Remove the extra `.'.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
7b6bb8da 4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
4c2df51b 60
c906108c
SS
61#include <fcntl.h>
62#include "gdb_string.h"
4bdf3d34 63#include "gdb_assert.h"
c906108c 64#include <sys/types.h>
233a11ab
CS
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
dce234bc
PP
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
85d9bd0e
TT
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
dce234bc 73#endif
d8151005 74
34eaf542
TT
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
107d2387 78#if 0
357e46e7 79/* .debug_info header for a compilation unit
c906108c
SS
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 93#endif
c906108c 94
c906108c
SS
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
d97bc12b
DE
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
dce234bc
PP
121static int pagesize;
122
df8a16a1
DJ
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
6502dd73
DJ
129static const struct objfile_data *dwarf2_objfile_data_key;
130
dce234bc
PP
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
be391dca
TT
137 /* True if we have tried to read this section. */
138 int readin;
dce234bc
PP
139};
140
9291a0cd
TT
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
3876f04e
DE
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
9291a0cd
TT
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
6502dd73
DJ
165struct dwarf2_per_objfile
166{
dce234bc
PP
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
dce234bc
PP
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
348e048f 174 struct dwarf2_section_info types;
dce234bc
PP
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
9291a0cd 177 struct dwarf2_section_info gdb_index;
ae038cb0 178
be391dca
TT
179 /* Back link. */
180 struct objfile *objfile;
181
10b3939b
DJ
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
ae038cb0
DJ
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
1fd400ff
TT
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
ae038cb0
DJ
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 198
348e048f
DE
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
72dca2f5
FR
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
9291a0cd 206
ae2de4f8
DE
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
209 unsigned char using_index;
210
ae2de4f8 211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 212 struct mapped_index *index_table;
98bfdba5 213
7b9f3c50
DE
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
98bfdba5
PA
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
673bfd45
DE
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
6502dd73
DJ
233};
234
235static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
236
237/* names of the debugging sections */
238
233a11ab
CS
239/* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242#define INFO_SECTION "debug_info"
243#define ABBREV_SECTION "debug_abbrev"
244#define LINE_SECTION "debug_line"
233a11ab
CS
245#define LOC_SECTION "debug_loc"
246#define MACINFO_SECTION "debug_macinfo"
247#define STR_SECTION "debug_str"
248#define RANGES_SECTION "debug_ranges"
348e048f 249#define TYPES_SECTION "debug_types"
233a11ab
CS
250#define FRAME_SECTION "debug_frame"
251#define EH_FRAME_SECTION "eh_frame"
9291a0cd 252#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
253
254/* local data types */
255
0963b4bd 256/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
257#ifndef ABBREV_HASH_SIZE
258#define ABBREV_HASH_SIZE 121
259#endif
260
107d2387
AC
261/* The data in a compilation unit header, after target2host
262 translation, looks like this. */
c906108c 263struct comp_unit_head
a738430d 264{
c764a876 265 unsigned int length;
a738430d 266 short version;
a738430d
MK
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
9cbfa09e 269 unsigned int abbrev_offset;
57349743 270
a738430d
MK
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
57349743 273
a738430d
MK
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
57349743 276
a738430d
MK
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
57349743 280
d00adf39
DE
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
a738430d 284};
c906108c 285
3da10d80
KS
286/* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288struct delayed_method_info
289{
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304};
305
306typedef struct delayed_method_info delayed_method_info;
307DEF_VEC_O (delayed_method_info);
308
e7c27a73
DJ
309/* Internal state when decoding a particular compilation unit. */
310struct dwarf2_cu
311{
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
d00adf39 315 /* The header of the compilation unit. */
e7c27a73 316 struct comp_unit_head header;
e142c38c 317
d00adf39
DE
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
e142c38c
DJ
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
b0f35d58
DL
330 const char *producer;
331
e142c38c
DJ
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
f3dd6933
DJ
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
72bf9492
DJ
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
ae038cb0
DJ
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
10b3939b 368 /* A hash table of die offsets for following references. */
51545339 369 htab_t die_hash;
10b3939b
DJ
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
cb1df416
DJ
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
3da10d80
KS
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
ae038cb0
DJ
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
72bf9492
DJ
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
e7c27a73
DJ
398};
399
10b3939b
DJ
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
ae038cb0
DJ
406struct dwarf2_per_cu_data
407{
348e048f 408 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 409 bytes should suffice to store the length of any compilation unit
45452591
DE
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
c764a876 413 unsigned int offset;
348e048f 414 unsigned int length : 29;
ae038cb0
DJ
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
c764a876 418 unsigned int queued : 1;
ae038cb0 419
5afb4e99
DJ
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
348e048f
DE
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
17ea53c3
JK
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
ae038cb0 432 struct dwarf2_cu *cu;
1c379e20 433
9291a0cd
TT
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
ae038cb0
DJ
449};
450
348e048f
DE
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465};
466
0963b4bd
MS
467/* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
93311388
DE
472
473struct die_reader_specs
474{
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484};
485
debd256d
JB
486/* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489struct line_header
490{
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
2dc7f7b3 495 unsigned char maximum_ops_per_instruction;
debd256d
JB
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
c906108c 519 {
debd256d
JB
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
aaa75496 524 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 525 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
526 } *file_names;
527
528 /* The start and end of the statement program following this
6502dd73 529 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 530 gdb_byte *statement_program_start, *statement_program_end;
debd256d 531};
c906108c
SS
532
533/* When we construct a partial symbol table entry we only
0963b4bd 534 need this much information. */
c906108c
SS
535struct partial_die_info
536 {
72bf9492 537 /* Offset of this DIE. */
c906108c 538 unsigned int offset;
72bf9492
DJ
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
72bf9492
DJ
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
fa4028e9
JB
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
98bfdba5
PA
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
abc72ce4
DE
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
72bf9492 564 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 565 sometimes a default name for unnamed DIEs. */
c906108c 566 char *name;
72bf9492 567
abc72ce4
DE
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
72bf9492
DJ
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
72bf9492 582
93311388 583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 584 DW_AT_sibling, if any. */
abc72ce4
DE
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 587 gdb_byte *sibling;
72bf9492
DJ
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
597 };
598
0963b4bd 599/* This data structure holds the information of an abbrev. */
c906108c
SS
600struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
c906108c
SS
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610struct attr_abbrev
611 {
9d25dd43
DE
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
614 };
615
0963b4bd 616/* Attributes have a name and a value. */
b60c80d6
DJ
617struct attribute
618 {
9d25dd43 619 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
b60c80d6
DJ
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
43bbcdc2
PH
631 ULONGEST unsnd;
632 LONGEST snd;
b60c80d6 633 CORE_ADDR addr;
348e048f 634 struct signatured_type *signatured_type;
b60c80d6
DJ
635 }
636 u;
637 };
638
0963b4bd 639/* This data structure holds a complete die structure. */
c906108c
SS
640struct die_info
641 {
76815b17
DE
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
98bfdba5
PA
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
76815b17
DE
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
93311388 655 /* Offset in .debug_info or .debug_types section. */
76815b17 656 unsigned int offset;
78ba4af6
JB
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
4950bc1c 661 together via their SIBLING fields. */
639d11d3
DC
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
c906108c 665
b60c80d6
DJ
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
c906108c
SS
670 };
671
5fb290d7
DJ
672struct function_range
673{
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678};
679
0963b4bd 680/* Get at parts of an attribute structure. */
c906108c
SS
681
682#define DW_STRING(attr) ((attr)->u.str)
8285870a 683#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
684#define DW_UNSND(attr) ((attr)->u.unsnd)
685#define DW_BLOCK(attr) ((attr)->u.blk)
686#define DW_SND(attr) ((attr)->u.snd)
687#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 688#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 689
0963b4bd 690/* Blocks are a bunch of untyped bytes. */
c906108c
SS
691struct dwarf_block
692 {
693 unsigned int size;
fe1b8b76 694 gdb_byte *data;
c906108c
SS
695 };
696
c906108c
SS
697#ifndef ATTR_ALLOC_CHUNK
698#define ATTR_ALLOC_CHUNK 4
699#endif
700
c906108c
SS
701/* Allocate fields for structs, unions and enums in this size. */
702#ifndef DW_FIELD_ALLOC_CHUNK
703#define DW_FIELD_ALLOC_CHUNK 4
704#endif
705
c906108c
SS
706/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709static int bits_per_byte = 8;
710
711/* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714struct field_info
c5aa993b 715 {
0963b4bd 716 /* List of data member and baseclasses fields. */
c5aa993b
JM
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
7d0ccb61 724 *fields, *baseclasses;
c906108c 725
7d0ccb61 726 /* Number of fields (including baseclasses). */
c5aa993b 727 int nfields;
c906108c 728
c5aa993b
JM
729 /* Number of baseclasses. */
730 int nbaseclasses;
c906108c 731
c5aa993b
JM
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
c906108c 734
c5aa993b
JM
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
c906108c 743
c5aa993b
JM
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
c906108c 754
c5aa993b
JM
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
98751a41
JK
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
c5aa993b 767 };
c906108c 768
10b3939b
DJ
769/* One item on the queue of compilation units to read in full symbols
770 for. */
771struct dwarf2_queue_item
772{
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775};
776
777/* The current queue. */
778static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
ae038cb0
DJ
780/* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785static int dwarf2_max_cache_age = 5;
920d2a44
AC
786static void
787show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789{
3e43a32a
MS
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
792 value);
793}
794
ae038cb0 795
0963b4bd 796/* Various complaints about symbol reading that don't abort the process. */
c906108c 797
4d3c2250
KB
798static void
799dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 800{
4d3c2250 801 complaint (&symfile_complaints,
e2e0b3e5 802 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
803}
804
25e43795
DJ
805static void
806dwarf2_debug_line_missing_file_complaint (void)
807{
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810}
811
59205f5a
JB
812static void
813dwarf2_debug_line_missing_end_sequence_complaint (void)
814{
815 complaint (&symfile_complaints,
3e43a32a
MS
816 _(".debug_line section has line "
817 "program sequence without an end"));
59205f5a
JB
818}
819
4d3c2250
KB
820static void
821dwarf2_complex_location_expr_complaint (void)
2e276125 822{
e2e0b3e5 823 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
824}
825
4d3c2250
KB
826static void
827dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
2e276125 829{
4d3c2250 830 complaint (&symfile_complaints,
3e43a32a
MS
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
4d3c2250
KB
833}
834
835static void
836dwarf2_macros_too_long_complaint (void)
2e276125 837{
4d3c2250 838 complaint (&symfile_complaints,
e2e0b3e5 839 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
840}
841
842static void
843dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 844{
4d3c2250 845 complaint (&symfile_complaints,
3e43a32a
MS
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
4d3c2250
KB
848 arg1);
849}
850
851static void
852dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 853{
4d3c2250 854 complaint (&symfile_complaints,
3e43a32a
MS
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
4d3c2250 857}
c906108c 858
c906108c
SS
859/* local function prototypes */
860
4efb68b1 861static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 862
aaa75496
JB
863static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
c67a9c90 866static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 867
72bf9492
DJ
868static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
5734ee8b 870 int, struct dwarf2_cu *);
c906108c 871
72bf9492
DJ
872static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
63d06c5c 874
72bf9492
DJ
875static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 877 int need_pc, struct dwarf2_cu *cu);
63d06c5c 878
5d7cb8df
JK
879static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
72bf9492
DJ
883static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
91c24f0a 885
bc30ff58
JB
886static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 888 int need_pc, struct dwarf2_cu *cu);
bc30ff58 889
fe1b8b76 890static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 893
a14ed312 894static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 895
a14ed312 896static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 897
e7c27a73 898static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 899
f3dd6933 900static void dwarf2_free_abbrev_table (void *);
c906108c 901
fe1b8b76 902static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 903 struct dwarf2_cu *);
72bf9492 904
57349743 905static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 906 struct dwarf2_cu *);
c906108c 907
93311388
DE
908static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
72bf9492 911
fe1b8b76 912static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
c906108c 917
c764a876 918static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 919 struct dwarf2_cu *);
72bf9492
DJ
920
921static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
fe1b8b76
JB
924static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 926
fe1b8b76
JB
927static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 929
fe1b8b76 930static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 931
fe1b8b76 932static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 933
fe1b8b76 934static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 935
fe1b8b76 936static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 937
93311388 938static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 939
fe1b8b76 940static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 941 unsigned int *);
c906108c 942
c764a876
DE
943static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
613e1657 948
fe1b8b76 949static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
950 unsigned int *);
951
952static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 953
fe1b8b76 954static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 955
9b1c24c8 956static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 957
fe1b8b76
JB
958static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
4bdf3d34 961
fe1b8b76 962static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 963
fe1b8b76 964static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 965
fe1b8b76 966static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 967
e142c38c 968static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 969
e142c38c
DJ
970static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
c906108c 972
348e048f
DE
973static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
05cf31d1
JB
977static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
e142c38c 980static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 981
e142c38c 982static struct die_info *die_specification (struct die_info *die,
f2f0e013 983 struct dwarf2_cu **);
63d06c5c 984
debd256d
JB
985static void free_line_header (struct line_header *lh);
986
aaa75496
JB
987static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
debd256d
JB
990static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
e7c27a73 992 bfd *abfd, struct dwarf2_cu *cu));
debd256d 993
72b9f47f 994static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 995 struct dwarf2_cu *, struct partial_symtab *);
c906108c 996
72b9f47f 997static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 998
a14ed312 999static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1000 struct dwarf2_cu *);
c906108c 1001
34eaf542
TT
1002static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
a14ed312 1005static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1006 struct dwarf2_cu *);
c906108c 1007
98bfdba5
PA
1008static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
2df3850c 1015
e7c27a73 1016static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1017
b4ba55a1
JB
1018static int need_gnat_info (struct dwarf2_cu *);
1019
3e43a32a
MS
1020static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
b4ba55a1
JB
1022
1023static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
e7c27a73
DJ
1026static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
c906108c 1028
673bfd45
DE
1029static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
c906108c 1031
f792889a 1032static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1033
673bfd45
DE
1034static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
086ed43d 1036static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1037
6e70227d 1038static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
63d06c5c 1041
e7c27a73 1042static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1043
348e048f
DE
1044static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
e7c27a73 1046static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1047
e7c27a73 1048static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1049
ff013f42
JK
1050static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
a14ed312 1053static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
c906108c 1056
fae299cd
DC
1057static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
801e3a5b
JB
1061static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
a14ed312 1064static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1065 struct dwarf2_cu *);
c906108c 1066
a14ed312 1067static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1068 struct type *, struct dwarf2_cu *);
c906108c 1069
a14ed312 1070static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1071 struct die_info *, struct type *,
e7c27a73 1072 struct dwarf2_cu *);
c906108c 1073
a14ed312 1074static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1075 struct type *,
1076 struct dwarf2_cu *);
c906108c 1077
134d01f1 1078static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1081
e7c27a73 1082static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1083
5d7cb8df
JK
1084static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
27aa8d6a
SW
1086static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
f55ee35c
JK
1088static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
38d518c9 1091static const char *namespace_name (struct die_info *die,
e142c38c 1092 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1093
134d01f1 1094static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1095
e7c27a73 1096static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1097
6e70227d 1098static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1099 struct dwarf2_cu *);
1100
93311388 1101static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1102
93311388
DE
1103static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
d97bc12b
DE
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
93311388
DE
1108static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
fe1b8b76 1110 gdb_byte **new_info_ptr,
639d11d3
DC
1111 struct die_info *parent);
1112
93311388
DE
1113static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
fe1b8b76 1115 gdb_byte **new_info_ptr,
639d11d3
DC
1116 struct die_info *parent);
1117
93311388
DE
1118static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
e7c27a73 1122static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1123
71c25dea
TT
1124static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
e142c38c 1127static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1128
98bfdba5
PA
1129static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
e142c38c 1133static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1134 struct dwarf2_cu **);
9219021c 1135
a14ed312 1136static char *dwarf_tag_name (unsigned int);
c906108c 1137
a14ed312 1138static char *dwarf_attr_name (unsigned int);
c906108c 1139
a14ed312 1140static char *dwarf_form_name (unsigned int);
c906108c 1141
a14ed312 1142static char *dwarf_bool_name (unsigned int);
c906108c 1143
a14ed312 1144static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1145
1146#if 0
a14ed312 1147static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1148#endif
1149
f9aca02d 1150static struct die_info *sibling_die (struct die_info *);
c906108c 1151
d97bc12b
DE
1152static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154static void dump_die_for_error (struct die_info *);
1155
1156static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
c906108c 1158
d97bc12b 1159/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1160
51545339 1161static void store_in_ref_table (struct die_info *,
10b3939b 1162 struct dwarf2_cu *);
c906108c 1163
93311388
DE
1164static int is_ref_attr (struct attribute *);
1165
c764a876 1166static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1167
43bbcdc2 1168static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1169
348e048f
DE
1170static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
10b3939b
DJ
1174static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
f2f0e013 1176 struct dwarf2_cu **);
c906108c 1177
348e048f
DE
1178static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
c906108c
SS
1188/* memory allocation interface */
1189
7b5a2f43 1190static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1191
f3dd6933 1192static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1193
b60c80d6 1194static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1195
e142c38c 1196static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1197
e142c38c
DJ
1198static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
5fb290d7 1200
2e276125 1201static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1202 char *, bfd *, struct dwarf2_cu *);
2e276125 1203
8e19ed76
PS
1204static int attr_form_is_block (struct attribute *);
1205
3690dd37
JB
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
8cf6f0b1
TT
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
93e7bd98
DJ
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
4c2df51b 1217
93311388
DE
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
4bb7a0a7 1221
72bf9492
DJ
1222static void free_stack_comp_unit (void *);
1223
72bf9492
DJ
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
ae038cb0 1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1229 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1230
1231static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1232 (unsigned int offset, struct objfile *objfile);
ae038cb0 1233
9816fde3
JK
1234static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
93311388 1239
ae038cb0
DJ
1240static void free_one_comp_unit (void *);
1241
1242static void free_cached_comp_units (void *);
1243
1244static void age_cached_comp_units (void);
1245
1246static void free_one_cached_comp_unit (void *);
1247
f792889a
DJ
1248static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1c379e20 1250
ae038cb0
DJ
1251static void create_all_comp_units (struct objfile *);
1252
1fd400ff
TT
1253static int create_debug_types_hash_table (struct objfile *objfile);
1254
93311388
DE
1255static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
10b3939b
DJ
1257
1258static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
ae038cb0
DJ
1263static void dwarf2_mark (struct dwarf2_cu *);
1264
1265static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
673bfd45
DE
1267static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
f792889a 1270static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1271
9291a0cd
TT
1272static void dwarf2_release_queue (void *dummy);
1273
1274static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277static void process_queue (struct objfile *objfile);
1278
1279static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
673bfd45 1295static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1296
9291a0cd
TT
1297#if WORDS_BIGENDIAN
1298
1299/* Convert VALUE between big- and little-endian. */
1300static offset_type
1301byte_swap (offset_type value)
1302{
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310}
1311
1312#define MAYBE_SWAP(V) byte_swap (V)
1313
1314#else
1315#define MAYBE_SWAP(V) (V)
1316#endif /* WORDS_BIGENDIAN */
1317
1318/* The suffix for an index file. */
1319#define INDEX_SUFFIX ".gdb-index"
1320
3da10d80
KS
1321static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
c906108c
SS
1324/* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327int
6502dd73 1328dwarf2_has_info (struct objfile *objfile)
c906108c 1329{
be391dca
TT
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1336
be391dca
TT
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
6502dd73 1340
be391dca
TT
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1346}
1347
233a11ab
CS
1348/* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351static int
dce234bc 1352section_is_p (const char *section_name, const char *name)
233a11ab 1353{
dce234bc
PP
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1358}
1359
c906108c
SS
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
72dca2f5 1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1366{
dce234bc 1367 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1368 {
dce234bc
PP
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1371 }
dce234bc 1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1373 {
dce234bc
PP
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1376 }
dce234bc 1377 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1378 {
dce234bc
PP
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1381 }
dce234bc 1382 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1383 {
dce234bc
PP
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1386 }
dce234bc 1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1388 {
dce234bc
PP
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1391 }
dce234bc 1392 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1393 {
dce234bc
PP
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1396 }
dce234bc 1397 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1398 {
dce234bc
PP
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1401 }
dce234bc 1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1403 {
3799ccc6 1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1405
3799ccc6
EZ
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
dce234bc
PP
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1410 }
b6af0555 1411 }
dce234bc 1412 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1413 {
dce234bc
PP
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1416 }
348e048f
DE
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
9291a0cd
TT
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
dce234bc 1427
72dca2f5
FR
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1431}
1432
dce234bc
PP
1433/* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1435
1436static void
dce234bc
PP
1437zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439{
1440 bfd *abfd = objfile->obfd;
1441#ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445#else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
dce234bc
PP
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
affddf13 1506 do_cleanups (cleanup);
dce234bc
PP
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509#endif
233a11ab
CS
1510}
1511
dce234bc
PP
1512/* Read the contents of the section SECTP from object file specified by
1513 OBJFILE, store info about the section into INFO.
1514 If the section is compressed, uncompress it before returning. */
c906108c 1515
dce234bc
PP
1516static void
1517dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1518{
dce234bc
PP
1519 bfd *abfd = objfile->obfd;
1520 asection *sectp = info->asection;
1521 gdb_byte *buf, *retbuf;
1522 unsigned char header[4];
c906108c 1523
be391dca
TT
1524 if (info->readin)
1525 return;
dce234bc
PP
1526 info->buffer = NULL;
1527 info->was_mmapped = 0;
be391dca 1528 info->readin = 1;
188dd5d6 1529
dce234bc
PP
1530 if (info->asection == NULL || info->size == 0)
1531 return;
c906108c 1532
dce234bc
PP
1533 /* Check if the file has a 4-byte header indicating compression. */
1534 if (info->size > sizeof (header)
1535 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1536 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1537 {
1538 /* Upon decompression, update the buffer and its size. */
1539 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1540 {
1541 zlib_decompress_section (objfile, sectp, &info->buffer,
1542 &info->size);
1543 return;
1544 }
1545 }
4bdf3d34 1546
dce234bc
PP
1547#ifdef HAVE_MMAP
1548 if (pagesize == 0)
1549 pagesize = getpagesize ();
2e276125 1550
dce234bc
PP
1551 /* Only try to mmap sections which are large enough: we don't want to
1552 waste space due to fragmentation. Also, only try mmap for sections
1553 without relocations. */
1554
1555 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1556 {
1557 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1558 size_t map_length = info->size + sectp->filepos - pg_offset;
1559 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1560 MAP_PRIVATE, pg_offset);
1561
1562 if (retbuf != MAP_FAILED)
1563 {
1564 info->was_mmapped = 1;
1565 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1566#if HAVE_POSIX_MADVISE
1567 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1568#endif
dce234bc
PP
1569 return;
1570 }
1571 }
1572#endif
1573
1574 /* If we get here, we are a normal, not-compressed section. */
1575 info->buffer = buf
1576 = obstack_alloc (&objfile->objfile_obstack, info->size);
1577
1578 /* When debugging .o files, we may need to apply relocations; see
1579 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1580 We never compress sections in .o files, so we only need to
1581 try this when the section is not compressed. */
ac8035ab 1582 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1583 if (retbuf != NULL)
1584 {
1585 info->buffer = retbuf;
1586 return;
1587 }
1588
1589 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1590 || bfd_bread (buf, info->size, abfd) != info->size)
1591 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1592 bfd_get_filename (abfd));
1593}
1594
1595/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1596 SECTION_NAME. */
af34e669 1597
dce234bc
PP
1598void
1599dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1600 asection **sectp, gdb_byte **bufp,
1601 bfd_size_type *sizep)
1602{
1603 struct dwarf2_per_objfile *data
1604 = objfile_data (objfile, dwarf2_objfile_data_key);
1605 struct dwarf2_section_info *info;
a3b2a86b
TT
1606
1607 /* We may see an objfile without any DWARF, in which case we just
1608 return nothing. */
1609 if (data == NULL)
1610 {
1611 *sectp = NULL;
1612 *bufp = NULL;
1613 *sizep = 0;
1614 return;
1615 }
dce234bc
PP
1616 if (section_is_p (section_name, EH_FRAME_SECTION))
1617 info = &data->eh_frame;
1618 else if (section_is_p (section_name, FRAME_SECTION))
1619 info = &data->frame;
0d53c4c4 1620 else
f3574227 1621 gdb_assert_not_reached ("unexpected section");
dce234bc
PP
1622
1623 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1624 /* We haven't read this section in yet. Do it now. */
1625 dwarf2_read_section (objfile, info);
1626
1627 *sectp = info->asection;
1628 *bufp = info->buffer;
1629 *sizep = info->size;
1630}
1631
9291a0cd 1632\f
7b9f3c50
DE
1633/* DWARF quick_symbols_functions support. */
1634
1635/* TUs can share .debug_line entries, and there can be a lot more TUs than
1636 unique line tables, so we maintain a separate table of all .debug_line
1637 derived entries to support the sharing.
1638 All the quick functions need is the list of file names. We discard the
1639 line_header when we're done and don't need to record it here. */
1640struct quick_file_names
1641{
1642 /* The offset in .debug_line of the line table. We hash on this. */
1643 unsigned int offset;
1644
1645 /* The number of entries in file_names, real_names. */
1646 unsigned int num_file_names;
1647
1648 /* The file names from the line table, after being run through
1649 file_full_name. */
1650 const char **file_names;
1651
1652 /* The file names from the line table after being run through
1653 gdb_realpath. These are computed lazily. */
1654 const char **real_names;
1655};
1656
1657/* When using the index (and thus not using psymtabs), each CU has an
1658 object of this type. This is used to hold information needed by
1659 the various "quick" methods. */
1660struct dwarf2_per_cu_quick_data
1661{
1662 /* The file table. This can be NULL if there was no file table
1663 or it's currently not read in.
1664 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1665 struct quick_file_names *file_names;
1666
1667 /* The corresponding symbol table. This is NULL if symbols for this
1668 CU have not yet been read. */
1669 struct symtab *symtab;
1670
1671 /* A temporary mark bit used when iterating over all CUs in
1672 expand_symtabs_matching. */
1673 unsigned int mark : 1;
1674
1675 /* True if we've tried to read the file table and found there isn't one.
1676 There will be no point in trying to read it again next time. */
1677 unsigned int no_file_data : 1;
1678};
1679
1680/* Hash function for a quick_file_names. */
1681
1682static hashval_t
1683hash_file_name_entry (const void *e)
1684{
1685 const struct quick_file_names *file_data = e;
1686
1687 return file_data->offset;
1688}
1689
1690/* Equality function for a quick_file_names. */
1691
1692static int
1693eq_file_name_entry (const void *a, const void *b)
1694{
1695 const struct quick_file_names *ea = a;
1696 const struct quick_file_names *eb = b;
1697
1698 return ea->offset == eb->offset;
1699}
1700
1701/* Delete function for a quick_file_names. */
1702
1703static void
1704delete_file_name_entry (void *e)
1705{
1706 struct quick_file_names *file_data = e;
1707 int i;
1708
1709 for (i = 0; i < file_data->num_file_names; ++i)
1710 {
1711 xfree ((void*) file_data->file_names[i]);
1712 if (file_data->real_names)
1713 xfree ((void*) file_data->real_names[i]);
1714 }
1715
1716 /* The space for the struct itself lives on objfile_obstack,
1717 so we don't free it here. */
1718}
1719
1720/* Create a quick_file_names hash table. */
1721
1722static htab_t
1723create_quick_file_names_table (unsigned int nr_initial_entries)
1724{
1725 return htab_create_alloc (nr_initial_entries,
1726 hash_file_name_entry, eq_file_name_entry,
1727 delete_file_name_entry, xcalloc, xfree);
1728}
9291a0cd
TT
1729
1730/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1731 this CU came. */
2fdf6df6 1732
9291a0cd
TT
1733static void
1734dw2_do_instantiate_symtab (struct objfile *objfile,
1735 struct dwarf2_per_cu_data *per_cu)
1736{
1737 struct cleanup *back_to;
1738
1739 back_to = make_cleanup (dwarf2_release_queue, NULL);
1740
1741 queue_comp_unit (per_cu, objfile);
1742
1743 if (per_cu->from_debug_types)
1744 read_signatured_type_at_offset (objfile, per_cu->offset);
1745 else
1746 load_full_comp_unit (per_cu, objfile);
1747
1748 process_queue (objfile);
1749
1750 /* Age the cache, releasing compilation units that have not
1751 been used recently. */
1752 age_cached_comp_units ();
1753
1754 do_cleanups (back_to);
1755}
1756
1757/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1758 the objfile from which this CU came. Returns the resulting symbol
1759 table. */
2fdf6df6 1760
9291a0cd
TT
1761static struct symtab *
1762dw2_instantiate_symtab (struct objfile *objfile,
1763 struct dwarf2_per_cu_data *per_cu)
1764{
1765 if (!per_cu->v.quick->symtab)
1766 {
1767 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1768 increment_reading_symtab ();
1769 dw2_do_instantiate_symtab (objfile, per_cu);
1770 do_cleanups (back_to);
1771 }
1772 return per_cu->v.quick->symtab;
1773}
1774
1fd400ff 1775/* Return the CU given its index. */
2fdf6df6 1776
1fd400ff
TT
1777static struct dwarf2_per_cu_data *
1778dw2_get_cu (int index)
1779{
1780 if (index >= dwarf2_per_objfile->n_comp_units)
1781 {
1782 index -= dwarf2_per_objfile->n_comp_units;
1783 return dwarf2_per_objfile->type_comp_units[index];
1784 }
1785 return dwarf2_per_objfile->all_comp_units[index];
1786}
1787
9291a0cd
TT
1788/* A helper function that knows how to read a 64-bit value in a way
1789 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1790 otherwise. */
2fdf6df6 1791
9291a0cd
TT
1792static int
1793extract_cu_value (const char *bytes, ULONGEST *result)
1794{
1795 if (sizeof (ULONGEST) < 8)
1796 {
1797 int i;
1798
1799 /* Ignore the upper 4 bytes if they are all zero. */
1800 for (i = 0; i < 4; ++i)
1801 if (bytes[i + 4] != 0)
1802 return 0;
1803
1804 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1805 }
1806 else
1807 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1808 return 1;
1809}
1810
1811/* Read the CU list from the mapped index, and use it to create all
1812 the CU objects for this objfile. Return 0 if something went wrong,
1813 1 if everything went ok. */
2fdf6df6 1814
9291a0cd 1815static int
1fd400ff
TT
1816create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1817 offset_type cu_list_elements)
9291a0cd
TT
1818{
1819 offset_type i;
9291a0cd
TT
1820
1821 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1822 dwarf2_per_objfile->all_comp_units
1823 = obstack_alloc (&objfile->objfile_obstack,
1824 dwarf2_per_objfile->n_comp_units
1825 * sizeof (struct dwarf2_per_cu_data *));
1826
1827 for (i = 0; i < cu_list_elements; i += 2)
1828 {
1829 struct dwarf2_per_cu_data *the_cu;
1830 ULONGEST offset, length;
1831
1832 if (!extract_cu_value (cu_list, &offset)
1833 || !extract_cu_value (cu_list + 8, &length))
1834 return 0;
1835 cu_list += 2 * 8;
1836
1837 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1838 struct dwarf2_per_cu_data);
1839 the_cu->offset = offset;
1840 the_cu->length = length;
1841 the_cu->objfile = objfile;
1842 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1843 struct dwarf2_per_cu_quick_data);
1844 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1845 }
1846
1847 return 1;
1848}
1849
1fd400ff 1850/* Create the signatured type hash table from the index. */
673bfd45 1851
1fd400ff 1852static int
673bfd45
DE
1853create_signatured_type_table_from_index (struct objfile *objfile,
1854 const gdb_byte *bytes,
1855 offset_type elements)
1fd400ff
TT
1856{
1857 offset_type i;
673bfd45 1858 htab_t sig_types_hash;
1fd400ff
TT
1859
1860 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1861 dwarf2_per_objfile->type_comp_units
1862 = obstack_alloc (&objfile->objfile_obstack,
1863 dwarf2_per_objfile->n_type_comp_units
1864 * sizeof (struct dwarf2_per_cu_data *));
1865
673bfd45 1866 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1867
1868 for (i = 0; i < elements; i += 3)
1869 {
1870 struct signatured_type *type_sig;
1871 ULONGEST offset, type_offset, signature;
1872 void **slot;
1873
1874 if (!extract_cu_value (bytes, &offset)
1875 || !extract_cu_value (bytes + 8, &type_offset))
1876 return 0;
1877 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1878 bytes += 3 * 8;
1879
1880 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1881 struct signatured_type);
1882 type_sig->signature = signature;
1883 type_sig->offset = offset;
1884 type_sig->type_offset = type_offset;
1885 type_sig->per_cu.from_debug_types = 1;
1886 type_sig->per_cu.offset = offset;
1887 type_sig->per_cu.objfile = objfile;
1888 type_sig->per_cu.v.quick
1889 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1890 struct dwarf2_per_cu_quick_data);
1891
673bfd45 1892 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1893 *slot = type_sig;
1894
1895 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1896 }
1897
673bfd45 1898 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1899
1900 return 1;
1901}
1902
9291a0cd
TT
1903/* Read the address map data from the mapped index, and use it to
1904 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1905
9291a0cd
TT
1906static void
1907create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1908{
1909 const gdb_byte *iter, *end;
1910 struct obstack temp_obstack;
1911 struct addrmap *mutable_map;
1912 struct cleanup *cleanup;
1913 CORE_ADDR baseaddr;
1914
1915 obstack_init (&temp_obstack);
1916 cleanup = make_cleanup_obstack_free (&temp_obstack);
1917 mutable_map = addrmap_create_mutable (&temp_obstack);
1918
1919 iter = index->address_table;
1920 end = iter + index->address_table_size;
1921
1922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1923
1924 while (iter < end)
1925 {
1926 ULONGEST hi, lo, cu_index;
1927 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1928 iter += 8;
1929 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1930 iter += 8;
1931 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1932 iter += 4;
1933
1934 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1935 dw2_get_cu (cu_index));
9291a0cd
TT
1936 }
1937
1938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1939 &objfile->objfile_obstack);
1940 do_cleanups (cleanup);
1941}
1942
1943/* The hash function for strings in the mapped index. This is the
1944 same as the hashtab.c hash function, but we keep a separate copy to
1945 maintain control over the implementation. This is necessary
1946 because the hash function is tied to the format of the mapped index
1947 file. */
2fdf6df6 1948
9291a0cd
TT
1949static hashval_t
1950mapped_index_string_hash (const void *p)
1951{
1952 const unsigned char *str = (const unsigned char *) p;
1953 hashval_t r = 0;
1954 unsigned char c;
1955
1956 while ((c = *str++) != 0)
1957 r = r * 67 + c - 113;
1958
1959 return r;
1960}
1961
1962/* Find a slot in the mapped index INDEX for the object named NAME.
1963 If NAME is found, set *VEC_OUT to point to the CU vector in the
1964 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 1965
9291a0cd
TT
1966static int
1967find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1968 offset_type **vec_out)
1969{
1970 offset_type hash = mapped_index_string_hash (name);
1971 offset_type slot, step;
1972
3876f04e
DE
1973 slot = hash & (index->symbol_table_slots - 1);
1974 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
9291a0cd
TT
1975
1976 for (;;)
1977 {
1978 /* Convert a slot number to an offset into the table. */
1979 offset_type i = 2 * slot;
1980 const char *str;
3876f04e 1981 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
9291a0cd
TT
1982 return 0;
1983
3876f04e 1984 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
9291a0cd
TT
1985 if (!strcmp (name, str))
1986 {
1987 *vec_out = (offset_type *) (index->constant_pool
3876f04e 1988 + MAYBE_SWAP (index->symbol_table[i + 1]));
9291a0cd
TT
1989 return 1;
1990 }
1991
3876f04e 1992 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
1993 }
1994}
1995
1996/* Read the index file. If everything went ok, initialize the "quick"
1997 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 1998
9291a0cd
TT
1999static int
2000dwarf2_read_index (struct objfile *objfile)
2001{
9291a0cd
TT
2002 char *addr;
2003 struct mapped_index *map;
b3b272e1 2004 offset_type *metadata;
ac0b195c
KW
2005 const gdb_byte *cu_list;
2006 const gdb_byte *types_list = NULL;
2007 offset_type version, cu_list_elements;
2008 offset_type types_list_elements = 0;
1fd400ff 2009 int i;
9291a0cd
TT
2010
2011 if (dwarf2_per_objfile->gdb_index.asection == NULL
2012 || dwarf2_per_objfile->gdb_index.size == 0)
2013 return 0;
82430852
JK
2014
2015 /* Older elfutils strip versions could keep the section in the main
2016 executable while splitting it for the separate debug info file. */
2017 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2018 & SEC_HAS_CONTENTS) == 0)
2019 return 0;
2020
9291a0cd
TT
2021 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2022
2023 addr = dwarf2_per_objfile->gdb_index.buffer;
2024 /* Version check. */
1fd400ff 2025 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c
TT
2026 /* Versions earlier than 3 emitted every copy of a psymbol. This
2027 causes the index to behave very poorly for certain requests. So,
2028 it seems better to just ignore such indices. */
2029 if (version < 3)
9291a0cd 2030 return 0;
594e8718
JK
2031 /* Indexes with higher version than the one supported by GDB may be no
2032 longer backward compatible. */
2033 if (version > 3)
2034 return 0;
9291a0cd
TT
2035
2036 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
b3b272e1 2037 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2038
2039 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2040
2041 i = 0;
2042 cu_list = addr + MAYBE_SWAP (metadata[i]);
2043 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2044 / 8);
1fd400ff
TT
2045 ++i;
2046
987d643c
TT
2047 types_list = addr + MAYBE_SWAP (metadata[i]);
2048 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2049 - MAYBE_SWAP (metadata[i]))
2050 / 8);
2051 ++i;
1fd400ff
TT
2052
2053 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2054 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2055 - MAYBE_SWAP (metadata[i]));
2056 ++i;
2057
3876f04e
DE
2058 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2059 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2060 - MAYBE_SWAP (metadata[i]))
2061 / (2 * sizeof (offset_type)));
1fd400ff 2062 ++i;
9291a0cd 2063
1fd400ff
TT
2064 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2065
2066 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2067 return 0;
2068
987d643c 2069 if (types_list_elements
673bfd45
DE
2070 && !create_signatured_type_table_from_index (objfile, types_list,
2071 types_list_elements))
9291a0cd
TT
2072 return 0;
2073
2074 create_addrmap_from_index (objfile, map);
2075
2076 dwarf2_per_objfile->index_table = map;
2077 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2078 dwarf2_per_objfile->quick_file_names_table =
2079 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2080
2081 return 1;
2082}
2083
2084/* A helper for the "quick" functions which sets the global
2085 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2086
9291a0cd
TT
2087static void
2088dw2_setup (struct objfile *objfile)
2089{
2090 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2091 gdb_assert (dwarf2_per_objfile);
2092}
2093
2094/* A helper for the "quick" functions which attempts to read the line
2095 table for THIS_CU. */
2fdf6df6 2096
7b9f3c50
DE
2097static struct quick_file_names *
2098dw2_get_file_names (struct objfile *objfile,
2099 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2100{
2101 bfd *abfd = objfile->obfd;
7b9f3c50 2102 struct line_header *lh;
9291a0cd
TT
2103 struct attribute *attr;
2104 struct cleanup *cleanups;
2105 struct die_info *comp_unit_die;
36374493 2106 struct dwarf2_section_info* sec;
9291a0cd
TT
2107 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2108 int has_children, i;
2109 struct dwarf2_cu cu;
2110 unsigned int bytes_read, buffer_size;
2111 struct die_reader_specs reader_specs;
2112 char *name, *comp_dir;
7b9f3c50
DE
2113 void **slot;
2114 struct quick_file_names *qfn;
2115 unsigned int line_offset;
9291a0cd 2116
7b9f3c50
DE
2117 if (this_cu->v.quick->file_names != NULL)
2118 return this_cu->v.quick->file_names;
2119 /* If we know there is no line data, no point in looking again. */
2120 if (this_cu->v.quick->no_file_data)
2121 return NULL;
9291a0cd 2122
9816fde3 2123 init_one_comp_unit (&cu, objfile);
9291a0cd
TT
2124 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2125
36374493
DE
2126 if (this_cu->from_debug_types)
2127 sec = &dwarf2_per_objfile->types;
2128 else
2129 sec = &dwarf2_per_objfile->info;
2130 dwarf2_read_section (objfile, sec);
2131 buffer_size = sec->size;
2132 buffer = sec->buffer;
9291a0cd
TT
2133 info_ptr = buffer + this_cu->offset;
2134 beg_of_comp_unit = info_ptr;
2135
2136 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2137 buffer, buffer_size,
2138 abfd);
2139
2140 /* Complete the cu_header. */
2141 cu.header.offset = beg_of_comp_unit - buffer;
2142 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2143
2144 this_cu->cu = &cu;
2145 cu.per_cu = this_cu;
2146
2147 dwarf2_read_abbrevs (abfd, &cu);
2148 make_cleanup (dwarf2_free_abbrev_table, &cu);
2149
2150 if (this_cu->from_debug_types)
2151 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2152 init_cu_die_reader (&reader_specs, &cu);
2153 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2154 &has_children);
2155
7b9f3c50
DE
2156 lh = NULL;
2157 slot = NULL;
2158 line_offset = 0;
9291a0cd
TT
2159 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2160 if (attr)
2161 {
7b9f3c50
DE
2162 struct quick_file_names find_entry;
2163
2164 line_offset = DW_UNSND (attr);
2165
2166 /* We may have already read in this line header (TU line header sharing).
2167 If we have we're done. */
2168 find_entry.offset = line_offset;
2169 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2170 &find_entry, INSERT);
2171 if (*slot != NULL)
2172 {
2173 do_cleanups (cleanups);
2174 this_cu->v.quick->file_names = *slot;
2175 return *slot;
2176 }
2177
9291a0cd
TT
2178 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2179 }
2180 if (lh == NULL)
2181 {
2182 do_cleanups (cleanups);
7b9f3c50
DE
2183 this_cu->v.quick->no_file_data = 1;
2184 return NULL;
9291a0cd
TT
2185 }
2186
7b9f3c50
DE
2187 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2188 qfn->offset = line_offset;
2189 gdb_assert (slot != NULL);
2190 *slot = qfn;
9291a0cd 2191
7b9f3c50 2192 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2193
7b9f3c50
DE
2194 qfn->num_file_names = lh->num_file_names;
2195 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2196 lh->num_file_names * sizeof (char *));
9291a0cd 2197 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2198 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2199 qfn->real_names = NULL;
9291a0cd 2200
7b9f3c50 2201 free_line_header (lh);
9291a0cd 2202 do_cleanups (cleanups);
7b9f3c50
DE
2203
2204 this_cu->v.quick->file_names = qfn;
2205 return qfn;
9291a0cd
TT
2206}
2207
2208/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2209 real path for a given file name from the line table. */
2fdf6df6 2210
9291a0cd 2211static const char *
7b9f3c50
DE
2212dw2_get_real_path (struct objfile *objfile,
2213 struct quick_file_names *qfn, int index)
9291a0cd 2214{
7b9f3c50
DE
2215 if (qfn->real_names == NULL)
2216 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2217 qfn->num_file_names, sizeof (char *));
9291a0cd 2218
7b9f3c50
DE
2219 if (qfn->real_names[index] == NULL)
2220 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2221
7b9f3c50 2222 return qfn->real_names[index];
9291a0cd
TT
2223}
2224
2225static struct symtab *
2226dw2_find_last_source_symtab (struct objfile *objfile)
2227{
2228 int index;
ae2de4f8 2229
9291a0cd
TT
2230 dw2_setup (objfile);
2231 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2232 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2233}
2234
7b9f3c50
DE
2235/* Traversal function for dw2_forget_cached_source_info. */
2236
2237static int
2238dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2239{
7b9f3c50 2240 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2241
7b9f3c50 2242 if (file_data->real_names)
9291a0cd 2243 {
7b9f3c50 2244 int i;
9291a0cd 2245
7b9f3c50 2246 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2247 {
7b9f3c50
DE
2248 xfree ((void*) file_data->real_names[i]);
2249 file_data->real_names[i] = NULL;
9291a0cd
TT
2250 }
2251 }
7b9f3c50
DE
2252
2253 return 1;
2254}
2255
2256static void
2257dw2_forget_cached_source_info (struct objfile *objfile)
2258{
2259 dw2_setup (objfile);
2260
2261 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2262 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2263}
2264
2265static int
2266dw2_lookup_symtab (struct objfile *objfile, const char *name,
2267 const char *full_path, const char *real_path,
2268 struct symtab **result)
2269{
2270 int i;
2271 int check_basename = lbasename (name) == name;
2272 struct dwarf2_per_cu_data *base_cu = NULL;
2273
2274 dw2_setup (objfile);
ae2de4f8 2275
1fd400ff
TT
2276 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2277 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2278 {
2279 int j;
e254ef6a 2280 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2281 struct quick_file_names *file_data;
9291a0cd 2282
e254ef6a 2283 if (per_cu->v.quick->symtab)
9291a0cd
TT
2284 continue;
2285
7b9f3c50
DE
2286 file_data = dw2_get_file_names (objfile, per_cu);
2287 if (file_data == NULL)
9291a0cd
TT
2288 continue;
2289
7b9f3c50 2290 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2291 {
7b9f3c50 2292 const char *this_name = file_data->file_names[j];
9291a0cd
TT
2293
2294 if (FILENAME_CMP (name, this_name) == 0)
2295 {
e254ef6a 2296 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2297 return 1;
2298 }
2299
2300 if (check_basename && ! base_cu
2301 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2302 base_cu = per_cu;
9291a0cd
TT
2303
2304 if (full_path != NULL)
2305 {
7b9f3c50
DE
2306 const char *this_real_name = dw2_get_real_path (objfile,
2307 file_data, j);
9291a0cd 2308
7b9f3c50
DE
2309 if (this_real_name != NULL
2310 && FILENAME_CMP (full_path, this_real_name) == 0)
9291a0cd 2311 {
e254ef6a 2312 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2313 return 1;
2314 }
2315 }
2316
2317 if (real_path != NULL)
2318 {
7b9f3c50
DE
2319 const char *this_real_name = dw2_get_real_path (objfile,
2320 file_data, j);
9291a0cd 2321
7b9f3c50
DE
2322 if (this_real_name != NULL
2323 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 2324 {
74dd2ca6
DE
2325 *result = dw2_instantiate_symtab (objfile, per_cu);
2326 return 1;
9291a0cd
TT
2327 }
2328 }
2329 }
2330 }
2331
2332 if (base_cu)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, base_cu);
2335 return 1;
2336 }
2337
2338 return 0;
2339}
2340
2341static struct symtab *
2342dw2_lookup_symbol (struct objfile *objfile, int block_index,
2343 const char *name, domain_enum domain)
2344{
774b6a14 2345 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2346 instead. */
2347 return NULL;
2348}
2349
2350/* A helper function that expands all symtabs that hold an object
2351 named NAME. */
2fdf6df6 2352
9291a0cd
TT
2353static void
2354dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2355{
2356 dw2_setup (objfile);
2357
ae2de4f8 2358 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2359 if (dwarf2_per_objfile->index_table)
2360 {
2361 offset_type *vec;
2362
2363 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2364 name, &vec))
2365 {
2366 offset_type i, len = MAYBE_SWAP (*vec);
2367 for (i = 0; i < len; ++i)
2368 {
2369 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2371
e254ef6a 2372 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2373 }
2374 }
2375 }
2376}
2377
774b6a14
TT
2378static void
2379dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2380 int kind, const char *name,
2381 domain_enum domain)
9291a0cd 2382{
774b6a14 2383 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2384}
2385
2386static void
2387dw2_print_stats (struct objfile *objfile)
2388{
2389 int i, count;
2390
2391 dw2_setup (objfile);
2392 count = 0;
1fd400ff
TT
2393 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2394 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2395 {
e254ef6a 2396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2397
e254ef6a 2398 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2399 ++count;
2400 }
2401 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2402}
2403
2404static void
2405dw2_dump (struct objfile *objfile)
2406{
2407 /* Nothing worth printing. */
2408}
2409
2410static void
2411dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2412 struct section_offsets *delta)
2413{
2414 /* There's nothing to relocate here. */
2415}
2416
2417static void
2418dw2_expand_symtabs_for_function (struct objfile *objfile,
2419 const char *func_name)
2420{
2421 dw2_do_expand_symtabs_matching (objfile, func_name);
2422}
2423
2424static void
2425dw2_expand_all_symtabs (struct objfile *objfile)
2426{
2427 int i;
2428
2429 dw2_setup (objfile);
1fd400ff
TT
2430
2431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2432 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2433 {
e254ef6a 2434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2435
e254ef6a 2436 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2437 }
2438}
2439
2440static void
2441dw2_expand_symtabs_with_filename (struct objfile *objfile,
2442 const char *filename)
2443{
2444 int i;
2445
2446 dw2_setup (objfile);
d4637a04
DE
2447
2448 /* We don't need to consider type units here.
2449 This is only called for examining code, e.g. expand_line_sal.
2450 There can be an order of magnitude (or more) more type units
2451 than comp units, and we avoid them if we can. */
2452
2453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2454 {
2455 int j;
e254ef6a 2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2457 struct quick_file_names *file_data;
9291a0cd 2458
e254ef6a 2459 if (per_cu->v.quick->symtab)
9291a0cd
TT
2460 continue;
2461
7b9f3c50
DE
2462 file_data = dw2_get_file_names (objfile, per_cu);
2463 if (file_data == NULL)
9291a0cd
TT
2464 continue;
2465
7b9f3c50 2466 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2467 {
7b9f3c50 2468 const char *this_name = file_data->file_names[j];
1ef75ecc 2469 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2470 {
e254ef6a 2471 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2472 break;
2473 }
2474 }
2475 }
2476}
2477
dd786858 2478static const char *
9291a0cd
TT
2479dw2_find_symbol_file (struct objfile *objfile, const char *name)
2480{
e254ef6a 2481 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2482 offset_type *vec;
7b9f3c50 2483 struct quick_file_names *file_data;
9291a0cd
TT
2484
2485 dw2_setup (objfile);
2486
ae2de4f8 2487 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2488 if (!dwarf2_per_objfile->index_table)
2489 return NULL;
2490
2491 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2492 name, &vec))
2493 return NULL;
2494
2495 /* Note that this just looks at the very first one named NAME -- but
2496 actually we are looking for a function. find_main_filename
2497 should be rewritten so that it doesn't require a custom hook. It
2498 could just use the ordinary symbol tables. */
2499 /* vec[0] is the length, which must always be >0. */
e254ef6a 2500 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2501
7b9f3c50
DE
2502 file_data = dw2_get_file_names (objfile, per_cu);
2503 if (file_data == NULL)
9291a0cd
TT
2504 return NULL;
2505
7b9f3c50 2506 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2507}
2508
2509static void
40658b94
PH
2510dw2_map_matching_symbols (const char * name, domain_enum namespace,
2511 struct objfile *objfile, int global,
2512 int (*callback) (struct block *,
2513 struct symbol *, void *),
2edb89d3
JK
2514 void *data, symbol_compare_ftype *match,
2515 symbol_compare_ftype *ordered_compare)
9291a0cd 2516{
40658b94 2517 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2518 current language is Ada for a non-Ada objfile using GNU index. As Ada
2519 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2520}
2521
2522static void
2523dw2_expand_symtabs_matching (struct objfile *objfile,
2524 int (*file_matcher) (const char *, void *),
2525 int (*name_matcher) (const char *, void *),
2526 domain_enum kind,
2527 void *data)
2528{
2529 int i;
2530 offset_type iter;
4b5246aa 2531 struct mapped_index *index;
9291a0cd
TT
2532
2533 dw2_setup (objfile);
ae2de4f8
DE
2534
2535 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2536 if (!dwarf2_per_objfile->index_table)
2537 return;
4b5246aa 2538 index = dwarf2_per_objfile->index_table;
9291a0cd 2539
1fd400ff
TT
2540 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2541 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2542 {
2543 int j;
e254ef6a 2544 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2545 struct quick_file_names *file_data;
9291a0cd 2546
e254ef6a
DE
2547 per_cu->v.quick->mark = 0;
2548 if (per_cu->v.quick->symtab)
9291a0cd
TT
2549 continue;
2550
7b9f3c50
DE
2551 file_data = dw2_get_file_names (objfile, per_cu);
2552 if (file_data == NULL)
9291a0cd
TT
2553 continue;
2554
7b9f3c50 2555 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2556 {
7b9f3c50 2557 if (file_matcher (file_data->file_names[j], data))
9291a0cd 2558 {
e254ef6a 2559 per_cu->v.quick->mark = 1;
9291a0cd
TT
2560 break;
2561 }
2562 }
2563 }
2564
3876f04e 2565 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2566 {
2567 offset_type idx = 2 * iter;
2568 const char *name;
2569 offset_type *vec, vec_len, vec_idx;
2570
3876f04e 2571 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2572 continue;
2573
3876f04e 2574 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2575
2576 if (! (*name_matcher) (name, data))
2577 continue;
2578
2579 /* The name was matched, now expand corresponding CUs that were
2580 marked. */
4b5246aa 2581 vec = (offset_type *) (index->constant_pool
3876f04e 2582 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2583 vec_len = MAYBE_SWAP (vec[0]);
2584 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2585 {
e254ef6a 2586 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2587
e254ef6a
DE
2588 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2589 if (per_cu->v.quick->mark)
2590 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2591 }
2592 }
2593}
2594
2595static struct symtab *
2596dw2_find_pc_sect_symtab (struct objfile *objfile,
2597 struct minimal_symbol *msymbol,
2598 CORE_ADDR pc,
2599 struct obj_section *section,
2600 int warn_if_readin)
2601{
2602 struct dwarf2_per_cu_data *data;
2603
2604 dw2_setup (objfile);
2605
2606 if (!objfile->psymtabs_addrmap)
2607 return NULL;
2608
2609 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2610 if (!data)
2611 return NULL;
2612
2613 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2614 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2615 paddress (get_objfile_arch (objfile), pc));
2616
2617 return dw2_instantiate_symtab (objfile, data);
2618}
2619
2620static void
2621dw2_map_symbol_names (struct objfile *objfile,
2622 void (*fun) (const char *, void *),
2623 void *data)
2624{
2625 offset_type iter;
4b5246aa
TT
2626 struct mapped_index *index;
2627
9291a0cd
TT
2628 dw2_setup (objfile);
2629
ae2de4f8 2630 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2631 if (!dwarf2_per_objfile->index_table)
2632 return;
4b5246aa 2633 index = dwarf2_per_objfile->index_table;
9291a0cd 2634
3876f04e 2635 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2636 {
2637 offset_type idx = 2 * iter;
2638 const char *name;
2639 offset_type *vec, vec_len, vec_idx;
2640
3876f04e 2641 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2642 continue;
2643
3876f04e 2644 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
9291a0cd
TT
2645
2646 (*fun) (name, data);
2647 }
2648}
2649
2650static void
2651dw2_map_symbol_filenames (struct objfile *objfile,
2652 void (*fun) (const char *, const char *, void *),
2653 void *data)
2654{
2655 int i;
2656
2657 dw2_setup (objfile);
ae2de4f8 2658
1fd400ff
TT
2659 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2660 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2661 {
2662 int j;
e254ef6a 2663 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2664 struct quick_file_names *file_data;
9291a0cd 2665
e254ef6a 2666 if (per_cu->v.quick->symtab)
9291a0cd
TT
2667 continue;
2668
7b9f3c50
DE
2669 file_data = dw2_get_file_names (objfile, per_cu);
2670 if (file_data == NULL)
9291a0cd
TT
2671 continue;
2672
7b9f3c50 2673 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2674 {
7b9f3c50
DE
2675 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2676 j);
2677 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2678 }
2679 }
2680}
2681
2682static int
2683dw2_has_symbols (struct objfile *objfile)
2684{
2685 return 1;
2686}
2687
2688const struct quick_symbol_functions dwarf2_gdb_index_functions =
2689{
2690 dw2_has_symbols,
2691 dw2_find_last_source_symtab,
2692 dw2_forget_cached_source_info,
2693 dw2_lookup_symtab,
2694 dw2_lookup_symbol,
774b6a14 2695 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2696 dw2_print_stats,
2697 dw2_dump,
2698 dw2_relocate,
2699 dw2_expand_symtabs_for_function,
2700 dw2_expand_all_symtabs,
2701 dw2_expand_symtabs_with_filename,
2702 dw2_find_symbol_file,
40658b94 2703 dw2_map_matching_symbols,
9291a0cd
TT
2704 dw2_expand_symtabs_matching,
2705 dw2_find_pc_sect_symtab,
2706 dw2_map_symbol_names,
2707 dw2_map_symbol_filenames
2708};
2709
2710/* Initialize for reading DWARF for this objfile. Return 0 if this
2711 file will use psymtabs, or 1 if using the GNU index. */
2712
2713int
2714dwarf2_initialize_objfile (struct objfile *objfile)
2715{
2716 /* If we're about to read full symbols, don't bother with the
2717 indices. In this case we also don't care if some other debug
2718 format is making psymtabs, because they are all about to be
2719 expanded anyway. */
2720 if ((objfile->flags & OBJF_READNOW))
2721 {
2722 int i;
2723
2724 dwarf2_per_objfile->using_index = 1;
2725 create_all_comp_units (objfile);
1fd400ff 2726 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2727 dwarf2_per_objfile->quick_file_names_table =
2728 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2729
1fd400ff
TT
2730 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2731 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2732 {
e254ef6a 2733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2734
e254ef6a
DE
2735 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2737 }
2738
2739 /* Return 1 so that gdb sees the "quick" functions. However,
2740 these functions will be no-ops because we will have expanded
2741 all symtabs. */
2742 return 1;
2743 }
2744
2745 if (dwarf2_read_index (objfile))
2746 return 1;
2747
2748 dwarf2_build_psymtabs (objfile);
2749 return 0;
2750}
2751
2752\f
2753
dce234bc
PP
2754/* Build a partial symbol table. */
2755
2756void
f29dff0a 2757dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2758{
f29dff0a 2759 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2760 {
2761 init_psymbol_list (objfile, 1024);
2762 }
2763
d146bf1e 2764 dwarf2_build_psymtabs_hard (objfile);
c906108c 2765}
c906108c 2766
45452591
DE
2767/* Return TRUE if OFFSET is within CU_HEADER. */
2768
2769static inline int
2770offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2771{
2772 unsigned int bottom = cu_header->offset;
2773 unsigned int top = (cu_header->offset
2774 + cu_header->length
2775 + cu_header->initial_length_size);
9a619af0 2776
45452591
DE
2777 return (offset >= bottom && offset < top);
2778}
2779
93311388
DE
2780/* Read in the comp unit header information from the debug_info at info_ptr.
2781 NOTE: This leaves members offset, first_die_offset to be filled in
2782 by the caller. */
107d2387 2783
fe1b8b76 2784static gdb_byte *
107d2387 2785read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2786 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2787{
2788 int signed_addr;
891d2f0b 2789 unsigned int bytes_read;
c764a876
DE
2790
2791 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2792 cu_header->initial_length_size = bytes_read;
2793 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2794 info_ptr += bytes_read;
107d2387
AC
2795 cu_header->version = read_2_bytes (abfd, info_ptr);
2796 info_ptr += 2;
613e1657 2797 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2798 &bytes_read);
613e1657 2799 info_ptr += bytes_read;
107d2387
AC
2800 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2801 info_ptr += 1;
2802 signed_addr = bfd_get_sign_extend_vma (abfd);
2803 if (signed_addr < 0)
8e65ff28 2804 internal_error (__FILE__, __LINE__,
e2e0b3e5 2805 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2806 cu_header->signed_addr_p = signed_addr;
c764a876 2807
107d2387
AC
2808 return info_ptr;
2809}
2810
fe1b8b76
JB
2811static gdb_byte *
2812partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2813 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2814 bfd *abfd)
2815{
fe1b8b76 2816 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2817
2818 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2819
2dc7f7b3 2820 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2821 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2822 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2823 bfd_get_filename (abfd));
72bf9492 2824
dce234bc 2825 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
2826 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2827 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2828 (long) header->abbrev_offset,
93311388 2829 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2830 bfd_get_filename (abfd));
2831
2832 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2833 > buffer + buffer_size)
8a3fe4f8
AC
2834 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2835 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2836 (long) header->length,
93311388 2837 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2838 bfd_get_filename (abfd));
2839
2840 return info_ptr;
2841}
2842
348e048f
DE
2843/* Read in the types comp unit header information from .debug_types entry at
2844 types_ptr. The result is a pointer to one past the end of the header. */
2845
2846static gdb_byte *
2847read_type_comp_unit_head (struct comp_unit_head *cu_header,
2848 ULONGEST *signature,
2849 gdb_byte *types_ptr, bfd *abfd)
2850{
348e048f
DE
2851 gdb_byte *initial_types_ptr = types_ptr;
2852
6e70227d 2853 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2854 &dwarf2_per_objfile->types);
348e048f
DE
2855 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2856
2857 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2858
2859 *signature = read_8_bytes (abfd, types_ptr);
2860 types_ptr += 8;
2861 types_ptr += cu_header->offset_size;
2862 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2863
2864 return types_ptr;
2865}
2866
aaa75496
JB
2867/* Allocate a new partial symtab for file named NAME and mark this new
2868 partial symtab as being an include of PST. */
2869
2870static void
2871dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2872 struct objfile *objfile)
2873{
2874 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2875
2876 subpst->section_offsets = pst->section_offsets;
2877 subpst->textlow = 0;
2878 subpst->texthigh = 0;
2879
2880 subpst->dependencies = (struct partial_symtab **)
2881 obstack_alloc (&objfile->objfile_obstack,
2882 sizeof (struct partial_symtab *));
2883 subpst->dependencies[0] = pst;
2884 subpst->number_of_dependencies = 1;
2885
2886 subpst->globals_offset = 0;
2887 subpst->n_global_syms = 0;
2888 subpst->statics_offset = 0;
2889 subpst->n_static_syms = 0;
2890 subpst->symtab = NULL;
2891 subpst->read_symtab = pst->read_symtab;
2892 subpst->readin = 0;
2893
2894 /* No private part is necessary for include psymtabs. This property
2895 can be used to differentiate between such include psymtabs and
10b3939b 2896 the regular ones. */
58a9656e 2897 subpst->read_symtab_private = NULL;
aaa75496
JB
2898}
2899
2900/* Read the Line Number Program data and extract the list of files
2901 included by the source file represented by PST. Build an include
d85a05f0 2902 partial symtab for each of these included files. */
aaa75496
JB
2903
2904static void
2905dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2906 struct die_info *die,
aaa75496
JB
2907 struct partial_symtab *pst)
2908{
2909 struct objfile *objfile = cu->objfile;
2910 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2911 struct line_header *lh = NULL;
2912 struct attribute *attr;
aaa75496 2913
d85a05f0
DJ
2914 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2918
d85a05f0
DJ
2919 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2920 }
aaa75496
JB
2921 if (lh == NULL)
2922 return; /* No linetable, so no includes. */
2923
c6da4cef
DE
2924 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2925 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
2926
2927 free_line_header (lh);
2928}
2929
348e048f
DE
2930static hashval_t
2931hash_type_signature (const void *item)
2932{
2933 const struct signatured_type *type_sig = item;
9a619af0 2934
348e048f
DE
2935 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2936 return type_sig->signature;
2937}
2938
2939static int
2940eq_type_signature (const void *item_lhs, const void *item_rhs)
2941{
2942 const struct signatured_type *lhs = item_lhs;
2943 const struct signatured_type *rhs = item_rhs;
9a619af0 2944
348e048f
DE
2945 return lhs->signature == rhs->signature;
2946}
2947
1fd400ff
TT
2948/* Allocate a hash table for signatured types. */
2949
2950static htab_t
673bfd45 2951allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
2952{
2953 return htab_create_alloc_ex (41,
2954 hash_type_signature,
2955 eq_type_signature,
2956 NULL,
2957 &objfile->objfile_obstack,
2958 hashtab_obstack_allocate,
2959 dummy_obstack_deallocate);
2960}
2961
2962/* A helper function to add a signatured type CU to a list. */
2963
2964static int
2965add_signatured_type_cu_to_list (void **slot, void *datum)
2966{
2967 struct signatured_type *sigt = *slot;
2968 struct dwarf2_per_cu_data ***datap = datum;
2969
2970 **datap = &sigt->per_cu;
2971 ++*datap;
2972
2973 return 1;
2974}
2975
348e048f
DE
2976/* Create the hash table of all entries in the .debug_types section.
2977 The result is zero if there is an error (e.g. missing .debug_types section),
2978 otherwise non-zero. */
2979
2980static int
2981create_debug_types_hash_table (struct objfile *objfile)
2982{
be391dca 2983 gdb_byte *info_ptr;
348e048f 2984 htab_t types_htab;
1fd400ff 2985 struct dwarf2_per_cu_data **iter;
348e048f 2986
be391dca
TT
2987 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2988 info_ptr = dwarf2_per_objfile->types.buffer;
2989
348e048f
DE
2990 if (info_ptr == NULL)
2991 {
2992 dwarf2_per_objfile->signatured_types = NULL;
2993 return 0;
2994 }
2995
673bfd45 2996 types_htab = allocate_signatured_type_table (objfile);
348e048f
DE
2997
2998 if (dwarf2_die_debug)
2999 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3000
3e43a32a
MS
3001 while (info_ptr < dwarf2_per_objfile->types.buffer
3002 + dwarf2_per_objfile->types.size)
348e048f
DE
3003 {
3004 unsigned int offset;
3005 unsigned int offset_size;
3006 unsigned int type_offset;
3007 unsigned int length, initial_length_size;
3008 unsigned short version;
3009 ULONGEST signature;
3010 struct signatured_type *type_sig;
3011 void **slot;
3012 gdb_byte *ptr = info_ptr;
3013
3014 offset = ptr - dwarf2_per_objfile->types.buffer;
3015
3016 /* We need to read the type's signature in order to build the hash
3017 table, but we don't need to read anything else just yet. */
3018
3019 /* Sanity check to ensure entire cu is present. */
3020 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3021 if (ptr + length + initial_length_size
3022 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3023 {
3024 complaint (&symfile_complaints,
3e43a32a
MS
3025 _("debug type entry runs off end "
3026 "of `.debug_types' section, ignored"));
348e048f
DE
3027 break;
3028 }
3029
3030 offset_size = initial_length_size == 4 ? 4 : 8;
3031 ptr += initial_length_size;
3032 version = bfd_get_16 (objfile->obfd, ptr);
3033 ptr += 2;
3034 ptr += offset_size; /* abbrev offset */
3035 ptr += 1; /* address size */
3036 signature = bfd_get_64 (objfile->obfd, ptr);
3037 ptr += 8;
3038 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3039
3040 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3041 memset (type_sig, 0, sizeof (*type_sig));
3042 type_sig->signature = signature;
3043 type_sig->offset = offset;
3044 type_sig->type_offset = type_offset;
ca1f3406 3045 type_sig->per_cu.objfile = objfile;
1fd400ff 3046 type_sig->per_cu.from_debug_types = 1;
348e048f
DE
3047
3048 slot = htab_find_slot (types_htab, type_sig, INSERT);
3049 gdb_assert (slot != NULL);
3050 *slot = type_sig;
3051
3052 if (dwarf2_die_debug)
3053 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3054 offset, phex (signature, sizeof (signature)));
3055
3056 info_ptr = info_ptr + initial_length_size + length;
3057 }
3058
3059 dwarf2_per_objfile->signatured_types = types_htab;
3060
1fd400ff
TT
3061 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3062 dwarf2_per_objfile->type_comp_units
3063 = obstack_alloc (&objfile->objfile_obstack,
3064 dwarf2_per_objfile->n_type_comp_units
3065 * sizeof (struct dwarf2_per_cu_data *));
3066 iter = &dwarf2_per_objfile->type_comp_units[0];
3067 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3068 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3069 == dwarf2_per_objfile->n_type_comp_units);
3070
348e048f
DE
3071 return 1;
3072}
3073
3074/* Lookup a signature based type.
3075 Returns NULL if SIG is not present in the table. */
3076
3077static struct signatured_type *
3078lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3079{
3080 struct signatured_type find_entry, *entry;
3081
3082 if (dwarf2_per_objfile->signatured_types == NULL)
3083 {
3084 complaint (&symfile_complaints,
3085 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3086 return 0;
3087 }
3088
3089 find_entry.signature = sig;
3090 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3091 return entry;
3092}
3093
d85a05f0
DJ
3094/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3095
3096static void
3097init_cu_die_reader (struct die_reader_specs *reader,
3098 struct dwarf2_cu *cu)
3099{
3100 reader->abfd = cu->objfile->obfd;
3101 reader->cu = cu;
3102 if (cu->per_cu->from_debug_types)
be391dca
TT
3103 {
3104 gdb_assert (dwarf2_per_objfile->types.readin);
3105 reader->buffer = dwarf2_per_objfile->types.buffer;
3106 }
d85a05f0 3107 else
be391dca
TT
3108 {
3109 gdb_assert (dwarf2_per_objfile->info.readin);
3110 reader->buffer = dwarf2_per_objfile->info.buffer;
3111 }
d85a05f0
DJ
3112}
3113
3114/* Find the base address of the compilation unit for range lists and
3115 location lists. It will normally be specified by DW_AT_low_pc.
3116 In DWARF-3 draft 4, the base address could be overridden by
3117 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3118 compilation units with discontinuous ranges. */
3119
3120static void
3121dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3122{
3123 struct attribute *attr;
3124
3125 cu->base_known = 0;
3126 cu->base_address = 0;
3127
3128 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3129 if (attr)
3130 {
3131 cu->base_address = DW_ADDR (attr);
3132 cu->base_known = 1;
3133 }
3134 else
3135 {
3136 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3137 if (attr)
3138 {
3139 cu->base_address = DW_ADDR (attr);
3140 cu->base_known = 1;
3141 }
3142 }
3143}
3144
348e048f
DE
3145/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3146 to combine the common parts.
93311388 3147 Process a compilation unit for a psymtab.
348e048f
DE
3148 BUFFER is a pointer to the beginning of the dwarf section buffer,
3149 either .debug_info or debug_types.
93311388
DE
3150 INFO_PTR is a pointer to the start of the CU.
3151 Returns a pointer to the next CU. */
aaa75496 3152
93311388
DE
3153static gdb_byte *
3154process_psymtab_comp_unit (struct objfile *objfile,
3155 struct dwarf2_per_cu_data *this_cu,
3156 gdb_byte *buffer, gdb_byte *info_ptr,
3157 unsigned int buffer_size)
c906108c 3158{
c906108c 3159 bfd *abfd = objfile->obfd;
93311388 3160 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3161 struct die_info *comp_unit_die;
c906108c 3162 struct partial_symtab *pst;
5734ee8b 3163 CORE_ADDR baseaddr;
93311388
DE
3164 struct cleanup *back_to_inner;
3165 struct dwarf2_cu cu;
d85a05f0
DJ
3166 int has_children, has_pc_info;
3167 struct attribute *attr;
d85a05f0
DJ
3168 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3169 struct die_reader_specs reader_specs;
c906108c 3170
9816fde3 3171 init_one_comp_unit (&cu, objfile);
93311388 3172 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3173
93311388
DE
3174 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3175 buffer, buffer_size,
3176 abfd);
10b3939b 3177
93311388
DE
3178 /* Complete the cu_header. */
3179 cu.header.offset = beg_of_comp_unit - buffer;
3180 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3181
93311388 3182 cu.list_in_scope = &file_symbols;
af703f96 3183
328c9494
DJ
3184 /* If this compilation unit was already read in, free the
3185 cached copy in order to read it in again. This is
3186 necessary because we skipped some symbols when we first
3187 read in the compilation unit (see load_partial_dies).
3188 This problem could be avoided, but the benefit is
3189 unclear. */
3190 if (this_cu->cu != NULL)
3191 free_one_cached_comp_unit (this_cu->cu);
3192
3193 /* Note that this is a pointer to our stack frame, being
3194 added to a global data structure. It will be cleaned up
3195 in free_stack_comp_unit when we finish with this
3196 compilation unit. */
3197 this_cu->cu = &cu;
d85a05f0
DJ
3198 cu.per_cu = this_cu;
3199
93311388
DE
3200 /* Read the abbrevs for this compilation unit into a table. */
3201 dwarf2_read_abbrevs (abfd, &cu);
3202 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3203
93311388 3204 /* Read the compilation unit die. */
348e048f
DE
3205 if (this_cu->from_debug_types)
3206 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3207 init_cu_die_reader (&reader_specs, &cu);
3208 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3209 &has_children);
93311388 3210
348e048f
DE
3211 if (this_cu->from_debug_types)
3212 {
3213 /* offset,length haven't been set yet for type units. */
3214 this_cu->offset = cu.header.offset;
3215 this_cu->length = cu.header.length + cu.header.initial_length_size;
3216 }
d85a05f0 3217 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3218 {
93311388
DE
3219 info_ptr = (beg_of_comp_unit + cu.header.length
3220 + cu.header.initial_length_size);
3221 do_cleanups (back_to_inner);
3222 return info_ptr;
3223 }
72bf9492 3224
9816fde3 3225 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3226
93311388 3227 /* Allocate a new partial symbol table structure. */
d85a05f0 3228 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 3229 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 3230 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
3231 /* TEXTLOW and TEXTHIGH are set below. */
3232 0,
3233 objfile->global_psymbols.next,
3234 objfile->static_psymbols.next);
72bf9492 3235
d85a05f0
DJ
3236 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3237 if (attr != NULL)
3238 pst->dirname = DW_STRING (attr);
72bf9492 3239
e38df1d0 3240 pst->read_symtab_private = this_cu;
72bf9492 3241
93311388 3242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3243
0963b4bd 3244 /* Store the function that reads in the rest of the symbol table. */
93311388 3245 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3246
9291a0cd 3247 this_cu->v.psymtab = pst;
c906108c 3248
d85a05f0
DJ
3249 dwarf2_find_base_address (comp_unit_die, &cu);
3250
93311388
DE
3251 /* Possibly set the default values of LOWPC and HIGHPC from
3252 `DW_AT_ranges'. */
d85a05f0
DJ
3253 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3254 &best_highpc, &cu, pst);
3255 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3256 /* Store the contiguous range if it is not empty; it can be empty for
3257 CUs with no code. */
3258 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3259 best_lowpc + baseaddr,
3260 best_highpc + baseaddr - 1, pst);
93311388
DE
3261
3262 /* Check if comp unit has_children.
3263 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3264 If not, there's no more debug_info for this comp unit. */
d85a05f0 3265 if (has_children)
93311388
DE
3266 {
3267 struct partial_die_info *first_die;
3268 CORE_ADDR lowpc, highpc;
31ffec48 3269
93311388
DE
3270 lowpc = ((CORE_ADDR) -1);
3271 highpc = ((CORE_ADDR) 0);
c906108c 3272
93311388 3273 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3274
93311388 3275 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3276 ! has_pc_info, &cu);
57c22c6c 3277
93311388
DE
3278 /* If we didn't find a lowpc, set it to highpc to avoid
3279 complaints from `maint check'. */
3280 if (lowpc == ((CORE_ADDR) -1))
3281 lowpc = highpc;
10b3939b 3282
93311388
DE
3283 /* If the compilation unit didn't have an explicit address range,
3284 then use the information extracted from its child dies. */
d85a05f0 3285 if (! has_pc_info)
93311388 3286 {
d85a05f0
DJ
3287 best_lowpc = lowpc;
3288 best_highpc = highpc;
93311388
DE
3289 }
3290 }
d85a05f0
DJ
3291 pst->textlow = best_lowpc + baseaddr;
3292 pst->texthigh = best_highpc + baseaddr;
c906108c 3293
93311388
DE
3294 pst->n_global_syms = objfile->global_psymbols.next -
3295 (objfile->global_psymbols.list + pst->globals_offset);
3296 pst->n_static_syms = objfile->static_psymbols.next -
3297 (objfile->static_psymbols.list + pst->statics_offset);
3298 sort_pst_symbols (pst);
c906108c 3299
93311388
DE
3300 info_ptr = (beg_of_comp_unit + cu.header.length
3301 + cu.header.initial_length_size);
ae038cb0 3302
348e048f
DE
3303 if (this_cu->from_debug_types)
3304 {
3305 /* It's not clear we want to do anything with stmt lists here.
3306 Waiting to see what gcc ultimately does. */
3307 }
d85a05f0 3308 else
93311388
DE
3309 {
3310 /* Get the list of files included in the current compilation unit,
3311 and build a psymtab for each of them. */
d85a05f0 3312 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3313 }
ae038cb0 3314
93311388 3315 do_cleanups (back_to_inner);
ae038cb0 3316
93311388
DE
3317 return info_ptr;
3318}
ff013f42 3319
348e048f
DE
3320/* Traversal function for htab_traverse_noresize.
3321 Process one .debug_types comp-unit. */
3322
3323static int
3324process_type_comp_unit (void **slot, void *info)
3325{
3326 struct signatured_type *entry = (struct signatured_type *) *slot;
3327 struct objfile *objfile = (struct objfile *) info;
3328 struct dwarf2_per_cu_data *this_cu;
3329
3330 this_cu = &entry->per_cu;
348e048f 3331
be391dca 3332 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
3333 process_psymtab_comp_unit (objfile, this_cu,
3334 dwarf2_per_objfile->types.buffer,
3335 dwarf2_per_objfile->types.buffer + entry->offset,
3336 dwarf2_per_objfile->types.size);
3337
3338 return 1;
3339}
3340
3341/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3342 Build partial symbol tables for the .debug_types comp-units. */
3343
3344static void
3345build_type_psymtabs (struct objfile *objfile)
3346{
3347 if (! create_debug_types_hash_table (objfile))
3348 return;
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3351 process_type_comp_unit, objfile);
3352}
3353
60606b2c
TT
3354/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3355
3356static void
3357psymtabs_addrmap_cleanup (void *o)
3358{
3359 struct objfile *objfile = o;
ec61707d 3360
60606b2c
TT
3361 objfile->psymtabs_addrmap = NULL;
3362}
3363
93311388
DE
3364/* Build the partial symbol table by doing a quick pass through the
3365 .debug_info and .debug_abbrev sections. */
72bf9492 3366
93311388 3367static void
c67a9c90 3368dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3369{
93311388 3370 gdb_byte *info_ptr;
60606b2c
TT
3371 struct cleanup *back_to, *addrmap_cleanup;
3372 struct obstack temp_obstack;
93311388 3373
98bfdba5
PA
3374 dwarf2_per_objfile->reading_partial_symbols = 1;
3375
be391dca 3376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3377 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3378
93311388
DE
3379 /* Any cached compilation units will be linked by the per-objfile
3380 read_in_chain. Make sure to free them when we're done. */
3381 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3382
348e048f
DE
3383 build_type_psymtabs (objfile);
3384
93311388 3385 create_all_comp_units (objfile);
c906108c 3386
60606b2c
TT
3387 /* Create a temporary address map on a temporary obstack. We later
3388 copy this to the final obstack. */
3389 obstack_init (&temp_obstack);
3390 make_cleanup_obstack_free (&temp_obstack);
3391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3393
93311388
DE
3394 /* Since the objects we're extracting from .debug_info vary in
3395 length, only the individual functions to extract them (like
3396 read_comp_unit_head and load_partial_die) can really know whether
3397 the buffer is large enough to hold another complete object.
c906108c 3398
93311388
DE
3399 At the moment, they don't actually check that. If .debug_info
3400 holds just one extra byte after the last compilation unit's dies,
3401 then read_comp_unit_head will happily read off the end of the
3402 buffer. read_partial_die is similarly casual. Those functions
3403 should be fixed.
c906108c 3404
93311388
DE
3405 For this loop condition, simply checking whether there's any data
3406 left at all should be sufficient. */
c906108c 3407
93311388
DE
3408 while (info_ptr < (dwarf2_per_objfile->info.buffer
3409 + dwarf2_per_objfile->info.size))
3410 {
3411 struct dwarf2_per_cu_data *this_cu;
dd373385 3412
3e43a32a
MS
3413 this_cu = dwarf2_find_comp_unit (info_ptr
3414 - dwarf2_per_objfile->info.buffer,
93311388 3415 objfile);
aaa75496 3416
93311388
DE
3417 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3418 dwarf2_per_objfile->info.buffer,
3419 info_ptr,
3420 dwarf2_per_objfile->info.size);
c906108c 3421 }
ff013f42
JK
3422
3423 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3424 &objfile->objfile_obstack);
60606b2c 3425 discard_cleanups (addrmap_cleanup);
ff013f42 3426
ae038cb0
DJ
3427 do_cleanups (back_to);
3428}
3429
93311388 3430/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3431
3432static void
93311388
DE
3433load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3434 struct objfile *objfile)
ae038cb0
DJ
3435{
3436 bfd *abfd = objfile->obfd;
fe1b8b76 3437 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3438 struct die_info *comp_unit_die;
ae038cb0 3439 struct dwarf2_cu *cu;
1d9ec526 3440 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3441 int has_children;
3442 struct die_reader_specs reader_specs;
98bfdba5 3443 int read_cu = 0;
ae038cb0 3444
348e048f
DE
3445 gdb_assert (! this_cu->from_debug_types);
3446
be391dca 3447 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3448 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3449 beg_of_comp_unit = info_ptr;
3450
98bfdba5
PA
3451 if (this_cu->cu == NULL)
3452 {
9816fde3
JK
3453 cu = xmalloc (sizeof (*cu));
3454 init_one_comp_unit (cu, objfile);
ae038cb0 3455
98bfdba5 3456 read_cu = 1;
ae038cb0 3457
98bfdba5
PA
3458 /* If an error occurs while loading, release our storage. */
3459 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3460
98bfdba5
PA
3461 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3462 dwarf2_per_objfile->info.buffer,
3463 dwarf2_per_objfile->info.size,
3464 abfd);
ae038cb0 3465
98bfdba5
PA
3466 /* Complete the cu_header. */
3467 cu->header.offset = this_cu->offset;
3468 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3469
3470 /* Link this compilation unit into the compilation unit tree. */
3471 this_cu->cu = cu;
3472 cu->per_cu = this_cu;
98bfdba5
PA
3473
3474 /* Link this CU into read_in_chain. */
3475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3476 dwarf2_per_objfile->read_in_chain = this_cu;
3477 }
3478 else
3479 {
3480 cu = this_cu->cu;
3481 info_ptr += cu->header.first_die_offset;
3482 }
ae038cb0
DJ
3483
3484 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3485 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3486 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3487 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3488
3489 /* Read the compilation unit die. */
d85a05f0
DJ
3490 init_cu_die_reader (&reader_specs, cu);
3491 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3492 &has_children);
ae038cb0 3493
9816fde3 3494 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3495
ae038cb0
DJ
3496 /* Check if comp unit has_children.
3497 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3498 If not, there's no more debug_info for this comp unit. */
d85a05f0 3499 if (has_children)
93311388 3500 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3501
98bfdba5
PA
3502 do_cleanups (free_abbrevs_cleanup);
3503
3504 if (read_cu)
3505 {
3506 /* We've successfully allocated this compilation unit. Let our
3507 caller clean it up when finished with it. */
3508 discard_cleanups (free_cu_cleanup);
3509 }
ae038cb0
DJ
3510}
3511
3512/* Create a list of all compilation units in OBJFILE. We do this only
3513 if an inter-comp-unit reference is found; presumably if there is one,
3514 there will be many, and one will occur early in the .debug_info section.
3515 So there's no point in building this list incrementally. */
3516
3517static void
3518create_all_comp_units (struct objfile *objfile)
3519{
3520 int n_allocated;
3521 int n_comp_units;
3522 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3523 gdb_byte *info_ptr;
3524
3525 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3526 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3527
3528 n_comp_units = 0;
3529 n_allocated = 10;
3530 all_comp_units = xmalloc (n_allocated
3531 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3532
3e43a32a
MS
3533 while (info_ptr < dwarf2_per_objfile->info.buffer
3534 + dwarf2_per_objfile->info.size)
ae038cb0 3535 {
c764a876 3536 unsigned int length, initial_length_size;
ae038cb0 3537 struct dwarf2_per_cu_data *this_cu;
c764a876 3538 unsigned int offset;
ae038cb0 3539
dce234bc 3540 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3541
3542 /* Read just enough information to find out where the next
3543 compilation unit is. */
c764a876
DE
3544 length = read_initial_length (objfile->obfd, info_ptr,
3545 &initial_length_size);
ae038cb0
DJ
3546
3547 /* Save the compilation unit for later lookup. */
3548 this_cu = obstack_alloc (&objfile->objfile_obstack,
3549 sizeof (struct dwarf2_per_cu_data));
3550 memset (this_cu, 0, sizeof (*this_cu));
3551 this_cu->offset = offset;
c764a876 3552 this_cu->length = length + initial_length_size;
9291a0cd 3553 this_cu->objfile = objfile;
ae038cb0
DJ
3554
3555 if (n_comp_units == n_allocated)
3556 {
3557 n_allocated *= 2;
3558 all_comp_units = xrealloc (all_comp_units,
3559 n_allocated
3560 * sizeof (struct dwarf2_per_cu_data *));
3561 }
3562 all_comp_units[n_comp_units++] = this_cu;
3563
3564 info_ptr = info_ptr + this_cu->length;
3565 }
3566
3567 dwarf2_per_objfile->all_comp_units
3568 = obstack_alloc (&objfile->objfile_obstack,
3569 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3570 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3571 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3572 xfree (all_comp_units);
3573 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3574}
3575
5734ee8b
DJ
3576/* Process all loaded DIEs for compilation unit CU, starting at
3577 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3578 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3579 DW_AT_ranges). If NEED_PC is set, then this function will set
3580 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3581 and record the covered ranges in the addrmap. */
c906108c 3582
72bf9492
DJ
3583static void
3584scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3585 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3586{
72bf9492 3587 struct partial_die_info *pdi;
c906108c 3588
91c24f0a
DC
3589 /* Now, march along the PDI's, descending into ones which have
3590 interesting children but skipping the children of the other ones,
3591 until we reach the end of the compilation unit. */
c906108c 3592
72bf9492 3593 pdi = first_die;
91c24f0a 3594
72bf9492
DJ
3595 while (pdi != NULL)
3596 {
3597 fixup_partial_die (pdi, cu);
c906108c 3598
f55ee35c 3599 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3600 children, so we need to look at them. Ditto for anonymous
3601 enums. */
933c6fe4 3602
72bf9492 3603 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3604 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3605 {
72bf9492 3606 switch (pdi->tag)
c906108c
SS
3607 {
3608 case DW_TAG_subprogram:
5734ee8b 3609 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3610 break;
72929c62 3611 case DW_TAG_constant:
c906108c
SS
3612 case DW_TAG_variable:
3613 case DW_TAG_typedef:
91c24f0a 3614 case DW_TAG_union_type:
72bf9492 3615 if (!pdi->is_declaration)
63d06c5c 3616 {
72bf9492 3617 add_partial_symbol (pdi, cu);
63d06c5c
DC
3618 }
3619 break;
c906108c 3620 case DW_TAG_class_type:
680b30c7 3621 case DW_TAG_interface_type:
c906108c 3622 case DW_TAG_structure_type:
72bf9492 3623 if (!pdi->is_declaration)
c906108c 3624 {
72bf9492 3625 add_partial_symbol (pdi, cu);
c906108c
SS
3626 }
3627 break;
91c24f0a 3628 case DW_TAG_enumeration_type:
72bf9492
DJ
3629 if (!pdi->is_declaration)
3630 add_partial_enumeration (pdi, cu);
c906108c
SS
3631 break;
3632 case DW_TAG_base_type:
a02abb62 3633 case DW_TAG_subrange_type:
c906108c 3634 /* File scope base type definitions are added to the partial
c5aa993b 3635 symbol table. */
72bf9492 3636 add_partial_symbol (pdi, cu);
c906108c 3637 break;
d9fa45fe 3638 case DW_TAG_namespace:
5734ee8b 3639 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3640 break;
5d7cb8df
JK
3641 case DW_TAG_module:
3642 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3643 break;
c906108c
SS
3644 default:
3645 break;
3646 }
3647 }
3648
72bf9492
DJ
3649 /* If the die has a sibling, skip to the sibling. */
3650
3651 pdi = pdi->die_sibling;
3652 }
3653}
3654
3655/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3656
72bf9492 3657 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3658 name is concatenated with "::" and the partial DIE's name. For
3659 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3660 Enumerators are an exception; they use the scope of their parent
3661 enumeration type, i.e. the name of the enumeration type is not
3662 prepended to the enumerator.
91c24f0a 3663
72bf9492
DJ
3664 There are two complexities. One is DW_AT_specification; in this
3665 case "parent" means the parent of the target of the specification,
3666 instead of the direct parent of the DIE. The other is compilers
3667 which do not emit DW_TAG_namespace; in this case we try to guess
3668 the fully qualified name of structure types from their members'
3669 linkage names. This must be done using the DIE's children rather
3670 than the children of any DW_AT_specification target. We only need
3671 to do this for structures at the top level, i.e. if the target of
3672 any DW_AT_specification (if any; otherwise the DIE itself) does not
3673 have a parent. */
3674
3675/* Compute the scope prefix associated with PDI's parent, in
3676 compilation unit CU. The result will be allocated on CU's
3677 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3678 field. NULL is returned if no prefix is necessary. */
3679static char *
3680partial_die_parent_scope (struct partial_die_info *pdi,
3681 struct dwarf2_cu *cu)
3682{
3683 char *grandparent_scope;
3684 struct partial_die_info *parent, *real_pdi;
91c24f0a 3685
72bf9492
DJ
3686 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3687 then this means the parent of the specification DIE. */
3688
3689 real_pdi = pdi;
72bf9492 3690 while (real_pdi->has_specification)
10b3939b 3691 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3692
3693 parent = real_pdi->die_parent;
3694 if (parent == NULL)
3695 return NULL;
3696
3697 if (parent->scope_set)
3698 return parent->scope;
3699
3700 fixup_partial_die (parent, cu);
3701
10b3939b 3702 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3703
acebe513
UW
3704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3706 Work around this problem here. */
3707 if (cu->language == language_cplus
6e70227d 3708 && parent->tag == DW_TAG_namespace
acebe513
UW
3709 && strcmp (parent->name, "::") == 0
3710 && grandparent_scope == NULL)
3711 {
3712 parent->scope = NULL;
3713 parent->scope_set = 1;
3714 return NULL;
3715 }
3716
72bf9492 3717 if (parent->tag == DW_TAG_namespace
f55ee35c 3718 || parent->tag == DW_TAG_module
72bf9492
DJ
3719 || parent->tag == DW_TAG_structure_type
3720 || parent->tag == DW_TAG_class_type
680b30c7 3721 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3722 || parent->tag == DW_TAG_union_type
3723 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3724 {
3725 if (grandparent_scope == NULL)
3726 parent->scope = parent->name;
3727 else
3e43a32a
MS
3728 parent->scope = typename_concat (&cu->comp_unit_obstack,
3729 grandparent_scope,
f55ee35c 3730 parent->name, 0, cu);
72bf9492 3731 }
ceeb3d5a 3732 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3733 /* Enumerators should not get the name of the enumeration as a prefix. */
3734 parent->scope = grandparent_scope;
3735 else
3736 {
3737 /* FIXME drow/2004-04-01: What should we be doing with
3738 function-local names? For partial symbols, we should probably be
3739 ignoring them. */
3740 complaint (&symfile_complaints,
e2e0b3e5 3741 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3742 parent->tag, pdi->offset);
3743 parent->scope = grandparent_scope;
c906108c
SS
3744 }
3745
72bf9492
DJ
3746 parent->scope_set = 1;
3747 return parent->scope;
3748}
3749
3750/* Return the fully scoped name associated with PDI, from compilation unit
3751 CU. The result will be allocated with malloc. */
3752static char *
3753partial_die_full_name (struct partial_die_info *pdi,
3754 struct dwarf2_cu *cu)
3755{
3756 char *parent_scope;
3757
98bfdba5
PA
3758 /* If this is a template instantiation, we can not work out the
3759 template arguments from partial DIEs. So, unfortunately, we have
3760 to go through the full DIEs. At least any work we do building
3761 types here will be reused if full symbols are loaded later. */
3762 if (pdi->has_template_arguments)
3763 {
3764 fixup_partial_die (pdi, cu);
3765
3766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3767 {
3768 struct die_info *die;
3769 struct attribute attr;
3770 struct dwarf2_cu *ref_cu = cu;
3771
3772 attr.name = 0;
3773 attr.form = DW_FORM_ref_addr;
3774 attr.u.addr = pdi->offset;
3775 die = follow_die_ref (NULL, &attr, &ref_cu);
3776
3777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3778 }
3779 }
3780
72bf9492
DJ
3781 parent_scope = partial_die_parent_scope (pdi, cu);
3782 if (parent_scope == NULL)
3783 return NULL;
3784 else
f55ee35c 3785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3786}
3787
3788static void
72bf9492 3789add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3790{
e7c27a73 3791 struct objfile *objfile = cu->objfile;
c906108c 3792 CORE_ADDR addr = 0;
decbce07 3793 char *actual_name = NULL;
5c4e30ca 3794 const struct partial_symbol *psym = NULL;
e142c38c 3795 CORE_ADDR baseaddr;
72bf9492 3796 int built_actual_name = 0;
e142c38c
DJ
3797
3798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3799
94af9270
KS
3800 actual_name = partial_die_full_name (pdi, cu);
3801 if (actual_name)
3802 built_actual_name = 1;
63d06c5c 3803
72bf9492
DJ
3804 if (actual_name == NULL)
3805 actual_name = pdi->name;
3806
c906108c
SS
3807 switch (pdi->tag)
3808 {
3809 case DW_TAG_subprogram:
2cfa0c8d 3810 if (pdi->is_external || cu->language == language_ada)
c906108c 3811 {
2cfa0c8d
JB
3812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3813 of the global scope. But in Ada, we want to be able to access
3814 nested procedures globally. So all Ada subprograms are stored
3815 in the global scope. */
38d518c9 3816 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3817 mst_text, objfile); */
38d518c9 3818 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3819 built_actual_name,
5c4e30ca
DC
3820 VAR_DOMAIN, LOC_BLOCK,
3821 &objfile->global_psymbols,
3822 0, pdi->lowpc + baseaddr,
e142c38c 3823 cu->language, objfile);
c906108c
SS
3824 }
3825 else
3826 {
38d518c9 3827 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3828 mst_file_text, objfile); */
38d518c9 3829 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3830 built_actual_name,
5c4e30ca
DC
3831 VAR_DOMAIN, LOC_BLOCK,
3832 &objfile->static_psymbols,
3833 0, pdi->lowpc + baseaddr,
e142c38c 3834 cu->language, objfile);
c906108c
SS
3835 }
3836 break;
72929c62
JB
3837 case DW_TAG_constant:
3838 {
3839 struct psymbol_allocation_list *list;
3840
3841 if (pdi->is_external)
3842 list = &objfile->global_psymbols;
3843 else
3844 list = &objfile->static_psymbols;
3845 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3846 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3847 list, 0, 0, cu->language, objfile);
3848
3849 }
3850 break;
c906108c 3851 case DW_TAG_variable:
caac4577
JG
3852 if (pdi->locdesc)
3853 addr = decode_locdesc (pdi->locdesc, cu);
3854
3855 if (pdi->locdesc
3856 && addr == 0
3857 && !dwarf2_per_objfile->has_section_at_zero)
3858 {
3859 /* A global or static variable may also have been stripped
3860 out by the linker if unused, in which case its address
3861 will be nullified; do not add such variables into partial
3862 symbol table then. */
3863 }
3864 else if (pdi->is_external)
c906108c
SS
3865 {
3866 /* Global Variable.
3867 Don't enter into the minimal symbol tables as there is
3868 a minimal symbol table entry from the ELF symbols already.
3869 Enter into partial symbol table if it has a location
3870 descriptor or a type.
3871 If the location descriptor is missing, new_symbol will create
3872 a LOC_UNRESOLVED symbol, the address of the variable will then
3873 be determined from the minimal symbol table whenever the variable
3874 is referenced.
3875 The address for the partial symbol table entry is not
3876 used by GDB, but it comes in handy for debugging partial symbol
3877 table building. */
3878
c906108c 3879 if (pdi->locdesc || pdi->has_type)
38d518c9 3880 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3881 built_actual_name,
5c4e30ca
DC
3882 VAR_DOMAIN, LOC_STATIC,
3883 &objfile->global_psymbols,
3884 0, addr + baseaddr,
e142c38c 3885 cu->language, objfile);
c906108c
SS
3886 }
3887 else
3888 {
0963b4bd 3889 /* Static Variable. Skip symbols without location descriptors. */
c906108c 3890 if (pdi->locdesc == NULL)
decbce07
MS
3891 {
3892 if (built_actual_name)
3893 xfree (actual_name);
3894 return;
3895 }
38d518c9 3896 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3897 mst_file_data, objfile); */
38d518c9 3898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3899 built_actual_name,
5c4e30ca
DC
3900 VAR_DOMAIN, LOC_STATIC,
3901 &objfile->static_psymbols,
3902 0, addr + baseaddr,
e142c38c 3903 cu->language, objfile);
c906108c
SS
3904 }
3905 break;
3906 case DW_TAG_typedef:
3907 case DW_TAG_base_type:
a02abb62 3908 case DW_TAG_subrange_type:
38d518c9 3909 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3910 built_actual_name,
176620f1 3911 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3912 &objfile->static_psymbols,
e142c38c 3913 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3914 break;
72bf9492
DJ
3915 case DW_TAG_namespace:
3916 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3917 built_actual_name,
72bf9492
DJ
3918 VAR_DOMAIN, LOC_TYPEDEF,
3919 &objfile->global_psymbols,
3920 0, (CORE_ADDR) 0, cu->language, objfile);
3921 break;
c906108c 3922 case DW_TAG_class_type:
680b30c7 3923 case DW_TAG_interface_type:
c906108c
SS
3924 case DW_TAG_structure_type:
3925 case DW_TAG_union_type:
3926 case DW_TAG_enumeration_type:
fa4028e9
JB
3927 /* Skip external references. The DWARF standard says in the section
3928 about "Structure, Union, and Class Type Entries": "An incomplete
3929 structure, union or class type is represented by a structure,
3930 union or class entry that does not have a byte size attribute
3931 and that has a DW_AT_declaration attribute." */
3932 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3933 {
3934 if (built_actual_name)
3935 xfree (actual_name);
3936 return;
3937 }
fa4028e9 3938
63d06c5c
DC
3939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3940 static vs. global. */
38d518c9 3941 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3942 built_actual_name,
176620f1 3943 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3944 (cu->language == language_cplus
3945 || cu->language == language_java)
63d06c5c
DC
3946 ? &objfile->global_psymbols
3947 : &objfile->static_psymbols,
e142c38c 3948 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3949
c906108c
SS
3950 break;
3951 case DW_TAG_enumerator:
38d518c9 3952 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3953 built_actual_name,
176620f1 3954 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3955 (cu->language == language_cplus
3956 || cu->language == language_java)
f6fe98ef
DJ
3957 ? &objfile->global_psymbols
3958 : &objfile->static_psymbols,
e142c38c 3959 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3960 break;
3961 default:
3962 break;
3963 }
5c4e30ca 3964
72bf9492
DJ
3965 if (built_actual_name)
3966 xfree (actual_name);
c906108c
SS
3967}
3968
5c4e30ca
DC
3969/* Read a partial die corresponding to a namespace; also, add a symbol
3970 corresponding to that namespace to the symbol table. NAMESPACE is
3971 the name of the enclosing namespace. */
91c24f0a 3972
72bf9492
DJ
3973static void
3974add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 3975 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 3976 int need_pc, struct dwarf2_cu *cu)
91c24f0a 3977{
72bf9492 3978 /* Add a symbol for the namespace. */
e7c27a73 3979
72bf9492 3980 add_partial_symbol (pdi, cu);
5c4e30ca
DC
3981
3982 /* Now scan partial symbols in that namespace. */
3983
91c24f0a 3984 if (pdi->has_children)
5734ee8b 3985 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
3986}
3987
5d7cb8df
JK
3988/* Read a partial die corresponding to a Fortran module. */
3989
3990static void
3991add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3992 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3993{
f55ee35c 3994 /* Now scan partial symbols in that module. */
5d7cb8df
JK
3995
3996 if (pdi->has_children)
3997 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3998}
3999
bc30ff58
JB
4000/* Read a partial die corresponding to a subprogram and create a partial
4001 symbol for that subprogram. When the CU language allows it, this
4002 routine also defines a partial symbol for each nested subprogram
4003 that this subprogram contains.
6e70227d 4004
bc30ff58
JB
4005 DIE my also be a lexical block, in which case we simply search
4006 recursively for suprograms defined inside that lexical block.
4007 Again, this is only performed when the CU language allows this
4008 type of definitions. */
4009
4010static void
4011add_partial_subprogram (struct partial_die_info *pdi,
4012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4013 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4014{
4015 if (pdi->tag == DW_TAG_subprogram)
4016 {
4017 if (pdi->has_pc_info)
4018 {
4019 if (pdi->lowpc < *lowpc)
4020 *lowpc = pdi->lowpc;
4021 if (pdi->highpc > *highpc)
4022 *highpc = pdi->highpc;
5734ee8b
DJ
4023 if (need_pc)
4024 {
4025 CORE_ADDR baseaddr;
4026 struct objfile *objfile = cu->objfile;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets,
4029 SECT_OFF_TEXT (objfile));
4030 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4031 pdi->lowpc + baseaddr,
4032 pdi->highpc - 1 + baseaddr,
9291a0cd 4033 cu->per_cu->v.psymtab);
5734ee8b 4034 }
bc30ff58 4035 if (!pdi->is_declaration)
e8d05480
JB
4036 /* Ignore subprogram DIEs that do not have a name, they are
4037 illegal. Do not emit a complaint at this point, we will
4038 do so when we convert this psymtab into a symtab. */
4039 if (pdi->name)
4040 add_partial_symbol (pdi, cu);
bc30ff58
JB
4041 }
4042 }
6e70227d 4043
bc30ff58
JB
4044 if (! pdi->has_children)
4045 return;
4046
4047 if (cu->language == language_ada)
4048 {
4049 pdi = pdi->die_child;
4050 while (pdi != NULL)
4051 {
4052 fixup_partial_die (pdi, cu);
4053 if (pdi->tag == DW_TAG_subprogram
4054 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4055 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4056 pdi = pdi->die_sibling;
4057 }
4058 }
4059}
4060
91c24f0a
DC
4061/* Read a partial die corresponding to an enumeration type. */
4062
72bf9492
DJ
4063static void
4064add_partial_enumeration (struct partial_die_info *enum_pdi,
4065 struct dwarf2_cu *cu)
91c24f0a 4066{
72bf9492 4067 struct partial_die_info *pdi;
91c24f0a
DC
4068
4069 if (enum_pdi->name != NULL)
72bf9492
DJ
4070 add_partial_symbol (enum_pdi, cu);
4071
4072 pdi = enum_pdi->die_child;
4073 while (pdi)
91c24f0a 4074 {
72bf9492 4075 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4076 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4077 else
72bf9492
DJ
4078 add_partial_symbol (pdi, cu);
4079 pdi = pdi->die_sibling;
91c24f0a 4080 }
91c24f0a
DC
4081}
4082
4bb7a0a7
DJ
4083/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4084 Return the corresponding abbrev, or NULL if the number is zero (indicating
4085 an empty DIE). In either case *BYTES_READ will be set to the length of
4086 the initial number. */
4087
4088static struct abbrev_info *
fe1b8b76 4089peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4090 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4091{
4092 bfd *abfd = cu->objfile->obfd;
4093 unsigned int abbrev_number;
4094 struct abbrev_info *abbrev;
4095
4096 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4097
4098 if (abbrev_number == 0)
4099 return NULL;
4100
4101 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4102 if (!abbrev)
4103 {
3e43a32a
MS
4104 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4105 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4106 }
4107
4108 return abbrev;
4109}
4110
93311388
DE
4111/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4112 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4113 DIE. Any children of the skipped DIEs will also be skipped. */
4114
fe1b8b76 4115static gdb_byte *
93311388 4116skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4117{
4118 struct abbrev_info *abbrev;
4119 unsigned int bytes_read;
4120
4121 while (1)
4122 {
4123 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4124 if (abbrev == NULL)
4125 return info_ptr + bytes_read;
4126 else
93311388 4127 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4128 }
4129}
4130
93311388
DE
4131/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4132 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4133 abbrev corresponding to that skipped uleb128 should be passed in
4134 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4135 children. */
4136
fe1b8b76 4137static gdb_byte *
93311388
DE
4138skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4139 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4140{
4141 unsigned int bytes_read;
4142 struct attribute attr;
4143 bfd *abfd = cu->objfile->obfd;
4144 unsigned int form, i;
4145
4146 for (i = 0; i < abbrev->num_attrs; i++)
4147 {
4148 /* The only abbrev we care about is DW_AT_sibling. */
4149 if (abbrev->attrs[i].name == DW_AT_sibling)
4150 {
4151 read_attribute (&attr, &abbrev->attrs[i],
4152 abfd, info_ptr, cu);
4153 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4154 complaint (&symfile_complaints,
4155 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4156 else
93311388 4157 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4158 }
4159
4160 /* If it isn't DW_AT_sibling, skip this attribute. */
4161 form = abbrev->attrs[i].form;
4162 skip_attribute:
4163 switch (form)
4164 {
4bb7a0a7 4165 case DW_FORM_ref_addr:
ae411497
TT
4166 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4167 and later it is offset sized. */
4168 if (cu->header.version == 2)
4169 info_ptr += cu->header.addr_size;
4170 else
4171 info_ptr += cu->header.offset_size;
4172 break;
4173 case DW_FORM_addr:
4bb7a0a7
DJ
4174 info_ptr += cu->header.addr_size;
4175 break;
4176 case DW_FORM_data1:
4177 case DW_FORM_ref1:
4178 case DW_FORM_flag:
4179 info_ptr += 1;
4180 break;
2dc7f7b3
TT
4181 case DW_FORM_flag_present:
4182 break;
4bb7a0a7
DJ
4183 case DW_FORM_data2:
4184 case DW_FORM_ref2:
4185 info_ptr += 2;
4186 break;
4187 case DW_FORM_data4:
4188 case DW_FORM_ref4:
4189 info_ptr += 4;
4190 break;
4191 case DW_FORM_data8:
4192 case DW_FORM_ref8:
348e048f 4193 case DW_FORM_sig8:
4bb7a0a7
DJ
4194 info_ptr += 8;
4195 break;
4196 case DW_FORM_string:
9b1c24c8 4197 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4198 info_ptr += bytes_read;
4199 break;
2dc7f7b3 4200 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4201 case DW_FORM_strp:
4202 info_ptr += cu->header.offset_size;
4203 break;
2dc7f7b3 4204 case DW_FORM_exprloc:
4bb7a0a7
DJ
4205 case DW_FORM_block:
4206 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4207 info_ptr += bytes_read;
4208 break;
4209 case DW_FORM_block1:
4210 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4211 break;
4212 case DW_FORM_block2:
4213 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4214 break;
4215 case DW_FORM_block4:
4216 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4217 break;
4218 case DW_FORM_sdata:
4219 case DW_FORM_udata:
4220 case DW_FORM_ref_udata:
4221 info_ptr = skip_leb128 (abfd, info_ptr);
4222 break;
4223 case DW_FORM_indirect:
4224 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 /* We need to continue parsing from here, so just go back to
4227 the top. */
4228 goto skip_attribute;
4229
4230 default:
3e43a32a
MS
4231 error (_("Dwarf Error: Cannot handle %s "
4232 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4233 dwarf_form_name (form),
4234 bfd_get_filename (abfd));
4235 }
4236 }
4237
4238 if (abbrev->has_children)
93311388 4239 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4240 else
4241 return info_ptr;
4242}
4243
93311388
DE
4244/* Locate ORIG_PDI's sibling.
4245 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4246 in BUFFER. */
91c24f0a 4247
fe1b8b76 4248static gdb_byte *
93311388
DE
4249locate_pdi_sibling (struct partial_die_info *orig_pdi,
4250 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4251 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4252{
4253 /* Do we know the sibling already? */
72bf9492 4254
91c24f0a
DC
4255 if (orig_pdi->sibling)
4256 return orig_pdi->sibling;
4257
4258 /* Are there any children to deal with? */
4259
4260 if (!orig_pdi->has_children)
4261 return info_ptr;
4262
4bb7a0a7 4263 /* Skip the children the long way. */
91c24f0a 4264
93311388 4265 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4266}
4267
c906108c
SS
4268/* Expand this partial symbol table into a full symbol table. */
4269
4270static void
fba45db2 4271dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4272{
c906108c
SS
4273 if (pst != NULL)
4274 {
4275 if (pst->readin)
4276 {
3e43a32a
MS
4277 warning (_("bug: psymtab for %s is already read in."),
4278 pst->filename);
c906108c
SS
4279 }
4280 else
4281 {
4282 if (info_verbose)
4283 {
3e43a32a
MS
4284 printf_filtered (_("Reading in symbols for %s..."),
4285 pst->filename);
c906108c
SS
4286 gdb_flush (gdb_stdout);
4287 }
4288
10b3939b
DJ
4289 /* Restore our global data. */
4290 dwarf2_per_objfile = objfile_data (pst->objfile,
4291 dwarf2_objfile_data_key);
4292
b2ab525c
KB
4293 /* If this psymtab is constructed from a debug-only objfile, the
4294 has_section_at_zero flag will not necessarily be correct. We
4295 can get the correct value for this flag by looking at the data
4296 associated with the (presumably stripped) associated objfile. */
4297 if (pst->objfile->separate_debug_objfile_backlink)
4298 {
4299 struct dwarf2_per_objfile *dpo_backlink
4300 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4301 dwarf2_objfile_data_key);
9a619af0 4302
b2ab525c
KB
4303 dwarf2_per_objfile->has_section_at_zero
4304 = dpo_backlink->has_section_at_zero;
4305 }
4306
98bfdba5
PA
4307 dwarf2_per_objfile->reading_partial_symbols = 0;
4308
c906108c
SS
4309 psymtab_to_symtab_1 (pst);
4310
4311 /* Finish up the debug error message. */
4312 if (info_verbose)
a3f17187 4313 printf_filtered (_("done.\n"));
c906108c
SS
4314 }
4315 }
4316}
4317
10b3939b
DJ
4318/* Add PER_CU to the queue. */
4319
4320static void
03dd20cc 4321queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4322{
4323 struct dwarf2_queue_item *item;
4324
4325 per_cu->queued = 1;
4326 item = xmalloc (sizeof (*item));
4327 item->per_cu = per_cu;
4328 item->next = NULL;
4329
4330 if (dwarf2_queue == NULL)
4331 dwarf2_queue = item;
4332 else
4333 dwarf2_queue_tail->next = item;
4334
4335 dwarf2_queue_tail = item;
4336}
4337
4338/* Process the queue. */
4339
4340static void
4341process_queue (struct objfile *objfile)
4342{
4343 struct dwarf2_queue_item *item, *next_item;
4344
03dd20cc
DJ
4345 /* The queue starts out with one item, but following a DIE reference
4346 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4347 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4348 {
9291a0cd
TT
4349 if (dwarf2_per_objfile->using_index
4350 ? !item->per_cu->v.quick->symtab
4351 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4352 process_full_comp_unit (item->per_cu);
4353
4354 item->per_cu->queued = 0;
4355 next_item = item->next;
4356 xfree (item);
4357 }
4358
4359 dwarf2_queue_tail = NULL;
4360}
4361
4362/* Free all allocated queue entries. This function only releases anything if
4363 an error was thrown; if the queue was processed then it would have been
4364 freed as we went along. */
4365
4366static void
4367dwarf2_release_queue (void *dummy)
4368{
4369 struct dwarf2_queue_item *item, *last;
4370
4371 item = dwarf2_queue;
4372 while (item)
4373 {
4374 /* Anything still marked queued is likely to be in an
4375 inconsistent state, so discard it. */
4376 if (item->per_cu->queued)
4377 {
4378 if (item->per_cu->cu != NULL)
4379 free_one_cached_comp_unit (item->per_cu->cu);
4380 item->per_cu->queued = 0;
4381 }
4382
4383 last = item;
4384 item = item->next;
4385 xfree (last);
4386 }
4387
4388 dwarf2_queue = dwarf2_queue_tail = NULL;
4389}
4390
4391/* Read in full symbols for PST, and anything it depends on. */
4392
c906108c 4393static void
fba45db2 4394psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4395{
10b3939b 4396 struct dwarf2_per_cu_data *per_cu;
c906108c 4397 struct cleanup *back_to;
aaa75496
JB
4398 int i;
4399
4400 for (i = 0; i < pst->number_of_dependencies; i++)
4401 if (!pst->dependencies[i]->readin)
4402 {
4403 /* Inform about additional files that need to be read in. */
4404 if (info_verbose)
4405 {
a3f17187 4406 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4407 fputs_filtered (" ", gdb_stdout);
4408 wrap_here ("");
4409 fputs_filtered ("and ", gdb_stdout);
4410 wrap_here ("");
4411 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 4412 wrap_here (""); /* Flush output. */
aaa75496
JB
4413 gdb_flush (gdb_stdout);
4414 }
4415 psymtab_to_symtab_1 (pst->dependencies[i]);
4416 }
4417
e38df1d0 4418 per_cu = pst->read_symtab_private;
10b3939b
DJ
4419
4420 if (per_cu == NULL)
aaa75496
JB
4421 {
4422 /* It's an include file, no symbols to read for it.
4423 Everything is in the parent symtab. */
4424 pst->readin = 1;
4425 return;
4426 }
c906108c 4427
9291a0cd 4428 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4429}
4430
93311388 4431/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4432
93311388 4433static void
3e43a32a
MS
4434load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4435 struct objfile *objfile)
10b3939b 4436{
31ffec48 4437 bfd *abfd = objfile->obfd;
10b3939b 4438 struct dwarf2_cu *cu;
c764a876 4439 unsigned int offset;
93311388 4440 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4441 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4442 struct attribute *attr;
98bfdba5 4443 int read_cu = 0;
6502dd73 4444
348e048f
DE
4445 gdb_assert (! per_cu->from_debug_types);
4446
c906108c 4447 /* Set local variables from the partial symbol table info. */
10b3939b 4448 offset = per_cu->offset;
6502dd73 4449
be391dca 4450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4451 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4452 beg_of_comp_unit = info_ptr;
63d06c5c 4453
98bfdba5
PA
4454 if (per_cu->cu == NULL)
4455 {
9816fde3
JK
4456 cu = xmalloc (sizeof (*cu));
4457 init_one_comp_unit (cu, objfile);
98bfdba5
PA
4458
4459 read_cu = 1;
c906108c 4460
98bfdba5
PA
4461 /* If an error occurs while loading, release our storage. */
4462 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4463
98bfdba5
PA
4464 /* Read in the comp_unit header. */
4465 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4466
98bfdba5
PA
4467 /* Complete the cu_header. */
4468 cu->header.offset = offset;
4469 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4470
98bfdba5
PA
4471 /* Read the abbrevs for this compilation unit. */
4472 dwarf2_read_abbrevs (abfd, cu);
4473 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4474
98bfdba5
PA
4475 /* Link this compilation unit into the compilation unit tree. */
4476 per_cu->cu = cu;
4477 cu->per_cu = per_cu;
98bfdba5
PA
4478
4479 /* Link this CU into read_in_chain. */
4480 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4481 dwarf2_per_objfile->read_in_chain = per_cu;
4482 }
4483 else
4484 {
4485 cu = per_cu->cu;
4486 info_ptr += cu->header.first_die_offset;
4487 }
e142c38c 4488
93311388 4489 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4490
4491 /* We try not to read any attributes in this function, because not
4492 all objfiles needed for references have been loaded yet, and symbol
4493 table processing isn't initialized. But we have to set the CU language,
4494 or we won't be able to build types correctly. */
9816fde3 4495 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4496
a6c727b2
DJ
4497 /* Similarly, if we do not read the producer, we can not apply
4498 producer-specific interpretation. */
4499 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4500 if (attr)
4501 cu->producer = DW_STRING (attr);
4502
98bfdba5
PA
4503 if (read_cu)
4504 {
4505 do_cleanups (free_abbrevs_cleanup);
e142c38c 4506
98bfdba5
PA
4507 /* We've successfully allocated this compilation unit. Let our
4508 caller clean it up when finished with it. */
4509 discard_cleanups (free_cu_cleanup);
4510 }
10b3939b
DJ
4511}
4512
3da10d80
KS
4513/* Add a DIE to the delayed physname list. */
4514
4515static void
4516add_to_method_list (struct type *type, int fnfield_index, int index,
4517 const char *name, struct die_info *die,
4518 struct dwarf2_cu *cu)
4519{
4520 struct delayed_method_info mi;
4521 mi.type = type;
4522 mi.fnfield_index = fnfield_index;
4523 mi.index = index;
4524 mi.name = name;
4525 mi.die = die;
4526 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4527}
4528
4529/* A cleanup for freeing the delayed method list. */
4530
4531static void
4532free_delayed_list (void *ptr)
4533{
4534 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4535 if (cu->method_list != NULL)
4536 {
4537 VEC_free (delayed_method_info, cu->method_list);
4538 cu->method_list = NULL;
4539 }
4540}
4541
4542/* Compute the physnames of any methods on the CU's method list.
4543
4544 The computation of method physnames is delayed in order to avoid the
4545 (bad) condition that one of the method's formal parameters is of an as yet
4546 incomplete type. */
4547
4548static void
4549compute_delayed_physnames (struct dwarf2_cu *cu)
4550{
4551 int i;
4552 struct delayed_method_info *mi;
4553 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4554 {
4555 char *physname;
4556 struct fn_fieldlist *fn_flp
4557 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4558 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4559 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4560 }
4561}
4562
10b3939b
DJ
4563/* Generate full symbol information for PST and CU, whose DIEs have
4564 already been loaded into memory. */
4565
4566static void
4567process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4568{
10b3939b 4569 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4570 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4571 CORE_ADDR lowpc, highpc;
4572 struct symtab *symtab;
3da10d80 4573 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4574 CORE_ADDR baseaddr;
4575
4576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4577
10b3939b
DJ
4578 buildsym_init ();
4579 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4580 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4581
4582 cu->list_in_scope = &file_symbols;
c906108c 4583
d85a05f0 4584 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4585
c906108c 4586 /* Do line number decoding in read_file_scope () */
10b3939b 4587 process_die (cu->dies, cu);
c906108c 4588
3da10d80
KS
4589 /* Now that we have processed all the DIEs in the CU, all the types
4590 should be complete, and it should now be safe to compute all of the
4591 physnames. */
4592 compute_delayed_physnames (cu);
4593 do_cleanups (delayed_list_cleanup);
4594
fae299cd
DC
4595 /* Some compilers don't define a DW_AT_high_pc attribute for the
4596 compilation unit. If the DW_AT_high_pc is missing, synthesize
4597 it, by scanning the DIE's below the compilation unit. */
10b3939b 4598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4599
613e1657 4600 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4601
4602 /* Set symtab language to language from DW_AT_language.
4603 If the compilation is from a C file generated by language preprocessors,
4604 do not set the language if it was already deduced by start_subfile. */
4605 if (symtab != NULL
10b3939b 4606 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4607 {
10b3939b 4608 symtab->language = cu->language;
c906108c 4609 }
9291a0cd
TT
4610
4611 if (dwarf2_per_objfile->using_index)
4612 per_cu->v.quick->symtab = symtab;
4613 else
4614 {
4615 struct partial_symtab *pst = per_cu->v.psymtab;
4616 pst->symtab = symtab;
4617 pst->readin = 1;
4618 }
c906108c
SS
4619
4620 do_cleanups (back_to);
4621}
4622
4623/* Process a die and its children. */
4624
4625static void
e7c27a73 4626process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4627{
4628 switch (die->tag)
4629 {
4630 case DW_TAG_padding:
4631 break;
4632 case DW_TAG_compile_unit:
e7c27a73 4633 read_file_scope (die, cu);
c906108c 4634 break;
348e048f
DE
4635 case DW_TAG_type_unit:
4636 read_type_unit_scope (die, cu);
4637 break;
c906108c 4638 case DW_TAG_subprogram:
c906108c 4639 case DW_TAG_inlined_subroutine:
edb3359d 4640 read_func_scope (die, cu);
c906108c
SS
4641 break;
4642 case DW_TAG_lexical_block:
14898363
L
4643 case DW_TAG_try_block:
4644 case DW_TAG_catch_block:
e7c27a73 4645 read_lexical_block_scope (die, cu);
c906108c
SS
4646 break;
4647 case DW_TAG_class_type:
680b30c7 4648 case DW_TAG_interface_type:
c906108c
SS
4649 case DW_TAG_structure_type:
4650 case DW_TAG_union_type:
134d01f1 4651 process_structure_scope (die, cu);
c906108c
SS
4652 break;
4653 case DW_TAG_enumeration_type:
134d01f1 4654 process_enumeration_scope (die, cu);
c906108c 4655 break;
134d01f1 4656
f792889a
DJ
4657 /* These dies have a type, but processing them does not create
4658 a symbol or recurse to process the children. Therefore we can
4659 read them on-demand through read_type_die. */
c906108c 4660 case DW_TAG_subroutine_type:
72019c9c 4661 case DW_TAG_set_type:
c906108c 4662 case DW_TAG_array_type:
c906108c 4663 case DW_TAG_pointer_type:
c906108c 4664 case DW_TAG_ptr_to_member_type:
c906108c 4665 case DW_TAG_reference_type:
c906108c 4666 case DW_TAG_string_type:
c906108c 4667 break;
134d01f1 4668
c906108c 4669 case DW_TAG_base_type:
a02abb62 4670 case DW_TAG_subrange_type:
cb249c71 4671 case DW_TAG_typedef:
134d01f1
DJ
4672 /* Add a typedef symbol for the type definition, if it has a
4673 DW_AT_name. */
f792889a 4674 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4675 break;
c906108c 4676 case DW_TAG_common_block:
e7c27a73 4677 read_common_block (die, cu);
c906108c
SS
4678 break;
4679 case DW_TAG_common_inclusion:
4680 break;
d9fa45fe 4681 case DW_TAG_namespace:
63d06c5c 4682 processing_has_namespace_info = 1;
e7c27a73 4683 read_namespace (die, cu);
d9fa45fe 4684 break;
5d7cb8df 4685 case DW_TAG_module:
f55ee35c 4686 processing_has_namespace_info = 1;
5d7cb8df
JK
4687 read_module (die, cu);
4688 break;
d9fa45fe
DC
4689 case DW_TAG_imported_declaration:
4690 case DW_TAG_imported_module:
63d06c5c 4691 processing_has_namespace_info = 1;
27aa8d6a
SW
4692 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4693 || cu->language != language_fortran))
4694 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4695 dwarf_tag_name (die->tag));
4696 read_import_statement (die, cu);
d9fa45fe 4697 break;
c906108c 4698 default:
e7c27a73 4699 new_symbol (die, NULL, cu);
c906108c
SS
4700 break;
4701 }
4702}
4703
94af9270
KS
4704/* A helper function for dwarf2_compute_name which determines whether DIE
4705 needs to have the name of the scope prepended to the name listed in the
4706 die. */
4707
4708static int
4709die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4710{
1c809c68
TT
4711 struct attribute *attr;
4712
94af9270
KS
4713 switch (die->tag)
4714 {
4715 case DW_TAG_namespace:
4716 case DW_TAG_typedef:
4717 case DW_TAG_class_type:
4718 case DW_TAG_interface_type:
4719 case DW_TAG_structure_type:
4720 case DW_TAG_union_type:
4721 case DW_TAG_enumeration_type:
4722 case DW_TAG_enumerator:
4723 case DW_TAG_subprogram:
4724 case DW_TAG_member:
4725 return 1;
4726
4727 case DW_TAG_variable:
c2b0a229 4728 case DW_TAG_constant:
94af9270
KS
4729 /* We only need to prefix "globally" visible variables. These include
4730 any variable marked with DW_AT_external or any variable that
4731 lives in a namespace. [Variables in anonymous namespaces
4732 require prefixing, but they are not DW_AT_external.] */
4733
4734 if (dwarf2_attr (die, DW_AT_specification, cu))
4735 {
4736 struct dwarf2_cu *spec_cu = cu;
9a619af0 4737
94af9270
KS
4738 return die_needs_namespace (die_specification (die, &spec_cu),
4739 spec_cu);
4740 }
4741
1c809c68 4742 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4743 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4744 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4745 return 0;
4746 /* A variable in a lexical block of some kind does not need a
4747 namespace, even though in C++ such variables may be external
4748 and have a mangled name. */
4749 if (die->parent->tag == DW_TAG_lexical_block
4750 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4751 || die->parent->tag == DW_TAG_catch_block
4752 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4753 return 0;
4754 return 1;
94af9270
KS
4755
4756 default:
4757 return 0;
4758 }
4759}
4760
98bfdba5
PA
4761/* Retrieve the last character from a mem_file. */
4762
4763static void
4764do_ui_file_peek_last (void *object, const char *buffer, long length)
4765{
4766 char *last_char_p = (char *) object;
4767
4768 if (length > 0)
4769 *last_char_p = buffer[length - 1];
4770}
4771
94af9270
KS
4772/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4773 compute the physname for the object, which include a method's
4774 formal parameters (C++/Java) and return type (Java).
4775
af6b7be1
JB
4776 For Ada, return the DIE's linkage name rather than the fully qualified
4777 name. PHYSNAME is ignored..
4778
94af9270
KS
4779 The result is allocated on the objfile_obstack and canonicalized. */
4780
4781static const char *
4782dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4783 int physname)
4784{
4785 if (name == NULL)
4786 name = dwarf2_name (die, cu);
4787
f55ee35c
JK
4788 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4789 compute it by typename_concat inside GDB. */
4790 if (cu->language == language_ada
4791 || (cu->language == language_fortran && physname))
4792 {
4793 /* For Ada unit, we prefer the linkage name over the name, as
4794 the former contains the exported name, which the user expects
4795 to be able to reference. Ideally, we want the user to be able
4796 to reference this entity using either natural or linkage name,
4797 but we haven't started looking at this enhancement yet. */
4798 struct attribute *attr;
4799
4800 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4801 if (attr == NULL)
4802 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4803 if (attr && DW_STRING (attr))
4804 return DW_STRING (attr);
4805 }
4806
94af9270
KS
4807 /* These are the only languages we know how to qualify names in. */
4808 if (name != NULL
f55ee35c
JK
4809 && (cu->language == language_cplus || cu->language == language_java
4810 || cu->language == language_fortran))
94af9270
KS
4811 {
4812 if (die_needs_namespace (die, cu))
4813 {
4814 long length;
4815 char *prefix;
4816 struct ui_file *buf;
4817
4818 prefix = determine_prefix (die, cu);
4819 buf = mem_fileopen ();
4820 if (*prefix != '\0')
4821 {
f55ee35c
JK
4822 char *prefixed_name = typename_concat (NULL, prefix, name,
4823 physname, cu);
9a619af0 4824
94af9270
KS
4825 fputs_unfiltered (prefixed_name, buf);
4826 xfree (prefixed_name);
4827 }
4828 else
4829 fputs_unfiltered (name ? name : "", buf);
4830
98bfdba5
PA
4831 /* Template parameters may be specified in the DIE's DW_AT_name, or
4832 as children with DW_TAG_template_type_param or
4833 DW_TAG_value_type_param. If the latter, add them to the name
4834 here. If the name already has template parameters, then
4835 skip this step; some versions of GCC emit both, and
4836 it is more efficient to use the pre-computed name.
4837
4838 Something to keep in mind about this process: it is very
4839 unlikely, or in some cases downright impossible, to produce
4840 something that will match the mangled name of a function.
4841 If the definition of the function has the same debug info,
4842 we should be able to match up with it anyway. But fallbacks
4843 using the minimal symbol, for instance to find a method
4844 implemented in a stripped copy of libstdc++, will not work.
4845 If we do not have debug info for the definition, we will have to
4846 match them up some other way.
4847
4848 When we do name matching there is a related problem with function
4849 templates; two instantiated function templates are allowed to
4850 differ only by their return types, which we do not add here. */
4851
4852 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4853 {
4854 struct attribute *attr;
4855 struct die_info *child;
4856 int first = 1;
4857
4858 die->building_fullname = 1;
4859
4860 for (child = die->child; child != NULL; child = child->sibling)
4861 {
4862 struct type *type;
4863 long value;
4864 gdb_byte *bytes;
4865 struct dwarf2_locexpr_baton *baton;
4866 struct value *v;
4867
4868 if (child->tag != DW_TAG_template_type_param
4869 && child->tag != DW_TAG_template_value_param)
4870 continue;
4871
4872 if (first)
4873 {
4874 fputs_unfiltered ("<", buf);
4875 first = 0;
4876 }
4877 else
4878 fputs_unfiltered (", ", buf);
4879
4880 attr = dwarf2_attr (child, DW_AT_type, cu);
4881 if (attr == NULL)
4882 {
4883 complaint (&symfile_complaints,
4884 _("template parameter missing DW_AT_type"));
4885 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4886 continue;
4887 }
4888 type = die_type (child, cu);
4889
4890 if (child->tag == DW_TAG_template_type_param)
4891 {
4892 c_print_type (type, "", buf, -1, 0);
4893 continue;
4894 }
4895
4896 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4897 if (attr == NULL)
4898 {
4899 complaint (&symfile_complaints,
3e43a32a
MS
4900 _("template parameter missing "
4901 "DW_AT_const_value"));
98bfdba5
PA
4902 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4903 continue;
4904 }
4905
4906 dwarf2_const_value_attr (attr, type, name,
4907 &cu->comp_unit_obstack, cu,
4908 &value, &bytes, &baton);
4909
4910 if (TYPE_NOSIGN (type))
4911 /* GDB prints characters as NUMBER 'CHAR'. If that's
4912 changed, this can use value_print instead. */
4913 c_printchar (value, type, buf);
4914 else
4915 {
4916 struct value_print_options opts;
4917
4918 if (baton != NULL)
4919 v = dwarf2_evaluate_loc_desc (type, NULL,
4920 baton->data,
4921 baton->size,
4922 baton->per_cu);
4923 else if (bytes != NULL)
4924 {
4925 v = allocate_value (type);
4926 memcpy (value_contents_writeable (v), bytes,
4927 TYPE_LENGTH (type));
4928 }
4929 else
4930 v = value_from_longest (type, value);
4931
3e43a32a
MS
4932 /* Specify decimal so that we do not depend on
4933 the radix. */
98bfdba5
PA
4934 get_formatted_print_options (&opts, 'd');
4935 opts.raw = 1;
4936 value_print (v, buf, &opts);
4937 release_value (v);
4938 value_free (v);
4939 }
4940 }
4941
4942 die->building_fullname = 0;
4943
4944 if (!first)
4945 {
4946 /* Close the argument list, with a space if necessary
4947 (nested templates). */
4948 char last_char = '\0';
4949 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4950 if (last_char == '>')
4951 fputs_unfiltered (" >", buf);
4952 else
4953 fputs_unfiltered (">", buf);
4954 }
4955 }
4956
94af9270
KS
4957 /* For Java and C++ methods, append formal parameter type
4958 information, if PHYSNAME. */
6e70227d 4959
94af9270
KS
4960 if (physname && die->tag == DW_TAG_subprogram
4961 && (cu->language == language_cplus
4962 || cu->language == language_java))
4963 {
4964 struct type *type = read_type_die (die, cu);
4965
4966 c_type_print_args (type, buf, 0, cu->language);
4967
4968 if (cu->language == language_java)
4969 {
4970 /* For java, we must append the return type to method
0963b4bd 4971 names. */
94af9270
KS
4972 if (die->tag == DW_TAG_subprogram)
4973 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4974 0, 0);
4975 }
4976 else if (cu->language == language_cplus)
4977 {
60430eff
DJ
4978 /* Assume that an artificial first parameter is
4979 "this", but do not crash if it is not. RealView
4980 marks unnamed (and thus unused) parameters as
4981 artificial; there is no way to differentiate
4982 the two cases. */
94af9270
KS
4983 if (TYPE_NFIELDS (type) > 0
4984 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 4985 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
4986 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
4987 0))))
94af9270
KS
4988 fputs_unfiltered (" const", buf);
4989 }
4990 }
4991
4992 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4993 &length);
4994 ui_file_delete (buf);
4995
4996 if (cu->language == language_cplus)
4997 {
4998 char *cname
4999 = dwarf2_canonicalize_name (name, cu,
5000 &cu->objfile->objfile_obstack);
9a619af0 5001
94af9270
KS
5002 if (cname != NULL)
5003 name = cname;
5004 }
5005 }
5006 }
5007
5008 return name;
5009}
5010
0114d602
DJ
5011/* Return the fully qualified name of DIE, based on its DW_AT_name.
5012 If scope qualifiers are appropriate they will be added. The result
5013 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5014 not have a name. NAME may either be from a previous call to
5015 dwarf2_name or NULL.
5016
0963b4bd 5017 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5018
5019static const char *
94af9270 5020dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5021{
94af9270
KS
5022 return dwarf2_compute_name (name, die, cu, 0);
5023}
0114d602 5024
94af9270
KS
5025/* Construct a physname for the given DIE in CU. NAME may either be
5026 from a previous call to dwarf2_name or NULL. The result will be
5027 allocated on the objfile_objstack or NULL if the DIE does not have a
5028 name.
0114d602 5029
94af9270 5030 The output string will be canonicalized (if C++/Java). */
0114d602 5031
94af9270
KS
5032static const char *
5033dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5034{
5035 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
5036}
5037
27aa8d6a
SW
5038/* Read the import statement specified by the given die and record it. */
5039
5040static void
5041read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5042{
5043 struct attribute *import_attr;
5044 struct die_info *imported_die;
de4affc9 5045 struct dwarf2_cu *imported_cu;
27aa8d6a 5046 const char *imported_name;
794684b6 5047 const char *imported_name_prefix;
13387711
SW
5048 const char *canonical_name;
5049 const char *import_alias;
5050 const char *imported_declaration = NULL;
794684b6 5051 const char *import_prefix;
13387711
SW
5052
5053 char *temp;
27aa8d6a
SW
5054
5055 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5056 if (import_attr == NULL)
5057 {
5058 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5059 dwarf_tag_name (die->tag));
5060 return;
5061 }
5062
de4affc9
CC
5063 imported_cu = cu;
5064 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5065 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5066 if (imported_name == NULL)
5067 {
5068 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5069
5070 The import in the following code:
5071 namespace A
5072 {
5073 typedef int B;
5074 }
5075
5076 int main ()
5077 {
5078 using A::B;
5079 B b;
5080 return b;
5081 }
5082
5083 ...
5084 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5085 <52> DW_AT_decl_file : 1
5086 <53> DW_AT_decl_line : 6
5087 <54> DW_AT_import : <0x75>
5088 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5089 <59> DW_AT_name : B
5090 <5b> DW_AT_decl_file : 1
5091 <5c> DW_AT_decl_line : 2
5092 <5d> DW_AT_type : <0x6e>
5093 ...
5094 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5095 <76> DW_AT_byte_size : 4
5096 <77> DW_AT_encoding : 5 (signed)
5097
5098 imports the wrong die ( 0x75 instead of 0x58 ).
5099 This case will be ignored until the gcc bug is fixed. */
5100 return;
5101 }
5102
82856980
SW
5103 /* Figure out the local name after import. */
5104 import_alias = dwarf2_name (die, cu);
27aa8d6a 5105
794684b6
SW
5106 /* Figure out where the statement is being imported to. */
5107 import_prefix = determine_prefix (die, cu);
5108
5109 /* Figure out what the scope of the imported die is and prepend it
5110 to the name of the imported die. */
de4affc9 5111 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5112
f55ee35c
JK
5113 if (imported_die->tag != DW_TAG_namespace
5114 && imported_die->tag != DW_TAG_module)
794684b6 5115 {
13387711
SW
5116 imported_declaration = imported_name;
5117 canonical_name = imported_name_prefix;
794684b6 5118 }
13387711 5119 else if (strlen (imported_name_prefix) > 0)
794684b6 5120 {
13387711
SW
5121 temp = alloca (strlen (imported_name_prefix)
5122 + 2 + strlen (imported_name) + 1);
5123 strcpy (temp, imported_name_prefix);
5124 strcat (temp, "::");
5125 strcat (temp, imported_name);
5126 canonical_name = temp;
794684b6 5127 }
13387711
SW
5128 else
5129 canonical_name = imported_name;
794684b6 5130
c0cc3a76
SW
5131 cp_add_using_directive (import_prefix,
5132 canonical_name,
5133 import_alias,
13387711 5134 imported_declaration,
c0cc3a76 5135 &cu->objfile->objfile_obstack);
27aa8d6a
SW
5136}
5137
5fb290d7 5138static void
e142c38c 5139initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5140{
e142c38c 5141 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5142}
5143
ae2de4f8
DE
5144/* Cleanup function for read_file_scope. */
5145
cb1df416
DJ
5146static void
5147free_cu_line_header (void *arg)
5148{
5149 struct dwarf2_cu *cu = arg;
5150
5151 free_line_header (cu->line_header);
5152 cu->line_header = NULL;
5153}
5154
9291a0cd
TT
5155static void
5156find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5157 char **name, char **comp_dir)
5158{
5159 struct attribute *attr;
5160
5161 *name = NULL;
5162 *comp_dir = NULL;
5163
5164 /* Find the filename. Do not use dwarf2_name here, since the filename
5165 is not a source language identifier. */
5166 attr = dwarf2_attr (die, DW_AT_name, cu);
5167 if (attr)
5168 {
5169 *name = DW_STRING (attr);
5170 }
5171
5172 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5173 if (attr)
5174 *comp_dir = DW_STRING (attr);
5175 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5176 {
5177 *comp_dir = ldirname (*name);
5178 if (*comp_dir != NULL)
5179 make_cleanup (xfree, *comp_dir);
5180 }
5181 if (*comp_dir != NULL)
5182 {
5183 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5184 directory, get rid of it. */
5185 char *cp = strchr (*comp_dir, ':');
5186
5187 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5188 *comp_dir = cp + 1;
5189 }
5190
5191 if (*name == NULL)
5192 *name = "<unknown>";
5193}
5194
ae2de4f8
DE
5195/* Process DW_TAG_compile_unit. */
5196
c906108c 5197static void
e7c27a73 5198read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5199{
e7c27a73 5200 struct objfile *objfile = cu->objfile;
debd256d 5201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5203 CORE_ADDR highpc = ((CORE_ADDR) 0);
5204 struct attribute *attr;
e1024ff1 5205 char *name = NULL;
c906108c
SS
5206 char *comp_dir = NULL;
5207 struct die_info *child_die;
5208 bfd *abfd = objfile->obfd;
debd256d 5209 struct line_header *line_header = 0;
e142c38c 5210 CORE_ADDR baseaddr;
6e70227d 5211
e142c38c 5212 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5213
fae299cd 5214 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5215
5216 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5217 from finish_block. */
2acceee2 5218 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5219 lowpc = highpc;
5220 lowpc += baseaddr;
5221 highpc += baseaddr;
5222
9291a0cd 5223 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5224
e142c38c 5225 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5226 if (attr)
5227 {
e142c38c 5228 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5229 }
5230
b0f35d58 5231 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5232 if (attr)
b0f35d58 5233 cu->producer = DW_STRING (attr);
303b6f5d 5234
f4b8a18d
KW
5235 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5236 standardised yet. As a workaround for the language detection we fall
5237 back to the DW_AT_producer string. */
5238 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5239 cu->language = language_opencl;
5240
0963b4bd 5241 /* We assume that we're processing GCC output. */
c906108c 5242 processing_gcc_compilation = 2;
c906108c 5243
df8a16a1
DJ
5244 processing_has_namespace_info = 0;
5245
c906108c
SS
5246 start_symtab (name, comp_dir, lowpc);
5247 record_debugformat ("DWARF 2");
303b6f5d 5248 record_producer (cu->producer);
c906108c 5249
e142c38c 5250 initialize_cu_func_list (cu);
c906108c 5251
cb1df416
DJ
5252 /* Decode line number information if present. We do this before
5253 processing child DIEs, so that the line header table is available
5254 for DW_AT_decl_file. */
e142c38c 5255 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
5256 if (attr)
5257 {
debd256d 5258 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 5259 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
5260 if (line_header)
5261 {
cb1df416
DJ
5262 cu->line_header = line_header;
5263 make_cleanup (free_cu_line_header, cu);
aaa75496 5264 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 5265 }
5fb290d7 5266 }
debd256d 5267
cb1df416
DJ
5268 /* Process all dies in compilation unit. */
5269 if (die->child != NULL)
5270 {
5271 child_die = die->child;
5272 while (child_die && child_die->tag)
5273 {
5274 process_die (child_die, cu);
5275 child_die = sibling_die (child_die);
5276 }
5277 }
5278
2e276125
JB
5279 /* Decode macro information, if present. Dwarf 2 macro information
5280 refers to information in the line number info statement program
5281 header, so we can only read it if we've read the header
5282 successfully. */
e142c38c 5283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 5284 if (attr && line_header)
2e276125
JB
5285 {
5286 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5287
2e276125 5288 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 5289 comp_dir, abfd, cu);
2e276125 5290 }
debd256d 5291 do_cleanups (back_to);
5fb290d7
DJ
5292}
5293
ae2de4f8
DE
5294/* Process DW_TAG_type_unit.
5295 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5296 actual type being defined by this TU. In this case the first top
5297 level sibling is there to provide context only. */
5298
5299static void
5300read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5301{
5302 struct objfile *objfile = cu->objfile;
5303 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5304 CORE_ADDR lowpc;
5305 struct attribute *attr;
5306 char *name = NULL;
5307 char *comp_dir = NULL;
5308 struct die_info *child_die;
5309 bfd *abfd = objfile->obfd;
348e048f
DE
5310
5311 /* start_symtab needs a low pc, but we don't really have one.
5312 Do what read_file_scope would do in the absence of such info. */
5313 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5314
5315 /* Find the filename. Do not use dwarf2_name here, since the filename
5316 is not a source language identifier. */
5317 attr = dwarf2_attr (die, DW_AT_name, cu);
5318 if (attr)
5319 name = DW_STRING (attr);
5320
5321 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5322 if (attr)
5323 comp_dir = DW_STRING (attr);
5324 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5325 {
5326 comp_dir = ldirname (name);
5327 if (comp_dir != NULL)
5328 make_cleanup (xfree, comp_dir);
5329 }
5330
5331 if (name == NULL)
5332 name = "<unknown>";
5333
5334 attr = dwarf2_attr (die, DW_AT_language, cu);
5335 if (attr)
5336 set_cu_language (DW_UNSND (attr), cu);
5337
5338 /* This isn't technically needed today. It is done for symmetry
5339 with read_file_scope. */
5340 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5341 if (attr)
348e048f
DE
5342 cu->producer = DW_STRING (attr);
5343
0963b4bd 5344 /* We assume that we're processing GCC output. */
348e048f
DE
5345 processing_gcc_compilation = 2;
5346
5347 processing_has_namespace_info = 0;
5348
5349 start_symtab (name, comp_dir, lowpc);
5350 record_debugformat ("DWARF 2");
5351 record_producer (cu->producer);
5352
5353 /* Process the dies in the type unit. */
5354 if (die->child == NULL)
5355 {
5356 dump_die_for_error (die);
5357 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5358 bfd_get_filename (abfd));
5359 }
5360
5361 child_die = die->child;
5362
5363 while (child_die && child_die->tag)
5364 {
5365 process_die (child_die, cu);
5366
5367 child_die = sibling_die (child_die);
5368 }
5369
5370 do_cleanups (back_to);
5371}
5372
5fb290d7 5373static void
e142c38c
DJ
5374add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5375 struct dwarf2_cu *cu)
5fb290d7
DJ
5376{
5377 struct function_range *thisfn;
5378
5379 thisfn = (struct function_range *)
7b5a2f43 5380 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5381 thisfn->name = name;
5382 thisfn->lowpc = lowpc;
5383 thisfn->highpc = highpc;
5384 thisfn->seen_line = 0;
5385 thisfn->next = NULL;
5386
e142c38c
DJ
5387 if (cu->last_fn == NULL)
5388 cu->first_fn = thisfn;
5fb290d7 5389 else
e142c38c 5390 cu->last_fn->next = thisfn;
5fb290d7 5391
e142c38c 5392 cu->last_fn = thisfn;
c906108c
SS
5393}
5394
d389af10
JK
5395/* qsort helper for inherit_abstract_dies. */
5396
5397static int
5398unsigned_int_compar (const void *ap, const void *bp)
5399{
5400 unsigned int a = *(unsigned int *) ap;
5401 unsigned int b = *(unsigned int *) bp;
5402
5403 return (a > b) - (b > a);
5404}
5405
5406/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5407 Inherit only the children of the DW_AT_abstract_origin DIE not being
5408 already referenced by DW_AT_abstract_origin from the children of the
5409 current DIE. */
d389af10
JK
5410
5411static void
5412inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5413{
5414 struct die_info *child_die;
5415 unsigned die_children_count;
5416 /* CU offsets which were referenced by children of the current DIE. */
5417 unsigned *offsets;
5418 unsigned *offsets_end, *offsetp;
5419 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5420 struct die_info *origin_die;
5421 /* Iterator of the ORIGIN_DIE children. */
5422 struct die_info *origin_child_die;
5423 struct cleanup *cleanups;
5424 struct attribute *attr;
cd02d79d
PA
5425 struct dwarf2_cu *origin_cu;
5426 struct pending **origin_previous_list_in_scope;
d389af10
JK
5427
5428 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5429 if (!attr)
5430 return;
5431
cd02d79d
PA
5432 /* Note that following die references may follow to a die in a
5433 different cu. */
5434
5435 origin_cu = cu;
5436 origin_die = follow_die_ref (die, attr, &origin_cu);
5437
5438 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5439 symbols in. */
5440 origin_previous_list_in_scope = origin_cu->list_in_scope;
5441 origin_cu->list_in_scope = cu->list_in_scope;
5442
edb3359d
DJ
5443 if (die->tag != origin_die->tag
5444 && !(die->tag == DW_TAG_inlined_subroutine
5445 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5446 complaint (&symfile_complaints,
5447 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5448 die->offset, origin_die->offset);
5449
5450 child_die = die->child;
5451 die_children_count = 0;
5452 while (child_die && child_die->tag)
5453 {
5454 child_die = sibling_die (child_die);
5455 die_children_count++;
5456 }
5457 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5458 cleanups = make_cleanup (xfree, offsets);
5459
5460 offsets_end = offsets;
5461 child_die = die->child;
5462 while (child_die && child_die->tag)
5463 {
c38f313d
DJ
5464 /* For each CHILD_DIE, find the corresponding child of
5465 ORIGIN_DIE. If there is more than one layer of
5466 DW_AT_abstract_origin, follow them all; there shouldn't be,
5467 but GCC versions at least through 4.4 generate this (GCC PR
5468 40573). */
5469 struct die_info *child_origin_die = child_die;
cd02d79d 5470 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5471
c38f313d
DJ
5472 while (1)
5473 {
cd02d79d
PA
5474 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5475 child_origin_cu);
c38f313d
DJ
5476 if (attr == NULL)
5477 break;
cd02d79d
PA
5478 child_origin_die = follow_die_ref (child_origin_die, attr,
5479 &child_origin_cu);
c38f313d
DJ
5480 }
5481
d389af10
JK
5482 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5483 counterpart may exist. */
c38f313d 5484 if (child_origin_die != child_die)
d389af10 5485 {
edb3359d
DJ
5486 if (child_die->tag != child_origin_die->tag
5487 && !(child_die->tag == DW_TAG_inlined_subroutine
5488 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5489 complaint (&symfile_complaints,
5490 _("Child DIE 0x%x and its abstract origin 0x%x have "
5491 "different tags"), child_die->offset,
5492 child_origin_die->offset);
c38f313d
DJ
5493 if (child_origin_die->parent != origin_die)
5494 complaint (&symfile_complaints,
5495 _("Child DIE 0x%x and its abstract origin 0x%x have "
5496 "different parents"), child_die->offset,
5497 child_origin_die->offset);
5498 else
5499 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5500 }
5501 child_die = sibling_die (child_die);
5502 }
5503 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5504 unsigned_int_compar);
5505 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5506 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5507 complaint (&symfile_complaints,
5508 _("Multiple children of DIE 0x%x refer "
5509 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5510 die->offset, *offsetp);
5511
5512 offsetp = offsets;
5513 origin_child_die = origin_die->child;
5514 while (origin_child_die && origin_child_die->tag)
5515 {
5516 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5517 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5518 offsetp++;
5519 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5520 {
5521 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5522 process_die (origin_child_die, origin_cu);
d389af10
JK
5523 }
5524 origin_child_die = sibling_die (origin_child_die);
5525 }
cd02d79d 5526 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5527
5528 do_cleanups (cleanups);
5529}
5530
c906108c 5531static void
e7c27a73 5532read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5533{
e7c27a73 5534 struct objfile *objfile = cu->objfile;
52f0bd74 5535 struct context_stack *new;
c906108c
SS
5536 CORE_ADDR lowpc;
5537 CORE_ADDR highpc;
5538 struct die_info *child_die;
edb3359d 5539 struct attribute *attr, *call_line, *call_file;
c906108c 5540 char *name;
e142c38c 5541 CORE_ADDR baseaddr;
801e3a5b 5542 struct block *block;
edb3359d 5543 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5544 VEC (symbolp) *template_args = NULL;
5545 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5546
5547 if (inlined_func)
5548 {
5549 /* If we do not have call site information, we can't show the
5550 caller of this inlined function. That's too confusing, so
5551 only use the scope for local variables. */
5552 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5553 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5554 if (call_line == NULL || call_file == NULL)
5555 {
5556 read_lexical_block_scope (die, cu);
5557 return;
5558 }
5559 }
c906108c 5560
e142c38c
DJ
5561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5562
94af9270 5563 name = dwarf2_name (die, cu);
c906108c 5564
e8d05480
JB
5565 /* Ignore functions with missing or empty names. These are actually
5566 illegal according to the DWARF standard. */
5567 if (name == NULL)
5568 {
5569 complaint (&symfile_complaints,
5570 _("missing name for subprogram DIE at %d"), die->offset);
5571 return;
5572 }
5573
5574 /* Ignore functions with missing or invalid low and high pc attributes. */
5575 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5576 {
ae4d0c03
PM
5577 attr = dwarf2_attr (die, DW_AT_external, cu);
5578 if (!attr || !DW_UNSND (attr))
5579 complaint (&symfile_complaints,
3e43a32a
MS
5580 _("cannot get low and high bounds "
5581 "for subprogram DIE at %d"),
ae4d0c03 5582 die->offset);
e8d05480
JB
5583 return;
5584 }
c906108c
SS
5585
5586 lowpc += baseaddr;
5587 highpc += baseaddr;
5588
5fb290d7 5589 /* Record the function range for dwarf_decode_lines. */
e142c38c 5590 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5591
34eaf542
TT
5592 /* If we have any template arguments, then we must allocate a
5593 different sort of symbol. */
5594 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5595 {
5596 if (child_die->tag == DW_TAG_template_type_param
5597 || child_die->tag == DW_TAG_template_value_param)
5598 {
5599 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5600 struct template_symbol);
5601 templ_func->base.is_cplus_template_function = 1;
5602 break;
5603 }
5604 }
5605
c906108c 5606 new = push_context (0, lowpc);
34eaf542
TT
5607 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5608 (struct symbol *) templ_func);
4c2df51b 5609
4cecd739
DJ
5610 /* If there is a location expression for DW_AT_frame_base, record
5611 it. */
e142c38c 5612 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5613 if (attr)
c034e007
AC
5614 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5615 expression is being recorded directly in the function's symbol
5616 and not in a separate frame-base object. I guess this hack is
5617 to avoid adding some sort of frame-base adjunct/annex to the
5618 function's symbol :-(. The problem with doing this is that it
5619 results in a function symbol with a location expression that
5620 has nothing to do with the location of the function, ouch! The
5621 relationship should be: a function's symbol has-a frame base; a
5622 frame-base has-a location expression. */
e7c27a73 5623 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5624
e142c38c 5625 cu->list_in_scope = &local_symbols;
c906108c 5626
639d11d3 5627 if (die->child != NULL)
c906108c 5628 {
639d11d3 5629 child_die = die->child;
c906108c
SS
5630 while (child_die && child_die->tag)
5631 {
34eaf542
TT
5632 if (child_die->tag == DW_TAG_template_type_param
5633 || child_die->tag == DW_TAG_template_value_param)
5634 {
5635 struct symbol *arg = new_symbol (child_die, NULL, cu);
5636
f1078f66
DJ
5637 if (arg != NULL)
5638 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5639 }
5640 else
5641 process_die (child_die, cu);
c906108c
SS
5642 child_die = sibling_die (child_die);
5643 }
5644 }
5645
d389af10
JK
5646 inherit_abstract_dies (die, cu);
5647
4a811a97
UW
5648 /* If we have a DW_AT_specification, we might need to import using
5649 directives from the context of the specification DIE. See the
5650 comment in determine_prefix. */
5651 if (cu->language == language_cplus
5652 && dwarf2_attr (die, DW_AT_specification, cu))
5653 {
5654 struct dwarf2_cu *spec_cu = cu;
5655 struct die_info *spec_die = die_specification (die, &spec_cu);
5656
5657 while (spec_die)
5658 {
5659 child_die = spec_die->child;
5660 while (child_die && child_die->tag)
5661 {
5662 if (child_die->tag == DW_TAG_imported_module)
5663 process_die (child_die, spec_cu);
5664 child_die = sibling_die (child_die);
5665 }
5666
5667 /* In some cases, GCC generates specification DIEs that
5668 themselves contain DW_AT_specification attributes. */
5669 spec_die = die_specification (spec_die, &spec_cu);
5670 }
5671 }
5672
c906108c
SS
5673 new = pop_context ();
5674 /* Make a block for the local symbols within. */
801e3a5b
JB
5675 block = finish_block (new->name, &local_symbols, new->old_blocks,
5676 lowpc, highpc, objfile);
5677
df8a16a1 5678 /* For C++, set the block's scope. */
f55ee35c 5679 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5680 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5681 determine_prefix (die, cu),
df8a16a1
DJ
5682 processing_has_namespace_info);
5683
801e3a5b
JB
5684 /* If we have address ranges, record them. */
5685 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5686
34eaf542
TT
5687 /* Attach template arguments to function. */
5688 if (! VEC_empty (symbolp, template_args))
5689 {
5690 gdb_assert (templ_func != NULL);
5691
5692 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5693 templ_func->template_arguments
5694 = obstack_alloc (&objfile->objfile_obstack,
5695 (templ_func->n_template_arguments
5696 * sizeof (struct symbol *)));
5697 memcpy (templ_func->template_arguments,
5698 VEC_address (symbolp, template_args),
5699 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5700 VEC_free (symbolp, template_args);
5701 }
5702
208d8187
JB
5703 /* In C++, we can have functions nested inside functions (e.g., when
5704 a function declares a class that has methods). This means that
5705 when we finish processing a function scope, we may need to go
5706 back to building a containing block's symbol lists. */
5707 local_symbols = new->locals;
5708 param_symbols = new->params;
27aa8d6a 5709 using_directives = new->using_directives;
208d8187 5710
921e78cf
JB
5711 /* If we've finished processing a top-level function, subsequent
5712 symbols go in the file symbol list. */
5713 if (outermost_context_p ())
e142c38c 5714 cu->list_in_scope = &file_symbols;
c906108c
SS
5715}
5716
5717/* Process all the DIES contained within a lexical block scope. Start
5718 a new scope, process the dies, and then close the scope. */
5719
5720static void
e7c27a73 5721read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5722{
e7c27a73 5723 struct objfile *objfile = cu->objfile;
52f0bd74 5724 struct context_stack *new;
c906108c
SS
5725 CORE_ADDR lowpc, highpc;
5726 struct die_info *child_die;
e142c38c
DJ
5727 CORE_ADDR baseaddr;
5728
5729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5730
5731 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5733 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5734 be nasty. Might be easier to properly extend generic blocks to
af34e669 5735 describe ranges. */
d85a05f0 5736 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5737 return;
5738 lowpc += baseaddr;
5739 highpc += baseaddr;
5740
5741 push_context (0, lowpc);
639d11d3 5742 if (die->child != NULL)
c906108c 5743 {
639d11d3 5744 child_die = die->child;
c906108c
SS
5745 while (child_die && child_die->tag)
5746 {
e7c27a73 5747 process_die (child_die, cu);
c906108c
SS
5748 child_die = sibling_die (child_die);
5749 }
5750 }
5751 new = pop_context ();
5752
8540c487 5753 if (local_symbols != NULL || using_directives != NULL)
c906108c 5754 {
801e3a5b
JB
5755 struct block *block
5756 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5757 highpc, objfile);
5758
5759 /* Note that recording ranges after traversing children, as we
5760 do here, means that recording a parent's ranges entails
5761 walking across all its children's ranges as they appear in
5762 the address map, which is quadratic behavior.
5763
5764 It would be nicer to record the parent's ranges before
5765 traversing its children, simply overriding whatever you find
5766 there. But since we don't even decide whether to create a
5767 block until after we've traversed its children, that's hard
5768 to do. */
5769 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5770 }
5771 local_symbols = new->locals;
27aa8d6a 5772 using_directives = new->using_directives;
c906108c
SS
5773}
5774
43039443 5775/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5776 Return 1 if the attributes are present and valid, otherwise, return 0.
5777 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5778
5779static int
5780dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5781 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5782 struct partial_symtab *ranges_pst)
43039443
JK
5783{
5784 struct objfile *objfile = cu->objfile;
5785 struct comp_unit_head *cu_header = &cu->header;
5786 bfd *obfd = objfile->obfd;
5787 unsigned int addr_size = cu_header->addr_size;
5788 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5789 /* Base address selection entry. */
5790 CORE_ADDR base;
5791 int found_base;
5792 unsigned int dummy;
5793 gdb_byte *buffer;
5794 CORE_ADDR marker;
5795 int low_set;
5796 CORE_ADDR low = 0;
5797 CORE_ADDR high = 0;
ff013f42 5798 CORE_ADDR baseaddr;
43039443 5799
d00adf39
DE
5800 found_base = cu->base_known;
5801 base = cu->base_address;
43039443 5802
be391dca 5803 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5804 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5805 {
5806 complaint (&symfile_complaints,
5807 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5808 offset);
5809 return 0;
5810 }
dce234bc 5811 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5812
5813 /* Read in the largest possible address. */
5814 marker = read_address (obfd, buffer, cu, &dummy);
5815 if ((marker & mask) == mask)
5816 {
5817 /* If we found the largest possible address, then
5818 read the base address. */
5819 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5820 buffer += 2 * addr_size;
5821 offset += 2 * addr_size;
5822 found_base = 1;
5823 }
5824
5825 low_set = 0;
5826
e7030f15 5827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5828
43039443
JK
5829 while (1)
5830 {
5831 CORE_ADDR range_beginning, range_end;
5832
5833 range_beginning = read_address (obfd, buffer, cu, &dummy);
5834 buffer += addr_size;
5835 range_end = read_address (obfd, buffer, cu, &dummy);
5836 buffer += addr_size;
5837 offset += 2 * addr_size;
5838
5839 /* An end of list marker is a pair of zero addresses. */
5840 if (range_beginning == 0 && range_end == 0)
5841 /* Found the end of list entry. */
5842 break;
5843
5844 /* Each base address selection entry is a pair of 2 values.
5845 The first is the largest possible address, the second is
5846 the base address. Check for a base address here. */
5847 if ((range_beginning & mask) == mask)
5848 {
5849 /* If we found the largest possible address, then
5850 read the base address. */
5851 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5852 found_base = 1;
5853 continue;
5854 }
5855
5856 if (!found_base)
5857 {
5858 /* We have no valid base address for the ranges
5859 data. */
5860 complaint (&symfile_complaints,
5861 _("Invalid .debug_ranges data (no base address)"));
5862 return 0;
5863 }
5864
5865 range_beginning += base;
5866 range_end += base;
5867
ff013f42
JK
5868 if (ranges_pst != NULL && range_beginning < range_end)
5869 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
5870 range_beginning + baseaddr,
5871 range_end - 1 + baseaddr,
ff013f42
JK
5872 ranges_pst);
5873
43039443
JK
5874 /* FIXME: This is recording everything as a low-high
5875 segment of consecutive addresses. We should have a
5876 data structure for discontiguous block ranges
5877 instead. */
5878 if (! low_set)
5879 {
5880 low = range_beginning;
5881 high = range_end;
5882 low_set = 1;
5883 }
5884 else
5885 {
5886 if (range_beginning < low)
5887 low = range_beginning;
5888 if (range_end > high)
5889 high = range_end;
5890 }
5891 }
5892
5893 if (! low_set)
5894 /* If the first entry is an end-of-list marker, the range
5895 describes an empty scope, i.e. no instructions. */
5896 return 0;
5897
5898 if (low_return)
5899 *low_return = low;
5900 if (high_return)
5901 *high_return = high;
5902 return 1;
5903}
5904
af34e669
DJ
5905/* Get low and high pc attributes from a die. Return 1 if the attributes
5906 are present and valid, otherwise, return 0. Return -1 if the range is
5907 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5908static int
af34e669 5909dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5910 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5911 struct partial_symtab *pst)
c906108c
SS
5912{
5913 struct attribute *attr;
af34e669
DJ
5914 CORE_ADDR low = 0;
5915 CORE_ADDR high = 0;
5916 int ret = 0;
c906108c 5917
e142c38c 5918 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5919 if (attr)
af34e669
DJ
5920 {
5921 high = DW_ADDR (attr);
e142c38c 5922 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5923 if (attr)
5924 low = DW_ADDR (attr);
5925 else
5926 /* Found high w/o low attribute. */
5927 return 0;
5928
5929 /* Found consecutive range of addresses. */
5930 ret = 1;
5931 }
c906108c 5932 else
af34e669 5933 {
e142c38c 5934 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5935 if (attr != NULL)
5936 {
af34e669 5937 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5938 .debug_ranges section. */
d85a05f0 5939 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5940 return 0;
43039443 5941 /* Found discontinuous range of addresses. */
af34e669
DJ
5942 ret = -1;
5943 }
5944 }
c906108c
SS
5945
5946 if (high < low)
5947 return 0;
5948
5949 /* When using the GNU linker, .gnu.linkonce. sections are used to
5950 eliminate duplicate copies of functions and vtables and such.
5951 The linker will arbitrarily choose one and discard the others.
5952 The AT_*_pc values for such functions refer to local labels in
5953 these sections. If the section from that file was discarded, the
5954 labels are not in the output, so the relocs get a value of 0.
5955 If this is a discarded function, mark the pc bounds as invalid,
5956 so that GDB will ignore it. */
72dca2f5 5957 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5958 return 0;
5959
5960 *lowpc = low;
5961 *highpc = high;
af34e669 5962 return ret;
c906108c
SS
5963}
5964
b084d499
JB
5965/* Assuming that DIE represents a subprogram DIE or a lexical block, get
5966 its low and high PC addresses. Do nothing if these addresses could not
5967 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5968 and HIGHPC to the high address if greater than HIGHPC. */
5969
5970static void
5971dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5973 struct dwarf2_cu *cu)
5974{
5975 CORE_ADDR low, high;
5976 struct die_info *child = die->child;
5977
d85a05f0 5978 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
5979 {
5980 *lowpc = min (*lowpc, low);
5981 *highpc = max (*highpc, high);
5982 }
5983
5984 /* If the language does not allow nested subprograms (either inside
5985 subprograms or lexical blocks), we're done. */
5986 if (cu->language != language_ada)
5987 return;
6e70227d 5988
b084d499
JB
5989 /* Check all the children of the given DIE. If it contains nested
5990 subprograms, then check their pc bounds. Likewise, we need to
5991 check lexical blocks as well, as they may also contain subprogram
5992 definitions. */
5993 while (child && child->tag)
5994 {
5995 if (child->tag == DW_TAG_subprogram
5996 || child->tag == DW_TAG_lexical_block)
5997 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5998 child = sibling_die (child);
5999 }
6000}
6001
fae299cd
DC
6002/* Get the low and high pc's represented by the scope DIE, and store
6003 them in *LOWPC and *HIGHPC. If the correct values can't be
6004 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6005
6006static void
6007get_scope_pc_bounds (struct die_info *die,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 struct dwarf2_cu *cu)
6010{
6011 CORE_ADDR best_low = (CORE_ADDR) -1;
6012 CORE_ADDR best_high = (CORE_ADDR) 0;
6013 CORE_ADDR current_low, current_high;
6014
d85a05f0 6015 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6016 {
6017 best_low = current_low;
6018 best_high = current_high;
6019 }
6020 else
6021 {
6022 struct die_info *child = die->child;
6023
6024 while (child && child->tag)
6025 {
6026 switch (child->tag) {
6027 case DW_TAG_subprogram:
b084d499 6028 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6029 break;
6030 case DW_TAG_namespace:
f55ee35c 6031 case DW_TAG_module:
fae299cd
DC
6032 /* FIXME: carlton/2004-01-16: Should we do this for
6033 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6034 that current GCC's always emit the DIEs corresponding
6035 to definitions of methods of classes as children of a
6036 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6037 the DIEs giving the declarations, which could be
6038 anywhere). But I don't see any reason why the
6039 standards says that they have to be there. */
6040 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6041
6042 if (current_low != ((CORE_ADDR) -1))
6043 {
6044 best_low = min (best_low, current_low);
6045 best_high = max (best_high, current_high);
6046 }
6047 break;
6048 default:
0963b4bd 6049 /* Ignore. */
fae299cd
DC
6050 break;
6051 }
6052
6053 child = sibling_die (child);
6054 }
6055 }
6056
6057 *lowpc = best_low;
6058 *highpc = best_high;
6059}
6060
801e3a5b
JB
6061/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6062 in DIE. */
6063static void
6064dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6065 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6066{
6067 struct attribute *attr;
6068
6069 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6070 if (attr)
6071 {
6072 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6073
801e3a5b
JB
6074 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6075 if (attr)
6076 {
6077 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6078
801e3a5b
JB
6079 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6080 }
6081 }
6082
6083 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6084 if (attr)
6085 {
6086 bfd *obfd = cu->objfile->obfd;
6087
6088 /* The value of the DW_AT_ranges attribute is the offset of the
6089 address range list in the .debug_ranges section. */
6090 unsigned long offset = DW_UNSND (attr);
dce234bc 6091 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6092
6093 /* For some target architectures, but not others, the
6094 read_address function sign-extends the addresses it returns.
6095 To recognize base address selection entries, we need a
6096 mask. */
6097 unsigned int addr_size = cu->header.addr_size;
6098 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6099
6100 /* The base address, to which the next pair is relative. Note
6101 that this 'base' is a DWARF concept: most entries in a range
6102 list are relative, to reduce the number of relocs against the
6103 debugging information. This is separate from this function's
6104 'baseaddr' argument, which GDB uses to relocate debugging
6105 information from a shared library based on the address at
6106 which the library was loaded. */
d00adf39
DE
6107 CORE_ADDR base = cu->base_address;
6108 int base_known = cu->base_known;
801e3a5b 6109
be391dca 6110 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6111 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6112 {
6113 complaint (&symfile_complaints,
6114 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6115 offset);
6116 return;
6117 }
6118
6119 for (;;)
6120 {
6121 unsigned int bytes_read;
6122 CORE_ADDR start, end;
6123
6124 start = read_address (obfd, buffer, cu, &bytes_read);
6125 buffer += bytes_read;
6126 end = read_address (obfd, buffer, cu, &bytes_read);
6127 buffer += bytes_read;
6128
6129 /* Did we find the end of the range list? */
6130 if (start == 0 && end == 0)
6131 break;
6132
6133 /* Did we find a base address selection entry? */
6134 else if ((start & base_select_mask) == base_select_mask)
6135 {
6136 base = end;
6137 base_known = 1;
6138 }
6139
6140 /* We found an ordinary address range. */
6141 else
6142 {
6143 if (!base_known)
6144 {
6145 complaint (&symfile_complaints,
3e43a32a
MS
6146 _("Invalid .debug_ranges data "
6147 "(no base address)"));
801e3a5b
JB
6148 return;
6149 }
6150
6e70227d
DE
6151 record_block_range (block,
6152 baseaddr + base + start,
801e3a5b
JB
6153 baseaddr + base + end - 1);
6154 }
6155 }
6156 }
6157}
6158
c906108c
SS
6159/* Add an aggregate field to the field list. */
6160
6161static void
107d2387 6162dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6163 struct dwarf2_cu *cu)
6e70227d 6164{
e7c27a73 6165 struct objfile *objfile = cu->objfile;
5e2b427d 6166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6167 struct nextfield *new_field;
6168 struct attribute *attr;
6169 struct field *fp;
6170 char *fieldname = "";
6171
6172 /* Allocate a new field list entry and link it in. */
6173 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6174 make_cleanup (xfree, new_field);
c906108c 6175 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6176
6177 if (die->tag == DW_TAG_inheritance)
6178 {
6179 new_field->next = fip->baseclasses;
6180 fip->baseclasses = new_field;
6181 }
6182 else
6183 {
6184 new_field->next = fip->fields;
6185 fip->fields = new_field;
6186 }
c906108c
SS
6187 fip->nfields++;
6188
6189 /* Handle accessibility and virtuality of field.
6190 The default accessibility for members is public, the default
6191 accessibility for inheritance is private. */
6192 if (die->tag != DW_TAG_inheritance)
6193 new_field->accessibility = DW_ACCESS_public;
6194 else
6195 new_field->accessibility = DW_ACCESS_private;
6196 new_field->virtuality = DW_VIRTUALITY_none;
6197
e142c38c 6198 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6199 if (attr)
6200 new_field->accessibility = DW_UNSND (attr);
6201 if (new_field->accessibility != DW_ACCESS_public)
6202 fip->non_public_fields = 1;
e142c38c 6203 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6204 if (attr)
6205 new_field->virtuality = DW_UNSND (attr);
6206
6207 fp = &new_field->field;
a9a9bd0f 6208
e142c38c 6209 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6210 {
a9a9bd0f 6211 /* Data member other than a C++ static data member. */
6e70227d 6212
c906108c 6213 /* Get type of field. */
e7c27a73 6214 fp->type = die_type (die, cu);
c906108c 6215
d6a843b5 6216 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6217
c906108c 6218 /* Get bit size of field (zero if none). */
e142c38c 6219 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6220 if (attr)
6221 {
6222 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6223 }
6224 else
6225 {
6226 FIELD_BITSIZE (*fp) = 0;
6227 }
6228
6229 /* Get bit offset of field. */
e142c38c 6230 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
6231 if (attr)
6232 {
d4b96c9a 6233 int byte_offset = 0;
c6a0999f 6234
3690dd37 6235 if (attr_form_is_section_offset (attr))
d4b96c9a 6236 dwarf2_complex_location_expr_complaint ();
3690dd37 6237 else if (attr_form_is_constant (attr))
c6a0999f 6238 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 6239 else if (attr_form_is_block (attr))
c6a0999f 6240 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
6241 else
6242 dwarf2_complex_location_expr_complaint ();
c6a0999f 6243
d6a843b5 6244 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 6245 }
e142c38c 6246 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6247 if (attr)
6248 {
5e2b427d 6249 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6250 {
6251 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6252 additional bit offset from the MSB of the containing
6253 anonymous object to the MSB of the field. We don't
6254 have to do anything special since we don't need to
6255 know the size of the anonymous object. */
c906108c
SS
6256 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6257 }
6258 else
6259 {
6260 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6261 MSB of the anonymous object, subtract off the number of
6262 bits from the MSB of the field to the MSB of the
6263 object, and then subtract off the number of bits of
6264 the field itself. The result is the bit offset of
6265 the LSB of the field. */
c906108c
SS
6266 int anonymous_size;
6267 int bit_offset = DW_UNSND (attr);
6268
e142c38c 6269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6270 if (attr)
6271 {
6272 /* The size of the anonymous object containing
6273 the bit field is explicit, so use the
6274 indicated size (in bytes). */
6275 anonymous_size = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 /* The size of the anonymous object containing
6280 the bit field must be inferred from the type
6281 attribute of the data member containing the
6282 bit field. */
6283 anonymous_size = TYPE_LENGTH (fp->type);
6284 }
6285 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6286 - bit_offset - FIELD_BITSIZE (*fp);
6287 }
6288 }
6289
6290 /* Get name of field. */
39cbfefa
DJ
6291 fieldname = dwarf2_name (die, cu);
6292 if (fieldname == NULL)
6293 fieldname = "";
d8151005
DJ
6294
6295 /* The name is already allocated along with this objfile, so we don't
6296 need to duplicate it for the type. */
6297 fp->name = fieldname;
c906108c
SS
6298
6299 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6300 pointer or virtual base class pointer) to private. */
e142c38c 6301 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6302 {
d48cc9dd 6303 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6304 new_field->accessibility = DW_ACCESS_private;
6305 fip->non_public_fields = 1;
6306 }
6307 }
a9a9bd0f 6308 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6309 {
a9a9bd0f
DC
6310 /* C++ static member. */
6311
6312 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6313 is a declaration, but all versions of G++ as of this writing
6314 (so through at least 3.2.1) incorrectly generate
6315 DW_TAG_variable tags. */
6e70227d 6316
c906108c 6317 char *physname;
c906108c 6318
a9a9bd0f 6319 /* Get name of field. */
39cbfefa
DJ
6320 fieldname = dwarf2_name (die, cu);
6321 if (fieldname == NULL)
c906108c
SS
6322 return;
6323
254e6b9e 6324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6325 if (attr
6326 /* Only create a symbol if this is an external value.
6327 new_symbol checks this and puts the value in the global symbol
6328 table, which we want. If it is not external, new_symbol
6329 will try to put the value in cu->list_in_scope which is wrong. */
6330 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6331 {
6332 /* A static const member, not much different than an enum as far as
6333 we're concerned, except that we can support more types. */
6334 new_symbol (die, NULL, cu);
6335 }
6336
2df3850c 6337 /* Get physical name. */
94af9270 6338 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 6339
d8151005
DJ
6340 /* The name is already allocated along with this objfile, so we don't
6341 need to duplicate it for the type. */
6342 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6343 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6344 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6345 }
6346 else if (die->tag == DW_TAG_inheritance)
6347 {
6348 /* C++ base class field. */
e142c38c 6349 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 6350 if (attr)
d4b96c9a
JK
6351 {
6352 int byte_offset = 0;
6353
6354 if (attr_form_is_section_offset (attr))
6355 dwarf2_complex_location_expr_complaint ();
6356 else if (attr_form_is_constant (attr))
6357 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6358 else if (attr_form_is_block (attr))
6359 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6360 else
6361 dwarf2_complex_location_expr_complaint ();
6362
6363 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6364 }
c906108c 6365 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6366 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6367 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6368 fip->nbaseclasses++;
6369 }
6370}
6371
98751a41
JK
6372/* Add a typedef defined in the scope of the FIP's class. */
6373
6374static void
6375dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6376 struct dwarf2_cu *cu)
6e70227d 6377{
98751a41
JK
6378 struct objfile *objfile = cu->objfile;
6379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6380 struct typedef_field_list *new_field;
6381 struct attribute *attr;
6382 struct typedef_field *fp;
6383 char *fieldname = "";
6384
6385 /* Allocate a new field list entry and link it in. */
6386 new_field = xzalloc (sizeof (*new_field));
6387 make_cleanup (xfree, new_field);
6388
6389 gdb_assert (die->tag == DW_TAG_typedef);
6390
6391 fp = &new_field->field;
6392
6393 /* Get name of field. */
6394 fp->name = dwarf2_name (die, cu);
6395 if (fp->name == NULL)
6396 return;
6397
6398 fp->type = read_type_die (die, cu);
6399
6400 new_field->next = fip->typedef_field_list;
6401 fip->typedef_field_list = new_field;
6402 fip->typedef_field_list_count++;
6403}
6404
c906108c
SS
6405/* Create the vector of fields, and attach it to the type. */
6406
6407static void
fba45db2 6408dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6409 struct dwarf2_cu *cu)
c906108c
SS
6410{
6411 int nfields = fip->nfields;
6412
6413 /* Record the field count, allocate space for the array of fields,
6414 and create blank accessibility bitfields if necessary. */
6415 TYPE_NFIELDS (type) = nfields;
6416 TYPE_FIELDS (type) = (struct field *)
6417 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6418 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6419
b4ba55a1 6420 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6421 {
6422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6423
6424 TYPE_FIELD_PRIVATE_BITS (type) =
6425 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6426 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6427
6428 TYPE_FIELD_PROTECTED_BITS (type) =
6429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6430 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6431
774b6a14
TT
6432 TYPE_FIELD_IGNORE_BITS (type) =
6433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6434 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6435 }
6436
6437 /* If the type has baseclasses, allocate and clear a bit vector for
6438 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6439 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6440 {
6441 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6442 unsigned char *pointer;
c906108c
SS
6443
6444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6445 pointer = TYPE_ALLOC (type, num_bytes);
6446 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6447 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6448 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6449 }
6450
3e43a32a
MS
6451 /* Copy the saved-up fields into the field vector. Start from the head of
6452 the list, adding to the tail of the field array, so that they end up in
6453 the same order in the array in which they were added to the list. */
c906108c
SS
6454 while (nfields-- > 0)
6455 {
7d0ccb61
DJ
6456 struct nextfield *fieldp;
6457
6458 if (fip->fields)
6459 {
6460 fieldp = fip->fields;
6461 fip->fields = fieldp->next;
6462 }
6463 else
6464 {
6465 fieldp = fip->baseclasses;
6466 fip->baseclasses = fieldp->next;
6467 }
6468
6469 TYPE_FIELD (type, nfields) = fieldp->field;
6470 switch (fieldp->accessibility)
c906108c 6471 {
c5aa993b 6472 case DW_ACCESS_private:
b4ba55a1
JB
6473 if (cu->language != language_ada)
6474 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6475 break;
c906108c 6476
c5aa993b 6477 case DW_ACCESS_protected:
b4ba55a1
JB
6478 if (cu->language != language_ada)
6479 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6480 break;
c906108c 6481
c5aa993b
JM
6482 case DW_ACCESS_public:
6483 break;
c906108c 6484
c5aa993b
JM
6485 default:
6486 /* Unknown accessibility. Complain and treat it as public. */
6487 {
e2e0b3e5 6488 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6489 fieldp->accessibility);
c5aa993b
JM
6490 }
6491 break;
c906108c
SS
6492 }
6493 if (nfields < fip->nbaseclasses)
6494 {
7d0ccb61 6495 switch (fieldp->virtuality)
c906108c 6496 {
c5aa993b
JM
6497 case DW_VIRTUALITY_virtual:
6498 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
6499 if (cu->language == language_ada)
6500 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
6501 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6502 break;
c906108c
SS
6503 }
6504 }
c906108c
SS
6505 }
6506}
6507
c906108c
SS
6508/* Add a member function to the proper fieldlist. */
6509
6510static void
107d2387 6511dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6512 struct type *type, struct dwarf2_cu *cu)
c906108c 6513{
e7c27a73 6514 struct objfile *objfile = cu->objfile;
c906108c
SS
6515 struct attribute *attr;
6516 struct fnfieldlist *flp;
6517 int i;
6518 struct fn_field *fnp;
6519 char *fieldname;
c906108c 6520 struct nextfnfield *new_fnfield;
f792889a 6521 struct type *this_type;
c906108c 6522
b4ba55a1
JB
6523 if (cu->language == language_ada)
6524 error ("unexpected member function in Ada type");
6525
2df3850c 6526 /* Get name of member function. */
39cbfefa
DJ
6527 fieldname = dwarf2_name (die, cu);
6528 if (fieldname == NULL)
2df3850c 6529 return;
c906108c 6530
c906108c
SS
6531 /* Look up member function name in fieldlist. */
6532 for (i = 0; i < fip->nfnfields; i++)
6533 {
27bfe10e 6534 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6535 break;
6536 }
6537
6538 /* Create new list element if necessary. */
6539 if (i < fip->nfnfields)
6540 flp = &fip->fnfieldlists[i];
6541 else
6542 {
6543 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6544 {
6545 fip->fnfieldlists = (struct fnfieldlist *)
6546 xrealloc (fip->fnfieldlists,
6547 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6548 * sizeof (struct fnfieldlist));
c906108c 6549 if (fip->nfnfields == 0)
c13c43fd 6550 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
6551 }
6552 flp = &fip->fnfieldlists[fip->nfnfields];
6553 flp->name = fieldname;
6554 flp->length = 0;
6555 flp->head = NULL;
3da10d80 6556 i = fip->nfnfields++;
c906108c
SS
6557 }
6558
6559 /* Create a new member function field and chain it to the field list
0963b4bd 6560 entry. */
c906108c 6561 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 6562 make_cleanup (xfree, new_fnfield);
c906108c
SS
6563 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6564 new_fnfield->next = flp->head;
6565 flp->head = new_fnfield;
6566 flp->length++;
6567
6568 /* Fill in the member function field info. */
6569 fnp = &new_fnfield->fnfield;
3da10d80
KS
6570
6571 /* Delay processing of the physname until later. */
6572 if (cu->language == language_cplus || cu->language == language_java)
6573 {
6574 add_to_method_list (type, i, flp->length - 1, fieldname,
6575 die, cu);
6576 }
6577 else
6578 {
6579 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6580 fnp->physname = physname ? physname : "";
6581 }
6582
c906108c 6583 fnp->type = alloc_type (objfile);
f792889a
DJ
6584 this_type = read_type_die (die, cu);
6585 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 6586 {
f792889a 6587 int nparams = TYPE_NFIELDS (this_type);
c906108c 6588
f792889a 6589 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
6590 of the method itself (TYPE_CODE_METHOD). */
6591 smash_to_method_type (fnp->type, type,
f792889a
DJ
6592 TYPE_TARGET_TYPE (this_type),
6593 TYPE_FIELDS (this_type),
6594 TYPE_NFIELDS (this_type),
6595 TYPE_VARARGS (this_type));
c906108c
SS
6596
6597 /* Handle static member functions.
c5aa993b 6598 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
6599 member functions. G++ helps GDB by marking the first
6600 parameter for non-static member functions (which is the this
6601 pointer) as artificial. We obtain this information from
6602 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 6603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
6604 fnp->voffset = VOFFSET_STATIC;
6605 }
6606 else
e2e0b3e5 6607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 6608 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
6609
6610 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 6611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 6612 fnp->fcontext = die_containing_type (die, cu);
c906108c 6613
3e43a32a
MS
6614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6615 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
6616
6617 /* Get accessibility. */
e142c38c 6618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6619 if (attr)
6620 {
6621 switch (DW_UNSND (attr))
6622 {
c5aa993b
JM
6623 case DW_ACCESS_private:
6624 fnp->is_private = 1;
6625 break;
6626 case DW_ACCESS_protected:
6627 fnp->is_protected = 1;
6628 break;
c906108c
SS
6629 }
6630 }
6631
b02dede2 6632 /* Check for artificial methods. */
e142c38c 6633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
6634 if (attr && DW_UNSND (attr) != 0)
6635 fnp->is_artificial = 1;
6636
0d564a31 6637 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
6638 function. For older versions of GCC, this is an offset in the
6639 appropriate virtual table, as specified by DW_AT_containing_type.
6640 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
6641 to the object address. */
6642
e142c38c 6643 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 6644 if (attr)
8e19ed76 6645 {
aec5aa8b 6646 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 6647 {
aec5aa8b
TT
6648 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6649 {
6650 /* Old-style GCC. */
6651 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6652 }
6653 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6654 || (DW_BLOCK (attr)->size > 1
6655 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6656 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6657 {
6658 struct dwarf_block blk;
6659 int offset;
6660
6661 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6662 ? 1 : 2);
6663 blk.size = DW_BLOCK (attr)->size - offset;
6664 blk.data = DW_BLOCK (attr)->data + offset;
6665 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6666 if ((fnp->voffset % cu->header.addr_size) != 0)
6667 dwarf2_complex_location_expr_complaint ();
6668 else
6669 fnp->voffset /= cu->header.addr_size;
6670 fnp->voffset += 2;
6671 }
6672 else
6673 dwarf2_complex_location_expr_complaint ();
6674
6675 if (!fnp->fcontext)
6676 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6677 }
3690dd37 6678 else if (attr_form_is_section_offset (attr))
8e19ed76 6679 {
4d3c2250 6680 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6681 }
6682 else
6683 {
4d3c2250
KB
6684 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6685 fieldname);
8e19ed76 6686 }
0d564a31 6687 }
d48cc9dd
DJ
6688 else
6689 {
6690 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6691 if (attr && DW_UNSND (attr))
6692 {
6693 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6694 complaint (&symfile_complaints,
3e43a32a
MS
6695 _("Member function \"%s\" (offset %d) is virtual "
6696 "but the vtable offset is not specified"),
d48cc9dd 6697 fieldname, die->offset);
9655fd1a 6698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6699 TYPE_CPLUS_DYNAMIC (type) = 1;
6700 }
6701 }
c906108c
SS
6702}
6703
6704/* Create the vector of member function fields, and attach it to the type. */
6705
6706static void
fba45db2 6707dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6708 struct dwarf2_cu *cu)
c906108c
SS
6709{
6710 struct fnfieldlist *flp;
6711 int total_length = 0;
6712 int i;
6713
b4ba55a1
JB
6714 if (cu->language == language_ada)
6715 error ("unexpected member functions in Ada type");
6716
c906108c
SS
6717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6718 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6719 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6720
6721 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6722 {
6723 struct nextfnfield *nfp = flp->head;
6724 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6725 int k;
6726
6727 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6728 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6729 fn_flp->fn_fields = (struct fn_field *)
6730 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6731 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6732 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6733
6734 total_length += flp->length;
6735 }
6736
6737 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6738 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6739}
6740
1168df01
JB
6741/* Returns non-zero if NAME is the name of a vtable member in CU's
6742 language, zero otherwise. */
6743static int
6744is_vtable_name (const char *name, struct dwarf2_cu *cu)
6745{
6746 static const char vptr[] = "_vptr";
987504bb 6747 static const char vtable[] = "vtable";
1168df01 6748
987504bb
JJ
6749 /* Look for the C++ and Java forms of the vtable. */
6750 if ((cu->language == language_java
6751 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6752 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6753 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6754 return 1;
6755
6756 return 0;
6757}
6758
c0dd20ea 6759/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6760 functions, with the ABI-specified layout. If TYPE describes
6761 such a structure, smash it into a member function type.
61049d3b
DJ
6762
6763 GCC shouldn't do this; it should just output pointer to member DIEs.
6764 This is GCC PR debug/28767. */
c0dd20ea 6765
0b92b5bb
TT
6766static void
6767quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6768{
0b92b5bb 6769 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6770
6771 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6772 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6773 return;
c0dd20ea
DJ
6774
6775 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6776 if (TYPE_FIELD_NAME (type, 0) == NULL
6777 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6778 || TYPE_FIELD_NAME (type, 1) == NULL
6779 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6780 return;
c0dd20ea
DJ
6781
6782 /* Find the type of the method. */
0b92b5bb 6783 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6784 if (pfn_type == NULL
6785 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6786 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6787 return;
c0dd20ea
DJ
6788
6789 /* Look for the "this" argument. */
6790 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6791 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6792 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6793 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6794 return;
c0dd20ea
DJ
6795
6796 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6797 new_type = alloc_type (objfile);
6798 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6799 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6800 TYPE_VARARGS (pfn_type));
0b92b5bb 6801 smash_to_methodptr_type (type, new_type);
c0dd20ea 6802}
1168df01 6803
c906108c 6804/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
6805 (definition) to create a type for the structure or union. Fill in
6806 the type's name and general properties; the members will not be
6807 processed until process_structure_type.
c906108c 6808
c767944b
DJ
6809 NOTE: we need to call these functions regardless of whether or not the
6810 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
6811 structure or union. This gets the type entered into our set of
6812 user defined types.
6813
6814 However, if the structure is incomplete (an opaque struct/union)
6815 then suppress creating a symbol table entry for it since gdb only
6816 wants to find the one with the complete definition. Note that if
6817 it is complete, we just call new_symbol, which does it's own
6818 checking about whether the struct/union is anonymous or not (and
6819 suppresses creating a symbol table entry itself). */
6820
f792889a 6821static struct type *
134d01f1 6822read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6823{
e7c27a73 6824 struct objfile *objfile = cu->objfile;
c906108c
SS
6825 struct type *type;
6826 struct attribute *attr;
39cbfefa 6827 char *name;
c906108c 6828
348e048f
DE
6829 /* If the definition of this type lives in .debug_types, read that type.
6830 Don't follow DW_AT_specification though, that will take us back up
6831 the chain and we want to go down. */
6832 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6833 if (attr)
6834 {
6835 struct dwarf2_cu *type_cu = cu;
6836 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6837
348e048f
DE
6838 /* We could just recurse on read_structure_type, but we need to call
6839 get_die_type to ensure only one type for this DIE is created.
6840 This is important, for example, because for c++ classes we need
6841 TYPE_NAME set which is only done by new_symbol. Blech. */
6842 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6843
6844 /* TYPE_CU may not be the same as CU.
6845 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
6846 return set_die_type (die, type, cu);
6847 }
6848
c0dd20ea 6849 type = alloc_type (objfile);
c906108c 6850 INIT_CPLUS_SPECIFIC (type);
93311388 6851
39cbfefa
DJ
6852 name = dwarf2_name (die, cu);
6853 if (name != NULL)
c906108c 6854 {
987504bb
JJ
6855 if (cu->language == language_cplus
6856 || cu->language == language_java)
63d06c5c 6857 {
3da10d80
KS
6858 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6859
6860 /* dwarf2_full_name might have already finished building the DIE's
6861 type. If so, there is no need to continue. */
6862 if (get_die_type (die, cu) != NULL)
6863 return get_die_type (die, cu);
6864
6865 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
6866 if (die->tag == DW_TAG_structure_type
6867 || die->tag == DW_TAG_class_type)
6868 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6869 }
6870 else
6871 {
d8151005
DJ
6872 /* The name is already allocated along with this objfile, so
6873 we don't need to duplicate it for the type. */
94af9270
KS
6874 TYPE_TAG_NAME (type) = (char *) name;
6875 if (die->tag == DW_TAG_class_type)
6876 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6877 }
c906108c
SS
6878 }
6879
6880 if (die->tag == DW_TAG_structure_type)
6881 {
6882 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6883 }
6884 else if (die->tag == DW_TAG_union_type)
6885 {
6886 TYPE_CODE (type) = TYPE_CODE_UNION;
6887 }
6888 else
6889 {
c906108c
SS
6890 TYPE_CODE (type) = TYPE_CODE_CLASS;
6891 }
6892
0cc2414c
TT
6893 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6894 TYPE_DECLARED_CLASS (type) = 1;
6895
e142c38c 6896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6897 if (attr)
6898 {
6899 TYPE_LENGTH (type) = DW_UNSND (attr);
6900 }
6901 else
6902 {
6903 TYPE_LENGTH (type) = 0;
6904 }
6905
876cecd0 6906 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6907 if (die_is_declaration (die, cu))
876cecd0 6908 TYPE_STUB (type) = 1;
a6c727b2
DJ
6909 else if (attr == NULL && die->child == NULL
6910 && producer_is_realview (cu->producer))
6911 /* RealView does not output the required DW_AT_declaration
6912 on incomplete types. */
6913 TYPE_STUB (type) = 1;
dc718098 6914
c906108c
SS
6915 /* We need to add the type field to the die immediately so we don't
6916 infinitely recurse when dealing with pointers to the structure
0963b4bd 6917 type within the structure itself. */
1c379e20 6918 set_die_type (die, type, cu);
c906108c 6919
7e314c57
JK
6920 /* set_die_type should be already done. */
6921 set_descriptive_type (type, die, cu);
6922
c767944b
DJ
6923 return type;
6924}
6925
6926/* Finish creating a structure or union type, including filling in
6927 its members and creating a symbol for it. */
6928
6929static void
6930process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6931{
6932 struct objfile *objfile = cu->objfile;
6933 struct die_info *child_die = die->child;
6934 struct type *type;
6935
6936 type = get_die_type (die, cu);
6937 if (type == NULL)
6938 type = read_structure_type (die, cu);
6939
e142c38c 6940 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
6941 {
6942 struct field_info fi;
6943 struct die_info *child_die;
34eaf542 6944 VEC (symbolp) *template_args = NULL;
c767944b 6945 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
6946
6947 memset (&fi, 0, sizeof (struct field_info));
6948
639d11d3 6949 child_die = die->child;
c906108c
SS
6950
6951 while (child_die && child_die->tag)
6952 {
a9a9bd0f
DC
6953 if (child_die->tag == DW_TAG_member
6954 || child_die->tag == DW_TAG_variable)
c906108c 6955 {
a9a9bd0f
DC
6956 /* NOTE: carlton/2002-11-05: A C++ static data member
6957 should be a DW_TAG_member that is a declaration, but
6958 all versions of G++ as of this writing (so through at
6959 least 3.2.1) incorrectly generate DW_TAG_variable
6960 tags for them instead. */
e7c27a73 6961 dwarf2_add_field (&fi, child_die, cu);
c906108c 6962 }
8713b1b1 6963 else if (child_die->tag == DW_TAG_subprogram)
c906108c 6964 {
0963b4bd 6965 /* C++ member function. */
e7c27a73 6966 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
6967 }
6968 else if (child_die->tag == DW_TAG_inheritance)
6969 {
6970 /* C++ base class field. */
e7c27a73 6971 dwarf2_add_field (&fi, child_die, cu);
c906108c 6972 }
98751a41
JK
6973 else if (child_die->tag == DW_TAG_typedef)
6974 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
6975 else if (child_die->tag == DW_TAG_template_type_param
6976 || child_die->tag == DW_TAG_template_value_param)
6977 {
6978 struct symbol *arg = new_symbol (child_die, NULL, cu);
6979
f1078f66
DJ
6980 if (arg != NULL)
6981 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
6982 }
6983
c906108c
SS
6984 child_die = sibling_die (child_die);
6985 }
6986
34eaf542
TT
6987 /* Attach template arguments to type. */
6988 if (! VEC_empty (symbolp, template_args))
6989 {
6990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6991 TYPE_N_TEMPLATE_ARGUMENTS (type)
6992 = VEC_length (symbolp, template_args);
6993 TYPE_TEMPLATE_ARGUMENTS (type)
6994 = obstack_alloc (&objfile->objfile_obstack,
6995 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6996 * sizeof (struct symbol *)));
6997 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6998 VEC_address (symbolp, template_args),
6999 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7000 * sizeof (struct symbol *)));
7001 VEC_free (symbolp, template_args);
7002 }
7003
c906108c
SS
7004 /* Attach fields and member functions to the type. */
7005 if (fi.nfields)
e7c27a73 7006 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7007 if (fi.nfnfields)
7008 {
e7c27a73 7009 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7010
c5aa993b 7011 /* Get the type which refers to the base class (possibly this
c906108c 7012 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7013 class from the DW_AT_containing_type attribute. This use of
7014 DW_AT_containing_type is a GNU extension. */
c906108c 7015
e142c38c 7016 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7017 {
e7c27a73 7018 struct type *t = die_containing_type (die, cu);
c906108c
SS
7019
7020 TYPE_VPTR_BASETYPE (type) = t;
7021 if (type == t)
7022 {
c906108c
SS
7023 int i;
7024
7025 /* Our own class provides vtbl ptr. */
7026 for (i = TYPE_NFIELDS (t) - 1;
7027 i >= TYPE_N_BASECLASSES (t);
7028 --i)
7029 {
7030 char *fieldname = TYPE_FIELD_NAME (t, i);
7031
1168df01 7032 if (is_vtable_name (fieldname, cu))
c906108c
SS
7033 {
7034 TYPE_VPTR_FIELDNO (type) = i;
7035 break;
7036 }
7037 }
7038
7039 /* Complain if virtual function table field not found. */
7040 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7041 complaint (&symfile_complaints,
3e43a32a
MS
7042 _("virtual function table pointer "
7043 "not found when defining class '%s'"),
4d3c2250
KB
7044 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7045 "");
c906108c
SS
7046 }
7047 else
7048 {
7049 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7050 }
7051 }
f6235d4c
EZ
7052 else if (cu->producer
7053 && strncmp (cu->producer,
7054 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7055 {
7056 /* The IBM XLC compiler does not provide direct indication
7057 of the containing type, but the vtable pointer is
7058 always named __vfp. */
7059
7060 int i;
7061
7062 for (i = TYPE_NFIELDS (type) - 1;
7063 i >= TYPE_N_BASECLASSES (type);
7064 --i)
7065 {
7066 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7067 {
7068 TYPE_VPTR_FIELDNO (type) = i;
7069 TYPE_VPTR_BASETYPE (type) = type;
7070 break;
7071 }
7072 }
7073 }
c906108c 7074 }
98751a41
JK
7075
7076 /* Copy fi.typedef_field_list linked list elements content into the
7077 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7078 if (fi.typedef_field_list)
7079 {
7080 int i = fi.typedef_field_list_count;
7081
a0d7a4ff 7082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7083 TYPE_TYPEDEF_FIELD_ARRAY (type)
7084 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7085 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7086
7087 /* Reverse the list order to keep the debug info elements order. */
7088 while (--i >= 0)
7089 {
7090 struct typedef_field *dest, *src;
6e70227d 7091
98751a41
JK
7092 dest = &TYPE_TYPEDEF_FIELD (type, i);
7093 src = &fi.typedef_field_list->field;
7094 fi.typedef_field_list = fi.typedef_field_list->next;
7095 *dest = *src;
7096 }
7097 }
c767944b
DJ
7098
7099 do_cleanups (back_to);
c906108c 7100 }
63d06c5c 7101
0b92b5bb
TT
7102 quirk_gcc_member_function_pointer (type, cu->objfile);
7103
90aeadfc
DC
7104 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7105 snapshots) has been known to create a die giving a declaration
7106 for a class that has, as a child, a die giving a definition for a
7107 nested class. So we have to process our children even if the
7108 current die is a declaration. Normally, of course, a declaration
7109 won't have any children at all. */
134d01f1 7110
90aeadfc
DC
7111 while (child_die != NULL && child_die->tag)
7112 {
7113 if (child_die->tag == DW_TAG_member
7114 || child_die->tag == DW_TAG_variable
34eaf542
TT
7115 || child_die->tag == DW_TAG_inheritance
7116 || child_die->tag == DW_TAG_template_value_param
7117 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7118 {
90aeadfc 7119 /* Do nothing. */
134d01f1 7120 }
90aeadfc
DC
7121 else
7122 process_die (child_die, cu);
134d01f1 7123
90aeadfc 7124 child_die = sibling_die (child_die);
134d01f1
DJ
7125 }
7126
fa4028e9
JB
7127 /* Do not consider external references. According to the DWARF standard,
7128 these DIEs are identified by the fact that they have no byte_size
7129 attribute, and a declaration attribute. */
7130 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7131 || !die_is_declaration (die, cu))
c767944b 7132 new_symbol (die, type, cu);
134d01f1
DJ
7133}
7134
7135/* Given a DW_AT_enumeration_type die, set its type. We do not
7136 complete the type's fields yet, or create any symbols. */
c906108c 7137
f792889a 7138static struct type *
134d01f1 7139read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7140{
e7c27a73 7141 struct objfile *objfile = cu->objfile;
c906108c 7142 struct type *type;
c906108c 7143 struct attribute *attr;
0114d602 7144 const char *name;
134d01f1 7145
348e048f
DE
7146 /* If the definition of this type lives in .debug_types, read that type.
7147 Don't follow DW_AT_specification though, that will take us back up
7148 the chain and we want to go down. */
7149 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7150 if (attr)
7151 {
7152 struct dwarf2_cu *type_cu = cu;
7153 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7154
348e048f 7155 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7156
7157 /* TYPE_CU may not be the same as CU.
7158 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7159 return set_die_type (die, type, cu);
7160 }
7161
c906108c
SS
7162 type = alloc_type (objfile);
7163
7164 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7165 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7166 if (name != NULL)
0114d602 7167 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7168
e142c38c 7169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7170 if (attr)
7171 {
7172 TYPE_LENGTH (type) = DW_UNSND (attr);
7173 }
7174 else
7175 {
7176 TYPE_LENGTH (type) = 0;
7177 }
7178
137033e9
JB
7179 /* The enumeration DIE can be incomplete. In Ada, any type can be
7180 declared as private in the package spec, and then defined only
7181 inside the package body. Such types are known as Taft Amendment
7182 Types. When another package uses such a type, an incomplete DIE
7183 may be generated by the compiler. */
02eb380e 7184 if (die_is_declaration (die, cu))
876cecd0 7185 TYPE_STUB (type) = 1;
02eb380e 7186
f792889a 7187 return set_die_type (die, type, cu);
134d01f1
DJ
7188}
7189
7190/* Given a pointer to a die which begins an enumeration, process all
7191 the dies that define the members of the enumeration, and create the
7192 symbol for the enumeration type.
7193
7194 NOTE: We reverse the order of the element list. */
7195
7196static void
7197process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7198{
f792889a 7199 struct type *this_type;
134d01f1 7200
f792889a
DJ
7201 this_type = get_die_type (die, cu);
7202 if (this_type == NULL)
7203 this_type = read_enumeration_type (die, cu);
9dc481d3 7204
639d11d3 7205 if (die->child != NULL)
c906108c 7206 {
9dc481d3
DE
7207 struct die_info *child_die;
7208 struct symbol *sym;
7209 struct field *fields = NULL;
7210 int num_fields = 0;
7211 int unsigned_enum = 1;
7212 char *name;
7213
639d11d3 7214 child_die = die->child;
c906108c
SS
7215 while (child_die && child_die->tag)
7216 {
7217 if (child_die->tag != DW_TAG_enumerator)
7218 {
e7c27a73 7219 process_die (child_die, cu);
c906108c
SS
7220 }
7221 else
7222 {
39cbfefa
DJ
7223 name = dwarf2_name (child_die, cu);
7224 if (name)
c906108c 7225 {
f792889a 7226 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7227 if (SYMBOL_VALUE (sym) < 0)
7228 unsigned_enum = 0;
7229
7230 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7231 {
7232 fields = (struct field *)
7233 xrealloc (fields,
7234 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7235 * sizeof (struct field));
c906108c
SS
7236 }
7237
3567439c 7238 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7239 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7240 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7241 FIELD_BITSIZE (fields[num_fields]) = 0;
7242
7243 num_fields++;
7244 }
7245 }
7246
7247 child_die = sibling_die (child_die);
7248 }
7249
7250 if (num_fields)
7251 {
f792889a
DJ
7252 TYPE_NFIELDS (this_type) = num_fields;
7253 TYPE_FIELDS (this_type) = (struct field *)
7254 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7255 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7256 sizeof (struct field) * num_fields);
b8c9b27d 7257 xfree (fields);
c906108c
SS
7258 }
7259 if (unsigned_enum)
876cecd0 7260 TYPE_UNSIGNED (this_type) = 1;
c906108c 7261 }
134d01f1 7262
f792889a 7263 new_symbol (die, this_type, cu);
c906108c
SS
7264}
7265
7266/* Extract all information from a DW_TAG_array_type DIE and put it in
7267 the DIE's type field. For now, this only handles one dimensional
7268 arrays. */
7269
f792889a 7270static struct type *
e7c27a73 7271read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7272{
e7c27a73 7273 struct objfile *objfile = cu->objfile;
c906108c 7274 struct die_info *child_die;
7e314c57 7275 struct type *type;
c906108c
SS
7276 struct type *element_type, *range_type, *index_type;
7277 struct type **range_types = NULL;
7278 struct attribute *attr;
7279 int ndim = 0;
7280 struct cleanup *back_to;
39cbfefa 7281 char *name;
c906108c 7282
e7c27a73 7283 element_type = die_type (die, cu);
c906108c 7284
7e314c57
JK
7285 /* The die_type call above may have already set the type for this DIE. */
7286 type = get_die_type (die, cu);
7287 if (type)
7288 return type;
7289
c906108c
SS
7290 /* Irix 6.2 native cc creates array types without children for
7291 arrays with unspecified length. */
639d11d3 7292 if (die->child == NULL)
c906108c 7293 {
46bf5051 7294 index_type = objfile_type (objfile)->builtin_int;
c906108c 7295 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7296 type = create_array_type (NULL, element_type, range_type);
7297 return set_die_type (die, type, cu);
c906108c
SS
7298 }
7299
7300 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7301 child_die = die->child;
c906108c
SS
7302 while (child_die && child_die->tag)
7303 {
7304 if (child_die->tag == DW_TAG_subrange_type)
7305 {
f792889a 7306 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7307
f792889a 7308 if (child_type != NULL)
a02abb62 7309 {
0963b4bd
MS
7310 /* The range type was succesfully read. Save it for the
7311 array type creation. */
a02abb62
JB
7312 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7313 {
7314 range_types = (struct type **)
7315 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7316 * sizeof (struct type *));
7317 if (ndim == 0)
7318 make_cleanup (free_current_contents, &range_types);
7319 }
f792889a 7320 range_types[ndim++] = child_type;
a02abb62 7321 }
c906108c
SS
7322 }
7323 child_die = sibling_die (child_die);
7324 }
7325
7326 /* Dwarf2 dimensions are output from left to right, create the
7327 necessary array types in backwards order. */
7ca2d3a3 7328
c906108c 7329 type = element_type;
7ca2d3a3
DL
7330
7331 if (read_array_order (die, cu) == DW_ORD_col_major)
7332 {
7333 int i = 0;
9a619af0 7334
7ca2d3a3
DL
7335 while (i < ndim)
7336 type = create_array_type (NULL, type, range_types[i++]);
7337 }
7338 else
7339 {
7340 while (ndim-- > 0)
7341 type = create_array_type (NULL, type, range_types[ndim]);
7342 }
c906108c 7343
f5f8a009
EZ
7344 /* Understand Dwarf2 support for vector types (like they occur on
7345 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7346 array type. This is not part of the Dwarf2/3 standard yet, but a
7347 custom vendor extension. The main difference between a regular
7348 array and the vector variant is that vectors are passed by value
7349 to functions. */
e142c38c 7350 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7351 if (attr)
ea37ba09 7352 make_vector_type (type);
f5f8a009 7353
dbc98a8b
KW
7354 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7355 implementation may choose to implement triple vectors using this
7356 attribute. */
7357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7358 if (attr)
7359 {
7360 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7361 TYPE_LENGTH (type) = DW_UNSND (attr);
7362 else
3e43a32a
MS
7363 complaint (&symfile_complaints,
7364 _("DW_AT_byte_size for array type smaller "
7365 "than the total size of elements"));
dbc98a8b
KW
7366 }
7367
39cbfefa
DJ
7368 name = dwarf2_name (die, cu);
7369 if (name)
7370 TYPE_NAME (type) = name;
6e70227d 7371
0963b4bd 7372 /* Install the type in the die. */
7e314c57
JK
7373 set_die_type (die, type, cu);
7374
7375 /* set_die_type should be already done. */
b4ba55a1
JB
7376 set_descriptive_type (type, die, cu);
7377
c906108c
SS
7378 do_cleanups (back_to);
7379
7e314c57 7380 return type;
c906108c
SS
7381}
7382
7ca2d3a3 7383static enum dwarf_array_dim_ordering
6e70227d 7384read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7385{
7386 struct attribute *attr;
7387
7388 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7389
7390 if (attr) return DW_SND (attr);
7391
0963b4bd
MS
7392 /* GNU F77 is a special case, as at 08/2004 array type info is the
7393 opposite order to the dwarf2 specification, but data is still
7394 laid out as per normal fortran.
7ca2d3a3 7395
0963b4bd
MS
7396 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7397 version checking. */
7ca2d3a3 7398
905e0470
PM
7399 if (cu->language == language_fortran
7400 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7401 {
7402 return DW_ORD_row_major;
7403 }
7404
6e70227d 7405 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7406 {
7407 case array_column_major:
7408 return DW_ORD_col_major;
7409 case array_row_major:
7410 default:
7411 return DW_ORD_row_major;
7412 };
7413}
7414
72019c9c 7415/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 7416 the DIE's type field. */
72019c9c 7417
f792889a 7418static struct type *
72019c9c
GM
7419read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7420{
7e314c57
JK
7421 struct type *domain_type, *set_type;
7422 struct attribute *attr;
f792889a 7423
7e314c57
JK
7424 domain_type = die_type (die, cu);
7425
7426 /* The die_type call above may have already set the type for this DIE. */
7427 set_type = get_die_type (die, cu);
7428 if (set_type)
7429 return set_type;
7430
7431 set_type = create_set_type (NULL, domain_type);
7432
7433 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7434 if (attr)
7435 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7436
f792889a 7437 return set_die_type (die, set_type, cu);
72019c9c 7438}
7ca2d3a3 7439
c906108c
SS
7440/* First cut: install each common block member as a global variable. */
7441
7442static void
e7c27a73 7443read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7444{
7445 struct die_info *child_die;
7446 struct attribute *attr;
7447 struct symbol *sym;
7448 CORE_ADDR base = (CORE_ADDR) 0;
7449
e142c38c 7450 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7451 if (attr)
7452 {
0963b4bd 7453 /* Support the .debug_loc offsets. */
8e19ed76
PS
7454 if (attr_form_is_block (attr))
7455 {
e7c27a73 7456 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7457 }
3690dd37 7458 else if (attr_form_is_section_offset (attr))
8e19ed76 7459 {
4d3c2250 7460 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7461 }
7462 else
7463 {
4d3c2250
KB
7464 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7465 "common block member");
8e19ed76 7466 }
c906108c 7467 }
639d11d3 7468 if (die->child != NULL)
c906108c 7469 {
639d11d3 7470 child_die = die->child;
c906108c
SS
7471 while (child_die && child_die->tag)
7472 {
e7c27a73 7473 sym = new_symbol (child_die, NULL, cu);
e142c38c 7474 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
f1078f66 7475 if (sym != NULL && attr != NULL)
c906108c 7476 {
d4b96c9a
JK
7477 CORE_ADDR byte_offset = 0;
7478
7479 if (attr_form_is_section_offset (attr))
7480 dwarf2_complex_location_expr_complaint ();
7481 else if (attr_form_is_constant (attr))
7482 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7483 else if (attr_form_is_block (attr))
7484 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7485 else
7486 dwarf2_complex_location_expr_complaint ();
7487
7488 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
7489 add_symbol_to_list (sym, &global_symbols);
7490 }
7491 child_die = sibling_die (child_die);
7492 }
7493 }
7494}
7495
0114d602 7496/* Create a type for a C++ namespace. */
d9fa45fe 7497
0114d602
DJ
7498static struct type *
7499read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7500{
e7c27a73 7501 struct objfile *objfile = cu->objfile;
0114d602 7502 const char *previous_prefix, *name;
9219021c 7503 int is_anonymous;
0114d602
DJ
7504 struct type *type;
7505
7506 /* For extensions, reuse the type of the original namespace. */
7507 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7508 {
7509 struct die_info *ext_die;
7510 struct dwarf2_cu *ext_cu = cu;
9a619af0 7511
0114d602
DJ
7512 ext_die = dwarf2_extension (die, &ext_cu);
7513 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7514
7515 /* EXT_CU may not be the same as CU.
7516 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7517 return set_die_type (die, type, cu);
7518 }
9219021c 7519
e142c38c 7520 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7521
7522 /* Now build the name of the current namespace. */
7523
0114d602
DJ
7524 previous_prefix = determine_prefix (die, cu);
7525 if (previous_prefix[0] != '\0')
7526 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7527 previous_prefix, name, 0, cu);
0114d602
DJ
7528
7529 /* Create the type. */
7530 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7531 objfile);
7532 TYPE_NAME (type) = (char *) name;
7533 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7534
60531b24 7535 return set_die_type (die, type, cu);
0114d602
DJ
7536}
7537
7538/* Read a C++ namespace. */
7539
7540static void
7541read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7542{
7543 struct objfile *objfile = cu->objfile;
7544 const char *name;
7545 int is_anonymous;
9219021c 7546
5c4e30ca
DC
7547 /* Add a symbol associated to this if we haven't seen the namespace
7548 before. Also, add a using directive if it's an anonymous
7549 namespace. */
9219021c 7550
f2f0e013 7551 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
7552 {
7553 struct type *type;
7554
0114d602 7555 type = read_type_die (die, cu);
e7c27a73 7556 new_symbol (die, type, cu);
5c4e30ca 7557
0114d602 7558 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 7559 if (is_anonymous)
0114d602
DJ
7560 {
7561 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 7562
c0cc3a76 7563 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 7564 NULL, &objfile->objfile_obstack);
0114d602 7565 }
5c4e30ca 7566 }
9219021c 7567
639d11d3 7568 if (die->child != NULL)
d9fa45fe 7569 {
639d11d3 7570 struct die_info *child_die = die->child;
6e70227d 7571
d9fa45fe
DC
7572 while (child_die && child_die->tag)
7573 {
e7c27a73 7574 process_die (child_die, cu);
d9fa45fe
DC
7575 child_die = sibling_die (child_die);
7576 }
7577 }
38d518c9
EZ
7578}
7579
f55ee35c
JK
7580/* Read a Fortran module as type. This DIE can be only a declaration used for
7581 imported module. Still we need that type as local Fortran "use ... only"
7582 declaration imports depend on the created type in determine_prefix. */
7583
7584static struct type *
7585read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7586{
7587 struct objfile *objfile = cu->objfile;
7588 char *module_name;
7589 struct type *type;
7590
7591 module_name = dwarf2_name (die, cu);
7592 if (!module_name)
3e43a32a
MS
7593 complaint (&symfile_complaints,
7594 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
7595 die->offset);
7596 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7597
7598 /* determine_prefix uses TYPE_TAG_NAME. */
7599 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7600
7601 return set_die_type (die, type, cu);
7602}
7603
5d7cb8df
JK
7604/* Read a Fortran module. */
7605
7606static void
7607read_module (struct die_info *die, struct dwarf2_cu *cu)
7608{
7609 struct die_info *child_die = die->child;
7610
5d7cb8df
JK
7611 while (child_die && child_die->tag)
7612 {
7613 process_die (child_die, cu);
7614 child_die = sibling_die (child_die);
7615 }
7616}
7617
38d518c9
EZ
7618/* Return the name of the namespace represented by DIE. Set
7619 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7620 namespace. */
7621
7622static const char *
e142c38c 7623namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
7624{
7625 struct die_info *current_die;
7626 const char *name = NULL;
7627
7628 /* Loop through the extensions until we find a name. */
7629
7630 for (current_die = die;
7631 current_die != NULL;
f2f0e013 7632 current_die = dwarf2_extension (die, &cu))
38d518c9 7633 {
e142c38c 7634 name = dwarf2_name (current_die, cu);
38d518c9
EZ
7635 if (name != NULL)
7636 break;
7637 }
7638
7639 /* Is it an anonymous namespace? */
7640
7641 *is_anonymous = (name == NULL);
7642 if (*is_anonymous)
7643 name = "(anonymous namespace)";
7644
7645 return name;
d9fa45fe
DC
7646}
7647
c906108c
SS
7648/* Extract all information from a DW_TAG_pointer_type DIE and add to
7649 the user defined type vector. */
7650
f792889a 7651static struct type *
e7c27a73 7652read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7653{
5e2b427d 7654 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 7655 struct comp_unit_head *cu_header = &cu->header;
c906108c 7656 struct type *type;
8b2dbe47
KB
7657 struct attribute *attr_byte_size;
7658 struct attribute *attr_address_class;
7659 int byte_size, addr_class;
7e314c57
JK
7660 struct type *target_type;
7661
7662 target_type = die_type (die, cu);
c906108c 7663
7e314c57
JK
7664 /* The die_type call above may have already set the type for this DIE. */
7665 type = get_die_type (die, cu);
7666 if (type)
7667 return type;
7668
7669 type = lookup_pointer_type (target_type);
8b2dbe47 7670
e142c38c 7671 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
7672 if (attr_byte_size)
7673 byte_size = DW_UNSND (attr_byte_size);
c906108c 7674 else
8b2dbe47
KB
7675 byte_size = cu_header->addr_size;
7676
e142c38c 7677 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
7678 if (attr_address_class)
7679 addr_class = DW_UNSND (attr_address_class);
7680 else
7681 addr_class = DW_ADDR_none;
7682
7683 /* If the pointer size or address class is different than the
7684 default, create a type variant marked as such and set the
7685 length accordingly. */
7686 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 7687 {
5e2b427d 7688 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
7689 {
7690 int type_flags;
7691
849957d9 7692 type_flags = gdbarch_address_class_type_flags
5e2b427d 7693 (gdbarch, byte_size, addr_class);
876cecd0
TT
7694 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7695 == 0);
8b2dbe47
KB
7696 type = make_type_with_address_space (type, type_flags);
7697 }
7698 else if (TYPE_LENGTH (type) != byte_size)
7699 {
3e43a32a
MS
7700 complaint (&symfile_complaints,
7701 _("invalid pointer size %d"), byte_size);
8b2dbe47 7702 }
6e70227d 7703 else
9a619af0
MS
7704 {
7705 /* Should we also complain about unhandled address classes? */
7706 }
c906108c 7707 }
8b2dbe47
KB
7708
7709 TYPE_LENGTH (type) = byte_size;
f792889a 7710 return set_die_type (die, type, cu);
c906108c
SS
7711}
7712
7713/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7714 the user defined type vector. */
7715
f792889a 7716static struct type *
e7c27a73 7717read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7718{
7719 struct type *type;
7720 struct type *to_type;
7721 struct type *domain;
7722
e7c27a73
DJ
7723 to_type = die_type (die, cu);
7724 domain = die_containing_type (die, cu);
0d5de010 7725
7e314c57
JK
7726 /* The calls above may have already set the type for this DIE. */
7727 type = get_die_type (die, cu);
7728 if (type)
7729 return type;
7730
0d5de010
DJ
7731 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7732 type = lookup_methodptr_type (to_type);
7733 else
7734 type = lookup_memberptr_type (to_type, domain);
c906108c 7735
f792889a 7736 return set_die_type (die, type, cu);
c906108c
SS
7737}
7738
7739/* Extract all information from a DW_TAG_reference_type DIE and add to
7740 the user defined type vector. */
7741
f792889a 7742static struct type *
e7c27a73 7743read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7744{
e7c27a73 7745 struct comp_unit_head *cu_header = &cu->header;
7e314c57 7746 struct type *type, *target_type;
c906108c
SS
7747 struct attribute *attr;
7748
7e314c57
JK
7749 target_type = die_type (die, cu);
7750
7751 /* The die_type call above may have already set the type for this DIE. */
7752 type = get_die_type (die, cu);
7753 if (type)
7754 return type;
7755
7756 type = lookup_reference_type (target_type);
e142c38c 7757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7758 if (attr)
7759 {
7760 TYPE_LENGTH (type) = DW_UNSND (attr);
7761 }
7762 else
7763 {
107d2387 7764 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7765 }
f792889a 7766 return set_die_type (die, type, cu);
c906108c
SS
7767}
7768
f792889a 7769static struct type *
e7c27a73 7770read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7771{
f792889a 7772 struct type *base_type, *cv_type;
c906108c 7773
e7c27a73 7774 base_type = die_type (die, cu);
7e314c57
JK
7775
7776 /* The die_type call above may have already set the type for this DIE. */
7777 cv_type = get_die_type (die, cu);
7778 if (cv_type)
7779 return cv_type;
7780
2f608a3a
KW
7781 /* In case the const qualifier is applied to an array type, the element type
7782 is so qualified, not the array type (section 6.7.3 of C99). */
7783 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7784 {
7785 struct type *el_type, *inner_array;
7786
7787 base_type = copy_type (base_type);
7788 inner_array = base_type;
7789
7790 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7791 {
7792 TYPE_TARGET_TYPE (inner_array) =
7793 copy_type (TYPE_TARGET_TYPE (inner_array));
7794 inner_array = TYPE_TARGET_TYPE (inner_array);
7795 }
7796
7797 el_type = TYPE_TARGET_TYPE (inner_array);
7798 TYPE_TARGET_TYPE (inner_array) =
7799 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7800
7801 return set_die_type (die, base_type, cu);
7802 }
7803
f792889a
DJ
7804 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7805 return set_die_type (die, cv_type, cu);
c906108c
SS
7806}
7807
f792889a 7808static struct type *
e7c27a73 7809read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7810{
f792889a 7811 struct type *base_type, *cv_type;
c906108c 7812
e7c27a73 7813 base_type = die_type (die, cu);
7e314c57
JK
7814
7815 /* The die_type call above may have already set the type for this DIE. */
7816 cv_type = get_die_type (die, cu);
7817 if (cv_type)
7818 return cv_type;
7819
f792889a
DJ
7820 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7821 return set_die_type (die, cv_type, cu);
c906108c
SS
7822}
7823
7824/* Extract all information from a DW_TAG_string_type DIE and add to
7825 the user defined type vector. It isn't really a user defined type,
7826 but it behaves like one, with other DIE's using an AT_user_def_type
7827 attribute to reference it. */
7828
f792889a 7829static struct type *
e7c27a73 7830read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7831{
e7c27a73 7832 struct objfile *objfile = cu->objfile;
3b7538c0 7833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7834 struct type *type, *range_type, *index_type, *char_type;
7835 struct attribute *attr;
7836 unsigned int length;
7837
e142c38c 7838 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7839 if (attr)
7840 {
7841 length = DW_UNSND (attr);
7842 }
7843 else
7844 {
0963b4bd 7845 /* Check for the DW_AT_byte_size attribute. */
e142c38c 7846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7847 if (attr)
7848 {
7849 length = DW_UNSND (attr);
7850 }
7851 else
7852 {
7853 length = 1;
7854 }
c906108c 7855 }
6ccb9162 7856
46bf5051 7857 index_type = objfile_type (objfile)->builtin_int;
c906108c 7858 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7859 char_type = language_string_char_type (cu->language_defn, gdbarch);
7860 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7861
f792889a 7862 return set_die_type (die, type, cu);
c906108c
SS
7863}
7864
7865/* Handle DIES due to C code like:
7866
7867 struct foo
c5aa993b
JM
7868 {
7869 int (*funcp)(int a, long l);
7870 int b;
7871 };
c906108c 7872
0963b4bd 7873 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 7874
f792889a 7875static struct type *
e7c27a73 7876read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7877{
0963b4bd
MS
7878 struct type *type; /* Type that this function returns. */
7879 struct type *ftype; /* Function that returns above type. */
c906108c
SS
7880 struct attribute *attr;
7881
e7c27a73 7882 type = die_type (die, cu);
7e314c57
JK
7883
7884 /* The die_type call above may have already set the type for this DIE. */
7885 ftype = get_die_type (die, cu);
7886 if (ftype)
7887 return ftype;
7888
0c8b41f1 7889 ftype = lookup_function_type (type);
c906108c 7890
5b8101ae 7891 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7892 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7893 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7894 || cu->language == language_cplus
5b8101ae
PM
7895 || cu->language == language_java
7896 || cu->language == language_pascal)
876cecd0 7897 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7898 else if (producer_is_realview (cu->producer))
7899 /* RealView does not emit DW_AT_prototyped. We can not
7900 distinguish prototyped and unprototyped functions; default to
7901 prototyped, since that is more common in modern code (and
7902 RealView warns about unprototyped functions). */
7903 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7904
c055b101
CV
7905 /* Store the calling convention in the type if it's available in
7906 the subroutine die. Otherwise set the calling convention to
7907 the default value DW_CC_normal. */
7908 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7909 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
7910
7911 /* We need to add the subroutine type to the die immediately so
7912 we don't infinitely recurse when dealing with parameters
0963b4bd 7913 declared as the same subroutine type. */
76c10ea2 7914 set_die_type (die, ftype, cu);
6e70227d 7915
639d11d3 7916 if (die->child != NULL)
c906108c 7917 {
8072405b 7918 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7919 struct die_info *child_die;
8072405b 7920 int nparams, iparams;
c906108c
SS
7921
7922 /* Count the number of parameters.
7923 FIXME: GDB currently ignores vararg functions, but knows about
7924 vararg member functions. */
8072405b 7925 nparams = 0;
639d11d3 7926 child_die = die->child;
c906108c
SS
7927 while (child_die && child_die->tag)
7928 {
7929 if (child_die->tag == DW_TAG_formal_parameter)
7930 nparams++;
7931 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7932 TYPE_VARARGS (ftype) = 1;
c906108c
SS
7933 child_die = sibling_die (child_die);
7934 }
7935
7936 /* Allocate storage for parameters and fill them in. */
7937 TYPE_NFIELDS (ftype) = nparams;
7938 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 7939 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 7940
8072405b
JK
7941 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7942 even if we error out during the parameters reading below. */
7943 for (iparams = 0; iparams < nparams; iparams++)
7944 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7945
7946 iparams = 0;
639d11d3 7947 child_die = die->child;
c906108c
SS
7948 while (child_die && child_die->tag)
7949 {
7950 if (child_die->tag == DW_TAG_formal_parameter)
7951 {
3ce3b1ba
PA
7952 struct type *arg_type;
7953
7954 /* DWARF version 2 has no clean way to discern C++
7955 static and non-static member functions. G++ helps
7956 GDB by marking the first parameter for non-static
7957 member functions (which is the this pointer) as
7958 artificial. We pass this information to
7959 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7960
7961 DWARF version 3 added DW_AT_object_pointer, which GCC
7962 4.5 does not yet generate. */
e142c38c 7963 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
7964 if (attr)
7965 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7966 else
418835cc
KS
7967 {
7968 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7969
7970 /* GCC/43521: In java, the formal parameter
7971 "this" is sometimes not marked with DW_AT_artificial. */
7972 if (cu->language == language_java)
7973 {
7974 const char *name = dwarf2_name (child_die, cu);
9a619af0 7975
418835cc
KS
7976 if (name && !strcmp (name, "this"))
7977 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7978 }
7979 }
3ce3b1ba
PA
7980 arg_type = die_type (child_die, cu);
7981
7982 /* RealView does not mark THIS as const, which the testsuite
7983 expects. GCC marks THIS as const in method definitions,
7984 but not in the class specifications (GCC PR 43053). */
7985 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7986 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7987 {
7988 int is_this = 0;
7989 struct dwarf2_cu *arg_cu = cu;
7990 const char *name = dwarf2_name (child_die, cu);
7991
7992 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7993 if (attr)
7994 {
7995 /* If the compiler emits this, use it. */
7996 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7997 is_this = 1;
7998 }
7999 else if (name && strcmp (name, "this") == 0)
8000 /* Function definitions will have the argument names. */
8001 is_this = 1;
8002 else if (name == NULL && iparams == 0)
8003 /* Declarations may not have the names, so like
8004 elsewhere in GDB, assume an artificial first
8005 argument is "this". */
8006 is_this = 1;
8007
8008 if (is_this)
8009 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8010 arg_type, 0);
8011 }
8012
8013 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8014 iparams++;
8015 }
8016 child_die = sibling_die (child_die);
8017 }
8018 }
8019
76c10ea2 8020 return ftype;
c906108c
SS
8021}
8022
f792889a 8023static struct type *
e7c27a73 8024read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8025{
e7c27a73 8026 struct objfile *objfile = cu->objfile;
0114d602 8027 const char *name = NULL;
f792889a 8028 struct type *this_type;
c906108c 8029
94af9270 8030 name = dwarf2_full_name (NULL, die, cu);
f792889a 8031 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8032 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8033 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
8034 set_die_type (die, this_type, cu);
8035 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8036 return this_type;
c906108c
SS
8037}
8038
8039/* Find a representation of a given base type and install
8040 it in the TYPE field of the die. */
8041
f792889a 8042static struct type *
e7c27a73 8043read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8044{
e7c27a73 8045 struct objfile *objfile = cu->objfile;
c906108c
SS
8046 struct type *type;
8047 struct attribute *attr;
8048 int encoding = 0, size = 0;
39cbfefa 8049 char *name;
6ccb9162
UW
8050 enum type_code code = TYPE_CODE_INT;
8051 int type_flags = 0;
8052 struct type *target_type = NULL;
c906108c 8053
e142c38c 8054 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8055 if (attr)
8056 {
8057 encoding = DW_UNSND (attr);
8058 }
e142c38c 8059 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8060 if (attr)
8061 {
8062 size = DW_UNSND (attr);
8063 }
39cbfefa 8064 name = dwarf2_name (die, cu);
6ccb9162 8065 if (!name)
c906108c 8066 {
6ccb9162
UW
8067 complaint (&symfile_complaints,
8068 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8069 }
6ccb9162
UW
8070
8071 switch (encoding)
c906108c 8072 {
6ccb9162
UW
8073 case DW_ATE_address:
8074 /* Turn DW_ATE_address into a void * pointer. */
8075 code = TYPE_CODE_PTR;
8076 type_flags |= TYPE_FLAG_UNSIGNED;
8077 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8078 break;
8079 case DW_ATE_boolean:
8080 code = TYPE_CODE_BOOL;
8081 type_flags |= TYPE_FLAG_UNSIGNED;
8082 break;
8083 case DW_ATE_complex_float:
8084 code = TYPE_CODE_COMPLEX;
8085 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8086 break;
8087 case DW_ATE_decimal_float:
8088 code = TYPE_CODE_DECFLOAT;
8089 break;
8090 case DW_ATE_float:
8091 code = TYPE_CODE_FLT;
8092 break;
8093 case DW_ATE_signed:
8094 break;
8095 case DW_ATE_unsigned:
8096 type_flags |= TYPE_FLAG_UNSIGNED;
8097 break;
8098 case DW_ATE_signed_char:
6e70227d 8099 if (cu->language == language_ada || cu->language == language_m2
868a0084 8100 || cu->language == language_pascal)
6ccb9162
UW
8101 code = TYPE_CODE_CHAR;
8102 break;
8103 case DW_ATE_unsigned_char:
868a0084
PM
8104 if (cu->language == language_ada || cu->language == language_m2
8105 || cu->language == language_pascal)
6ccb9162
UW
8106 code = TYPE_CODE_CHAR;
8107 type_flags |= TYPE_FLAG_UNSIGNED;
8108 break;
75079b2b
TT
8109 case DW_ATE_UTF:
8110 /* We just treat this as an integer and then recognize the
8111 type by name elsewhere. */
8112 break;
8113
6ccb9162
UW
8114 default:
8115 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8116 dwarf_type_encoding_name (encoding));
8117 break;
c906108c 8118 }
6ccb9162 8119
0114d602
DJ
8120 type = init_type (code, size, type_flags, NULL, objfile);
8121 TYPE_NAME (type) = name;
6ccb9162
UW
8122 TYPE_TARGET_TYPE (type) = target_type;
8123
0114d602 8124 if (name && strcmp (name, "char") == 0)
876cecd0 8125 TYPE_NOSIGN (type) = 1;
0114d602 8126
f792889a 8127 return set_die_type (die, type, cu);
c906108c
SS
8128}
8129
a02abb62
JB
8130/* Read the given DW_AT_subrange DIE. */
8131
f792889a 8132static struct type *
a02abb62
JB
8133read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8134{
5e2b427d 8135 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
8136 struct type *base_type;
8137 struct type *range_type;
8138 struct attribute *attr;
43bbcdc2
PH
8139 LONGEST low = 0;
8140 LONGEST high = -1;
39cbfefa 8141 char *name;
43bbcdc2 8142 LONGEST negative_mask;
e77813c8 8143
a02abb62 8144 base_type = die_type (die, cu);
953ac07e
JK
8145 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8146 check_typedef (base_type);
a02abb62 8147
7e314c57
JK
8148 /* The die_type call above may have already set the type for this DIE. */
8149 range_type = get_die_type (die, cu);
8150 if (range_type)
8151 return range_type;
8152
e142c38c 8153 if (cu->language == language_fortran)
6e70227d 8154 {
a02abb62
JB
8155 /* FORTRAN implies a lower bound of 1, if not given. */
8156 low = 1;
8157 }
8158
dd5e6932
DJ
8159 /* FIXME: For variable sized arrays either of these could be
8160 a variable rather than a constant value. We'll allow it,
8161 but we don't know how to handle it. */
e142c38c 8162 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8163 if (attr)
8164 low = dwarf2_get_attr_constant_value (attr, 0);
8165
e142c38c 8166 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8167 if (attr)
6e70227d 8168 {
e77813c8 8169 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
8170 {
8171 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8172 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8173 FIXME: GDB does not yet know how to handle dynamic
8174 arrays properly, treat them as arrays with unspecified
8175 length for now.
8176
8177 FIXME: jimb/2003-09-22: GDB does not really know
8178 how to handle arrays of unspecified length
8179 either; we just represent them as zero-length
8180 arrays. Choose an appropriate upper bound given
8181 the lower bound we've computed above. */
8182 high = low - 1;
8183 }
8184 else
8185 high = dwarf2_get_attr_constant_value (attr, 1);
8186 }
e77813c8
PM
8187 else
8188 {
8189 attr = dwarf2_attr (die, DW_AT_count, cu);
8190 if (attr)
8191 {
8192 int count = dwarf2_get_attr_constant_value (attr, 1);
8193 high = low + count - 1;
8194 }
8195 }
8196
8197 /* Dwarf-2 specifications explicitly allows to create subrange types
8198 without specifying a base type.
8199 In that case, the base type must be set to the type of
8200 the lower bound, upper bound or count, in that order, if any of these
8201 three attributes references an object that has a type.
8202 If no base type is found, the Dwarf-2 specifications say that
8203 a signed integer type of size equal to the size of an address should
8204 be used.
8205 For the following C code: `extern char gdb_int [];'
8206 GCC produces an empty range DIE.
8207 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 8208 high bound or count are not yet handled by this code. */
e77813c8
PM
8209 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8210 {
8211 struct objfile *objfile = cu->objfile;
8212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8213 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8214 struct type *int_type = objfile_type (objfile)->builtin_int;
8215
8216 /* Test "int", "long int", and "long long int" objfile types,
8217 and select the first one having a size above or equal to the
8218 architecture address size. */
8219 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8220 base_type = int_type;
8221 else
8222 {
8223 int_type = objfile_type (objfile)->builtin_long;
8224 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8225 base_type = int_type;
8226 else
8227 {
8228 int_type = objfile_type (objfile)->builtin_long_long;
8229 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8230 base_type = int_type;
8231 }
8232 }
8233 }
a02abb62 8234
6e70227d 8235 negative_mask =
43bbcdc2
PH
8236 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8237 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8238 low |= negative_mask;
8239 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8240 high |= negative_mask;
8241
a02abb62
JB
8242 range_type = create_range_type (NULL, base_type, low, high);
8243
bbb0eef6
JK
8244 /* Mark arrays with dynamic length at least as an array of unspecified
8245 length. GDB could check the boundary but before it gets implemented at
8246 least allow accessing the array elements. */
8247 if (attr && attr->form == DW_FORM_block1)
8248 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8249
39cbfefa
DJ
8250 name = dwarf2_name (die, cu);
8251 if (name)
8252 TYPE_NAME (range_type) = name;
6e70227d 8253
e142c38c 8254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8255 if (attr)
8256 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8257
7e314c57
JK
8258 set_die_type (die, range_type, cu);
8259
8260 /* set_die_type should be already done. */
b4ba55a1
JB
8261 set_descriptive_type (range_type, die, cu);
8262
7e314c57 8263 return range_type;
a02abb62 8264}
6e70227d 8265
f792889a 8266static struct type *
81a17f79
JB
8267read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8268{
8269 struct type *type;
81a17f79 8270
81a17f79
JB
8271 /* For now, we only support the C meaning of an unspecified type: void. */
8272
0114d602
DJ
8273 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8274 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8275
f792889a 8276 return set_die_type (die, type, cu);
81a17f79 8277}
a02abb62 8278
51545339
DJ
8279/* Trivial hash function for die_info: the hash value of a DIE
8280 is its offset in .debug_info for this objfile. */
8281
8282static hashval_t
8283die_hash (const void *item)
8284{
8285 const struct die_info *die = item;
9a619af0 8286
51545339
DJ
8287 return die->offset;
8288}
8289
8290/* Trivial comparison function for die_info structures: two DIEs
8291 are equal if they have the same offset. */
8292
8293static int
8294die_eq (const void *item_lhs, const void *item_rhs)
8295{
8296 const struct die_info *die_lhs = item_lhs;
8297 const struct die_info *die_rhs = item_rhs;
9a619af0 8298
51545339
DJ
8299 return die_lhs->offset == die_rhs->offset;
8300}
8301
c906108c
SS
8302/* Read a whole compilation unit into a linked list of dies. */
8303
f9aca02d 8304static struct die_info *
93311388 8305read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8306{
93311388 8307 struct die_reader_specs reader_specs;
98bfdba5 8308 int read_abbrevs = 0;
1d9ec526 8309 struct cleanup *back_to = NULL;
98bfdba5
PA
8310 struct die_info *die;
8311
8312 if (cu->dwarf2_abbrevs == NULL)
8313 {
8314 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8315 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8316 read_abbrevs = 1;
8317 }
93311388 8318
348e048f 8319 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8320 cu->die_hash
8321 = htab_create_alloc_ex (cu->header.length / 12,
8322 die_hash,
8323 die_eq,
8324 NULL,
8325 &cu->comp_unit_obstack,
8326 hashtab_obstack_allocate,
8327 dummy_obstack_deallocate);
8328
93311388
DE
8329 init_cu_die_reader (&reader_specs, cu);
8330
98bfdba5
PA
8331 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8332
8333 if (read_abbrevs)
8334 do_cleanups (back_to);
8335
8336 return die;
639d11d3
DC
8337}
8338
d97bc12b
DE
8339/* Main entry point for reading a DIE and all children.
8340 Read the DIE and dump it if requested. */
8341
8342static struct die_info *
93311388
DE
8343read_die_and_children (const struct die_reader_specs *reader,
8344 gdb_byte *info_ptr,
d97bc12b
DE
8345 gdb_byte **new_info_ptr,
8346 struct die_info *parent)
8347{
93311388 8348 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8349 new_info_ptr, parent);
8350
8351 if (dwarf2_die_debug)
8352 {
348e048f
DE
8353 fprintf_unfiltered (gdb_stdlog,
8354 "\nRead die from %s of %s:\n",
8355 reader->buffer == dwarf2_per_objfile->info.buffer
8356 ? ".debug_info"
8357 : reader->buffer == dwarf2_per_objfile->types.buffer
8358 ? ".debug_types"
8359 : "unknown section",
8360 reader->abfd->filename);
d97bc12b
DE
8361 dump_die (result, dwarf2_die_debug);
8362 }
8363
8364 return result;
8365}
8366
639d11d3
DC
8367/* Read a single die and all its descendents. Set the die's sibling
8368 field to NULL; set other fields in the die correctly, and set all
8369 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8370 location of the info_ptr after reading all of those dies. PARENT
8371 is the parent of the die in question. */
8372
8373static struct die_info *
93311388
DE
8374read_die_and_children_1 (const struct die_reader_specs *reader,
8375 gdb_byte *info_ptr,
d97bc12b
DE
8376 gdb_byte **new_info_ptr,
8377 struct die_info *parent)
639d11d3
DC
8378{
8379 struct die_info *die;
fe1b8b76 8380 gdb_byte *cur_ptr;
639d11d3
DC
8381 int has_children;
8382
93311388 8383 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8384 if (die == NULL)
8385 {
8386 *new_info_ptr = cur_ptr;
8387 return NULL;
8388 }
93311388 8389 store_in_ref_table (die, reader->cu);
639d11d3
DC
8390
8391 if (has_children)
348e048f 8392 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8393 else
8394 {
8395 die->child = NULL;
8396 *new_info_ptr = cur_ptr;
8397 }
8398
8399 die->sibling = NULL;
8400 die->parent = parent;
8401 return die;
8402}
8403
8404/* Read a die, all of its descendents, and all of its siblings; set
8405 all of the fields of all of the dies correctly. Arguments are as
8406 in read_die_and_children. */
8407
8408static struct die_info *
93311388
DE
8409read_die_and_siblings (const struct die_reader_specs *reader,
8410 gdb_byte *info_ptr,
fe1b8b76 8411 gdb_byte **new_info_ptr,
639d11d3
DC
8412 struct die_info *parent)
8413{
8414 struct die_info *first_die, *last_sibling;
fe1b8b76 8415 gdb_byte *cur_ptr;
639d11d3 8416
c906108c 8417 cur_ptr = info_ptr;
639d11d3
DC
8418 first_die = last_sibling = NULL;
8419
8420 while (1)
c906108c 8421 {
639d11d3 8422 struct die_info *die
93311388 8423 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8424
1d325ec1 8425 if (die == NULL)
c906108c 8426 {
639d11d3
DC
8427 *new_info_ptr = cur_ptr;
8428 return first_die;
c906108c 8429 }
1d325ec1
DJ
8430
8431 if (!first_die)
8432 first_die = die;
c906108c 8433 else
1d325ec1
DJ
8434 last_sibling->sibling = die;
8435
8436 last_sibling = die;
c906108c 8437 }
c906108c
SS
8438}
8439
93311388
DE
8440/* Read the die from the .debug_info section buffer. Set DIEP to
8441 point to a newly allocated die with its information, except for its
8442 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8443 whether the die has children or not. */
8444
8445static gdb_byte *
8446read_full_die (const struct die_reader_specs *reader,
8447 struct die_info **diep, gdb_byte *info_ptr,
8448 int *has_children)
8449{
8450 unsigned int abbrev_number, bytes_read, i, offset;
8451 struct abbrev_info *abbrev;
8452 struct die_info *die;
8453 struct dwarf2_cu *cu = reader->cu;
8454 bfd *abfd = reader->abfd;
8455
8456 offset = info_ptr - reader->buffer;
8457 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8458 info_ptr += bytes_read;
8459 if (!abbrev_number)
8460 {
8461 *diep = NULL;
8462 *has_children = 0;
8463 return info_ptr;
8464 }
8465
8466 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8467 if (!abbrev)
348e048f
DE
8468 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8469 abbrev_number,
8470 bfd_get_filename (abfd));
8471
93311388
DE
8472 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8473 die->offset = offset;
8474 die->tag = abbrev->tag;
8475 die->abbrev = abbrev_number;
8476
8477 die->num_attrs = abbrev->num_attrs;
8478
8479 for (i = 0; i < abbrev->num_attrs; ++i)
8480 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8481 abfd, info_ptr, cu);
8482
8483 *diep = die;
8484 *has_children = abbrev->has_children;
8485 return info_ptr;
8486}
8487
c906108c
SS
8488/* In DWARF version 2, the description of the debugging information is
8489 stored in a separate .debug_abbrev section. Before we read any
8490 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8491 in a hash table. This function also sets flags in CU describing
8492 the data found in the abbrev table. */
c906108c
SS
8493
8494static void
e7c27a73 8495dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8496{
e7c27a73 8497 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8498 gdb_byte *abbrev_ptr;
c906108c
SS
8499 struct abbrev_info *cur_abbrev;
8500 unsigned int abbrev_number, bytes_read, abbrev_name;
8501 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8502 struct attr_abbrev *cur_attrs;
8503 unsigned int allocated_attrs;
c906108c 8504
0963b4bd 8505 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
8506 obstack_init (&cu->abbrev_obstack);
8507 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8508 (ABBREV_HASH_SIZE
8509 * sizeof (struct abbrev_info *)));
8510 memset (cu->dwarf2_abbrevs, 0,
8511 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8512
be391dca
TT
8513 dwarf2_read_section (dwarf2_per_objfile->objfile,
8514 &dwarf2_per_objfile->abbrev);
dce234bc 8515 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
8516 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8517 abbrev_ptr += bytes_read;
8518
f3dd6933
DJ
8519 allocated_attrs = ATTR_ALLOC_CHUNK;
8520 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 8521
0963b4bd 8522 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
8523 while (abbrev_number)
8524 {
f3dd6933 8525 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
8526
8527 /* read in abbrev header */
8528 cur_abbrev->number = abbrev_number;
8529 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8530 abbrev_ptr += bytes_read;
8531 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8532 abbrev_ptr += 1;
8533
72bf9492
DJ
8534 if (cur_abbrev->tag == DW_TAG_namespace)
8535 cu->has_namespace_info = 1;
8536
c906108c
SS
8537 /* now read in declarations */
8538 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8539 abbrev_ptr += bytes_read;
8540 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8541 abbrev_ptr += bytes_read;
8542 while (abbrev_name)
8543 {
f3dd6933 8544 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 8545 {
f3dd6933
DJ
8546 allocated_attrs += ATTR_ALLOC_CHUNK;
8547 cur_attrs
8548 = xrealloc (cur_attrs, (allocated_attrs
8549 * sizeof (struct attr_abbrev)));
c906108c 8550 }
ae038cb0
DJ
8551
8552 /* Record whether this compilation unit might have
8553 inter-compilation-unit references. If we don't know what form
8554 this attribute will have, then it might potentially be a
8555 DW_FORM_ref_addr, so we conservatively expect inter-CU
8556 references. */
8557
8558 if (abbrev_form == DW_FORM_ref_addr
8559 || abbrev_form == DW_FORM_indirect)
8560 cu->has_form_ref_addr = 1;
8561
f3dd6933
DJ
8562 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8563 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
8564 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8565 abbrev_ptr += bytes_read;
8566 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8567 abbrev_ptr += bytes_read;
8568 }
8569
f3dd6933
DJ
8570 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8571 (cur_abbrev->num_attrs
8572 * sizeof (struct attr_abbrev)));
8573 memcpy (cur_abbrev->attrs, cur_attrs,
8574 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8575
c906108c 8576 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
8577 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8578 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
8579
8580 /* Get next abbreviation.
8581 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
8582 always properly terminated with an abbrev number of 0.
8583 Exit loop if we encounter an abbreviation which we have
8584 already read (which means we are about to read the abbreviations
8585 for the next compile unit) or if the end of the abbreviation
8586 table is reached. */
dce234bc
PP
8587 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8588 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
8589 break;
8590 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8591 abbrev_ptr += bytes_read;
e7c27a73 8592 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
8593 break;
8594 }
f3dd6933
DJ
8595
8596 xfree (cur_attrs);
c906108c
SS
8597}
8598
f3dd6933 8599/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 8600
c906108c 8601static void
f3dd6933 8602dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 8603{
f3dd6933 8604 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 8605
f3dd6933
DJ
8606 obstack_free (&cu->abbrev_obstack, NULL);
8607 cu->dwarf2_abbrevs = NULL;
c906108c
SS
8608}
8609
8610/* Lookup an abbrev_info structure in the abbrev hash table. */
8611
8612static struct abbrev_info *
e7c27a73 8613dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
8614{
8615 unsigned int hash_number;
8616 struct abbrev_info *abbrev;
8617
8618 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 8619 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
8620
8621 while (abbrev)
8622 {
8623 if (abbrev->number == number)
8624 return abbrev;
8625 else
8626 abbrev = abbrev->next;
8627 }
8628 return NULL;
8629}
8630
72bf9492
DJ
8631/* Returns nonzero if TAG represents a type that we might generate a partial
8632 symbol for. */
8633
8634static int
8635is_type_tag_for_partial (int tag)
8636{
8637 switch (tag)
8638 {
8639#if 0
8640 /* Some types that would be reasonable to generate partial symbols for,
8641 that we don't at present. */
8642 case DW_TAG_array_type:
8643 case DW_TAG_file_type:
8644 case DW_TAG_ptr_to_member_type:
8645 case DW_TAG_set_type:
8646 case DW_TAG_string_type:
8647 case DW_TAG_subroutine_type:
8648#endif
8649 case DW_TAG_base_type:
8650 case DW_TAG_class_type:
680b30c7 8651 case DW_TAG_interface_type:
72bf9492
DJ
8652 case DW_TAG_enumeration_type:
8653 case DW_TAG_structure_type:
8654 case DW_TAG_subrange_type:
8655 case DW_TAG_typedef:
8656 case DW_TAG_union_type:
8657 return 1;
8658 default:
8659 return 0;
8660 }
8661}
8662
8663/* Load all DIEs that are interesting for partial symbols into memory. */
8664
8665static struct partial_die_info *
93311388
DE
8666load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8667 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
8668{
8669 struct partial_die_info *part_die;
8670 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8671 struct abbrev_info *abbrev;
8672 unsigned int bytes_read;
5afb4e99 8673 unsigned int load_all = 0;
72bf9492
DJ
8674
8675 int nesting_level = 1;
8676
8677 parent_die = NULL;
8678 last_die = NULL;
8679
5afb4e99
DJ
8680 if (cu->per_cu && cu->per_cu->load_all_dies)
8681 load_all = 1;
8682
72bf9492
DJ
8683 cu->partial_dies
8684 = htab_create_alloc_ex (cu->header.length / 12,
8685 partial_die_hash,
8686 partial_die_eq,
8687 NULL,
8688 &cu->comp_unit_obstack,
8689 hashtab_obstack_allocate,
8690 dummy_obstack_deallocate);
8691
8692 part_die = obstack_alloc (&cu->comp_unit_obstack,
8693 sizeof (struct partial_die_info));
8694
8695 while (1)
8696 {
8697 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8698
8699 /* A NULL abbrev means the end of a series of children. */
8700 if (abbrev == NULL)
8701 {
8702 if (--nesting_level == 0)
8703 {
8704 /* PART_DIE was probably the last thing allocated on the
8705 comp_unit_obstack, so we could call obstack_free
8706 here. We don't do that because the waste is small,
8707 and will be cleaned up when we're done with this
8708 compilation unit. This way, we're also more robust
8709 against other users of the comp_unit_obstack. */
8710 return first_die;
8711 }
8712 info_ptr += bytes_read;
8713 last_die = parent_die;
8714 parent_die = parent_die->die_parent;
8715 continue;
8716 }
8717
98bfdba5
PA
8718 /* Check for template arguments. We never save these; if
8719 they're seen, we just mark the parent, and go on our way. */
8720 if (parent_die != NULL
8721 && cu->language == language_cplus
8722 && (abbrev->tag == DW_TAG_template_type_param
8723 || abbrev->tag == DW_TAG_template_value_param))
8724 {
8725 parent_die->has_template_arguments = 1;
8726
8727 if (!load_all)
8728 {
8729 /* We don't need a partial DIE for the template argument. */
8730 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8731 cu);
8732 continue;
8733 }
8734 }
8735
8736 /* We only recurse into subprograms looking for template arguments.
8737 Skip their other children. */
8738 if (!load_all
8739 && cu->language == language_cplus
8740 && parent_die != NULL
8741 && parent_die->tag == DW_TAG_subprogram)
8742 {
8743 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8744 continue;
8745 }
8746
5afb4e99
DJ
8747 /* Check whether this DIE is interesting enough to save. Normally
8748 we would not be interested in members here, but there may be
8749 later variables referencing them via DW_AT_specification (for
8750 static members). */
8751 if (!load_all
8752 && !is_type_tag_for_partial (abbrev->tag)
72929c62 8753 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
8754 && abbrev->tag != DW_TAG_enumerator
8755 && abbrev->tag != DW_TAG_subprogram
bc30ff58 8756 && abbrev->tag != DW_TAG_lexical_block
72bf9492 8757 && abbrev->tag != DW_TAG_variable
5afb4e99 8758 && abbrev->tag != DW_TAG_namespace
f55ee35c 8759 && abbrev->tag != DW_TAG_module
5afb4e99 8760 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
8761 {
8762 /* Otherwise we skip to the next sibling, if any. */
93311388 8763 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
8764 continue;
8765 }
8766
93311388
DE
8767 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8768 buffer, info_ptr, cu);
72bf9492
DJ
8769
8770 /* This two-pass algorithm for processing partial symbols has a
8771 high cost in cache pressure. Thus, handle some simple cases
8772 here which cover the majority of C partial symbols. DIEs
8773 which neither have specification tags in them, nor could have
8774 specification tags elsewhere pointing at them, can simply be
8775 processed and discarded.
8776
8777 This segment is also optional; scan_partial_symbols and
8778 add_partial_symbol will handle these DIEs if we chain
8779 them in normally. When compilers which do not emit large
8780 quantities of duplicate debug information are more common,
8781 this code can probably be removed. */
8782
8783 /* Any complete simple types at the top level (pretty much all
8784 of them, for a language without namespaces), can be processed
8785 directly. */
8786 if (parent_die == NULL
8787 && part_die->has_specification == 0
8788 && part_die->is_declaration == 0
8789 && (part_die->tag == DW_TAG_typedef
8790 || part_die->tag == DW_TAG_base_type
8791 || part_die->tag == DW_TAG_subrange_type))
8792 {
8793 if (building_psymtab && part_die->name != NULL)
04a679b8 8794 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
8795 VAR_DOMAIN, LOC_TYPEDEF,
8796 &cu->objfile->static_psymbols,
8797 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 8798 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8799 continue;
8800 }
8801
8802 /* If we're at the second level, and we're an enumerator, and
8803 our parent has no specification (meaning possibly lives in a
8804 namespace elsewhere), then we can add the partial symbol now
8805 instead of queueing it. */
8806 if (part_die->tag == DW_TAG_enumerator
8807 && parent_die != NULL
8808 && parent_die->die_parent == NULL
8809 && parent_die->tag == DW_TAG_enumeration_type
8810 && parent_die->has_specification == 0)
8811 {
8812 if (part_die->name == NULL)
3e43a32a
MS
8813 complaint (&symfile_complaints,
8814 _("malformed enumerator DIE ignored"));
72bf9492 8815 else if (building_psymtab)
04a679b8 8816 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 8817 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
8818 (cu->language == language_cplus
8819 || cu->language == language_java)
72bf9492
DJ
8820 ? &cu->objfile->global_psymbols
8821 : &cu->objfile->static_psymbols,
8822 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8823
93311388 8824 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8825 continue;
8826 }
8827
8828 /* We'll save this DIE so link it in. */
8829 part_die->die_parent = parent_die;
8830 part_die->die_sibling = NULL;
8831 part_die->die_child = NULL;
8832
8833 if (last_die && last_die == parent_die)
8834 last_die->die_child = part_die;
8835 else if (last_die)
8836 last_die->die_sibling = part_die;
8837
8838 last_die = part_die;
8839
8840 if (first_die == NULL)
8841 first_die = part_die;
8842
8843 /* Maybe add the DIE to the hash table. Not all DIEs that we
8844 find interesting need to be in the hash table, because we
8845 also have the parent/sibling/child chains; only those that we
8846 might refer to by offset later during partial symbol reading.
8847
8848 For now this means things that might have be the target of a
8849 DW_AT_specification, DW_AT_abstract_origin, or
8850 DW_AT_extension. DW_AT_extension will refer only to
8851 namespaces; DW_AT_abstract_origin refers to functions (and
8852 many things under the function DIE, but we do not recurse
8853 into function DIEs during partial symbol reading) and
8854 possibly variables as well; DW_AT_specification refers to
8855 declarations. Declarations ought to have the DW_AT_declaration
8856 flag. It happens that GCC forgets to put it in sometimes, but
8857 only for functions, not for types.
8858
8859 Adding more things than necessary to the hash table is harmless
8860 except for the performance cost. Adding too few will result in
5afb4e99
DJ
8861 wasted time in find_partial_die, when we reread the compilation
8862 unit with load_all_dies set. */
72bf9492 8863
5afb4e99 8864 if (load_all
72929c62 8865 || abbrev->tag == DW_TAG_constant
5afb4e99 8866 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
8867 || abbrev->tag == DW_TAG_variable
8868 || abbrev->tag == DW_TAG_namespace
8869 || part_die->is_declaration)
8870 {
8871 void **slot;
8872
8873 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8874 part_die->offset, INSERT);
8875 *slot = part_die;
8876 }
8877
8878 part_die = obstack_alloc (&cu->comp_unit_obstack,
8879 sizeof (struct partial_die_info));
8880
8881 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8882 we have no reason to follow the children of structures; for other
98bfdba5
PA
8883 languages we have to, so that we can get at method physnames
8884 to infer fully qualified class names, for DW_AT_specification,
8885 and for C++ template arguments. For C++, we also look one level
8886 inside functions to find template arguments (if the name of the
8887 function does not already contain the template arguments).
bc30ff58
JB
8888
8889 For Ada, we need to scan the children of subprograms and lexical
8890 blocks as well because Ada allows the definition of nested
8891 entities that could be interesting for the debugger, such as
8892 nested subprograms for instance. */
72bf9492 8893 if (last_die->has_children
5afb4e99
DJ
8894 && (load_all
8895 || last_die->tag == DW_TAG_namespace
f55ee35c 8896 || last_die->tag == DW_TAG_module
72bf9492 8897 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
8898 || (cu->language == language_cplus
8899 && last_die->tag == DW_TAG_subprogram
8900 && (last_die->name == NULL
8901 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
8902 || (cu->language != language_c
8903 && (last_die->tag == DW_TAG_class_type
680b30c7 8904 || last_die->tag == DW_TAG_interface_type
72bf9492 8905 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8906 || last_die->tag == DW_TAG_union_type))
8907 || (cu->language == language_ada
8908 && (last_die->tag == DW_TAG_subprogram
8909 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8910 {
8911 nesting_level++;
8912 parent_die = last_die;
8913 continue;
8914 }
8915
8916 /* Otherwise we skip to the next sibling, if any. */
93311388 8917 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8918
8919 /* Back to the top, do it again. */
8920 }
8921}
8922
c906108c
SS
8923/* Read a minimal amount of information into the minimal die structure. */
8924
fe1b8b76 8925static gdb_byte *
72bf9492
DJ
8926read_partial_die (struct partial_die_info *part_die,
8927 struct abbrev_info *abbrev,
8928 unsigned int abbrev_len, bfd *abfd,
93311388
DE
8929 gdb_byte *buffer, gdb_byte *info_ptr,
8930 struct dwarf2_cu *cu)
c906108c 8931{
fa238c03 8932 unsigned int i;
c906108c 8933 struct attribute attr;
c5aa993b 8934 int has_low_pc_attr = 0;
c906108c
SS
8935 int has_high_pc_attr = 0;
8936
72bf9492 8937 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 8938
93311388 8939 part_die->offset = info_ptr - buffer;
72bf9492
DJ
8940
8941 info_ptr += abbrev_len;
8942
8943 if (abbrev == NULL)
8944 return info_ptr;
8945
c906108c
SS
8946 part_die->tag = abbrev->tag;
8947 part_die->has_children = abbrev->has_children;
c906108c
SS
8948
8949 for (i = 0; i < abbrev->num_attrs; ++i)
8950 {
e7c27a73 8951 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
8952
8953 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 8954 partial symbol table. */
c906108c
SS
8955 switch (attr.name)
8956 {
8957 case DW_AT_name:
71c25dea
TT
8958 switch (part_die->tag)
8959 {
8960 case DW_TAG_compile_unit:
348e048f 8961 case DW_TAG_type_unit:
71c25dea
TT
8962 /* Compilation units have a DW_AT_name that is a filename, not
8963 a source language identifier. */
8964 case DW_TAG_enumeration_type:
8965 case DW_TAG_enumerator:
8966 /* These tags always have simple identifiers already; no need
8967 to canonicalize them. */
8968 part_die->name = DW_STRING (&attr);
8969 break;
8970 default:
8971 part_die->name
8972 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 8973 &cu->objfile->objfile_obstack);
71c25dea
TT
8974 break;
8975 }
c906108c 8976 break;
31ef98ae 8977 case DW_AT_linkage_name:
c906108c 8978 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
8979 /* Note that both forms of linkage name might appear. We
8980 assume they will be the same, and we only store the last
8981 one we see. */
94af9270
KS
8982 if (cu->language == language_ada)
8983 part_die->name = DW_STRING (&attr);
abc72ce4 8984 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
8985 break;
8986 case DW_AT_low_pc:
8987 has_low_pc_attr = 1;
8988 part_die->lowpc = DW_ADDR (&attr);
8989 break;
8990 case DW_AT_high_pc:
8991 has_high_pc_attr = 1;
8992 part_die->highpc = DW_ADDR (&attr);
8993 break;
8994 case DW_AT_location:
0963b4bd 8995 /* Support the .debug_loc offsets. */
8e19ed76
PS
8996 if (attr_form_is_block (&attr))
8997 {
8998 part_die->locdesc = DW_BLOCK (&attr);
8999 }
3690dd37 9000 else if (attr_form_is_section_offset (&attr))
8e19ed76 9001 {
4d3c2250 9002 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9003 }
9004 else
9005 {
4d3c2250
KB
9006 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9007 "partial symbol information");
8e19ed76 9008 }
c906108c 9009 break;
c906108c
SS
9010 case DW_AT_external:
9011 part_die->is_external = DW_UNSND (&attr);
9012 break;
9013 case DW_AT_declaration:
9014 part_die->is_declaration = DW_UNSND (&attr);
9015 break;
9016 case DW_AT_type:
9017 part_die->has_type = 1;
9018 break;
9019 case DW_AT_abstract_origin:
9020 case DW_AT_specification:
72bf9492
DJ
9021 case DW_AT_extension:
9022 part_die->has_specification = 1;
c764a876 9023 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9024 break;
9025 case DW_AT_sibling:
9026 /* Ignore absolute siblings, they might point outside of
9027 the current compile unit. */
9028 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9029 complaint (&symfile_complaints,
9030 _("ignoring absolute DW_AT_sibling"));
c906108c 9031 else
93311388 9032 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9033 break;
fa4028e9
JB
9034 case DW_AT_byte_size:
9035 part_die->has_byte_size = 1;
9036 break;
68511cec
CES
9037 case DW_AT_calling_convention:
9038 /* DWARF doesn't provide a way to identify a program's source-level
9039 entry point. DW_AT_calling_convention attributes are only meant
9040 to describe functions' calling conventions.
9041
9042 However, because it's a necessary piece of information in
9043 Fortran, and because DW_CC_program is the only piece of debugging
9044 information whose definition refers to a 'main program' at all,
9045 several compilers have begun marking Fortran main programs with
9046 DW_CC_program --- even when those functions use the standard
9047 calling conventions.
9048
9049 So until DWARF specifies a way to provide this information and
9050 compilers pick up the new representation, we'll support this
9051 practice. */
9052 if (DW_UNSND (&attr) == DW_CC_program
9053 && cu->language == language_fortran)
01f8c46d
JK
9054 {
9055 set_main_name (part_die->name);
9056
9057 /* As this DIE has a static linkage the name would be difficult
9058 to look up later. */
9059 language_of_main = language_fortran;
9060 }
68511cec 9061 break;
c906108c
SS
9062 default:
9063 break;
9064 }
9065 }
9066
c906108c
SS
9067 /* When using the GNU linker, .gnu.linkonce. sections are used to
9068 eliminate duplicate copies of functions and vtables and such.
9069 The linker will arbitrarily choose one and discard the others.
9070 The AT_*_pc values for such functions refer to local labels in
9071 these sections. If the section from that file was discarded, the
9072 labels are not in the output, so the relocs get a value of 0.
9073 If this is a discarded function, mark the pc bounds as invalid,
9074 so that GDB will ignore it. */
9075 if (has_low_pc_attr && has_high_pc_attr
9076 && part_die->lowpc < part_die->highpc
9077 && (part_die->lowpc != 0
72dca2f5 9078 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 9079 part_die->has_pc_info = 1;
85cbf3d3 9080
c906108c
SS
9081 return info_ptr;
9082}
9083
72bf9492
DJ
9084/* Find a cached partial DIE at OFFSET in CU. */
9085
9086static struct partial_die_info *
c764a876 9087find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9088{
9089 struct partial_die_info *lookup_die = NULL;
9090 struct partial_die_info part_die;
9091
9092 part_die.offset = offset;
9093 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9094
72bf9492
DJ
9095 return lookup_die;
9096}
9097
348e048f
DE
9098/* Find a partial DIE at OFFSET, which may or may not be in CU,
9099 except in the case of .debug_types DIEs which do not reference
9100 outside their CU (they do however referencing other types via
9101 DW_FORM_sig8). */
72bf9492
DJ
9102
9103static struct partial_die_info *
c764a876 9104find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9105{
5afb4e99
DJ
9106 struct dwarf2_per_cu_data *per_cu = NULL;
9107 struct partial_die_info *pd = NULL;
72bf9492 9108
348e048f
DE
9109 if (cu->per_cu->from_debug_types)
9110 {
9111 pd = find_partial_die_in_comp_unit (offset, cu);
9112 if (pd != NULL)
9113 return pd;
9114 goto not_found;
9115 }
9116
45452591 9117 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9118 {
9119 pd = find_partial_die_in_comp_unit (offset, cu);
9120 if (pd != NULL)
9121 return pd;
9122 }
72bf9492 9123
ae038cb0
DJ
9124 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9125
98bfdba5
PA
9126 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9127 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
9128
9129 per_cu->cu->last_used = 0;
5afb4e99
DJ
9130 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9131
9132 if (pd == NULL && per_cu->load_all_dies == 0)
9133 {
9134 struct cleanup *back_to;
9135 struct partial_die_info comp_unit_die;
9136 struct abbrev_info *abbrev;
9137 unsigned int bytes_read;
9138 char *info_ptr;
9139
9140 per_cu->load_all_dies = 1;
9141
9142 /* Re-read the DIEs. */
9143 back_to = make_cleanup (null_cleanup, 0);
9144 if (per_cu->cu->dwarf2_abbrevs == NULL)
9145 {
9146 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 9147 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9148 }
dce234bc 9149 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9150 + per_cu->cu->header.offset
9151 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9152 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9153 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
9154 per_cu->cu->objfile->obfd,
9155 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9156 per_cu->cu);
9157 if (comp_unit_die.has_children)
93311388
DE
9158 load_partial_dies (per_cu->cu->objfile->obfd,
9159 dwarf2_per_objfile->info.buffer, info_ptr,
9160 0, per_cu->cu);
5afb4e99
DJ
9161 do_cleanups (back_to);
9162
9163 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9164 }
9165
348e048f
DE
9166 not_found:
9167
5afb4e99
DJ
9168 if (pd == NULL)
9169 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9170 _("could not find partial DIE 0x%x "
9171 "in cache [from module %s]\n"),
5afb4e99
DJ
9172 offset, bfd_get_filename (cu->objfile->obfd));
9173 return pd;
72bf9492
DJ
9174}
9175
abc72ce4
DE
9176/* See if we can figure out if the class lives in a namespace. We do
9177 this by looking for a member function; its demangled name will
9178 contain namespace info, if there is any. */
9179
9180static void
9181guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9182 struct dwarf2_cu *cu)
9183{
9184 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9185 what template types look like, because the demangler
9186 frequently doesn't give the same name as the debug info. We
9187 could fix this by only using the demangled name to get the
9188 prefix (but see comment in read_structure_type). */
9189
9190 struct partial_die_info *real_pdi;
9191 struct partial_die_info *child_pdi;
9192
9193 /* If this DIE (this DIE's specification, if any) has a parent, then
9194 we should not do this. We'll prepend the parent's fully qualified
9195 name when we create the partial symbol. */
9196
9197 real_pdi = struct_pdi;
9198 while (real_pdi->has_specification)
9199 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9200
9201 if (real_pdi->die_parent != NULL)
9202 return;
9203
9204 for (child_pdi = struct_pdi->die_child;
9205 child_pdi != NULL;
9206 child_pdi = child_pdi->die_sibling)
9207 {
9208 if (child_pdi->tag == DW_TAG_subprogram
9209 && child_pdi->linkage_name != NULL)
9210 {
9211 char *actual_class_name
9212 = language_class_name_from_physname (cu->language_defn,
9213 child_pdi->linkage_name);
9214 if (actual_class_name != NULL)
9215 {
9216 struct_pdi->name
9217 = obsavestring (actual_class_name,
9218 strlen (actual_class_name),
9219 &cu->objfile->objfile_obstack);
9220 xfree (actual_class_name);
9221 }
9222 break;
9223 }
9224 }
9225}
9226
72bf9492
DJ
9227/* Adjust PART_DIE before generating a symbol for it. This function
9228 may set the is_external flag or change the DIE's name. */
9229
9230static void
9231fixup_partial_die (struct partial_die_info *part_die,
9232 struct dwarf2_cu *cu)
9233{
abc72ce4
DE
9234 /* Once we've fixed up a die, there's no point in doing so again.
9235 This also avoids a memory leak if we were to call
9236 guess_partial_die_structure_name multiple times. */
9237 if (part_die->fixup_called)
9238 return;
9239
72bf9492
DJ
9240 /* If we found a reference attribute and the DIE has no name, try
9241 to find a name in the referred to DIE. */
9242
9243 if (part_die->name == NULL && part_die->has_specification)
9244 {
9245 struct partial_die_info *spec_die;
72bf9492 9246
10b3939b 9247 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9248
10b3939b 9249 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9250
9251 if (spec_die->name)
9252 {
9253 part_die->name = spec_die->name;
9254
9255 /* Copy DW_AT_external attribute if it is set. */
9256 if (spec_die->is_external)
9257 part_die->is_external = spec_die->is_external;
9258 }
9259 }
9260
9261 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9262
9263 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9264 part_die->name = "(anonymous namespace)";
9265
abc72ce4
DE
9266 /* If there is no parent die to provide a namespace, and there are
9267 children, see if we can determine the namespace from their linkage
9268 name.
9269 NOTE: We need to do this even if cu->has_namespace_info != 0.
9270 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9271 if (cu->language == language_cplus
9272 && dwarf2_per_objfile->types.asection != NULL
9273 && part_die->die_parent == NULL
9274 && part_die->has_children
9275 && (part_die->tag == DW_TAG_class_type
9276 || part_die->tag == DW_TAG_structure_type
9277 || part_die->tag == DW_TAG_union_type))
9278 guess_partial_die_structure_name (part_die, cu);
9279
9280 part_die->fixup_called = 1;
72bf9492
DJ
9281}
9282
a8329558 9283/* Read an attribute value described by an attribute form. */
c906108c 9284
fe1b8b76 9285static gdb_byte *
a8329558 9286read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9287 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9288 struct dwarf2_cu *cu)
c906108c 9289{
e7c27a73 9290 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9291 unsigned int bytes_read;
9292 struct dwarf_block *blk;
9293
a8329558
KW
9294 attr->form = form;
9295 switch (form)
c906108c 9296 {
c906108c 9297 case DW_FORM_ref_addr:
ae411497
TT
9298 if (cu->header.version == 2)
9299 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9300 else
3e43a32a
MS
9301 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9302 &cu->header, &bytes_read);
ae411497
TT
9303 info_ptr += bytes_read;
9304 break;
9305 case DW_FORM_addr:
e7c27a73 9306 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9307 info_ptr += bytes_read;
c906108c
SS
9308 break;
9309 case DW_FORM_block2:
7b5a2f43 9310 blk = dwarf_alloc_block (cu);
c906108c
SS
9311 blk->size = read_2_bytes (abfd, info_ptr);
9312 info_ptr += 2;
9313 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9314 info_ptr += blk->size;
9315 DW_BLOCK (attr) = blk;
9316 break;
9317 case DW_FORM_block4:
7b5a2f43 9318 blk = dwarf_alloc_block (cu);
c906108c
SS
9319 blk->size = read_4_bytes (abfd, info_ptr);
9320 info_ptr += 4;
9321 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9322 info_ptr += blk->size;
9323 DW_BLOCK (attr) = blk;
9324 break;
9325 case DW_FORM_data2:
9326 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9327 info_ptr += 2;
9328 break;
9329 case DW_FORM_data4:
9330 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9331 info_ptr += 4;
9332 break;
9333 case DW_FORM_data8:
9334 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9335 info_ptr += 8;
9336 break;
2dc7f7b3
TT
9337 case DW_FORM_sec_offset:
9338 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9339 info_ptr += bytes_read;
9340 break;
c906108c 9341 case DW_FORM_string:
9b1c24c8 9342 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9343 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9344 info_ptr += bytes_read;
9345 break;
4bdf3d34
JJ
9346 case DW_FORM_strp:
9347 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9348 &bytes_read);
8285870a 9349 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9350 info_ptr += bytes_read;
9351 break;
2dc7f7b3 9352 case DW_FORM_exprloc:
c906108c 9353 case DW_FORM_block:
7b5a2f43 9354 blk = dwarf_alloc_block (cu);
c906108c
SS
9355 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9356 info_ptr += bytes_read;
9357 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9358 info_ptr += blk->size;
9359 DW_BLOCK (attr) = blk;
9360 break;
9361 case DW_FORM_block1:
7b5a2f43 9362 blk = dwarf_alloc_block (cu);
c906108c
SS
9363 blk->size = read_1_byte (abfd, info_ptr);
9364 info_ptr += 1;
9365 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9366 info_ptr += blk->size;
9367 DW_BLOCK (attr) = blk;
9368 break;
9369 case DW_FORM_data1:
9370 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9371 info_ptr += 1;
9372 break;
9373 case DW_FORM_flag:
9374 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9375 info_ptr += 1;
9376 break;
2dc7f7b3
TT
9377 case DW_FORM_flag_present:
9378 DW_UNSND (attr) = 1;
9379 break;
c906108c
SS
9380 case DW_FORM_sdata:
9381 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9382 info_ptr += bytes_read;
9383 break;
9384 case DW_FORM_udata:
9385 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9386 info_ptr += bytes_read;
9387 break;
9388 case DW_FORM_ref1:
10b3939b 9389 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9390 info_ptr += 1;
9391 break;
9392 case DW_FORM_ref2:
10b3939b 9393 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9394 info_ptr += 2;
9395 break;
9396 case DW_FORM_ref4:
10b3939b 9397 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9398 info_ptr += 4;
9399 break;
613e1657 9400 case DW_FORM_ref8:
10b3939b 9401 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9402 info_ptr += 8;
9403 break;
348e048f
DE
9404 case DW_FORM_sig8:
9405 /* Convert the signature to something we can record in DW_UNSND
9406 for later lookup.
9407 NOTE: This is NULL if the type wasn't found. */
9408 DW_SIGNATURED_TYPE (attr) =
9409 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9410 info_ptr += 8;
9411 break;
c906108c 9412 case DW_FORM_ref_udata:
10b3939b
DJ
9413 DW_ADDR (attr) = (cu->header.offset
9414 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9415 info_ptr += bytes_read;
9416 break;
c906108c 9417 case DW_FORM_indirect:
a8329558
KW
9418 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9419 info_ptr += bytes_read;
e7c27a73 9420 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9421 break;
c906108c 9422 default:
8a3fe4f8 9423 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9424 dwarf_form_name (form),
9425 bfd_get_filename (abfd));
c906108c 9426 }
28e94949
JB
9427
9428 /* We have seen instances where the compiler tried to emit a byte
9429 size attribute of -1 which ended up being encoded as an unsigned
9430 0xffffffff. Although 0xffffffff is technically a valid size value,
9431 an object of this size seems pretty unlikely so we can relatively
9432 safely treat these cases as if the size attribute was invalid and
9433 treat them as zero by default. */
9434 if (attr->name == DW_AT_byte_size
9435 && form == DW_FORM_data4
9436 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9437 {
9438 complaint
9439 (&symfile_complaints,
43bbcdc2
PH
9440 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9441 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9442 DW_UNSND (attr) = 0;
9443 }
28e94949 9444
c906108c
SS
9445 return info_ptr;
9446}
9447
a8329558
KW
9448/* Read an attribute described by an abbreviated attribute. */
9449
fe1b8b76 9450static gdb_byte *
a8329558 9451read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9452 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9453{
9454 attr->name = abbrev->name;
e7c27a73 9455 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9456}
9457
0963b4bd 9458/* Read dwarf information from a buffer. */
c906108c
SS
9459
9460static unsigned int
fe1b8b76 9461read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 9462{
fe1b8b76 9463 return bfd_get_8 (abfd, buf);
c906108c
SS
9464}
9465
9466static int
fe1b8b76 9467read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 9468{
fe1b8b76 9469 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
9470}
9471
9472static unsigned int
fe1b8b76 9473read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9474{
fe1b8b76 9475 return bfd_get_16 (abfd, buf);
c906108c
SS
9476}
9477
9478static int
fe1b8b76 9479read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9480{
fe1b8b76 9481 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
9482}
9483
9484static unsigned int
fe1b8b76 9485read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9486{
fe1b8b76 9487 return bfd_get_32 (abfd, buf);
c906108c
SS
9488}
9489
9490static int
fe1b8b76 9491read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9492{
fe1b8b76 9493 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
9494}
9495
93311388 9496static ULONGEST
fe1b8b76 9497read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9498{
fe1b8b76 9499 return bfd_get_64 (abfd, buf);
c906108c
SS
9500}
9501
9502static CORE_ADDR
fe1b8b76 9503read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 9504 unsigned int *bytes_read)
c906108c 9505{
e7c27a73 9506 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9507 CORE_ADDR retval = 0;
9508
107d2387 9509 if (cu_header->signed_addr_p)
c906108c 9510 {
107d2387
AC
9511 switch (cu_header->addr_size)
9512 {
9513 case 2:
fe1b8b76 9514 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
9515 break;
9516 case 4:
fe1b8b76 9517 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
9518 break;
9519 case 8:
fe1b8b76 9520 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
9521 break;
9522 default:
8e65ff28 9523 internal_error (__FILE__, __LINE__,
e2e0b3e5 9524 _("read_address: bad switch, signed [in module %s]"),
659b0389 9525 bfd_get_filename (abfd));
107d2387
AC
9526 }
9527 }
9528 else
9529 {
9530 switch (cu_header->addr_size)
9531 {
9532 case 2:
fe1b8b76 9533 retval = bfd_get_16 (abfd, buf);
107d2387
AC
9534 break;
9535 case 4:
fe1b8b76 9536 retval = bfd_get_32 (abfd, buf);
107d2387
AC
9537 break;
9538 case 8:
fe1b8b76 9539 retval = bfd_get_64 (abfd, buf);
107d2387
AC
9540 break;
9541 default:
8e65ff28 9542 internal_error (__FILE__, __LINE__,
e2e0b3e5 9543 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 9544 bfd_get_filename (abfd));
107d2387 9545 }
c906108c 9546 }
64367e0a 9547
107d2387
AC
9548 *bytes_read = cu_header->addr_size;
9549 return retval;
c906108c
SS
9550}
9551
f7ef9339 9552/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
9553 specification allows the initial length to take up either 4 bytes
9554 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9555 bytes describe the length and all offsets will be 8 bytes in length
9556 instead of 4.
9557
f7ef9339
KB
9558 An older, non-standard 64-bit format is also handled by this
9559 function. The older format in question stores the initial length
9560 as an 8-byte quantity without an escape value. Lengths greater
9561 than 2^32 aren't very common which means that the initial 4 bytes
9562 is almost always zero. Since a length value of zero doesn't make
9563 sense for the 32-bit format, this initial zero can be considered to
9564 be an escape value which indicates the presence of the older 64-bit
9565 format. As written, the code can't detect (old format) lengths
917c78fc
MK
9566 greater than 4GB. If it becomes necessary to handle lengths
9567 somewhat larger than 4GB, we could allow other small values (such
9568 as the non-sensical values of 1, 2, and 3) to also be used as
9569 escape values indicating the presence of the old format.
f7ef9339 9570
917c78fc
MK
9571 The value returned via bytes_read should be used to increment the
9572 relevant pointer after calling read_initial_length().
c764a876 9573
613e1657
KB
9574 [ Note: read_initial_length() and read_offset() are based on the
9575 document entitled "DWARF Debugging Information Format", revision
f7ef9339 9576 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
9577 from:
9578
f7ef9339 9579 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 9580
613e1657
KB
9581 This document is only a draft and is subject to change. (So beware.)
9582
f7ef9339 9583 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
9584 determined empirically by examining 64-bit ELF files produced by
9585 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
9586
9587 - Kevin, July 16, 2002
613e1657
KB
9588 ] */
9589
9590static LONGEST
c764a876 9591read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 9592{
fe1b8b76 9593 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 9594
dd373385 9595 if (length == 0xffffffff)
613e1657 9596 {
fe1b8b76 9597 length = bfd_get_64 (abfd, buf + 4);
613e1657 9598 *bytes_read = 12;
613e1657 9599 }
dd373385 9600 else if (length == 0)
f7ef9339 9601 {
dd373385 9602 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 9603 length = bfd_get_64 (abfd, buf);
f7ef9339 9604 *bytes_read = 8;
f7ef9339 9605 }
613e1657
KB
9606 else
9607 {
9608 *bytes_read = 4;
613e1657
KB
9609 }
9610
c764a876
DE
9611 return length;
9612}
dd373385 9613
c764a876
DE
9614/* Cover function for read_initial_length.
9615 Returns the length of the object at BUF, and stores the size of the
9616 initial length in *BYTES_READ and stores the size that offsets will be in
9617 *OFFSET_SIZE.
9618 If the initial length size is not equivalent to that specified in
9619 CU_HEADER then issue a complaint.
9620 This is useful when reading non-comp-unit headers. */
dd373385 9621
c764a876
DE
9622static LONGEST
9623read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9624 const struct comp_unit_head *cu_header,
9625 unsigned int *bytes_read,
9626 unsigned int *offset_size)
9627{
9628 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9629
9630 gdb_assert (cu_header->initial_length_size == 4
9631 || cu_header->initial_length_size == 8
9632 || cu_header->initial_length_size == 12);
9633
9634 if (cu_header->initial_length_size != *bytes_read)
9635 complaint (&symfile_complaints,
9636 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 9637
c764a876 9638 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 9639 return length;
613e1657
KB
9640}
9641
9642/* Read an offset from the data stream. The size of the offset is
917c78fc 9643 given by cu_header->offset_size. */
613e1657
KB
9644
9645static LONGEST
fe1b8b76 9646read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 9647 unsigned int *bytes_read)
c764a876
DE
9648{
9649 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 9650
c764a876
DE
9651 *bytes_read = cu_header->offset_size;
9652 return offset;
9653}
9654
9655/* Read an offset from the data stream. */
9656
9657static LONGEST
9658read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
9659{
9660 LONGEST retval = 0;
9661
c764a876 9662 switch (offset_size)
613e1657
KB
9663 {
9664 case 4:
fe1b8b76 9665 retval = bfd_get_32 (abfd, buf);
613e1657
KB
9666 break;
9667 case 8:
fe1b8b76 9668 retval = bfd_get_64 (abfd, buf);
613e1657
KB
9669 break;
9670 default:
8e65ff28 9671 internal_error (__FILE__, __LINE__,
c764a876 9672 _("read_offset_1: bad switch [in module %s]"),
659b0389 9673 bfd_get_filename (abfd));
613e1657
KB
9674 }
9675
917c78fc 9676 return retval;
613e1657
KB
9677}
9678
fe1b8b76
JB
9679static gdb_byte *
9680read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
9681{
9682 /* If the size of a host char is 8 bits, we can return a pointer
9683 to the buffer, otherwise we have to copy the data to a buffer
9684 allocated on the temporary obstack. */
4bdf3d34 9685 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 9686 return buf;
c906108c
SS
9687}
9688
9689static char *
9b1c24c8 9690read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
9691{
9692 /* If the size of a host char is 8 bits, we can return a pointer
9693 to the string, otherwise we have to copy the string to a buffer
9694 allocated on the temporary obstack. */
4bdf3d34 9695 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
9696 if (*buf == '\0')
9697 {
9698 *bytes_read_ptr = 1;
9699 return NULL;
9700 }
fe1b8b76
JB
9701 *bytes_read_ptr = strlen ((char *) buf) + 1;
9702 return (char *) buf;
4bdf3d34
JJ
9703}
9704
9705static char *
fe1b8b76 9706read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
9707 const struct comp_unit_head *cu_header,
9708 unsigned int *bytes_read_ptr)
9709{
c764a876 9710 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 9711
be391dca 9712 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 9713 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 9714 {
8a3fe4f8 9715 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 9716 bfd_get_filename (abfd));
4bdf3d34 9717 return NULL;
c906108c 9718 }
dce234bc 9719 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 9720 {
3e43a32a
MS
9721 error (_("DW_FORM_strp pointing outside of "
9722 ".debug_str section [in module %s]"),
9723 bfd_get_filename (abfd));
c906108c
SS
9724 return NULL;
9725 }
4bdf3d34 9726 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 9727 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 9728 return NULL;
dce234bc 9729 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
9730}
9731
ce5d95e1 9732static unsigned long
fe1b8b76 9733read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9734{
ce5d95e1
JB
9735 unsigned long result;
9736 unsigned int num_read;
c906108c
SS
9737 int i, shift;
9738 unsigned char byte;
9739
9740 result = 0;
9741 shift = 0;
9742 num_read = 0;
9743 i = 0;
9744 while (1)
9745 {
fe1b8b76 9746 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9747 buf++;
9748 num_read++;
ce5d95e1 9749 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
9750 if ((byte & 128) == 0)
9751 {
9752 break;
9753 }
9754 shift += 7;
9755 }
9756 *bytes_read_ptr = num_read;
9757 return result;
9758}
9759
ce5d95e1 9760static long
fe1b8b76 9761read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9762{
ce5d95e1 9763 long result;
77e0b926 9764 int i, shift, num_read;
c906108c
SS
9765 unsigned char byte;
9766
9767 result = 0;
9768 shift = 0;
c906108c
SS
9769 num_read = 0;
9770 i = 0;
9771 while (1)
9772 {
fe1b8b76 9773 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9774 buf++;
9775 num_read++;
ce5d95e1 9776 result |= ((long)(byte & 127) << shift);
c906108c
SS
9777 shift += 7;
9778 if ((byte & 128) == 0)
9779 {
9780 break;
9781 }
9782 }
77e0b926
DJ
9783 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9784 result |= -(((long)1) << shift);
c906108c
SS
9785 *bytes_read_ptr = num_read;
9786 return result;
9787}
9788
4bb7a0a7
DJ
9789/* Return a pointer to just past the end of an LEB128 number in BUF. */
9790
fe1b8b76
JB
9791static gdb_byte *
9792skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
9793{
9794 int byte;
9795
9796 while (1)
9797 {
fe1b8b76 9798 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
9799 buf++;
9800 if ((byte & 128) == 0)
9801 return buf;
9802 }
9803}
9804
c906108c 9805static void
e142c38c 9806set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
9807{
9808 switch (lang)
9809 {
9810 case DW_LANG_C89:
76bee0cc 9811 case DW_LANG_C99:
c906108c 9812 case DW_LANG_C:
e142c38c 9813 cu->language = language_c;
c906108c
SS
9814 break;
9815 case DW_LANG_C_plus_plus:
e142c38c 9816 cu->language = language_cplus;
c906108c 9817 break;
6aecb9c2
JB
9818 case DW_LANG_D:
9819 cu->language = language_d;
9820 break;
c906108c
SS
9821 case DW_LANG_Fortran77:
9822 case DW_LANG_Fortran90:
b21b22e0 9823 case DW_LANG_Fortran95:
e142c38c 9824 cu->language = language_fortran;
c906108c
SS
9825 break;
9826 case DW_LANG_Mips_Assembler:
e142c38c 9827 cu->language = language_asm;
c906108c 9828 break;
bebd888e 9829 case DW_LANG_Java:
e142c38c 9830 cu->language = language_java;
bebd888e 9831 break;
c906108c 9832 case DW_LANG_Ada83:
8aaf0b47 9833 case DW_LANG_Ada95:
bc5f45f8
JB
9834 cu->language = language_ada;
9835 break;
72019c9c
GM
9836 case DW_LANG_Modula2:
9837 cu->language = language_m2;
9838 break;
fe8e67fd
PM
9839 case DW_LANG_Pascal83:
9840 cu->language = language_pascal;
9841 break;
22566fbd
DJ
9842 case DW_LANG_ObjC:
9843 cu->language = language_objc;
9844 break;
c906108c
SS
9845 case DW_LANG_Cobol74:
9846 case DW_LANG_Cobol85:
c906108c 9847 default:
e142c38c 9848 cu->language = language_minimal;
c906108c
SS
9849 break;
9850 }
e142c38c 9851 cu->language_defn = language_def (cu->language);
c906108c
SS
9852}
9853
9854/* Return the named attribute or NULL if not there. */
9855
9856static struct attribute *
e142c38c 9857dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
9858{
9859 unsigned int i;
9860 struct attribute *spec = NULL;
9861
9862 for (i = 0; i < die->num_attrs; ++i)
9863 {
9864 if (die->attrs[i].name == name)
10b3939b 9865 return &die->attrs[i];
c906108c
SS
9866 if (die->attrs[i].name == DW_AT_specification
9867 || die->attrs[i].name == DW_AT_abstract_origin)
9868 spec = &die->attrs[i];
9869 }
c906108c 9870
10b3939b 9871 if (spec)
f2f0e013
DJ
9872 {
9873 die = follow_die_ref (die, spec, &cu);
9874 return dwarf2_attr (die, name, cu);
9875 }
c5aa993b 9876
c906108c
SS
9877 return NULL;
9878}
9879
348e048f
DE
9880/* Return the named attribute or NULL if not there,
9881 but do not follow DW_AT_specification, etc.
9882 This is for use in contexts where we're reading .debug_types dies.
9883 Following DW_AT_specification, DW_AT_abstract_origin will take us
9884 back up the chain, and we want to go down. */
9885
9886static struct attribute *
9887dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9888 struct dwarf2_cu *cu)
9889{
9890 unsigned int i;
9891
9892 for (i = 0; i < die->num_attrs; ++i)
9893 if (die->attrs[i].name == name)
9894 return &die->attrs[i];
9895
9896 return NULL;
9897}
9898
05cf31d1
JB
9899/* Return non-zero iff the attribute NAME is defined for the given DIE,
9900 and holds a non-zero value. This function should only be used for
2dc7f7b3 9901 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
9902
9903static int
9904dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9905{
9906 struct attribute *attr = dwarf2_attr (die, name, cu);
9907
9908 return (attr && DW_UNSND (attr));
9909}
9910
3ca72b44 9911static int
e142c38c 9912die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 9913{
05cf31d1
JB
9914 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9915 which value is non-zero. However, we have to be careful with
9916 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9917 (via dwarf2_flag_true_p) follows this attribute. So we may
9918 end up accidently finding a declaration attribute that belongs
9919 to a different DIE referenced by the specification attribute,
9920 even though the given DIE does not have a declaration attribute. */
9921 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9922 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
9923}
9924
63d06c5c 9925/* Return the die giving the specification for DIE, if there is
f2f0e013 9926 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
9927 containing the return value on output. If there is no
9928 specification, but there is an abstract origin, that is
9929 returned. */
63d06c5c
DC
9930
9931static struct die_info *
f2f0e013 9932die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 9933{
f2f0e013
DJ
9934 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9935 *spec_cu);
63d06c5c 9936
edb3359d
DJ
9937 if (spec_attr == NULL)
9938 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9939
63d06c5c
DC
9940 if (spec_attr == NULL)
9941 return NULL;
9942 else
f2f0e013 9943 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 9944}
c906108c 9945
debd256d 9946/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
9947 refers to.
9948 NOTE: This is also used as a "cleanup" function. */
9949
debd256d
JB
9950static void
9951free_line_header (struct line_header *lh)
9952{
9953 if (lh->standard_opcode_lengths)
a8bc7b56 9954 xfree (lh->standard_opcode_lengths);
debd256d
JB
9955
9956 /* Remember that all the lh->file_names[i].name pointers are
9957 pointers into debug_line_buffer, and don't need to be freed. */
9958 if (lh->file_names)
a8bc7b56 9959 xfree (lh->file_names);
debd256d
JB
9960
9961 /* Similarly for the include directory names. */
9962 if (lh->include_dirs)
a8bc7b56 9963 xfree (lh->include_dirs);
debd256d 9964
a8bc7b56 9965 xfree (lh);
debd256d
JB
9966}
9967
debd256d 9968/* Add an entry to LH's include directory table. */
ae2de4f8 9969
debd256d
JB
9970static void
9971add_include_dir (struct line_header *lh, char *include_dir)
c906108c 9972{
debd256d
JB
9973 /* Grow the array if necessary. */
9974 if (lh->include_dirs_size == 0)
c5aa993b 9975 {
debd256d
JB
9976 lh->include_dirs_size = 1; /* for testing */
9977 lh->include_dirs = xmalloc (lh->include_dirs_size
9978 * sizeof (*lh->include_dirs));
9979 }
9980 else if (lh->num_include_dirs >= lh->include_dirs_size)
9981 {
9982 lh->include_dirs_size *= 2;
9983 lh->include_dirs = xrealloc (lh->include_dirs,
9984 (lh->include_dirs_size
9985 * sizeof (*lh->include_dirs)));
c5aa993b 9986 }
c906108c 9987
debd256d
JB
9988 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9989}
6e70227d 9990
debd256d 9991/* Add an entry to LH's file name table. */
ae2de4f8 9992
debd256d
JB
9993static void
9994add_file_name (struct line_header *lh,
9995 char *name,
9996 unsigned int dir_index,
9997 unsigned int mod_time,
9998 unsigned int length)
9999{
10000 struct file_entry *fe;
10001
10002 /* Grow the array if necessary. */
10003 if (lh->file_names_size == 0)
10004 {
10005 lh->file_names_size = 1; /* for testing */
10006 lh->file_names = xmalloc (lh->file_names_size
10007 * sizeof (*lh->file_names));
10008 }
10009 else if (lh->num_file_names >= lh->file_names_size)
10010 {
10011 lh->file_names_size *= 2;
10012 lh->file_names = xrealloc (lh->file_names,
10013 (lh->file_names_size
10014 * sizeof (*lh->file_names)));
10015 }
10016
10017 fe = &lh->file_names[lh->num_file_names++];
10018 fe->name = name;
10019 fe->dir_index = dir_index;
10020 fe->mod_time = mod_time;
10021 fe->length = length;
aaa75496 10022 fe->included_p = 0;
cb1df416 10023 fe->symtab = NULL;
debd256d 10024}
6e70227d 10025
debd256d 10026/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10027 .debug_line, according to the endianness of ABFD. Return a pointer
10028 to a struct line_header, allocated using xmalloc.
debd256d
JB
10029
10030 NOTE: the strings in the include directory and file name tables of
10031 the returned object point into debug_line_buffer, and must not be
10032 freed. */
ae2de4f8 10033
debd256d
JB
10034static struct line_header *
10035dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10036 struct dwarf2_cu *cu)
debd256d
JB
10037{
10038 struct cleanup *back_to;
10039 struct line_header *lh;
fe1b8b76 10040 gdb_byte *line_ptr;
c764a876 10041 unsigned int bytes_read, offset_size;
debd256d
JB
10042 int i;
10043 char *cur_dir, *cur_file;
10044
be391dca 10045 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10046 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10047 {
e2e0b3e5 10048 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10049 return 0;
10050 }
10051
a738430d
MK
10052 /* Make sure that at least there's room for the total_length field.
10053 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10054 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10055 {
4d3c2250 10056 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10057 return 0;
10058 }
10059
10060 lh = xmalloc (sizeof (*lh));
10061 memset (lh, 0, sizeof (*lh));
10062 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10063 (void *) lh);
10064
dce234bc 10065 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10066
a738430d 10067 /* Read in the header. */
6e70227d 10068 lh->total_length =
c764a876
DE
10069 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10070 &bytes_read, &offset_size);
debd256d 10071 line_ptr += bytes_read;
dce234bc
PP
10072 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10073 + dwarf2_per_objfile->line.size))
debd256d 10074 {
4d3c2250 10075 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10076 return 0;
10077 }
10078 lh->statement_program_end = line_ptr + lh->total_length;
10079 lh->version = read_2_bytes (abfd, line_ptr);
10080 line_ptr += 2;
c764a876
DE
10081 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10082 line_ptr += offset_size;
debd256d
JB
10083 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10084 line_ptr += 1;
2dc7f7b3
TT
10085 if (lh->version >= 4)
10086 {
10087 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10088 line_ptr += 1;
10089 }
10090 else
10091 lh->maximum_ops_per_instruction = 1;
10092
10093 if (lh->maximum_ops_per_instruction == 0)
10094 {
10095 lh->maximum_ops_per_instruction = 1;
10096 complaint (&symfile_complaints,
3e43a32a
MS
10097 _("invalid maximum_ops_per_instruction "
10098 "in `.debug_line' section"));
2dc7f7b3
TT
10099 }
10100
debd256d
JB
10101 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10102 line_ptr += 1;
10103 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10104 line_ptr += 1;
10105 lh->line_range = read_1_byte (abfd, line_ptr);
10106 line_ptr += 1;
10107 lh->opcode_base = read_1_byte (abfd, line_ptr);
10108 line_ptr += 1;
10109 lh->standard_opcode_lengths
fe1b8b76 10110 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10111
10112 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10113 for (i = 1; i < lh->opcode_base; ++i)
10114 {
10115 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10116 line_ptr += 1;
10117 }
10118
a738430d 10119 /* Read directory table. */
9b1c24c8 10120 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10121 {
10122 line_ptr += bytes_read;
10123 add_include_dir (lh, cur_dir);
10124 }
10125 line_ptr += bytes_read;
10126
a738430d 10127 /* Read file name table. */
9b1c24c8 10128 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10129 {
10130 unsigned int dir_index, mod_time, length;
10131
10132 line_ptr += bytes_read;
10133 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10134 line_ptr += bytes_read;
10135 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10136 line_ptr += bytes_read;
10137 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10138 line_ptr += bytes_read;
10139
10140 add_file_name (lh, cur_file, dir_index, mod_time, length);
10141 }
10142 line_ptr += bytes_read;
6e70227d 10143 lh->statement_program_start = line_ptr;
debd256d 10144
dce234bc
PP
10145 if (line_ptr > (dwarf2_per_objfile->line.buffer
10146 + dwarf2_per_objfile->line.size))
4d3c2250 10147 complaint (&symfile_complaints,
3e43a32a
MS
10148 _("line number info header doesn't "
10149 "fit in `.debug_line' section"));
debd256d
JB
10150
10151 discard_cleanups (back_to);
10152 return lh;
10153}
c906108c 10154
5fb290d7
DJ
10155/* This function exists to work around a bug in certain compilers
10156 (particularly GCC 2.95), in which the first line number marker of a
10157 function does not show up until after the prologue, right before
10158 the second line number marker. This function shifts ADDRESS down
10159 to the beginning of the function if necessary, and is called on
10160 addresses passed to record_line. */
10161
10162static CORE_ADDR
e142c38c 10163check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
10164{
10165 struct function_range *fn;
10166
10167 /* Find the function_range containing address. */
e142c38c 10168 if (!cu->first_fn)
5fb290d7
DJ
10169 return address;
10170
e142c38c
DJ
10171 if (!cu->cached_fn)
10172 cu->cached_fn = cu->first_fn;
5fb290d7 10173
e142c38c 10174 fn = cu->cached_fn;
5fb290d7
DJ
10175 while (fn)
10176 if (fn->lowpc <= address && fn->highpc > address)
10177 goto found;
10178 else
10179 fn = fn->next;
10180
e142c38c
DJ
10181 fn = cu->first_fn;
10182 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
10183 if (fn->lowpc <= address && fn->highpc > address)
10184 goto found;
10185 else
10186 fn = fn->next;
10187
10188 return address;
10189
10190 found:
10191 if (fn->seen_line)
10192 return address;
10193 if (address != fn->lowpc)
4d3c2250 10194 complaint (&symfile_complaints,
e2e0b3e5 10195 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10196 (unsigned long) address, fn->name);
5fb290d7
DJ
10197 fn->seen_line = 1;
10198 return fn->lowpc;
10199}
10200
c6da4cef
DE
10201/* Subroutine of dwarf_decode_lines to simplify it.
10202 Return the file name of the psymtab for included file FILE_INDEX
10203 in line header LH of PST.
10204 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10205 If space for the result is malloc'd, it will be freed by a cleanup.
10206 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10207
10208static char *
10209psymtab_include_file_name (const struct line_header *lh, int file_index,
10210 const struct partial_symtab *pst,
10211 const char *comp_dir)
10212{
10213 const struct file_entry fe = lh->file_names [file_index];
10214 char *include_name = fe.name;
10215 char *include_name_to_compare = include_name;
10216 char *dir_name = NULL;
72b9f47f
TT
10217 const char *pst_filename;
10218 char *copied_name = NULL;
c6da4cef
DE
10219 int file_is_pst;
10220
10221 if (fe.dir_index)
10222 dir_name = lh->include_dirs[fe.dir_index - 1];
10223
10224 if (!IS_ABSOLUTE_PATH (include_name)
10225 && (dir_name != NULL || comp_dir != NULL))
10226 {
10227 /* Avoid creating a duplicate psymtab for PST.
10228 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10229 Before we do the comparison, however, we need to account
10230 for DIR_NAME and COMP_DIR.
10231 First prepend dir_name (if non-NULL). If we still don't
10232 have an absolute path prepend comp_dir (if non-NULL).
10233 However, the directory we record in the include-file's
10234 psymtab does not contain COMP_DIR (to match the
10235 corresponding symtab(s)).
10236
10237 Example:
10238
10239 bash$ cd /tmp
10240 bash$ gcc -g ./hello.c
10241 include_name = "hello.c"
10242 dir_name = "."
10243 DW_AT_comp_dir = comp_dir = "/tmp"
10244 DW_AT_name = "./hello.c" */
10245
10246 if (dir_name != NULL)
10247 {
10248 include_name = concat (dir_name, SLASH_STRING,
10249 include_name, (char *)NULL);
10250 include_name_to_compare = include_name;
10251 make_cleanup (xfree, include_name);
10252 }
10253 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10254 {
10255 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10256 include_name, (char *)NULL);
10257 }
10258 }
10259
10260 pst_filename = pst->filename;
10261 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10262 {
72b9f47f
TT
10263 copied_name = concat (pst->dirname, SLASH_STRING,
10264 pst_filename, (char *)NULL);
10265 pst_filename = copied_name;
c6da4cef
DE
10266 }
10267
1e3fad37 10268 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
10269
10270 if (include_name_to_compare != include_name)
10271 xfree (include_name_to_compare);
72b9f47f
TT
10272 if (copied_name != NULL)
10273 xfree (copied_name);
c6da4cef
DE
10274
10275 if (file_is_pst)
10276 return NULL;
10277 return include_name;
10278}
10279
aaa75496
JB
10280/* Decode the Line Number Program (LNP) for the given line_header
10281 structure and CU. The actual information extracted and the type
10282 of structures created from the LNP depends on the value of PST.
10283
10284 1. If PST is NULL, then this procedure uses the data from the program
10285 to create all necessary symbol tables, and their linetables.
6e70227d 10286
aaa75496
JB
10287 2. If PST is not NULL, this procedure reads the program to determine
10288 the list of files included by the unit represented by PST, and
c6da4cef
DE
10289 builds all the associated partial symbol tables.
10290
10291 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10292 It is used for relative paths in the line table.
10293 NOTE: When processing partial symtabs (pst != NULL),
10294 comp_dir == pst->dirname.
10295
10296 NOTE: It is important that psymtabs have the same file name (via strcmp)
10297 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10298 symtab we don't use it in the name of the psymtabs we create.
10299 E.g. expand_line_sal requires this when finding psymtabs to expand.
10300 A good testcase for this is mb-inline.exp. */
debd256d 10301
c906108c 10302static void
72b9f47f 10303dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10304 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10305{
a8c50c1f 10306 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10307 gdb_byte *line_end;
a8c50c1f 10308 unsigned int bytes_read, extended_len;
c906108c 10309 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10310 CORE_ADDR baseaddr;
10311 struct objfile *objfile = cu->objfile;
fbf65064 10312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10313 const int decode_for_pst_p = (pst != NULL);
cb1df416 10314 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
10315
10316 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10317
debd256d
JB
10318 line_ptr = lh->statement_program_start;
10319 line_end = lh->statement_program_end;
c906108c
SS
10320
10321 /* Read the statement sequences until there's nothing left. */
10322 while (line_ptr < line_end)
10323 {
10324 /* state machine registers */
10325 CORE_ADDR address = 0;
10326 unsigned int file = 1;
10327 unsigned int line = 1;
10328 unsigned int column = 0;
debd256d 10329 int is_stmt = lh->default_is_stmt;
c906108c
SS
10330 int basic_block = 0;
10331 int end_sequence = 0;
fbf65064 10332 CORE_ADDR addr;
2dc7f7b3 10333 unsigned char op_index = 0;
c906108c 10334
aaa75496 10335 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10336 {
aaa75496 10337 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10338 /* lh->include_dirs and lh->file_names are 0-based, but the
10339 directory and file name numbers in the statement program
10340 are 1-based. */
10341 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10342 char *dir = NULL;
a738430d 10343
debd256d
JB
10344 if (fe->dir_index)
10345 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10346
10347 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10348 }
10349
a738430d 10350 /* Decode the table. */
c5aa993b 10351 while (!end_sequence)
c906108c
SS
10352 {
10353 op_code = read_1_byte (abfd, line_ptr);
10354 line_ptr += 1;
59205f5a
JB
10355 if (line_ptr > line_end)
10356 {
10357 dwarf2_debug_line_missing_end_sequence_complaint ();
10358 break;
10359 }
9aa1fe7e 10360
debd256d 10361 if (op_code >= lh->opcode_base)
6e70227d 10362 {
a738430d 10363 /* Special operand. */
debd256d 10364 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10365 address += (((op_index + (adj_opcode / lh->line_range))
10366 / lh->maximum_ops_per_instruction)
10367 * lh->minimum_instruction_length);
10368 op_index = ((op_index + (adj_opcode / lh->line_range))
10369 % lh->maximum_ops_per_instruction);
debd256d 10370 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10371 if (lh->num_file_names < file || file == 0)
25e43795 10372 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10373 /* For now we ignore lines not starting on an
10374 instruction boundary. */
10375 else if (op_index == 0)
25e43795
DJ
10376 {
10377 lh->file_names[file - 1].included_p = 1;
ca5f395d 10378 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10379 {
10380 if (last_subfile != current_subfile)
10381 {
10382 addr = gdbarch_addr_bits_remove (gdbarch, address);
10383 if (last_subfile)
10384 record_line (last_subfile, 0, addr);
10385 last_subfile = current_subfile;
10386 }
25e43795 10387 /* Append row to matrix using current values. */
fbf65064
UW
10388 addr = check_cu_functions (address, cu);
10389 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10390 record_line (current_subfile, line, addr);
366da635 10391 }
25e43795 10392 }
ca5f395d 10393 basic_block = 0;
9aa1fe7e
GK
10394 }
10395 else switch (op_code)
c906108c
SS
10396 {
10397 case DW_LNS_extended_op:
3e43a32a
MS
10398 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10399 &bytes_read);
473b7be6 10400 line_ptr += bytes_read;
a8c50c1f 10401 extended_end = line_ptr + extended_len;
c906108c
SS
10402 extended_op = read_1_byte (abfd, line_ptr);
10403 line_ptr += 1;
10404 switch (extended_op)
10405 {
10406 case DW_LNE_end_sequence:
10407 end_sequence = 1;
c906108c
SS
10408 break;
10409 case DW_LNE_set_address:
e7c27a73 10410 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 10411 op_index = 0;
107d2387
AC
10412 line_ptr += bytes_read;
10413 address += baseaddr;
c906108c
SS
10414 break;
10415 case DW_LNE_define_file:
debd256d
JB
10416 {
10417 char *cur_file;
10418 unsigned int dir_index, mod_time, length;
6e70227d 10419
3e43a32a
MS
10420 cur_file = read_direct_string (abfd, line_ptr,
10421 &bytes_read);
debd256d
JB
10422 line_ptr += bytes_read;
10423 dir_index =
10424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10425 line_ptr += bytes_read;
10426 mod_time =
10427 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10428 line_ptr += bytes_read;
10429 length =
10430 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10431 line_ptr += bytes_read;
10432 add_file_name (lh, cur_file, dir_index, mod_time, length);
10433 }
c906108c 10434 break;
d0c6ba3d
CC
10435 case DW_LNE_set_discriminator:
10436 /* The discriminator is not interesting to the debugger;
10437 just ignore it. */
10438 line_ptr = extended_end;
10439 break;
c906108c 10440 default:
4d3c2250 10441 complaint (&symfile_complaints,
e2e0b3e5 10442 _("mangled .debug_line section"));
debd256d 10443 return;
c906108c 10444 }
a8c50c1f
DJ
10445 /* Make sure that we parsed the extended op correctly. If e.g.
10446 we expected a different address size than the producer used,
10447 we may have read the wrong number of bytes. */
10448 if (line_ptr != extended_end)
10449 {
10450 complaint (&symfile_complaints,
10451 _("mangled .debug_line section"));
10452 return;
10453 }
c906108c
SS
10454 break;
10455 case DW_LNS_copy:
59205f5a 10456 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10457 dwarf2_debug_line_missing_file_complaint ();
10458 else
366da635 10459 {
25e43795 10460 lh->file_names[file - 1].included_p = 1;
ca5f395d 10461 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10462 {
10463 if (last_subfile != current_subfile)
10464 {
10465 addr = gdbarch_addr_bits_remove (gdbarch, address);
10466 if (last_subfile)
10467 record_line (last_subfile, 0, addr);
10468 last_subfile = current_subfile;
10469 }
10470 addr = check_cu_functions (address, cu);
10471 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10472 record_line (current_subfile, line, addr);
10473 }
366da635 10474 }
c906108c
SS
10475 basic_block = 0;
10476 break;
10477 case DW_LNS_advance_pc:
2dc7f7b3
TT
10478 {
10479 CORE_ADDR adjust
10480 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10481
10482 address += (((op_index + adjust)
10483 / lh->maximum_ops_per_instruction)
10484 * lh->minimum_instruction_length);
10485 op_index = ((op_index + adjust)
10486 % lh->maximum_ops_per_instruction);
10487 line_ptr += bytes_read;
10488 }
c906108c
SS
10489 break;
10490 case DW_LNS_advance_line:
10491 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10492 line_ptr += bytes_read;
10493 break;
10494 case DW_LNS_set_file:
debd256d 10495 {
a738430d
MK
10496 /* The arrays lh->include_dirs and lh->file_names are
10497 0-based, but the directory and file name numbers in
10498 the statement program are 1-based. */
debd256d 10499 struct file_entry *fe;
4f1520fb 10500 char *dir = NULL;
a738430d 10501
debd256d
JB
10502 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10503 line_ptr += bytes_read;
59205f5a 10504 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10505 dwarf2_debug_line_missing_file_complaint ();
10506 else
10507 {
10508 fe = &lh->file_names[file - 1];
10509 if (fe->dir_index)
10510 dir = lh->include_dirs[fe->dir_index - 1];
10511 if (!decode_for_pst_p)
10512 {
10513 last_subfile = current_subfile;
10514 dwarf2_start_subfile (fe->name, dir, comp_dir);
10515 }
10516 }
debd256d 10517 }
c906108c
SS
10518 break;
10519 case DW_LNS_set_column:
10520 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10521 line_ptr += bytes_read;
10522 break;
10523 case DW_LNS_negate_stmt:
10524 is_stmt = (!is_stmt);
10525 break;
10526 case DW_LNS_set_basic_block:
10527 basic_block = 1;
10528 break;
c2c6d25f
JM
10529 /* Add to the address register of the state machine the
10530 address increment value corresponding to special opcode
a738430d
MK
10531 255. I.e., this value is scaled by the minimum
10532 instruction length since special opcode 255 would have
10533 scaled the the increment. */
c906108c 10534 case DW_LNS_const_add_pc:
2dc7f7b3
TT
10535 {
10536 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10537
10538 address += (((op_index + adjust)
10539 / lh->maximum_ops_per_instruction)
10540 * lh->minimum_instruction_length);
10541 op_index = ((op_index + adjust)
10542 % lh->maximum_ops_per_instruction);
10543 }
c906108c
SS
10544 break;
10545 case DW_LNS_fixed_advance_pc:
10546 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 10547 op_index = 0;
c906108c
SS
10548 line_ptr += 2;
10549 break;
9aa1fe7e 10550 default:
a738430d
MK
10551 {
10552 /* Unknown standard opcode, ignore it. */
9aa1fe7e 10553 int i;
a738430d 10554
debd256d 10555 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
10556 {
10557 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10558 line_ptr += bytes_read;
10559 }
10560 }
c906108c
SS
10561 }
10562 }
59205f5a
JB
10563 if (lh->num_file_names < file || file == 0)
10564 dwarf2_debug_line_missing_file_complaint ();
10565 else
10566 {
10567 lh->file_names[file - 1].included_p = 1;
10568 if (!decode_for_pst_p)
fbf65064
UW
10569 {
10570 addr = gdbarch_addr_bits_remove (gdbarch, address);
10571 record_line (current_subfile, 0, addr);
10572 }
59205f5a 10573 }
c906108c 10574 }
aaa75496
JB
10575
10576 if (decode_for_pst_p)
10577 {
10578 int file_index;
10579
10580 /* Now that we're done scanning the Line Header Program, we can
10581 create the psymtab of each included file. */
10582 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10583 if (lh->file_names[file_index].included_p == 1)
10584 {
c6da4cef
DE
10585 char *include_name =
10586 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10587 if (include_name != NULL)
aaa75496
JB
10588 dwarf2_create_include_psymtab (include_name, pst, objfile);
10589 }
10590 }
cb1df416
DJ
10591 else
10592 {
10593 /* Make sure a symtab is created for every file, even files
10594 which contain only variables (i.e. no code with associated
10595 line numbers). */
10596
10597 int i;
10598 struct file_entry *fe;
10599
10600 for (i = 0; i < lh->num_file_names; i++)
10601 {
10602 char *dir = NULL;
9a619af0 10603
cb1df416
DJ
10604 fe = &lh->file_names[i];
10605 if (fe->dir_index)
10606 dir = lh->include_dirs[fe->dir_index - 1];
10607 dwarf2_start_subfile (fe->name, dir, comp_dir);
10608
10609 /* Skip the main file; we don't need it, and it must be
10610 allocated last, so that it will show up before the
10611 non-primary symtabs in the objfile's symtab list. */
10612 if (current_subfile == first_subfile)
10613 continue;
10614
10615 if (current_subfile->symtab == NULL)
10616 current_subfile->symtab = allocate_symtab (current_subfile->name,
10617 cu->objfile);
10618 fe->symtab = current_subfile->symtab;
10619 }
10620 }
c906108c
SS
10621}
10622
10623/* Start a subfile for DWARF. FILENAME is the name of the file and
10624 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
10625 or NULL if not known. COMP_DIR is the compilation directory for the
10626 linetable's compilation unit or NULL if not known.
c906108c
SS
10627 This routine tries to keep line numbers from identical absolute and
10628 relative file names in a common subfile.
10629
10630 Using the `list' example from the GDB testsuite, which resides in
10631 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10632 of /srcdir/list0.c yields the following debugging information for list0.c:
10633
c5aa993b
JM
10634 DW_AT_name: /srcdir/list0.c
10635 DW_AT_comp_dir: /compdir
357e46e7 10636 files.files[0].name: list0.h
c5aa993b 10637 files.files[0].dir: /srcdir
357e46e7 10638 files.files[1].name: list0.c
c5aa993b 10639 files.files[1].dir: /srcdir
c906108c
SS
10640
10641 The line number information for list0.c has to end up in a single
4f1520fb
FR
10642 subfile, so that `break /srcdir/list0.c:1' works as expected.
10643 start_subfile will ensure that this happens provided that we pass the
10644 concatenation of files.files[1].dir and files.files[1].name as the
10645 subfile's name. */
c906108c
SS
10646
10647static void
3e43a32a
MS
10648dwarf2_start_subfile (char *filename, const char *dirname,
10649 const char *comp_dir)
c906108c 10650{
4f1520fb
FR
10651 char *fullname;
10652
10653 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10654 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10655 second argument to start_subfile. To be consistent, we do the
10656 same here. In order not to lose the line information directory,
10657 we concatenate it to the filename when it makes sense.
10658 Note that the Dwarf3 standard says (speaking of filenames in line
10659 information): ``The directory index is ignored for file names
10660 that represent full path names''. Thus ignoring dirname in the
10661 `else' branch below isn't an issue. */
c906108c 10662
d5166ae1 10663 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
10664 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10665 else
10666 fullname = filename;
c906108c 10667
4f1520fb
FR
10668 start_subfile (fullname, comp_dir);
10669
10670 if (fullname != filename)
10671 xfree (fullname);
c906108c
SS
10672}
10673
4c2df51b
DJ
10674static void
10675var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 10676 struct dwarf2_cu *cu)
4c2df51b 10677{
e7c27a73
DJ
10678 struct objfile *objfile = cu->objfile;
10679 struct comp_unit_head *cu_header = &cu->header;
10680
4c2df51b
DJ
10681 /* NOTE drow/2003-01-30: There used to be a comment and some special
10682 code here to turn a symbol with DW_AT_external and a
10683 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10684 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10685 with some versions of binutils) where shared libraries could have
10686 relocations against symbols in their debug information - the
10687 minimal symbol would have the right address, but the debug info
10688 would not. It's no longer necessary, because we will explicitly
10689 apply relocations when we read in the debug information now. */
10690
10691 /* A DW_AT_location attribute with no contents indicates that a
10692 variable has been optimized away. */
10693 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10694 {
10695 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10696 return;
10697 }
10698
10699 /* Handle one degenerate form of location expression specially, to
10700 preserve GDB's previous behavior when section offsets are
10701 specified. If this is just a DW_OP_addr then mark this symbol
10702 as LOC_STATIC. */
10703
10704 if (attr_form_is_block (attr)
10705 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10706 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10707 {
891d2f0b 10708 unsigned int dummy;
4c2df51b
DJ
10709
10710 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 10711 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 10712 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
10713 fixup_symbol_section (sym, objfile);
10714 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10715 SYMBOL_SECTION (sym));
4c2df51b
DJ
10716 return;
10717 }
10718
10719 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10720 expression evaluator, and use LOC_COMPUTED only when necessary
10721 (i.e. when the value of a register or memory location is
10722 referenced, or a thread-local block, etc.). Then again, it might
10723 not be worthwhile. I'm assuming that it isn't unless performance
10724 or memory numbers show me otherwise. */
10725
e7c27a73 10726 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
10727 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10728}
10729
c906108c
SS
10730/* Given a pointer to a DWARF information entry, figure out if we need
10731 to make a symbol table entry for it, and if so, create a new entry
10732 and return a pointer to it.
10733 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
10734 used the passed type.
10735 If SPACE is not NULL, use it to hold the new symbol. If it is
10736 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
10737
10738static struct symbol *
34eaf542
TT
10739new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10740 struct symbol *space)
c906108c 10741{
e7c27a73 10742 struct objfile *objfile = cu->objfile;
c906108c
SS
10743 struct symbol *sym = NULL;
10744 char *name;
10745 struct attribute *attr = NULL;
10746 struct attribute *attr2 = NULL;
e142c38c 10747 CORE_ADDR baseaddr;
e37fd15a
SW
10748 struct pending **list_to_add = NULL;
10749
edb3359d 10750 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
10751
10752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10753
94af9270 10754 name = dwarf2_name (die, cu);
c906108c
SS
10755 if (name)
10756 {
94af9270 10757 const char *linkagename;
34eaf542 10758 int suppress_add = 0;
94af9270 10759
34eaf542
TT
10760 if (space)
10761 sym = space;
10762 else
10763 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 10764 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
10765
10766 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 10767 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
10768 linkagename = dwarf2_physname (name, die, cu);
10769 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 10770
f55ee35c
JK
10771 /* Fortran does not have mangling standard and the mangling does differ
10772 between gfortran, iFort etc. */
10773 if (cu->language == language_fortran
b250c185 10774 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
10775 symbol_set_demangled_name (&(sym->ginfo),
10776 (char *) dwarf2_full_name (name, die, cu),
10777 NULL);
f55ee35c 10778
c906108c 10779 /* Default assumptions.
c5aa993b 10780 Use the passed type or decode it from the die. */
176620f1 10781 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 10782 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
10783 if (type != NULL)
10784 SYMBOL_TYPE (sym) = type;
10785 else
e7c27a73 10786 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
10787 attr = dwarf2_attr (die,
10788 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10789 cu);
c906108c
SS
10790 if (attr)
10791 {
10792 SYMBOL_LINE (sym) = DW_UNSND (attr);
10793 }
cb1df416 10794
edb3359d
DJ
10795 attr = dwarf2_attr (die,
10796 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10797 cu);
cb1df416
DJ
10798 if (attr)
10799 {
10800 int file_index = DW_UNSND (attr);
9a619af0 10801
cb1df416
DJ
10802 if (cu->line_header == NULL
10803 || file_index > cu->line_header->num_file_names)
10804 complaint (&symfile_complaints,
10805 _("file index out of range"));
1c3d648d 10806 else if (file_index > 0)
cb1df416
DJ
10807 {
10808 struct file_entry *fe;
9a619af0 10809
cb1df416
DJ
10810 fe = &cu->line_header->file_names[file_index - 1];
10811 SYMBOL_SYMTAB (sym) = fe->symtab;
10812 }
10813 }
10814
c906108c
SS
10815 switch (die->tag)
10816 {
10817 case DW_TAG_label:
e142c38c 10818 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
10819 if (attr)
10820 {
10821 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10822 }
0f5238ed
TT
10823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10824 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 10825 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 10826 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10827 break;
10828 case DW_TAG_subprogram:
10829 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10830 finish_block. */
10831 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 10832 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
10833 if ((attr2 && (DW_UNSND (attr2) != 0))
10834 || cu->language == language_ada)
c906108c 10835 {
2cfa0c8d
JB
10836 /* Subprograms marked external are stored as a global symbol.
10837 Ada subprograms, whether marked external or not, are always
10838 stored as a global symbol, because we want to be able to
10839 access them globally. For instance, we want to be able
10840 to break on a nested subprogram without having to
10841 specify the context. */
e37fd15a 10842 list_to_add = &global_symbols;
c906108c
SS
10843 }
10844 else
10845 {
e37fd15a 10846 list_to_add = cu->list_in_scope;
c906108c
SS
10847 }
10848 break;
edb3359d
DJ
10849 case DW_TAG_inlined_subroutine:
10850 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10851 finish_block. */
10852 SYMBOL_CLASS (sym) = LOC_BLOCK;
10853 SYMBOL_INLINED (sym) = 1;
10854 /* Do not add the symbol to any lists. It will be found via
10855 BLOCK_FUNCTION from the blockvector. */
10856 break;
34eaf542
TT
10857 case DW_TAG_template_value_param:
10858 suppress_add = 1;
10859 /* Fall through. */
72929c62 10860 case DW_TAG_constant:
c906108c 10861 case DW_TAG_variable:
254e6b9e 10862 case DW_TAG_member:
0963b4bd
MS
10863 /* Compilation with minimal debug info may result in
10864 variables with missing type entries. Change the
10865 misleading `void' type to something sensible. */
c906108c 10866 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 10867 SYMBOL_TYPE (sym)
46bf5051 10868 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 10869
e142c38c 10870 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
10871 /* In the case of DW_TAG_member, we should only be called for
10872 static const members. */
10873 if (die->tag == DW_TAG_member)
10874 {
3863f96c
DE
10875 /* dwarf2_add_field uses die_is_declaration,
10876 so we do the same. */
254e6b9e
DE
10877 gdb_assert (die_is_declaration (die, cu));
10878 gdb_assert (attr);
10879 }
c906108c
SS
10880 if (attr)
10881 {
e7c27a73 10882 dwarf2_const_value (attr, sym, cu);
e142c38c 10883 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 10884 if (!suppress_add)
34eaf542
TT
10885 {
10886 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 10887 list_to_add = &global_symbols;
34eaf542 10888 else
e37fd15a 10889 list_to_add = cu->list_in_scope;
34eaf542 10890 }
c906108c
SS
10891 break;
10892 }
e142c38c 10893 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10894 if (attr)
10895 {
e7c27a73 10896 var_decode_location (attr, sym, cu);
e142c38c 10897 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
10898 if (SYMBOL_CLASS (sym) == LOC_STATIC
10899 && SYMBOL_VALUE_ADDRESS (sym) == 0
10900 && !dwarf2_per_objfile->has_section_at_zero)
10901 {
10902 /* When a static variable is eliminated by the linker,
10903 the corresponding debug information is not stripped
10904 out, but the variable address is set to null;
10905 do not add such variables into symbol table. */
10906 }
10907 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 10908 {
f55ee35c
JK
10909 /* Workaround gfortran PR debug/40040 - it uses
10910 DW_AT_location for variables in -fPIC libraries which may
10911 get overriden by other libraries/executable and get
10912 a different address. Resolve it by the minimal symbol
10913 which may come from inferior's executable using copy
10914 relocation. Make this workaround only for gfortran as for
10915 other compilers GDB cannot guess the minimal symbol
10916 Fortran mangling kind. */
10917 if (cu->language == language_fortran && die->parent
10918 && die->parent->tag == DW_TAG_module
10919 && cu->producer
10920 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10921 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10922
1c809c68
TT
10923 /* A variable with DW_AT_external is never static,
10924 but it may be block-scoped. */
10925 list_to_add = (cu->list_in_scope == &file_symbols
10926 ? &global_symbols : cu->list_in_scope);
1c809c68 10927 }
c906108c 10928 else
e37fd15a 10929 list_to_add = cu->list_in_scope;
c906108c
SS
10930 }
10931 else
10932 {
10933 /* We do not know the address of this symbol.
c5aa993b
JM
10934 If it is an external symbol and we have type information
10935 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10936 The address of the variable will then be determined from
10937 the minimal symbol table whenever the variable is
10938 referenced. */
e142c38c 10939 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 10940 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 10941 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 10942 {
0fe7935b
DJ
10943 /* A variable with DW_AT_external is never static, but it
10944 may be block-scoped. */
10945 list_to_add = (cu->list_in_scope == &file_symbols
10946 ? &global_symbols : cu->list_in_scope);
10947
c906108c 10948 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 10949 }
442ddf59
JK
10950 else if (!die_is_declaration (die, cu))
10951 {
10952 /* Use the default LOC_OPTIMIZED_OUT class. */
10953 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
10954 if (!suppress_add)
10955 list_to_add = cu->list_in_scope;
442ddf59 10956 }
c906108c
SS
10957 }
10958 break;
10959 case DW_TAG_formal_parameter:
edb3359d
DJ
10960 /* If we are inside a function, mark this as an argument. If
10961 not, we might be looking at an argument to an inlined function
10962 when we do not have enough information to show inlined frames;
10963 pretend it's a local variable in that case so that the user can
10964 still see it. */
10965 if (context_stack_depth > 0
10966 && context_stack[context_stack_depth - 1].name != NULL)
10967 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 10968 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10969 if (attr)
10970 {
e7c27a73 10971 var_decode_location (attr, sym, cu);
c906108c 10972 }
e142c38c 10973 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
10974 if (attr)
10975 {
e7c27a73 10976 dwarf2_const_value (attr, sym, cu);
c906108c 10977 }
f346a30d
PM
10978 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10979 if (attr && DW_UNSND (attr))
10980 {
10981 struct type *ref_type;
10982
10983 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10984 SYMBOL_TYPE (sym) = ref_type;
10985 }
10986
e37fd15a 10987 list_to_add = cu->list_in_scope;
c906108c
SS
10988 break;
10989 case DW_TAG_unspecified_parameters:
10990 /* From varargs functions; gdb doesn't seem to have any
10991 interest in this information, so just ignore it for now.
10992 (FIXME?) */
10993 break;
34eaf542
TT
10994 case DW_TAG_template_type_param:
10995 suppress_add = 1;
10996 /* Fall through. */
c906108c 10997 case DW_TAG_class_type:
680b30c7 10998 case DW_TAG_interface_type:
c906108c
SS
10999 case DW_TAG_structure_type:
11000 case DW_TAG_union_type:
72019c9c 11001 case DW_TAG_set_type:
c906108c
SS
11002 case DW_TAG_enumeration_type:
11003 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11004 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11005
63d06c5c 11006 {
987504bb 11007 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11008 really ever be static objects: otherwise, if you try
11009 to, say, break of a class's method and you're in a file
11010 which doesn't mention that class, it won't work unless
11011 the check for all static symbols in lookup_symbol_aux
11012 saves you. See the OtherFileClass tests in
11013 gdb.c++/namespace.exp. */
11014
e37fd15a 11015 if (!suppress_add)
34eaf542 11016 {
34eaf542
TT
11017 list_to_add = (cu->list_in_scope == &file_symbols
11018 && (cu->language == language_cplus
11019 || cu->language == language_java)
11020 ? &global_symbols : cu->list_in_scope);
63d06c5c 11021
64382290
TT
11022 /* The semantics of C++ state that "struct foo {
11023 ... }" also defines a typedef for "foo". A Java
11024 class declaration also defines a typedef for the
11025 class. */
11026 if (cu->language == language_cplus
11027 || cu->language == language_java
11028 || cu->language == language_ada)
11029 {
11030 /* The symbol's name is already allocated along
11031 with this objfile, so we don't need to
11032 duplicate it for the type. */
11033 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11034 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11035 }
63d06c5c
DC
11036 }
11037 }
c906108c
SS
11038 break;
11039 case DW_TAG_typedef:
63d06c5c
DC
11040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11041 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11042 list_to_add = cu->list_in_scope;
63d06c5c 11043 break;
c906108c 11044 case DW_TAG_base_type:
a02abb62 11045 case DW_TAG_subrange_type:
c906108c 11046 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11047 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11048 list_to_add = cu->list_in_scope;
c906108c
SS
11049 break;
11050 case DW_TAG_enumerator:
e142c38c 11051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11052 if (attr)
11053 {
e7c27a73 11054 dwarf2_const_value (attr, sym, cu);
c906108c 11055 }
63d06c5c
DC
11056 {
11057 /* NOTE: carlton/2003-11-10: See comment above in the
11058 DW_TAG_class_type, etc. block. */
11059
e142c38c 11060 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11061 && (cu->language == language_cplus
11062 || cu->language == language_java)
e142c38c 11063 ? &global_symbols : cu->list_in_scope);
63d06c5c 11064 }
c906108c 11065 break;
5c4e30ca
DC
11066 case DW_TAG_namespace:
11067 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11068 list_to_add = &global_symbols;
5c4e30ca 11069 break;
c906108c
SS
11070 default:
11071 /* Not a tag we recognize. Hopefully we aren't processing
11072 trash data, but since we must specifically ignore things
11073 we don't recognize, there is nothing else we should do at
0963b4bd 11074 this point. */
e2e0b3e5 11075 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11076 dwarf_tag_name (die->tag));
c906108c
SS
11077 break;
11078 }
df8a16a1 11079
e37fd15a
SW
11080 if (suppress_add)
11081 {
11082 sym->hash_next = objfile->template_symbols;
11083 objfile->template_symbols = sym;
11084 list_to_add = NULL;
11085 }
11086
11087 if (list_to_add != NULL)
11088 add_symbol_to_list (sym, list_to_add);
11089
df8a16a1
DJ
11090 /* For the benefit of old versions of GCC, check for anonymous
11091 namespaces based on the demangled name. */
11092 if (!processing_has_namespace_info
94af9270 11093 && cu->language == language_cplus)
df8a16a1 11094 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
11095 }
11096 return (sym);
11097}
11098
34eaf542
TT
11099/* A wrapper for new_symbol_full that always allocates a new symbol. */
11100
11101static struct symbol *
11102new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11103{
11104 return new_symbol_full (die, type, cu, NULL);
11105}
11106
98bfdba5
PA
11107/* Given an attr with a DW_FORM_dataN value in host byte order,
11108 zero-extend it as appropriate for the symbol's type. The DWARF
11109 standard (v4) is not entirely clear about the meaning of using
11110 DW_FORM_dataN for a constant with a signed type, where the type is
11111 wider than the data. The conclusion of a discussion on the DWARF
11112 list was that this is unspecified. We choose to always zero-extend
11113 because that is the interpretation long in use by GCC. */
c906108c 11114
98bfdba5
PA
11115static gdb_byte *
11116dwarf2_const_value_data (struct attribute *attr, struct type *type,
11117 const char *name, struct obstack *obstack,
11118 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11119{
e7c27a73 11120 struct objfile *objfile = cu->objfile;
e17a4113
UW
11121 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11122 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11123 LONGEST l = DW_UNSND (attr);
11124
11125 if (bits < sizeof (*value) * 8)
11126 {
11127 l &= ((LONGEST) 1 << bits) - 1;
11128 *value = l;
11129 }
11130 else if (bits == sizeof (*value) * 8)
11131 *value = l;
11132 else
11133 {
11134 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11135 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11136 return bytes;
11137 }
11138
11139 return NULL;
11140}
11141
11142/* Read a constant value from an attribute. Either set *VALUE, or if
11143 the value does not fit in *VALUE, set *BYTES - either already
11144 allocated on the objfile obstack, or newly allocated on OBSTACK,
11145 or, set *BATON, if we translated the constant to a location
11146 expression. */
11147
11148static void
11149dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11150 const char *name, struct obstack *obstack,
11151 struct dwarf2_cu *cu,
11152 long *value, gdb_byte **bytes,
11153 struct dwarf2_locexpr_baton **baton)
11154{
11155 struct objfile *objfile = cu->objfile;
11156 struct comp_unit_head *cu_header = &cu->header;
c906108c 11157 struct dwarf_block *blk;
98bfdba5
PA
11158 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11159 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11160
11161 *value = 0;
11162 *bytes = NULL;
11163 *baton = NULL;
c906108c
SS
11164
11165 switch (attr->form)
11166 {
11167 case DW_FORM_addr:
ac56253d 11168 {
ac56253d
TT
11169 gdb_byte *data;
11170
98bfdba5
PA
11171 if (TYPE_LENGTH (type) != cu_header->addr_size)
11172 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11173 cu_header->addr_size,
98bfdba5 11174 TYPE_LENGTH (type));
ac56253d
TT
11175 /* Symbols of this form are reasonably rare, so we just
11176 piggyback on the existing location code rather than writing
11177 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11178 *baton = obstack_alloc (&objfile->objfile_obstack,
11179 sizeof (struct dwarf2_locexpr_baton));
11180 (*baton)->per_cu = cu->per_cu;
11181 gdb_assert ((*baton)->per_cu);
ac56253d 11182
98bfdba5
PA
11183 (*baton)->size = 2 + cu_header->addr_size;
11184 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11185 (*baton)->data = data;
ac56253d
TT
11186
11187 data[0] = DW_OP_addr;
11188 store_unsigned_integer (&data[1], cu_header->addr_size,
11189 byte_order, DW_ADDR (attr));
11190 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11191 }
c906108c 11192 break;
4ac36638 11193 case DW_FORM_string:
93b5768b 11194 case DW_FORM_strp:
98bfdba5
PA
11195 /* DW_STRING is already allocated on the objfile obstack, point
11196 directly to it. */
11197 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11198 break;
c906108c
SS
11199 case DW_FORM_block1:
11200 case DW_FORM_block2:
11201 case DW_FORM_block4:
11202 case DW_FORM_block:
2dc7f7b3 11203 case DW_FORM_exprloc:
c906108c 11204 blk = DW_BLOCK (attr);
98bfdba5
PA
11205 if (TYPE_LENGTH (type) != blk->size)
11206 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11207 TYPE_LENGTH (type));
11208 *bytes = blk->data;
c906108c 11209 break;
2df3850c
JM
11210
11211 /* The DW_AT_const_value attributes are supposed to carry the
11212 symbol's value "represented as it would be on the target
11213 architecture." By the time we get here, it's already been
11214 converted to host endianness, so we just need to sign- or
11215 zero-extend it as appropriate. */
11216 case DW_FORM_data1:
3e43a32a
MS
11217 *bytes = dwarf2_const_value_data (attr, type, name,
11218 obstack, cu, value, 8);
2df3850c 11219 break;
c906108c 11220 case DW_FORM_data2:
3e43a32a
MS
11221 *bytes = dwarf2_const_value_data (attr, type, name,
11222 obstack, cu, value, 16);
2df3850c 11223 break;
c906108c 11224 case DW_FORM_data4:
3e43a32a
MS
11225 *bytes = dwarf2_const_value_data (attr, type, name,
11226 obstack, cu, value, 32);
2df3850c 11227 break;
c906108c 11228 case DW_FORM_data8:
3e43a32a
MS
11229 *bytes = dwarf2_const_value_data (attr, type, name,
11230 obstack, cu, value, 64);
2df3850c
JM
11231 break;
11232
c906108c 11233 case DW_FORM_sdata:
98bfdba5 11234 *value = DW_SND (attr);
2df3850c
JM
11235 break;
11236
c906108c 11237 case DW_FORM_udata:
98bfdba5 11238 *value = DW_UNSND (attr);
c906108c 11239 break;
2df3850c 11240
c906108c 11241 default:
4d3c2250 11242 complaint (&symfile_complaints,
e2e0b3e5 11243 _("unsupported const value attribute form: '%s'"),
4d3c2250 11244 dwarf_form_name (attr->form));
98bfdba5 11245 *value = 0;
c906108c
SS
11246 break;
11247 }
11248}
11249
2df3850c 11250
98bfdba5
PA
11251/* Copy constant value from an attribute to a symbol. */
11252
2df3850c 11253static void
98bfdba5
PA
11254dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11255 struct dwarf2_cu *cu)
2df3850c 11256{
98bfdba5
PA
11257 struct objfile *objfile = cu->objfile;
11258 struct comp_unit_head *cu_header = &cu->header;
11259 long value;
11260 gdb_byte *bytes;
11261 struct dwarf2_locexpr_baton *baton;
2df3850c 11262
98bfdba5
PA
11263 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11264 SYMBOL_PRINT_NAME (sym),
11265 &objfile->objfile_obstack, cu,
11266 &value, &bytes, &baton);
2df3850c 11267
98bfdba5
PA
11268 if (baton != NULL)
11269 {
11270 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11271 SYMBOL_LOCATION_BATON (sym) = baton;
11272 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11273 }
11274 else if (bytes != NULL)
11275 {
11276 SYMBOL_VALUE_BYTES (sym) = bytes;
11277 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11278 }
11279 else
11280 {
11281 SYMBOL_VALUE (sym) = value;
11282 SYMBOL_CLASS (sym) = LOC_CONST;
11283 }
2df3850c
JM
11284}
11285
c906108c
SS
11286/* Return the type of the die in question using its DW_AT_type attribute. */
11287
11288static struct type *
e7c27a73 11289die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11290{
c906108c 11291 struct attribute *type_attr;
c906108c 11292
e142c38c 11293 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11294 if (!type_attr)
11295 {
11296 /* A missing DW_AT_type represents a void type. */
46bf5051 11297 return objfile_type (cu->objfile)->builtin_void;
c906108c 11298 }
348e048f 11299
673bfd45 11300 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11301}
11302
b4ba55a1
JB
11303/* True iff CU's producer generates GNAT Ada auxiliary information
11304 that allows to find parallel types through that information instead
11305 of having to do expensive parallel lookups by type name. */
11306
11307static int
11308need_gnat_info (struct dwarf2_cu *cu)
11309{
11310 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11311 of GNAT produces this auxiliary information, without any indication
11312 that it is produced. Part of enhancing the FSF version of GNAT
11313 to produce that information will be to put in place an indicator
11314 that we can use in order to determine whether the descriptive type
11315 info is available or not. One suggestion that has been made is
11316 to use a new attribute, attached to the CU die. For now, assume
11317 that the descriptive type info is not available. */
11318 return 0;
11319}
11320
b4ba55a1
JB
11321/* Return the auxiliary type of the die in question using its
11322 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11323 attribute is not present. */
11324
11325static struct type *
11326die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11327{
b4ba55a1 11328 struct attribute *type_attr;
b4ba55a1
JB
11329
11330 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11331 if (!type_attr)
11332 return NULL;
11333
673bfd45 11334 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11335}
11336
11337/* If DIE has a descriptive_type attribute, then set the TYPE's
11338 descriptive type accordingly. */
11339
11340static void
11341set_descriptive_type (struct type *type, struct die_info *die,
11342 struct dwarf2_cu *cu)
11343{
11344 struct type *descriptive_type = die_descriptive_type (die, cu);
11345
11346 if (descriptive_type)
11347 {
11348 ALLOCATE_GNAT_AUX_TYPE (type);
11349 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11350 }
11351}
11352
c906108c
SS
11353/* Return the containing type of the die in question using its
11354 DW_AT_containing_type attribute. */
11355
11356static struct type *
e7c27a73 11357die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11358{
c906108c 11359 struct attribute *type_attr;
c906108c 11360
e142c38c 11361 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11362 if (!type_attr)
11363 error (_("Dwarf Error: Problem turning containing type into gdb type "
11364 "[in module %s]"), cu->objfile->name);
11365
673bfd45 11366 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11367}
11368
673bfd45
DE
11369/* Look up the type of DIE in CU using its type attribute ATTR.
11370 If there is no type substitute an error marker. */
11371
c906108c 11372static struct type *
673bfd45
DE
11373lookup_die_type (struct die_info *die, struct attribute *attr,
11374 struct dwarf2_cu *cu)
c906108c 11375{
f792889a
DJ
11376 struct type *this_type;
11377
673bfd45
DE
11378 /* First see if we have it cached. */
11379
11380 if (is_ref_attr (attr))
11381 {
11382 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11383
11384 this_type = get_die_type_at_offset (offset, cu->per_cu);
11385 }
11386 else if (attr->form == DW_FORM_sig8)
11387 {
11388 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11389 struct dwarf2_cu *sig_cu;
11390 unsigned int offset;
11391
11392 /* sig_type will be NULL if the signatured type is missing from
11393 the debug info. */
11394 if (sig_type == NULL)
11395 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11396 "at 0x%x [in module %s]"),
11397 die->offset, cu->objfile->name);
11398
11399 gdb_assert (sig_type->per_cu.from_debug_types);
11400 offset = sig_type->offset + sig_type->type_offset;
11401 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11402 }
11403 else
11404 {
11405 dump_die_for_error (die);
11406 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11407 dwarf_attr_name (attr->name), cu->objfile->name);
11408 }
11409
11410 /* If not cached we need to read it in. */
11411
11412 if (this_type == NULL)
11413 {
11414 struct die_info *type_die;
11415 struct dwarf2_cu *type_cu = cu;
11416
11417 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11418 /* If the type is cached, we should have found it above. */
11419 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11420 this_type = read_type_die_1 (type_die, type_cu);
11421 }
11422
11423 /* If we still don't have a type use an error marker. */
11424
11425 if (this_type == NULL)
c906108c 11426 {
b00fdb78
TT
11427 char *message, *saved;
11428
11429 /* read_type_die already issued a complaint. */
11430 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11431 cu->objfile->name,
11432 cu->header.offset,
11433 die->offset);
11434 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11435 message, strlen (message));
11436 xfree (message);
11437
11438 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11439 }
673bfd45 11440
f792889a 11441 return this_type;
c906108c
SS
11442}
11443
673bfd45
DE
11444/* Return the type in DIE, CU.
11445 Returns NULL for invalid types.
11446
11447 This first does a lookup in the appropriate type_hash table,
11448 and only reads the die in if necessary.
11449
11450 NOTE: This can be called when reading in partial or full symbols. */
11451
f792889a 11452static struct type *
e7c27a73 11453read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11454{
f792889a
DJ
11455 struct type *this_type;
11456
11457 this_type = get_die_type (die, cu);
11458 if (this_type)
11459 return this_type;
11460
673bfd45
DE
11461 return read_type_die_1 (die, cu);
11462}
11463
11464/* Read the type in DIE, CU.
11465 Returns NULL for invalid types. */
11466
11467static struct type *
11468read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11469{
11470 struct type *this_type = NULL;
11471
c906108c
SS
11472 switch (die->tag)
11473 {
11474 case DW_TAG_class_type:
680b30c7 11475 case DW_TAG_interface_type:
c906108c
SS
11476 case DW_TAG_structure_type:
11477 case DW_TAG_union_type:
f792889a 11478 this_type = read_structure_type (die, cu);
c906108c
SS
11479 break;
11480 case DW_TAG_enumeration_type:
f792889a 11481 this_type = read_enumeration_type (die, cu);
c906108c
SS
11482 break;
11483 case DW_TAG_subprogram:
11484 case DW_TAG_subroutine_type:
edb3359d 11485 case DW_TAG_inlined_subroutine:
f792889a 11486 this_type = read_subroutine_type (die, cu);
c906108c
SS
11487 break;
11488 case DW_TAG_array_type:
f792889a 11489 this_type = read_array_type (die, cu);
c906108c 11490 break;
72019c9c 11491 case DW_TAG_set_type:
f792889a 11492 this_type = read_set_type (die, cu);
72019c9c 11493 break;
c906108c 11494 case DW_TAG_pointer_type:
f792889a 11495 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
11496 break;
11497 case DW_TAG_ptr_to_member_type:
f792889a 11498 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
11499 break;
11500 case DW_TAG_reference_type:
f792889a 11501 this_type = read_tag_reference_type (die, cu);
c906108c
SS
11502 break;
11503 case DW_TAG_const_type:
f792889a 11504 this_type = read_tag_const_type (die, cu);
c906108c
SS
11505 break;
11506 case DW_TAG_volatile_type:
f792889a 11507 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
11508 break;
11509 case DW_TAG_string_type:
f792889a 11510 this_type = read_tag_string_type (die, cu);
c906108c
SS
11511 break;
11512 case DW_TAG_typedef:
f792889a 11513 this_type = read_typedef (die, cu);
c906108c 11514 break;
a02abb62 11515 case DW_TAG_subrange_type:
f792889a 11516 this_type = read_subrange_type (die, cu);
a02abb62 11517 break;
c906108c 11518 case DW_TAG_base_type:
f792889a 11519 this_type = read_base_type (die, cu);
c906108c 11520 break;
81a17f79 11521 case DW_TAG_unspecified_type:
f792889a 11522 this_type = read_unspecified_type (die, cu);
81a17f79 11523 break;
0114d602
DJ
11524 case DW_TAG_namespace:
11525 this_type = read_namespace_type (die, cu);
11526 break;
f55ee35c
JK
11527 case DW_TAG_module:
11528 this_type = read_module_type (die, cu);
11529 break;
c906108c 11530 default:
3e43a32a
MS
11531 complaint (&symfile_complaints,
11532 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 11533 dwarf_tag_name (die->tag));
c906108c
SS
11534 break;
11535 }
63d06c5c 11536
f792889a 11537 return this_type;
63d06c5c
DC
11538}
11539
abc72ce4
DE
11540/* See if we can figure out if the class lives in a namespace. We do
11541 this by looking for a member function; its demangled name will
11542 contain namespace info, if there is any.
11543 Return the computed name or NULL.
11544 Space for the result is allocated on the objfile's obstack.
11545 This is the full-die version of guess_partial_die_structure_name.
11546 In this case we know DIE has no useful parent. */
11547
11548static char *
11549guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11550{
11551 struct die_info *spec_die;
11552 struct dwarf2_cu *spec_cu;
11553 struct die_info *child;
11554
11555 spec_cu = cu;
11556 spec_die = die_specification (die, &spec_cu);
11557 if (spec_die != NULL)
11558 {
11559 die = spec_die;
11560 cu = spec_cu;
11561 }
11562
11563 for (child = die->child;
11564 child != NULL;
11565 child = child->sibling)
11566 {
11567 if (child->tag == DW_TAG_subprogram)
11568 {
11569 struct attribute *attr;
11570
11571 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11572 if (attr == NULL)
11573 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11574 if (attr != NULL)
11575 {
11576 char *actual_name
11577 = language_class_name_from_physname (cu->language_defn,
11578 DW_STRING (attr));
11579 char *name = NULL;
11580
11581 if (actual_name != NULL)
11582 {
11583 char *die_name = dwarf2_name (die, cu);
11584
11585 if (die_name != NULL
11586 && strcmp (die_name, actual_name) != 0)
11587 {
11588 /* Strip off the class name from the full name.
11589 We want the prefix. */
11590 int die_name_len = strlen (die_name);
11591 int actual_name_len = strlen (actual_name);
11592
11593 /* Test for '::' as a sanity check. */
11594 if (actual_name_len > die_name_len + 2
3e43a32a
MS
11595 && actual_name[actual_name_len
11596 - die_name_len - 1] == ':')
abc72ce4
DE
11597 name =
11598 obsavestring (actual_name,
11599 actual_name_len - die_name_len - 2,
11600 &cu->objfile->objfile_obstack);
11601 }
11602 }
11603 xfree (actual_name);
11604 return name;
11605 }
11606 }
11607 }
11608
11609 return NULL;
11610}
11611
fdde2d81 11612/* Return the name of the namespace/class that DIE is defined within,
0114d602 11613 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 11614
0114d602
DJ
11615 For example, if we're within the method foo() in the following
11616 code:
11617
11618 namespace N {
11619 class C {
11620 void foo () {
11621 }
11622 };
11623 }
11624
11625 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
11626
11627static char *
e142c38c 11628determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 11629{
0114d602
DJ
11630 struct die_info *parent, *spec_die;
11631 struct dwarf2_cu *spec_cu;
11632 struct type *parent_type;
63d06c5c 11633
f55ee35c
JK
11634 if (cu->language != language_cplus && cu->language != language_java
11635 && cu->language != language_fortran)
0114d602
DJ
11636 return "";
11637
11638 /* We have to be careful in the presence of DW_AT_specification.
11639 For example, with GCC 3.4, given the code
11640
11641 namespace N {
11642 void foo() {
11643 // Definition of N::foo.
11644 }
11645 }
11646
11647 then we'll have a tree of DIEs like this:
11648
11649 1: DW_TAG_compile_unit
11650 2: DW_TAG_namespace // N
11651 3: DW_TAG_subprogram // declaration of N::foo
11652 4: DW_TAG_subprogram // definition of N::foo
11653 DW_AT_specification // refers to die #3
11654
11655 Thus, when processing die #4, we have to pretend that we're in
11656 the context of its DW_AT_specification, namely the contex of die
11657 #3. */
11658 spec_cu = cu;
11659 spec_die = die_specification (die, &spec_cu);
11660 if (spec_die == NULL)
11661 parent = die->parent;
11662 else
63d06c5c 11663 {
0114d602
DJ
11664 parent = spec_die->parent;
11665 cu = spec_cu;
63d06c5c 11666 }
0114d602
DJ
11667
11668 if (parent == NULL)
11669 return "";
98bfdba5
PA
11670 else if (parent->building_fullname)
11671 {
11672 const char *name;
11673 const char *parent_name;
11674
11675 /* It has been seen on RealView 2.2 built binaries,
11676 DW_TAG_template_type_param types actually _defined_ as
11677 children of the parent class:
11678
11679 enum E {};
11680 template class <class Enum> Class{};
11681 Class<enum E> class_e;
11682
11683 1: DW_TAG_class_type (Class)
11684 2: DW_TAG_enumeration_type (E)
11685 3: DW_TAG_enumerator (enum1:0)
11686 3: DW_TAG_enumerator (enum2:1)
11687 ...
11688 2: DW_TAG_template_type_param
11689 DW_AT_type DW_FORM_ref_udata (E)
11690
11691 Besides being broken debug info, it can put GDB into an
11692 infinite loop. Consider:
11693
11694 When we're building the full name for Class<E>, we'll start
11695 at Class, and go look over its template type parameters,
11696 finding E. We'll then try to build the full name of E, and
11697 reach here. We're now trying to build the full name of E,
11698 and look over the parent DIE for containing scope. In the
11699 broken case, if we followed the parent DIE of E, we'd again
11700 find Class, and once again go look at its template type
11701 arguments, etc., etc. Simply don't consider such parent die
11702 as source-level parent of this die (it can't be, the language
11703 doesn't allow it), and break the loop here. */
11704 name = dwarf2_name (die, cu);
11705 parent_name = dwarf2_name (parent, cu);
11706 complaint (&symfile_complaints,
11707 _("template param type '%s' defined within parent '%s'"),
11708 name ? name : "<unknown>",
11709 parent_name ? parent_name : "<unknown>");
11710 return "";
11711 }
63d06c5c 11712 else
0114d602
DJ
11713 switch (parent->tag)
11714 {
63d06c5c 11715 case DW_TAG_namespace:
0114d602 11716 parent_type = read_type_die (parent, cu);
acebe513
UW
11717 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11718 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11719 Work around this problem here. */
11720 if (cu->language == language_cplus
11721 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11722 return "";
0114d602
DJ
11723 /* We give a name to even anonymous namespaces. */
11724 return TYPE_TAG_NAME (parent_type);
63d06c5c 11725 case DW_TAG_class_type:
680b30c7 11726 case DW_TAG_interface_type:
63d06c5c 11727 case DW_TAG_structure_type:
0114d602 11728 case DW_TAG_union_type:
f55ee35c 11729 case DW_TAG_module:
0114d602
DJ
11730 parent_type = read_type_die (parent, cu);
11731 if (TYPE_TAG_NAME (parent_type) != NULL)
11732 return TYPE_TAG_NAME (parent_type);
11733 else
11734 /* An anonymous structure is only allowed non-static data
11735 members; no typedefs, no member functions, et cetera.
11736 So it does not need a prefix. */
11737 return "";
abc72ce4
DE
11738 case DW_TAG_compile_unit:
11739 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11740 if (cu->language == language_cplus
11741 && dwarf2_per_objfile->types.asection != NULL
11742 && die->child != NULL
11743 && (die->tag == DW_TAG_class_type
11744 || die->tag == DW_TAG_structure_type
11745 || die->tag == DW_TAG_union_type))
11746 {
11747 char *name = guess_full_die_structure_name (die, cu);
11748 if (name != NULL)
11749 return name;
11750 }
11751 return "";
63d06c5c 11752 default:
8176b9b8 11753 return determine_prefix (parent, cu);
63d06c5c 11754 }
63d06c5c
DC
11755}
11756
3e43a32a
MS
11757/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11758 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11759 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11760 an obconcat, otherwise allocate storage for the result. The CU argument is
11761 used to determine the language and hence, the appropriate separator. */
987504bb 11762
f55ee35c 11763#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
11764
11765static char *
f55ee35c
JK
11766typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11767 int physname, struct dwarf2_cu *cu)
63d06c5c 11768{
f55ee35c 11769 const char *lead = "";
5c315b68 11770 const char *sep;
63d06c5c 11771
3e43a32a
MS
11772 if (suffix == NULL || suffix[0] == '\0'
11773 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
11774 sep = "";
11775 else if (cu->language == language_java)
11776 sep = ".";
f55ee35c
JK
11777 else if (cu->language == language_fortran && physname)
11778 {
11779 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11780 DW_AT_MIPS_linkage_name is preferred and used instead. */
11781
11782 lead = "__";
11783 sep = "_MOD_";
11784 }
987504bb
JJ
11785 else
11786 sep = "::";
63d06c5c 11787
6dd47d34
DE
11788 if (prefix == NULL)
11789 prefix = "";
11790 if (suffix == NULL)
11791 suffix = "";
11792
987504bb
JJ
11793 if (obs == NULL)
11794 {
3e43a32a
MS
11795 char *retval
11796 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 11797
f55ee35c
JK
11798 strcpy (retval, lead);
11799 strcat (retval, prefix);
6dd47d34
DE
11800 strcat (retval, sep);
11801 strcat (retval, suffix);
63d06c5c
DC
11802 return retval;
11803 }
987504bb
JJ
11804 else
11805 {
11806 /* We have an obstack. */
f55ee35c 11807 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 11808 }
63d06c5c
DC
11809}
11810
c906108c
SS
11811/* Return sibling of die, NULL if no sibling. */
11812
f9aca02d 11813static struct die_info *
fba45db2 11814sibling_die (struct die_info *die)
c906108c 11815{
639d11d3 11816 return die->sibling;
c906108c
SS
11817}
11818
71c25dea
TT
11819/* Get name of a die, return NULL if not found. */
11820
11821static char *
11822dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11823 struct obstack *obstack)
11824{
11825 if (name && cu->language == language_cplus)
11826 {
11827 char *canon_name = cp_canonicalize_string (name);
11828
11829 if (canon_name != NULL)
11830 {
11831 if (strcmp (canon_name, name) != 0)
11832 name = obsavestring (canon_name, strlen (canon_name),
11833 obstack);
11834 xfree (canon_name);
11835 }
11836 }
11837
11838 return name;
c906108c
SS
11839}
11840
9219021c
DC
11841/* Get name of a die, return NULL if not found. */
11842
11843static char *
e142c38c 11844dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
11845{
11846 struct attribute *attr;
11847
e142c38c 11848 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
11849 if (!attr || !DW_STRING (attr))
11850 return NULL;
11851
11852 switch (die->tag)
11853 {
11854 case DW_TAG_compile_unit:
11855 /* Compilation units have a DW_AT_name that is a filename, not
11856 a source language identifier. */
11857 case DW_TAG_enumeration_type:
11858 case DW_TAG_enumerator:
11859 /* These tags always have simple identifiers already; no need
11860 to canonicalize them. */
11861 return DW_STRING (attr);
907af001 11862
418835cc
KS
11863 case DW_TAG_subprogram:
11864 /* Java constructors will all be named "<init>", so return
11865 the class name when we see this special case. */
11866 if (cu->language == language_java
11867 && DW_STRING (attr) != NULL
11868 && strcmp (DW_STRING (attr), "<init>") == 0)
11869 {
11870 struct dwarf2_cu *spec_cu = cu;
11871 struct die_info *spec_die;
11872
11873 /* GCJ will output '<init>' for Java constructor names.
11874 For this special case, return the name of the parent class. */
11875
11876 /* GCJ may output suprogram DIEs with AT_specification set.
11877 If so, use the name of the specified DIE. */
11878 spec_die = die_specification (die, &spec_cu);
11879 if (spec_die != NULL)
11880 return dwarf2_name (spec_die, spec_cu);
11881
11882 do
11883 {
11884 die = die->parent;
11885 if (die->tag == DW_TAG_class_type)
11886 return dwarf2_name (die, cu);
11887 }
11888 while (die->tag != DW_TAG_compile_unit);
11889 }
907af001
UW
11890 break;
11891
11892 case DW_TAG_class_type:
11893 case DW_TAG_interface_type:
11894 case DW_TAG_structure_type:
11895 case DW_TAG_union_type:
11896 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11897 structures or unions. These were of the form "._%d" in GCC 4.1,
11898 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11899 and GCC 4.4. We work around this problem by ignoring these. */
11900 if (strncmp (DW_STRING (attr), "._", 2) == 0
11901 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11902 return NULL;
11903 break;
11904
71c25dea 11905 default:
907af001
UW
11906 break;
11907 }
11908
11909 if (!DW_STRING_IS_CANONICAL (attr))
11910 {
11911 DW_STRING (attr)
11912 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11913 &cu->objfile->objfile_obstack);
11914 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 11915 }
907af001 11916 return DW_STRING (attr);
9219021c
DC
11917}
11918
11919/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
11920 is none. *EXT_CU is the CU containing DIE on input, and the CU
11921 containing the return value on output. */
9219021c
DC
11922
11923static struct die_info *
f2f0e013 11924dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
11925{
11926 struct attribute *attr;
9219021c 11927
f2f0e013 11928 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
11929 if (attr == NULL)
11930 return NULL;
11931
f2f0e013 11932 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
11933}
11934
c906108c
SS
11935/* Convert a DIE tag into its string name. */
11936
11937static char *
aa1ee363 11938dwarf_tag_name (unsigned tag)
c906108c
SS
11939{
11940 switch (tag)
11941 {
11942 case DW_TAG_padding:
11943 return "DW_TAG_padding";
11944 case DW_TAG_array_type:
11945 return "DW_TAG_array_type";
11946 case DW_TAG_class_type:
11947 return "DW_TAG_class_type";
11948 case DW_TAG_entry_point:
11949 return "DW_TAG_entry_point";
11950 case DW_TAG_enumeration_type:
11951 return "DW_TAG_enumeration_type";
11952 case DW_TAG_formal_parameter:
11953 return "DW_TAG_formal_parameter";
11954 case DW_TAG_imported_declaration:
11955 return "DW_TAG_imported_declaration";
11956 case DW_TAG_label:
11957 return "DW_TAG_label";
11958 case DW_TAG_lexical_block:
11959 return "DW_TAG_lexical_block";
11960 case DW_TAG_member:
11961 return "DW_TAG_member";
11962 case DW_TAG_pointer_type:
11963 return "DW_TAG_pointer_type";
11964 case DW_TAG_reference_type:
11965 return "DW_TAG_reference_type";
11966 case DW_TAG_compile_unit:
11967 return "DW_TAG_compile_unit";
11968 case DW_TAG_string_type:
11969 return "DW_TAG_string_type";
11970 case DW_TAG_structure_type:
11971 return "DW_TAG_structure_type";
11972 case DW_TAG_subroutine_type:
11973 return "DW_TAG_subroutine_type";
11974 case DW_TAG_typedef:
11975 return "DW_TAG_typedef";
11976 case DW_TAG_union_type:
11977 return "DW_TAG_union_type";
11978 case DW_TAG_unspecified_parameters:
11979 return "DW_TAG_unspecified_parameters";
11980 case DW_TAG_variant:
11981 return "DW_TAG_variant";
11982 case DW_TAG_common_block:
11983 return "DW_TAG_common_block";
11984 case DW_TAG_common_inclusion:
11985 return "DW_TAG_common_inclusion";
11986 case DW_TAG_inheritance:
11987 return "DW_TAG_inheritance";
11988 case DW_TAG_inlined_subroutine:
11989 return "DW_TAG_inlined_subroutine";
11990 case DW_TAG_module:
11991 return "DW_TAG_module";
11992 case DW_TAG_ptr_to_member_type:
11993 return "DW_TAG_ptr_to_member_type";
11994 case DW_TAG_set_type:
11995 return "DW_TAG_set_type";
11996 case DW_TAG_subrange_type:
11997 return "DW_TAG_subrange_type";
11998 case DW_TAG_with_stmt:
11999 return "DW_TAG_with_stmt";
12000 case DW_TAG_access_declaration:
12001 return "DW_TAG_access_declaration";
12002 case DW_TAG_base_type:
12003 return "DW_TAG_base_type";
12004 case DW_TAG_catch_block:
12005 return "DW_TAG_catch_block";
12006 case DW_TAG_const_type:
12007 return "DW_TAG_const_type";
12008 case DW_TAG_constant:
12009 return "DW_TAG_constant";
12010 case DW_TAG_enumerator:
12011 return "DW_TAG_enumerator";
12012 case DW_TAG_file_type:
12013 return "DW_TAG_file_type";
12014 case DW_TAG_friend:
12015 return "DW_TAG_friend";
12016 case DW_TAG_namelist:
12017 return "DW_TAG_namelist";
12018 case DW_TAG_namelist_item:
12019 return "DW_TAG_namelist_item";
12020 case DW_TAG_packed_type:
12021 return "DW_TAG_packed_type";
12022 case DW_TAG_subprogram:
12023 return "DW_TAG_subprogram";
12024 case DW_TAG_template_type_param:
12025 return "DW_TAG_template_type_param";
12026 case DW_TAG_template_value_param:
12027 return "DW_TAG_template_value_param";
12028 case DW_TAG_thrown_type:
12029 return "DW_TAG_thrown_type";
12030 case DW_TAG_try_block:
12031 return "DW_TAG_try_block";
12032 case DW_TAG_variant_part:
12033 return "DW_TAG_variant_part";
12034 case DW_TAG_variable:
12035 return "DW_TAG_variable";
12036 case DW_TAG_volatile_type:
12037 return "DW_TAG_volatile_type";
d9fa45fe
DC
12038 case DW_TAG_dwarf_procedure:
12039 return "DW_TAG_dwarf_procedure";
12040 case DW_TAG_restrict_type:
12041 return "DW_TAG_restrict_type";
12042 case DW_TAG_interface_type:
12043 return "DW_TAG_interface_type";
12044 case DW_TAG_namespace:
12045 return "DW_TAG_namespace";
12046 case DW_TAG_imported_module:
12047 return "DW_TAG_imported_module";
12048 case DW_TAG_unspecified_type:
12049 return "DW_TAG_unspecified_type";
12050 case DW_TAG_partial_unit:
12051 return "DW_TAG_partial_unit";
12052 case DW_TAG_imported_unit:
12053 return "DW_TAG_imported_unit";
b7619582
GF
12054 case DW_TAG_condition:
12055 return "DW_TAG_condition";
12056 case DW_TAG_shared_type:
12057 return "DW_TAG_shared_type";
348e048f
DE
12058 case DW_TAG_type_unit:
12059 return "DW_TAG_type_unit";
c906108c
SS
12060 case DW_TAG_MIPS_loop:
12061 return "DW_TAG_MIPS_loop";
b7619582
GF
12062 case DW_TAG_HP_array_descriptor:
12063 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12064 case DW_TAG_format_label:
12065 return "DW_TAG_format_label";
12066 case DW_TAG_function_template:
12067 return "DW_TAG_function_template";
12068 case DW_TAG_class_template:
12069 return "DW_TAG_class_template";
b7619582
GF
12070 case DW_TAG_GNU_BINCL:
12071 return "DW_TAG_GNU_BINCL";
12072 case DW_TAG_GNU_EINCL:
12073 return "DW_TAG_GNU_EINCL";
12074 case DW_TAG_upc_shared_type:
12075 return "DW_TAG_upc_shared_type";
12076 case DW_TAG_upc_strict_type:
12077 return "DW_TAG_upc_strict_type";
12078 case DW_TAG_upc_relaxed_type:
12079 return "DW_TAG_upc_relaxed_type";
12080 case DW_TAG_PGI_kanji_type:
12081 return "DW_TAG_PGI_kanji_type";
12082 case DW_TAG_PGI_interface_block:
12083 return "DW_TAG_PGI_interface_block";
c906108c
SS
12084 default:
12085 return "DW_TAG_<unknown>";
12086 }
12087}
12088
12089/* Convert a DWARF attribute code into its string name. */
12090
12091static char *
aa1ee363 12092dwarf_attr_name (unsigned attr)
c906108c
SS
12093{
12094 switch (attr)
12095 {
12096 case DW_AT_sibling:
12097 return "DW_AT_sibling";
12098 case DW_AT_location:
12099 return "DW_AT_location";
12100 case DW_AT_name:
12101 return "DW_AT_name";
12102 case DW_AT_ordering:
12103 return "DW_AT_ordering";
12104 case DW_AT_subscr_data:
12105 return "DW_AT_subscr_data";
12106 case DW_AT_byte_size:
12107 return "DW_AT_byte_size";
12108 case DW_AT_bit_offset:
12109 return "DW_AT_bit_offset";
12110 case DW_AT_bit_size:
12111 return "DW_AT_bit_size";
12112 case DW_AT_element_list:
12113 return "DW_AT_element_list";
12114 case DW_AT_stmt_list:
12115 return "DW_AT_stmt_list";
12116 case DW_AT_low_pc:
12117 return "DW_AT_low_pc";
12118 case DW_AT_high_pc:
12119 return "DW_AT_high_pc";
12120 case DW_AT_language:
12121 return "DW_AT_language";
12122 case DW_AT_member:
12123 return "DW_AT_member";
12124 case DW_AT_discr:
12125 return "DW_AT_discr";
12126 case DW_AT_discr_value:
12127 return "DW_AT_discr_value";
12128 case DW_AT_visibility:
12129 return "DW_AT_visibility";
12130 case DW_AT_import:
12131 return "DW_AT_import";
12132 case DW_AT_string_length:
12133 return "DW_AT_string_length";
12134 case DW_AT_common_reference:
12135 return "DW_AT_common_reference";
12136 case DW_AT_comp_dir:
12137 return "DW_AT_comp_dir";
12138 case DW_AT_const_value:
12139 return "DW_AT_const_value";
12140 case DW_AT_containing_type:
12141 return "DW_AT_containing_type";
12142 case DW_AT_default_value:
12143 return "DW_AT_default_value";
12144 case DW_AT_inline:
12145 return "DW_AT_inline";
12146 case DW_AT_is_optional:
12147 return "DW_AT_is_optional";
12148 case DW_AT_lower_bound:
12149 return "DW_AT_lower_bound";
12150 case DW_AT_producer:
12151 return "DW_AT_producer";
12152 case DW_AT_prototyped:
12153 return "DW_AT_prototyped";
12154 case DW_AT_return_addr:
12155 return "DW_AT_return_addr";
12156 case DW_AT_start_scope:
12157 return "DW_AT_start_scope";
09fa0d7c
JK
12158 case DW_AT_bit_stride:
12159 return "DW_AT_bit_stride";
c906108c
SS
12160 case DW_AT_upper_bound:
12161 return "DW_AT_upper_bound";
12162 case DW_AT_abstract_origin:
12163 return "DW_AT_abstract_origin";
12164 case DW_AT_accessibility:
12165 return "DW_AT_accessibility";
12166 case DW_AT_address_class:
12167 return "DW_AT_address_class";
12168 case DW_AT_artificial:
12169 return "DW_AT_artificial";
12170 case DW_AT_base_types:
12171 return "DW_AT_base_types";
12172 case DW_AT_calling_convention:
12173 return "DW_AT_calling_convention";
12174 case DW_AT_count:
12175 return "DW_AT_count";
12176 case DW_AT_data_member_location:
12177 return "DW_AT_data_member_location";
12178 case DW_AT_decl_column:
12179 return "DW_AT_decl_column";
12180 case DW_AT_decl_file:
12181 return "DW_AT_decl_file";
12182 case DW_AT_decl_line:
12183 return "DW_AT_decl_line";
12184 case DW_AT_declaration:
12185 return "DW_AT_declaration";
12186 case DW_AT_discr_list:
12187 return "DW_AT_discr_list";
12188 case DW_AT_encoding:
12189 return "DW_AT_encoding";
12190 case DW_AT_external:
12191 return "DW_AT_external";
12192 case DW_AT_frame_base:
12193 return "DW_AT_frame_base";
12194 case DW_AT_friend:
12195 return "DW_AT_friend";
12196 case DW_AT_identifier_case:
12197 return "DW_AT_identifier_case";
12198 case DW_AT_macro_info:
12199 return "DW_AT_macro_info";
12200 case DW_AT_namelist_items:
12201 return "DW_AT_namelist_items";
12202 case DW_AT_priority:
12203 return "DW_AT_priority";
12204 case DW_AT_segment:
12205 return "DW_AT_segment";
12206 case DW_AT_specification:
12207 return "DW_AT_specification";
12208 case DW_AT_static_link:
12209 return "DW_AT_static_link";
12210 case DW_AT_type:
12211 return "DW_AT_type";
12212 case DW_AT_use_location:
12213 return "DW_AT_use_location";
12214 case DW_AT_variable_parameter:
12215 return "DW_AT_variable_parameter";
12216 case DW_AT_virtuality:
12217 return "DW_AT_virtuality";
12218 case DW_AT_vtable_elem_location:
12219 return "DW_AT_vtable_elem_location";
b7619582 12220 /* DWARF 3 values. */
d9fa45fe
DC
12221 case DW_AT_allocated:
12222 return "DW_AT_allocated";
12223 case DW_AT_associated:
12224 return "DW_AT_associated";
12225 case DW_AT_data_location:
12226 return "DW_AT_data_location";
09fa0d7c
JK
12227 case DW_AT_byte_stride:
12228 return "DW_AT_byte_stride";
d9fa45fe
DC
12229 case DW_AT_entry_pc:
12230 return "DW_AT_entry_pc";
12231 case DW_AT_use_UTF8:
12232 return "DW_AT_use_UTF8";
12233 case DW_AT_extension:
12234 return "DW_AT_extension";
12235 case DW_AT_ranges:
12236 return "DW_AT_ranges";
12237 case DW_AT_trampoline:
12238 return "DW_AT_trampoline";
12239 case DW_AT_call_column:
12240 return "DW_AT_call_column";
12241 case DW_AT_call_file:
12242 return "DW_AT_call_file";
12243 case DW_AT_call_line:
12244 return "DW_AT_call_line";
b7619582
GF
12245 case DW_AT_description:
12246 return "DW_AT_description";
12247 case DW_AT_binary_scale:
12248 return "DW_AT_binary_scale";
12249 case DW_AT_decimal_scale:
12250 return "DW_AT_decimal_scale";
12251 case DW_AT_small:
12252 return "DW_AT_small";
12253 case DW_AT_decimal_sign:
12254 return "DW_AT_decimal_sign";
12255 case DW_AT_digit_count:
12256 return "DW_AT_digit_count";
12257 case DW_AT_picture_string:
12258 return "DW_AT_picture_string";
12259 case DW_AT_mutable:
12260 return "DW_AT_mutable";
12261 case DW_AT_threads_scaled:
12262 return "DW_AT_threads_scaled";
12263 case DW_AT_explicit:
12264 return "DW_AT_explicit";
12265 case DW_AT_object_pointer:
12266 return "DW_AT_object_pointer";
12267 case DW_AT_endianity:
12268 return "DW_AT_endianity";
12269 case DW_AT_elemental:
12270 return "DW_AT_elemental";
12271 case DW_AT_pure:
12272 return "DW_AT_pure";
12273 case DW_AT_recursive:
12274 return "DW_AT_recursive";
348e048f
DE
12275 /* DWARF 4 values. */
12276 case DW_AT_signature:
12277 return "DW_AT_signature";
31ef98ae
TT
12278 case DW_AT_linkage_name:
12279 return "DW_AT_linkage_name";
b7619582 12280 /* SGI/MIPS extensions. */
c764a876 12281#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12282 case DW_AT_MIPS_fde:
12283 return "DW_AT_MIPS_fde";
c764a876 12284#endif
c906108c
SS
12285 case DW_AT_MIPS_loop_begin:
12286 return "DW_AT_MIPS_loop_begin";
12287 case DW_AT_MIPS_tail_loop_begin:
12288 return "DW_AT_MIPS_tail_loop_begin";
12289 case DW_AT_MIPS_epilog_begin:
12290 return "DW_AT_MIPS_epilog_begin";
12291 case DW_AT_MIPS_loop_unroll_factor:
12292 return "DW_AT_MIPS_loop_unroll_factor";
12293 case DW_AT_MIPS_software_pipeline_depth:
12294 return "DW_AT_MIPS_software_pipeline_depth";
12295 case DW_AT_MIPS_linkage_name:
12296 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12297 case DW_AT_MIPS_stride:
12298 return "DW_AT_MIPS_stride";
12299 case DW_AT_MIPS_abstract_name:
12300 return "DW_AT_MIPS_abstract_name";
12301 case DW_AT_MIPS_clone_origin:
12302 return "DW_AT_MIPS_clone_origin";
12303 case DW_AT_MIPS_has_inlines:
12304 return "DW_AT_MIPS_has_inlines";
b7619582 12305 /* HP extensions. */
c764a876 12306#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12307 case DW_AT_HP_block_index:
12308 return "DW_AT_HP_block_index";
c764a876 12309#endif
b7619582
GF
12310 case DW_AT_HP_unmodifiable:
12311 return "DW_AT_HP_unmodifiable";
12312 case DW_AT_HP_actuals_stmt_list:
12313 return "DW_AT_HP_actuals_stmt_list";
12314 case DW_AT_HP_proc_per_section:
12315 return "DW_AT_HP_proc_per_section";
12316 case DW_AT_HP_raw_data_ptr:
12317 return "DW_AT_HP_raw_data_ptr";
12318 case DW_AT_HP_pass_by_reference:
12319 return "DW_AT_HP_pass_by_reference";
12320 case DW_AT_HP_opt_level:
12321 return "DW_AT_HP_opt_level";
12322 case DW_AT_HP_prof_version_id:
12323 return "DW_AT_HP_prof_version_id";
12324 case DW_AT_HP_opt_flags:
12325 return "DW_AT_HP_opt_flags";
12326 case DW_AT_HP_cold_region_low_pc:
12327 return "DW_AT_HP_cold_region_low_pc";
12328 case DW_AT_HP_cold_region_high_pc:
12329 return "DW_AT_HP_cold_region_high_pc";
12330 case DW_AT_HP_all_variables_modifiable:
12331 return "DW_AT_HP_all_variables_modifiable";
12332 case DW_AT_HP_linkage_name:
12333 return "DW_AT_HP_linkage_name";
12334 case DW_AT_HP_prof_flags:
12335 return "DW_AT_HP_prof_flags";
12336 /* GNU extensions. */
c906108c
SS
12337 case DW_AT_sf_names:
12338 return "DW_AT_sf_names";
12339 case DW_AT_src_info:
12340 return "DW_AT_src_info";
12341 case DW_AT_mac_info:
12342 return "DW_AT_mac_info";
12343 case DW_AT_src_coords:
12344 return "DW_AT_src_coords";
12345 case DW_AT_body_begin:
12346 return "DW_AT_body_begin";
12347 case DW_AT_body_end:
12348 return "DW_AT_body_end";
f5f8a009
EZ
12349 case DW_AT_GNU_vector:
12350 return "DW_AT_GNU_vector";
2de00c64
DE
12351 case DW_AT_GNU_odr_signature:
12352 return "DW_AT_GNU_odr_signature";
b7619582
GF
12353 /* VMS extensions. */
12354 case DW_AT_VMS_rtnbeg_pd_address:
12355 return "DW_AT_VMS_rtnbeg_pd_address";
12356 /* UPC extension. */
12357 case DW_AT_upc_threads_scaled:
12358 return "DW_AT_upc_threads_scaled";
12359 /* PGI (STMicroelectronics) extensions. */
12360 case DW_AT_PGI_lbase:
12361 return "DW_AT_PGI_lbase";
12362 case DW_AT_PGI_soffset:
12363 return "DW_AT_PGI_soffset";
12364 case DW_AT_PGI_lstride:
12365 return "DW_AT_PGI_lstride";
c906108c
SS
12366 default:
12367 return "DW_AT_<unknown>";
12368 }
12369}
12370
12371/* Convert a DWARF value form code into its string name. */
12372
12373static char *
aa1ee363 12374dwarf_form_name (unsigned form)
c906108c
SS
12375{
12376 switch (form)
12377 {
12378 case DW_FORM_addr:
12379 return "DW_FORM_addr";
12380 case DW_FORM_block2:
12381 return "DW_FORM_block2";
12382 case DW_FORM_block4:
12383 return "DW_FORM_block4";
12384 case DW_FORM_data2:
12385 return "DW_FORM_data2";
12386 case DW_FORM_data4:
12387 return "DW_FORM_data4";
12388 case DW_FORM_data8:
12389 return "DW_FORM_data8";
12390 case DW_FORM_string:
12391 return "DW_FORM_string";
12392 case DW_FORM_block:
12393 return "DW_FORM_block";
12394 case DW_FORM_block1:
12395 return "DW_FORM_block1";
12396 case DW_FORM_data1:
12397 return "DW_FORM_data1";
12398 case DW_FORM_flag:
12399 return "DW_FORM_flag";
12400 case DW_FORM_sdata:
12401 return "DW_FORM_sdata";
12402 case DW_FORM_strp:
12403 return "DW_FORM_strp";
12404 case DW_FORM_udata:
12405 return "DW_FORM_udata";
12406 case DW_FORM_ref_addr:
12407 return "DW_FORM_ref_addr";
12408 case DW_FORM_ref1:
12409 return "DW_FORM_ref1";
12410 case DW_FORM_ref2:
12411 return "DW_FORM_ref2";
12412 case DW_FORM_ref4:
12413 return "DW_FORM_ref4";
12414 case DW_FORM_ref8:
12415 return "DW_FORM_ref8";
12416 case DW_FORM_ref_udata:
12417 return "DW_FORM_ref_udata";
12418 case DW_FORM_indirect:
12419 return "DW_FORM_indirect";
348e048f
DE
12420 case DW_FORM_sec_offset:
12421 return "DW_FORM_sec_offset";
12422 case DW_FORM_exprloc:
12423 return "DW_FORM_exprloc";
12424 case DW_FORM_flag_present:
12425 return "DW_FORM_flag_present";
12426 case DW_FORM_sig8:
12427 return "DW_FORM_sig8";
c906108c
SS
12428 default:
12429 return "DW_FORM_<unknown>";
12430 }
12431}
12432
12433/* Convert a DWARF stack opcode into its string name. */
12434
9eae7c52
TT
12435const char *
12436dwarf_stack_op_name (unsigned op, int def)
c906108c
SS
12437{
12438 switch (op)
12439 {
12440 case DW_OP_addr:
12441 return "DW_OP_addr";
12442 case DW_OP_deref:
12443 return "DW_OP_deref";
12444 case DW_OP_const1u:
12445 return "DW_OP_const1u";
12446 case DW_OP_const1s:
12447 return "DW_OP_const1s";
12448 case DW_OP_const2u:
12449 return "DW_OP_const2u";
12450 case DW_OP_const2s:
12451 return "DW_OP_const2s";
12452 case DW_OP_const4u:
12453 return "DW_OP_const4u";
12454 case DW_OP_const4s:
12455 return "DW_OP_const4s";
12456 case DW_OP_const8u:
12457 return "DW_OP_const8u";
12458 case DW_OP_const8s:
12459 return "DW_OP_const8s";
12460 case DW_OP_constu:
12461 return "DW_OP_constu";
12462 case DW_OP_consts:
12463 return "DW_OP_consts";
12464 case DW_OP_dup:
12465 return "DW_OP_dup";
12466 case DW_OP_drop:
12467 return "DW_OP_drop";
12468 case DW_OP_over:
12469 return "DW_OP_over";
12470 case DW_OP_pick:
12471 return "DW_OP_pick";
12472 case DW_OP_swap:
12473 return "DW_OP_swap";
12474 case DW_OP_rot:
12475 return "DW_OP_rot";
12476 case DW_OP_xderef:
12477 return "DW_OP_xderef";
12478 case DW_OP_abs:
12479 return "DW_OP_abs";
12480 case DW_OP_and:
12481 return "DW_OP_and";
12482 case DW_OP_div:
12483 return "DW_OP_div";
12484 case DW_OP_minus:
12485 return "DW_OP_minus";
12486 case DW_OP_mod:
12487 return "DW_OP_mod";
12488 case DW_OP_mul:
12489 return "DW_OP_mul";
12490 case DW_OP_neg:
12491 return "DW_OP_neg";
12492 case DW_OP_not:
12493 return "DW_OP_not";
12494 case DW_OP_or:
12495 return "DW_OP_or";
12496 case DW_OP_plus:
12497 return "DW_OP_plus";
12498 case DW_OP_plus_uconst:
12499 return "DW_OP_plus_uconst";
12500 case DW_OP_shl:
12501 return "DW_OP_shl";
12502 case DW_OP_shr:
12503 return "DW_OP_shr";
12504 case DW_OP_shra:
12505 return "DW_OP_shra";
12506 case DW_OP_xor:
12507 return "DW_OP_xor";
12508 case DW_OP_bra:
12509 return "DW_OP_bra";
12510 case DW_OP_eq:
12511 return "DW_OP_eq";
12512 case DW_OP_ge:
12513 return "DW_OP_ge";
12514 case DW_OP_gt:
12515 return "DW_OP_gt";
12516 case DW_OP_le:
12517 return "DW_OP_le";
12518 case DW_OP_lt:
12519 return "DW_OP_lt";
12520 case DW_OP_ne:
12521 return "DW_OP_ne";
12522 case DW_OP_skip:
12523 return "DW_OP_skip";
12524 case DW_OP_lit0:
12525 return "DW_OP_lit0";
12526 case DW_OP_lit1:
12527 return "DW_OP_lit1";
12528 case DW_OP_lit2:
12529 return "DW_OP_lit2";
12530 case DW_OP_lit3:
12531 return "DW_OP_lit3";
12532 case DW_OP_lit4:
12533 return "DW_OP_lit4";
12534 case DW_OP_lit5:
12535 return "DW_OP_lit5";
12536 case DW_OP_lit6:
12537 return "DW_OP_lit6";
12538 case DW_OP_lit7:
12539 return "DW_OP_lit7";
12540 case DW_OP_lit8:
12541 return "DW_OP_lit8";
12542 case DW_OP_lit9:
12543 return "DW_OP_lit9";
12544 case DW_OP_lit10:
12545 return "DW_OP_lit10";
12546 case DW_OP_lit11:
12547 return "DW_OP_lit11";
12548 case DW_OP_lit12:
12549 return "DW_OP_lit12";
12550 case DW_OP_lit13:
12551 return "DW_OP_lit13";
12552 case DW_OP_lit14:
12553 return "DW_OP_lit14";
12554 case DW_OP_lit15:
12555 return "DW_OP_lit15";
12556 case DW_OP_lit16:
12557 return "DW_OP_lit16";
12558 case DW_OP_lit17:
12559 return "DW_OP_lit17";
12560 case DW_OP_lit18:
12561 return "DW_OP_lit18";
12562 case DW_OP_lit19:
12563 return "DW_OP_lit19";
12564 case DW_OP_lit20:
12565 return "DW_OP_lit20";
12566 case DW_OP_lit21:
12567 return "DW_OP_lit21";
12568 case DW_OP_lit22:
12569 return "DW_OP_lit22";
12570 case DW_OP_lit23:
12571 return "DW_OP_lit23";
12572 case DW_OP_lit24:
12573 return "DW_OP_lit24";
12574 case DW_OP_lit25:
12575 return "DW_OP_lit25";
12576 case DW_OP_lit26:
12577 return "DW_OP_lit26";
12578 case DW_OP_lit27:
12579 return "DW_OP_lit27";
12580 case DW_OP_lit28:
12581 return "DW_OP_lit28";
12582 case DW_OP_lit29:
12583 return "DW_OP_lit29";
12584 case DW_OP_lit30:
12585 return "DW_OP_lit30";
12586 case DW_OP_lit31:
12587 return "DW_OP_lit31";
12588 case DW_OP_reg0:
12589 return "DW_OP_reg0";
12590 case DW_OP_reg1:
12591 return "DW_OP_reg1";
12592 case DW_OP_reg2:
12593 return "DW_OP_reg2";
12594 case DW_OP_reg3:
12595 return "DW_OP_reg3";
12596 case DW_OP_reg4:
12597 return "DW_OP_reg4";
12598 case DW_OP_reg5:
12599 return "DW_OP_reg5";
12600 case DW_OP_reg6:
12601 return "DW_OP_reg6";
12602 case DW_OP_reg7:
12603 return "DW_OP_reg7";
12604 case DW_OP_reg8:
12605 return "DW_OP_reg8";
12606 case DW_OP_reg9:
12607 return "DW_OP_reg9";
12608 case DW_OP_reg10:
12609 return "DW_OP_reg10";
12610 case DW_OP_reg11:
12611 return "DW_OP_reg11";
12612 case DW_OP_reg12:
12613 return "DW_OP_reg12";
12614 case DW_OP_reg13:
12615 return "DW_OP_reg13";
12616 case DW_OP_reg14:
12617 return "DW_OP_reg14";
12618 case DW_OP_reg15:
12619 return "DW_OP_reg15";
12620 case DW_OP_reg16:
12621 return "DW_OP_reg16";
12622 case DW_OP_reg17:
12623 return "DW_OP_reg17";
12624 case DW_OP_reg18:
12625 return "DW_OP_reg18";
12626 case DW_OP_reg19:
12627 return "DW_OP_reg19";
12628 case DW_OP_reg20:
12629 return "DW_OP_reg20";
12630 case DW_OP_reg21:
12631 return "DW_OP_reg21";
12632 case DW_OP_reg22:
12633 return "DW_OP_reg22";
12634 case DW_OP_reg23:
12635 return "DW_OP_reg23";
12636 case DW_OP_reg24:
12637 return "DW_OP_reg24";
12638 case DW_OP_reg25:
12639 return "DW_OP_reg25";
12640 case DW_OP_reg26:
12641 return "DW_OP_reg26";
12642 case DW_OP_reg27:
12643 return "DW_OP_reg27";
12644 case DW_OP_reg28:
12645 return "DW_OP_reg28";
12646 case DW_OP_reg29:
12647 return "DW_OP_reg29";
12648 case DW_OP_reg30:
12649 return "DW_OP_reg30";
12650 case DW_OP_reg31:
12651 return "DW_OP_reg31";
12652 case DW_OP_breg0:
12653 return "DW_OP_breg0";
12654 case DW_OP_breg1:
12655 return "DW_OP_breg1";
12656 case DW_OP_breg2:
12657 return "DW_OP_breg2";
12658 case DW_OP_breg3:
12659 return "DW_OP_breg3";
12660 case DW_OP_breg4:
12661 return "DW_OP_breg4";
12662 case DW_OP_breg5:
12663 return "DW_OP_breg5";
12664 case DW_OP_breg6:
12665 return "DW_OP_breg6";
12666 case DW_OP_breg7:
12667 return "DW_OP_breg7";
12668 case DW_OP_breg8:
12669 return "DW_OP_breg8";
12670 case DW_OP_breg9:
12671 return "DW_OP_breg9";
12672 case DW_OP_breg10:
12673 return "DW_OP_breg10";
12674 case DW_OP_breg11:
12675 return "DW_OP_breg11";
12676 case DW_OP_breg12:
12677 return "DW_OP_breg12";
12678 case DW_OP_breg13:
12679 return "DW_OP_breg13";
12680 case DW_OP_breg14:
12681 return "DW_OP_breg14";
12682 case DW_OP_breg15:
12683 return "DW_OP_breg15";
12684 case DW_OP_breg16:
12685 return "DW_OP_breg16";
12686 case DW_OP_breg17:
12687 return "DW_OP_breg17";
12688 case DW_OP_breg18:
12689 return "DW_OP_breg18";
12690 case DW_OP_breg19:
12691 return "DW_OP_breg19";
12692 case DW_OP_breg20:
12693 return "DW_OP_breg20";
12694 case DW_OP_breg21:
12695 return "DW_OP_breg21";
12696 case DW_OP_breg22:
12697 return "DW_OP_breg22";
12698 case DW_OP_breg23:
12699 return "DW_OP_breg23";
12700 case DW_OP_breg24:
12701 return "DW_OP_breg24";
12702 case DW_OP_breg25:
12703 return "DW_OP_breg25";
12704 case DW_OP_breg26:
12705 return "DW_OP_breg26";
12706 case DW_OP_breg27:
12707 return "DW_OP_breg27";
12708 case DW_OP_breg28:
12709 return "DW_OP_breg28";
12710 case DW_OP_breg29:
12711 return "DW_OP_breg29";
12712 case DW_OP_breg30:
12713 return "DW_OP_breg30";
12714 case DW_OP_breg31:
12715 return "DW_OP_breg31";
12716 case DW_OP_regx:
12717 return "DW_OP_regx";
12718 case DW_OP_fbreg:
12719 return "DW_OP_fbreg";
12720 case DW_OP_bregx:
12721 return "DW_OP_bregx";
12722 case DW_OP_piece:
12723 return "DW_OP_piece";
12724 case DW_OP_deref_size:
12725 return "DW_OP_deref_size";
12726 case DW_OP_xderef_size:
12727 return "DW_OP_xderef_size";
12728 case DW_OP_nop:
12729 return "DW_OP_nop";
b7619582 12730 /* DWARF 3 extensions. */
ed348acc
EZ
12731 case DW_OP_push_object_address:
12732 return "DW_OP_push_object_address";
12733 case DW_OP_call2:
12734 return "DW_OP_call2";
12735 case DW_OP_call4:
12736 return "DW_OP_call4";
12737 case DW_OP_call_ref:
12738 return "DW_OP_call_ref";
b7619582
GF
12739 case DW_OP_form_tls_address:
12740 return "DW_OP_form_tls_address";
12741 case DW_OP_call_frame_cfa:
12742 return "DW_OP_call_frame_cfa";
12743 case DW_OP_bit_piece:
12744 return "DW_OP_bit_piece";
9eae7c52
TT
12745 /* DWARF 4 extensions. */
12746 case DW_OP_implicit_value:
12747 return "DW_OP_implicit_value";
12748 case DW_OP_stack_value:
12749 return "DW_OP_stack_value";
12750 /* GNU extensions. */
ed348acc
EZ
12751 case DW_OP_GNU_push_tls_address:
12752 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
12753 case DW_OP_GNU_uninit:
12754 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
12755 case DW_OP_GNU_implicit_pointer:
12756 return "DW_OP_GNU_implicit_pointer";
c906108c 12757 default:
9eae7c52 12758 return def ? "OP_<unknown>" : NULL;
c906108c
SS
12759 }
12760}
12761
12762static char *
fba45db2 12763dwarf_bool_name (unsigned mybool)
c906108c
SS
12764{
12765 if (mybool)
12766 return "TRUE";
12767 else
12768 return "FALSE";
12769}
12770
12771/* Convert a DWARF type code into its string name. */
12772
12773static char *
aa1ee363 12774dwarf_type_encoding_name (unsigned enc)
c906108c
SS
12775{
12776 switch (enc)
12777 {
b7619582
GF
12778 case DW_ATE_void:
12779 return "DW_ATE_void";
c906108c
SS
12780 case DW_ATE_address:
12781 return "DW_ATE_address";
12782 case DW_ATE_boolean:
12783 return "DW_ATE_boolean";
12784 case DW_ATE_complex_float:
12785 return "DW_ATE_complex_float";
12786 case DW_ATE_float:
12787 return "DW_ATE_float";
12788 case DW_ATE_signed:
12789 return "DW_ATE_signed";
12790 case DW_ATE_signed_char:
12791 return "DW_ATE_signed_char";
12792 case DW_ATE_unsigned:
12793 return "DW_ATE_unsigned";
12794 case DW_ATE_unsigned_char:
12795 return "DW_ATE_unsigned_char";
b7619582 12796 /* DWARF 3. */
d9fa45fe
DC
12797 case DW_ATE_imaginary_float:
12798 return "DW_ATE_imaginary_float";
b7619582
GF
12799 case DW_ATE_packed_decimal:
12800 return "DW_ATE_packed_decimal";
12801 case DW_ATE_numeric_string:
12802 return "DW_ATE_numeric_string";
12803 case DW_ATE_edited:
12804 return "DW_ATE_edited";
12805 case DW_ATE_signed_fixed:
12806 return "DW_ATE_signed_fixed";
12807 case DW_ATE_unsigned_fixed:
12808 return "DW_ATE_unsigned_fixed";
12809 case DW_ATE_decimal_float:
12810 return "DW_ATE_decimal_float";
75079b2b
TT
12811 /* DWARF 4. */
12812 case DW_ATE_UTF:
12813 return "DW_ATE_UTF";
b7619582
GF
12814 /* HP extensions. */
12815 case DW_ATE_HP_float80:
12816 return "DW_ATE_HP_float80";
12817 case DW_ATE_HP_complex_float80:
12818 return "DW_ATE_HP_complex_float80";
12819 case DW_ATE_HP_float128:
12820 return "DW_ATE_HP_float128";
12821 case DW_ATE_HP_complex_float128:
12822 return "DW_ATE_HP_complex_float128";
12823 case DW_ATE_HP_floathpintel:
12824 return "DW_ATE_HP_floathpintel";
12825 case DW_ATE_HP_imaginary_float80:
12826 return "DW_ATE_HP_imaginary_float80";
12827 case DW_ATE_HP_imaginary_float128:
12828 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
12829 default:
12830 return "DW_ATE_<unknown>";
12831 }
12832}
12833
0963b4bd 12834/* Convert a DWARF call frame info operation to its string name. */
c906108c
SS
12835
12836#if 0
12837static char *
aa1ee363 12838dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
12839{
12840 switch (cfi_opc)
12841 {
12842 case DW_CFA_advance_loc:
12843 return "DW_CFA_advance_loc";
12844 case DW_CFA_offset:
12845 return "DW_CFA_offset";
12846 case DW_CFA_restore:
12847 return "DW_CFA_restore";
12848 case DW_CFA_nop:
12849 return "DW_CFA_nop";
12850 case DW_CFA_set_loc:
12851 return "DW_CFA_set_loc";
12852 case DW_CFA_advance_loc1:
12853 return "DW_CFA_advance_loc1";
12854 case DW_CFA_advance_loc2:
12855 return "DW_CFA_advance_loc2";
12856 case DW_CFA_advance_loc4:
12857 return "DW_CFA_advance_loc4";
12858 case DW_CFA_offset_extended:
12859 return "DW_CFA_offset_extended";
12860 case DW_CFA_restore_extended:
12861 return "DW_CFA_restore_extended";
12862 case DW_CFA_undefined:
12863 return "DW_CFA_undefined";
12864 case DW_CFA_same_value:
12865 return "DW_CFA_same_value";
12866 case DW_CFA_register:
12867 return "DW_CFA_register";
12868 case DW_CFA_remember_state:
12869 return "DW_CFA_remember_state";
12870 case DW_CFA_restore_state:
12871 return "DW_CFA_restore_state";
12872 case DW_CFA_def_cfa:
12873 return "DW_CFA_def_cfa";
12874 case DW_CFA_def_cfa_register:
12875 return "DW_CFA_def_cfa_register";
12876 case DW_CFA_def_cfa_offset:
12877 return "DW_CFA_def_cfa_offset";
b7619582 12878 /* DWARF 3. */
985cb1a3
JM
12879 case DW_CFA_def_cfa_expression:
12880 return "DW_CFA_def_cfa_expression";
12881 case DW_CFA_expression:
12882 return "DW_CFA_expression";
12883 case DW_CFA_offset_extended_sf:
12884 return "DW_CFA_offset_extended_sf";
12885 case DW_CFA_def_cfa_sf:
12886 return "DW_CFA_def_cfa_sf";
12887 case DW_CFA_def_cfa_offset_sf:
12888 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
12889 case DW_CFA_val_offset:
12890 return "DW_CFA_val_offset";
12891 case DW_CFA_val_offset_sf:
12892 return "DW_CFA_val_offset_sf";
12893 case DW_CFA_val_expression:
12894 return "DW_CFA_val_expression";
12895 /* SGI/MIPS specific. */
c906108c
SS
12896 case DW_CFA_MIPS_advance_loc8:
12897 return "DW_CFA_MIPS_advance_loc8";
b7619582 12898 /* GNU extensions. */
985cb1a3
JM
12899 case DW_CFA_GNU_window_save:
12900 return "DW_CFA_GNU_window_save";
12901 case DW_CFA_GNU_args_size:
12902 return "DW_CFA_GNU_args_size";
12903 case DW_CFA_GNU_negative_offset_extended:
12904 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
12905 default:
12906 return "DW_CFA_<unknown>";
12907 }
12908}
12909#endif
12910
f9aca02d 12911static void
d97bc12b 12912dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
12913{
12914 unsigned int i;
12915
d97bc12b
DE
12916 print_spaces (indent, f);
12917 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 12918 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
12919
12920 if (die->parent != NULL)
12921 {
12922 print_spaces (indent, f);
12923 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12924 die->parent->offset);
12925 }
12926
12927 print_spaces (indent, f);
12928 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 12929 dwarf_bool_name (die->child != NULL));
c906108c 12930
d97bc12b
DE
12931 print_spaces (indent, f);
12932 fprintf_unfiltered (f, " attributes:\n");
12933
c906108c
SS
12934 for (i = 0; i < die->num_attrs; ++i)
12935 {
d97bc12b
DE
12936 print_spaces (indent, f);
12937 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
12938 dwarf_attr_name (die->attrs[i].name),
12939 dwarf_form_name (die->attrs[i].form));
d97bc12b 12940
c906108c
SS
12941 switch (die->attrs[i].form)
12942 {
12943 case DW_FORM_ref_addr:
12944 case DW_FORM_addr:
d97bc12b 12945 fprintf_unfiltered (f, "address: ");
5af949e3 12946 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
12947 break;
12948 case DW_FORM_block2:
12949 case DW_FORM_block4:
12950 case DW_FORM_block:
12951 case DW_FORM_block1:
3e43a32a
MS
12952 fprintf_unfiltered (f, "block: size %d",
12953 DW_BLOCK (&die->attrs[i])->size);
c906108c 12954 break;
2dc7f7b3
TT
12955 case DW_FORM_exprloc:
12956 fprintf_unfiltered (f, "expression: size %u",
12957 DW_BLOCK (&die->attrs[i])->size);
12958 break;
10b3939b
DJ
12959 case DW_FORM_ref1:
12960 case DW_FORM_ref2:
12961 case DW_FORM_ref4:
d97bc12b 12962 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
12963 (long) (DW_ADDR (&die->attrs[i])));
12964 break;
c906108c
SS
12965 case DW_FORM_data1:
12966 case DW_FORM_data2:
12967 case DW_FORM_data4:
ce5d95e1 12968 case DW_FORM_data8:
c906108c
SS
12969 case DW_FORM_udata:
12970 case DW_FORM_sdata:
43bbcdc2
PH
12971 fprintf_unfiltered (f, "constant: %s",
12972 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 12973 break;
2dc7f7b3
TT
12974 case DW_FORM_sec_offset:
12975 fprintf_unfiltered (f, "section offset: %s",
12976 pulongest (DW_UNSND (&die->attrs[i])));
12977 break;
348e048f
DE
12978 case DW_FORM_sig8:
12979 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12980 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12981 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12982 else
12983 fprintf_unfiltered (f, "signatured type, offset: unknown");
12984 break;
c906108c 12985 case DW_FORM_string:
4bdf3d34 12986 case DW_FORM_strp:
8285870a 12987 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 12988 DW_STRING (&die->attrs[i])
8285870a
JK
12989 ? DW_STRING (&die->attrs[i]) : "",
12990 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
12991 break;
12992 case DW_FORM_flag:
12993 if (DW_UNSND (&die->attrs[i]))
d97bc12b 12994 fprintf_unfiltered (f, "flag: TRUE");
c906108c 12995 else
d97bc12b 12996 fprintf_unfiltered (f, "flag: FALSE");
c906108c 12997 break;
2dc7f7b3
TT
12998 case DW_FORM_flag_present:
12999 fprintf_unfiltered (f, "flag: TRUE");
13000 break;
a8329558 13001 case DW_FORM_indirect:
0963b4bd
MS
13002 /* The reader will have reduced the indirect form to
13003 the "base form" so this form should not occur. */
3e43a32a
MS
13004 fprintf_unfiltered (f,
13005 "unexpected attribute form: DW_FORM_indirect");
a8329558 13006 break;
c906108c 13007 default:
d97bc12b 13008 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13009 die->attrs[i].form);
d97bc12b 13010 break;
c906108c 13011 }
d97bc12b 13012 fprintf_unfiltered (f, "\n");
c906108c
SS
13013 }
13014}
13015
f9aca02d 13016static void
d97bc12b 13017dump_die_for_error (struct die_info *die)
c906108c 13018{
d97bc12b
DE
13019 dump_die_shallow (gdb_stderr, 0, die);
13020}
13021
13022static void
13023dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13024{
13025 int indent = level * 4;
13026
13027 gdb_assert (die != NULL);
13028
13029 if (level >= max_level)
13030 return;
13031
13032 dump_die_shallow (f, indent, die);
13033
13034 if (die->child != NULL)
c906108c 13035 {
d97bc12b
DE
13036 print_spaces (indent, f);
13037 fprintf_unfiltered (f, " Children:");
13038 if (level + 1 < max_level)
13039 {
13040 fprintf_unfiltered (f, "\n");
13041 dump_die_1 (f, level + 1, max_level, die->child);
13042 }
13043 else
13044 {
3e43a32a
MS
13045 fprintf_unfiltered (f,
13046 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13047 }
13048 }
13049
13050 if (die->sibling != NULL && level > 0)
13051 {
13052 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13053 }
13054}
13055
d97bc12b
DE
13056/* This is called from the pdie macro in gdbinit.in.
13057 It's not static so gcc will keep a copy callable from gdb. */
13058
13059void
13060dump_die (struct die_info *die, int max_level)
13061{
13062 dump_die_1 (gdb_stdlog, 0, max_level, die);
13063}
13064
f9aca02d 13065static void
51545339 13066store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13067{
51545339 13068 void **slot;
c906108c 13069
51545339
DJ
13070 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13071
13072 *slot = die;
c906108c
SS
13073}
13074
93311388
DE
13075static int
13076is_ref_attr (struct attribute *attr)
c906108c 13077{
c906108c
SS
13078 switch (attr->form)
13079 {
13080 case DW_FORM_ref_addr:
c906108c
SS
13081 case DW_FORM_ref1:
13082 case DW_FORM_ref2:
13083 case DW_FORM_ref4:
613e1657 13084 case DW_FORM_ref8:
c906108c 13085 case DW_FORM_ref_udata:
93311388 13086 return 1;
c906108c 13087 default:
93311388 13088 return 0;
c906108c 13089 }
93311388
DE
13090}
13091
13092static unsigned int
13093dwarf2_get_ref_die_offset (struct attribute *attr)
13094{
13095 if (is_ref_attr (attr))
13096 return DW_ADDR (attr);
13097
13098 complaint (&symfile_complaints,
13099 _("unsupported die ref attribute form: '%s'"),
13100 dwarf_form_name (attr->form));
13101 return 0;
c906108c
SS
13102}
13103
43bbcdc2
PH
13104/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13105 * the value held by the attribute is not constant. */
a02abb62 13106
43bbcdc2 13107static LONGEST
a02abb62
JB
13108dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13109{
13110 if (attr->form == DW_FORM_sdata)
13111 return DW_SND (attr);
13112 else if (attr->form == DW_FORM_udata
13113 || attr->form == DW_FORM_data1
13114 || attr->form == DW_FORM_data2
13115 || attr->form == DW_FORM_data4
13116 || attr->form == DW_FORM_data8)
13117 return DW_UNSND (attr);
13118 else
13119 {
3e43a32a
MS
13120 complaint (&symfile_complaints,
13121 _("Attribute value is not a constant (%s)"),
a02abb62
JB
13122 dwarf_form_name (attr->form));
13123 return default_value;
13124 }
13125}
13126
03dd20cc 13127/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
13128 unit and add it to our queue.
13129 The result is non-zero if PER_CU was queued, otherwise the result is zero
13130 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 13131
348e048f 13132static int
03dd20cc
DJ
13133maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13134 struct dwarf2_per_cu_data *per_cu)
13135{
98bfdba5
PA
13136 /* We may arrive here during partial symbol reading, if we need full
13137 DIEs to process an unusual case (e.g. template arguments). Do
13138 not queue PER_CU, just tell our caller to load its DIEs. */
13139 if (dwarf2_per_objfile->reading_partial_symbols)
13140 {
13141 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13142 return 1;
13143 return 0;
13144 }
13145
03dd20cc
DJ
13146 /* Mark the dependence relation so that we don't flush PER_CU
13147 too early. */
13148 dwarf2_add_dependence (this_cu, per_cu);
13149
13150 /* If it's already on the queue, we have nothing to do. */
13151 if (per_cu->queued)
348e048f 13152 return 0;
03dd20cc
DJ
13153
13154 /* If the compilation unit is already loaded, just mark it as
13155 used. */
13156 if (per_cu->cu != NULL)
13157 {
13158 per_cu->cu->last_used = 0;
348e048f 13159 return 0;
03dd20cc
DJ
13160 }
13161
13162 /* Add it to the queue. */
13163 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
13164
13165 return 1;
13166}
13167
13168/* Follow reference or signature attribute ATTR of SRC_DIE.
13169 On entry *REF_CU is the CU of SRC_DIE.
13170 On exit *REF_CU is the CU of the result. */
13171
13172static struct die_info *
13173follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13174 struct dwarf2_cu **ref_cu)
13175{
13176 struct die_info *die;
13177
13178 if (is_ref_attr (attr))
13179 die = follow_die_ref (src_die, attr, ref_cu);
13180 else if (attr->form == DW_FORM_sig8)
13181 die = follow_die_sig (src_die, attr, ref_cu);
13182 else
13183 {
13184 dump_die_for_error (src_die);
13185 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13186 (*ref_cu)->objfile->name);
13187 }
13188
13189 return die;
03dd20cc
DJ
13190}
13191
5c631832 13192/* Follow reference OFFSET.
673bfd45
DE
13193 On entry *REF_CU is the CU of the source die referencing OFFSET.
13194 On exit *REF_CU is the CU of the result.
13195 Returns NULL if OFFSET is invalid. */
f504f079 13196
f9aca02d 13197static struct die_info *
5c631832 13198follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 13199{
10b3939b 13200 struct die_info temp_die;
f2f0e013 13201 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13202
348e048f
DE
13203 gdb_assert (cu->per_cu != NULL);
13204
98bfdba5
PA
13205 target_cu = cu;
13206
348e048f
DE
13207 if (cu->per_cu->from_debug_types)
13208 {
13209 /* .debug_types CUs cannot reference anything outside their CU.
13210 If they need to, they have to reference a signatured type via
13211 DW_FORM_sig8. */
13212 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13213 return NULL;
348e048f
DE
13214 }
13215 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13216 {
13217 struct dwarf2_per_cu_data *per_cu;
9a619af0 13218
45452591 13219 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13220
13221 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13222 if (maybe_queue_comp_unit (cu, per_cu))
13223 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13224
10b3939b
DJ
13225 target_cu = per_cu->cu;
13226 }
98bfdba5
PA
13227 else if (cu->dies == NULL)
13228 {
13229 /* We're loading full DIEs during partial symbol reading. */
13230 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13231 load_full_comp_unit (cu->per_cu, cu->objfile);
13232 }
c906108c 13233
f2f0e013 13234 *ref_cu = target_cu;
51545339 13235 temp_die.offset = offset;
5c631832
JK
13236 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13237}
10b3939b 13238
5c631832
JK
13239/* Follow reference attribute ATTR of SRC_DIE.
13240 On entry *REF_CU is the CU of SRC_DIE.
13241 On exit *REF_CU is the CU of the result. */
13242
13243static struct die_info *
13244follow_die_ref (struct die_info *src_die, struct attribute *attr,
13245 struct dwarf2_cu **ref_cu)
13246{
13247 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13248 struct dwarf2_cu *cu = *ref_cu;
13249 struct die_info *die;
13250
13251 die = follow_die_offset (offset, ref_cu);
13252 if (!die)
13253 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13254 "at 0x%x [in module %s]"),
13255 offset, src_die->offset, cu->objfile->name);
348e048f 13256
5c631832
JK
13257 return die;
13258}
13259
13260/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13261 value is intended for DW_OP_call*. */
13262
13263struct dwarf2_locexpr_baton
13264dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
13265 struct dwarf2_per_cu_data *per_cu,
13266 CORE_ADDR (*get_frame_pc) (void *baton),
13267 void *baton)
5c631832
JK
13268{
13269 struct dwarf2_cu *cu = per_cu->cu;
13270 struct die_info *die;
13271 struct attribute *attr;
13272 struct dwarf2_locexpr_baton retval;
13273
8cf6f0b1
TT
13274 dw2_setup (per_cu->objfile);
13275
5c631832
JK
13276 die = follow_die_offset (offset, &cu);
13277 if (!die)
13278 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13279 offset, per_cu->cu->objfile->name);
13280
13281 attr = dwarf2_attr (die, DW_AT_location, cu);
13282 if (!attr)
13283 {
13284 /* DWARF: "If there is no such attribute, then there is no effect.". */
13285
13286 retval.data = NULL;
13287 retval.size = 0;
13288 }
8cf6f0b1
TT
13289 else if (attr_form_is_section_offset (attr))
13290 {
13291 struct dwarf2_loclist_baton loclist_baton;
13292 CORE_ADDR pc = (*get_frame_pc) (baton);
13293 size_t size;
13294
13295 fill_in_loclist_baton (cu, &loclist_baton, attr);
13296
13297 retval.data = dwarf2_find_location_expression (&loclist_baton,
13298 &size, pc);
13299 retval.size = size;
13300 }
5c631832
JK
13301 else
13302 {
13303 if (!attr_form_is_block (attr))
13304 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13305 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13306 offset, per_cu->cu->objfile->name);
13307
13308 retval.data = DW_BLOCK (attr)->data;
13309 retval.size = DW_BLOCK (attr)->size;
13310 }
13311 retval.per_cu = cu->per_cu;
13312 return retval;
348e048f
DE
13313}
13314
13315/* Follow the signature attribute ATTR in SRC_DIE.
13316 On entry *REF_CU is the CU of SRC_DIE.
13317 On exit *REF_CU is the CU of the result. */
13318
13319static struct die_info *
13320follow_die_sig (struct die_info *src_die, struct attribute *attr,
13321 struct dwarf2_cu **ref_cu)
13322{
13323 struct objfile *objfile = (*ref_cu)->objfile;
13324 struct die_info temp_die;
13325 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13326 struct dwarf2_cu *sig_cu;
13327 struct die_info *die;
13328
13329 /* sig_type will be NULL if the signatured type is missing from
13330 the debug info. */
13331 if (sig_type == NULL)
13332 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13333 "at 0x%x [in module %s]"),
13334 src_die->offset, objfile->name);
13335
13336 /* If necessary, add it to the queue and load its DIEs. */
13337
13338 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13339 read_signatured_type (objfile, sig_type);
13340
13341 gdb_assert (sig_type->per_cu.cu != NULL);
13342
13343 sig_cu = sig_type->per_cu.cu;
13344 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13345 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13346 if (die)
13347 {
13348 *ref_cu = sig_cu;
13349 return die;
13350 }
13351
3e43a32a
MS
13352 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13353 "from DIE at 0x%x [in module %s]"),
348e048f
DE
13354 sig_type->type_offset, src_die->offset, objfile->name);
13355}
13356
13357/* Given an offset of a signatured type, return its signatured_type. */
13358
13359static struct signatured_type *
13360lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13361{
13362 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13363 unsigned int length, initial_length_size;
13364 unsigned int sig_offset;
13365 struct signatured_type find_entry, *type_sig;
13366
13367 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13368 sig_offset = (initial_length_size
13369 + 2 /*version*/
13370 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13371 + 1 /*address_size*/);
13372 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13373 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13374
13375 /* This is only used to lookup previously recorded types.
13376 If we didn't find it, it's our bug. */
13377 gdb_assert (type_sig != NULL);
13378 gdb_assert (offset == type_sig->offset);
13379
13380 return type_sig;
13381}
13382
13383/* Read in signatured type at OFFSET and build its CU and die(s). */
13384
13385static void
13386read_signatured_type_at_offset (struct objfile *objfile,
13387 unsigned int offset)
13388{
13389 struct signatured_type *type_sig;
13390
be391dca
TT
13391 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13392
348e048f
DE
13393 /* We have the section offset, but we need the signature to do the
13394 hash table lookup. */
13395 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13396
13397 gdb_assert (type_sig->per_cu.cu == NULL);
13398
13399 read_signatured_type (objfile, type_sig);
13400
13401 gdb_assert (type_sig->per_cu.cu != NULL);
13402}
13403
13404/* Read in a signatured type and build its CU and DIEs. */
13405
13406static void
13407read_signatured_type (struct objfile *objfile,
13408 struct signatured_type *type_sig)
13409{
1fd400ff 13410 gdb_byte *types_ptr;
348e048f
DE
13411 struct die_reader_specs reader_specs;
13412 struct dwarf2_cu *cu;
13413 ULONGEST signature;
13414 struct cleanup *back_to, *free_cu_cleanup;
348e048f 13415
1fd400ff
TT
13416 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13417 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13418
348e048f
DE
13419 gdb_assert (type_sig->per_cu.cu == NULL);
13420
9816fde3
JK
13421 cu = xmalloc (sizeof (*cu));
13422 init_one_comp_unit (cu, objfile);
13423
348e048f
DE
13424 type_sig->per_cu.cu = cu;
13425 cu->per_cu = &type_sig->per_cu;
13426
13427 /* If an error occurs while loading, release our storage. */
13428 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13429
13430 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13431 types_ptr, objfile->obfd);
13432 gdb_assert (signature == type_sig->signature);
13433
13434 cu->die_hash
13435 = htab_create_alloc_ex (cu->header.length / 12,
13436 die_hash,
13437 die_eq,
13438 NULL,
13439 &cu->comp_unit_obstack,
13440 hashtab_obstack_allocate,
13441 dummy_obstack_deallocate);
13442
13443 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13444 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13445
13446 init_cu_die_reader (&reader_specs, cu);
13447
13448 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13449 NULL /*parent*/);
13450
13451 /* We try not to read any attributes in this function, because not
13452 all objfiles needed for references have been loaded yet, and symbol
13453 table processing isn't initialized. But we have to set the CU language,
13454 or we won't be able to build types correctly. */
9816fde3 13455 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
13456
13457 do_cleanups (back_to);
13458
13459 /* We've successfully allocated this compilation unit. Let our caller
13460 clean it up when finished with it. */
13461 discard_cleanups (free_cu_cleanup);
13462
13463 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13464 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
13465}
13466
c906108c
SS
13467/* Decode simple location descriptions.
13468 Given a pointer to a dwarf block that defines a location, compute
13469 the location and return the value.
13470
4cecd739
DJ
13471 NOTE drow/2003-11-18: This function is called in two situations
13472 now: for the address of static or global variables (partial symbols
13473 only) and for offsets into structures which are expected to be
13474 (more or less) constant. The partial symbol case should go away,
13475 and only the constant case should remain. That will let this
13476 function complain more accurately. A few special modes are allowed
13477 without complaint for global variables (for instance, global
13478 register values and thread-local values).
c906108c
SS
13479
13480 A location description containing no operations indicates that the
4cecd739 13481 object is optimized out. The return value is 0 for that case.
6b992462
DJ
13482 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13483 callers will only want a very basic result and this can become a
13484 complaint.
c906108c 13485
d53d4ac5 13486 Note that stack[0] is unused except as a default error return. */
c906108c
SS
13487
13488static CORE_ADDR
e7c27a73 13489decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 13490{
e7c27a73 13491 struct objfile *objfile = cu->objfile;
c906108c
SS
13492 int i;
13493 int size = blk->size;
fe1b8b76 13494 gdb_byte *data = blk->data;
c906108c
SS
13495 CORE_ADDR stack[64];
13496 int stacki;
13497 unsigned int bytes_read, unsnd;
fe1b8b76 13498 gdb_byte op;
c906108c
SS
13499
13500 i = 0;
13501 stacki = 0;
13502 stack[stacki] = 0;
d53d4ac5 13503 stack[++stacki] = 0;
c906108c
SS
13504
13505 while (i < size)
13506 {
c906108c
SS
13507 op = data[i++];
13508 switch (op)
13509 {
f1bea926
JM
13510 case DW_OP_lit0:
13511 case DW_OP_lit1:
13512 case DW_OP_lit2:
13513 case DW_OP_lit3:
13514 case DW_OP_lit4:
13515 case DW_OP_lit5:
13516 case DW_OP_lit6:
13517 case DW_OP_lit7:
13518 case DW_OP_lit8:
13519 case DW_OP_lit9:
13520 case DW_OP_lit10:
13521 case DW_OP_lit11:
13522 case DW_OP_lit12:
13523 case DW_OP_lit13:
13524 case DW_OP_lit14:
13525 case DW_OP_lit15:
13526 case DW_OP_lit16:
13527 case DW_OP_lit17:
13528 case DW_OP_lit18:
13529 case DW_OP_lit19:
13530 case DW_OP_lit20:
13531 case DW_OP_lit21:
13532 case DW_OP_lit22:
13533 case DW_OP_lit23:
13534 case DW_OP_lit24:
13535 case DW_OP_lit25:
13536 case DW_OP_lit26:
13537 case DW_OP_lit27:
13538 case DW_OP_lit28:
13539 case DW_OP_lit29:
13540 case DW_OP_lit30:
13541 case DW_OP_lit31:
13542 stack[++stacki] = op - DW_OP_lit0;
13543 break;
13544
c906108c
SS
13545 case DW_OP_reg0:
13546 case DW_OP_reg1:
13547 case DW_OP_reg2:
13548 case DW_OP_reg3:
13549 case DW_OP_reg4:
13550 case DW_OP_reg5:
13551 case DW_OP_reg6:
13552 case DW_OP_reg7:
13553 case DW_OP_reg8:
13554 case DW_OP_reg9:
13555 case DW_OP_reg10:
13556 case DW_OP_reg11:
13557 case DW_OP_reg12:
13558 case DW_OP_reg13:
13559 case DW_OP_reg14:
13560 case DW_OP_reg15:
13561 case DW_OP_reg16:
13562 case DW_OP_reg17:
13563 case DW_OP_reg18:
13564 case DW_OP_reg19:
13565 case DW_OP_reg20:
13566 case DW_OP_reg21:
13567 case DW_OP_reg22:
13568 case DW_OP_reg23:
13569 case DW_OP_reg24:
13570 case DW_OP_reg25:
13571 case DW_OP_reg26:
13572 case DW_OP_reg27:
13573 case DW_OP_reg28:
13574 case DW_OP_reg29:
13575 case DW_OP_reg30:
13576 case DW_OP_reg31:
c906108c 13577 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
13578 if (i < size)
13579 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13580 break;
13581
13582 case DW_OP_regx:
c906108c
SS
13583 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13584 i += bytes_read;
c906108c 13585 stack[++stacki] = unsnd;
4cecd739
DJ
13586 if (i < size)
13587 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13588 break;
13589
13590 case DW_OP_addr:
107d2387 13591 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 13592 cu, &bytes_read);
107d2387 13593 i += bytes_read;
c906108c
SS
13594 break;
13595
13596 case DW_OP_const1u:
13597 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13598 i += 1;
13599 break;
13600
13601 case DW_OP_const1s:
13602 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13603 i += 1;
13604 break;
13605
13606 case DW_OP_const2u:
13607 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13608 i += 2;
13609 break;
13610
13611 case DW_OP_const2s:
13612 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13613 i += 2;
13614 break;
13615
13616 case DW_OP_const4u:
13617 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13618 i += 4;
13619 break;
13620
13621 case DW_OP_const4s:
13622 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13623 i += 4;
13624 break;
13625
13626 case DW_OP_constu:
13627 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 13628 &bytes_read);
c906108c
SS
13629 i += bytes_read;
13630 break;
13631
13632 case DW_OP_consts:
13633 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13634 i += bytes_read;
13635 break;
13636
f1bea926
JM
13637 case DW_OP_dup:
13638 stack[stacki + 1] = stack[stacki];
13639 stacki++;
13640 break;
13641
c906108c
SS
13642 case DW_OP_plus:
13643 stack[stacki - 1] += stack[stacki];
13644 stacki--;
13645 break;
13646
13647 case DW_OP_plus_uconst:
3e43a32a
MS
13648 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13649 &bytes_read);
c906108c
SS
13650 i += bytes_read;
13651 break;
13652
13653 case DW_OP_minus:
f1bea926 13654 stack[stacki - 1] -= stack[stacki];
c906108c
SS
13655 stacki--;
13656 break;
13657
7a292a7a 13658 case DW_OP_deref:
7a292a7a 13659 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
13660 this using GDB's address_class enum. This is valid for partial
13661 global symbols, although the variable's address will be bogus
13662 in the psymtab. */
7a292a7a 13663 if (i < size)
4d3c2250 13664 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
13665 break;
13666
9d774e44 13667 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
13668 /* The top of the stack has the offset from the beginning
13669 of the thread control block at which the variable is located. */
13670 /* Nothing should follow this operator, so the top of stack would
13671 be returned. */
4cecd739
DJ
13672 /* This is valid for partial global symbols, but the variable's
13673 address will be bogus in the psymtab. */
9d774e44 13674 if (i < size)
4d3c2250 13675 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
13676 break;
13677
42be36b3
CT
13678 case DW_OP_GNU_uninit:
13679 break;
13680
c906108c 13681 default:
e2e0b3e5 13682 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9eae7c52 13683 dwarf_stack_op_name (op, 1));
c906108c
SS
13684 return (stack[stacki]);
13685 }
d53d4ac5
TT
13686
13687 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13688 outside of the allocated space. Also enforce minimum>0. */
13689 if (stacki >= ARRAY_SIZE (stack) - 1)
13690 {
13691 complaint (&symfile_complaints,
13692 _("location description stack overflow"));
13693 return 0;
13694 }
13695
13696 if (stacki <= 0)
13697 {
13698 complaint (&symfile_complaints,
13699 _("location description stack underflow"));
13700 return 0;
13701 }
c906108c
SS
13702 }
13703 return (stack[stacki]);
13704}
13705
13706/* memory allocation interface */
13707
c906108c 13708static struct dwarf_block *
7b5a2f43 13709dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
13710{
13711 struct dwarf_block *blk;
13712
13713 blk = (struct dwarf_block *)
7b5a2f43 13714 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
13715 return (blk);
13716}
13717
13718static struct abbrev_info *
f3dd6933 13719dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
13720{
13721 struct abbrev_info *abbrev;
13722
f3dd6933
DJ
13723 abbrev = (struct abbrev_info *)
13724 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
13725 memset (abbrev, 0, sizeof (struct abbrev_info));
13726 return (abbrev);
13727}
13728
13729static struct die_info *
b60c80d6 13730dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
13731{
13732 struct die_info *die;
b60c80d6
DJ
13733 size_t size = sizeof (struct die_info);
13734
13735 if (num_attrs > 1)
13736 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 13737
b60c80d6 13738 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
13739 memset (die, 0, sizeof (struct die_info));
13740 return (die);
13741}
2e276125
JB
13742
13743\f
13744/* Macro support. */
13745
2e276125
JB
13746/* Return the full name of file number I in *LH's file name table.
13747 Use COMP_DIR as the name of the current directory of the
13748 compilation. The result is allocated using xmalloc; the caller is
13749 responsible for freeing it. */
13750static char *
13751file_full_name (int file, struct line_header *lh, const char *comp_dir)
13752{
6a83a1e6
EZ
13753 /* Is the file number a valid index into the line header's file name
13754 table? Remember that file numbers start with one, not zero. */
13755 if (1 <= file && file <= lh->num_file_names)
13756 {
13757 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 13758
6a83a1e6
EZ
13759 if (IS_ABSOLUTE_PATH (fe->name))
13760 return xstrdup (fe->name);
13761 else
13762 {
13763 const char *dir;
13764 int dir_len;
13765 char *full_name;
13766
13767 if (fe->dir_index)
13768 dir = lh->include_dirs[fe->dir_index - 1];
13769 else
13770 dir = comp_dir;
13771
13772 if (dir)
13773 {
13774 dir_len = strlen (dir);
13775 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13776 strcpy (full_name, dir);
13777 full_name[dir_len] = '/';
13778 strcpy (full_name + dir_len + 1, fe->name);
13779 return full_name;
13780 }
13781 else
13782 return xstrdup (fe->name);
13783 }
13784 }
2e276125
JB
13785 else
13786 {
6a83a1e6
EZ
13787 /* The compiler produced a bogus file number. We can at least
13788 record the macro definitions made in the file, even if we
13789 won't be able to find the file by name. */
13790 char fake_name[80];
9a619af0 13791
6a83a1e6 13792 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 13793
6e70227d 13794 complaint (&symfile_complaints,
6a83a1e6
EZ
13795 _("bad file number in macro information (%d)"),
13796 file);
2e276125 13797
6a83a1e6 13798 return xstrdup (fake_name);
2e276125
JB
13799 }
13800}
13801
13802
13803static struct macro_source_file *
13804macro_start_file (int file, int line,
13805 struct macro_source_file *current_file,
13806 const char *comp_dir,
13807 struct line_header *lh, struct objfile *objfile)
13808{
13809 /* The full name of this source file. */
13810 char *full_name = file_full_name (file, lh, comp_dir);
13811
13812 /* We don't create a macro table for this compilation unit
13813 at all until we actually get a filename. */
13814 if (! pending_macros)
4a146b47 13815 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 13816 objfile->macro_cache);
2e276125
JB
13817
13818 if (! current_file)
13819 /* If we have no current file, then this must be the start_file
13820 directive for the compilation unit's main source file. */
13821 current_file = macro_set_main (pending_macros, full_name);
13822 else
13823 current_file = macro_include (current_file, line, full_name);
13824
13825 xfree (full_name);
6e70227d 13826
2e276125
JB
13827 return current_file;
13828}
13829
13830
13831/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13832 followed by a null byte. */
13833static char *
13834copy_string (const char *buf, int len)
13835{
13836 char *s = xmalloc (len + 1);
9a619af0 13837
2e276125
JB
13838 memcpy (s, buf, len);
13839 s[len] = '\0';
2e276125
JB
13840 return s;
13841}
13842
13843
13844static const char *
13845consume_improper_spaces (const char *p, const char *body)
13846{
13847 if (*p == ' ')
13848 {
4d3c2250 13849 complaint (&symfile_complaints,
3e43a32a
MS
13850 _("macro definition contains spaces "
13851 "in formal argument list:\n`%s'"),
4d3c2250 13852 body);
2e276125
JB
13853
13854 while (*p == ' ')
13855 p++;
13856 }
13857
13858 return p;
13859}
13860
13861
13862static void
13863parse_macro_definition (struct macro_source_file *file, int line,
13864 const char *body)
13865{
13866 const char *p;
13867
13868 /* The body string takes one of two forms. For object-like macro
13869 definitions, it should be:
13870
13871 <macro name> " " <definition>
13872
13873 For function-like macro definitions, it should be:
13874
13875 <macro name> "() " <definition>
13876 or
13877 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13878
13879 Spaces may appear only where explicitly indicated, and in the
13880 <definition>.
13881
13882 The Dwarf 2 spec says that an object-like macro's name is always
13883 followed by a space, but versions of GCC around March 2002 omit
6e70227d 13884 the space when the macro's definition is the empty string.
2e276125
JB
13885
13886 The Dwarf 2 spec says that there should be no spaces between the
13887 formal arguments in a function-like macro's formal argument list,
13888 but versions of GCC around March 2002 include spaces after the
13889 commas. */
13890
13891
13892 /* Find the extent of the macro name. The macro name is terminated
13893 by either a space or null character (for an object-like macro) or
13894 an opening paren (for a function-like macro). */
13895 for (p = body; *p; p++)
13896 if (*p == ' ' || *p == '(')
13897 break;
13898
13899 if (*p == ' ' || *p == '\0')
13900 {
13901 /* It's an object-like macro. */
13902 int name_len = p - body;
13903 char *name = copy_string (body, name_len);
13904 const char *replacement;
13905
13906 if (*p == ' ')
13907 replacement = body + name_len + 1;
13908 else
13909 {
4d3c2250 13910 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13911 replacement = body + name_len;
13912 }
6e70227d 13913
2e276125
JB
13914 macro_define_object (file, line, name, replacement);
13915
13916 xfree (name);
13917 }
13918 else if (*p == '(')
13919 {
13920 /* It's a function-like macro. */
13921 char *name = copy_string (body, p - body);
13922 int argc = 0;
13923 int argv_size = 1;
13924 char **argv = xmalloc (argv_size * sizeof (*argv));
13925
13926 p++;
13927
13928 p = consume_improper_spaces (p, body);
13929
13930 /* Parse the formal argument list. */
13931 while (*p && *p != ')')
13932 {
13933 /* Find the extent of the current argument name. */
13934 const char *arg_start = p;
13935
13936 while (*p && *p != ',' && *p != ')' && *p != ' ')
13937 p++;
13938
13939 if (! *p || p == arg_start)
4d3c2250 13940 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13941 else
13942 {
13943 /* Make sure argv has room for the new argument. */
13944 if (argc >= argv_size)
13945 {
13946 argv_size *= 2;
13947 argv = xrealloc (argv, argv_size * sizeof (*argv));
13948 }
13949
13950 argv[argc++] = copy_string (arg_start, p - arg_start);
13951 }
13952
13953 p = consume_improper_spaces (p, body);
13954
13955 /* Consume the comma, if present. */
13956 if (*p == ',')
13957 {
13958 p++;
13959
13960 p = consume_improper_spaces (p, body);
13961 }
13962 }
13963
13964 if (*p == ')')
13965 {
13966 p++;
13967
13968 if (*p == ' ')
13969 /* Perfectly formed definition, no complaints. */
13970 macro_define_function (file, line, name,
6e70227d 13971 argc, (const char **) argv,
2e276125
JB
13972 p + 1);
13973 else if (*p == '\0')
13974 {
13975 /* Complain, but do define it. */
4d3c2250 13976 dwarf2_macro_malformed_definition_complaint (body);
2e276125 13977 macro_define_function (file, line, name,
6e70227d 13978 argc, (const char **) argv,
2e276125
JB
13979 p);
13980 }
13981 else
13982 /* Just complain. */
4d3c2250 13983 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13984 }
13985 else
13986 /* Just complain. */
4d3c2250 13987 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13988
13989 xfree (name);
13990 {
13991 int i;
13992
13993 for (i = 0; i < argc; i++)
13994 xfree (argv[i]);
13995 }
13996 xfree (argv);
13997 }
13998 else
4d3c2250 13999 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14000}
14001
14002
14003static void
14004dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14005 char *comp_dir, bfd *abfd,
e7c27a73 14006 struct dwarf2_cu *cu)
2e276125 14007{
fe1b8b76 14008 gdb_byte *mac_ptr, *mac_end;
2e276125 14009 struct macro_source_file *current_file = 0;
757a13d0
JK
14010 enum dwarf_macinfo_record_type macinfo_type;
14011 int at_commandline;
2e276125 14012
be391dca
TT
14013 dwarf2_read_section (dwarf2_per_objfile->objfile,
14014 &dwarf2_per_objfile->macinfo);
dce234bc 14015 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 14016 {
e2e0b3e5 14017 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
14018 return;
14019 }
14020
757a13d0
JK
14021 /* First pass: Find the name of the base filename.
14022 This filename is needed in order to process all macros whose definition
14023 (or undefinition) comes from the command line. These macros are defined
14024 before the first DW_MACINFO_start_file entry, and yet still need to be
14025 associated to the base file.
14026
14027 To determine the base file name, we scan the macro definitions until we
14028 reach the first DW_MACINFO_start_file entry. We then initialize
14029 CURRENT_FILE accordingly so that any macro definition found before the
14030 first DW_MACINFO_start_file can still be associated to the base file. */
14031
dce234bc
PP
14032 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14033 mac_end = dwarf2_per_objfile->macinfo.buffer
14034 + dwarf2_per_objfile->macinfo.size;
2e276125 14035
757a13d0 14036 do
2e276125 14037 {
2e276125
JB
14038 /* Do we at least have room for a macinfo type byte? */
14039 if (mac_ptr >= mac_end)
14040 {
757a13d0 14041 /* Complaint is printed during the second pass as GDB will probably
3e43a32a
MS
14042 stop the first pass earlier upon finding
14043 DW_MACINFO_start_file. */
757a13d0 14044 break;
2e276125
JB
14045 }
14046
14047 macinfo_type = read_1_byte (abfd, mac_ptr);
14048 mac_ptr++;
14049
14050 switch (macinfo_type)
14051 {
14052 /* A zero macinfo type indicates the end of the macro
14053 information. */
14054 case 0:
757a13d0
JK
14055 break;
14056
14057 case DW_MACINFO_define:
14058 case DW_MACINFO_undef:
14059 /* Only skip the data by MAC_PTR. */
14060 {
14061 unsigned int bytes_read;
14062
14063 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14064 mac_ptr += bytes_read;
9b1c24c8 14065 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14066 mac_ptr += bytes_read;
14067 }
14068 break;
14069
14070 case DW_MACINFO_start_file:
14071 {
14072 unsigned int bytes_read;
14073 int line, file;
14074
14075 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14076 mac_ptr += bytes_read;
14077 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14078 mac_ptr += bytes_read;
14079
3e43a32a
MS
14080 current_file = macro_start_file (file, line, current_file,
14081 comp_dir, lh, cu->objfile);
757a13d0
JK
14082 }
14083 break;
14084
14085 case DW_MACINFO_end_file:
14086 /* No data to skip by MAC_PTR. */
14087 break;
14088
14089 case DW_MACINFO_vendor_ext:
14090 /* Only skip the data by MAC_PTR. */
14091 {
14092 unsigned int bytes_read;
14093
14094 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14095 mac_ptr += bytes_read;
9b1c24c8 14096 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14097 mac_ptr += bytes_read;
14098 }
14099 break;
14100
14101 default:
14102 break;
14103 }
14104 } while (macinfo_type != 0 && current_file == NULL);
14105
14106 /* Second pass: Process all entries.
14107
14108 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14109 command-line macro definitions/undefinitions. This flag is unset when we
14110 reach the first DW_MACINFO_start_file entry. */
14111
dce234bc 14112 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
14113
14114 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14115 GDB is still reading the definitions from command line. First
14116 DW_MACINFO_start_file will need to be ignored as it was already executed
14117 to create CURRENT_FILE for the main source holding also the command line
14118 definitions. On first met DW_MACINFO_start_file this flag is reset to
14119 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14120
14121 at_commandline = 1;
14122
14123 do
14124 {
14125 /* Do we at least have room for a macinfo type byte? */
14126 if (mac_ptr >= mac_end)
14127 {
14128 dwarf2_macros_too_long_complaint ();
14129 break;
14130 }
14131
14132 macinfo_type = read_1_byte (abfd, mac_ptr);
14133 mac_ptr++;
14134
14135 switch (macinfo_type)
14136 {
14137 /* A zero macinfo type indicates the end of the macro
14138 information. */
14139 case 0:
14140 break;
2e276125
JB
14141
14142 case DW_MACINFO_define:
14143 case DW_MACINFO_undef:
14144 {
891d2f0b 14145 unsigned int bytes_read;
2e276125
JB
14146 int line;
14147 char *body;
14148
14149 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14150 mac_ptr += bytes_read;
9b1c24c8 14151 body = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14152 mac_ptr += bytes_read;
14153
14154 if (! current_file)
757a13d0
JK
14155 {
14156 /* DWARF violation as no main source is present. */
14157 complaint (&symfile_complaints,
14158 _("debug info with no main source gives macro %s "
14159 "on line %d: %s"),
6e70227d
DE
14160 macinfo_type == DW_MACINFO_define ?
14161 _("definition") :
905e0470
PM
14162 macinfo_type == DW_MACINFO_undef ?
14163 _("undefinition") :
14164 _("something-or-other"), line, body);
757a13d0
JK
14165 break;
14166 }
3e43a32a
MS
14167 if ((line == 0 && !at_commandline)
14168 || (line != 0 && at_commandline))
4d3c2250 14169 complaint (&symfile_complaints,
757a13d0
JK
14170 _("debug info gives %s macro %s with %s line %d: %s"),
14171 at_commandline ? _("command-line") : _("in-file"),
905e0470 14172 macinfo_type == DW_MACINFO_define ?
6e70227d 14173 _("definition") :
905e0470
PM
14174 macinfo_type == DW_MACINFO_undef ?
14175 _("undefinition") :
14176 _("something-or-other"),
757a13d0
JK
14177 line == 0 ? _("zero") : _("non-zero"), line, body);
14178
14179 if (macinfo_type == DW_MACINFO_define)
14180 parse_macro_definition (current_file, line, body);
14181 else if (macinfo_type == DW_MACINFO_undef)
14182 macro_undef (current_file, line, body);
2e276125
JB
14183 }
14184 break;
14185
14186 case DW_MACINFO_start_file:
14187 {
891d2f0b 14188 unsigned int bytes_read;
2e276125
JB
14189 int line, file;
14190
14191 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14192 mac_ptr += bytes_read;
14193 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14194 mac_ptr += bytes_read;
14195
3e43a32a
MS
14196 if ((line == 0 && !at_commandline)
14197 || (line != 0 && at_commandline))
757a13d0
JK
14198 complaint (&symfile_complaints,
14199 _("debug info gives source %d included "
14200 "from %s at %s line %d"),
14201 file, at_commandline ? _("command-line") : _("file"),
14202 line == 0 ? _("zero") : _("non-zero"), line);
14203
14204 if (at_commandline)
14205 {
14206 /* This DW_MACINFO_start_file was executed in the pass one. */
14207 at_commandline = 0;
14208 }
14209 else
14210 current_file = macro_start_file (file, line,
14211 current_file, comp_dir,
14212 lh, cu->objfile);
2e276125
JB
14213 }
14214 break;
14215
14216 case DW_MACINFO_end_file:
14217 if (! current_file)
4d3c2250 14218 complaint (&symfile_complaints,
3e43a32a
MS
14219 _("macro debug info has an unmatched "
14220 "`close_file' directive"));
2e276125
JB
14221 else
14222 {
14223 current_file = current_file->included_by;
14224 if (! current_file)
14225 {
14226 enum dwarf_macinfo_record_type next_type;
14227
14228 /* GCC circa March 2002 doesn't produce the zero
14229 type byte marking the end of the compilation
14230 unit. Complain if it's not there, but exit no
14231 matter what. */
14232
14233 /* Do we at least have room for a macinfo type byte? */
14234 if (mac_ptr >= mac_end)
14235 {
4d3c2250 14236 dwarf2_macros_too_long_complaint ();
2e276125
JB
14237 return;
14238 }
14239
14240 /* We don't increment mac_ptr here, so this is just
14241 a look-ahead. */
14242 next_type = read_1_byte (abfd, mac_ptr);
14243 if (next_type != 0)
4d3c2250 14244 complaint (&symfile_complaints,
3e43a32a
MS
14245 _("no terminating 0-type entry for "
14246 "macros in `.debug_macinfo' section"));
2e276125
JB
14247
14248 return;
14249 }
14250 }
14251 break;
14252
14253 case DW_MACINFO_vendor_ext:
14254 {
891d2f0b 14255 unsigned int bytes_read;
2e276125
JB
14256 int constant;
14257 char *string;
14258
14259 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14260 mac_ptr += bytes_read;
9b1c24c8 14261 string = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14262 mac_ptr += bytes_read;
14263
14264 /* We don't recognize any vendor extensions. */
14265 }
14266 break;
14267 }
757a13d0 14268 } while (macinfo_type != 0);
2e276125 14269}
8e19ed76
PS
14270
14271/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 14272 if so return true else false. */
8e19ed76
PS
14273static int
14274attr_form_is_block (struct attribute *attr)
14275{
14276 return (attr == NULL ? 0 :
14277 attr->form == DW_FORM_block1
14278 || attr->form == DW_FORM_block2
14279 || attr->form == DW_FORM_block4
2dc7f7b3
TT
14280 || attr->form == DW_FORM_block
14281 || attr->form == DW_FORM_exprloc);
8e19ed76 14282}
4c2df51b 14283
c6a0999f
JB
14284/* Return non-zero if ATTR's value is a section offset --- classes
14285 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14286 You may use DW_UNSND (attr) to retrieve such offsets.
14287
14288 Section 7.5.4, "Attribute Encodings", explains that no attribute
14289 may have a value that belongs to more than one of these classes; it
14290 would be ambiguous if we did, because we use the same forms for all
14291 of them. */
3690dd37
JB
14292static int
14293attr_form_is_section_offset (struct attribute *attr)
14294{
14295 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
14296 || attr->form == DW_FORM_data8
14297 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
14298}
14299
14300
14301/* Return non-zero if ATTR's value falls in the 'constant' class, or
14302 zero otherwise. When this function returns true, you can apply
14303 dwarf2_get_attr_constant_value to it.
14304
14305 However, note that for some attributes you must check
14306 attr_form_is_section_offset before using this test. DW_FORM_data4
14307 and DW_FORM_data8 are members of both the constant class, and of
14308 the classes that contain offsets into other debug sections
14309 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14310 that, if an attribute's can be either a constant or one of the
14311 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14312 taken as section offsets, not constants. */
14313static int
14314attr_form_is_constant (struct attribute *attr)
14315{
14316 switch (attr->form)
14317 {
14318 case DW_FORM_sdata:
14319 case DW_FORM_udata:
14320 case DW_FORM_data1:
14321 case DW_FORM_data2:
14322 case DW_FORM_data4:
14323 case DW_FORM_data8:
14324 return 1;
14325 default:
14326 return 0;
14327 }
14328}
14329
8cf6f0b1
TT
14330/* A helper function that fills in a dwarf2_loclist_baton. */
14331
14332static void
14333fill_in_loclist_baton (struct dwarf2_cu *cu,
14334 struct dwarf2_loclist_baton *baton,
14335 struct attribute *attr)
14336{
14337 dwarf2_read_section (dwarf2_per_objfile->objfile,
14338 &dwarf2_per_objfile->loc);
14339
14340 baton->per_cu = cu->per_cu;
14341 gdb_assert (baton->per_cu);
14342 /* We don't know how long the location list is, but make sure we
14343 don't run off the edge of the section. */
14344 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14345 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14346 baton->base_address = cu->base_address;
14347}
14348
4c2df51b
DJ
14349static void
14350dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 14351 struct dwarf2_cu *cu)
4c2df51b 14352{
3690dd37 14353 if (attr_form_is_section_offset (attr)
99bcc461
DJ
14354 /* ".debug_loc" may not exist at all, or the offset may be outside
14355 the section. If so, fall through to the complaint in the
14356 other branch. */
dce234bc 14357 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 14358 {
0d53c4c4 14359 struct dwarf2_loclist_baton *baton;
4c2df51b 14360
4a146b47 14361 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14362 sizeof (struct dwarf2_loclist_baton));
4c2df51b 14363
8cf6f0b1 14364 fill_in_loclist_baton (cu, baton, attr);
be391dca 14365
d00adf39 14366 if (cu->base_known == 0)
0d53c4c4 14367 complaint (&symfile_complaints,
3e43a32a
MS
14368 _("Location list used without "
14369 "specifying the CU base address."));
4c2df51b 14370
768a979c 14371 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
14372 SYMBOL_LOCATION_BATON (sym) = baton;
14373 }
14374 else
14375 {
14376 struct dwarf2_locexpr_baton *baton;
14377
4a146b47 14378 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14379 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
14380 baton->per_cu = cu->per_cu;
14381 gdb_assert (baton->per_cu);
0d53c4c4
DJ
14382
14383 if (attr_form_is_block (attr))
14384 {
14385 /* Note that we're just copying the block's data pointer
14386 here, not the actual data. We're still pointing into the
6502dd73
DJ
14387 info_buffer for SYM's objfile; right now we never release
14388 that buffer, but when we do clean up properly this may
14389 need to change. */
0d53c4c4
DJ
14390 baton->size = DW_BLOCK (attr)->size;
14391 baton->data = DW_BLOCK (attr)->data;
14392 }
14393 else
14394 {
14395 dwarf2_invalid_attrib_class_complaint ("location description",
14396 SYMBOL_NATURAL_NAME (sym));
14397 baton->size = 0;
14398 baton->data = NULL;
14399 }
6e70227d 14400
768a979c 14401 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
14402 SYMBOL_LOCATION_BATON (sym) = baton;
14403 }
4c2df51b 14404}
6502dd73 14405
9aa1f1e3
TT
14406/* Return the OBJFILE associated with the compilation unit CU. If CU
14407 came from a separate debuginfo file, then the master objfile is
14408 returned. */
ae0d2f24
UW
14409
14410struct objfile *
14411dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14412{
9291a0cd 14413 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14414
14415 /* Return the master objfile, so that we can report and look up the
14416 correct file containing this variable. */
14417 if (objfile->separate_debug_objfile_backlink)
14418 objfile = objfile->separate_debug_objfile_backlink;
14419
14420 return objfile;
14421}
14422
14423/* Return the address size given in the compilation unit header for CU. */
14424
14425CORE_ADDR
14426dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14427{
14428 if (per_cu->cu)
14429 return per_cu->cu->header.addr_size;
14430 else
14431 {
14432 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14433 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14434 struct dwarf2_per_objfile *per_objfile
14435 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 14436 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 14437 struct comp_unit_head cu_header;
9a619af0 14438
ae0d2f24
UW
14439 memset (&cu_header, 0, sizeof cu_header);
14440 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14441 return cu_header.addr_size;
14442 }
14443}
14444
9eae7c52
TT
14445/* Return the offset size given in the compilation unit header for CU. */
14446
14447int
14448dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14449{
14450 if (per_cu->cu)
14451 return per_cu->cu->header.offset_size;
14452 else
14453 {
14454 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14455 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
14456 struct dwarf2_per_objfile *per_objfile
14457 = objfile_data (objfile, dwarf2_objfile_data_key);
14458 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14459 struct comp_unit_head cu_header;
14460
14461 memset (&cu_header, 0, sizeof cu_header);
14462 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14463 return cu_header.offset_size;
14464 }
14465}
14466
9aa1f1e3
TT
14467/* Return the text offset of the CU. The returned offset comes from
14468 this CU's objfile. If this objfile came from a separate debuginfo
14469 file, then the offset may be different from the corresponding
14470 offset in the parent objfile. */
14471
14472CORE_ADDR
14473dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14474{
bb3fa9d0 14475 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
14476
14477 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14478}
14479
348e048f
DE
14480/* Locate the .debug_info compilation unit from CU's objfile which contains
14481 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
14482
14483static struct dwarf2_per_cu_data *
c764a876 14484dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
14485 struct objfile *objfile)
14486{
14487 struct dwarf2_per_cu_data *this_cu;
14488 int low, high;
14489
ae038cb0
DJ
14490 low = 0;
14491 high = dwarf2_per_objfile->n_comp_units - 1;
14492 while (high > low)
14493 {
14494 int mid = low + (high - low) / 2;
9a619af0 14495
ae038cb0
DJ
14496 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14497 high = mid;
14498 else
14499 low = mid + 1;
14500 }
14501 gdb_assert (low == high);
14502 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14503 {
10b3939b 14504 if (low == 0)
8a3fe4f8
AC
14505 error (_("Dwarf Error: could not find partial DIE containing "
14506 "offset 0x%lx [in module %s]"),
10b3939b
DJ
14507 (long) offset, bfd_get_filename (objfile->obfd));
14508
ae038cb0
DJ
14509 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14510 return dwarf2_per_objfile->all_comp_units[low-1];
14511 }
14512 else
14513 {
14514 this_cu = dwarf2_per_objfile->all_comp_units[low];
14515 if (low == dwarf2_per_objfile->n_comp_units - 1
14516 && offset >= this_cu->offset + this_cu->length)
c764a876 14517 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
14518 gdb_assert (offset < this_cu->offset + this_cu->length);
14519 return this_cu;
14520 }
14521}
14522
10b3939b
DJ
14523/* Locate the compilation unit from OBJFILE which is located at exactly
14524 OFFSET. Raises an error on failure. */
14525
ae038cb0 14526static struct dwarf2_per_cu_data *
c764a876 14527dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
14528{
14529 struct dwarf2_per_cu_data *this_cu;
9a619af0 14530
ae038cb0
DJ
14531 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14532 if (this_cu->offset != offset)
c764a876 14533 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
14534 return this_cu;
14535}
14536
9816fde3 14537/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
93311388 14538
9816fde3
JK
14539static void
14540init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
93311388 14541{
9816fde3 14542 memset (cu, 0, sizeof (*cu));
93311388
DE
14543 cu->objfile = objfile;
14544 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
14545}
14546
14547/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14548
14549static void
14550prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14551{
14552 struct attribute *attr;
14553
14554 /* Set the language we're debugging. */
14555 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14556 if (attr)
14557 set_cu_language (DW_UNSND (attr), cu);
14558 else
14559 set_cu_language (language_minimal, cu);
93311388
DE
14560}
14561
ae038cb0
DJ
14562/* Release one cached compilation unit, CU. We unlink it from the tree
14563 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
14564 the caller is responsible for that.
14565 NOTE: DATA is a void * because this function is also used as a
14566 cleanup routine. */
ae038cb0
DJ
14567
14568static void
14569free_one_comp_unit (void *data)
14570{
14571 struct dwarf2_cu *cu = data;
14572
14573 if (cu->per_cu != NULL)
14574 cu->per_cu->cu = NULL;
14575 cu->per_cu = NULL;
14576
14577 obstack_free (&cu->comp_unit_obstack, NULL);
14578
14579 xfree (cu);
14580}
14581
72bf9492 14582/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
14583 when we're finished with it. We can't free the pointer itself, but be
14584 sure to unlink it from the cache. Also release any associated storage
14585 and perform cache maintenance.
72bf9492
DJ
14586
14587 Only used during partial symbol parsing. */
14588
14589static void
14590free_stack_comp_unit (void *data)
14591{
14592 struct dwarf2_cu *cu = data;
14593
14594 obstack_free (&cu->comp_unit_obstack, NULL);
14595 cu->partial_dies = NULL;
ae038cb0
DJ
14596
14597 if (cu->per_cu != NULL)
14598 {
14599 /* This compilation unit is on the stack in our caller, so we
14600 should not xfree it. Just unlink it. */
14601 cu->per_cu->cu = NULL;
14602 cu->per_cu = NULL;
14603
14604 /* If we had a per-cu pointer, then we may have other compilation
14605 units loaded, so age them now. */
14606 age_cached_comp_units ();
14607 }
14608}
14609
14610/* Free all cached compilation units. */
14611
14612static void
14613free_cached_comp_units (void *data)
14614{
14615 struct dwarf2_per_cu_data *per_cu, **last_chain;
14616
14617 per_cu = dwarf2_per_objfile->read_in_chain;
14618 last_chain = &dwarf2_per_objfile->read_in_chain;
14619 while (per_cu != NULL)
14620 {
14621 struct dwarf2_per_cu_data *next_cu;
14622
14623 next_cu = per_cu->cu->read_in_chain;
14624
14625 free_one_comp_unit (per_cu->cu);
14626 *last_chain = next_cu;
14627
14628 per_cu = next_cu;
14629 }
14630}
14631
14632/* Increase the age counter on each cached compilation unit, and free
14633 any that are too old. */
14634
14635static void
14636age_cached_comp_units (void)
14637{
14638 struct dwarf2_per_cu_data *per_cu, **last_chain;
14639
14640 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14641 per_cu = dwarf2_per_objfile->read_in_chain;
14642 while (per_cu != NULL)
14643 {
14644 per_cu->cu->last_used ++;
14645 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14646 dwarf2_mark (per_cu->cu);
14647 per_cu = per_cu->cu->read_in_chain;
14648 }
14649
14650 per_cu = dwarf2_per_objfile->read_in_chain;
14651 last_chain = &dwarf2_per_objfile->read_in_chain;
14652 while (per_cu != NULL)
14653 {
14654 struct dwarf2_per_cu_data *next_cu;
14655
14656 next_cu = per_cu->cu->read_in_chain;
14657
14658 if (!per_cu->cu->mark)
14659 {
14660 free_one_comp_unit (per_cu->cu);
14661 *last_chain = next_cu;
14662 }
14663 else
14664 last_chain = &per_cu->cu->read_in_chain;
14665
14666 per_cu = next_cu;
14667 }
14668}
14669
14670/* Remove a single compilation unit from the cache. */
14671
14672static void
14673free_one_cached_comp_unit (void *target_cu)
14674{
14675 struct dwarf2_per_cu_data *per_cu, **last_chain;
14676
14677 per_cu = dwarf2_per_objfile->read_in_chain;
14678 last_chain = &dwarf2_per_objfile->read_in_chain;
14679 while (per_cu != NULL)
14680 {
14681 struct dwarf2_per_cu_data *next_cu;
14682
14683 next_cu = per_cu->cu->read_in_chain;
14684
14685 if (per_cu->cu == target_cu)
14686 {
14687 free_one_comp_unit (per_cu->cu);
14688 *last_chain = next_cu;
14689 break;
14690 }
14691 else
14692 last_chain = &per_cu->cu->read_in_chain;
14693
14694 per_cu = next_cu;
14695 }
14696}
14697
fe3e1990
DJ
14698/* Release all extra memory associated with OBJFILE. */
14699
14700void
14701dwarf2_free_objfile (struct objfile *objfile)
14702{
14703 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14704
14705 if (dwarf2_per_objfile == NULL)
14706 return;
14707
14708 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14709 free_cached_comp_units (NULL);
14710
7b9f3c50
DE
14711 if (dwarf2_per_objfile->quick_file_names_table)
14712 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 14713
fe3e1990
DJ
14714 /* Everything else should be on the objfile obstack. */
14715}
14716
1c379e20
DJ
14717/* A pair of DIE offset and GDB type pointer. We store these
14718 in a hash table separate from the DIEs, and preserve them
14719 when the DIEs are flushed out of cache. */
14720
14721struct dwarf2_offset_and_type
14722{
14723 unsigned int offset;
14724 struct type *type;
14725};
14726
14727/* Hash function for a dwarf2_offset_and_type. */
14728
14729static hashval_t
14730offset_and_type_hash (const void *item)
14731{
14732 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 14733
1c379e20
DJ
14734 return ofs->offset;
14735}
14736
14737/* Equality function for a dwarf2_offset_and_type. */
14738
14739static int
14740offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14741{
14742 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14743 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 14744
1c379e20
DJ
14745 return ofs_lhs->offset == ofs_rhs->offset;
14746}
14747
14748/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
14749 table if necessary. For convenience, return TYPE.
14750
14751 The DIEs reading must have careful ordering to:
14752 * Not cause infite loops trying to read in DIEs as a prerequisite for
14753 reading current DIE.
14754 * Not trying to dereference contents of still incompletely read in types
14755 while reading in other DIEs.
14756 * Enable referencing still incompletely read in types just by a pointer to
14757 the type without accessing its fields.
14758
14759 Therefore caller should follow these rules:
14760 * Try to fetch any prerequisite types we may need to build this DIE type
14761 before building the type and calling set_die_type.
e71ec853 14762 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
14763 possible before fetching more types to complete the current type.
14764 * Make the type as complete as possible before fetching more types. */
1c379e20 14765
f792889a 14766static struct type *
1c379e20
DJ
14767set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14768{
14769 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
14770 struct objfile *objfile = cu->objfile;
14771 htab_t *type_hash_ptr;
1c379e20 14772
b4ba55a1
JB
14773 /* For Ada types, make sure that the gnat-specific data is always
14774 initialized (if not already set). There are a few types where
14775 we should not be doing so, because the type-specific area is
14776 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14777 where the type-specific area is used to store the floatformat).
14778 But this is not a problem, because the gnat-specific information
14779 is actually not needed for these types. */
14780 if (need_gnat_info (cu)
14781 && TYPE_CODE (type) != TYPE_CODE_FUNC
14782 && TYPE_CODE (type) != TYPE_CODE_FLT
14783 && !HAVE_GNAT_AUX_INFO (type))
14784 INIT_GNAT_SPECIFIC (type);
14785
673bfd45
DE
14786 if (cu->per_cu->from_debug_types)
14787 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14788 else
14789 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14790
14791 if (*type_hash_ptr == NULL)
f792889a 14792 {
673bfd45
DE
14793 *type_hash_ptr
14794 = htab_create_alloc_ex (127,
f792889a
DJ
14795 offset_and_type_hash,
14796 offset_and_type_eq,
14797 NULL,
673bfd45 14798 &objfile->objfile_obstack,
f792889a
DJ
14799 hashtab_obstack_allocate,
14800 dummy_obstack_deallocate);
f792889a 14801 }
1c379e20
DJ
14802
14803 ofs.offset = die->offset;
14804 ofs.type = type;
14805 slot = (struct dwarf2_offset_and_type **)
673bfd45 14806 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
14807 if (*slot)
14808 complaint (&symfile_complaints,
14809 _("A problem internal to GDB: DIE 0x%x has type already set"),
14810 die->offset);
673bfd45 14811 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 14812 **slot = ofs;
f792889a 14813 return type;
1c379e20
DJ
14814}
14815
673bfd45
DE
14816/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14817 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
14818
14819static struct type *
673bfd45
DE
14820get_die_type_at_offset (unsigned int offset,
14821 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
14822{
14823 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 14824 htab_t type_hash;
f792889a 14825
673bfd45
DE
14826 if (per_cu->from_debug_types)
14827 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14828 else
14829 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
14830 if (type_hash == NULL)
14831 return NULL;
1c379e20 14832
673bfd45 14833 ofs.offset = offset;
1c379e20
DJ
14834 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14835 if (slot)
14836 return slot->type;
14837 else
14838 return NULL;
14839}
14840
673bfd45
DE
14841/* Look up the type for DIE in the appropriate type_hash table,
14842 or return NULL if DIE does not have a saved type. */
14843
14844static struct type *
14845get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14846{
14847 return get_die_type_at_offset (die->offset, cu->per_cu);
14848}
14849
10b3939b
DJ
14850/* Add a dependence relationship from CU to REF_PER_CU. */
14851
14852static void
14853dwarf2_add_dependence (struct dwarf2_cu *cu,
14854 struct dwarf2_per_cu_data *ref_per_cu)
14855{
14856 void **slot;
14857
14858 if (cu->dependencies == NULL)
14859 cu->dependencies
14860 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14861 NULL, &cu->comp_unit_obstack,
14862 hashtab_obstack_allocate,
14863 dummy_obstack_deallocate);
14864
14865 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14866 if (*slot == NULL)
14867 *slot = ref_per_cu;
14868}
1c379e20 14869
f504f079
DE
14870/* Subroutine of dwarf2_mark to pass to htab_traverse.
14871 Set the mark field in every compilation unit in the
ae038cb0
DJ
14872 cache that we must keep because we are keeping CU. */
14873
10b3939b
DJ
14874static int
14875dwarf2_mark_helper (void **slot, void *data)
14876{
14877 struct dwarf2_per_cu_data *per_cu;
14878
14879 per_cu = (struct dwarf2_per_cu_data *) *slot;
14880 if (per_cu->cu->mark)
14881 return 1;
14882 per_cu->cu->mark = 1;
14883
14884 if (per_cu->cu->dependencies != NULL)
14885 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14886
14887 return 1;
14888}
14889
f504f079
DE
14890/* Set the mark field in CU and in every other compilation unit in the
14891 cache that we must keep because we are keeping CU. */
14892
ae038cb0
DJ
14893static void
14894dwarf2_mark (struct dwarf2_cu *cu)
14895{
14896 if (cu->mark)
14897 return;
14898 cu->mark = 1;
10b3939b
DJ
14899 if (cu->dependencies != NULL)
14900 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
14901}
14902
14903static void
14904dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14905{
14906 while (per_cu)
14907 {
14908 per_cu->cu->mark = 0;
14909 per_cu = per_cu->cu->read_in_chain;
14910 }
72bf9492
DJ
14911}
14912
72bf9492
DJ
14913/* Trivial hash function for partial_die_info: the hash value of a DIE
14914 is its offset in .debug_info for this objfile. */
14915
14916static hashval_t
14917partial_die_hash (const void *item)
14918{
14919 const struct partial_die_info *part_die = item;
9a619af0 14920
72bf9492
DJ
14921 return part_die->offset;
14922}
14923
14924/* Trivial comparison function for partial_die_info structures: two DIEs
14925 are equal if they have the same offset. */
14926
14927static int
14928partial_die_eq (const void *item_lhs, const void *item_rhs)
14929{
14930 const struct partial_die_info *part_die_lhs = item_lhs;
14931 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 14932
72bf9492
DJ
14933 return part_die_lhs->offset == part_die_rhs->offset;
14934}
14935
ae038cb0
DJ
14936static struct cmd_list_element *set_dwarf2_cmdlist;
14937static struct cmd_list_element *show_dwarf2_cmdlist;
14938
14939static void
14940set_dwarf2_cmd (char *args, int from_tty)
14941{
14942 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14943}
14944
14945static void
14946show_dwarf2_cmd (char *args, int from_tty)
6e70227d 14947{
ae038cb0
DJ
14948 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14949}
14950
dce234bc
PP
14951/* If section described by INFO was mmapped, munmap it now. */
14952
14953static void
14954munmap_section_buffer (struct dwarf2_section_info *info)
14955{
14956 if (info->was_mmapped)
14957 {
14958#ifdef HAVE_MMAP
14959 intptr_t begin = (intptr_t) info->buffer;
14960 intptr_t map_begin = begin & ~(pagesize - 1);
14961 size_t map_length = info->size + begin - map_begin;
9a619af0 14962
dce234bc
PP
14963 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14964#else
14965 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 14966 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
14967#endif
14968 }
14969}
14970
14971/* munmap debug sections for OBJFILE, if necessary. */
14972
14973static void
c1bd65d0 14974dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
14975{
14976 struct dwarf2_per_objfile *data = d;
9a619af0 14977
16be1145
DE
14978 /* This is sorted according to the order they're defined in to make it easier
14979 to keep in sync. */
dce234bc
PP
14980 munmap_section_buffer (&data->info);
14981 munmap_section_buffer (&data->abbrev);
14982 munmap_section_buffer (&data->line);
16be1145 14983 munmap_section_buffer (&data->loc);
dce234bc 14984 munmap_section_buffer (&data->macinfo);
16be1145 14985 munmap_section_buffer (&data->str);
dce234bc 14986 munmap_section_buffer (&data->ranges);
16be1145 14987 munmap_section_buffer (&data->types);
dce234bc
PP
14988 munmap_section_buffer (&data->frame);
14989 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
14990 munmap_section_buffer (&data->gdb_index);
14991}
14992
14993\f
ae2de4f8 14994/* The "save gdb-index" command. */
9291a0cd
TT
14995
14996/* The contents of the hash table we create when building the string
14997 table. */
14998struct strtab_entry
14999{
15000 offset_type offset;
15001 const char *str;
15002};
15003
15004/* Hash function for a strtab_entry. */
b89be57b 15005
9291a0cd
TT
15006static hashval_t
15007hash_strtab_entry (const void *e)
15008{
15009 const struct strtab_entry *entry = e;
15010 return mapped_index_string_hash (entry->str);
15011}
15012
15013/* Equality function for a strtab_entry. */
b89be57b 15014
9291a0cd
TT
15015static int
15016eq_strtab_entry (const void *a, const void *b)
15017{
15018 const struct strtab_entry *ea = a;
15019 const struct strtab_entry *eb = b;
15020 return !strcmp (ea->str, eb->str);
15021}
15022
15023/* Create a strtab_entry hash table. */
b89be57b 15024
9291a0cd
TT
15025static htab_t
15026create_strtab (void)
15027{
15028 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15029 xfree, xcalloc, xfree);
15030}
15031
15032/* Add a string to the constant pool. Return the string's offset in
15033 host order. */
b89be57b 15034
9291a0cd
TT
15035static offset_type
15036add_string (htab_t table, struct obstack *cpool, const char *str)
15037{
15038 void **slot;
15039 struct strtab_entry entry;
15040 struct strtab_entry *result;
15041
15042 entry.str = str;
15043 slot = htab_find_slot (table, &entry, INSERT);
15044 if (*slot)
15045 result = *slot;
15046 else
15047 {
15048 result = XNEW (struct strtab_entry);
15049 result->offset = obstack_object_size (cpool);
15050 result->str = str;
15051 obstack_grow_str0 (cpool, str);
15052 *slot = result;
15053 }
15054 return result->offset;
15055}
15056
15057/* An entry in the symbol table. */
15058struct symtab_index_entry
15059{
15060 /* The name of the symbol. */
15061 const char *name;
15062 /* The offset of the name in the constant pool. */
15063 offset_type index_offset;
15064 /* A sorted vector of the indices of all the CUs that hold an object
15065 of this name. */
15066 VEC (offset_type) *cu_indices;
15067};
15068
15069/* The symbol table. This is a power-of-2-sized hash table. */
15070struct mapped_symtab
15071{
15072 offset_type n_elements;
15073 offset_type size;
15074 struct symtab_index_entry **data;
15075};
15076
15077/* Hash function for a symtab_index_entry. */
b89be57b 15078
9291a0cd
TT
15079static hashval_t
15080hash_symtab_entry (const void *e)
15081{
15082 const struct symtab_index_entry *entry = e;
15083 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15084 sizeof (offset_type) * VEC_length (offset_type,
15085 entry->cu_indices),
15086 0);
15087}
15088
15089/* Equality function for a symtab_index_entry. */
b89be57b 15090
9291a0cd
TT
15091static int
15092eq_symtab_entry (const void *a, const void *b)
15093{
15094 const struct symtab_index_entry *ea = a;
15095 const struct symtab_index_entry *eb = b;
15096 int len = VEC_length (offset_type, ea->cu_indices);
15097 if (len != VEC_length (offset_type, eb->cu_indices))
15098 return 0;
15099 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15100 VEC_address (offset_type, eb->cu_indices),
15101 sizeof (offset_type) * len);
15102}
15103
15104/* Destroy a symtab_index_entry. */
b89be57b 15105
9291a0cd
TT
15106static void
15107delete_symtab_entry (void *p)
15108{
15109 struct symtab_index_entry *entry = p;
15110 VEC_free (offset_type, entry->cu_indices);
15111 xfree (entry);
15112}
15113
15114/* Create a hash table holding symtab_index_entry objects. */
b89be57b 15115
9291a0cd 15116static htab_t
3876f04e 15117create_symbol_hash_table (void)
9291a0cd
TT
15118{
15119 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15120 delete_symtab_entry, xcalloc, xfree);
15121}
15122
15123/* Create a new mapped symtab object. */
b89be57b 15124
9291a0cd
TT
15125static struct mapped_symtab *
15126create_mapped_symtab (void)
15127{
15128 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15129 symtab->n_elements = 0;
15130 symtab->size = 1024;
15131 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15132 return symtab;
15133}
15134
15135/* Destroy a mapped_symtab. */
b89be57b 15136
9291a0cd
TT
15137static void
15138cleanup_mapped_symtab (void *p)
15139{
15140 struct mapped_symtab *symtab = p;
15141 /* The contents of the array are freed when the other hash table is
15142 destroyed. */
15143 xfree (symtab->data);
15144 xfree (symtab);
15145}
15146
15147/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15148 the slot. */
b89be57b 15149
9291a0cd
TT
15150static struct symtab_index_entry **
15151find_slot (struct mapped_symtab *symtab, const char *name)
15152{
15153 offset_type index, step, hash = mapped_index_string_hash (name);
15154
15155 index = hash & (symtab->size - 1);
15156 step = ((hash * 17) & (symtab->size - 1)) | 1;
15157
15158 for (;;)
15159 {
15160 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15161 return &symtab->data[index];
15162 index = (index + step) & (symtab->size - 1);
15163 }
15164}
15165
15166/* Expand SYMTAB's hash table. */
b89be57b 15167
9291a0cd
TT
15168static void
15169hash_expand (struct mapped_symtab *symtab)
15170{
15171 offset_type old_size = symtab->size;
15172 offset_type i;
15173 struct symtab_index_entry **old_entries = symtab->data;
15174
15175 symtab->size *= 2;
15176 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15177
15178 for (i = 0; i < old_size; ++i)
15179 {
15180 if (old_entries[i])
15181 {
15182 struct symtab_index_entry **slot = find_slot (symtab,
15183 old_entries[i]->name);
15184 *slot = old_entries[i];
15185 }
15186 }
15187
15188 xfree (old_entries);
15189}
15190
15191/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15192 is the index of the CU in which the symbol appears. */
b89be57b 15193
9291a0cd
TT
15194static void
15195add_index_entry (struct mapped_symtab *symtab, const char *name,
15196 offset_type cu_index)
15197{
15198 struct symtab_index_entry **slot;
15199
15200 ++symtab->n_elements;
15201 if (4 * symtab->n_elements / 3 >= symtab->size)
15202 hash_expand (symtab);
15203
15204 slot = find_slot (symtab, name);
15205 if (!*slot)
15206 {
15207 *slot = XNEW (struct symtab_index_entry);
15208 (*slot)->name = name;
15209 (*slot)->cu_indices = NULL;
15210 }
15211 /* Don't push an index twice. Due to how we add entries we only
15212 have to check the last one. */
15213 if (VEC_empty (offset_type, (*slot)->cu_indices)
15214 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15215 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15216}
15217
15218/* Add a vector of indices to the constant pool. */
b89be57b 15219
9291a0cd 15220static offset_type
3876f04e 15221add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
15222 struct symtab_index_entry *entry)
15223{
15224 void **slot;
15225
3876f04e 15226 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
15227 if (!*slot)
15228 {
15229 offset_type len = VEC_length (offset_type, entry->cu_indices);
15230 offset_type val = MAYBE_SWAP (len);
15231 offset_type iter;
15232 int i;
15233
15234 *slot = entry;
15235 entry->index_offset = obstack_object_size (cpool);
15236
15237 obstack_grow (cpool, &val, sizeof (val));
15238 for (i = 0;
15239 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15240 ++i)
15241 {
15242 val = MAYBE_SWAP (iter);
15243 obstack_grow (cpool, &val, sizeof (val));
15244 }
15245 }
15246 else
15247 {
15248 struct symtab_index_entry *old_entry = *slot;
15249 entry->index_offset = old_entry->index_offset;
15250 entry = old_entry;
15251 }
15252 return entry->index_offset;
15253}
15254
15255/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15256 constant pool entries going into the obstack CPOOL. */
b89be57b 15257
9291a0cd
TT
15258static void
15259write_hash_table (struct mapped_symtab *symtab,
15260 struct obstack *output, struct obstack *cpool)
15261{
15262 offset_type i;
3876f04e 15263 htab_t symbol_hash_table;
9291a0cd
TT
15264 htab_t str_table;
15265
3876f04e 15266 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 15267 str_table = create_strtab ();
3876f04e 15268
9291a0cd
TT
15269 /* We add all the index vectors to the constant pool first, to
15270 ensure alignment is ok. */
15271 for (i = 0; i < symtab->size; ++i)
15272 {
15273 if (symtab->data[i])
3876f04e 15274 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
15275 }
15276
15277 /* Now write out the hash table. */
15278 for (i = 0; i < symtab->size; ++i)
15279 {
15280 offset_type str_off, vec_off;
15281
15282 if (symtab->data[i])
15283 {
15284 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15285 vec_off = symtab->data[i]->index_offset;
15286 }
15287 else
15288 {
15289 /* While 0 is a valid constant pool index, it is not valid
15290 to have 0 for both offsets. */
15291 str_off = 0;
15292 vec_off = 0;
15293 }
15294
15295 str_off = MAYBE_SWAP (str_off);
15296 vec_off = MAYBE_SWAP (vec_off);
15297
15298 obstack_grow (output, &str_off, sizeof (str_off));
15299 obstack_grow (output, &vec_off, sizeof (vec_off));
15300 }
15301
15302 htab_delete (str_table);
3876f04e 15303 htab_delete (symbol_hash_table);
9291a0cd
TT
15304}
15305
0a5429f6
DE
15306/* Struct to map psymtab to CU index in the index file. */
15307struct psymtab_cu_index_map
15308{
15309 struct partial_symtab *psymtab;
15310 unsigned int cu_index;
15311};
15312
15313static hashval_t
15314hash_psymtab_cu_index (const void *item)
15315{
15316 const struct psymtab_cu_index_map *map = item;
15317
15318 return htab_hash_pointer (map->psymtab);
15319}
15320
15321static int
15322eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15323{
15324 const struct psymtab_cu_index_map *lhs = item_lhs;
15325 const struct psymtab_cu_index_map *rhs = item_rhs;
15326
15327 return lhs->psymtab == rhs->psymtab;
15328}
15329
15330/* Helper struct for building the address table. */
15331struct addrmap_index_data
15332{
15333 struct objfile *objfile;
15334 struct obstack *addr_obstack;
15335 htab_t cu_index_htab;
15336
15337 /* Non-zero if the previous_* fields are valid.
15338 We can't write an entry until we see the next entry (since it is only then
15339 that we know the end of the entry). */
15340 int previous_valid;
15341 /* Index of the CU in the table of all CUs in the index file. */
15342 unsigned int previous_cu_index;
0963b4bd 15343 /* Start address of the CU. */
0a5429f6
DE
15344 CORE_ADDR previous_cu_start;
15345};
15346
15347/* Write an address entry to OBSTACK. */
b89be57b 15348
9291a0cd 15349static void
0a5429f6
DE
15350add_address_entry (struct objfile *objfile, struct obstack *obstack,
15351 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 15352{
0a5429f6 15353 offset_type cu_index_to_write;
9291a0cd
TT
15354 char addr[8];
15355 CORE_ADDR baseaddr;
15356
15357 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15358
0a5429f6
DE
15359 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15360 obstack_grow (obstack, addr, 8);
15361 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15362 obstack_grow (obstack, addr, 8);
15363 cu_index_to_write = MAYBE_SWAP (cu_index);
15364 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15365}
15366
15367/* Worker function for traversing an addrmap to build the address table. */
15368
15369static int
15370add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15371{
15372 struct addrmap_index_data *data = datap;
15373 struct partial_symtab *pst = obj;
15374 offset_type cu_index;
15375 void **slot;
15376
15377 if (data->previous_valid)
15378 add_address_entry (data->objfile, data->addr_obstack,
15379 data->previous_cu_start, start_addr,
15380 data->previous_cu_index);
15381
15382 data->previous_cu_start = start_addr;
15383 if (pst != NULL)
15384 {
15385 struct psymtab_cu_index_map find_map, *map;
15386 find_map.psymtab = pst;
15387 map = htab_find (data->cu_index_htab, &find_map);
15388 gdb_assert (map != NULL);
15389 data->previous_cu_index = map->cu_index;
15390 data->previous_valid = 1;
15391 }
15392 else
15393 data->previous_valid = 0;
15394
15395 return 0;
15396}
15397
15398/* Write OBJFILE's address map to OBSTACK.
15399 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15400 in the index file. */
15401
15402static void
15403write_address_map (struct objfile *objfile, struct obstack *obstack,
15404 htab_t cu_index_htab)
15405{
15406 struct addrmap_index_data addrmap_index_data;
15407
15408 /* When writing the address table, we have to cope with the fact that
15409 the addrmap iterator only provides the start of a region; we have to
15410 wait until the next invocation to get the start of the next region. */
15411
15412 addrmap_index_data.objfile = objfile;
15413 addrmap_index_data.addr_obstack = obstack;
15414 addrmap_index_data.cu_index_htab = cu_index_htab;
15415 addrmap_index_data.previous_valid = 0;
15416
15417 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15418 &addrmap_index_data);
15419
15420 /* It's highly unlikely the last entry (end address = 0xff...ff)
15421 is valid, but we should still handle it.
15422 The end address is recorded as the start of the next region, but that
15423 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15424 anyway. */
15425 if (addrmap_index_data.previous_valid)
15426 add_address_entry (objfile, obstack,
15427 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15428 addrmap_index_data.previous_cu_index);
9291a0cd
TT
15429}
15430
15431/* Add a list of partial symbols to SYMTAB. */
b89be57b 15432
9291a0cd
TT
15433static void
15434write_psymbols (struct mapped_symtab *symtab,
987d643c 15435 htab_t psyms_seen,
9291a0cd
TT
15436 struct partial_symbol **psymp,
15437 int count,
987d643c
TT
15438 offset_type cu_index,
15439 int is_static)
9291a0cd
TT
15440{
15441 for (; count-- > 0; ++psymp)
15442 {
987d643c
TT
15443 void **slot, *lookup;
15444
9291a0cd
TT
15445 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15446 error (_("Ada is not currently supported by the index"));
987d643c
TT
15447
15448 /* We only want to add a given psymbol once. However, we also
15449 want to account for whether it is global or static. So, we
15450 may add it twice, using slightly different values. */
15451 if (is_static)
15452 {
15453 uintptr_t val = 1 | (uintptr_t) *psymp;
15454
15455 lookup = (void *) val;
15456 }
15457 else
15458 lookup = *psymp;
15459
15460 /* Only add a given psymbol once. */
15461 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15462 if (!*slot)
15463 {
15464 *slot = lookup;
15465 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15466 }
9291a0cd
TT
15467 }
15468}
15469
15470/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15471 exception if there is an error. */
b89be57b 15472
9291a0cd
TT
15473static void
15474write_obstack (FILE *file, struct obstack *obstack)
15475{
15476 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15477 file)
15478 != obstack_object_size (obstack))
15479 error (_("couldn't data write to file"));
15480}
15481
15482/* Unlink a file if the argument is not NULL. */
b89be57b 15483
9291a0cd
TT
15484static void
15485unlink_if_set (void *p)
15486{
15487 char **filename = p;
15488 if (*filename)
15489 unlink (*filename);
15490}
15491
1fd400ff
TT
15492/* A helper struct used when iterating over debug_types. */
15493struct signatured_type_index_data
15494{
15495 struct objfile *objfile;
15496 struct mapped_symtab *symtab;
15497 struct obstack *types_list;
987d643c 15498 htab_t psyms_seen;
1fd400ff
TT
15499 int cu_index;
15500};
15501
15502/* A helper function that writes a single signatured_type to an
15503 obstack. */
b89be57b 15504
1fd400ff
TT
15505static int
15506write_one_signatured_type (void **slot, void *d)
15507{
15508 struct signatured_type_index_data *info = d;
15509 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
15510 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15511 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
15512 gdb_byte val[8];
15513
15514 write_psymbols (info->symtab,
987d643c 15515 info->psyms_seen,
3e43a32a
MS
15516 info->objfile->global_psymbols.list
15517 + psymtab->globals_offset,
987d643c
TT
15518 psymtab->n_global_syms, info->cu_index,
15519 0);
1fd400ff 15520 write_psymbols (info->symtab,
987d643c 15521 info->psyms_seen,
3e43a32a
MS
15522 info->objfile->static_psymbols.list
15523 + psymtab->statics_offset,
987d643c
TT
15524 psymtab->n_static_syms, info->cu_index,
15525 1);
1fd400ff
TT
15526
15527 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15528 obstack_grow (info->types_list, val, 8);
15529 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15530 obstack_grow (info->types_list, val, 8);
15531 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15532 obstack_grow (info->types_list, val, 8);
15533
15534 ++info->cu_index;
15535
15536 return 1;
15537}
15538
987d643c
TT
15539/* A cleanup function for an htab_t. */
15540
15541static void
15542cleanup_htab (void *arg)
15543{
15544 htab_delete (arg);
15545}
15546
9291a0cd 15547/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 15548
9291a0cd
TT
15549static void
15550write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15551{
15552 struct cleanup *cleanup;
15553 char *filename, *cleanup_filename;
1fd400ff
TT
15554 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15555 struct obstack cu_list, types_cu_list;
9291a0cd
TT
15556 int i;
15557 FILE *out_file;
15558 struct mapped_symtab *symtab;
15559 offset_type val, size_of_contents, total_len;
15560 struct stat st;
15561 char buf[8];
987d643c 15562 htab_t psyms_seen;
0a5429f6
DE
15563 htab_t cu_index_htab;
15564 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd
TT
15565
15566 if (!objfile->psymtabs)
15567 return;
15568 if (dwarf2_per_objfile->using_index)
15569 error (_("Cannot use an index to create the index"));
15570
15571 if (stat (objfile->name, &st) < 0)
7e17e088 15572 perror_with_name (objfile->name);
9291a0cd
TT
15573
15574 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15575 INDEX_SUFFIX, (char *) NULL);
15576 cleanup = make_cleanup (xfree, filename);
15577
15578 out_file = fopen (filename, "wb");
15579 if (!out_file)
15580 error (_("Can't open `%s' for writing"), filename);
15581
15582 cleanup_filename = filename;
15583 make_cleanup (unlink_if_set, &cleanup_filename);
15584
15585 symtab = create_mapped_symtab ();
15586 make_cleanup (cleanup_mapped_symtab, symtab);
15587
15588 obstack_init (&addr_obstack);
15589 make_cleanup_obstack_free (&addr_obstack);
15590
15591 obstack_init (&cu_list);
15592 make_cleanup_obstack_free (&cu_list);
15593
1fd400ff
TT
15594 obstack_init (&types_cu_list);
15595 make_cleanup_obstack_free (&types_cu_list);
15596
987d643c
TT
15597 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15598 NULL, xcalloc, xfree);
15599 make_cleanup (cleanup_htab, psyms_seen);
15600
0a5429f6
DE
15601 /* While we're scanning CU's create a table that maps a psymtab pointer
15602 (which is what addrmap records) to its index (which is what is recorded
15603 in the index file). This will later be needed to write the address
15604 table. */
15605 cu_index_htab = htab_create_alloc (100,
15606 hash_psymtab_cu_index,
15607 eq_psymtab_cu_index,
15608 NULL, xcalloc, xfree);
15609 make_cleanup (cleanup_htab, cu_index_htab);
15610 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15611 xmalloc (sizeof (struct psymtab_cu_index_map)
15612 * dwarf2_per_objfile->n_comp_units);
15613 make_cleanup (xfree, psymtab_cu_index_map);
15614
15615 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
15616 work here. Also, the debug_types entries do not appear in
15617 all_comp_units, but only in their own hash table. */
9291a0cd
TT
15618 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15619 {
3e43a32a
MS
15620 struct dwarf2_per_cu_data *per_cu
15621 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 15622 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 15623 gdb_byte val[8];
0a5429f6
DE
15624 struct psymtab_cu_index_map *map;
15625 void **slot;
9291a0cd
TT
15626
15627 write_psymbols (symtab,
987d643c 15628 psyms_seen,
9291a0cd 15629 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15630 psymtab->n_global_syms, i,
15631 0);
9291a0cd 15632 write_psymbols (symtab,
987d643c 15633 psyms_seen,
9291a0cd 15634 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15635 psymtab->n_static_syms, i,
15636 1);
9291a0cd 15637
0a5429f6
DE
15638 map = &psymtab_cu_index_map[i];
15639 map->psymtab = psymtab;
15640 map->cu_index = i;
15641 slot = htab_find_slot (cu_index_htab, map, INSERT);
15642 gdb_assert (slot != NULL);
15643 gdb_assert (*slot == NULL);
15644 *slot = map;
9291a0cd 15645
e254ef6a 15646 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 15647 obstack_grow (&cu_list, val, 8);
e254ef6a 15648 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
15649 obstack_grow (&cu_list, val, 8);
15650 }
15651
0a5429f6
DE
15652 /* Dump the address map. */
15653 write_address_map (objfile, &addr_obstack, cu_index_htab);
15654
1fd400ff
TT
15655 /* Write out the .debug_type entries, if any. */
15656 if (dwarf2_per_objfile->signatured_types)
15657 {
15658 struct signatured_type_index_data sig_data;
15659
15660 sig_data.objfile = objfile;
15661 sig_data.symtab = symtab;
15662 sig_data.types_list = &types_cu_list;
987d643c 15663 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
15664 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15665 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15666 write_one_signatured_type, &sig_data);
15667 }
15668
9291a0cd
TT
15669 obstack_init (&constant_pool);
15670 make_cleanup_obstack_free (&constant_pool);
15671 obstack_init (&symtab_obstack);
15672 make_cleanup_obstack_free (&symtab_obstack);
15673 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15674
15675 obstack_init (&contents);
15676 make_cleanup_obstack_free (&contents);
1fd400ff 15677 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
15678 total_len = size_of_contents;
15679
15680 /* The version number. */
987d643c 15681 val = MAYBE_SWAP (3);
9291a0cd
TT
15682 obstack_grow (&contents, &val, sizeof (val));
15683
15684 /* The offset of the CU list from the start of the file. */
15685 val = MAYBE_SWAP (total_len);
15686 obstack_grow (&contents, &val, sizeof (val));
15687 total_len += obstack_object_size (&cu_list);
15688
1fd400ff
TT
15689 /* The offset of the types CU list from the start of the file. */
15690 val = MAYBE_SWAP (total_len);
15691 obstack_grow (&contents, &val, sizeof (val));
15692 total_len += obstack_object_size (&types_cu_list);
15693
9291a0cd
TT
15694 /* The offset of the address table from the start of the file. */
15695 val = MAYBE_SWAP (total_len);
15696 obstack_grow (&contents, &val, sizeof (val));
15697 total_len += obstack_object_size (&addr_obstack);
15698
15699 /* The offset of the symbol table from the start of the file. */
15700 val = MAYBE_SWAP (total_len);
15701 obstack_grow (&contents, &val, sizeof (val));
15702 total_len += obstack_object_size (&symtab_obstack);
15703
15704 /* The offset of the constant pool from the start of the file. */
15705 val = MAYBE_SWAP (total_len);
15706 obstack_grow (&contents, &val, sizeof (val));
15707 total_len += obstack_object_size (&constant_pool);
15708
15709 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15710
15711 write_obstack (out_file, &contents);
15712 write_obstack (out_file, &cu_list);
1fd400ff 15713 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
15714 write_obstack (out_file, &addr_obstack);
15715 write_obstack (out_file, &symtab_obstack);
15716 write_obstack (out_file, &constant_pool);
15717
15718 fclose (out_file);
15719
15720 /* We want to keep the file, so we set cleanup_filename to NULL
15721 here. See unlink_if_set. */
15722 cleanup_filename = NULL;
15723
15724 do_cleanups (cleanup);
15725}
15726
15727/* The mapped index file format is designed to be directly mmap()able
15728 on any architecture. In most cases, a datum is represented using a
15729 little-endian 32-bit integer value, called an offset_type. Big
15730 endian machines must byte-swap the values before using them.
15731 Exceptions to this rule are noted. The data is laid out such that
15732 alignment is always respected.
15733
15734 A mapped index consists of several sections.
15735
15736 1. The file header. This is a sequence of values, of offset_type
15737 unless otherwise noted:
987d643c
TT
15738
15739 [0] The version number, currently 3. Versions 1 and 2 are
15740 obsolete.
9291a0cd 15741 [1] The offset, from the start of the file, of the CU list.
987d643c
TT
15742 [2] The offset, from the start of the file, of the types CU list.
15743 Note that this section can be empty, in which case this offset will
15744 be equal to the next offset.
15745 [3] The offset, from the start of the file, of the address section.
15746 [4] The offset, from the start of the file, of the symbol table.
15747 [5] The offset, from the start of the file, of the constant pool.
9291a0cd
TT
15748
15749 2. The CU list. This is a sequence of pairs of 64-bit
1fd400ff
TT
15750 little-endian values, sorted by the CU offset. The first element
15751 in each pair is the offset of a CU in the .debug_info section. The
15752 second element in each pair is the length of that CU. References
15753 to a CU elsewhere in the map are done using a CU index, which is
15754 just the 0-based index into this table. Note that if there are
15755 type CUs, then conceptually CUs and type CUs form a single list for
15756 the purposes of CU indices.
15757
987d643c
TT
15758 3. The types CU list. This is a sequence of triplets of 64-bit
15759 little-endian values. In a triplet, the first value is the CU
15760 offset, the second value is the type offset in the CU, and the
15761 third value is the type signature. The types CU list is not
15762 sorted.
9291a0cd 15763
987d643c 15764 4. The address section. The address section consists of a sequence
9291a0cd
TT
15765 of address entries. Each address entry has three elements.
15766 [0] The low address. This is a 64-bit little-endian value.
15767 [1] The high address. This is a 64-bit little-endian value.
148c11bf 15768 Like DW_AT_high_pc, the value is one byte beyond the end.
9291a0cd
TT
15769 [2] The CU index. This is an offset_type value.
15770
987d643c 15771 5. The symbol table. This is a hash table. The size of the hash
9291a0cd
TT
15772 table is always a power of 2. The initial hash and the step are
15773 currently defined by the `find_slot' function.
15774
15775 Each slot in the hash table consists of a pair of offset_type
15776 values. The first value is the offset of the symbol's name in the
15777 constant pool. The second value is the offset of the CU vector in
15778 the constant pool.
15779
15780 If both values are 0, then this slot in the hash table is empty.
15781 This is ok because while 0 is a valid constant pool index, it
15782 cannot be a valid index for both a string and a CU vector.
15783
15784 A string in the constant pool is stored as a \0-terminated string,
15785 as you'd expect.
15786
15787 A CU vector in the constant pool is a sequence of offset_type
15788 values. The first value is the number of CU indices in the vector.
15789 Each subsequent value is the index of a CU in the CU list. This
15790 element in the hash table is used to indicate which CUs define the
15791 symbol.
15792
987d643c 15793 6. The constant pool. This is simply a bunch of bytes. It is
9291a0cd
TT
15794 organized so that alignment is correct: CU vectors are stored
15795 first, followed by strings. */
11570e71 15796
9291a0cd
TT
15797static void
15798save_gdb_index_command (char *arg, int from_tty)
15799{
15800 struct objfile *objfile;
15801
15802 if (!arg || !*arg)
96d19272 15803 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
15804
15805 ALL_OBJFILES (objfile)
15806 {
15807 struct stat st;
15808
15809 /* If the objfile does not correspond to an actual file, skip it. */
15810 if (stat (objfile->name, &st) < 0)
15811 continue;
15812
15813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15814 if (dwarf2_per_objfile)
15815 {
15816 volatile struct gdb_exception except;
15817
15818 TRY_CATCH (except, RETURN_MASK_ERROR)
15819 {
15820 write_psymtabs_to_index (objfile, arg);
15821 }
15822 if (except.reason < 0)
15823 exception_fprintf (gdb_stderr, except,
15824 _("Error while writing index for `%s': "),
15825 objfile->name);
15826 }
15827 }
dce234bc
PP
15828}
15829
9291a0cd
TT
15830\f
15831
9eae7c52
TT
15832int dwarf2_always_disassemble;
15833
15834static void
15835show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15836 struct cmd_list_element *c, const char *value)
15837{
3e43a32a
MS
15838 fprintf_filtered (file,
15839 _("Whether to always disassemble "
15840 "DWARF expressions is %s.\n"),
9eae7c52
TT
15841 value);
15842}
15843
6502dd73
DJ
15844void _initialize_dwarf2_read (void);
15845
15846void
15847_initialize_dwarf2_read (void)
15848{
96d19272
JK
15849 struct cmd_list_element *c;
15850
dce234bc 15851 dwarf2_objfile_data_key
c1bd65d0 15852 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 15853
1bedd215
AC
15854 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15855Set DWARF 2 specific variables.\n\
15856Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15857 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15858 0/*allow-unknown*/, &maintenance_set_cmdlist);
15859
1bedd215
AC
15860 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15861Show DWARF 2 specific variables\n\
15862Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15863 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15864 0/*allow-unknown*/, &maintenance_show_cmdlist);
15865
15866 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
15867 &dwarf2_max_cache_age, _("\
15868Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15869Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15870A higher limit means that cached compilation units will be stored\n\
15871in memory longer, and more total memory will be used. Zero disables\n\
15872caching, which can slow down startup."),
2c5b56ce 15873 NULL,
920d2a44 15874 show_dwarf2_max_cache_age,
2c5b56ce 15875 &set_dwarf2_cmdlist,
ae038cb0 15876 &show_dwarf2_cmdlist);
d97bc12b 15877
9eae7c52
TT
15878 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15879 &dwarf2_always_disassemble, _("\
15880Set whether `info address' always disassembles DWARF expressions."), _("\
15881Show whether `info address' always disassembles DWARF expressions."), _("\
15882When enabled, DWARF expressions are always printed in an assembly-like\n\
15883syntax. When disabled, expressions will be printed in a more\n\
15884conversational style, when possible."),
15885 NULL,
15886 show_dwarf2_always_disassemble,
15887 &set_dwarf2_cmdlist,
15888 &show_dwarf2_cmdlist);
15889
d97bc12b
DE
15890 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15891Set debugging of the dwarf2 DIE reader."), _("\
15892Show debugging of the dwarf2 DIE reader."), _("\
15893When enabled (non-zero), DIEs are dumped after they are read in.\n\
15894The value is the maximum depth to print."),
15895 NULL,
15896 NULL,
15897 &setdebuglist, &showdebuglist);
9291a0cd 15898
96d19272 15899 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 15900 _("\
fc1a9d6e 15901Save a gdb-index file.\n\
11570e71 15902Usage: save gdb-index DIRECTORY"),
96d19272
JK
15903 &save_cmdlist);
15904 set_cmd_completer (c, filename_completer);
6502dd73 15905}
This page took 2.102338 seconds and 4 git commands to generate.