.
21628
21629 To determine the base file name, we scan the macro definitions until we
21630 reach the first DW_MACINFO_start_file entry. We then initialize
21631 CURRENT_FILE accordingly so that any macro definition found before the
21632 first DW_MACINFO_start_file can still be associated to the base file. */
21633
21634 mac_ptr = section->buffer + offset;
21635 mac_end = section->buffer + section->size;
21636
21637 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21638 &offset_size, section_is_gnu);
21639 if (mac_ptr == NULL)
21640 {
21641 /* We already issued a complaint. */
21642 return;
21643 }
21644
21645 do
21646 {
21647 /* Do we at least have room for a macinfo type byte? */
21648 if (mac_ptr >= mac_end)
21649 {
21650 /* Complaint is printed during the second pass as GDB will probably
21651 stop the first pass earlier upon finding
21652 DW_MACINFO_start_file. */
21653 break;
21654 }
21655
aead7601 21656 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21657 mac_ptr++;
21658
21659 /* Note that we rely on the fact that the corresponding GNU and
21660 DWARF constants are the same. */
21661 switch (macinfo_type)
21662 {
21663 /* A zero macinfo type indicates the end of the macro
21664 information. */
21665 case 0:
21666 break;
21667
21668 case DW_MACRO_GNU_define:
21669 case DW_MACRO_GNU_undef:
21670 /* Only skip the data by MAC_PTR. */
21671 {
21672 unsigned int bytes_read;
21673
21674 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21675 mac_ptr += bytes_read;
21676 read_direct_string (abfd, mac_ptr, &bytes_read);
21677 mac_ptr += bytes_read;
21678 }
21679 break;
21680
21681 case DW_MACRO_GNU_start_file:
21682 {
21683 unsigned int bytes_read;
21684 int line, file;
21685
21686 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21687 mac_ptr += bytes_read;
21688 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21689 mac_ptr += bytes_read;
21690
43f3e411 21691 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21692 }
21693 break;
21694
21695 case DW_MACRO_GNU_end_file:
21696 /* No data to skip by MAC_PTR. */
21697 break;
21698
21699 case DW_MACRO_GNU_define_indirect:
21700 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21701 case DW_MACRO_GNU_define_indirect_alt:
21702 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21703 {
21704 unsigned int bytes_read;
21705
21706 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21707 mac_ptr += bytes_read;
21708 mac_ptr += offset_size;
21709 }
21710 break;
21711
21712 case DW_MACRO_GNU_transparent_include:
f7a35f02 21713 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21714 /* Note that, according to the spec, a transparent include
21715 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21716 skip this opcode. */
21717 mac_ptr += offset_size;
21718 break;
21719
21720 case DW_MACINFO_vendor_ext:
21721 /* Only skip the data by MAC_PTR. */
21722 if (!section_is_gnu)
21723 {
21724 unsigned int bytes_read;
21725
21726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21727 mac_ptr += bytes_read;
21728 read_direct_string (abfd, mac_ptr, &bytes_read);
21729 mac_ptr += bytes_read;
21730 }
21731 /* FALLTHROUGH */
21732
21733 default:
21734 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21735 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21736 section);
21737 if (mac_ptr == NULL)
21738 return;
21739 break;
21740 }
21741 } while (macinfo_type != 0 && current_file == NULL);
21742
21743 /* Second pass: Process all entries.
21744
21745 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21746 command-line macro definitions/undefinitions. This flag is unset when we
21747 reach the first DW_MACINFO_start_file entry. */
21748
8fc3fc34
TT
21749 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21750 NULL, xcalloc, xfree);
21751 cleanup = make_cleanup_htab_delete (include_hash);
21752 mac_ptr = section->buffer + offset;
21753 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21754 *slot = (void *) mac_ptr;
8fc3fc34 21755 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21756 current_file, lh, section,
4d663531 21757 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21758 do_cleanups (cleanup);
cf2c3c16
TT
21759}
21760
8e19ed76 21761/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21762 if so return true else false. */
380bca97 21763
8e19ed76 21764static int
6e5a29e1 21765attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21766{
21767 return (attr == NULL ? 0 :
21768 attr->form == DW_FORM_block1
21769 || attr->form == DW_FORM_block2
21770 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21771 || attr->form == DW_FORM_block
21772 || attr->form == DW_FORM_exprloc);
8e19ed76 21773}
4c2df51b 21774
c6a0999f
JB
21775/* Return non-zero if ATTR's value is a section offset --- classes
21776 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21777 You may use DW_UNSND (attr) to retrieve such offsets.
21778
21779 Section 7.5.4, "Attribute Encodings", explains that no attribute
21780 may have a value that belongs to more than one of these classes; it
21781 would be ambiguous if we did, because we use the same forms for all
21782 of them. */
380bca97 21783
3690dd37 21784static int
6e5a29e1 21785attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21786{
21787 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21788 || attr->form == DW_FORM_data8
21789 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21790}
21791
3690dd37
JB
21792/* Return non-zero if ATTR's value falls in the 'constant' class, or
21793 zero otherwise. When this function returns true, you can apply
21794 dwarf2_get_attr_constant_value to it.
21795
21796 However, note that for some attributes you must check
21797 attr_form_is_section_offset before using this test. DW_FORM_data4
21798 and DW_FORM_data8 are members of both the constant class, and of
21799 the classes that contain offsets into other debug sections
21800 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21801 that, if an attribute's can be either a constant or one of the
21802 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21803 taken as section offsets, not constants. */
380bca97 21804
3690dd37 21805static int
6e5a29e1 21806attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21807{
21808 switch (attr->form)
21809 {
21810 case DW_FORM_sdata:
21811 case DW_FORM_udata:
21812 case DW_FORM_data1:
21813 case DW_FORM_data2:
21814 case DW_FORM_data4:
21815 case DW_FORM_data8:
21816 return 1;
21817 default:
21818 return 0;
21819 }
21820}
21821
7771576e
SA
21822
21823/* DW_ADDR is always stored already as sect_offset; despite for the forms
21824 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21825
21826static int
6e5a29e1 21827attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21828{
21829 switch (attr->form)
21830 {
21831 case DW_FORM_ref_addr:
21832 case DW_FORM_ref1:
21833 case DW_FORM_ref2:
21834 case DW_FORM_ref4:
21835 case DW_FORM_ref8:
21836 case DW_FORM_ref_udata:
21837 case DW_FORM_GNU_ref_alt:
21838 return 1;
21839 default:
21840 return 0;
21841 }
21842}
21843
3019eac3
DE
21844/* Return the .debug_loc section to use for CU.
21845 For DWO files use .debug_loc.dwo. */
21846
21847static struct dwarf2_section_info *
21848cu_debug_loc_section (struct dwarf2_cu *cu)
21849{
21850 if (cu->dwo_unit)
21851 return &cu->dwo_unit->dwo_file->sections.loc;
21852 return &dwarf2_per_objfile->loc;
21853}
21854
8cf6f0b1
TT
21855/* A helper function that fills in a dwarf2_loclist_baton. */
21856
21857static void
21858fill_in_loclist_baton (struct dwarf2_cu *cu,
21859 struct dwarf2_loclist_baton *baton,
ff39bb5e 21860 const struct attribute *attr)
8cf6f0b1 21861{
3019eac3
DE
21862 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21863
21864 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21865
21866 baton->per_cu = cu->per_cu;
21867 gdb_assert (baton->per_cu);
21868 /* We don't know how long the location list is, but make sure we
21869 don't run off the edge of the section. */
3019eac3
DE
21870 baton->size = section->size - DW_UNSND (attr);
21871 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21872 baton->base_address = cu->base_address;
f664829e 21873 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21874}
21875
4c2df51b 21876static void
ff39bb5e 21877dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21878 struct dwarf2_cu *cu, int is_block)
4c2df51b 21879{
bb5ed363 21880 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21881 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21882
3690dd37 21883 if (attr_form_is_section_offset (attr)
3019eac3 21884 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21885 the section. If so, fall through to the complaint in the
21886 other branch. */
3019eac3 21887 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21888 {
0d53c4c4 21889 struct dwarf2_loclist_baton *baton;
4c2df51b 21890
8d749320 21891 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21892
8cf6f0b1 21893 fill_in_loclist_baton (cu, baton, attr);
be391dca 21894
d00adf39 21895 if (cu->base_known == 0)
0d53c4c4 21896 complaint (&symfile_complaints,
3e43a32a
MS
21897 _("Location list used without "
21898 "specifying the CU base address."));
4c2df51b 21899
f1e6e072
TT
21900 SYMBOL_ACLASS_INDEX (sym) = (is_block
21901 ? dwarf2_loclist_block_index
21902 : dwarf2_loclist_index);
0d53c4c4
DJ
21903 SYMBOL_LOCATION_BATON (sym) = baton;
21904 }
21905 else
21906 {
21907 struct dwarf2_locexpr_baton *baton;
21908
8d749320 21909 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21910 baton->per_cu = cu->per_cu;
21911 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21912
21913 if (attr_form_is_block (attr))
21914 {
21915 /* Note that we're just copying the block's data pointer
21916 here, not the actual data. We're still pointing into the
6502dd73
DJ
21917 info_buffer for SYM's objfile; right now we never release
21918 that buffer, but when we do clean up properly this may
21919 need to change. */
0d53c4c4
DJ
21920 baton->size = DW_BLOCK (attr)->size;
21921 baton->data = DW_BLOCK (attr)->data;
21922 }
21923 else
21924 {
21925 dwarf2_invalid_attrib_class_complaint ("location description",
21926 SYMBOL_NATURAL_NAME (sym));
21927 baton->size = 0;
0d53c4c4 21928 }
6e70227d 21929
f1e6e072
TT
21930 SYMBOL_ACLASS_INDEX (sym) = (is_block
21931 ? dwarf2_locexpr_block_index
21932 : dwarf2_locexpr_index);
0d53c4c4
DJ
21933 SYMBOL_LOCATION_BATON (sym) = baton;
21934 }
4c2df51b 21935}
6502dd73 21936
9aa1f1e3
TT
21937/* Return the OBJFILE associated with the compilation unit CU. If CU
21938 came from a separate debuginfo file, then the master objfile is
21939 returned. */
ae0d2f24
UW
21940
21941struct objfile *
21942dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21943{
9291a0cd 21944 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21945
21946 /* Return the master objfile, so that we can report and look up the
21947 correct file containing this variable. */
21948 if (objfile->separate_debug_objfile_backlink)
21949 objfile = objfile->separate_debug_objfile_backlink;
21950
21951 return objfile;
21952}
21953
96408a79
SA
21954/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21955 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21956 CU_HEADERP first. */
21957
21958static const struct comp_unit_head *
21959per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21960 struct dwarf2_per_cu_data *per_cu)
21961{
d521ce57 21962 const gdb_byte *info_ptr;
96408a79
SA
21963
21964 if (per_cu->cu)
21965 return &per_cu->cu->header;
21966
8a0459fd 21967 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21968
21969 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21970 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21971
21972 return cu_headerp;
21973}
21974
ae0d2f24
UW
21975/* Return the address size given in the compilation unit header for CU. */
21976
98714339 21977int
ae0d2f24
UW
21978dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21979{
96408a79
SA
21980 struct comp_unit_head cu_header_local;
21981 const struct comp_unit_head *cu_headerp;
c471e790 21982
96408a79
SA
21983 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21984
21985 return cu_headerp->addr_size;
ae0d2f24
UW
21986}
21987
9eae7c52
TT
21988/* Return the offset size given in the compilation unit header for CU. */
21989
21990int
21991dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21992{
96408a79
SA
21993 struct comp_unit_head cu_header_local;
21994 const struct comp_unit_head *cu_headerp;
9c6c53f7 21995
96408a79
SA
21996 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21997
21998 return cu_headerp->offset_size;
21999}
22000
22001/* See its dwarf2loc.h declaration. */
22002
22003int
22004dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22005{
22006 struct comp_unit_head cu_header_local;
22007 const struct comp_unit_head *cu_headerp;
22008
22009 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22010
22011 if (cu_headerp->version == 2)
22012 return cu_headerp->addr_size;
22013 else
22014 return cu_headerp->offset_size;
181cebd4
JK
22015}
22016
9aa1f1e3
TT
22017/* Return the text offset of the CU. The returned offset comes from
22018 this CU's objfile. If this objfile came from a separate debuginfo
22019 file, then the offset may be different from the corresponding
22020 offset in the parent objfile. */
22021
22022CORE_ADDR
22023dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22024{
bb3fa9d0 22025 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22026
22027 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22028}
22029
348e048f
DE
22030/* Locate the .debug_info compilation unit from CU's objfile which contains
22031 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22032
22033static struct dwarf2_per_cu_data *
b64f50a1 22034dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22035 unsigned int offset_in_dwz,
ae038cb0
DJ
22036 struct objfile *objfile)
22037{
22038 struct dwarf2_per_cu_data *this_cu;
22039 int low, high;
36586728 22040 const sect_offset *cu_off;
ae038cb0 22041
ae038cb0
DJ
22042 low = 0;
22043 high = dwarf2_per_objfile->n_comp_units - 1;
22044 while (high > low)
22045 {
36586728 22046 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22047 int mid = low + (high - low) / 2;
9a619af0 22048
36586728
TT
22049 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22050 cu_off = &mid_cu->offset;
22051 if (mid_cu->is_dwz > offset_in_dwz
22052 || (mid_cu->is_dwz == offset_in_dwz
22053 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22054 high = mid;
22055 else
22056 low = mid + 1;
22057 }
22058 gdb_assert (low == high);
36586728
TT
22059 this_cu = dwarf2_per_objfile->all_comp_units[low];
22060 cu_off = &this_cu->offset;
22061 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22062 {
36586728 22063 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22064 error (_("Dwarf Error: could not find partial DIE containing "
22065 "offset 0x%lx [in module %s]"),
b64f50a1 22066 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22067
b64f50a1
JK
22068 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22069 <= offset.sect_off);
ae038cb0
DJ
22070 return dwarf2_per_objfile->all_comp_units[low-1];
22071 }
22072 else
22073 {
22074 this_cu = dwarf2_per_objfile->all_comp_units[low];
22075 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22076 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22077 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22078 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22079 return this_cu;
22080 }
22081}
22082
23745b47 22083/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22084
9816fde3 22085static void
23745b47 22086init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22087{
9816fde3 22088 memset (cu, 0, sizeof (*cu));
23745b47
DE
22089 per_cu->cu = cu;
22090 cu->per_cu = per_cu;
22091 cu->objfile = per_cu->objfile;
93311388 22092 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22093}
22094
22095/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22096
22097static void
95554aad
TT
22098prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22099 enum language pretend_language)
9816fde3
JK
22100{
22101 struct attribute *attr;
22102
22103 /* Set the language we're debugging. */
22104 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22105 if (attr)
22106 set_cu_language (DW_UNSND (attr), cu);
22107 else
9cded63f 22108 {
95554aad 22109 cu->language = pretend_language;
9cded63f
TT
22110 cu->language_defn = language_def (cu->language);
22111 }
dee91e82 22112
7d45c7c3 22113 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22114}
22115
ae038cb0
DJ
22116/* Release one cached compilation unit, CU. We unlink it from the tree
22117 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22118 the caller is responsible for that.
22119 NOTE: DATA is a void * because this function is also used as a
22120 cleanup routine. */
ae038cb0
DJ
22121
22122static void
68dc6402 22123free_heap_comp_unit (void *data)
ae038cb0 22124{
9a3c8263 22125 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22126
23745b47
DE
22127 gdb_assert (cu->per_cu != NULL);
22128 cu->per_cu->cu = NULL;
ae038cb0
DJ
22129 cu->per_cu = NULL;
22130
22131 obstack_free (&cu->comp_unit_obstack, NULL);
22132
22133 xfree (cu);
22134}
22135
72bf9492 22136/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22137 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22138 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22139
22140static void
22141free_stack_comp_unit (void *data)
22142{
9a3c8263 22143 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22144
23745b47
DE
22145 gdb_assert (cu->per_cu != NULL);
22146 cu->per_cu->cu = NULL;
22147 cu->per_cu = NULL;
22148
72bf9492
DJ
22149 obstack_free (&cu->comp_unit_obstack, NULL);
22150 cu->partial_dies = NULL;
ae038cb0
DJ
22151}
22152
22153/* Free all cached compilation units. */
22154
22155static void
22156free_cached_comp_units (void *data)
22157{
22158 struct dwarf2_per_cu_data *per_cu, **last_chain;
22159
22160 per_cu = dwarf2_per_objfile->read_in_chain;
22161 last_chain = &dwarf2_per_objfile->read_in_chain;
22162 while (per_cu != NULL)
22163 {
22164 struct dwarf2_per_cu_data *next_cu;
22165
22166 next_cu = per_cu->cu->read_in_chain;
22167
68dc6402 22168 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22169 *last_chain = next_cu;
22170
22171 per_cu = next_cu;
22172 }
22173}
22174
22175/* Increase the age counter on each cached compilation unit, and free
22176 any that are too old. */
22177
22178static void
22179age_cached_comp_units (void)
22180{
22181 struct dwarf2_per_cu_data *per_cu, **last_chain;
22182
22183 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22184 per_cu = dwarf2_per_objfile->read_in_chain;
22185 while (per_cu != NULL)
22186 {
22187 per_cu->cu->last_used ++;
b4f54984 22188 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22189 dwarf2_mark (per_cu->cu);
22190 per_cu = per_cu->cu->read_in_chain;
22191 }
22192
22193 per_cu = dwarf2_per_objfile->read_in_chain;
22194 last_chain = &dwarf2_per_objfile->read_in_chain;
22195 while (per_cu != NULL)
22196 {
22197 struct dwarf2_per_cu_data *next_cu;
22198
22199 next_cu = per_cu->cu->read_in_chain;
22200
22201 if (!per_cu->cu->mark)
22202 {
68dc6402 22203 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22204 *last_chain = next_cu;
22205 }
22206 else
22207 last_chain = &per_cu->cu->read_in_chain;
22208
22209 per_cu = next_cu;
22210 }
22211}
22212
22213/* Remove a single compilation unit from the cache. */
22214
22215static void
dee91e82 22216free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22217{
22218 struct dwarf2_per_cu_data *per_cu, **last_chain;
22219
22220 per_cu = dwarf2_per_objfile->read_in_chain;
22221 last_chain = &dwarf2_per_objfile->read_in_chain;
22222 while (per_cu != NULL)
22223 {
22224 struct dwarf2_per_cu_data *next_cu;
22225
22226 next_cu = per_cu->cu->read_in_chain;
22227
dee91e82 22228 if (per_cu == target_per_cu)
ae038cb0 22229 {
68dc6402 22230 free_heap_comp_unit (per_cu->cu);
dee91e82 22231 per_cu->cu = NULL;
ae038cb0
DJ
22232 *last_chain = next_cu;
22233 break;
22234 }
22235 else
22236 last_chain = &per_cu->cu->read_in_chain;
22237
22238 per_cu = next_cu;
22239 }
22240}
22241
fe3e1990
DJ
22242/* Release all extra memory associated with OBJFILE. */
22243
22244void
22245dwarf2_free_objfile (struct objfile *objfile)
22246{
9a3c8263
SM
22247 dwarf2_per_objfile
22248 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22249 dwarf2_objfile_data_key);
fe3e1990
DJ
22250
22251 if (dwarf2_per_objfile == NULL)
22252 return;
22253
22254 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22255 free_cached_comp_units (NULL);
22256
7b9f3c50
DE
22257 if (dwarf2_per_objfile->quick_file_names_table)
22258 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22259
527f3840
JK
22260 if (dwarf2_per_objfile->line_header_hash)
22261 htab_delete (dwarf2_per_objfile->line_header_hash);
22262
fe3e1990
DJ
22263 /* Everything else should be on the objfile obstack. */
22264}
22265
dee91e82
DE
22266/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22267 We store these in a hash table separate from the DIEs, and preserve them
22268 when the DIEs are flushed out of cache.
22269
22270 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22271 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22272 or the type may come from a DWO file. Furthermore, while it's more logical
22273 to use per_cu->section+offset, with Fission the section with the data is in
22274 the DWO file but we don't know that section at the point we need it.
22275 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22276 because we can enter the lookup routine, get_die_type_at_offset, from
22277 outside this file, and thus won't necessarily have PER_CU->cu.
22278 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22279
dee91e82 22280struct dwarf2_per_cu_offset_and_type
1c379e20 22281{
dee91e82 22282 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22283 sect_offset offset;
1c379e20
DJ
22284 struct type *type;
22285};
22286
dee91e82 22287/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22288
22289static hashval_t
dee91e82 22290per_cu_offset_and_type_hash (const void *item)
1c379e20 22291{
9a3c8263
SM
22292 const struct dwarf2_per_cu_offset_and_type *ofs
22293 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22294
dee91e82 22295 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22296}
22297
dee91e82 22298/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22299
22300static int
dee91e82 22301per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22302{
9a3c8263
SM
22303 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22304 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22305 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22306 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22307
dee91e82
DE
22308 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22309 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22310}
22311
22312/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22313 table if necessary. For convenience, return TYPE.
22314
22315 The DIEs reading must have careful ordering to:
22316 * Not cause infite loops trying to read in DIEs as a prerequisite for
22317 reading current DIE.
22318 * Not trying to dereference contents of still incompletely read in types
22319 while reading in other DIEs.
22320 * Enable referencing still incompletely read in types just by a pointer to
22321 the type without accessing its fields.
22322
22323 Therefore caller should follow these rules:
22324 * Try to fetch any prerequisite types we may need to build this DIE type
22325 before building the type and calling set_die_type.
e71ec853 22326 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22327 possible before fetching more types to complete the current type.
22328 * Make the type as complete as possible before fetching more types. */
1c379e20 22329
f792889a 22330static struct type *
1c379e20
DJ
22331set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22332{
dee91e82 22333 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22334 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22335 struct attribute *attr;
22336 struct dynamic_prop prop;
1c379e20 22337
b4ba55a1
JB
22338 /* For Ada types, make sure that the gnat-specific data is always
22339 initialized (if not already set). There are a few types where
22340 we should not be doing so, because the type-specific area is
22341 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22342 where the type-specific area is used to store the floatformat).
22343 But this is not a problem, because the gnat-specific information
22344 is actually not needed for these types. */
22345 if (need_gnat_info (cu)
22346 && TYPE_CODE (type) != TYPE_CODE_FUNC
22347 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22348 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22349 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22350 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22351 && !HAVE_GNAT_AUX_INFO (type))
22352 INIT_GNAT_SPECIFIC (type);
22353
3cdcd0ce
JB
22354 /* Read DW_AT_data_location and set in type. */
22355 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22356 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22357 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22358
dee91e82 22359 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22360 {
dee91e82
DE
22361 dwarf2_per_objfile->die_type_hash =
22362 htab_create_alloc_ex (127,
22363 per_cu_offset_and_type_hash,
22364 per_cu_offset_and_type_eq,
22365 NULL,
22366 &objfile->objfile_obstack,
22367 hashtab_obstack_allocate,
22368 dummy_obstack_deallocate);
f792889a 22369 }
1c379e20 22370
dee91e82 22371 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22372 ofs.offset = die->offset;
22373 ofs.type = type;
dee91e82
DE
22374 slot = (struct dwarf2_per_cu_offset_and_type **)
22375 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22376 if (*slot)
22377 complaint (&symfile_complaints,
22378 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22379 die->offset.sect_off);
8d749320
SM
22380 *slot = XOBNEW (&objfile->objfile_obstack,
22381 struct dwarf2_per_cu_offset_and_type);
1c379e20 22382 **slot = ofs;
f792889a 22383 return type;
1c379e20
DJ
22384}
22385
02142a6c
DE
22386/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22387 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22388
22389static struct type *
b64f50a1 22390get_die_type_at_offset (sect_offset offset,
673bfd45 22391 struct dwarf2_per_cu_data *per_cu)
1c379e20 22392{
dee91e82 22393 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22394
dee91e82 22395 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22396 return NULL;
1c379e20 22397
dee91e82 22398 ofs.per_cu = per_cu;
673bfd45 22399 ofs.offset = offset;
9a3c8263
SM
22400 slot = ((struct dwarf2_per_cu_offset_and_type *)
22401 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22402 if (slot)
22403 return slot->type;
22404 else
22405 return NULL;
22406}
22407
02142a6c 22408/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22409 or return NULL if DIE does not have a saved type. */
22410
22411static struct type *
22412get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22413{
22414 return get_die_type_at_offset (die->offset, cu->per_cu);
22415}
22416
10b3939b
DJ
22417/* Add a dependence relationship from CU to REF_PER_CU. */
22418
22419static void
22420dwarf2_add_dependence (struct dwarf2_cu *cu,
22421 struct dwarf2_per_cu_data *ref_per_cu)
22422{
22423 void **slot;
22424
22425 if (cu->dependencies == NULL)
22426 cu->dependencies
22427 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22428 NULL, &cu->comp_unit_obstack,
22429 hashtab_obstack_allocate,
22430 dummy_obstack_deallocate);
22431
22432 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22433 if (*slot == NULL)
22434 *slot = ref_per_cu;
22435}
1c379e20 22436
f504f079
DE
22437/* Subroutine of dwarf2_mark to pass to htab_traverse.
22438 Set the mark field in every compilation unit in the
ae038cb0
DJ
22439 cache that we must keep because we are keeping CU. */
22440
10b3939b
DJ
22441static int
22442dwarf2_mark_helper (void **slot, void *data)
22443{
22444 struct dwarf2_per_cu_data *per_cu;
22445
22446 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22447
22448 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22449 reading of the chain. As such dependencies remain valid it is not much
22450 useful to track and undo them during QUIT cleanups. */
22451 if (per_cu->cu == NULL)
22452 return 1;
22453
10b3939b
DJ
22454 if (per_cu->cu->mark)
22455 return 1;
22456 per_cu->cu->mark = 1;
22457
22458 if (per_cu->cu->dependencies != NULL)
22459 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22460
22461 return 1;
22462}
22463
f504f079
DE
22464/* Set the mark field in CU and in every other compilation unit in the
22465 cache that we must keep because we are keeping CU. */
22466
ae038cb0
DJ
22467static void
22468dwarf2_mark (struct dwarf2_cu *cu)
22469{
22470 if (cu->mark)
22471 return;
22472 cu->mark = 1;
10b3939b
DJ
22473 if (cu->dependencies != NULL)
22474 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22475}
22476
22477static void
22478dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22479{
22480 while (per_cu)
22481 {
22482 per_cu->cu->mark = 0;
22483 per_cu = per_cu->cu->read_in_chain;
22484 }
72bf9492
DJ
22485}
22486
72bf9492
DJ
22487/* Trivial hash function for partial_die_info: the hash value of a DIE
22488 is its offset in .debug_info for this objfile. */
22489
22490static hashval_t
22491partial_die_hash (const void *item)
22492{
9a3c8263
SM
22493 const struct partial_die_info *part_die
22494 = (const struct partial_die_info *) item;
9a619af0 22495
b64f50a1 22496 return part_die->offset.sect_off;
72bf9492
DJ
22497}
22498
22499/* Trivial comparison function for partial_die_info structures: two DIEs
22500 are equal if they have the same offset. */
22501
22502static int
22503partial_die_eq (const void *item_lhs, const void *item_rhs)
22504{
9a3c8263
SM
22505 const struct partial_die_info *part_die_lhs
22506 = (const struct partial_die_info *) item_lhs;
22507 const struct partial_die_info *part_die_rhs
22508 = (const struct partial_die_info *) item_rhs;
9a619af0 22509
b64f50a1 22510 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22511}
22512
b4f54984
DE
22513static struct cmd_list_element *set_dwarf_cmdlist;
22514static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22515
22516static void
b4f54984 22517set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22518{
b4f54984 22519 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22520 gdb_stdout);
ae038cb0
DJ
22521}
22522
22523static void
b4f54984 22524show_dwarf_cmd (char *args, int from_tty)
6e70227d 22525{
b4f54984 22526 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22527}
22528
4bf44c1c 22529/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22530
22531static void
c1bd65d0 22532dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22533{
9a3c8263 22534 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22535 int ix;
8b70b953 22536
626f2d1c
TT
22537 /* Make sure we don't accidentally use dwarf2_per_objfile while
22538 cleaning up. */
22539 dwarf2_per_objfile = NULL;
22540
59b0c7c1
JB
22541 for (ix = 0; ix < data->n_comp_units; ++ix)
22542 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22543
59b0c7c1 22544 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22545 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22546 data->all_type_units[ix]->per_cu.imported_symtabs);
22547 xfree (data->all_type_units);
95554aad 22548
8b70b953 22549 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22550
22551 if (data->dwo_files)
22552 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22553 if (data->dwp_file)
22554 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22555
22556 if (data->dwz_file && data->dwz_file->dwz_bfd)
22557 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22558}
22559
22560\f
ae2de4f8 22561/* The "save gdb-index" command. */
9291a0cd
TT
22562
22563/* The contents of the hash table we create when building the string
22564 table. */
22565struct strtab_entry
22566{
22567 offset_type offset;
22568 const char *str;
22569};
22570
559a7a62
JK
22571/* Hash function for a strtab_entry.
22572
22573 Function is used only during write_hash_table so no index format backward
22574 compatibility is needed. */
b89be57b 22575
9291a0cd
TT
22576static hashval_t
22577hash_strtab_entry (const void *e)
22578{
9a3c8263 22579 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22580 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22581}
22582
22583/* Equality function for a strtab_entry. */
b89be57b 22584
9291a0cd
TT
22585static int
22586eq_strtab_entry (const void *a, const void *b)
22587{
9a3c8263
SM
22588 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22589 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22590 return !strcmp (ea->str, eb->str);
22591}
22592
22593/* Create a strtab_entry hash table. */
b89be57b 22594
9291a0cd
TT
22595static htab_t
22596create_strtab (void)
22597{
22598 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22599 xfree, xcalloc, xfree);
22600}
22601
22602/* Add a string to the constant pool. Return the string's offset in
22603 host order. */
b89be57b 22604
9291a0cd
TT
22605static offset_type
22606add_string (htab_t table, struct obstack *cpool, const char *str)
22607{
22608 void **slot;
22609 struct strtab_entry entry;
22610 struct strtab_entry *result;
22611
22612 entry.str = str;
22613 slot = htab_find_slot (table, &entry, INSERT);
22614 if (*slot)
9a3c8263 22615 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22616 else
22617 {
22618 result = XNEW (struct strtab_entry);
22619 result->offset = obstack_object_size (cpool);
22620 result->str = str;
22621 obstack_grow_str0 (cpool, str);
22622 *slot = result;
22623 }
22624 return result->offset;
22625}
22626
22627/* An entry in the symbol table. */
22628struct symtab_index_entry
22629{
22630 /* The name of the symbol. */
22631 const char *name;
22632 /* The offset of the name in the constant pool. */
22633 offset_type index_offset;
22634 /* A sorted vector of the indices of all the CUs that hold an object
22635 of this name. */
22636 VEC (offset_type) *cu_indices;
22637};
22638
22639/* The symbol table. This is a power-of-2-sized hash table. */
22640struct mapped_symtab
22641{
22642 offset_type n_elements;
22643 offset_type size;
22644 struct symtab_index_entry **data;
22645};
22646
22647/* Hash function for a symtab_index_entry. */
b89be57b 22648
9291a0cd
TT
22649static hashval_t
22650hash_symtab_entry (const void *e)
22651{
9a3c8263
SM
22652 const struct symtab_index_entry *entry
22653 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22654 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22655 sizeof (offset_type) * VEC_length (offset_type,
22656 entry->cu_indices),
22657 0);
22658}
22659
22660/* Equality function for a symtab_index_entry. */
b89be57b 22661
9291a0cd
TT
22662static int
22663eq_symtab_entry (const void *a, const void *b)
22664{
9a3c8263
SM
22665 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22666 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22667 int len = VEC_length (offset_type, ea->cu_indices);
22668 if (len != VEC_length (offset_type, eb->cu_indices))
22669 return 0;
22670 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22671 VEC_address (offset_type, eb->cu_indices),
22672 sizeof (offset_type) * len);
22673}
22674
22675/* Destroy a symtab_index_entry. */
b89be57b 22676
9291a0cd
TT
22677static void
22678delete_symtab_entry (void *p)
22679{
9a3c8263 22680 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22681 VEC_free (offset_type, entry->cu_indices);
22682 xfree (entry);
22683}
22684
22685/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22686
9291a0cd 22687static htab_t
3876f04e 22688create_symbol_hash_table (void)
9291a0cd
TT
22689{
22690 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22691 delete_symtab_entry, xcalloc, xfree);
22692}
22693
22694/* Create a new mapped symtab object. */
b89be57b 22695
9291a0cd
TT
22696static struct mapped_symtab *
22697create_mapped_symtab (void)
22698{
22699 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22700 symtab->n_elements = 0;
22701 symtab->size = 1024;
22702 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22703 return symtab;
22704}
22705
22706/* Destroy a mapped_symtab. */
b89be57b 22707
9291a0cd
TT
22708static void
22709cleanup_mapped_symtab (void *p)
22710{
9a3c8263 22711 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22712 /* The contents of the array are freed when the other hash table is
22713 destroyed. */
22714 xfree (symtab->data);
22715 xfree (symtab);
22716}
22717
22718/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22719 the slot.
22720
22721 Function is used only during write_hash_table so no index format backward
22722 compatibility is needed. */
b89be57b 22723
9291a0cd
TT
22724static struct symtab_index_entry **
22725find_slot (struct mapped_symtab *symtab, const char *name)
22726{
559a7a62 22727 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22728
22729 index = hash & (symtab->size - 1);
22730 step = ((hash * 17) & (symtab->size - 1)) | 1;
22731
22732 for (;;)
22733 {
22734 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22735 return &symtab->data[index];
22736 index = (index + step) & (symtab->size - 1);
22737 }
22738}
22739
22740/* Expand SYMTAB's hash table. */
b89be57b 22741
9291a0cd
TT
22742static void
22743hash_expand (struct mapped_symtab *symtab)
22744{
22745 offset_type old_size = symtab->size;
22746 offset_type i;
22747 struct symtab_index_entry **old_entries = symtab->data;
22748
22749 symtab->size *= 2;
22750 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22751
22752 for (i = 0; i < old_size; ++i)
22753 {
22754 if (old_entries[i])
22755 {
22756 struct symtab_index_entry **slot = find_slot (symtab,
22757 old_entries[i]->name);
22758 *slot = old_entries[i];
22759 }
22760 }
22761
22762 xfree (old_entries);
22763}
22764
156942c7
DE
22765/* Add an entry to SYMTAB. NAME is the name of the symbol.
22766 CU_INDEX is the index of the CU in which the symbol appears.
22767 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22768
9291a0cd
TT
22769static void
22770add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22771 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22772 offset_type cu_index)
22773{
22774 struct symtab_index_entry **slot;
156942c7 22775 offset_type cu_index_and_attrs;
9291a0cd
TT
22776
22777 ++symtab->n_elements;
22778 if (4 * symtab->n_elements / 3 >= symtab->size)
22779 hash_expand (symtab);
22780
22781 slot = find_slot (symtab, name);
22782 if (!*slot)
22783 {
22784 *slot = XNEW (struct symtab_index_entry);
22785 (*slot)->name = name;
156942c7 22786 /* index_offset is set later. */
9291a0cd
TT
22787 (*slot)->cu_indices = NULL;
22788 }
156942c7
DE
22789
22790 cu_index_and_attrs = 0;
22791 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22792 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22793 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22794
22795 /* We don't want to record an index value twice as we want to avoid the
22796 duplication.
22797 We process all global symbols and then all static symbols
22798 (which would allow us to avoid the duplication by only having to check
22799 the last entry pushed), but a symbol could have multiple kinds in one CU.
22800 To keep things simple we don't worry about the duplication here and
22801 sort and uniqufy the list after we've processed all symbols. */
22802 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22803}
22804
22805/* qsort helper routine for uniquify_cu_indices. */
22806
22807static int
22808offset_type_compare (const void *ap, const void *bp)
22809{
22810 offset_type a = *(offset_type *) ap;
22811 offset_type b = *(offset_type *) bp;
22812
22813 return (a > b) - (b > a);
22814}
22815
22816/* Sort and remove duplicates of all symbols' cu_indices lists. */
22817
22818static void
22819uniquify_cu_indices (struct mapped_symtab *symtab)
22820{
22821 int i;
22822
22823 for (i = 0; i < symtab->size; ++i)
22824 {
22825 struct symtab_index_entry *entry = symtab->data[i];
22826
22827 if (entry
22828 && entry->cu_indices != NULL)
22829 {
22830 unsigned int next_to_insert, next_to_check;
22831 offset_type last_value;
22832
22833 qsort (VEC_address (offset_type, entry->cu_indices),
22834 VEC_length (offset_type, entry->cu_indices),
22835 sizeof (offset_type), offset_type_compare);
22836
22837 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22838 next_to_insert = 1;
22839 for (next_to_check = 1;
22840 next_to_check < VEC_length (offset_type, entry->cu_indices);
22841 ++next_to_check)
22842 {
22843 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22844 != last_value)
22845 {
22846 last_value = VEC_index (offset_type, entry->cu_indices,
22847 next_to_check);
22848 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22849 last_value);
22850 ++next_to_insert;
22851 }
22852 }
22853 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22854 }
22855 }
9291a0cd
TT
22856}
22857
22858/* Add a vector of indices to the constant pool. */
b89be57b 22859
9291a0cd 22860static offset_type
3876f04e 22861add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22862 struct symtab_index_entry *entry)
22863{
22864 void **slot;
22865
3876f04e 22866 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22867 if (!*slot)
22868 {
22869 offset_type len = VEC_length (offset_type, entry->cu_indices);
22870 offset_type val = MAYBE_SWAP (len);
22871 offset_type iter;
22872 int i;
22873
22874 *slot = entry;
22875 entry->index_offset = obstack_object_size (cpool);
22876
22877 obstack_grow (cpool, &val, sizeof (val));
22878 for (i = 0;
22879 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22880 ++i)
22881 {
22882 val = MAYBE_SWAP (iter);
22883 obstack_grow (cpool, &val, sizeof (val));
22884 }
22885 }
22886 else
22887 {
9a3c8263
SM
22888 struct symtab_index_entry *old_entry
22889 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22890 entry->index_offset = old_entry->index_offset;
22891 entry = old_entry;
22892 }
22893 return entry->index_offset;
22894}
22895
22896/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22897 constant pool entries going into the obstack CPOOL. */
b89be57b 22898
9291a0cd
TT
22899static void
22900write_hash_table (struct mapped_symtab *symtab,
22901 struct obstack *output, struct obstack *cpool)
22902{
22903 offset_type i;
3876f04e 22904 htab_t symbol_hash_table;
9291a0cd
TT
22905 htab_t str_table;
22906
3876f04e 22907 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22908 str_table = create_strtab ();
3876f04e 22909
9291a0cd
TT
22910 /* We add all the index vectors to the constant pool first, to
22911 ensure alignment is ok. */
22912 for (i = 0; i < symtab->size; ++i)
22913 {
22914 if (symtab->data[i])
3876f04e 22915 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22916 }
22917
22918 /* Now write out the hash table. */
22919 for (i = 0; i < symtab->size; ++i)
22920 {
22921 offset_type str_off, vec_off;
22922
22923 if (symtab->data[i])
22924 {
22925 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22926 vec_off = symtab->data[i]->index_offset;
22927 }
22928 else
22929 {
22930 /* While 0 is a valid constant pool index, it is not valid
22931 to have 0 for both offsets. */
22932 str_off = 0;
22933 vec_off = 0;
22934 }
22935
22936 str_off = MAYBE_SWAP (str_off);
22937 vec_off = MAYBE_SWAP (vec_off);
22938
22939 obstack_grow (output, &str_off, sizeof (str_off));
22940 obstack_grow (output, &vec_off, sizeof (vec_off));
22941 }
22942
22943 htab_delete (str_table);
3876f04e 22944 htab_delete (symbol_hash_table);
9291a0cd
TT
22945}
22946
0a5429f6
DE
22947/* Struct to map psymtab to CU index in the index file. */
22948struct psymtab_cu_index_map
22949{
22950 struct partial_symtab *psymtab;
22951 unsigned int cu_index;
22952};
22953
22954static hashval_t
22955hash_psymtab_cu_index (const void *item)
22956{
9a3c8263
SM
22957 const struct psymtab_cu_index_map *map
22958 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
22959
22960 return htab_hash_pointer (map->psymtab);
22961}
22962
22963static int
22964eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22965{
9a3c8263
SM
22966 const struct psymtab_cu_index_map *lhs
22967 = (const struct psymtab_cu_index_map *) item_lhs;
22968 const struct psymtab_cu_index_map *rhs
22969 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
22970
22971 return lhs->psymtab == rhs->psymtab;
22972}
22973
22974/* Helper struct for building the address table. */
22975struct addrmap_index_data
22976{
22977 struct objfile *objfile;
22978 struct obstack *addr_obstack;
22979 htab_t cu_index_htab;
22980
22981 /* Non-zero if the previous_* fields are valid.
22982 We can't write an entry until we see the next entry (since it is only then
22983 that we know the end of the entry). */
22984 int previous_valid;
22985 /* Index of the CU in the table of all CUs in the index file. */
22986 unsigned int previous_cu_index;
0963b4bd 22987 /* Start address of the CU. */
0a5429f6
DE
22988 CORE_ADDR previous_cu_start;
22989};
22990
22991/* Write an address entry to OBSTACK. */
b89be57b 22992
9291a0cd 22993static void
0a5429f6
DE
22994add_address_entry (struct objfile *objfile, struct obstack *obstack,
22995 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22996{
0a5429f6 22997 offset_type cu_index_to_write;
948f8e3d 22998 gdb_byte addr[8];
9291a0cd
TT
22999 CORE_ADDR baseaddr;
23000
23001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23002
0a5429f6
DE
23003 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23004 obstack_grow (obstack, addr, 8);
23005 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23006 obstack_grow (obstack, addr, 8);
23007 cu_index_to_write = MAYBE_SWAP (cu_index);
23008 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23009}
23010
23011/* Worker function for traversing an addrmap to build the address table. */
23012
23013static int
23014add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23015{
9a3c8263
SM
23016 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23017 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23018
23019 if (data->previous_valid)
23020 add_address_entry (data->objfile, data->addr_obstack,
23021 data->previous_cu_start, start_addr,
23022 data->previous_cu_index);
23023
23024 data->previous_cu_start = start_addr;
23025 if (pst != NULL)
23026 {
23027 struct psymtab_cu_index_map find_map, *map;
23028 find_map.psymtab = pst;
9a3c8263
SM
23029 map = ((struct psymtab_cu_index_map *)
23030 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23031 gdb_assert (map != NULL);
23032 data->previous_cu_index = map->cu_index;
23033 data->previous_valid = 1;
23034 }
23035 else
23036 data->previous_valid = 0;
23037
23038 return 0;
23039}
23040
23041/* Write OBJFILE's address map to OBSTACK.
23042 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23043 in the index file. */
23044
23045static void
23046write_address_map (struct objfile *objfile, struct obstack *obstack,
23047 htab_t cu_index_htab)
23048{
23049 struct addrmap_index_data addrmap_index_data;
23050
23051 /* When writing the address table, we have to cope with the fact that
23052 the addrmap iterator only provides the start of a region; we have to
23053 wait until the next invocation to get the start of the next region. */
23054
23055 addrmap_index_data.objfile = objfile;
23056 addrmap_index_data.addr_obstack = obstack;
23057 addrmap_index_data.cu_index_htab = cu_index_htab;
23058 addrmap_index_data.previous_valid = 0;
23059
23060 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23061 &addrmap_index_data);
23062
23063 /* It's highly unlikely the last entry (end address = 0xff...ff)
23064 is valid, but we should still handle it.
23065 The end address is recorded as the start of the next region, but that
23066 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23067 anyway. */
23068 if (addrmap_index_data.previous_valid)
23069 add_address_entry (objfile, obstack,
23070 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23071 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23072}
23073
156942c7
DE
23074/* Return the symbol kind of PSYM. */
23075
23076static gdb_index_symbol_kind
23077symbol_kind (struct partial_symbol *psym)
23078{
23079 domain_enum domain = PSYMBOL_DOMAIN (psym);
23080 enum address_class aclass = PSYMBOL_CLASS (psym);
23081
23082 switch (domain)
23083 {
23084 case VAR_DOMAIN:
23085 switch (aclass)
23086 {
23087 case LOC_BLOCK:
23088 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23089 case LOC_TYPEDEF:
23090 return GDB_INDEX_SYMBOL_KIND_TYPE;
23091 case LOC_COMPUTED:
23092 case LOC_CONST_BYTES:
23093 case LOC_OPTIMIZED_OUT:
23094 case LOC_STATIC:
23095 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23096 case LOC_CONST:
23097 /* Note: It's currently impossible to recognize psyms as enum values
23098 short of reading the type info. For now punt. */
23099 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23100 default:
23101 /* There are other LOC_FOO values that one might want to classify
23102 as variables, but dwarf2read.c doesn't currently use them. */
23103 return GDB_INDEX_SYMBOL_KIND_OTHER;
23104 }
23105 case STRUCT_DOMAIN:
23106 return GDB_INDEX_SYMBOL_KIND_TYPE;
23107 default:
23108 return GDB_INDEX_SYMBOL_KIND_OTHER;
23109 }
23110}
23111
9291a0cd 23112/* Add a list of partial symbols to SYMTAB. */
b89be57b 23113
9291a0cd
TT
23114static void
23115write_psymbols (struct mapped_symtab *symtab,
987d643c 23116 htab_t psyms_seen,
9291a0cd
TT
23117 struct partial_symbol **psymp,
23118 int count,
987d643c
TT
23119 offset_type cu_index,
23120 int is_static)
9291a0cd
TT
23121{
23122 for (; count-- > 0; ++psymp)
23123 {
156942c7
DE
23124 struct partial_symbol *psym = *psymp;
23125 void **slot;
987d643c 23126
156942c7 23127 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23128 error (_("Ada is not currently supported by the index"));
987d643c 23129
987d643c 23130 /* Only add a given psymbol once. */
156942c7 23131 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23132 if (!*slot)
23133 {
156942c7
DE
23134 gdb_index_symbol_kind kind = symbol_kind (psym);
23135
23136 *slot = psym;
23137 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23138 is_static, kind, cu_index);
987d643c 23139 }
9291a0cd
TT
23140 }
23141}
23142
23143/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23144 exception if there is an error. */
b89be57b 23145
9291a0cd
TT
23146static void
23147write_obstack (FILE *file, struct obstack *obstack)
23148{
23149 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23150 file)
23151 != obstack_object_size (obstack))
23152 error (_("couldn't data write to file"));
23153}
23154
23155/* Unlink a file if the argument is not NULL. */
b89be57b 23156
9291a0cd
TT
23157static void
23158unlink_if_set (void *p)
23159{
9a3c8263 23160 char **filename = (char **) p;
9291a0cd
TT
23161 if (*filename)
23162 unlink (*filename);
23163}
23164
1fd400ff
TT
23165/* A helper struct used when iterating over debug_types. */
23166struct signatured_type_index_data
23167{
23168 struct objfile *objfile;
23169 struct mapped_symtab *symtab;
23170 struct obstack *types_list;
987d643c 23171 htab_t psyms_seen;
1fd400ff
TT
23172 int cu_index;
23173};
23174
23175/* A helper function that writes a single signatured_type to an
23176 obstack. */
b89be57b 23177
1fd400ff
TT
23178static int
23179write_one_signatured_type (void **slot, void *d)
23180{
9a3c8263
SM
23181 struct signatured_type_index_data *info
23182 = (struct signatured_type_index_data *) d;
1fd400ff 23183 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23184 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23185 gdb_byte val[8];
23186
23187 write_psymbols (info->symtab,
987d643c 23188 info->psyms_seen,
3e43a32a
MS
23189 info->objfile->global_psymbols.list
23190 + psymtab->globals_offset,
987d643c
TT
23191 psymtab->n_global_syms, info->cu_index,
23192 0);
1fd400ff 23193 write_psymbols (info->symtab,
987d643c 23194 info->psyms_seen,
3e43a32a
MS
23195 info->objfile->static_psymbols.list
23196 + psymtab->statics_offset,
987d643c
TT
23197 psymtab->n_static_syms, info->cu_index,
23198 1);
1fd400ff 23199
b64f50a1
JK
23200 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23201 entry->per_cu.offset.sect_off);
1fd400ff 23202 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23203 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23204 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23205 obstack_grow (info->types_list, val, 8);
23206 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23207 obstack_grow (info->types_list, val, 8);
23208
23209 ++info->cu_index;
23210
23211 return 1;
23212}
23213
95554aad
TT
23214/* Recurse into all "included" dependencies and write their symbols as
23215 if they appeared in this psymtab. */
23216
23217static void
23218recursively_write_psymbols (struct objfile *objfile,
23219 struct partial_symtab *psymtab,
23220 struct mapped_symtab *symtab,
23221 htab_t psyms_seen,
23222 offset_type cu_index)
23223{
23224 int i;
23225
23226 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23227 if (psymtab->dependencies[i]->user != NULL)
23228 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23229 symtab, psyms_seen, cu_index);
23230
23231 write_psymbols (symtab,
23232 psyms_seen,
23233 objfile->global_psymbols.list + psymtab->globals_offset,
23234 psymtab->n_global_syms, cu_index,
23235 0);
23236 write_psymbols (symtab,
23237 psyms_seen,
23238 objfile->static_psymbols.list + psymtab->statics_offset,
23239 psymtab->n_static_syms, cu_index,
23240 1);
23241}
23242
9291a0cd 23243/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23244
9291a0cd
TT
23245static void
23246write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23247{
23248 struct cleanup *cleanup;
23249 char *filename, *cleanup_filename;
1fd400ff
TT
23250 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23251 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23252 int i;
23253 FILE *out_file;
23254 struct mapped_symtab *symtab;
23255 offset_type val, size_of_contents, total_len;
23256 struct stat st;
987d643c 23257 htab_t psyms_seen;
0a5429f6
DE
23258 htab_t cu_index_htab;
23259 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23260
9291a0cd
TT
23261 if (dwarf2_per_objfile->using_index)
23262 error (_("Cannot use an index to create the index"));
23263
8b70b953
TT
23264 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23265 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23266
260b681b
DE
23267 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23268 return;
23269
4262abfb
JK
23270 if (stat (objfile_name (objfile), &st) < 0)
23271 perror_with_name (objfile_name (objfile));
9291a0cd 23272
4262abfb 23273 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23274 INDEX_SUFFIX, (char *) NULL);
23275 cleanup = make_cleanup (xfree, filename);
23276
614c279d 23277 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23278 if (!out_file)
23279 error (_("Can't open `%s' for writing"), filename);
23280
23281 cleanup_filename = filename;
23282 make_cleanup (unlink_if_set, &cleanup_filename);
23283
23284 symtab = create_mapped_symtab ();
23285 make_cleanup (cleanup_mapped_symtab, symtab);
23286
23287 obstack_init (&addr_obstack);
23288 make_cleanup_obstack_free (&addr_obstack);
23289
23290 obstack_init (&cu_list);
23291 make_cleanup_obstack_free (&cu_list);
23292
1fd400ff
TT
23293 obstack_init (&types_cu_list);
23294 make_cleanup_obstack_free (&types_cu_list);
23295
987d643c
TT
23296 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23297 NULL, xcalloc, xfree);
96408a79 23298 make_cleanup_htab_delete (psyms_seen);
987d643c 23299
0a5429f6
DE
23300 /* While we're scanning CU's create a table that maps a psymtab pointer
23301 (which is what addrmap records) to its index (which is what is recorded
23302 in the index file). This will later be needed to write the address
23303 table. */
23304 cu_index_htab = htab_create_alloc (100,
23305 hash_psymtab_cu_index,
23306 eq_psymtab_cu_index,
23307 NULL, xcalloc, xfree);
96408a79 23308 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23309 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23310 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23311 make_cleanup (xfree, psymtab_cu_index_map);
23312
23313 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23314 work here. Also, the debug_types entries do not appear in
23315 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23316 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23317 {
3e43a32a
MS
23318 struct dwarf2_per_cu_data *per_cu
23319 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23320 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23321 gdb_byte val[8];
0a5429f6
DE
23322 struct psymtab_cu_index_map *map;
23323 void **slot;
9291a0cd 23324
92fac807
JK
23325 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23326 It may be referenced from a local scope but in such case it does not
23327 need to be present in .gdb_index. */
23328 if (psymtab == NULL)
23329 continue;
23330
95554aad
TT
23331 if (psymtab->user == NULL)
23332 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23333
0a5429f6
DE
23334 map = &psymtab_cu_index_map[i];
23335 map->psymtab = psymtab;
23336 map->cu_index = i;
23337 slot = htab_find_slot (cu_index_htab, map, INSERT);
23338 gdb_assert (slot != NULL);
23339 gdb_assert (*slot == NULL);
23340 *slot = map;
9291a0cd 23341
b64f50a1
JK
23342 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23343 per_cu->offset.sect_off);
9291a0cd 23344 obstack_grow (&cu_list, val, 8);
e254ef6a 23345 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23346 obstack_grow (&cu_list, val, 8);
23347 }
23348
0a5429f6
DE
23349 /* Dump the address map. */
23350 write_address_map (objfile, &addr_obstack, cu_index_htab);
23351
1fd400ff
TT
23352 /* Write out the .debug_type entries, if any. */
23353 if (dwarf2_per_objfile->signatured_types)
23354 {
23355 struct signatured_type_index_data sig_data;
23356
23357 sig_data.objfile = objfile;
23358 sig_data.symtab = symtab;
23359 sig_data.types_list = &types_cu_list;
987d643c 23360 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23361 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23362 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23363 write_one_signatured_type, &sig_data);
23364 }
23365
156942c7
DE
23366 /* Now that we've processed all symbols we can shrink their cu_indices
23367 lists. */
23368 uniquify_cu_indices (symtab);
23369
9291a0cd
TT
23370 obstack_init (&constant_pool);
23371 make_cleanup_obstack_free (&constant_pool);
23372 obstack_init (&symtab_obstack);
23373 make_cleanup_obstack_free (&symtab_obstack);
23374 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23375
23376 obstack_init (&contents);
23377 make_cleanup_obstack_free (&contents);
1fd400ff 23378 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23379 total_len = size_of_contents;
23380
23381 /* The version number. */
796a7ff8 23382 val = MAYBE_SWAP (8);
9291a0cd
TT
23383 obstack_grow (&contents, &val, sizeof (val));
23384
23385 /* The offset of the CU list from the start of the file. */
23386 val = MAYBE_SWAP (total_len);
23387 obstack_grow (&contents, &val, sizeof (val));
23388 total_len += obstack_object_size (&cu_list);
23389
1fd400ff
TT
23390 /* The offset of the types CU list from the start of the file. */
23391 val = MAYBE_SWAP (total_len);
23392 obstack_grow (&contents, &val, sizeof (val));
23393 total_len += obstack_object_size (&types_cu_list);
23394
9291a0cd
TT
23395 /* The offset of the address table from the start of the file. */
23396 val = MAYBE_SWAP (total_len);
23397 obstack_grow (&contents, &val, sizeof (val));
23398 total_len += obstack_object_size (&addr_obstack);
23399
23400 /* The offset of the symbol table from the start of the file. */
23401 val = MAYBE_SWAP (total_len);
23402 obstack_grow (&contents, &val, sizeof (val));
23403 total_len += obstack_object_size (&symtab_obstack);
23404
23405 /* The offset of the constant pool from the start of the file. */
23406 val = MAYBE_SWAP (total_len);
23407 obstack_grow (&contents, &val, sizeof (val));
23408 total_len += obstack_object_size (&constant_pool);
23409
23410 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23411
23412 write_obstack (out_file, &contents);
23413 write_obstack (out_file, &cu_list);
1fd400ff 23414 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23415 write_obstack (out_file, &addr_obstack);
23416 write_obstack (out_file, &symtab_obstack);
23417 write_obstack (out_file, &constant_pool);
23418
23419 fclose (out_file);
23420
23421 /* We want to keep the file, so we set cleanup_filename to NULL
23422 here. See unlink_if_set. */
23423 cleanup_filename = NULL;
23424
23425 do_cleanups (cleanup);
23426}
23427
90476074
TT
23428/* Implementation of the `save gdb-index' command.
23429
23430 Note that the file format used by this command is documented in the
23431 GDB manual. Any changes here must be documented there. */
11570e71 23432
9291a0cd
TT
23433static void
23434save_gdb_index_command (char *arg, int from_tty)
23435{
23436 struct objfile *objfile;
23437
23438 if (!arg || !*arg)
96d19272 23439 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23440
23441 ALL_OBJFILES (objfile)
23442 {
23443 struct stat st;
23444
23445 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23446 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23447 continue;
23448
9a3c8263
SM
23449 dwarf2_per_objfile
23450 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23451 dwarf2_objfile_data_key);
9291a0cd
TT
23452 if (dwarf2_per_objfile)
23453 {
9291a0cd 23454
492d29ea 23455 TRY
9291a0cd
TT
23456 {
23457 write_psymtabs_to_index (objfile, arg);
23458 }
492d29ea
PA
23459 CATCH (except, RETURN_MASK_ERROR)
23460 {
23461 exception_fprintf (gdb_stderr, except,
23462 _("Error while writing index for `%s': "),
23463 objfile_name (objfile));
23464 }
23465 END_CATCH
9291a0cd
TT
23466 }
23467 }
dce234bc
PP
23468}
23469
9291a0cd
TT
23470\f
23471
b4f54984 23472int dwarf_always_disassemble;
9eae7c52
TT
23473
23474static void
b4f54984
DE
23475show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23476 struct cmd_list_element *c, const char *value)
9eae7c52 23477{
3e43a32a
MS
23478 fprintf_filtered (file,
23479 _("Whether to always disassemble "
23480 "DWARF expressions is %s.\n"),
9eae7c52
TT
23481 value);
23482}
23483
900e11f9
JK
23484static void
23485show_check_physname (struct ui_file *file, int from_tty,
23486 struct cmd_list_element *c, const char *value)
23487{
23488 fprintf_filtered (file,
23489 _("Whether to check \"physname\" is %s.\n"),
23490 value);
23491}
23492
6502dd73
DJ
23493void _initialize_dwarf2_read (void);
23494
23495void
23496_initialize_dwarf2_read (void)
23497{
96d19272
JK
23498 struct cmd_list_element *c;
23499
dce234bc 23500 dwarf2_objfile_data_key
c1bd65d0 23501 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23502
b4f54984
DE
23503 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23504Set DWARF specific variables.\n\
23505Configure DWARF variables such as the cache size"),
23506 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23507 0/*allow-unknown*/, &maintenance_set_cmdlist);
23508
b4f54984
DE
23509 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23510Show DWARF specific variables\n\
23511Show DWARF variables such as the cache size"),
23512 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23513 0/*allow-unknown*/, &maintenance_show_cmdlist);
23514
23515 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23516 &dwarf_max_cache_age, _("\
23517Set the upper bound on the age of cached DWARF compilation units."), _("\
23518Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23519A higher limit means that cached compilation units will be stored\n\
23520in memory longer, and more total memory will be used. Zero disables\n\
23521caching, which can slow down startup."),
2c5b56ce 23522 NULL,
b4f54984
DE
23523 show_dwarf_max_cache_age,
23524 &set_dwarf_cmdlist,
23525 &show_dwarf_cmdlist);
d97bc12b 23526
9eae7c52 23527 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23528 &dwarf_always_disassemble, _("\
9eae7c52
TT
23529Set whether `info address' always disassembles DWARF expressions."), _("\
23530Show whether `info address' always disassembles DWARF expressions."), _("\
23531When enabled, DWARF expressions are always printed in an assembly-like\n\
23532syntax. When disabled, expressions will be printed in a more\n\
23533conversational style, when possible."),
23534 NULL,
b4f54984
DE
23535 show_dwarf_always_disassemble,
23536 &set_dwarf_cmdlist,
23537 &show_dwarf_cmdlist);
23538
23539 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23540Set debugging of the DWARF reader."), _("\
23541Show debugging of the DWARF reader."), _("\
23542When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23543reading and symtab expansion. A value of 1 (one) provides basic\n\
23544information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23545 NULL,
23546 NULL,
23547 &setdebuglist, &showdebuglist);
23548
b4f54984
DE
23549 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23550Set debugging of the DWARF DIE reader."), _("\
23551Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23552When enabled (non-zero), DIEs are dumped after they are read in.\n\
23553The value is the maximum depth to print."),
ccce17b0
YQ
23554 NULL,
23555 NULL,
23556 &setdebuglist, &showdebuglist);
9291a0cd 23557
27e0867f
DE
23558 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23559Set debugging of the dwarf line reader."), _("\
23560Show debugging of the dwarf line reader."), _("\
23561When enabled (non-zero), line number entries are dumped as they are read in.\n\
23562A value of 1 (one) provides basic information.\n\
23563A value greater than 1 provides more verbose information."),
23564 NULL,
23565 NULL,
23566 &setdebuglist, &showdebuglist);
23567
900e11f9
JK
23568 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23569Set cross-checking of \"physname\" code against demangler."), _("\
23570Show cross-checking of \"physname\" code against demangler."), _("\
23571When enabled, GDB's internal \"physname\" code is checked against\n\
23572the demangler."),
23573 NULL, show_check_physname,
23574 &setdebuglist, &showdebuglist);
23575
e615022a
DE
23576 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23577 no_class, &use_deprecated_index_sections, _("\
23578Set whether to use deprecated gdb_index sections."), _("\
23579Show whether to use deprecated gdb_index sections."), _("\
23580When enabled, deprecated .gdb_index sections are used anyway.\n\
23581Normally they are ignored either because of a missing feature or\n\
23582performance issue.\n\
23583Warning: This option must be enabled before gdb reads the file."),
23584 NULL,
23585 NULL,
23586 &setlist, &showlist);
23587
96d19272 23588 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23589 _("\
fc1a9d6e 23590Save a gdb-index file.\n\
11570e71 23591Usage: save gdb-index DIRECTORY"),
96d19272
JK
23592 &save_cmdlist);
23593 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23594
23595 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23596 &dwarf2_locexpr_funcs);
23597 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23598 &dwarf2_loclist_funcs);
23599
23600 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23601 &dwarf2_block_frame_base_locexpr_funcs);
23602 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23603 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23604}
This page took 3.547158 seconds and 4 git commands to generate.