* dwarf2read.c (guess_structure_name): Allocate name on the
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
4c2df51b 51
c906108c
SS
52#include <fcntl.h>
53#include "gdb_string.h"
4bdf3d34 54#include "gdb_assert.h"
c906108c 55#include <sys/types.h>
233a11ab
CS
56#ifdef HAVE_ZLIB_H
57#include <zlib.h>
58#endif
dce234bc
PP
59#ifdef HAVE_MMAP
60#include <sys/mman.h>
85d9bd0e
TT
61#ifndef MAP_FAILED
62#define MAP_FAILED ((void *) -1)
63#endif
dce234bc 64#endif
d8151005 65
107d2387 66#if 0
357e46e7 67/* .debug_info header for a compilation unit
c906108c
SS
68 Because of alignment constraints, this structure has padding and cannot
69 be mapped directly onto the beginning of the .debug_info section. */
70typedef struct comp_unit_header
71 {
72 unsigned int length; /* length of the .debug_info
73 contribution */
74 unsigned short version; /* version number -- 2 for DWARF
75 version 2 */
76 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
77 unsigned char addr_size; /* byte size of an address -- 4 */
78 }
79_COMP_UNIT_HEADER;
80#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 81#endif
c906108c
SS
82
83/* .debug_pubnames header
84 Because of alignment constraints, this structure has padding and cannot
85 be mapped directly onto the beginning of the .debug_info section. */
86typedef struct pubnames_header
87 {
88 unsigned int length; /* length of the .debug_pubnames
89 contribution */
90 unsigned char version; /* version number -- 2 for DWARF
91 version 2 */
92 unsigned int info_offset; /* offset into .debug_info section */
93 unsigned int info_size; /* byte size of .debug_info section
94 portion */
95 }
96_PUBNAMES_HEADER;
97#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
98
99/* .debug_pubnames header
100 Because of alignment constraints, this structure has padding and cannot
101 be mapped directly onto the beginning of the .debug_info section. */
102typedef struct aranges_header
103 {
104 unsigned int length; /* byte len of the .debug_aranges
105 contribution */
106 unsigned short version; /* version number -- 2 for DWARF
107 version 2 */
108 unsigned int info_offset; /* offset into .debug_info section */
109 unsigned char addr_size; /* byte size of an address */
110 unsigned char seg_size; /* byte size of segment descriptor */
111 }
112_ARANGES_HEADER;
113#define _ACTUAL_ARANGES_HEADER_SIZE 12
114
115/* .debug_line statement program prologue
116 Because of alignment constraints, this structure has padding and cannot
117 be mapped directly onto the beginning of the .debug_info section. */
118typedef struct statement_prologue
119 {
120 unsigned int total_length; /* byte length of the statement
121 information */
122 unsigned short version; /* version number -- 2 for DWARF
123 version 2 */
124 unsigned int prologue_length; /* # bytes between prologue &
125 stmt program */
126 unsigned char minimum_instruction_length; /* byte size of
127 smallest instr */
128 unsigned char default_is_stmt; /* initial value of is_stmt
129 register */
130 char line_base;
131 unsigned char line_range;
132 unsigned char opcode_base; /* number assigned to first special
133 opcode */
134 unsigned char *standard_opcode_lengths;
135 }
136_STATEMENT_PROLOGUE;
137
d97bc12b
DE
138/* When non-zero, dump DIEs after they are read in. */
139static int dwarf2_die_debug = 0;
140
dce234bc
PP
141static int pagesize;
142
df8a16a1
DJ
143/* When set, the file that we're processing is known to have debugging
144 info for C++ namespaces. GCC 3.3.x did not produce this information,
145 but later versions do. */
146
147static int processing_has_namespace_info;
148
6502dd73
DJ
149static const struct objfile_data *dwarf2_objfile_data_key;
150
dce234bc
PP
151struct dwarf2_section_info
152{
153 asection *asection;
154 gdb_byte *buffer;
155 bfd_size_type size;
156 int was_mmapped;
157};
158
6502dd73
DJ
159struct dwarf2_per_objfile
160{
dce234bc
PP
161 struct dwarf2_section_info info;
162 struct dwarf2_section_info abbrev;
163 struct dwarf2_section_info line;
164 struct dwarf2_section_info pubnames;
165 struct dwarf2_section_info aranges;
166 struct dwarf2_section_info loc;
167 struct dwarf2_section_info macinfo;
168 struct dwarf2_section_info str;
169 struct dwarf2_section_info ranges;
348e048f 170 struct dwarf2_section_info types;
dce234bc
PP
171 struct dwarf2_section_info frame;
172 struct dwarf2_section_info eh_frame;
ae038cb0 173
10b3939b
DJ
174 /* A list of all the compilation units. This is used to locate
175 the target compilation unit of a particular reference. */
ae038cb0
DJ
176 struct dwarf2_per_cu_data **all_comp_units;
177
178 /* The number of compilation units in ALL_COMP_UNITS. */
179 int n_comp_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 184
348e048f
DE
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
72dca2f5
FR
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
6502dd73
DJ
192};
193
194static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
195
196/* names of the debugging sections */
197
233a11ab
CS
198/* Note that if the debugging section has been compressed, it might
199 have a name like .zdebug_info. */
200
201#define INFO_SECTION "debug_info"
202#define ABBREV_SECTION "debug_abbrev"
203#define LINE_SECTION "debug_line"
204#define PUBNAMES_SECTION "debug_pubnames"
205#define ARANGES_SECTION "debug_aranges"
206#define LOC_SECTION "debug_loc"
207#define MACINFO_SECTION "debug_macinfo"
208#define STR_SECTION "debug_str"
209#define RANGES_SECTION "debug_ranges"
348e048f 210#define TYPES_SECTION "debug_types"
233a11ab
CS
211#define FRAME_SECTION "debug_frame"
212#define EH_FRAME_SECTION "eh_frame"
c906108c
SS
213
214/* local data types */
215
57349743
JB
216/* We hold several abbreviation tables in memory at the same time. */
217#ifndef ABBREV_HASH_SIZE
218#define ABBREV_HASH_SIZE 121
219#endif
220
107d2387
AC
221/* The data in a compilation unit header, after target2host
222 translation, looks like this. */
c906108c 223struct comp_unit_head
a738430d 224{
c764a876 225 unsigned int length;
a738430d 226 short version;
a738430d
MK
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
9cbfa09e 229 unsigned int abbrev_offset;
57349743 230
a738430d
MK
231 /* Size of file offsets; either 4 or 8. */
232 unsigned int offset_size;
57349743 233
a738430d
MK
234 /* Size of the length field; either 4 or 12. */
235 unsigned int initial_length_size;
57349743 236
a738430d
MK
237 /* Offset to the first byte of this compilation unit header in the
238 .debug_info section, for resolving relative reference dies. */
239 unsigned int offset;
57349743 240
d00adf39
DE
241 /* Offset to first die in this cu from the start of the cu.
242 This will be the first byte following the compilation unit header. */
243 unsigned int first_die_offset;
a738430d 244};
c906108c 245
e7c27a73
DJ
246/* Internal state when decoding a particular compilation unit. */
247struct dwarf2_cu
248{
249 /* The objfile containing this compilation unit. */
250 struct objfile *objfile;
251
d00adf39 252 /* The header of the compilation unit. */
e7c27a73 253 struct comp_unit_head header;
e142c38c 254
d00adf39
DE
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260
e142c38c
DJ
261 struct function_range *first_fn, *last_fn, *cached_fn;
262
263 /* The language we are debugging. */
264 enum language language;
265 const struct language_defn *language_defn;
266
b0f35d58
DL
267 const char *producer;
268
e142c38c
DJ
269 /* The generic symbol table building routines have separate lists for
270 file scope symbols and all all other scopes (local scopes). So
271 we need to select the right one to pass to add_symbol_to_list().
272 We do it by keeping a pointer to the correct list in list_in_scope.
273
274 FIXME: The original dwarf code just treated the file scope as the
275 first local scope, and all other local scopes as nested local
276 scopes, and worked fine. Check to see if we really need to
277 distinguish these in buildsym.c. */
278 struct pending **list_in_scope;
279
f3dd6933
DJ
280 /* DWARF abbreviation table associated with this compilation unit. */
281 struct abbrev_info **dwarf2_abbrevs;
282
283 /* Storage for the abbrev table. */
284 struct obstack abbrev_obstack;
72bf9492
DJ
285
286 /* Hash table holding all the loaded partial DIEs. */
287 htab_t partial_dies;
288
289 /* Storage for things with the same lifetime as this read-in compilation
290 unit, including partial DIEs. */
291 struct obstack comp_unit_obstack;
292
ae038cb0
DJ
293 /* When multiple dwarf2_cu structures are living in memory, this field
294 chains them all together, so that they can be released efficiently.
295 We will probably also want a generation counter so that most-recently-used
296 compilation units are cached... */
297 struct dwarf2_per_cu_data *read_in_chain;
298
299 /* Backchain to our per_cu entry if the tree has been built. */
300 struct dwarf2_per_cu_data *per_cu;
301
f792889a
DJ
302 /* Pointer to the die -> type map. Although it is stored
303 permanently in per_cu, we copy it here to avoid double
304 indirection. */
305 htab_t type_hash;
306
ae038cb0
DJ
307 /* How many compilation units ago was this CU last referenced? */
308 int last_used;
309
10b3939b 310 /* A hash table of die offsets for following references. */
51545339 311 htab_t die_hash;
10b3939b
DJ
312
313 /* Full DIEs if read in. */
314 struct die_info *dies;
315
316 /* A set of pointers to dwarf2_per_cu_data objects for compilation
317 units referenced by this one. Only set during full symbol processing;
318 partial symbol tables do not have dependencies. */
319 htab_t dependencies;
320
cb1df416
DJ
321 /* Header data from the line table, during full symbol processing. */
322 struct line_header *line_header;
323
ae038cb0
DJ
324 /* Mark used when releasing cached dies. */
325 unsigned int mark : 1;
326
327 /* This flag will be set if this compilation unit might include
328 inter-compilation-unit references. */
329 unsigned int has_form_ref_addr : 1;
330
72bf9492
DJ
331 /* This flag will be set if this compilation unit includes any
332 DW_TAG_namespace DIEs. If we know that there are explicit
333 DIEs for namespaces, we don't need to try to infer them
334 from mangled names. */
335 unsigned int has_namespace_info : 1;
e7c27a73
DJ
336};
337
10b3939b
DJ
338/* Persistent data held for a compilation unit, even when not
339 processing it. We put a pointer to this structure in the
340 read_symtab_private field of the psymtab. If we encounter
341 inter-compilation-unit references, we also maintain a sorted
342 list of all compilation units. */
343
ae038cb0
DJ
344struct dwarf2_per_cu_data
345{
348e048f 346 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 347 bytes should suffice to store the length of any compilation unit
45452591
DE
348 - if it doesn't, GDB will fall over anyway.
349 NOTE: Unlike comp_unit_head.length, this length includes
350 initial_length_size. */
c764a876 351 unsigned int offset;
348e048f 352 unsigned int length : 29;
ae038cb0
DJ
353
354 /* Flag indicating this compilation unit will be read in before
355 any of the current compilation units are processed. */
c764a876 356 unsigned int queued : 1;
ae038cb0 357
5afb4e99
DJ
358 /* This flag will be set if we need to load absolutely all DIEs
359 for this compilation unit, instead of just the ones we think
360 are interesting. It gets set if we look for a DIE in the
361 hash table and don't find it. */
362 unsigned int load_all_dies : 1;
363
348e048f
DE
364 /* Non-zero if this CU is from .debug_types.
365 Otherwise it's from .debug_info. */
366 unsigned int from_debug_types : 1;
367
ae038cb0
DJ
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
1c379e20
DJ
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
1c379e20 375 htab_t type_hash;
10b3939b 376
31ffec48
DJ
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
10b3939b 380 struct partial_symtab *psymtab;
ae038cb0
DJ
381};
382
348e048f
DE
383/* Entry in the signatured_types hash table. */
384
385struct signatured_type
386{
387 ULONGEST signature;
388
389 /* Offset in .debug_types of the TU (type_unit) for this type. */
390 unsigned int offset;
391
392 /* Offset in .debug_types of the type defined by this TU. */
393 unsigned int type_offset;
394
395 /* The CU(/TU) of this type. */
396 struct dwarf2_per_cu_data per_cu;
397};
398
93311388
DE
399/* Struct used to pass misc. parameters to read_die_and_children, et. al.
400 which are used for both .debug_info and .debug_types dies.
401 All parameters here are unchanging for the life of the call.
402 This struct exists to abstract away the constant parameters of
403 die reading. */
404
405struct die_reader_specs
406{
407 /* The bfd of this objfile. */
408 bfd* abfd;
409
410 /* The CU of the DIE we are parsing. */
411 struct dwarf2_cu *cu;
412
413 /* Pointer to start of section buffer.
414 This is either the start of .debug_info or .debug_types. */
415 const gdb_byte *buffer;
416};
417
debd256d
JB
418/* The line number information for a compilation unit (found in the
419 .debug_line section) begins with a "statement program header",
420 which contains the following information. */
421struct line_header
422{
423 unsigned int total_length;
424 unsigned short version;
425 unsigned int header_length;
426 unsigned char minimum_instruction_length;
427 unsigned char default_is_stmt;
428 int line_base;
429 unsigned char line_range;
430 unsigned char opcode_base;
431
432 /* standard_opcode_lengths[i] is the number of operands for the
433 standard opcode whose value is i. This means that
434 standard_opcode_lengths[0] is unused, and the last meaningful
435 element is standard_opcode_lengths[opcode_base - 1]. */
436 unsigned char *standard_opcode_lengths;
437
438 /* The include_directories table. NOTE! These strings are not
439 allocated with xmalloc; instead, they are pointers into
440 debug_line_buffer. If you try to free them, `free' will get
441 indigestion. */
442 unsigned int num_include_dirs, include_dirs_size;
443 char **include_dirs;
444
445 /* The file_names table. NOTE! These strings are not allocated
446 with xmalloc; instead, they are pointers into debug_line_buffer.
447 Don't try to free them directly. */
448 unsigned int num_file_names, file_names_size;
449 struct file_entry
c906108c 450 {
debd256d
JB
451 char *name;
452 unsigned int dir_index;
453 unsigned int mod_time;
454 unsigned int length;
aaa75496 455 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 456 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
457 } *file_names;
458
459 /* The start and end of the statement program following this
6502dd73 460 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 461 gdb_byte *statement_program_start, *statement_program_end;
debd256d 462};
c906108c
SS
463
464/* When we construct a partial symbol table entry we only
465 need this much information. */
466struct partial_die_info
467 {
72bf9492 468 /* Offset of this DIE. */
c906108c 469 unsigned int offset;
72bf9492
DJ
470
471 /* DWARF-2 tag for this DIE. */
472 ENUM_BITFIELD(dwarf_tag) tag : 16;
473
72bf9492
DJ
474 /* Assorted flags describing the data found in this DIE. */
475 unsigned int has_children : 1;
476 unsigned int is_external : 1;
477 unsigned int is_declaration : 1;
478 unsigned int has_type : 1;
479 unsigned int has_specification : 1;
480 unsigned int has_pc_info : 1;
481
482 /* Flag set if the SCOPE field of this structure has been
483 computed. */
484 unsigned int scope_set : 1;
485
fa4028e9
JB
486 /* Flag set if the DIE has a byte_size attribute. */
487 unsigned int has_byte_size : 1;
488
72bf9492
DJ
489 /* The name of this DIE. Normally the value of DW_AT_name, but
490 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
491 other fashion. */
c906108c 492 char *name;
72bf9492
DJ
493
494 /* The scope to prepend to our children. This is generally
495 allocated on the comp_unit_obstack, so will disappear
496 when this compilation unit leaves the cache. */
497 char *scope;
498
499 /* The location description associated with this DIE, if any. */
500 struct dwarf_block *locdesc;
501
502 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
503 CORE_ADDR lowpc;
504 CORE_ADDR highpc;
72bf9492 505
93311388 506 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 507 DW_AT_sibling, if any. */
fe1b8b76 508 gdb_byte *sibling;
72bf9492
DJ
509
510 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
511 DW_AT_specification (or DW_AT_abstract_origin or
512 DW_AT_extension). */
513 unsigned int spec_offset;
514
515 /* Pointers to this DIE's parent, first child, and next sibling,
516 if any. */
517 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
518 };
519
520/* This data structure holds the information of an abbrev. */
521struct abbrev_info
522 {
523 unsigned int number; /* number identifying abbrev */
524 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
525 unsigned short has_children; /* boolean */
526 unsigned short num_attrs; /* number of attributes */
c906108c
SS
527 struct attr_abbrev *attrs; /* an array of attribute descriptions */
528 struct abbrev_info *next; /* next in chain */
529 };
530
531struct attr_abbrev
532 {
9d25dd43
DE
533 ENUM_BITFIELD(dwarf_attribute) name : 16;
534 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
535 };
536
b60c80d6
DJ
537/* Attributes have a name and a value */
538struct attribute
539 {
9d25dd43 540 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
541 ENUM_BITFIELD(dwarf_form) form : 15;
542
543 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
544 field should be in u.str (existing only for DW_STRING) but it is kept
545 here for better struct attribute alignment. */
546 unsigned int string_is_canonical : 1;
547
b60c80d6
DJ
548 union
549 {
550 char *str;
551 struct dwarf_block *blk;
43bbcdc2
PH
552 ULONGEST unsnd;
553 LONGEST snd;
b60c80d6 554 CORE_ADDR addr;
348e048f 555 struct signatured_type *signatured_type;
b60c80d6
DJ
556 }
557 u;
558 };
559
c906108c
SS
560/* This data structure holds a complete die structure. */
561struct die_info
562 {
76815b17
DE
563 /* DWARF-2 tag for this DIE. */
564 ENUM_BITFIELD(dwarf_tag) tag : 16;
565
566 /* Number of attributes */
567 unsigned short num_attrs;
568
569 /* Abbrev number */
570 unsigned int abbrev;
571
93311388 572 /* Offset in .debug_info or .debug_types section. */
76815b17 573 unsigned int offset;
78ba4af6
JB
574
575 /* The dies in a compilation unit form an n-ary tree. PARENT
576 points to this die's parent; CHILD points to the first child of
577 this node; and all the children of a given node are chained
578 together via their SIBLING fields, terminated by a die whose
579 tag is zero. */
639d11d3
DC
580 struct die_info *child; /* Its first child, if any. */
581 struct die_info *sibling; /* Its next sibling, if any. */
582 struct die_info *parent; /* Its parent, if any. */
c906108c 583
b60c80d6
DJ
584 /* An array of attributes, with NUM_ATTRS elements. There may be
585 zero, but it's not common and zero-sized arrays are not
586 sufficiently portable C. */
587 struct attribute attrs[1];
c906108c
SS
588 };
589
5fb290d7
DJ
590struct function_range
591{
592 const char *name;
593 CORE_ADDR lowpc, highpc;
594 int seen_line;
595 struct function_range *next;
596};
597
c906108c
SS
598/* Get at parts of an attribute structure */
599
600#define DW_STRING(attr) ((attr)->u.str)
8285870a 601#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
602#define DW_UNSND(attr) ((attr)->u.unsnd)
603#define DW_BLOCK(attr) ((attr)->u.blk)
604#define DW_SND(attr) ((attr)->u.snd)
605#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 606#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
607
608/* Blocks are a bunch of untyped bytes. */
609struct dwarf_block
610 {
611 unsigned int size;
fe1b8b76 612 gdb_byte *data;
c906108c
SS
613 };
614
c906108c
SS
615#ifndef ATTR_ALLOC_CHUNK
616#define ATTR_ALLOC_CHUNK 4
617#endif
618
c906108c
SS
619/* Allocate fields for structs, unions and enums in this size. */
620#ifndef DW_FIELD_ALLOC_CHUNK
621#define DW_FIELD_ALLOC_CHUNK 4
622#endif
623
c906108c
SS
624/* A zeroed version of a partial die for initialization purposes. */
625static struct partial_die_info zeroed_partial_die;
626
c906108c
SS
627/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
628 but this would require a corresponding change in unpack_field_as_long
629 and friends. */
630static int bits_per_byte = 8;
631
632/* The routines that read and process dies for a C struct or C++ class
633 pass lists of data member fields and lists of member function fields
634 in an instance of a field_info structure, as defined below. */
635struct field_info
c5aa993b
JM
636 {
637 /* List of data member and baseclasses fields. */
638 struct nextfield
639 {
640 struct nextfield *next;
641 int accessibility;
642 int virtuality;
643 struct field field;
644 }
7d0ccb61 645 *fields, *baseclasses;
c906108c 646
7d0ccb61 647 /* Number of fields (including baseclasses). */
c5aa993b 648 int nfields;
c906108c 649
c5aa993b
JM
650 /* Number of baseclasses. */
651 int nbaseclasses;
c906108c 652
c5aa993b
JM
653 /* Set if the accesibility of one of the fields is not public. */
654 int non_public_fields;
c906108c 655
c5aa993b
JM
656 /* Member function fields array, entries are allocated in the order they
657 are encountered in the object file. */
658 struct nextfnfield
659 {
660 struct nextfnfield *next;
661 struct fn_field fnfield;
662 }
663 *fnfields;
c906108c 664
c5aa993b
JM
665 /* Member function fieldlist array, contains name of possibly overloaded
666 member function, number of overloaded member functions and a pointer
667 to the head of the member function field chain. */
668 struct fnfieldlist
669 {
670 char *name;
671 int length;
672 struct nextfnfield *head;
673 }
674 *fnfieldlists;
c906108c 675
c5aa993b
JM
676 /* Number of entries in the fnfieldlists array. */
677 int nfnfields;
678 };
c906108c 679
10b3939b
DJ
680/* One item on the queue of compilation units to read in full symbols
681 for. */
682struct dwarf2_queue_item
683{
684 struct dwarf2_per_cu_data *per_cu;
685 struct dwarf2_queue_item *next;
686};
687
688/* The current queue. */
689static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
690
ae038cb0
DJ
691/* Loaded secondary compilation units are kept in memory until they
692 have not been referenced for the processing of this many
693 compilation units. Set this to zero to disable caching. Cache
694 sizes of up to at least twenty will improve startup time for
695 typical inter-CU-reference binaries, at an obvious memory cost. */
696static int dwarf2_max_cache_age = 5;
920d2a44
AC
697static void
698show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
699 struct cmd_list_element *c, const char *value)
700{
701 fprintf_filtered (file, _("\
702The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
703 value);
704}
705
ae038cb0 706
c906108c
SS
707/* Various complaints about symbol reading that don't abort the process */
708
4d3c2250
KB
709static void
710dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 711{
4d3c2250 712 complaint (&symfile_complaints,
e2e0b3e5 713 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
714}
715
25e43795
DJ
716static void
717dwarf2_debug_line_missing_file_complaint (void)
718{
719 complaint (&symfile_complaints,
720 _(".debug_line section has line data without a file"));
721}
722
59205f5a
JB
723static void
724dwarf2_debug_line_missing_end_sequence_complaint (void)
725{
726 complaint (&symfile_complaints,
727 _(".debug_line section has line program sequence without an end"));
728}
729
4d3c2250
KB
730static void
731dwarf2_complex_location_expr_complaint (void)
2e276125 732{
e2e0b3e5 733 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
734}
735
4d3c2250
KB
736static void
737dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
738 int arg3)
2e276125 739{
4d3c2250 740 complaint (&symfile_complaints,
e2e0b3e5 741 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
742 arg2, arg3);
743}
744
745static void
746dwarf2_macros_too_long_complaint (void)
2e276125 747{
4d3c2250 748 complaint (&symfile_complaints,
e2e0b3e5 749 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
750}
751
752static void
753dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 754{
4d3c2250 755 complaint (&symfile_complaints,
e2e0b3e5 756 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
757 arg1);
758}
759
760static void
761dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 762{
4d3c2250 763 complaint (&symfile_complaints,
e2e0b3e5 764 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 765}
c906108c 766
c906108c
SS
767/* local function prototypes */
768
4efb68b1 769static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
770
771#if 0
c67a9c90 772static void dwarf2_build_psymtabs_easy (struct objfile *);
c906108c
SS
773#endif
774
aaa75496
JB
775static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
776 struct objfile *);
777
778static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
d85a05f0 779 struct die_info *,
aaa75496
JB
780 struct partial_symtab *);
781
c67a9c90 782static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 783
72bf9492
DJ
784static void scan_partial_symbols (struct partial_die_info *,
785 CORE_ADDR *, CORE_ADDR *,
5734ee8b 786 int, struct dwarf2_cu *);
c906108c 787
72bf9492
DJ
788static void add_partial_symbol (struct partial_die_info *,
789 struct dwarf2_cu *);
63d06c5c 790
72bf9492 791static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 792
72bf9492
DJ
793static void add_partial_namespace (struct partial_die_info *pdi,
794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 795 int need_pc, struct dwarf2_cu *cu);
63d06c5c 796
5d7cb8df
JK
797static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
798 CORE_ADDR *highpc, int need_pc,
799 struct dwarf2_cu *cu);
800
72bf9492
DJ
801static void add_partial_enumeration (struct partial_die_info *enum_pdi,
802 struct dwarf2_cu *cu);
91c24f0a 803
bc30ff58
JB
804static void add_partial_subprogram (struct partial_die_info *pdi,
805 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 806 int need_pc, struct dwarf2_cu *cu);
bc30ff58 807
fe1b8b76 808static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
809 gdb_byte *buffer, gdb_byte *info_ptr,
810 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 811
a14ed312 812static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 813
a14ed312 814static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 815
e7c27a73 816static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 817
f3dd6933 818static void dwarf2_free_abbrev_table (void *);
c906108c 819
fe1b8b76 820static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 821 struct dwarf2_cu *);
72bf9492 822
57349743 823static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 824 struct dwarf2_cu *);
c906108c 825
93311388
DE
826static struct partial_die_info *load_partial_dies (bfd *,
827 gdb_byte *, gdb_byte *,
828 int, struct dwarf2_cu *);
72bf9492 829
fe1b8b76 830static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
831 struct abbrev_info *abbrev,
832 unsigned int, bfd *,
833 gdb_byte *, gdb_byte *,
834 struct dwarf2_cu *);
c906108c 835
c764a876 836static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 837 struct dwarf2_cu *);
72bf9492
DJ
838
839static void fixup_partial_die (struct partial_die_info *,
840 struct dwarf2_cu *);
841
fe1b8b76
JB
842static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
843 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 844
fe1b8b76
JB
845static gdb_byte *read_attribute_value (struct attribute *, unsigned,
846 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 847
fe1b8b76 848static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 849
fe1b8b76 850static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 851
fe1b8b76 852static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 853
fe1b8b76 854static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 855
93311388 856static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 857
fe1b8b76 858static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 859 unsigned int *);
c906108c 860
c764a876
DE
861static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
862
863static LONGEST read_checked_initial_length_and_offset
864 (bfd *, gdb_byte *, const struct comp_unit_head *,
865 unsigned int *, unsigned int *);
613e1657 866
fe1b8b76 867static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
868 unsigned int *);
869
870static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 871
fe1b8b76 872static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 873
fe1b8b76 874static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 875
fe1b8b76
JB
876static char *read_indirect_string (bfd *, gdb_byte *,
877 const struct comp_unit_head *,
878 unsigned int *);
4bdf3d34 879
fe1b8b76 880static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 881
fe1b8b76 882static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 883
fe1b8b76 884static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 885
e142c38c 886static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 887
e142c38c
DJ
888static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
889 struct dwarf2_cu *);
c906108c 890
348e048f
DE
891static struct attribute *dwarf2_attr_no_follow (struct die_info *,
892 unsigned int,
893 struct dwarf2_cu *);
894
05cf31d1
JB
895static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
896 struct dwarf2_cu *cu);
897
e142c38c 898static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 899
e142c38c 900static struct die_info *die_specification (struct die_info *die,
f2f0e013 901 struct dwarf2_cu **);
63d06c5c 902
debd256d
JB
903static void free_line_header (struct line_header *lh);
904
aaa75496
JB
905static void add_file_name (struct line_header *, char *, unsigned int,
906 unsigned int, unsigned int);
907
debd256d
JB
908static struct line_header *(dwarf_decode_line_header
909 (unsigned int offset,
e7c27a73 910 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
911
912static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 913 struct dwarf2_cu *, struct partial_symtab *);
c906108c 914
4f1520fb 915static void dwarf2_start_subfile (char *, char *, char *);
c906108c 916
a14ed312 917static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 918 struct dwarf2_cu *);
c906108c 919
a14ed312 920static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 921 struct dwarf2_cu *);
c906108c 922
2df3850c
JM
923static void dwarf2_const_value_data (struct attribute *attr,
924 struct symbol *sym,
925 int bits);
926
e7c27a73 927static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 928
b4ba55a1
JB
929static int need_gnat_info (struct dwarf2_cu *);
930
931static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
932
933static void set_descriptive_type (struct type *, struct die_info *,
934 struct dwarf2_cu *);
935
e7c27a73
DJ
936static struct type *die_containing_type (struct die_info *,
937 struct dwarf2_cu *);
c906108c 938
e7c27a73 939static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 940
f792889a 941static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 942
086ed43d 943static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 944
fe1b8b76
JB
945static char *typename_concat (struct obstack *,
946 const char *prefix,
947 const char *suffix,
987504bb 948 struct dwarf2_cu *);
63d06c5c 949
e7c27a73 950static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 951
348e048f
DE
952static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
953
e7c27a73 954static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 955
e7c27a73 956static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 957
ff013f42
JK
958static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
959 struct dwarf2_cu *, struct partial_symtab *);
960
a14ed312 961static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
962 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
963 struct partial_symtab *);
c906108c 964
fae299cd
DC
965static void get_scope_pc_bounds (struct die_info *,
966 CORE_ADDR *, CORE_ADDR *,
967 struct dwarf2_cu *);
968
801e3a5b
JB
969static void dwarf2_record_block_ranges (struct die_info *, struct block *,
970 CORE_ADDR, struct dwarf2_cu *);
971
a14ed312 972static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 973 struct dwarf2_cu *);
c906108c 974
a14ed312 975static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 976 struct type *, struct dwarf2_cu *);
c906108c 977
a14ed312 978static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 979 struct die_info *, struct type *,
e7c27a73 980 struct dwarf2_cu *);
c906108c 981
a14ed312 982static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 983 struct type *, struct dwarf2_cu *);
c906108c 984
134d01f1 985static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 986
0114d602
DJ
987static const char *determine_class_name (struct die_info *die,
988 struct dwarf2_cu *cu);
8176b9b8 989
e7c27a73 990static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 991
e7c27a73 992static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 993
5d7cb8df
JK
994static void read_module (struct die_info *die, struct dwarf2_cu *cu);
995
27aa8d6a
SW
996static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
997
38d518c9 998static const char *namespace_name (struct die_info *die,
e142c38c 999 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1000
134d01f1 1001static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1002
e7c27a73 1003static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1004
7ca2d3a3
DL
1005static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1006 struct dwarf2_cu *);
1007
93311388 1008static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1009
93311388
DE
1010static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1011 gdb_byte *info_ptr,
d97bc12b
DE
1012 gdb_byte **new_info_ptr,
1013 struct die_info *parent);
1014
93311388
DE
1015static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1016 gdb_byte *info_ptr,
fe1b8b76 1017 gdb_byte **new_info_ptr,
639d11d3
DC
1018 struct die_info *parent);
1019
93311388
DE
1020static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1021 gdb_byte *info_ptr,
fe1b8b76 1022 gdb_byte **new_info_ptr,
639d11d3
DC
1023 struct die_info *parent);
1024
93311388
DE
1025static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1026 struct die_info **, gdb_byte *,
1027 int *);
1028
e7c27a73 1029static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1030
e142c38c 1031static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 1032
71c25dea
TT
1033static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1034 struct obstack *);
1035
e142c38c 1036static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1037
e142c38c 1038static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1039 struct dwarf2_cu **);
9219021c 1040
a14ed312 1041static char *dwarf_tag_name (unsigned int);
c906108c 1042
a14ed312 1043static char *dwarf_attr_name (unsigned int);
c906108c 1044
a14ed312 1045static char *dwarf_form_name (unsigned int);
c906108c 1046
a14ed312 1047static char *dwarf_stack_op_name (unsigned int);
c906108c 1048
a14ed312 1049static char *dwarf_bool_name (unsigned int);
c906108c 1050
a14ed312 1051static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1052
1053#if 0
a14ed312 1054static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1055#endif
1056
f9aca02d 1057static struct die_info *sibling_die (struct die_info *);
c906108c 1058
d97bc12b
DE
1059static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1060
1061static void dump_die_for_error (struct die_info *);
1062
1063static void dump_die_1 (struct ui_file *, int level, int max_level,
1064 struct die_info *);
c906108c 1065
d97bc12b 1066/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1067
51545339 1068static void store_in_ref_table (struct die_info *,
10b3939b 1069 struct dwarf2_cu *);
c906108c 1070
93311388
DE
1071static int is_ref_attr (struct attribute *);
1072
c764a876 1073static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1074
43bbcdc2 1075static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1076
348e048f
DE
1077static struct die_info *follow_die_ref_or_sig (struct die_info *,
1078 struct attribute *,
1079 struct dwarf2_cu **);
1080
10b3939b
DJ
1081static struct die_info *follow_die_ref (struct die_info *,
1082 struct attribute *,
f2f0e013 1083 struct dwarf2_cu **);
c906108c 1084
348e048f
DE
1085static struct die_info *follow_die_sig (struct die_info *,
1086 struct attribute *,
1087 struct dwarf2_cu **);
1088
1089static void read_signatured_type_at_offset (struct objfile *objfile,
1090 unsigned int offset);
1091
1092static void read_signatured_type (struct objfile *,
1093 struct signatured_type *type_sig);
1094
c906108c
SS
1095/* memory allocation interface */
1096
7b5a2f43 1097static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1098
f3dd6933 1099static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1100
b60c80d6 1101static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1102
e142c38c 1103static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1104
e142c38c
DJ
1105static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1106 struct dwarf2_cu *);
5fb290d7 1107
2e276125 1108static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1109 char *, bfd *, struct dwarf2_cu *);
2e276125 1110
8e19ed76
PS
1111static int attr_form_is_block (struct attribute *);
1112
3690dd37
JB
1113static int attr_form_is_section_offset (struct attribute *);
1114
1115static int attr_form_is_constant (struct attribute *);
1116
93e7bd98
DJ
1117static void dwarf2_symbol_mark_computed (struct attribute *attr,
1118 struct symbol *sym,
1119 struct dwarf2_cu *cu);
4c2df51b 1120
93311388
DE
1121static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1122 struct abbrev_info *abbrev,
1123 struct dwarf2_cu *cu);
4bb7a0a7 1124
72bf9492
DJ
1125static void free_stack_comp_unit (void *);
1126
72bf9492
DJ
1127static hashval_t partial_die_hash (const void *item);
1128
1129static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1130
ae038cb0 1131static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1132 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1133
1134static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1135 (unsigned int offset, struct objfile *objfile);
ae038cb0 1136
93311388
DE
1137static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1138
ae038cb0
DJ
1139static void free_one_comp_unit (void *);
1140
1141static void free_cached_comp_units (void *);
1142
1143static void age_cached_comp_units (void);
1144
1145static void free_one_cached_comp_unit (void *);
1146
f792889a
DJ
1147static struct type *set_die_type (struct die_info *, struct type *,
1148 struct dwarf2_cu *);
1c379e20 1149
ae038cb0
DJ
1150static void create_all_comp_units (struct objfile *);
1151
93311388
DE
1152static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1153 struct objfile *);
10b3939b
DJ
1154
1155static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1156
1157static void dwarf2_add_dependence (struct dwarf2_cu *,
1158 struct dwarf2_per_cu_data *);
1159
ae038cb0
DJ
1160static void dwarf2_mark (struct dwarf2_cu *);
1161
1162static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1163
f792889a 1164static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1165
c906108c
SS
1166/* Try to locate the sections we need for DWARF 2 debugging
1167 information and return true if we have enough to do something. */
1168
1169int
6502dd73 1170dwarf2_has_info (struct objfile *objfile)
c906108c 1171{
6502dd73
DJ
1172 struct dwarf2_per_objfile *data;
1173
1174 /* Initialize per-objfile state. */
1175 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1176 memset (data, 0, sizeof (*data));
1177 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1178 dwarf2_per_objfile = data;
1179
6502dd73 1180 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
dce234bc 1181 return (data->info.asection != NULL && data->abbrev.asection != NULL);
c906108c
SS
1182}
1183
233a11ab
CS
1184/* When loading sections, we can either look for ".<name>", or for
1185 * ".z<name>", which indicates a compressed section. */
1186
1187static int
dce234bc 1188section_is_p (const char *section_name, const char *name)
233a11ab 1189{
dce234bc
PP
1190 return (section_name[0] == '.'
1191 && (strcmp (section_name + 1, name) == 0
1192 || (section_name[1] == 'z'
1193 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1194}
1195
c906108c
SS
1196/* This function is mapped across the sections and remembers the
1197 offset and size of each of the debugging sections we are interested
1198 in. */
1199
1200static void
72dca2f5 1201dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1202{
dce234bc 1203 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1204 {
dce234bc
PP
1205 dwarf2_per_objfile->info.asection = sectp;
1206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1207 }
dce234bc 1208 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1209 {
dce234bc
PP
1210 dwarf2_per_objfile->abbrev.asection = sectp;
1211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1212 }
dce234bc 1213 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1214 {
dce234bc
PP
1215 dwarf2_per_objfile->line.asection = sectp;
1216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1217 }
dce234bc 1218 else if (section_is_p (sectp->name, PUBNAMES_SECTION))
c906108c 1219 {
dce234bc
PP
1220 dwarf2_per_objfile->pubnames.asection = sectp;
1221 dwarf2_per_objfile->pubnames.size = bfd_get_section_size (sectp);
c906108c 1222 }
dce234bc 1223 else if (section_is_p (sectp->name, ARANGES_SECTION))
c906108c 1224 {
dce234bc
PP
1225 dwarf2_per_objfile->aranges.asection = sectp;
1226 dwarf2_per_objfile->aranges.size = bfd_get_section_size (sectp);
c906108c 1227 }
dce234bc 1228 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1229 {
dce234bc
PP
1230 dwarf2_per_objfile->loc.asection = sectp;
1231 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1232 }
dce234bc 1233 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1234 {
dce234bc
PP
1235 dwarf2_per_objfile->macinfo.asection = sectp;
1236 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1237 }
dce234bc 1238 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1239 {
dce234bc
PP
1240 dwarf2_per_objfile->str.asection = sectp;
1241 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1242 }
dce234bc 1243 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1244 {
dce234bc
PP
1245 dwarf2_per_objfile->frame.asection = sectp;
1246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1247 }
dce234bc 1248 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1249 {
3799ccc6
EZ
1250 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1251 if (aflag & SEC_HAS_CONTENTS)
1252 {
dce234bc
PP
1253 dwarf2_per_objfile->eh_frame.asection = sectp;
1254 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1255 }
b6af0555 1256 }
dce234bc 1257 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1258 {
dce234bc
PP
1259 dwarf2_per_objfile->ranges.asection = sectp;
1260 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1261 }
348e048f
DE
1262 else if (section_is_p (sectp->name, TYPES_SECTION))
1263 {
1264 dwarf2_per_objfile->types.asection = sectp;
1265 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1266 }
dce234bc 1267
72dca2f5
FR
1268 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1269 && bfd_section_vma (abfd, sectp) == 0)
1270 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1271}
1272
dce234bc
PP
1273/* Decompress a section that was compressed using zlib. Store the
1274 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1275
1276static void
dce234bc
PP
1277zlib_decompress_section (struct objfile *objfile, asection *sectp,
1278 gdb_byte **outbuf, bfd_size_type *outsize)
1279{
1280 bfd *abfd = objfile->obfd;
1281#ifndef HAVE_ZLIB_H
1282 error (_("Support for zlib-compressed DWARF data (from '%s') "
1283 "is disabled in this copy of GDB"),
1284 bfd_get_filename (abfd));
1285#else
1286 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1287 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1288 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1289 bfd_size_type uncompressed_size;
1290 gdb_byte *uncompressed_buffer;
1291 z_stream strm;
1292 int rc;
1293 int header_size = 12;
1294
1295 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1296 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1297 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1298 bfd_get_filename (abfd));
1299
1300 /* Read the zlib header. In this case, it should be "ZLIB" followed
1301 by the uncompressed section size, 8 bytes in big-endian order. */
1302 if (compressed_size < header_size
1303 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1304 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1305 bfd_get_filename (abfd));
1306 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1307 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1308 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1309 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1310 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1311 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1312 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1313 uncompressed_size += compressed_buffer[11];
1314
1315 /* It is possible the section consists of several compressed
1316 buffers concatenated together, so we uncompress in a loop. */
1317 strm.zalloc = NULL;
1318 strm.zfree = NULL;
1319 strm.opaque = NULL;
1320 strm.avail_in = compressed_size - header_size;
1321 strm.next_in = (Bytef*) compressed_buffer + header_size;
1322 strm.avail_out = uncompressed_size;
1323 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1324 uncompressed_size);
1325 rc = inflateInit (&strm);
1326 while (strm.avail_in > 0)
1327 {
1328 if (rc != Z_OK)
1329 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1330 bfd_get_filename (abfd), rc);
1331 strm.next_out = ((Bytef*) uncompressed_buffer
1332 + (uncompressed_size - strm.avail_out));
1333 rc = inflate (&strm, Z_FINISH);
1334 if (rc != Z_STREAM_END)
1335 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1336 bfd_get_filename (abfd), rc);
1337 rc = inflateReset (&strm);
1338 }
1339 rc = inflateEnd (&strm);
1340 if (rc != Z_OK
1341 || strm.avail_out != 0)
1342 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1343 bfd_get_filename (abfd), rc);
1344
affddf13 1345 do_cleanups (cleanup);
dce234bc
PP
1346 *outbuf = uncompressed_buffer;
1347 *outsize = uncompressed_size;
1348#endif
233a11ab
CS
1349}
1350
dce234bc
PP
1351/* Read the contents of the section SECTP from object file specified by
1352 OBJFILE, store info about the section into INFO.
1353 If the section is compressed, uncompress it before returning. */
c906108c 1354
dce234bc
PP
1355static void
1356dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1357{
dce234bc
PP
1358 bfd *abfd = objfile->obfd;
1359 asection *sectp = info->asection;
1360 gdb_byte *buf, *retbuf;
1361 unsigned char header[4];
c906108c 1362
dce234bc
PP
1363 info->buffer = NULL;
1364 info->was_mmapped = 0;
188dd5d6 1365
dce234bc
PP
1366 if (info->asection == NULL || info->size == 0)
1367 return;
c906108c 1368
dce234bc
PP
1369 /* Check if the file has a 4-byte header indicating compression. */
1370 if (info->size > sizeof (header)
1371 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1372 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1373 {
1374 /* Upon decompression, update the buffer and its size. */
1375 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1376 {
1377 zlib_decompress_section (objfile, sectp, &info->buffer,
1378 &info->size);
1379 return;
1380 }
1381 }
4bdf3d34 1382
dce234bc
PP
1383#ifdef HAVE_MMAP
1384 if (pagesize == 0)
1385 pagesize = getpagesize ();
2e276125 1386
dce234bc
PP
1387 /* Only try to mmap sections which are large enough: we don't want to
1388 waste space due to fragmentation. Also, only try mmap for sections
1389 without relocations. */
1390
1391 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1392 {
1393 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1394 size_t map_length = info->size + sectp->filepos - pg_offset;
1395 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1396 MAP_PRIVATE, pg_offset);
1397
1398 if (retbuf != MAP_FAILED)
1399 {
1400 info->was_mmapped = 1;
1401 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1402 return;
1403 }
1404 }
1405#endif
1406
1407 /* If we get here, we are a normal, not-compressed section. */
1408 info->buffer = buf
1409 = obstack_alloc (&objfile->objfile_obstack, info->size);
1410
1411 /* When debugging .o files, we may need to apply relocations; see
1412 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1413 We never compress sections in .o files, so we only need to
1414 try this when the section is not compressed. */
ac8035ab 1415 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1416 if (retbuf != NULL)
1417 {
1418 info->buffer = retbuf;
1419 return;
1420 }
1421
1422 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1423 || bfd_bread (buf, info->size, abfd) != info->size)
1424 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1425 bfd_get_filename (abfd));
1426}
1427
1428/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1429 SECTION_NAME. */
af34e669 1430
dce234bc
PP
1431void
1432dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1433 asection **sectp, gdb_byte **bufp,
1434 bfd_size_type *sizep)
1435{
1436 struct dwarf2_per_objfile *data
1437 = objfile_data (objfile, dwarf2_objfile_data_key);
1438 struct dwarf2_section_info *info;
1439 if (section_is_p (section_name, EH_FRAME_SECTION))
1440 info = &data->eh_frame;
1441 else if (section_is_p (section_name, FRAME_SECTION))
1442 info = &data->frame;
0d53c4c4 1443 else
dce234bc
PP
1444 gdb_assert (0);
1445
1446 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1447 /* We haven't read this section in yet. Do it now. */
1448 dwarf2_read_section (objfile, info);
1449
1450 *sectp = info->asection;
1451 *bufp = info->buffer;
1452 *sizep = info->size;
1453}
1454
1455/* Build a partial symbol table. */
1456
1457void
f29dff0a 1458dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc
PP
1459{
1460 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
1461 dwarf2_read_section (objfile, &dwarf2_per_objfile->abbrev);
1462 dwarf2_read_section (objfile, &dwarf2_per_objfile->line);
1463 dwarf2_read_section (objfile, &dwarf2_per_objfile->str);
1464 dwarf2_read_section (objfile, &dwarf2_per_objfile->macinfo);
1465 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
348e048f 1466 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
dce234bc
PP
1467 dwarf2_read_section (objfile, &dwarf2_per_objfile->loc);
1468 dwarf2_read_section (objfile, &dwarf2_per_objfile->eh_frame);
1469 dwarf2_read_section (objfile, &dwarf2_per_objfile->frame);
0d53c4c4 1470
f29dff0a 1471 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
1472 {
1473 init_psymbol_list (objfile, 1024);
1474 }
1475
1476#if 0
1477 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1478 {
d4f3574e 1479 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1480 .debug_pubnames sections */
1481
c67a9c90 1482 dwarf2_build_psymtabs_easy (objfile);
c906108c
SS
1483 }
1484 else
1485#endif
1486 /* only test this case for now */
c5aa993b 1487 {
c906108c 1488 /* In this case we have to work a bit harder */
c67a9c90 1489 dwarf2_build_psymtabs_hard (objfile);
c906108c
SS
1490 }
1491}
1492
1493#if 0
1494/* Build the partial symbol table from the information in the
1495 .debug_pubnames and .debug_aranges sections. */
1496
1497static void
c67a9c90 1498dwarf2_build_psymtabs_easy (struct objfile *objfile)
c906108c
SS
1499{
1500 bfd *abfd = objfile->obfd;
1501 char *aranges_buffer, *pubnames_buffer;
1502 char *aranges_ptr, *pubnames_ptr;
1503 unsigned int entry_length, version, info_offset, info_size;
1504
1505 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1506 dwarf_pubnames_section);
c906108c 1507 pubnames_ptr = pubnames_buffer;
dce234bc 1508 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames.size)
c906108c 1509 {
891d2f0b 1510 unsigned int bytes_read;
613e1657 1511
c764a876 1512 entry_length = read_initial_length (abfd, pubnames_ptr, &bytes_read);
613e1657 1513 pubnames_ptr += bytes_read;
c906108c
SS
1514 version = read_1_byte (abfd, pubnames_ptr);
1515 pubnames_ptr += 1;
1516 info_offset = read_4_bytes (abfd, pubnames_ptr);
1517 pubnames_ptr += 4;
1518 info_size = read_4_bytes (abfd, pubnames_ptr);
1519 pubnames_ptr += 4;
1520 }
1521
1522 aranges_buffer = dwarf2_read_section (objfile,
086df311 1523 dwarf_aranges_section);
c906108c
SS
1524
1525}
1526#endif
1527
45452591
DE
1528/* Return TRUE if OFFSET is within CU_HEADER. */
1529
1530static inline int
1531offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1532{
1533 unsigned int bottom = cu_header->offset;
1534 unsigned int top = (cu_header->offset
1535 + cu_header->length
1536 + cu_header->initial_length_size);
1537 return (offset >= bottom && offset < top);
1538}
1539
93311388
DE
1540/* Read in the comp unit header information from the debug_info at info_ptr.
1541 NOTE: This leaves members offset, first_die_offset to be filled in
1542 by the caller. */
107d2387 1543
fe1b8b76 1544static gdb_byte *
107d2387 1545read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1546 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1547{
1548 int signed_addr;
891d2f0b 1549 unsigned int bytes_read;
c764a876
DE
1550
1551 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1552 cu_header->initial_length_size = bytes_read;
1553 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 1554 info_ptr += bytes_read;
107d2387
AC
1555 cu_header->version = read_2_bytes (abfd, info_ptr);
1556 info_ptr += 2;
613e1657 1557 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 1558 &bytes_read);
613e1657 1559 info_ptr += bytes_read;
107d2387
AC
1560 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1561 info_ptr += 1;
1562 signed_addr = bfd_get_sign_extend_vma (abfd);
1563 if (signed_addr < 0)
8e65ff28 1564 internal_error (__FILE__, __LINE__,
e2e0b3e5 1565 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 1566 cu_header->signed_addr_p = signed_addr;
c764a876 1567
107d2387
AC
1568 return info_ptr;
1569}
1570
fe1b8b76
JB
1571static gdb_byte *
1572partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 1573 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
1574 bfd *abfd)
1575{
fe1b8b76 1576 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1577
1578 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1579
2b949cb6 1580 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1581 error (_("Dwarf Error: wrong version in compilation unit header "
1582 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1583 2, bfd_get_filename (abfd));
1584
dce234bc 1585 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
1586 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1587 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 1588 (long) header->abbrev_offset,
93311388 1589 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1590 bfd_get_filename (abfd));
1591
1592 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 1593 > buffer + buffer_size)
8a3fe4f8
AC
1594 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1595 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 1596 (long) header->length,
93311388 1597 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1598 bfd_get_filename (abfd));
1599
1600 return info_ptr;
1601}
1602
348e048f
DE
1603/* Read in the types comp unit header information from .debug_types entry at
1604 types_ptr. The result is a pointer to one past the end of the header. */
1605
1606static gdb_byte *
1607read_type_comp_unit_head (struct comp_unit_head *cu_header,
1608 ULONGEST *signature,
1609 gdb_byte *types_ptr, bfd *abfd)
1610{
1611 unsigned int bytes_read;
1612 gdb_byte *initial_types_ptr = types_ptr;
1613
1614 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1615
1616 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1617
1618 *signature = read_8_bytes (abfd, types_ptr);
1619 types_ptr += 8;
1620 types_ptr += cu_header->offset_size;
1621 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1622
1623 return types_ptr;
1624}
1625
aaa75496
JB
1626/* Allocate a new partial symtab for file named NAME and mark this new
1627 partial symtab as being an include of PST. */
1628
1629static void
1630dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1631 struct objfile *objfile)
1632{
1633 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1634
1635 subpst->section_offsets = pst->section_offsets;
1636 subpst->textlow = 0;
1637 subpst->texthigh = 0;
1638
1639 subpst->dependencies = (struct partial_symtab **)
1640 obstack_alloc (&objfile->objfile_obstack,
1641 sizeof (struct partial_symtab *));
1642 subpst->dependencies[0] = pst;
1643 subpst->number_of_dependencies = 1;
1644
1645 subpst->globals_offset = 0;
1646 subpst->n_global_syms = 0;
1647 subpst->statics_offset = 0;
1648 subpst->n_static_syms = 0;
1649 subpst->symtab = NULL;
1650 subpst->read_symtab = pst->read_symtab;
1651 subpst->readin = 0;
1652
1653 /* No private part is necessary for include psymtabs. This property
1654 can be used to differentiate between such include psymtabs and
10b3939b 1655 the regular ones. */
58a9656e 1656 subpst->read_symtab_private = NULL;
aaa75496
JB
1657}
1658
1659/* Read the Line Number Program data and extract the list of files
1660 included by the source file represented by PST. Build an include
d85a05f0 1661 partial symtab for each of these included files. */
aaa75496
JB
1662
1663static void
1664dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 1665 struct die_info *die,
aaa75496
JB
1666 struct partial_symtab *pst)
1667{
1668 struct objfile *objfile = cu->objfile;
1669 bfd *abfd = objfile->obfd;
d85a05f0
DJ
1670 struct line_header *lh = NULL;
1671 struct attribute *attr;
aaa75496 1672
d85a05f0
DJ
1673 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1674 if (attr)
1675 {
1676 unsigned int line_offset = DW_UNSND (attr);
1677 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1678 }
aaa75496
JB
1679 if (lh == NULL)
1680 return; /* No linetable, so no includes. */
1681
1682 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1683
1684 free_line_header (lh);
1685}
1686
348e048f
DE
1687static hashval_t
1688hash_type_signature (const void *item)
1689{
1690 const struct signatured_type *type_sig = item;
1691 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1692 return type_sig->signature;
1693}
1694
1695static int
1696eq_type_signature (const void *item_lhs, const void *item_rhs)
1697{
1698 const struct signatured_type *lhs = item_lhs;
1699 const struct signatured_type *rhs = item_rhs;
1700 return lhs->signature == rhs->signature;
1701}
1702
1703/* Create the hash table of all entries in the .debug_types section.
1704 The result is zero if there is an error (e.g. missing .debug_types section),
1705 otherwise non-zero. */
1706
1707static int
1708create_debug_types_hash_table (struct objfile *objfile)
1709{
1710 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer;
1711 htab_t types_htab;
1712
1713 if (info_ptr == NULL)
1714 {
1715 dwarf2_per_objfile->signatured_types = NULL;
1716 return 0;
1717 }
1718
1719 types_htab = htab_create_alloc_ex (41,
1720 hash_type_signature,
1721 eq_type_signature,
1722 NULL,
1723 &objfile->objfile_obstack,
1724 hashtab_obstack_allocate,
1725 dummy_obstack_deallocate);
1726
1727 if (dwarf2_die_debug)
1728 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1729
1730 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1731 {
1732 unsigned int offset;
1733 unsigned int offset_size;
1734 unsigned int type_offset;
1735 unsigned int length, initial_length_size;
1736 unsigned short version;
1737 ULONGEST signature;
1738 struct signatured_type *type_sig;
1739 void **slot;
1740 gdb_byte *ptr = info_ptr;
1741
1742 offset = ptr - dwarf2_per_objfile->types.buffer;
1743
1744 /* We need to read the type's signature in order to build the hash
1745 table, but we don't need to read anything else just yet. */
1746
1747 /* Sanity check to ensure entire cu is present. */
1748 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1749 if (ptr + length + initial_length_size
1750 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1751 {
1752 complaint (&symfile_complaints,
1753 _("debug type entry runs off end of `.debug_types' section, ignored"));
1754 break;
1755 }
1756
1757 offset_size = initial_length_size == 4 ? 4 : 8;
1758 ptr += initial_length_size;
1759 version = bfd_get_16 (objfile->obfd, ptr);
1760 ptr += 2;
1761 ptr += offset_size; /* abbrev offset */
1762 ptr += 1; /* address size */
1763 signature = bfd_get_64 (objfile->obfd, ptr);
1764 ptr += 8;
1765 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1766
1767 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1768 memset (type_sig, 0, sizeof (*type_sig));
1769 type_sig->signature = signature;
1770 type_sig->offset = offset;
1771 type_sig->type_offset = type_offset;
1772
1773 slot = htab_find_slot (types_htab, type_sig, INSERT);
1774 gdb_assert (slot != NULL);
1775 *slot = type_sig;
1776
1777 if (dwarf2_die_debug)
1778 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1779 offset, phex (signature, sizeof (signature)));
1780
1781 info_ptr = info_ptr + initial_length_size + length;
1782 }
1783
1784 dwarf2_per_objfile->signatured_types = types_htab;
1785
1786 return 1;
1787}
1788
1789/* Lookup a signature based type.
1790 Returns NULL if SIG is not present in the table. */
1791
1792static struct signatured_type *
1793lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1794{
1795 struct signatured_type find_entry, *entry;
1796
1797 if (dwarf2_per_objfile->signatured_types == NULL)
1798 {
1799 complaint (&symfile_complaints,
1800 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1801 return 0;
1802 }
1803
1804 find_entry.signature = sig;
1805 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1806 return entry;
1807}
1808
d85a05f0
DJ
1809/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1810
1811static void
1812init_cu_die_reader (struct die_reader_specs *reader,
1813 struct dwarf2_cu *cu)
1814{
1815 reader->abfd = cu->objfile->obfd;
1816 reader->cu = cu;
1817 if (cu->per_cu->from_debug_types)
1818 reader->buffer = dwarf2_per_objfile->types.buffer;
1819 else
1820 reader->buffer = dwarf2_per_objfile->info.buffer;
1821}
1822
1823/* Find the base address of the compilation unit for range lists and
1824 location lists. It will normally be specified by DW_AT_low_pc.
1825 In DWARF-3 draft 4, the base address could be overridden by
1826 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1827 compilation units with discontinuous ranges. */
1828
1829static void
1830dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1831{
1832 struct attribute *attr;
1833
1834 cu->base_known = 0;
1835 cu->base_address = 0;
1836
1837 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1838 if (attr)
1839 {
1840 cu->base_address = DW_ADDR (attr);
1841 cu->base_known = 1;
1842 }
1843 else
1844 {
1845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1846 if (attr)
1847 {
1848 cu->base_address = DW_ADDR (attr);
1849 cu->base_known = 1;
1850 }
1851 }
1852}
1853
348e048f
DE
1854/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1855 to combine the common parts.
93311388 1856 Process a compilation unit for a psymtab.
348e048f
DE
1857 BUFFER is a pointer to the beginning of the dwarf section buffer,
1858 either .debug_info or debug_types.
93311388
DE
1859 INFO_PTR is a pointer to the start of the CU.
1860 Returns a pointer to the next CU. */
aaa75496 1861
93311388
DE
1862static gdb_byte *
1863process_psymtab_comp_unit (struct objfile *objfile,
1864 struct dwarf2_per_cu_data *this_cu,
1865 gdb_byte *buffer, gdb_byte *info_ptr,
1866 unsigned int buffer_size)
c906108c 1867{
c906108c 1868 bfd *abfd = objfile->obfd;
93311388 1869 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 1870 struct die_info *comp_unit_die;
c906108c 1871 struct partial_symtab *pst;
5734ee8b 1872 CORE_ADDR baseaddr;
93311388
DE
1873 struct cleanup *back_to_inner;
1874 struct dwarf2_cu cu;
93311388 1875 unsigned int bytes_read;
d85a05f0
DJ
1876 int has_children, has_pc_info;
1877 struct attribute *attr;
1878 const char *name;
1879 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1880 struct die_reader_specs reader_specs;
c906108c 1881
93311388
DE
1882 memset (&cu, 0, sizeof (cu));
1883 cu.objfile = objfile;
1884 obstack_init (&cu.comp_unit_obstack);
c906108c 1885
93311388 1886 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 1887
93311388
DE
1888 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1889 buffer, buffer_size,
1890 abfd);
10b3939b 1891
93311388
DE
1892 /* Complete the cu_header. */
1893 cu.header.offset = beg_of_comp_unit - buffer;
1894 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 1895
93311388 1896 cu.list_in_scope = &file_symbols;
af703f96 1897
328c9494
DJ
1898 /* If this compilation unit was already read in, free the
1899 cached copy in order to read it in again. This is
1900 necessary because we skipped some symbols when we first
1901 read in the compilation unit (see load_partial_dies).
1902 This problem could be avoided, but the benefit is
1903 unclear. */
1904 if (this_cu->cu != NULL)
1905 free_one_cached_comp_unit (this_cu->cu);
1906
1907 /* Note that this is a pointer to our stack frame, being
1908 added to a global data structure. It will be cleaned up
1909 in free_stack_comp_unit when we finish with this
1910 compilation unit. */
1911 this_cu->cu = &cu;
d85a05f0
DJ
1912 cu.per_cu = this_cu;
1913
93311388
DE
1914 /* Read the abbrevs for this compilation unit into a table. */
1915 dwarf2_read_abbrevs (abfd, &cu);
1916 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 1917
93311388 1918 /* Read the compilation unit die. */
348e048f
DE
1919 if (this_cu->from_debug_types)
1920 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
1921 init_cu_die_reader (&reader_specs, &cu);
1922 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1923 &has_children);
93311388 1924
348e048f
DE
1925 if (this_cu->from_debug_types)
1926 {
1927 /* offset,length haven't been set yet for type units. */
1928 this_cu->offset = cu.header.offset;
1929 this_cu->length = cu.header.length + cu.header.initial_length_size;
1930 }
d85a05f0 1931 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 1932 {
93311388
DE
1933 info_ptr = (beg_of_comp_unit + cu.header.length
1934 + cu.header.initial_length_size);
1935 do_cleanups (back_to_inner);
1936 return info_ptr;
1937 }
72bf9492 1938
93311388 1939 /* Set the language we're debugging. */
d85a05f0
DJ
1940 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1941 if (attr)
1942 set_cu_language (DW_UNSND (attr), &cu);
1943 else
1944 set_cu_language (language_minimal, &cu);
c906108c 1945
93311388 1946 /* Allocate a new partial symbol table structure. */
d85a05f0 1947 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 1948 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 1949 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
1950 /* TEXTLOW and TEXTHIGH are set below. */
1951 0,
1952 objfile->global_psymbols.next,
1953 objfile->static_psymbols.next);
72bf9492 1954
d85a05f0
DJ
1955 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1956 if (attr != NULL)
1957 pst->dirname = DW_STRING (attr);
72bf9492 1958
93311388 1959 pst->read_symtab_private = (char *) this_cu;
72bf9492 1960
93311388 1961 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 1962
93311388
DE
1963 /* Store the function that reads in the rest of the symbol table */
1964 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 1965
93311388 1966 this_cu->psymtab = pst;
c906108c 1967
d85a05f0
DJ
1968 dwarf2_find_base_address (comp_unit_die, &cu);
1969
93311388
DE
1970 /* Possibly set the default values of LOWPC and HIGHPC from
1971 `DW_AT_ranges'. */
d85a05f0
DJ
1972 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1973 &best_highpc, &cu, pst);
1974 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
1975 /* Store the contiguous range if it is not empty; it can be empty for
1976 CUs with no code. */
1977 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
1978 best_lowpc + baseaddr,
1979 best_highpc + baseaddr - 1, pst);
93311388
DE
1980
1981 /* Check if comp unit has_children.
1982 If so, read the rest of the partial symbols from this comp unit.
1983 If not, there's no more debug_info for this comp unit. */
d85a05f0 1984 if (has_children)
93311388
DE
1985 {
1986 struct partial_die_info *first_die;
1987 CORE_ADDR lowpc, highpc;
31ffec48 1988
93311388
DE
1989 lowpc = ((CORE_ADDR) -1);
1990 highpc = ((CORE_ADDR) 0);
c906108c 1991
93311388 1992 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 1993
93311388 1994 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 1995 ! has_pc_info, &cu);
57c22c6c 1996
93311388
DE
1997 /* If we didn't find a lowpc, set it to highpc to avoid
1998 complaints from `maint check'. */
1999 if (lowpc == ((CORE_ADDR) -1))
2000 lowpc = highpc;
10b3939b 2001
93311388
DE
2002 /* If the compilation unit didn't have an explicit address range,
2003 then use the information extracted from its child dies. */
d85a05f0 2004 if (! has_pc_info)
93311388 2005 {
d85a05f0
DJ
2006 best_lowpc = lowpc;
2007 best_highpc = highpc;
93311388
DE
2008 }
2009 }
d85a05f0
DJ
2010 pst->textlow = best_lowpc + baseaddr;
2011 pst->texthigh = best_highpc + baseaddr;
c906108c 2012
93311388
DE
2013 pst->n_global_syms = objfile->global_psymbols.next -
2014 (objfile->global_psymbols.list + pst->globals_offset);
2015 pst->n_static_syms = objfile->static_psymbols.next -
2016 (objfile->static_psymbols.list + pst->statics_offset);
2017 sort_pst_symbols (pst);
c906108c 2018
93311388
DE
2019 info_ptr = (beg_of_comp_unit + cu.header.length
2020 + cu.header.initial_length_size);
ae038cb0 2021
348e048f
DE
2022 if (this_cu->from_debug_types)
2023 {
2024 /* It's not clear we want to do anything with stmt lists here.
2025 Waiting to see what gcc ultimately does. */
2026 }
d85a05f0 2027 else
93311388
DE
2028 {
2029 /* Get the list of files included in the current compilation unit,
2030 and build a psymtab for each of them. */
d85a05f0 2031 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 2032 }
ae038cb0 2033
93311388 2034 do_cleanups (back_to_inner);
ae038cb0 2035
93311388
DE
2036 return info_ptr;
2037}
ff013f42 2038
348e048f
DE
2039/* Traversal function for htab_traverse_noresize.
2040 Process one .debug_types comp-unit. */
2041
2042static int
2043process_type_comp_unit (void **slot, void *info)
2044{
2045 struct signatured_type *entry = (struct signatured_type *) *slot;
2046 struct objfile *objfile = (struct objfile *) info;
2047 struct dwarf2_per_cu_data *this_cu;
2048
2049 this_cu = &entry->per_cu;
2050 this_cu->from_debug_types = 1;
2051
2052 process_psymtab_comp_unit (objfile, this_cu,
2053 dwarf2_per_objfile->types.buffer,
2054 dwarf2_per_objfile->types.buffer + entry->offset,
2055 dwarf2_per_objfile->types.size);
2056
2057 return 1;
2058}
2059
2060/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
2061 Build partial symbol tables for the .debug_types comp-units. */
2062
2063static void
2064build_type_psymtabs (struct objfile *objfile)
2065{
2066 if (! create_debug_types_hash_table (objfile))
2067 return;
2068
2069 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2070 process_type_comp_unit, objfile);
2071}
2072
93311388
DE
2073/* Build the partial symbol table by doing a quick pass through the
2074 .debug_info and .debug_abbrev sections. */
72bf9492 2075
93311388 2076static void
c67a9c90 2077dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388
DE
2078{
2079 /* Instead of reading this into a big buffer, we should probably use
2080 mmap() on architectures that support it. (FIXME) */
2081 bfd *abfd = objfile->obfd;
2082 gdb_byte *info_ptr;
2083 struct cleanup *back_to;
2084
2085 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 2086
93311388
DE
2087 /* Any cached compilation units will be linked by the per-objfile
2088 read_in_chain. Make sure to free them when we're done. */
2089 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 2090
348e048f
DE
2091 build_type_psymtabs (objfile);
2092
93311388 2093 create_all_comp_units (objfile);
c906108c 2094
93311388
DE
2095 objfile->psymtabs_addrmap =
2096 addrmap_create_mutable (&objfile->objfile_obstack);
72bf9492 2097
93311388
DE
2098 /* Since the objects we're extracting from .debug_info vary in
2099 length, only the individual functions to extract them (like
2100 read_comp_unit_head and load_partial_die) can really know whether
2101 the buffer is large enough to hold another complete object.
c906108c 2102
93311388
DE
2103 At the moment, they don't actually check that. If .debug_info
2104 holds just one extra byte after the last compilation unit's dies,
2105 then read_comp_unit_head will happily read off the end of the
2106 buffer. read_partial_die is similarly casual. Those functions
2107 should be fixed.
c906108c 2108
93311388
DE
2109 For this loop condition, simply checking whether there's any data
2110 left at all should be sufficient. */
c906108c 2111
93311388
DE
2112 while (info_ptr < (dwarf2_per_objfile->info.buffer
2113 + dwarf2_per_objfile->info.size))
2114 {
2115 struct dwarf2_per_cu_data *this_cu;
dd373385 2116
93311388
DE
2117 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2118 objfile);
aaa75496 2119
93311388
DE
2120 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2121 dwarf2_per_objfile->info.buffer,
2122 info_ptr,
2123 dwarf2_per_objfile->info.size);
c906108c 2124 }
ff013f42
JK
2125
2126 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2127 &objfile->objfile_obstack);
2128
ae038cb0
DJ
2129 do_cleanups (back_to);
2130}
2131
93311388 2132/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
2133
2134static void
93311388
DE
2135load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2136 struct objfile *objfile)
ae038cb0
DJ
2137{
2138 bfd *abfd = objfile->obfd;
fe1b8b76 2139 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 2140 struct die_info *comp_unit_die;
ae038cb0 2141 struct dwarf2_cu *cu;
ae038cb0
DJ
2142 unsigned int bytes_read;
2143 struct cleanup *back_to;
d85a05f0
DJ
2144 struct attribute *attr;
2145 int has_children;
2146 struct die_reader_specs reader_specs;
ae038cb0 2147
348e048f
DE
2148 gdb_assert (! this_cu->from_debug_types);
2149
dce234bc 2150 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
2151 beg_of_comp_unit = info_ptr;
2152
93311388 2153 cu = alloc_one_comp_unit (objfile);
ae038cb0 2154
93311388 2155 /* ??? Missing cleanup for CU? */
ae038cb0 2156
328c9494
DJ
2157 /* Link this compilation unit into the compilation unit tree. */
2158 this_cu->cu = cu;
2159 cu->per_cu = this_cu;
2160 cu->type_hash = this_cu->type_hash;
2161
93311388
DE
2162 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2163 dwarf2_per_objfile->info.buffer,
2164 dwarf2_per_objfile->info.size,
2165 abfd);
ae038cb0
DJ
2166
2167 /* Complete the cu_header. */
93311388 2168 cu->header.offset = this_cu->offset;
d00adf39 2169 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
ae038cb0
DJ
2170
2171 /* Read the abbrevs for this compilation unit into a table. */
2172 dwarf2_read_abbrevs (abfd, cu);
2173 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2174
2175 /* Read the compilation unit die. */
d85a05f0
DJ
2176 init_cu_die_reader (&reader_specs, cu);
2177 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2178 &has_children);
ae038cb0
DJ
2179
2180 /* Set the language we're debugging. */
d85a05f0
DJ
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2182 if (attr)
2183 set_cu_language (DW_UNSND (attr), cu);
2184 else
2185 set_cu_language (language_minimal, cu);
ae038cb0 2186
ae038cb0
DJ
2187 /* Check if comp unit has_children.
2188 If so, read the rest of the partial symbols from this comp unit.
2189 If not, there's no more debug_info for this comp unit. */
d85a05f0 2190 if (has_children)
93311388 2191 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0
DJ
2192
2193 do_cleanups (back_to);
2194}
2195
2196/* Create a list of all compilation units in OBJFILE. We do this only
2197 if an inter-comp-unit reference is found; presumably if there is one,
2198 there will be many, and one will occur early in the .debug_info section.
2199 So there's no point in building this list incrementally. */
2200
2201static void
2202create_all_comp_units (struct objfile *objfile)
2203{
2204 int n_allocated;
2205 int n_comp_units;
2206 struct dwarf2_per_cu_data **all_comp_units;
dce234bc 2207 gdb_byte *info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2208
2209 n_comp_units = 0;
2210 n_allocated = 10;
2211 all_comp_units = xmalloc (n_allocated
2212 * sizeof (struct dwarf2_per_cu_data *));
2213
dce234bc 2214 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 2215 {
c764a876 2216 unsigned int length, initial_length_size;
fe1b8b76 2217 gdb_byte *beg_of_comp_unit;
ae038cb0 2218 struct dwarf2_per_cu_data *this_cu;
c764a876 2219 unsigned int offset;
ae038cb0 2220
dce234bc 2221 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2222
2223 /* Read just enough information to find out where the next
2224 compilation unit is. */
c764a876
DE
2225 length = read_initial_length (objfile->obfd, info_ptr,
2226 &initial_length_size);
ae038cb0
DJ
2227
2228 /* Save the compilation unit for later lookup. */
2229 this_cu = obstack_alloc (&objfile->objfile_obstack,
2230 sizeof (struct dwarf2_per_cu_data));
2231 memset (this_cu, 0, sizeof (*this_cu));
2232 this_cu->offset = offset;
c764a876 2233 this_cu->length = length + initial_length_size;
ae038cb0
DJ
2234
2235 if (n_comp_units == n_allocated)
2236 {
2237 n_allocated *= 2;
2238 all_comp_units = xrealloc (all_comp_units,
2239 n_allocated
2240 * sizeof (struct dwarf2_per_cu_data *));
2241 }
2242 all_comp_units[n_comp_units++] = this_cu;
2243
2244 info_ptr = info_ptr + this_cu->length;
2245 }
2246
2247 dwarf2_per_objfile->all_comp_units
2248 = obstack_alloc (&objfile->objfile_obstack,
2249 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2250 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2251 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2252 xfree (all_comp_units);
2253 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
2254}
2255
5734ee8b
DJ
2256/* Process all loaded DIEs for compilation unit CU, starting at
2257 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2258 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2259 DW_AT_ranges). If NEED_PC is set, then this function will set
2260 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2261 and record the covered ranges in the addrmap. */
c906108c 2262
72bf9492
DJ
2263static void
2264scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 2265 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 2266{
e7c27a73 2267 struct objfile *objfile = cu->objfile;
c906108c 2268 bfd *abfd = objfile->obfd;
72bf9492 2269 struct partial_die_info *pdi;
c906108c 2270
91c24f0a
DC
2271 /* Now, march along the PDI's, descending into ones which have
2272 interesting children but skipping the children of the other ones,
2273 until we reach the end of the compilation unit. */
c906108c 2274
72bf9492 2275 pdi = first_die;
91c24f0a 2276
72bf9492
DJ
2277 while (pdi != NULL)
2278 {
2279 fixup_partial_die (pdi, cu);
c906108c 2280
91c24f0a
DC
2281 /* Anonymous namespaces have no name but have interesting
2282 children, so we need to look at them. Ditto for anonymous
2283 enums. */
933c6fe4 2284
72bf9492
DJ
2285 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2286 || pdi->tag == DW_TAG_enumeration_type)
c906108c 2287 {
72bf9492 2288 switch (pdi->tag)
c906108c
SS
2289 {
2290 case DW_TAG_subprogram:
5734ee8b 2291 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c
SS
2292 break;
2293 case DW_TAG_variable:
2294 case DW_TAG_typedef:
91c24f0a 2295 case DW_TAG_union_type:
72bf9492 2296 if (!pdi->is_declaration)
63d06c5c 2297 {
72bf9492 2298 add_partial_symbol (pdi, cu);
63d06c5c
DC
2299 }
2300 break;
c906108c 2301 case DW_TAG_class_type:
680b30c7 2302 case DW_TAG_interface_type:
c906108c 2303 case DW_TAG_structure_type:
72bf9492 2304 if (!pdi->is_declaration)
c906108c 2305 {
72bf9492 2306 add_partial_symbol (pdi, cu);
c906108c
SS
2307 }
2308 break;
91c24f0a 2309 case DW_TAG_enumeration_type:
72bf9492
DJ
2310 if (!pdi->is_declaration)
2311 add_partial_enumeration (pdi, cu);
c906108c
SS
2312 break;
2313 case DW_TAG_base_type:
a02abb62 2314 case DW_TAG_subrange_type:
c906108c 2315 /* File scope base type definitions are added to the partial
c5aa993b 2316 symbol table. */
72bf9492 2317 add_partial_symbol (pdi, cu);
c906108c 2318 break;
d9fa45fe 2319 case DW_TAG_namespace:
5734ee8b 2320 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 2321 break;
5d7cb8df
JK
2322 case DW_TAG_module:
2323 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2324 break;
c906108c
SS
2325 default:
2326 break;
2327 }
2328 }
2329
72bf9492
DJ
2330 /* If the die has a sibling, skip to the sibling. */
2331
2332 pdi = pdi->die_sibling;
2333 }
2334}
2335
2336/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 2337
72bf9492 2338 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
2339 name is concatenated with "::" and the partial DIE's name. For
2340 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
2341 Enumerators are an exception; they use the scope of their parent
2342 enumeration type, i.e. the name of the enumeration type is not
2343 prepended to the enumerator.
91c24f0a 2344
72bf9492
DJ
2345 There are two complexities. One is DW_AT_specification; in this
2346 case "parent" means the parent of the target of the specification,
2347 instead of the direct parent of the DIE. The other is compilers
2348 which do not emit DW_TAG_namespace; in this case we try to guess
2349 the fully qualified name of structure types from their members'
2350 linkage names. This must be done using the DIE's children rather
2351 than the children of any DW_AT_specification target. We only need
2352 to do this for structures at the top level, i.e. if the target of
2353 any DW_AT_specification (if any; otherwise the DIE itself) does not
2354 have a parent. */
2355
2356/* Compute the scope prefix associated with PDI's parent, in
2357 compilation unit CU. The result will be allocated on CU's
2358 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2359 field. NULL is returned if no prefix is necessary. */
2360static char *
2361partial_die_parent_scope (struct partial_die_info *pdi,
2362 struct dwarf2_cu *cu)
2363{
2364 char *grandparent_scope;
2365 struct partial_die_info *parent, *real_pdi;
91c24f0a 2366
72bf9492
DJ
2367 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2368 then this means the parent of the specification DIE. */
2369
2370 real_pdi = pdi;
72bf9492 2371 while (real_pdi->has_specification)
10b3939b 2372 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
2373
2374 parent = real_pdi->die_parent;
2375 if (parent == NULL)
2376 return NULL;
2377
2378 if (parent->scope_set)
2379 return parent->scope;
2380
2381 fixup_partial_die (parent, cu);
2382
10b3939b 2383 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
2384
2385 if (parent->tag == DW_TAG_namespace
2386 || parent->tag == DW_TAG_structure_type
2387 || parent->tag == DW_TAG_class_type
680b30c7 2388 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
2389 || parent->tag == DW_TAG_union_type
2390 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
2391 {
2392 if (grandparent_scope == NULL)
2393 parent->scope = parent->name;
2394 else
987504bb
JJ
2395 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2396 parent->name, cu);
72bf9492 2397 }
ceeb3d5a 2398 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
2399 /* Enumerators should not get the name of the enumeration as a prefix. */
2400 parent->scope = grandparent_scope;
2401 else
2402 {
2403 /* FIXME drow/2004-04-01: What should we be doing with
2404 function-local names? For partial symbols, we should probably be
2405 ignoring them. */
2406 complaint (&symfile_complaints,
e2e0b3e5 2407 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
2408 parent->tag, pdi->offset);
2409 parent->scope = grandparent_scope;
c906108c
SS
2410 }
2411
72bf9492
DJ
2412 parent->scope_set = 1;
2413 return parent->scope;
2414}
2415
2416/* Return the fully scoped name associated with PDI, from compilation unit
2417 CU. The result will be allocated with malloc. */
2418static char *
2419partial_die_full_name (struct partial_die_info *pdi,
2420 struct dwarf2_cu *cu)
2421{
2422 char *parent_scope;
2423
2424 parent_scope = partial_die_parent_scope (pdi, cu);
2425 if (parent_scope == NULL)
2426 return NULL;
2427 else
987504bb 2428 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
2429}
2430
2431static void
72bf9492 2432add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 2433{
e7c27a73 2434 struct objfile *objfile = cu->objfile;
c906108c 2435 CORE_ADDR addr = 0;
decbce07 2436 char *actual_name = NULL;
72bf9492 2437 const char *my_prefix;
5c4e30ca 2438 const struct partial_symbol *psym = NULL;
e142c38c 2439 CORE_ADDR baseaddr;
72bf9492 2440 int built_actual_name = 0;
e142c38c
DJ
2441
2442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2443
72bf9492 2444 if (pdi_needs_namespace (pdi->tag))
63d06c5c 2445 {
72bf9492
DJ
2446 actual_name = partial_die_full_name (pdi, cu);
2447 if (actual_name)
2448 built_actual_name = 1;
63d06c5c
DC
2449 }
2450
72bf9492
DJ
2451 if (actual_name == NULL)
2452 actual_name = pdi->name;
2453
c906108c
SS
2454 switch (pdi->tag)
2455 {
2456 case DW_TAG_subprogram:
2cfa0c8d 2457 if (pdi->is_external || cu->language == language_ada)
c906108c 2458 {
2cfa0c8d
JB
2459 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2460 of the global scope. But in Ada, we want to be able to access
2461 nested procedures globally. So all Ada subprograms are stored
2462 in the global scope. */
38d518c9 2463 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2464 mst_text, objfile); */
38d518c9 2465 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2466 built_actual_name,
5c4e30ca
DC
2467 VAR_DOMAIN, LOC_BLOCK,
2468 &objfile->global_psymbols,
2469 0, pdi->lowpc + baseaddr,
e142c38c 2470 cu->language, objfile);
c906108c
SS
2471 }
2472 else
2473 {
38d518c9 2474 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2475 mst_file_text, objfile); */
38d518c9 2476 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2477 built_actual_name,
5c4e30ca
DC
2478 VAR_DOMAIN, LOC_BLOCK,
2479 &objfile->static_psymbols,
2480 0, pdi->lowpc + baseaddr,
e142c38c 2481 cu->language, objfile);
c906108c
SS
2482 }
2483 break;
2484 case DW_TAG_variable:
2485 if (pdi->is_external)
2486 {
2487 /* Global Variable.
2488 Don't enter into the minimal symbol tables as there is
2489 a minimal symbol table entry from the ELF symbols already.
2490 Enter into partial symbol table if it has a location
2491 descriptor or a type.
2492 If the location descriptor is missing, new_symbol will create
2493 a LOC_UNRESOLVED symbol, the address of the variable will then
2494 be determined from the minimal symbol table whenever the variable
2495 is referenced.
2496 The address for the partial symbol table entry is not
2497 used by GDB, but it comes in handy for debugging partial symbol
2498 table building. */
2499
2500 if (pdi->locdesc)
e7c27a73 2501 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 2502 if (pdi->locdesc || pdi->has_type)
38d518c9 2503 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2504 built_actual_name,
5c4e30ca
DC
2505 VAR_DOMAIN, LOC_STATIC,
2506 &objfile->global_psymbols,
2507 0, addr + baseaddr,
e142c38c 2508 cu->language, objfile);
c906108c
SS
2509 }
2510 else
2511 {
2512 /* Static Variable. Skip symbols without location descriptors. */
2513 if (pdi->locdesc == NULL)
decbce07
MS
2514 {
2515 if (built_actual_name)
2516 xfree (actual_name);
2517 return;
2518 }
e7c27a73 2519 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 2520 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 2521 mst_file_data, objfile); */
38d518c9 2522 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2523 built_actual_name,
5c4e30ca
DC
2524 VAR_DOMAIN, LOC_STATIC,
2525 &objfile->static_psymbols,
2526 0, addr + baseaddr,
e142c38c 2527 cu->language, objfile);
c906108c
SS
2528 }
2529 break;
2530 case DW_TAG_typedef:
2531 case DW_TAG_base_type:
a02abb62 2532 case DW_TAG_subrange_type:
38d518c9 2533 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2534 built_actual_name,
176620f1 2535 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 2536 &objfile->static_psymbols,
e142c38c 2537 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2538 break;
72bf9492
DJ
2539 case DW_TAG_namespace:
2540 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2541 built_actual_name,
72bf9492
DJ
2542 VAR_DOMAIN, LOC_TYPEDEF,
2543 &objfile->global_psymbols,
2544 0, (CORE_ADDR) 0, cu->language, objfile);
2545 break;
c906108c 2546 case DW_TAG_class_type:
680b30c7 2547 case DW_TAG_interface_type:
c906108c
SS
2548 case DW_TAG_structure_type:
2549 case DW_TAG_union_type:
2550 case DW_TAG_enumeration_type:
fa4028e9
JB
2551 /* Skip external references. The DWARF standard says in the section
2552 about "Structure, Union, and Class Type Entries": "An incomplete
2553 structure, union or class type is represented by a structure,
2554 union or class entry that does not have a byte size attribute
2555 and that has a DW_AT_declaration attribute." */
2556 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
2557 {
2558 if (built_actual_name)
2559 xfree (actual_name);
2560 return;
2561 }
fa4028e9 2562
63d06c5c
DC
2563 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2564 static vs. global. */
38d518c9 2565 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2566 built_actual_name,
176620f1 2567 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2568 (cu->language == language_cplus
2569 || cu->language == language_java)
63d06c5c
DC
2570 ? &objfile->global_psymbols
2571 : &objfile->static_psymbols,
e142c38c 2572 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2573
c906108c
SS
2574 break;
2575 case DW_TAG_enumerator:
38d518c9 2576 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2577 built_actual_name,
176620f1 2578 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2579 (cu->language == language_cplus
2580 || cu->language == language_java)
f6fe98ef
DJ
2581 ? &objfile->global_psymbols
2582 : &objfile->static_psymbols,
e142c38c 2583 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2584 break;
2585 default:
2586 break;
2587 }
5c4e30ca
DC
2588
2589 /* Check to see if we should scan the name for possible namespace
2590 info. Only do this if this is C++, if we don't have namespace
2591 debugging info in the file, if the psym is of an appropriate type
2592 (otherwise we'll have psym == NULL), and if we actually had a
2593 mangled name to begin with. */
2594
72bf9492
DJ
2595 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2596 cases which do not set PSYM above? */
2597
e142c38c 2598 if (cu->language == language_cplus
72bf9492 2599 && cu->has_namespace_info == 0
5c4e30ca
DC
2600 && psym != NULL
2601 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2602 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2603 objfile);
72bf9492
DJ
2604
2605 if (built_actual_name)
2606 xfree (actual_name);
c906108c
SS
2607}
2608
72bf9492
DJ
2609/* Determine whether a die of type TAG living in a C++ class or
2610 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2611 name listed in the die. */
2612
2613static int
72bf9492 2614pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2615{
63d06c5c
DC
2616 switch (tag)
2617 {
72bf9492 2618 case DW_TAG_namespace:
63d06c5c
DC
2619 case DW_TAG_typedef:
2620 case DW_TAG_class_type:
680b30c7 2621 case DW_TAG_interface_type:
63d06c5c
DC
2622 case DW_TAG_structure_type:
2623 case DW_TAG_union_type:
2624 case DW_TAG_enumeration_type:
2625 case DW_TAG_enumerator:
2626 return 1;
2627 default:
2628 return 0;
2629 }
2630}
2631
5c4e30ca
DC
2632/* Read a partial die corresponding to a namespace; also, add a symbol
2633 corresponding to that namespace to the symbol table. NAMESPACE is
2634 the name of the enclosing namespace. */
91c24f0a 2635
72bf9492
DJ
2636static void
2637add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2638 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2639 int need_pc, struct dwarf2_cu *cu)
91c24f0a 2640{
e7c27a73 2641 struct objfile *objfile = cu->objfile;
5c4e30ca 2642
72bf9492 2643 /* Add a symbol for the namespace. */
e7c27a73 2644
72bf9492 2645 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2646
2647 /* Now scan partial symbols in that namespace. */
2648
91c24f0a 2649 if (pdi->has_children)
5734ee8b 2650 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
2651}
2652
5d7cb8df
JK
2653/* Read a partial die corresponding to a Fortran module. */
2654
2655static void
2656add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2657 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2658{
2659 /* Now scan partial symbols in that module.
2660
2661 FIXME: Support the separate Fortran module namespaces. */
2662
2663 if (pdi->has_children)
2664 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2665}
2666
bc30ff58
JB
2667/* Read a partial die corresponding to a subprogram and create a partial
2668 symbol for that subprogram. When the CU language allows it, this
2669 routine also defines a partial symbol for each nested subprogram
2670 that this subprogram contains.
2671
2672 DIE my also be a lexical block, in which case we simply search
2673 recursively for suprograms defined inside that lexical block.
2674 Again, this is only performed when the CU language allows this
2675 type of definitions. */
2676
2677static void
2678add_partial_subprogram (struct partial_die_info *pdi,
2679 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2680 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
2681{
2682 if (pdi->tag == DW_TAG_subprogram)
2683 {
2684 if (pdi->has_pc_info)
2685 {
2686 if (pdi->lowpc < *lowpc)
2687 *lowpc = pdi->lowpc;
2688 if (pdi->highpc > *highpc)
2689 *highpc = pdi->highpc;
5734ee8b
DJ
2690 if (need_pc)
2691 {
2692 CORE_ADDR baseaddr;
2693 struct objfile *objfile = cu->objfile;
2694
2695 baseaddr = ANOFFSET (objfile->section_offsets,
2696 SECT_OFF_TEXT (objfile));
2697 addrmap_set_empty (objfile->psymtabs_addrmap,
2698 pdi->lowpc, pdi->highpc - 1,
2699 cu->per_cu->psymtab);
2700 }
bc30ff58
JB
2701 if (!pdi->is_declaration)
2702 add_partial_symbol (pdi, cu);
2703 }
2704 }
2705
2706 if (! pdi->has_children)
2707 return;
2708
2709 if (cu->language == language_ada)
2710 {
2711 pdi = pdi->die_child;
2712 while (pdi != NULL)
2713 {
2714 fixup_partial_die (pdi, cu);
2715 if (pdi->tag == DW_TAG_subprogram
2716 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 2717 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
2718 pdi = pdi->die_sibling;
2719 }
2720 }
2721}
2722
72bf9492
DJ
2723/* See if we can figure out if the class lives in a namespace. We do
2724 this by looking for a member function; its demangled name will
2725 contain namespace info, if there is any. */
63d06c5c 2726
72bf9492
DJ
2727static void
2728guess_structure_name (struct partial_die_info *struct_pdi,
2729 struct dwarf2_cu *cu)
63d06c5c 2730{
987504bb
JJ
2731 if ((cu->language == language_cplus
2732 || cu->language == language_java)
72bf9492 2733 && cu->has_namespace_info == 0
63d06c5c
DC
2734 && struct_pdi->has_children)
2735 {
63d06c5c
DC
2736 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2737 what template types look like, because the demangler
2738 frequently doesn't give the same name as the debug info. We
2739 could fix this by only using the demangled name to get the
134d01f1 2740 prefix (but see comment in read_structure_type). */
63d06c5c 2741
72bf9492
DJ
2742 struct partial_die_info *child_pdi = struct_pdi->die_child;
2743 struct partial_die_info *real_pdi;
5d51ca54 2744
72bf9492
DJ
2745 /* If this DIE (this DIE's specification, if any) has a parent, then
2746 we should not do this. We'll prepend the parent's fully qualified
2747 name when we create the partial symbol. */
5d51ca54 2748
72bf9492 2749 real_pdi = struct_pdi;
72bf9492 2750 while (real_pdi->has_specification)
10b3939b 2751 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2752
72bf9492
DJ
2753 if (real_pdi->die_parent != NULL)
2754 return;
63d06c5c 2755
72bf9492
DJ
2756 while (child_pdi != NULL)
2757 {
2758 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2759 {
72bf9492 2760 char *actual_class_name
31c27f77
JJ
2761 = language_class_name_from_physname (cu->language_defn,
2762 child_pdi->name);
63d06c5c 2763 if (actual_class_name != NULL)
72bf9492
DJ
2764 {
2765 struct_pdi->name
2766 = obsavestring (actual_class_name,
2767 strlen (actual_class_name),
a9854bd5 2768 &cu->objfile->objfile_obstack);
72bf9492
DJ
2769 xfree (actual_class_name);
2770 }
63d06c5c
DC
2771 break;
2772 }
72bf9492
DJ
2773
2774 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2775 }
2776 }
63d06c5c
DC
2777}
2778
91c24f0a
DC
2779/* Read a partial die corresponding to an enumeration type. */
2780
72bf9492
DJ
2781static void
2782add_partial_enumeration (struct partial_die_info *enum_pdi,
2783 struct dwarf2_cu *cu)
91c24f0a 2784{
e7c27a73 2785 struct objfile *objfile = cu->objfile;
91c24f0a 2786 bfd *abfd = objfile->obfd;
72bf9492 2787 struct partial_die_info *pdi;
91c24f0a
DC
2788
2789 if (enum_pdi->name != NULL)
72bf9492
DJ
2790 add_partial_symbol (enum_pdi, cu);
2791
2792 pdi = enum_pdi->die_child;
2793 while (pdi)
91c24f0a 2794 {
72bf9492 2795 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2796 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2797 else
72bf9492
DJ
2798 add_partial_symbol (pdi, cu);
2799 pdi = pdi->die_sibling;
91c24f0a 2800 }
91c24f0a
DC
2801}
2802
4bb7a0a7
DJ
2803/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2804 Return the corresponding abbrev, or NULL if the number is zero (indicating
2805 an empty DIE). In either case *BYTES_READ will be set to the length of
2806 the initial number. */
2807
2808static struct abbrev_info *
fe1b8b76 2809peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2810 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2811{
2812 bfd *abfd = cu->objfile->obfd;
2813 unsigned int abbrev_number;
2814 struct abbrev_info *abbrev;
2815
2816 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2817
2818 if (abbrev_number == 0)
2819 return NULL;
2820
2821 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2822 if (!abbrev)
2823 {
8a3fe4f8 2824 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2825 bfd_get_filename (abfd));
2826 }
2827
2828 return abbrev;
2829}
2830
93311388
DE
2831/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2832 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
2833 DIE. Any children of the skipped DIEs will also be skipped. */
2834
fe1b8b76 2835static gdb_byte *
93311388 2836skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2837{
2838 struct abbrev_info *abbrev;
2839 unsigned int bytes_read;
2840
2841 while (1)
2842 {
2843 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2844 if (abbrev == NULL)
2845 return info_ptr + bytes_read;
2846 else
93311388 2847 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
2848 }
2849}
2850
93311388
DE
2851/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2852 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
2853 abbrev corresponding to that skipped uleb128 should be passed in
2854 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2855 children. */
2856
fe1b8b76 2857static gdb_byte *
93311388
DE
2858skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2859 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2860{
2861 unsigned int bytes_read;
2862 struct attribute attr;
2863 bfd *abfd = cu->objfile->obfd;
2864 unsigned int form, i;
2865
2866 for (i = 0; i < abbrev->num_attrs; i++)
2867 {
2868 /* The only abbrev we care about is DW_AT_sibling. */
2869 if (abbrev->attrs[i].name == DW_AT_sibling)
2870 {
2871 read_attribute (&attr, &abbrev->attrs[i],
2872 abfd, info_ptr, cu);
2873 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2874 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2875 else
93311388 2876 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
2877 }
2878
2879 /* If it isn't DW_AT_sibling, skip this attribute. */
2880 form = abbrev->attrs[i].form;
2881 skip_attribute:
2882 switch (form)
2883 {
2884 case DW_FORM_addr:
2885 case DW_FORM_ref_addr:
2886 info_ptr += cu->header.addr_size;
2887 break;
2888 case DW_FORM_data1:
2889 case DW_FORM_ref1:
2890 case DW_FORM_flag:
2891 info_ptr += 1;
2892 break;
2893 case DW_FORM_data2:
2894 case DW_FORM_ref2:
2895 info_ptr += 2;
2896 break;
2897 case DW_FORM_data4:
2898 case DW_FORM_ref4:
2899 info_ptr += 4;
2900 break;
2901 case DW_FORM_data8:
2902 case DW_FORM_ref8:
348e048f 2903 case DW_FORM_sig8:
4bb7a0a7
DJ
2904 info_ptr += 8;
2905 break;
2906 case DW_FORM_string:
2907 read_string (abfd, info_ptr, &bytes_read);
2908 info_ptr += bytes_read;
2909 break;
2910 case DW_FORM_strp:
2911 info_ptr += cu->header.offset_size;
2912 break;
2913 case DW_FORM_block:
2914 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2915 info_ptr += bytes_read;
2916 break;
2917 case DW_FORM_block1:
2918 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2919 break;
2920 case DW_FORM_block2:
2921 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2922 break;
2923 case DW_FORM_block4:
2924 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2925 break;
2926 case DW_FORM_sdata:
2927 case DW_FORM_udata:
2928 case DW_FORM_ref_udata:
2929 info_ptr = skip_leb128 (abfd, info_ptr);
2930 break;
2931 case DW_FORM_indirect:
2932 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2933 info_ptr += bytes_read;
2934 /* We need to continue parsing from here, so just go back to
2935 the top. */
2936 goto skip_attribute;
2937
2938 default:
8a3fe4f8 2939 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2940 dwarf_form_name (form),
2941 bfd_get_filename (abfd));
2942 }
2943 }
2944
2945 if (abbrev->has_children)
93311388 2946 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
2947 else
2948 return info_ptr;
2949}
2950
93311388
DE
2951/* Locate ORIG_PDI's sibling.
2952 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2953 in BUFFER. */
91c24f0a 2954
fe1b8b76 2955static gdb_byte *
93311388
DE
2956locate_pdi_sibling (struct partial_die_info *orig_pdi,
2957 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 2958 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2959{
2960 /* Do we know the sibling already? */
72bf9492 2961
91c24f0a
DC
2962 if (orig_pdi->sibling)
2963 return orig_pdi->sibling;
2964
2965 /* Are there any children to deal with? */
2966
2967 if (!orig_pdi->has_children)
2968 return info_ptr;
2969
4bb7a0a7 2970 /* Skip the children the long way. */
91c24f0a 2971
93311388 2972 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
2973}
2974
c906108c
SS
2975/* Expand this partial symbol table into a full symbol table. */
2976
2977static void
fba45db2 2978dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2979{
2980 /* FIXME: This is barely more than a stub. */
2981 if (pst != NULL)
2982 {
2983 if (pst->readin)
2984 {
8a3fe4f8 2985 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2986 }
2987 else
2988 {
2989 if (info_verbose)
2990 {
a3f17187 2991 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2992 gdb_flush (gdb_stdout);
2993 }
2994
10b3939b
DJ
2995 /* Restore our global data. */
2996 dwarf2_per_objfile = objfile_data (pst->objfile,
2997 dwarf2_objfile_data_key);
2998
b2ab525c
KB
2999 /* If this psymtab is constructed from a debug-only objfile, the
3000 has_section_at_zero flag will not necessarily be correct. We
3001 can get the correct value for this flag by looking at the data
3002 associated with the (presumably stripped) associated objfile. */
3003 if (pst->objfile->separate_debug_objfile_backlink)
3004 {
3005 struct dwarf2_per_objfile *dpo_backlink
3006 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
3007 dwarf2_objfile_data_key);
3008 dwarf2_per_objfile->has_section_at_zero
3009 = dpo_backlink->has_section_at_zero;
3010 }
3011
c906108c
SS
3012 psymtab_to_symtab_1 (pst);
3013
3014 /* Finish up the debug error message. */
3015 if (info_verbose)
a3f17187 3016 printf_filtered (_("done.\n"));
c906108c
SS
3017 }
3018 }
3019}
3020
10b3939b
DJ
3021/* Add PER_CU to the queue. */
3022
3023static void
03dd20cc 3024queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
3025{
3026 struct dwarf2_queue_item *item;
3027
3028 per_cu->queued = 1;
3029 item = xmalloc (sizeof (*item));
3030 item->per_cu = per_cu;
3031 item->next = NULL;
3032
3033 if (dwarf2_queue == NULL)
3034 dwarf2_queue = item;
3035 else
3036 dwarf2_queue_tail->next = item;
3037
3038 dwarf2_queue_tail = item;
3039}
3040
3041/* Process the queue. */
3042
3043static void
3044process_queue (struct objfile *objfile)
3045{
3046 struct dwarf2_queue_item *item, *next_item;
3047
03dd20cc
DJ
3048 /* The queue starts out with one item, but following a DIE reference
3049 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
3050 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
3051 {
31ffec48 3052 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
3053 process_full_comp_unit (item->per_cu);
3054
3055 item->per_cu->queued = 0;
3056 next_item = item->next;
3057 xfree (item);
3058 }
3059
3060 dwarf2_queue_tail = NULL;
3061}
3062
3063/* Free all allocated queue entries. This function only releases anything if
3064 an error was thrown; if the queue was processed then it would have been
3065 freed as we went along. */
3066
3067static void
3068dwarf2_release_queue (void *dummy)
3069{
3070 struct dwarf2_queue_item *item, *last;
3071
3072 item = dwarf2_queue;
3073 while (item)
3074 {
3075 /* Anything still marked queued is likely to be in an
3076 inconsistent state, so discard it. */
3077 if (item->per_cu->queued)
3078 {
3079 if (item->per_cu->cu != NULL)
3080 free_one_cached_comp_unit (item->per_cu->cu);
3081 item->per_cu->queued = 0;
3082 }
3083
3084 last = item;
3085 item = item->next;
3086 xfree (last);
3087 }
3088
3089 dwarf2_queue = dwarf2_queue_tail = NULL;
3090}
3091
3092/* Read in full symbols for PST, and anything it depends on. */
3093
c906108c 3094static void
fba45db2 3095psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 3096{
10b3939b 3097 struct dwarf2_per_cu_data *per_cu;
c906108c 3098 struct cleanup *back_to;
aaa75496
JB
3099 int i;
3100
3101 for (i = 0; i < pst->number_of_dependencies; i++)
3102 if (!pst->dependencies[i]->readin)
3103 {
3104 /* Inform about additional files that need to be read in. */
3105 if (info_verbose)
3106 {
a3f17187 3107 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
3108 fputs_filtered (" ", gdb_stdout);
3109 wrap_here ("");
3110 fputs_filtered ("and ", gdb_stdout);
3111 wrap_here ("");
3112 printf_filtered ("%s...", pst->dependencies[i]->filename);
3113 wrap_here (""); /* Flush output */
3114 gdb_flush (gdb_stdout);
3115 }
3116 psymtab_to_symtab_1 (pst->dependencies[i]);
3117 }
3118
10b3939b
DJ
3119 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
3120
3121 if (per_cu == NULL)
aaa75496
JB
3122 {
3123 /* It's an include file, no symbols to read for it.
3124 Everything is in the parent symtab. */
3125 pst->readin = 1;
3126 return;
3127 }
c906108c 3128
10b3939b
DJ
3129 back_to = make_cleanup (dwarf2_release_queue, NULL);
3130
03dd20cc 3131 queue_comp_unit (per_cu, pst->objfile);
10b3939b 3132
348e048f
DE
3133 if (per_cu->from_debug_types)
3134 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3135 else
3136 load_full_comp_unit (per_cu, pst->objfile);
3137
10b3939b
DJ
3138 process_queue (pst->objfile);
3139
3140 /* Age the cache, releasing compilation units that have not
3141 been used recently. */
3142 age_cached_comp_units ();
3143
3144 do_cleanups (back_to);
3145}
3146
93311388 3147/* Load the DIEs associated with PER_CU into memory. */
10b3939b 3148
93311388 3149static void
31ffec48 3150load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 3151{
31ffec48 3152 bfd *abfd = objfile->obfd;
10b3939b 3153 struct dwarf2_cu *cu;
c764a876 3154 unsigned int offset;
93311388 3155 gdb_byte *info_ptr, *beg_of_comp_unit;
10b3939b
DJ
3156 struct cleanup *back_to, *free_cu_cleanup;
3157 struct attribute *attr;
3158 CORE_ADDR baseaddr;
6502dd73 3159
348e048f
DE
3160 gdb_assert (! per_cu->from_debug_types);
3161
c906108c 3162 /* Set local variables from the partial symbol table info. */
10b3939b 3163 offset = per_cu->offset;
6502dd73 3164
dce234bc 3165 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 3166 beg_of_comp_unit = info_ptr;
63d06c5c 3167
93311388 3168 cu = alloc_one_comp_unit (objfile);
c906108c 3169
10b3939b
DJ
3170 /* If an error occurs while loading, release our storage. */
3171 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 3172
93311388 3173 /* Read in the comp_unit header. */
10b3939b 3174 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 3175
93311388
DE
3176 /* Complete the cu_header. */
3177 cu->header.offset = offset;
3178 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3179
3180 /* Read the abbrevs for this compilation unit. */
10b3939b
DJ
3181 dwarf2_read_abbrevs (abfd, cu);
3182 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3183
93311388 3184 /* Link this compilation unit into the compilation unit tree. */
10b3939b 3185 per_cu->cu = cu;
93311388 3186 cu->per_cu = per_cu;
f792889a 3187 cu->type_hash = per_cu->type_hash;
e142c38c 3188
93311388 3189 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
3190
3191 /* We try not to read any attributes in this function, because not
3192 all objfiles needed for references have been loaded yet, and symbol
3193 table processing isn't initialized. But we have to set the CU language,
3194 or we won't be able to build types correctly. */
3195 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3196 if (attr)
3197 set_cu_language (DW_UNSND (attr), cu);
3198 else
3199 set_cu_language (language_minimal, cu);
3200
348e048f
DE
3201 /* Link this CU into read_in_chain. */
3202 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3203 dwarf2_per_objfile->read_in_chain = per_cu;
3204
10b3939b 3205 do_cleanups (back_to);
e142c38c 3206
10b3939b
DJ
3207 /* We've successfully allocated this compilation unit. Let our caller
3208 clean it up when finished with it. */
3209 discard_cleanups (free_cu_cleanup);
10b3939b
DJ
3210}
3211
3212/* Generate full symbol information for PST and CU, whose DIEs have
3213 already been loaded into memory. */
3214
3215static void
3216process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3217{
3218 struct partial_symtab *pst = per_cu->psymtab;
3219 struct dwarf2_cu *cu = per_cu->cu;
3220 struct objfile *objfile = pst->objfile;
3221 bfd *abfd = objfile->obfd;
3222 CORE_ADDR lowpc, highpc;
3223 struct symtab *symtab;
3224 struct cleanup *back_to;
10b3939b
DJ
3225 CORE_ADDR baseaddr;
3226
3227 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3228
10b3939b
DJ
3229 buildsym_init ();
3230 back_to = make_cleanup (really_free_pendings, NULL);
3231
3232 cu->list_in_scope = &file_symbols;
c906108c 3233
d85a05f0 3234 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 3235
c906108c 3236 /* Do line number decoding in read_file_scope () */
10b3939b 3237 process_die (cu->dies, cu);
c906108c 3238
fae299cd
DC
3239 /* Some compilers don't define a DW_AT_high_pc attribute for the
3240 compilation unit. If the DW_AT_high_pc is missing, synthesize
3241 it, by scanning the DIE's below the compilation unit. */
10b3939b 3242 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 3243
613e1657 3244 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
3245
3246 /* Set symtab language to language from DW_AT_language.
3247 If the compilation is from a C file generated by language preprocessors,
3248 do not set the language if it was already deduced by start_subfile. */
3249 if (symtab != NULL
10b3939b 3250 && !(cu->language == language_c && symtab->language != language_c))
c906108c 3251 {
10b3939b 3252 symtab->language = cu->language;
c906108c
SS
3253 }
3254 pst->symtab = symtab;
3255 pst->readin = 1;
c906108c
SS
3256
3257 do_cleanups (back_to);
3258}
3259
3260/* Process a die and its children. */
3261
3262static void
e7c27a73 3263process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
3264{
3265 switch (die->tag)
3266 {
3267 case DW_TAG_padding:
3268 break;
3269 case DW_TAG_compile_unit:
e7c27a73 3270 read_file_scope (die, cu);
c906108c 3271 break;
348e048f
DE
3272 case DW_TAG_type_unit:
3273 read_type_unit_scope (die, cu);
3274 break;
c906108c 3275 case DW_TAG_subprogram:
c906108c 3276 case DW_TAG_inlined_subroutine:
edb3359d 3277 read_func_scope (die, cu);
c906108c
SS
3278 break;
3279 case DW_TAG_lexical_block:
14898363
L
3280 case DW_TAG_try_block:
3281 case DW_TAG_catch_block:
e7c27a73 3282 read_lexical_block_scope (die, cu);
c906108c
SS
3283 break;
3284 case DW_TAG_class_type:
680b30c7 3285 case DW_TAG_interface_type:
c906108c
SS
3286 case DW_TAG_structure_type:
3287 case DW_TAG_union_type:
134d01f1 3288 process_structure_scope (die, cu);
c906108c
SS
3289 break;
3290 case DW_TAG_enumeration_type:
134d01f1 3291 process_enumeration_scope (die, cu);
c906108c 3292 break;
134d01f1 3293
f792889a
DJ
3294 /* These dies have a type, but processing them does not create
3295 a symbol or recurse to process the children. Therefore we can
3296 read them on-demand through read_type_die. */
c906108c 3297 case DW_TAG_subroutine_type:
72019c9c 3298 case DW_TAG_set_type:
c906108c 3299 case DW_TAG_array_type:
c906108c 3300 case DW_TAG_pointer_type:
c906108c 3301 case DW_TAG_ptr_to_member_type:
c906108c 3302 case DW_TAG_reference_type:
c906108c 3303 case DW_TAG_string_type:
c906108c 3304 break;
134d01f1 3305
c906108c 3306 case DW_TAG_base_type:
a02abb62 3307 case DW_TAG_subrange_type:
cb249c71 3308 case DW_TAG_typedef:
134d01f1
DJ
3309 /* Add a typedef symbol for the type definition, if it has a
3310 DW_AT_name. */
f792889a 3311 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 3312 break;
c906108c 3313 case DW_TAG_common_block:
e7c27a73 3314 read_common_block (die, cu);
c906108c
SS
3315 break;
3316 case DW_TAG_common_inclusion:
3317 break;
d9fa45fe 3318 case DW_TAG_namespace:
63d06c5c 3319 processing_has_namespace_info = 1;
e7c27a73 3320 read_namespace (die, cu);
d9fa45fe 3321 break;
5d7cb8df
JK
3322 case DW_TAG_module:
3323 read_module (die, cu);
3324 break;
d9fa45fe
DC
3325 case DW_TAG_imported_declaration:
3326 case DW_TAG_imported_module:
63d06c5c 3327 processing_has_namespace_info = 1;
27aa8d6a
SW
3328 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3329 || cu->language != language_fortran))
3330 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3331 dwarf_tag_name (die->tag));
3332 read_import_statement (die, cu);
d9fa45fe 3333 break;
c906108c 3334 default:
e7c27a73 3335 new_symbol (die, NULL, cu);
c906108c
SS
3336 break;
3337 }
3338}
3339
0114d602
DJ
3340/* Return the fully qualified name of DIE, based on its DW_AT_name.
3341 If scope qualifiers are appropriate they will be added. The result
3342 will be allocated on the objfile_obstack, or NULL if the DIE does
3343 not have a name. */
3344
3345static const char *
3346dwarf2_full_name (struct die_info *die, struct dwarf2_cu *cu)
3347{
3348 struct attribute *attr;
3349 char *prefix, *name;
3350 struct ui_file *buf = NULL;
3351
3352 name = dwarf2_name (die, cu);
3353 if (!name)
3354 return NULL;
3355
3356 /* These are the only languages we know how to qualify names in. */
3357 if (cu->language != language_cplus
3358 && cu->language != language_java)
3359 return name;
3360
3361 /* If no prefix is necessary for this type of DIE, return the
3362 unqualified name. The other three tags listed could be handled
3363 in pdi_needs_namespace, but that requires broader changes. */
3364 if (!pdi_needs_namespace (die->tag)
3365 && die->tag != DW_TAG_subprogram
3366 && die->tag != DW_TAG_variable
3367 && die->tag != DW_TAG_member)
3368 return name;
3369
3370 prefix = determine_prefix (die, cu);
3371 if (*prefix != '\0')
3372 name = typename_concat (&cu->objfile->objfile_obstack, prefix,
3373 name, cu);
3374
3375 return name;
3376}
3377
27aa8d6a
SW
3378/* Read the import statement specified by the given die and record it. */
3379
3380static void
3381read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3382{
3383 struct attribute *import_attr;
3384 struct die_info *imported_die;
de4affc9 3385 struct dwarf2_cu *imported_cu;
27aa8d6a 3386 const char *imported_name;
794684b6 3387 const char *imported_name_prefix;
82856980
SW
3388 char *import_alias;
3389
794684b6
SW
3390 const char *import_prefix;
3391 char *canonical_name;
27aa8d6a
SW
3392
3393 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3394 if (import_attr == NULL)
3395 {
3396 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3397 dwarf_tag_name (die->tag));
3398 return;
3399 }
3400
de4affc9
CC
3401 imported_cu = cu;
3402 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3403 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
3404 if (imported_name == NULL)
3405 {
3406 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3407
3408 The import in the following code:
3409 namespace A
3410 {
3411 typedef int B;
3412 }
3413
3414 int main ()
3415 {
3416 using A::B;
3417 B b;
3418 return b;
3419 }
3420
3421 ...
3422 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3423 <52> DW_AT_decl_file : 1
3424 <53> DW_AT_decl_line : 6
3425 <54> DW_AT_import : <0x75>
3426 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3427 <59> DW_AT_name : B
3428 <5b> DW_AT_decl_file : 1
3429 <5c> DW_AT_decl_line : 2
3430 <5d> DW_AT_type : <0x6e>
3431 ...
3432 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3433 <76> DW_AT_byte_size : 4
3434 <77> DW_AT_encoding : 5 (signed)
3435
3436 imports the wrong die ( 0x75 instead of 0x58 ).
3437 This case will be ignored until the gcc bug is fixed. */
3438 return;
3439 }
3440
82856980
SW
3441 /* Figure out the local name after import. */
3442 import_alias = dwarf2_name (die, cu);
27aa8d6a 3443
794684b6
SW
3444 /* Figure out where the statement is being imported to. */
3445 import_prefix = determine_prefix (die, cu);
3446
3447 /* Figure out what the scope of the imported die is and prepend it
3448 to the name of the imported die. */
de4affc9 3449 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6
SW
3450
3451 if (strlen (imported_name_prefix) > 0)
3452 {
82856980
SW
3453 canonical_name = alloca (strlen (imported_name_prefix)
3454 + 2 + strlen (imported_name) + 1);
794684b6
SW
3455 strcpy (canonical_name, imported_name_prefix);
3456 strcat (canonical_name, "::");
3457 strcat (canonical_name, imported_name);
3458 }
3459 else
3460 {
3461 canonical_name = alloca (strlen (imported_name) + 1);
3462 strcpy (canonical_name, imported_name);
3463 }
3464
82856980
SW
3465 using_directives = cp_add_using (import_prefix,
3466 canonical_name,
3467 import_alias,
3468 using_directives);
27aa8d6a
SW
3469}
3470
5fb290d7 3471static void
e142c38c 3472initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 3473{
e142c38c 3474 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
3475}
3476
cb1df416
DJ
3477static void
3478free_cu_line_header (void *arg)
3479{
3480 struct dwarf2_cu *cu = arg;
3481
3482 free_line_header (cu->line_header);
3483 cu->line_header = NULL;
3484}
3485
c906108c 3486static void
e7c27a73 3487read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3488{
e7c27a73
DJ
3489 struct objfile *objfile = cu->objfile;
3490 struct comp_unit_head *cu_header = &cu->header;
debd256d 3491 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 3492 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
3493 CORE_ADDR highpc = ((CORE_ADDR) 0);
3494 struct attribute *attr;
e1024ff1 3495 char *name = NULL;
c906108c
SS
3496 char *comp_dir = NULL;
3497 struct die_info *child_die;
3498 bfd *abfd = objfile->obfd;
debd256d 3499 struct line_header *line_header = 0;
e142c38c
DJ
3500 CORE_ADDR baseaddr;
3501
3502 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3503
fae299cd 3504 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
3505
3506 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3507 from finish_block. */
2acceee2 3508 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
3509 lowpc = highpc;
3510 lowpc += baseaddr;
3511 highpc += baseaddr;
3512
39cbfefa
DJ
3513 /* Find the filename. Do not use dwarf2_name here, since the filename
3514 is not a source language identifier. */
e142c38c 3515 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3516 if (attr)
3517 {
3518 name = DW_STRING (attr);
3519 }
e1024ff1 3520
e142c38c 3521 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 3522 if (attr)
e1024ff1
DJ
3523 comp_dir = DW_STRING (attr);
3524 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 3525 {
e1024ff1
DJ
3526 comp_dir = ldirname (name);
3527 if (comp_dir != NULL)
3528 make_cleanup (xfree, comp_dir);
3529 }
3530 if (comp_dir != NULL)
3531 {
3532 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3533 directory, get rid of it. */
3534 char *cp = strchr (comp_dir, ':');
c906108c 3535
e1024ff1
DJ
3536 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3537 comp_dir = cp + 1;
c906108c
SS
3538 }
3539
e1024ff1
DJ
3540 if (name == NULL)
3541 name = "<unknown>";
3542
e142c38c 3543 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
3544 if (attr)
3545 {
e142c38c 3546 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
3547 }
3548
b0f35d58
DL
3549 attr = dwarf2_attr (die, DW_AT_producer, cu);
3550 if (attr)
3551 cu->producer = DW_STRING (attr);
303b6f5d 3552
c906108c
SS
3553 /* We assume that we're processing GCC output. */
3554 processing_gcc_compilation = 2;
c906108c 3555
df8a16a1
DJ
3556 processing_has_namespace_info = 0;
3557
c906108c
SS
3558 start_symtab (name, comp_dir, lowpc);
3559 record_debugformat ("DWARF 2");
303b6f5d 3560 record_producer (cu->producer);
c906108c 3561
e142c38c 3562 initialize_cu_func_list (cu);
c906108c 3563
cb1df416
DJ
3564 /* Decode line number information if present. We do this before
3565 processing child DIEs, so that the line header table is available
3566 for DW_AT_decl_file. */
e142c38c 3567 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
3568 if (attr)
3569 {
debd256d 3570 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 3571 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
3572 if (line_header)
3573 {
cb1df416
DJ
3574 cu->line_header = line_header;
3575 make_cleanup (free_cu_line_header, cu);
aaa75496 3576 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 3577 }
5fb290d7 3578 }
debd256d 3579
cb1df416
DJ
3580 /* Process all dies in compilation unit. */
3581 if (die->child != NULL)
3582 {
3583 child_die = die->child;
3584 while (child_die && child_die->tag)
3585 {
3586 process_die (child_die, cu);
3587 child_die = sibling_die (child_die);
3588 }
3589 }
3590
2e276125
JB
3591 /* Decode macro information, if present. Dwarf 2 macro information
3592 refers to information in the line number info statement program
3593 header, so we can only read it if we've read the header
3594 successfully. */
e142c38c 3595 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 3596 if (attr && line_header)
2e276125
JB
3597 {
3598 unsigned int macro_offset = DW_UNSND (attr);
3599 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 3600 comp_dir, abfd, cu);
2e276125 3601 }
debd256d 3602 do_cleanups (back_to);
5fb290d7
DJ
3603}
3604
348e048f
DE
3605/* For TUs we want to skip the first top level sibling if it's not the
3606 actual type being defined by this TU. In this case the first top
3607 level sibling is there to provide context only. */
3608
3609static void
3610read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3611{
3612 struct objfile *objfile = cu->objfile;
3613 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3614 CORE_ADDR lowpc;
3615 struct attribute *attr;
3616 char *name = NULL;
3617 char *comp_dir = NULL;
3618 struct die_info *child_die;
3619 bfd *abfd = objfile->obfd;
3620 struct line_header *line_header = 0;
3621
3622 /* start_symtab needs a low pc, but we don't really have one.
3623 Do what read_file_scope would do in the absence of such info. */
3624 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3625
3626 /* Find the filename. Do not use dwarf2_name here, since the filename
3627 is not a source language identifier. */
3628 attr = dwarf2_attr (die, DW_AT_name, cu);
3629 if (attr)
3630 name = DW_STRING (attr);
3631
3632 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3633 if (attr)
3634 comp_dir = DW_STRING (attr);
3635 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3636 {
3637 comp_dir = ldirname (name);
3638 if (comp_dir != NULL)
3639 make_cleanup (xfree, comp_dir);
3640 }
3641
3642 if (name == NULL)
3643 name = "<unknown>";
3644
3645 attr = dwarf2_attr (die, DW_AT_language, cu);
3646 if (attr)
3647 set_cu_language (DW_UNSND (attr), cu);
3648
3649 /* This isn't technically needed today. It is done for symmetry
3650 with read_file_scope. */
3651 attr = dwarf2_attr (die, DW_AT_producer, cu);
3652 if (attr)
3653 cu->producer = DW_STRING (attr);
3654
3655 /* We assume that we're processing GCC output. */
3656 processing_gcc_compilation = 2;
3657
3658 processing_has_namespace_info = 0;
3659
3660 start_symtab (name, comp_dir, lowpc);
3661 record_debugformat ("DWARF 2");
3662 record_producer (cu->producer);
3663
3664 /* Process the dies in the type unit. */
3665 if (die->child == NULL)
3666 {
3667 dump_die_for_error (die);
3668 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3669 bfd_get_filename (abfd));
3670 }
3671
3672 child_die = die->child;
3673
3674 while (child_die && child_die->tag)
3675 {
3676 process_die (child_die, cu);
3677
3678 child_die = sibling_die (child_die);
3679 }
3680
3681 do_cleanups (back_to);
3682}
3683
5fb290d7 3684static void
e142c38c
DJ
3685add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3686 struct dwarf2_cu *cu)
5fb290d7
DJ
3687{
3688 struct function_range *thisfn;
3689
3690 thisfn = (struct function_range *)
7b5a2f43 3691 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
3692 thisfn->name = name;
3693 thisfn->lowpc = lowpc;
3694 thisfn->highpc = highpc;
3695 thisfn->seen_line = 0;
3696 thisfn->next = NULL;
3697
e142c38c
DJ
3698 if (cu->last_fn == NULL)
3699 cu->first_fn = thisfn;
5fb290d7 3700 else
e142c38c 3701 cu->last_fn->next = thisfn;
5fb290d7 3702
e142c38c 3703 cu->last_fn = thisfn;
c906108c
SS
3704}
3705
d389af10
JK
3706/* qsort helper for inherit_abstract_dies. */
3707
3708static int
3709unsigned_int_compar (const void *ap, const void *bp)
3710{
3711 unsigned int a = *(unsigned int *) ap;
3712 unsigned int b = *(unsigned int *) bp;
3713
3714 return (a > b) - (b > a);
3715}
3716
3717/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3718 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3719 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3720
3721static void
3722inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3723{
3724 struct die_info *child_die;
3725 unsigned die_children_count;
3726 /* CU offsets which were referenced by children of the current DIE. */
3727 unsigned *offsets;
3728 unsigned *offsets_end, *offsetp;
3729 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3730 struct die_info *origin_die;
3731 /* Iterator of the ORIGIN_DIE children. */
3732 struct die_info *origin_child_die;
3733 struct cleanup *cleanups;
3734 struct attribute *attr;
3735
3736 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3737 if (!attr)
3738 return;
3739
3740 origin_die = follow_die_ref (die, attr, &cu);
edb3359d
DJ
3741 if (die->tag != origin_die->tag
3742 && !(die->tag == DW_TAG_inlined_subroutine
3743 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3744 complaint (&symfile_complaints,
3745 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3746 die->offset, origin_die->offset);
3747
3748 child_die = die->child;
3749 die_children_count = 0;
3750 while (child_die && child_die->tag)
3751 {
3752 child_die = sibling_die (child_die);
3753 die_children_count++;
3754 }
3755 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3756 cleanups = make_cleanup (xfree, offsets);
3757
3758 offsets_end = offsets;
3759 child_die = die->child;
3760 while (child_die && child_die->tag)
3761 {
c38f313d
DJ
3762 /* For each CHILD_DIE, find the corresponding child of
3763 ORIGIN_DIE. If there is more than one layer of
3764 DW_AT_abstract_origin, follow them all; there shouldn't be,
3765 but GCC versions at least through 4.4 generate this (GCC PR
3766 40573). */
3767 struct die_info *child_origin_die = child_die;
3768 while (1)
3769 {
3770 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3771 if (attr == NULL)
3772 break;
3773 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3774 }
3775
d389af10
JK
3776 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3777 counterpart may exist. */
c38f313d 3778 if (child_origin_die != child_die)
d389af10 3779 {
edb3359d
DJ
3780 if (child_die->tag != child_origin_die->tag
3781 && !(child_die->tag == DW_TAG_inlined_subroutine
3782 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3783 complaint (&symfile_complaints,
3784 _("Child DIE 0x%x and its abstract origin 0x%x have "
3785 "different tags"), child_die->offset,
3786 child_origin_die->offset);
c38f313d
DJ
3787 if (child_origin_die->parent != origin_die)
3788 complaint (&symfile_complaints,
3789 _("Child DIE 0x%x and its abstract origin 0x%x have "
3790 "different parents"), child_die->offset,
3791 child_origin_die->offset);
3792 else
3793 *offsets_end++ = child_origin_die->offset;
d389af10
JK
3794 }
3795 child_die = sibling_die (child_die);
3796 }
3797 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3798 unsigned_int_compar);
3799 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3800 if (offsetp[-1] == *offsetp)
3801 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3802 "to DIE 0x%x as their abstract origin"),
3803 die->offset, *offsetp);
3804
3805 offsetp = offsets;
3806 origin_child_die = origin_die->child;
3807 while (origin_child_die && origin_child_die->tag)
3808 {
3809 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3810 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3811 offsetp++;
3812 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3813 {
3814 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3815 process_die (origin_child_die, cu);
3816 }
3817 origin_child_die = sibling_die (origin_child_die);
3818 }
3819
3820 do_cleanups (cleanups);
3821}
3822
c906108c 3823static void
e7c27a73 3824read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3825{
e7c27a73 3826 struct objfile *objfile = cu->objfile;
52f0bd74 3827 struct context_stack *new;
c906108c
SS
3828 CORE_ADDR lowpc;
3829 CORE_ADDR highpc;
3830 struct die_info *child_die;
edb3359d 3831 struct attribute *attr, *call_line, *call_file;
c906108c 3832 char *name;
e142c38c 3833 CORE_ADDR baseaddr;
801e3a5b 3834 struct block *block;
edb3359d
DJ
3835 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3836
3837 if (inlined_func)
3838 {
3839 /* If we do not have call site information, we can't show the
3840 caller of this inlined function. That's too confusing, so
3841 only use the scope for local variables. */
3842 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3843 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3844 if (call_line == NULL || call_file == NULL)
3845 {
3846 read_lexical_block_scope (die, cu);
3847 return;
3848 }
3849 }
c906108c 3850
e142c38c
DJ
3851 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3852
3853 name = dwarf2_linkage_name (die, cu);
c906108c
SS
3854
3855 /* Ignore functions with missing or empty names and functions with
3856 missing or invalid low and high pc attributes. */
d85a05f0 3857 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
3858 return;
3859
3860 lowpc += baseaddr;
3861 highpc += baseaddr;
3862
5fb290d7 3863 /* Record the function range for dwarf_decode_lines. */
e142c38c 3864 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 3865
c906108c 3866 new = push_context (0, lowpc);
f792889a 3867 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 3868
4cecd739
DJ
3869 /* If there is a location expression for DW_AT_frame_base, record
3870 it. */
e142c38c 3871 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 3872 if (attr)
c034e007
AC
3873 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3874 expression is being recorded directly in the function's symbol
3875 and not in a separate frame-base object. I guess this hack is
3876 to avoid adding some sort of frame-base adjunct/annex to the
3877 function's symbol :-(. The problem with doing this is that it
3878 results in a function symbol with a location expression that
3879 has nothing to do with the location of the function, ouch! The
3880 relationship should be: a function's symbol has-a frame base; a
3881 frame-base has-a location expression. */
e7c27a73 3882 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3883
e142c38c 3884 cu->list_in_scope = &local_symbols;
c906108c 3885
639d11d3 3886 if (die->child != NULL)
c906108c 3887 {
639d11d3 3888 child_die = die->child;
c906108c
SS
3889 while (child_die && child_die->tag)
3890 {
e7c27a73 3891 process_die (child_die, cu);
c906108c
SS
3892 child_die = sibling_die (child_die);
3893 }
3894 }
3895
d389af10
JK
3896 inherit_abstract_dies (die, cu);
3897
c906108c
SS
3898 new = pop_context ();
3899 /* Make a block for the local symbols within. */
801e3a5b
JB
3900 block = finish_block (new->name, &local_symbols, new->old_blocks,
3901 lowpc, highpc, objfile);
3902
df8a16a1
DJ
3903 /* For C++, set the block's scope. */
3904 if (cu->language == language_cplus)
3905 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 3906 determine_prefix (die, cu),
df8a16a1
DJ
3907 processing_has_namespace_info);
3908
801e3a5b
JB
3909 /* If we have address ranges, record them. */
3910 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3911
3912 /* In C++, we can have functions nested inside functions (e.g., when
3913 a function declares a class that has methods). This means that
3914 when we finish processing a function scope, we may need to go
3915 back to building a containing block's symbol lists. */
3916 local_symbols = new->locals;
3917 param_symbols = new->params;
27aa8d6a 3918 using_directives = new->using_directives;
208d8187 3919
921e78cf
JB
3920 /* If we've finished processing a top-level function, subsequent
3921 symbols go in the file symbol list. */
3922 if (outermost_context_p ())
e142c38c 3923 cu->list_in_scope = &file_symbols;
c906108c
SS
3924}
3925
3926/* Process all the DIES contained within a lexical block scope. Start
3927 a new scope, process the dies, and then close the scope. */
3928
3929static void
e7c27a73 3930read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3931{
e7c27a73 3932 struct objfile *objfile = cu->objfile;
52f0bd74 3933 struct context_stack *new;
c906108c
SS
3934 CORE_ADDR lowpc, highpc;
3935 struct die_info *child_die;
e142c38c
DJ
3936 CORE_ADDR baseaddr;
3937
3938 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3939
3940 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3941 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3942 as multiple lexical blocks? Handling children in a sane way would
3943 be nasty. Might be easier to properly extend generic blocks to
3944 describe ranges. */
d85a05f0 3945 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
3946 return;
3947 lowpc += baseaddr;
3948 highpc += baseaddr;
3949
3950 push_context (0, lowpc);
639d11d3 3951 if (die->child != NULL)
c906108c 3952 {
639d11d3 3953 child_die = die->child;
c906108c
SS
3954 while (child_die && child_die->tag)
3955 {
e7c27a73 3956 process_die (child_die, cu);
c906108c
SS
3957 child_die = sibling_die (child_die);
3958 }
3959 }
3960 new = pop_context ();
3961
8540c487 3962 if (local_symbols != NULL || using_directives != NULL)
c906108c 3963 {
801e3a5b
JB
3964 struct block *block
3965 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3966 highpc, objfile);
3967
3968 /* Note that recording ranges after traversing children, as we
3969 do here, means that recording a parent's ranges entails
3970 walking across all its children's ranges as they appear in
3971 the address map, which is quadratic behavior.
3972
3973 It would be nicer to record the parent's ranges before
3974 traversing its children, simply overriding whatever you find
3975 there. But since we don't even decide whether to create a
3976 block until after we've traversed its children, that's hard
3977 to do. */
3978 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
3979 }
3980 local_symbols = new->locals;
27aa8d6a 3981 using_directives = new->using_directives;
c906108c
SS
3982}
3983
43039443 3984/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
3985 Return 1 if the attributes are present and valid, otherwise, return 0.
3986 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
3987
3988static int
3989dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
3990 CORE_ADDR *high_return, struct dwarf2_cu *cu,
3991 struct partial_symtab *ranges_pst)
43039443
JK
3992{
3993 struct objfile *objfile = cu->objfile;
3994 struct comp_unit_head *cu_header = &cu->header;
3995 bfd *obfd = objfile->obfd;
3996 unsigned int addr_size = cu_header->addr_size;
3997 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3998 /* Base address selection entry. */
3999 CORE_ADDR base;
4000 int found_base;
4001 unsigned int dummy;
4002 gdb_byte *buffer;
4003 CORE_ADDR marker;
4004 int low_set;
4005 CORE_ADDR low = 0;
4006 CORE_ADDR high = 0;
ff013f42 4007 CORE_ADDR baseaddr;
43039443 4008
d00adf39
DE
4009 found_base = cu->base_known;
4010 base = cu->base_address;
43039443 4011
dce234bc 4012 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
4013 {
4014 complaint (&symfile_complaints,
4015 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4016 offset);
4017 return 0;
4018 }
dce234bc 4019 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
4020
4021 /* Read in the largest possible address. */
4022 marker = read_address (obfd, buffer, cu, &dummy);
4023 if ((marker & mask) == mask)
4024 {
4025 /* If we found the largest possible address, then
4026 read the base address. */
4027 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4028 buffer += 2 * addr_size;
4029 offset += 2 * addr_size;
4030 found_base = 1;
4031 }
4032
4033 low_set = 0;
4034
e7030f15 4035 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 4036
43039443
JK
4037 while (1)
4038 {
4039 CORE_ADDR range_beginning, range_end;
4040
4041 range_beginning = read_address (obfd, buffer, cu, &dummy);
4042 buffer += addr_size;
4043 range_end = read_address (obfd, buffer, cu, &dummy);
4044 buffer += addr_size;
4045 offset += 2 * addr_size;
4046
4047 /* An end of list marker is a pair of zero addresses. */
4048 if (range_beginning == 0 && range_end == 0)
4049 /* Found the end of list entry. */
4050 break;
4051
4052 /* Each base address selection entry is a pair of 2 values.
4053 The first is the largest possible address, the second is
4054 the base address. Check for a base address here. */
4055 if ((range_beginning & mask) == mask)
4056 {
4057 /* If we found the largest possible address, then
4058 read the base address. */
4059 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4060 found_base = 1;
4061 continue;
4062 }
4063
4064 if (!found_base)
4065 {
4066 /* We have no valid base address for the ranges
4067 data. */
4068 complaint (&symfile_complaints,
4069 _("Invalid .debug_ranges data (no base address)"));
4070 return 0;
4071 }
4072
4073 range_beginning += base;
4074 range_end += base;
4075
ff013f42
JK
4076 if (ranges_pst != NULL && range_beginning < range_end)
4077 addrmap_set_empty (objfile->psymtabs_addrmap,
4078 range_beginning + baseaddr, range_end - 1 + baseaddr,
4079 ranges_pst);
4080
43039443
JK
4081 /* FIXME: This is recording everything as a low-high
4082 segment of consecutive addresses. We should have a
4083 data structure for discontiguous block ranges
4084 instead. */
4085 if (! low_set)
4086 {
4087 low = range_beginning;
4088 high = range_end;
4089 low_set = 1;
4090 }
4091 else
4092 {
4093 if (range_beginning < low)
4094 low = range_beginning;
4095 if (range_end > high)
4096 high = range_end;
4097 }
4098 }
4099
4100 if (! low_set)
4101 /* If the first entry is an end-of-list marker, the range
4102 describes an empty scope, i.e. no instructions. */
4103 return 0;
4104
4105 if (low_return)
4106 *low_return = low;
4107 if (high_return)
4108 *high_return = high;
4109 return 1;
4110}
4111
af34e669
DJ
4112/* Get low and high pc attributes from a die. Return 1 if the attributes
4113 are present and valid, otherwise, return 0. Return -1 if the range is
4114 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 4115static int
af34e669 4116dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
4117 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4118 struct partial_symtab *pst)
c906108c
SS
4119{
4120 struct attribute *attr;
af34e669
DJ
4121 CORE_ADDR low = 0;
4122 CORE_ADDR high = 0;
4123 int ret = 0;
c906108c 4124
e142c38c 4125 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 4126 if (attr)
af34e669
DJ
4127 {
4128 high = DW_ADDR (attr);
e142c38c 4129 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
4130 if (attr)
4131 low = DW_ADDR (attr);
4132 else
4133 /* Found high w/o low attribute. */
4134 return 0;
4135
4136 /* Found consecutive range of addresses. */
4137 ret = 1;
4138 }
c906108c 4139 else
af34e669 4140 {
e142c38c 4141 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
4142 if (attr != NULL)
4143 {
af34e669 4144 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 4145 .debug_ranges section. */
d85a05f0 4146 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 4147 return 0;
43039443 4148 /* Found discontinuous range of addresses. */
af34e669
DJ
4149 ret = -1;
4150 }
4151 }
c906108c
SS
4152
4153 if (high < low)
4154 return 0;
4155
4156 /* When using the GNU linker, .gnu.linkonce. sections are used to
4157 eliminate duplicate copies of functions and vtables and such.
4158 The linker will arbitrarily choose one and discard the others.
4159 The AT_*_pc values for such functions refer to local labels in
4160 these sections. If the section from that file was discarded, the
4161 labels are not in the output, so the relocs get a value of 0.
4162 If this is a discarded function, mark the pc bounds as invalid,
4163 so that GDB will ignore it. */
72dca2f5 4164 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
4165 return 0;
4166
4167 *lowpc = low;
4168 *highpc = high;
af34e669 4169 return ret;
c906108c
SS
4170}
4171
b084d499
JB
4172/* Assuming that DIE represents a subprogram DIE or a lexical block, get
4173 its low and high PC addresses. Do nothing if these addresses could not
4174 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4175 and HIGHPC to the high address if greater than HIGHPC. */
4176
4177static void
4178dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4179 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4180 struct dwarf2_cu *cu)
4181{
4182 CORE_ADDR low, high;
4183 struct die_info *child = die->child;
4184
d85a05f0 4185 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
4186 {
4187 *lowpc = min (*lowpc, low);
4188 *highpc = max (*highpc, high);
4189 }
4190
4191 /* If the language does not allow nested subprograms (either inside
4192 subprograms or lexical blocks), we're done. */
4193 if (cu->language != language_ada)
4194 return;
4195
4196 /* Check all the children of the given DIE. If it contains nested
4197 subprograms, then check their pc bounds. Likewise, we need to
4198 check lexical blocks as well, as they may also contain subprogram
4199 definitions. */
4200 while (child && child->tag)
4201 {
4202 if (child->tag == DW_TAG_subprogram
4203 || child->tag == DW_TAG_lexical_block)
4204 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4205 child = sibling_die (child);
4206 }
4207}
4208
fae299cd
DC
4209/* Get the low and high pc's represented by the scope DIE, and store
4210 them in *LOWPC and *HIGHPC. If the correct values can't be
4211 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4212
4213static void
4214get_scope_pc_bounds (struct die_info *die,
4215 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4216 struct dwarf2_cu *cu)
4217{
4218 CORE_ADDR best_low = (CORE_ADDR) -1;
4219 CORE_ADDR best_high = (CORE_ADDR) 0;
4220 CORE_ADDR current_low, current_high;
4221
d85a05f0 4222 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
4223 {
4224 best_low = current_low;
4225 best_high = current_high;
4226 }
4227 else
4228 {
4229 struct die_info *child = die->child;
4230
4231 while (child && child->tag)
4232 {
4233 switch (child->tag) {
4234 case DW_TAG_subprogram:
b084d499 4235 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
4236 break;
4237 case DW_TAG_namespace:
4238 /* FIXME: carlton/2004-01-16: Should we do this for
4239 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4240 that current GCC's always emit the DIEs corresponding
4241 to definitions of methods of classes as children of a
4242 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4243 the DIEs giving the declarations, which could be
4244 anywhere). But I don't see any reason why the
4245 standards says that they have to be there. */
4246 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4247
4248 if (current_low != ((CORE_ADDR) -1))
4249 {
4250 best_low = min (best_low, current_low);
4251 best_high = max (best_high, current_high);
4252 }
4253 break;
4254 default:
4255 /* Ignore. */
4256 break;
4257 }
4258
4259 child = sibling_die (child);
4260 }
4261 }
4262
4263 *lowpc = best_low;
4264 *highpc = best_high;
4265}
4266
801e3a5b
JB
4267/* Record the address ranges for BLOCK, offset by BASEADDR, as given
4268 in DIE. */
4269static void
4270dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4271 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4272{
4273 struct attribute *attr;
4274
4275 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4276 if (attr)
4277 {
4278 CORE_ADDR high = DW_ADDR (attr);
4279 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4280 if (attr)
4281 {
4282 CORE_ADDR low = DW_ADDR (attr);
4283 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4284 }
4285 }
4286
4287 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4288 if (attr)
4289 {
4290 bfd *obfd = cu->objfile->obfd;
4291
4292 /* The value of the DW_AT_ranges attribute is the offset of the
4293 address range list in the .debug_ranges section. */
4294 unsigned long offset = DW_UNSND (attr);
dce234bc 4295 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
4296
4297 /* For some target architectures, but not others, the
4298 read_address function sign-extends the addresses it returns.
4299 To recognize base address selection entries, we need a
4300 mask. */
4301 unsigned int addr_size = cu->header.addr_size;
4302 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4303
4304 /* The base address, to which the next pair is relative. Note
4305 that this 'base' is a DWARF concept: most entries in a range
4306 list are relative, to reduce the number of relocs against the
4307 debugging information. This is separate from this function's
4308 'baseaddr' argument, which GDB uses to relocate debugging
4309 information from a shared library based on the address at
4310 which the library was loaded. */
d00adf39
DE
4311 CORE_ADDR base = cu->base_address;
4312 int base_known = cu->base_known;
801e3a5b 4313
dce234bc 4314 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
4315 {
4316 complaint (&symfile_complaints,
4317 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4318 offset);
4319 return;
4320 }
4321
4322 for (;;)
4323 {
4324 unsigned int bytes_read;
4325 CORE_ADDR start, end;
4326
4327 start = read_address (obfd, buffer, cu, &bytes_read);
4328 buffer += bytes_read;
4329 end = read_address (obfd, buffer, cu, &bytes_read);
4330 buffer += bytes_read;
4331
4332 /* Did we find the end of the range list? */
4333 if (start == 0 && end == 0)
4334 break;
4335
4336 /* Did we find a base address selection entry? */
4337 else if ((start & base_select_mask) == base_select_mask)
4338 {
4339 base = end;
4340 base_known = 1;
4341 }
4342
4343 /* We found an ordinary address range. */
4344 else
4345 {
4346 if (!base_known)
4347 {
4348 complaint (&symfile_complaints,
4349 _("Invalid .debug_ranges data (no base address)"));
4350 return;
4351 }
4352
4353 record_block_range (block,
4354 baseaddr + base + start,
4355 baseaddr + base + end - 1);
4356 }
4357 }
4358 }
4359}
4360
c906108c
SS
4361/* Add an aggregate field to the field list. */
4362
4363static void
107d2387 4364dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
4365 struct dwarf2_cu *cu)
4366{
4367 struct objfile *objfile = cu->objfile;
5e2b427d 4368 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4369 struct nextfield *new_field;
4370 struct attribute *attr;
4371 struct field *fp;
4372 char *fieldname = "";
4373
4374 /* Allocate a new field list entry and link it in. */
4375 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 4376 make_cleanup (xfree, new_field);
c906108c 4377 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
4378
4379 if (die->tag == DW_TAG_inheritance)
4380 {
4381 new_field->next = fip->baseclasses;
4382 fip->baseclasses = new_field;
4383 }
4384 else
4385 {
4386 new_field->next = fip->fields;
4387 fip->fields = new_field;
4388 }
c906108c
SS
4389 fip->nfields++;
4390
4391 /* Handle accessibility and virtuality of field.
4392 The default accessibility for members is public, the default
4393 accessibility for inheritance is private. */
4394 if (die->tag != DW_TAG_inheritance)
4395 new_field->accessibility = DW_ACCESS_public;
4396 else
4397 new_field->accessibility = DW_ACCESS_private;
4398 new_field->virtuality = DW_VIRTUALITY_none;
4399
e142c38c 4400 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4401 if (attr)
4402 new_field->accessibility = DW_UNSND (attr);
4403 if (new_field->accessibility != DW_ACCESS_public)
4404 fip->non_public_fields = 1;
e142c38c 4405 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
4406 if (attr)
4407 new_field->virtuality = DW_UNSND (attr);
4408
4409 fp = &new_field->field;
a9a9bd0f 4410
e142c38c 4411 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 4412 {
a9a9bd0f
DC
4413 /* Data member other than a C++ static data member. */
4414
c906108c 4415 /* Get type of field. */
e7c27a73 4416 fp->type = die_type (die, cu);
c906108c 4417
d6a843b5 4418 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 4419
c906108c 4420 /* Get bit size of field (zero if none). */
e142c38c 4421 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
4422 if (attr)
4423 {
4424 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4425 }
4426 else
4427 {
4428 FIELD_BITSIZE (*fp) = 0;
4429 }
4430
4431 /* Get bit offset of field. */
e142c38c 4432 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
4433 if (attr)
4434 {
d4b96c9a 4435 int byte_offset = 0;
c6a0999f 4436
3690dd37 4437 if (attr_form_is_section_offset (attr))
d4b96c9a 4438 dwarf2_complex_location_expr_complaint ();
3690dd37 4439 else if (attr_form_is_constant (attr))
c6a0999f 4440 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 4441 else if (attr_form_is_block (attr))
c6a0999f 4442 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
4443 else
4444 dwarf2_complex_location_expr_complaint ();
c6a0999f 4445
d6a843b5 4446 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 4447 }
e142c38c 4448 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
4449 if (attr)
4450 {
5e2b427d 4451 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
4452 {
4453 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
4454 additional bit offset from the MSB of the containing
4455 anonymous object to the MSB of the field. We don't
4456 have to do anything special since we don't need to
4457 know the size of the anonymous object. */
c906108c
SS
4458 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4459 }
4460 else
4461 {
4462 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
4463 MSB of the anonymous object, subtract off the number of
4464 bits from the MSB of the field to the MSB of the
4465 object, and then subtract off the number of bits of
4466 the field itself. The result is the bit offset of
4467 the LSB of the field. */
c906108c
SS
4468 int anonymous_size;
4469 int bit_offset = DW_UNSND (attr);
4470
e142c38c 4471 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4472 if (attr)
4473 {
4474 /* The size of the anonymous object containing
4475 the bit field is explicit, so use the
4476 indicated size (in bytes). */
4477 anonymous_size = DW_UNSND (attr);
4478 }
4479 else
4480 {
4481 /* The size of the anonymous object containing
4482 the bit field must be inferred from the type
4483 attribute of the data member containing the
4484 bit field. */
4485 anonymous_size = TYPE_LENGTH (fp->type);
4486 }
4487 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4488 - bit_offset - FIELD_BITSIZE (*fp);
4489 }
4490 }
4491
4492 /* Get name of field. */
39cbfefa
DJ
4493 fieldname = dwarf2_name (die, cu);
4494 if (fieldname == NULL)
4495 fieldname = "";
d8151005
DJ
4496
4497 /* The name is already allocated along with this objfile, so we don't
4498 need to duplicate it for the type. */
4499 fp->name = fieldname;
c906108c
SS
4500
4501 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 4502 pointer or virtual base class pointer) to private. */
e142c38c 4503 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 4504 {
d48cc9dd 4505 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
4506 new_field->accessibility = DW_ACCESS_private;
4507 fip->non_public_fields = 1;
4508 }
4509 }
a9a9bd0f 4510 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 4511 {
a9a9bd0f
DC
4512 /* C++ static member. */
4513
4514 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4515 is a declaration, but all versions of G++ as of this writing
4516 (so through at least 3.2.1) incorrectly generate
4517 DW_TAG_variable tags. */
4518
c906108c 4519 char *physname;
c906108c 4520
a9a9bd0f 4521 /* Get name of field. */
39cbfefa
DJ
4522 fieldname = dwarf2_name (die, cu);
4523 if (fieldname == NULL)
c906108c
SS
4524 return;
4525
2df3850c 4526 /* Get physical name. */
e142c38c 4527 physname = dwarf2_linkage_name (die, cu);
c906108c 4528
d8151005
DJ
4529 /* The name is already allocated along with this objfile, so we don't
4530 need to duplicate it for the type. */
4531 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 4532 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 4533 FIELD_NAME (*fp) = fieldname;
c906108c
SS
4534 }
4535 else if (die->tag == DW_TAG_inheritance)
4536 {
4537 /* C++ base class field. */
e142c38c 4538 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 4539 if (attr)
d4b96c9a
JK
4540 {
4541 int byte_offset = 0;
4542
4543 if (attr_form_is_section_offset (attr))
4544 dwarf2_complex_location_expr_complaint ();
4545 else if (attr_form_is_constant (attr))
4546 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4547 else if (attr_form_is_block (attr))
4548 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4549 else
4550 dwarf2_complex_location_expr_complaint ();
4551
4552 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4553 }
c906108c 4554 FIELD_BITSIZE (*fp) = 0;
e7c27a73 4555 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
4556 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4557 fip->nbaseclasses++;
4558 }
4559}
4560
4561/* Create the vector of fields, and attach it to the type. */
4562
4563static void
fba45db2 4564dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4565 struct dwarf2_cu *cu)
c906108c
SS
4566{
4567 int nfields = fip->nfields;
4568
4569 /* Record the field count, allocate space for the array of fields,
4570 and create blank accessibility bitfields if necessary. */
4571 TYPE_NFIELDS (type) = nfields;
4572 TYPE_FIELDS (type) = (struct field *)
4573 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4574 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4575
b4ba55a1 4576 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
4577 {
4578 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4579
4580 TYPE_FIELD_PRIVATE_BITS (type) =
4581 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4582 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4583
4584 TYPE_FIELD_PROTECTED_BITS (type) =
4585 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4586 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4587
4588 TYPE_FIELD_IGNORE_BITS (type) =
4589 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4590 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4591 }
4592
4593 /* If the type has baseclasses, allocate and clear a bit vector for
4594 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 4595 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
4596 {
4597 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 4598 unsigned char *pointer;
c906108c
SS
4599
4600 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
4601 pointer = TYPE_ALLOC (type, num_bytes);
4602 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
4603 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4604 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4605 }
4606
4607 /* Copy the saved-up fields into the field vector. Start from the head
4608 of the list, adding to the tail of the field array, so that they end
4609 up in the same order in the array in which they were added to the list. */
4610 while (nfields-- > 0)
4611 {
7d0ccb61
DJ
4612 struct nextfield *fieldp;
4613
4614 if (fip->fields)
4615 {
4616 fieldp = fip->fields;
4617 fip->fields = fieldp->next;
4618 }
4619 else
4620 {
4621 fieldp = fip->baseclasses;
4622 fip->baseclasses = fieldp->next;
4623 }
4624
4625 TYPE_FIELD (type, nfields) = fieldp->field;
4626 switch (fieldp->accessibility)
c906108c 4627 {
c5aa993b 4628 case DW_ACCESS_private:
b4ba55a1
JB
4629 if (cu->language != language_ada)
4630 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 4631 break;
c906108c 4632
c5aa993b 4633 case DW_ACCESS_protected:
b4ba55a1
JB
4634 if (cu->language != language_ada)
4635 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 4636 break;
c906108c 4637
c5aa993b
JM
4638 case DW_ACCESS_public:
4639 break;
c906108c 4640
c5aa993b
JM
4641 default:
4642 /* Unknown accessibility. Complain and treat it as public. */
4643 {
e2e0b3e5 4644 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 4645 fieldp->accessibility);
c5aa993b
JM
4646 }
4647 break;
c906108c
SS
4648 }
4649 if (nfields < fip->nbaseclasses)
4650 {
7d0ccb61 4651 switch (fieldp->virtuality)
c906108c 4652 {
c5aa993b
JM
4653 case DW_VIRTUALITY_virtual:
4654 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
4655 if (cu->language == language_ada)
4656 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
4657 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4658 break;
c906108c
SS
4659 }
4660 }
c906108c
SS
4661 }
4662}
4663
c906108c
SS
4664/* Add a member function to the proper fieldlist. */
4665
4666static void
107d2387 4667dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 4668 struct type *type, struct dwarf2_cu *cu)
c906108c 4669{
e7c27a73 4670 struct objfile *objfile = cu->objfile;
c906108c
SS
4671 struct attribute *attr;
4672 struct fnfieldlist *flp;
4673 int i;
4674 struct fn_field *fnp;
4675 char *fieldname;
4676 char *physname;
4677 struct nextfnfield *new_fnfield;
f792889a 4678 struct type *this_type;
c906108c 4679
b4ba55a1
JB
4680 if (cu->language == language_ada)
4681 error ("unexpected member function in Ada type");
4682
2df3850c 4683 /* Get name of member function. */
39cbfefa
DJ
4684 fieldname = dwarf2_name (die, cu);
4685 if (fieldname == NULL)
2df3850c 4686 return;
c906108c 4687
2df3850c 4688 /* Get the mangled name. */
e142c38c 4689 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
4690
4691 /* Look up member function name in fieldlist. */
4692 for (i = 0; i < fip->nfnfields; i++)
4693 {
27bfe10e 4694 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
4695 break;
4696 }
4697
4698 /* Create new list element if necessary. */
4699 if (i < fip->nfnfields)
4700 flp = &fip->fnfieldlists[i];
4701 else
4702 {
4703 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4704 {
4705 fip->fnfieldlists = (struct fnfieldlist *)
4706 xrealloc (fip->fnfieldlists,
4707 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4708 * sizeof (struct fnfieldlist));
c906108c 4709 if (fip->nfnfields == 0)
c13c43fd 4710 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
4711 }
4712 flp = &fip->fnfieldlists[fip->nfnfields];
4713 flp->name = fieldname;
4714 flp->length = 0;
4715 flp->head = NULL;
4716 fip->nfnfields++;
4717 }
4718
4719 /* Create a new member function field and chain it to the field list
4720 entry. */
4721 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 4722 make_cleanup (xfree, new_fnfield);
c906108c
SS
4723 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4724 new_fnfield->next = flp->head;
4725 flp->head = new_fnfield;
4726 flp->length++;
4727
4728 /* Fill in the member function field info. */
4729 fnp = &new_fnfield->fnfield;
d8151005
DJ
4730 /* The name is already allocated along with this objfile, so we don't
4731 need to duplicate it for the type. */
4732 fnp->physname = physname ? physname : "";
c906108c 4733 fnp->type = alloc_type (objfile);
f792889a
DJ
4734 this_type = read_type_die (die, cu);
4735 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 4736 {
f792889a 4737 int nparams = TYPE_NFIELDS (this_type);
c906108c 4738
f792889a 4739 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
4740 of the method itself (TYPE_CODE_METHOD). */
4741 smash_to_method_type (fnp->type, type,
f792889a
DJ
4742 TYPE_TARGET_TYPE (this_type),
4743 TYPE_FIELDS (this_type),
4744 TYPE_NFIELDS (this_type),
4745 TYPE_VARARGS (this_type));
c906108c
SS
4746
4747 /* Handle static member functions.
c5aa993b
JM
4748 Dwarf2 has no clean way to discern C++ static and non-static
4749 member functions. G++ helps GDB by marking the first
4750 parameter for non-static member functions (which is the
4751 this pointer) as artificial. We obtain this information
4752 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 4753 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
4754 fnp->voffset = VOFFSET_STATIC;
4755 }
4756 else
e2e0b3e5 4757 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 4758 physname);
c906108c
SS
4759
4760 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 4761 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 4762 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
4763
4764 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4765 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4766
4767 /* Get accessibility. */
e142c38c 4768 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4769 if (attr)
4770 {
4771 switch (DW_UNSND (attr))
4772 {
c5aa993b
JM
4773 case DW_ACCESS_private:
4774 fnp->is_private = 1;
4775 break;
4776 case DW_ACCESS_protected:
4777 fnp->is_protected = 1;
4778 break;
c906108c
SS
4779 }
4780 }
4781
b02dede2 4782 /* Check for artificial methods. */
e142c38c 4783 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
4784 if (attr && DW_UNSND (attr) != 0)
4785 fnp->is_artificial = 1;
4786
0d564a31
DJ
4787 /* Get index in virtual function table if it is a virtual member
4788 function. For GCC, this is an offset in the appropriate
4789 virtual table, as specified by DW_AT_containing_type. For
4790 everyone else, it is an expression to be evaluated relative
4791 to the object address. */
4792
e142c38c 4793 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
0d564a31 4794 if (attr && fnp->fcontext)
8e19ed76
PS
4795 {
4796 /* Support the .debug_loc offsets */
4797 if (attr_form_is_block (attr))
4798 {
e7c27a73 4799 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 4800 }
3690dd37 4801 else if (attr_form_is_section_offset (attr))
8e19ed76 4802 {
4d3c2250 4803 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4804 }
4805 else
4806 {
4d3c2250
KB
4807 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4808 fieldname);
8e19ed76 4809 }
0d564a31
DJ
4810 }
4811 else if (attr)
4812 {
4813 /* We only support trivial expressions here. This hack will work
ba950e4d 4814 for v3 classes, which always start with the vtable pointer. */
0d564a31
DJ
4815 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0
4816 && DW_BLOCK (attr)->data[0] == DW_OP_deref)
4817 {
4818 struct dwarf_block blk;
4819 blk.size = DW_BLOCK (attr)->size - 1;
4820 blk.data = DW_BLOCK (attr)->data + 1;
ba950e4d
DJ
4821 fnp->voffset = decode_locdesc (&blk, cu);
4822 if ((fnp->voffset % cu->header.addr_size) != 0)
4823 dwarf2_complex_location_expr_complaint ();
4824 else
4825 fnp->voffset /= cu->header.addr_size;
0d564a31
DJ
4826 fnp->voffset += 2;
4827 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4828 }
4829 else
4830 dwarf2_complex_location_expr_complaint ();
4831 }
d48cc9dd
DJ
4832 else
4833 {
4834 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4835 if (attr && DW_UNSND (attr))
4836 {
4837 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4838 complaint (&symfile_complaints,
4839 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4840 fieldname, die->offset);
4841 TYPE_CPLUS_DYNAMIC (type) = 1;
4842 }
4843 }
c906108c
SS
4844}
4845
4846/* Create the vector of member function fields, and attach it to the type. */
4847
4848static void
fba45db2 4849dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4850 struct dwarf2_cu *cu)
c906108c
SS
4851{
4852 struct fnfieldlist *flp;
4853 int total_length = 0;
4854 int i;
4855
b4ba55a1
JB
4856 if (cu->language == language_ada)
4857 error ("unexpected member functions in Ada type");
4858
c906108c
SS
4859 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4860 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4861 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4862
4863 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4864 {
4865 struct nextfnfield *nfp = flp->head;
4866 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4867 int k;
4868
4869 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4870 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4871 fn_flp->fn_fields = (struct fn_field *)
4872 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4873 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 4874 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
4875
4876 total_length += flp->length;
4877 }
4878
4879 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4880 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4881}
4882
1168df01
JB
4883/* Returns non-zero if NAME is the name of a vtable member in CU's
4884 language, zero otherwise. */
4885static int
4886is_vtable_name (const char *name, struct dwarf2_cu *cu)
4887{
4888 static const char vptr[] = "_vptr";
987504bb 4889 static const char vtable[] = "vtable";
1168df01 4890
987504bb
JJ
4891 /* Look for the C++ and Java forms of the vtable. */
4892 if ((cu->language == language_java
4893 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4894 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4895 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
4896 return 1;
4897
4898 return 0;
4899}
4900
c0dd20ea 4901/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
4902 functions, with the ABI-specified layout. If TYPE describes
4903 such a structure, smash it into a member function type.
61049d3b
DJ
4904
4905 GCC shouldn't do this; it should just output pointer to member DIEs.
4906 This is GCC PR debug/28767. */
c0dd20ea 4907
0b92b5bb
TT
4908static void
4909quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 4910{
0b92b5bb 4911 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
4912
4913 /* Check for a structure with no name and two children. */
0b92b5bb
TT
4914 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
4915 return;
c0dd20ea
DJ
4916
4917 /* Check for __pfn and __delta members. */
0b92b5bb
TT
4918 if (TYPE_FIELD_NAME (type, 0) == NULL
4919 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
4920 || TYPE_FIELD_NAME (type, 1) == NULL
4921 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
4922 return;
c0dd20ea
DJ
4923
4924 /* Find the type of the method. */
0b92b5bb 4925 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
4926 if (pfn_type == NULL
4927 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
4928 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 4929 return;
c0dd20ea
DJ
4930
4931 /* Look for the "this" argument. */
4932 pfn_type = TYPE_TARGET_TYPE (pfn_type);
4933 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 4934 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 4935 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 4936 return;
c0dd20ea
DJ
4937
4938 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
4939 new_type = alloc_type (objfile);
4940 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
4941 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
4942 TYPE_VARARGS (pfn_type));
0b92b5bb 4943 smash_to_methodptr_type (type, new_type);
c0dd20ea 4944}
1168df01 4945
c906108c
SS
4946/* Called when we find the DIE that starts a structure or union scope
4947 (definition) to process all dies that define the members of the
4948 structure or union.
4949
4950 NOTE: we need to call struct_type regardless of whether or not the
4951 DIE has an at_name attribute, since it might be an anonymous
4952 structure or union. This gets the type entered into our set of
4953 user defined types.
4954
4955 However, if the structure is incomplete (an opaque struct/union)
4956 then suppress creating a symbol table entry for it since gdb only
4957 wants to find the one with the complete definition. Note that if
4958 it is complete, we just call new_symbol, which does it's own
4959 checking about whether the struct/union is anonymous or not (and
4960 suppresses creating a symbol table entry itself). */
4961
f792889a 4962static struct type *
134d01f1 4963read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4964{
e7c27a73 4965 struct objfile *objfile = cu->objfile;
c906108c
SS
4966 struct type *type;
4967 struct attribute *attr;
39cbfefa 4968 char *name;
0114d602 4969 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 4970
348e048f
DE
4971 /* If the definition of this type lives in .debug_types, read that type.
4972 Don't follow DW_AT_specification though, that will take us back up
4973 the chain and we want to go down. */
4974 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
4975 if (attr)
4976 {
4977 struct dwarf2_cu *type_cu = cu;
4978 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
4979 /* We could just recurse on read_structure_type, but we need to call
4980 get_die_type to ensure only one type for this DIE is created.
4981 This is important, for example, because for c++ classes we need
4982 TYPE_NAME set which is only done by new_symbol. Blech. */
4983 type = read_type_die (type_die, type_cu);
4984 return set_die_type (die, type, cu);
4985 }
4986
c0dd20ea 4987 type = alloc_type (objfile);
c906108c 4988 INIT_CPLUS_SPECIFIC (type);
93311388 4989
39cbfefa
DJ
4990 name = dwarf2_name (die, cu);
4991 if (name != NULL)
c906108c 4992 {
987504bb
JJ
4993 if (cu->language == language_cplus
4994 || cu->language == language_java)
63d06c5c 4995 {
0114d602
DJ
4996 const char *new_prefix = determine_class_name (die, cu);
4997 TYPE_TAG_NAME (type) = (char *) new_prefix;
63d06c5c
DC
4998 }
4999 else
5000 {
d8151005
DJ
5001 /* The name is already allocated along with this objfile, so
5002 we don't need to duplicate it for the type. */
39cbfefa 5003 TYPE_TAG_NAME (type) = name;
63d06c5c 5004 }
c906108c
SS
5005 }
5006
5007 if (die->tag == DW_TAG_structure_type)
5008 {
5009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5010 }
5011 else if (die->tag == DW_TAG_union_type)
5012 {
5013 TYPE_CODE (type) = TYPE_CODE_UNION;
5014 }
5015 else
5016 {
c906108c
SS
5017 TYPE_CODE (type) = TYPE_CODE_CLASS;
5018 }
5019
0cc2414c
TT
5020 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5021 TYPE_DECLARED_CLASS (type) = 1;
5022
e142c38c 5023 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5024 if (attr)
5025 {
5026 TYPE_LENGTH (type) = DW_UNSND (attr);
5027 }
5028 else
5029 {
5030 TYPE_LENGTH (type) = 0;
5031 }
5032
876cecd0 5033 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 5034 if (die_is_declaration (die, cu))
876cecd0 5035 TYPE_STUB (type) = 1;
dc718098 5036
b4ba55a1
JB
5037 set_descriptive_type (type, die, cu);
5038
c906108c
SS
5039 /* We need to add the type field to the die immediately so we don't
5040 infinitely recurse when dealing with pointers to the structure
5041 type within the structure itself. */
1c379e20 5042 set_die_type (die, type, cu);
c906108c 5043
e142c38c 5044 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
5045 {
5046 struct field_info fi;
5047 struct die_info *child_die;
c906108c
SS
5048
5049 memset (&fi, 0, sizeof (struct field_info));
5050
639d11d3 5051 child_die = die->child;
c906108c
SS
5052
5053 while (child_die && child_die->tag)
5054 {
a9a9bd0f
DC
5055 if (child_die->tag == DW_TAG_member
5056 || child_die->tag == DW_TAG_variable)
c906108c 5057 {
a9a9bd0f
DC
5058 /* NOTE: carlton/2002-11-05: A C++ static data member
5059 should be a DW_TAG_member that is a declaration, but
5060 all versions of G++ as of this writing (so through at
5061 least 3.2.1) incorrectly generate DW_TAG_variable
5062 tags for them instead. */
e7c27a73 5063 dwarf2_add_field (&fi, child_die, cu);
c906108c 5064 }
8713b1b1 5065 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
5066 {
5067 /* C++ member function. */
e7c27a73 5068 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
5069 }
5070 else if (child_die->tag == DW_TAG_inheritance)
5071 {
5072 /* C++ base class field. */
e7c27a73 5073 dwarf2_add_field (&fi, child_die, cu);
c906108c 5074 }
c906108c
SS
5075 child_die = sibling_die (child_die);
5076 }
5077
5078 /* Attach fields and member functions to the type. */
5079 if (fi.nfields)
e7c27a73 5080 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
5081 if (fi.nfnfields)
5082 {
e7c27a73 5083 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 5084
c5aa993b 5085 /* Get the type which refers to the base class (possibly this
c906108c 5086 class itself) which contains the vtable pointer for the current
0d564a31
DJ
5087 class from the DW_AT_containing_type attribute. This use of
5088 DW_AT_containing_type is a GNU extension. */
c906108c 5089
e142c38c 5090 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 5091 {
e7c27a73 5092 struct type *t = die_containing_type (die, cu);
c906108c
SS
5093
5094 TYPE_VPTR_BASETYPE (type) = t;
5095 if (type == t)
5096 {
c906108c
SS
5097 int i;
5098
5099 /* Our own class provides vtbl ptr. */
5100 for (i = TYPE_NFIELDS (t) - 1;
5101 i >= TYPE_N_BASECLASSES (t);
5102 --i)
5103 {
5104 char *fieldname = TYPE_FIELD_NAME (t, i);
5105
1168df01 5106 if (is_vtable_name (fieldname, cu))
c906108c
SS
5107 {
5108 TYPE_VPTR_FIELDNO (type) = i;
5109 break;
5110 }
5111 }
5112
5113 /* Complain if virtual function table field not found. */
5114 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 5115 complaint (&symfile_complaints,
e2e0b3e5 5116 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
5117 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5118 "");
c906108c
SS
5119 }
5120 else
5121 {
5122 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5123 }
5124 }
f6235d4c
EZ
5125 else if (cu->producer
5126 && strncmp (cu->producer,
5127 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5128 {
5129 /* The IBM XLC compiler does not provide direct indication
5130 of the containing type, but the vtable pointer is
5131 always named __vfp. */
5132
5133 int i;
5134
5135 for (i = TYPE_NFIELDS (type) - 1;
5136 i >= TYPE_N_BASECLASSES (type);
5137 --i)
5138 {
5139 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5140 {
5141 TYPE_VPTR_FIELDNO (type) = i;
5142 TYPE_VPTR_BASETYPE (type) = type;
5143 break;
5144 }
5145 }
5146 }
c906108c 5147 }
c906108c 5148 }
63d06c5c 5149
0b92b5bb
TT
5150 quirk_gcc_member_function_pointer (type, cu->objfile);
5151
0114d602 5152 do_cleanups (back_to);
f792889a 5153 return type;
c906108c
SS
5154}
5155
134d01f1
DJ
5156static void
5157process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5158{
5159 struct objfile *objfile = cu->objfile;
90aeadfc 5160 struct die_info *child_die = die->child;
f792889a 5161 struct type *this_type;
c906108c 5162
f792889a
DJ
5163 this_type = get_die_type (die, cu);
5164 if (this_type == NULL)
5165 this_type = read_structure_type (die, cu);
c906108c 5166
90aeadfc
DC
5167 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5168 snapshots) has been known to create a die giving a declaration
5169 for a class that has, as a child, a die giving a definition for a
5170 nested class. So we have to process our children even if the
5171 current die is a declaration. Normally, of course, a declaration
5172 won't have any children at all. */
134d01f1 5173
90aeadfc
DC
5174 while (child_die != NULL && child_die->tag)
5175 {
5176 if (child_die->tag == DW_TAG_member
5177 || child_die->tag == DW_TAG_variable
5178 || child_die->tag == DW_TAG_inheritance)
134d01f1 5179 {
90aeadfc 5180 /* Do nothing. */
134d01f1 5181 }
90aeadfc
DC
5182 else
5183 process_die (child_die, cu);
134d01f1 5184
90aeadfc 5185 child_die = sibling_die (child_die);
134d01f1
DJ
5186 }
5187
fa4028e9
JB
5188 /* Do not consider external references. According to the DWARF standard,
5189 these DIEs are identified by the fact that they have no byte_size
5190 attribute, and a declaration attribute. */
5191 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5192 || !die_is_declaration (die, cu))
f792889a 5193 new_symbol (die, this_type, cu);
134d01f1
DJ
5194}
5195
5196/* Given a DW_AT_enumeration_type die, set its type. We do not
5197 complete the type's fields yet, or create any symbols. */
c906108c 5198
f792889a 5199static struct type *
134d01f1 5200read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5201{
e7c27a73 5202 struct objfile *objfile = cu->objfile;
c906108c 5203 struct type *type;
c906108c 5204 struct attribute *attr;
0114d602 5205 const char *name;
134d01f1 5206
348e048f
DE
5207 /* If the definition of this type lives in .debug_types, read that type.
5208 Don't follow DW_AT_specification though, that will take us back up
5209 the chain and we want to go down. */
5210 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5211 if (attr)
5212 {
5213 struct dwarf2_cu *type_cu = cu;
5214 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5215 type = read_type_die (type_die, type_cu);
5216 return set_die_type (die, type, cu);
5217 }
5218
c906108c
SS
5219 type = alloc_type (objfile);
5220
5221 TYPE_CODE (type) = TYPE_CODE_ENUM;
0114d602 5222 name = dwarf2_full_name (die, cu);
39cbfefa 5223 if (name != NULL)
0114d602 5224 TYPE_TAG_NAME (type) = (char *) name;
c906108c 5225
e142c38c 5226 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5227 if (attr)
5228 {
5229 TYPE_LENGTH (type) = DW_UNSND (attr);
5230 }
5231 else
5232 {
5233 TYPE_LENGTH (type) = 0;
5234 }
5235
137033e9
JB
5236 /* The enumeration DIE can be incomplete. In Ada, any type can be
5237 declared as private in the package spec, and then defined only
5238 inside the package body. Such types are known as Taft Amendment
5239 Types. When another package uses such a type, an incomplete DIE
5240 may be generated by the compiler. */
02eb380e 5241 if (die_is_declaration (die, cu))
876cecd0 5242 TYPE_STUB (type) = 1;
02eb380e 5243
f792889a 5244 return set_die_type (die, type, cu);
134d01f1
DJ
5245}
5246
8176b9b8 5247/* Determine the name of the type represented by DIE, which should be
0114d602
DJ
5248 a named C++ or Java compound type. Return the name in question,
5249 allocated on the objfile obstack. */
8176b9b8 5250
0114d602 5251static const char *
8176b9b8
DC
5252determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
5253{
0114d602 5254 const char *new_prefix = NULL;
8176b9b8
DC
5255
5256 /* If we don't have namespace debug info, guess the name by trying
5257 to demangle the names of members, just like we did in
72bf9492 5258 guess_structure_name. */
8176b9b8
DC
5259 if (!processing_has_namespace_info)
5260 {
5261 struct die_info *child;
5262
5263 for (child = die->child;
5264 child != NULL && child->tag != 0;
5265 child = sibling_die (child))
5266 {
5267 if (child->tag == DW_TAG_subprogram)
5268 {
0114d602 5269 char *phys_prefix
31c27f77
JJ
5270 = language_class_name_from_physname (cu->language_defn,
5271 dwarf2_linkage_name
8176b9b8
DC
5272 (child, cu));
5273
0114d602
DJ
5274 if (phys_prefix != NULL)
5275 {
5276 new_prefix
5277 = obsavestring (phys_prefix, strlen (phys_prefix),
5278 &cu->objfile->objfile_obstack);
5279 xfree (phys_prefix);
5280 break;
5281 }
8176b9b8
DC
5282 }
5283 }
5284 }
5285
5286 if (new_prefix == NULL)
0114d602 5287 new_prefix = dwarf2_full_name (die, cu);
8176b9b8
DC
5288
5289 return new_prefix;
5290}
5291
134d01f1
DJ
5292/* Given a pointer to a die which begins an enumeration, process all
5293 the dies that define the members of the enumeration, and create the
5294 symbol for the enumeration type.
5295
5296 NOTE: We reverse the order of the element list. */
5297
5298static void
5299process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5300{
5301 struct objfile *objfile = cu->objfile;
5302 struct die_info *child_die;
5303 struct field *fields;
134d01f1
DJ
5304 struct symbol *sym;
5305 int num_fields;
5306 int unsigned_enum = 1;
39cbfefa 5307 char *name;
f792889a 5308 struct type *this_type;
134d01f1 5309
c906108c
SS
5310 num_fields = 0;
5311 fields = NULL;
f792889a
DJ
5312 this_type = get_die_type (die, cu);
5313 if (this_type == NULL)
5314 this_type = read_enumeration_type (die, cu);
639d11d3 5315 if (die->child != NULL)
c906108c 5316 {
639d11d3 5317 child_die = die->child;
c906108c
SS
5318 while (child_die && child_die->tag)
5319 {
5320 if (child_die->tag != DW_TAG_enumerator)
5321 {
e7c27a73 5322 process_die (child_die, cu);
c906108c
SS
5323 }
5324 else
5325 {
39cbfefa
DJ
5326 name = dwarf2_name (child_die, cu);
5327 if (name)
c906108c 5328 {
f792889a 5329 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
5330 if (SYMBOL_VALUE (sym) < 0)
5331 unsigned_enum = 0;
5332
5333 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5334 {
5335 fields = (struct field *)
5336 xrealloc (fields,
5337 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 5338 * sizeof (struct field));
c906108c
SS
5339 }
5340
3567439c 5341 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 5342 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 5343 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
5344 FIELD_BITSIZE (fields[num_fields]) = 0;
5345
5346 num_fields++;
5347 }
5348 }
5349
5350 child_die = sibling_die (child_die);
5351 }
5352
5353 if (num_fields)
5354 {
f792889a
DJ
5355 TYPE_NFIELDS (this_type) = num_fields;
5356 TYPE_FIELDS (this_type) = (struct field *)
5357 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5358 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 5359 sizeof (struct field) * num_fields);
b8c9b27d 5360 xfree (fields);
c906108c
SS
5361 }
5362 if (unsigned_enum)
876cecd0 5363 TYPE_UNSIGNED (this_type) = 1;
c906108c 5364 }
134d01f1 5365
f792889a 5366 new_symbol (die, this_type, cu);
c906108c
SS
5367}
5368
5369/* Extract all information from a DW_TAG_array_type DIE and put it in
5370 the DIE's type field. For now, this only handles one dimensional
5371 arrays. */
5372
f792889a 5373static struct type *
e7c27a73 5374read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5375{
e7c27a73 5376 struct objfile *objfile = cu->objfile;
c906108c
SS
5377 struct die_info *child_die;
5378 struct type *type = NULL;
5379 struct type *element_type, *range_type, *index_type;
5380 struct type **range_types = NULL;
5381 struct attribute *attr;
5382 int ndim = 0;
5383 struct cleanup *back_to;
39cbfefa 5384 char *name;
c906108c 5385
e7c27a73 5386 element_type = die_type (die, cu);
c906108c
SS
5387
5388 /* Irix 6.2 native cc creates array types without children for
5389 arrays with unspecified length. */
639d11d3 5390 if (die->child == NULL)
c906108c 5391 {
46bf5051 5392 index_type = objfile_type (objfile)->builtin_int;
c906108c 5393 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
5394 type = create_array_type (NULL, element_type, range_type);
5395 return set_die_type (die, type, cu);
c906108c
SS
5396 }
5397
5398 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 5399 child_die = die->child;
c906108c
SS
5400 while (child_die && child_die->tag)
5401 {
5402 if (child_die->tag == DW_TAG_subrange_type)
5403 {
f792889a
DJ
5404 struct type *child_type = read_type_die (child_die, cu);
5405 if (child_type != NULL)
a02abb62
JB
5406 {
5407 /* The range type was succesfully read. Save it for
5408 the array type creation. */
5409 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5410 {
5411 range_types = (struct type **)
5412 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5413 * sizeof (struct type *));
5414 if (ndim == 0)
5415 make_cleanup (free_current_contents, &range_types);
5416 }
f792889a 5417 range_types[ndim++] = child_type;
a02abb62 5418 }
c906108c
SS
5419 }
5420 child_die = sibling_die (child_die);
5421 }
5422
5423 /* Dwarf2 dimensions are output from left to right, create the
5424 necessary array types in backwards order. */
7ca2d3a3 5425
c906108c 5426 type = element_type;
7ca2d3a3
DL
5427
5428 if (read_array_order (die, cu) == DW_ORD_col_major)
5429 {
5430 int i = 0;
5431 while (i < ndim)
5432 type = create_array_type (NULL, type, range_types[i++]);
5433 }
5434 else
5435 {
5436 while (ndim-- > 0)
5437 type = create_array_type (NULL, type, range_types[ndim]);
5438 }
c906108c 5439
f5f8a009
EZ
5440 /* Understand Dwarf2 support for vector types (like they occur on
5441 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5442 array type. This is not part of the Dwarf2/3 standard yet, but a
5443 custom vendor extension. The main difference between a regular
5444 array and the vector variant is that vectors are passed by value
5445 to functions. */
e142c38c 5446 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 5447 if (attr)
ea37ba09 5448 make_vector_type (type);
f5f8a009 5449
39cbfefa
DJ
5450 name = dwarf2_name (die, cu);
5451 if (name)
5452 TYPE_NAME (type) = name;
714e295e 5453
b4ba55a1
JB
5454 set_descriptive_type (type, die, cu);
5455
c906108c
SS
5456 do_cleanups (back_to);
5457
5458 /* Install the type in the die. */
f792889a 5459 return set_die_type (die, type, cu);
c906108c
SS
5460}
5461
7ca2d3a3
DL
5462static enum dwarf_array_dim_ordering
5463read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5464{
5465 struct attribute *attr;
5466
5467 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5468
5469 if (attr) return DW_SND (attr);
5470
5471 /*
5472 GNU F77 is a special case, as at 08/2004 array type info is the
5473 opposite order to the dwarf2 specification, but data is still
5474 laid out as per normal fortran.
5475
5476 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5477 version checking.
5478 */
5479
905e0470
PM
5480 if (cu->language == language_fortran
5481 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
5482 {
5483 return DW_ORD_row_major;
5484 }
5485
5486 switch (cu->language_defn->la_array_ordering)
5487 {
5488 case array_column_major:
5489 return DW_ORD_col_major;
5490 case array_row_major:
5491 default:
5492 return DW_ORD_row_major;
5493 };
5494}
5495
72019c9c
GM
5496/* Extract all information from a DW_TAG_set_type DIE and put it in
5497 the DIE's type field. */
5498
f792889a 5499static struct type *
72019c9c
GM
5500read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5501{
f792889a
DJ
5502 struct type *set_type = create_set_type (NULL, die_type (die, cu));
5503
5504 return set_die_type (die, set_type, cu);
72019c9c 5505}
7ca2d3a3 5506
c906108c
SS
5507/* First cut: install each common block member as a global variable. */
5508
5509static void
e7c27a73 5510read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5511{
5512 struct die_info *child_die;
5513 struct attribute *attr;
5514 struct symbol *sym;
5515 CORE_ADDR base = (CORE_ADDR) 0;
5516
e142c38c 5517 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
5518 if (attr)
5519 {
8e19ed76
PS
5520 /* Support the .debug_loc offsets */
5521 if (attr_form_is_block (attr))
5522 {
e7c27a73 5523 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 5524 }
3690dd37 5525 else if (attr_form_is_section_offset (attr))
8e19ed76 5526 {
4d3c2250 5527 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5528 }
5529 else
5530 {
4d3c2250
KB
5531 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5532 "common block member");
8e19ed76 5533 }
c906108c 5534 }
639d11d3 5535 if (die->child != NULL)
c906108c 5536 {
639d11d3 5537 child_die = die->child;
c906108c
SS
5538 while (child_die && child_die->tag)
5539 {
e7c27a73 5540 sym = new_symbol (child_die, NULL, cu);
e142c38c 5541 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
5542 if (attr)
5543 {
d4b96c9a
JK
5544 CORE_ADDR byte_offset = 0;
5545
5546 if (attr_form_is_section_offset (attr))
5547 dwarf2_complex_location_expr_complaint ();
5548 else if (attr_form_is_constant (attr))
5549 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5550 else if (attr_form_is_block (attr))
5551 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5552 else
5553 dwarf2_complex_location_expr_complaint ();
5554
5555 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
5556 add_symbol_to_list (sym, &global_symbols);
5557 }
5558 child_die = sibling_die (child_die);
5559 }
5560 }
5561}
5562
0114d602 5563/* Create a type for a C++ namespace. */
d9fa45fe 5564
0114d602
DJ
5565static struct type *
5566read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 5567{
e7c27a73 5568 struct objfile *objfile = cu->objfile;
0114d602 5569 const char *previous_prefix, *name;
9219021c 5570 int is_anonymous;
0114d602
DJ
5571 struct type *type;
5572
5573 /* For extensions, reuse the type of the original namespace. */
5574 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5575 {
5576 struct die_info *ext_die;
5577 struct dwarf2_cu *ext_cu = cu;
5578 ext_die = dwarf2_extension (die, &ext_cu);
5579 type = read_type_die (ext_die, ext_cu);
5580 return set_die_type (die, type, cu);
5581 }
9219021c 5582
e142c38c 5583 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
5584
5585 /* Now build the name of the current namespace. */
5586
0114d602
DJ
5587 previous_prefix = determine_prefix (die, cu);
5588 if (previous_prefix[0] != '\0')
5589 name = typename_concat (&objfile->objfile_obstack,
5590 previous_prefix, name, cu);
5591
5592 /* Create the type. */
5593 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5594 objfile);
5595 TYPE_NAME (type) = (char *) name;
5596 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5597
5598 set_die_type (die, type, cu);
5599
5600 return type;
5601}
5602
5603/* Read a C++ namespace. */
5604
5605static void
5606read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5607{
5608 struct objfile *objfile = cu->objfile;
5609 const char *name;
5610 int is_anonymous;
9219021c 5611
5c4e30ca
DC
5612 /* Add a symbol associated to this if we haven't seen the namespace
5613 before. Also, add a using directive if it's an anonymous
5614 namespace. */
9219021c 5615
f2f0e013 5616 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
5617 {
5618 struct type *type;
5619
0114d602 5620 type = read_type_die (die, cu);
e7c27a73 5621 new_symbol (die, type, cu);
5c4e30ca 5622
0114d602 5623 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 5624 if (is_anonymous)
0114d602
DJ
5625 {
5626 const char *previous_prefix = determine_prefix (die, cu);
82856980 5627 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL);
0114d602 5628 }
5c4e30ca 5629 }
9219021c 5630
639d11d3 5631 if (die->child != NULL)
d9fa45fe 5632 {
639d11d3 5633 struct die_info *child_die = die->child;
d9fa45fe
DC
5634
5635 while (child_die && child_die->tag)
5636 {
e7c27a73 5637 process_die (child_die, cu);
d9fa45fe
DC
5638 child_die = sibling_die (child_die);
5639 }
5640 }
38d518c9
EZ
5641}
5642
5d7cb8df
JK
5643/* Read a Fortran module. */
5644
5645static void
5646read_module (struct die_info *die, struct dwarf2_cu *cu)
5647{
5648 struct die_info *child_die = die->child;
5649
5650 /* FIXME: Support the separate Fortran module namespaces. */
5651
5652 while (child_die && child_die->tag)
5653 {
5654 process_die (child_die, cu);
5655 child_die = sibling_die (child_die);
5656 }
5657}
5658
38d518c9
EZ
5659/* Return the name of the namespace represented by DIE. Set
5660 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5661 namespace. */
5662
5663static const char *
e142c38c 5664namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
5665{
5666 struct die_info *current_die;
5667 const char *name = NULL;
5668
5669 /* Loop through the extensions until we find a name. */
5670
5671 for (current_die = die;
5672 current_die != NULL;
f2f0e013 5673 current_die = dwarf2_extension (die, &cu))
38d518c9 5674 {
e142c38c 5675 name = dwarf2_name (current_die, cu);
38d518c9
EZ
5676 if (name != NULL)
5677 break;
5678 }
5679
5680 /* Is it an anonymous namespace? */
5681
5682 *is_anonymous = (name == NULL);
5683 if (*is_anonymous)
5684 name = "(anonymous namespace)";
5685
5686 return name;
d9fa45fe
DC
5687}
5688
c906108c
SS
5689/* Extract all information from a DW_TAG_pointer_type DIE and add to
5690 the user defined type vector. */
5691
f792889a 5692static struct type *
e7c27a73 5693read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5694{
5e2b427d 5695 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 5696 struct comp_unit_head *cu_header = &cu->header;
c906108c 5697 struct type *type;
8b2dbe47
KB
5698 struct attribute *attr_byte_size;
5699 struct attribute *attr_address_class;
5700 int byte_size, addr_class;
c906108c 5701
e7c27a73 5702 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 5703
e142c38c 5704 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
5705 if (attr_byte_size)
5706 byte_size = DW_UNSND (attr_byte_size);
c906108c 5707 else
8b2dbe47
KB
5708 byte_size = cu_header->addr_size;
5709
e142c38c 5710 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
5711 if (attr_address_class)
5712 addr_class = DW_UNSND (attr_address_class);
5713 else
5714 addr_class = DW_ADDR_none;
5715
5716 /* If the pointer size or address class is different than the
5717 default, create a type variant marked as such and set the
5718 length accordingly. */
5719 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 5720 {
5e2b427d 5721 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
5722 {
5723 int type_flags;
5724
849957d9 5725 type_flags = gdbarch_address_class_type_flags
5e2b427d 5726 (gdbarch, byte_size, addr_class);
876cecd0
TT
5727 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5728 == 0);
8b2dbe47
KB
5729 type = make_type_with_address_space (type, type_flags);
5730 }
5731 else if (TYPE_LENGTH (type) != byte_size)
5732 {
e2e0b3e5 5733 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
5734 }
5735 else {
5736 /* Should we also complain about unhandled address classes? */
5737 }
c906108c 5738 }
8b2dbe47
KB
5739
5740 TYPE_LENGTH (type) = byte_size;
f792889a 5741 return set_die_type (die, type, cu);
c906108c
SS
5742}
5743
5744/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5745 the user defined type vector. */
5746
f792889a 5747static struct type *
e7c27a73 5748read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5749{
e7c27a73 5750 struct objfile *objfile = cu->objfile;
c906108c
SS
5751 struct type *type;
5752 struct type *to_type;
5753 struct type *domain;
5754
e7c27a73
DJ
5755 to_type = die_type (die, cu);
5756 domain = die_containing_type (die, cu);
0d5de010
DJ
5757
5758 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5759 type = lookup_methodptr_type (to_type);
5760 else
5761 type = lookup_memberptr_type (to_type, domain);
c906108c 5762
f792889a 5763 return set_die_type (die, type, cu);
c906108c
SS
5764}
5765
5766/* Extract all information from a DW_TAG_reference_type DIE and add to
5767 the user defined type vector. */
5768
f792889a 5769static struct type *
e7c27a73 5770read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5771{
e7c27a73 5772 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5773 struct type *type;
5774 struct attribute *attr;
5775
e7c27a73 5776 type = lookup_reference_type (die_type (die, cu));
e142c38c 5777 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5778 if (attr)
5779 {
5780 TYPE_LENGTH (type) = DW_UNSND (attr);
5781 }
5782 else
5783 {
107d2387 5784 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 5785 }
f792889a 5786 return set_die_type (die, type, cu);
c906108c
SS
5787}
5788
f792889a 5789static struct type *
e7c27a73 5790read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5791{
f792889a 5792 struct type *base_type, *cv_type;
c906108c 5793
e7c27a73 5794 base_type = die_type (die, cu);
f792889a
DJ
5795 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5796 return set_die_type (die, cv_type, cu);
c906108c
SS
5797}
5798
f792889a 5799static struct type *
e7c27a73 5800read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5801{
f792889a 5802 struct type *base_type, *cv_type;
c906108c 5803
e7c27a73 5804 base_type = die_type (die, cu);
f792889a
DJ
5805 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5806 return set_die_type (die, cv_type, cu);
c906108c
SS
5807}
5808
5809/* Extract all information from a DW_TAG_string_type DIE and add to
5810 the user defined type vector. It isn't really a user defined type,
5811 but it behaves like one, with other DIE's using an AT_user_def_type
5812 attribute to reference it. */
5813
f792889a 5814static struct type *
e7c27a73 5815read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5816{
e7c27a73 5817 struct objfile *objfile = cu->objfile;
3b7538c0 5818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
5819 struct type *type, *range_type, *index_type, *char_type;
5820 struct attribute *attr;
5821 unsigned int length;
5822
e142c38c 5823 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
5824 if (attr)
5825 {
5826 length = DW_UNSND (attr);
5827 }
5828 else
5829 {
b21b22e0 5830 /* check for the DW_AT_byte_size attribute */
e142c38c 5831 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
5832 if (attr)
5833 {
5834 length = DW_UNSND (attr);
5835 }
5836 else
5837 {
5838 length = 1;
5839 }
c906108c 5840 }
6ccb9162 5841
46bf5051 5842 index_type = objfile_type (objfile)->builtin_int;
c906108c 5843 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
5844 char_type = language_string_char_type (cu->language_defn, gdbarch);
5845 type = create_string_type (NULL, char_type, range_type);
6ccb9162 5846
f792889a 5847 return set_die_type (die, type, cu);
c906108c
SS
5848}
5849
5850/* Handle DIES due to C code like:
5851
5852 struct foo
c5aa993b
JM
5853 {
5854 int (*funcp)(int a, long l);
5855 int b;
5856 };
c906108c
SS
5857
5858 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 5859 */
c906108c 5860
f792889a 5861static struct type *
e7c27a73 5862read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5863{
5864 struct type *type; /* Type that this function returns */
5865 struct type *ftype; /* Function that returns above type */
5866 struct attribute *attr;
5867
e7c27a73 5868 type = die_type (die, cu);
0c8b41f1 5869 ftype = lookup_function_type (type);
c906108c 5870
5b8101ae 5871 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 5872 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 5873 if ((attr && (DW_UNSND (attr) != 0))
987504bb 5874 || cu->language == language_cplus
5b8101ae
PM
5875 || cu->language == language_java
5876 || cu->language == language_pascal)
876cecd0 5877 TYPE_PROTOTYPED (ftype) = 1;
c906108c 5878
c055b101
CV
5879 /* Store the calling convention in the type if it's available in
5880 the subroutine die. Otherwise set the calling convention to
5881 the default value DW_CC_normal. */
5882 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5883 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
5884
5885 /* We need to add the subroutine type to the die immediately so
5886 we don't infinitely recurse when dealing with parameters
5887 declared as the same subroutine type. */
5888 set_die_type (die, ftype, cu);
c055b101 5889
639d11d3 5890 if (die->child != NULL)
c906108c
SS
5891 {
5892 struct die_info *child_die;
5893 int nparams = 0;
5894 int iparams = 0;
5895
5896 /* Count the number of parameters.
5897 FIXME: GDB currently ignores vararg functions, but knows about
5898 vararg member functions. */
639d11d3 5899 child_die = die->child;
c906108c
SS
5900 while (child_die && child_die->tag)
5901 {
5902 if (child_die->tag == DW_TAG_formal_parameter)
5903 nparams++;
5904 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 5905 TYPE_VARARGS (ftype) = 1;
c906108c
SS
5906 child_die = sibling_die (child_die);
5907 }
5908
5909 /* Allocate storage for parameters and fill them in. */
5910 TYPE_NFIELDS (ftype) = nparams;
5911 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 5912 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 5913
639d11d3 5914 child_die = die->child;
c906108c
SS
5915 while (child_die && child_die->tag)
5916 {
5917 if (child_die->tag == DW_TAG_formal_parameter)
5918 {
5919 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
5920 member functions. G++ helps GDB by marking the first
5921 parameter for non-static member functions (which is the
5922 this pointer) as artificial. We pass this information
5923 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 5924 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
5925 if (attr)
5926 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5927 else
5928 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 5929 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
5930 iparams++;
5931 }
5932 child_die = sibling_die (child_die);
5933 }
5934 }
5935
76c10ea2 5936 return ftype;
c906108c
SS
5937}
5938
f792889a 5939static struct type *
e7c27a73 5940read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5941{
e7c27a73 5942 struct objfile *objfile = cu->objfile;
2f038fcb 5943 struct attribute *attr;
0114d602 5944 const char *name = NULL;
f792889a 5945 struct type *this_type;
c906108c 5946
0114d602 5947 name = dwarf2_full_name (die, cu);
f792889a 5948 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
5949 TYPE_FLAG_TARGET_STUB, NULL, objfile);
5950 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
5951 set_die_type (die, this_type, cu);
5952 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
5953 return this_type;
c906108c
SS
5954}
5955
5956/* Find a representation of a given base type and install
5957 it in the TYPE field of the die. */
5958
f792889a 5959static struct type *
e7c27a73 5960read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5961{
e7c27a73 5962 struct objfile *objfile = cu->objfile;
c906108c
SS
5963 struct type *type;
5964 struct attribute *attr;
5965 int encoding = 0, size = 0;
39cbfefa 5966 char *name;
6ccb9162
UW
5967 enum type_code code = TYPE_CODE_INT;
5968 int type_flags = 0;
5969 struct type *target_type = NULL;
c906108c 5970
e142c38c 5971 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
5972 if (attr)
5973 {
5974 encoding = DW_UNSND (attr);
5975 }
e142c38c 5976 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5977 if (attr)
5978 {
5979 size = DW_UNSND (attr);
5980 }
39cbfefa 5981 name = dwarf2_name (die, cu);
6ccb9162 5982 if (!name)
c906108c 5983 {
6ccb9162
UW
5984 complaint (&symfile_complaints,
5985 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 5986 }
6ccb9162
UW
5987
5988 switch (encoding)
c906108c 5989 {
6ccb9162
UW
5990 case DW_ATE_address:
5991 /* Turn DW_ATE_address into a void * pointer. */
5992 code = TYPE_CODE_PTR;
5993 type_flags |= TYPE_FLAG_UNSIGNED;
5994 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5995 break;
5996 case DW_ATE_boolean:
5997 code = TYPE_CODE_BOOL;
5998 type_flags |= TYPE_FLAG_UNSIGNED;
5999 break;
6000 case DW_ATE_complex_float:
6001 code = TYPE_CODE_COMPLEX;
6002 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6003 break;
6004 case DW_ATE_decimal_float:
6005 code = TYPE_CODE_DECFLOAT;
6006 break;
6007 case DW_ATE_float:
6008 code = TYPE_CODE_FLT;
6009 break;
6010 case DW_ATE_signed:
6011 break;
6012 case DW_ATE_unsigned:
6013 type_flags |= TYPE_FLAG_UNSIGNED;
6014 break;
6015 case DW_ATE_signed_char:
868a0084
PM
6016 if (cu->language == language_ada || cu->language == language_m2
6017 || cu->language == language_pascal)
6ccb9162
UW
6018 code = TYPE_CODE_CHAR;
6019 break;
6020 case DW_ATE_unsigned_char:
868a0084
PM
6021 if (cu->language == language_ada || cu->language == language_m2
6022 || cu->language == language_pascal)
6ccb9162
UW
6023 code = TYPE_CODE_CHAR;
6024 type_flags |= TYPE_FLAG_UNSIGNED;
6025 break;
6026 default:
6027 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6028 dwarf_type_encoding_name (encoding));
6029 break;
c906108c 6030 }
6ccb9162 6031
0114d602
DJ
6032 type = init_type (code, size, type_flags, NULL, objfile);
6033 TYPE_NAME (type) = name;
6ccb9162
UW
6034 TYPE_TARGET_TYPE (type) = target_type;
6035
0114d602 6036 if (name && strcmp (name, "char") == 0)
876cecd0 6037 TYPE_NOSIGN (type) = 1;
0114d602 6038
f792889a 6039 return set_die_type (die, type, cu);
c906108c
SS
6040}
6041
a02abb62
JB
6042/* Read the given DW_AT_subrange DIE. */
6043
f792889a 6044static struct type *
a02abb62
JB
6045read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6046{
5e2b427d 6047 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
6048 struct type *base_type;
6049 struct type *range_type;
6050 struct attribute *attr;
43bbcdc2
PH
6051 LONGEST low = 0;
6052 LONGEST high = -1;
39cbfefa 6053 char *name;
43bbcdc2 6054 LONGEST negative_mask;
a02abb62 6055
a02abb62 6056 base_type = die_type (die, cu);
3d1f72c2 6057 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
6058 {
6059 complaint (&symfile_complaints,
e2e0b3e5 6060 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 6061 base_type
5e2b427d 6062 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6ccb9162 6063 0, NULL, cu->objfile);
a02abb62
JB
6064 }
6065
e142c38c 6066 if (cu->language == language_fortran)
a02abb62
JB
6067 {
6068 /* FORTRAN implies a lower bound of 1, if not given. */
6069 low = 1;
6070 }
6071
dd5e6932
DJ
6072 /* FIXME: For variable sized arrays either of these could be
6073 a variable rather than a constant value. We'll allow it,
6074 but we don't know how to handle it. */
e142c38c 6075 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
6076 if (attr)
6077 low = dwarf2_get_attr_constant_value (attr, 0);
6078
e142c38c 6079 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
6080 if (attr)
6081 {
6082 if (attr->form == DW_FORM_block1)
6083 {
6084 /* GCC encodes arrays with unspecified or dynamic length
6085 with a DW_FORM_block1 attribute.
6086 FIXME: GDB does not yet know how to handle dynamic
6087 arrays properly, treat them as arrays with unspecified
6088 length for now.
6089
6090 FIXME: jimb/2003-09-22: GDB does not really know
6091 how to handle arrays of unspecified length
6092 either; we just represent them as zero-length
6093 arrays. Choose an appropriate upper bound given
6094 the lower bound we've computed above. */
6095 high = low - 1;
6096 }
6097 else
6098 high = dwarf2_get_attr_constant_value (attr, 1);
6099 }
6100
43bbcdc2
PH
6101 negative_mask =
6102 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6103 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6104 low |= negative_mask;
6105 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6106 high |= negative_mask;
6107
a02abb62
JB
6108 range_type = create_range_type (NULL, base_type, low, high);
6109
39cbfefa
DJ
6110 name = dwarf2_name (die, cu);
6111 if (name)
6112 TYPE_NAME (range_type) = name;
a02abb62 6113
e142c38c 6114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
6115 if (attr)
6116 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6117
b4ba55a1
JB
6118 set_descriptive_type (range_type, die, cu);
6119
f792889a 6120 return set_die_type (die, range_type, cu);
a02abb62
JB
6121}
6122
f792889a 6123static struct type *
81a17f79
JB
6124read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6125{
6126 struct type *type;
81a17f79 6127
81a17f79
JB
6128 /* For now, we only support the C meaning of an unspecified type: void. */
6129
0114d602
DJ
6130 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6131 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 6132
f792889a 6133 return set_die_type (die, type, cu);
81a17f79 6134}
a02abb62 6135
51545339
DJ
6136/* Trivial hash function for die_info: the hash value of a DIE
6137 is its offset in .debug_info for this objfile. */
6138
6139static hashval_t
6140die_hash (const void *item)
6141{
6142 const struct die_info *die = item;
6143 return die->offset;
6144}
6145
6146/* Trivial comparison function for die_info structures: two DIEs
6147 are equal if they have the same offset. */
6148
6149static int
6150die_eq (const void *item_lhs, const void *item_rhs)
6151{
6152 const struct die_info *die_lhs = item_lhs;
6153 const struct die_info *die_rhs = item_rhs;
6154 return die_lhs->offset == die_rhs->offset;
6155}
6156
c906108c
SS
6157/* Read a whole compilation unit into a linked list of dies. */
6158
f9aca02d 6159static struct die_info *
93311388 6160read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 6161{
93311388
DE
6162 struct die_reader_specs reader_specs;
6163
348e048f 6164 gdb_assert (cu->die_hash == NULL);
51545339
DJ
6165 cu->die_hash
6166 = htab_create_alloc_ex (cu->header.length / 12,
6167 die_hash,
6168 die_eq,
6169 NULL,
6170 &cu->comp_unit_obstack,
6171 hashtab_obstack_allocate,
6172 dummy_obstack_deallocate);
6173
93311388
DE
6174 init_cu_die_reader (&reader_specs, cu);
6175
6176 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
639d11d3
DC
6177}
6178
d97bc12b
DE
6179/* Main entry point for reading a DIE and all children.
6180 Read the DIE and dump it if requested. */
6181
6182static struct die_info *
93311388
DE
6183read_die_and_children (const struct die_reader_specs *reader,
6184 gdb_byte *info_ptr,
d97bc12b
DE
6185 gdb_byte **new_info_ptr,
6186 struct die_info *parent)
6187{
93311388 6188 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
6189 new_info_ptr, parent);
6190
6191 if (dwarf2_die_debug)
6192 {
348e048f
DE
6193 fprintf_unfiltered (gdb_stdlog,
6194 "\nRead die from %s of %s:\n",
6195 reader->buffer == dwarf2_per_objfile->info.buffer
6196 ? ".debug_info"
6197 : reader->buffer == dwarf2_per_objfile->types.buffer
6198 ? ".debug_types"
6199 : "unknown section",
6200 reader->abfd->filename);
d97bc12b
DE
6201 dump_die (result, dwarf2_die_debug);
6202 }
6203
6204 return result;
6205}
6206
639d11d3
DC
6207/* Read a single die and all its descendents. Set the die's sibling
6208 field to NULL; set other fields in the die correctly, and set all
6209 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6210 location of the info_ptr after reading all of those dies. PARENT
6211 is the parent of the die in question. */
6212
6213static struct die_info *
93311388
DE
6214read_die_and_children_1 (const struct die_reader_specs *reader,
6215 gdb_byte *info_ptr,
d97bc12b
DE
6216 gdb_byte **new_info_ptr,
6217 struct die_info *parent)
639d11d3
DC
6218{
6219 struct die_info *die;
fe1b8b76 6220 gdb_byte *cur_ptr;
639d11d3
DC
6221 int has_children;
6222
93311388 6223 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
6224 if (die == NULL)
6225 {
6226 *new_info_ptr = cur_ptr;
6227 return NULL;
6228 }
93311388 6229 store_in_ref_table (die, reader->cu);
639d11d3
DC
6230
6231 if (has_children)
348e048f 6232 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
6233 else
6234 {
6235 die->child = NULL;
6236 *new_info_ptr = cur_ptr;
6237 }
6238
6239 die->sibling = NULL;
6240 die->parent = parent;
6241 return die;
6242}
6243
6244/* Read a die, all of its descendents, and all of its siblings; set
6245 all of the fields of all of the dies correctly. Arguments are as
6246 in read_die_and_children. */
6247
6248static struct die_info *
93311388
DE
6249read_die_and_siblings (const struct die_reader_specs *reader,
6250 gdb_byte *info_ptr,
fe1b8b76 6251 gdb_byte **new_info_ptr,
639d11d3
DC
6252 struct die_info *parent)
6253{
6254 struct die_info *first_die, *last_sibling;
fe1b8b76 6255 gdb_byte *cur_ptr;
639d11d3 6256
c906108c 6257 cur_ptr = info_ptr;
639d11d3
DC
6258 first_die = last_sibling = NULL;
6259
6260 while (1)
c906108c 6261 {
639d11d3 6262 struct die_info *die
93311388 6263 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 6264
1d325ec1 6265 if (die == NULL)
c906108c 6266 {
639d11d3
DC
6267 *new_info_ptr = cur_ptr;
6268 return first_die;
c906108c 6269 }
1d325ec1
DJ
6270
6271 if (!first_die)
6272 first_die = die;
c906108c 6273 else
1d325ec1
DJ
6274 last_sibling->sibling = die;
6275
6276 last_sibling = die;
c906108c 6277 }
c906108c
SS
6278}
6279
93311388
DE
6280/* Read the die from the .debug_info section buffer. Set DIEP to
6281 point to a newly allocated die with its information, except for its
6282 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6283 whether the die has children or not. */
6284
6285static gdb_byte *
6286read_full_die (const struct die_reader_specs *reader,
6287 struct die_info **diep, gdb_byte *info_ptr,
6288 int *has_children)
6289{
6290 unsigned int abbrev_number, bytes_read, i, offset;
6291 struct abbrev_info *abbrev;
6292 struct die_info *die;
6293 struct dwarf2_cu *cu = reader->cu;
6294 bfd *abfd = reader->abfd;
6295
6296 offset = info_ptr - reader->buffer;
6297 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6298 info_ptr += bytes_read;
6299 if (!abbrev_number)
6300 {
6301 *diep = NULL;
6302 *has_children = 0;
6303 return info_ptr;
6304 }
6305
6306 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6307 if (!abbrev)
348e048f
DE
6308 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6309 abbrev_number,
6310 bfd_get_filename (abfd));
6311
93311388
DE
6312 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6313 die->offset = offset;
6314 die->tag = abbrev->tag;
6315 die->abbrev = abbrev_number;
6316
6317 die->num_attrs = abbrev->num_attrs;
6318
6319 for (i = 0; i < abbrev->num_attrs; ++i)
6320 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6321 abfd, info_ptr, cu);
6322
6323 *diep = die;
6324 *has_children = abbrev->has_children;
6325 return info_ptr;
6326}
6327
c906108c
SS
6328/* In DWARF version 2, the description of the debugging information is
6329 stored in a separate .debug_abbrev section. Before we read any
6330 dies from a section we read in all abbreviations and install them
72bf9492
DJ
6331 in a hash table. This function also sets flags in CU describing
6332 the data found in the abbrev table. */
c906108c
SS
6333
6334static void
e7c27a73 6335dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 6336{
e7c27a73 6337 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 6338 gdb_byte *abbrev_ptr;
c906108c
SS
6339 struct abbrev_info *cur_abbrev;
6340 unsigned int abbrev_number, bytes_read, abbrev_name;
6341 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
6342 struct attr_abbrev *cur_attrs;
6343 unsigned int allocated_attrs;
c906108c 6344
57349743 6345 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
6346 obstack_init (&cu->abbrev_obstack);
6347 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6348 (ABBREV_HASH_SIZE
6349 * sizeof (struct abbrev_info *)));
6350 memset (cu->dwarf2_abbrevs, 0,
6351 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 6352
dce234bc 6353 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
6354 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6355 abbrev_ptr += bytes_read;
6356
f3dd6933
DJ
6357 allocated_attrs = ATTR_ALLOC_CHUNK;
6358 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6359
c906108c
SS
6360 /* loop until we reach an abbrev number of 0 */
6361 while (abbrev_number)
6362 {
f3dd6933 6363 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
6364
6365 /* read in abbrev header */
6366 cur_abbrev->number = abbrev_number;
6367 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6368 abbrev_ptr += bytes_read;
6369 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6370 abbrev_ptr += 1;
6371
72bf9492
DJ
6372 if (cur_abbrev->tag == DW_TAG_namespace)
6373 cu->has_namespace_info = 1;
6374
c906108c
SS
6375 /* now read in declarations */
6376 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6377 abbrev_ptr += bytes_read;
6378 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6379 abbrev_ptr += bytes_read;
6380 while (abbrev_name)
6381 {
f3dd6933 6382 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 6383 {
f3dd6933
DJ
6384 allocated_attrs += ATTR_ALLOC_CHUNK;
6385 cur_attrs
6386 = xrealloc (cur_attrs, (allocated_attrs
6387 * sizeof (struct attr_abbrev)));
c906108c 6388 }
ae038cb0
DJ
6389
6390 /* Record whether this compilation unit might have
6391 inter-compilation-unit references. If we don't know what form
6392 this attribute will have, then it might potentially be a
6393 DW_FORM_ref_addr, so we conservatively expect inter-CU
6394 references. */
6395
6396 if (abbrev_form == DW_FORM_ref_addr
6397 || abbrev_form == DW_FORM_indirect)
6398 cu->has_form_ref_addr = 1;
6399
f3dd6933
DJ
6400 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6401 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
6402 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6403 abbrev_ptr += bytes_read;
6404 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6405 abbrev_ptr += bytes_read;
6406 }
6407
f3dd6933
DJ
6408 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6409 (cur_abbrev->num_attrs
6410 * sizeof (struct attr_abbrev)));
6411 memcpy (cur_abbrev->attrs, cur_attrs,
6412 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6413
c906108c 6414 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
6415 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6416 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
6417
6418 /* Get next abbreviation.
6419 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
6420 always properly terminated with an abbrev number of 0.
6421 Exit loop if we encounter an abbreviation which we have
6422 already read (which means we are about to read the abbreviations
6423 for the next compile unit) or if the end of the abbreviation
6424 table is reached. */
dce234bc
PP
6425 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6426 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
6427 break;
6428 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6429 abbrev_ptr += bytes_read;
e7c27a73 6430 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
6431 break;
6432 }
f3dd6933
DJ
6433
6434 xfree (cur_attrs);
c906108c
SS
6435}
6436
f3dd6933 6437/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 6438
c906108c 6439static void
f3dd6933 6440dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 6441{
f3dd6933 6442 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 6443
f3dd6933
DJ
6444 obstack_free (&cu->abbrev_obstack, NULL);
6445 cu->dwarf2_abbrevs = NULL;
c906108c
SS
6446}
6447
6448/* Lookup an abbrev_info structure in the abbrev hash table. */
6449
6450static struct abbrev_info *
e7c27a73 6451dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
6452{
6453 unsigned int hash_number;
6454 struct abbrev_info *abbrev;
6455
6456 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 6457 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
6458
6459 while (abbrev)
6460 {
6461 if (abbrev->number == number)
6462 return abbrev;
6463 else
6464 abbrev = abbrev->next;
6465 }
6466 return NULL;
6467}
6468
72bf9492
DJ
6469/* Returns nonzero if TAG represents a type that we might generate a partial
6470 symbol for. */
6471
6472static int
6473is_type_tag_for_partial (int tag)
6474{
6475 switch (tag)
6476 {
6477#if 0
6478 /* Some types that would be reasonable to generate partial symbols for,
6479 that we don't at present. */
6480 case DW_TAG_array_type:
6481 case DW_TAG_file_type:
6482 case DW_TAG_ptr_to_member_type:
6483 case DW_TAG_set_type:
6484 case DW_TAG_string_type:
6485 case DW_TAG_subroutine_type:
6486#endif
6487 case DW_TAG_base_type:
6488 case DW_TAG_class_type:
680b30c7 6489 case DW_TAG_interface_type:
72bf9492
DJ
6490 case DW_TAG_enumeration_type:
6491 case DW_TAG_structure_type:
6492 case DW_TAG_subrange_type:
6493 case DW_TAG_typedef:
6494 case DW_TAG_union_type:
6495 return 1;
6496 default:
6497 return 0;
6498 }
6499}
6500
6501/* Load all DIEs that are interesting for partial symbols into memory. */
6502
6503static struct partial_die_info *
93311388
DE
6504load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6505 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
6506{
6507 struct partial_die_info *part_die;
6508 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6509 struct abbrev_info *abbrev;
6510 unsigned int bytes_read;
5afb4e99 6511 unsigned int load_all = 0;
72bf9492
DJ
6512
6513 int nesting_level = 1;
6514
6515 parent_die = NULL;
6516 last_die = NULL;
6517
5afb4e99
DJ
6518 if (cu->per_cu && cu->per_cu->load_all_dies)
6519 load_all = 1;
6520
72bf9492
DJ
6521 cu->partial_dies
6522 = htab_create_alloc_ex (cu->header.length / 12,
6523 partial_die_hash,
6524 partial_die_eq,
6525 NULL,
6526 &cu->comp_unit_obstack,
6527 hashtab_obstack_allocate,
6528 dummy_obstack_deallocate);
6529
6530 part_die = obstack_alloc (&cu->comp_unit_obstack,
6531 sizeof (struct partial_die_info));
6532
6533 while (1)
6534 {
6535 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6536
6537 /* A NULL abbrev means the end of a series of children. */
6538 if (abbrev == NULL)
6539 {
6540 if (--nesting_level == 0)
6541 {
6542 /* PART_DIE was probably the last thing allocated on the
6543 comp_unit_obstack, so we could call obstack_free
6544 here. We don't do that because the waste is small,
6545 and will be cleaned up when we're done with this
6546 compilation unit. This way, we're also more robust
6547 against other users of the comp_unit_obstack. */
6548 return first_die;
6549 }
6550 info_ptr += bytes_read;
6551 last_die = parent_die;
6552 parent_die = parent_die->die_parent;
6553 continue;
6554 }
6555
5afb4e99
DJ
6556 /* Check whether this DIE is interesting enough to save. Normally
6557 we would not be interested in members here, but there may be
6558 later variables referencing them via DW_AT_specification (for
6559 static members). */
6560 if (!load_all
6561 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
6562 && abbrev->tag != DW_TAG_enumerator
6563 && abbrev->tag != DW_TAG_subprogram
bc30ff58 6564 && abbrev->tag != DW_TAG_lexical_block
72bf9492 6565 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
6566 && abbrev->tag != DW_TAG_namespace
6567 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
6568 {
6569 /* Otherwise we skip to the next sibling, if any. */
93311388 6570 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
6571 continue;
6572 }
6573
93311388
DE
6574 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6575 buffer, info_ptr, cu);
72bf9492
DJ
6576
6577 /* This two-pass algorithm for processing partial symbols has a
6578 high cost in cache pressure. Thus, handle some simple cases
6579 here which cover the majority of C partial symbols. DIEs
6580 which neither have specification tags in them, nor could have
6581 specification tags elsewhere pointing at them, can simply be
6582 processed and discarded.
6583
6584 This segment is also optional; scan_partial_symbols and
6585 add_partial_symbol will handle these DIEs if we chain
6586 them in normally. When compilers which do not emit large
6587 quantities of duplicate debug information are more common,
6588 this code can probably be removed. */
6589
6590 /* Any complete simple types at the top level (pretty much all
6591 of them, for a language without namespaces), can be processed
6592 directly. */
6593 if (parent_die == NULL
6594 && part_die->has_specification == 0
6595 && part_die->is_declaration == 0
6596 && (part_die->tag == DW_TAG_typedef
6597 || part_die->tag == DW_TAG_base_type
6598 || part_die->tag == DW_TAG_subrange_type))
6599 {
6600 if (building_psymtab && part_die->name != NULL)
04a679b8 6601 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
6602 VAR_DOMAIN, LOC_TYPEDEF,
6603 &cu->objfile->static_psymbols,
6604 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 6605 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6606 continue;
6607 }
6608
6609 /* If we're at the second level, and we're an enumerator, and
6610 our parent has no specification (meaning possibly lives in a
6611 namespace elsewhere), then we can add the partial symbol now
6612 instead of queueing it. */
6613 if (part_die->tag == DW_TAG_enumerator
6614 && parent_die != NULL
6615 && parent_die->die_parent == NULL
6616 && parent_die->tag == DW_TAG_enumeration_type
6617 && parent_die->has_specification == 0)
6618 {
6619 if (part_die->name == NULL)
e2e0b3e5 6620 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 6621 else if (building_psymtab)
04a679b8 6622 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 6623 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6624 (cu->language == language_cplus
6625 || cu->language == language_java)
72bf9492
DJ
6626 ? &cu->objfile->global_psymbols
6627 : &cu->objfile->static_psymbols,
6628 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6629
93311388 6630 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6631 continue;
6632 }
6633
6634 /* We'll save this DIE so link it in. */
6635 part_die->die_parent = parent_die;
6636 part_die->die_sibling = NULL;
6637 part_die->die_child = NULL;
6638
6639 if (last_die && last_die == parent_die)
6640 last_die->die_child = part_die;
6641 else if (last_die)
6642 last_die->die_sibling = part_die;
6643
6644 last_die = part_die;
6645
6646 if (first_die == NULL)
6647 first_die = part_die;
6648
6649 /* Maybe add the DIE to the hash table. Not all DIEs that we
6650 find interesting need to be in the hash table, because we
6651 also have the parent/sibling/child chains; only those that we
6652 might refer to by offset later during partial symbol reading.
6653
6654 For now this means things that might have be the target of a
6655 DW_AT_specification, DW_AT_abstract_origin, or
6656 DW_AT_extension. DW_AT_extension will refer only to
6657 namespaces; DW_AT_abstract_origin refers to functions (and
6658 many things under the function DIE, but we do not recurse
6659 into function DIEs during partial symbol reading) and
6660 possibly variables as well; DW_AT_specification refers to
6661 declarations. Declarations ought to have the DW_AT_declaration
6662 flag. It happens that GCC forgets to put it in sometimes, but
6663 only for functions, not for types.
6664
6665 Adding more things than necessary to the hash table is harmless
6666 except for the performance cost. Adding too few will result in
5afb4e99
DJ
6667 wasted time in find_partial_die, when we reread the compilation
6668 unit with load_all_dies set. */
72bf9492 6669
5afb4e99
DJ
6670 if (load_all
6671 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
6672 || abbrev->tag == DW_TAG_variable
6673 || abbrev->tag == DW_TAG_namespace
6674 || part_die->is_declaration)
6675 {
6676 void **slot;
6677
6678 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6679 part_die->offset, INSERT);
6680 *slot = part_die;
6681 }
6682
6683 part_die = obstack_alloc (&cu->comp_unit_obstack,
6684 sizeof (struct partial_die_info));
6685
6686 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 6687 we have no reason to follow the children of structures; for other
72bf9492 6688 languages we have to, both so that we can get at method physnames
bc30ff58
JB
6689 to infer fully qualified class names, and for DW_AT_specification.
6690
6691 For Ada, we need to scan the children of subprograms and lexical
6692 blocks as well because Ada allows the definition of nested
6693 entities that could be interesting for the debugger, such as
6694 nested subprograms for instance. */
72bf9492 6695 if (last_die->has_children
5afb4e99
DJ
6696 && (load_all
6697 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
6698 || last_die->tag == DW_TAG_enumeration_type
6699 || (cu->language != language_c
6700 && (last_die->tag == DW_TAG_class_type
680b30c7 6701 || last_die->tag == DW_TAG_interface_type
72bf9492 6702 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
6703 || last_die->tag == DW_TAG_union_type))
6704 || (cu->language == language_ada
6705 && (last_die->tag == DW_TAG_subprogram
6706 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
6707 {
6708 nesting_level++;
6709 parent_die = last_die;
6710 continue;
6711 }
6712
6713 /* Otherwise we skip to the next sibling, if any. */
93311388 6714 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6715
6716 /* Back to the top, do it again. */
6717 }
6718}
6719
c906108c
SS
6720/* Read a minimal amount of information into the minimal die structure. */
6721
fe1b8b76 6722static gdb_byte *
72bf9492
DJ
6723read_partial_die (struct partial_die_info *part_die,
6724 struct abbrev_info *abbrev,
6725 unsigned int abbrev_len, bfd *abfd,
93311388
DE
6726 gdb_byte *buffer, gdb_byte *info_ptr,
6727 struct dwarf2_cu *cu)
c906108c 6728{
72bf9492 6729 unsigned int bytes_read, i;
c906108c 6730 struct attribute attr;
c5aa993b 6731 int has_low_pc_attr = 0;
c906108c
SS
6732 int has_high_pc_attr = 0;
6733
72bf9492 6734 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 6735
93311388 6736 part_die->offset = info_ptr - buffer;
72bf9492
DJ
6737
6738 info_ptr += abbrev_len;
6739
6740 if (abbrev == NULL)
6741 return info_ptr;
6742
c906108c
SS
6743 part_die->tag = abbrev->tag;
6744 part_die->has_children = abbrev->has_children;
c906108c
SS
6745
6746 for (i = 0; i < abbrev->num_attrs; ++i)
6747 {
e7c27a73 6748 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
6749
6750 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 6751 partial symbol table. */
c906108c
SS
6752 switch (attr.name)
6753 {
6754 case DW_AT_name:
71c25dea
TT
6755 switch (part_die->tag)
6756 {
6757 case DW_TAG_compile_unit:
348e048f 6758 case DW_TAG_type_unit:
71c25dea
TT
6759 /* Compilation units have a DW_AT_name that is a filename, not
6760 a source language identifier. */
6761 case DW_TAG_enumeration_type:
6762 case DW_TAG_enumerator:
6763 /* These tags always have simple identifiers already; no need
6764 to canonicalize them. */
6765 part_die->name = DW_STRING (&attr);
6766 break;
6767 default:
6768 part_die->name
6769 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 6770 &cu->objfile->objfile_obstack);
71c25dea
TT
6771 break;
6772 }
c906108c
SS
6773 break;
6774 case DW_AT_MIPS_linkage_name:
6775 part_die->name = DW_STRING (&attr);
6776 break;
6777 case DW_AT_low_pc:
6778 has_low_pc_attr = 1;
6779 part_die->lowpc = DW_ADDR (&attr);
6780 break;
6781 case DW_AT_high_pc:
6782 has_high_pc_attr = 1;
6783 part_die->highpc = DW_ADDR (&attr);
6784 break;
6785 case DW_AT_location:
8e19ed76
PS
6786 /* Support the .debug_loc offsets */
6787 if (attr_form_is_block (&attr))
6788 {
6789 part_die->locdesc = DW_BLOCK (&attr);
6790 }
3690dd37 6791 else if (attr_form_is_section_offset (&attr))
8e19ed76 6792 {
4d3c2250 6793 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6794 }
6795 else
6796 {
4d3c2250
KB
6797 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6798 "partial symbol information");
8e19ed76 6799 }
c906108c 6800 break;
c906108c
SS
6801 case DW_AT_external:
6802 part_die->is_external = DW_UNSND (&attr);
6803 break;
6804 case DW_AT_declaration:
6805 part_die->is_declaration = DW_UNSND (&attr);
6806 break;
6807 case DW_AT_type:
6808 part_die->has_type = 1;
6809 break;
6810 case DW_AT_abstract_origin:
6811 case DW_AT_specification:
72bf9492
DJ
6812 case DW_AT_extension:
6813 part_die->has_specification = 1;
c764a876 6814 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
6815 break;
6816 case DW_AT_sibling:
6817 /* Ignore absolute siblings, they might point outside of
6818 the current compile unit. */
6819 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 6820 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 6821 else
93311388 6822 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 6823 break;
fa4028e9
JB
6824 case DW_AT_byte_size:
6825 part_die->has_byte_size = 1;
6826 break;
68511cec
CES
6827 case DW_AT_calling_convention:
6828 /* DWARF doesn't provide a way to identify a program's source-level
6829 entry point. DW_AT_calling_convention attributes are only meant
6830 to describe functions' calling conventions.
6831
6832 However, because it's a necessary piece of information in
6833 Fortran, and because DW_CC_program is the only piece of debugging
6834 information whose definition refers to a 'main program' at all,
6835 several compilers have begun marking Fortran main programs with
6836 DW_CC_program --- even when those functions use the standard
6837 calling conventions.
6838
6839 So until DWARF specifies a way to provide this information and
6840 compilers pick up the new representation, we'll support this
6841 practice. */
6842 if (DW_UNSND (&attr) == DW_CC_program
6843 && cu->language == language_fortran)
6844 set_main_name (part_die->name);
6845 break;
c906108c
SS
6846 default:
6847 break;
6848 }
6849 }
6850
c906108c
SS
6851 /* When using the GNU linker, .gnu.linkonce. sections are used to
6852 eliminate duplicate copies of functions and vtables and such.
6853 The linker will arbitrarily choose one and discard the others.
6854 The AT_*_pc values for such functions refer to local labels in
6855 these sections. If the section from that file was discarded, the
6856 labels are not in the output, so the relocs get a value of 0.
6857 If this is a discarded function, mark the pc bounds as invalid,
6858 so that GDB will ignore it. */
6859 if (has_low_pc_attr && has_high_pc_attr
6860 && part_die->lowpc < part_die->highpc
6861 && (part_die->lowpc != 0
72dca2f5 6862 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 6863 part_die->has_pc_info = 1;
85cbf3d3 6864
c906108c
SS
6865 return info_ptr;
6866}
6867
72bf9492
DJ
6868/* Find a cached partial DIE at OFFSET in CU. */
6869
6870static struct partial_die_info *
c764a876 6871find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
6872{
6873 struct partial_die_info *lookup_die = NULL;
6874 struct partial_die_info part_die;
6875
6876 part_die.offset = offset;
6877 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6878
72bf9492
DJ
6879 return lookup_die;
6880}
6881
348e048f
DE
6882/* Find a partial DIE at OFFSET, which may or may not be in CU,
6883 except in the case of .debug_types DIEs which do not reference
6884 outside their CU (they do however referencing other types via
6885 DW_FORM_sig8). */
72bf9492
DJ
6886
6887static struct partial_die_info *
c764a876 6888find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 6889{
5afb4e99
DJ
6890 struct dwarf2_per_cu_data *per_cu = NULL;
6891 struct partial_die_info *pd = NULL;
72bf9492 6892
348e048f
DE
6893 if (cu->per_cu->from_debug_types)
6894 {
6895 pd = find_partial_die_in_comp_unit (offset, cu);
6896 if (pd != NULL)
6897 return pd;
6898 goto not_found;
6899 }
6900
45452591 6901 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
6902 {
6903 pd = find_partial_die_in_comp_unit (offset, cu);
6904 if (pd != NULL)
6905 return pd;
6906 }
72bf9492 6907
ae038cb0
DJ
6908 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6909
ae038cb0
DJ
6910 if (per_cu->cu == NULL)
6911 {
93311388 6912 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
6913 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6914 dwarf2_per_objfile->read_in_chain = per_cu;
6915 }
6916
6917 per_cu->cu->last_used = 0;
5afb4e99
DJ
6918 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6919
6920 if (pd == NULL && per_cu->load_all_dies == 0)
6921 {
6922 struct cleanup *back_to;
6923 struct partial_die_info comp_unit_die;
6924 struct abbrev_info *abbrev;
6925 unsigned int bytes_read;
6926 char *info_ptr;
6927
6928 per_cu->load_all_dies = 1;
6929
6930 /* Re-read the DIEs. */
6931 back_to = make_cleanup (null_cleanup, 0);
6932 if (per_cu->cu->dwarf2_abbrevs == NULL)
6933 {
6934 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 6935 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 6936 }
dce234bc 6937 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
6938 + per_cu->cu->header.offset
6939 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
6940 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
6941 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
6942 per_cu->cu->objfile->obfd,
6943 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
6944 per_cu->cu);
6945 if (comp_unit_die.has_children)
93311388
DE
6946 load_partial_dies (per_cu->cu->objfile->obfd,
6947 dwarf2_per_objfile->info.buffer, info_ptr,
6948 0, per_cu->cu);
5afb4e99
DJ
6949 do_cleanups (back_to);
6950
6951 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6952 }
6953
348e048f
DE
6954 not_found:
6955
5afb4e99
DJ
6956 if (pd == NULL)
6957 internal_error (__FILE__, __LINE__,
c764a876 6958 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
6959 offset, bfd_get_filename (cu->objfile->obfd));
6960 return pd;
72bf9492
DJ
6961}
6962
6963/* Adjust PART_DIE before generating a symbol for it. This function
6964 may set the is_external flag or change the DIE's name. */
6965
6966static void
6967fixup_partial_die (struct partial_die_info *part_die,
6968 struct dwarf2_cu *cu)
6969{
6970 /* If we found a reference attribute and the DIE has no name, try
6971 to find a name in the referred to DIE. */
6972
6973 if (part_die->name == NULL && part_die->has_specification)
6974 {
6975 struct partial_die_info *spec_die;
72bf9492 6976
10b3939b 6977 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 6978
10b3939b 6979 fixup_partial_die (spec_die, cu);
72bf9492
DJ
6980
6981 if (spec_die->name)
6982 {
6983 part_die->name = spec_die->name;
6984
6985 /* Copy DW_AT_external attribute if it is set. */
6986 if (spec_die->is_external)
6987 part_die->is_external = spec_die->is_external;
6988 }
6989 }
6990
6991 /* Set default names for some unnamed DIEs. */
6992 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
6993 || part_die->tag == DW_TAG_class_type))
6994 part_die->name = "(anonymous class)";
6995
6996 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
6997 part_die->name = "(anonymous namespace)";
6998
6999 if (part_die->tag == DW_TAG_structure_type
7000 || part_die->tag == DW_TAG_class_type
7001 || part_die->tag == DW_TAG_union_type)
7002 guess_structure_name (part_die, cu);
7003}
7004
a8329558 7005/* Read an attribute value described by an attribute form. */
c906108c 7006
fe1b8b76 7007static gdb_byte *
a8329558 7008read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 7009 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 7010 struct dwarf2_cu *cu)
c906108c 7011{
e7c27a73 7012 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7013 unsigned int bytes_read;
7014 struct dwarf_block *blk;
7015
a8329558
KW
7016 attr->form = form;
7017 switch (form)
c906108c
SS
7018 {
7019 case DW_FORM_addr:
7020 case DW_FORM_ref_addr:
e7c27a73 7021 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 7022 info_ptr += bytes_read;
c906108c
SS
7023 break;
7024 case DW_FORM_block2:
7b5a2f43 7025 blk = dwarf_alloc_block (cu);
c906108c
SS
7026 blk->size = read_2_bytes (abfd, info_ptr);
7027 info_ptr += 2;
7028 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7029 info_ptr += blk->size;
7030 DW_BLOCK (attr) = blk;
7031 break;
7032 case DW_FORM_block4:
7b5a2f43 7033 blk = dwarf_alloc_block (cu);
c906108c
SS
7034 blk->size = read_4_bytes (abfd, info_ptr);
7035 info_ptr += 4;
7036 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7037 info_ptr += blk->size;
7038 DW_BLOCK (attr) = blk;
7039 break;
7040 case DW_FORM_data2:
7041 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7042 info_ptr += 2;
7043 break;
7044 case DW_FORM_data4:
7045 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7046 info_ptr += 4;
7047 break;
7048 case DW_FORM_data8:
7049 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7050 info_ptr += 8;
7051 break;
7052 case DW_FORM_string:
7053 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8285870a 7054 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
7055 info_ptr += bytes_read;
7056 break;
4bdf3d34
JJ
7057 case DW_FORM_strp:
7058 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7059 &bytes_read);
8285870a 7060 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
7061 info_ptr += bytes_read;
7062 break;
c906108c 7063 case DW_FORM_block:
7b5a2f43 7064 blk = dwarf_alloc_block (cu);
c906108c
SS
7065 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7066 info_ptr += bytes_read;
7067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7068 info_ptr += blk->size;
7069 DW_BLOCK (attr) = blk;
7070 break;
7071 case DW_FORM_block1:
7b5a2f43 7072 blk = dwarf_alloc_block (cu);
c906108c
SS
7073 blk->size = read_1_byte (abfd, info_ptr);
7074 info_ptr += 1;
7075 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7076 info_ptr += blk->size;
7077 DW_BLOCK (attr) = blk;
7078 break;
7079 case DW_FORM_data1:
7080 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7081 info_ptr += 1;
7082 break;
7083 case DW_FORM_flag:
7084 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7085 info_ptr += 1;
7086 break;
7087 case DW_FORM_sdata:
7088 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7089 info_ptr += bytes_read;
7090 break;
7091 case DW_FORM_udata:
7092 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7093 info_ptr += bytes_read;
7094 break;
7095 case DW_FORM_ref1:
10b3939b 7096 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
7097 info_ptr += 1;
7098 break;
7099 case DW_FORM_ref2:
10b3939b 7100 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
7101 info_ptr += 2;
7102 break;
7103 case DW_FORM_ref4:
10b3939b 7104 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
7105 info_ptr += 4;
7106 break;
613e1657 7107 case DW_FORM_ref8:
10b3939b 7108 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
7109 info_ptr += 8;
7110 break;
348e048f
DE
7111 case DW_FORM_sig8:
7112 /* Convert the signature to something we can record in DW_UNSND
7113 for later lookup.
7114 NOTE: This is NULL if the type wasn't found. */
7115 DW_SIGNATURED_TYPE (attr) =
7116 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7117 info_ptr += 8;
7118 break;
c906108c 7119 case DW_FORM_ref_udata:
10b3939b
DJ
7120 DW_ADDR (attr) = (cu->header.offset
7121 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
7122 info_ptr += bytes_read;
7123 break;
c906108c 7124 case DW_FORM_indirect:
a8329558
KW
7125 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7126 info_ptr += bytes_read;
e7c27a73 7127 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 7128 break;
c906108c 7129 default:
8a3fe4f8 7130 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
7131 dwarf_form_name (form),
7132 bfd_get_filename (abfd));
c906108c 7133 }
28e94949
JB
7134
7135 /* We have seen instances where the compiler tried to emit a byte
7136 size attribute of -1 which ended up being encoded as an unsigned
7137 0xffffffff. Although 0xffffffff is technically a valid size value,
7138 an object of this size seems pretty unlikely so we can relatively
7139 safely treat these cases as if the size attribute was invalid and
7140 treat them as zero by default. */
7141 if (attr->name == DW_AT_byte_size
7142 && form == DW_FORM_data4
7143 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
7144 {
7145 complaint
7146 (&symfile_complaints,
43bbcdc2
PH
7147 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7148 hex_string (DW_UNSND (attr)));
01c66ae6
JB
7149 DW_UNSND (attr) = 0;
7150 }
28e94949 7151
c906108c
SS
7152 return info_ptr;
7153}
7154
a8329558
KW
7155/* Read an attribute described by an abbreviated attribute. */
7156
fe1b8b76 7157static gdb_byte *
a8329558 7158read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 7159 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
7160{
7161 attr->name = abbrev->name;
e7c27a73 7162 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
7163}
7164
c906108c
SS
7165/* read dwarf information from a buffer */
7166
7167static unsigned int
fe1b8b76 7168read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 7169{
fe1b8b76 7170 return bfd_get_8 (abfd, buf);
c906108c
SS
7171}
7172
7173static int
fe1b8b76 7174read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 7175{
fe1b8b76 7176 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
7177}
7178
7179static unsigned int
fe1b8b76 7180read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7181{
fe1b8b76 7182 return bfd_get_16 (abfd, buf);
c906108c
SS
7183}
7184
7185static int
fe1b8b76 7186read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7187{
fe1b8b76 7188 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
7189}
7190
7191static unsigned int
fe1b8b76 7192read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7193{
fe1b8b76 7194 return bfd_get_32 (abfd, buf);
c906108c
SS
7195}
7196
7197static int
fe1b8b76 7198read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7199{
fe1b8b76 7200 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
7201}
7202
93311388 7203static ULONGEST
fe1b8b76 7204read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7205{
fe1b8b76 7206 return bfd_get_64 (abfd, buf);
c906108c
SS
7207}
7208
7209static CORE_ADDR
fe1b8b76 7210read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 7211 unsigned int *bytes_read)
c906108c 7212{
e7c27a73 7213 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7214 CORE_ADDR retval = 0;
7215
107d2387 7216 if (cu_header->signed_addr_p)
c906108c 7217 {
107d2387
AC
7218 switch (cu_header->addr_size)
7219 {
7220 case 2:
fe1b8b76 7221 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
7222 break;
7223 case 4:
fe1b8b76 7224 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
7225 break;
7226 case 8:
fe1b8b76 7227 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
7228 break;
7229 default:
8e65ff28 7230 internal_error (__FILE__, __LINE__,
e2e0b3e5 7231 _("read_address: bad switch, signed [in module %s]"),
659b0389 7232 bfd_get_filename (abfd));
107d2387
AC
7233 }
7234 }
7235 else
7236 {
7237 switch (cu_header->addr_size)
7238 {
7239 case 2:
fe1b8b76 7240 retval = bfd_get_16 (abfd, buf);
107d2387
AC
7241 break;
7242 case 4:
fe1b8b76 7243 retval = bfd_get_32 (abfd, buf);
107d2387
AC
7244 break;
7245 case 8:
fe1b8b76 7246 retval = bfd_get_64 (abfd, buf);
107d2387
AC
7247 break;
7248 default:
8e65ff28 7249 internal_error (__FILE__, __LINE__,
e2e0b3e5 7250 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 7251 bfd_get_filename (abfd));
107d2387 7252 }
c906108c 7253 }
64367e0a 7254
107d2387
AC
7255 *bytes_read = cu_header->addr_size;
7256 return retval;
c906108c
SS
7257}
7258
f7ef9339 7259/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
7260 specification allows the initial length to take up either 4 bytes
7261 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7262 bytes describe the length and all offsets will be 8 bytes in length
7263 instead of 4.
7264
f7ef9339
KB
7265 An older, non-standard 64-bit format is also handled by this
7266 function. The older format in question stores the initial length
7267 as an 8-byte quantity without an escape value. Lengths greater
7268 than 2^32 aren't very common which means that the initial 4 bytes
7269 is almost always zero. Since a length value of zero doesn't make
7270 sense for the 32-bit format, this initial zero can be considered to
7271 be an escape value which indicates the presence of the older 64-bit
7272 format. As written, the code can't detect (old format) lengths
917c78fc
MK
7273 greater than 4GB. If it becomes necessary to handle lengths
7274 somewhat larger than 4GB, we could allow other small values (such
7275 as the non-sensical values of 1, 2, and 3) to also be used as
7276 escape values indicating the presence of the old format.
f7ef9339 7277
917c78fc
MK
7278 The value returned via bytes_read should be used to increment the
7279 relevant pointer after calling read_initial_length().
c764a876 7280
613e1657
KB
7281 [ Note: read_initial_length() and read_offset() are based on the
7282 document entitled "DWARF Debugging Information Format", revision
f7ef9339 7283 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
7284 from:
7285
f7ef9339 7286 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
7287
7288 This document is only a draft and is subject to change. (So beware.)
7289
f7ef9339 7290 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
7291 determined empirically by examining 64-bit ELF files produced by
7292 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
7293
7294 - Kevin, July 16, 2002
613e1657
KB
7295 ] */
7296
7297static LONGEST
c764a876 7298read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 7299{
fe1b8b76 7300 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 7301
dd373385 7302 if (length == 0xffffffff)
613e1657 7303 {
fe1b8b76 7304 length = bfd_get_64 (abfd, buf + 4);
613e1657 7305 *bytes_read = 12;
613e1657 7306 }
dd373385 7307 else if (length == 0)
f7ef9339 7308 {
dd373385 7309 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 7310 length = bfd_get_64 (abfd, buf);
f7ef9339 7311 *bytes_read = 8;
f7ef9339 7312 }
613e1657
KB
7313 else
7314 {
7315 *bytes_read = 4;
613e1657
KB
7316 }
7317
c764a876
DE
7318 return length;
7319}
dd373385 7320
c764a876
DE
7321/* Cover function for read_initial_length.
7322 Returns the length of the object at BUF, and stores the size of the
7323 initial length in *BYTES_READ and stores the size that offsets will be in
7324 *OFFSET_SIZE.
7325 If the initial length size is not equivalent to that specified in
7326 CU_HEADER then issue a complaint.
7327 This is useful when reading non-comp-unit headers. */
dd373385 7328
c764a876
DE
7329static LONGEST
7330read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7331 const struct comp_unit_head *cu_header,
7332 unsigned int *bytes_read,
7333 unsigned int *offset_size)
7334{
7335 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7336
7337 gdb_assert (cu_header->initial_length_size == 4
7338 || cu_header->initial_length_size == 8
7339 || cu_header->initial_length_size == 12);
7340
7341 if (cu_header->initial_length_size != *bytes_read)
7342 complaint (&symfile_complaints,
7343 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 7344
c764a876 7345 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 7346 return length;
613e1657
KB
7347}
7348
7349/* Read an offset from the data stream. The size of the offset is
917c78fc 7350 given by cu_header->offset_size. */
613e1657
KB
7351
7352static LONGEST
fe1b8b76 7353read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 7354 unsigned int *bytes_read)
c764a876
DE
7355{
7356 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7357 *bytes_read = cu_header->offset_size;
7358 return offset;
7359}
7360
7361/* Read an offset from the data stream. */
7362
7363static LONGEST
7364read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
7365{
7366 LONGEST retval = 0;
7367
c764a876 7368 switch (offset_size)
613e1657
KB
7369 {
7370 case 4:
fe1b8b76 7371 retval = bfd_get_32 (abfd, buf);
613e1657
KB
7372 break;
7373 case 8:
fe1b8b76 7374 retval = bfd_get_64 (abfd, buf);
613e1657
KB
7375 break;
7376 default:
8e65ff28 7377 internal_error (__FILE__, __LINE__,
c764a876 7378 _("read_offset_1: bad switch [in module %s]"),
659b0389 7379 bfd_get_filename (abfd));
613e1657
KB
7380 }
7381
917c78fc 7382 return retval;
613e1657
KB
7383}
7384
fe1b8b76
JB
7385static gdb_byte *
7386read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
7387{
7388 /* If the size of a host char is 8 bits, we can return a pointer
7389 to the buffer, otherwise we have to copy the data to a buffer
7390 allocated on the temporary obstack. */
4bdf3d34 7391 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 7392 return buf;
c906108c
SS
7393}
7394
7395static char *
fe1b8b76 7396read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
7397{
7398 /* If the size of a host char is 8 bits, we can return a pointer
7399 to the string, otherwise we have to copy the string to a buffer
7400 allocated on the temporary obstack. */
4bdf3d34 7401 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
7402 if (*buf == '\0')
7403 {
7404 *bytes_read_ptr = 1;
7405 return NULL;
7406 }
fe1b8b76
JB
7407 *bytes_read_ptr = strlen ((char *) buf) + 1;
7408 return (char *) buf;
4bdf3d34
JJ
7409}
7410
7411static char *
fe1b8b76 7412read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
7413 const struct comp_unit_head *cu_header,
7414 unsigned int *bytes_read_ptr)
7415{
c764a876 7416 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 7417
dce234bc 7418 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 7419 {
8a3fe4f8 7420 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 7421 bfd_get_filename (abfd));
4bdf3d34 7422 return NULL;
c906108c 7423 }
dce234bc 7424 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 7425 {
8a3fe4f8 7426 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 7427 bfd_get_filename (abfd));
c906108c
SS
7428 return NULL;
7429 }
4bdf3d34 7430 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 7431 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 7432 return NULL;
dce234bc 7433 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
7434}
7435
ce5d95e1 7436static unsigned long
fe1b8b76 7437read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7438{
ce5d95e1
JB
7439 unsigned long result;
7440 unsigned int num_read;
c906108c
SS
7441 int i, shift;
7442 unsigned char byte;
7443
7444 result = 0;
7445 shift = 0;
7446 num_read = 0;
7447 i = 0;
7448 while (1)
7449 {
fe1b8b76 7450 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7451 buf++;
7452 num_read++;
ce5d95e1 7453 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
7454 if ((byte & 128) == 0)
7455 {
7456 break;
7457 }
7458 shift += 7;
7459 }
7460 *bytes_read_ptr = num_read;
7461 return result;
7462}
7463
ce5d95e1 7464static long
fe1b8b76 7465read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7466{
ce5d95e1 7467 long result;
77e0b926 7468 int i, shift, num_read;
c906108c
SS
7469 unsigned char byte;
7470
7471 result = 0;
7472 shift = 0;
c906108c
SS
7473 num_read = 0;
7474 i = 0;
7475 while (1)
7476 {
fe1b8b76 7477 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7478 buf++;
7479 num_read++;
ce5d95e1 7480 result |= ((long)(byte & 127) << shift);
c906108c
SS
7481 shift += 7;
7482 if ((byte & 128) == 0)
7483 {
7484 break;
7485 }
7486 }
77e0b926
DJ
7487 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7488 result |= -(((long)1) << shift);
c906108c
SS
7489 *bytes_read_ptr = num_read;
7490 return result;
7491}
7492
4bb7a0a7
DJ
7493/* Return a pointer to just past the end of an LEB128 number in BUF. */
7494
fe1b8b76
JB
7495static gdb_byte *
7496skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
7497{
7498 int byte;
7499
7500 while (1)
7501 {
fe1b8b76 7502 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
7503 buf++;
7504 if ((byte & 128) == 0)
7505 return buf;
7506 }
7507}
7508
c906108c 7509static void
e142c38c 7510set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
7511{
7512 switch (lang)
7513 {
7514 case DW_LANG_C89:
76bee0cc 7515 case DW_LANG_C99:
c906108c 7516 case DW_LANG_C:
e142c38c 7517 cu->language = language_c;
c906108c
SS
7518 break;
7519 case DW_LANG_C_plus_plus:
e142c38c 7520 cu->language = language_cplus;
c906108c
SS
7521 break;
7522 case DW_LANG_Fortran77:
7523 case DW_LANG_Fortran90:
b21b22e0 7524 case DW_LANG_Fortran95:
e142c38c 7525 cu->language = language_fortran;
c906108c
SS
7526 break;
7527 case DW_LANG_Mips_Assembler:
e142c38c 7528 cu->language = language_asm;
c906108c 7529 break;
bebd888e 7530 case DW_LANG_Java:
e142c38c 7531 cu->language = language_java;
bebd888e 7532 break;
c906108c 7533 case DW_LANG_Ada83:
8aaf0b47 7534 case DW_LANG_Ada95:
bc5f45f8
JB
7535 cu->language = language_ada;
7536 break;
72019c9c
GM
7537 case DW_LANG_Modula2:
7538 cu->language = language_m2;
7539 break;
fe8e67fd
PM
7540 case DW_LANG_Pascal83:
7541 cu->language = language_pascal;
7542 break;
22566fbd
DJ
7543 case DW_LANG_ObjC:
7544 cu->language = language_objc;
7545 break;
c906108c
SS
7546 case DW_LANG_Cobol74:
7547 case DW_LANG_Cobol85:
c906108c 7548 default:
e142c38c 7549 cu->language = language_minimal;
c906108c
SS
7550 break;
7551 }
e142c38c 7552 cu->language_defn = language_def (cu->language);
c906108c
SS
7553}
7554
7555/* Return the named attribute or NULL if not there. */
7556
7557static struct attribute *
e142c38c 7558dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
7559{
7560 unsigned int i;
7561 struct attribute *spec = NULL;
7562
7563 for (i = 0; i < die->num_attrs; ++i)
7564 {
7565 if (die->attrs[i].name == name)
10b3939b 7566 return &die->attrs[i];
c906108c
SS
7567 if (die->attrs[i].name == DW_AT_specification
7568 || die->attrs[i].name == DW_AT_abstract_origin)
7569 spec = &die->attrs[i];
7570 }
c906108c 7571
10b3939b 7572 if (spec)
f2f0e013
DJ
7573 {
7574 die = follow_die_ref (die, spec, &cu);
7575 return dwarf2_attr (die, name, cu);
7576 }
c5aa993b 7577
c906108c
SS
7578 return NULL;
7579}
7580
348e048f
DE
7581/* Return the named attribute or NULL if not there,
7582 but do not follow DW_AT_specification, etc.
7583 This is for use in contexts where we're reading .debug_types dies.
7584 Following DW_AT_specification, DW_AT_abstract_origin will take us
7585 back up the chain, and we want to go down. */
7586
7587static struct attribute *
7588dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7589 struct dwarf2_cu *cu)
7590{
7591 unsigned int i;
7592
7593 for (i = 0; i < die->num_attrs; ++i)
7594 if (die->attrs[i].name == name)
7595 return &die->attrs[i];
7596
7597 return NULL;
7598}
7599
05cf31d1
JB
7600/* Return non-zero iff the attribute NAME is defined for the given DIE,
7601 and holds a non-zero value. This function should only be used for
7602 DW_FORM_flag attributes. */
7603
7604static int
7605dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7606{
7607 struct attribute *attr = dwarf2_attr (die, name, cu);
7608
7609 return (attr && DW_UNSND (attr));
7610}
7611
3ca72b44 7612static int
e142c38c 7613die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 7614{
05cf31d1
JB
7615 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7616 which value is non-zero. However, we have to be careful with
7617 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7618 (via dwarf2_flag_true_p) follows this attribute. So we may
7619 end up accidently finding a declaration attribute that belongs
7620 to a different DIE referenced by the specification attribute,
7621 even though the given DIE does not have a declaration attribute. */
7622 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7623 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
7624}
7625
63d06c5c 7626/* Return the die giving the specification for DIE, if there is
f2f0e013 7627 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
7628 containing the return value on output. If there is no
7629 specification, but there is an abstract origin, that is
7630 returned. */
63d06c5c
DC
7631
7632static struct die_info *
f2f0e013 7633die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 7634{
f2f0e013
DJ
7635 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7636 *spec_cu);
63d06c5c 7637
edb3359d
DJ
7638 if (spec_attr == NULL)
7639 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7640
63d06c5c
DC
7641 if (spec_attr == NULL)
7642 return NULL;
7643 else
f2f0e013 7644 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 7645}
c906108c 7646
debd256d
JB
7647/* Free the line_header structure *LH, and any arrays and strings it
7648 refers to. */
7649static void
7650free_line_header (struct line_header *lh)
7651{
7652 if (lh->standard_opcode_lengths)
a8bc7b56 7653 xfree (lh->standard_opcode_lengths);
debd256d
JB
7654
7655 /* Remember that all the lh->file_names[i].name pointers are
7656 pointers into debug_line_buffer, and don't need to be freed. */
7657 if (lh->file_names)
a8bc7b56 7658 xfree (lh->file_names);
debd256d
JB
7659
7660 /* Similarly for the include directory names. */
7661 if (lh->include_dirs)
a8bc7b56 7662 xfree (lh->include_dirs);
debd256d 7663
a8bc7b56 7664 xfree (lh);
debd256d
JB
7665}
7666
7667
7668/* Add an entry to LH's include directory table. */
7669static void
7670add_include_dir (struct line_header *lh, char *include_dir)
c906108c 7671{
debd256d
JB
7672 /* Grow the array if necessary. */
7673 if (lh->include_dirs_size == 0)
c5aa993b 7674 {
debd256d
JB
7675 lh->include_dirs_size = 1; /* for testing */
7676 lh->include_dirs = xmalloc (lh->include_dirs_size
7677 * sizeof (*lh->include_dirs));
7678 }
7679 else if (lh->num_include_dirs >= lh->include_dirs_size)
7680 {
7681 lh->include_dirs_size *= 2;
7682 lh->include_dirs = xrealloc (lh->include_dirs,
7683 (lh->include_dirs_size
7684 * sizeof (*lh->include_dirs)));
c5aa993b 7685 }
c906108c 7686
debd256d
JB
7687 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7688}
7689
7690
7691/* Add an entry to LH's file name table. */
7692static void
7693add_file_name (struct line_header *lh,
7694 char *name,
7695 unsigned int dir_index,
7696 unsigned int mod_time,
7697 unsigned int length)
7698{
7699 struct file_entry *fe;
7700
7701 /* Grow the array if necessary. */
7702 if (lh->file_names_size == 0)
7703 {
7704 lh->file_names_size = 1; /* for testing */
7705 lh->file_names = xmalloc (lh->file_names_size
7706 * sizeof (*lh->file_names));
7707 }
7708 else if (lh->num_file_names >= lh->file_names_size)
7709 {
7710 lh->file_names_size *= 2;
7711 lh->file_names = xrealloc (lh->file_names,
7712 (lh->file_names_size
7713 * sizeof (*lh->file_names)));
7714 }
7715
7716 fe = &lh->file_names[lh->num_file_names++];
7717 fe->name = name;
7718 fe->dir_index = dir_index;
7719 fe->mod_time = mod_time;
7720 fe->length = length;
aaa75496 7721 fe->included_p = 0;
cb1df416 7722 fe->symtab = NULL;
debd256d
JB
7723}
7724
7725
7726/* Read the statement program header starting at OFFSET in
6502dd73
DJ
7727 .debug_line, according to the endianness of ABFD. Return a pointer
7728 to a struct line_header, allocated using xmalloc.
debd256d
JB
7729
7730 NOTE: the strings in the include directory and file name tables of
7731 the returned object point into debug_line_buffer, and must not be
7732 freed. */
7733static struct line_header *
7734dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 7735 struct dwarf2_cu *cu)
debd256d
JB
7736{
7737 struct cleanup *back_to;
7738 struct line_header *lh;
fe1b8b76 7739 gdb_byte *line_ptr;
c764a876 7740 unsigned int bytes_read, offset_size;
debd256d
JB
7741 int i;
7742 char *cur_dir, *cur_file;
7743
dce234bc 7744 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 7745 {
e2e0b3e5 7746 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
7747 return 0;
7748 }
7749
a738430d
MK
7750 /* Make sure that at least there's room for the total_length field.
7751 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 7752 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 7753 {
4d3c2250 7754 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7755 return 0;
7756 }
7757
7758 lh = xmalloc (sizeof (*lh));
7759 memset (lh, 0, sizeof (*lh));
7760 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7761 (void *) lh);
7762
dce234bc 7763 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 7764
a738430d 7765 /* Read in the header. */
dd373385 7766 lh->total_length =
c764a876
DE
7767 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7768 &bytes_read, &offset_size);
debd256d 7769 line_ptr += bytes_read;
dce234bc
PP
7770 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7771 + dwarf2_per_objfile->line.size))
debd256d 7772 {
4d3c2250 7773 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7774 return 0;
7775 }
7776 lh->statement_program_end = line_ptr + lh->total_length;
7777 lh->version = read_2_bytes (abfd, line_ptr);
7778 line_ptr += 2;
c764a876
DE
7779 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7780 line_ptr += offset_size;
debd256d
JB
7781 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7782 line_ptr += 1;
7783 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7784 line_ptr += 1;
7785 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7786 line_ptr += 1;
7787 lh->line_range = read_1_byte (abfd, line_ptr);
7788 line_ptr += 1;
7789 lh->opcode_base = read_1_byte (abfd, line_ptr);
7790 line_ptr += 1;
7791 lh->standard_opcode_lengths
fe1b8b76 7792 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
7793
7794 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7795 for (i = 1; i < lh->opcode_base; ++i)
7796 {
7797 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7798 line_ptr += 1;
7799 }
7800
a738430d 7801 /* Read directory table. */
debd256d
JB
7802 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7803 {
7804 line_ptr += bytes_read;
7805 add_include_dir (lh, cur_dir);
7806 }
7807 line_ptr += bytes_read;
7808
a738430d 7809 /* Read file name table. */
debd256d
JB
7810 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7811 {
7812 unsigned int dir_index, mod_time, length;
7813
7814 line_ptr += bytes_read;
7815 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7816 line_ptr += bytes_read;
7817 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7818 line_ptr += bytes_read;
7819 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7820 line_ptr += bytes_read;
7821
7822 add_file_name (lh, cur_file, dir_index, mod_time, length);
7823 }
7824 line_ptr += bytes_read;
7825 lh->statement_program_start = line_ptr;
7826
dce234bc
PP
7827 if (line_ptr > (dwarf2_per_objfile->line.buffer
7828 + dwarf2_per_objfile->line.size))
4d3c2250 7829 complaint (&symfile_complaints,
e2e0b3e5 7830 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
7831
7832 discard_cleanups (back_to);
7833 return lh;
7834}
c906108c 7835
5fb290d7
DJ
7836/* This function exists to work around a bug in certain compilers
7837 (particularly GCC 2.95), in which the first line number marker of a
7838 function does not show up until after the prologue, right before
7839 the second line number marker. This function shifts ADDRESS down
7840 to the beginning of the function if necessary, and is called on
7841 addresses passed to record_line. */
7842
7843static CORE_ADDR
e142c38c 7844check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
7845{
7846 struct function_range *fn;
7847
7848 /* Find the function_range containing address. */
e142c38c 7849 if (!cu->first_fn)
5fb290d7
DJ
7850 return address;
7851
e142c38c
DJ
7852 if (!cu->cached_fn)
7853 cu->cached_fn = cu->first_fn;
5fb290d7 7854
e142c38c 7855 fn = cu->cached_fn;
5fb290d7
DJ
7856 while (fn)
7857 if (fn->lowpc <= address && fn->highpc > address)
7858 goto found;
7859 else
7860 fn = fn->next;
7861
e142c38c
DJ
7862 fn = cu->first_fn;
7863 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
7864 if (fn->lowpc <= address && fn->highpc > address)
7865 goto found;
7866 else
7867 fn = fn->next;
7868
7869 return address;
7870
7871 found:
7872 if (fn->seen_line)
7873 return address;
7874 if (address != fn->lowpc)
4d3c2250 7875 complaint (&symfile_complaints,
e2e0b3e5 7876 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 7877 (unsigned long) address, fn->name);
5fb290d7
DJ
7878 fn->seen_line = 1;
7879 return fn->lowpc;
7880}
7881
aaa75496
JB
7882/* Decode the Line Number Program (LNP) for the given line_header
7883 structure and CU. The actual information extracted and the type
7884 of structures created from the LNP depends on the value of PST.
7885
7886 1. If PST is NULL, then this procedure uses the data from the program
7887 to create all necessary symbol tables, and their linetables.
7888 The compilation directory of the file is passed in COMP_DIR,
7889 and must not be NULL.
7890
7891 2. If PST is not NULL, this procedure reads the program to determine
7892 the list of files included by the unit represented by PST, and
7893 builds all the associated partial symbol tables. In this case,
7894 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
7895 is not used to compute the full name of the symtab, and therefore
7896 omitting it when building the partial symtab does not introduce
7897 the potential for inconsistency - a partial symtab and its associated
7898 symbtab having a different fullname -). */
debd256d 7899
c906108c 7900static void
debd256d 7901dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 7902 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 7903{
a8c50c1f 7904 gdb_byte *line_ptr, *extended_end;
fe1b8b76 7905 gdb_byte *line_end;
a8c50c1f 7906 unsigned int bytes_read, extended_len;
c906108c 7907 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
7908 CORE_ADDR baseaddr;
7909 struct objfile *objfile = cu->objfile;
fbf65064 7910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 7911 const int decode_for_pst_p = (pst != NULL);
cb1df416 7912 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
7913
7914 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7915
debd256d
JB
7916 line_ptr = lh->statement_program_start;
7917 line_end = lh->statement_program_end;
c906108c
SS
7918
7919 /* Read the statement sequences until there's nothing left. */
7920 while (line_ptr < line_end)
7921 {
7922 /* state machine registers */
7923 CORE_ADDR address = 0;
7924 unsigned int file = 1;
7925 unsigned int line = 1;
7926 unsigned int column = 0;
debd256d 7927 int is_stmt = lh->default_is_stmt;
c906108c
SS
7928 int basic_block = 0;
7929 int end_sequence = 0;
fbf65064 7930 CORE_ADDR addr;
c906108c 7931
aaa75496 7932 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 7933 {
aaa75496 7934 /* Start a subfile for the current file of the state machine. */
debd256d
JB
7935 /* lh->include_dirs and lh->file_names are 0-based, but the
7936 directory and file name numbers in the statement program
7937 are 1-based. */
7938 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 7939 char *dir = NULL;
a738430d 7940
debd256d
JB
7941 if (fe->dir_index)
7942 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
7943
7944 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
7945 }
7946
a738430d 7947 /* Decode the table. */
c5aa993b 7948 while (!end_sequence)
c906108c
SS
7949 {
7950 op_code = read_1_byte (abfd, line_ptr);
7951 line_ptr += 1;
59205f5a
JB
7952 if (line_ptr > line_end)
7953 {
7954 dwarf2_debug_line_missing_end_sequence_complaint ();
7955 break;
7956 }
9aa1fe7e 7957
debd256d 7958 if (op_code >= lh->opcode_base)
a738430d
MK
7959 {
7960 /* Special operand. */
debd256d
JB
7961 adj_opcode = op_code - lh->opcode_base;
7962 address += (adj_opcode / lh->line_range)
7963 * lh->minimum_instruction_length;
7964 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 7965 if (lh->num_file_names < file || file == 0)
25e43795
DJ
7966 dwarf2_debug_line_missing_file_complaint ();
7967 else
7968 {
7969 lh->file_names[file - 1].included_p = 1;
ca5f395d 7970 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
7971 {
7972 if (last_subfile != current_subfile)
7973 {
7974 addr = gdbarch_addr_bits_remove (gdbarch, address);
7975 if (last_subfile)
7976 record_line (last_subfile, 0, addr);
7977 last_subfile = current_subfile;
7978 }
25e43795 7979 /* Append row to matrix using current values. */
fbf65064
UW
7980 addr = check_cu_functions (address, cu);
7981 addr = gdbarch_addr_bits_remove (gdbarch, addr);
7982 record_line (current_subfile, line, addr);
366da635 7983 }
25e43795 7984 }
ca5f395d 7985 basic_block = 0;
9aa1fe7e
GK
7986 }
7987 else switch (op_code)
c906108c
SS
7988 {
7989 case DW_LNS_extended_op:
a8c50c1f 7990 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 7991 line_ptr += bytes_read;
a8c50c1f 7992 extended_end = line_ptr + extended_len;
c906108c
SS
7993 extended_op = read_1_byte (abfd, line_ptr);
7994 line_ptr += 1;
7995 switch (extended_op)
7996 {
7997 case DW_LNE_end_sequence:
7998 end_sequence = 1;
c906108c
SS
7999 break;
8000 case DW_LNE_set_address:
e7c27a73 8001 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
8002 line_ptr += bytes_read;
8003 address += baseaddr;
c906108c
SS
8004 break;
8005 case DW_LNE_define_file:
debd256d
JB
8006 {
8007 char *cur_file;
8008 unsigned int dir_index, mod_time, length;
8009
8010 cur_file = read_string (abfd, line_ptr, &bytes_read);
8011 line_ptr += bytes_read;
8012 dir_index =
8013 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8014 line_ptr += bytes_read;
8015 mod_time =
8016 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8017 line_ptr += bytes_read;
8018 length =
8019 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8020 line_ptr += bytes_read;
8021 add_file_name (lh, cur_file, dir_index, mod_time, length);
8022 }
c906108c 8023 break;
d0c6ba3d
CC
8024 case DW_LNE_set_discriminator:
8025 /* The discriminator is not interesting to the debugger;
8026 just ignore it. */
8027 line_ptr = extended_end;
8028 break;
c906108c 8029 default:
4d3c2250 8030 complaint (&symfile_complaints,
e2e0b3e5 8031 _("mangled .debug_line section"));
debd256d 8032 return;
c906108c 8033 }
a8c50c1f
DJ
8034 /* Make sure that we parsed the extended op correctly. If e.g.
8035 we expected a different address size than the producer used,
8036 we may have read the wrong number of bytes. */
8037 if (line_ptr != extended_end)
8038 {
8039 complaint (&symfile_complaints,
8040 _("mangled .debug_line section"));
8041 return;
8042 }
c906108c
SS
8043 break;
8044 case DW_LNS_copy:
59205f5a 8045 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8046 dwarf2_debug_line_missing_file_complaint ();
8047 else
366da635 8048 {
25e43795 8049 lh->file_names[file - 1].included_p = 1;
ca5f395d 8050 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8051 {
8052 if (last_subfile != current_subfile)
8053 {
8054 addr = gdbarch_addr_bits_remove (gdbarch, address);
8055 if (last_subfile)
8056 record_line (last_subfile, 0, addr);
8057 last_subfile = current_subfile;
8058 }
8059 addr = check_cu_functions (address, cu);
8060 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8061 record_line (current_subfile, line, addr);
8062 }
366da635 8063 }
c906108c
SS
8064 basic_block = 0;
8065 break;
8066 case DW_LNS_advance_pc:
debd256d 8067 address += lh->minimum_instruction_length
c906108c
SS
8068 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8069 line_ptr += bytes_read;
8070 break;
8071 case DW_LNS_advance_line:
8072 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8073 line_ptr += bytes_read;
8074 break;
8075 case DW_LNS_set_file:
debd256d 8076 {
a738430d
MK
8077 /* The arrays lh->include_dirs and lh->file_names are
8078 0-based, but the directory and file name numbers in
8079 the statement program are 1-based. */
debd256d 8080 struct file_entry *fe;
4f1520fb 8081 char *dir = NULL;
a738430d 8082
debd256d
JB
8083 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8084 line_ptr += bytes_read;
59205f5a 8085 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8086 dwarf2_debug_line_missing_file_complaint ();
8087 else
8088 {
8089 fe = &lh->file_names[file - 1];
8090 if (fe->dir_index)
8091 dir = lh->include_dirs[fe->dir_index - 1];
8092 if (!decode_for_pst_p)
8093 {
8094 last_subfile = current_subfile;
8095 dwarf2_start_subfile (fe->name, dir, comp_dir);
8096 }
8097 }
debd256d 8098 }
c906108c
SS
8099 break;
8100 case DW_LNS_set_column:
8101 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8102 line_ptr += bytes_read;
8103 break;
8104 case DW_LNS_negate_stmt:
8105 is_stmt = (!is_stmt);
8106 break;
8107 case DW_LNS_set_basic_block:
8108 basic_block = 1;
8109 break;
c2c6d25f
JM
8110 /* Add to the address register of the state machine the
8111 address increment value corresponding to special opcode
a738430d
MK
8112 255. I.e., this value is scaled by the minimum
8113 instruction length since special opcode 255 would have
8114 scaled the the increment. */
c906108c 8115 case DW_LNS_const_add_pc:
debd256d
JB
8116 address += (lh->minimum_instruction_length
8117 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
8118 break;
8119 case DW_LNS_fixed_advance_pc:
8120 address += read_2_bytes (abfd, line_ptr);
8121 line_ptr += 2;
8122 break;
9aa1fe7e 8123 default:
a738430d
MK
8124 {
8125 /* Unknown standard opcode, ignore it. */
9aa1fe7e 8126 int i;
a738430d 8127
debd256d 8128 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
8129 {
8130 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8131 line_ptr += bytes_read;
8132 }
8133 }
c906108c
SS
8134 }
8135 }
59205f5a
JB
8136 if (lh->num_file_names < file || file == 0)
8137 dwarf2_debug_line_missing_file_complaint ();
8138 else
8139 {
8140 lh->file_names[file - 1].included_p = 1;
8141 if (!decode_for_pst_p)
fbf65064
UW
8142 {
8143 addr = gdbarch_addr_bits_remove (gdbarch, address);
8144 record_line (current_subfile, 0, addr);
8145 }
59205f5a 8146 }
c906108c 8147 }
aaa75496
JB
8148
8149 if (decode_for_pst_p)
8150 {
8151 int file_index;
8152
8153 /* Now that we're done scanning the Line Header Program, we can
8154 create the psymtab of each included file. */
8155 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8156 if (lh->file_names[file_index].included_p == 1)
8157 {
5b5464ad
JB
8158 const struct file_entry fe = lh->file_names [file_index];
8159 char *include_name = fe.name;
8160 char *dir_name = NULL;
8161 char *pst_filename = pst->filename;
8162
8163 if (fe.dir_index)
8164 dir_name = lh->include_dirs[fe.dir_index - 1];
8165
8166 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8167 {
1754f103
MK
8168 include_name = concat (dir_name, SLASH_STRING,
8169 include_name, (char *)NULL);
5b5464ad
JB
8170 make_cleanup (xfree, include_name);
8171 }
8172
8173 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8174 {
1754f103
MK
8175 pst_filename = concat (pst->dirname, SLASH_STRING,
8176 pst_filename, (char *)NULL);
5b5464ad
JB
8177 make_cleanup (xfree, pst_filename);
8178 }
8179
8180 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
8181 dwarf2_create_include_psymtab (include_name, pst, objfile);
8182 }
8183 }
cb1df416
DJ
8184 else
8185 {
8186 /* Make sure a symtab is created for every file, even files
8187 which contain only variables (i.e. no code with associated
8188 line numbers). */
8189
8190 int i;
8191 struct file_entry *fe;
8192
8193 for (i = 0; i < lh->num_file_names; i++)
8194 {
8195 char *dir = NULL;
8196 fe = &lh->file_names[i];
8197 if (fe->dir_index)
8198 dir = lh->include_dirs[fe->dir_index - 1];
8199 dwarf2_start_subfile (fe->name, dir, comp_dir);
8200
8201 /* Skip the main file; we don't need it, and it must be
8202 allocated last, so that it will show up before the
8203 non-primary symtabs in the objfile's symtab list. */
8204 if (current_subfile == first_subfile)
8205 continue;
8206
8207 if (current_subfile->symtab == NULL)
8208 current_subfile->symtab = allocate_symtab (current_subfile->name,
8209 cu->objfile);
8210 fe->symtab = current_subfile->symtab;
8211 }
8212 }
c906108c
SS
8213}
8214
8215/* Start a subfile for DWARF. FILENAME is the name of the file and
8216 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
8217 or NULL if not known. COMP_DIR is the compilation directory for the
8218 linetable's compilation unit or NULL if not known.
c906108c
SS
8219 This routine tries to keep line numbers from identical absolute and
8220 relative file names in a common subfile.
8221
8222 Using the `list' example from the GDB testsuite, which resides in
8223 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8224 of /srcdir/list0.c yields the following debugging information for list0.c:
8225
c5aa993b
JM
8226 DW_AT_name: /srcdir/list0.c
8227 DW_AT_comp_dir: /compdir
357e46e7 8228 files.files[0].name: list0.h
c5aa993b 8229 files.files[0].dir: /srcdir
357e46e7 8230 files.files[1].name: list0.c
c5aa993b 8231 files.files[1].dir: /srcdir
c906108c
SS
8232
8233 The line number information for list0.c has to end up in a single
4f1520fb
FR
8234 subfile, so that `break /srcdir/list0.c:1' works as expected.
8235 start_subfile will ensure that this happens provided that we pass the
8236 concatenation of files.files[1].dir and files.files[1].name as the
8237 subfile's name. */
c906108c
SS
8238
8239static void
4f1520fb 8240dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 8241{
4f1520fb
FR
8242 char *fullname;
8243
8244 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8245 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8246 second argument to start_subfile. To be consistent, we do the
8247 same here. In order not to lose the line information directory,
8248 we concatenate it to the filename when it makes sense.
8249 Note that the Dwarf3 standard says (speaking of filenames in line
8250 information): ``The directory index is ignored for file names
8251 that represent full path names''. Thus ignoring dirname in the
8252 `else' branch below isn't an issue. */
c906108c 8253
d5166ae1 8254 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
8255 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8256 else
8257 fullname = filename;
c906108c 8258
4f1520fb
FR
8259 start_subfile (fullname, comp_dir);
8260
8261 if (fullname != filename)
8262 xfree (fullname);
c906108c
SS
8263}
8264
4c2df51b
DJ
8265static void
8266var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 8267 struct dwarf2_cu *cu)
4c2df51b 8268{
e7c27a73
DJ
8269 struct objfile *objfile = cu->objfile;
8270 struct comp_unit_head *cu_header = &cu->header;
8271
4c2df51b
DJ
8272 /* NOTE drow/2003-01-30: There used to be a comment and some special
8273 code here to turn a symbol with DW_AT_external and a
8274 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8275 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8276 with some versions of binutils) where shared libraries could have
8277 relocations against symbols in their debug information - the
8278 minimal symbol would have the right address, but the debug info
8279 would not. It's no longer necessary, because we will explicitly
8280 apply relocations when we read in the debug information now. */
8281
8282 /* A DW_AT_location attribute with no contents indicates that a
8283 variable has been optimized away. */
8284 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8285 {
8286 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8287 return;
8288 }
8289
8290 /* Handle one degenerate form of location expression specially, to
8291 preserve GDB's previous behavior when section offsets are
8292 specified. If this is just a DW_OP_addr then mark this symbol
8293 as LOC_STATIC. */
8294
8295 if (attr_form_is_block (attr)
8296 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8297 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8298 {
891d2f0b 8299 unsigned int dummy;
4c2df51b
DJ
8300
8301 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 8302 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 8303 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
8304 fixup_symbol_section (sym, objfile);
8305 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8306 SYMBOL_SECTION (sym));
4c2df51b
DJ
8307 return;
8308 }
8309
8310 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8311 expression evaluator, and use LOC_COMPUTED only when necessary
8312 (i.e. when the value of a register or memory location is
8313 referenced, or a thread-local block, etc.). Then again, it might
8314 not be worthwhile. I'm assuming that it isn't unless performance
8315 or memory numbers show me otherwise. */
8316
e7c27a73 8317 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
8318 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8319}
8320
c906108c
SS
8321/* Given a pointer to a DWARF information entry, figure out if we need
8322 to make a symbol table entry for it, and if so, create a new entry
8323 and return a pointer to it.
8324 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 8325 used the passed type. */
c906108c
SS
8326
8327static struct symbol *
e7c27a73 8328new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 8329{
e7c27a73 8330 struct objfile *objfile = cu->objfile;
c906108c
SS
8331 struct symbol *sym = NULL;
8332 char *name;
8333 struct attribute *attr = NULL;
8334 struct attribute *attr2 = NULL;
e142c38c 8335 CORE_ADDR baseaddr;
edb3359d 8336 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
8337
8338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8339
5c4e30ca 8340 if (die->tag != DW_TAG_namespace)
e142c38c 8341 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
8342 else
8343 name = TYPE_NAME (type);
8344
c906108c
SS
8345 if (name)
8346 {
4a146b47 8347 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
8348 sizeof (struct symbol));
8349 OBJSTAT (objfile, n_syms++);
8350 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
8351
8352 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 8353 SYMBOL_LANGUAGE (sym) = cu->language;
04a679b8 8354 SYMBOL_SET_NAMES (sym, name, strlen (name), 0, objfile);
c906108c
SS
8355
8356 /* Default assumptions.
c5aa993b 8357 Use the passed type or decode it from the die. */
176620f1 8358 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 8359 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
8360 if (type != NULL)
8361 SYMBOL_TYPE (sym) = type;
8362 else
e7c27a73 8363 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
8364 attr = dwarf2_attr (die,
8365 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8366 cu);
c906108c
SS
8367 if (attr)
8368 {
8369 SYMBOL_LINE (sym) = DW_UNSND (attr);
8370 }
cb1df416 8371
edb3359d
DJ
8372 attr = dwarf2_attr (die,
8373 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8374 cu);
cb1df416
DJ
8375 if (attr)
8376 {
8377 int file_index = DW_UNSND (attr);
8378 if (cu->line_header == NULL
8379 || file_index > cu->line_header->num_file_names)
8380 complaint (&symfile_complaints,
8381 _("file index out of range"));
1c3d648d 8382 else if (file_index > 0)
cb1df416
DJ
8383 {
8384 struct file_entry *fe;
8385 fe = &cu->line_header->file_names[file_index - 1];
8386 SYMBOL_SYMTAB (sym) = fe->symtab;
8387 }
8388 }
8389
c906108c
SS
8390 switch (die->tag)
8391 {
8392 case DW_TAG_label:
e142c38c 8393 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
8394 if (attr)
8395 {
8396 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8397 }
8398 SYMBOL_CLASS (sym) = LOC_LABEL;
8399 break;
8400 case DW_TAG_subprogram:
8401 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8402 finish_block. */
8403 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 8404 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
8405 if ((attr2 && (DW_UNSND (attr2) != 0))
8406 || cu->language == language_ada)
c906108c 8407 {
2cfa0c8d
JB
8408 /* Subprograms marked external are stored as a global symbol.
8409 Ada subprograms, whether marked external or not, are always
8410 stored as a global symbol, because we want to be able to
8411 access them globally. For instance, we want to be able
8412 to break on a nested subprogram without having to
8413 specify the context. */
c906108c
SS
8414 add_symbol_to_list (sym, &global_symbols);
8415 }
8416 else
8417 {
e142c38c 8418 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8419 }
8420 break;
edb3359d
DJ
8421 case DW_TAG_inlined_subroutine:
8422 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8423 finish_block. */
8424 SYMBOL_CLASS (sym) = LOC_BLOCK;
8425 SYMBOL_INLINED (sym) = 1;
8426 /* Do not add the symbol to any lists. It will be found via
8427 BLOCK_FUNCTION from the blockvector. */
8428 break;
c906108c
SS
8429 case DW_TAG_variable:
8430 /* Compilation with minimal debug info may result in variables
8431 with missing type entries. Change the misleading `void' type
8432 to something sensible. */
8433 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 8434 SYMBOL_TYPE (sym)
46bf5051 8435 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 8436
e142c38c 8437 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8438 if (attr)
8439 {
e7c27a73 8440 dwarf2_const_value (attr, sym, cu);
e142c38c 8441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
8442 if (attr2 && (DW_UNSND (attr2) != 0))
8443 add_symbol_to_list (sym, &global_symbols);
8444 else
e142c38c 8445 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8446 break;
8447 }
e142c38c 8448 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8449 if (attr)
8450 {
e7c27a73 8451 var_decode_location (attr, sym, cu);
e142c38c 8452 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8453 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 8454 add_symbol_to_list (sym, &global_symbols);
c906108c 8455 else
e142c38c 8456 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8457 }
8458 else
8459 {
8460 /* We do not know the address of this symbol.
c5aa993b
JM
8461 If it is an external symbol and we have type information
8462 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8463 The address of the variable will then be determined from
8464 the minimal symbol table whenever the variable is
8465 referenced. */
e142c38c 8466 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8467 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 8468 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 8469 {
0fe7935b
DJ
8470 struct pending **list_to_add;
8471
8472 /* A variable with DW_AT_external is never static, but it
8473 may be block-scoped. */
8474 list_to_add = (cu->list_in_scope == &file_symbols
8475 ? &global_symbols : cu->list_in_scope);
8476
c906108c 8477 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
0fe7935b 8478 add_symbol_to_list (sym, list_to_add);
c906108c 8479 }
442ddf59
JK
8480 else if (!die_is_declaration (die, cu))
8481 {
8482 /* Use the default LOC_OPTIMIZED_OUT class. */
8483 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8484 add_symbol_to_list (sym, cu->list_in_scope);
8485 }
c906108c
SS
8486 }
8487 break;
8488 case DW_TAG_formal_parameter:
edb3359d
DJ
8489 /* If we are inside a function, mark this as an argument. If
8490 not, we might be looking at an argument to an inlined function
8491 when we do not have enough information to show inlined frames;
8492 pretend it's a local variable in that case so that the user can
8493 still see it. */
8494 if (context_stack_depth > 0
8495 && context_stack[context_stack_depth - 1].name != NULL)
8496 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 8497 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8498 if (attr)
8499 {
e7c27a73 8500 var_decode_location (attr, sym, cu);
c906108c 8501 }
e142c38c 8502 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8503 if (attr)
8504 {
e7c27a73 8505 dwarf2_const_value (attr, sym, cu);
c906108c 8506 }
e142c38c 8507 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8508 break;
8509 case DW_TAG_unspecified_parameters:
8510 /* From varargs functions; gdb doesn't seem to have any
8511 interest in this information, so just ignore it for now.
8512 (FIXME?) */
8513 break;
8514 case DW_TAG_class_type:
680b30c7 8515 case DW_TAG_interface_type:
c906108c
SS
8516 case DW_TAG_structure_type:
8517 case DW_TAG_union_type:
72019c9c 8518 case DW_TAG_set_type:
c906108c
SS
8519 case DW_TAG_enumeration_type:
8520 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8521 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 8522
63d06c5c
DC
8523 /* Make sure that the symbol includes appropriate enclosing
8524 classes/namespaces in its name. These are calculated in
134d01f1 8525 read_structure_type, and the correct name is saved in
63d06c5c
DC
8526 the type. */
8527
987504bb
JJ
8528 if (cu->language == language_cplus
8529 || cu->language == language_java)
c906108c 8530 {
63d06c5c
DC
8531 struct type *type = SYMBOL_TYPE (sym);
8532
8533 if (TYPE_TAG_NAME (type) != NULL)
8534 {
8535 /* FIXME: carlton/2003-11-10: Should this use
8536 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
8537 arises further down in this function.) */
8538 /* The type's name is already allocated along with
8539 this objfile, so we don't need to duplicate it
8540 for the symbol. */
8541 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 8542 }
c906108c 8543 }
63d06c5c
DC
8544
8545 {
987504bb 8546 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
8547 really ever be static objects: otherwise, if you try
8548 to, say, break of a class's method and you're in a file
8549 which doesn't mention that class, it won't work unless
8550 the check for all static symbols in lookup_symbol_aux
8551 saves you. See the OtherFileClass tests in
8552 gdb.c++/namespace.exp. */
8553
8554 struct pending **list_to_add;
8555
e142c38c 8556 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8557 && (cu->language == language_cplus
8558 || cu->language == language_java)
e142c38c 8559 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8560
8561 add_symbol_to_list (sym, list_to_add);
8562
8563 /* The semantics of C++ state that "struct foo { ... }" also
987504bb 8564 defines a typedef for "foo". A Java class declaration also
5eeb2539 8565 defines a typedef for the class. */
987504bb 8566 if (cu->language == language_cplus
8c6860bb
JB
8567 || cu->language == language_java
8568 || cu->language == language_ada)
63d06c5c 8569 {
d8151005
DJ
8570 /* The symbol's name is already allocated along with
8571 this objfile, so we don't need to duplicate it for
8572 the type. */
63d06c5c 8573 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 8574 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
8575 }
8576 }
c906108c
SS
8577 break;
8578 case DW_TAG_typedef:
0114d602 8579 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
63d06c5c
DC
8580 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8581 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8582 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 8583 break;
c906108c 8584 case DW_TAG_base_type:
a02abb62 8585 case DW_TAG_subrange_type:
c906108c 8586 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8587 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8588 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8589 break;
8590 case DW_TAG_enumerator:
0114d602 8591 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
e142c38c 8592 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8593 if (attr)
8594 {
e7c27a73 8595 dwarf2_const_value (attr, sym, cu);
c906108c 8596 }
63d06c5c
DC
8597 {
8598 /* NOTE: carlton/2003-11-10: See comment above in the
8599 DW_TAG_class_type, etc. block. */
8600
8601 struct pending **list_to_add;
8602
e142c38c 8603 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8604 && (cu->language == language_cplus
8605 || cu->language == language_java)
e142c38c 8606 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8607
8608 add_symbol_to_list (sym, list_to_add);
8609 }
c906108c 8610 break;
5c4e30ca
DC
8611 case DW_TAG_namespace:
8612 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8613 add_symbol_to_list (sym, &global_symbols);
8614 break;
c906108c
SS
8615 default:
8616 /* Not a tag we recognize. Hopefully we aren't processing
8617 trash data, but since we must specifically ignore things
8618 we don't recognize, there is nothing else we should do at
8619 this point. */
e2e0b3e5 8620 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 8621 dwarf_tag_name (die->tag));
c906108c
SS
8622 break;
8623 }
df8a16a1
DJ
8624
8625 /* For the benefit of old versions of GCC, check for anonymous
8626 namespaces based on the demangled name. */
8627 if (!processing_has_namespace_info
8628 && cu->language == language_cplus
8629 && dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu) != NULL)
8630 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
8631 }
8632 return (sym);
8633}
8634
8635/* Copy constant value from an attribute to a symbol. */
8636
8637static void
107d2387 8638dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 8639 struct dwarf2_cu *cu)
c906108c 8640{
e7c27a73
DJ
8641 struct objfile *objfile = cu->objfile;
8642 struct comp_unit_head *cu_header = &cu->header;
e17a4113
UW
8643 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8644 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
c906108c
SS
8645 struct dwarf_block *blk;
8646
8647 switch (attr->form)
8648 {
8649 case DW_FORM_addr:
107d2387 8650 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
3567439c 8651 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8652 cu_header->addr_size,
8653 TYPE_LENGTH (SYMBOL_TYPE
8654 (sym)));
4e38b386 8655 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8656 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
8657 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8658 it's body - store_unsigned_integer. */
8659 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
72f2769e 8660 byte_order, DW_ADDR (attr));
c906108c
SS
8661 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8662 break;
4ac36638 8663 case DW_FORM_string:
93b5768b
PA
8664 case DW_FORM_strp:
8665 /* DW_STRING is already allocated on the obstack, point directly
8666 to it. */
8667 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8668 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8669 break;
c906108c
SS
8670 case DW_FORM_block1:
8671 case DW_FORM_block2:
8672 case DW_FORM_block4:
8673 case DW_FORM_block:
8674 blk = DW_BLOCK (attr);
8675 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
3567439c 8676 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8677 blk->size,
8678 TYPE_LENGTH (SYMBOL_TYPE
8679 (sym)));
4e38b386 8680 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8681 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
8682 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8683 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8684 break;
2df3850c
JM
8685
8686 /* The DW_AT_const_value attributes are supposed to carry the
8687 symbol's value "represented as it would be on the target
8688 architecture." By the time we get here, it's already been
8689 converted to host endianness, so we just need to sign- or
8690 zero-extend it as appropriate. */
8691 case DW_FORM_data1:
8692 dwarf2_const_value_data (attr, sym, 8);
8693 break;
c906108c 8694 case DW_FORM_data2:
2df3850c
JM
8695 dwarf2_const_value_data (attr, sym, 16);
8696 break;
c906108c 8697 case DW_FORM_data4:
2df3850c
JM
8698 dwarf2_const_value_data (attr, sym, 32);
8699 break;
c906108c 8700 case DW_FORM_data8:
2df3850c
JM
8701 dwarf2_const_value_data (attr, sym, 64);
8702 break;
8703
c906108c 8704 case DW_FORM_sdata:
2df3850c
JM
8705 SYMBOL_VALUE (sym) = DW_SND (attr);
8706 SYMBOL_CLASS (sym) = LOC_CONST;
8707 break;
8708
c906108c
SS
8709 case DW_FORM_udata:
8710 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8711 SYMBOL_CLASS (sym) = LOC_CONST;
8712 break;
2df3850c 8713
c906108c 8714 default:
4d3c2250 8715 complaint (&symfile_complaints,
e2e0b3e5 8716 _("unsupported const value attribute form: '%s'"),
4d3c2250 8717 dwarf_form_name (attr->form));
c906108c
SS
8718 SYMBOL_VALUE (sym) = 0;
8719 SYMBOL_CLASS (sym) = LOC_CONST;
8720 break;
8721 }
8722}
8723
2df3850c
JM
8724
8725/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8726 or zero-extend it as appropriate for the symbol's type. */
8727static void
8728dwarf2_const_value_data (struct attribute *attr,
8729 struct symbol *sym,
8730 int bits)
8731{
8732 LONGEST l = DW_UNSND (attr);
8733
8734 if (bits < sizeof (l) * 8)
8735 {
8736 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8737 l &= ((LONGEST) 1 << bits) - 1;
8738 else
bf9198f1 8739 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
8740 }
8741
8742 SYMBOL_VALUE (sym) = l;
8743 SYMBOL_CLASS (sym) = LOC_CONST;
8744}
8745
8746
c906108c
SS
8747/* Return the type of the die in question using its DW_AT_type attribute. */
8748
8749static struct type *
e7c27a73 8750die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8751{
8752 struct type *type;
8753 struct attribute *type_attr;
8754 struct die_info *type_die;
c906108c 8755
e142c38c 8756 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
8757 if (!type_attr)
8758 {
8759 /* A missing DW_AT_type represents a void type. */
46bf5051 8760 return objfile_type (cu->objfile)->builtin_void;
c906108c 8761 }
348e048f
DE
8762
8763 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10b3939b 8764
e7c27a73 8765 type = tag_type_to_type (type_die, cu);
c906108c
SS
8766 if (!type)
8767 {
d97bc12b 8768 dump_die_for_error (type_die);
8a3fe4f8 8769 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 8770 cu->objfile->name);
c906108c
SS
8771 }
8772 return type;
8773}
8774
b4ba55a1
JB
8775/* True iff CU's producer generates GNAT Ada auxiliary information
8776 that allows to find parallel types through that information instead
8777 of having to do expensive parallel lookups by type name. */
8778
8779static int
8780need_gnat_info (struct dwarf2_cu *cu)
8781{
8782 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
8783 of GNAT produces this auxiliary information, without any indication
8784 that it is produced. Part of enhancing the FSF version of GNAT
8785 to produce that information will be to put in place an indicator
8786 that we can use in order to determine whether the descriptive type
8787 info is available or not. One suggestion that has been made is
8788 to use a new attribute, attached to the CU die. For now, assume
8789 that the descriptive type info is not available. */
8790 return 0;
8791}
8792
8793
8794/* Return the auxiliary type of the die in question using its
8795 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
8796 attribute is not present. */
8797
8798static struct type *
8799die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
8800{
8801 struct type *type;
8802 struct attribute *type_attr;
8803 struct die_info *type_die;
8804
8805 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
8806 if (!type_attr)
8807 return NULL;
8808
8809 type_die = follow_die_ref (die, type_attr, &cu);
8810 type = tag_type_to_type (type_die, cu);
8811 if (!type)
8812 {
8813 dump_die_for_error (type_die);
8814 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
8815 cu->objfile->name);
8816 }
8817 return type;
8818}
8819
8820/* If DIE has a descriptive_type attribute, then set the TYPE's
8821 descriptive type accordingly. */
8822
8823static void
8824set_descriptive_type (struct type *type, struct die_info *die,
8825 struct dwarf2_cu *cu)
8826{
8827 struct type *descriptive_type = die_descriptive_type (die, cu);
8828
8829 if (descriptive_type)
8830 {
8831 ALLOCATE_GNAT_AUX_TYPE (type);
8832 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
8833 }
8834}
8835
c906108c
SS
8836/* Return the containing type of the die in question using its
8837 DW_AT_containing_type attribute. */
8838
8839static struct type *
e7c27a73 8840die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8841{
8842 struct type *type = NULL;
8843 struct attribute *type_attr;
8844 struct die_info *type_die = NULL;
c906108c 8845
e142c38c 8846 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
8847 if (type_attr)
8848 {
348e048f 8849 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
e7c27a73 8850 type = tag_type_to_type (type_die, cu);
c906108c
SS
8851 }
8852 if (!type)
8853 {
8854 if (type_die)
d97bc12b 8855 dump_die_for_error (type_die);
8a3fe4f8 8856 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 8857 cu->objfile->name);
c906108c
SS
8858 }
8859 return type;
8860}
8861
c906108c 8862static struct type *
e7c27a73 8863tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8864{
f792889a
DJ
8865 struct type *this_type;
8866
8867 this_type = read_type_die (die, cu);
8868 if (!this_type)
c906108c 8869 {
d97bc12b 8870 dump_die_for_error (die);
f792889a
DJ
8871 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
8872 cu->objfile->name);
c906108c 8873 }
f792889a 8874 return this_type;
c906108c
SS
8875}
8876
f792889a 8877static struct type *
e7c27a73 8878read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8879{
f792889a
DJ
8880 struct type *this_type;
8881
8882 this_type = get_die_type (die, cu);
8883 if (this_type)
8884 return this_type;
8885
c906108c
SS
8886 switch (die->tag)
8887 {
8888 case DW_TAG_class_type:
680b30c7 8889 case DW_TAG_interface_type:
c906108c
SS
8890 case DW_TAG_structure_type:
8891 case DW_TAG_union_type:
f792889a 8892 this_type = read_structure_type (die, cu);
c906108c
SS
8893 break;
8894 case DW_TAG_enumeration_type:
f792889a 8895 this_type = read_enumeration_type (die, cu);
c906108c
SS
8896 break;
8897 case DW_TAG_subprogram:
8898 case DW_TAG_subroutine_type:
edb3359d 8899 case DW_TAG_inlined_subroutine:
f792889a 8900 this_type = read_subroutine_type (die, cu);
c906108c
SS
8901 break;
8902 case DW_TAG_array_type:
f792889a 8903 this_type = read_array_type (die, cu);
c906108c 8904 break;
72019c9c 8905 case DW_TAG_set_type:
f792889a 8906 this_type = read_set_type (die, cu);
72019c9c 8907 break;
c906108c 8908 case DW_TAG_pointer_type:
f792889a 8909 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
8910 break;
8911 case DW_TAG_ptr_to_member_type:
f792889a 8912 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
8913 break;
8914 case DW_TAG_reference_type:
f792889a 8915 this_type = read_tag_reference_type (die, cu);
c906108c
SS
8916 break;
8917 case DW_TAG_const_type:
f792889a 8918 this_type = read_tag_const_type (die, cu);
c906108c
SS
8919 break;
8920 case DW_TAG_volatile_type:
f792889a 8921 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
8922 break;
8923 case DW_TAG_string_type:
f792889a 8924 this_type = read_tag_string_type (die, cu);
c906108c
SS
8925 break;
8926 case DW_TAG_typedef:
f792889a 8927 this_type = read_typedef (die, cu);
c906108c 8928 break;
a02abb62 8929 case DW_TAG_subrange_type:
f792889a 8930 this_type = read_subrange_type (die, cu);
a02abb62 8931 break;
c906108c 8932 case DW_TAG_base_type:
f792889a 8933 this_type = read_base_type (die, cu);
c906108c 8934 break;
81a17f79 8935 case DW_TAG_unspecified_type:
f792889a 8936 this_type = read_unspecified_type (die, cu);
81a17f79 8937 break;
0114d602
DJ
8938 case DW_TAG_namespace:
8939 this_type = read_namespace_type (die, cu);
8940 break;
c906108c 8941 default:
a1f5b845 8942 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 8943 dwarf_tag_name (die->tag));
c906108c
SS
8944 break;
8945 }
63d06c5c 8946
f792889a 8947 return this_type;
63d06c5c
DC
8948}
8949
fdde2d81 8950/* Return the name of the namespace/class that DIE is defined within,
0114d602 8951 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 8952
0114d602
DJ
8953 For example, if we're within the method foo() in the following
8954 code:
8955
8956 namespace N {
8957 class C {
8958 void foo () {
8959 }
8960 };
8961 }
8962
8963 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
8964
8965static char *
e142c38c 8966determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 8967{
0114d602
DJ
8968 struct die_info *parent, *spec_die;
8969 struct dwarf2_cu *spec_cu;
8970 struct type *parent_type;
63d06c5c 8971
987504bb
JJ
8972 if (cu->language != language_cplus
8973 && cu->language != language_java)
0114d602
DJ
8974 return "";
8975
8976 /* We have to be careful in the presence of DW_AT_specification.
8977 For example, with GCC 3.4, given the code
8978
8979 namespace N {
8980 void foo() {
8981 // Definition of N::foo.
8982 }
8983 }
8984
8985 then we'll have a tree of DIEs like this:
8986
8987 1: DW_TAG_compile_unit
8988 2: DW_TAG_namespace // N
8989 3: DW_TAG_subprogram // declaration of N::foo
8990 4: DW_TAG_subprogram // definition of N::foo
8991 DW_AT_specification // refers to die #3
8992
8993 Thus, when processing die #4, we have to pretend that we're in
8994 the context of its DW_AT_specification, namely the contex of die
8995 #3. */
8996 spec_cu = cu;
8997 spec_die = die_specification (die, &spec_cu);
8998 if (spec_die == NULL)
8999 parent = die->parent;
9000 else
63d06c5c 9001 {
0114d602
DJ
9002 parent = spec_die->parent;
9003 cu = spec_cu;
63d06c5c 9004 }
0114d602
DJ
9005
9006 if (parent == NULL)
9007 return "";
63d06c5c 9008 else
0114d602
DJ
9009 switch (parent->tag)
9010 {
63d06c5c 9011 case DW_TAG_namespace:
0114d602
DJ
9012 parent_type = read_type_die (parent, cu);
9013 /* We give a name to even anonymous namespaces. */
9014 return TYPE_TAG_NAME (parent_type);
63d06c5c 9015 case DW_TAG_class_type:
680b30c7 9016 case DW_TAG_interface_type:
63d06c5c 9017 case DW_TAG_structure_type:
0114d602
DJ
9018 case DW_TAG_union_type:
9019 parent_type = read_type_die (parent, cu);
9020 if (TYPE_TAG_NAME (parent_type) != NULL)
9021 return TYPE_TAG_NAME (parent_type);
9022 else
9023 /* An anonymous structure is only allowed non-static data
9024 members; no typedefs, no member functions, et cetera.
9025 So it does not need a prefix. */
9026 return "";
63d06c5c 9027 default:
8176b9b8 9028 return determine_prefix (parent, cu);
63d06c5c 9029 }
63d06c5c
DC
9030}
9031
987504bb
JJ
9032/* Return a newly-allocated string formed by concatenating PREFIX and
9033 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9034 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9035 perform an obconcat, otherwise allocate storage for the result. The CU argument
9036 is used to determine the language and hence, the appropriate separator. */
9037
9038#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
9039
9040static char *
987504bb
JJ
9041typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9042 struct dwarf2_cu *cu)
63d06c5c 9043{
987504bb 9044 char *sep;
63d06c5c 9045
987504bb
JJ
9046 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9047 sep = "";
9048 else if (cu->language == language_java)
9049 sep = ".";
9050 else
9051 sep = "::";
63d06c5c 9052
6dd47d34
DE
9053 if (prefix == NULL)
9054 prefix = "";
9055 if (suffix == NULL)
9056 suffix = "";
9057
987504bb
JJ
9058 if (obs == NULL)
9059 {
9060 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
6dd47d34
DE
9061 strcpy (retval, prefix);
9062 strcat (retval, sep);
9063 strcat (retval, suffix);
63d06c5c
DC
9064 return retval;
9065 }
987504bb
JJ
9066 else
9067 {
9068 /* We have an obstack. */
9069 return obconcat (obs, prefix, sep, suffix);
9070 }
63d06c5c
DC
9071}
9072
c906108c
SS
9073/* Return sibling of die, NULL if no sibling. */
9074
f9aca02d 9075static struct die_info *
fba45db2 9076sibling_die (struct die_info *die)
c906108c 9077{
639d11d3 9078 return die->sibling;
c906108c
SS
9079}
9080
9081/* Get linkage name of a die, return NULL if not found. */
9082
9083static char *
e142c38c 9084dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
9085{
9086 struct attribute *attr;
9087
e142c38c 9088 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
9089 if (attr && DW_STRING (attr))
9090 return DW_STRING (attr);
71c25dea
TT
9091 return dwarf2_name (die, cu);
9092}
9093
9094/* Get name of a die, return NULL if not found. */
9095
9096static char *
9097dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9098 struct obstack *obstack)
9099{
9100 if (name && cu->language == language_cplus)
9101 {
9102 char *canon_name = cp_canonicalize_string (name);
9103
9104 if (canon_name != NULL)
9105 {
9106 if (strcmp (canon_name, name) != 0)
9107 name = obsavestring (canon_name, strlen (canon_name),
9108 obstack);
9109 xfree (canon_name);
9110 }
9111 }
9112
9113 return name;
c906108c
SS
9114}
9115
9219021c
DC
9116/* Get name of a die, return NULL if not found. */
9117
9118static char *
e142c38c 9119dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
9120{
9121 struct attribute *attr;
9122
e142c38c 9123 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
9124 if (!attr || !DW_STRING (attr))
9125 return NULL;
9126
9127 switch (die->tag)
9128 {
9129 case DW_TAG_compile_unit:
9130 /* Compilation units have a DW_AT_name that is a filename, not
9131 a source language identifier. */
9132 case DW_TAG_enumeration_type:
9133 case DW_TAG_enumerator:
9134 /* These tags always have simple identifiers already; no need
9135 to canonicalize them. */
9136 return DW_STRING (attr);
9137 default:
8285870a 9138 if (!DW_STRING_IS_CANONICAL (attr))
71c25dea
TT
9139 {
9140 DW_STRING (attr)
9141 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9142 &cu->objfile->objfile_obstack);
8285870a 9143 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea
TT
9144 }
9145 return DW_STRING (attr);
9146 }
9219021c
DC
9147}
9148
9149/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
9150 is none. *EXT_CU is the CU containing DIE on input, and the CU
9151 containing the return value on output. */
9219021c
DC
9152
9153static struct die_info *
f2f0e013 9154dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
9155{
9156 struct attribute *attr;
9219021c 9157
f2f0e013 9158 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
9159 if (attr == NULL)
9160 return NULL;
9161
f2f0e013 9162 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
9163}
9164
c906108c
SS
9165/* Convert a DIE tag into its string name. */
9166
9167static char *
aa1ee363 9168dwarf_tag_name (unsigned tag)
c906108c
SS
9169{
9170 switch (tag)
9171 {
9172 case DW_TAG_padding:
9173 return "DW_TAG_padding";
9174 case DW_TAG_array_type:
9175 return "DW_TAG_array_type";
9176 case DW_TAG_class_type:
9177 return "DW_TAG_class_type";
9178 case DW_TAG_entry_point:
9179 return "DW_TAG_entry_point";
9180 case DW_TAG_enumeration_type:
9181 return "DW_TAG_enumeration_type";
9182 case DW_TAG_formal_parameter:
9183 return "DW_TAG_formal_parameter";
9184 case DW_TAG_imported_declaration:
9185 return "DW_TAG_imported_declaration";
9186 case DW_TAG_label:
9187 return "DW_TAG_label";
9188 case DW_TAG_lexical_block:
9189 return "DW_TAG_lexical_block";
9190 case DW_TAG_member:
9191 return "DW_TAG_member";
9192 case DW_TAG_pointer_type:
9193 return "DW_TAG_pointer_type";
9194 case DW_TAG_reference_type:
9195 return "DW_TAG_reference_type";
9196 case DW_TAG_compile_unit:
9197 return "DW_TAG_compile_unit";
9198 case DW_TAG_string_type:
9199 return "DW_TAG_string_type";
9200 case DW_TAG_structure_type:
9201 return "DW_TAG_structure_type";
9202 case DW_TAG_subroutine_type:
9203 return "DW_TAG_subroutine_type";
9204 case DW_TAG_typedef:
9205 return "DW_TAG_typedef";
9206 case DW_TAG_union_type:
9207 return "DW_TAG_union_type";
9208 case DW_TAG_unspecified_parameters:
9209 return "DW_TAG_unspecified_parameters";
9210 case DW_TAG_variant:
9211 return "DW_TAG_variant";
9212 case DW_TAG_common_block:
9213 return "DW_TAG_common_block";
9214 case DW_TAG_common_inclusion:
9215 return "DW_TAG_common_inclusion";
9216 case DW_TAG_inheritance:
9217 return "DW_TAG_inheritance";
9218 case DW_TAG_inlined_subroutine:
9219 return "DW_TAG_inlined_subroutine";
9220 case DW_TAG_module:
9221 return "DW_TAG_module";
9222 case DW_TAG_ptr_to_member_type:
9223 return "DW_TAG_ptr_to_member_type";
9224 case DW_TAG_set_type:
9225 return "DW_TAG_set_type";
9226 case DW_TAG_subrange_type:
9227 return "DW_TAG_subrange_type";
9228 case DW_TAG_with_stmt:
9229 return "DW_TAG_with_stmt";
9230 case DW_TAG_access_declaration:
9231 return "DW_TAG_access_declaration";
9232 case DW_TAG_base_type:
9233 return "DW_TAG_base_type";
9234 case DW_TAG_catch_block:
9235 return "DW_TAG_catch_block";
9236 case DW_TAG_const_type:
9237 return "DW_TAG_const_type";
9238 case DW_TAG_constant:
9239 return "DW_TAG_constant";
9240 case DW_TAG_enumerator:
9241 return "DW_TAG_enumerator";
9242 case DW_TAG_file_type:
9243 return "DW_TAG_file_type";
9244 case DW_TAG_friend:
9245 return "DW_TAG_friend";
9246 case DW_TAG_namelist:
9247 return "DW_TAG_namelist";
9248 case DW_TAG_namelist_item:
9249 return "DW_TAG_namelist_item";
9250 case DW_TAG_packed_type:
9251 return "DW_TAG_packed_type";
9252 case DW_TAG_subprogram:
9253 return "DW_TAG_subprogram";
9254 case DW_TAG_template_type_param:
9255 return "DW_TAG_template_type_param";
9256 case DW_TAG_template_value_param:
9257 return "DW_TAG_template_value_param";
9258 case DW_TAG_thrown_type:
9259 return "DW_TAG_thrown_type";
9260 case DW_TAG_try_block:
9261 return "DW_TAG_try_block";
9262 case DW_TAG_variant_part:
9263 return "DW_TAG_variant_part";
9264 case DW_TAG_variable:
9265 return "DW_TAG_variable";
9266 case DW_TAG_volatile_type:
9267 return "DW_TAG_volatile_type";
d9fa45fe
DC
9268 case DW_TAG_dwarf_procedure:
9269 return "DW_TAG_dwarf_procedure";
9270 case DW_TAG_restrict_type:
9271 return "DW_TAG_restrict_type";
9272 case DW_TAG_interface_type:
9273 return "DW_TAG_interface_type";
9274 case DW_TAG_namespace:
9275 return "DW_TAG_namespace";
9276 case DW_TAG_imported_module:
9277 return "DW_TAG_imported_module";
9278 case DW_TAG_unspecified_type:
9279 return "DW_TAG_unspecified_type";
9280 case DW_TAG_partial_unit:
9281 return "DW_TAG_partial_unit";
9282 case DW_TAG_imported_unit:
9283 return "DW_TAG_imported_unit";
b7619582
GF
9284 case DW_TAG_condition:
9285 return "DW_TAG_condition";
9286 case DW_TAG_shared_type:
9287 return "DW_TAG_shared_type";
348e048f
DE
9288 case DW_TAG_type_unit:
9289 return "DW_TAG_type_unit";
c906108c
SS
9290 case DW_TAG_MIPS_loop:
9291 return "DW_TAG_MIPS_loop";
b7619582
GF
9292 case DW_TAG_HP_array_descriptor:
9293 return "DW_TAG_HP_array_descriptor";
c906108c
SS
9294 case DW_TAG_format_label:
9295 return "DW_TAG_format_label";
9296 case DW_TAG_function_template:
9297 return "DW_TAG_function_template";
9298 case DW_TAG_class_template:
9299 return "DW_TAG_class_template";
b7619582
GF
9300 case DW_TAG_GNU_BINCL:
9301 return "DW_TAG_GNU_BINCL";
9302 case DW_TAG_GNU_EINCL:
9303 return "DW_TAG_GNU_EINCL";
9304 case DW_TAG_upc_shared_type:
9305 return "DW_TAG_upc_shared_type";
9306 case DW_TAG_upc_strict_type:
9307 return "DW_TAG_upc_strict_type";
9308 case DW_TAG_upc_relaxed_type:
9309 return "DW_TAG_upc_relaxed_type";
9310 case DW_TAG_PGI_kanji_type:
9311 return "DW_TAG_PGI_kanji_type";
9312 case DW_TAG_PGI_interface_block:
9313 return "DW_TAG_PGI_interface_block";
c906108c
SS
9314 default:
9315 return "DW_TAG_<unknown>";
9316 }
9317}
9318
9319/* Convert a DWARF attribute code into its string name. */
9320
9321static char *
aa1ee363 9322dwarf_attr_name (unsigned attr)
c906108c
SS
9323{
9324 switch (attr)
9325 {
9326 case DW_AT_sibling:
9327 return "DW_AT_sibling";
9328 case DW_AT_location:
9329 return "DW_AT_location";
9330 case DW_AT_name:
9331 return "DW_AT_name";
9332 case DW_AT_ordering:
9333 return "DW_AT_ordering";
9334 case DW_AT_subscr_data:
9335 return "DW_AT_subscr_data";
9336 case DW_AT_byte_size:
9337 return "DW_AT_byte_size";
9338 case DW_AT_bit_offset:
9339 return "DW_AT_bit_offset";
9340 case DW_AT_bit_size:
9341 return "DW_AT_bit_size";
9342 case DW_AT_element_list:
9343 return "DW_AT_element_list";
9344 case DW_AT_stmt_list:
9345 return "DW_AT_stmt_list";
9346 case DW_AT_low_pc:
9347 return "DW_AT_low_pc";
9348 case DW_AT_high_pc:
9349 return "DW_AT_high_pc";
9350 case DW_AT_language:
9351 return "DW_AT_language";
9352 case DW_AT_member:
9353 return "DW_AT_member";
9354 case DW_AT_discr:
9355 return "DW_AT_discr";
9356 case DW_AT_discr_value:
9357 return "DW_AT_discr_value";
9358 case DW_AT_visibility:
9359 return "DW_AT_visibility";
9360 case DW_AT_import:
9361 return "DW_AT_import";
9362 case DW_AT_string_length:
9363 return "DW_AT_string_length";
9364 case DW_AT_common_reference:
9365 return "DW_AT_common_reference";
9366 case DW_AT_comp_dir:
9367 return "DW_AT_comp_dir";
9368 case DW_AT_const_value:
9369 return "DW_AT_const_value";
9370 case DW_AT_containing_type:
9371 return "DW_AT_containing_type";
9372 case DW_AT_default_value:
9373 return "DW_AT_default_value";
9374 case DW_AT_inline:
9375 return "DW_AT_inline";
9376 case DW_AT_is_optional:
9377 return "DW_AT_is_optional";
9378 case DW_AT_lower_bound:
9379 return "DW_AT_lower_bound";
9380 case DW_AT_producer:
9381 return "DW_AT_producer";
9382 case DW_AT_prototyped:
9383 return "DW_AT_prototyped";
9384 case DW_AT_return_addr:
9385 return "DW_AT_return_addr";
9386 case DW_AT_start_scope:
9387 return "DW_AT_start_scope";
09fa0d7c
JK
9388 case DW_AT_bit_stride:
9389 return "DW_AT_bit_stride";
c906108c
SS
9390 case DW_AT_upper_bound:
9391 return "DW_AT_upper_bound";
9392 case DW_AT_abstract_origin:
9393 return "DW_AT_abstract_origin";
9394 case DW_AT_accessibility:
9395 return "DW_AT_accessibility";
9396 case DW_AT_address_class:
9397 return "DW_AT_address_class";
9398 case DW_AT_artificial:
9399 return "DW_AT_artificial";
9400 case DW_AT_base_types:
9401 return "DW_AT_base_types";
9402 case DW_AT_calling_convention:
9403 return "DW_AT_calling_convention";
9404 case DW_AT_count:
9405 return "DW_AT_count";
9406 case DW_AT_data_member_location:
9407 return "DW_AT_data_member_location";
9408 case DW_AT_decl_column:
9409 return "DW_AT_decl_column";
9410 case DW_AT_decl_file:
9411 return "DW_AT_decl_file";
9412 case DW_AT_decl_line:
9413 return "DW_AT_decl_line";
9414 case DW_AT_declaration:
9415 return "DW_AT_declaration";
9416 case DW_AT_discr_list:
9417 return "DW_AT_discr_list";
9418 case DW_AT_encoding:
9419 return "DW_AT_encoding";
9420 case DW_AT_external:
9421 return "DW_AT_external";
9422 case DW_AT_frame_base:
9423 return "DW_AT_frame_base";
9424 case DW_AT_friend:
9425 return "DW_AT_friend";
9426 case DW_AT_identifier_case:
9427 return "DW_AT_identifier_case";
9428 case DW_AT_macro_info:
9429 return "DW_AT_macro_info";
9430 case DW_AT_namelist_items:
9431 return "DW_AT_namelist_items";
9432 case DW_AT_priority:
9433 return "DW_AT_priority";
9434 case DW_AT_segment:
9435 return "DW_AT_segment";
9436 case DW_AT_specification:
9437 return "DW_AT_specification";
9438 case DW_AT_static_link:
9439 return "DW_AT_static_link";
9440 case DW_AT_type:
9441 return "DW_AT_type";
9442 case DW_AT_use_location:
9443 return "DW_AT_use_location";
9444 case DW_AT_variable_parameter:
9445 return "DW_AT_variable_parameter";
9446 case DW_AT_virtuality:
9447 return "DW_AT_virtuality";
9448 case DW_AT_vtable_elem_location:
9449 return "DW_AT_vtable_elem_location";
b7619582 9450 /* DWARF 3 values. */
d9fa45fe
DC
9451 case DW_AT_allocated:
9452 return "DW_AT_allocated";
9453 case DW_AT_associated:
9454 return "DW_AT_associated";
9455 case DW_AT_data_location:
9456 return "DW_AT_data_location";
09fa0d7c
JK
9457 case DW_AT_byte_stride:
9458 return "DW_AT_byte_stride";
d9fa45fe
DC
9459 case DW_AT_entry_pc:
9460 return "DW_AT_entry_pc";
9461 case DW_AT_use_UTF8:
9462 return "DW_AT_use_UTF8";
9463 case DW_AT_extension:
9464 return "DW_AT_extension";
9465 case DW_AT_ranges:
9466 return "DW_AT_ranges";
9467 case DW_AT_trampoline:
9468 return "DW_AT_trampoline";
9469 case DW_AT_call_column:
9470 return "DW_AT_call_column";
9471 case DW_AT_call_file:
9472 return "DW_AT_call_file";
9473 case DW_AT_call_line:
9474 return "DW_AT_call_line";
b7619582
GF
9475 case DW_AT_description:
9476 return "DW_AT_description";
9477 case DW_AT_binary_scale:
9478 return "DW_AT_binary_scale";
9479 case DW_AT_decimal_scale:
9480 return "DW_AT_decimal_scale";
9481 case DW_AT_small:
9482 return "DW_AT_small";
9483 case DW_AT_decimal_sign:
9484 return "DW_AT_decimal_sign";
9485 case DW_AT_digit_count:
9486 return "DW_AT_digit_count";
9487 case DW_AT_picture_string:
9488 return "DW_AT_picture_string";
9489 case DW_AT_mutable:
9490 return "DW_AT_mutable";
9491 case DW_AT_threads_scaled:
9492 return "DW_AT_threads_scaled";
9493 case DW_AT_explicit:
9494 return "DW_AT_explicit";
9495 case DW_AT_object_pointer:
9496 return "DW_AT_object_pointer";
9497 case DW_AT_endianity:
9498 return "DW_AT_endianity";
9499 case DW_AT_elemental:
9500 return "DW_AT_elemental";
9501 case DW_AT_pure:
9502 return "DW_AT_pure";
9503 case DW_AT_recursive:
9504 return "DW_AT_recursive";
348e048f
DE
9505 /* DWARF 4 values. */
9506 case DW_AT_signature:
9507 return "DW_AT_signature";
b7619582 9508 /* SGI/MIPS extensions. */
c764a876 9509#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
9510 case DW_AT_MIPS_fde:
9511 return "DW_AT_MIPS_fde";
c764a876 9512#endif
c906108c
SS
9513 case DW_AT_MIPS_loop_begin:
9514 return "DW_AT_MIPS_loop_begin";
9515 case DW_AT_MIPS_tail_loop_begin:
9516 return "DW_AT_MIPS_tail_loop_begin";
9517 case DW_AT_MIPS_epilog_begin:
9518 return "DW_AT_MIPS_epilog_begin";
9519 case DW_AT_MIPS_loop_unroll_factor:
9520 return "DW_AT_MIPS_loop_unroll_factor";
9521 case DW_AT_MIPS_software_pipeline_depth:
9522 return "DW_AT_MIPS_software_pipeline_depth";
9523 case DW_AT_MIPS_linkage_name:
9524 return "DW_AT_MIPS_linkage_name";
b7619582
GF
9525 case DW_AT_MIPS_stride:
9526 return "DW_AT_MIPS_stride";
9527 case DW_AT_MIPS_abstract_name:
9528 return "DW_AT_MIPS_abstract_name";
9529 case DW_AT_MIPS_clone_origin:
9530 return "DW_AT_MIPS_clone_origin";
9531 case DW_AT_MIPS_has_inlines:
9532 return "DW_AT_MIPS_has_inlines";
b7619582 9533 /* HP extensions. */
c764a876 9534#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
9535 case DW_AT_HP_block_index:
9536 return "DW_AT_HP_block_index";
c764a876 9537#endif
b7619582
GF
9538 case DW_AT_HP_unmodifiable:
9539 return "DW_AT_HP_unmodifiable";
9540 case DW_AT_HP_actuals_stmt_list:
9541 return "DW_AT_HP_actuals_stmt_list";
9542 case DW_AT_HP_proc_per_section:
9543 return "DW_AT_HP_proc_per_section";
9544 case DW_AT_HP_raw_data_ptr:
9545 return "DW_AT_HP_raw_data_ptr";
9546 case DW_AT_HP_pass_by_reference:
9547 return "DW_AT_HP_pass_by_reference";
9548 case DW_AT_HP_opt_level:
9549 return "DW_AT_HP_opt_level";
9550 case DW_AT_HP_prof_version_id:
9551 return "DW_AT_HP_prof_version_id";
9552 case DW_AT_HP_opt_flags:
9553 return "DW_AT_HP_opt_flags";
9554 case DW_AT_HP_cold_region_low_pc:
9555 return "DW_AT_HP_cold_region_low_pc";
9556 case DW_AT_HP_cold_region_high_pc:
9557 return "DW_AT_HP_cold_region_high_pc";
9558 case DW_AT_HP_all_variables_modifiable:
9559 return "DW_AT_HP_all_variables_modifiable";
9560 case DW_AT_HP_linkage_name:
9561 return "DW_AT_HP_linkage_name";
9562 case DW_AT_HP_prof_flags:
9563 return "DW_AT_HP_prof_flags";
9564 /* GNU extensions. */
c906108c
SS
9565 case DW_AT_sf_names:
9566 return "DW_AT_sf_names";
9567 case DW_AT_src_info:
9568 return "DW_AT_src_info";
9569 case DW_AT_mac_info:
9570 return "DW_AT_mac_info";
9571 case DW_AT_src_coords:
9572 return "DW_AT_src_coords";
9573 case DW_AT_body_begin:
9574 return "DW_AT_body_begin";
9575 case DW_AT_body_end:
9576 return "DW_AT_body_end";
f5f8a009
EZ
9577 case DW_AT_GNU_vector:
9578 return "DW_AT_GNU_vector";
b7619582
GF
9579 /* VMS extensions. */
9580 case DW_AT_VMS_rtnbeg_pd_address:
9581 return "DW_AT_VMS_rtnbeg_pd_address";
9582 /* UPC extension. */
9583 case DW_AT_upc_threads_scaled:
9584 return "DW_AT_upc_threads_scaled";
9585 /* PGI (STMicroelectronics) extensions. */
9586 case DW_AT_PGI_lbase:
9587 return "DW_AT_PGI_lbase";
9588 case DW_AT_PGI_soffset:
9589 return "DW_AT_PGI_soffset";
9590 case DW_AT_PGI_lstride:
9591 return "DW_AT_PGI_lstride";
c906108c
SS
9592 default:
9593 return "DW_AT_<unknown>";
9594 }
9595}
9596
9597/* Convert a DWARF value form code into its string name. */
9598
9599static char *
aa1ee363 9600dwarf_form_name (unsigned form)
c906108c
SS
9601{
9602 switch (form)
9603 {
9604 case DW_FORM_addr:
9605 return "DW_FORM_addr";
9606 case DW_FORM_block2:
9607 return "DW_FORM_block2";
9608 case DW_FORM_block4:
9609 return "DW_FORM_block4";
9610 case DW_FORM_data2:
9611 return "DW_FORM_data2";
9612 case DW_FORM_data4:
9613 return "DW_FORM_data4";
9614 case DW_FORM_data8:
9615 return "DW_FORM_data8";
9616 case DW_FORM_string:
9617 return "DW_FORM_string";
9618 case DW_FORM_block:
9619 return "DW_FORM_block";
9620 case DW_FORM_block1:
9621 return "DW_FORM_block1";
9622 case DW_FORM_data1:
9623 return "DW_FORM_data1";
9624 case DW_FORM_flag:
9625 return "DW_FORM_flag";
9626 case DW_FORM_sdata:
9627 return "DW_FORM_sdata";
9628 case DW_FORM_strp:
9629 return "DW_FORM_strp";
9630 case DW_FORM_udata:
9631 return "DW_FORM_udata";
9632 case DW_FORM_ref_addr:
9633 return "DW_FORM_ref_addr";
9634 case DW_FORM_ref1:
9635 return "DW_FORM_ref1";
9636 case DW_FORM_ref2:
9637 return "DW_FORM_ref2";
9638 case DW_FORM_ref4:
9639 return "DW_FORM_ref4";
9640 case DW_FORM_ref8:
9641 return "DW_FORM_ref8";
9642 case DW_FORM_ref_udata:
9643 return "DW_FORM_ref_udata";
9644 case DW_FORM_indirect:
9645 return "DW_FORM_indirect";
348e048f
DE
9646 case DW_FORM_sec_offset:
9647 return "DW_FORM_sec_offset";
9648 case DW_FORM_exprloc:
9649 return "DW_FORM_exprloc";
9650 case DW_FORM_flag_present:
9651 return "DW_FORM_flag_present";
9652 case DW_FORM_sig8:
9653 return "DW_FORM_sig8";
c906108c
SS
9654 default:
9655 return "DW_FORM_<unknown>";
9656 }
9657}
9658
9659/* Convert a DWARF stack opcode into its string name. */
9660
9661static char *
aa1ee363 9662dwarf_stack_op_name (unsigned op)
c906108c
SS
9663{
9664 switch (op)
9665 {
9666 case DW_OP_addr:
9667 return "DW_OP_addr";
9668 case DW_OP_deref:
9669 return "DW_OP_deref";
9670 case DW_OP_const1u:
9671 return "DW_OP_const1u";
9672 case DW_OP_const1s:
9673 return "DW_OP_const1s";
9674 case DW_OP_const2u:
9675 return "DW_OP_const2u";
9676 case DW_OP_const2s:
9677 return "DW_OP_const2s";
9678 case DW_OP_const4u:
9679 return "DW_OP_const4u";
9680 case DW_OP_const4s:
9681 return "DW_OP_const4s";
9682 case DW_OP_const8u:
9683 return "DW_OP_const8u";
9684 case DW_OP_const8s:
9685 return "DW_OP_const8s";
9686 case DW_OP_constu:
9687 return "DW_OP_constu";
9688 case DW_OP_consts:
9689 return "DW_OP_consts";
9690 case DW_OP_dup:
9691 return "DW_OP_dup";
9692 case DW_OP_drop:
9693 return "DW_OP_drop";
9694 case DW_OP_over:
9695 return "DW_OP_over";
9696 case DW_OP_pick:
9697 return "DW_OP_pick";
9698 case DW_OP_swap:
9699 return "DW_OP_swap";
9700 case DW_OP_rot:
9701 return "DW_OP_rot";
9702 case DW_OP_xderef:
9703 return "DW_OP_xderef";
9704 case DW_OP_abs:
9705 return "DW_OP_abs";
9706 case DW_OP_and:
9707 return "DW_OP_and";
9708 case DW_OP_div:
9709 return "DW_OP_div";
9710 case DW_OP_minus:
9711 return "DW_OP_minus";
9712 case DW_OP_mod:
9713 return "DW_OP_mod";
9714 case DW_OP_mul:
9715 return "DW_OP_mul";
9716 case DW_OP_neg:
9717 return "DW_OP_neg";
9718 case DW_OP_not:
9719 return "DW_OP_not";
9720 case DW_OP_or:
9721 return "DW_OP_or";
9722 case DW_OP_plus:
9723 return "DW_OP_plus";
9724 case DW_OP_plus_uconst:
9725 return "DW_OP_plus_uconst";
9726 case DW_OP_shl:
9727 return "DW_OP_shl";
9728 case DW_OP_shr:
9729 return "DW_OP_shr";
9730 case DW_OP_shra:
9731 return "DW_OP_shra";
9732 case DW_OP_xor:
9733 return "DW_OP_xor";
9734 case DW_OP_bra:
9735 return "DW_OP_bra";
9736 case DW_OP_eq:
9737 return "DW_OP_eq";
9738 case DW_OP_ge:
9739 return "DW_OP_ge";
9740 case DW_OP_gt:
9741 return "DW_OP_gt";
9742 case DW_OP_le:
9743 return "DW_OP_le";
9744 case DW_OP_lt:
9745 return "DW_OP_lt";
9746 case DW_OP_ne:
9747 return "DW_OP_ne";
9748 case DW_OP_skip:
9749 return "DW_OP_skip";
9750 case DW_OP_lit0:
9751 return "DW_OP_lit0";
9752 case DW_OP_lit1:
9753 return "DW_OP_lit1";
9754 case DW_OP_lit2:
9755 return "DW_OP_lit2";
9756 case DW_OP_lit3:
9757 return "DW_OP_lit3";
9758 case DW_OP_lit4:
9759 return "DW_OP_lit4";
9760 case DW_OP_lit5:
9761 return "DW_OP_lit5";
9762 case DW_OP_lit6:
9763 return "DW_OP_lit6";
9764 case DW_OP_lit7:
9765 return "DW_OP_lit7";
9766 case DW_OP_lit8:
9767 return "DW_OP_lit8";
9768 case DW_OP_lit9:
9769 return "DW_OP_lit9";
9770 case DW_OP_lit10:
9771 return "DW_OP_lit10";
9772 case DW_OP_lit11:
9773 return "DW_OP_lit11";
9774 case DW_OP_lit12:
9775 return "DW_OP_lit12";
9776 case DW_OP_lit13:
9777 return "DW_OP_lit13";
9778 case DW_OP_lit14:
9779 return "DW_OP_lit14";
9780 case DW_OP_lit15:
9781 return "DW_OP_lit15";
9782 case DW_OP_lit16:
9783 return "DW_OP_lit16";
9784 case DW_OP_lit17:
9785 return "DW_OP_lit17";
9786 case DW_OP_lit18:
9787 return "DW_OP_lit18";
9788 case DW_OP_lit19:
9789 return "DW_OP_lit19";
9790 case DW_OP_lit20:
9791 return "DW_OP_lit20";
9792 case DW_OP_lit21:
9793 return "DW_OP_lit21";
9794 case DW_OP_lit22:
9795 return "DW_OP_lit22";
9796 case DW_OP_lit23:
9797 return "DW_OP_lit23";
9798 case DW_OP_lit24:
9799 return "DW_OP_lit24";
9800 case DW_OP_lit25:
9801 return "DW_OP_lit25";
9802 case DW_OP_lit26:
9803 return "DW_OP_lit26";
9804 case DW_OP_lit27:
9805 return "DW_OP_lit27";
9806 case DW_OP_lit28:
9807 return "DW_OP_lit28";
9808 case DW_OP_lit29:
9809 return "DW_OP_lit29";
9810 case DW_OP_lit30:
9811 return "DW_OP_lit30";
9812 case DW_OP_lit31:
9813 return "DW_OP_lit31";
9814 case DW_OP_reg0:
9815 return "DW_OP_reg0";
9816 case DW_OP_reg1:
9817 return "DW_OP_reg1";
9818 case DW_OP_reg2:
9819 return "DW_OP_reg2";
9820 case DW_OP_reg3:
9821 return "DW_OP_reg3";
9822 case DW_OP_reg4:
9823 return "DW_OP_reg4";
9824 case DW_OP_reg5:
9825 return "DW_OP_reg5";
9826 case DW_OP_reg6:
9827 return "DW_OP_reg6";
9828 case DW_OP_reg7:
9829 return "DW_OP_reg7";
9830 case DW_OP_reg8:
9831 return "DW_OP_reg8";
9832 case DW_OP_reg9:
9833 return "DW_OP_reg9";
9834 case DW_OP_reg10:
9835 return "DW_OP_reg10";
9836 case DW_OP_reg11:
9837 return "DW_OP_reg11";
9838 case DW_OP_reg12:
9839 return "DW_OP_reg12";
9840 case DW_OP_reg13:
9841 return "DW_OP_reg13";
9842 case DW_OP_reg14:
9843 return "DW_OP_reg14";
9844 case DW_OP_reg15:
9845 return "DW_OP_reg15";
9846 case DW_OP_reg16:
9847 return "DW_OP_reg16";
9848 case DW_OP_reg17:
9849 return "DW_OP_reg17";
9850 case DW_OP_reg18:
9851 return "DW_OP_reg18";
9852 case DW_OP_reg19:
9853 return "DW_OP_reg19";
9854 case DW_OP_reg20:
9855 return "DW_OP_reg20";
9856 case DW_OP_reg21:
9857 return "DW_OP_reg21";
9858 case DW_OP_reg22:
9859 return "DW_OP_reg22";
9860 case DW_OP_reg23:
9861 return "DW_OP_reg23";
9862 case DW_OP_reg24:
9863 return "DW_OP_reg24";
9864 case DW_OP_reg25:
9865 return "DW_OP_reg25";
9866 case DW_OP_reg26:
9867 return "DW_OP_reg26";
9868 case DW_OP_reg27:
9869 return "DW_OP_reg27";
9870 case DW_OP_reg28:
9871 return "DW_OP_reg28";
9872 case DW_OP_reg29:
9873 return "DW_OP_reg29";
9874 case DW_OP_reg30:
9875 return "DW_OP_reg30";
9876 case DW_OP_reg31:
9877 return "DW_OP_reg31";
9878 case DW_OP_breg0:
9879 return "DW_OP_breg0";
9880 case DW_OP_breg1:
9881 return "DW_OP_breg1";
9882 case DW_OP_breg2:
9883 return "DW_OP_breg2";
9884 case DW_OP_breg3:
9885 return "DW_OP_breg3";
9886 case DW_OP_breg4:
9887 return "DW_OP_breg4";
9888 case DW_OP_breg5:
9889 return "DW_OP_breg5";
9890 case DW_OP_breg6:
9891 return "DW_OP_breg6";
9892 case DW_OP_breg7:
9893 return "DW_OP_breg7";
9894 case DW_OP_breg8:
9895 return "DW_OP_breg8";
9896 case DW_OP_breg9:
9897 return "DW_OP_breg9";
9898 case DW_OP_breg10:
9899 return "DW_OP_breg10";
9900 case DW_OP_breg11:
9901 return "DW_OP_breg11";
9902 case DW_OP_breg12:
9903 return "DW_OP_breg12";
9904 case DW_OP_breg13:
9905 return "DW_OP_breg13";
9906 case DW_OP_breg14:
9907 return "DW_OP_breg14";
9908 case DW_OP_breg15:
9909 return "DW_OP_breg15";
9910 case DW_OP_breg16:
9911 return "DW_OP_breg16";
9912 case DW_OP_breg17:
9913 return "DW_OP_breg17";
9914 case DW_OP_breg18:
9915 return "DW_OP_breg18";
9916 case DW_OP_breg19:
9917 return "DW_OP_breg19";
9918 case DW_OP_breg20:
9919 return "DW_OP_breg20";
9920 case DW_OP_breg21:
9921 return "DW_OP_breg21";
9922 case DW_OP_breg22:
9923 return "DW_OP_breg22";
9924 case DW_OP_breg23:
9925 return "DW_OP_breg23";
9926 case DW_OP_breg24:
9927 return "DW_OP_breg24";
9928 case DW_OP_breg25:
9929 return "DW_OP_breg25";
9930 case DW_OP_breg26:
9931 return "DW_OP_breg26";
9932 case DW_OP_breg27:
9933 return "DW_OP_breg27";
9934 case DW_OP_breg28:
9935 return "DW_OP_breg28";
9936 case DW_OP_breg29:
9937 return "DW_OP_breg29";
9938 case DW_OP_breg30:
9939 return "DW_OP_breg30";
9940 case DW_OP_breg31:
9941 return "DW_OP_breg31";
9942 case DW_OP_regx:
9943 return "DW_OP_regx";
9944 case DW_OP_fbreg:
9945 return "DW_OP_fbreg";
9946 case DW_OP_bregx:
9947 return "DW_OP_bregx";
9948 case DW_OP_piece:
9949 return "DW_OP_piece";
9950 case DW_OP_deref_size:
9951 return "DW_OP_deref_size";
9952 case DW_OP_xderef_size:
9953 return "DW_OP_xderef_size";
9954 case DW_OP_nop:
9955 return "DW_OP_nop";
b7619582 9956 /* DWARF 3 extensions. */
ed348acc
EZ
9957 case DW_OP_push_object_address:
9958 return "DW_OP_push_object_address";
9959 case DW_OP_call2:
9960 return "DW_OP_call2";
9961 case DW_OP_call4:
9962 return "DW_OP_call4";
9963 case DW_OP_call_ref:
9964 return "DW_OP_call_ref";
b7619582
GF
9965 /* GNU extensions. */
9966 case DW_OP_form_tls_address:
9967 return "DW_OP_form_tls_address";
9968 case DW_OP_call_frame_cfa:
9969 return "DW_OP_call_frame_cfa";
9970 case DW_OP_bit_piece:
9971 return "DW_OP_bit_piece";
ed348acc
EZ
9972 case DW_OP_GNU_push_tls_address:
9973 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
9974 case DW_OP_GNU_uninit:
9975 return "DW_OP_GNU_uninit";
b7619582
GF
9976 /* HP extensions. */
9977 case DW_OP_HP_is_value:
9978 return "DW_OP_HP_is_value";
9979 case DW_OP_HP_fltconst4:
9980 return "DW_OP_HP_fltconst4";
9981 case DW_OP_HP_fltconst8:
9982 return "DW_OP_HP_fltconst8";
9983 case DW_OP_HP_mod_range:
9984 return "DW_OP_HP_mod_range";
9985 case DW_OP_HP_unmod_range:
9986 return "DW_OP_HP_unmod_range";
9987 case DW_OP_HP_tls:
9988 return "DW_OP_HP_tls";
c906108c
SS
9989 default:
9990 return "OP_<unknown>";
9991 }
9992}
9993
9994static char *
fba45db2 9995dwarf_bool_name (unsigned mybool)
c906108c
SS
9996{
9997 if (mybool)
9998 return "TRUE";
9999 else
10000 return "FALSE";
10001}
10002
10003/* Convert a DWARF type code into its string name. */
10004
10005static char *
aa1ee363 10006dwarf_type_encoding_name (unsigned enc)
c906108c
SS
10007{
10008 switch (enc)
10009 {
b7619582
GF
10010 case DW_ATE_void:
10011 return "DW_ATE_void";
c906108c
SS
10012 case DW_ATE_address:
10013 return "DW_ATE_address";
10014 case DW_ATE_boolean:
10015 return "DW_ATE_boolean";
10016 case DW_ATE_complex_float:
10017 return "DW_ATE_complex_float";
10018 case DW_ATE_float:
10019 return "DW_ATE_float";
10020 case DW_ATE_signed:
10021 return "DW_ATE_signed";
10022 case DW_ATE_signed_char:
10023 return "DW_ATE_signed_char";
10024 case DW_ATE_unsigned:
10025 return "DW_ATE_unsigned";
10026 case DW_ATE_unsigned_char:
10027 return "DW_ATE_unsigned_char";
b7619582 10028 /* DWARF 3. */
d9fa45fe
DC
10029 case DW_ATE_imaginary_float:
10030 return "DW_ATE_imaginary_float";
b7619582
GF
10031 case DW_ATE_packed_decimal:
10032 return "DW_ATE_packed_decimal";
10033 case DW_ATE_numeric_string:
10034 return "DW_ATE_numeric_string";
10035 case DW_ATE_edited:
10036 return "DW_ATE_edited";
10037 case DW_ATE_signed_fixed:
10038 return "DW_ATE_signed_fixed";
10039 case DW_ATE_unsigned_fixed:
10040 return "DW_ATE_unsigned_fixed";
10041 case DW_ATE_decimal_float:
10042 return "DW_ATE_decimal_float";
10043 /* HP extensions. */
10044 case DW_ATE_HP_float80:
10045 return "DW_ATE_HP_float80";
10046 case DW_ATE_HP_complex_float80:
10047 return "DW_ATE_HP_complex_float80";
10048 case DW_ATE_HP_float128:
10049 return "DW_ATE_HP_float128";
10050 case DW_ATE_HP_complex_float128:
10051 return "DW_ATE_HP_complex_float128";
10052 case DW_ATE_HP_floathpintel:
10053 return "DW_ATE_HP_floathpintel";
10054 case DW_ATE_HP_imaginary_float80:
10055 return "DW_ATE_HP_imaginary_float80";
10056 case DW_ATE_HP_imaginary_float128:
10057 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
10058 default:
10059 return "DW_ATE_<unknown>";
10060 }
10061}
10062
10063/* Convert a DWARF call frame info operation to its string name. */
10064
10065#if 0
10066static char *
aa1ee363 10067dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
10068{
10069 switch (cfi_opc)
10070 {
10071 case DW_CFA_advance_loc:
10072 return "DW_CFA_advance_loc";
10073 case DW_CFA_offset:
10074 return "DW_CFA_offset";
10075 case DW_CFA_restore:
10076 return "DW_CFA_restore";
10077 case DW_CFA_nop:
10078 return "DW_CFA_nop";
10079 case DW_CFA_set_loc:
10080 return "DW_CFA_set_loc";
10081 case DW_CFA_advance_loc1:
10082 return "DW_CFA_advance_loc1";
10083 case DW_CFA_advance_loc2:
10084 return "DW_CFA_advance_loc2";
10085 case DW_CFA_advance_loc4:
10086 return "DW_CFA_advance_loc4";
10087 case DW_CFA_offset_extended:
10088 return "DW_CFA_offset_extended";
10089 case DW_CFA_restore_extended:
10090 return "DW_CFA_restore_extended";
10091 case DW_CFA_undefined:
10092 return "DW_CFA_undefined";
10093 case DW_CFA_same_value:
10094 return "DW_CFA_same_value";
10095 case DW_CFA_register:
10096 return "DW_CFA_register";
10097 case DW_CFA_remember_state:
10098 return "DW_CFA_remember_state";
10099 case DW_CFA_restore_state:
10100 return "DW_CFA_restore_state";
10101 case DW_CFA_def_cfa:
10102 return "DW_CFA_def_cfa";
10103 case DW_CFA_def_cfa_register:
10104 return "DW_CFA_def_cfa_register";
10105 case DW_CFA_def_cfa_offset:
10106 return "DW_CFA_def_cfa_offset";
b7619582 10107 /* DWARF 3. */
985cb1a3
JM
10108 case DW_CFA_def_cfa_expression:
10109 return "DW_CFA_def_cfa_expression";
10110 case DW_CFA_expression:
10111 return "DW_CFA_expression";
10112 case DW_CFA_offset_extended_sf:
10113 return "DW_CFA_offset_extended_sf";
10114 case DW_CFA_def_cfa_sf:
10115 return "DW_CFA_def_cfa_sf";
10116 case DW_CFA_def_cfa_offset_sf:
10117 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
10118 case DW_CFA_val_offset:
10119 return "DW_CFA_val_offset";
10120 case DW_CFA_val_offset_sf:
10121 return "DW_CFA_val_offset_sf";
10122 case DW_CFA_val_expression:
10123 return "DW_CFA_val_expression";
10124 /* SGI/MIPS specific. */
c906108c
SS
10125 case DW_CFA_MIPS_advance_loc8:
10126 return "DW_CFA_MIPS_advance_loc8";
b7619582 10127 /* GNU extensions. */
985cb1a3
JM
10128 case DW_CFA_GNU_window_save:
10129 return "DW_CFA_GNU_window_save";
10130 case DW_CFA_GNU_args_size:
10131 return "DW_CFA_GNU_args_size";
10132 case DW_CFA_GNU_negative_offset_extended:
10133 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
10134 default:
10135 return "DW_CFA_<unknown>";
10136 }
10137}
10138#endif
10139
f9aca02d 10140static void
d97bc12b 10141dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
10142{
10143 unsigned int i;
10144
d97bc12b
DE
10145 print_spaces (indent, f);
10146 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 10147 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
10148
10149 if (die->parent != NULL)
10150 {
10151 print_spaces (indent, f);
10152 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10153 die->parent->offset);
10154 }
10155
10156 print_spaces (indent, f);
10157 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 10158 dwarf_bool_name (die->child != NULL));
c906108c 10159
d97bc12b
DE
10160 print_spaces (indent, f);
10161 fprintf_unfiltered (f, " attributes:\n");
10162
c906108c
SS
10163 for (i = 0; i < die->num_attrs; ++i)
10164 {
d97bc12b
DE
10165 print_spaces (indent, f);
10166 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
10167 dwarf_attr_name (die->attrs[i].name),
10168 dwarf_form_name (die->attrs[i].form));
d97bc12b 10169
c906108c
SS
10170 switch (die->attrs[i].form)
10171 {
10172 case DW_FORM_ref_addr:
10173 case DW_FORM_addr:
d97bc12b 10174 fprintf_unfiltered (f, "address: ");
5af949e3 10175 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
10176 break;
10177 case DW_FORM_block2:
10178 case DW_FORM_block4:
10179 case DW_FORM_block:
10180 case DW_FORM_block1:
d97bc12b 10181 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 10182 break;
10b3939b
DJ
10183 case DW_FORM_ref1:
10184 case DW_FORM_ref2:
10185 case DW_FORM_ref4:
d97bc12b 10186 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
10187 (long) (DW_ADDR (&die->attrs[i])));
10188 break;
c906108c
SS
10189 case DW_FORM_data1:
10190 case DW_FORM_data2:
10191 case DW_FORM_data4:
ce5d95e1 10192 case DW_FORM_data8:
c906108c
SS
10193 case DW_FORM_udata:
10194 case DW_FORM_sdata:
43bbcdc2
PH
10195 fprintf_unfiltered (f, "constant: %s",
10196 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 10197 break;
348e048f
DE
10198 case DW_FORM_sig8:
10199 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10200 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10201 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10202 else
10203 fprintf_unfiltered (f, "signatured type, offset: unknown");
10204 break;
c906108c 10205 case DW_FORM_string:
4bdf3d34 10206 case DW_FORM_strp:
8285870a 10207 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 10208 DW_STRING (&die->attrs[i])
8285870a
JK
10209 ? DW_STRING (&die->attrs[i]) : "",
10210 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
10211 break;
10212 case DW_FORM_flag:
10213 if (DW_UNSND (&die->attrs[i]))
d97bc12b 10214 fprintf_unfiltered (f, "flag: TRUE");
c906108c 10215 else
d97bc12b 10216 fprintf_unfiltered (f, "flag: FALSE");
c906108c 10217 break;
a8329558
KW
10218 case DW_FORM_indirect:
10219 /* the reader will have reduced the indirect form to
10220 the "base form" so this form should not occur */
d97bc12b 10221 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 10222 break;
c906108c 10223 default:
d97bc12b 10224 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 10225 die->attrs[i].form);
d97bc12b 10226 break;
c906108c 10227 }
d97bc12b 10228 fprintf_unfiltered (f, "\n");
c906108c
SS
10229 }
10230}
10231
f9aca02d 10232static void
d97bc12b 10233dump_die_for_error (struct die_info *die)
c906108c 10234{
d97bc12b
DE
10235 dump_die_shallow (gdb_stderr, 0, die);
10236}
10237
10238static void
10239dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10240{
10241 int indent = level * 4;
10242
10243 gdb_assert (die != NULL);
10244
10245 if (level >= max_level)
10246 return;
10247
10248 dump_die_shallow (f, indent, die);
10249
10250 if (die->child != NULL)
c906108c 10251 {
d97bc12b
DE
10252 print_spaces (indent, f);
10253 fprintf_unfiltered (f, " Children:");
10254 if (level + 1 < max_level)
10255 {
10256 fprintf_unfiltered (f, "\n");
10257 dump_die_1 (f, level + 1, max_level, die->child);
10258 }
10259 else
10260 {
10261 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10262 }
10263 }
10264
10265 if (die->sibling != NULL && level > 0)
10266 {
10267 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
10268 }
10269}
10270
d97bc12b
DE
10271/* This is called from the pdie macro in gdbinit.in.
10272 It's not static so gcc will keep a copy callable from gdb. */
10273
10274void
10275dump_die (struct die_info *die, int max_level)
10276{
10277 dump_die_1 (gdb_stdlog, 0, max_level, die);
10278}
10279
f9aca02d 10280static void
51545339 10281store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10282{
51545339 10283 void **slot;
c906108c 10284
51545339
DJ
10285 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10286
10287 *slot = die;
c906108c
SS
10288}
10289
93311388
DE
10290static int
10291is_ref_attr (struct attribute *attr)
c906108c 10292{
c906108c
SS
10293 switch (attr->form)
10294 {
10295 case DW_FORM_ref_addr:
c906108c
SS
10296 case DW_FORM_ref1:
10297 case DW_FORM_ref2:
10298 case DW_FORM_ref4:
613e1657 10299 case DW_FORM_ref8:
c906108c 10300 case DW_FORM_ref_udata:
93311388 10301 return 1;
c906108c 10302 default:
93311388 10303 return 0;
c906108c 10304 }
93311388
DE
10305}
10306
10307static unsigned int
10308dwarf2_get_ref_die_offset (struct attribute *attr)
10309{
10310 if (is_ref_attr (attr))
10311 return DW_ADDR (attr);
10312
10313 complaint (&symfile_complaints,
10314 _("unsupported die ref attribute form: '%s'"),
10315 dwarf_form_name (attr->form));
10316 return 0;
c906108c
SS
10317}
10318
43bbcdc2
PH
10319/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10320 * the value held by the attribute is not constant. */
a02abb62 10321
43bbcdc2 10322static LONGEST
a02abb62
JB
10323dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10324{
10325 if (attr->form == DW_FORM_sdata)
10326 return DW_SND (attr);
10327 else if (attr->form == DW_FORM_udata
10328 || attr->form == DW_FORM_data1
10329 || attr->form == DW_FORM_data2
10330 || attr->form == DW_FORM_data4
10331 || attr->form == DW_FORM_data8)
10332 return DW_UNSND (attr);
10333 else
10334 {
e2e0b3e5 10335 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
10336 dwarf_form_name (attr->form));
10337 return default_value;
10338 }
10339}
10340
03dd20cc 10341/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
10342 unit and add it to our queue.
10343 The result is non-zero if PER_CU was queued, otherwise the result is zero
10344 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 10345
348e048f 10346static int
03dd20cc
DJ
10347maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10348 struct dwarf2_per_cu_data *per_cu)
10349{
10350 /* Mark the dependence relation so that we don't flush PER_CU
10351 too early. */
10352 dwarf2_add_dependence (this_cu, per_cu);
10353
10354 /* If it's already on the queue, we have nothing to do. */
10355 if (per_cu->queued)
348e048f 10356 return 0;
03dd20cc
DJ
10357
10358 /* If the compilation unit is already loaded, just mark it as
10359 used. */
10360 if (per_cu->cu != NULL)
10361 {
10362 per_cu->cu->last_used = 0;
348e048f 10363 return 0;
03dd20cc
DJ
10364 }
10365
10366 /* Add it to the queue. */
10367 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
10368
10369 return 1;
10370}
10371
10372/* Follow reference or signature attribute ATTR of SRC_DIE.
10373 On entry *REF_CU is the CU of SRC_DIE.
10374 On exit *REF_CU is the CU of the result. */
10375
10376static struct die_info *
10377follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10378 struct dwarf2_cu **ref_cu)
10379{
10380 struct die_info *die;
10381
10382 if (is_ref_attr (attr))
10383 die = follow_die_ref (src_die, attr, ref_cu);
10384 else if (attr->form == DW_FORM_sig8)
10385 die = follow_die_sig (src_die, attr, ref_cu);
10386 else
10387 {
10388 dump_die_for_error (src_die);
10389 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10390 (*ref_cu)->objfile->name);
10391 }
10392
10393 return die;
03dd20cc
DJ
10394}
10395
f504f079
DE
10396/* Follow reference attribute ATTR of SRC_DIE.
10397 On entry *REF_CU is the CU of SRC_DIE.
10398 On exit *REF_CU is the CU of the result. */
10399
f9aca02d 10400static struct die_info *
10b3939b 10401follow_die_ref (struct die_info *src_die, struct attribute *attr,
f2f0e013 10402 struct dwarf2_cu **ref_cu)
c906108c
SS
10403{
10404 struct die_info *die;
10b3939b 10405 unsigned int offset;
10b3939b 10406 struct die_info temp_die;
f2f0e013 10407 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 10408
348e048f
DE
10409 gdb_assert (cu->per_cu != NULL);
10410
c764a876 10411 offset = dwarf2_get_ref_die_offset (attr);
10b3939b 10412
348e048f
DE
10413 if (cu->per_cu->from_debug_types)
10414 {
10415 /* .debug_types CUs cannot reference anything outside their CU.
10416 If they need to, they have to reference a signatured type via
10417 DW_FORM_sig8. */
10418 if (! offset_in_cu_p (&cu->header, offset))
10419 goto not_found;
10420 target_cu = cu;
10421 }
10422 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
10423 {
10424 struct dwarf2_per_cu_data *per_cu;
45452591 10425 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
10426
10427 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
10428 if (maybe_queue_comp_unit (cu, per_cu))
10429 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 10430
10b3939b
DJ
10431 target_cu = per_cu->cu;
10432 }
10433 else
10434 target_cu = cu;
c906108c 10435
f2f0e013 10436 *ref_cu = target_cu;
51545339
DJ
10437 temp_die.offset = offset;
10438 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10439 if (die)
10440 return die;
10b3939b 10441
348e048f
DE
10442 not_found:
10443
10444 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10445 "at 0x%x [in module %s]"),
10446 offset, src_die->offset, cu->objfile->name);
10447}
10448
10449/* Follow the signature attribute ATTR in SRC_DIE.
10450 On entry *REF_CU is the CU of SRC_DIE.
10451 On exit *REF_CU is the CU of the result. */
10452
10453static struct die_info *
10454follow_die_sig (struct die_info *src_die, struct attribute *attr,
10455 struct dwarf2_cu **ref_cu)
10456{
10457 struct objfile *objfile = (*ref_cu)->objfile;
10458 struct die_info temp_die;
10459 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10460 struct dwarf2_cu *sig_cu;
10461 struct die_info *die;
10462
10463 /* sig_type will be NULL if the signatured type is missing from
10464 the debug info. */
10465 if (sig_type == NULL)
10466 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10467 "at 0x%x [in module %s]"),
10468 src_die->offset, objfile->name);
10469
10470 /* If necessary, add it to the queue and load its DIEs. */
10471
10472 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10473 read_signatured_type (objfile, sig_type);
10474
10475 gdb_assert (sig_type->per_cu.cu != NULL);
10476
10477 sig_cu = sig_type->per_cu.cu;
10478 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10479 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10480 if (die)
10481 {
10482 *ref_cu = sig_cu;
10483 return die;
10484 }
10485
10486 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10487 "at 0x%x [in module %s]"),
10488 sig_type->type_offset, src_die->offset, objfile->name);
10489}
10490
10491/* Given an offset of a signatured type, return its signatured_type. */
10492
10493static struct signatured_type *
10494lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10495{
10496 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10497 unsigned int length, initial_length_size;
10498 unsigned int sig_offset;
10499 struct signatured_type find_entry, *type_sig;
10500
10501 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10502 sig_offset = (initial_length_size
10503 + 2 /*version*/
10504 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10505 + 1 /*address_size*/);
10506 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10507 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10508
10509 /* This is only used to lookup previously recorded types.
10510 If we didn't find it, it's our bug. */
10511 gdb_assert (type_sig != NULL);
10512 gdb_assert (offset == type_sig->offset);
10513
10514 return type_sig;
10515}
10516
10517/* Read in signatured type at OFFSET and build its CU and die(s). */
10518
10519static void
10520read_signatured_type_at_offset (struct objfile *objfile,
10521 unsigned int offset)
10522{
10523 struct signatured_type *type_sig;
10524
10525 /* We have the section offset, but we need the signature to do the
10526 hash table lookup. */
10527 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10528
10529 gdb_assert (type_sig->per_cu.cu == NULL);
10530
10531 read_signatured_type (objfile, type_sig);
10532
10533 gdb_assert (type_sig->per_cu.cu != NULL);
10534}
10535
10536/* Read in a signatured type and build its CU and DIEs. */
10537
10538static void
10539read_signatured_type (struct objfile *objfile,
10540 struct signatured_type *type_sig)
10541{
10542 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10543 struct die_reader_specs reader_specs;
10544 struct dwarf2_cu *cu;
10545 ULONGEST signature;
10546 struct cleanup *back_to, *free_cu_cleanup;
10547 struct attribute *attr;
10548
10549 gdb_assert (type_sig->per_cu.cu == NULL);
10550
10551 cu = xmalloc (sizeof (struct dwarf2_cu));
10552 memset (cu, 0, sizeof (struct dwarf2_cu));
10553 obstack_init (&cu->comp_unit_obstack);
10554 cu->objfile = objfile;
10555 type_sig->per_cu.cu = cu;
10556 cu->per_cu = &type_sig->per_cu;
10557
10558 /* If an error occurs while loading, release our storage. */
10559 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10560
10561 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10562 types_ptr, objfile->obfd);
10563 gdb_assert (signature == type_sig->signature);
10564
10565 cu->die_hash
10566 = htab_create_alloc_ex (cu->header.length / 12,
10567 die_hash,
10568 die_eq,
10569 NULL,
10570 &cu->comp_unit_obstack,
10571 hashtab_obstack_allocate,
10572 dummy_obstack_deallocate);
10573
10574 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10575 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10576
10577 init_cu_die_reader (&reader_specs, cu);
10578
10579 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10580 NULL /*parent*/);
10581
10582 /* We try not to read any attributes in this function, because not
10583 all objfiles needed for references have been loaded yet, and symbol
10584 table processing isn't initialized. But we have to set the CU language,
10585 or we won't be able to build types correctly. */
10586 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10587 if (attr)
10588 set_cu_language (DW_UNSND (attr), cu);
10589 else
10590 set_cu_language (language_minimal, cu);
10591
10592 do_cleanups (back_to);
10593
10594 /* We've successfully allocated this compilation unit. Let our caller
10595 clean it up when finished with it. */
10596 discard_cleanups (free_cu_cleanup);
10597
10598 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10599 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
10600}
10601
c906108c
SS
10602/* Decode simple location descriptions.
10603 Given a pointer to a dwarf block that defines a location, compute
10604 the location and return the value.
10605
4cecd739
DJ
10606 NOTE drow/2003-11-18: This function is called in two situations
10607 now: for the address of static or global variables (partial symbols
10608 only) and for offsets into structures which are expected to be
10609 (more or less) constant. The partial symbol case should go away,
10610 and only the constant case should remain. That will let this
10611 function complain more accurately. A few special modes are allowed
10612 without complaint for global variables (for instance, global
10613 register values and thread-local values).
c906108c
SS
10614
10615 A location description containing no operations indicates that the
4cecd739 10616 object is optimized out. The return value is 0 for that case.
6b992462
DJ
10617 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10618 callers will only want a very basic result and this can become a
10619 complaint.
c906108c 10620
c906108c
SS
10621 Note that stack[0] is unused except as a default error return.
10622 Note that stack overflow is not yet handled. */
10623
10624static CORE_ADDR
e7c27a73 10625decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 10626{
e7c27a73
DJ
10627 struct objfile *objfile = cu->objfile;
10628 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
10629 int i;
10630 int size = blk->size;
fe1b8b76 10631 gdb_byte *data = blk->data;
c906108c
SS
10632 CORE_ADDR stack[64];
10633 int stacki;
10634 unsigned int bytes_read, unsnd;
fe1b8b76 10635 gdb_byte op;
c906108c
SS
10636
10637 i = 0;
10638 stacki = 0;
10639 stack[stacki] = 0;
c906108c
SS
10640
10641 while (i < size)
10642 {
c906108c
SS
10643 op = data[i++];
10644 switch (op)
10645 {
f1bea926
JM
10646 case DW_OP_lit0:
10647 case DW_OP_lit1:
10648 case DW_OP_lit2:
10649 case DW_OP_lit3:
10650 case DW_OP_lit4:
10651 case DW_OP_lit5:
10652 case DW_OP_lit6:
10653 case DW_OP_lit7:
10654 case DW_OP_lit8:
10655 case DW_OP_lit9:
10656 case DW_OP_lit10:
10657 case DW_OP_lit11:
10658 case DW_OP_lit12:
10659 case DW_OP_lit13:
10660 case DW_OP_lit14:
10661 case DW_OP_lit15:
10662 case DW_OP_lit16:
10663 case DW_OP_lit17:
10664 case DW_OP_lit18:
10665 case DW_OP_lit19:
10666 case DW_OP_lit20:
10667 case DW_OP_lit21:
10668 case DW_OP_lit22:
10669 case DW_OP_lit23:
10670 case DW_OP_lit24:
10671 case DW_OP_lit25:
10672 case DW_OP_lit26:
10673 case DW_OP_lit27:
10674 case DW_OP_lit28:
10675 case DW_OP_lit29:
10676 case DW_OP_lit30:
10677 case DW_OP_lit31:
10678 stack[++stacki] = op - DW_OP_lit0;
10679 break;
10680
c906108c
SS
10681 case DW_OP_reg0:
10682 case DW_OP_reg1:
10683 case DW_OP_reg2:
10684 case DW_OP_reg3:
10685 case DW_OP_reg4:
10686 case DW_OP_reg5:
10687 case DW_OP_reg6:
10688 case DW_OP_reg7:
10689 case DW_OP_reg8:
10690 case DW_OP_reg9:
10691 case DW_OP_reg10:
10692 case DW_OP_reg11:
10693 case DW_OP_reg12:
10694 case DW_OP_reg13:
10695 case DW_OP_reg14:
10696 case DW_OP_reg15:
10697 case DW_OP_reg16:
10698 case DW_OP_reg17:
10699 case DW_OP_reg18:
10700 case DW_OP_reg19:
10701 case DW_OP_reg20:
10702 case DW_OP_reg21:
10703 case DW_OP_reg22:
10704 case DW_OP_reg23:
10705 case DW_OP_reg24:
10706 case DW_OP_reg25:
10707 case DW_OP_reg26:
10708 case DW_OP_reg27:
10709 case DW_OP_reg28:
10710 case DW_OP_reg29:
10711 case DW_OP_reg30:
10712 case DW_OP_reg31:
c906108c 10713 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
10714 if (i < size)
10715 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10716 break;
10717
10718 case DW_OP_regx:
c906108c
SS
10719 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10720 i += bytes_read;
c906108c 10721 stack[++stacki] = unsnd;
4cecd739
DJ
10722 if (i < size)
10723 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10724 break;
10725
10726 case DW_OP_addr:
107d2387 10727 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 10728 cu, &bytes_read);
107d2387 10729 i += bytes_read;
c906108c
SS
10730 break;
10731
10732 case DW_OP_const1u:
10733 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10734 i += 1;
10735 break;
10736
10737 case DW_OP_const1s:
10738 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10739 i += 1;
10740 break;
10741
10742 case DW_OP_const2u:
10743 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10744 i += 2;
10745 break;
10746
10747 case DW_OP_const2s:
10748 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10749 i += 2;
10750 break;
10751
10752 case DW_OP_const4u:
10753 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10754 i += 4;
10755 break;
10756
10757 case DW_OP_const4s:
10758 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10759 i += 4;
10760 break;
10761
10762 case DW_OP_constu:
10763 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 10764 &bytes_read);
c906108c
SS
10765 i += bytes_read;
10766 break;
10767
10768 case DW_OP_consts:
10769 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10770 i += bytes_read;
10771 break;
10772
f1bea926
JM
10773 case DW_OP_dup:
10774 stack[stacki + 1] = stack[stacki];
10775 stacki++;
10776 break;
10777
c906108c
SS
10778 case DW_OP_plus:
10779 stack[stacki - 1] += stack[stacki];
10780 stacki--;
10781 break;
10782
10783 case DW_OP_plus_uconst:
10784 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10785 i += bytes_read;
10786 break;
10787
10788 case DW_OP_minus:
f1bea926 10789 stack[stacki - 1] -= stack[stacki];
c906108c
SS
10790 stacki--;
10791 break;
10792
7a292a7a 10793 case DW_OP_deref:
7a292a7a 10794 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
10795 this using GDB's address_class enum. This is valid for partial
10796 global symbols, although the variable's address will be bogus
10797 in the psymtab. */
7a292a7a 10798 if (i < size)
4d3c2250 10799 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
10800 break;
10801
9d774e44 10802 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
10803 /* The top of the stack has the offset from the beginning
10804 of the thread control block at which the variable is located. */
10805 /* Nothing should follow this operator, so the top of stack would
10806 be returned. */
4cecd739
DJ
10807 /* This is valid for partial global symbols, but the variable's
10808 address will be bogus in the psymtab. */
9d774e44 10809 if (i < size)
4d3c2250 10810 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
10811 break;
10812
42be36b3
CT
10813 case DW_OP_GNU_uninit:
10814 break;
10815
c906108c 10816 default:
e2e0b3e5 10817 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 10818 dwarf_stack_op_name (op));
c906108c
SS
10819 return (stack[stacki]);
10820 }
10821 }
10822 return (stack[stacki]);
10823}
10824
10825/* memory allocation interface */
10826
c906108c 10827static struct dwarf_block *
7b5a2f43 10828dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
10829{
10830 struct dwarf_block *blk;
10831
10832 blk = (struct dwarf_block *)
7b5a2f43 10833 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
10834 return (blk);
10835}
10836
10837static struct abbrev_info *
f3dd6933 10838dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
10839{
10840 struct abbrev_info *abbrev;
10841
f3dd6933
DJ
10842 abbrev = (struct abbrev_info *)
10843 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
10844 memset (abbrev, 0, sizeof (struct abbrev_info));
10845 return (abbrev);
10846}
10847
10848static struct die_info *
b60c80d6 10849dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
10850{
10851 struct die_info *die;
b60c80d6
DJ
10852 size_t size = sizeof (struct die_info);
10853
10854 if (num_attrs > 1)
10855 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 10856
b60c80d6 10857 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
10858 memset (die, 0, sizeof (struct die_info));
10859 return (die);
10860}
2e276125
JB
10861
10862\f
10863/* Macro support. */
10864
10865
10866/* Return the full name of file number I in *LH's file name table.
10867 Use COMP_DIR as the name of the current directory of the
10868 compilation. The result is allocated using xmalloc; the caller is
10869 responsible for freeing it. */
10870static char *
10871file_full_name (int file, struct line_header *lh, const char *comp_dir)
10872{
6a83a1e6
EZ
10873 /* Is the file number a valid index into the line header's file name
10874 table? Remember that file numbers start with one, not zero. */
10875 if (1 <= file && file <= lh->num_file_names)
10876 {
10877 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 10878
6a83a1e6
EZ
10879 if (IS_ABSOLUTE_PATH (fe->name))
10880 return xstrdup (fe->name);
10881 else
10882 {
10883 const char *dir;
10884 int dir_len;
10885 char *full_name;
10886
10887 if (fe->dir_index)
10888 dir = lh->include_dirs[fe->dir_index - 1];
10889 else
10890 dir = comp_dir;
10891
10892 if (dir)
10893 {
10894 dir_len = strlen (dir);
10895 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
10896 strcpy (full_name, dir);
10897 full_name[dir_len] = '/';
10898 strcpy (full_name + dir_len + 1, fe->name);
10899 return full_name;
10900 }
10901 else
10902 return xstrdup (fe->name);
10903 }
10904 }
2e276125
JB
10905 else
10906 {
6a83a1e6
EZ
10907 /* The compiler produced a bogus file number. We can at least
10908 record the macro definitions made in the file, even if we
10909 won't be able to find the file by name. */
10910 char fake_name[80];
10911 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 10912
6a83a1e6
EZ
10913 complaint (&symfile_complaints,
10914 _("bad file number in macro information (%d)"),
10915 file);
2e276125 10916
6a83a1e6 10917 return xstrdup (fake_name);
2e276125
JB
10918 }
10919}
10920
10921
10922static struct macro_source_file *
10923macro_start_file (int file, int line,
10924 struct macro_source_file *current_file,
10925 const char *comp_dir,
10926 struct line_header *lh, struct objfile *objfile)
10927{
10928 /* The full name of this source file. */
10929 char *full_name = file_full_name (file, lh, comp_dir);
10930
10931 /* We don't create a macro table for this compilation unit
10932 at all until we actually get a filename. */
10933 if (! pending_macros)
4a146b47 10934 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 10935 objfile->macro_cache);
2e276125
JB
10936
10937 if (! current_file)
10938 /* If we have no current file, then this must be the start_file
10939 directive for the compilation unit's main source file. */
10940 current_file = macro_set_main (pending_macros, full_name);
10941 else
10942 current_file = macro_include (current_file, line, full_name);
10943
10944 xfree (full_name);
10945
10946 return current_file;
10947}
10948
10949
10950/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
10951 followed by a null byte. */
10952static char *
10953copy_string (const char *buf, int len)
10954{
10955 char *s = xmalloc (len + 1);
10956 memcpy (s, buf, len);
10957 s[len] = '\0';
10958
10959 return s;
10960}
10961
10962
10963static const char *
10964consume_improper_spaces (const char *p, const char *body)
10965{
10966 if (*p == ' ')
10967 {
4d3c2250 10968 complaint (&symfile_complaints,
e2e0b3e5 10969 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 10970 body);
2e276125
JB
10971
10972 while (*p == ' ')
10973 p++;
10974 }
10975
10976 return p;
10977}
10978
10979
10980static void
10981parse_macro_definition (struct macro_source_file *file, int line,
10982 const char *body)
10983{
10984 const char *p;
10985
10986 /* The body string takes one of two forms. For object-like macro
10987 definitions, it should be:
10988
10989 <macro name> " " <definition>
10990
10991 For function-like macro definitions, it should be:
10992
10993 <macro name> "() " <definition>
10994 or
10995 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
10996
10997 Spaces may appear only where explicitly indicated, and in the
10998 <definition>.
10999
11000 The Dwarf 2 spec says that an object-like macro's name is always
11001 followed by a space, but versions of GCC around March 2002 omit
11002 the space when the macro's definition is the empty string.
11003
11004 The Dwarf 2 spec says that there should be no spaces between the
11005 formal arguments in a function-like macro's formal argument list,
11006 but versions of GCC around March 2002 include spaces after the
11007 commas. */
11008
11009
11010 /* Find the extent of the macro name. The macro name is terminated
11011 by either a space or null character (for an object-like macro) or
11012 an opening paren (for a function-like macro). */
11013 for (p = body; *p; p++)
11014 if (*p == ' ' || *p == '(')
11015 break;
11016
11017 if (*p == ' ' || *p == '\0')
11018 {
11019 /* It's an object-like macro. */
11020 int name_len = p - body;
11021 char *name = copy_string (body, name_len);
11022 const char *replacement;
11023
11024 if (*p == ' ')
11025 replacement = body + name_len + 1;
11026 else
11027 {
4d3c2250 11028 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11029 replacement = body + name_len;
11030 }
11031
11032 macro_define_object (file, line, name, replacement);
11033
11034 xfree (name);
11035 }
11036 else if (*p == '(')
11037 {
11038 /* It's a function-like macro. */
11039 char *name = copy_string (body, p - body);
11040 int argc = 0;
11041 int argv_size = 1;
11042 char **argv = xmalloc (argv_size * sizeof (*argv));
11043
11044 p++;
11045
11046 p = consume_improper_spaces (p, body);
11047
11048 /* Parse the formal argument list. */
11049 while (*p && *p != ')')
11050 {
11051 /* Find the extent of the current argument name. */
11052 const char *arg_start = p;
11053
11054 while (*p && *p != ',' && *p != ')' && *p != ' ')
11055 p++;
11056
11057 if (! *p || p == arg_start)
4d3c2250 11058 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11059 else
11060 {
11061 /* Make sure argv has room for the new argument. */
11062 if (argc >= argv_size)
11063 {
11064 argv_size *= 2;
11065 argv = xrealloc (argv, argv_size * sizeof (*argv));
11066 }
11067
11068 argv[argc++] = copy_string (arg_start, p - arg_start);
11069 }
11070
11071 p = consume_improper_spaces (p, body);
11072
11073 /* Consume the comma, if present. */
11074 if (*p == ',')
11075 {
11076 p++;
11077
11078 p = consume_improper_spaces (p, body);
11079 }
11080 }
11081
11082 if (*p == ')')
11083 {
11084 p++;
11085
11086 if (*p == ' ')
11087 /* Perfectly formed definition, no complaints. */
11088 macro_define_function (file, line, name,
11089 argc, (const char **) argv,
11090 p + 1);
11091 else if (*p == '\0')
11092 {
11093 /* Complain, but do define it. */
4d3c2250 11094 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11095 macro_define_function (file, line, name,
11096 argc, (const char **) argv,
11097 p);
11098 }
11099 else
11100 /* Just complain. */
4d3c2250 11101 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11102 }
11103 else
11104 /* Just complain. */
4d3c2250 11105 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11106
11107 xfree (name);
11108 {
11109 int i;
11110
11111 for (i = 0; i < argc; i++)
11112 xfree (argv[i]);
11113 }
11114 xfree (argv);
11115 }
11116 else
4d3c2250 11117 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11118}
11119
11120
11121static void
11122dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11123 char *comp_dir, bfd *abfd,
e7c27a73 11124 struct dwarf2_cu *cu)
2e276125 11125{
fe1b8b76 11126 gdb_byte *mac_ptr, *mac_end;
2e276125 11127 struct macro_source_file *current_file = 0;
757a13d0
JK
11128 enum dwarf_macinfo_record_type macinfo_type;
11129 int at_commandline;
2e276125 11130
dce234bc 11131 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 11132 {
e2e0b3e5 11133 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
11134 return;
11135 }
11136
757a13d0
JK
11137 /* First pass: Find the name of the base filename.
11138 This filename is needed in order to process all macros whose definition
11139 (or undefinition) comes from the command line. These macros are defined
11140 before the first DW_MACINFO_start_file entry, and yet still need to be
11141 associated to the base file.
11142
11143 To determine the base file name, we scan the macro definitions until we
11144 reach the first DW_MACINFO_start_file entry. We then initialize
11145 CURRENT_FILE accordingly so that any macro definition found before the
11146 first DW_MACINFO_start_file can still be associated to the base file. */
11147
dce234bc
PP
11148 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11149 mac_end = dwarf2_per_objfile->macinfo.buffer
11150 + dwarf2_per_objfile->macinfo.size;
2e276125 11151
757a13d0 11152 do
2e276125 11153 {
2e276125
JB
11154 /* Do we at least have room for a macinfo type byte? */
11155 if (mac_ptr >= mac_end)
11156 {
757a13d0
JK
11157 /* Complaint is printed during the second pass as GDB will probably
11158 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11159 break;
2e276125
JB
11160 }
11161
11162 macinfo_type = read_1_byte (abfd, mac_ptr);
11163 mac_ptr++;
11164
11165 switch (macinfo_type)
11166 {
11167 /* A zero macinfo type indicates the end of the macro
11168 information. */
11169 case 0:
757a13d0
JK
11170 break;
11171
11172 case DW_MACINFO_define:
11173 case DW_MACINFO_undef:
11174 /* Only skip the data by MAC_PTR. */
11175 {
11176 unsigned int bytes_read;
11177
11178 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11179 mac_ptr += bytes_read;
11180 read_string (abfd, mac_ptr, &bytes_read);
11181 mac_ptr += bytes_read;
11182 }
11183 break;
11184
11185 case DW_MACINFO_start_file:
11186 {
11187 unsigned int bytes_read;
11188 int line, file;
11189
11190 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11191 mac_ptr += bytes_read;
11192 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11193 mac_ptr += bytes_read;
11194
11195 current_file = macro_start_file (file, line, current_file, comp_dir,
11196 lh, cu->objfile);
11197 }
11198 break;
11199
11200 case DW_MACINFO_end_file:
11201 /* No data to skip by MAC_PTR. */
11202 break;
11203
11204 case DW_MACINFO_vendor_ext:
11205 /* Only skip the data by MAC_PTR. */
11206 {
11207 unsigned int bytes_read;
11208
11209 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11210 mac_ptr += bytes_read;
11211 read_string (abfd, mac_ptr, &bytes_read);
11212 mac_ptr += bytes_read;
11213 }
11214 break;
11215
11216 default:
11217 break;
11218 }
11219 } while (macinfo_type != 0 && current_file == NULL);
11220
11221 /* Second pass: Process all entries.
11222
11223 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11224 command-line macro definitions/undefinitions. This flag is unset when we
11225 reach the first DW_MACINFO_start_file entry. */
11226
dce234bc 11227 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
11228
11229 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11230 GDB is still reading the definitions from command line. First
11231 DW_MACINFO_start_file will need to be ignored as it was already executed
11232 to create CURRENT_FILE for the main source holding also the command line
11233 definitions. On first met DW_MACINFO_start_file this flag is reset to
11234 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11235
11236 at_commandline = 1;
11237
11238 do
11239 {
11240 /* Do we at least have room for a macinfo type byte? */
11241 if (mac_ptr >= mac_end)
11242 {
11243 dwarf2_macros_too_long_complaint ();
11244 break;
11245 }
11246
11247 macinfo_type = read_1_byte (abfd, mac_ptr);
11248 mac_ptr++;
11249
11250 switch (macinfo_type)
11251 {
11252 /* A zero macinfo type indicates the end of the macro
11253 information. */
11254 case 0:
11255 break;
2e276125
JB
11256
11257 case DW_MACINFO_define:
11258 case DW_MACINFO_undef:
11259 {
891d2f0b 11260 unsigned int bytes_read;
2e276125
JB
11261 int line;
11262 char *body;
11263
11264 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11265 mac_ptr += bytes_read;
11266 body = read_string (abfd, mac_ptr, &bytes_read);
11267 mac_ptr += bytes_read;
11268
11269 if (! current_file)
757a13d0
JK
11270 {
11271 /* DWARF violation as no main source is present. */
11272 complaint (&symfile_complaints,
11273 _("debug info with no main source gives macro %s "
11274 "on line %d: %s"),
905e0470
PM
11275 macinfo_type == DW_MACINFO_define ?
11276 _("definition") :
11277 macinfo_type == DW_MACINFO_undef ?
11278 _("undefinition") :
11279 _("something-or-other"), line, body);
757a13d0
JK
11280 break;
11281 }
11282 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 11283 complaint (&symfile_complaints,
757a13d0
JK
11284 _("debug info gives %s macro %s with %s line %d: %s"),
11285 at_commandline ? _("command-line") : _("in-file"),
905e0470
PM
11286 macinfo_type == DW_MACINFO_define ?
11287 _("definition") :
11288 macinfo_type == DW_MACINFO_undef ?
11289 _("undefinition") :
11290 _("something-or-other"),
757a13d0
JK
11291 line == 0 ? _("zero") : _("non-zero"), line, body);
11292
11293 if (macinfo_type == DW_MACINFO_define)
11294 parse_macro_definition (current_file, line, body);
11295 else if (macinfo_type == DW_MACINFO_undef)
11296 macro_undef (current_file, line, body);
2e276125
JB
11297 }
11298 break;
11299
11300 case DW_MACINFO_start_file:
11301 {
891d2f0b 11302 unsigned int bytes_read;
2e276125
JB
11303 int line, file;
11304
11305 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11306 mac_ptr += bytes_read;
11307 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11308 mac_ptr += bytes_read;
11309
757a13d0
JK
11310 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11311 complaint (&symfile_complaints,
11312 _("debug info gives source %d included "
11313 "from %s at %s line %d"),
11314 file, at_commandline ? _("command-line") : _("file"),
11315 line == 0 ? _("zero") : _("non-zero"), line);
11316
11317 if (at_commandline)
11318 {
11319 /* This DW_MACINFO_start_file was executed in the pass one. */
11320 at_commandline = 0;
11321 }
11322 else
11323 current_file = macro_start_file (file, line,
11324 current_file, comp_dir,
11325 lh, cu->objfile);
2e276125
JB
11326 }
11327 break;
11328
11329 case DW_MACINFO_end_file:
11330 if (! current_file)
4d3c2250 11331 complaint (&symfile_complaints,
e2e0b3e5 11332 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
11333 else
11334 {
11335 current_file = current_file->included_by;
11336 if (! current_file)
11337 {
11338 enum dwarf_macinfo_record_type next_type;
11339
11340 /* GCC circa March 2002 doesn't produce the zero
11341 type byte marking the end of the compilation
11342 unit. Complain if it's not there, but exit no
11343 matter what. */
11344
11345 /* Do we at least have room for a macinfo type byte? */
11346 if (mac_ptr >= mac_end)
11347 {
4d3c2250 11348 dwarf2_macros_too_long_complaint ();
2e276125
JB
11349 return;
11350 }
11351
11352 /* We don't increment mac_ptr here, so this is just
11353 a look-ahead. */
11354 next_type = read_1_byte (abfd, mac_ptr);
11355 if (next_type != 0)
4d3c2250 11356 complaint (&symfile_complaints,
e2e0b3e5 11357 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
11358
11359 return;
11360 }
11361 }
11362 break;
11363
11364 case DW_MACINFO_vendor_ext:
11365 {
891d2f0b 11366 unsigned int bytes_read;
2e276125
JB
11367 int constant;
11368 char *string;
11369
11370 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11371 mac_ptr += bytes_read;
11372 string = read_string (abfd, mac_ptr, &bytes_read);
11373 mac_ptr += bytes_read;
11374
11375 /* We don't recognize any vendor extensions. */
11376 }
11377 break;
11378 }
757a13d0 11379 } while (macinfo_type != 0);
2e276125 11380}
8e19ed76
PS
11381
11382/* Check if the attribute's form is a DW_FORM_block*
11383 if so return true else false. */
11384static int
11385attr_form_is_block (struct attribute *attr)
11386{
11387 return (attr == NULL ? 0 :
11388 attr->form == DW_FORM_block1
11389 || attr->form == DW_FORM_block2
11390 || attr->form == DW_FORM_block4
11391 || attr->form == DW_FORM_block);
11392}
4c2df51b 11393
c6a0999f
JB
11394/* Return non-zero if ATTR's value is a section offset --- classes
11395 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11396 You may use DW_UNSND (attr) to retrieve such offsets.
11397
11398 Section 7.5.4, "Attribute Encodings", explains that no attribute
11399 may have a value that belongs to more than one of these classes; it
11400 would be ambiguous if we did, because we use the same forms for all
11401 of them. */
3690dd37
JB
11402static int
11403attr_form_is_section_offset (struct attribute *attr)
11404{
11405 return (attr->form == DW_FORM_data4
11406 || attr->form == DW_FORM_data8);
11407}
11408
11409
11410/* Return non-zero if ATTR's value falls in the 'constant' class, or
11411 zero otherwise. When this function returns true, you can apply
11412 dwarf2_get_attr_constant_value to it.
11413
11414 However, note that for some attributes you must check
11415 attr_form_is_section_offset before using this test. DW_FORM_data4
11416 and DW_FORM_data8 are members of both the constant class, and of
11417 the classes that contain offsets into other debug sections
11418 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11419 that, if an attribute's can be either a constant or one of the
11420 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11421 taken as section offsets, not constants. */
11422static int
11423attr_form_is_constant (struct attribute *attr)
11424{
11425 switch (attr->form)
11426 {
11427 case DW_FORM_sdata:
11428 case DW_FORM_udata:
11429 case DW_FORM_data1:
11430 case DW_FORM_data2:
11431 case DW_FORM_data4:
11432 case DW_FORM_data8:
11433 return 1;
11434 default:
11435 return 0;
11436 }
11437}
11438
4c2df51b
DJ
11439static void
11440dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 11441 struct dwarf2_cu *cu)
4c2df51b 11442{
3690dd37 11443 if (attr_form_is_section_offset (attr)
99bcc461
DJ
11444 /* ".debug_loc" may not exist at all, or the offset may be outside
11445 the section. If so, fall through to the complaint in the
11446 other branch. */
dce234bc 11447 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 11448 {
0d53c4c4 11449 struct dwarf2_loclist_baton *baton;
4c2df51b 11450
4a146b47 11451 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11452 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
11453 baton->per_cu = cu->per_cu;
11454 gdb_assert (baton->per_cu);
4c2df51b 11455
0d53c4c4
DJ
11456 /* We don't know how long the location list is, but make sure we
11457 don't run off the edge of the section. */
dce234bc
PP
11458 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11459 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
11460 baton->base_address = cu->base_address;
11461 if (cu->base_known == 0)
0d53c4c4 11462 complaint (&symfile_complaints,
e2e0b3e5 11463 _("Location list used without specifying the CU base address."));
4c2df51b 11464
768a979c 11465 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
11466 SYMBOL_LOCATION_BATON (sym) = baton;
11467 }
11468 else
11469 {
11470 struct dwarf2_locexpr_baton *baton;
11471
4a146b47 11472 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11473 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
11474 baton->per_cu = cu->per_cu;
11475 gdb_assert (baton->per_cu);
0d53c4c4
DJ
11476
11477 if (attr_form_is_block (attr))
11478 {
11479 /* Note that we're just copying the block's data pointer
11480 here, not the actual data. We're still pointing into the
6502dd73
DJ
11481 info_buffer for SYM's objfile; right now we never release
11482 that buffer, but when we do clean up properly this may
11483 need to change. */
0d53c4c4
DJ
11484 baton->size = DW_BLOCK (attr)->size;
11485 baton->data = DW_BLOCK (attr)->data;
11486 }
11487 else
11488 {
11489 dwarf2_invalid_attrib_class_complaint ("location description",
11490 SYMBOL_NATURAL_NAME (sym));
11491 baton->size = 0;
11492 baton->data = NULL;
11493 }
11494
768a979c 11495 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
11496 SYMBOL_LOCATION_BATON (sym) = baton;
11497 }
4c2df51b 11498}
6502dd73 11499
ae0d2f24
UW
11500/* Return the OBJFILE associated with the compilation unit CU. */
11501
11502struct objfile *
11503dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11504{
11505 struct objfile *objfile = per_cu->psymtab->objfile;
11506
11507 /* Return the master objfile, so that we can report and look up the
11508 correct file containing this variable. */
11509 if (objfile->separate_debug_objfile_backlink)
11510 objfile = objfile->separate_debug_objfile_backlink;
11511
11512 return objfile;
11513}
11514
11515/* Return the address size given in the compilation unit header for CU. */
11516
11517CORE_ADDR
11518dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11519{
11520 if (per_cu->cu)
11521 return per_cu->cu->header.addr_size;
11522 else
11523 {
11524 /* If the CU is not currently read in, we re-read its header. */
11525 struct objfile *objfile = per_cu->psymtab->objfile;
11526 struct dwarf2_per_objfile *per_objfile
11527 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 11528 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24
UW
11529
11530 struct comp_unit_head cu_header;
11531 memset (&cu_header, 0, sizeof cu_header);
11532 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11533 return cu_header.addr_size;
11534 }
11535}
11536
348e048f
DE
11537/* Locate the .debug_info compilation unit from CU's objfile which contains
11538 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
11539
11540static struct dwarf2_per_cu_data *
c764a876 11541dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
11542 struct objfile *objfile)
11543{
11544 struct dwarf2_per_cu_data *this_cu;
11545 int low, high;
11546
ae038cb0
DJ
11547 low = 0;
11548 high = dwarf2_per_objfile->n_comp_units - 1;
11549 while (high > low)
11550 {
11551 int mid = low + (high - low) / 2;
11552 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11553 high = mid;
11554 else
11555 low = mid + 1;
11556 }
11557 gdb_assert (low == high);
11558 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11559 {
10b3939b 11560 if (low == 0)
8a3fe4f8
AC
11561 error (_("Dwarf Error: could not find partial DIE containing "
11562 "offset 0x%lx [in module %s]"),
10b3939b
DJ
11563 (long) offset, bfd_get_filename (objfile->obfd));
11564
ae038cb0
DJ
11565 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11566 return dwarf2_per_objfile->all_comp_units[low-1];
11567 }
11568 else
11569 {
11570 this_cu = dwarf2_per_objfile->all_comp_units[low];
11571 if (low == dwarf2_per_objfile->n_comp_units - 1
11572 && offset >= this_cu->offset + this_cu->length)
c764a876 11573 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
11574 gdb_assert (offset < this_cu->offset + this_cu->length);
11575 return this_cu;
11576 }
11577}
11578
10b3939b
DJ
11579/* Locate the compilation unit from OBJFILE which is located at exactly
11580 OFFSET. Raises an error on failure. */
11581
ae038cb0 11582static struct dwarf2_per_cu_data *
c764a876 11583dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
11584{
11585 struct dwarf2_per_cu_data *this_cu;
11586 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11587 if (this_cu->offset != offset)
c764a876 11588 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
11589 return this_cu;
11590}
11591
93311388
DE
11592/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11593
11594static struct dwarf2_cu *
11595alloc_one_comp_unit (struct objfile *objfile)
11596{
11597 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11598 cu->objfile = objfile;
11599 obstack_init (&cu->comp_unit_obstack);
11600 return cu;
11601}
11602
ae038cb0
DJ
11603/* Release one cached compilation unit, CU. We unlink it from the tree
11604 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
11605 the caller is responsible for that.
11606 NOTE: DATA is a void * because this function is also used as a
11607 cleanup routine. */
ae038cb0
DJ
11608
11609static void
11610free_one_comp_unit (void *data)
11611{
11612 struct dwarf2_cu *cu = data;
11613
11614 if (cu->per_cu != NULL)
11615 cu->per_cu->cu = NULL;
11616 cu->per_cu = NULL;
11617
11618 obstack_free (&cu->comp_unit_obstack, NULL);
11619
11620 xfree (cu);
11621}
11622
72bf9492 11623/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
11624 when we're finished with it. We can't free the pointer itself, but be
11625 sure to unlink it from the cache. Also release any associated storage
11626 and perform cache maintenance.
72bf9492
DJ
11627
11628 Only used during partial symbol parsing. */
11629
11630static void
11631free_stack_comp_unit (void *data)
11632{
11633 struct dwarf2_cu *cu = data;
11634
11635 obstack_free (&cu->comp_unit_obstack, NULL);
11636 cu->partial_dies = NULL;
ae038cb0
DJ
11637
11638 if (cu->per_cu != NULL)
11639 {
11640 /* This compilation unit is on the stack in our caller, so we
11641 should not xfree it. Just unlink it. */
11642 cu->per_cu->cu = NULL;
11643 cu->per_cu = NULL;
11644
11645 /* If we had a per-cu pointer, then we may have other compilation
11646 units loaded, so age them now. */
11647 age_cached_comp_units ();
11648 }
11649}
11650
11651/* Free all cached compilation units. */
11652
11653static void
11654free_cached_comp_units (void *data)
11655{
11656 struct dwarf2_per_cu_data *per_cu, **last_chain;
11657
11658 per_cu = dwarf2_per_objfile->read_in_chain;
11659 last_chain = &dwarf2_per_objfile->read_in_chain;
11660 while (per_cu != NULL)
11661 {
11662 struct dwarf2_per_cu_data *next_cu;
11663
11664 next_cu = per_cu->cu->read_in_chain;
11665
11666 free_one_comp_unit (per_cu->cu);
11667 *last_chain = next_cu;
11668
11669 per_cu = next_cu;
11670 }
11671}
11672
11673/* Increase the age counter on each cached compilation unit, and free
11674 any that are too old. */
11675
11676static void
11677age_cached_comp_units (void)
11678{
11679 struct dwarf2_per_cu_data *per_cu, **last_chain;
11680
11681 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11682 per_cu = dwarf2_per_objfile->read_in_chain;
11683 while (per_cu != NULL)
11684 {
11685 per_cu->cu->last_used ++;
11686 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11687 dwarf2_mark (per_cu->cu);
11688 per_cu = per_cu->cu->read_in_chain;
11689 }
11690
11691 per_cu = dwarf2_per_objfile->read_in_chain;
11692 last_chain = &dwarf2_per_objfile->read_in_chain;
11693 while (per_cu != NULL)
11694 {
11695 struct dwarf2_per_cu_data *next_cu;
11696
11697 next_cu = per_cu->cu->read_in_chain;
11698
11699 if (!per_cu->cu->mark)
11700 {
11701 free_one_comp_unit (per_cu->cu);
11702 *last_chain = next_cu;
11703 }
11704 else
11705 last_chain = &per_cu->cu->read_in_chain;
11706
11707 per_cu = next_cu;
11708 }
11709}
11710
11711/* Remove a single compilation unit from the cache. */
11712
11713static void
11714free_one_cached_comp_unit (void *target_cu)
11715{
11716 struct dwarf2_per_cu_data *per_cu, **last_chain;
11717
11718 per_cu = dwarf2_per_objfile->read_in_chain;
11719 last_chain = &dwarf2_per_objfile->read_in_chain;
11720 while (per_cu != NULL)
11721 {
11722 struct dwarf2_per_cu_data *next_cu;
11723
11724 next_cu = per_cu->cu->read_in_chain;
11725
11726 if (per_cu->cu == target_cu)
11727 {
11728 free_one_comp_unit (per_cu->cu);
11729 *last_chain = next_cu;
11730 break;
11731 }
11732 else
11733 last_chain = &per_cu->cu->read_in_chain;
11734
11735 per_cu = next_cu;
11736 }
11737}
11738
fe3e1990
DJ
11739/* Release all extra memory associated with OBJFILE. */
11740
11741void
11742dwarf2_free_objfile (struct objfile *objfile)
11743{
11744 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11745
11746 if (dwarf2_per_objfile == NULL)
11747 return;
11748
11749 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11750 free_cached_comp_units (NULL);
11751
11752 /* Everything else should be on the objfile obstack. */
11753}
11754
1c379e20
DJ
11755/* A pair of DIE offset and GDB type pointer. We store these
11756 in a hash table separate from the DIEs, and preserve them
11757 when the DIEs are flushed out of cache. */
11758
11759struct dwarf2_offset_and_type
11760{
11761 unsigned int offset;
11762 struct type *type;
11763};
11764
11765/* Hash function for a dwarf2_offset_and_type. */
11766
11767static hashval_t
11768offset_and_type_hash (const void *item)
11769{
11770 const struct dwarf2_offset_and_type *ofs = item;
11771 return ofs->offset;
11772}
11773
11774/* Equality function for a dwarf2_offset_and_type. */
11775
11776static int
11777offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11778{
11779 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11780 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
11781 return ofs_lhs->offset == ofs_rhs->offset;
11782}
11783
11784/* Set the type associated with DIE to TYPE. Save it in CU's hash
f792889a 11785 table if necessary. For convenience, return TYPE. */
1c379e20 11786
f792889a 11787static struct type *
1c379e20
DJ
11788set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11789{
11790 struct dwarf2_offset_and_type **slot, ofs;
11791
b4ba55a1
JB
11792 /* For Ada types, make sure that the gnat-specific data is always
11793 initialized (if not already set). There are a few types where
11794 we should not be doing so, because the type-specific area is
11795 already used to hold some other piece of info (eg: TYPE_CODE_FLT
11796 where the type-specific area is used to store the floatformat).
11797 But this is not a problem, because the gnat-specific information
11798 is actually not needed for these types. */
11799 if (need_gnat_info (cu)
11800 && TYPE_CODE (type) != TYPE_CODE_FUNC
11801 && TYPE_CODE (type) != TYPE_CODE_FLT
11802 && !HAVE_GNAT_AUX_INFO (type))
11803 INIT_GNAT_SPECIFIC (type);
11804
f792889a
DJ
11805 if (cu->type_hash == NULL)
11806 {
11807 gdb_assert (cu->per_cu != NULL);
11808 cu->per_cu->type_hash
11809 = htab_create_alloc_ex (cu->header.length / 24,
11810 offset_and_type_hash,
11811 offset_and_type_eq,
11812 NULL,
11813 &cu->objfile->objfile_obstack,
11814 hashtab_obstack_allocate,
11815 dummy_obstack_deallocate);
11816 cu->type_hash = cu->per_cu->type_hash;
11817 }
1c379e20
DJ
11818
11819 ofs.offset = die->offset;
11820 ofs.type = type;
11821 slot = (struct dwarf2_offset_and_type **)
f792889a 11822 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
1c379e20
DJ
11823 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
11824 **slot = ofs;
f792889a 11825 return type;
1c379e20
DJ
11826}
11827
f792889a
DJ
11828/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
11829 not have a saved type. */
1c379e20
DJ
11830
11831static struct type *
f792889a 11832get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
11833{
11834 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
11835 htab_t type_hash = cu->type_hash;
11836
11837 if (type_hash == NULL)
11838 return NULL;
1c379e20
DJ
11839
11840 ofs.offset = die->offset;
11841 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
11842 if (slot)
11843 return slot->type;
11844 else
11845 return NULL;
11846}
11847
10b3939b
DJ
11848/* Add a dependence relationship from CU to REF_PER_CU. */
11849
11850static void
11851dwarf2_add_dependence (struct dwarf2_cu *cu,
11852 struct dwarf2_per_cu_data *ref_per_cu)
11853{
11854 void **slot;
11855
11856 if (cu->dependencies == NULL)
11857 cu->dependencies
11858 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
11859 NULL, &cu->comp_unit_obstack,
11860 hashtab_obstack_allocate,
11861 dummy_obstack_deallocate);
11862
11863 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
11864 if (*slot == NULL)
11865 *slot = ref_per_cu;
11866}
1c379e20 11867
f504f079
DE
11868/* Subroutine of dwarf2_mark to pass to htab_traverse.
11869 Set the mark field in every compilation unit in the
ae038cb0
DJ
11870 cache that we must keep because we are keeping CU. */
11871
10b3939b
DJ
11872static int
11873dwarf2_mark_helper (void **slot, void *data)
11874{
11875 struct dwarf2_per_cu_data *per_cu;
11876
11877 per_cu = (struct dwarf2_per_cu_data *) *slot;
11878 if (per_cu->cu->mark)
11879 return 1;
11880 per_cu->cu->mark = 1;
11881
11882 if (per_cu->cu->dependencies != NULL)
11883 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
11884
11885 return 1;
11886}
11887
f504f079
DE
11888/* Set the mark field in CU and in every other compilation unit in the
11889 cache that we must keep because we are keeping CU. */
11890
ae038cb0
DJ
11891static void
11892dwarf2_mark (struct dwarf2_cu *cu)
11893{
11894 if (cu->mark)
11895 return;
11896 cu->mark = 1;
10b3939b
DJ
11897 if (cu->dependencies != NULL)
11898 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
11899}
11900
11901static void
11902dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
11903{
11904 while (per_cu)
11905 {
11906 per_cu->cu->mark = 0;
11907 per_cu = per_cu->cu->read_in_chain;
11908 }
72bf9492
DJ
11909}
11910
72bf9492
DJ
11911/* Trivial hash function for partial_die_info: the hash value of a DIE
11912 is its offset in .debug_info for this objfile. */
11913
11914static hashval_t
11915partial_die_hash (const void *item)
11916{
11917 const struct partial_die_info *part_die = item;
11918 return part_die->offset;
11919}
11920
11921/* Trivial comparison function for partial_die_info structures: two DIEs
11922 are equal if they have the same offset. */
11923
11924static int
11925partial_die_eq (const void *item_lhs, const void *item_rhs)
11926{
11927 const struct partial_die_info *part_die_lhs = item_lhs;
11928 const struct partial_die_info *part_die_rhs = item_rhs;
11929 return part_die_lhs->offset == part_die_rhs->offset;
11930}
11931
ae038cb0
DJ
11932static struct cmd_list_element *set_dwarf2_cmdlist;
11933static struct cmd_list_element *show_dwarf2_cmdlist;
11934
11935static void
11936set_dwarf2_cmd (char *args, int from_tty)
11937{
11938 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
11939}
11940
11941static void
11942show_dwarf2_cmd (char *args, int from_tty)
11943{
11944 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
11945}
11946
dce234bc
PP
11947/* If section described by INFO was mmapped, munmap it now. */
11948
11949static void
11950munmap_section_buffer (struct dwarf2_section_info *info)
11951{
11952 if (info->was_mmapped)
11953 {
11954#ifdef HAVE_MMAP
11955 intptr_t begin = (intptr_t) info->buffer;
11956 intptr_t map_begin = begin & ~(pagesize - 1);
11957 size_t map_length = info->size + begin - map_begin;
11958 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
11959#else
11960 /* Without HAVE_MMAP, we should never be here to begin with. */
11961 gdb_assert (0);
11962#endif
11963 }
11964}
11965
11966/* munmap debug sections for OBJFILE, if necessary. */
11967
11968static void
c1bd65d0 11969dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
11970{
11971 struct dwarf2_per_objfile *data = d;
11972 munmap_section_buffer (&data->info);
11973 munmap_section_buffer (&data->abbrev);
11974 munmap_section_buffer (&data->line);
11975 munmap_section_buffer (&data->str);
11976 munmap_section_buffer (&data->macinfo);
11977 munmap_section_buffer (&data->ranges);
11978 munmap_section_buffer (&data->loc);
11979 munmap_section_buffer (&data->frame);
11980 munmap_section_buffer (&data->eh_frame);
11981}
11982
6502dd73
DJ
11983void _initialize_dwarf2_read (void);
11984
11985void
11986_initialize_dwarf2_read (void)
11987{
dce234bc 11988 dwarf2_objfile_data_key
c1bd65d0 11989 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 11990
1bedd215
AC
11991 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
11992Set DWARF 2 specific variables.\n\
11993Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
11994 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
11995 0/*allow-unknown*/, &maintenance_set_cmdlist);
11996
1bedd215
AC
11997 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
11998Show DWARF 2 specific variables\n\
11999Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12000 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12001 0/*allow-unknown*/, &maintenance_show_cmdlist);
12002
12003 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
12004 &dwarf2_max_cache_age, _("\
12005Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12006Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12007A higher limit means that cached compilation units will be stored\n\
12008in memory longer, and more total memory will be used. Zero disables\n\
12009caching, which can slow down startup."),
2c5b56ce 12010 NULL,
920d2a44 12011 show_dwarf2_max_cache_age,
2c5b56ce 12012 &set_dwarf2_cmdlist,
ae038cb0 12013 &show_dwarf2_cmdlist);
d97bc12b
DE
12014
12015 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12016Set debugging of the dwarf2 DIE reader."), _("\
12017Show debugging of the dwarf2 DIE reader."), _("\
12018When enabled (non-zero), DIEs are dumped after they are read in.\n\
12019The value is the maximum depth to print."),
12020 NULL,
12021 NULL,
12022 &setdebuglist, &showdebuglist);
6502dd73 12023}
This page took 1.626485 seconds and 4 git commands to generate.