Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
42a4f53d 3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c 31#include "defs.h"
4de283e4 32#include "dwarf2read.h"
d55e5aa6
TT
33#include "dwarf-index-cache.h"
34#include "dwarf-index-common.h"
4de283e4
TT
35#include "bfd.h"
36#include "elf-bfd.h"
37#include "symtab.h"
38#include "gdbtypes.h"
39#include "objfiles.h"
d55e5aa6 40#include "dwarf2.h"
4de283e4
TT
41#include "buildsym.h"
42#include "demangle.h"
43#include "gdb-demangle.h"
4de283e4
TT
44#include "filenames.h" /* for DOSish file names */
45#include "macrotab.h"
46#include "language.h"
47#include "complaints.h"
d55e5aa6
TT
48#include "dwarf2expr.h"
49#include "dwarf2loc.h"
4de283e4
TT
50#include "cp-support.h"
51#include "hashtab.h"
52#include "command.h"
d55e5aa6 53#include "gdbcmd.h"
4de283e4
TT
54#include "block.h"
55#include "addrmap.h"
56#include "typeprint.h"
57#include "psympriv.h"
4de283e4 58#include "c-lang.h"
d55e5aa6 59#include "go-lang.h"
4de283e4
TT
60#include "valprint.h"
61#include "gdbcore.h" /* for gnutarget */
62#include "gdb/gdb-index.h"
4de283e4
TT
63#include "gdb_bfd.h"
64#include "f-lang.h"
65#include "source.h"
4de283e4 66#include "build-id.h"
d55e5aa6 67#include "namespace.h"
268a13a5
TT
68#include "gdbsupport/function-view.h"
69#include "gdbsupport/gdb_optional.h"
70#include "gdbsupport/underlying.h"
268a13a5 71#include "gdbsupport/hash_enum.h"
4de283e4 72#include "filename-seen-cache.h"
b32b108a 73#include "producer.h"
4de283e4 74#include <fcntl.h>
4de283e4 75#include <algorithm>
4de283e4 76#include <unordered_map>
268a13a5 77#include "gdbsupport/selftest.h"
c9317f21 78#include "rust-lang.h"
268a13a5 79#include "gdbsupport/pathstuff.h"
437afbb8 80
73be47f5
DE
81/* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
b4f54984
DE
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84static unsigned int dwarf_read_debug = 0;
45cfd468 85
d97bc12b 86/* When non-zero, dump DIEs after they are read in. */
b4f54984 87static unsigned int dwarf_die_debug = 0;
d97bc12b 88
27e0867f
DE
89/* When non-zero, dump line number entries as they are read in. */
90static unsigned int dwarf_line_debug = 0;
91
491144b5
CB
92/* When true, cross-check physname against demangler. */
93static bool check_physname = false;
900e11f9 94
491144b5
CB
95/* When true, do not reject deprecated .gdb_index sections. */
96static bool use_deprecated_index_sections = false;
481860b3 97
5bfd760d 98static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
6502dd73 99
f1e6e072
TT
100/* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102static int dwarf2_locexpr_index;
103static int dwarf2_loclist_index;
104static int dwarf2_locexpr_block_index;
105static int dwarf2_loclist_block_index;
106
3f563c84
PA
107/* An index into a (C++) symbol name component in a symbol name as
108 recorded in the mapped_index's symbol table. For each C++ symbol
109 in the symbol table, we record one entry for the start of each
110 component in the symbol in a table of name components, and then
111 sort the table, in order to be able to binary search symbol names,
112 ignoring leading namespaces, both completion and regular look up.
113 For example, for symbol "A::B::C", we'll have an entry that points
114 to "A::B::C", another that points to "B::C", and another for "C".
115 Note that function symbols in GDB index have no parameter
116 information, just the function/method names. You can convert a
117 name_component to a "const char *" using the
118 'mapped_index::symbol_name_at(offset_type)' method. */
119
120struct name_component
121{
122 /* Offset in the symbol name where the component starts. Stored as
123 a (32-bit) offset instead of a pointer to save memory and improve
124 locality on 64-bit architectures. */
125 offset_type name_offset;
126
127 /* The symbol's index in the symbol and constant pool tables of a
128 mapped_index. */
129 offset_type idx;
130};
131
44ed8f3e
PA
132/* Base class containing bits shared by both .gdb_index and
133 .debug_name indexes. */
134
135struct mapped_index_base
136{
22ca247e
TT
137 mapped_index_base () = default;
138 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
139
44ed8f3e
PA
140 /* The name_component table (a sorted vector). See name_component's
141 description above. */
142 std::vector<name_component> name_components;
143
144 /* How NAME_COMPONENTS is sorted. */
145 enum case_sensitivity name_components_casing;
146
147 /* Return the number of names in the symbol table. */
148 virtual size_t symbol_name_count () const = 0;
149
150 /* Get the name of the symbol at IDX in the symbol table. */
151 virtual const char *symbol_name_at (offset_type idx) const = 0;
152
153 /* Return whether the name at IDX in the symbol table should be
154 ignored. */
155 virtual bool symbol_name_slot_invalid (offset_type idx) const
156 {
157 return false;
158 }
159
160 /* Build the symbol name component sorted vector, if we haven't
161 yet. */
162 void build_name_components ();
163
164 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
165 possible matches for LN_NO_PARAMS in the name component
166 vector. */
167 std::pair<std::vector<name_component>::const_iterator,
168 std::vector<name_component>::const_iterator>
3b00ef10
TT
169 find_name_components_bounds (const lookup_name_info &ln_no_params,
170 enum language lang) const;
44ed8f3e
PA
171
172 /* Prevent deleting/destroying via a base class pointer. */
173protected:
174 ~mapped_index_base() = default;
175};
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
fc898b42 179struct mapped_index final : public mapped_index_base
9291a0cd 180{
f00a2de2
PA
181 /* A slot/bucket in the symbol table hash. */
182 struct symbol_table_slot
183 {
184 const offset_type name;
185 const offset_type vec;
186 };
187
559a7a62 188 /* Index data format version. */
3063847f 189 int version = 0;
559a7a62 190
f00a2de2
PA
191 /* The address table data. */
192 gdb::array_view<const gdb_byte> address_table;
b11b1f88 193
3876f04e 194 /* The symbol table, implemented as a hash table. */
f00a2de2 195 gdb::array_view<symbol_table_slot> symbol_table;
b11b1f88 196
9291a0cd 197 /* A pointer to the constant pool. */
3063847f 198 const char *constant_pool = nullptr;
3f563c84 199
44ed8f3e
PA
200 bool symbol_name_slot_invalid (offset_type idx) const override
201 {
202 const auto &bucket = this->symbol_table[idx];
9ab08412 203 return bucket.name == 0 && bucket.vec == 0;
44ed8f3e 204 }
5c58de74 205
3f563c84
PA
206 /* Convenience method to get at the name of the symbol at IDX in the
207 symbol table. */
44ed8f3e 208 const char *symbol_name_at (offset_type idx) const override
f00a2de2 209 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
5c58de74 210
44ed8f3e
PA
211 size_t symbol_name_count () const override
212 { return this->symbol_table.size (); }
9291a0cd
TT
213};
214
927aa2e7
JK
215/* A description of the mapped .debug_names.
216 Uninitialized map has CU_COUNT 0. */
fc898b42 217struct mapped_debug_names final : public mapped_index_base
927aa2e7 218{
ed2dc618
SM
219 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
220 : dwarf2_per_objfile (dwarf2_per_objfile_)
221 {}
222
223 struct dwarf2_per_objfile *dwarf2_per_objfile;
927aa2e7
JK
224 bfd_endian dwarf5_byte_order;
225 bool dwarf5_is_dwarf64;
226 bool augmentation_is_gdb;
227 uint8_t offset_size;
228 uint32_t cu_count = 0;
229 uint32_t tu_count, bucket_count, name_count;
230 const gdb_byte *cu_table_reordered, *tu_table_reordered;
231 const uint32_t *bucket_table_reordered, *hash_table_reordered;
232 const gdb_byte *name_table_string_offs_reordered;
233 const gdb_byte *name_table_entry_offs_reordered;
234 const gdb_byte *entry_pool;
235
236 struct index_val
237 {
238 ULONGEST dwarf_tag;
239 struct attr
240 {
241 /* Attribute name DW_IDX_*. */
242 ULONGEST dw_idx;
243
244 /* Attribute form DW_FORM_*. */
245 ULONGEST form;
246
247 /* Value if FORM is DW_FORM_implicit_const. */
248 LONGEST implicit_const;
249 };
250 std::vector<attr> attr_vec;
251 };
252
253 std::unordered_map<ULONGEST, index_val> abbrev_map;
254
255 const char *namei_to_name (uint32_t namei) const;
44ed8f3e
PA
256
257 /* Implementation of the mapped_index_base virtual interface, for
258 the name_components cache. */
259
260 const char *symbol_name_at (offset_type idx) const override
261 { return namei_to_name (idx); }
262
263 size_t symbol_name_count () const override
264 { return this->name_count; }
927aa2e7
JK
265};
266
cd4fb1b2 267/* See dwarf2read.h. */
ed2dc618 268
cd4fb1b2 269dwarf2_per_objfile *
ed2dc618
SM
270get_dwarf2_per_objfile (struct objfile *objfile)
271{
5bfd760d 272 return dwarf2_objfile_data_key.get (objfile);
ed2dc618 273}
c906108c 274
251d32d9 275/* Default names of the debugging sections. */
c906108c 276
233a11ab
CS
277/* Note that if the debugging section has been compressed, it might
278 have a name like .zdebug_info. */
279
9cdd5dbd
DE
280static const struct dwarf2_debug_sections dwarf2_elf_names =
281{
251d32d9
TG
282 { ".debug_info", ".zdebug_info" },
283 { ".debug_abbrev", ".zdebug_abbrev" },
284 { ".debug_line", ".zdebug_line" },
285 { ".debug_loc", ".zdebug_loc" },
43988095 286 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 287 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 288 { ".debug_macro", ".zdebug_macro" },
251d32d9 289 { ".debug_str", ".zdebug_str" },
43988095 290 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 291 { ".debug_ranges", ".zdebug_ranges" },
43988095 292 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 293 { ".debug_types", ".zdebug_types" },
3019eac3 294 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
24d3216f 297 { ".gdb_index", ".zgdb_index" },
927aa2e7
JK
298 { ".debug_names", ".zdebug_names" },
299 { ".debug_aranges", ".zdebug_aranges" },
24d3216f 300 23
251d32d9 301};
c906108c 302
80626a55 303/* List of DWO/DWP sections. */
3019eac3 304
80626a55 305static const struct dwop_section_names
3019eac3
DE
306{
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
43988095 311 struct dwarf2_section_names loclists_dwo;
09262596
DE
312 struct dwarf2_section_names macinfo_dwo;
313 struct dwarf2_section_names macro_dwo;
3019eac3
DE
314 struct dwarf2_section_names str_dwo;
315 struct dwarf2_section_names str_offsets_dwo;
316 struct dwarf2_section_names types_dwo;
80626a55
DE
317 struct dwarf2_section_names cu_index;
318 struct dwarf2_section_names tu_index;
3019eac3 319}
80626a55 320dwop_section_names =
3019eac3
DE
321{
322 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
323 { ".debug_info.dwo", ".zdebug_info.dwo" },
324 { ".debug_line.dwo", ".zdebug_line.dwo" },
325 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 326 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
327 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
328 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
329 { ".debug_str.dwo", ".zdebug_str.dwo" },
330 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
331 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
332 { ".debug_cu_index", ".zdebug_cu_index" },
333 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
334};
335
c906108c
SS
336/* local data types */
337
107d2387
AC
338/* The data in a compilation unit header, after target2host
339 translation, looks like this. */
c906108c 340struct comp_unit_head
a738430d 341{
c764a876 342 unsigned int length;
a738430d 343 short version;
a738430d
MK
344 unsigned char addr_size;
345 unsigned char signed_addr_p;
9c541725 346 sect_offset abbrev_sect_off;
57349743 347
a738430d
MK
348 /* Size of file offsets; either 4 or 8. */
349 unsigned int offset_size;
57349743 350
a738430d
MK
351 /* Size of the length field; either 4 or 12. */
352 unsigned int initial_length_size;
57349743 353
43988095
JK
354 enum dwarf_unit_type unit_type;
355
a738430d
MK
356 /* Offset to the first byte of this compilation unit header in the
357 .debug_info section, for resolving relative reference dies. */
9c541725 358 sect_offset sect_off;
57349743 359
d00adf39
DE
360 /* Offset to first die in this cu from the start of the cu.
361 This will be the first byte following the compilation unit header. */
9c541725 362 cu_offset first_die_cu_offset;
43988095 363
a084a2a6
AT
364
365 /* 64-bit signature of this unit. For type units, it denotes the signature of
366 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
367 Also used in DWARF 5, to denote the dwo id when the unit type is
368 DW_UT_skeleton or DW_UT_split_compile. */
43988095
JK
369 ULONGEST signature;
370
371 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 372 cu_offset type_cu_offset_in_tu;
a738430d 373};
c906108c 374
3da10d80
KS
375/* Type used for delaying computation of method physnames.
376 See comments for compute_delayed_physnames. */
377struct delayed_method_info
378{
379 /* The type to which the method is attached, i.e., its parent class. */
380 struct type *type;
381
382 /* The index of the method in the type's function fieldlists. */
383 int fnfield_index;
384
385 /* The index of the method in the fieldlist. */
386 int index;
387
388 /* The name of the DIE. */
389 const char *name;
390
391 /* The DIE associated with this method. */
392 struct die_info *die;
393};
394
e7c27a73
DJ
395/* Internal state when decoding a particular compilation unit. */
396struct dwarf2_cu
397{
fcd3b13d
SM
398 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
399 ~dwarf2_cu ();
400
401 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
402
c24bdb02
KS
403 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
404 Create the set of symtabs used by this TU, or if this TU is sharing
405 symtabs with another TU and the symtabs have already been created
406 then restore those symtabs in the line header.
407 We don't need the pc/line-number mapping for type units. */
408 void setup_type_unit_groups (struct die_info *die);
409
410 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
411 buildsym_compunit constructor. */
412 struct compunit_symtab *start_symtab (const char *name,
413 const char *comp_dir,
414 CORE_ADDR low_pc);
415
416 /* Reset the builder. */
417 void reset_builder () { m_builder.reset (); }
418
d00adf39 419 /* The header of the compilation unit. */
fcd3b13d 420 struct comp_unit_head header {};
e142c38c 421
d00adf39 422 /* Base address of this compilation unit. */
fcd3b13d 423 CORE_ADDR base_address = 0;
d00adf39
DE
424
425 /* Non-zero if base_address has been set. */
fcd3b13d 426 int base_known = 0;
d00adf39 427
e142c38c 428 /* The language we are debugging. */
fcd3b13d
SM
429 enum language language = language_unknown;
430 const struct language_defn *language_defn = nullptr;
e142c38c 431
fcd3b13d 432 const char *producer = nullptr;
b0f35d58 433
c24bdb02 434private:
804d2729
TT
435 /* The symtab builder for this CU. This is only non-NULL when full
436 symbols are being read. */
c24bdb02 437 std::unique_ptr<buildsym_compunit> m_builder;
804d2729 438
c24bdb02 439public:
e142c38c
DJ
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
fcd3b13d 449 struct pending **list_in_scope = nullptr;
e142c38c 450
b64f50a1
JK
451 /* Hash table holding all the loaded partial DIEs
452 with partial_die->offset.SECT_OFF as hash. */
fcd3b13d 453 htab_t partial_dies = nullptr;
72bf9492
DJ
454
455 /* Storage for things with the same lifetime as this read-in compilation
456 unit, including partial DIEs. */
fcd3b13d 457 auto_obstack comp_unit_obstack;
72bf9492 458
ae038cb0
DJ
459 /* When multiple dwarf2_cu structures are living in memory, this field
460 chains them all together, so that they can be released efficiently.
461 We will probably also want a generation counter so that most-recently-used
462 compilation units are cached... */
fcd3b13d 463 struct dwarf2_per_cu_data *read_in_chain = nullptr;
ae038cb0 464
69d751e3 465 /* Backlink to our per_cu entry. */
ae038cb0
DJ
466 struct dwarf2_per_cu_data *per_cu;
467
468 /* How many compilation units ago was this CU last referenced? */
fcd3b13d 469 int last_used = 0;
ae038cb0 470
b64f50a1
JK
471 /* A hash table of DIE cu_offset for following references with
472 die_info->offset.sect_off as hash. */
fcd3b13d 473 htab_t die_hash = nullptr;
10b3939b
DJ
474
475 /* Full DIEs if read in. */
fcd3b13d 476 struct die_info *dies = nullptr;
10b3939b
DJ
477
478 /* A set of pointers to dwarf2_per_cu_data objects for compilation
479 units referenced by this one. Only set during full symbol processing;
480 partial symbol tables do not have dependencies. */
fcd3b13d 481 htab_t dependencies = nullptr;
10b3939b 482
cb1df416 483 /* Header data from the line table, during full symbol processing. */
fcd3b13d 484 struct line_header *line_header = nullptr;
4c8aa72d
PA
485 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
486 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
487 this is the DW_TAG_compile_unit die for this CU. We'll hold on
488 to the line header as long as this DIE is being processed. See
489 process_die_scope. */
fcd3b13d 490 die_info *line_header_die_owner = nullptr;
cb1df416 491
3da10d80
KS
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
c89b44cd 494 std::vector<delayed_method_info> method_list;
3da10d80 495
96408a79 496 /* To be copied to symtab->call_site_htab. */
fcd3b13d 497 htab_t call_site_htab = nullptr;
96408a79 498
034e5797
DE
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
fcd3b13d 508 struct dwo_unit *dwo_unit = nullptr;
3019eac3
DE
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
1dbab08b 512 Note this value comes from the Fission stub CU/TU's DIE. */
fcd3b13d 513 ULONGEST addr_base = 0;
3019eac3 514
2e3cf129
DE
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
1dbab08b 517 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 518 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
fcd3b13d 525 ULONGEST ranges_base = 0;
2e3cf129 526
c9317f21
TT
527 /* When reading debug info generated by older versions of rustc, we
528 have to rewrite some union types to be struct types with a
529 variant part. This rewriting must be done after the CU is fully
530 read in, because otherwise at the point of rewriting some struct
531 type might not have been fully processed. So, we keep a list of
532 all such types here and process them after expansion. */
533 std::vector<struct type *> rust_unions;
534
ae038cb0 535 /* Mark used when releasing cached dies. */
9068261f 536 bool mark : 1;
ae038cb0 537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
9068261f 542 bool has_loclist : 1;
ba919b58 543
9068261f 544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
1b80a9fa
JK
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
9068261f
AB
548 bool checked_producer : 1;
549 bool producer_is_gxx_lt_4_6 : 1;
550 bool producer_is_gcc_lt_4_3 : 1;
eb77c9df 551 bool producer_is_icc : 1;
9068261f 552 bool producer_is_icc_lt_14 : 1;
c258c396 553 bool producer_is_codewarrior : 1;
4d4ec4e5 554
9068261f 555 /* When true, the file that we're processing is known to have
4d4ec4e5
TT
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
9068261f 559 bool processing_has_namespace_info : 1;
d590ff25
YQ
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
c24bdb02
KS
562
563 /* If this CU was inherited by another CU (via specification,
564 abstract_origin, etc), this is the ancestor CU. */
565 dwarf2_cu *ancestor;
566
567 /* Get the buildsym_compunit for this CU. */
568 buildsym_compunit *get_builder ()
569 {
570 /* If this CU has a builder associated with it, use that. */
571 if (m_builder != nullptr)
572 return m_builder.get ();
573
574 /* Otherwise, search ancestors for a valid builder. */
575 if (ancestor != nullptr)
576 return ancestor->get_builder ();
577
578 return nullptr;
579 }
e7c27a73
DJ
580};
581
094b34ac
DE
582/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
583 This includes type_unit_group and quick_file_names. */
584
585struct stmt_list_hash
586{
587 /* The DWO unit this table is from or NULL if there is none. */
588 struct dwo_unit *dwo_unit;
589
590 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 591 sect_offset line_sect_off;
094b34ac
DE
592};
593
f4dc4d17
DE
594/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
595 an object of this type. */
596
597struct type_unit_group
598{
0186c6a7 599 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
600 To simplify things we create an artificial CU that "includes" all the
601 type units using this stmt_list so that the rest of the code still has
602 a "per_cu" handle on the symtab.
603 This PER_CU is recognized by having no section. */
8a0459fd 604#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
605 struct dwarf2_per_cu_data per_cu;
606
0186c6a7
DE
607 /* The TUs that share this DW_AT_stmt_list entry.
608 This is added to while parsing type units to build partial symtabs,
609 and is deleted afterwards and not used again. */
a8b3b8e9 610 std::vector<signatured_type *> *tus;
f4dc4d17 611
43f3e411 612 /* The compunit symtab.
094b34ac 613 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
614 so we create an essentially anonymous symtab as the compunit symtab. */
615 struct compunit_symtab *compunit_symtab;
f4dc4d17 616
094b34ac
DE
617 /* The data used to construct the hash key. */
618 struct stmt_list_hash hash;
f4dc4d17
DE
619
620 /* The number of symtabs from the line header.
621 The value here must match line_header.num_file_names. */
622 unsigned int num_symtabs;
623
624 /* The symbol tables for this TU (obtained from the files listed in
625 DW_AT_stmt_list).
626 WARNING: The order of entries here must match the order of entries
627 in the line header. After the first TU using this type_unit_group, the
628 line header for the subsequent TUs is recreated from this. This is done
629 because we need to use the same symtabs for each TU using the same
630 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
631 there's no guarantee the line header doesn't have duplicate entries. */
632 struct symtab **symtabs;
633};
634
73869dc2 635/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
636
637struct dwo_sections
638{
639 struct dwarf2_section_info abbrev;
3019eac3
DE
640 struct dwarf2_section_info line;
641 struct dwarf2_section_info loc;
43988095 642 struct dwarf2_section_info loclists;
09262596
DE
643 struct dwarf2_section_info macinfo;
644 struct dwarf2_section_info macro;
3019eac3
DE
645 struct dwarf2_section_info str;
646 struct dwarf2_section_info str_offsets;
80626a55
DE
647 /* In the case of a virtual DWO file, these two are unused. */
648 struct dwarf2_section_info info;
fd5866f6 649 std::vector<dwarf2_section_info> types;
3019eac3
DE
650};
651
c88ee1f0 652/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
653
654struct dwo_unit
655{
656 /* Backlink to the containing struct dwo_file. */
657 struct dwo_file *dwo_file;
658
659 /* The "id" that distinguishes this CU/TU.
660 .debug_info calls this "dwo_id", .debug_types calls this "signature".
661 Since signatures came first, we stick with it for consistency. */
662 ULONGEST signature;
663
664 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 665 struct dwarf2_section_info *section;
3019eac3 666
9c541725
PA
667 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
668 sect_offset sect_off;
3019eac3
DE
669 unsigned int length;
670
671 /* For types, offset in the type's DIE of the type defined by this TU. */
672 cu_offset type_offset_in_tu;
673};
674
73869dc2
DE
675/* include/dwarf2.h defines the DWP section codes.
676 It defines a max value but it doesn't define a min value, which we
677 use for error checking, so provide one. */
678
679enum dwp_v2_section_ids
680{
681 DW_SECT_MIN = 1
682};
683
80626a55 684/* Data for one DWO file.
57d63ce2
DE
685
686 This includes virtual DWO files (a virtual DWO file is a DWO file as it
687 appears in a DWP file). DWP files don't really have DWO files per se -
688 comdat folding of types "loses" the DWO file they came from, and from
689 a high level view DWP files appear to contain a mass of random types.
690 However, to maintain consistency with the non-DWP case we pretend DWP
691 files contain virtual DWO files, and we assign each TU with one virtual
692 DWO file (generally based on the line and abbrev section offsets -
693 a heuristic that seems to work in practice). */
3019eac3
DE
694
695struct dwo_file
696{
51ac9db5
SM
697 dwo_file () = default;
698 DISABLE_COPY_AND_ASSIGN (dwo_file);
699
0ac5b59e 700 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
701 For virtual DWO files the name is constructed from the section offsets
702 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
703 from related CU+TUs. */
51ac9db5 704 const char *dwo_name = nullptr;
0ac5b59e
DE
705
706 /* The DW_AT_comp_dir attribute. */
51ac9db5 707 const char *comp_dir = nullptr;
3019eac3 708
80626a55
DE
709 /* The bfd, when the file is open. Otherwise this is NULL.
710 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
fb1eb2f9 711 gdb_bfd_ref_ptr dbfd;
3019eac3 712
73869dc2
DE
713 /* The sections that make up this DWO file.
714 Remember that for virtual DWO files in DWP V2, these are virtual
715 sections (for lack of a better name). */
51ac9db5 716 struct dwo_sections sections {};
3019eac3 717
33c5cd75
DB
718 /* The CUs in the file.
719 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
720 an extension to handle LLVM's Link Time Optimization output (where
721 multiple source files may be compiled into a single object/dwo pair). */
51ac9db5 722 htab_t cus {};
3019eac3
DE
723
724 /* Table of TUs in the file.
725 Each element is a struct dwo_unit. */
51ac9db5 726 htab_t tus {};
3019eac3
DE
727};
728
80626a55
DE
729/* These sections are what may appear in a DWP file. */
730
731struct dwp_sections
732{
73869dc2 733 /* These are used by both DWP version 1 and 2. */
80626a55
DE
734 struct dwarf2_section_info str;
735 struct dwarf2_section_info cu_index;
736 struct dwarf2_section_info tu_index;
73869dc2
DE
737
738 /* These are only used by DWP version 2 files.
739 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
740 sections are referenced by section number, and are not recorded here.
741 In DWP version 2 there is at most one copy of all these sections, each
742 section being (effectively) comprised of the concatenation of all of the
743 individual sections that exist in the version 1 format.
744 To keep the code simple we treat each of these concatenated pieces as a
745 section itself (a virtual section?). */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info info;
748 struct dwarf2_section_info line;
749 struct dwarf2_section_info loc;
750 struct dwarf2_section_info macinfo;
751 struct dwarf2_section_info macro;
752 struct dwarf2_section_info str_offsets;
753 struct dwarf2_section_info types;
80626a55
DE
754};
755
73869dc2
DE
756/* These sections are what may appear in a virtual DWO file in DWP version 1.
757 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 758
73869dc2 759struct virtual_v1_dwo_sections
80626a55
DE
760{
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 768 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
769 struct dwarf2_section_info info_or_types;
770};
771
73869dc2
DE
772/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
773 In version 2, the sections of the DWO files are concatenated together
774 and stored in one section of that name. Thus each ELF section contains
775 several "virtual" sections. */
776
777struct virtual_v2_dwo_sections
778{
779 bfd_size_type abbrev_offset;
780 bfd_size_type abbrev_size;
781
782 bfd_size_type line_offset;
783 bfd_size_type line_size;
784
785 bfd_size_type loc_offset;
786 bfd_size_type loc_size;
787
788 bfd_size_type macinfo_offset;
789 bfd_size_type macinfo_size;
790
791 bfd_size_type macro_offset;
792 bfd_size_type macro_size;
793
794 bfd_size_type str_offsets_offset;
795 bfd_size_type str_offsets_size;
796
797 /* Each DWP hash table entry records one CU or one TU.
798 That is recorded here, and copied to dwo_unit.section. */
799 bfd_size_type info_or_types_offset;
800 bfd_size_type info_or_types_size;
801};
802
80626a55
DE
803/* Contents of DWP hash tables. */
804
805struct dwp_hash_table
806{
73869dc2 807 uint32_t version, nr_columns;
80626a55 808 uint32_t nr_units, nr_slots;
73869dc2
DE
809 const gdb_byte *hash_table, *unit_table;
810 union
811 {
812 struct
813 {
814 const gdb_byte *indices;
815 } v1;
816 struct
817 {
818 /* This is indexed by column number and gives the id of the section
819 in that column. */
820#define MAX_NR_V2_DWO_SECTIONS \
821 (1 /* .debug_info or .debug_types */ \
822 + 1 /* .debug_abbrev */ \
823 + 1 /* .debug_line */ \
824 + 1 /* .debug_loc */ \
825 + 1 /* .debug_str_offsets */ \
826 + 1 /* .debug_macro or .debug_macinfo */)
827 int section_ids[MAX_NR_V2_DWO_SECTIONS];
828 const gdb_byte *offsets;
829 const gdb_byte *sizes;
830 } v2;
831 } section_pool;
80626a55
DE
832};
833
834/* Data for one DWP file. */
835
836struct dwp_file
837{
400174b1
TT
838 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
839 : name (name_),
840 dbfd (std::move (abfd))
841 {
842 }
843
80626a55
DE
844 /* Name of the file. */
845 const char *name;
846
73869dc2 847 /* File format version. */
400174b1 848 int version = 0;
73869dc2 849
93417882 850 /* The bfd. */
400174b1 851 gdb_bfd_ref_ptr dbfd;
80626a55
DE
852
853 /* Section info for this file. */
400174b1 854 struct dwp_sections sections {};
80626a55 855
57d63ce2 856 /* Table of CUs in the file. */
400174b1 857 const struct dwp_hash_table *cus = nullptr;
80626a55
DE
858
859 /* Table of TUs in the file. */
400174b1 860 const struct dwp_hash_table *tus = nullptr;
80626a55 861
19ac8c2e 862 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
400174b1
TT
863 htab_t loaded_cus {};
864 htab_t loaded_tus {};
80626a55 865
73869dc2
DE
866 /* Table to map ELF section numbers to their sections.
867 This is only needed for the DWP V1 file format. */
400174b1
TT
868 unsigned int num_sections = 0;
869 asection **elf_sections = nullptr;
80626a55
DE
870};
871
0963b4bd
MS
872/* Struct used to pass misc. parameters to read_die_and_children, et
873 al. which are used for both .debug_info and .debug_types dies.
874 All parameters here are unchanging for the life of the call. This
dee91e82 875 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
876
877struct die_reader_specs
878{
a32a8923 879 /* The bfd of die_section. */
93311388
DE
880 bfd* abfd;
881
882 /* The CU of the DIE we are parsing. */
883 struct dwarf2_cu *cu;
884
80626a55 885 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
886 struct dwo_file *dwo_file;
887
dee91e82 888 /* The section the die comes from.
3019eac3 889 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
890 struct dwarf2_section_info *die_section;
891
892 /* die_section->buffer. */
d521ce57 893 const gdb_byte *buffer;
f664829e
DE
894
895 /* The end of the buffer. */
896 const gdb_byte *buffer_end;
a2ce51a0
DE
897
898 /* The value of the DW_AT_comp_dir attribute. */
899 const char *comp_dir;
685af9cd
TT
900
901 /* The abbreviation table to use when reading the DIEs. */
902 struct abbrev_table *abbrev_table;
93311388
DE
903};
904
fd820528 905/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 906typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 907 const gdb_byte *info_ptr,
dee91e82
DE
908 struct die_info *comp_unit_die,
909 int has_children,
910 void *data);
911
7ba99d21
AT
912/* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
913 later. */
914typedef int dir_index;
ecfb656c 915
7ba99d21
AT
916/* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
917 and later. */
918typedef int file_name_index;
ecfb656c 919
52059ffd
TT
920struct file_entry
921{
fff8551c
PA
922 file_entry () = default;
923
ecfb656c 924 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
925 unsigned int mod_time_, unsigned int length_)
926 : name (name_),
ecfb656c 927 d_index (d_index_),
fff8551c
PA
928 mod_time (mod_time_),
929 length (length_)
930 {}
931
ecfb656c
PA
932 /* Return the include directory at D_INDEX stored in LH. Returns
933 NULL if D_INDEX is out of bounds. */
8c43009f
PA
934 const char *include_dir (const line_header *lh) const;
935
fff8551c
PA
936 /* The file name. Note this is an observing pointer. The memory is
937 owned by debug_line_buffer. */
938 const char *name {};
939
8c43009f 940 /* The directory index (1-based). */
ecfb656c 941 dir_index d_index {};
fff8551c
PA
942
943 unsigned int mod_time {};
944
945 unsigned int length {};
946
947 /* True if referenced by the Line Number Program. */
948 bool included_p {};
949
83769d0b 950 /* The associated symbol table, if any. */
fff8551c 951 struct symtab *symtab {};
52059ffd
TT
952};
953
debd256d
JB
954/* The line number information for a compilation unit (found in the
955 .debug_line section) begins with a "statement program header",
956 which contains the following information. */
957struct line_header
958{
fff8551c
PA
959 line_header ()
960 : offset_in_dwz {}
961 {}
962
963 /* Add an entry to the include directory table. */
964 void add_include_dir (const char *include_dir);
965
966 /* Add an entry to the file name table. */
ecfb656c 967 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
968 unsigned int mod_time, unsigned int length);
969
7ba99d21
AT
970 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
971 Returns NULL if INDEX is out of bounds. */
ecfb656c 972 const char *include_dir_at (dir_index index) const
8c43009f 973 {
7ba99d21
AT
974 int vec_index;
975 if (version >= 5)
976 vec_index = index;
977 else
978 vec_index = index - 1;
979 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
8c43009f 980 return NULL;
7ba99d21 981 return m_include_dirs[vec_index];
8c43009f
PA
982 }
983
7ba99d21 984 bool is_valid_file_index (int file_index)
8c43009f 985 {
7ba99d21
AT
986 if (version >= 5)
987 return 0 <= file_index && file_index < file_names_size ();
988 return 1 <= file_index && file_index <= file_names_size ();
989 }
ecfb656c 990
7ba99d21
AT
991 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
992 Returns NULL if INDEX is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 int vec_index;
996 if (version >= 5)
997 vec_index = index;
998 else
999 vec_index = index - 1;
1000 if (vec_index < 0 || vec_index >= m_file_names.size ())
fff8551c 1001 return NULL;
7ba99d21 1002 return &m_file_names[vec_index];
fff8551c
PA
1003 }
1004
7ba99d21
AT
1005 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1006 this method should only be used to iterate through all file entries in an
1007 index-agnostic manner. */
1008 std::vector<file_entry> &file_names ()
1009 { return m_file_names; }
1010
527f3840 1011 /* Offset of line number information in .debug_line section. */
9c541725 1012 sect_offset sect_off {};
527f3840
JK
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
debd256d
JB
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1032
7ba99d21
AT
1033 int file_names_size ()
1034 { return m_file_names.size(); }
debd256d
JB
1035
1036 /* The start and end of the statement program following this
6502dd73 1037 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1038 const gdb_byte *statement_program_start {}, *statement_program_end {};
7ba99d21
AT
1039
1040 private:
1041 /* The include_directories table. Note these are observing
1042 pointers. The memory is owned by debug_line_buffer. */
1043 std::vector<const char *> m_include_dirs;
1044
1045 /* The file_names table. This is private because the meaning of indexes
1046 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1047 before, and is 0 in DWARF 5 and later). So the client should use
1048 file_name_at method for access. */
1049 std::vector<file_entry> m_file_names;
debd256d 1050};
c906108c 1051
fff8551c
PA
1052typedef std::unique_ptr<line_header> line_header_up;
1053
8c43009f
PA
1054const char *
1055file_entry::include_dir (const line_header *lh) const
1056{
ecfb656c 1057 return lh->include_dir_at (d_index);
8c43009f
PA
1058}
1059
c906108c 1060/* When we construct a partial symbol table entry we only
0963b4bd 1061 need this much information. */
6f06d47b 1062struct partial_die_info : public allocate_on_obstack
c906108c 1063 {
6f06d47b
YQ
1064 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1065
1066 /* Disable assign but still keep copy ctor, which is needed
1067 load_partial_dies. */
1068 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1069
52356b79
YQ
1070 /* Adjust the partial die before generating a symbol for it. This
1071 function may set the is_external flag or change the DIE's
1072 name. */
1073 void fixup (struct dwarf2_cu *cu);
1074
48fbe735
YQ
1075 /* Read a minimal amount of information into the minimal die
1076 structure. */
1077 const gdb_byte *read (const struct die_reader_specs *reader,
1078 const struct abbrev_info &abbrev,
1079 const gdb_byte *info_ptr);
1080
72bf9492 1081 /* Offset of this DIE. */
6f06d47b 1082 const sect_offset sect_off;
72bf9492
DJ
1083
1084 /* DWARF-2 tag for this DIE. */
6f06d47b 1085 const ENUM_BITFIELD(dwarf_tag) tag : 16;
72bf9492 1086
72bf9492 1087 /* Assorted flags describing the data found in this DIE. */
6f06d47b
YQ
1088 const unsigned int has_children : 1;
1089
72bf9492
DJ
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
481860b3 1095 unsigned int may_be_inlined : 1;
72bf9492 1096
0c1b455e
TT
1097 /* This DIE has been marked DW_AT_main_subprogram. */
1098 unsigned int main_subprogram : 1;
1099
72bf9492
DJ
1100 /* Flag set if the SCOPE field of this structure has been
1101 computed. */
1102 unsigned int scope_set : 1;
1103
fa4028e9
JB
1104 /* Flag set if the DIE has a byte_size attribute. */
1105 unsigned int has_byte_size : 1;
1106
ff908ebf
AW
1107 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1108 unsigned int has_const_value : 1;
1109
98bfdba5
PA
1110 /* Flag set if any of the DIE's children are template arguments. */
1111 unsigned int has_template_arguments : 1;
1112
52356b79 1113 /* Flag set if fixup has been called on this die. */
abc72ce4
DE
1114 unsigned int fixup_called : 1;
1115
36586728
TT
1116 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1117 unsigned int is_dwz : 1;
1118
1119 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1120 unsigned int spec_is_dwz : 1;
1121
72bf9492 1122 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1123 sometimes a default name for unnamed DIEs. */
6f06d47b 1124 const char *name = nullptr;
72bf9492 1125
abc72ce4 1126 /* The linkage name, if present. */
6f06d47b 1127 const char *linkage_name = nullptr;
abc72ce4 1128
72bf9492
DJ
1129 /* The scope to prepend to our children. This is generally
1130 allocated on the comp_unit_obstack, so will disappear
1131 when this compilation unit leaves the cache. */
6f06d47b 1132 const char *scope = nullptr;
72bf9492 1133
95554aad
TT
1134 /* Some data associated with the partial DIE. The tag determines
1135 which field is live. */
1136 union
1137 {
1138 /* The location description associated with this DIE, if any. */
1139 struct dwarf_block *locdesc;
1140 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1141 sect_offset sect_off;
6f06d47b 1142 } d {};
72bf9492
DJ
1143
1144 /* If HAS_PC_INFO, the PC range associated with this DIE. */
6f06d47b
YQ
1145 CORE_ADDR lowpc = 0;
1146 CORE_ADDR highpc = 0;
72bf9492 1147
93311388 1148 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1149 DW_AT_sibling, if any. */
48fbe735
YQ
1150 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1151 could return DW_AT_sibling values to its caller load_partial_dies. */
6f06d47b 1152 const gdb_byte *sibling = nullptr;
72bf9492
DJ
1153
1154 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1155 DW_AT_specification (or DW_AT_abstract_origin or
1156 DW_AT_extension). */
6f06d47b 1157 sect_offset spec_offset {};
72bf9492
DJ
1158
1159 /* Pointers to this DIE's parent, first child, and next sibling,
1160 if any. */
6f06d47b
YQ
1161 struct partial_die_info *die_parent = nullptr;
1162 struct partial_die_info *die_child = nullptr;
1163 struct partial_die_info *die_sibling = nullptr;
1164
1165 friend struct partial_die_info *
1166 dwarf2_cu::find_partial_die (sect_offset sect_off);
1167
1168 private:
1169 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1170 partial_die_info (sect_offset sect_off)
1171 : partial_die_info (sect_off, DW_TAG_padding, 0)
1172 {
1173 }
1174
1175 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1176 int has_children_)
1177 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1178 {
1179 is_external = 0;
1180 is_declaration = 0;
1181 has_type = 0;
1182 has_specification = 0;
1183 has_pc_info = 0;
1184 may_be_inlined = 0;
1185 main_subprogram = 0;
1186 scope_set = 0;
1187 has_byte_size = 0;
1188 has_const_value = 0;
1189 has_template_arguments = 0;
1190 fixup_called = 0;
1191 is_dwz = 0;
1192 spec_is_dwz = 0;
1193 }
c906108c
SS
1194 };
1195
0963b4bd 1196/* This data structure holds the information of an abbrev. */
c906108c
SS
1197struct abbrev_info
1198 {
1199 unsigned int number; /* number identifying abbrev */
1200 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1201 unsigned short has_children; /* boolean */
1202 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1203 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1204 struct abbrev_info *next; /* next in chain */
1205 };
1206
1207struct attr_abbrev
1208 {
9d25dd43
DE
1209 ENUM_BITFIELD(dwarf_attribute) name : 16;
1210 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1211
1212 /* It is valid only if FORM is DW_FORM_implicit_const. */
1213 LONGEST implicit_const;
c906108c
SS
1214 };
1215
433df2d4
DE
1216/* Size of abbrev_table.abbrev_hash_table. */
1217#define ABBREV_HASH_SIZE 121
1218
1219/* Top level data structure to contain an abbreviation table. */
1220
1221struct abbrev_table
1222{
685af9cd
TT
1223 explicit abbrev_table (sect_offset off)
1224 : sect_off (off)
1225 {
4a17f768 1226 m_abbrevs =
685af9cd 1227 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
4a17f768 1228 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
685af9cd
TT
1229 }
1230
1231 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1232
1233 /* Allocate space for a struct abbrev_info object in
1234 ABBREV_TABLE. */
1235 struct abbrev_info *alloc_abbrev ();
1236
1237 /* Add an abbreviation to the table. */
1238 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1239
1240 /* Look up an abbrev in the table.
1241 Returns NULL if the abbrev is not found. */
1242
1243 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1244
1245
f4dc4d17
DE
1246 /* Where the abbrev table came from.
1247 This is used as a sanity check when the table is used. */
685af9cd 1248 const sect_offset sect_off;
433df2d4
DE
1249
1250 /* Storage for the abbrev table. */
685af9cd 1251 auto_obstack abbrev_obstack;
433df2d4 1252
4a17f768
YQ
1253private:
1254
433df2d4
DE
1255 /* Hash table of abbrevs.
1256 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1257 It could be statically allocated, but the previous code didn't so we
1258 don't either. */
4a17f768 1259 struct abbrev_info **m_abbrevs;
433df2d4
DE
1260};
1261
685af9cd
TT
1262typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1263
0963b4bd 1264/* Attributes have a name and a value. */
b60c80d6
DJ
1265struct attribute
1266 {
9d25dd43 1267 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1268 ENUM_BITFIELD(dwarf_form) form : 15;
1269
1270 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1271 field should be in u.str (existing only for DW_STRING) but it is kept
1272 here for better struct attribute alignment. */
1273 unsigned int string_is_canonical : 1;
1274
b60c80d6
DJ
1275 union
1276 {
15d034d0 1277 const char *str;
b60c80d6 1278 struct dwarf_block *blk;
43bbcdc2
PH
1279 ULONGEST unsnd;
1280 LONGEST snd;
b60c80d6 1281 CORE_ADDR addr;
ac9ec31b 1282 ULONGEST signature;
b60c80d6
DJ
1283 }
1284 u;
1285 };
1286
0963b4bd 1287/* This data structure holds a complete die structure. */
c906108c
SS
1288struct die_info
1289 {
76815b17
DE
1290 /* DWARF-2 tag for this DIE. */
1291 ENUM_BITFIELD(dwarf_tag) tag : 16;
1292
1293 /* Number of attributes */
98bfdba5
PA
1294 unsigned char num_attrs;
1295
1296 /* True if we're presently building the full type name for the
1297 type derived from this DIE. */
1298 unsigned char building_fullname : 1;
76815b17 1299
adde2bff
DE
1300 /* True if this die is in process. PR 16581. */
1301 unsigned char in_process : 1;
1302
76815b17
DE
1303 /* Abbrev number */
1304 unsigned int abbrev;
1305
93311388 1306 /* Offset in .debug_info or .debug_types section. */
9c541725 1307 sect_offset sect_off;
78ba4af6
JB
1308
1309 /* The dies in a compilation unit form an n-ary tree. PARENT
1310 points to this die's parent; CHILD points to the first child of
1311 this node; and all the children of a given node are chained
4950bc1c 1312 together via their SIBLING fields. */
639d11d3
DC
1313 struct die_info *child; /* Its first child, if any. */
1314 struct die_info *sibling; /* Its next sibling, if any. */
1315 struct die_info *parent; /* Its parent, if any. */
c906108c 1316
b60c80d6
DJ
1317 /* An array of attributes, with NUM_ATTRS elements. There may be
1318 zero, but it's not common and zero-sized arrays are not
1319 sufficiently portable C. */
1320 struct attribute attrs[1];
c906108c
SS
1321 };
1322
0963b4bd 1323/* Get at parts of an attribute structure. */
c906108c
SS
1324
1325#define DW_STRING(attr) ((attr)->u.str)
8285870a 1326#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1327#define DW_UNSND(attr) ((attr)->u.unsnd)
1328#define DW_BLOCK(attr) ((attr)->u.blk)
1329#define DW_SND(attr) ((attr)->u.snd)
1330#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1331#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1332
0963b4bd 1333/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1334struct dwarf_block
1335 {
56eb65bd 1336 size_t size;
1d6edc3c
JK
1337
1338 /* Valid only if SIZE is not zero. */
d521ce57 1339 const gdb_byte *data;
c906108c
SS
1340 };
1341
c906108c
SS
1342#ifndef ATTR_ALLOC_CHUNK
1343#define ATTR_ALLOC_CHUNK 4
1344#endif
1345
c906108c
SS
1346/* Allocate fields for structs, unions and enums in this size. */
1347#ifndef DW_FIELD_ALLOC_CHUNK
1348#define DW_FIELD_ALLOC_CHUNK 4
1349#endif
1350
c906108c
SS
1351/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1352 but this would require a corresponding change in unpack_field_as_long
1353 and friends. */
1354static int bits_per_byte = 8;
1355
2ddeaf8a
TT
1356/* When reading a variant or variant part, we track a bit more
1357 information about the field, and store it in an object of this
1358 type. */
1359
1360struct variant_field
1361{
1362 /* If we see a DW_TAG_variant, then this will be the discriminant
1363 value. */
1364 ULONGEST discriminant_value;
1365 /* If we see a DW_TAG_variant, then this will be set if this is the
1366 default branch. */
1367 bool default_branch;
1368 /* While reading a DW_TAG_variant_part, this will be set if this
1369 field is the discriminant. */
1370 bool is_discriminant;
1371};
1372
52059ffd
TT
1373struct nextfield
1374{
be2daae6
TT
1375 int accessibility = 0;
1376 int virtuality = 0;
2ddeaf8a 1377 /* Extra information to describe a variant or variant part. */
be2daae6
TT
1378 struct variant_field variant {};
1379 struct field field {};
52059ffd
TT
1380};
1381
1382struct fnfieldlist
1383{
be2daae6
TT
1384 const char *name = nullptr;
1385 std::vector<struct fn_field> fnfields;
52059ffd
TT
1386};
1387
c906108c
SS
1388/* The routines that read and process dies for a C struct or C++ class
1389 pass lists of data member fields and lists of member function fields
1390 in an instance of a field_info structure, as defined below. */
1391struct field_info
c5aa993b 1392 {
0963b4bd 1393 /* List of data member and baseclasses fields. */
be2daae6
TT
1394 std::vector<struct nextfield> fields;
1395 std::vector<struct nextfield> baseclasses;
c906108c 1396
7d0ccb61 1397 /* Number of fields (including baseclasses). */
be2daae6 1398 int nfields = 0;
c906108c 1399
85102364 1400 /* Set if the accessibility of one of the fields is not public. */
be2daae6 1401 int non_public_fields = 0;
c906108c 1402
c5aa993b
JM
1403 /* Member function fieldlist array, contains name of possibly overloaded
1404 member function, number of overloaded member functions and a pointer
1405 to the head of the member function field chain. */
be2daae6 1406 std::vector<struct fnfieldlist> fnfieldlists;
98751a41
JK
1407
1408 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1409 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
be2daae6 1410 std::vector<struct decl_field> typedef_field_list;
883fd55a
KS
1411
1412 /* Nested types defined by this class and the number of elements in this
1413 list. */
be2daae6 1414 std::vector<struct decl_field> nested_types_list;
c5aa993b 1415 };
c906108c 1416
10b3939b
DJ
1417/* One item on the queue of compilation units to read in full symbols
1418 for. */
1419struct dwarf2_queue_item
1420{
1421 struct dwarf2_per_cu_data *per_cu;
95554aad 1422 enum language pretend_language;
10b3939b
DJ
1423 struct dwarf2_queue_item *next;
1424};
1425
1426/* The current queue. */
1427static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1428
ae038cb0
DJ
1429/* Loaded secondary compilation units are kept in memory until they
1430 have not been referenced for the processing of this many
1431 compilation units. Set this to zero to disable caching. Cache
1432 sizes of up to at least twenty will improve startup time for
1433 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1434static int dwarf_max_cache_age = 5;
920d2a44 1435static void
b4f54984
DE
1436show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
920d2a44 1438{
3e43a32a 1439 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1440 "DWARF compilation units is %s.\n"),
920d2a44
AC
1441 value);
1442}
4390d890 1443\f
c906108c
SS
1444/* local function prototypes */
1445
a32a8923
DE
1446static const char *get_section_name (const struct dwarf2_section_info *);
1447
1448static const char *get_section_file_name (const struct dwarf2_section_info *);
1449
918dd910
JK
1450static void dwarf2_find_base_address (struct die_info *die,
1451 struct dwarf2_cu *cu);
1452
0018ea6f
DE
1453static struct partial_symtab *create_partial_symtab
1454 (struct dwarf2_per_cu_data *per_cu, const char *name);
1455
f1902523
JK
1456static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1457 const gdb_byte *info_ptr,
1458 struct die_info *type_unit_die,
1459 int has_children, void *data);
1460
ed2dc618
SM
1461static void dwarf2_build_psymtabs_hard
1462 (struct dwarf2_per_objfile *dwarf2_per_objfile);
c906108c 1463
72bf9492
DJ
1464static void scan_partial_symbols (struct partial_die_info *,
1465 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1466 int, struct dwarf2_cu *);
c906108c 1467
72bf9492
DJ
1468static void add_partial_symbol (struct partial_die_info *,
1469 struct dwarf2_cu *);
63d06c5c 1470
72bf9492
DJ
1471static void add_partial_namespace (struct partial_die_info *pdi,
1472 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1473 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1474
5d7cb8df 1475static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1476 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1477 struct dwarf2_cu *cu);
1478
72bf9492
DJ
1479static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1480 struct dwarf2_cu *cu);
91c24f0a 1481
bc30ff58
JB
1482static void add_partial_subprogram (struct partial_die_info *pdi,
1483 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1484 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1485
257e7a09
YQ
1486static void dwarf2_read_symtab (struct partial_symtab *,
1487 struct objfile *);
c906108c 1488
a14ed312 1489static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1490
685af9cd 1491static abbrev_table_up abbrev_table_read_table
ed2dc618
SM
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1493 sect_offset);
433df2d4 1494
d521ce57 1495static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1496
dee91e82 1497static struct partial_die_info *load_partial_dies
d521ce57 1498 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1499
fb816e8b
TV
1500/* A pair of partial_die_info and compilation unit. */
1501struct cu_partial_die_info
1502{
1503 /* The compilation unit of the partial_die_info. */
1504 struct dwarf2_cu *cu;
1505 /* A partial_die_info. */
1506 struct partial_die_info *pdi;
122cf0f2
AB
1507
1508 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1509 : cu (cu),
1510 pdi (pdi)
405feb71 1511 { /* Nothing. */ }
122cf0f2
AB
1512
1513private:
1514 cu_partial_die_info () = delete;
fb816e8b
TV
1515};
1516
122cf0f2
AB
1517static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1518 struct dwarf2_cu *);
72bf9492 1519
d521ce57
TT
1520static const gdb_byte *read_attribute (const struct die_reader_specs *,
1521 struct attribute *, struct attr_abbrev *,
1522 const gdb_byte *);
a8329558 1523
a1855c1d 1524static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1525
a1855c1d 1526static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1527
a1855c1d 1528static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1529
15f18d14
AT
1530/* Read the next three bytes (little-endian order) as an unsigned integer. */
1531static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1532
a1855c1d 1533static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1534
a1855c1d 1535static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1536
d521ce57 1537static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1538 unsigned int *);
c906108c 1539
d521ce57 1540static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1541
1542static LONGEST read_checked_initial_length_and_offset
d521ce57 1543 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1544 unsigned int *, unsigned int *);
613e1657 1545
d521ce57
TT
1546static LONGEST read_offset (bfd *, const gdb_byte *,
1547 const struct comp_unit_head *,
c764a876
DE
1548 unsigned int *);
1549
d521ce57 1550static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1551
ed2dc618
SM
1552static sect_offset read_abbrev_offset
1553 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1554 struct dwarf2_section_info *, sect_offset);
f4dc4d17 1555
d521ce57 1556static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1557
d521ce57 1558static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1559
ed2dc618
SM
1560static const char *read_indirect_string
1561 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1562 const struct comp_unit_head *, unsigned int *);
4bdf3d34 1563
ed2dc618
SM
1564static const char *read_indirect_line_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
36586728 1567
ed2dc618
SM
1568static const char *read_indirect_string_at_offset
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1570 LONGEST str_offset);
927aa2e7 1571
ed2dc618
SM
1572static const char *read_indirect_string_from_dwz
1573 (struct objfile *objfile, struct dwz_file *, LONGEST);
c906108c 1574
d521ce57 1575static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1576
d521ce57
TT
1577static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1578 const gdb_byte *,
3019eac3
DE
1579 unsigned int *);
1580
d521ce57 1581static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1582 ULONGEST str_index);
3019eac3 1583
e142c38c 1584static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1585
e142c38c
DJ
1586static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1587 struct dwarf2_cu *);
c906108c 1588
348e048f 1589static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1590 unsigned int);
348e048f 1591
7d45c7c3
KB
1592static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1593 struct dwarf2_cu *cu);
1594
a084a2a6
AT
1595static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1596
05cf31d1
JB
1597static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1598 struct dwarf2_cu *cu);
1599
e142c38c 1600static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1601
e142c38c 1602static struct die_info *die_specification (struct die_info *die,
f2f0e013 1603 struct dwarf2_cu **);
63d06c5c 1604
9c541725 1605static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1606 struct dwarf2_cu *cu);
debd256d 1607
f3f5162e 1608static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1609 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1610 CORE_ADDR, int decode_mapping);
c906108c 1611
804d2729
TT
1612static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1613 const char *);
c906108c 1614
a14ed312 1615static struct symbol *new_symbol (struct die_info *, struct type *,
5e2db402 1616 struct dwarf2_cu *, struct symbol * = NULL);
34eaf542 1617
ff39bb5e 1618static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1619 struct dwarf2_cu *);
c906108c 1620
ff39bb5e 1621static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1622 struct type *type,
1623 const char *name,
1624 struct obstack *obstack,
12df843f 1625 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1626 const gdb_byte **bytes,
98bfdba5 1627 struct dwarf2_locexpr_baton **baton);
2df3850c 1628
e7c27a73 1629static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1630
b4ba55a1
JB
1631static int need_gnat_info (struct dwarf2_cu *);
1632
3e43a32a
MS
1633static struct type *die_descriptive_type (struct die_info *,
1634 struct dwarf2_cu *);
b4ba55a1
JB
1635
1636static void set_descriptive_type (struct type *, struct die_info *,
1637 struct dwarf2_cu *);
1638
e7c27a73
DJ
1639static struct type *die_containing_type (struct die_info *,
1640 struct dwarf2_cu *);
c906108c 1641
ff39bb5e 1642static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1643 struct dwarf2_cu *);
c906108c 1644
f792889a 1645static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1646
673bfd45
DE
1647static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1648
0d5cff50 1649static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1650
6e70227d 1651static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1652 const char *suffix, int physname,
1653 struct dwarf2_cu *cu);
63d06c5c 1654
e7c27a73 1655static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1656
348e048f
DE
1657static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1658
e7c27a73 1659static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1660
e7c27a73 1661static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1662
96408a79
SA
1663static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1664
71a3c369
TT
1665static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1666
ff013f42
JK
1667static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1668 struct dwarf2_cu *, struct partial_symtab *);
1669
3a2b436a 1670/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1671 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1672enum pc_bounds_kind
1673{
e385593e 1674 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1675 PC_BOUNDS_NOT_PRESENT,
1676
e385593e
JK
1677 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1678 were present but they do not form a valid range of PC addresses. */
1679 PC_BOUNDS_INVALID,
1680
3a2b436a
JK
1681 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1682 PC_BOUNDS_RANGES,
1683
1684 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1685 PC_BOUNDS_HIGH_LOW,
1686};
1687
1688static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1689 CORE_ADDR *, CORE_ADDR *,
1690 struct dwarf2_cu *,
1691 struct partial_symtab *);
c906108c 1692
fae299cd
DC
1693static void get_scope_pc_bounds (struct die_info *,
1694 CORE_ADDR *, CORE_ADDR *,
1695 struct dwarf2_cu *);
1696
801e3a5b
JB
1697static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1698 CORE_ADDR, struct dwarf2_cu *);
1699
a14ed312 1700static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1701 struct dwarf2_cu *);
c906108c 1702
a14ed312 1703static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1704 struct type *, struct dwarf2_cu *);
c906108c 1705
a14ed312 1706static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1707 struct die_info *, struct type *,
e7c27a73 1708 struct dwarf2_cu *);
c906108c 1709
a14ed312 1710static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1711 struct type *,
1712 struct dwarf2_cu *);
c906108c 1713
134d01f1 1714static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1715
e7c27a73 1716static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1717
e7c27a73 1718static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1719
5d7cb8df
JK
1720static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1721
804d2729 1722static struct using_direct **using_directives (struct dwarf2_cu *cu);
22cee43f 1723
27aa8d6a
SW
1724static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1725
74921315
KS
1726static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1727
f55ee35c
JK
1728static struct type *read_module_type (struct die_info *die,
1729 struct dwarf2_cu *cu);
1730
38d518c9 1731static const char *namespace_name (struct die_info *die,
e142c38c 1732 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1733
134d01f1 1734static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1735
e7c27a73 1736static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1737
6e70227d 1738static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1739 struct dwarf2_cu *);
1740
bf6af496 1741static struct die_info *read_die_and_siblings_1
d521ce57 1742 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1743 struct die_info *);
639d11d3 1744
dee91e82 1745static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1746 const gdb_byte *info_ptr,
1747 const gdb_byte **new_info_ptr,
639d11d3
DC
1748 struct die_info *parent);
1749
d521ce57
TT
1750static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1751 struct die_info **, const gdb_byte *,
1752 int *, int);
3019eac3 1753
d521ce57
TT
1754static const gdb_byte *read_full_die (const struct die_reader_specs *,
1755 struct die_info **, const gdb_byte *,
1756 int *);
93311388 1757
e7c27a73 1758static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1759
15d034d0
TT
1760static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1761 struct obstack *);
71c25dea 1762
15d034d0 1763static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1764
15d034d0 1765static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1766 struct die_info *die,
1767 struct dwarf2_cu *cu);
1768
ca69b9e6
DE
1769static const char *dwarf2_physname (const char *name, struct die_info *die,
1770 struct dwarf2_cu *cu);
1771
e142c38c 1772static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1773 struct dwarf2_cu **);
9219021c 1774
f39c6ffd 1775static const char *dwarf_tag_name (unsigned int);
c906108c 1776
f39c6ffd 1777static const char *dwarf_attr_name (unsigned int);
c906108c 1778
a084a2a6
AT
1779static const char *dwarf_unit_type_name (int unit_type);
1780
f39c6ffd 1781static const char *dwarf_form_name (unsigned int);
c906108c 1782
a121b7c1 1783static const char *dwarf_bool_name (unsigned int);
c906108c 1784
f39c6ffd 1785static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1786
f9aca02d 1787static struct die_info *sibling_die (struct die_info *);
c906108c 1788
d97bc12b
DE
1789static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1790
1791static void dump_die_for_error (struct die_info *);
1792
1793static void dump_die_1 (struct ui_file *, int level, int max_level,
1794 struct die_info *);
c906108c 1795
d97bc12b 1796/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1797
51545339 1798static void store_in_ref_table (struct die_info *,
10b3939b 1799 struct dwarf2_cu *);
c906108c 1800
ff39bb5e 1801static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1802
ff39bb5e 1803static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1804
348e048f 1805static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1806 const struct attribute *,
348e048f
DE
1807 struct dwarf2_cu **);
1808
10b3939b 1809static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1810 const struct attribute *,
f2f0e013 1811 struct dwarf2_cu **);
c906108c 1812
348e048f 1813static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1814 const struct attribute *,
348e048f
DE
1815 struct dwarf2_cu **);
1816
ac9ec31b
DE
1817static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1819
1820static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1821 const struct attribute *,
ac9ec31b
DE
1822 struct dwarf2_cu *);
1823
e5fe5e75 1824static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1825
52dc124a 1826static void read_signatured_type (struct signatured_type *);
348e048f 1827
63e43d3a
PMR
1828static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
9a49df9d 1830 struct dynamic_prop *prop, struct type *type);
63e43d3a 1831
c906108c
SS
1832/* memory allocation interface */
1833
7b5a2f43 1834static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1835
b60c80d6 1836static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1837
43f3e411 1838static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1839
6e5a29e1 1840static int attr_form_is_block (const struct attribute *);
8e19ed76 1841
6e5a29e1 1842static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1843
6e5a29e1 1844static int attr_form_is_constant (const struct attribute *);
3690dd37 1845
6e5a29e1 1846static int attr_form_is_ref (const struct attribute *);
7771576e 1847
8cf6f0b1
TT
1848static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
ff39bb5e 1850 const struct attribute *attr);
8cf6f0b1 1851
ff39bb5e 1852static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1853 struct symbol *sym,
f1e6e072
TT
1854 struct dwarf2_cu *cu,
1855 int is_block);
4c2df51b 1856
d521ce57
TT
1857static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
4bb7a0a7 1860
72bf9492
DJ
1861static hashval_t partial_die_hash (const void *item);
1862
1863static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1864
ae038cb0 1865static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
ed2dc618
SM
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1868
9816fde3 1869static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
93311388 1872
ed2dc618 1873static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1874
dee91e82 1875static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1876
f792889a
DJ
1877static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1c379e20 1879
ed2dc618 1880static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1881
ed2dc618 1882static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1fd400ff 1883
58f0c718 1884static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
95554aad 1885 enum language);
10b3939b 1886
95554aad
TT
1887static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1888 enum language);
10b3939b 1889
f4dc4d17
DE
1890static void process_full_type_unit (struct dwarf2_per_cu_data *,
1891 enum language);
1892
10b3939b
DJ
1893static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1895
ae038cb0
DJ
1896static void dwarf2_mark (struct dwarf2_cu *);
1897
1898static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1899
b64f50a1 1900static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1901 struct dwarf2_per_cu_data *);
673bfd45 1902
f792889a 1903static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1904
95554aad
TT
1905static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1907
ed2dc618 1908static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
9291a0cd 1909
9a49df9d
AB
1910static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1911static struct type *dwarf2_per_cu_addr_sized_int_type
1912 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
11a8b164
AB
1913static struct type *dwarf2_per_cu_int_type
1914 (struct dwarf2_per_cu_data *per_cu, int size_in_bytes,
1915 bool unsigned_p);
9a49df9d 1916
b303c6f6
AB
1917/* Class, the destructor of which frees all allocated queue entries. This
1918 will only have work to do if an error was thrown while processing the
1919 dwarf. If no error was thrown then the queue entries should have all
1920 been processed, and freed, as we went along. */
1921
1922class dwarf2_queue_guard
1923{
1924public:
1925 dwarf2_queue_guard () = default;
1926
1927 /* Free any entries remaining on the queue. There should only be
1928 entries left if we hit an error while processing the dwarf. */
1929 ~dwarf2_queue_guard ()
1930 {
1931 struct dwarf2_queue_item *item, *last;
1932
1933 item = dwarf2_queue;
1934 while (item)
1935 {
1936 /* Anything still marked queued is likely to be in an
1937 inconsistent state, so discard it. */
1938 if (item->per_cu->queued)
1939 {
1940 if (item->per_cu->cu != NULL)
1941 free_one_cached_comp_unit (item->per_cu);
1942 item->per_cu->queued = 0;
1943 }
1944
1945 last = item;
1946 item = item->next;
1947 xfree (last);
1948 }
1949
1950 dwarf2_queue = dwarf2_queue_tail = NULL;
1951 }
1952};
1953
d721ba37
PA
1954/* The return type of find_file_and_directory. Note, the enclosed
1955 string pointers are only valid while this object is valid. */
1956
1957struct file_and_directory
1958{
1959 /* The filename. This is never NULL. */
1960 const char *name;
1961
1962 /* The compilation directory. NULL if not known. If we needed to
1963 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1964 points directly to the DW_AT_comp_dir string attribute owned by
1965 the obstack that owns the DIE. */
1966 const char *comp_dir;
1967
1968 /* If we needed to build a new string for comp_dir, this is what
1969 owns the storage. */
1970 std::string comp_dir_storage;
1971};
1972
1973static file_and_directory find_file_and_directory (struct die_info *die,
1974 struct dwarf2_cu *cu);
9291a0cd
TT
1975
1976static char *file_full_name (int file, struct line_header *lh,
1977 const char *comp_dir);
1978
43988095
JK
1979/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1980enum class rcuh_kind { COMPILE, TYPE };
1981
d521ce57 1982static const gdb_byte *read_and_check_comp_unit_head
ed2dc618
SM
1983 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1984 struct comp_unit_head *header,
36586728 1985 struct dwarf2_section_info *section,
d521ce57 1986 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1987 rcuh_kind section_kind);
36586728 1988
fd820528 1989static void init_cutu_and_read_dies
f4dc4d17 1990 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
58f0c718 1991 int use_existing_cu, int keep, bool skip_partial,
3019eac3
DE
1992 die_reader_func_ftype *die_reader_func, void *data);
1993
dee91e82
DE
1994static void init_cutu_and_read_dies_simple
1995 (struct dwarf2_per_cu_data *this_cu,
1996 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1997
673bfd45 1998static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1999
3019eac3
DE
2000static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2001
57d63ce2 2002static struct dwo_unit *lookup_dwo_unit_in_dwp
ed2dc618
SM
2003 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2004 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 2005 ULONGEST signature, int is_debug_types);
a2ce51a0 2006
ed2dc618
SM
2007static struct dwp_file *get_dwp_file
2008 (struct dwarf2_per_objfile *dwarf2_per_objfile);
a2ce51a0 2009
3019eac3 2010static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2011 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2012
2013static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2014 (struct signatured_type *, const char *, const char *);
3019eac3 2015
89e63ee4
DE
2016static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2017
263db9a1
TT
2018/* A unique pointer to a dwo_file. */
2019
51ac9db5 2020typedef std::unique_ptr<struct dwo_file> dwo_file_up;
263db9a1 2021
ed2dc618 2022static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
95554aad 2023
1b80a9fa 2024static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2025
2026static void free_line_header_voidp (void *arg);
4390d890
DE
2027\f
2028/* Various complaints about symbol reading that don't abort the process. */
2029
2030static void
2031dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2032{
b98664d3 2033 complaint (_("statement list doesn't fit in .debug_line section"));
4390d890
DE
2034}
2035
2036static void
2037dwarf2_debug_line_missing_file_complaint (void)
2038{
b98664d3 2039 complaint (_(".debug_line section has line data without a file"));
4390d890
DE
2040}
2041
2042static void
2043dwarf2_debug_line_missing_end_sequence_complaint (void)
2044{
b98664d3 2045 complaint (_(".debug_line section has line "
4390d890
DE
2046 "program sequence without an end"));
2047}
2048
2049static void
2050dwarf2_complex_location_expr_complaint (void)
2051{
b98664d3 2052 complaint (_("location expression too complex"));
4390d890
DE
2053}
2054
2055static void
2056dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2057 int arg3)
2058{
b98664d3 2059 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
4390d890
DE
2060 arg1, arg2, arg3);
2061}
2062
2063static void
2064dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2065{
b98664d3 2066 complaint (_("debug info runs off end of %s section"
4390d890 2067 " [in module %s]"),
a32a8923
DE
2068 get_section_name (section),
2069 get_section_file_name (section));
4390d890 2070}
1b80a9fa 2071
4390d890
DE
2072static void
2073dwarf2_macro_malformed_definition_complaint (const char *arg1)
2074{
b98664d3 2075 complaint (_("macro debug info contains a "
4390d890
DE
2076 "malformed macro definition:\n`%s'"),
2077 arg1);
2078}
2079
2080static void
2081dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2082{
b98664d3 2083 complaint (_("invalid attribute class or form for '%s' in '%s'"),
4390d890
DE
2084 arg1, arg2);
2085}
527f3840
JK
2086
2087/* Hash function for line_header_hash. */
2088
2089static hashval_t
2090line_header_hash (const struct line_header *ofs)
2091{
9c541725 2092 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2093}
2094
2095/* Hash function for htab_create_alloc_ex for line_header_hash. */
2096
2097static hashval_t
2098line_header_hash_voidp (const void *item)
2099{
9a3c8263 2100 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2101
2102 return line_header_hash (ofs);
2103}
2104
2105/* Equality function for line_header_hash. */
2106
2107static int
2108line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2109{
9a3c8263
SM
2110 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2111 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2112
9c541725 2113 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2114 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2115}
2116
4390d890 2117\f
9291a0cd 2118
31aa7e4e
JB
2119/* Read the given attribute value as an address, taking the attribute's
2120 form into account. */
2121
2122static CORE_ADDR
2123attr_value_as_address (struct attribute *attr)
2124{
2125 CORE_ADDR addr;
2126
336d760d
AT
2127 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2128 && attr->form != DW_FORM_GNU_addr_index)
31aa7e4e
JB
2129 {
2130 /* Aside from a few clearly defined exceptions, attributes that
2131 contain an address must always be in DW_FORM_addr form.
2132 Unfortunately, some compilers happen to be violating this
2133 requirement by encoding addresses using other forms, such
2134 as DW_FORM_data4 for example. For those broken compilers,
2135 we try to do our best, without any guarantee of success,
2136 to interpret the address correctly. It would also be nice
2137 to generate a complaint, but that would require us to maintain
2138 a list of legitimate cases where a non-address form is allowed,
2139 as well as update callers to pass in at least the CU's DWARF
2140 version. This is more overhead than what we're willing to
2141 expand for a pretty rare case. */
2142 addr = DW_UNSND (attr);
2143 }
2144 else
2145 addr = DW_ADDR (attr);
2146
2147 return addr;
2148}
2149
330cdd98
PA
2150/* See declaration. */
2151
2152dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
4b610737
TT
2153 const dwarf2_debug_sections *names,
2154 bool can_copy_)
2155 : objfile (objfile_),
2156 can_copy (can_copy_)
330cdd98
PA
2157{
2158 if (names == NULL)
2159 names = &dwarf2_elf_names;
2160
2161 bfd *obfd = objfile->obfd;
2162
2163 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2164 locate_sections (obfd, sec, *names);
2165}
2166
2167dwarf2_per_objfile::~dwarf2_per_objfile ()
2168{
2169 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2170 free_cached_comp_units ();
2171
2172 if (quick_file_names_table)
2173 htab_delete (quick_file_names_table);
2174
2175 if (line_header_hash)
2176 htab_delete (line_header_hash);
2177
b76e467d 2178 for (dwarf2_per_cu_data *per_cu : all_comp_units)
ae640021 2179 per_cu->imported_symtabs_free ();
fc8e7e75 2180
b2bdb8cf 2181 for (signatured_type *sig_type : all_type_units)
ae640021 2182 sig_type->per_cu.imported_symtabs_free ();
fc8e7e75 2183
330cdd98
PA
2184 /* Everything else should be on the objfile obstack. */
2185}
2186
2187/* See declaration. */
2188
2189void
2190dwarf2_per_objfile::free_cached_comp_units ()
2191{
2192 dwarf2_per_cu_data *per_cu = read_in_chain;
2193 dwarf2_per_cu_data **last_chain = &read_in_chain;
2194 while (per_cu != NULL)
2195 {
2196 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2197
fcd3b13d 2198 delete per_cu->cu;
330cdd98
PA
2199 *last_chain = next_cu;
2200 per_cu = next_cu;
2201 }
2202}
2203
11ed8cad
TT
2204/* A helper class that calls free_cached_comp_units on
2205 destruction. */
2206
2207class free_cached_comp_units
2208{
2209public:
2210
2211 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2212 : m_per_objfile (per_objfile)
2213 {
2214 }
2215
2216 ~free_cached_comp_units ()
2217 {
2218 m_per_objfile->free_cached_comp_units ();
2219 }
2220
2221 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2222
2223private:
2224
2225 dwarf2_per_objfile *m_per_objfile;
2226};
2227
c906108c 2228/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2229 information and return true if we have enough to do something.
2230 NAMES points to the dwarf2 section names, or is NULL if the standard
4b610737
TT
2231 ELF names are used. CAN_COPY is true for formats where symbol
2232 interposition is possible and so symbol values must follow copy
2233 relocation rules. */
c906108c
SS
2234
2235int
251d32d9 2236dwarf2_has_info (struct objfile *objfile,
4b610737
TT
2237 const struct dwarf2_debug_sections *names,
2238 bool can_copy)
c906108c 2239{
97cbe998
SDJ
2240 if (objfile->flags & OBJF_READNEVER)
2241 return 0;
2242
ed2dc618
SM
2243 struct dwarf2_per_objfile *dwarf2_per_objfile
2244 = get_dwarf2_per_objfile (objfile);
2245
2246 if (dwarf2_per_objfile == NULL)
5bfd760d 2247 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
4b610737
TT
2248 names,
2249 can_copy);
5bfd760d 2250
73869dc2 2251 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2252 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2253 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2254 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2255}
2256
2257/* Return the containing section of virtual section SECTION. */
2258
2259static struct dwarf2_section_info *
2260get_containing_section (const struct dwarf2_section_info *section)
2261{
2262 gdb_assert (section->is_virtual);
2263 return section->s.containing_section;
c906108c
SS
2264}
2265
a32a8923
DE
2266/* Return the bfd owner of SECTION. */
2267
2268static struct bfd *
2269get_section_bfd_owner (const struct dwarf2_section_info *section)
2270{
73869dc2
DE
2271 if (section->is_virtual)
2272 {
2273 section = get_containing_section (section);
2274 gdb_assert (!section->is_virtual);
2275 }
049412e3 2276 return section->s.section->owner;
a32a8923
DE
2277}
2278
2279/* Return the bfd section of SECTION.
2280 Returns NULL if the section is not present. */
2281
2282static asection *
2283get_section_bfd_section (const struct dwarf2_section_info *section)
2284{
73869dc2
DE
2285 if (section->is_virtual)
2286 {
2287 section = get_containing_section (section);
2288 gdb_assert (!section->is_virtual);
2289 }
049412e3 2290 return section->s.section;
a32a8923
DE
2291}
2292
2293/* Return the name of SECTION. */
2294
2295static const char *
2296get_section_name (const struct dwarf2_section_info *section)
2297{
2298 asection *sectp = get_section_bfd_section (section);
2299
2300 gdb_assert (sectp != NULL);
fd361982 2301 return bfd_section_name (sectp);
a32a8923
DE
2302}
2303
2304/* Return the name of the file SECTION is in. */
2305
2306static const char *
2307get_section_file_name (const struct dwarf2_section_info *section)
2308{
2309 bfd *abfd = get_section_bfd_owner (section);
2310
2311 return bfd_get_filename (abfd);
2312}
2313
2314/* Return the id of SECTION.
2315 Returns 0 if SECTION doesn't exist. */
2316
2317static int
2318get_section_id (const struct dwarf2_section_info *section)
2319{
2320 asection *sectp = get_section_bfd_section (section);
2321
2322 if (sectp == NULL)
2323 return 0;
2324 return sectp->id;
2325}
2326
2327/* Return the flags of SECTION.
73869dc2 2328 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2329
2330static int
2331get_section_flags (const struct dwarf2_section_info *section)
2332{
2333 asection *sectp = get_section_bfd_section (section);
2334
2335 gdb_assert (sectp != NULL);
fd361982 2336 return bfd_section_flags (sectp);
a32a8923
DE
2337}
2338
251d32d9
TG
2339/* When loading sections, we look either for uncompressed section or for
2340 compressed section names. */
233a11ab
CS
2341
2342static int
251d32d9
TG
2343section_is_p (const char *section_name,
2344 const struct dwarf2_section_names *names)
233a11ab 2345{
251d32d9
TG
2346 if (names->normal != NULL
2347 && strcmp (section_name, names->normal) == 0)
2348 return 1;
2349 if (names->compressed != NULL
2350 && strcmp (section_name, names->compressed) == 0)
2351 return 1;
2352 return 0;
233a11ab
CS
2353}
2354
330cdd98 2355/* See declaration. */
c906108c 2356
330cdd98
PA
2357void
2358dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2359 const dwarf2_debug_sections &names)
c906108c 2360{
fd361982 2361 flagword aflag = bfd_section_flags (sectp);
251d32d9 2362
dc7650b8
JK
2363 if ((aflag & SEC_HAS_CONTENTS) == 0)
2364 {
2365 }
950b7495
KS
2366 else if (elf_section_data (sectp)->this_hdr.sh_size
2367 > bfd_get_file_size (abfd))
2368 {
2369 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2370 warning (_("Discarding section %s which has a section size (%s"
2371 ") larger than the file size [in module %s]"),
2372 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2373 bfd_get_filename (abfd));
2374 }
330cdd98 2375 else if (section_is_p (sectp->name, &names.info))
c906108c 2376 {
330cdd98 2377 this->info.s.section = sectp;
fd361982 2378 this->info.size = bfd_section_size (sectp);
c906108c 2379 }
330cdd98 2380 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2381 {
330cdd98 2382 this->abbrev.s.section = sectp;
fd361982 2383 this->abbrev.size = bfd_section_size (sectp);
c906108c 2384 }
330cdd98 2385 else if (section_is_p (sectp->name, &names.line))
c906108c 2386 {
330cdd98 2387 this->line.s.section = sectp;
fd361982 2388 this->line.size = bfd_section_size (sectp);
c906108c 2389 }
330cdd98 2390 else if (section_is_p (sectp->name, &names.loc))
c906108c 2391 {
330cdd98 2392 this->loc.s.section = sectp;
fd361982 2393 this->loc.size = bfd_section_size (sectp);
c906108c 2394 }
330cdd98 2395 else if (section_is_p (sectp->name, &names.loclists))
43988095 2396 {
330cdd98 2397 this->loclists.s.section = sectp;
fd361982 2398 this->loclists.size = bfd_section_size (sectp);
43988095 2399 }
330cdd98 2400 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2401 {
330cdd98 2402 this->macinfo.s.section = sectp;
fd361982 2403 this->macinfo.size = bfd_section_size (sectp);
c906108c 2404 }
330cdd98 2405 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2406 {
330cdd98 2407 this->macro.s.section = sectp;
fd361982 2408 this->macro.size = bfd_section_size (sectp);
cf2c3c16 2409 }
330cdd98 2410 else if (section_is_p (sectp->name, &names.str))
c906108c 2411 {
330cdd98 2412 this->str.s.section = sectp;
fd361982 2413 this->str.size = bfd_section_size (sectp);
c906108c 2414 }
330cdd98 2415 else if (section_is_p (sectp->name, &names.line_str))
43988095 2416 {
330cdd98 2417 this->line_str.s.section = sectp;
fd361982 2418 this->line_str.size = bfd_section_size (sectp);
43988095 2419 }
330cdd98 2420 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2421 {
330cdd98 2422 this->addr.s.section = sectp;
fd361982 2423 this->addr.size = bfd_section_size (sectp);
3019eac3 2424 }
330cdd98 2425 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2426 {
330cdd98 2427 this->frame.s.section = sectp;
fd361982 2428 this->frame.size = bfd_section_size (sectp);
b6af0555 2429 }
330cdd98 2430 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2431 {
330cdd98 2432 this->eh_frame.s.section = sectp;
fd361982 2433 this->eh_frame.size = bfd_section_size (sectp);
b6af0555 2434 }
330cdd98 2435 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2436 {
330cdd98 2437 this->ranges.s.section = sectp;
fd361982 2438 this->ranges.size = bfd_section_size (sectp);
af34e669 2439 }
330cdd98 2440 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2441 {
330cdd98 2442 this->rnglists.s.section = sectp;
fd361982 2443 this->rnglists.size = bfd_section_size (sectp);
43988095 2444 }
330cdd98 2445 else if (section_is_p (sectp->name, &names.types))
348e048f 2446 {
8b70b953
TT
2447 struct dwarf2_section_info type_section;
2448
2449 memset (&type_section, 0, sizeof (type_section));
049412e3 2450 type_section.s.section = sectp;
fd361982 2451 type_section.size = bfd_section_size (sectp);
8b70b953 2452
fd5866f6 2453 this->types.push_back (type_section);
348e048f 2454 }
330cdd98 2455 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2456 {
330cdd98 2457 this->gdb_index.s.section = sectp;
fd361982 2458 this->gdb_index.size = bfd_section_size (sectp);
9291a0cd 2459 }
927aa2e7
JK
2460 else if (section_is_p (sectp->name, &names.debug_names))
2461 {
2462 this->debug_names.s.section = sectp;
fd361982 2463 this->debug_names.size = bfd_section_size (sectp);
927aa2e7
JK
2464 }
2465 else if (section_is_p (sectp->name, &names.debug_aranges))
2466 {
2467 this->debug_aranges.s.section = sectp;
fd361982 2468 this->debug_aranges.size = bfd_section_size (sectp);
927aa2e7 2469 }
dce234bc 2470
fd361982
AM
2471 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2472 && bfd_section_vma (sectp) == 0)
330cdd98 2473 this->has_section_at_zero = true;
c906108c
SS
2474}
2475
fceca515
DE
2476/* A helper function that decides whether a section is empty,
2477 or not present. */
9e0ac564
TT
2478
2479static int
19ac8c2e 2480dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2481{
73869dc2
DE
2482 if (section->is_virtual)
2483 return section->size == 0;
049412e3 2484 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2485}
2486
cd4fb1b2 2487/* See dwarf2read.h. */
c906108c 2488
cd4fb1b2
SM
2489void
2490dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
c906108c 2491{
a32a8923 2492 asection *sectp;
3019eac3 2493 bfd *abfd;
dce234bc 2494 gdb_byte *buf, *retbuf;
c906108c 2495
be391dca
TT
2496 if (info->readin)
2497 return;
dce234bc 2498 info->buffer = NULL;
dc4ccb6f 2499 info->readin = true;
188dd5d6 2500
9e0ac564 2501 if (dwarf2_section_empty_p (info))
dce234bc 2502 return;
c906108c 2503
a32a8923 2504 sectp = get_section_bfd_section (info);
3019eac3 2505
73869dc2
DE
2506 /* If this is a virtual section we need to read in the real one first. */
2507 if (info->is_virtual)
2508 {
2509 struct dwarf2_section_info *containing_section =
2510 get_containing_section (info);
2511
2512 gdb_assert (sectp != NULL);
2513 if ((sectp->flags & SEC_RELOC) != 0)
2514 {
2515 error (_("Dwarf Error: DWP format V2 with relocations is not"
2516 " supported in section %s [in module %s]"),
2517 get_section_name (info), get_section_file_name (info));
2518 }
2519 dwarf2_read_section (objfile, containing_section);
2520 /* Other code should have already caught virtual sections that don't
2521 fit. */
2522 gdb_assert (info->virtual_offset + info->size
2523 <= containing_section->size);
2524 /* If the real section is empty or there was a problem reading the
2525 section we shouldn't get here. */
2526 gdb_assert (containing_section->buffer != NULL);
2527 info->buffer = containing_section->buffer + info->virtual_offset;
2528 return;
2529 }
2530
4bf44c1c
TT
2531 /* If the section has relocations, we must read it ourselves.
2532 Otherwise we attach it to the BFD. */
2533 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2534 {
d521ce57 2535 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2536 return;
dce234bc 2537 }
dce234bc 2538
224c3ddb 2539 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2540 info->buffer = buf;
dce234bc
PP
2541
2542 /* When debugging .o files, we may need to apply relocations; see
2543 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2544 We never compress sections in .o files, so we only need to
2545 try this when the section is not compressed. */
ac8035ab 2546 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2547 if (retbuf != NULL)
2548 {
2549 info->buffer = retbuf;
2550 return;
2551 }
2552
a32a8923
DE
2553 abfd = get_section_bfd_owner (info);
2554 gdb_assert (abfd != NULL);
2555
dce234bc
PP
2556 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2557 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2558 {
2559 error (_("Dwarf Error: Can't read DWARF data"
2560 " in section %s [in module %s]"),
fd361982 2561 bfd_section_name (sectp), bfd_get_filename (abfd));
19ac8c2e 2562 }
dce234bc
PP
2563}
2564
9e0ac564
TT
2565/* A helper function that returns the size of a section in a safe way.
2566 If you are positive that the section has been read before using the
2567 size, then it is safe to refer to the dwarf2_section_info object's
2568 "size" field directly. In other cases, you must call this
2569 function, because for compressed sections the size field is not set
2570 correctly until the section has been read. */
2571
2572static bfd_size_type
2573dwarf2_section_size (struct objfile *objfile,
2574 struct dwarf2_section_info *info)
2575{
2576 if (!info->readin)
2577 dwarf2_read_section (objfile, info);
2578 return info->size;
2579}
2580
dce234bc 2581/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2582 SECTION_NAME. */
af34e669 2583
dce234bc 2584void
3017a003
TG
2585dwarf2_get_section_info (struct objfile *objfile,
2586 enum dwarf2_section_enum sect,
d521ce57 2587 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2588 bfd_size_type *sizep)
2589{
5bfd760d 2590 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
dce234bc 2591 struct dwarf2_section_info *info;
a3b2a86b
TT
2592
2593 /* We may see an objfile without any DWARF, in which case we just
2594 return nothing. */
2595 if (data == NULL)
2596 {
2597 *sectp = NULL;
2598 *bufp = NULL;
2599 *sizep = 0;
2600 return;
2601 }
3017a003
TG
2602 switch (sect)
2603 {
2604 case DWARF2_DEBUG_FRAME:
2605 info = &data->frame;
2606 break;
2607 case DWARF2_EH_FRAME:
2608 info = &data->eh_frame;
2609 break;
2610 default:
2611 gdb_assert_not_reached ("unexpected section");
2612 }
dce234bc 2613
9e0ac564 2614 dwarf2_read_section (objfile, info);
dce234bc 2615
a32a8923 2616 *sectp = get_section_bfd_section (info);
dce234bc
PP
2617 *bufp = info->buffer;
2618 *sizep = info->size;
2619}
2620
36586728
TT
2621/* A helper function to find the sections for a .dwz file. */
2622
2623static void
2624locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2625{
9a3c8263 2626 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2627
2628 /* Note that we only support the standard ELF names, because .dwz
2629 is ELF-only (at the time of writing). */
2630 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2631 {
049412e3 2632 dwz_file->abbrev.s.section = sectp;
fd361982 2633 dwz_file->abbrev.size = bfd_section_size (sectp);
36586728
TT
2634 }
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2636 {
049412e3 2637 dwz_file->info.s.section = sectp;
fd361982 2638 dwz_file->info.size = bfd_section_size (sectp);
36586728
TT
2639 }
2640 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2641 {
049412e3 2642 dwz_file->str.s.section = sectp;
fd361982 2643 dwz_file->str.size = bfd_section_size (sectp);
36586728
TT
2644 }
2645 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2646 {
049412e3 2647 dwz_file->line.s.section = sectp;
fd361982 2648 dwz_file->line.size = bfd_section_size (sectp);
36586728
TT
2649 }
2650 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2651 {
049412e3 2652 dwz_file->macro.s.section = sectp;
fd361982 2653 dwz_file->macro.size = bfd_section_size (sectp);
36586728 2654 }
2ec9a5e0
TT
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2656 {
049412e3 2657 dwz_file->gdb_index.s.section = sectp;
fd361982 2658 dwz_file->gdb_index.size = bfd_section_size (sectp);
2ec9a5e0 2659 }
927aa2e7
JK
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2661 {
2662 dwz_file->debug_names.s.section = sectp;
fd361982 2663 dwz_file->debug_names.size = bfd_section_size (sectp);
927aa2e7 2664 }
36586728
TT
2665}
2666
c4973306 2667/* See dwarf2read.h. */
36586728 2668
c4973306 2669struct dwz_file *
ed2dc618 2670dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 2671{
36586728 2672 const char *filename;
acd13123 2673 bfd_size_type buildid_len_arg;
dc294be5
TT
2674 size_t buildid_len;
2675 bfd_byte *buildid;
36586728
TT
2676
2677 if (dwarf2_per_objfile->dwz_file != NULL)
7ff8cb8c 2678 return dwarf2_per_objfile->dwz_file.get ();
36586728 2679
4db1a1dc 2680 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2681 gdb::unique_xmalloc_ptr<char> data
2682 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2683 &buildid_len_arg, &buildid));
4db1a1dc
TT
2684 if (data == NULL)
2685 {
2686 if (bfd_get_error () == bfd_error_no_error)
2687 return NULL;
2688 error (_("could not read '.gnu_debugaltlink' section: %s"),
2689 bfd_errmsg (bfd_get_error ()));
2690 }
791afaa2
TT
2691
2692 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2693
acd13123
TT
2694 buildid_len = (size_t) buildid_len_arg;
2695
791afaa2 2696 filename = data.get ();
d721ba37
PA
2697
2698 std::string abs_storage;
36586728
TT
2699 if (!IS_ABSOLUTE_PATH (filename))
2700 {
14278e1f
TT
2701 gdb::unique_xmalloc_ptr<char> abs
2702 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2703
14278e1f 2704 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2705 filename = abs_storage.c_str ();
36586728
TT
2706 }
2707
dc294be5
TT
2708 /* First try the file name given in the section. If that doesn't
2709 work, try to use the build-id instead. */
192b62ce 2710 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2711 if (dwz_bfd != NULL)
36586728 2712 {
192b62ce 2713 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
0f58c9e8 2714 dwz_bfd.reset (nullptr);
36586728
TT
2715 }
2716
dc294be5
TT
2717 if (dwz_bfd == NULL)
2718 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2719
2720 if (dwz_bfd == NULL)
2721 error (_("could not find '.gnu_debugaltlink' file for %s"),
2722 objfile_name (dwarf2_per_objfile->objfile));
2723
7ff8cb8c
TT
2724 std::unique_ptr<struct dwz_file> result
2725 (new struct dwz_file (std::move (dwz_bfd)));
36586728 2726
7ff8cb8c
TT
2727 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2728 result.get ());
36586728 2729
7ff8cb8c
TT
2730 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2731 result->dwz_bfd.get ());
2732 dwarf2_per_objfile->dwz_file = std::move (result);
2733 return dwarf2_per_objfile->dwz_file.get ();
36586728 2734}
9291a0cd 2735\f
7b9f3c50
DE
2736/* DWARF quick_symbols_functions support. */
2737
2738/* TUs can share .debug_line entries, and there can be a lot more TUs than
2739 unique line tables, so we maintain a separate table of all .debug_line
2740 derived entries to support the sharing.
2741 All the quick functions need is the list of file names. We discard the
2742 line_header when we're done and don't need to record it here. */
2743struct quick_file_names
2744{
094b34ac
DE
2745 /* The data used to construct the hash key. */
2746 struct stmt_list_hash hash;
7b9f3c50
DE
2747
2748 /* The number of entries in file_names, real_names. */
2749 unsigned int num_file_names;
2750
2751 /* The file names from the line table, after being run through
2752 file_full_name. */
2753 const char **file_names;
2754
2755 /* The file names from the line table after being run through
2756 gdb_realpath. These are computed lazily. */
2757 const char **real_names;
2758};
2759
2760/* When using the index (and thus not using psymtabs), each CU has an
2761 object of this type. This is used to hold information needed by
2762 the various "quick" methods. */
2763struct dwarf2_per_cu_quick_data
2764{
2765 /* The file table. This can be NULL if there was no file table
2766 or it's currently not read in.
2767 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2768 struct quick_file_names *file_names;
2769
2770 /* The corresponding symbol table. This is NULL if symbols for this
2771 CU have not yet been read. */
43f3e411 2772 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2773
2774 /* A temporary mark bit used when iterating over all CUs in
2775 expand_symtabs_matching. */
2776 unsigned int mark : 1;
2777
2778 /* True if we've tried to read the file table and found there isn't one.
2779 There will be no point in trying to read it again next time. */
2780 unsigned int no_file_data : 1;
2781};
2782
094b34ac
DE
2783/* Utility hash function for a stmt_list_hash. */
2784
2785static hashval_t
2786hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2787{
2788 hashval_t v = 0;
2789
2790 if (stmt_list_hash->dwo_unit != NULL)
2791 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2792 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2793 return v;
2794}
2795
2796/* Utility equality function for a stmt_list_hash. */
2797
2798static int
2799eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2800 const struct stmt_list_hash *rhs)
2801{
2802 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2803 return 0;
2804 if (lhs->dwo_unit != NULL
2805 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2806 return 0;
2807
9c541725 2808 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2809}
2810
7b9f3c50
DE
2811/* Hash function for a quick_file_names. */
2812
2813static hashval_t
2814hash_file_name_entry (const void *e)
2815{
9a3c8263
SM
2816 const struct quick_file_names *file_data
2817 = (const struct quick_file_names *) e;
7b9f3c50 2818
094b34ac 2819 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2820}
2821
2822/* Equality function for a quick_file_names. */
2823
2824static int
2825eq_file_name_entry (const void *a, const void *b)
2826{
9a3c8263
SM
2827 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2828 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2829
094b34ac 2830 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2831}
2832
2833/* Delete function for a quick_file_names. */
2834
2835static void
2836delete_file_name_entry (void *e)
2837{
9a3c8263 2838 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2839 int i;
2840
2841 for (i = 0; i < file_data->num_file_names; ++i)
2842 {
2843 xfree ((void*) file_data->file_names[i]);
2844 if (file_data->real_names)
2845 xfree ((void*) file_data->real_names[i]);
2846 }
2847
2848 /* The space for the struct itself lives on objfile_obstack,
2849 so we don't free it here. */
2850}
2851
2852/* Create a quick_file_names hash table. */
2853
2854static htab_t
2855create_quick_file_names_table (unsigned int nr_initial_entries)
2856{
2857 return htab_create_alloc (nr_initial_entries,
2858 hash_file_name_entry, eq_file_name_entry,
2859 delete_file_name_entry, xcalloc, xfree);
2860}
9291a0cd 2861
918dd910
JK
2862/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2863 have to be created afterwards. You should call age_cached_comp_units after
2864 processing PER_CU->CU. dw2_setup must have been already called. */
2865
2866static void
58f0c718 2867load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
918dd910 2868{
3019eac3 2869 if (per_cu->is_debug_types)
e5fe5e75 2870 load_full_type_unit (per_cu);
918dd910 2871 else
58f0c718 2872 load_full_comp_unit (per_cu, skip_partial, language_minimal);
918dd910 2873
cc12ce38
DE
2874 if (per_cu->cu == NULL)
2875 return; /* Dummy CU. */
2dc860c0
DE
2876
2877 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2878}
2879
a0f42c21 2880/* Read in the symbols for PER_CU. */
2fdf6df6 2881
9291a0cd 2882static void
58f0c718 2883dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2884{
ed2dc618 2885 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9291a0cd 2886
f4dc4d17
DE
2887 /* Skip type_unit_groups, reading the type units they contain
2888 is handled elsewhere. */
2889 if (IS_TYPE_UNIT_GROUP (per_cu))
2890 return;
2891
b303c6f6
AB
2892 /* The destructor of dwarf2_queue_guard frees any entries left on
2893 the queue. After this point we're guaranteed to leave this function
2894 with the dwarf queue empty. */
2895 dwarf2_queue_guard q_guard;
9291a0cd 2896
95554aad 2897 if (dwarf2_per_objfile->using_index
43f3e411 2898 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2899 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2900 {
2901 queue_comp_unit (per_cu, language_minimal);
58f0c718 2902 load_cu (per_cu, skip_partial);
89e63ee4
DE
2903
2904 /* If we just loaded a CU from a DWO, and we're working with an index
2905 that may badly handle TUs, load all the TUs in that DWO as well.
2906 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2907 if (!per_cu->is_debug_types
cc12ce38 2908 && per_cu->cu != NULL
89e63ee4
DE
2909 && per_cu->cu->dwo_unit != NULL
2910 && dwarf2_per_objfile->index_table != NULL
2911 && dwarf2_per_objfile->index_table->version <= 7
2912 /* DWP files aren't supported yet. */
ed2dc618 2913 && get_dwp_file (dwarf2_per_objfile) == NULL)
89e63ee4 2914 queue_and_load_all_dwo_tus (per_cu);
95554aad 2915 }
9291a0cd 2916
ed2dc618 2917 process_queue (dwarf2_per_objfile);
9291a0cd
TT
2918
2919 /* Age the cache, releasing compilation units that have not
2920 been used recently. */
ed2dc618 2921 age_cached_comp_units (dwarf2_per_objfile);
9291a0cd
TT
2922}
2923
2924/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2925 the objfile from which this CU came. Returns the resulting symbol
2926 table. */
2fdf6df6 2927
43f3e411 2928static struct compunit_symtab *
58f0c718 2929dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2930{
ed2dc618
SM
2931 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2932
95554aad 2933 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2934 if (!per_cu->v.quick->compunit_symtab)
9291a0cd 2935 {
11ed8cad 2936 free_cached_comp_units freer (dwarf2_per_objfile);
c83dd867 2937 scoped_restore decrementer = increment_reading_symtab ();
58f0c718 2938 dw2_do_instantiate_symtab (per_cu, skip_partial);
ed2dc618 2939 process_cu_includes (dwarf2_per_objfile);
9291a0cd 2940 }
f194fefb 2941
43f3e411 2942 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2943}
2944
ff4c9fec 2945/* See declaration. */
f4dc4d17 2946
ff4c9fec
SM
2947dwarf2_per_cu_data *
2948dwarf2_per_objfile::get_cutu (int index)
2949{
b76e467d 2950 if (index >= this->all_comp_units.size ())
ff4c9fec 2951 {
b76e467d 2952 index -= this->all_comp_units.size ();
b2bdb8cf 2953 gdb_assert (index < this->all_type_units.size ());
ff4c9fec
SM
2954 return &this->all_type_units[index]->per_cu;
2955 }
f4dc4d17 2956
ff4c9fec
SM
2957 return this->all_comp_units[index];
2958}
f4dc4d17 2959
ff4c9fec 2960/* See declaration. */
2fdf6df6 2961
ff4c9fec
SM
2962dwarf2_per_cu_data *
2963dwarf2_per_objfile::get_cu (int index)
1fd400ff 2964{
b76e467d 2965 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
f4dc4d17 2966
ff4c9fec 2967 return this->all_comp_units[index];
f4dc4d17
DE
2968}
2969
ff4c9fec 2970/* See declaration. */
f4dc4d17 2971
ff4c9fec
SM
2972signatured_type *
2973dwarf2_per_objfile::get_tu (int index)
f4dc4d17 2974{
b2bdb8cf 2975 gdb_assert (index >= 0 && index < this->all_type_units.size ());
f4dc4d17 2976
ff4c9fec 2977 return this->all_type_units[index];
1fd400ff
TT
2978}
2979
4b514bc8
JK
2980/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2981 objfile_obstack, and constructed with the specified field
2982 values. */
2983
2984static dwarf2_per_cu_data *
ed2dc618 2985create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4b514bc8
JK
2986 struct dwarf2_section_info *section,
2987 int is_dwz,
2988 sect_offset sect_off, ULONGEST length)
2989{
ed2dc618 2990 struct objfile *objfile = dwarf2_per_objfile->objfile;
4b514bc8
JK
2991 dwarf2_per_cu_data *the_cu
2992 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2993 struct dwarf2_per_cu_data);
2994 the_cu->sect_off = sect_off;
2995 the_cu->length = length;
e3b94546 2996 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
4b514bc8
JK
2997 the_cu->section = section;
2998 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_quick_data);
3000 the_cu->is_dwz = is_dwz;
3001 return the_cu;
3002}
3003
2ec9a5e0
TT
3004/* A helper for create_cus_from_index that handles a given list of
3005 CUs. */
2fdf6df6 3006
74a0d9f6 3007static void
12359b5e 3008create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3009 const gdb_byte *cu_list, offset_type n_elements,
3010 struct dwarf2_section_info *section,
b76e467d 3011 int is_dwz)
9291a0cd 3012{
12359b5e 3013 for (offset_type i = 0; i < n_elements; i += 2)
9291a0cd 3014 {
74a0d9f6 3015 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3016
3017 sect_offset sect_off
3018 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3019 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3020 cu_list += 2 * 8;
3021
b76e467d 3022 dwarf2_per_cu_data *per_cu
ed2dc618
SM
3023 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3024 sect_off, length);
b76e467d 3025 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
9291a0cd 3026 }
9291a0cd
TT
3027}
3028
2ec9a5e0 3029/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3030 the CU objects for this objfile. */
2ec9a5e0 3031
74a0d9f6 3032static void
12359b5e 3033create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3034 const gdb_byte *cu_list, offset_type cu_list_elements,
3035 const gdb_byte *dwz_list, offset_type dwz_elements)
3036{
b76e467d
SM
3037 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3038 dwarf2_per_objfile->all_comp_units.reserve
3039 ((cu_list_elements + dwz_elements) / 2);
2ec9a5e0 3040
12359b5e 3041 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
b76e467d 3042 &dwarf2_per_objfile->info, 0);
2ec9a5e0
TT
3043
3044 if (dwz_elements == 0)
74a0d9f6 3045 return;
2ec9a5e0 3046
12359b5e
SM
3047 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3048 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
b76e467d 3049 &dwz->info, 1);
2ec9a5e0
TT
3050}
3051
1fd400ff 3052/* Create the signatured type hash table from the index. */
673bfd45 3053
74a0d9f6 3054static void
12359b5e
SM
3055create_signatured_type_table_from_index
3056 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3057 struct dwarf2_section_info *section,
3058 const gdb_byte *bytes,
3059 offset_type elements)
1fd400ff 3060{
12359b5e 3061 struct objfile *objfile = dwarf2_per_objfile->objfile;
1fd400ff 3062
b2bdb8cf
SM
3063 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3064 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
1fd400ff 3065
12359b5e 3066 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff 3067
12359b5e 3068 for (offset_type i = 0; i < elements; i += 3)
1fd400ff 3069 {
52dc124a 3070 struct signatured_type *sig_type;
9c541725 3071 ULONGEST signature;
1fd400ff 3072 void **slot;
9c541725 3073 cu_offset type_offset_in_tu;
1fd400ff 3074
74a0d9f6 3075 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3076 sect_offset sect_off
3077 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3078 type_offset_in_tu
3079 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3080 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3081 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3082 bytes += 3 * 8;
3083
52dc124a 3084 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3085 struct signatured_type);
52dc124a 3086 sig_type->signature = signature;
9c541725 3087 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3088 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3089 sig_type->per_cu.section = section;
9c541725 3090 sig_type->per_cu.sect_off = sect_off;
e3b94546 3091 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
52dc124a 3092 sig_type->per_cu.v.quick
1fd400ff
TT
3093 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3094 struct dwarf2_per_cu_quick_data);
3095
52dc124a
DE
3096 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3097 *slot = sig_type;
1fd400ff 3098
b2bdb8cf 3099 dwarf2_per_objfile->all_type_units.push_back (sig_type);
1fd400ff
TT
3100 }
3101
673bfd45 3102 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3103}
3104
927aa2e7
JK
3105/* Create the signatured type hash table from .debug_names. */
3106
3107static void
3108create_signatured_type_table_from_debug_names
ed2dc618 3109 (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3110 const mapped_debug_names &map,
3111 struct dwarf2_section_info *section,
3112 struct dwarf2_section_info *abbrev_section)
3113{
ed2dc618
SM
3114 struct objfile *objfile = dwarf2_per_objfile->objfile;
3115
927aa2e7
JK
3116 dwarf2_read_section (objfile, section);
3117 dwarf2_read_section (objfile, abbrev_section);
3118
b2bdb8cf
SM
3119 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3120 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
927aa2e7
JK
3121
3122 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3123
3124 for (uint32_t i = 0; i < map.tu_count; ++i)
3125 {
3126 struct signatured_type *sig_type;
927aa2e7 3127 void **slot;
927aa2e7
JK
3128
3129 sect_offset sect_off
3130 = (sect_offset) (extract_unsigned_integer
3131 (map.tu_table_reordered + i * map.offset_size,
3132 map.offset_size,
3133 map.dwarf5_byte_order));
3134
3135 comp_unit_head cu_header;
ed2dc618
SM
3136 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3137 abbrev_section,
927aa2e7
JK
3138 section->buffer + to_underlying (sect_off),
3139 rcuh_kind::TYPE);
3140
3141 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3142 struct signatured_type);
3143 sig_type->signature = cu_header.signature;
3144 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3145 sig_type->per_cu.is_debug_types = 1;
3146 sig_type->per_cu.section = section;
3147 sig_type->per_cu.sect_off = sect_off;
e3b94546 3148 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
927aa2e7
JK
3149 sig_type->per_cu.v.quick
3150 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3151 struct dwarf2_per_cu_quick_data);
3152
3153 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3154 *slot = sig_type;
3155
b2bdb8cf 3156 dwarf2_per_objfile->all_type_units.push_back (sig_type);
927aa2e7
JK
3157 }
3158
3159 dwarf2_per_objfile->signatured_types = sig_types_hash;
3160}
3161
9291a0cd
TT
3162/* Read the address map data from the mapped index, and use it to
3163 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3164
9291a0cd 3165static void
ed2dc618
SM
3166create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3167 struct mapped_index *index)
9291a0cd 3168{
ed2dc618 3169 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 3170 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3171 const gdb_byte *iter, *end;
9291a0cd 3172 struct addrmap *mutable_map;
9291a0cd
TT
3173 CORE_ADDR baseaddr;
3174
8268c778
PA
3175 auto_obstack temp_obstack;
3176
9291a0cd
TT
3177 mutable_map = addrmap_create_mutable (&temp_obstack);
3178
f00a2de2
PA
3179 iter = index->address_table.data ();
3180 end = iter + index->address_table.size ();
9291a0cd
TT
3181
3182 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3183
3184 while (iter < end)
3185 {
3186 ULONGEST hi, lo, cu_index;
3187 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3188 iter += 8;
3189 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3190 iter += 8;
3191 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3192 iter += 4;
f652bce2 3193
24a55014 3194 if (lo > hi)
f652bce2 3195 {
b98664d3 3196 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3197 hex_string (lo), hex_string (hi));
24a55014 3198 continue;
f652bce2 3199 }
24a55014 3200
b76e467d 3201 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
f652bce2 3202 {
b98664d3 3203 complaint (_(".gdb_index address table has invalid CU number %u"),
f652bce2 3204 (unsigned) cu_index);
24a55014 3205 continue;
f652bce2 3206 }
24a55014 3207
79748972
TT
3208 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3209 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
ed2dc618 3210 addrmap_set_empty (mutable_map, lo, hi - 1,
ff4c9fec 3211 dwarf2_per_objfile->get_cu (cu_index));
9291a0cd
TT
3212 }
3213
d320c2b5 3214 objfile->partial_symtabs->psymtabs_addrmap
5923a04c 3215 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
9291a0cd
TT
3216}
3217
927aa2e7
JK
3218/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3219 populate the objfile's psymtabs_addrmap. */
3220
3221static void
ed2dc618 3222create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3223 struct dwarf2_section_info *section)
3224{
ed2dc618 3225 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
3226 bfd *abfd = objfile->obfd;
3227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3228 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3229 SECT_OFF_TEXT (objfile));
3230
3231 auto_obstack temp_obstack;
3232 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3233
3234 std::unordered_map<sect_offset,
3235 dwarf2_per_cu_data *,
3236 gdb::hash_enum<sect_offset>>
3237 debug_info_offset_to_per_cu;
b76e467d 3238 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 3239 {
927aa2e7
JK
3240 const auto insertpair
3241 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3242 if (!insertpair.second)
3243 {
3244 warning (_("Section .debug_aranges in %s has duplicate "
9d8780f0
SM
3245 "debug_info_offset %s, ignoring .debug_aranges."),
3246 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
927aa2e7
JK
3247 return;
3248 }
3249 }
3250
3251 dwarf2_read_section (objfile, section);
3252
3253 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3254
3255 const gdb_byte *addr = section->buffer;
3256
3257 while (addr < section->buffer + section->size)
3258 {
3259 const gdb_byte *const entry_addr = addr;
3260 unsigned int bytes_read;
3261
3262 const LONGEST entry_length = read_initial_length (abfd, addr,
3263 &bytes_read);
3264 addr += bytes_read;
3265
3266 const gdb_byte *const entry_end = addr + entry_length;
3267 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3268 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3269 if (addr + entry_length > section->buffer + section->size)
3270 {
47e3f474 3271 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3272 "length %s exceeds section length %s, "
3273 "ignoring .debug_aranges."),
47e3f474
TV
3274 objfile_name (objfile),
3275 plongest (entry_addr - section->buffer),
927aa2e7
JK
3276 plongest (bytes_read + entry_length),
3277 pulongest (section->size));
3278 return;
3279 }
3280
3281 /* The version number. */
3282 const uint16_t version = read_2_bytes (abfd, addr);
3283 addr += 2;
3284 if (version != 2)
3285 {
47e3f474 3286 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7 3287 "has unsupported version %d, ignoring .debug_aranges."),
47e3f474
TV
3288 objfile_name (objfile),
3289 plongest (entry_addr - section->buffer), version);
927aa2e7
JK
3290 return;
3291 }
3292
3293 const uint64_t debug_info_offset
3294 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3295 addr += offset_size;
3296 const auto per_cu_it
3297 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3298 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3299 {
47e3f474 3300 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3301 "debug_info_offset %s does not exists, "
3302 "ignoring .debug_aranges."),
47e3f474
TV
3303 objfile_name (objfile),
3304 plongest (entry_addr - section->buffer),
927aa2e7
JK
3305 pulongest (debug_info_offset));
3306 return;
3307 }
3308 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3309
3310 const uint8_t address_size = *addr++;
3311 if (address_size < 1 || address_size > 8)
3312 {
47e3f474 3313 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7 3314 "address_size %u is invalid, ignoring .debug_aranges."),
47e3f474
TV
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer), address_size);
927aa2e7
JK
3317 return;
3318 }
3319
3320 const uint8_t segment_selector_size = *addr++;
3321 if (segment_selector_size != 0)
3322 {
47e3f474 3323 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3324 "segment_selector_size %u is not supported, "
3325 "ignoring .debug_aranges."),
47e3f474
TV
3326 objfile_name (objfile),
3327 plongest (entry_addr - section->buffer),
927aa2e7
JK
3328 segment_selector_size);
3329 return;
3330 }
3331
3332 /* Must pad to an alignment boundary that is twice the address
3333 size. It is undocumented by the DWARF standard but GCC does
3334 use it. */
3335 for (size_t padding = ((-(addr - section->buffer))
3336 & (2 * address_size - 1));
3337 padding > 0; padding--)
3338 if (*addr++ != 0)
3339 {
47e3f474 3340 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7 3341 "padding is not zero, ignoring .debug_aranges."),
47e3f474
TV
3342 objfile_name (objfile),
3343 plongest (entry_addr - section->buffer));
927aa2e7
JK
3344 return;
3345 }
3346
3347 for (;;)
3348 {
3349 if (addr + 2 * address_size > entry_end)
3350 {
47e3f474 3351 warning (_("Section .debug_aranges in %s entry at offset %s "
927aa2e7
JK
3352 "address list is not properly terminated, "
3353 "ignoring .debug_aranges."),
47e3f474
TV
3354 objfile_name (objfile),
3355 plongest (entry_addr - section->buffer));
927aa2e7
JK
3356 return;
3357 }
3358 ULONGEST start = extract_unsigned_integer (addr, address_size,
3359 dwarf5_byte_order);
3360 addr += address_size;
3361 ULONGEST length = extract_unsigned_integer (addr, address_size,
3362 dwarf5_byte_order);
3363 addr += address_size;
3364 if (start == 0 && length == 0)
3365 break;
3366 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3367 {
3368 /* Symbol was eliminated due to a COMDAT group. */
3369 continue;
3370 }
3371 ULONGEST end = start + length;
79748972
TT
3372 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3373 - baseaddr);
3374 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3375 - baseaddr);
927aa2e7
JK
3376 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3377 }
3378 }
3379
d320c2b5 3380 objfile->partial_symtabs->psymtabs_addrmap
5923a04c 3381 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
927aa2e7
JK
3382}
3383
9291a0cd
TT
3384/* Find a slot in the mapped index INDEX for the object named NAME.
3385 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3386 constant pool and return true. If NAME cannot be found, return
3387 false. */
2fdf6df6 3388
109483d9 3389static bool
9291a0cd
TT
3390find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3391 offset_type **vec_out)
3392{
0cf03b49 3393 offset_type hash;
9291a0cd 3394 offset_type slot, step;
559a7a62 3395 int (*cmp) (const char *, const char *);
9291a0cd 3396
791afaa2 3397 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3398 if (current_language->la_language == language_cplus
45280282
IB
3399 || current_language->la_language == language_fortran
3400 || current_language->la_language == language_d)
0cf03b49
JK
3401 {
3402 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3403 not contain any. */
a8719064 3404
72998fb3 3405 if (strchr (name, '(') != NULL)
0cf03b49 3406 {
109483d9 3407 without_params = cp_remove_params (name);
0cf03b49 3408
72998fb3 3409 if (without_params != NULL)
791afaa2 3410 name = without_params.get ();
0cf03b49
JK
3411 }
3412 }
3413
559a7a62 3414 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3415 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3416 simulate our NAME being searched is also lowercased. */
3417 hash = mapped_index_string_hash ((index->version == 4
3418 && case_sensitivity == case_sensitive_off
3419 ? 5 : index->version),
3420 name);
3421
f00a2de2
PA
3422 slot = hash & (index->symbol_table.size () - 1);
3423 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
559a7a62 3424 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3425
3426 for (;;)
3427 {
9291a0cd 3428 const char *str;
f00a2de2
PA
3429
3430 const auto &bucket = index->symbol_table[slot];
3431 if (bucket.name == 0 && bucket.vec == 0)
109483d9 3432 return false;
9291a0cd 3433
f00a2de2 3434 str = index->constant_pool + MAYBE_SWAP (bucket.name);
559a7a62 3435 if (!cmp (name, str))
9291a0cd
TT
3436 {
3437 *vec_out = (offset_type *) (index->constant_pool
f00a2de2 3438 + MAYBE_SWAP (bucket.vec));
109483d9 3439 return true;
9291a0cd
TT
3440 }
3441
f00a2de2 3442 slot = (slot + step) & (index->symbol_table.size () - 1);
9291a0cd
TT
3443 }
3444}
3445
4485a1c1
SM
3446/* A helper function that reads the .gdb_index from BUFFER and fills
3447 in MAP. FILENAME is the name of the file containing the data;
d33bc52e 3448 it is used for error reporting. DEPRECATED_OK is true if it is
2ec9a5e0
TT
3449 ok to use deprecated sections.
3450
3451 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3452 out parameters that are filled in with information about the CU and
3453 TU lists in the section.
3454
4485a1c1 3455 Returns true if all went well, false otherwise. */
2fdf6df6 3456
d33bc52e 3457static bool
4485a1c1
SM
3458read_gdb_index_from_buffer (struct objfile *objfile,
3459 const char *filename,
3460 bool deprecated_ok,
3461 gdb::array_view<const gdb_byte> buffer,
3462 struct mapped_index *map,
3463 const gdb_byte **cu_list,
3464 offset_type *cu_list_elements,
3465 const gdb_byte **types_list,
3466 offset_type *types_list_elements)
3467{
3468 const gdb_byte *addr = &buffer[0];
82430852 3469
9291a0cd 3470 /* Version check. */
4485a1c1 3471 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3472 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3473 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3474 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3475 indices. */
831adc1f 3476 if (version < 4)
481860b3
GB
3477 {
3478 static int warning_printed = 0;
3479 if (!warning_printed)
3480 {
3481 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3482 filename);
481860b3
GB
3483 warning_printed = 1;
3484 }
3485 return 0;
3486 }
3487 /* Index version 4 uses a different hash function than index version
3488 5 and later.
3489
3490 Versions earlier than 6 did not emit psymbols for inlined
3491 functions. Using these files will cause GDB not to be able to
3492 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3493 indices unless the user has done
3494 "set use-deprecated-index-sections on". */
2ec9a5e0 3495 if (version < 6 && !deprecated_ok)
481860b3
GB
3496 {
3497 static int warning_printed = 0;
3498 if (!warning_printed)
3499 {
e615022a
DE
3500 warning (_("\
3501Skipping deprecated .gdb_index section in %s.\n\
3502Do \"set use-deprecated-index-sections on\" before the file is read\n\
3503to use the section anyway."),
2ec9a5e0 3504 filename);
481860b3
GB
3505 warning_printed = 1;
3506 }
3507 return 0;
3508 }
796a7ff8 3509 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3510 of the TU (for symbols coming from TUs),
3511 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3512 Plus gold-generated indices can have duplicate entries for global symbols,
3513 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3514 These are just performance bugs, and we can't distinguish gdb-generated
3515 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3516
481860b3 3517 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3518 longer backward compatible. */
796a7ff8 3519 if (version > 8)
594e8718 3520 return 0;
9291a0cd 3521
559a7a62 3522 map->version = version;
9291a0cd 3523
4485a1c1 3524 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff 3525
4485a1c1 3526 int i = 0;
2ec9a5e0
TT
3527 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3528 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3529 / 8);
1fd400ff
TT
3530 ++i;
3531
2ec9a5e0
TT
3532 *types_list = addr + MAYBE_SWAP (metadata[i]);
3533 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3534 - MAYBE_SWAP (metadata[i]))
3535 / 8);
987d643c 3536 ++i;
1fd400ff 3537
f00a2de2
PA
3538 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3539 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3540 map->address_table
3541 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
1fd400ff
TT
3542 ++i;
3543
f00a2de2
PA
3544 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3546 map->symbol_table
3547 = gdb::array_view<mapped_index::symbol_table_slot>
3548 ((mapped_index::symbol_table_slot *) symbol_table,
3549 (mapped_index::symbol_table_slot *) symbol_table_end);
9291a0cd 3550
f00a2de2 3551 ++i;
f9d83a0b 3552 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3553
2ec9a5e0
TT
3554 return 1;
3555}
3556
4485a1c1
SM
3557/* Callback types for dwarf2_read_gdb_index. */
3558
3559typedef gdb::function_view
3560 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3561 get_gdb_index_contents_ftype;
3562typedef gdb::function_view
3563 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3564 get_gdb_index_contents_dwz_ftype;
3565
927aa2e7 3566/* Read .gdb_index. If everything went ok, initialize the "quick"
2ec9a5e0
TT
3567 elements of all the CUs and return 1. Otherwise, return 0. */
3568
3569static int
4485a1c1
SM
3570dwarf2_read_gdb_index
3571 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3572 get_gdb_index_contents_ftype get_gdb_index_contents,
3573 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2ec9a5e0 3574{
2ec9a5e0
TT
3575 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3576 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3577 struct dwz_file *dwz;
12359b5e 3578 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ec9a5e0 3579
4485a1c1
SM
3580 gdb::array_view<const gdb_byte> main_index_contents
3581 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3582
3583 if (main_index_contents.empty ())
3584 return 0;
3585
3063847f 3586 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
4485a1c1
SM
3587 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3588 use_deprecated_index_sections,
3589 main_index_contents, map.get (), &cu_list,
3590 &cu_list_elements, &types_list,
3591 &types_list_elements))
2ec9a5e0
TT
3592 return 0;
3593
0fefef59 3594 /* Don't use the index if it's empty. */
3063847f 3595 if (map->symbol_table.empty ())
0fefef59
DE
3596 return 0;
3597
2ec9a5e0
TT
3598 /* If there is a .dwz file, read it so we can get its CU list as
3599 well. */
ed2dc618 3600 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 3601 if (dwz != NULL)
2ec9a5e0 3602 {
2ec9a5e0
TT
3603 struct mapped_index dwz_map;
3604 const gdb_byte *dwz_types_ignore;
3605 offset_type dwz_types_elements_ignore;
3606
4485a1c1
SM
3607 gdb::array_view<const gdb_byte> dwz_index_content
3608 = get_gdb_index_contents_dwz (objfile, dwz);
3609
3610 if (dwz_index_content.empty ())
3611 return 0;
3612
3613 if (!read_gdb_index_from_buffer (objfile,
00f93c44
AM
3614 bfd_get_filename (dwz->dwz_bfd.get ()),
3615 1, dwz_index_content, &dwz_map,
4485a1c1
SM
3616 &dwz_list, &dwz_list_elements,
3617 &dwz_types_ignore,
3618 &dwz_types_elements_ignore))
2ec9a5e0
TT
3619 {
3620 warning (_("could not read '.gdb_index' section from %s; skipping"),
00f93c44 3621 bfd_get_filename (dwz->dwz_bfd.get ()));
2ec9a5e0
TT
3622 return 0;
3623 }
3624 }
3625
12359b5e
SM
3626 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3627 dwz_list, dwz_list_elements);
1fd400ff 3628
8b70b953
TT
3629 if (types_list_elements)
3630 {
8b70b953
TT
3631 /* We can only handle a single .debug_types when we have an
3632 index. */
fd5866f6 3633 if (dwarf2_per_objfile->types.size () != 1)
8b70b953
TT
3634 return 0;
3635
fd5866f6 3636 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
8b70b953 3637
12359b5e
SM
3638 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3639 types_list, types_list_elements);
8b70b953 3640 }
9291a0cd 3641
3063847f 3642 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
9291a0cd 3643
3063847f 3644 dwarf2_per_objfile->index_table = std::move (map);
9291a0cd 3645 dwarf2_per_objfile->using_index = 1;
7b9f3c50 3646 dwarf2_per_objfile->quick_file_names_table =
b76e467d 3647 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd
TT
3648
3649 return 1;
3650}
3651
dee91e82 3652/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3653
dee91e82
DE
3654static void
3655dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3656 const gdb_byte *info_ptr,
dee91e82
DE
3657 struct die_info *comp_unit_die,
3658 int has_children,
3659 void *data)
9291a0cd 3660{
dee91e82 3661 struct dwarf2_cu *cu = reader->cu;
ed2dc618 3662 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
518817b3
SM
3663 struct dwarf2_per_objfile *dwarf2_per_objfile
3664 = cu->per_cu->dwarf2_per_objfile;
dee91e82 3665 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3666 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3667 struct attribute *attr;
7b9f3c50
DE
3668 void **slot;
3669 struct quick_file_names *qfn;
9291a0cd 3670
0186c6a7
DE
3671 gdb_assert (! this_cu->is_debug_types);
3672
07261596
TT
3673 /* Our callers never want to match partial units -- instead they
3674 will match the enclosing full CU. */
3675 if (comp_unit_die->tag == DW_TAG_partial_unit)
3676 {
3677 this_cu->v.quick->no_file_data = 1;
3678 return;
3679 }
3680
0186c6a7 3681 lh_cu = this_cu;
7b9f3c50 3682 slot = NULL;
dee91e82 3683
fff8551c 3684 line_header_up lh;
9c541725 3685 sect_offset line_offset {};
fff8551c 3686
dee91e82 3687 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
435d3d88 3688 if (attr != nullptr)
9291a0cd 3689 {
7b9f3c50
DE
3690 struct quick_file_names find_entry;
3691
9c541725 3692 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3693
3694 /* We may have already read in this line header (TU line header sharing).
3695 If we have we're done. */
094b34ac 3696 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3697 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3698 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3699 &find_entry, INSERT);
3700 if (*slot != NULL)
3701 {
9a3c8263 3702 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3703 return;
7b9f3c50
DE
3704 }
3705
3019eac3 3706 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3707 }
3708 if (lh == NULL)
3709 {
094b34ac 3710 lh_cu->v.quick->no_file_data = 1;
dee91e82 3711 return;
9291a0cd
TT
3712 }
3713
8d749320 3714 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3715 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3716 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3717 gdb_assert (slot != NULL);
3718 *slot = qfn;
9291a0cd 3719
d721ba37 3720 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3721
aa391654
TT
3722 int offset = 0;
3723 if (strcmp (fnd.name, "<unknown>") != 0)
3724 ++offset;
3725
7ba99d21 3726 qfn->num_file_names = offset + lh->file_names_size ();
8d749320 3727 qfn->file_names =
aa391654
TT
3728 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3729 if (offset != 0)
3730 qfn->file_names[0] = xstrdup (fnd.name);
7ba99d21 3731 for (int i = 0; i < lh->file_names_size (); ++i)
aa391654 3732 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3733 qfn->real_names = NULL;
9291a0cd 3734
094b34ac 3735 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3736}
3737
3738/* A helper for the "quick" functions which attempts to read the line
3739 table for THIS_CU. */
3740
3741static struct quick_file_names *
e4a48d9d 3742dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3743{
0186c6a7
DE
3744 /* This should never be called for TUs. */
3745 gdb_assert (! this_cu->is_debug_types);
3746 /* Nor type unit groups. */
3747 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3748
dee91e82
DE
3749 if (this_cu->v.quick->file_names != NULL)
3750 return this_cu->v.quick->file_names;
3751 /* If we know there is no line data, no point in looking again. */
3752 if (this_cu->v.quick->no_file_data)
3753 return NULL;
3754
0186c6a7 3755 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3756
3757 if (this_cu->v.quick->no_file_data)
3758 return NULL;
3759 return this_cu->v.quick->file_names;
9291a0cd
TT
3760}
3761
3762/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3763 real path for a given file name from the line table. */
2fdf6df6 3764
9291a0cd 3765static const char *
7b9f3c50
DE
3766dw2_get_real_path (struct objfile *objfile,
3767 struct quick_file_names *qfn, int index)
9291a0cd 3768{
7b9f3c50
DE
3769 if (qfn->real_names == NULL)
3770 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3771 qfn->num_file_names, const char *);
9291a0cd 3772
7b9f3c50 3773 if (qfn->real_names[index] == NULL)
14278e1f 3774 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3775
7b9f3c50 3776 return qfn->real_names[index];
9291a0cd
TT
3777}
3778
3779static struct symtab *
3780dw2_find_last_source_symtab (struct objfile *objfile)
3781{
ed2dc618
SM
3782 struct dwarf2_per_objfile *dwarf2_per_objfile
3783 = get_dwarf2_per_objfile (objfile);
b76e467d 3784 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
58f0c718 3785 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
ae2de4f8 3786
43f3e411
DE
3787 if (cust == NULL)
3788 return NULL;
ed2dc618 3789
43f3e411 3790 return compunit_primary_filetab (cust);
9291a0cd
TT
3791}
3792
7b9f3c50
DE
3793/* Traversal function for dw2_forget_cached_source_info. */
3794
3795static int
3796dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3797{
7b9f3c50 3798 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3799
7b9f3c50 3800 if (file_data->real_names)
9291a0cd 3801 {
7b9f3c50 3802 int i;
9291a0cd 3803
7b9f3c50 3804 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3805 {
7b9f3c50
DE
3806 xfree ((void*) file_data->real_names[i]);
3807 file_data->real_names[i] = NULL;
9291a0cd
TT
3808 }
3809 }
7b9f3c50
DE
3810
3811 return 1;
3812}
3813
3814static void
3815dw2_forget_cached_source_info (struct objfile *objfile)
3816{
ed2dc618
SM
3817 struct dwarf2_per_objfile *dwarf2_per_objfile
3818 = get_dwarf2_per_objfile (objfile);
7b9f3c50
DE
3819
3820 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3821 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3822}
3823
f8eba3c6
TT
3824/* Helper function for dw2_map_symtabs_matching_filename that expands
3825 the symtabs and calls the iterator. */
3826
3827static int
3828dw2_map_expand_apply (struct objfile *objfile,
3829 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3830 const char *name, const char *real_path,
14bc53a8 3831 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3832{
43f3e411 3833 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3834
3835 /* Don't visit already-expanded CUs. */
43f3e411 3836 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3837 return 0;
3838
3839 /* This may expand more than one symtab, and we want to iterate over
3840 all of them. */
58f0c718 3841 dw2_instantiate_symtab (per_cu, false);
f8eba3c6 3842
14bc53a8
PA
3843 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3844 last_made, callback);
f8eba3c6
TT
3845}
3846
3847/* Implementation of the map_symtabs_matching_filename method. */
3848
14bc53a8
PA
3849static bool
3850dw2_map_symtabs_matching_filename
3851 (struct objfile *objfile, const char *name, const char *real_path,
3852 gdb::function_view<bool (symtab *)> callback)
9291a0cd 3853{
c011a4f4 3854 const char *name_basename = lbasename (name);
ed2dc618
SM
3855 struct dwarf2_per_objfile *dwarf2_per_objfile
3856 = get_dwarf2_per_objfile (objfile);
ae2de4f8 3857
848e3e78
DE
3858 /* The rule is CUs specify all the files, including those used by
3859 any TU, so there's no need to scan TUs here. */
f4dc4d17 3860
b76e467d 3861 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 3862 {
3d7bb9d9 3863 /* We only need to look at symtabs not already expanded. */
43f3e411 3864 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3865 continue;
3866
b76e467d 3867 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 3868 if (file_data == NULL)
9291a0cd
TT
3869 continue;
3870
b76e467d 3871 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3872 {
7b9f3c50 3873 const char *this_name = file_data->file_names[j];
da235a7c 3874 const char *this_real_name;
9291a0cd 3875
af529f8f 3876 if (compare_filenames_for_search (this_name, name))
9291a0cd 3877 {
f5b95b50 3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3879 callback))
3880 return true;
288e77a7 3881 continue;
4aac40c8 3882 }
9291a0cd 3883
c011a4f4
DE
3884 /* Before we invoke realpath, which can get expensive when many
3885 files are involved, do a quick comparison of the basenames. */
3886 if (! basenames_may_differ
3887 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3888 continue;
3889
da235a7c
JK
3890 this_real_name = dw2_get_real_path (objfile, file_data, j);
3891 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3892 {
da235a7c 3893 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3894 callback))
3895 return true;
288e77a7 3896 continue;
da235a7c 3897 }
9291a0cd 3898
da235a7c
JK
3899 if (real_path != NULL)
3900 {
af529f8f
JK
3901 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3902 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3903 if (this_real_name != NULL
af529f8f 3904 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3905 {
f5b95b50 3906 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3907 callback))
3908 return true;
288e77a7 3909 continue;
9291a0cd
TT
3910 }
3911 }
3912 }
3913 }
3914
14bc53a8 3915 return false;
9291a0cd
TT
3916}
3917
da51c347
DE
3918/* Struct used to manage iterating over all CUs looking for a symbol. */
3919
3920struct dw2_symtab_iterator
9291a0cd 3921{
ed2dc618
SM
3922 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3923 struct dwarf2_per_objfile *dwarf2_per_objfile;
2b79f376
SM
3924 /* If set, only look for symbols that match that block. Valid values are
3925 GLOBAL_BLOCK and STATIC_BLOCK. */
c7f839cb 3926 gdb::optional<block_enum> block_index;
da51c347
DE
3927 /* The kind of symbol we're looking for. */
3928 domain_enum domain;
3929 /* The list of CUs from the index entry of the symbol,
3930 or NULL if not found. */
3931 offset_type *vec;
3932 /* The next element in VEC to look at. */
3933 int next;
3934 /* The number of elements in VEC, or zero if there is no match. */
3935 int length;
8943b874
DE
3936 /* Have we seen a global version of the symbol?
3937 If so we can ignore all further global instances.
3938 This is to work around gold/15646, inefficient gold-generated
3939 indices. */
3940 int global_seen;
da51c347 3941};
9291a0cd 3942
2b79f376 3943/* Initialize the index symtab iterator ITER. */
2fdf6df6 3944
9291a0cd 3945static void
da51c347 3946dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
ed2dc618 3947 struct dwarf2_per_objfile *dwarf2_per_objfile,
c7f839cb 3948 gdb::optional<block_enum> block_index,
da51c347
DE
3949 domain_enum domain,
3950 const char *name)
3951{
ed2dc618 3952 iter->dwarf2_per_objfile = dwarf2_per_objfile;
da51c347
DE
3953 iter->block_index = block_index;
3954 iter->domain = domain;
3955 iter->next = 0;
8943b874 3956 iter->global_seen = 0;
da51c347 3957
3063847f 3958 mapped_index *index = dwarf2_per_objfile->index_table.get ();
ed2dc618
SM
3959
3960 /* index is NULL if OBJF_READNOW. */
3961 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
da51c347
DE
3962 iter->length = MAYBE_SWAP (*iter->vec);
3963 else
3964 {
3965 iter->vec = NULL;
3966 iter->length = 0;
3967 }
3968}
3969
3970/* Return the next matching CU or NULL if there are no more. */
3971
3972static struct dwarf2_per_cu_data *
3973dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3974{
ed2dc618
SM
3975 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3976
da51c347
DE
3977 for ( ; iter->next < iter->length; ++iter->next)
3978 {
3979 offset_type cu_index_and_attrs =
3980 MAYBE_SWAP (iter->vec[iter->next + 1]);
3981 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
da51c347
DE
3982 gdb_index_symbol_kind symbol_kind =
3983 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3984 /* Only check the symbol attributes if they're present.
3985 Indices prior to version 7 don't record them,
3986 and indices >= 7 may elide them for certain symbols
3987 (gold does this). */
3988 int attrs_valid =
ed2dc618 3989 (dwarf2_per_objfile->index_table->version >= 7
da51c347
DE
3990 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3991
3190f0c6 3992 /* Don't crash on bad data. */
b76e467d 3993 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 3994 + dwarf2_per_objfile->all_type_units.size ()))
3190f0c6 3995 {
b98664d3 3996 complaint (_(".gdb_index entry has bad CU index"
4262abfb
JK
3997 " [in module %s]"),
3998 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3999 continue;
4000 }
4001
ff4c9fec 4002 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3190f0c6 4003
da51c347 4004 /* Skip if already read in. */
43f3e411 4005 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
4006 continue;
4007
8943b874
DE
4008 /* Check static vs global. */
4009 if (attrs_valid)
4010 {
2b79f376
SM
4011 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4012
4013 if (iter->block_index.has_value ())
4014 {
4015 bool want_static = *iter->block_index == STATIC_BLOCK;
4016
4017 if (is_static != want_static)
4018 continue;
4019 }
4020
8943b874
DE
4021 /* Work around gold/15646. */
4022 if (!is_static && iter->global_seen)
4023 continue;
4024 if (!is_static)
4025 iter->global_seen = 1;
4026 }
da51c347
DE
4027
4028 /* Only check the symbol's kind if it has one. */
4029 if (attrs_valid)
4030 {
4031 switch (iter->domain)
4032 {
4033 case VAR_DOMAIN:
4034 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4035 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4036 /* Some types are also in VAR_DOMAIN. */
4037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 case STRUCT_DOMAIN:
4041 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4042 continue;
4043 break;
4044 case LABEL_DOMAIN:
4045 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4046 continue;
4047 break;
59c35742
AB
4048 case MODULE_DOMAIN:
4049 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4050 continue;
4051 break;
da51c347
DE
4052 default:
4053 break;
4054 }
4055 }
4056
4057 ++iter->next;
4058 return per_cu;
4059 }
4060
4061 return NULL;
4062}
4063
43f3e411 4064static struct compunit_symtab *
c7f839cb 4065dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
da51c347 4066 const char *name, domain_enum domain)
9291a0cd 4067{
43f3e411 4068 struct compunit_symtab *stab_best = NULL;
ed2dc618
SM
4069 struct dwarf2_per_objfile *dwarf2_per_objfile
4070 = get_dwarf2_per_objfile (objfile);
9291a0cd 4071
b5ec771e
PA
4072 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4073
ed2dc618
SM
4074 struct dw2_symtab_iterator iter;
4075 struct dwarf2_per_cu_data *per_cu;
da51c347 4076
2b79f376 4077 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
9291a0cd 4078
ed2dc618
SM
4079 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4080 {
4081 struct symbol *sym, *with_opaque = NULL;
58f0c718 4082 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
ed2dc618 4083 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
582942f4 4084 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 4085
ed2dc618
SM
4086 sym = block_find_symbol (block, name, domain,
4087 block_find_non_opaque_type_preferred,
4088 &with_opaque);
b2e2f908 4089
ed2dc618
SM
4090 /* Some caution must be observed with overloaded functions
4091 and methods, since the index will not contain any overload
4092 information (but NAME might contain it). */
da51c347 4093
ed2dc618
SM
4094 if (sym != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4096 return stab;
4097 if (with_opaque != NULL
4098 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4099 stab_best = stab;
da51c347 4100
ed2dc618 4101 /* Keep looking through other CUs. */
9291a0cd 4102 }
9291a0cd 4103
da51c347 4104 return stab_best;
9291a0cd
TT
4105}
4106
4107static void
4108dw2_print_stats (struct objfile *objfile)
4109{
ed2dc618
SM
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
b76e467d 4112 int total = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4113 + dwarf2_per_objfile->all_type_units.size ());
ed2dc618 4114 int count = 0;
9291a0cd 4115
ed2dc618 4116 for (int i = 0; i < total; ++i)
9291a0cd 4117 {
ff4c9fec 4118 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4119
43f3e411 4120 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4121 ++count;
4122 }
e4a48d9d 4123 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
4124 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4125}
4126
779bd270
DE
4127/* This dumps minimal information about the index.
4128 It is called via "mt print objfiles".
4129 One use is to verify .gdb_index has been loaded by the
4130 gdb.dwarf2/gdb-index.exp testcase. */
4131
9291a0cd
TT
4132static void
4133dw2_dump (struct objfile *objfile)
4134{
ed2dc618
SM
4135 struct dwarf2_per_objfile *dwarf2_per_objfile
4136 = get_dwarf2_per_objfile (objfile);
4137
779bd270
DE
4138 gdb_assert (dwarf2_per_objfile->using_index);
4139 printf_filtered (".gdb_index:");
4140 if (dwarf2_per_objfile->index_table != NULL)
4141 {
4142 printf_filtered (" version %d\n",
4143 dwarf2_per_objfile->index_table->version);
4144 }
4145 else
4146 printf_filtered (" faked for \"readnow\"\n");
4147 printf_filtered ("\n");
9291a0cd
TT
4148}
4149
9291a0cd
TT
4150static void
4151dw2_expand_symtabs_for_function (struct objfile *objfile,
4152 const char *func_name)
4153{
ed2dc618
SM
4154 struct dwarf2_per_objfile *dwarf2_per_objfile
4155 = get_dwarf2_per_objfile (objfile);
da51c347 4156
ed2dc618
SM
4157 struct dw2_symtab_iterator iter;
4158 struct dwarf2_per_cu_data *per_cu;
da51c347 4159
2b79f376 4160 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
da51c347 4161
ed2dc618 4162 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
58f0c718 4163 dw2_instantiate_symtab (per_cu, false);
da51c347 4164
9291a0cd
TT
4165}
4166
4167static void
4168dw2_expand_all_symtabs (struct objfile *objfile)
4169{
ed2dc618
SM
4170 struct dwarf2_per_objfile *dwarf2_per_objfile
4171 = get_dwarf2_per_objfile (objfile);
b76e467d 4172 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4173 + dwarf2_per_objfile->all_type_units.size ());
9291a0cd 4174
ed2dc618 4175 for (int i = 0; i < total_units; ++i)
9291a0cd 4176 {
ff4c9fec 4177 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4178
58f0c718
TT
4179 /* We don't want to directly expand a partial CU, because if we
4180 read it with the wrong language, then assertion failures can
4181 be triggered later on. See PR symtab/23010. So, tell
4182 dw2_instantiate_symtab to skip partial CUs -- any important
4183 partial CU will be read via DW_TAG_imported_unit anyway. */
4184 dw2_instantiate_symtab (per_cu, true);
9291a0cd
TT
4185 }
4186}
4187
4188static void
652a8996
JK
4189dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4190 const char *fullname)
9291a0cd 4191{
ed2dc618
SM
4192 struct dwarf2_per_objfile *dwarf2_per_objfile
4193 = get_dwarf2_per_objfile (objfile);
d4637a04
DE
4194
4195 /* We don't need to consider type units here.
4196 This is only called for examining code, e.g. expand_line_sal.
4197 There can be an order of magnitude (or more) more type units
4198 than comp units, and we avoid them if we can. */
4199
b76e467d 4200 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 4201 {
3d7bb9d9 4202 /* We only need to look at symtabs not already expanded. */
43f3e411 4203 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4204 continue;
4205
b76e467d 4206 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 4207 if (file_data == NULL)
9291a0cd
TT
4208 continue;
4209
b76e467d 4210 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4211 {
652a8996
JK
4212 const char *this_fullname = file_data->file_names[j];
4213
4214 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4215 {
58f0c718 4216 dw2_instantiate_symtab (per_cu, false);
9291a0cd
TT
4217 break;
4218 }
4219 }
4220 }
4221}
4222
9291a0cd 4223static void
199b4314
TT
4224dw2_map_matching_symbols
4225 (struct objfile *objfile,
b054970d 4226 const lookup_name_info &name, domain_enum domain,
199b4314
TT
4227 int global,
4228 gdb::function_view<symbol_found_callback_ftype> callback,
199b4314 4229 symbol_compare_ftype *ordered_compare)
9291a0cd 4230{
40658b94 4231 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4234}
4235
e1ef7d7a
PA
4236/* Starting from a search name, return the string that finds the upper
4237 bound of all strings that start with SEARCH_NAME in a sorted name
4238 list. Returns the empty string to indicate that the upper bound is
4239 the end of the list. */
4240
4241static std::string
4242make_sort_after_prefix_name (const char *search_name)
4243{
4244 /* When looking to complete "func", we find the upper bound of all
4245 symbols that start with "func" by looking for where we'd insert
4246 the closest string that would follow "func" in lexicographical
4247 order. Usually, that's "func"-with-last-character-incremented,
4248 i.e. "fund". Mind non-ASCII characters, though. Usually those
4249 will be UTF-8 multi-byte sequences, but we can't be certain.
4250 Especially mind the 0xff character, which is a valid character in
4251 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4252 rule out compilers allowing it in identifiers. Note that
4253 conveniently, strcmp/strcasecmp are specified to compare
4254 characters interpreted as unsigned char. So what we do is treat
4255 the whole string as a base 256 number composed of a sequence of
4256 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4257 to 0, and carries 1 to the following more-significant position.
4258 If the very first character in SEARCH_NAME ends up incremented
4259 and carries/overflows, then the upper bound is the end of the
4260 list. The string after the empty string is also the empty
4261 string.
4262
4263 Some examples of this operation:
4264
4265 SEARCH_NAME => "+1" RESULT
4266
4267 "abc" => "abd"
4268 "ab\xff" => "ac"
4269 "\xff" "a" "\xff" => "\xff" "b"
4270 "\xff" => ""
4271 "\xff\xff" => ""
4272 "" => ""
4273
4274 Then, with these symbols for example:
4275
4276 func
4277 func1
4278 fund
4279
4280 completing "func" looks for symbols between "func" and
4281 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4282 which finds "func" and "func1", but not "fund".
4283
4284 And with:
4285
4286 funcÿ (Latin1 'ÿ' [0xff])
4287 funcÿ1
4288 fund
4289
4290 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4291 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4292
4293 And with:
4294
4295 ÿÿ (Latin1 'ÿ' [0xff])
4296 ÿÿ1
4297
4298 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4299 the end of the list.
4300 */
4301 std::string after = search_name;
4302 while (!after.empty () && (unsigned char) after.back () == 0xff)
4303 after.pop_back ();
4304 if (!after.empty ())
4305 after.back () = (unsigned char) after.back () + 1;
4306 return after;
4307}
4308
5c58de74 4309/* See declaration. */
61d96d7e 4310
5c58de74
PA
4311std::pair<std::vector<name_component>::const_iterator,
4312 std::vector<name_component>::const_iterator>
44ed8f3e 4313mapped_index_base::find_name_components_bounds
3b00ef10 4314 (const lookup_name_info &lookup_name_without_params, language lang) const
3f563c84 4315{
5c58de74
PA
4316 auto *name_cmp
4317 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3f563c84 4318
3b00ef10
TT
4319 const char *lang_name
4320 = lookup_name_without_params.language_lookup_name (lang).c_str ();
9291a0cd 4321
3f563c84
PA
4322 /* Comparison function object for lower_bound that matches against a
4323 given symbol name. */
4324 auto lookup_compare_lower = [&] (const name_component &elem,
4325 const char *name)
4326 {
5c58de74 4327 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4328 const char *elem_name = elem_qualified + elem.name_offset;
4329 return name_cmp (elem_name, name) < 0;
4330 };
4331
4332 /* Comparison function object for upper_bound that matches against a
4333 given symbol name. */
4334 auto lookup_compare_upper = [&] (const char *name,
4335 const name_component &elem)
4336 {
5c58de74 4337 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4338 const char *elem_name = elem_qualified + elem.name_offset;
4339 return name_cmp (name, elem_name) < 0;
4340 };
4341
5c58de74
PA
4342 auto begin = this->name_components.begin ();
4343 auto end = this->name_components.end ();
3f563c84
PA
4344
4345 /* Find the lower bound. */
4346 auto lower = [&] ()
4347 {
3b00ef10 4348 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3f563c84
PA
4349 return begin;
4350 else
3b00ef10 4351 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3f563c84
PA
4352 } ();
4353
4354 /* Find the upper bound. */
4355 auto upper = [&] ()
4356 {
5c58de74 4357 if (lookup_name_without_params.completion_mode ())
3f563c84 4358 {
e1ef7d7a
PA
4359 /* In completion mode, we want UPPER to point past all
4360 symbols names that have the same prefix. I.e., with
4361 these symbols, and completing "func":
4362
4363 function << lower bound
4364 function1
4365 other_function << upper bound
4366
4367 We find the upper bound by looking for the insertion
4368 point of "func"-with-last-character-incremented,
4369 i.e. "fund". */
3b00ef10 4370 std::string after = make_sort_after_prefix_name (lang_name);
e1ef7d7a 4371 if (after.empty ())
3f563c84 4372 return end;
e6b2f5ef
PA
4373 return std::lower_bound (lower, end, after.c_str (),
4374 lookup_compare_lower);
3f563c84
PA
4375 }
4376 else
3b00ef10 4377 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3f563c84
PA
4378 } ();
4379
5c58de74
PA
4380 return {lower, upper};
4381}
4382
4383/* See declaration. */
4384
4385void
44ed8f3e 4386mapped_index_base::build_name_components ()
5c58de74
PA
4387{
4388 if (!this->name_components.empty ())
4389 return;
4390
4391 this->name_components_casing = case_sensitivity;
4392 auto *name_cmp
4393 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4394
4395 /* The code below only knows how to break apart components of C++
4396 symbol names (and other languages that use '::' as
3b00ef10 4397 namespace/module separator) and Ada symbol names. */
44ed8f3e
PA
4398 auto count = this->symbol_name_count ();
4399 for (offset_type idx = 0; idx < count; idx++)
5c58de74 4400 {
44ed8f3e 4401 if (this->symbol_name_slot_invalid (idx))
5c58de74
PA
4402 continue;
4403
4404 const char *name = this->symbol_name_at (idx);
4405
4406 /* Add each name component to the name component table. */
4407 unsigned int previous_len = 0;
3b00ef10
TT
4408
4409 if (strstr (name, "::") != nullptr)
4410 {
4411 for (unsigned int current_len = cp_find_first_component (name);
4412 name[current_len] != '\0';
4413 current_len += cp_find_first_component (name + current_len))
4414 {
4415 gdb_assert (name[current_len] == ':');
4416 this->name_components.push_back ({previous_len, idx});
4417 /* Skip the '::'. */
4418 current_len += 2;
4419 previous_len = current_len;
4420 }
4421 }
4422 else
5c58de74 4423 {
3b00ef10
TT
4424 /* Handle the Ada encoded (aka mangled) form here. */
4425 for (const char *iter = strstr (name, "__");
4426 iter != nullptr;
4427 iter = strstr (iter, "__"))
4428 {
4429 this->name_components.push_back ({previous_len, idx});
4430 iter += 2;
4431 previous_len = iter - name;
4432 }
5c58de74 4433 }
3b00ef10 4434
5c58de74
PA
4435 this->name_components.push_back ({previous_len, idx});
4436 }
4437
4438 /* Sort name_components elements by name. */
4439 auto name_comp_compare = [&] (const name_component &left,
4440 const name_component &right)
4441 {
4442 const char *left_qualified = this->symbol_name_at (left.idx);
4443 const char *right_qualified = this->symbol_name_at (right.idx);
4444
4445 const char *left_name = left_qualified + left.name_offset;
4446 const char *right_name = right_qualified + right.name_offset;
4447
4448 return name_cmp (left_name, right_name) < 0;
4449 };
4450
4451 std::sort (this->name_components.begin (),
4452 this->name_components.end (),
4453 name_comp_compare);
4454}
4455
4456/* Helper for dw2_expand_symtabs_matching that works with a
44ed8f3e
PA
4457 mapped_index_base instead of the containing objfile. This is split
4458 to a separate function in order to be able to unit test the
4459 name_components matching using a mock mapped_index_base. For each
5c58de74 4460 symbol name that matches, calls MATCH_CALLBACK, passing it the
44ed8f3e 4461 symbol's index in the mapped_index_base symbol table. */
5c58de74
PA
4462
4463static void
4464dw2_expand_symtabs_matching_symbol
44ed8f3e 4465 (mapped_index_base &index,
5c58de74
PA
4466 const lookup_name_info &lookup_name_in,
4467 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4468 enum search_domain kind,
3b00ef10 4469 gdb::function_view<bool (offset_type)> match_callback)
5c58de74
PA
4470{
4471 lookup_name_info lookup_name_without_params
4472 = lookup_name_in.make_ignore_params ();
5c58de74
PA
4473
4474 /* Build the symbol name component sorted vector, if we haven't
4475 yet. */
4476 index.build_name_components ();
4477
3f563c84
PA
4478 /* The same symbol may appear more than once in the range though.
4479 E.g., if we're looking for symbols that complete "w", and we have
4480 a symbol named "w1::w2", we'll find the two name components for
4481 that same symbol in the range. To be sure we only call the
4482 callback once per symbol, we first collect the symbol name
4483 indexes that matched in a temporary vector and ignore
4484 duplicates. */
4485 std::vector<offset_type> matches;
3f563c84 4486
3b00ef10
TT
4487 struct name_and_matcher
4488 {
4489 symbol_name_matcher_ftype *matcher;
4490 const std::string &name;
4491
4492 bool operator== (const name_and_matcher &other) const
3f563c84 4493 {
3b00ef10
TT
4494 return matcher == other.matcher && name == other.name;
4495 }
4496 };
4497
4498 /* A vector holding all the different symbol name matchers, for all
4499 languages. */
4500 std::vector<name_and_matcher> matchers;
4501
4502 for (int i = 0; i < nr_languages; i++)
4503 {
4504 enum language lang_e = (enum language) i;
4505
4506 const language_defn *lang = language_def (lang_e);
4507 symbol_name_matcher_ftype *name_matcher
4508 = get_symbol_name_matcher (lang, lookup_name_without_params);
3f563c84 4509
3b00ef10
TT
4510 name_and_matcher key {
4511 name_matcher,
4512 lookup_name_without_params.language_lookup_name (lang_e)
4513 };
4514
4515 /* Don't insert the same comparison routine more than once.
4516 Note that we do this linear walk. This is not a problem in
4517 practice because the number of supported languages is
4518 low. */
4519 if (std::find (matchers.begin (), matchers.end (), key)
4520 != matchers.end ())
9291a0cd 4521 continue;
3b00ef10
TT
4522 matchers.push_back (std::move (key));
4523
4524 auto bounds
4525 = index.find_name_components_bounds (lookup_name_without_params,
4526 lang_e);
4527
4528 /* Now for each symbol name in range, check to see if we have a name
4529 match, and if so, call the MATCH_CALLBACK callback. */
4530
4531 for (; bounds.first != bounds.second; ++bounds.first)
4532 {
4533 const char *qualified = index.symbol_name_at (bounds.first->idx);
4534
4535 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4536 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4537 continue;
9291a0cd 4538
3b00ef10
TT
4539 matches.push_back (bounds.first->idx);
4540 }
3f563c84
PA
4541 }
4542
4543 std::sort (matches.begin (), matches.end ());
4544
4545 /* Finally call the callback, once per match. */
4546 ULONGEST prev = -1;
4547 for (offset_type idx : matches)
4548 {
4549 if (prev != idx)
4550 {
3b00ef10
TT
4551 if (!match_callback (idx))
4552 break;
3f563c84
PA
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560}
4561
c62446b1
PA
4562#if GDB_SELF_TEST
4563
4564namespace selftests { namespace dw2_expand_symtabs_matching {
4565
a3c5fafd
PA
4566/* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570class mock_mapped_index : public mapped_index_base
c62446b1
PA
4571{
4572public:
a3c5fafd
PA
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
c62446b1
PA
4575 {}
4576
a3c5fafd 4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
c62446b1 4578
a3c5fafd 4579 /* Return the number of names in the symbol table. */
632e107b 4580 size_t symbol_name_count () const override
c62446b1 4581 {
a3c5fafd 4582 return m_symbol_table.size ();
c62446b1
PA
4583 }
4584
a3c5fafd 4585 /* Get the name of the symbol at IDX in the symbol table. */
632e107b 4586 const char *symbol_name_at (offset_type idx) const override
a3c5fafd
PA
4587 {
4588 return m_symbol_table[idx];
4589 }
c62446b1 4590
a3c5fafd
PA
4591private:
4592 gdb::array_view<const char *> m_symbol_table;
c62446b1
PA
4593};
4594
4595/* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598static const char *
4599string_or_null (const char *str)
4600{
4601 return str != NULL ? str : "<null>";
4602}
4603
4604/* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611static bool
4612check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617{
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
a3c5fafd 4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
c62446b1
PA
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
a3c5fafd 4641 const char *matched_name = mock_index.symbol_name_at (idx);
c62446b1
PA
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
3b00ef10 4647 return true;
c62446b1
PA
4648 });
4649
4650 const char *expected_str
4651 = expected_it == expected_end ? NULL : *expected_it++;
4652 if (expected_str != NULL)
4653 mismatch (expected_str, NULL);
4654
4655 return matched;
4656}
4657
4658/* The symbols added to the mock mapped_index for testing (in
4659 canonical form). */
4660static const char *test_symbols[] = {
4661 "function",
4662 "std::bar",
4663 "std::zfunction",
4664 "std::zfunction2",
4665 "w1::w2",
4666 "ns::foo<char*>",
4667 "ns::foo<int>",
4668 "ns::foo<long>",
a20714ff
PA
4669 "ns2::tmpl<int>::foo2",
4670 "(anonymous namespace)::A::B::C",
c62446b1 4671
e1ef7d7a
PA
4672 /* These are used to check that the increment-last-char in the
4673 matching algorithm for completion doesn't match "t1_fund" when
4674 completing "t1_func". */
4675 "t1_func",
4676 "t1_func1",
4677 "t1_fund",
4678 "t1_fund1",
4679
4680 /* A UTF-8 name with multi-byte sequences to make sure that
4681 cp-name-parser understands this as a single identifier ("função"
4682 is "function" in PT). */
4683 u8"u8função",
4684
4685 /* \377 (0xff) is Latin1 'ÿ'. */
4686 "yfunc\377",
4687
4688 /* \377 (0xff) is Latin1 'ÿ'. */
4689 "\377",
4690 "\377\377123",
4691
c62446b1
PA
4692 /* A name with all sorts of complications. Starts with "z" to make
4693 it easier for the completion tests below. */
4694#define Z_SYM_NAME \
4695 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4696 "::tuple<(anonymous namespace)::ui*, " \
4697 "std::default_delete<(anonymous namespace)::ui>, void>"
4698
4699 Z_SYM_NAME
4700};
4701
a3c5fafd
PA
4702/* Returns true if the mapped_index_base::find_name_component_bounds
4703 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4704 in completion mode. */
5c58de74
PA
4705
4706static bool
a3c5fafd 4707check_find_bounds_finds (mapped_index_base &index,
5c58de74
PA
4708 const char *search_name,
4709 gdb::array_view<const char *> expected_syms)
4710{
4711 lookup_name_info lookup_name (search_name,
4712 symbol_name_match_type::FULL, true);
4713
3b00ef10
TT
4714 auto bounds = index.find_name_components_bounds (lookup_name,
4715 language_cplus);
5c58de74
PA
4716
4717 size_t distance = std::distance (bounds.first, bounds.second);
4718 if (distance != expected_syms.size ())
4719 return false;
4720
4721 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4722 {
4723 auto nc_elem = bounds.first + exp_elem;
4724 const char *qualified = index.symbol_name_at (nc_elem->idx);
4725 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4726 return false;
4727 }
4728
4729 return true;
4730}
4731
4732/* Test the lower-level mapped_index::find_name_component_bounds
4733 method. */
4734
c62446b1 4735static void
5c58de74
PA
4736test_mapped_index_find_name_component_bounds ()
4737{
4738 mock_mapped_index mock_index (test_symbols);
4739
a3c5fafd 4740 mock_index.build_name_components ();
5c58de74
PA
4741
4742 /* Test the lower-level mapped_index::find_name_component_bounds
4743 method in completion mode. */
4744 {
4745 static const char *expected_syms[] = {
4746 "t1_func",
4747 "t1_func1",
5c58de74
PA
4748 };
4749
a3c5fafd 4750 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4751 "t1_func", expected_syms));
4752 }
4753
4754 /* Check that the increment-last-char in the name matching algorithm
4755 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4756 {
4757 static const char *expected_syms1[] = {
4758 "\377",
4759 "\377\377123",
4760 };
a3c5fafd 4761 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4762 "\377", expected_syms1));
4763
4764 static const char *expected_syms2[] = {
4765 "\377\377123",
4766 };
a3c5fafd 4767 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4768 "\377\377", expected_syms2));
4769 }
4770}
4771
4772/* Test dw2_expand_symtabs_matching_symbol. */
4773
4774static void
4775test_dw2_expand_symtabs_matching_symbol ()
c62446b1
PA
4776{
4777 mock_mapped_index mock_index (test_symbols);
4778
4779 /* We let all tests run until the end even if some fails, for debug
4780 convenience. */
4781 bool any_mismatch = false;
4782
4783 /* Create the expected symbols list (an initializer_list). Needed
4784 because lists have commas, and we need to pass them to CHECK,
4785 which is a macro. */
4786#define EXPECT(...) { __VA_ARGS__ }
4787
4788 /* Wrapper for check_match that passes down the current
4789 __FILE__/__LINE__. */
4790#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4791 any_mismatch |= !check_match (__FILE__, __LINE__, \
4792 mock_index, \
4793 NAME, MATCH_TYPE, COMPLETION_MODE, \
4794 EXPECTED_LIST)
4795
4796 /* Identity checks. */
4797 for (const char *sym : test_symbols)
4798 {
4799 /* Should be able to match all existing symbols. */
4800 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4801 EXPECT (sym));
4802
4803 /* Should be able to match all existing symbols with
4804 parameters. */
4805 std::string with_params = std::string (sym) + "(int)";
4806 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4807 EXPECT (sym));
4808
4809 /* Should be able to match all existing symbols with
4810 parameters and qualifiers. */
4811 with_params = std::string (sym) + " ( int ) const";
4812 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 EXPECT (sym));
4814
4815 /* This should really find sym, but cp-name-parser.y doesn't
4816 know about lvalue/rvalue qualifiers yet. */
4817 with_params = std::string (sym) + " ( int ) &&";
4818 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4819 {});
4820 }
4821
e1ef7d7a
PA
4822 /* Check that the name matching algorithm for completion doesn't get
4823 confused with Latin1 'ÿ' / 0xff. */
4824 {
4825 static const char str[] = "\377";
4826 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4827 EXPECT ("\377", "\377\377123"));
4828 }
4829
4830 /* Check that the increment-last-char in the matching algorithm for
4831 completion doesn't match "t1_fund" when completing "t1_func". */
4832 {
4833 static const char str[] = "t1_func";
4834 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4835 EXPECT ("t1_func", "t1_func1"));
4836 }
4837
c62446b1
PA
4838 /* Check that completion mode works at each prefix of the expected
4839 symbol name. */
4840 {
4841 static const char str[] = "function(int)";
4842 size_t len = strlen (str);
4843 std::string lookup;
4844
4845 for (size_t i = 1; i < len; i++)
4846 {
4847 lookup.assign (str, i);
4848 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4849 EXPECT ("function"));
4850 }
4851 }
4852
4853 /* While "w" is a prefix of both components, the match function
4854 should still only be called once. */
4855 {
4856 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4857 EXPECT ("w1::w2"));
a20714ff
PA
4858 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4859 EXPECT ("w1::w2"));
c62446b1
PA
4860 }
4861
4862 /* Same, with a "complicated" symbol. */
4863 {
4864 static const char str[] = Z_SYM_NAME;
4865 size_t len = strlen (str);
4866 std::string lookup;
4867
4868 for (size_t i = 1; i < len; i++)
4869 {
4870 lookup.assign (str, i);
4871 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4872 EXPECT (Z_SYM_NAME));
4873 }
4874 }
4875
4876 /* In FULL mode, an incomplete symbol doesn't match. */
4877 {
4878 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4879 {});
4880 }
4881
4882 /* A complete symbol with parameters matches any overload, since the
4883 index has no overload info. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
a20714ff
PA
4887 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4890 EXPECT ("std::zfunction", "std::zfunction2"));
c62446b1
PA
4891 }
4892
4893 /* Check that whitespace is ignored appropriately. A symbol with a
4894 template argument list. */
4895 {
4896 static const char expected[] = "ns::foo<int>";
4897 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4898 EXPECT (expected));
a20714ff
PA
4899 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4900 EXPECT (expected));
c62446b1
PA
4901 }
4902
4903 /* Check that whitespace is ignored appropriately. A symbol with a
4904 template argument list that includes a pointer. */
4905 {
4906 static const char expected[] = "ns::foo<char*>";
4907 /* Try both completion and non-completion modes. */
4908 static const bool completion_mode[2] = {false, true};
4909 for (size_t i = 0; i < 2; i++)
4910 {
4911 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4912 completion_mode[i], EXPECT (expected));
a20714ff
PA
4913 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4914 completion_mode[i], EXPECT (expected));
c62446b1
PA
4915
4916 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
a20714ff
PA
4918 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
c62446b1
PA
4920 }
4921 }
4922
4923 {
4924 /* Check method qualifiers are ignored. */
4925 static const char expected[] = "ns::foo<char*>";
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4929 symbol_name_match_type::FULL, true, EXPECT (expected));
a20714ff
PA
4930 CHECK_MATCH ("foo < char * > ( int ) const",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 CHECK_MATCH ("foo < char * > ( int ) &&",
4933 symbol_name_match_type::WILD, true, EXPECT (expected));
c62446b1
PA
4934 }
4935
4936 /* Test lookup names that don't match anything. */
4937 {
a20714ff
PA
4938 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4939 {});
4940
c62446b1
PA
4941 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4942 {});
4943 }
4944
a20714ff
PA
4945 /* Some wild matching tests, exercising "(anonymous namespace)",
4946 which should not be confused with a parameter list. */
4947 {
4948 static const char *syms[] = {
4949 "A::B::C",
4950 "B::C",
4951 "C",
4952 "A :: B :: C ( int )",
4953 "B :: C ( int )",
4954 "C ( int )",
4955 };
4956
4957 for (const char *s : syms)
4958 {
4959 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4960 EXPECT ("(anonymous namespace)::A::B::C"));
4961 }
4962 }
4963
4964 {
4965 static const char expected[] = "ns2::tmpl<int>::foo2";
4966 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4969 EXPECT (expected));
4970 }
4971
c62446b1
PA
4972 SELF_CHECK (!any_mismatch);
4973
4974#undef EXPECT
4975#undef CHECK_MATCH
4976}
4977
5c58de74
PA
4978static void
4979run_test ()
4980{
4981 test_mapped_index_find_name_component_bounds ();
4982 test_dw2_expand_symtabs_matching_symbol ();
4983}
4984
c62446b1
PA
4985}} // namespace selftests::dw2_expand_symtabs_matching
4986
4987#endif /* GDB_SELF_TEST */
4988
4b514bc8
JK
4989/* If FILE_MATCHER is NULL or if PER_CU has
4990 dwarf2_per_cu_quick_data::MARK set (see
4991 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4992 EXPANSION_NOTIFY on it. */
4993
4994static void
4995dw2_expand_symtabs_matching_one
4996 (struct dwarf2_per_cu_data *per_cu,
4997 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4998 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4999{
5000 if (file_matcher == NULL || per_cu->v.quick->mark)
5001 {
5002 bool symtab_was_null
5003 = (per_cu->v.quick->compunit_symtab == NULL);
5004
58f0c718 5005 dw2_instantiate_symtab (per_cu, false);
4b514bc8
JK
5006
5007 if (expansion_notify != NULL
5008 && symtab_was_null
5009 && per_cu->v.quick->compunit_symtab != NULL)
5010 expansion_notify (per_cu->v.quick->compunit_symtab);
5011 }
5012}
5013
3f563c84
PA
5014/* Helper for dw2_expand_matching symtabs. Called on each symbol
5015 matched, to expand corresponding CUs that were marked. IDX is the
5016 index of the symbol name that matched. */
5017
5018static void
5019dw2_expand_marked_cus
ed2dc618 5020 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
3f563c84
PA
5021 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5022 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5023 search_domain kind)
5024{
3f563c84
PA
5025 offset_type *vec, vec_len, vec_idx;
5026 bool global_seen = false;
ed2dc618 5027 mapped_index &index = *dwarf2_per_objfile->index_table;
3f563c84 5028
61920122 5029 vec = (offset_type *) (index.constant_pool
f00a2de2 5030 + MAYBE_SWAP (index.symbol_table[idx].vec));
61920122
PA
5031 vec_len = MAYBE_SWAP (vec[0]);
5032 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5033 {
61920122
PA
5034 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5035 /* This value is only valid for index versions >= 7. */
5036 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5037 gdb_index_symbol_kind symbol_kind =
5038 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5039 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5040 /* Only check the symbol attributes if they're present.
5041 Indices prior to version 7 don't record them,
5042 and indices >= 7 may elide them for certain symbols
5043 (gold does this). */
5044 int attrs_valid =
5045 (index.version >= 7
5046 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5047
5048 /* Work around gold/15646. */
5049 if (attrs_valid)
9291a0cd 5050 {
61920122
PA
5051 if (!is_static && global_seen)
5052 continue;
5053 if (!is_static)
5054 global_seen = true;
5055 }
3190f0c6 5056
61920122
PA
5057 /* Only check the symbol's kind if it has one. */
5058 if (attrs_valid)
5059 {
5060 switch (kind)
8943b874 5061 {
61920122
PA
5062 case VARIABLES_DOMAIN:
5063 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5064 continue;
5065 break;
5066 case FUNCTIONS_DOMAIN:
5067 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
8943b874 5068 continue;
61920122
PA
5069 break;
5070 case TYPES_DOMAIN:
5071 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5072 continue;
5073 break;
59c35742
AB
5074 case MODULES_DOMAIN:
5075 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
5076 continue;
5077 break;
61920122
PA
5078 default:
5079 break;
8943b874 5080 }
61920122 5081 }
8943b874 5082
61920122 5083 /* Don't crash on bad data. */
b76e467d 5084 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 5085 + dwarf2_per_objfile->all_type_units.size ()))
61920122 5086 {
b98664d3 5087 complaint (_(".gdb_index entry has bad CU index"
ed2dc618
SM
5088 " [in module %s]"),
5089 objfile_name (dwarf2_per_objfile->objfile));
61920122
PA
5090 continue;
5091 }
5092
ff4c9fec 5093 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4b514bc8
JK
5094 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5095 expansion_notify);
61920122
PA
5096 }
5097}
5098
4b514bc8
JK
5099/* If FILE_MATCHER is non-NULL, set all the
5100 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5101 that match FILE_MATCHER. */
5102
61920122 5103static void
4b514bc8 5104dw_expand_symtabs_matching_file_matcher
ed2dc618
SM
5105 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
61920122 5107{
4b514bc8 5108 if (file_matcher == NULL)
61920122
PA
5109 return;
5110
4b514bc8
JK
5111 objfile *const objfile = dwarf2_per_objfile->objfile;
5112
5113 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5114 htab_eq_pointer,
5115 NULL, xcalloc, xfree));
5116 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
61920122
PA
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
61920122 5119
4b514bc8
JK
5120 /* The rule is CUs specify all the files, including those used by
5121 any TU, so there's no need to scan TUs here. */
61920122 5122
b76e467d 5123 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5124 {
927aa2e7
JK
5125 QUIT;
5126
5127 per_cu->v.quick->mark = 0;
5128
5129 /* We only need to look at symtabs not already expanded. */
5130 if (per_cu->v.quick->compunit_symtab)
5131 continue;
5132
b76e467d 5133 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5134 if (file_data == NULL)
5135 continue;
5136
5137 if (htab_find (visited_not_found.get (), file_data) != NULL)
5138 continue;
5139 else if (htab_find (visited_found.get (), file_data) != NULL)
5140 {
5141 per_cu->v.quick->mark = 1;
5142 continue;
5143 }
5144
b76e467d 5145 for (int j = 0; j < file_data->num_file_names; ++j)
927aa2e7
JK
5146 {
5147 const char *this_real_name;
5148
5149 if (file_matcher (file_data->file_names[j], false))
5150 {
5151 per_cu->v.quick->mark = 1;
5152 break;
5153 }
5154
5155 /* Before we invoke realpath, which can get expensive when many
5156 files are involved, do a quick comparison of the basenames. */
5157 if (!basenames_may_differ
5158 && !file_matcher (lbasename (file_data->file_names[j]),
5159 true))
5160 continue;
5161
5162 this_real_name = dw2_get_real_path (objfile, file_data, j);
5163 if (file_matcher (this_real_name, false))
5164 {
5165 per_cu->v.quick->mark = 1;
5166 break;
5167 }
5168 }
5169
b76e467d
SM
5170 void **slot = htab_find_slot (per_cu->v.quick->mark
5171 ? visited_found.get ()
5172 : visited_not_found.get (),
5173 file_data, INSERT);
927aa2e7
JK
5174 *slot = file_data;
5175 }
5176}
5177
5178static void
5179dw2_expand_symtabs_matching
5180 (struct objfile *objfile,
5181 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5182 const lookup_name_info &lookup_name,
5183 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5184 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5185 enum search_domain kind)
5186{
ed2dc618
SM
5187 struct dwarf2_per_objfile *dwarf2_per_objfile
5188 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5189
5190 /* index_table is NULL if OBJF_READNOW. */
5191 if (!dwarf2_per_objfile->index_table)
5192 return;
5193
ed2dc618 5194 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
927aa2e7
JK
5195
5196 mapped_index &index = *dwarf2_per_objfile->index_table;
5197
5198 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5199 symbol_matcher,
5200 kind, [&] (offset_type idx)
5201 {
ed2dc618 5202 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
927aa2e7 5203 expansion_notify, kind);
3b00ef10 5204 return true;
927aa2e7
JK
5205 });
5206}
5207
5208/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5209 symtab. */
5210
5211static struct compunit_symtab *
5212recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5213 CORE_ADDR pc)
5214{
5215 int i;
5216
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5219 return cust;
5220
5221 if (cust->includes == NULL)
5222 return NULL;
5223
5224 for (i = 0; cust->includes[i]; ++i)
5225 {
5226 struct compunit_symtab *s = cust->includes[i];
5227
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5229 if (s != NULL)
5230 return s;
5231 }
5232
5233 return NULL;
5234}
5235
5236static struct compunit_symtab *
5237dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5239 CORE_ADDR pc,
5240 struct obj_section *section,
5241 int warn_if_readin)
5242{
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5245
d320c2b5 5246 if (!objfile->partial_symtabs->psymtabs_addrmap)
927aa2e7
JK
5247 return NULL;
5248
79748972
TT
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
d320c2b5
TT
5251 data = (struct dwarf2_per_cu_data *) addrmap_find
5252 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
927aa2e7
JK
5253 if (!data)
5254 return NULL;
5255
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5259
5260 result
58f0c718
TT
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5262 false),
927aa2e7
JK
5263 pc);
5264 gdb_assert (result != NULL);
5265 return result;
5266}
5267
5268static void
5269dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5271{
ed2dc618
SM
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5274
5275 if (!dwarf2_per_objfile->filenames_cache)
5276 {
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5278
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5282
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5286
b76e467d 5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5288 {
927aa2e7
JK
5289 if (per_cu->v.quick->compunit_symtab)
5290 {
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5293 INSERT);
5294
5295 *slot = per_cu->v.quick->file_names;
5296 }
5297 }
5298
b76e467d 5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5300 {
927aa2e7
JK
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5303 continue;
5304
b76e467d 5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5306 if (file_data == NULL)
5307 continue;
5308
b76e467d 5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
927aa2e7
JK
5310 if (*slot)
5311 {
5312 /* Already visited. */
5313 continue;
5314 }
5315 *slot = file_data;
5316
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5318 {
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5321 }
5322 }
5323 }
5324
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5326 {
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5328
5329 if (need_fullname)
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5332 });
5333}
5334
5335static int
5336dw2_has_symbols (struct objfile *objfile)
5337{
5338 return 1;
5339}
5340
5341const struct quick_symbol_functions dwarf2_gdb_index_functions =
5342{
5343 dw2_has_symbols,
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5347 dw2_lookup_symbol,
5348 dw2_print_stats,
5349 dw2_dump,
927aa2e7
JK
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5356 NULL,
5357 dw2_map_symbol_filenames
5358};
5359
5360/* DWARF-5 debug_names reader. */
5361
5362/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5364
5365/* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5368
5369 Returns true if all went well, false otherwise. */
5370
5371static bool
5372read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5376{
5377 if (dwarf2_section_empty_p (section))
5378 return false;
5379
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5383 return false;
5384
5385 dwarf2_read_section (objfile, section);
5386
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5388
5389 const gdb_byte *addr = section->buffer;
5390
5391 bfd *const abfd = get_section_bfd_owner (section);
5392
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5395 addr += bytes_read;
5396
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5400 {
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5406 return false;
5407 }
5408
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (version != 5)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5416 filename, version);
5417 return false;
5418 }
5419
5420 /* Padding. */
5421 uint16_t padding = read_2_bytes (abfd, addr);
5422 addr += 2;
5423 if (padding != 0)
5424 {
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5427 filename, padding);
5428 return false;
5429 }
5430
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434
5435 /* local_type_unit_count - The number of TUs in the local TU
5436 list. */
5437 map.tu_count = read_4_bytes (abfd, addr);
5438 addr += 4;
5439
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5441 list. */
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5443 addr += 4;
5444 if (foreign_tu_count != 0)
5445 {
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5449 return false;
5450 }
5451
5452 /* bucket_count - The number of hash buckets in the hash lookup
5453 table. */
5454 map.bucket_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5462 table. */
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5476
5477 /* List of CUs */
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5480
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5484
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5490
5491 /* Name Table */
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496
5497 const gdb_byte *abbrev_table_start = addr;
5498 for (;;)
5499 {
927aa2e7
JK
5500 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5501 addr += bytes_read;
5502 if (index_num == 0)
5503 break;
5504
5505 const auto insertpair
5506 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5507 if (!insertpair.second)
5508 {
5509 warning (_("Section .debug_names in %s has duplicate index %s, "
5510 "ignoring .debug_names."),
5511 filename, pulongest (index_num));
5512 return false;
5513 }
5514 mapped_debug_names::index_val &indexval = insertpair.first->second;
5515 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5516 addr += bytes_read;
5517
5518 for (;;)
5519 {
5520 mapped_debug_names::index_val::attr attr;
5521 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5522 addr += bytes_read;
5523 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 if (attr.form == DW_FORM_implicit_const)
5526 {
5527 attr.implicit_const = read_signed_leb128 (abfd, addr,
5528 &bytes_read);
5529 addr += bytes_read;
5530 }
5531 if (attr.dw_idx == 0 && attr.form == 0)
5532 break;
5533 indexval.attr_vec.push_back (std::move (attr));
5534 }
5535 }
5536 if (addr != abbrev_table_start + abbrev_table_size)
5537 {
5538 warning (_("Section .debug_names in %s has abbreviation_table "
47e3f474
TV
5539 "of size %s vs. written as %u, ignoring .debug_names."),
5540 filename, plongest (addr - abbrev_table_start),
5541 abbrev_table_size);
927aa2e7
JK
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547}
5548
5549/* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552static void
ed2dc618 5553create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
b76e467d 5556 bool is_dwz)
927aa2e7
JK
5557{
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
b76e467d 5575 dwarf2_per_cu_data *per_cu
ed2dc618 5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
927aa2e7 5577 sect_off_prev, length);
b76e467d 5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
927aa2e7
JK
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582}
5583
5584/* Read the CU list from the mapped index, and use it to create all
ed2dc618 5585 the CU objects for this dwarf2_per_objfile. */
927aa2e7
JK
5586
5587static void
ed2dc618 5588create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591{
b76e467d
SM
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
927aa2e7 5594
ed2dc618
SM
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
b76e467d 5597 false /* is_dwz */);
927aa2e7
JK
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
ed2dc618
SM
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
b76e467d 5604 true /* is_dwz */);
927aa2e7
JK
5605}
5606
5607/* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610static bool
ed2dc618 5611dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
927aa2e7 5612{
22ca247e
TT
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
ed2dc618
SM
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
22ca247e 5620 *map))
927aa2e7
JK
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
22ca247e 5624 if (map->name_count == 0)
927aa2e7
JK
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
ed2dc618 5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
927aa2e7
JK
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
00f93c44 5633 bfd_get_filename (dwz->dwz_bfd.get ()),
927aa2e7
JK
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
00f93c44 5637 bfd_get_filename (dwz->dwz_bfd.get ()));
927aa2e7
JK
5638 return false;
5639 }
5640 }
5641
22ca247e 5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
927aa2e7 5643
22ca247e 5644 if (map->tu_count != 0)
927aa2e7
JK
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
fd5866f6 5648 if (dwarf2_per_objfile->types.size () != 1)
927aa2e7
JK
5649 return false;
5650
fd5866f6 5651 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
927aa2e7
JK
5652
5653 create_signatured_type_table_from_debug_names
22ca247e 5654 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
927aa2e7
JK
5655 }
5656
ed2dc618
SM
5657 create_addrmap_from_aranges (dwarf2_per_objfile,
5658 &dwarf2_per_objfile->debug_aranges);
927aa2e7 5659
22ca247e 5660 dwarf2_per_objfile->debug_names_table = std::move (map);
927aa2e7
JK
5661 dwarf2_per_objfile->using_index = 1;
5662 dwarf2_per_objfile->quick_file_names_table =
b76e467d 5663 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
927aa2e7
JK
5664
5665 return true;
5666}
5667
927aa2e7
JK
5668/* Type used to manage iterating over all CUs looking for a symbol for
5669 .debug_names. */
5670
5671class dw2_debug_names_iterator
5672{
5673public:
927aa2e7 5674 dw2_debug_names_iterator (const mapped_debug_names &map,
2b79f376
SM
5675 gdb::optional<block_enum> block_index,
5676 domain_enum domain,
927aa2e7 5677 const char *name)
2b79f376 5678 : m_map (map), m_block_index (block_index), m_domain (domain),
927aa2e7
JK
5679 m_addr (find_vec_in_debug_names (map, name))
5680 {}
5681
5682 dw2_debug_names_iterator (const mapped_debug_names &map,
5683 search_domain search, uint32_t namei)
5684 : m_map (map),
5685 m_search (search),
5686 m_addr (find_vec_in_debug_names (map, namei))
5687 {}
5688
3b00ef10
TT
5689 dw2_debug_names_iterator (const mapped_debug_names &map,
5690 block_enum block_index, domain_enum domain,
5691 uint32_t namei)
5692 : m_map (map), m_block_index (block_index), m_domain (domain),
5693 m_addr (find_vec_in_debug_names (map, namei))
5694 {}
5695
927aa2e7
JK
5696 /* Return the next matching CU or NULL if there are no more. */
5697 dwarf2_per_cu_data *next ();
5698
5699private:
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 const char *name);
5702 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5703 uint32_t namei);
5704
5705 /* The internalized form of .debug_names. */
5706 const mapped_debug_names &m_map;
5707
2b79f376
SM
5708 /* If set, only look for symbols that match that block. Valid values are
5709 GLOBAL_BLOCK and STATIC_BLOCK. */
5710 const gdb::optional<block_enum> m_block_index;
927aa2e7
JK
5711
5712 /* The kind of symbol we're looking for. */
5713 const domain_enum m_domain = UNDEF_DOMAIN;
5714 const search_domain m_search = ALL_DOMAIN;
5715
5716 /* The list of CUs from the index entry of the symbol, or NULL if
5717 not found. */
5718 const gdb_byte *m_addr;
5719};
5720
5721const char *
5722mapped_debug_names::namei_to_name (uint32_t namei) const
5723{
5724 const ULONGEST namei_string_offs
5725 = extract_unsigned_integer ((name_table_string_offs_reordered
5726 + namei * offset_size),
5727 offset_size,
5728 dwarf5_byte_order);
5729 return read_indirect_string_at_offset
ed2dc618 5730 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
927aa2e7
JK
5731}
5732
5733/* Find a slot in .debug_names for the object named NAME. If NAME is
5734 found, return pointer to its pool data. If NAME cannot be found,
5735 return NULL. */
5736
5737const gdb_byte *
5738dw2_debug_names_iterator::find_vec_in_debug_names
5739 (const mapped_debug_names &map, const char *name)
5740{
5741 int (*cmp) (const char *, const char *);
5742
54ee4252 5743 gdb::unique_xmalloc_ptr<char> without_params;
927aa2e7
JK
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
54ee4252 5753 without_params = cp_remove_params (name);
927aa2e7 5754 if (without_params != NULL)
54ee4252 5755 name = without_params.get ();
927aa2e7
JK
5756 }
5757 }
5758
5759 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5760
5761 const uint32_t full_hash = dwarf5_djb_hash (name);
5762 uint32_t namei
5763 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5764 (map.bucket_table_reordered
5765 + (full_hash % map.bucket_count)), 4,
5766 map.dwarf5_byte_order);
5767 if (namei == 0)
5768 return NULL;
5769 --namei;
5770 if (namei >= map.name_count)
5771 {
b98664d3 5772 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5773 "[in module %s]"),
5774 namei, map.name_count,
ed2dc618 5775 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5776 return NULL;
5777 }
5778
5779 for (;;)
5780 {
5781 const uint32_t namei_full_hash
5782 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5783 (map.hash_table_reordered + namei), 4,
5784 map.dwarf5_byte_order);
5785 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5786 return NULL;
5787
5788 if (full_hash == namei_full_hash)
5789 {
5790 const char *const namei_string = map.namei_to_name (namei);
5791
5792#if 0 /* An expensive sanity check. */
5793 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5794 {
b98664d3 5795 complaint (_("Wrong .debug_names hash for string at index %u "
927aa2e7
JK
5796 "[in module %s]"),
5797 namei, objfile_name (dwarf2_per_objfile->objfile));
5798 return NULL;
5799 }
5800#endif
5801
5802 if (cmp (namei_string, name) == 0)
5803 {
5804 const ULONGEST namei_entry_offs
5805 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5806 + namei * map.offset_size),
5807 map.offset_size, map.dwarf5_byte_order);
5808 return map.entry_pool + namei_entry_offs;
5809 }
5810 }
5811
5812 ++namei;
5813 if (namei >= map.name_count)
5814 return NULL;
5815 }
5816}
5817
5818const gdb_byte *
5819dw2_debug_names_iterator::find_vec_in_debug_names
5820 (const mapped_debug_names &map, uint32_t namei)
5821{
5822 if (namei >= map.name_count)
5823 {
b98664d3 5824 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5825 "[in module %s]"),
5826 namei, map.name_count,
ed2dc618 5827 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836}
5837
5838/* See dw2_debug_names_iterator. */
5839
5840dwarf2_per_cu_data *
5841dw2_debug_names_iterator::next ()
5842{
5843 if (m_addr == NULL)
5844 return NULL;
5845
ed2dc618
SM
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
927aa2e7
JK
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
b98664d3 5861 complaint (_("Wrong .debug_names undefined abbrev code %s "
927aa2e7 5862 "[in module %s]"),
ed2dc618 5863 pulongest (abbrev), objfile_name (objfile));
927aa2e7
JK
5864 return NULL;
5865 }
5866 const mapped_debug_names::index_val &indexval = indexval_it->second;
beadd3e8
SM
5867 enum class symbol_linkage {
5868 unknown,
5869 static_,
5870 extern_,
23c13d42 5871 } symbol_linkage_ = symbol_linkage::unknown;
927aa2e7
JK
5872 dwarf2_per_cu_data *per_cu = NULL;
5873 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5874 {
5875 ULONGEST ull;
5876 switch (attr.form)
5877 {
5878 case DW_FORM_implicit_const:
5879 ull = attr.implicit_const;
5880 break;
5881 case DW_FORM_flag_present:
5882 ull = 1;
5883 break;
5884 case DW_FORM_udata:
5885 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 break;
5888 default:
b98664d3 5889 complaint (_("Unsupported .debug_names form %s [in module %s]"),
927aa2e7 5890 dwarf_form_name (attr.form),
ed2dc618 5891 objfile_name (objfile));
927aa2e7
JK
5892 return NULL;
5893 }
5894 switch (attr.dw_idx)
5895 {
5896 case DW_IDX_compile_unit:
5897 /* Don't crash on bad data. */
b76e467d 5898 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
927aa2e7 5899 {
b98664d3 5900 complaint (_(".debug_names entry has bad CU index %s"
927aa2e7
JK
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
ff4c9fec 5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
927aa2e7 5907 break;
8af5c486
JK
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
b2bdb8cf 5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
8af5c486 5911 {
b98664d3 5912 complaint (_(".debug_names entry has bad TU index %s"
8af5c486
JK
5913 " [in module %s]"),
5914 pulongest (ull),
5915 objfile_name (dwarf2_per_objfile->objfile));
5916 continue;
5917 }
ff4c9fec 5918 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
8af5c486 5919 break;
927aa2e7
JK
5920 case DW_IDX_GNU_internal:
5921 if (!m_map.augmentation_is_gdb)
5922 break;
23c13d42 5923 symbol_linkage_ = symbol_linkage::static_;
927aa2e7
JK
5924 break;
5925 case DW_IDX_GNU_external:
5926 if (!m_map.augmentation_is_gdb)
5927 break;
23c13d42 5928 symbol_linkage_ = symbol_linkage::extern_;
927aa2e7
JK
5929 break;
5930 }
5931 }
5932
5933 /* Skip if already read in. */
5934 if (per_cu->v.quick->compunit_symtab)
5935 goto again;
5936
5937 /* Check static vs global. */
23c13d42 5938 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
927aa2e7 5939 {
2b79f376 5940 const bool want_static = *m_block_index == STATIC_BLOCK;
23c13d42
SM
5941 const bool symbol_is_static =
5942 symbol_linkage_ == symbol_linkage::static_;
beadd3e8 5943 if (want_static != symbol_is_static)
2b79f376 5944 goto again;
927aa2e7
JK
5945 }
5946
5947 /* Match dw2_symtab_iter_next, symbol_kind
5948 and debug_names::psymbol_tag. */
5949 switch (m_domain)
5950 {
5951 case VAR_DOMAIN:
5952 switch (indexval.dwarf_tag)
5953 {
5954 case DW_TAG_variable:
5955 case DW_TAG_subprogram:
5956 /* Some types are also in VAR_DOMAIN. */
5957 case DW_TAG_typedef:
5958 case DW_TAG_structure_type:
5959 break;
5960 default:
5961 goto again;
5962 }
5963 break;
5964 case STRUCT_DOMAIN:
5965 switch (indexval.dwarf_tag)
5966 {
5967 case DW_TAG_typedef:
5968 case DW_TAG_structure_type:
5969 break;
5970 default:
5971 goto again;
5972 }
5973 break;
5974 case LABEL_DOMAIN:
5975 switch (indexval.dwarf_tag)
5976 {
5977 case 0:
5978 case DW_TAG_variable:
5979 break;
5980 default:
5981 goto again;
5982 }
5983 break;
59c35742
AB
5984 case MODULE_DOMAIN:
5985 switch (indexval.dwarf_tag)
5986 {
5987 case DW_TAG_module:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
927aa2e7
JK
5993 default:
5994 break;
5995 }
5996
5997 /* Match dw2_expand_symtabs_matching, symbol_kind and
5998 debug_names::psymbol_tag. */
5999 switch (m_search)
4b514bc8 6000 {
927aa2e7
JK
6001 case VARIABLES_DOMAIN:
6002 switch (indexval.dwarf_tag)
4b514bc8 6003 {
927aa2e7
JK
6004 case DW_TAG_variable:
6005 break;
6006 default:
6007 goto again;
4b514bc8 6008 }
927aa2e7
JK
6009 break;
6010 case FUNCTIONS_DOMAIN:
6011 switch (indexval.dwarf_tag)
4b514bc8 6012 {
927aa2e7
JK
6013 case DW_TAG_subprogram:
6014 break;
6015 default:
6016 goto again;
4b514bc8 6017 }
927aa2e7
JK
6018 break;
6019 case TYPES_DOMAIN:
6020 switch (indexval.dwarf_tag)
6021 {
6022 case DW_TAG_typedef:
6023 case DW_TAG_structure_type:
6024 break;
6025 default:
6026 goto again;
6027 }
6028 break;
59c35742
AB
6029 case MODULES_DOMAIN:
6030 switch (indexval.dwarf_tag)
6031 {
6032 case DW_TAG_module:
6033 break;
6034 default:
6035 goto again;
6036 }
927aa2e7
JK
6037 default:
6038 break;
4b514bc8 6039 }
927aa2e7
JK
6040
6041 return per_cu;
4b514bc8 6042}
61920122 6043
927aa2e7 6044static struct compunit_symtab *
c7f839cb 6045dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
927aa2e7 6046 const char *name, domain_enum domain)
4b514bc8 6047{
ed2dc618
SM
6048 struct dwarf2_per_objfile *dwarf2_per_objfile
6049 = get_dwarf2_per_objfile (objfile);
61920122 6050
927aa2e7
JK
6051 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6052 if (!mapp)
61920122 6053 {
927aa2e7
JK
6054 /* index is NULL if OBJF_READNOW. */
6055 return NULL;
6056 }
6057 const auto &map = *mapp;
9291a0cd 6058
2b79f376 6059 dw2_debug_names_iterator iter (map, block_index, domain, name);
9703b513 6060
927aa2e7
JK
6061 struct compunit_symtab *stab_best = NULL;
6062 struct dwarf2_per_cu_data *per_cu;
6063 while ((per_cu = iter.next ()) != NULL)
6064 {
6065 struct symbol *sym, *with_opaque = NULL;
58f0c718 6066 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
927aa2e7 6067 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
582942f4 6068 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
9703b513 6069
927aa2e7
JK
6070 sym = block_find_symbol (block, name, domain,
6071 block_find_non_opaque_type_preferred,
6072 &with_opaque);
9703b513 6073
927aa2e7
JK
6074 /* Some caution must be observed with overloaded functions and
6075 methods, since the index will not contain any overload
6076 information (but NAME might contain it). */
a3ec0bb1 6077
927aa2e7 6078 if (sym != NULL
987012b8 6079 && strcmp_iw (sym->search_name (), name) == 0)
927aa2e7
JK
6080 return stab;
6081 if (with_opaque != NULL
987012b8 6082 && strcmp_iw (with_opaque->search_name (), name) == 0)
927aa2e7 6083 stab_best = stab;
9703b513 6084
927aa2e7 6085 /* Keep looking through other CUs. */
9703b513
TT
6086 }
6087
927aa2e7 6088 return stab_best;
9703b513
TT
6089}
6090
927aa2e7
JK
6091/* This dumps minimal information about .debug_names. It is called
6092 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6093 uses this to verify that .debug_names has been loaded. */
9291a0cd 6094
927aa2e7
JK
6095static void
6096dw2_debug_names_dump (struct objfile *objfile)
6097{
ed2dc618
SM
6098 struct dwarf2_per_objfile *dwarf2_per_objfile
6099 = get_dwarf2_per_objfile (objfile);
6100
927aa2e7
JK
6101 gdb_assert (dwarf2_per_objfile->using_index);
6102 printf_filtered (".debug_names:");
6103 if (dwarf2_per_objfile->debug_names_table)
6104 printf_filtered (" exists\n");
6105 else
6106 printf_filtered (" faked for \"readnow\"\n");
6107 printf_filtered ("\n");
9291a0cd
TT
6108}
6109
9291a0cd 6110static void
927aa2e7
JK
6111dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6112 const char *func_name)
9291a0cd 6113{
ed2dc618
SM
6114 struct dwarf2_per_objfile *dwarf2_per_objfile
6115 = get_dwarf2_per_objfile (objfile);
ae2de4f8 6116
927aa2e7
JK
6117 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6118 if (dwarf2_per_objfile->debug_names_table)
24c79950 6119 {
927aa2e7 6120 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
24c79950 6121
2b79f376 6122 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
24c79950 6123
927aa2e7
JK
6124 struct dwarf2_per_cu_data *per_cu;
6125 while ((per_cu = iter.next ()) != NULL)
58f0c718 6126 dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6127 }
6128}
24c79950 6129
3b00ef10
TT
6130static void
6131dw2_debug_names_map_matching_symbols
6132 (struct objfile *objfile,
6133 const lookup_name_info &name, domain_enum domain,
6134 int global,
6135 gdb::function_view<symbol_found_callback_ftype> callback,
6136 symbol_compare_ftype *ordered_compare)
6137{
6138 struct dwarf2_per_objfile *dwarf2_per_objfile
6139 = get_dwarf2_per_objfile (objfile);
6140
6141 /* debug_names_table is NULL if OBJF_READNOW. */
6142 if (!dwarf2_per_objfile->debug_names_table)
6143 return;
6144
6145 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6146 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6147
6148 const char *match_name = name.ada ().lookup_name ().c_str ();
6149 auto matcher = [&] (const char *symname)
6150 {
6151 if (ordered_compare == nullptr)
6152 return true;
6153 return ordered_compare (symname, match_name) == 0;
6154 };
6155
6156 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6157 [&] (offset_type namei)
6158 {
6159 /* The name was matched, now expand corresponding CUs that were
6160 marked. */
6161 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6162
6163 struct dwarf2_per_cu_data *per_cu;
6164 while ((per_cu = iter.next ()) != NULL)
6165 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6166 return true;
6167 });
6168
6169 /* It's a shame we couldn't do this inside the
6170 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6171 that have already been expanded. Instead, this loop matches what
6172 the psymtab code does. */
6173 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6174 {
6175 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6176 if (cust != nullptr)
6177 {
6178 const struct block *block
6179 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6180 if (!iterate_over_symbols_terminated (block, name,
6181 domain, callback))
6182 break;
6183 }
6184 }
6185}
6186
927aa2e7
JK
6187static void
6188dw2_debug_names_expand_symtabs_matching
6189 (struct objfile *objfile,
6190 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6191 const lookup_name_info &lookup_name,
6192 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6193 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6194 enum search_domain kind)
6195{
ed2dc618
SM
6196 struct dwarf2_per_objfile *dwarf2_per_objfile
6197 = get_dwarf2_per_objfile (objfile);
9291a0cd 6198
927aa2e7
JK
6199 /* debug_names_table is NULL if OBJF_READNOW. */
6200 if (!dwarf2_per_objfile->debug_names_table)
6201 return;
9291a0cd 6202
ed2dc618 6203 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
24c79950 6204
44ed8f3e 6205 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
bbf2f4df 6206
44ed8f3e
PA
6207 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6208 symbol_matcher,
6209 kind, [&] (offset_type namei)
927aa2e7 6210 {
927aa2e7
JK
6211 /* The name was matched, now expand corresponding CUs that were
6212 marked. */
6213 dw2_debug_names_iterator iter (map, kind, namei);
bbf2f4df 6214
927aa2e7
JK
6215 struct dwarf2_per_cu_data *per_cu;
6216 while ((per_cu = iter.next ()) != NULL)
6217 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6218 expansion_notify);
3b00ef10 6219 return true;
44ed8f3e 6220 });
9291a0cd
TT
6221}
6222
927aa2e7 6223const struct quick_symbol_functions dwarf2_debug_names_functions =
9291a0cd
TT
6224{
6225 dw2_has_symbols,
6226 dw2_find_last_source_symtab,
6227 dw2_forget_cached_source_info,
f8eba3c6 6228 dw2_map_symtabs_matching_filename,
927aa2e7 6229 dw2_debug_names_lookup_symbol,
9291a0cd 6230 dw2_print_stats,
927aa2e7 6231 dw2_debug_names_dump,
927aa2e7 6232 dw2_debug_names_expand_symtabs_for_function,
9291a0cd 6233 dw2_expand_all_symtabs,
652a8996 6234 dw2_expand_symtabs_with_fullname,
3b00ef10 6235 dw2_debug_names_map_matching_symbols,
927aa2e7 6236 dw2_debug_names_expand_symtabs_matching,
43f3e411 6237 dw2_find_pc_sect_compunit_symtab,
71a3c369 6238 NULL,
9291a0cd
TT
6239 dw2_map_symbol_filenames
6240};
6241
4485a1c1
SM
6242/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6243 to either a dwarf2_per_objfile or dwz_file object. */
6244
6245template <typename T>
6246static gdb::array_view<const gdb_byte>
6247get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6248{
6249 dwarf2_section_info *section = &section_owner->gdb_index;
6250
6251 if (dwarf2_section_empty_p (section))
6252 return {};
6253
6254 /* Older elfutils strip versions could keep the section in the main
6255 executable while splitting it for the separate debug info file. */
6256 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6257 return {};
6258
6259 dwarf2_read_section (obj, section);
6260
8bebfcda
PA
6261 /* dwarf2_section_info::size is a bfd_size_type, while
6262 gdb::array_view works with size_t. On 32-bit hosts, with
6263 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6264 is 32-bit. So we need an explicit narrowing conversion here.
6265 This is fine, because it's impossible to allocate or mmap an
6266 array/buffer larger than what size_t can represent. */
6267 return gdb::make_array_view (section->buffer, section->size);
4485a1c1
SM
6268}
6269
87d6a7aa
SM
6270/* Lookup the index cache for the contents of the index associated to
6271 DWARF2_OBJ. */
6272
6273static gdb::array_view<const gdb_byte>
6274get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6275{
6276 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6277 if (build_id == nullptr)
6278 return {};
6279
6280 return global_index_cache.lookup_gdb_index (build_id,
6281 &dwarf2_obj->index_cache_res);
6282}
6283
6284/* Same as the above, but for DWZ. */
6285
6286static gdb::array_view<const gdb_byte>
6287get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6288{
6289 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6290 if (build_id == nullptr)
6291 return {};
6292
6293 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6294}
6295
3c0aa29a 6296/* See symfile.h. */
9291a0cd 6297
3c0aa29a
PA
6298bool
6299dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
9291a0cd 6300{
ed2dc618
SM
6301 struct dwarf2_per_objfile *dwarf2_per_objfile
6302 = get_dwarf2_per_objfile (objfile);
6303
9291a0cd
TT
6304 /* If we're about to read full symbols, don't bother with the
6305 indices. In this case we also don't care if some other debug
6306 format is making psymtabs, because they are all about to be
6307 expanded anyway. */
6308 if ((objfile->flags & OBJF_READNOW))
6309 {
9291a0cd 6310 dwarf2_per_objfile->using_index = 1;
ed2dc618
SM
6311 create_all_comp_units (dwarf2_per_objfile);
6312 create_all_type_units (dwarf2_per_objfile);
b76e467d
SM
6313 dwarf2_per_objfile->quick_file_names_table
6314 = create_quick_file_names_table
6315 (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd 6316
b76e467d 6317 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 6318 + dwarf2_per_objfile->all_type_units.size ()); ++i)
9291a0cd 6319 {
ff4c9fec 6320 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 6321
e254ef6a
DE
6322 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6323 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
6324 }
6325
6326 /* Return 1 so that gdb sees the "quick" functions. However,
6327 these functions will be no-ops because we will have expanded
6328 all symtabs. */
3c0aa29a
PA
6329 *index_kind = dw_index_kind::GDB_INDEX;
6330 return true;
9291a0cd
TT
6331 }
6332
ed2dc618 6333 if (dwarf2_read_debug_names (dwarf2_per_objfile))
3c0aa29a
PA
6334 {
6335 *index_kind = dw_index_kind::DEBUG_NAMES;
6336 return true;
6337 }
927aa2e7 6338
4485a1c1
SM
6339 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6340 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6341 get_gdb_index_contents_from_section<dwz_file>))
3c0aa29a
PA
6342 {
6343 *index_kind = dw_index_kind::GDB_INDEX;
6344 return true;
6345 }
9291a0cd 6346
87d6a7aa
SM
6347 /* ... otherwise, try to find the index in the index cache. */
6348 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6349 get_gdb_index_contents_from_cache,
6350 get_gdb_index_contents_from_cache_dwz))
6351 {
6352 global_index_cache.hit ();
6353 *index_kind = dw_index_kind::GDB_INDEX;
6354 return true;
6355 }
6356
6357 global_index_cache.miss ();
3c0aa29a 6358 return false;
9291a0cd
TT
6359}
6360
6361\f
6362
dce234bc
PP
6363/* Build a partial symbol table. */
6364
6365void
f29dff0a 6366dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 6367{
ed2dc618
SM
6368 struct dwarf2_per_objfile *dwarf2_per_objfile
6369 = get_dwarf2_per_objfile (objfile);
c9bf0622 6370
6eee24ce 6371 init_psymbol_list (objfile, 1024);
c906108c 6372
a70b8144 6373 try
c9bf0622
TT
6374 {
6375 /* This isn't really ideal: all the data we allocate on the
6376 objfile's obstack is still uselessly kept around. However,
6377 freeing it seems unsafe. */
906768f9 6378 psymtab_discarder psymtabs (objfile);
ed2dc618 6379 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
906768f9 6380 psymtabs.keep ();
87d6a7aa
SM
6381
6382 /* (maybe) store an index in the cache. */
6383 global_index_cache.store (dwarf2_per_objfile);
c9bf0622 6384 }
230d2906 6385 catch (const gdb_exception_error &except)
492d29ea
PA
6386 {
6387 exception_print (gdb_stderr, except);
6388 }
c906108c 6389}
c906108c 6390
1ce1cefd
DE
6391/* Return the total length of the CU described by HEADER. */
6392
6393static unsigned int
6394get_cu_length (const struct comp_unit_head *header)
6395{
6396 return header->initial_length_size + header->length;
6397}
6398
9c541725 6399/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 6400
9c541725
PA
6401static inline bool
6402offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 6403{
9c541725
PA
6404 sect_offset bottom = cu_header->sect_off;
6405 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 6406
9c541725 6407 return sect_off >= bottom && sect_off < top;
45452591
DE
6408}
6409
3b80fe9b
DE
6410/* Find the base address of the compilation unit for range lists and
6411 location lists. It will normally be specified by DW_AT_low_pc.
6412 In DWARF-3 draft 4, the base address could be overridden by
6413 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6414 compilation units with discontinuous ranges. */
6415
6416static void
6417dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6418{
6419 struct attribute *attr;
6420
6421 cu->base_known = 0;
6422 cu->base_address = 0;
6423
6424 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
435d3d88 6425 if (attr != nullptr)
3b80fe9b 6426 {
31aa7e4e 6427 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6428 cu->base_known = 1;
6429 }
6430 else
6431 {
6432 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
435d3d88 6433 if (attr != nullptr)
3b80fe9b 6434 {
31aa7e4e 6435 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6436 cu->base_known = 1;
6437 }
6438 }
6439}
6440
93311388 6441/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 6442 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
6443 NOTE: This leaves members offset, first_die_offset to be filled in
6444 by the caller. */
107d2387 6445
d521ce57 6446static const gdb_byte *
107d2387 6447read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
6448 const gdb_byte *info_ptr,
6449 struct dwarf2_section_info *section,
6450 rcuh_kind section_kind)
107d2387
AC
6451{
6452 int signed_addr;
891d2f0b 6453 unsigned int bytes_read;
43988095
JK
6454 const char *filename = get_section_file_name (section);
6455 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
6456
6457 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6458 cu_header->initial_length_size = bytes_read;
6459 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 6460 info_ptr += bytes_read;
107d2387 6461 cu_header->version = read_2_bytes (abfd, info_ptr);
1ea5da02
TV
6462 if (cu_header->version < 2 || cu_header->version > 5)
6463 error (_("Dwarf Error: wrong version in compilation unit header "
6464 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6465 cu_header->version, filename);
107d2387 6466 info_ptr += 2;
43988095
JK
6467 if (cu_header->version < 5)
6468 switch (section_kind)
6469 {
6470 case rcuh_kind::COMPILE:
6471 cu_header->unit_type = DW_UT_compile;
6472 break;
6473 case rcuh_kind::TYPE:
6474 cu_header->unit_type = DW_UT_type;
6475 break;
6476 default:
6477 internal_error (__FILE__, __LINE__,
6478 _("read_comp_unit_head: invalid section_kind"));
6479 }
6480 else
6481 {
6482 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6483 (read_1_byte (abfd, info_ptr));
6484 info_ptr += 1;
6485 switch (cu_header->unit_type)
6486 {
6487 case DW_UT_compile:
a084a2a6
AT
6488 case DW_UT_partial:
6489 case DW_UT_skeleton:
6490 case DW_UT_split_compile:
43988095
JK
6491 if (section_kind != rcuh_kind::COMPILE)
6492 error (_("Dwarf Error: wrong unit_type in compilation unit header "
a084a2a6
AT
6493 "(is %s, should be %s) [in module %s]"),
6494 dwarf_unit_type_name (cu_header->unit_type),
6495 dwarf_unit_type_name (DW_UT_type), filename);
43988095
JK
6496 break;
6497 case DW_UT_type:
a084a2a6 6498 case DW_UT_split_type:
43988095
JK
6499 section_kind = rcuh_kind::TYPE;
6500 break;
6501 default:
6502 error (_("Dwarf Error: wrong unit_type in compilation unit header "
a084a2a6
AT
6503 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6504 "[in module %s]"), cu_header->unit_type,
6505 dwarf_unit_type_name (DW_UT_compile),
6506 dwarf_unit_type_name (DW_UT_skeleton),
6507 dwarf_unit_type_name (DW_UT_split_compile),
6508 dwarf_unit_type_name (DW_UT_type),
6509 dwarf_unit_type_name (DW_UT_split_type), filename);
43988095
JK
6510 }
6511
6512 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6513 info_ptr += 1;
6514 }
9c541725
PA
6515 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6516 cu_header,
6517 &bytes_read);
613e1657 6518 info_ptr += bytes_read;
43988095
JK
6519 if (cu_header->version < 5)
6520 {
6521 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6522 info_ptr += 1;
6523 }
107d2387
AC
6524 signed_addr = bfd_get_sign_extend_vma (abfd);
6525 if (signed_addr < 0)
8e65ff28 6526 internal_error (__FILE__, __LINE__,
e2e0b3e5 6527 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 6528 cu_header->signed_addr_p = signed_addr;
c764a876 6529
a084a2a6
AT
6530 bool header_has_signature = section_kind == rcuh_kind::TYPE
6531 || cu_header->unit_type == DW_UT_skeleton
6532 || cu_header->unit_type == DW_UT_split_compile;
43988095 6533
a084a2a6
AT
6534 if (header_has_signature)
6535 {
43988095
JK
6536 cu_header->signature = read_8_bytes (abfd, info_ptr);
6537 info_ptr += 8;
a084a2a6 6538 }
43988095 6539
a084a2a6
AT
6540 if (section_kind == rcuh_kind::TYPE)
6541 {
6542 LONGEST type_offset;
43988095
JK
6543 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6544 info_ptr += bytes_read;
9c541725
PA
6545 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6546 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
6547 error (_("Dwarf Error: Too big type_offset in compilation unit "
6548 "header (is %s) [in module %s]"), plongest (type_offset),
6549 filename);
6550 }
6551
107d2387
AC
6552 return info_ptr;
6553}
6554
36586728
TT
6555/* Helper function that returns the proper abbrev section for
6556 THIS_CU. */
6557
6558static struct dwarf2_section_info *
6559get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6560{
6561 struct dwarf2_section_info *abbrev;
ed2dc618 6562 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
36586728
TT
6563
6564 if (this_cu->is_dwz)
ed2dc618 6565 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
36586728
TT
6566 else
6567 abbrev = &dwarf2_per_objfile->abbrev;
6568
6569 return abbrev;
6570}
6571
9ff913ba
DE
6572/* Subroutine of read_and_check_comp_unit_head and
6573 read_and_check_type_unit_head to simplify them.
6574 Perform various error checking on the header. */
6575
6576static void
ed2dc618
SM
6577error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6578 struct comp_unit_head *header,
4bdcc0c1
DE
6579 struct dwarf2_section_info *section,
6580 struct dwarf2_section_info *abbrev_section)
9ff913ba 6581{
a32a8923 6582 const char *filename = get_section_file_name (section);
9ff913ba 6583
9c541725 6584 if (to_underlying (header->abbrev_sect_off)
36586728 6585 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9d8780f0
SM
6586 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6587 "(offset %s + 6) [in module %s]"),
6588 sect_offset_str (header->abbrev_sect_off),
6589 sect_offset_str (header->sect_off),
9ff913ba
DE
6590 filename);
6591
9c541725 6592 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 6593 avoid potential 32-bit overflow. */
9c541725 6594 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 6595 > section->size)
9c541725 6596 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
9d8780f0
SM
6597 "(offset %s + 0) [in module %s]"),
6598 header->length, sect_offset_str (header->sect_off),
9ff913ba
DE
6599 filename);
6600}
6601
6602/* Read in a CU/TU header and perform some basic error checking.
6603 The contents of the header are stored in HEADER.
6604 The result is a pointer to the start of the first DIE. */
adabb602 6605
d521ce57 6606static const gdb_byte *
ed2dc618
SM
6607read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6608 struct comp_unit_head *header,
9ff913ba 6609 struct dwarf2_section_info *section,
4bdcc0c1 6610 struct dwarf2_section_info *abbrev_section,
d521ce57 6611 const gdb_byte *info_ptr,
43988095 6612 rcuh_kind section_kind)
72bf9492 6613{
d521ce57 6614 const gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492 6615
9c541725 6616 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 6617
43988095 6618 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 6619
9c541725 6620 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 6621
ed2dc618
SM
6622 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6623 abbrev_section);
9ff913ba
DE
6624
6625 return info_ptr;
348e048f
DE
6626}
6627
f4dc4d17
DE
6628/* Fetch the abbreviation table offset from a comp or type unit header. */
6629
6630static sect_offset
ed2dc618
SM
6631read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6632 struct dwarf2_section_info *section,
9c541725 6633 sect_offset sect_off)
f4dc4d17 6634{
a32a8923 6635 bfd *abfd = get_section_bfd_owner (section);
d521ce57 6636 const gdb_byte *info_ptr;
ac298888 6637 unsigned int initial_length_size, offset_size;
43988095 6638 uint16_t version;
f4dc4d17
DE
6639
6640 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 6641 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 6642 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 6643 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
6644 info_ptr += initial_length_size;
6645
6646 version = read_2_bytes (abfd, info_ptr);
6647 info_ptr += 2;
6648 if (version >= 5)
6649 {
6650 /* Skip unit type and address size. */
6651 info_ptr += 2;
6652 }
6653
9c541725 6654 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
6655}
6656
aaa75496
JB
6657/* Allocate a new partial symtab for file named NAME and mark this new
6658 partial symtab as being an include of PST. */
6659
6660static void
d521ce57 6661dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
6662 struct objfile *objfile)
6663{
6664 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6665
fbd9ab74
JK
6666 if (!IS_ABSOLUTE_PATH (subpst->filename))
6667 {
6668 /* It shares objfile->objfile_obstack. */
6669 subpst->dirname = pst->dirname;
6670 }
6671
a9342b62 6672 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
aaa75496
JB
6673 subpst->dependencies[0] = pst;
6674 subpst->number_of_dependencies = 1;
6675
aaa75496 6676 subpst->read_symtab = pst->read_symtab;
aaa75496
JB
6677
6678 /* No private part is necessary for include psymtabs. This property
6679 can be used to differentiate between such include psymtabs and
10b3939b 6680 the regular ones. */
58a9656e 6681 subpst->read_symtab_private = NULL;
aaa75496
JB
6682}
6683
6684/* Read the Line Number Program data and extract the list of files
6685 included by the source file represented by PST. Build an include
d85a05f0 6686 partial symtab for each of these included files. */
aaa75496
JB
6687
6688static void
6689dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
6690 struct die_info *die,
6691 struct partial_symtab *pst)
aaa75496 6692{
fff8551c 6693 line_header_up lh;
d85a05f0 6694 struct attribute *attr;
aaa75496 6695
d85a05f0 6696 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
435d3d88 6697 if (attr != nullptr)
9c541725 6698 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
6699 if (lh == NULL)
6700 return; /* No linetable, so no includes. */
6701
79748972
TT
6702 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6703 that we pass in the raw text_low here; that is ok because we're
6704 only decoding the line table to make include partial symtabs, and
6705 so the addresses aren't really used. */
4ae976d1 6706 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
79748972 6707 pst->raw_text_low (), 1);
aaa75496
JB
6708}
6709
348e048f 6710static hashval_t
52dc124a 6711hash_signatured_type (const void *item)
348e048f 6712{
9a3c8263
SM
6713 const struct signatured_type *sig_type
6714 = (const struct signatured_type *) item;
9a619af0 6715
348e048f 6716 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 6717 return sig_type->signature;
348e048f
DE
6718}
6719
6720static int
52dc124a 6721eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 6722{
9a3c8263
SM
6723 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6724 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 6725
348e048f
DE
6726 return lhs->signature == rhs->signature;
6727}
6728
1fd400ff
TT
6729/* Allocate a hash table for signatured types. */
6730
6731static htab_t
673bfd45 6732allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
6733{
6734 return htab_create_alloc_ex (41,
52dc124a
DE
6735 hash_signatured_type,
6736 eq_signatured_type,
1fd400ff
TT
6737 NULL,
6738 &objfile->objfile_obstack,
6739 hashtab_obstack_allocate,
6740 dummy_obstack_deallocate);
6741}
6742
d467dd73 6743/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
6744
6745static int
d467dd73 6746add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 6747{
9a3c8263 6748 struct signatured_type *sigt = (struct signatured_type *) *slot;
b2bdb8cf
SM
6749 std::vector<signatured_type *> *all_type_units
6750 = (std::vector<signatured_type *> *) datum;
1fd400ff 6751
b2bdb8cf 6752 all_type_units->push_back (sigt);
1fd400ff
TT
6753
6754 return 1;
6755}
6756
78d4d2c5 6757/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
6758 and fill them into TYPES_HTAB. It will process only type units,
6759 therefore DW_UT_type. */
c88ee1f0 6760
78d4d2c5 6761static void
ed2dc618
SM
6762create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6763 struct dwo_file *dwo_file,
43988095
JK
6764 dwarf2_section_info *section, htab_t &types_htab,
6765 rcuh_kind section_kind)
348e048f 6766{
3019eac3 6767 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 6768 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
6769 bfd *abfd;
6770 const gdb_byte *info_ptr, *end_ptr;
348e048f 6771
4bdcc0c1
DE
6772 abbrev_section = (dwo_file != NULL
6773 ? &dwo_file->sections.abbrev
6774 : &dwarf2_per_objfile->abbrev);
6775
b4f54984 6776 if (dwarf_read_debug)
43988095
JK
6777 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6778 get_section_name (section),
a32a8923 6779 get_section_file_name (abbrev_section));
09406207 6780
78d4d2c5
JK
6781 dwarf2_read_section (objfile, section);
6782 info_ptr = section->buffer;
348e048f 6783
78d4d2c5
JK
6784 if (info_ptr == NULL)
6785 return;
348e048f 6786
78d4d2c5
JK
6787 /* We can't set abfd until now because the section may be empty or
6788 not present, in which case the bfd is unknown. */
6789 abfd = get_section_bfd_owner (section);
348e048f 6790
78d4d2c5
JK
6791 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6792 because we don't need to read any dies: the signature is in the
6793 header. */
3019eac3 6794
78d4d2c5
JK
6795 end_ptr = info_ptr + section->size;
6796 while (info_ptr < end_ptr)
6797 {
78d4d2c5
JK
6798 struct signatured_type *sig_type;
6799 struct dwo_unit *dwo_tu;
6800 void **slot;
6801 const gdb_byte *ptr = info_ptr;
6802 struct comp_unit_head header;
6803 unsigned int length;
8b70b953 6804
9c541725 6805 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 6806
a49dd8dd
JK
6807 /* Initialize it due to a false compiler warning. */
6808 header.signature = -1;
9c541725 6809 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 6810
78d4d2c5
JK
6811 /* We need to read the type's signature in order to build the hash
6812 table, but we don't need anything else just yet. */
348e048f 6813
ed2dc618 6814 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
43988095 6815 abbrev_section, ptr, section_kind);
348e048f 6816
78d4d2c5 6817 length = get_cu_length (&header);
6caca83c 6818
78d4d2c5
JK
6819 /* Skip dummy type units. */
6820 if (ptr >= info_ptr + length
43988095
JK
6821 || peek_abbrev_code (abfd, ptr) == 0
6822 || header.unit_type != DW_UT_type)
78d4d2c5
JK
6823 {
6824 info_ptr += length;
6825 continue;
6826 }
dee91e82 6827
78d4d2c5
JK
6828 if (types_htab == NULL)
6829 {
6830 if (dwo_file)
6831 types_htab = allocate_dwo_unit_table (objfile);
6832 else
6833 types_htab = allocate_signatured_type_table (objfile);
6834 }
8b70b953 6835
78d4d2c5
JK
6836 if (dwo_file)
6837 {
6838 sig_type = NULL;
6839 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6840 struct dwo_unit);
6841 dwo_tu->dwo_file = dwo_file;
43988095 6842 dwo_tu->signature = header.signature;
9c541725 6843 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 6844 dwo_tu->section = section;
9c541725 6845 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
6846 dwo_tu->length = length;
6847 }
6848 else
6849 {
6850 /* N.B.: type_offset is not usable if this type uses a DWO file.
6851 The real type_offset is in the DWO file. */
6852 dwo_tu = NULL;
6853 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6854 struct signatured_type);
43988095 6855 sig_type->signature = header.signature;
9c541725 6856 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
e3b94546 6857 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
78d4d2c5
JK
6858 sig_type->per_cu.is_debug_types = 1;
6859 sig_type->per_cu.section = section;
9c541725 6860 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
6861 sig_type->per_cu.length = length;
6862 }
6863
6864 slot = htab_find_slot (types_htab,
6865 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6866 INSERT);
6867 gdb_assert (slot != NULL);
6868 if (*slot != NULL)
6869 {
9c541725 6870 sect_offset dup_sect_off;
0349ea22 6871
3019eac3
DE
6872 if (dwo_file)
6873 {
78d4d2c5
JK
6874 const struct dwo_unit *dup_tu
6875 = (const struct dwo_unit *) *slot;
6876
9c541725 6877 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
6878 }
6879 else
6880 {
78d4d2c5
JK
6881 const struct signatured_type *dup_tu
6882 = (const struct signatured_type *) *slot;
6883
9c541725 6884 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 6885 }
8b70b953 6886
b98664d3 6887 complaint (_("debug type entry at offset %s is duplicate to"
9d8780f0
SM
6888 " the entry at offset %s, signature %s"),
6889 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
43988095 6890 hex_string (header.signature));
78d4d2c5
JK
6891 }
6892 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 6893
78d4d2c5 6894 if (dwarf_read_debug > 1)
9d8780f0
SM
6895 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6896 sect_offset_str (sect_off),
43988095 6897 hex_string (header.signature));
3019eac3 6898
78d4d2c5
JK
6899 info_ptr += length;
6900 }
6901}
3019eac3 6902
78d4d2c5
JK
6903/* Create the hash table of all entries in the .debug_types
6904 (or .debug_types.dwo) section(s).
6905 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6906 otherwise it is NULL.
b3c8eb43 6907
78d4d2c5 6908 The result is a pointer to the hash table or NULL if there are no types.
348e048f 6909
78d4d2c5 6910 Note: This function processes DWO files only, not DWP files. */
348e048f 6911
78d4d2c5 6912static void
ed2dc618
SM
6913create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6914 struct dwo_file *dwo_file,
fd5866f6 6915 gdb::array_view<dwarf2_section_info> type_sections,
78d4d2c5
JK
6916 htab_t &types_htab)
6917{
fd5866f6
SM
6918 for (dwarf2_section_info &section : type_sections)
6919 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
ed2dc618 6920 types_htab, rcuh_kind::TYPE);
3019eac3
DE
6921}
6922
6923/* Create the hash table of all entries in the .debug_types section,
6924 and initialize all_type_units.
6925 The result is zero if there is an error (e.g. missing .debug_types section),
6926 otherwise non-zero. */
6927
6928static int
ed2dc618 6929create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
3019eac3 6930{
78d4d2c5 6931 htab_t types_htab = NULL;
3019eac3 6932
ed2dc618
SM
6933 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6934 &dwarf2_per_objfile->info, types_htab,
43988095 6935 rcuh_kind::COMPILE);
ed2dc618
SM
6936 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6937 dwarf2_per_objfile->types, types_htab);
3019eac3
DE
6938 if (types_htab == NULL)
6939 {
6940 dwarf2_per_objfile->signatured_types = NULL;
6941 return 0;
6942 }
6943
348e048f
DE
6944 dwarf2_per_objfile->signatured_types = types_htab;
6945
b2bdb8cf
SM
6946 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6947 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6948
6949 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6950 &dwarf2_per_objfile->all_type_units);
1fd400ff 6951
348e048f
DE
6952 return 1;
6953}
6954
6aa5f3a6
DE
6955/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6956 If SLOT is non-NULL, it is the entry to use in the hash table.
6957 Otherwise we find one. */
6958
6959static struct signatured_type *
ed2dc618
SM
6960add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6961 void **slot)
6aa5f3a6
DE
6962{
6963 struct objfile *objfile = dwarf2_per_objfile->objfile;
6aa5f3a6 6964
b2bdb8cf
SM
6965 if (dwarf2_per_objfile->all_type_units.size ()
6966 == dwarf2_per_objfile->all_type_units.capacity ())
6967 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6aa5f3a6 6968
b2bdb8cf
SM
6969 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6970 struct signatured_type);
6971
6972 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6aa5f3a6
DE
6973 sig_type->signature = sig;
6974 sig_type->per_cu.is_debug_types = 1;
6975 if (dwarf2_per_objfile->using_index)
6976 {
6977 sig_type->per_cu.v.quick =
6978 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6979 struct dwarf2_per_cu_quick_data);
6980 }
6981
6982 if (slot == NULL)
6983 {
6984 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6985 sig_type, INSERT);
6986 }
6987 gdb_assert (*slot == NULL);
6988 *slot = sig_type;
6989 /* The rest of sig_type must be filled in by the caller. */
6990 return sig_type;
6991}
6992
a2ce51a0
DE
6993/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6994 Fill in SIG_ENTRY with DWO_ENTRY. */
6995
6996static void
ed2dc618 6997fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
a2ce51a0
DE
6998 struct signatured_type *sig_entry,
6999 struct dwo_unit *dwo_entry)
7000{
7ee85ab1 7001 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
7002 gdb_assert (! sig_entry->per_cu.queued);
7003 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
7004 if (dwarf2_per_objfile->using_index)
7005 {
7006 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 7007 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
7008 }
7009 else
7010 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 7011 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 7012 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 7013 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
7014 gdb_assert (sig_entry->dwo_unit == NULL);
7015
7016 sig_entry->per_cu.section = dwo_entry->section;
9c541725 7017 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
7018 sig_entry->per_cu.length = dwo_entry->length;
7019 sig_entry->per_cu.reading_dwo_directly = 1;
e3b94546 7020 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
a2ce51a0
DE
7021 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7022 sig_entry->dwo_unit = dwo_entry;
7023}
7024
7025/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
7026 If we haven't read the TU yet, create the signatured_type data structure
7027 for a TU to be read in directly from a DWO file, bypassing the stub.
7028 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7029 using .gdb_index, then when reading a CU we want to stay in the DWO file
7030 containing that CU. Otherwise we could end up reading several other DWO
7031 files (due to comdat folding) to process the transitive closure of all the
7032 mentioned TUs, and that can be slow. The current DWO file will have every
7033 type signature that it needs.
a2ce51a0
DE
7034 We only do this for .gdb_index because in the psymtab case we already have
7035 to read all the DWOs to build the type unit groups. */
7036
7037static struct signatured_type *
7038lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7039{
518817b3
SM
7040 struct dwarf2_per_objfile *dwarf2_per_objfile
7041 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0
DE
7042 struct objfile *objfile = dwarf2_per_objfile->objfile;
7043 struct dwo_file *dwo_file;
7044 struct dwo_unit find_dwo_entry, *dwo_entry;
7045 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7046 void **slot;
a2ce51a0
DE
7047
7048 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7049
6aa5f3a6
DE
7050 /* If TU skeletons have been removed then we may not have read in any
7051 TUs yet. */
7052 if (dwarf2_per_objfile->signatured_types == NULL)
7053 {
7054 dwarf2_per_objfile->signatured_types
7055 = allocate_signatured_type_table (objfile);
7056 }
a2ce51a0
DE
7057
7058 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
7059 Use the global signatured_types array to do our own comdat-folding
7060 of types. If this is the first time we're reading this TU, and
7061 the TU has an entry in .gdb_index, replace the recorded data from
7062 .gdb_index with this TU. */
a2ce51a0 7063
a2ce51a0 7064 find_sig_entry.signature = sig;
6aa5f3a6
DE
7065 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7066 &find_sig_entry, INSERT);
9a3c8263 7067 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
7068
7069 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
7070 read. Don't reassign the global entry to point to this DWO if that's
7071 the case. Also note that if the TU is already being read, it may not
7072 have come from a DWO, the program may be a mix of Fission-compiled
7073 code and non-Fission-compiled code. */
7074
7075 /* Have we already tried to read this TU?
7076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7077 needn't exist in the global table yet). */
7078 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
7079 return sig_entry;
7080
6aa5f3a6
DE
7081 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7082 dwo_unit of the TU itself. */
7083 dwo_file = cu->dwo_unit->dwo_file;
7084
a2ce51a0
DE
7085 /* Ok, this is the first time we're reading this TU. */
7086 if (dwo_file->tus == NULL)
7087 return NULL;
7088 find_dwo_entry.signature = sig;
9a3c8263 7089 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
7090 if (dwo_entry == NULL)
7091 return NULL;
7092
6aa5f3a6
DE
7093 /* If the global table doesn't have an entry for this TU, add one. */
7094 if (sig_entry == NULL)
ed2dc618 7095 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6aa5f3a6 7096
ed2dc618 7097 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
89e63ee4 7098 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
7099 return sig_entry;
7100}
7101
a2ce51a0
DE
7102/* Subroutine of lookup_signatured_type.
7103 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
7104 then try the DWP file. If the TU stub (skeleton) has been removed then
7105 it won't be in .gdb_index. */
a2ce51a0
DE
7106
7107static struct signatured_type *
7108lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109{
518817b3
SM
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0 7112 struct objfile *objfile = dwarf2_per_objfile->objfile;
ed2dc618 7113 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
a2ce51a0
DE
7114 struct dwo_unit *dwo_entry;
7115 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7116 void **slot;
a2ce51a0
DE
7117
7118 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7119 gdb_assert (dwp_file != NULL);
7120
6aa5f3a6
DE
7121 /* If TU skeletons have been removed then we may not have read in any
7122 TUs yet. */
7123 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 7124 {
6aa5f3a6
DE
7125 dwarf2_per_objfile->signatured_types
7126 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
7127 }
7128
6aa5f3a6
DE
7129 find_sig_entry.signature = sig;
7130 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7131 &find_sig_entry, INSERT);
9a3c8263 7132 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
7133
7134 /* Have we already tried to read this TU?
7135 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7136 needn't exist in the global table yet). */
7137 if (sig_entry != NULL)
7138 return sig_entry;
7139
a2ce51a0
DE
7140 if (dwp_file->tus == NULL)
7141 return NULL;
ed2dc618 7142 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
57d63ce2 7143 sig, 1 /* is_debug_types */);
a2ce51a0
DE
7144 if (dwo_entry == NULL)
7145 return NULL;
7146
ed2dc618
SM
7147 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7148 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
a2ce51a0 7149
a2ce51a0
DE
7150 return sig_entry;
7151}
7152
380bca97 7153/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
7154 Returns NULL if signature SIG is not present in the table.
7155 It is up to the caller to complain about this. */
348e048f
DE
7156
7157static struct signatured_type *
a2ce51a0 7158lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 7159{
518817b3
SM
7160 struct dwarf2_per_objfile *dwarf2_per_objfile
7161 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 7162
a2ce51a0
DE
7163 if (cu->dwo_unit
7164 && dwarf2_per_objfile->using_index)
7165 {
7166 /* We're in a DWO/DWP file, and we're using .gdb_index.
7167 These cases require special processing. */
ed2dc618 7168 if (get_dwp_file (dwarf2_per_objfile) == NULL)
a2ce51a0
DE
7169 return lookup_dwo_signatured_type (cu, sig);
7170 else
7171 return lookup_dwp_signatured_type (cu, sig);
7172 }
7173 else
7174 {
7175 struct signatured_type find_entry, *entry;
348e048f 7176
a2ce51a0
DE
7177 if (dwarf2_per_objfile->signatured_types == NULL)
7178 return NULL;
7179 find_entry.signature = sig;
9a3c8263
SM
7180 entry = ((struct signatured_type *)
7181 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
7182 return entry;
7183 }
348e048f 7184}
42e7ad6c
DE
7185\f
7186/* Low level DIE reading support. */
348e048f 7187
d85a05f0
DJ
7188/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7189
7190static void
7191init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 7192 struct dwarf2_cu *cu,
3019eac3 7193 struct dwarf2_section_info *section,
685af9cd
TT
7194 struct dwo_file *dwo_file,
7195 struct abbrev_table *abbrev_table)
d85a05f0 7196{
fceca515 7197 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 7198 reader->abfd = get_section_bfd_owner (section);
d85a05f0 7199 reader->cu = cu;
3019eac3 7200 reader->dwo_file = dwo_file;
dee91e82
DE
7201 reader->die_section = section;
7202 reader->buffer = section->buffer;
f664829e 7203 reader->buffer_end = section->buffer + section->size;
a2ce51a0 7204 reader->comp_dir = NULL;
685af9cd 7205 reader->abbrev_table = abbrev_table;
d85a05f0
DJ
7206}
7207
b0c7bfa9
DE
7208/* Subroutine of init_cutu_and_read_dies to simplify it.
7209 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7210 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7211 already.
7212
7213 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7214 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
7215 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7216 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
7217 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7218 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
7219 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7220 are filled in with the info of the DIE from the DWO file.
685af9cd
TT
7221 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7222 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7223 kept around for at least as long as *RESULT_READER.
7224
b0c7bfa9
DE
7225 The result is non-zero if a valid (non-dummy) DIE was found. */
7226
7227static int
7228read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7229 struct dwo_unit *dwo_unit,
b0c7bfa9 7230 struct die_info *stub_comp_unit_die,
a2ce51a0 7231 const char *stub_comp_dir,
b0c7bfa9 7232 struct die_reader_specs *result_reader,
d521ce57 7233 const gdb_byte **result_info_ptr,
b0c7bfa9 7234 struct die_info **result_comp_unit_die,
685af9cd
TT
7235 int *result_has_children,
7236 abbrev_table_up *result_dwo_abbrev_table)
b0c7bfa9 7237{
ed2dc618 7238 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
b0c7bfa9
DE
7239 struct objfile *objfile = dwarf2_per_objfile->objfile;
7240 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9 7241 bfd *abfd;
d521ce57 7242 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
7243 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7244 int i,num_extra_attrs;
7245 struct dwarf2_section_info *dwo_abbrev_section;
7246 struct attribute *attr;
7247 struct die_info *comp_unit_die;
7248
b0aeadb3
DE
7249 /* At most one of these may be provided. */
7250 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 7251
b0c7bfa9
DE
7252 /* These attributes aren't processed until later:
7253 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
7254 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7255 referenced later. However, these attributes are found in the stub
7256 which we won't have later. In order to not impose this complication
7257 on the rest of the code, we read them here and copy them to the
7258 DWO CU/TU die. */
b0c7bfa9
DE
7259
7260 stmt_list = NULL;
7261 low_pc = NULL;
7262 high_pc = NULL;
7263 ranges = NULL;
7264 comp_dir = NULL;
7265
7266 if (stub_comp_unit_die != NULL)
7267 {
7268 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7269 DWO file. */
7270 if (! this_cu->is_debug_types)
7271 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7272 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7273 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7274 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7275 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7276
7277 /* There should be a DW_AT_addr_base attribute here (if needed).
336d760d
AT
7278 We need the value before we can process DW_FORM_GNU_addr_index
7279 or DW_FORM_addrx. */
b0c7bfa9
DE
7280 cu->addr_base = 0;
7281 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
435d3d88 7282 if (attr != nullptr)
b0c7bfa9
DE
7283 cu->addr_base = DW_UNSND (attr);
7284
7285 /* There should be a DW_AT_ranges_base attribute here (if needed).
7286 We need the value before we can process DW_AT_ranges. */
7287 cu->ranges_base = 0;
7288 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
435d3d88 7289 if (attr != nullptr)
b0c7bfa9
DE
7290 cu->ranges_base = DW_UNSND (attr);
7291 }
a2ce51a0
DE
7292 else if (stub_comp_dir != NULL)
7293 {
7294 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 7295 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
7296 comp_dir->name = DW_AT_comp_dir;
7297 comp_dir->form = DW_FORM_string;
7298 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7299 DW_STRING (comp_dir) = stub_comp_dir;
7300 }
b0c7bfa9
DE
7301
7302 /* Set up for reading the DWO CU/TU. */
7303 cu->dwo_unit = dwo_unit;
685af9cd 7304 dwarf2_section_info *section = dwo_unit->section;
b0c7bfa9 7305 dwarf2_read_section (objfile, section);
a32a8923 7306 abfd = get_section_bfd_owner (section);
9c541725
PA
7307 begin_info_ptr = info_ptr = (section->buffer
7308 + to_underlying (dwo_unit->sect_off));
b0c7bfa9 7309 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
b0c7bfa9
DE
7310
7311 if (this_cu->is_debug_types)
7312 {
b0c7bfa9
DE
7313 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7314
ed2dc618
SM
7315 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7316 &cu->header, section,
b0c7bfa9 7317 dwo_abbrev_section,
43988095 7318 info_ptr, rcuh_kind::TYPE);
a2ce51a0 7319 /* This is not an assert because it can be caused by bad debug info. */
43988095 7320 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
7321 {
7322 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
9d8780f0 7323 " TU at offset %s [in module %s]"),
a2ce51a0 7324 hex_string (sig_type->signature),
43988095 7325 hex_string (cu->header.signature),
9d8780f0 7326 sect_offset_str (dwo_unit->sect_off),
a2ce51a0
DE
7327 bfd_get_filename (abfd));
7328 }
9c541725 7329 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7330 /* For DWOs coming from DWP files, we don't know the CU length
7331 nor the type's offset in the TU until now. */
7332 dwo_unit->length = get_cu_length (&cu->header);
9c541725 7333 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
7334
7335 /* Establish the type offset that can be used to lookup the type.
7336 For DWO files, we don't know it until now. */
9c541725
PA
7337 sig_type->type_offset_in_section
7338 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
7339 }
7340 else
7341 {
ed2dc618
SM
7342 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7343 &cu->header, section,
b0c7bfa9 7344 dwo_abbrev_section,
43988095 7345 info_ptr, rcuh_kind::COMPILE);
9c541725 7346 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7347 /* For DWOs coming from DWP files, we don't know the CU length
7348 until now. */
7349 dwo_unit->length = get_cu_length (&cu->header);
7350 }
7351
685af9cd
TT
7352 *result_dwo_abbrev_table
7353 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7354 cu->header.abbrev_sect_off);
7355 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7356 result_dwo_abbrev_table->get ());
b0c7bfa9
DE
7357
7358 /* Read in the die, but leave space to copy over the attributes
7359 from the stub. This has the benefit of simplifying the rest of
7360 the code - all the work to maintain the illusion of a single
7361 DW_TAG_{compile,type}_unit DIE is done here. */
7362 num_extra_attrs = ((stmt_list != NULL)
7363 + (low_pc != NULL)
7364 + (high_pc != NULL)
7365 + (ranges != NULL)
7366 + (comp_dir != NULL));
7367 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7368 result_has_children, num_extra_attrs);
7369
7370 /* Copy over the attributes from the stub to the DIE we just read in. */
7371 comp_unit_die = *result_comp_unit_die;
7372 i = comp_unit_die->num_attrs;
7373 if (stmt_list != NULL)
7374 comp_unit_die->attrs[i++] = *stmt_list;
7375 if (low_pc != NULL)
7376 comp_unit_die->attrs[i++] = *low_pc;
7377 if (high_pc != NULL)
7378 comp_unit_die->attrs[i++] = *high_pc;
7379 if (ranges != NULL)
7380 comp_unit_die->attrs[i++] = *ranges;
7381 if (comp_dir != NULL)
7382 comp_unit_die->attrs[i++] = *comp_dir;
7383 comp_unit_die->num_attrs += num_extra_attrs;
7384
b4f54984 7385 if (dwarf_die_debug)
bf6af496
DE
7386 {
7387 fprintf_unfiltered (gdb_stdlog,
7388 "Read die from %s@0x%x of %s:\n",
a32a8923 7389 get_section_name (section),
bf6af496
DE
7390 (unsigned) (begin_info_ptr - section->buffer),
7391 bfd_get_filename (abfd));
b4f54984 7392 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
7393 }
7394
a2ce51a0
DE
7395 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7396 TUs by skipping the stub and going directly to the entry in the DWO file.
7397 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7398 to get it via circuitous means. Blech. */
7399 if (comp_dir != NULL)
7400 result_reader->comp_dir = DW_STRING (comp_dir);
7401
b0c7bfa9
DE
7402 /* Skip dummy compilation units. */
7403 if (info_ptr >= begin_info_ptr + dwo_unit->length
7404 || peek_abbrev_code (abfd, info_ptr) == 0)
7405 return 0;
7406
7407 *result_info_ptr = info_ptr;
7408 return 1;
7409}
7410
a084a2a6
AT
7411/* Return the signature of the compile unit, if found. In DWARF 4 and before,
7412 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7413 signature is part of the header. */
7414static gdb::optional<ULONGEST>
7415lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7416{
7417 if (cu->header.version >= 5)
7418 return cu->header.signature;
7419 struct attribute *attr;
7420 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7421 if (attr == nullptr)
7422 return gdb::optional<ULONGEST> ();
7423 return DW_UNSND (attr);
7424}
7425
b0c7bfa9
DE
7426/* Subroutine of init_cutu_and_read_dies to simplify it.
7427 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 7428 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
7429
7430static struct dwo_unit *
7431lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7432 struct die_info *comp_unit_die)
7433{
7434 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9
DE
7435 struct dwo_unit *dwo_unit;
7436 const char *comp_dir, *dwo_name;
7437
a2ce51a0
DE
7438 gdb_assert (cu != NULL);
7439
b0c7bfa9 7440 /* Yeah, we look dwo_name up again, but it simplifies the code. */
a084a2a6 7441 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7d45c7c3 7442 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
7443
7444 if (this_cu->is_debug_types)
7445 {
7446 struct signatured_type *sig_type;
7447
7448 /* Since this_cu is the first member of struct signatured_type,
7449 we can go from a pointer to one to a pointer to the other. */
7450 sig_type = (struct signatured_type *) this_cu;
b0c7bfa9
DE
7451 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7452 }
7453 else
7454 {
a084a2a6
AT
7455 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7456 if (!signature.has_value ())
b0c7bfa9
DE
7457 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7458 " [in module %s]"),
e3b94546 7459 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
b0c7bfa9 7460 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
a084a2a6 7461 *signature);
b0c7bfa9
DE
7462 }
7463
b0c7bfa9
DE
7464 return dwo_unit;
7465}
7466
a2ce51a0 7467/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6 7468 See it for a description of the parameters.
fcd3b13d 7469 Read a TU directly from a DWO file, bypassing the stub. */
a2ce51a0
DE
7470
7471static void
6aa5f3a6
DE
7472init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7473 int use_existing_cu, int keep,
a2ce51a0
DE
7474 die_reader_func_ftype *die_reader_func,
7475 void *data)
7476{
fcd3b13d 7477 std::unique_ptr<dwarf2_cu> new_cu;
a2ce51a0 7478 struct signatured_type *sig_type;
a2ce51a0
DE
7479 struct die_reader_specs reader;
7480 const gdb_byte *info_ptr;
7481 struct die_info *comp_unit_die;
7482 int has_children;
ed2dc618 7483 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
a2ce51a0
DE
7484
7485 /* Verify we can do the following downcast, and that we have the
7486 data we need. */
7487 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7488 sig_type = (struct signatured_type *) this_cu;
7489 gdb_assert (sig_type->dwo_unit != NULL);
7490
6aa5f3a6
DE
7491 if (use_existing_cu && this_cu->cu != NULL)
7492 {
7493 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6aa5f3a6
DE
7494 /* There's no need to do the rereading_dwo_cu handling that
7495 init_cutu_and_read_dies does since we don't read the stub. */
7496 }
7497 else
7498 {
7499 /* If !use_existing_cu, this_cu->cu must be NULL. */
7500 gdb_assert (this_cu->cu == NULL);
fcd3b13d 7501 new_cu.reset (new dwarf2_cu (this_cu));
6aa5f3a6
DE
7502 }
7503
7504 /* A future optimization, if needed, would be to use an existing
7505 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7506 could share abbrev tables. */
a2ce51a0 7507
685af9cd
TT
7508 /* The abbreviation table used by READER, this must live at least as long as
7509 READER. */
7510 abbrev_table_up dwo_abbrev_table;
7511
a2ce51a0 7512 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
a2ce51a0
DE
7513 NULL /* stub_comp_unit_die */,
7514 sig_type->dwo_unit->dwo_file->comp_dir,
7515 &reader, &info_ptr,
685af9cd
TT
7516 &comp_unit_die, &has_children,
7517 &dwo_abbrev_table) == 0)
a2ce51a0
DE
7518 {
7519 /* Dummy die. */
a2ce51a0
DE
7520 return;
7521 }
7522
7523 /* All the "real" work is done here. */
7524 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7525
6aa5f3a6 7526 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
7527 but the alternative is making the latter more complex.
7528 This function is only for the special case of using DWO files directly:
7529 no point in overly complicating the general case just to handle this. */
fcd3b13d 7530 if (new_cu != NULL && keep)
a2ce51a0 7531 {
fcd3b13d
SM
7532 /* Link this CU into read_in_chain. */
7533 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7534 dwarf2_per_objfile->read_in_chain = this_cu;
7535 /* The chain owns it now. */
7536 new_cu.release ();
a2ce51a0 7537 }
a2ce51a0
DE
7538}
7539
fd820528 7540/* Initialize a CU (or TU) and read its DIEs.
3019eac3 7541 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 7542
f4dc4d17
DE
7543 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7544 Otherwise the table specified in the comp unit header is read in and used.
7545 This is an optimization for when we already have the abbrev table.
7546
dee91e82
DE
7547 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7548 Otherwise, a new CU is allocated with xmalloc.
7549
7550 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7551 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7552
7553 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 7554 linker) then DIE_READER_FUNC will not get called. */
aaa75496 7555
70221824 7556static void
fd820528 7557init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 7558 struct abbrev_table *abbrev_table,
fd820528 7559 int use_existing_cu, int keep,
58f0c718 7560 bool skip_partial,
fd820528
DE
7561 die_reader_func_ftype *die_reader_func,
7562 void *data)
c906108c 7563{
ed2dc618 7564 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7566 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7567 bfd *abfd = get_section_bfd_owner (section);
dee91e82 7568 struct dwarf2_cu *cu;
d521ce57 7569 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7570 struct die_reader_specs reader;
d85a05f0 7571 struct die_info *comp_unit_die;
dee91e82 7572 int has_children;
dee91e82 7573 struct signatured_type *sig_type = NULL;
4bdcc0c1 7574 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
7575 /* Non-zero if CU currently points to a DWO file and we need to
7576 reread it. When this happens we need to reread the skeleton die
a2ce51a0 7577 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 7578 int rereading_dwo_cu = 0;
c906108c 7579
b4f54984 7580 if (dwarf_die_debug)
9d8780f0 7581 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7582 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7583 sect_offset_str (this_cu->sect_off));
09406207 7584
dee91e82
DE
7585 if (use_existing_cu)
7586 gdb_assert (keep);
23745b47 7587
a2ce51a0
DE
7588 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7589 file (instead of going through the stub), short-circuit all of this. */
7590 if (this_cu->reading_dwo_directly)
7591 {
7592 /* Narrow down the scope of possibilities to have to understand. */
7593 gdb_assert (this_cu->is_debug_types);
7594 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
7595 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7596 die_reader_func, data);
a2ce51a0
DE
7597 return;
7598 }
7599
dee91e82
DE
7600 /* This is cheap if the section is already read in. */
7601 dwarf2_read_section (objfile, section);
7602
9c541725 7603 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
7604
7605 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82 7606
fcd3b13d 7607 std::unique_ptr<dwarf2_cu> new_cu;
dee91e82
DE
7608 if (use_existing_cu && this_cu->cu != NULL)
7609 {
7610 cu = this_cu->cu;
42e7ad6c
DE
7611 /* If this CU is from a DWO file we need to start over, we need to
7612 refetch the attributes from the skeleton CU.
7613 This could be optimized by retrieving those attributes from when we
7614 were here the first time: the previous comp_unit_die was stored in
7615 comp_unit_obstack. But there's no data yet that we need this
7616 optimization. */
7617 if (cu->dwo_unit != NULL)
7618 rereading_dwo_cu = 1;
dee91e82
DE
7619 }
7620 else
7621 {
7622 /* If !use_existing_cu, this_cu->cu must be NULL. */
7623 gdb_assert (this_cu->cu == NULL);
fcd3b13d
SM
7624 new_cu.reset (new dwarf2_cu (this_cu));
7625 cu = new_cu.get ();
42e7ad6c 7626 }
dee91e82 7627
b0c7bfa9 7628 /* Get the header. */
9c541725 7629 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
7630 {
7631 /* We already have the header, there's no need to read it in again. */
9c541725 7632 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
7633 }
7634 else
7635 {
3019eac3 7636 if (this_cu->is_debug_types)
dee91e82 7637 {
ed2dc618
SM
7638 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7639 &cu->header, section,
4bdcc0c1 7640 abbrev_section, info_ptr,
43988095 7641 rcuh_kind::TYPE);
dee91e82 7642
42e7ad6c
DE
7643 /* Since per_cu is the first member of struct signatured_type,
7644 we can go from a pointer to one to a pointer to the other. */
7645 sig_type = (struct signatured_type *) this_cu;
43988095 7646 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
7647 gdb_assert (sig_type->type_offset_in_tu
7648 == cu->header.type_cu_offset_in_tu);
7649 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 7650
42e7ad6c
DE
7651 /* LENGTH has not been set yet for type units if we're
7652 using .gdb_index. */
1ce1cefd 7653 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
7654
7655 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
7656 sig_type->type_offset_in_section =
7657 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
7658
7659 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7660 }
7661 else
7662 {
ed2dc618
SM
7663 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7664 &cu->header, section,
4bdcc0c1 7665 abbrev_section,
43988095
JK
7666 info_ptr,
7667 rcuh_kind::COMPILE);
dee91e82 7668
9c541725 7669 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 7670 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 7671 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7672 }
7673 }
10b3939b 7674
6caca83c 7675 /* Skip dummy compilation units. */
dee91e82 7676 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c 7677 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7678 return;
6caca83c 7679
433df2d4
DE
7680 /* If we don't have them yet, read the abbrevs for this compilation unit.
7681 And if we need to read them now, make sure they're freed when we're
685af9cd
TT
7682 done (own the table through ABBREV_TABLE_HOLDER). */
7683 abbrev_table_up abbrev_table_holder;
f4dc4d17 7684 if (abbrev_table != NULL)
685af9cd
TT
7685 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7686 else
f4dc4d17 7687 {
685af9cd
TT
7688 abbrev_table_holder
7689 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7690 cu->header.abbrev_sect_off);
7691 abbrev_table = abbrev_table_holder.get ();
42e7ad6c 7692 }
af703f96 7693
dee91e82 7694 /* Read the top level CU/TU die. */
685af9cd 7695 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
dee91e82 7696 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 7697
58f0c718
TT
7698 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7699 return;
7700
b0c7bfa9 7701 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
685af9cd
TT
7702 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7703 table from the DWO file and pass the ownership over to us. It will be
7704 referenced from READER, so we must make sure to free it after we're done
7705 with READER.
7706
b0c7bfa9
DE
7707 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7708 DWO CU, that this test will fail (the attribute will not be present). */
a084a2a6 7709 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
685af9cd 7710 abbrev_table_up dwo_abbrev_table;
a084a2a6 7711 if (dwo_name != nullptr)
3019eac3 7712 {
3019eac3 7713 struct dwo_unit *dwo_unit;
b0c7bfa9 7714 struct die_info *dwo_comp_unit_die;
3019eac3
DE
7715
7716 if (has_children)
6a506a2d 7717 {
b98664d3 7718 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
9d8780f0
SM
7719 " has children (offset %s) [in module %s]"),
7720 sect_offset_str (this_cu->sect_off),
7721 bfd_get_filename (abfd));
6a506a2d 7722 }
b0c7bfa9 7723 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 7724 if (dwo_unit != NULL)
3019eac3 7725 {
6a506a2d 7726 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
a2ce51a0 7727 comp_unit_die, NULL,
6a506a2d 7728 &reader, &info_ptr,
685af9cd
TT
7729 &dwo_comp_unit_die, &has_children,
7730 &dwo_abbrev_table) == 0)
6a506a2d
DE
7731 {
7732 /* Dummy die. */
6a506a2d
DE
7733 return;
7734 }
7735 comp_unit_die = dwo_comp_unit_die;
7736 }
7737 else
7738 {
7739 /* Yikes, we couldn't find the rest of the DIE, we only have
7740 the stub. A complaint has already been logged. There's
7741 not much more we can do except pass on the stub DIE to
7742 die_reader_func. We don't want to throw an error on bad
7743 debug info. */
3019eac3
DE
7744 }
7745 }
7746
b0c7bfa9 7747 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
7748 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7749
b0c7bfa9 7750 /* Done, clean up. */
fcd3b13d 7751 if (new_cu != NULL && keep)
348e048f 7752 {
fcd3b13d
SM
7753 /* Link this CU into read_in_chain. */
7754 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7755 dwarf2_per_objfile->read_in_chain = this_cu;
7756 /* The chain owns it now. */
7757 new_cu.release ();
348e048f 7758 }
dee91e82
DE
7759}
7760
33e80786
DE
7761/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7762 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7763 to have already done the lookup to find the DWO file).
dee91e82
DE
7764
7765 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 7766 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
7767
7768 We fill in THIS_CU->length.
7769
7770 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7771 linker) then DIE_READER_FUNC will not get called.
7772
7773 THIS_CU->cu is always freed when done.
3019eac3
DE
7774 This is done in order to not leave THIS_CU->cu in a state where we have
7775 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
7776
7777static void
7778init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 7779 struct dwo_file *dwo_file,
dee91e82
DE
7780 die_reader_func_ftype *die_reader_func,
7781 void *data)
7782{
ed2dc618 7783 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7784 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7785 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7786 bfd *abfd = get_section_bfd_owner (section);
33e80786 7787 struct dwarf2_section_info *abbrev_section;
d521ce57 7788 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7789 struct die_reader_specs reader;
dee91e82
DE
7790 struct die_info *comp_unit_die;
7791 int has_children;
7792
b4f54984 7793 if (dwarf_die_debug)
9d8780f0 7794 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7795 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7796 sect_offset_str (this_cu->sect_off));
09406207 7797
dee91e82
DE
7798 gdb_assert (this_cu->cu == NULL);
7799
33e80786
DE
7800 abbrev_section = (dwo_file != NULL
7801 ? &dwo_file->sections.abbrev
7802 : get_abbrev_section_for_cu (this_cu));
7803
dee91e82
DE
7804 /* This is cheap if the section is already read in. */
7805 dwarf2_read_section (objfile, section);
7806
fcd3b13d 7807 struct dwarf2_cu cu (this_cu);
dee91e82 7808
9c541725 7809 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
ed2dc618
SM
7810 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7811 &cu.header, section,
4bdcc0c1 7812 abbrev_section, info_ptr,
43988095
JK
7813 (this_cu->is_debug_types
7814 ? rcuh_kind::TYPE
7815 : rcuh_kind::COMPILE));
dee91e82 7816
1ce1cefd 7817 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
7818
7819 /* Skip dummy compilation units. */
7820 if (info_ptr >= begin_info_ptr + this_cu->length
7821 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7822 return;
72bf9492 7823
685af9cd
TT
7824 abbrev_table_up abbrev_table
7825 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7826 cu.header.abbrev_sect_off);
dee91e82 7827
685af9cd 7828 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
dee91e82
DE
7829 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7830
7831 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
dee91e82
DE
7832}
7833
3019eac3
DE
7834/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7835 does not lookup the specified DWO file.
7836 This cannot be used to read DWO files.
dee91e82
DE
7837
7838 THIS_CU->cu is always freed when done.
3019eac3
DE
7839 This is done in order to not leave THIS_CU->cu in a state where we have
7840 to care whether it refers to the "main" CU or the DWO CU.
7841 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
7842
7843static void
7844init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7845 die_reader_func_ftype *die_reader_func,
7846 void *data)
7847{
33e80786 7848 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 7849}
0018ea6f
DE
7850\f
7851/* Type Unit Groups.
dee91e82 7852
0018ea6f
DE
7853 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7854 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7855 so that all types coming from the same compilation (.o file) are grouped
7856 together. A future step could be to put the types in the same symtab as
7857 the CU the types ultimately came from. */
ff013f42 7858
f4dc4d17
DE
7859static hashval_t
7860hash_type_unit_group (const void *item)
7861{
9a3c8263
SM
7862 const struct type_unit_group *tu_group
7863 = (const struct type_unit_group *) item;
f4dc4d17 7864
094b34ac 7865 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 7866}
348e048f
DE
7867
7868static int
f4dc4d17 7869eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 7870{
9a3c8263
SM
7871 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7872 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 7873
094b34ac 7874 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 7875}
348e048f 7876
f4dc4d17
DE
7877/* Allocate a hash table for type unit groups. */
7878
7879static htab_t
ed2dc618 7880allocate_type_unit_groups_table (struct objfile *objfile)
f4dc4d17
DE
7881{
7882 return htab_create_alloc_ex (3,
7883 hash_type_unit_group,
7884 eq_type_unit_group,
7885 NULL,
ed2dc618 7886 &objfile->objfile_obstack,
f4dc4d17
DE
7887 hashtab_obstack_allocate,
7888 dummy_obstack_deallocate);
7889}
dee91e82 7890
f4dc4d17
DE
7891/* Type units that don't have DW_AT_stmt_list are grouped into their own
7892 partial symtabs. We combine several TUs per psymtab to not let the size
7893 of any one psymtab grow too big. */
7894#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7895#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 7896
094b34ac 7897/* Helper routine for get_type_unit_group.
f4dc4d17
DE
7898 Create the type_unit_group object used to hold one or more TUs. */
7899
7900static struct type_unit_group *
094b34ac 7901create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17 7902{
518817b3
SM
7903 struct dwarf2_per_objfile *dwarf2_per_objfile
7904 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17 7905 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 7906 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 7907 struct type_unit_group *tu_group;
f4dc4d17
DE
7908
7909 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7910 struct type_unit_group);
094b34ac 7911 per_cu = &tu_group->per_cu;
518817b3 7912 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
f4dc4d17 7913
094b34ac
DE
7914 if (dwarf2_per_objfile->using_index)
7915 {
7916 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7917 struct dwarf2_per_cu_quick_data);
094b34ac
DE
7918 }
7919 else
7920 {
9c541725 7921 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac 7922 struct partial_symtab *pst;
528e1572 7923 std::string name;
094b34ac
DE
7924
7925 /* Give the symtab a useful name for debug purposes. */
7926 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
528e1572
SM
7927 name = string_printf ("<type_units_%d>",
7928 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
094b34ac 7929 else
528e1572 7930 name = string_printf ("<type_units_at_0x%x>", line_offset);
094b34ac 7931
528e1572 7932 pst = create_partial_symtab (per_cu, name.c_str ());
094b34ac 7933 pst->anonymous = 1;
094b34ac 7934 }
f4dc4d17 7935
094b34ac 7936 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 7937 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
7938
7939 return tu_group;
7940}
7941
094b34ac
DE
7942/* Look up the type_unit_group for type unit CU, and create it if necessary.
7943 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
7944
7945static struct type_unit_group *
ff39bb5e 7946get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17 7947{
518817b3
SM
7948 struct dwarf2_per_objfile *dwarf2_per_objfile
7949 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
7950 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7951 struct type_unit_group *tu_group;
7952 void **slot;
7953 unsigned int line_offset;
7954 struct type_unit_group type_unit_group_for_lookup;
7955
7956 if (dwarf2_per_objfile->type_unit_groups == NULL)
7957 {
7958 dwarf2_per_objfile->type_unit_groups =
ed2dc618 7959 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
f4dc4d17
DE
7960 }
7961
7962 /* Do we need to create a new group, or can we use an existing one? */
7963
7964 if (stmt_list)
7965 {
7966 line_offset = DW_UNSND (stmt_list);
7967 ++tu_stats->nr_symtab_sharers;
7968 }
7969 else
7970 {
7971 /* Ugh, no stmt_list. Rare, but we have to handle it.
7972 We can do various things here like create one group per TU or
7973 spread them over multiple groups to split up the expansion work.
7974 To avoid worst case scenarios (too many groups or too large groups)
7975 we, umm, group them in bunches. */
7976 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7977 | (tu_stats->nr_stmt_less_type_units
7978 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7979 ++tu_stats->nr_stmt_less_type_units;
7980 }
7981
094b34ac 7982 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 7983 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
7984 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7985 &type_unit_group_for_lookup, INSERT);
7986 if (*slot != NULL)
7987 {
9a3c8263 7988 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
7989 gdb_assert (tu_group != NULL);
7990 }
7991 else
7992 {
9c541725 7993 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 7994 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
7995 *slot = tu_group;
7996 ++tu_stats->nr_symtabs;
7997 }
7998
7999 return tu_group;
8000}
0018ea6f
DE
8001\f
8002/* Partial symbol tables. */
8003
8004/* Create a psymtab named NAME and assign it to PER_CU.
8005
8006 The caller must fill in the following details:
8007 dirname, textlow, texthigh. */
8008
8009static struct partial_symtab *
8010create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8011{
e3b94546 8012 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
0018ea6f
DE
8013 struct partial_symtab *pst;
8014
939652a5 8015 pst = start_psymtab_common (objfile, name, 0);
0018ea6f
DE
8016
8017 pst->psymtabs_addrmap_supported = 1;
8018
8019 /* This is the glue that links PST into GDB's symbol API. */
8020 pst->read_symtab_private = per_cu;
8021 pst->read_symtab = dwarf2_read_symtab;
8022 per_cu->v.psymtab = pst;
8023
8024 return pst;
8025}
8026
b93601f3
TT
8027/* The DATA object passed to process_psymtab_comp_unit_reader has this
8028 type. */
8029
8030struct process_psymtab_comp_unit_data
8031{
8032 /* True if we are reading a DW_TAG_partial_unit. */
8033
8034 int want_partial_unit;
8035
8036 /* The "pretend" language that is used if the CU doesn't declare a
8037 language. */
8038
8039 enum language pretend_language;
8040};
8041
0018ea6f
DE
8042/* die_reader_func for process_psymtab_comp_unit. */
8043
8044static void
8045process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8046 const gdb_byte *info_ptr,
0018ea6f
DE
8047 struct die_info *comp_unit_die,
8048 int has_children,
8049 void *data)
8050{
8051 struct dwarf2_cu *cu = reader->cu;
518817b3 8052 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 8053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 8054 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
8055 CORE_ADDR baseaddr;
8056 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8057 struct partial_symtab *pst;
3a2b436a 8058 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 8059 const char *filename;
9a3c8263
SM
8060 struct process_psymtab_comp_unit_data *info
8061 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 8062
b93601f3 8063 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
8064 return;
8065
8066 gdb_assert (! per_cu->is_debug_types);
8067
b93601f3 8068 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f 8069
0018ea6f 8070 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
8071 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8072 if (filename == NULL)
0018ea6f 8073 filename = "";
0018ea6f
DE
8074
8075 pst = create_partial_symtab (per_cu, filename);
8076
8077 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 8078 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
8079
8080 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8081
8082 dwarf2_find_base_address (comp_unit_die, cu);
8083
8084 /* Possibly set the default values of LOWPC and HIGHPC from
8085 `DW_AT_ranges'. */
3a2b436a
JK
8086 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8087 &best_highpc, cu, pst);
8088 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
79748972
TT
8089 {
8090 CORE_ADDR low
8091 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8092 - baseaddr);
8093 CORE_ADDR high
8094 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8095 - baseaddr - 1);
8096 /* Store the contiguous range if it is not empty; it can be
8097 empty for CUs with no code. */
d320c2b5
TT
8098 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8099 low, high, pst);
79748972 8100 }
0018ea6f
DE
8101
8102 /* Check if comp unit has_children.
8103 If so, read the rest of the partial symbols from this comp unit.
8104 If not, there's no more debug_info for this comp unit. */
8105 if (has_children)
8106 {
8107 struct partial_die_info *first_die;
8108 CORE_ADDR lowpc, highpc;
8109
8110 lowpc = ((CORE_ADDR) -1);
8111 highpc = ((CORE_ADDR) 0);
8112
8113 first_die = load_partial_dies (reader, info_ptr, 1);
8114
8115 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 8116 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
8117
8118 /* If we didn't find a lowpc, set it to highpc to avoid
8119 complaints from `maint check'. */
8120 if (lowpc == ((CORE_ADDR) -1))
8121 lowpc = highpc;
8122
8123 /* If the compilation unit didn't have an explicit address range,
8124 then use the information extracted from its child dies. */
e385593e 8125 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
8126 {
8127 best_lowpc = lowpc;
8128 best_highpc = highpc;
8129 }
8130 }
4ae976d1 8131 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8132 best_lowpc + baseaddr)
8133 - baseaddr);
4ae976d1 8134 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8135 best_highpc + baseaddr)
8136 - baseaddr);
0018ea6f 8137
8763cede 8138 end_psymtab_common (objfile, pst);
0018ea6f 8139
ae640021 8140 if (!cu->per_cu->imported_symtabs_empty ())
0018ea6f
DE
8141 {
8142 int i;
ae640021 8143 int len = cu->per_cu->imported_symtabs_size ();
0018ea6f
DE
8144
8145 /* Fill in 'dependencies' here; we fill in 'users' in a
8146 post-pass. */
8147 pst->number_of_dependencies = len;
a9342b62
TT
8148 pst->dependencies
8149 = objfile->partial_symtabs->allocate_dependencies (len);
ae640021
AB
8150 for (i = 0; i < len; ++i)
8151 {
8152 pst->dependencies[i]
8153 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
8154 }
0018ea6f 8155
ae640021 8156 cu->per_cu->imported_symtabs_free ();
0018ea6f
DE
8157 }
8158
8159 /* Get the list of files included in the current compilation unit,
8160 and build a psymtab for each of them. */
8161 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8162
b4f54984 8163 if (dwarf_read_debug)
b926417a
TT
8164 fprintf_unfiltered (gdb_stdlog,
8165 "Psymtab for %s unit @%s: %s - %s"
8166 ", %d global, %d static syms\n",
8167 per_cu->is_debug_types ? "type" : "comp",
8168 sect_offset_str (per_cu->sect_off),
8169 paddress (gdbarch, pst->text_low (objfile)),
8170 paddress (gdbarch, pst->text_high (objfile)),
8171 pst->n_global_syms, pst->n_static_syms);
0018ea6f
DE
8172}
8173
8174/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8175 Process compilation unit THIS_CU for a psymtab. */
8176
8177static void
8178process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
8179 int want_partial_unit,
8180 enum language pretend_language)
0018ea6f
DE
8181{
8182 /* If this compilation unit was already read in, free the
8183 cached copy in order to read it in again. This is
8184 necessary because we skipped some symbols when we first
8185 read in the compilation unit (see load_partial_dies).
8186 This problem could be avoided, but the benefit is unclear. */
8187 if (this_cu->cu != NULL)
8188 free_one_cached_comp_unit (this_cu);
8189
f1902523 8190 if (this_cu->is_debug_types)
58f0c718
TT
8191 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8192 build_type_psymtabs_reader, NULL);
f1902523
JK
8193 else
8194 {
8195 process_psymtab_comp_unit_data info;
8196 info.want_partial_unit = want_partial_unit;
8197 info.pretend_language = pretend_language;
58f0c718 8198 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
f1902523
JK
8199 process_psymtab_comp_unit_reader, &info);
8200 }
0018ea6f
DE
8201
8202 /* Age out any secondary CUs. */
ed2dc618 8203 age_cached_comp_units (this_cu->dwarf2_per_objfile);
0018ea6f 8204}
f4dc4d17
DE
8205
8206/* Reader function for build_type_psymtabs. */
8207
8208static void
8209build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 8210 const gdb_byte *info_ptr,
f4dc4d17
DE
8211 struct die_info *type_unit_die,
8212 int has_children,
8213 void *data)
8214{
ed2dc618 8215 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 8216 = reader->cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
8217 struct objfile *objfile = dwarf2_per_objfile->objfile;
8218 struct dwarf2_cu *cu = reader->cu;
8219 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 8220 struct signatured_type *sig_type;
f4dc4d17
DE
8221 struct type_unit_group *tu_group;
8222 struct attribute *attr;
8223 struct partial_die_info *first_die;
8224 CORE_ADDR lowpc, highpc;
8225 struct partial_symtab *pst;
8226
8227 gdb_assert (data == NULL);
0186c6a7
DE
8228 gdb_assert (per_cu->is_debug_types);
8229 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8230
8231 if (! has_children)
8232 return;
8233
8234 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 8235 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 8236
df07e2c7 8237 if (tu_group->tus == nullptr)
a8b3b8e9 8238 tu_group->tus = new std::vector<signatured_type *>;
df07e2c7 8239 tu_group->tus->push_back (sig_type);
f4dc4d17
DE
8240
8241 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
f4dc4d17
DE
8242 pst = create_partial_symtab (per_cu, "");
8243 pst->anonymous = 1;
8244
8245 first_die = load_partial_dies (reader, info_ptr, 1);
8246
8247 lowpc = (CORE_ADDR) -1;
8248 highpc = (CORE_ADDR) 0;
8249 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8250
8763cede 8251 end_psymtab_common (objfile, pst);
f4dc4d17
DE
8252}
8253
73051182
DE
8254/* Struct used to sort TUs by their abbreviation table offset. */
8255
8256struct tu_abbrev_offset
8257{
b2bdb8cf
SM
8258 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8259 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8260 {}
8261
8262 signatured_type *sig_type;
73051182
DE
8263 sect_offset abbrev_offset;
8264};
8265
484cf504 8266/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
73051182 8267
484cf504
TT
8268static bool
8269sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8270 const struct tu_abbrev_offset &b)
73051182 8271{
484cf504 8272 return a.abbrev_offset < b.abbrev_offset;
73051182
DE
8273}
8274
8275/* Efficiently read all the type units.
8276 This does the bulk of the work for build_type_psymtabs.
8277
8278 The efficiency is because we sort TUs by the abbrev table they use and
8279 only read each abbrev table once. In one program there are 200K TUs
8280 sharing 8K abbrev tables.
8281
8282 The main purpose of this function is to support building the
8283 dwarf2_per_objfile->type_unit_groups table.
8284 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8285 can collapse the search space by grouping them by stmt_list.
8286 The savings can be significant, in the same program from above the 200K TUs
8287 share 8K stmt_list tables.
8288
8289 FUNC is expected to call get_type_unit_group, which will create the
8290 struct type_unit_group if necessary and add it to
8291 dwarf2_per_objfile->type_unit_groups. */
8292
8293static void
ed2dc618 8294build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
73051182 8295{
73051182 8296 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
685af9cd 8297 abbrev_table_up abbrev_table;
73051182 8298 sect_offset abbrev_offset;
73051182
DE
8299
8300 /* It's up to the caller to not call us multiple times. */
8301 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8302
b2bdb8cf 8303 if (dwarf2_per_objfile->all_type_units.empty ())
73051182
DE
8304 return;
8305
8306 /* TUs typically share abbrev tables, and there can be way more TUs than
8307 abbrev tables. Sort by abbrev table to reduce the number of times we
8308 read each abbrev table in.
8309 Alternatives are to punt or to maintain a cache of abbrev tables.
8310 This is simpler and efficient enough for now.
8311
8312 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8313 symtab to use). Typically TUs with the same abbrev offset have the same
8314 stmt_list value too so in practice this should work well.
8315
8316 The basic algorithm here is:
8317
8318 sort TUs by abbrev table
8319 for each TU with same abbrev table:
8320 read abbrev table if first user
8321 read TU top level DIE
8322 [IWBN if DWO skeletons had DW_AT_stmt_list]
8323 call FUNC */
8324
b4f54984 8325 if (dwarf_read_debug)
73051182
DE
8326 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8327
8328 /* Sort in a separate table to maintain the order of all_type_units
8329 for .gdb_index: TU indices directly index all_type_units. */
b2bdb8cf
SM
8330 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8331 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8332
8333 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8334 sorted_by_abbrev.emplace_back
8335 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8336 sig_type->per_cu.section,
8337 sig_type->per_cu.sect_off));
73051182 8338
484cf504
TT
8339 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8340 sort_tu_by_abbrev_offset);
73051182 8341
9c541725 8342 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182 8343
b2bdb8cf 8344 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
73051182 8345 {
73051182
DE
8346 /* Switch to the next abbrev table if necessary. */
8347 if (abbrev_table == NULL
b2bdb8cf 8348 || tu.abbrev_offset != abbrev_offset)
73051182 8349 {
b2bdb8cf 8350 abbrev_offset = tu.abbrev_offset;
73051182 8351 abbrev_table =
ed2dc618
SM
8352 abbrev_table_read_table (dwarf2_per_objfile,
8353 &dwarf2_per_objfile->abbrev,
73051182
DE
8354 abbrev_offset);
8355 ++tu_stats->nr_uniq_abbrev_tables;
8356 }
8357
b2bdb8cf 8358 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
58f0c718 8359 0, 0, false, build_type_psymtabs_reader, NULL);
73051182 8360 }
6aa5f3a6 8361}
73051182 8362
6aa5f3a6
DE
8363/* Print collected type unit statistics. */
8364
8365static void
ed2dc618 8366print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8367{
8368 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8369
8370 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
b2bdb8cf
SM
8371 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8372 dwarf2_per_objfile->all_type_units.size ());
6aa5f3a6
DE
8373 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8374 tu_stats->nr_uniq_abbrev_tables);
8375 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8376 tu_stats->nr_symtabs);
8377 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8378 tu_stats->nr_symtab_sharers);
8379 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8380 tu_stats->nr_stmt_less_type_units);
8381 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8382 tu_stats->nr_all_type_units_reallocs);
73051182
DE
8383}
8384
f4dc4d17
DE
8385/* Traversal function for build_type_psymtabs. */
8386
8387static int
8388build_type_psymtab_dependencies (void **slot, void *info)
8389{
ed2dc618
SM
8390 struct dwarf2_per_objfile *dwarf2_per_objfile
8391 = (struct dwarf2_per_objfile *) info;
f4dc4d17
DE
8392 struct objfile *objfile = dwarf2_per_objfile->objfile;
8393 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 8394 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 8395 struct partial_symtab *pst = per_cu->v.psymtab;
df07e2c7 8396 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
f4dc4d17
DE
8397 int i;
8398
8399 gdb_assert (len > 0);
0186c6a7 8400 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
8401
8402 pst->number_of_dependencies = len;
a9342b62 8403 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
df07e2c7 8404 for (i = 0; i < len; ++i)
f4dc4d17 8405 {
df07e2c7 8406 struct signatured_type *iter = tu_group->tus->at (i);
0186c6a7
DE
8407 gdb_assert (iter->per_cu.is_debug_types);
8408 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 8409 iter->type_unit_group = tu_group;
f4dc4d17
DE
8410 }
8411
df07e2c7
AB
8412 delete tu_group->tus;
8413 tu_group->tus = nullptr;
348e048f
DE
8414
8415 return 1;
8416}
8417
8418/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8419 Build partial symbol tables for the .debug_types comp-units. */
8420
8421static void
ed2dc618 8422build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
348e048f 8423{
ed2dc618 8424 if (! create_all_type_units (dwarf2_per_objfile))
348e048f
DE
8425 return;
8426
ed2dc618 8427 build_type_psymtabs_1 (dwarf2_per_objfile);
6aa5f3a6 8428}
f4dc4d17 8429
6aa5f3a6
DE
8430/* Traversal function for process_skeletonless_type_unit.
8431 Read a TU in a DWO file and build partial symbols for it. */
8432
8433static int
8434process_skeletonless_type_unit (void **slot, void *info)
8435{
8436 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
ed2dc618
SM
8437 struct dwarf2_per_objfile *dwarf2_per_objfile
8438 = (struct dwarf2_per_objfile *) info;
6aa5f3a6
DE
8439 struct signatured_type find_entry, *entry;
8440
8441 /* If this TU doesn't exist in the global table, add it and read it in. */
8442
8443 if (dwarf2_per_objfile->signatured_types == NULL)
8444 {
8445 dwarf2_per_objfile->signatured_types
ed2dc618 8446 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
6aa5f3a6
DE
8447 }
8448
8449 find_entry.signature = dwo_unit->signature;
8450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8451 INSERT);
8452 /* If we've already seen this type there's nothing to do. What's happening
8453 is we're doing our own version of comdat-folding here. */
8454 if (*slot != NULL)
8455 return 1;
8456
8457 /* This does the job that create_all_type_units would have done for
8458 this TU. */
ed2dc618
SM
8459 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8460 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
6aa5f3a6
DE
8461 *slot = entry;
8462
8463 /* This does the job that build_type_psymtabs_1 would have done. */
58f0c718 8464 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
6aa5f3a6
DE
8465 build_type_psymtabs_reader, NULL);
8466
8467 return 1;
8468}
8469
8470/* Traversal function for process_skeletonless_type_units. */
8471
8472static int
8473process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8474{
8475 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8476
8477 if (dwo_file->tus != NULL)
8478 {
8479 htab_traverse_noresize (dwo_file->tus,
8480 process_skeletonless_type_unit, info);
8481 }
8482
8483 return 1;
8484}
8485
8486/* Scan all TUs of DWO files, verifying we've processed them.
8487 This is needed in case a TU was emitted without its skeleton.
8488 Note: This can't be done until we know what all the DWO files are. */
8489
8490static void
ed2dc618 8491process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8492{
8493 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
ed2dc618 8494 if (get_dwp_file (dwarf2_per_objfile) == NULL
6aa5f3a6
DE
8495 && dwarf2_per_objfile->dwo_files != NULL)
8496 {
51ac9db5 8497 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
6aa5f3a6 8498 process_dwo_file_for_skeletonless_type_units,
ed2dc618 8499 dwarf2_per_objfile);
6aa5f3a6 8500 }
348e048f
DE
8501}
8502
ed2dc618 8503/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
95554aad
TT
8504
8505static void
ed2dc618 8506set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 8507{
b76e467d 8508 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
95554aad 8509 {
95554aad 8510 struct partial_symtab *pst = per_cu->v.psymtab;
95554aad 8511
36586728
TT
8512 if (pst == NULL)
8513 continue;
8514
b76e467d 8515 for (int j = 0; j < pst->number_of_dependencies; ++j)
95554aad
TT
8516 {
8517 /* Set the 'user' field only if it is not already set. */
8518 if (pst->dependencies[j]->user == NULL)
8519 pst->dependencies[j]->user = pst;
8520 }
8521 }
8522}
8523
93311388
DE
8524/* Build the partial symbol table by doing a quick pass through the
8525 .debug_info and .debug_abbrev sections. */
72bf9492 8526
93311388 8527static void
ed2dc618 8528dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
93311388 8529{
ed2dc618 8530 struct objfile *objfile = dwarf2_per_objfile->objfile;
93311388 8531
b4f54984 8532 if (dwarf_read_debug)
45cfd468
DE
8533 {
8534 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 8535 objfile_name (objfile));
45cfd468
DE
8536 }
8537
98bfdba5
PA
8538 dwarf2_per_objfile->reading_partial_symbols = 1;
8539
be391dca 8540 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 8541
93311388
DE
8542 /* Any cached compilation units will be linked by the per-objfile
8543 read_in_chain. Make sure to free them when we're done. */
11ed8cad 8544 free_cached_comp_units freer (dwarf2_per_objfile);
72bf9492 8545
ed2dc618 8546 build_type_psymtabs (dwarf2_per_objfile);
348e048f 8547
ed2dc618 8548 create_all_comp_units (dwarf2_per_objfile);
c906108c 8549
60606b2c
TT
8550 /* Create a temporary address map on a temporary obstack. We later
8551 copy this to the final obstack. */
8268c778 8552 auto_obstack temp_obstack;
791afaa2
TT
8553
8554 scoped_restore save_psymtabs_addrmap
d320c2b5 8555 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
791afaa2 8556 addrmap_create_mutable (&temp_obstack));
72bf9492 8557
b76e467d
SM
8558 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8559 process_psymtab_comp_unit (per_cu, 0, language_minimal);
ff013f42 8560
6aa5f3a6 8561 /* This has to wait until we read the CUs, we need the list of DWOs. */
ed2dc618 8562 process_skeletonless_type_units (dwarf2_per_objfile);
6aa5f3a6
DE
8563
8564 /* Now that all TUs have been processed we can fill in the dependencies. */
8565 if (dwarf2_per_objfile->type_unit_groups != NULL)
8566 {
8567 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
ed2dc618 8568 build_type_psymtab_dependencies, dwarf2_per_objfile);
6aa5f3a6
DE
8569 }
8570
b4f54984 8571 if (dwarf_read_debug)
ed2dc618 8572 print_tu_stats (dwarf2_per_objfile);
6aa5f3a6 8573
ed2dc618 8574 set_partial_user (dwarf2_per_objfile);
95554aad 8575
d320c2b5
TT
8576 objfile->partial_symtabs->psymtabs_addrmap
8577 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
5923a04c 8578 objfile->partial_symtabs->obstack ());
791afaa2
TT
8579 /* At this point we want to keep the address map. */
8580 save_psymtabs_addrmap.release ();
ff013f42 8581
b4f54984 8582 if (dwarf_read_debug)
45cfd468 8583 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 8584 objfile_name (objfile));
ae038cb0
DJ
8585}
8586
3019eac3 8587/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
8588
8589static void
dee91e82 8590load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8591 const gdb_byte *info_ptr,
dee91e82
DE
8592 struct die_info *comp_unit_die,
8593 int has_children,
8594 void *data)
ae038cb0 8595{
dee91e82 8596 struct dwarf2_cu *cu = reader->cu;
ae038cb0 8597
95554aad 8598 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 8599
ae038cb0
DJ
8600 /* Check if comp unit has_children.
8601 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 8602 If not, there's no more debug_info for this comp unit. */
d85a05f0 8603 if (has_children)
dee91e82
DE
8604 load_partial_dies (reader, info_ptr, 0);
8605}
98bfdba5 8606
dee91e82
DE
8607/* Load the partial DIEs for a secondary CU into memory.
8608 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 8609
dee91e82
DE
8610static void
8611load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8612{
58f0c718 8613 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
f4dc4d17 8614 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
8615}
8616
ae038cb0 8617static void
ed2dc618 8618read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
36586728 8619 struct dwarf2_section_info *section,
f1902523 8620 struct dwarf2_section_info *abbrev_section,
b76e467d 8621 unsigned int is_dwz)
ae038cb0 8622{
d521ce57 8623 const gdb_byte *info_ptr;
ed2dc618 8624 struct objfile *objfile = dwarf2_per_objfile->objfile;
be391dca 8625
b4f54984 8626 if (dwarf_read_debug)
bf6af496 8627 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
8628 get_section_name (section),
8629 get_section_file_name (section));
bf6af496 8630
36586728 8631 dwarf2_read_section (objfile, section);
ae038cb0 8632
36586728 8633 info_ptr = section->buffer;
6e70227d 8634
36586728 8635 while (info_ptr < section->buffer + section->size)
ae038cb0 8636 {
ae038cb0 8637 struct dwarf2_per_cu_data *this_cu;
ae038cb0 8638
9c541725 8639 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 8640
f1902523 8641 comp_unit_head cu_header;
ed2dc618
SM
8642 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8643 abbrev_section, info_ptr,
8644 rcuh_kind::COMPILE);
ae038cb0
DJ
8645
8646 /* Save the compilation unit for later lookup. */
f1902523
JK
8647 if (cu_header.unit_type != DW_UT_type)
8648 {
8649 this_cu = XOBNEW (&objfile->objfile_obstack,
8650 struct dwarf2_per_cu_data);
8651 memset (this_cu, 0, sizeof (*this_cu));
8652 }
8653 else
8654 {
8655 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8656 struct signatured_type);
8657 memset (sig_type, 0, sizeof (*sig_type));
8658 sig_type->signature = cu_header.signature;
8659 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8660 this_cu = &sig_type->per_cu;
8661 }
8662 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 8663 this_cu->sect_off = sect_off;
f1902523 8664 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 8665 this_cu->is_dwz = is_dwz;
e3b94546 8666 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8a0459fd 8667 this_cu->section = section;
ae038cb0 8668
b76e467d 8669 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
ae038cb0
DJ
8670
8671 info_ptr = info_ptr + this_cu->length;
8672 }
36586728
TT
8673}
8674
8675/* Create a list of all compilation units in OBJFILE.
8676 This is only done for -readnow and building partial symtabs. */
8677
8678static void
ed2dc618 8679create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 8680{
b76e467d 8681 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
ed2dc618 8682 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
b76e467d 8683 &dwarf2_per_objfile->abbrev, 0);
36586728 8684
b76e467d 8685 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 8686 if (dwz != NULL)
ed2dc618 8687 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
b76e467d 8688 1);
c906108c
SS
8689}
8690
5734ee8b 8691/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 8692 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 8693 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
8694 DW_AT_ranges). See the comments of add_partial_subprogram on how
8695 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 8696
72bf9492
DJ
8697static void
8698scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
8699 CORE_ADDR *highpc, int set_addrmap,
8700 struct dwarf2_cu *cu)
c906108c 8701{
72bf9492 8702 struct partial_die_info *pdi;
c906108c 8703
91c24f0a
DC
8704 /* Now, march along the PDI's, descending into ones which have
8705 interesting children but skipping the children of the other ones,
8706 until we reach the end of the compilation unit. */
c906108c 8707
72bf9492 8708 pdi = first_die;
91c24f0a 8709
72bf9492
DJ
8710 while (pdi != NULL)
8711 {
52356b79 8712 pdi->fixup (cu);
c906108c 8713
f55ee35c 8714 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
8715 children, so we need to look at them. Ditto for anonymous
8716 enums. */
933c6fe4 8717
72bf9492 8718 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad 8719 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
b1dc1806
XR
8720 || pdi->tag == DW_TAG_imported_unit
8721 || pdi->tag == DW_TAG_inlined_subroutine)
c906108c 8722 {
72bf9492 8723 switch (pdi->tag)
c906108c
SS
8724 {
8725 case DW_TAG_subprogram:
b1dc1806 8726 case DW_TAG_inlined_subroutine:
cdc07690 8727 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 8728 break;
72929c62 8729 case DW_TAG_constant:
c906108c
SS
8730 case DW_TAG_variable:
8731 case DW_TAG_typedef:
91c24f0a 8732 case DW_TAG_union_type:
72bf9492 8733 if (!pdi->is_declaration)
63d06c5c 8734 {
72bf9492 8735 add_partial_symbol (pdi, cu);
63d06c5c
DC
8736 }
8737 break;
c906108c 8738 case DW_TAG_class_type:
680b30c7 8739 case DW_TAG_interface_type:
c906108c 8740 case DW_TAG_structure_type:
72bf9492 8741 if (!pdi->is_declaration)
c906108c 8742 {
72bf9492 8743 add_partial_symbol (pdi, cu);
c906108c 8744 }
b7fee5a3
KS
8745 if ((cu->language == language_rust
8746 || cu->language == language_cplus) && pdi->has_children)
e98c9e7c
TT
8747 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8748 set_addrmap, cu);
c906108c 8749 break;
91c24f0a 8750 case DW_TAG_enumeration_type:
72bf9492
DJ
8751 if (!pdi->is_declaration)
8752 add_partial_enumeration (pdi, cu);
c906108c
SS
8753 break;
8754 case DW_TAG_base_type:
a02abb62 8755 case DW_TAG_subrange_type:
c906108c 8756 /* File scope base type definitions are added to the partial
c5aa993b 8757 symbol table. */
72bf9492 8758 add_partial_symbol (pdi, cu);
c906108c 8759 break;
d9fa45fe 8760 case DW_TAG_namespace:
cdc07690 8761 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 8762 break;
5d7cb8df 8763 case DW_TAG_module:
59c35742
AB
8764 if (!pdi->is_declaration)
8765 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 8766 break;
95554aad
TT
8767 case DW_TAG_imported_unit:
8768 {
8769 struct dwarf2_per_cu_data *per_cu;
8770
f4dc4d17
DE
8771 /* For now we don't handle imported units in type units. */
8772 if (cu->per_cu->is_debug_types)
8773 {
8774 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8775 " supported in type units [in module %s]"),
518817b3 8776 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
8777 }
8778
e3b94546
SM
8779 per_cu = dwarf2_find_containing_comp_unit
8780 (pdi->d.sect_off, pdi->is_dwz,
518817b3 8781 cu->per_cu->dwarf2_per_objfile);
95554aad
TT
8782
8783 /* Go read the partial unit, if needed. */
8784 if (per_cu->v.psymtab == NULL)
b93601f3 8785 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 8786
ae640021 8787 cu->per_cu->imported_symtabs_push (per_cu);
95554aad
TT
8788 }
8789 break;
74921315
KS
8790 case DW_TAG_imported_declaration:
8791 add_partial_symbol (pdi, cu);
8792 break;
c906108c
SS
8793 default:
8794 break;
8795 }
8796 }
8797
72bf9492
DJ
8798 /* If the die has a sibling, skip to the sibling. */
8799
8800 pdi = pdi->die_sibling;
8801 }
8802}
8803
8804/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 8805
72bf9492 8806 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 8807 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
8808 Enumerators are an exception; they use the scope of their parent
8809 enumeration type, i.e. the name of the enumeration type is not
8810 prepended to the enumerator.
91c24f0a 8811
72bf9492
DJ
8812 There are two complexities. One is DW_AT_specification; in this
8813 case "parent" means the parent of the target of the specification,
8814 instead of the direct parent of the DIE. The other is compilers
8815 which do not emit DW_TAG_namespace; in this case we try to guess
8816 the fully qualified name of structure types from their members'
8817 linkage names. This must be done using the DIE's children rather
8818 than the children of any DW_AT_specification target. We only need
8819 to do this for structures at the top level, i.e. if the target of
8820 any DW_AT_specification (if any; otherwise the DIE itself) does not
8821 have a parent. */
8822
8823/* Compute the scope prefix associated with PDI's parent, in
8824 compilation unit CU. The result will be allocated on CU's
8825 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8826 field. NULL is returned if no prefix is necessary. */
15d034d0 8827static const char *
72bf9492
DJ
8828partial_die_parent_scope (struct partial_die_info *pdi,
8829 struct dwarf2_cu *cu)
8830{
15d034d0 8831 const char *grandparent_scope;
72bf9492 8832 struct partial_die_info *parent, *real_pdi;
91c24f0a 8833
72bf9492
DJ
8834 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8835 then this means the parent of the specification DIE. */
8836
8837 real_pdi = pdi;
72bf9492 8838 while (real_pdi->has_specification)
fb816e8b 8839 {
122cf0f2
AB
8840 auto res = find_partial_die (real_pdi->spec_offset,
8841 real_pdi->spec_is_dwz, cu);
fb816e8b
TV
8842 real_pdi = res.pdi;
8843 cu = res.cu;
8844 }
72bf9492
DJ
8845
8846 parent = real_pdi->die_parent;
8847 if (parent == NULL)
8848 return NULL;
8849
8850 if (parent->scope_set)
8851 return parent->scope;
8852
52356b79 8853 parent->fixup (cu);
72bf9492 8854
10b3939b 8855 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 8856
acebe513
UW
8857 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8858 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8859 Work around this problem here. */
8860 if (cu->language == language_cplus
6e70227d 8861 && parent->tag == DW_TAG_namespace
acebe513
UW
8862 && strcmp (parent->name, "::") == 0
8863 && grandparent_scope == NULL)
8864 {
8865 parent->scope = NULL;
8866 parent->scope_set = 1;
8867 return NULL;
8868 }
8869
0a4b0913 8870 /* Nested subroutines in Fortran get a prefix. */
9c6c53f7
SA
8871 if (pdi->tag == DW_TAG_enumerator)
8872 /* Enumerators should not get the name of the enumeration as a prefix. */
8873 parent->scope = grandparent_scope;
8874 else if (parent->tag == DW_TAG_namespace
f55ee35c 8875 || parent->tag == DW_TAG_module
72bf9492
DJ
8876 || parent->tag == DW_TAG_structure_type
8877 || parent->tag == DW_TAG_class_type
680b30c7 8878 || parent->tag == DW_TAG_interface_type
ceeb3d5a 8879 || parent->tag == DW_TAG_union_type
0a4b0913
AB
8880 || parent->tag == DW_TAG_enumeration_type
8881 || (cu->language == language_fortran
8882 && parent->tag == DW_TAG_subprogram
8883 && pdi->tag == DW_TAG_subprogram))
72bf9492
DJ
8884 {
8885 if (grandparent_scope == NULL)
8886 parent->scope = parent->name;
8887 else
3e43a32a
MS
8888 parent->scope = typename_concat (&cu->comp_unit_obstack,
8889 grandparent_scope,
f55ee35c 8890 parent->name, 0, cu);
72bf9492 8891 }
72bf9492
DJ
8892 else
8893 {
8894 /* FIXME drow/2004-04-01: What should we be doing with
8895 function-local names? For partial symbols, we should probably be
8896 ignoring them. */
fa9c3fa0
TT
8897 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8898 dwarf_tag_name (parent->tag),
8899 sect_offset_str (pdi->sect_off));
72bf9492 8900 parent->scope = grandparent_scope;
c906108c
SS
8901 }
8902
72bf9492
DJ
8903 parent->scope_set = 1;
8904 return parent->scope;
8905}
8906
8907/* Return the fully scoped name associated with PDI, from compilation unit
8908 CU. The result will be allocated with malloc. */
4568ecf9 8909
72bf9492
DJ
8910static char *
8911partial_die_full_name (struct partial_die_info *pdi,
8912 struct dwarf2_cu *cu)
8913{
15d034d0 8914 const char *parent_scope;
72bf9492 8915
98bfdba5
PA
8916 /* If this is a template instantiation, we can not work out the
8917 template arguments from partial DIEs. So, unfortunately, we have
8918 to go through the full DIEs. At least any work we do building
8919 types here will be reused if full symbols are loaded later. */
8920 if (pdi->has_template_arguments)
8921 {
52356b79 8922 pdi->fixup (cu);
98bfdba5
PA
8923
8924 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8925 {
8926 struct die_info *die;
8927 struct attribute attr;
8928 struct dwarf2_cu *ref_cu = cu;
8929
b64f50a1 8930 /* DW_FORM_ref_addr is using section offset. */
b4069958 8931 attr.name = (enum dwarf_attribute) 0;
98bfdba5 8932 attr.form = DW_FORM_ref_addr;
9c541725 8933 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
8934 die = follow_die_ref (NULL, &attr, &ref_cu);
8935
8936 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8937 }
8938 }
8939
72bf9492
DJ
8940 parent_scope = partial_die_parent_scope (pdi, cu);
8941 if (parent_scope == NULL)
8942 return NULL;
8943 else
f55ee35c 8944 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
8945}
8946
8947static void
72bf9492 8948add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 8949{
518817b3
SM
8950 struct dwarf2_per_objfile *dwarf2_per_objfile
8951 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 8952 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 8953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 8954 CORE_ADDR addr = 0;
15d034d0 8955 const char *actual_name = NULL;
e142c38c 8956 CORE_ADDR baseaddr;
15d034d0 8957 char *built_actual_name;
e142c38c
DJ
8958
8959 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8960
15d034d0
TT
8961 built_actual_name = partial_die_full_name (pdi, cu);
8962 if (built_actual_name != NULL)
8963 actual_name = built_actual_name;
63d06c5c 8964
72bf9492
DJ
8965 if (actual_name == NULL)
8966 actual_name = pdi->name;
8967
c906108c
SS
8968 switch (pdi->tag)
8969 {
b1dc1806 8970 case DW_TAG_inlined_subroutine:
c906108c 8971 case DW_TAG_subprogram:
79748972
TT
8972 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8973 - baseaddr);
0a4b0913
AB
8974 if (pdi->is_external
8975 || cu->language == language_ada
8976 || (cu->language == language_fortran
8977 && pdi->die_parent != NULL
8978 && pdi->die_parent->tag == DW_TAG_subprogram))
8979 {
8980 /* Normally, only "external" DIEs are part of the global scope.
8981 But in Ada and Fortran, we want to be able to access nested
8982 procedures globally. So all Ada and Fortran subprograms are
8983 stored in the global scope. */
31edb802 8984 add_psymbol_to_list (actual_name,
15d034d0 8985 built_actual_name != NULL,
f47fb265 8986 VAR_DOMAIN, LOC_BLOCK,
79748972 8987 SECT_OFF_TEXT (objfile),
75aedd27 8988 psymbol_placement::GLOBAL,
79748972
TT
8989 addr,
8990 cu->language, objfile);
c906108c
SS
8991 }
8992 else
8993 {
31edb802 8994 add_psymbol_to_list (actual_name,
15d034d0 8995 built_actual_name != NULL,
f47fb265 8996 VAR_DOMAIN, LOC_BLOCK,
79748972 8997 SECT_OFF_TEXT (objfile),
75aedd27 8998 psymbol_placement::STATIC,
1762568f 8999 addr, cu->language, objfile);
c906108c 9000 }
0c1b455e
TT
9001
9002 if (pdi->main_subprogram && actual_name != NULL)
9003 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 9004 break;
72929c62 9005 case DW_TAG_constant:
31edb802 9006 add_psymbol_to_list (actual_name,
75aedd27
TT
9007 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9008 -1, (pdi->is_external
9009 ? psymbol_placement::GLOBAL
9010 : psymbol_placement::STATIC),
9011 0, cu->language, objfile);
72929c62 9012 break;
c906108c 9013 case DW_TAG_variable:
95554aad
TT
9014 if (pdi->d.locdesc)
9015 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 9016
95554aad 9017 if (pdi->d.locdesc
caac4577
JG
9018 && addr == 0
9019 && !dwarf2_per_objfile->has_section_at_zero)
9020 {
9021 /* A global or static variable may also have been stripped
9022 out by the linker if unused, in which case its address
9023 will be nullified; do not add such variables into partial
9024 symbol table then. */
9025 }
9026 else if (pdi->is_external)
c906108c
SS
9027 {
9028 /* Global Variable.
9029 Don't enter into the minimal symbol tables as there is
9030 a minimal symbol table entry from the ELF symbols already.
9031 Enter into partial symbol table if it has a location
9032 descriptor or a type.
9033 If the location descriptor is missing, new_symbol will create
9034 a LOC_UNRESOLVED symbol, the address of the variable will then
9035 be determined from the minimal symbol table whenever the variable
9036 is referenced.
9037 The address for the partial symbol table entry is not
9038 used by GDB, but it comes in handy for debugging partial symbol
9039 table building. */
9040
95554aad 9041 if (pdi->d.locdesc || pdi->has_type)
31edb802 9042 add_psymbol_to_list (actual_name,
15d034d0 9043 built_actual_name != NULL,
f47fb265 9044 VAR_DOMAIN, LOC_STATIC,
79748972 9045 SECT_OFF_TEXT (objfile),
75aedd27 9046 psymbol_placement::GLOBAL,
79748972 9047 addr, cu->language, objfile);
c906108c
SS
9048 }
9049 else
9050 {
ff908ebf
AW
9051 int has_loc = pdi->d.locdesc != NULL;
9052
9053 /* Static Variable. Skip symbols whose value we cannot know (those
9054 without location descriptors or constant values). */
9055 if (!has_loc && !pdi->has_const_value)
decbce07 9056 {
15d034d0 9057 xfree (built_actual_name);
decbce07
MS
9058 return;
9059 }
ff908ebf 9060
31edb802 9061 add_psymbol_to_list (actual_name,
15d034d0 9062 built_actual_name != NULL,
f47fb265 9063 VAR_DOMAIN, LOC_STATIC,
79748972 9064 SECT_OFF_TEXT (objfile),
75aedd27 9065 psymbol_placement::STATIC,
79748972 9066 has_loc ? addr : 0,
f47fb265 9067 cu->language, objfile);
c906108c
SS
9068 }
9069 break;
9070 case DW_TAG_typedef:
9071 case DW_TAG_base_type:
a02abb62 9072 case DW_TAG_subrange_type:
31edb802 9073 add_psymbol_to_list (actual_name,
15d034d0 9074 built_actual_name != NULL,
79748972 9075 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 9076 psymbol_placement::STATIC,
1762568f 9077 0, cu->language, objfile);
c906108c 9078 break;
74921315 9079 case DW_TAG_imported_declaration:
72bf9492 9080 case DW_TAG_namespace:
31edb802 9081 add_psymbol_to_list (actual_name,
15d034d0 9082 built_actual_name != NULL,
79748972 9083 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 9084 psymbol_placement::GLOBAL,
1762568f 9085 0, cu->language, objfile);
72bf9492 9086 break;
530e8392 9087 case DW_TAG_module:
a5fd13a9
BH
9088 /* With Fortran 77 there might be a "BLOCK DATA" module
9089 available without any name. If so, we skip the module as it
9090 doesn't bring any value. */
9091 if (actual_name != nullptr)
31edb802 9092 add_psymbol_to_list (actual_name,
a5fd13a9
BH
9093 built_actual_name != NULL,
9094 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9095 psymbol_placement::GLOBAL,
9096 0, cu->language, objfile);
530e8392 9097 break;
c906108c 9098 case DW_TAG_class_type:
680b30c7 9099 case DW_TAG_interface_type:
c906108c
SS
9100 case DW_TAG_structure_type:
9101 case DW_TAG_union_type:
9102 case DW_TAG_enumeration_type:
fa4028e9
JB
9103 /* Skip external references. The DWARF standard says in the section
9104 about "Structure, Union, and Class Type Entries": "An incomplete
9105 structure, union or class type is represented by a structure,
9106 union or class entry that does not have a byte size attribute
9107 and that has a DW_AT_declaration attribute." */
9108 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 9109 {
15d034d0 9110 xfree (built_actual_name);
decbce07
MS
9111 return;
9112 }
fa4028e9 9113
63d06c5c
DC
9114 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9115 static vs. global. */
31edb802 9116 add_psymbol_to_list (actual_name,
15d034d0 9117 built_actual_name != NULL,
79748972 9118 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9c37b5ae 9119 cu->language == language_cplus
75aedd27
TT
9120 ? psymbol_placement::GLOBAL
9121 : psymbol_placement::STATIC,
1762568f 9122 0, cu->language, objfile);
c906108c 9123
c906108c
SS
9124 break;
9125 case DW_TAG_enumerator:
31edb802 9126 add_psymbol_to_list (actual_name,
15d034d0 9127 built_actual_name != NULL,
79748972 9128 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 9129 cu->language == language_cplus
75aedd27
TT
9130 ? psymbol_placement::GLOBAL
9131 : psymbol_placement::STATIC,
1762568f 9132 0, cu->language, objfile);
c906108c
SS
9133 break;
9134 default:
9135 break;
9136 }
5c4e30ca 9137
15d034d0 9138 xfree (built_actual_name);
c906108c
SS
9139}
9140
5c4e30ca
DC
9141/* Read a partial die corresponding to a namespace; also, add a symbol
9142 corresponding to that namespace to the symbol table. NAMESPACE is
9143 the name of the enclosing namespace. */
91c24f0a 9144
72bf9492
DJ
9145static void
9146add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 9147 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9148 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 9149{
72bf9492 9150 /* Add a symbol for the namespace. */
e7c27a73 9151
72bf9492 9152 add_partial_symbol (pdi, cu);
5c4e30ca
DC
9153
9154 /* Now scan partial symbols in that namespace. */
9155
91c24f0a 9156 if (pdi->has_children)
cdc07690 9157 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
9158}
9159
5d7cb8df
JK
9160/* Read a partial die corresponding to a Fortran module. */
9161
9162static void
9163add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 9164 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 9165{
530e8392
KB
9166 /* Add a symbol for the namespace. */
9167
9168 add_partial_symbol (pdi, cu);
9169
f55ee35c 9170 /* Now scan partial symbols in that module. */
5d7cb8df
JK
9171
9172 if (pdi->has_children)
cdc07690 9173 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
9174}
9175
b1dc1806
XR
9176/* Read a partial die corresponding to a subprogram or an inlined
9177 subprogram and create a partial symbol for that subprogram.
9178 When the CU language allows it, this routine also defines a partial
9179 symbol for each nested subprogram that this subprogram contains.
9180 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9181 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
6e70227d 9182
cdc07690
YQ
9183 PDI may also be a lexical block, in which case we simply search
9184 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
9185 Again, this is only performed when the CU language allows this
9186 type of definitions. */
9187
9188static void
9189add_partial_subprogram (struct partial_die_info *pdi,
9190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9191 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58 9192{
b1dc1806 9193 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
bc30ff58
JB
9194 {
9195 if (pdi->has_pc_info)
9196 {
9197 if (pdi->lowpc < *lowpc)
9198 *lowpc = pdi->lowpc;
9199 if (pdi->highpc > *highpc)
9200 *highpc = pdi->highpc;
cdc07690 9201 if (set_addrmap)
5734ee8b 9202 {
518817b3 9203 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a
MR
9204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9205 CORE_ADDR baseaddr;
b926417a
TT
9206 CORE_ADDR this_highpc;
9207 CORE_ADDR this_lowpc;
5734ee8b
DJ
9208
9209 baseaddr = ANOFFSET (objfile->section_offsets,
9210 SECT_OFF_TEXT (objfile));
b926417a
TT
9211 this_lowpc
9212 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9213 pdi->lowpc + baseaddr)
9214 - baseaddr);
9215 this_highpc
9216 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9217 pdi->highpc + baseaddr)
9218 - baseaddr);
d320c2b5 9219 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
b926417a 9220 this_lowpc, this_highpc - 1,
9291a0cd 9221 cu->per_cu->v.psymtab);
5734ee8b 9222 }
481860b3
GB
9223 }
9224
9225 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9226 {
bc30ff58 9227 if (!pdi->is_declaration)
e8d05480
JB
9228 /* Ignore subprogram DIEs that do not have a name, they are
9229 illegal. Do not emit a complaint at this point, we will
9230 do so when we convert this psymtab into a symtab. */
9231 if (pdi->name)
9232 add_partial_symbol (pdi, cu);
bc30ff58
JB
9233 }
9234 }
6e70227d 9235
bc30ff58
JB
9236 if (! pdi->has_children)
9237 return;
9238
0a4b0913 9239 if (cu->language == language_ada || cu->language == language_fortran)
bc30ff58
JB
9240 {
9241 pdi = pdi->die_child;
9242 while (pdi != NULL)
9243 {
52356b79 9244 pdi->fixup (cu);
bc30ff58 9245 if (pdi->tag == DW_TAG_subprogram
b1dc1806 9246 || pdi->tag == DW_TAG_inlined_subroutine
bc30ff58 9247 || pdi->tag == DW_TAG_lexical_block)
cdc07690 9248 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
9249 pdi = pdi->die_sibling;
9250 }
9251 }
9252}
9253
91c24f0a
DC
9254/* Read a partial die corresponding to an enumeration type. */
9255
72bf9492
DJ
9256static void
9257add_partial_enumeration (struct partial_die_info *enum_pdi,
9258 struct dwarf2_cu *cu)
91c24f0a 9259{
72bf9492 9260 struct partial_die_info *pdi;
91c24f0a
DC
9261
9262 if (enum_pdi->name != NULL)
72bf9492
DJ
9263 add_partial_symbol (enum_pdi, cu);
9264
9265 pdi = enum_pdi->die_child;
9266 while (pdi)
91c24f0a 9267 {
72bf9492 9268 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
b98664d3 9269 complaint (_("malformed enumerator DIE ignored"));
91c24f0a 9270 else
72bf9492
DJ
9271 add_partial_symbol (pdi, cu);
9272 pdi = pdi->die_sibling;
91c24f0a 9273 }
91c24f0a
DC
9274}
9275
6caca83c
CC
9276/* Return the initial uleb128 in the die at INFO_PTR. */
9277
9278static unsigned int
d521ce57 9279peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
9280{
9281 unsigned int bytes_read;
9282
9283 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9284}
9285
685af9cd
TT
9286/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9287 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9288
4bb7a0a7
DJ
9289 Return the corresponding abbrev, or NULL if the number is zero (indicating
9290 an empty DIE). In either case *BYTES_READ will be set to the length of
9291 the initial number. */
9292
9293static struct abbrev_info *
685af9cd
TT
9294peek_die_abbrev (const die_reader_specs &reader,
9295 const gdb_byte *info_ptr, unsigned int *bytes_read)
4bb7a0a7 9296{
685af9cd 9297 dwarf2_cu *cu = reader.cu;
518817b3 9298 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
685af9cd
TT
9299 unsigned int abbrev_number
9300 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4bb7a0a7
DJ
9301
9302 if (abbrev_number == 0)
9303 return NULL;
9304
685af9cd 9305 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
4bb7a0a7
DJ
9306 if (!abbrev)
9307 {
422b9917 9308 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9d8780f0 9309 " at offset %s [in module %s]"),
422b9917 9310 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9d8780f0 9311 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
9312 }
9313
9314 return abbrev;
9315}
9316
93311388
DE
9317/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9318 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
9319 DIE. Any children of the skipped DIEs will also be skipped. */
9320
d521ce57
TT
9321static const gdb_byte *
9322skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 9323{
4bb7a0a7
DJ
9324 while (1)
9325 {
685af9cd
TT
9326 unsigned int bytes_read;
9327 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9328
4bb7a0a7
DJ
9329 if (abbrev == NULL)
9330 return info_ptr + bytes_read;
9331 else
dee91e82 9332 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
9333 }
9334}
9335
93311388
DE
9336/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9337 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
9338 abbrev corresponding to that skipped uleb128 should be passed in
9339 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9340 children. */
9341
d521ce57
TT
9342static const gdb_byte *
9343skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 9344 struct abbrev_info *abbrev)
4bb7a0a7
DJ
9345{
9346 unsigned int bytes_read;
9347 struct attribute attr;
dee91e82
DE
9348 bfd *abfd = reader->abfd;
9349 struct dwarf2_cu *cu = reader->cu;
d521ce57 9350 const gdb_byte *buffer = reader->buffer;
f664829e 9351 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
9352 unsigned int form, i;
9353
9354 for (i = 0; i < abbrev->num_attrs; i++)
9355 {
9356 /* The only abbrev we care about is DW_AT_sibling. */
9357 if (abbrev->attrs[i].name == DW_AT_sibling)
9358 {
dee91e82 9359 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 9360 if (attr.form == DW_FORM_ref_addr)
b98664d3 9361 complaint (_("ignoring absolute DW_AT_sibling"));
4bb7a0a7 9362 else
b9502d3f 9363 {
9c541725
PA
9364 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9365 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
9366
9367 if (sibling_ptr < info_ptr)
b98664d3 9368 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
9369 else if (sibling_ptr > reader->buffer_end)
9370 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
9371 else
9372 return sibling_ptr;
9373 }
4bb7a0a7
DJ
9374 }
9375
9376 /* If it isn't DW_AT_sibling, skip this attribute. */
9377 form = abbrev->attrs[i].form;
9378 skip_attribute:
9379 switch (form)
9380 {
4bb7a0a7 9381 case DW_FORM_ref_addr:
ae411497
TT
9382 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9383 and later it is offset sized. */
9384 if (cu->header.version == 2)
9385 info_ptr += cu->header.addr_size;
9386 else
9387 info_ptr += cu->header.offset_size;
9388 break;
36586728
TT
9389 case DW_FORM_GNU_ref_alt:
9390 info_ptr += cu->header.offset_size;
9391 break;
ae411497 9392 case DW_FORM_addr:
4bb7a0a7
DJ
9393 info_ptr += cu->header.addr_size;
9394 break;
9395 case DW_FORM_data1:
9396 case DW_FORM_ref1:
9397 case DW_FORM_flag:
8fe0f950 9398 case DW_FORM_strx1:
4bb7a0a7
DJ
9399 info_ptr += 1;
9400 break;
2dc7f7b3 9401 case DW_FORM_flag_present:
43988095 9402 case DW_FORM_implicit_const:
2dc7f7b3 9403 break;
4bb7a0a7
DJ
9404 case DW_FORM_data2:
9405 case DW_FORM_ref2:
8fe0f950 9406 case DW_FORM_strx2:
4bb7a0a7
DJ
9407 info_ptr += 2;
9408 break;
8fe0f950
AT
9409 case DW_FORM_strx3:
9410 info_ptr += 3;
9411 break;
4bb7a0a7
DJ
9412 case DW_FORM_data4:
9413 case DW_FORM_ref4:
8fe0f950 9414 case DW_FORM_strx4:
4bb7a0a7
DJ
9415 info_ptr += 4;
9416 break;
9417 case DW_FORM_data8:
9418 case DW_FORM_ref8:
55f1336d 9419 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
9420 info_ptr += 8;
9421 break;
0224619f
JK
9422 case DW_FORM_data16:
9423 info_ptr += 16;
9424 break;
4bb7a0a7 9425 case DW_FORM_string:
9b1c24c8 9426 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
9427 info_ptr += bytes_read;
9428 break;
2dc7f7b3 9429 case DW_FORM_sec_offset:
4bb7a0a7 9430 case DW_FORM_strp:
36586728 9431 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
9432 info_ptr += cu->header.offset_size;
9433 break;
2dc7f7b3 9434 case DW_FORM_exprloc:
4bb7a0a7
DJ
9435 case DW_FORM_block:
9436 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9437 info_ptr += bytes_read;
9438 break;
9439 case DW_FORM_block1:
9440 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9441 break;
9442 case DW_FORM_block2:
9443 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9444 break;
9445 case DW_FORM_block4:
9446 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9447 break;
336d760d 9448 case DW_FORM_addrx:
cf532bd1 9449 case DW_FORM_strx:
4bb7a0a7
DJ
9450 case DW_FORM_sdata:
9451 case DW_FORM_udata:
9452 case DW_FORM_ref_udata:
3019eac3
DE
9453 case DW_FORM_GNU_addr_index:
9454 case DW_FORM_GNU_str_index:
d521ce57 9455 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
9456 break;
9457 case DW_FORM_indirect:
9458 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9459 info_ptr += bytes_read;
9460 /* We need to continue parsing from here, so just go back to
9461 the top. */
9462 goto skip_attribute;
9463
9464 default:
3e43a32a
MS
9465 error (_("Dwarf Error: Cannot handle %s "
9466 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
9467 dwarf_form_name (form),
9468 bfd_get_filename (abfd));
9469 }
9470 }
9471
9472 if (abbrev->has_children)
dee91e82 9473 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
9474 else
9475 return info_ptr;
9476}
9477
93311388 9478/* Locate ORIG_PDI's sibling.
dee91e82 9479 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 9480
d521ce57 9481static const gdb_byte *
dee91e82
DE
9482locate_pdi_sibling (const struct die_reader_specs *reader,
9483 struct partial_die_info *orig_pdi,
d521ce57 9484 const gdb_byte *info_ptr)
91c24f0a
DC
9485{
9486 /* Do we know the sibling already? */
72bf9492 9487
91c24f0a
DC
9488 if (orig_pdi->sibling)
9489 return orig_pdi->sibling;
9490
9491 /* Are there any children to deal with? */
9492
9493 if (!orig_pdi->has_children)
9494 return info_ptr;
9495
4bb7a0a7 9496 /* Skip the children the long way. */
91c24f0a 9497
dee91e82 9498 return skip_children (reader, info_ptr);
91c24f0a
DC
9499}
9500
257e7a09 9501/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 9502 not NULL. */
c906108c
SS
9503
9504static void
257e7a09
YQ
9505dwarf2_read_symtab (struct partial_symtab *self,
9506 struct objfile *objfile)
c906108c 9507{
ed2dc618
SM
9508 struct dwarf2_per_objfile *dwarf2_per_objfile
9509 = get_dwarf2_per_objfile (objfile);
9510
257e7a09 9511 if (self->readin)
c906108c 9512 {
442e4d9c 9513 warning (_("bug: psymtab for %s is already read in."),
257e7a09 9514 self->filename);
442e4d9c
YQ
9515 }
9516 else
9517 {
9518 if (info_verbose)
c906108c 9519 {
442e4d9c 9520 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 9521 self->filename);
442e4d9c 9522 gdb_flush (gdb_stdout);
c906108c 9523 }
c906108c 9524
442e4d9c
YQ
9525 /* If this psymtab is constructed from a debug-only objfile, the
9526 has_section_at_zero flag will not necessarily be correct. We
9527 can get the correct value for this flag by looking at the data
9528 associated with the (presumably stripped) associated objfile. */
9529 if (objfile->separate_debug_objfile_backlink)
9530 {
9531 struct dwarf2_per_objfile *dpo_backlink
ed2dc618 9532 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9a619af0 9533
442e4d9c
YQ
9534 dwarf2_per_objfile->has_section_at_zero
9535 = dpo_backlink->has_section_at_zero;
9536 }
b2ab525c 9537
442e4d9c 9538 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 9539
257e7a09 9540 psymtab_to_symtab_1 (self);
c906108c 9541
442e4d9c
YQ
9542 /* Finish up the debug error message. */
9543 if (info_verbose)
9544 printf_filtered (_("done.\n"));
c906108c 9545 }
95554aad 9546
ed2dc618 9547 process_cu_includes (dwarf2_per_objfile);
c906108c 9548}
9cdd5dbd
DE
9549\f
9550/* Reading in full CUs. */
c906108c 9551
10b3939b
DJ
9552/* Add PER_CU to the queue. */
9553
9554static void
95554aad
TT
9555queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9556 enum language pretend_language)
10b3939b
DJ
9557{
9558 struct dwarf2_queue_item *item;
9559
9560 per_cu->queued = 1;
8d749320 9561 item = XNEW (struct dwarf2_queue_item);
10b3939b 9562 item->per_cu = per_cu;
95554aad 9563 item->pretend_language = pretend_language;
10b3939b
DJ
9564 item->next = NULL;
9565
9566 if (dwarf2_queue == NULL)
9567 dwarf2_queue = item;
9568 else
9569 dwarf2_queue_tail->next = item;
9570
9571 dwarf2_queue_tail = item;
9572}
9573
89e63ee4
DE
9574/* If PER_CU is not yet queued, add it to the queue.
9575 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9576 dependency.
0907af0c 9577 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
9578 meaning either PER_CU is already queued or it is already loaded.
9579
9580 N.B. There is an invariant here that if a CU is queued then it is loaded.
9581 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
9582
9583static int
89e63ee4 9584maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
9585 struct dwarf2_per_cu_data *per_cu,
9586 enum language pretend_language)
9587{
9588 /* We may arrive here during partial symbol reading, if we need full
9589 DIEs to process an unusual case (e.g. template arguments). Do
9590 not queue PER_CU, just tell our caller to load its DIEs. */
ed2dc618 9591 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
0907af0c
DE
9592 {
9593 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9594 return 1;
9595 return 0;
9596 }
9597
9598 /* Mark the dependence relation so that we don't flush PER_CU
9599 too early. */
89e63ee4
DE
9600 if (dependent_cu != NULL)
9601 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
9602
9603 /* If it's already on the queue, we have nothing to do. */
9604 if (per_cu->queued)
9605 return 0;
9606
9607 /* If the compilation unit is already loaded, just mark it as
9608 used. */
9609 if (per_cu->cu != NULL)
9610 {
9611 per_cu->cu->last_used = 0;
9612 return 0;
9613 }
9614
9615 /* Add it to the queue. */
9616 queue_comp_unit (per_cu, pretend_language);
9617
9618 return 1;
9619}
9620
10b3939b
DJ
9621/* Process the queue. */
9622
9623static void
ed2dc618 9624process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10b3939b
DJ
9625{
9626 struct dwarf2_queue_item *item, *next_item;
9627
b4f54984 9628 if (dwarf_read_debug)
45cfd468
DE
9629 {
9630 fprintf_unfiltered (gdb_stdlog,
9631 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 9632 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
9633 }
9634
03dd20cc
DJ
9635 /* The queue starts out with one item, but following a DIE reference
9636 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
9637 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9638 {
cc12ce38
DE
9639 if ((dwarf2_per_objfile->using_index
9640 ? !item->per_cu->v.quick->compunit_symtab
9641 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9642 /* Skip dummy CUs. */
9643 && item->per_cu->cu != NULL)
f4dc4d17
DE
9644 {
9645 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 9646 unsigned int debug_print_threshold;
247f5c4f 9647 char buf[100];
f4dc4d17 9648
247f5c4f 9649 if (per_cu->is_debug_types)
f4dc4d17 9650 {
247f5c4f
DE
9651 struct signatured_type *sig_type =
9652 (struct signatured_type *) per_cu;
9653
9d8780f0 9654 sprintf (buf, "TU %s at offset %s",
73be47f5 9655 hex_string (sig_type->signature),
9d8780f0 9656 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9657 /* There can be 100s of TUs.
9658 Only print them in verbose mode. */
9659 debug_print_threshold = 2;
f4dc4d17 9660 }
247f5c4f 9661 else
73be47f5 9662 {
9d8780f0
SM
9663 sprintf (buf, "CU at offset %s",
9664 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9665 debug_print_threshold = 1;
9666 }
247f5c4f 9667
b4f54984 9668 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9669 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
9670
9671 if (per_cu->is_debug_types)
9672 process_full_type_unit (per_cu, item->pretend_language);
9673 else
9674 process_full_comp_unit (per_cu, item->pretend_language);
9675
b4f54984 9676 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9677 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 9678 }
10b3939b
DJ
9679
9680 item->per_cu->queued = 0;
9681 next_item = item->next;
9682 xfree (item);
9683 }
9684
9685 dwarf2_queue_tail = NULL;
45cfd468 9686
b4f54984 9687 if (dwarf_read_debug)
45cfd468
DE
9688 {
9689 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 9690 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 9691 }
10b3939b
DJ
9692}
9693
10b3939b
DJ
9694/* Read in full symbols for PST, and anything it depends on. */
9695
c906108c 9696static void
fba45db2 9697psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 9698{
10b3939b 9699 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
9700 int i;
9701
95554aad
TT
9702 if (pst->readin)
9703 return;
9704
aaa75496 9705 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
9706 if (!pst->dependencies[i]->readin
9707 && pst->dependencies[i]->user == NULL)
aaa75496
JB
9708 {
9709 /* Inform about additional files that need to be read in. */
9710 if (info_verbose)
9711 {
a3f17187 9712 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
9713 fputs_filtered (" ", gdb_stdout);
9714 wrap_here ("");
9715 fputs_filtered ("and ", gdb_stdout);
9716 wrap_here ("");
9717 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 9718 wrap_here (""); /* Flush output. */
aaa75496
JB
9719 gdb_flush (gdb_stdout);
9720 }
9721 psymtab_to_symtab_1 (pst->dependencies[i]);
9722 }
9723
9a3c8263 9724 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
9725
9726 if (per_cu == NULL)
aaa75496
JB
9727 {
9728 /* It's an include file, no symbols to read for it.
9729 Everything is in the parent symtab. */
9730 pst->readin = 1;
9731 return;
9732 }
c906108c 9733
58f0c718 9734 dw2_do_instantiate_symtab (per_cu, false);
10b3939b
DJ
9735}
9736
dee91e82
DE
9737/* Trivial hash function for die_info: the hash value of a DIE
9738 is its offset in .debug_info for this objfile. */
10b3939b 9739
dee91e82
DE
9740static hashval_t
9741die_hash (const void *item)
10b3939b 9742{
9a3c8263 9743 const struct die_info *die = (const struct die_info *) item;
6502dd73 9744
9c541725 9745 return to_underlying (die->sect_off);
dee91e82 9746}
63d06c5c 9747
dee91e82
DE
9748/* Trivial comparison function for die_info structures: two DIEs
9749 are equal if they have the same offset. */
98bfdba5 9750
dee91e82
DE
9751static int
9752die_eq (const void *item_lhs, const void *item_rhs)
9753{
9a3c8263
SM
9754 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9755 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 9756
9c541725 9757 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 9758}
c906108c 9759
dee91e82
DE
9760/* die_reader_func for load_full_comp_unit.
9761 This is identical to read_signatured_type_reader,
9762 but is kept separate for now. */
c906108c 9763
dee91e82
DE
9764static void
9765load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 9766 const gdb_byte *info_ptr,
dee91e82
DE
9767 struct die_info *comp_unit_die,
9768 int has_children,
9769 void *data)
9770{
9771 struct dwarf2_cu *cu = reader->cu;
9a3c8263 9772 enum language *language_ptr = (enum language *) data;
6caca83c 9773
dee91e82
DE
9774 gdb_assert (cu->die_hash == NULL);
9775 cu->die_hash =
9776 htab_create_alloc_ex (cu->header.length / 12,
9777 die_hash,
9778 die_eq,
9779 NULL,
9780 &cu->comp_unit_obstack,
9781 hashtab_obstack_allocate,
9782 dummy_obstack_deallocate);
e142c38c 9783
dee91e82
DE
9784 if (has_children)
9785 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9786 &info_ptr, comp_unit_die);
9787 cu->dies = comp_unit_die;
9788 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
9789
9790 /* We try not to read any attributes in this function, because not
9cdd5dbd 9791 all CUs needed for references have been loaded yet, and symbol
10b3939b 9792 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
9793 or we won't be able to build types correctly.
9794 Similarly, if we do not read the producer, we can not apply
9795 producer-specific interpretation. */
95554aad 9796 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 9797}
10b3939b 9798
dee91e82 9799/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 9800
dee91e82 9801static void
95554aad 9802load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
58f0c718 9803 bool skip_partial,
95554aad 9804 enum language pretend_language)
dee91e82 9805{
3019eac3 9806 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 9807
58f0c718 9808 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
f4dc4d17 9809 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
9810}
9811
3da10d80
KS
9812/* Add a DIE to the delayed physname list. */
9813
9814static void
9815add_to_method_list (struct type *type, int fnfield_index, int index,
9816 const char *name, struct die_info *die,
9817 struct dwarf2_cu *cu)
9818{
9819 struct delayed_method_info mi;
9820 mi.type = type;
9821 mi.fnfield_index = fnfield_index;
9822 mi.index = index;
9823 mi.name = name;
9824 mi.die = die;
c89b44cd 9825 cu->method_list.push_back (mi);
3da10d80
KS
9826}
9827
3693fdb3
PA
9828/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9829 "const" / "volatile". If so, decrements LEN by the length of the
9830 modifier and return true. Otherwise return false. */
9831
9832template<size_t N>
9833static bool
9834check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9835{
9836 size_t mod_len = sizeof (mod) - 1;
9837 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9838 {
9839 len -= mod_len;
9840 return true;
9841 }
9842 return false;
9843}
9844
3da10d80
KS
9845/* Compute the physnames of any methods on the CU's method list.
9846
9847 The computation of method physnames is delayed in order to avoid the
9848 (bad) condition that one of the method's formal parameters is of an as yet
9849 incomplete type. */
9850
9851static void
9852compute_delayed_physnames (struct dwarf2_cu *cu)
9853{
3693fdb3 9854 /* Only C++ delays computing physnames. */
c89b44cd 9855 if (cu->method_list.empty ())
3693fdb3
PA
9856 return;
9857 gdb_assert (cu->language == language_cplus);
9858
52941706 9859 for (const delayed_method_info &mi : cu->method_list)
3da10d80 9860 {
1d06ead6 9861 const char *physname;
3da10d80 9862 struct fn_fieldlist *fn_flp
c89b44cd
TT
9863 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9864 physname = dwarf2_physname (mi.name, mi.die, cu);
9865 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
005e54bb 9866 = physname ? physname : "";
3693fdb3
PA
9867
9868 /* Since there's no tag to indicate whether a method is a
9869 const/volatile overload, extract that information out of the
9870 demangled name. */
9871 if (physname != NULL)
9872 {
9873 size_t len = strlen (physname);
9874
9875 while (1)
9876 {
9877 if (physname[len] == ')') /* shortcut */
9878 break;
9879 else if (check_modifier (physname, len, " const"))
c89b44cd 9880 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
3693fdb3 9881 else if (check_modifier (physname, len, " volatile"))
c89b44cd 9882 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
3693fdb3
PA
9883 else
9884 break;
9885 }
9886 }
3da10d80 9887 }
c89b44cd
TT
9888
9889 /* The list is no longer needed. */
9890 cu->method_list.clear ();
3da10d80
KS
9891}
9892
a766d390
DE
9893/* Go objects should be embedded in a DW_TAG_module DIE,
9894 and it's not clear if/how imported objects will appear.
9895 To keep Go support simple until that's worked out,
9896 go back through what we've read and create something usable.
9897 We could do this while processing each DIE, and feels kinda cleaner,
9898 but that way is more invasive.
9899 This is to, for example, allow the user to type "p var" or "b main"
9900 without having to specify the package name, and allow lookups
9901 of module.object to work in contexts that use the expression
9902 parser. */
9903
9904static void
9905fixup_go_packaging (struct dwarf2_cu *cu)
9906{
9907 char *package_name = NULL;
9908 struct pending *list;
9909 int i;
9910
c24bdb02 9911 for (list = *cu->get_builder ()->get_global_symbols ();
804d2729
TT
9912 list != NULL;
9913 list = list->next)
a766d390
DE
9914 {
9915 for (i = 0; i < list->nsyms; ++i)
9916 {
9917 struct symbol *sym = list->symbol[i];
9918
c1b5c1eb 9919 if (sym->language () == language_go
a766d390
DE
9920 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9921 {
9922 char *this_package_name = go_symbol_package_name (sym);
9923
9924 if (this_package_name == NULL)
9925 continue;
9926 if (package_name == NULL)
9927 package_name = this_package_name;
9928 else
9929 {
518817b3
SM
9930 struct objfile *objfile
9931 = cu->per_cu->dwarf2_per_objfile->objfile;
a766d390 9932 if (strcmp (package_name, this_package_name) != 0)
b98664d3 9933 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
9934 (symbol_symtab (sym) != NULL
9935 ? symtab_to_filename_for_display
9936 (symbol_symtab (sym))
e3b94546 9937 : objfile_name (objfile)),
a766d390
DE
9938 this_package_name, package_name);
9939 xfree (this_package_name);
9940 }
9941 }
9942 }
9943 }
9944
9945 if (package_name != NULL)
9946 {
518817b3 9947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
34a68019 9948 const char *saved_package_name
021887d8 9949 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
19f392bc
UW
9950 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9951 saved_package_name);
a766d390
DE
9952 struct symbol *sym;
9953
e623cf5d 9954 sym = allocate_symbol (objfile);
d3ecddab 9955 sym->set_language (language_go, &objfile->objfile_obstack);
31edb802 9956 SYMBOL_SET_NAMES (sym, saved_package_name, false, objfile);
a766d390
DE
9957 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9958 e.g., "main" finds the "main" module and not C's main(). */
9959 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 9960 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
9961 SYMBOL_TYPE (sym) = type;
9962
c24bdb02 9963 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
a766d390
DE
9964
9965 xfree (package_name);
9966 }
9967}
9968
c9317f21
TT
9969/* Allocate a fully-qualified name consisting of the two parts on the
9970 obstack. */
9971
9972static const char *
9973rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9974{
9975 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9976}
9977
9978/* A helper that allocates a struct discriminant_info to attach to a
9979 union type. */
9980
9981static struct discriminant_info *
9982alloc_discriminant_info (struct type *type, int discriminant_index,
9983 int default_index)
9984{
9985 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
c7b15a66
TT
9986 gdb_assert (discriminant_index == -1
9987 || (discriminant_index >= 0
9988 && discriminant_index < TYPE_NFIELDS (type)));
c9317f21 9989 gdb_assert (default_index == -1
c7b15a66 9990 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
c9317f21
TT
9991
9992 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9993
9994 struct discriminant_info *disc
9995 = ((struct discriminant_info *)
9996 TYPE_ZALLOC (type,
9997 offsetof (struct discriminant_info, discriminants)
9998 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9999 disc->default_index = default_index;
10000 disc->discriminant_index = discriminant_index;
10001
10002 struct dynamic_prop prop;
10003 prop.kind = PROP_UNDEFINED;
10004 prop.data.baton = disc;
10005
10006 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10007
10008 return disc;
10009}
10010
10011/* Some versions of rustc emitted enums in an unusual way.
10012
10013 Ordinary enums were emitted as unions. The first element of each
10014 structure in the union was named "RUST$ENUM$DISR". This element
10015 held the discriminant.
10016
10017 These versions of Rust also implemented the "non-zero"
10018 optimization. When the enum had two values, and one is empty and
10019 the other holds a pointer that cannot be zero, the pointer is used
10020 as the discriminant, with a zero value meaning the empty variant.
10021 Here, the union's first member is of the form
10022 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10023 where the fieldnos are the indices of the fields that should be
10024 traversed in order to find the field (which may be several fields deep)
10025 and the variantname is the name of the variant of the case when the
10026 field is zero.
10027
10028 This function recognizes whether TYPE is of one of these forms,
10029 and, if so, smashes it to be a variant type. */
10030
10031static void
10032quirk_rust_enum (struct type *type, struct objfile *objfile)
10033{
10034 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10035
10036 /* We don't need to deal with empty enums. */
10037 if (TYPE_NFIELDS (type) == 0)
10038 return;
10039
10040#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10041 if (TYPE_NFIELDS (type) == 1
10042 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10043 {
10044 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10045
10046 /* Decode the field name to find the offset of the
10047 discriminant. */
10048 ULONGEST bit_offset = 0;
10049 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10050 while (name[0] >= '0' && name[0] <= '9')
10051 {
10052 char *tail;
10053 unsigned long index = strtoul (name, &tail, 10);
10054 name = tail;
10055 if (*name != '$'
10056 || index >= TYPE_NFIELDS (field_type)
10057 || (TYPE_FIELD_LOC_KIND (field_type, index)
10058 != FIELD_LOC_KIND_BITPOS))
10059 {
b98664d3 10060 complaint (_("Could not parse Rust enum encoding string \"%s\""
c9317f21
TT
10061 "[in module %s]"),
10062 TYPE_FIELD_NAME (type, 0),
10063 objfile_name (objfile));
10064 return;
10065 }
10066 ++name;
10067
10068 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10069 field_type = TYPE_FIELD_TYPE (field_type, index);
10070 }
10071
10072 /* Make a union to hold the variants. */
10073 struct type *union_type = alloc_type (objfile);
10074 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10075 TYPE_NFIELDS (union_type) = 3;
10076 TYPE_FIELDS (union_type)
10077 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10078 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10079 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10080
10081 /* Put the discriminant must at index 0. */
10082 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10083 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10084 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10085 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10086
10087 /* The order of fields doesn't really matter, so put the real
10088 field at index 1 and the data-less field at index 2. */
10089 struct discriminant_info *disc
10090 = alloc_discriminant_info (union_type, 0, 1);
10091 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10092 TYPE_FIELD_NAME (union_type, 1)
10093 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10094 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10095 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10096 TYPE_FIELD_NAME (union_type, 1));
10097
10098 const char *dataless_name
10099 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10100 name);
10101 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10102 dataless_name);
10103 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10104 /* NAME points into the original discriminant name, which
10105 already has the correct lifetime. */
10106 TYPE_FIELD_NAME (union_type, 2) = name;
10107 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10108 disc->discriminants[2] = 0;
10109
10110 /* Smash this type to be a structure type. We have to do this
10111 because the type has already been recorded. */
10112 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10113 TYPE_NFIELDS (type) = 1;
10114 TYPE_FIELDS (type)
10115 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10116
10117 /* Install the variant part. */
10118 TYPE_FIELD_TYPE (type, 0) = union_type;
10119 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10120 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10121 }
77c2dba3
TT
10122 /* A union with a single anonymous field is probably an old-style
10123 univariant enum. */
10124 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
c9317f21 10125 {
c9317f21
TT
10126 /* Smash this type to be a structure type. We have to do this
10127 because the type has already been recorded. */
10128 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10129
10130 /* Make a union to hold the variants. */
10131 struct type *union_type = alloc_type (objfile);
10132 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10133 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10134 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10135 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10136 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10137
10138 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10139 const char *variant_name
10140 = rust_last_path_segment (TYPE_NAME (field_type));
10141 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10142 TYPE_NAME (field_type)
10143 = rust_fully_qualify (&objfile->objfile_obstack,
c7b15a66 10144 TYPE_NAME (type), variant_name);
c9317f21
TT
10145
10146 /* Install the union in the outer struct type. */
10147 TYPE_NFIELDS (type) = 1;
10148 TYPE_FIELDS (type)
10149 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10150 TYPE_FIELD_TYPE (type, 0) = union_type;
10151 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10152 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10153
10154 alloc_discriminant_info (union_type, -1, 0);
10155 }
10156 else
10157 {
10158 struct type *disr_type = nullptr;
10159 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10160 {
10161 disr_type = TYPE_FIELD_TYPE (type, i);
10162
a037790e
TT
10163 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10164 {
10165 /* All fields of a true enum will be structs. */
10166 return;
10167 }
10168 else if (TYPE_NFIELDS (disr_type) == 0)
c9317f21
TT
10169 {
10170 /* Could be data-less variant, so keep going. */
a037790e 10171 disr_type = nullptr;
c9317f21
TT
10172 }
10173 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10174 "RUST$ENUM$DISR") != 0)
10175 {
10176 /* Not a Rust enum. */
10177 return;
10178 }
10179 else
10180 {
10181 /* Found one. */
10182 break;
10183 }
10184 }
10185
10186 /* If we got here without a discriminant, then it's probably
10187 just a union. */
10188 if (disr_type == nullptr)
10189 return;
10190
10191 /* Smash this type to be a structure type. We have to do this
10192 because the type has already been recorded. */
10193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10194
10195 /* Make a union to hold the variants. */
10196 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10197 struct type *union_type = alloc_type (objfile);
10198 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10199 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10200 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10201 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10202 TYPE_FIELDS (union_type)
10203 = (struct field *) TYPE_ZALLOC (union_type,
10204 (TYPE_NFIELDS (union_type)
10205 * sizeof (struct field)));
10206
10207 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10208 TYPE_NFIELDS (type) * sizeof (struct field));
10209
10210 /* Install the discriminant at index 0 in the union. */
10211 TYPE_FIELD (union_type, 0) = *disr_field;
10212 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10213 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10214
10215 /* Install the union in the outer struct type. */
10216 TYPE_FIELD_TYPE (type, 0) = union_type;
10217 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10218 TYPE_NFIELDS (type) = 1;
10219
10220 /* Set the size and offset of the union type. */
10221 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10222
10223 /* We need a way to find the correct discriminant given a
10224 variant name. For convenience we build a map here. */
10225 struct type *enum_type = FIELD_TYPE (*disr_field);
10226 std::unordered_map<std::string, ULONGEST> discriminant_map;
10227 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10228 {
10229 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10230 {
10231 const char *name
10232 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10233 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10234 }
10235 }
10236
10237 int n_fields = TYPE_NFIELDS (union_type);
10238 struct discriminant_info *disc
10239 = alloc_discriminant_info (union_type, 0, -1);
10240 /* Skip the discriminant here. */
10241 for (int i = 1; i < n_fields; ++i)
10242 {
10243 /* Find the final word in the name of this variant's type.
10244 That name can be used to look up the correct
10245 discriminant. */
10246 const char *variant_name
10247 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10248 i)));
10249
10250 auto iter = discriminant_map.find (variant_name);
10251 if (iter != discriminant_map.end ())
10252 disc->discriminants[i] = iter->second;
10253
bedda9ac 10254 /* Remove the discriminant field, if it exists. */
c9317f21 10255 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
bedda9ac
TT
10256 if (TYPE_NFIELDS (sub_type) > 0)
10257 {
10258 --TYPE_NFIELDS (sub_type);
10259 ++TYPE_FIELDS (sub_type);
10260 }
c9317f21
TT
10261 TYPE_FIELD_NAME (union_type, i) = variant_name;
10262 TYPE_NAME (sub_type)
10263 = rust_fully_qualify (&objfile->objfile_obstack,
10264 TYPE_NAME (type), variant_name);
10265 }
10266 }
10267}
10268
10269/* Rewrite some Rust unions to be structures with variants parts. */
10270
10271static void
10272rust_union_quirks (struct dwarf2_cu *cu)
10273{
10274 gdb_assert (cu->language == language_rust);
52941706
SM
10275 for (type *type_ : cu->rust_unions)
10276 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
2d79090e
TT
10277 /* We don't need this any more. */
10278 cu->rust_unions.clear ();
c9317f21
TT
10279}
10280
95554aad
TT
10281/* Return the symtab for PER_CU. This works properly regardless of
10282 whether we're using the index or psymtabs. */
10283
43f3e411
DE
10284static struct compunit_symtab *
10285get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad 10286{
ed2dc618 10287 return (per_cu->dwarf2_per_objfile->using_index
43f3e411
DE
10288 ? per_cu->v.quick->compunit_symtab
10289 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
10290}
10291
10292/* A helper function for computing the list of all symbol tables
10293 included by PER_CU. */
10294
10295static void
4c39bc03 10296recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
ec94af83 10297 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 10298 struct dwarf2_per_cu_data *per_cu,
43f3e411 10299 struct compunit_symtab *immediate_parent)
95554aad
TT
10300{
10301 void **slot;
43f3e411 10302 struct compunit_symtab *cust;
95554aad
TT
10303
10304 slot = htab_find_slot (all_children, per_cu, INSERT);
10305 if (*slot != NULL)
10306 {
10307 /* This inclusion and its children have been processed. */
10308 return;
10309 }
10310
10311 *slot = per_cu;
10312 /* Only add a CU if it has a symbol table. */
43f3e411
DE
10313 cust = get_compunit_symtab (per_cu);
10314 if (cust != NULL)
ec94af83
DE
10315 {
10316 /* If this is a type unit only add its symbol table if we haven't
10317 seen it yet (type unit per_cu's can share symtabs). */
10318 if (per_cu->is_debug_types)
10319 {
43f3e411 10320 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
10321 if (*slot == NULL)
10322 {
43f3e411 10323 *slot = cust;
4c39bc03 10324 result->push_back (cust);
43f3e411
DE
10325 if (cust->user == NULL)
10326 cust->user = immediate_parent;
ec94af83
DE
10327 }
10328 }
10329 else
f9125b6c 10330 {
4c39bc03 10331 result->push_back (cust);
43f3e411
DE
10332 if (cust->user == NULL)
10333 cust->user = immediate_parent;
f9125b6c 10334 }
ec94af83 10335 }
95554aad 10336
ae640021
AB
10337 if (!per_cu->imported_symtabs_empty ())
10338 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10339 {
10340 recursively_compute_inclusions (result, all_children,
10341 all_type_symtabs, ptr, cust);
10342 }
95554aad
TT
10343}
10344
43f3e411 10345/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
10346 PER_CU. */
10347
10348static void
43f3e411 10349compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 10350{
f4dc4d17
DE
10351 gdb_assert (! per_cu->is_debug_types);
10352
ae640021 10353 if (!per_cu->imported_symtabs_empty ())
95554aad 10354 {
ae640021 10355 int len;
4c39bc03 10356 std::vector<compunit_symtab *> result_symtabs;
ec94af83 10357 htab_t all_children, all_type_symtabs;
43f3e411 10358 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
10359
10360 /* If we don't have a symtab, we can just skip this case. */
43f3e411 10361 if (cust == NULL)
95554aad
TT
10362 return;
10363
10364 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10365 NULL, xcalloc, xfree);
ec94af83
DE
10366 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10367 NULL, xcalloc, xfree);
95554aad 10368
ae640021 10369 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
ec94af83
DE
10370 {
10371 recursively_compute_inclusions (&result_symtabs, all_children,
ae640021 10372 all_type_symtabs, ptr, cust);
ec94af83 10373 }
95554aad 10374
ec94af83 10375 /* Now we have a transitive closure of all the included symtabs. */
4c39bc03 10376 len = result_symtabs.size ();
43f3e411 10377 cust->includes
ed2dc618 10378 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
8d749320 10379 struct compunit_symtab *, len + 1);
4c39bc03
TT
10380 memcpy (cust->includes, result_symtabs.data (),
10381 len * sizeof (compunit_symtab *));
43f3e411 10382 cust->includes[len] = NULL;
95554aad 10383
95554aad 10384 htab_delete (all_children);
ec94af83 10385 htab_delete (all_type_symtabs);
95554aad
TT
10386 }
10387}
10388
10389/* Compute the 'includes' field for the symtabs of all the CUs we just
10390 read. */
10391
10392static void
ed2dc618 10393process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 10394{
71b73764 10395 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
f4dc4d17
DE
10396 {
10397 if (! iter->is_debug_types)
43f3e411 10398 compute_compunit_symtab_includes (iter);
f4dc4d17 10399 }
95554aad 10400
c5d0225d 10401 dwarf2_per_objfile->just_read_cus.clear ();
95554aad
TT
10402}
10403
9cdd5dbd 10404/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
10405 already been loaded into memory. */
10406
10407static void
95554aad
TT
10408process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10409 enum language pretend_language)
10b3939b 10410{
10b3939b 10411 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10412 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10413 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 10414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 10415 CORE_ADDR lowpc, highpc;
43f3e411 10416 struct compunit_symtab *cust;
10b3939b 10417 CORE_ADDR baseaddr;
4359dff1 10418 struct block *static_block;
3e29f34a 10419 CORE_ADDR addr;
10b3939b
DJ
10420
10421 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10422
c89b44cd
TT
10423 /* Clear the list here in case something was left over. */
10424 cu->method_list.clear ();
10b3939b 10425
95554aad
TT
10426 cu->language = pretend_language;
10427 cu->language_defn = language_def (cu->language);
10428
c906108c 10429 /* Do line number decoding in read_file_scope () */
10b3939b 10430 process_die (cu->dies, cu);
c906108c 10431
a766d390
DE
10432 /* For now fudge the Go package. */
10433 if (cu->language == language_go)
10434 fixup_go_packaging (cu);
10435
5f48f8f3 10436 /* Now that we have processed all the DIEs in the CU, all the types
3da10d80
KS
10437 should be complete, and it should now be safe to compute all of the
10438 physnames. */
10439 compute_delayed_physnames (cu);
3da10d80 10440
c9317f21
TT
10441 if (cu->language == language_rust)
10442 rust_union_quirks (cu);
10443
fae299cd
DC
10444 /* Some compilers don't define a DW_AT_high_pc attribute for the
10445 compilation unit. If the DW_AT_high_pc is missing, synthesize
10446 it, by scanning the DIE's below the compilation unit. */
10b3939b 10447 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 10448
3e29f34a 10449 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c24bdb02 10450 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
10451
10452 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10453 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10454 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10455 addrmap to help ensure it has an accurate map of pc values belonging to
10456 this comp unit. */
10457 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10458
c24bdb02 10459 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
804d2729
TT
10460 SECT_OFF_TEXT (objfile),
10461 0);
c906108c 10462
43f3e411 10463 if (cust != NULL)
c906108c 10464 {
df15bd07 10465 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 10466
8be455d7
JK
10467 /* Set symtab language to language from DW_AT_language. If the
10468 compilation is from a C file generated by language preprocessors, do
10469 not set the language if it was already deduced by start_subfile. */
43f3e411 10470 if (!(cu->language == language_c
40e3ad0e 10471 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 10472 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
10473
10474 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10475 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
10476 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10477 there were bugs in prologue debug info, fixed later in GCC-4.5
10478 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
10479
10480 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10481 needed, it would be wrong due to missing DW_AT_producer there.
10482
10483 Still one can confuse GDB by using non-standard GCC compilation
10484 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
5f48f8f3 10485 */
ab260dad 10486 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 10487 cust->locations_valid = 1;
e0d00bc7
JK
10488
10489 if (gcc_4_minor >= 5)
43f3e411 10490 cust->epilogue_unwind_valid = 1;
96408a79 10491
43f3e411 10492 cust->call_site_htab = cu->call_site_htab;
c906108c 10493 }
9291a0cd
TT
10494
10495 if (dwarf2_per_objfile->using_index)
43f3e411 10496 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
10497 else
10498 {
10499 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10500 pst->compunit_symtab = cust;
9291a0cd
TT
10501 pst->readin = 1;
10502 }
c906108c 10503
95554aad 10504 /* Push it for inclusion processing later. */
c5d0225d 10505 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
804d2729
TT
10506
10507 /* Not needed any more. */
c24bdb02 10508 cu->reset_builder ();
f4dc4d17 10509}
45cfd468 10510
f4dc4d17
DE
10511/* Generate full symbol information for type unit PER_CU, whose DIEs have
10512 already been loaded into memory. */
10513
10514static void
10515process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10516 enum language pretend_language)
10517{
10518 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10519 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10520 struct objfile *objfile = dwarf2_per_objfile->objfile;
43f3e411 10521 struct compunit_symtab *cust;
0186c6a7
DE
10522 struct signatured_type *sig_type;
10523
10524 gdb_assert (per_cu->is_debug_types);
10525 sig_type = (struct signatured_type *) per_cu;
f4dc4d17 10526
c89b44cd
TT
10527 /* Clear the list here in case something was left over. */
10528 cu->method_list.clear ();
f4dc4d17 10529
f4dc4d17
DE
10530 cu->language = pretend_language;
10531 cu->language_defn = language_def (cu->language);
10532
10533 /* The symbol tables are set up in read_type_unit_scope. */
10534 process_die (cu->dies, cu);
10535
10536 /* For now fudge the Go package. */
10537 if (cu->language == language_go)
10538 fixup_go_packaging (cu);
10539
5f48f8f3 10540 /* Now that we have processed all the DIEs in the CU, all the types
f4dc4d17
DE
10541 should be complete, and it should now be safe to compute all of the
10542 physnames. */
10543 compute_delayed_physnames (cu);
f4dc4d17 10544
c9317f21
TT
10545 if (cu->language == language_rust)
10546 rust_union_quirks (cu);
10547
f4dc4d17
DE
10548 /* TUs share symbol tables.
10549 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
10550 of it with end_expandable_symtab. Otherwise, complete the addition of
10551 this TU's symbols to the existing symtab. */
43f3e411 10552 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 10553 {
c24bdb02
KS
10554 buildsym_compunit *builder = cu->get_builder ();
10555 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
43f3e411 10556 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 10557
43f3e411 10558 if (cust != NULL)
f4dc4d17
DE
10559 {
10560 /* Set symtab language to language from DW_AT_language. If the
10561 compilation is from a C file generated by language preprocessors,
10562 do not set the language if it was already deduced by
10563 start_subfile. */
43f3e411
DE
10564 if (!(cu->language == language_c
10565 && COMPUNIT_FILETABS (cust)->language != language_c))
10566 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
10567 }
10568 }
10569 else
10570 {
c24bdb02 10571 cu->get_builder ()->augment_type_symtab ();
43f3e411 10572 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
10573 }
10574
10575 if (dwarf2_per_objfile->using_index)
43f3e411 10576 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
10577 else
10578 {
10579 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10580 pst->compunit_symtab = cust;
f4dc4d17 10581 pst->readin = 1;
45cfd468 10582 }
804d2729
TT
10583
10584 /* Not needed any more. */
c24bdb02 10585 cu->reset_builder ();
c906108c
SS
10586}
10587
95554aad
TT
10588/* Process an imported unit DIE. */
10589
10590static void
10591process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10592{
10593 struct attribute *attr;
10594
f4dc4d17
DE
10595 /* For now we don't handle imported units in type units. */
10596 if (cu->per_cu->is_debug_types)
10597 {
10598 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10599 " supported in type units [in module %s]"),
518817b3 10600 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
10601 }
10602
95554aad
TT
10603 attr = dwarf2_attr (die, DW_AT_import, cu);
10604 if (attr != NULL)
10605 {
9c541725
PA
10606 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10607 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10608 dwarf2_per_cu_data *per_cu
e3b94546 10609 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
518817b3 10610 cu->per_cu->dwarf2_per_objfile);
95554aad 10611
69d751e3 10612 /* If necessary, add it to the queue and load its DIEs. */
95554aad 10613 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 10614 load_full_comp_unit (per_cu, false, cu->language);
95554aad 10615
ae640021 10616 cu->per_cu->imported_symtabs_push (per_cu);
95554aad
TT
10617 }
10618}
10619
4c8aa72d
PA
10620/* RAII object that represents a process_die scope: i.e.,
10621 starts/finishes processing a DIE. */
10622class process_die_scope
adde2bff 10623{
4c8aa72d
PA
10624public:
10625 process_die_scope (die_info *die, dwarf2_cu *cu)
10626 : m_die (die), m_cu (cu)
10627 {
10628 /* We should only be processing DIEs not already in process. */
10629 gdb_assert (!m_die->in_process);
10630 m_die->in_process = true;
10631 }
8c3cb9fa 10632
4c8aa72d
PA
10633 ~process_die_scope ()
10634 {
10635 m_die->in_process = false;
10636
10637 /* If we're done processing the DIE for the CU that owns the line
10638 header, we don't need the line header anymore. */
10639 if (m_cu->line_header_die_owner == m_die)
10640 {
10641 delete m_cu->line_header;
10642 m_cu->line_header = NULL;
10643 m_cu->line_header_die_owner = NULL;
10644 }
10645 }
10646
10647private:
10648 die_info *m_die;
10649 dwarf2_cu *m_cu;
10650};
adde2bff 10651
c906108c
SS
10652/* Process a die and its children. */
10653
10654static void
e7c27a73 10655process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10656{
4c8aa72d 10657 process_die_scope scope (die, cu);
adde2bff 10658
c906108c
SS
10659 switch (die->tag)
10660 {
10661 case DW_TAG_padding:
10662 break;
10663 case DW_TAG_compile_unit:
95554aad 10664 case DW_TAG_partial_unit:
e7c27a73 10665 read_file_scope (die, cu);
c906108c 10666 break;
348e048f
DE
10667 case DW_TAG_type_unit:
10668 read_type_unit_scope (die, cu);
10669 break;
c906108c 10670 case DW_TAG_subprogram:
0a4b0913
AB
10671 /* Nested subprograms in Fortran get a prefix. */
10672 if (cu->language == language_fortran
10673 && die->parent != NULL
10674 && die->parent->tag == DW_TAG_subprogram)
10675 cu->processing_has_namespace_info = true;
10676 /* Fall through. */
c906108c 10677 case DW_TAG_inlined_subroutine:
edb3359d 10678 read_func_scope (die, cu);
c906108c
SS
10679 break;
10680 case DW_TAG_lexical_block:
14898363
L
10681 case DW_TAG_try_block:
10682 case DW_TAG_catch_block:
e7c27a73 10683 read_lexical_block_scope (die, cu);
c906108c 10684 break;
216f72a1 10685 case DW_TAG_call_site:
96408a79
SA
10686 case DW_TAG_GNU_call_site:
10687 read_call_site_scope (die, cu);
10688 break;
c906108c 10689 case DW_TAG_class_type:
680b30c7 10690 case DW_TAG_interface_type:
c906108c
SS
10691 case DW_TAG_structure_type:
10692 case DW_TAG_union_type:
134d01f1 10693 process_structure_scope (die, cu);
c906108c
SS
10694 break;
10695 case DW_TAG_enumeration_type:
134d01f1 10696 process_enumeration_scope (die, cu);
c906108c 10697 break;
134d01f1 10698
f792889a
DJ
10699 /* These dies have a type, but processing them does not create
10700 a symbol or recurse to process the children. Therefore we can
10701 read them on-demand through read_type_die. */
c906108c 10702 case DW_TAG_subroutine_type:
72019c9c 10703 case DW_TAG_set_type:
c906108c 10704 case DW_TAG_array_type:
c906108c 10705 case DW_TAG_pointer_type:
c906108c 10706 case DW_TAG_ptr_to_member_type:
c906108c 10707 case DW_TAG_reference_type:
4297a3f0 10708 case DW_TAG_rvalue_reference_type:
c906108c 10709 case DW_TAG_string_type:
c906108c 10710 break;
134d01f1 10711
c906108c 10712 case DW_TAG_base_type:
a02abb62 10713 case DW_TAG_subrange_type:
cb249c71 10714 case DW_TAG_typedef:
134d01f1
DJ
10715 /* Add a typedef symbol for the type definition, if it has a
10716 DW_AT_name. */
f792889a 10717 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 10718 break;
c906108c 10719 case DW_TAG_common_block:
e7c27a73 10720 read_common_block (die, cu);
c906108c
SS
10721 break;
10722 case DW_TAG_common_inclusion:
10723 break;
d9fa45fe 10724 case DW_TAG_namespace:
9068261f 10725 cu->processing_has_namespace_info = true;
e7c27a73 10726 read_namespace (die, cu);
d9fa45fe 10727 break;
5d7cb8df 10728 case DW_TAG_module:
9068261f 10729 cu->processing_has_namespace_info = true;
5d7cb8df
JK
10730 read_module (die, cu);
10731 break;
d9fa45fe 10732 case DW_TAG_imported_declaration:
9068261f 10733 cu->processing_has_namespace_info = true;
74921315
KS
10734 if (read_namespace_alias (die, cu))
10735 break;
86a73007
TT
10736 /* The declaration is not a global namespace alias. */
10737 /* Fall through. */
d9fa45fe 10738 case DW_TAG_imported_module:
9068261f 10739 cu->processing_has_namespace_info = true;
27aa8d6a
SW
10740 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10741 || cu->language != language_fortran))
b98664d3 10742 complaint (_("Tag '%s' has unexpected children"),
27aa8d6a
SW
10743 dwarf_tag_name (die->tag));
10744 read_import_statement (die, cu);
d9fa45fe 10745 break;
95554aad
TT
10746
10747 case DW_TAG_imported_unit:
10748 process_imported_unit_die (die, cu);
10749 break;
10750
71a3c369
TT
10751 case DW_TAG_variable:
10752 read_variable (die, cu);
10753 break;
10754
c906108c 10755 default:
e7c27a73 10756 new_symbol (die, NULL, cu);
c906108c
SS
10757 break;
10758 }
10759}
ca69b9e6
DE
10760\f
10761/* DWARF name computation. */
c906108c 10762
94af9270
KS
10763/* A helper function for dwarf2_compute_name which determines whether DIE
10764 needs to have the name of the scope prepended to the name listed in the
10765 die. */
10766
10767static int
10768die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10769{
1c809c68
TT
10770 struct attribute *attr;
10771
94af9270
KS
10772 switch (die->tag)
10773 {
10774 case DW_TAG_namespace:
10775 case DW_TAG_typedef:
10776 case DW_TAG_class_type:
10777 case DW_TAG_interface_type:
10778 case DW_TAG_structure_type:
10779 case DW_TAG_union_type:
10780 case DW_TAG_enumeration_type:
10781 case DW_TAG_enumerator:
10782 case DW_TAG_subprogram:
08a76f8a 10783 case DW_TAG_inlined_subroutine:
94af9270 10784 case DW_TAG_member:
74921315 10785 case DW_TAG_imported_declaration:
94af9270
KS
10786 return 1;
10787
10788 case DW_TAG_variable:
c2b0a229 10789 case DW_TAG_constant:
94af9270
KS
10790 /* We only need to prefix "globally" visible variables. These include
10791 any variable marked with DW_AT_external or any variable that
10792 lives in a namespace. [Variables in anonymous namespaces
10793 require prefixing, but they are not DW_AT_external.] */
10794
10795 if (dwarf2_attr (die, DW_AT_specification, cu))
10796 {
10797 struct dwarf2_cu *spec_cu = cu;
9a619af0 10798
94af9270
KS
10799 return die_needs_namespace (die_specification (die, &spec_cu),
10800 spec_cu);
10801 }
10802
1c809c68 10803 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
10804 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10805 && die->parent->tag != DW_TAG_module)
1c809c68
TT
10806 return 0;
10807 /* A variable in a lexical block of some kind does not need a
10808 namespace, even though in C++ such variables may be external
10809 and have a mangled name. */
10810 if (die->parent->tag == DW_TAG_lexical_block
10811 || die->parent->tag == DW_TAG_try_block
1054b214
TT
10812 || die->parent->tag == DW_TAG_catch_block
10813 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
10814 return 0;
10815 return 1;
94af9270
KS
10816
10817 default:
10818 return 0;
10819 }
10820}
10821
73b9be8b
KS
10822/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10823 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10824 defined for the given DIE. */
10825
10826static struct attribute *
10827dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10828{
10829 struct attribute *attr;
10830
10831 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10832 if (attr == NULL)
10833 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10834
10835 return attr;
10836}
10837
10838/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10839 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10840 defined for the given DIE. */
10841
10842static const char *
10843dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10844{
10845 const char *linkage_name;
10846
10847 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10848 if (linkage_name == NULL)
10849 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10850
10851 return linkage_name;
10852}
10853
94af9270 10854/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 10855 compute the physname for the object, which include a method's:
9c37b5ae 10856 - formal parameters (C++),
a766d390 10857 - receiver type (Go),
a766d390
DE
10858
10859 The term "physname" is a bit confusing.
10860 For C++, for example, it is the demangled name.
10861 For Go, for example, it's the mangled name.
94af9270 10862
af6b7be1
JB
10863 For Ada, return the DIE's linkage name rather than the fully qualified
10864 name. PHYSNAME is ignored..
10865
94af9270
KS
10866 The result is allocated on the objfile_obstack and canonicalized. */
10867
10868static const char *
15d034d0
TT
10869dwarf2_compute_name (const char *name,
10870 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
10871 int physname)
10872{
518817b3 10873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
bb5ed363 10874
94af9270
KS
10875 if (name == NULL)
10876 name = dwarf2_name (die, cu);
10877
2ee7123e
DE
10878 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10879 but otherwise compute it by typename_concat inside GDB.
10880 FIXME: Actually this is not really true, or at least not always true.
10881 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
5e2db402 10882 Fortran names because there is no mangling standard. So new_symbol
2ee7123e
DE
10883 will set the demangled name to the result of dwarf2_full_name, and it is
10884 the demangled name that GDB uses if it exists. */
f55ee35c
JK
10885 if (cu->language == language_ada
10886 || (cu->language == language_fortran && physname))
10887 {
10888 /* For Ada unit, we prefer the linkage name over the name, as
10889 the former contains the exported name, which the user expects
10890 to be able to reference. Ideally, we want the user to be able
10891 to reference this entity using either natural or linkage name,
10892 but we haven't started looking at this enhancement yet. */
73b9be8b 10893 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 10894
2ee7123e
DE
10895 if (linkage_name != NULL)
10896 return linkage_name;
f55ee35c
JK
10897 }
10898
94af9270
KS
10899 /* These are the only languages we know how to qualify names in. */
10900 if (name != NULL
9c37b5ae 10901 && (cu->language == language_cplus
c44af4eb
TT
10902 || cu->language == language_fortran || cu->language == language_d
10903 || cu->language == language_rust))
94af9270
KS
10904 {
10905 if (die_needs_namespace (die, cu))
10906 {
0d5cff50 10907 const char *prefix;
34a68019 10908 const char *canonical_name = NULL;
94af9270 10909
d7e74731
PA
10910 string_file buf;
10911
94af9270 10912 prefix = determine_prefix (die, cu);
94af9270
KS
10913 if (*prefix != '\0')
10914 {
f55ee35c
JK
10915 char *prefixed_name = typename_concat (NULL, prefix, name,
10916 physname, cu);
9a619af0 10917
d7e74731 10918 buf.puts (prefixed_name);
94af9270
KS
10919 xfree (prefixed_name);
10920 }
10921 else
d7e74731 10922 buf.puts (name);
94af9270 10923
98bfdba5
PA
10924 /* Template parameters may be specified in the DIE's DW_AT_name, or
10925 as children with DW_TAG_template_type_param or
10926 DW_TAG_value_type_param. If the latter, add them to the name
10927 here. If the name already has template parameters, then
10928 skip this step; some versions of GCC emit both, and
10929 it is more efficient to use the pre-computed name.
10930
10931 Something to keep in mind about this process: it is very
10932 unlikely, or in some cases downright impossible, to produce
10933 something that will match the mangled name of a function.
10934 If the definition of the function has the same debug info,
10935 we should be able to match up with it anyway. But fallbacks
10936 using the minimal symbol, for instance to find a method
10937 implemented in a stripped copy of libstdc++, will not work.
10938 If we do not have debug info for the definition, we will have to
10939 match them up some other way.
10940
10941 When we do name matching there is a related problem with function
10942 templates; two instantiated function templates are allowed to
10943 differ only by their return types, which we do not add here. */
10944
10945 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10946 {
10947 struct attribute *attr;
10948 struct die_info *child;
10949 int first = 1;
10950
10951 die->building_fullname = 1;
10952
10953 for (child = die->child; child != NULL; child = child->sibling)
10954 {
10955 struct type *type;
12df843f 10956 LONGEST value;
d521ce57 10957 const gdb_byte *bytes;
98bfdba5
PA
10958 struct dwarf2_locexpr_baton *baton;
10959 struct value *v;
10960
10961 if (child->tag != DW_TAG_template_type_param
10962 && child->tag != DW_TAG_template_value_param)
10963 continue;
10964
10965 if (first)
10966 {
d7e74731 10967 buf.puts ("<");
98bfdba5
PA
10968 first = 0;
10969 }
10970 else
d7e74731 10971 buf.puts (", ");
98bfdba5
PA
10972
10973 attr = dwarf2_attr (child, DW_AT_type, cu);
10974 if (attr == NULL)
10975 {
b98664d3 10976 complaint (_("template parameter missing DW_AT_type"));
d7e74731 10977 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
10978 continue;
10979 }
10980 type = die_type (child, cu);
10981
10982 if (child->tag == DW_TAG_template_type_param)
10983 {
c1ec8cea
TT
10984 c_print_type (type, "", &buf, -1, 0, cu->language,
10985 &type_print_raw_options);
98bfdba5
PA
10986 continue;
10987 }
10988
10989 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10990 if (attr == NULL)
10991 {
b98664d3 10992 complaint (_("template parameter missing "
3e43a32a 10993 "DW_AT_const_value"));
d7e74731 10994 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
10995 continue;
10996 }
10997
10998 dwarf2_const_value_attr (attr, type, name,
10999 &cu->comp_unit_obstack, cu,
11000 &value, &bytes, &baton);
11001
11002 if (TYPE_NOSIGN (type))
11003 /* GDB prints characters as NUMBER 'CHAR'. If that's
11004 changed, this can use value_print instead. */
d7e74731 11005 c_printchar (value, type, &buf);
98bfdba5
PA
11006 else
11007 {
11008 struct value_print_options opts;
11009
11010 if (baton != NULL)
11011 v = dwarf2_evaluate_loc_desc (type, NULL,
11012 baton->data,
11013 baton->size,
11014 baton->per_cu);
11015 else if (bytes != NULL)
11016 {
11017 v = allocate_value (type);
11018 memcpy (value_contents_writeable (v), bytes,
11019 TYPE_LENGTH (type));
11020 }
11021 else
11022 v = value_from_longest (type, value);
11023
3e43a32a
MS
11024 /* Specify decimal so that we do not depend on
11025 the radix. */
98bfdba5
PA
11026 get_formatted_print_options (&opts, 'd');
11027 opts.raw = 1;
d7e74731 11028 value_print (v, &buf, &opts);
98bfdba5 11029 release_value (v);
98bfdba5
PA
11030 }
11031 }
11032
11033 die->building_fullname = 0;
11034
11035 if (!first)
11036 {
11037 /* Close the argument list, with a space if necessary
11038 (nested templates). */
d7e74731
PA
11039 if (!buf.empty () && buf.string ().back () == '>')
11040 buf.puts (" >");
98bfdba5 11041 else
d7e74731 11042 buf.puts (">");
98bfdba5
PA
11043 }
11044 }
11045
9c37b5ae 11046 /* For C++ methods, append formal parameter type
94af9270 11047 information, if PHYSNAME. */
6e70227d 11048
94af9270 11049 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 11050 && cu->language == language_cplus)
94af9270
KS
11051 {
11052 struct type *type = read_type_die (die, cu);
11053
d7e74731 11054 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 11055 &type_print_raw_options);
94af9270 11056
9c37b5ae 11057 if (cu->language == language_cplus)
94af9270 11058 {
60430eff
DJ
11059 /* Assume that an artificial first parameter is
11060 "this", but do not crash if it is not. RealView
11061 marks unnamed (and thus unused) parameters as
11062 artificial; there is no way to differentiate
11063 the two cases. */
94af9270
KS
11064 if (TYPE_NFIELDS (type) > 0
11065 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 11066 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
11067 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11068 0))))
d7e74731 11069 buf.puts (" const");
94af9270
KS
11070 }
11071 }
11072
d7e74731 11073 const std::string &intermediate_name = buf.string ();
94af9270
KS
11074
11075 if (cu->language == language_cplus)
34a68019 11076 canonical_name
322a8516 11077 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
11078 &objfile->per_bfd->storage_obstack);
11079
11080 /* If we only computed INTERMEDIATE_NAME, or if
11081 INTERMEDIATE_NAME is already canonical, then we need to
11082 copy it to the appropriate obstack. */
322a8516 11083 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
efba19b0
TT
11084 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11085 intermediate_name);
34a68019
TT
11086 else
11087 name = canonical_name;
94af9270
KS
11088 }
11089 }
11090
11091 return name;
11092}
11093
0114d602
DJ
11094/* Return the fully qualified name of DIE, based on its DW_AT_name.
11095 If scope qualifiers are appropriate they will be added. The result
34a68019 11096 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
11097 not have a name. NAME may either be from a previous call to
11098 dwarf2_name or NULL.
11099
9c37b5ae 11100 The output string will be canonicalized (if C++). */
0114d602
DJ
11101
11102static const char *
15d034d0 11103dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 11104{
94af9270
KS
11105 return dwarf2_compute_name (name, die, cu, 0);
11106}
0114d602 11107
94af9270
KS
11108/* Construct a physname for the given DIE in CU. NAME may either be
11109 from a previous call to dwarf2_name or NULL. The result will be
11110 allocated on the objfile_objstack or NULL if the DIE does not have a
11111 name.
0114d602 11112
9c37b5ae 11113 The output string will be canonicalized (if C++). */
0114d602 11114
94af9270 11115static const char *
15d034d0 11116dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 11117{
518817b3 11118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
900e11f9 11119 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
11120 int need_copy = 1;
11121
11122 /* In this case dwarf2_compute_name is just a shortcut not building anything
11123 on its own. */
11124 if (!die_needs_namespace (die, cu))
11125 return dwarf2_compute_name (name, die, cu, 1);
11126
73b9be8b 11127 mangled = dw2_linkage_name (die, cu);
900e11f9 11128
e98c9e7c
TT
11129 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11130 See https://github.com/rust-lang/rust/issues/32925. */
11131 if (cu->language == language_rust && mangled != NULL
11132 && strchr (mangled, '{') != NULL)
11133 mangled = NULL;
11134
900e11f9
JK
11135 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11136 has computed. */
791afaa2 11137 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 11138 if (mangled != NULL)
900e11f9 11139 {
900e11f9 11140
59cc4834
JB
11141 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11142 {
11143 /* Do nothing (do not demangle the symbol name). */
11144 }
11145 else if (cu->language == language_go)
a766d390 11146 {
5e2db402
TT
11147 /* This is a lie, but we already lie to the caller new_symbol.
11148 new_symbol assumes we return the mangled name.
a766d390 11149 This just undoes that lie until things are cleaned up. */
a766d390
DE
11150 }
11151 else
11152 {
0eb876f5
JB
11153 /* Use DMGL_RET_DROP for C++ template functions to suppress
11154 their return type. It is easier for GDB users to search
11155 for such functions as `name(params)' than `long name(params)'.
11156 In such case the minimal symbol names do not match the full
11157 symbol names but for template functions there is never a need
11158 to look up their definition from their declaration so
11159 the only disadvantage remains the minimal symbol variant
11160 `long name(params)' does not have the proper inferior type. */
791afaa2
TT
11161 demangled.reset (gdb_demangle (mangled,
11162 (DMGL_PARAMS | DMGL_ANSI
11163 | DMGL_RET_DROP)));
a766d390 11164 }
900e11f9 11165 if (demangled)
791afaa2 11166 canon = demangled.get ();
900e11f9
JK
11167 else
11168 {
11169 canon = mangled;
11170 need_copy = 0;
11171 }
11172 }
11173
11174 if (canon == NULL || check_physname)
11175 {
11176 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11177
11178 if (canon != NULL && strcmp (physname, canon) != 0)
11179 {
11180 /* It may not mean a bug in GDB. The compiler could also
11181 compute DW_AT_linkage_name incorrectly. But in such case
11182 GDB would need to be bug-to-bug compatible. */
11183
b98664d3 11184 complaint (_("Computed physname <%s> does not match demangled <%s> "
9d8780f0
SM
11185 "(from linkage <%s>) - DIE at %s [in module %s]"),
11186 physname, canon, mangled, sect_offset_str (die->sect_off),
4262abfb 11187 objfile_name (objfile));
900e11f9
JK
11188
11189 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11190 is available here - over computed PHYSNAME. It is safer
11191 against both buggy GDB and buggy compilers. */
11192
11193 retval = canon;
11194 }
11195 else
11196 {
11197 retval = physname;
11198 need_copy = 0;
11199 }
11200 }
11201 else
11202 retval = canon;
11203
11204 if (need_copy)
021887d8 11205 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
900e11f9 11206
900e11f9 11207 return retval;
0114d602
DJ
11208}
11209
74921315
KS
11210/* Inspect DIE in CU for a namespace alias. If one exists, record
11211 a new symbol for it.
11212
11213 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11214
11215static int
11216read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11217{
11218 struct attribute *attr;
11219
11220 /* If the die does not have a name, this is not a namespace
11221 alias. */
11222 attr = dwarf2_attr (die, DW_AT_name, cu);
11223 if (attr != NULL)
11224 {
11225 int num;
11226 struct die_info *d = die;
11227 struct dwarf2_cu *imported_cu = cu;
11228
11229 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11230 keep inspecting DIEs until we hit the underlying import. */
11231#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11232 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11233 {
11234 attr = dwarf2_attr (d, DW_AT_import, cu);
11235 if (attr == NULL)
11236 break;
11237
11238 d = follow_die_ref (d, attr, &imported_cu);
11239 if (d->tag != DW_TAG_imported_declaration)
11240 break;
11241 }
11242
11243 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11244 {
b98664d3 11245 complaint (_("DIE at %s has too many recursively imported "
9d8780f0 11246 "declarations"), sect_offset_str (d->sect_off));
74921315
KS
11247 return 0;
11248 }
11249
11250 if (attr != NULL)
11251 {
11252 struct type *type;
9c541725 11253 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 11254
9c541725 11255 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
11256 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11257 {
11258 /* This declaration is a global namespace alias. Add
11259 a symbol for it whose type is the aliased namespace. */
11260 new_symbol (die, type, cu);
11261 return 1;
11262 }
11263 }
11264 }
11265
11266 return 0;
11267}
11268
22cee43f 11269/* Return the using directives repository (global or local?) to use in the
804d2729 11270 current context for CU.
22cee43f
PMR
11271
11272 For Ada, imported declarations can materialize renamings, which *may* be
11273 global. However it is impossible (for now?) in DWARF to distinguish
11274 "external" imported declarations and "static" ones. As all imported
11275 declarations seem to be static in all other languages, make them all CU-wide
11276 global only in Ada. */
11277
11278static struct using_direct **
804d2729 11279using_directives (struct dwarf2_cu *cu)
22cee43f 11280{
c24bdb02
KS
11281 if (cu->language == language_ada
11282 && cu->get_builder ()->outermost_context_p ())
11283 return cu->get_builder ()->get_global_using_directives ();
22cee43f 11284 else
c24bdb02 11285 return cu->get_builder ()->get_local_using_directives ();
22cee43f
PMR
11286}
11287
27aa8d6a
SW
11288/* Read the import statement specified by the given die and record it. */
11289
11290static void
11291read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11292{
518817b3 11293 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
27aa8d6a 11294 struct attribute *import_attr;
32019081 11295 struct die_info *imported_die, *child_die;
de4affc9 11296 struct dwarf2_cu *imported_cu;
27aa8d6a 11297 const char *imported_name;
794684b6 11298 const char *imported_name_prefix;
13387711
SW
11299 const char *canonical_name;
11300 const char *import_alias;
11301 const char *imported_declaration = NULL;
794684b6 11302 const char *import_prefix;
eb1e02fd 11303 std::vector<const char *> excludes;
13387711 11304
27aa8d6a
SW
11305 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11306 if (import_attr == NULL)
11307 {
b98664d3 11308 complaint (_("Tag '%s' has no DW_AT_import"),
27aa8d6a
SW
11309 dwarf_tag_name (die->tag));
11310 return;
11311 }
11312
de4affc9
CC
11313 imported_cu = cu;
11314 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11315 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
11316 if (imported_name == NULL)
11317 {
11318 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11319
11320 The import in the following code:
11321 namespace A
11322 {
11323 typedef int B;
11324 }
11325
11326 int main ()
11327 {
11328 using A::B;
11329 B b;
11330 return b;
11331 }
11332
11333 ...
11334 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11335 <52> DW_AT_decl_file : 1
11336 <53> DW_AT_decl_line : 6
11337 <54> DW_AT_import : <0x75>
11338 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11339 <59> DW_AT_name : B
11340 <5b> DW_AT_decl_file : 1
11341 <5c> DW_AT_decl_line : 2
11342 <5d> DW_AT_type : <0x6e>
11343 ...
11344 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11345 <76> DW_AT_byte_size : 4
11346 <77> DW_AT_encoding : 5 (signed)
11347
11348 imports the wrong die ( 0x75 instead of 0x58 ).
11349 This case will be ignored until the gcc bug is fixed. */
11350 return;
11351 }
11352
82856980
SW
11353 /* Figure out the local name after import. */
11354 import_alias = dwarf2_name (die, cu);
27aa8d6a 11355
794684b6
SW
11356 /* Figure out where the statement is being imported to. */
11357 import_prefix = determine_prefix (die, cu);
11358
11359 /* Figure out what the scope of the imported die is and prepend it
11360 to the name of the imported die. */
de4affc9 11361 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 11362
f55ee35c
JK
11363 if (imported_die->tag != DW_TAG_namespace
11364 && imported_die->tag != DW_TAG_module)
794684b6 11365 {
13387711
SW
11366 imported_declaration = imported_name;
11367 canonical_name = imported_name_prefix;
794684b6 11368 }
13387711 11369 else if (strlen (imported_name_prefix) > 0)
12aaed36 11370 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
11371 imported_name_prefix,
11372 (cu->language == language_d ? "." : "::"),
11373 imported_name, (char *) NULL);
13387711
SW
11374 else
11375 canonical_name = imported_name;
794684b6 11376
32019081
JK
11377 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11378 for (child_die = die->child; child_die && child_die->tag;
11379 child_die = sibling_die (child_die))
11380 {
11381 /* DWARF-4: A Fortran use statement with a “rename list” may be
11382 represented by an imported module entry with an import attribute
11383 referring to the module and owned entries corresponding to those
11384 entities that are renamed as part of being imported. */
11385
11386 if (child_die->tag != DW_TAG_imported_declaration)
11387 {
b98664d3 11388 complaint (_("child DW_TAG_imported_declaration expected "
9d8780f0
SM
11389 "- DIE at %s [in module %s]"),
11390 sect_offset_str (child_die->sect_off),
11391 objfile_name (objfile));
32019081
JK
11392 continue;
11393 }
11394
11395 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11396 if (import_attr == NULL)
11397 {
b98664d3 11398 complaint (_("Tag '%s' has no DW_AT_import"),
32019081
JK
11399 dwarf_tag_name (child_die->tag));
11400 continue;
11401 }
11402
11403 imported_cu = cu;
11404 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11405 &imported_cu);
11406 imported_name = dwarf2_name (imported_die, imported_cu);
11407 if (imported_name == NULL)
11408 {
b98664d3 11409 complaint (_("child DW_TAG_imported_declaration has unknown "
9d8780f0
SM
11410 "imported name - DIE at %s [in module %s]"),
11411 sect_offset_str (child_die->sect_off),
11412 objfile_name (objfile));
32019081
JK
11413 continue;
11414 }
11415
eb1e02fd 11416 excludes.push_back (imported_name);
32019081
JK
11417
11418 process_die (child_die, cu);
11419 }
11420
804d2729 11421 add_using_directive (using_directives (cu),
22cee43f
PMR
11422 import_prefix,
11423 canonical_name,
11424 import_alias,
11425 imported_declaration,
11426 excludes,
11427 0,
11428 &objfile->objfile_obstack);
27aa8d6a
SW
11429}
11430
5230b05a
WT
11431/* ICC<14 does not output the required DW_AT_declaration on incomplete
11432 types, but gives them a size of zero. Starting with version 14,
11433 ICC is compatible with GCC. */
11434
9068261f 11435static bool
5230b05a
WT
11436producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11437{
11438 if (!cu->checked_producer)
11439 check_producer (cu);
11440
11441 return cu->producer_is_icc_lt_14;
11442}
11443
eb77c9df
AB
11444/* ICC generates a DW_AT_type for C void functions. This was observed on
11445 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11446 which says that void functions should not have a DW_AT_type. */
11447
11448static bool
11449producer_is_icc (struct dwarf2_cu *cu)
11450{
11451 if (!cu->checked_producer)
11452 check_producer (cu);
11453
11454 return cu->producer_is_icc;
11455}
11456
1b80a9fa
JK
11457/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11458 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11459 this, it was first present in GCC release 4.3.0. */
11460
9068261f 11461static bool
1b80a9fa
JK
11462producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11463{
11464 if (!cu->checked_producer)
11465 check_producer (cu);
11466
11467 return cu->producer_is_gcc_lt_4_3;
11468}
11469
d721ba37
PA
11470static file_and_directory
11471find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 11472{
d721ba37
PA
11473 file_and_directory res;
11474
9291a0cd
TT
11475 /* Find the filename. Do not use dwarf2_name here, since the filename
11476 is not a source language identifier. */
d721ba37
PA
11477 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11478 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 11479
d721ba37
PA
11480 if (res.comp_dir == NULL
11481 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11482 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 11483 {
d721ba37
PA
11484 res.comp_dir_storage = ldirname (res.name);
11485 if (!res.comp_dir_storage.empty ())
11486 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 11487 }
d721ba37 11488 if (res.comp_dir != NULL)
9291a0cd
TT
11489 {
11490 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11491 directory, get rid of it. */
d721ba37 11492 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 11493
d721ba37
PA
11494 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11495 res.comp_dir = cp + 1;
9291a0cd
TT
11496 }
11497
d721ba37
PA
11498 if (res.name == NULL)
11499 res.name = "<unknown>";
11500
11501 return res;
9291a0cd
TT
11502}
11503
f4dc4d17
DE
11504/* Handle DW_AT_stmt_list for a compilation unit.
11505 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
11506 COMP_DIR is the compilation directory. LOWPC is passed to
11507 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
11508
11509static void
11510handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 11511 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 11512{
518817b3
SM
11513 struct dwarf2_per_objfile *dwarf2_per_objfile
11514 = cu->per_cu->dwarf2_per_objfile;
527f3840 11515 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 11516 struct attribute *attr;
527f3840
JK
11517 struct line_header line_header_local;
11518 hashval_t line_header_local_hash;
527f3840
JK
11519 void **slot;
11520 int decode_mapping;
2ab95328 11521
f4dc4d17
DE
11522 gdb_assert (! cu->per_cu->is_debug_types);
11523
2ab95328 11524 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
11525 if (attr == NULL)
11526 return;
11527
9c541725 11528 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
11529
11530 /* The line header hash table is only created if needed (it exists to
11531 prevent redundant reading of the line table for partial_units).
11532 If we're given a partial_unit, we'll need it. If we're given a
11533 compile_unit, then use the line header hash table if it's already
11534 created, but don't create one just yet. */
11535
11536 if (dwarf2_per_objfile->line_header_hash == NULL
11537 && die->tag == DW_TAG_partial_unit)
2ab95328 11538 {
527f3840
JK
11539 dwarf2_per_objfile->line_header_hash
11540 = htab_create_alloc_ex (127, line_header_hash_voidp,
11541 line_header_eq_voidp,
11542 free_line_header_voidp,
11543 &objfile->objfile_obstack,
11544 hashtab_obstack_allocate,
11545 dummy_obstack_deallocate);
11546 }
2ab95328 11547
9c541725 11548 line_header_local.sect_off = line_offset;
527f3840
JK
11549 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11550 line_header_local_hash = line_header_hash (&line_header_local);
11551 if (dwarf2_per_objfile->line_header_hash != NULL)
11552 {
11553 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11554 &line_header_local,
11555 line_header_local_hash, NO_INSERT);
11556
11557 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11558 is not present in *SLOT (since if there is something in *SLOT then
11559 it will be for a partial_unit). */
11560 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 11561 {
527f3840 11562 gdb_assert (*slot != NULL);
9a3c8263 11563 cu->line_header = (struct line_header *) *slot;
527f3840 11564 return;
dee91e82 11565 }
2ab95328 11566 }
527f3840
JK
11567
11568 /* dwarf_decode_line_header does not yet provide sufficient information.
11569 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
11570 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11571 if (lh == NULL)
527f3840 11572 return;
4c8aa72d
PA
11573
11574 cu->line_header = lh.release ();
11575 cu->line_header_die_owner = die;
527f3840
JK
11576
11577 if (dwarf2_per_objfile->line_header_hash == NULL)
11578 slot = NULL;
11579 else
11580 {
11581 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11582 &line_header_local,
11583 line_header_local_hash, INSERT);
11584 gdb_assert (slot != NULL);
11585 }
11586 if (slot != NULL && *slot == NULL)
11587 {
11588 /* This newly decoded line number information unit will be owned
11589 by line_header_hash hash table. */
11590 *slot = cu->line_header;
4c8aa72d 11591 cu->line_header_die_owner = NULL;
527f3840
JK
11592 }
11593 else
11594 {
11595 /* We cannot free any current entry in (*slot) as that struct line_header
11596 may be already used by multiple CUs. Create only temporary decoded
11597 line_header for this CU - it may happen at most once for each line
11598 number information unit. And if we're not using line_header_hash
11599 then this is what we want as well. */
11600 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
11601 }
11602 decode_mapping = (die->tag != DW_TAG_partial_unit);
11603 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11604 decode_mapping);
fff8551c 11605
2ab95328
TT
11606}
11607
95554aad 11608/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 11609
c906108c 11610static void
e7c27a73 11611read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11612{
518817b3
SM
11613 struct dwarf2_per_objfile *dwarf2_per_objfile
11614 = cu->per_cu->dwarf2_per_objfile;
dee91e82 11615 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 11616 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 11617 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
11618 CORE_ADDR highpc = ((CORE_ADDR) 0);
11619 struct attribute *attr;
c906108c 11620 struct die_info *child_die;
e142c38c 11621 CORE_ADDR baseaddr;
6e70227d 11622
380618d6 11623 prepare_one_comp_unit (cu, die, cu->language);
e142c38c 11624 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11625
fae299cd 11626 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
11627
11628 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11629 from finish_block. */
2acceee2 11630 if (lowpc == ((CORE_ADDR) -1))
c906108c 11631 lowpc = highpc;
3e29f34a 11632 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 11633
d721ba37 11634 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 11635
f4b8a18d
KW
11636 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11637 standardised yet. As a workaround for the language detection we fall
11638 back to the DW_AT_producer string. */
11639 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11640 cu->language = language_opencl;
11641
3019eac3
DE
11642 /* Similar hack for Go. */
11643 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11644 set_cu_language (DW_LANG_Go, cu);
11645
c24bdb02 11646 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
11647
11648 /* Decode line number information if present. We do this before
11649 processing child DIEs, so that the line header table is available
11650 for DW_AT_decl_file. */
d721ba37 11651 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
11652
11653 /* Process all dies in compilation unit. */
11654 if (die->child != NULL)
11655 {
11656 child_die = die->child;
11657 while (child_die && child_die->tag)
11658 {
11659 process_die (child_die, cu);
11660 child_die = sibling_die (child_die);
11661 }
11662 }
11663
11664 /* Decode macro information, if present. Dwarf 2 macro information
11665 refers to information in the line number info statement program
11666 header, so we can only read it if we've read the header
11667 successfully. */
0af92d60
JK
11668 attr = dwarf2_attr (die, DW_AT_macros, cu);
11669 if (attr == NULL)
11670 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
11671 if (attr && cu->line_header)
11672 {
11673 if (dwarf2_attr (die, DW_AT_macro_info, cu))
b98664d3 11674 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 11675
43f3e411 11676 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
11677 }
11678 else
11679 {
11680 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11681 if (attr && cu->line_header)
11682 {
11683 unsigned int macro_offset = DW_UNSND (attr);
11684
43f3e411 11685 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
11686 }
11687 }
3019eac3
DE
11688}
11689
c24bdb02
KS
11690void
11691dwarf2_cu::setup_type_unit_groups (struct die_info *die)
3019eac3 11692{
f4dc4d17
DE
11693 struct type_unit_group *tu_group;
11694 int first_time;
3019eac3 11695 struct attribute *attr;
9c541725 11696 unsigned int i;
0186c6a7 11697 struct signatured_type *sig_type;
3019eac3 11698
f4dc4d17 11699 gdb_assert (per_cu->is_debug_types);
0186c6a7 11700 sig_type = (struct signatured_type *) per_cu;
3019eac3 11701
c24bdb02 11702 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
3019eac3 11703
f4dc4d17 11704 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 11705 per_cu->type_unit_group may not have been set up yet. */
0186c6a7 11706 if (sig_type->type_unit_group == NULL)
c24bdb02 11707 sig_type->type_unit_group = get_type_unit_group (this, attr);
0186c6a7 11708 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
11709
11710 /* If we've already processed this stmt_list there's no real need to
11711 do it again, we could fake it and just recreate the part we need
11712 (file name,index -> symtab mapping). If data shows this optimization
11713 is useful we can do it then. */
43f3e411 11714 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
11715
11716 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11717 debug info. */
fff8551c 11718 line_header_up lh;
f4dc4d17 11719 if (attr != NULL)
3019eac3 11720 {
9c541725 11721 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
c24bdb02 11722 lh = dwarf_decode_line_header (line_offset, this);
f4dc4d17
DE
11723 }
11724 if (lh == NULL)
11725 {
11726 if (first_time)
c24bdb02 11727 start_symtab ("", NULL, 0);
f4dc4d17
DE
11728 else
11729 {
11730 gdb_assert (tu_group->symtabs == NULL);
c24bdb02 11731 gdb_assert (m_builder == nullptr);
804d2729 11732 struct compunit_symtab *cust = tu_group->compunit_symtab;
c24bdb02
KS
11733 m_builder.reset (new struct buildsym_compunit
11734 (COMPUNIT_OBJFILE (cust), "",
11735 COMPUNIT_DIRNAME (cust),
11736 compunit_language (cust),
11737 0, cust));
f4dc4d17 11738 }
f4dc4d17 11739 return;
3019eac3
DE
11740 }
11741
c24bdb02
KS
11742 line_header = lh.release ();
11743 line_header_die_owner = die;
3019eac3 11744
f4dc4d17
DE
11745 if (first_time)
11746 {
c24bdb02 11747 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
3019eac3 11748
1fd60fc0
DE
11749 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11750 still initializing it, and our caller (a few levels up)
11751 process_full_type_unit still needs to know if this is the first
11752 time. */
11753
7ba99d21 11754 tu_group->num_symtabs = line_header->file_names_size ();
4c8aa72d 11755 tu_group->symtabs = XNEWVEC (struct symtab *,
7ba99d21 11756 line_header->file_names_size ());
3019eac3 11757
7ba99d21
AT
11758 auto &file_names = line_header->file_names ();
11759 for (i = 0; i < file_names.size (); ++i)
f4dc4d17 11760 {
7ba99d21 11761 file_entry &fe = file_names[i];
c24bdb02
KS
11762 dwarf2_start_subfile (this, fe.name,
11763 fe.include_dir (line_header));
11764 buildsym_compunit *b = get_builder ();
11765 if (b->get_current_subfile ()->symtab == NULL)
f4dc4d17 11766 {
4c8aa72d
PA
11767 /* NOTE: start_subfile will recognize when it's been
11768 passed a file it has already seen. So we can't
11769 assume there's a simple mapping from
11770 cu->line_header->file_names to subfiles, plus
11771 cu->line_header->file_names may contain dups. */
c24bdb02
KS
11772 b->get_current_subfile ()->symtab
11773 = allocate_symtab (cust, b->get_current_subfile ()->name);
f4dc4d17
DE
11774 }
11775
c24bdb02 11776 fe.symtab = b->get_current_subfile ()->symtab;
8c43009f 11777 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
11778 }
11779 }
11780 else
3019eac3 11781 {
c24bdb02 11782 gdb_assert (m_builder == nullptr);
804d2729 11783 struct compunit_symtab *cust = tu_group->compunit_symtab;
c24bdb02
KS
11784 m_builder.reset (new struct buildsym_compunit
11785 (COMPUNIT_OBJFILE (cust), "",
11786 COMPUNIT_DIRNAME (cust),
11787 compunit_language (cust),
11788 0, cust));
f4dc4d17 11789
7ba99d21
AT
11790 auto &file_names = line_header->file_names ();
11791 for (i = 0; i < file_names.size (); ++i)
f4dc4d17 11792 {
7ba99d21 11793 file_entry &fe = file_names[i];
4c8aa72d 11794 fe.symtab = tu_group->symtabs[i];
f4dc4d17 11795 }
3019eac3
DE
11796 }
11797
f4dc4d17
DE
11798 /* The main symtab is allocated last. Type units don't have DW_AT_name
11799 so they don't have a "real" (so to speak) symtab anyway.
11800 There is later code that will assign the main symtab to all symbols
11801 that don't have one. We need to handle the case of a symbol with a
11802 missing symtab (DW_AT_decl_file) anyway. */
11803}
3019eac3 11804
f4dc4d17
DE
11805/* Process DW_TAG_type_unit.
11806 For TUs we want to skip the first top level sibling if it's not the
11807 actual type being defined by this TU. In this case the first top
11808 level sibling is there to provide context only. */
3019eac3 11809
f4dc4d17
DE
11810static void
11811read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11812{
11813 struct die_info *child_die;
3019eac3 11814
f4dc4d17
DE
11815 prepare_one_comp_unit (cu, die, language_minimal);
11816
11817 /* Initialize (or reinitialize) the machinery for building symtabs.
11818 We do this before processing child DIEs, so that the line header table
11819 is available for DW_AT_decl_file. */
c24bdb02 11820 cu->setup_type_unit_groups (die);
f4dc4d17
DE
11821
11822 if (die->child != NULL)
11823 {
11824 child_die = die->child;
11825 while (child_die && child_die->tag)
11826 {
11827 process_die (child_die, cu);
11828 child_die = sibling_die (child_die);
11829 }
11830 }
3019eac3
DE
11831}
11832\f
80626a55
DE
11833/* DWO/DWP files.
11834
11835 http://gcc.gnu.org/wiki/DebugFission
11836 http://gcc.gnu.org/wiki/DebugFissionDWP
11837
11838 To simplify handling of both DWO files ("object" files with the DWARF info)
11839 and DWP files (a file with the DWOs packaged up into one file), we treat
11840 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
11841
11842static hashval_t
11843hash_dwo_file (const void *item)
11844{
9a3c8263 11845 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 11846 hashval_t hash;
3019eac3 11847
a2ce51a0
DE
11848 hash = htab_hash_string (dwo_file->dwo_name);
11849 if (dwo_file->comp_dir != NULL)
11850 hash += htab_hash_string (dwo_file->comp_dir);
11851 return hash;
3019eac3
DE
11852}
11853
11854static int
11855eq_dwo_file (const void *item_lhs, const void *item_rhs)
11856{
9a3c8263
SM
11857 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11858 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 11859
a2ce51a0
DE
11860 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11861 return 0;
11862 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11863 return lhs->comp_dir == rhs->comp_dir;
11864 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
11865}
11866
11867/* Allocate a hash table for DWO files. */
11868
51ac9db5 11869static htab_up
ed2dc618 11870allocate_dwo_file_hash_table (struct objfile *objfile)
3019eac3 11871{
51ac9db5
SM
11872 auto delete_dwo_file = [] (void *item)
11873 {
11874 struct dwo_file *dwo_file = (struct dwo_file *) item;
11875
11876 delete dwo_file;
11877 };
11878
11879 return htab_up (htab_create_alloc_ex (41,
11880 hash_dwo_file,
11881 eq_dwo_file,
11882 delete_dwo_file,
11883 &objfile->objfile_obstack,
11884 hashtab_obstack_allocate,
11885 dummy_obstack_deallocate));
3019eac3
DE
11886}
11887
80626a55
DE
11888/* Lookup DWO file DWO_NAME. */
11889
11890static void **
ed2dc618
SM
11891lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11892 const char *dwo_name,
11893 const char *comp_dir)
80626a55
DE
11894{
11895 struct dwo_file find_entry;
11896 void **slot;
11897
11898 if (dwarf2_per_objfile->dwo_files == NULL)
ed2dc618
SM
11899 dwarf2_per_objfile->dwo_files
11900 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
80626a55 11901
0ac5b59e
DE
11902 find_entry.dwo_name = dwo_name;
11903 find_entry.comp_dir = comp_dir;
51ac9db5
SM
11904 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11905 INSERT);
80626a55
DE
11906
11907 return slot;
11908}
11909
3019eac3
DE
11910static hashval_t
11911hash_dwo_unit (const void *item)
11912{
9a3c8263 11913 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
11914
11915 /* This drops the top 32 bits of the id, but is ok for a hash. */
11916 return dwo_unit->signature;
11917}
11918
11919static int
11920eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11921{
9a3c8263
SM
11922 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11923 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
11924
11925 /* The signature is assumed to be unique within the DWO file.
11926 So while object file CU dwo_id's always have the value zero,
11927 that's OK, assuming each object file DWO file has only one CU,
11928 and that's the rule for now. */
11929 return lhs->signature == rhs->signature;
11930}
11931
11932/* Allocate a hash table for DWO CUs,TUs.
11933 There is one of these tables for each of CUs,TUs for each DWO file. */
11934
11935static htab_t
11936allocate_dwo_unit_table (struct objfile *objfile)
11937{
11938 /* Start out with a pretty small number.
11939 Generally DWO files contain only one CU and maybe some TUs. */
11940 return htab_create_alloc_ex (3,
11941 hash_dwo_unit,
11942 eq_dwo_unit,
11943 NULL,
11944 &objfile->objfile_obstack,
11945 hashtab_obstack_allocate,
11946 dummy_obstack_deallocate);
11947}
11948
80626a55 11949/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 11950
19c3d4c9 11951struct create_dwo_cu_data
3019eac3
DE
11952{
11953 struct dwo_file *dwo_file;
19c3d4c9 11954 struct dwo_unit dwo_unit;
3019eac3
DE
11955};
11956
19c3d4c9 11957/* die_reader_func for create_dwo_cu. */
3019eac3
DE
11958
11959static void
19c3d4c9
DE
11960create_dwo_cu_reader (const struct die_reader_specs *reader,
11961 const gdb_byte *info_ptr,
11962 struct die_info *comp_unit_die,
11963 int has_children,
11964 void *datap)
3019eac3
DE
11965{
11966 struct dwarf2_cu *cu = reader->cu;
9c541725 11967 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 11968 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 11969 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 11970 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 11971 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 11972
a084a2a6
AT
11973 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11974 if (!signature.has_value ())
3019eac3 11975 {
b98664d3 11976 complaint (_("Dwarf Error: debug entry at offset %s is missing"
19c3d4c9 11977 " its dwo_id [in module %s]"),
9d8780f0 11978 sect_offset_str (sect_off), dwo_file->dwo_name);
3019eac3
DE
11979 return;
11980 }
11981
3019eac3 11982 dwo_unit->dwo_file = dwo_file;
a084a2a6 11983 dwo_unit->signature = *signature;
8a0459fd 11984 dwo_unit->section = section;
9c541725 11985 dwo_unit->sect_off = sect_off;
3019eac3
DE
11986 dwo_unit->length = cu->per_cu->length;
11987
b4f54984 11988 if (dwarf_read_debug)
9d8780f0
SM
11989 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11990 sect_offset_str (sect_off),
9c541725 11991 hex_string (dwo_unit->signature));
3019eac3
DE
11992}
11993
33c5cd75 11994/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 11995 Note: This function processes DWO files only, not DWP files. */
3019eac3 11996
33c5cd75 11997static void
ed2dc618
SM
11998create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11999 struct dwo_file &dwo_file, dwarf2_section_info &section,
33c5cd75 12000 htab_t &cus_htab)
3019eac3
DE
12001{
12002 struct objfile *objfile = dwarf2_per_objfile->objfile;
d521ce57 12003 const gdb_byte *info_ptr, *end_ptr;
3019eac3 12004
33c5cd75
DB
12005 dwarf2_read_section (objfile, &section);
12006 info_ptr = section.buffer;
3019eac3
DE
12007
12008 if (info_ptr == NULL)
33c5cd75 12009 return;
3019eac3 12010
b4f54984 12011 if (dwarf_read_debug)
19c3d4c9
DE
12012 {
12013 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
12014 get_section_name (&section),
12015 get_section_file_name (&section));
19c3d4c9 12016 }
3019eac3 12017
33c5cd75 12018 end_ptr = info_ptr + section.size;
3019eac3
DE
12019 while (info_ptr < end_ptr)
12020 {
12021 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
12022 struct create_dwo_cu_data create_dwo_cu_data;
12023 struct dwo_unit *dwo_unit;
12024 void **slot;
12025 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 12026
19c3d4c9
DE
12027 memset (&create_dwo_cu_data.dwo_unit, 0,
12028 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3 12029 memset (&per_cu, 0, sizeof (per_cu));
e3b94546 12030 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3019eac3 12031 per_cu.is_debug_types = 0;
33c5cd75
DB
12032 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12033 per_cu.section = &section;
c5ed0576 12034 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
12035
12036 init_cutu_and_read_dies_no_follow (
12037 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12038 info_ptr += per_cu.length;
12039
12040 // If the unit could not be parsed, skip it.
12041 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12042 continue;
3019eac3 12043
33c5cd75
DB
12044 if (cus_htab == NULL)
12045 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 12046
33c5cd75
DB
12047 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12048 *dwo_unit = create_dwo_cu_data.dwo_unit;
12049 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12050 gdb_assert (slot != NULL);
12051 if (*slot != NULL)
19c3d4c9 12052 {
33c5cd75
DB
12053 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12054 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 12055
b98664d3 12056 complaint (_("debug cu entry at offset %s is duplicate to"
9d8780f0
SM
12057 " the entry at offset %s, signature %s"),
12058 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
33c5cd75 12059 hex_string (dwo_unit->signature));
19c3d4c9 12060 }
33c5cd75 12061 *slot = (void *)dwo_unit;
3019eac3 12062 }
3019eac3
DE
12063}
12064
80626a55
DE
12065/* DWP file .debug_{cu,tu}_index section format:
12066 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12067
d2415c6c
DE
12068 DWP Version 1:
12069
80626a55
DE
12070 Both index sections have the same format, and serve to map a 64-bit
12071 signature to a set of section numbers. Each section begins with a header,
12072 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12073 indexes, and a pool of 32-bit section numbers. The index sections will be
12074 aligned at 8-byte boundaries in the file.
12075
d2415c6c
DE
12076 The index section header consists of:
12077
12078 V, 32 bit version number
12079 -, 32 bits unused
12080 N, 32 bit number of compilation units or type units in the index
12081 M, 32 bit number of slots in the hash table
80626a55 12082
d2415c6c 12083 Numbers are recorded using the byte order of the application binary.
80626a55 12084
d2415c6c
DE
12085 The hash table begins at offset 16 in the section, and consists of an array
12086 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12087 order of the application binary). Unused slots in the hash table are 0.
12088 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 12089
d2415c6c
DE
12090 The parallel table begins immediately after the hash table
12091 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12092 array of 32-bit indexes (using the byte order of the application binary),
12093 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12094 table contains a 32-bit index into the pool of section numbers. For unused
12095 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 12096
73869dc2
DE
12097 The pool of section numbers begins immediately following the hash table
12098 (at offset 16 + 12 * M from the beginning of the section). The pool of
12099 section numbers consists of an array of 32-bit words (using the byte order
12100 of the application binary). Each item in the array is indexed starting
12101 from 0. The hash table entry provides the index of the first section
12102 number in the set. Additional section numbers in the set follow, and the
12103 set is terminated by a 0 entry (section number 0 is not used in ELF).
12104
12105 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12106 section must be the first entry in the set, and the .debug_abbrev.dwo must
12107 be the second entry. Other members of the set may follow in any order.
12108
12109 ---
12110
12111 DWP Version 2:
12112
12113 DWP Version 2 combines all the .debug_info, etc. sections into one,
12114 and the entries in the index tables are now offsets into these sections.
12115 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12116 section.
12117
12118 Index Section Contents:
12119 Header
12120 Hash Table of Signatures dwp_hash_table.hash_table
12121 Parallel Table of Indices dwp_hash_table.unit_table
12122 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12123 Table of Section Sizes dwp_hash_table.v2.sizes
12124
12125 The index section header consists of:
12126
12127 V, 32 bit version number
12128 L, 32 bit number of columns in the table of section offsets
12129 N, 32 bit number of compilation units or type units in the index
12130 M, 32 bit number of slots in the hash table
12131
12132 Numbers are recorded using the byte order of the application binary.
12133
12134 The hash table has the same format as version 1.
12135 The parallel table of indices has the same format as version 1,
12136 except that the entries are origin-1 indices into the table of sections
12137 offsets and the table of section sizes.
12138
12139 The table of offsets begins immediately following the parallel table
12140 (at offset 16 + 12 * M from the beginning of the section). The table is
12141 a two-dimensional array of 32-bit words (using the byte order of the
12142 application binary), with L columns and N+1 rows, in row-major order.
12143 Each row in the array is indexed starting from 0. The first row provides
12144 a key to the remaining rows: each column in this row provides an identifier
12145 for a debug section, and the offsets in the same column of subsequent rows
12146 refer to that section. The section identifiers are:
12147
12148 DW_SECT_INFO 1 .debug_info.dwo
12149 DW_SECT_TYPES 2 .debug_types.dwo
12150 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12151 DW_SECT_LINE 4 .debug_line.dwo
12152 DW_SECT_LOC 5 .debug_loc.dwo
12153 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12154 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12155 DW_SECT_MACRO 8 .debug_macro.dwo
12156
12157 The offsets provided by the CU and TU index sections are the base offsets
12158 for the contributions made by each CU or TU to the corresponding section
12159 in the package file. Each CU and TU header contains an abbrev_offset
12160 field, used to find the abbreviations table for that CU or TU within the
12161 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12162 be interpreted as relative to the base offset given in the index section.
12163 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12164 should be interpreted as relative to the base offset for .debug_line.dwo,
12165 and offsets into other debug sections obtained from DWARF attributes should
12166 also be interpreted as relative to the corresponding base offset.
12167
12168 The table of sizes begins immediately following the table of offsets.
12169 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12170 with L columns and N rows, in row-major order. Each row in the array is
12171 indexed starting from 1 (row 0 is shared by the two tables).
12172
12173 ---
12174
12175 Hash table lookup is handled the same in version 1 and 2:
12176
12177 We assume that N and M will not exceed 2^32 - 1.
12178 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12179
d2415c6c
DE
12180 Given a 64-bit compilation unit signature or a type signature S, an entry
12181 in the hash table is located as follows:
80626a55 12182
d2415c6c
DE
12183 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12184 the low-order k bits all set to 1.
80626a55 12185
d2415c6c 12186 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 12187
d2415c6c
DE
12188 3) If the hash table entry at index H matches the signature, use that
12189 entry. If the hash table entry at index H is unused (all zeroes),
12190 terminate the search: the signature is not present in the table.
80626a55 12191
d2415c6c 12192 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 12193
d2415c6c 12194 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 12195 to stop at an unused slot or find the match. */
80626a55
DE
12196
12197/* Create a hash table to map DWO IDs to their CU/TU entry in
12198 .debug_{info,types}.dwo in DWP_FILE.
12199 Returns NULL if there isn't one.
12200 Note: This function processes DWP files only, not DWO files. */
12201
12202static struct dwp_hash_table *
ed2dc618
SM
12203create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12204 struct dwp_file *dwp_file, int is_debug_types)
80626a55
DE
12205{
12206 struct objfile *objfile = dwarf2_per_objfile->objfile;
400174b1 12207 bfd *dbfd = dwp_file->dbfd.get ();
948f8e3d 12208 const gdb_byte *index_ptr, *index_end;
80626a55 12209 struct dwarf2_section_info *index;
73869dc2 12210 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
12211 struct dwp_hash_table *htab;
12212
12213 if (is_debug_types)
12214 index = &dwp_file->sections.tu_index;
12215 else
12216 index = &dwp_file->sections.cu_index;
12217
12218 if (dwarf2_section_empty_p (index))
12219 return NULL;
12220 dwarf2_read_section (objfile, index);
12221
12222 index_ptr = index->buffer;
12223 index_end = index_ptr + index->size;
12224
12225 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
12226 index_ptr += 4;
12227 if (version == 2)
12228 nr_columns = read_4_bytes (dbfd, index_ptr);
12229 else
12230 nr_columns = 0;
12231 index_ptr += 4;
80626a55
DE
12232 nr_units = read_4_bytes (dbfd, index_ptr);
12233 index_ptr += 4;
12234 nr_slots = read_4_bytes (dbfd, index_ptr);
12235 index_ptr += 4;
12236
73869dc2 12237 if (version != 1 && version != 2)
80626a55 12238 {
21aa081e 12239 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 12240 " [in module %s]"),
21aa081e 12241 pulongest (version), dwp_file->name);
80626a55
DE
12242 }
12243 if (nr_slots != (nr_slots & -nr_slots))
12244 {
21aa081e 12245 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 12246 " is not power of 2 [in module %s]"),
21aa081e 12247 pulongest (nr_slots), dwp_file->name);
80626a55
DE
12248 }
12249
12250 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
12251 htab->version = version;
12252 htab->nr_columns = nr_columns;
80626a55
DE
12253 htab->nr_units = nr_units;
12254 htab->nr_slots = nr_slots;
12255 htab->hash_table = index_ptr;
12256 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
12257
12258 /* Exit early if the table is empty. */
12259 if (nr_slots == 0 || nr_units == 0
12260 || (version == 2 && nr_columns == 0))
12261 {
12262 /* All must be zero. */
12263 if (nr_slots != 0 || nr_units != 0
12264 || (version == 2 && nr_columns != 0))
12265 {
b98664d3 12266 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
73869dc2
DE
12267 " all zero [in modules %s]"),
12268 dwp_file->name);
12269 }
12270 return htab;
12271 }
12272
12273 if (version == 1)
12274 {
12275 htab->section_pool.v1.indices =
12276 htab->unit_table + sizeof (uint32_t) * nr_slots;
12277 /* It's harder to decide whether the section is too small in v1.
12278 V1 is deprecated anyway so we punt. */
12279 }
12280 else
12281 {
12282 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12283 int *ids = htab->section_pool.v2.section_ids;
04fd5eed 12284 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
73869dc2
DE
12285 /* Reverse map for error checking. */
12286 int ids_seen[DW_SECT_MAX + 1];
12287 int i;
12288
12289 if (nr_columns < 2)
12290 {
12291 error (_("Dwarf Error: bad DWP hash table, too few columns"
12292 " in section table [in module %s]"),
12293 dwp_file->name);
12294 }
12295 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12296 {
12297 error (_("Dwarf Error: bad DWP hash table, too many columns"
12298 " in section table [in module %s]"),
12299 dwp_file->name);
12300 }
04fd5eed
GB
12301 memset (ids, 255, sizeof_ids);
12302 memset (ids_seen, 255, sizeof (ids_seen));
73869dc2
DE
12303 for (i = 0; i < nr_columns; ++i)
12304 {
12305 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12306
12307 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12308 {
12309 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12310 " in section table [in module %s]"),
12311 id, dwp_file->name);
12312 }
12313 if (ids_seen[id] != -1)
12314 {
12315 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12316 " id %d in section table [in module %s]"),
12317 id, dwp_file->name);
12318 }
12319 ids_seen[id] = i;
12320 ids[i] = id;
12321 }
12322 /* Must have exactly one info or types section. */
12323 if (((ids_seen[DW_SECT_INFO] != -1)
12324 + (ids_seen[DW_SECT_TYPES] != -1))
12325 != 1)
12326 {
12327 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12328 " DWO info/types section [in module %s]"),
12329 dwp_file->name);
12330 }
12331 /* Must have an abbrev section. */
12332 if (ids_seen[DW_SECT_ABBREV] == -1)
12333 {
12334 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12335 " section [in module %s]"),
12336 dwp_file->name);
12337 }
12338 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12339 htab->section_pool.v2.sizes =
12340 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12341 * nr_units * nr_columns);
12342 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12343 * nr_units * nr_columns))
12344 > index_end)
12345 {
12346 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12347 " [in module %s]"),
12348 dwp_file->name);
12349 }
12350 }
80626a55
DE
12351
12352 return htab;
12353}
12354
12355/* Update SECTIONS with the data from SECTP.
12356
12357 This function is like the other "locate" section routines that are
12358 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 12359 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
12360
12361 The result is non-zero for success, or zero if an error was found. */
12362
12363static int
73869dc2
DE
12364locate_v1_virtual_dwo_sections (asection *sectp,
12365 struct virtual_v1_dwo_sections *sections)
80626a55
DE
12366{
12367 const struct dwop_section_names *names = &dwop_section_names;
12368
12369 if (section_is_p (sectp->name, &names->abbrev_dwo))
12370 {
12371 /* There can be only one. */
049412e3 12372 if (sections->abbrev.s.section != NULL)
80626a55 12373 return 0;
049412e3 12374 sections->abbrev.s.section = sectp;
fd361982 12375 sections->abbrev.size = bfd_section_size (sectp);
80626a55
DE
12376 }
12377 else if (section_is_p (sectp->name, &names->info_dwo)
12378 || section_is_p (sectp->name, &names->types_dwo))
12379 {
12380 /* There can be only one. */
049412e3 12381 if (sections->info_or_types.s.section != NULL)
80626a55 12382 return 0;
049412e3 12383 sections->info_or_types.s.section = sectp;
fd361982 12384 sections->info_or_types.size = bfd_section_size (sectp);
80626a55
DE
12385 }
12386 else if (section_is_p (sectp->name, &names->line_dwo))
12387 {
12388 /* There can be only one. */
049412e3 12389 if (sections->line.s.section != NULL)
80626a55 12390 return 0;
049412e3 12391 sections->line.s.section = sectp;
fd361982 12392 sections->line.size = bfd_section_size (sectp);
80626a55
DE
12393 }
12394 else if (section_is_p (sectp->name, &names->loc_dwo))
12395 {
12396 /* There can be only one. */
049412e3 12397 if (sections->loc.s.section != NULL)
80626a55 12398 return 0;
049412e3 12399 sections->loc.s.section = sectp;
fd361982 12400 sections->loc.size = bfd_section_size (sectp);
80626a55
DE
12401 }
12402 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12403 {
12404 /* There can be only one. */
049412e3 12405 if (sections->macinfo.s.section != NULL)
80626a55 12406 return 0;
049412e3 12407 sections->macinfo.s.section = sectp;
fd361982 12408 sections->macinfo.size = bfd_section_size (sectp);
80626a55
DE
12409 }
12410 else if (section_is_p (sectp->name, &names->macro_dwo))
12411 {
12412 /* There can be only one. */
049412e3 12413 if (sections->macro.s.section != NULL)
80626a55 12414 return 0;
049412e3 12415 sections->macro.s.section = sectp;
fd361982 12416 sections->macro.size = bfd_section_size (sectp);
80626a55
DE
12417 }
12418 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12419 {
12420 /* There can be only one. */
049412e3 12421 if (sections->str_offsets.s.section != NULL)
80626a55 12422 return 0;
049412e3 12423 sections->str_offsets.s.section = sectp;
fd361982 12424 sections->str_offsets.size = bfd_section_size (sectp);
80626a55
DE
12425 }
12426 else
12427 {
12428 /* No other kind of section is valid. */
12429 return 0;
12430 }
12431
12432 return 1;
12433}
12434
73869dc2
DE
12435/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12436 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12437 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12438 This is for DWP version 1 files. */
80626a55
DE
12439
12440static struct dwo_unit *
ed2dc618
SM
12441create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12442 struct dwp_file *dwp_file,
73869dc2
DE
12443 uint32_t unit_index,
12444 const char *comp_dir,
12445 ULONGEST signature, int is_debug_types)
80626a55
DE
12446{
12447 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
12448 const struct dwp_hash_table *dwp_htab =
12449 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12450 bfd *dbfd = dwp_file->dbfd.get ();
80626a55
DE
12451 const char *kind = is_debug_types ? "TU" : "CU";
12452 struct dwo_file *dwo_file;
12453 struct dwo_unit *dwo_unit;
73869dc2 12454 struct virtual_v1_dwo_sections sections;
80626a55 12455 void **dwo_file_slot;
80626a55
DE
12456 int i;
12457
73869dc2
DE
12458 gdb_assert (dwp_file->version == 1);
12459
b4f54984 12460 if (dwarf_read_debug)
80626a55 12461 {
73869dc2 12462 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 12463 kind,
73869dc2 12464 pulongest (unit_index), hex_string (signature),
80626a55
DE
12465 dwp_file->name);
12466 }
12467
19ac8c2e 12468 /* Fetch the sections of this DWO unit.
80626a55
DE
12469 Put a limit on the number of sections we look for so that bad data
12470 doesn't cause us to loop forever. */
12471
73869dc2 12472#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
12473 (1 /* .debug_info or .debug_types */ \
12474 + 1 /* .debug_abbrev */ \
12475 + 1 /* .debug_line */ \
12476 + 1 /* .debug_loc */ \
12477 + 1 /* .debug_str_offsets */ \
19ac8c2e 12478 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
12479 + 1 /* trailing zero */)
12480
12481 memset (&sections, 0, sizeof (sections));
80626a55 12482
73869dc2 12483 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
12484 {
12485 asection *sectp;
12486 uint32_t section_nr =
12487 read_4_bytes (dbfd,
73869dc2
DE
12488 dwp_htab->section_pool.v1.indices
12489 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
12490
12491 if (section_nr == 0)
12492 break;
12493 if (section_nr >= dwp_file->num_sections)
12494 {
12495 error (_("Dwarf Error: bad DWP hash table, section number too large"
12496 " [in module %s]"),
12497 dwp_file->name);
12498 }
12499
12500 sectp = dwp_file->elf_sections[section_nr];
73869dc2 12501 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
12502 {
12503 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12504 " [in module %s]"),
12505 dwp_file->name);
12506 }
12507 }
12508
12509 if (i < 2
a32a8923
DE
12510 || dwarf2_section_empty_p (&sections.info_or_types)
12511 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
12512 {
12513 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12514 " [in module %s]"),
12515 dwp_file->name);
12516 }
73869dc2 12517 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
12518 {
12519 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12520 " [in module %s]"),
12521 dwp_file->name);
12522 }
12523
12524 /* It's easier for the rest of the code if we fake a struct dwo_file and
12525 have dwo_unit "live" in that. At least for now.
12526
12527 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 12528 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
12529 file, we can combine them back into a virtual DWO file to save space
12530 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
12531 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12532
791afaa2
TT
12533 std::string virtual_dwo_name =
12534 string_printf ("virtual-dwo/%d-%d-%d-%d",
12535 get_section_id (&sections.abbrev),
12536 get_section_id (&sections.line),
12537 get_section_id (&sections.loc),
12538 get_section_id (&sections.str_offsets));
80626a55 12539 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12540 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12541 virtual_dwo_name.c_str (),
12542 comp_dir);
80626a55
DE
12543 /* Create one if necessary. */
12544 if (*dwo_file_slot == NULL)
12545 {
b4f54984 12546 if (dwarf_read_debug)
80626a55
DE
12547 {
12548 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12549 virtual_dwo_name.c_str ());
80626a55 12550 }
51ac9db5 12551 dwo_file = new struct dwo_file;
efba19b0
TT
12552 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12553 virtual_dwo_name);
0ac5b59e 12554 dwo_file->comp_dir = comp_dir;
80626a55
DE
12555 dwo_file->sections.abbrev = sections.abbrev;
12556 dwo_file->sections.line = sections.line;
12557 dwo_file->sections.loc = sections.loc;
12558 dwo_file->sections.macinfo = sections.macinfo;
12559 dwo_file->sections.macro = sections.macro;
12560 dwo_file->sections.str_offsets = sections.str_offsets;
12561 /* The "str" section is global to the entire DWP file. */
12562 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 12563 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
12564 there's no need to record it in dwo_file.
12565 Also, we can't simply record type sections in dwo_file because
12566 we record a pointer into the vector in dwo_unit. As we collect more
12567 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
12568 for it, invalidating all copies of pointers into the previous
12569 contents. */
80626a55
DE
12570 *dwo_file_slot = dwo_file;
12571 }
12572 else
12573 {
b4f54984 12574 if (dwarf_read_debug)
80626a55
DE
12575 {
12576 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12577 virtual_dwo_name.c_str ());
80626a55 12578 }
9a3c8263 12579 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 12580 }
80626a55
DE
12581
12582 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12583 dwo_unit->dwo_file = dwo_file;
12584 dwo_unit->signature = signature;
8d749320
SM
12585 dwo_unit->section =
12586 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 12587 *dwo_unit->section = sections.info_or_types;
57d63ce2 12588 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
12589
12590 return dwo_unit;
12591}
12592
73869dc2
DE
12593/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12594 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12595 piece within that section used by a TU/CU, return a virtual section
12596 of just that piece. */
12597
12598static struct dwarf2_section_info
ed2dc618
SM
12599create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12600 struct dwarf2_section_info *section,
73869dc2
DE
12601 bfd_size_type offset, bfd_size_type size)
12602{
12603 struct dwarf2_section_info result;
12604 asection *sectp;
12605
12606 gdb_assert (section != NULL);
12607 gdb_assert (!section->is_virtual);
12608
12609 memset (&result, 0, sizeof (result));
12610 result.s.containing_section = section;
dc4ccb6f 12611 result.is_virtual = true;
73869dc2
DE
12612
12613 if (size == 0)
12614 return result;
12615
12616 sectp = get_section_bfd_section (section);
12617
12618 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12619 bounds of the real section. This is a pretty-rare event, so just
12620 flag an error (easier) instead of a warning and trying to cope. */
12621 if (sectp == NULL
fd361982 12622 || offset + size > bfd_section_size (sectp))
73869dc2 12623 {
73869dc2
DE
12624 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12625 " in section %s [in module %s]"),
fd361982 12626 sectp ? bfd_section_name (sectp) : "<unknown>",
73869dc2
DE
12627 objfile_name (dwarf2_per_objfile->objfile));
12628 }
12629
12630 result.virtual_offset = offset;
12631 result.size = size;
12632 return result;
12633}
12634
12635/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12636 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12637 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12638 This is for DWP version 2 files. */
12639
12640static struct dwo_unit *
ed2dc618
SM
12641create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12642 struct dwp_file *dwp_file,
73869dc2
DE
12643 uint32_t unit_index,
12644 const char *comp_dir,
12645 ULONGEST signature, int is_debug_types)
12646{
12647 struct objfile *objfile = dwarf2_per_objfile->objfile;
12648 const struct dwp_hash_table *dwp_htab =
12649 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12650 bfd *dbfd = dwp_file->dbfd.get ();
73869dc2
DE
12651 const char *kind = is_debug_types ? "TU" : "CU";
12652 struct dwo_file *dwo_file;
12653 struct dwo_unit *dwo_unit;
12654 struct virtual_v2_dwo_sections sections;
12655 void **dwo_file_slot;
73869dc2
DE
12656 int i;
12657
12658 gdb_assert (dwp_file->version == 2);
12659
b4f54984 12660 if (dwarf_read_debug)
73869dc2
DE
12661 {
12662 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12663 kind,
12664 pulongest (unit_index), hex_string (signature),
12665 dwp_file->name);
12666 }
12667
12668 /* Fetch the section offsets of this DWO unit. */
12669
12670 memset (&sections, 0, sizeof (sections));
73869dc2
DE
12671
12672 for (i = 0; i < dwp_htab->nr_columns; ++i)
12673 {
12674 uint32_t offset = read_4_bytes (dbfd,
12675 dwp_htab->section_pool.v2.offsets
12676 + (((unit_index - 1) * dwp_htab->nr_columns
12677 + i)
12678 * sizeof (uint32_t)));
12679 uint32_t size = read_4_bytes (dbfd,
12680 dwp_htab->section_pool.v2.sizes
12681 + (((unit_index - 1) * dwp_htab->nr_columns
12682 + i)
12683 * sizeof (uint32_t)));
12684
12685 switch (dwp_htab->section_pool.v2.section_ids[i])
12686 {
12687 case DW_SECT_INFO:
12688 case DW_SECT_TYPES:
12689 sections.info_or_types_offset = offset;
12690 sections.info_or_types_size = size;
12691 break;
12692 case DW_SECT_ABBREV:
12693 sections.abbrev_offset = offset;
12694 sections.abbrev_size = size;
12695 break;
12696 case DW_SECT_LINE:
12697 sections.line_offset = offset;
12698 sections.line_size = size;
12699 break;
12700 case DW_SECT_LOC:
12701 sections.loc_offset = offset;
12702 sections.loc_size = size;
12703 break;
12704 case DW_SECT_STR_OFFSETS:
12705 sections.str_offsets_offset = offset;
12706 sections.str_offsets_size = size;
12707 break;
12708 case DW_SECT_MACINFO:
12709 sections.macinfo_offset = offset;
12710 sections.macinfo_size = size;
12711 break;
12712 case DW_SECT_MACRO:
12713 sections.macro_offset = offset;
12714 sections.macro_size = size;
12715 break;
12716 }
12717 }
12718
12719 /* It's easier for the rest of the code if we fake a struct dwo_file and
12720 have dwo_unit "live" in that. At least for now.
12721
12722 The DWP file can be made up of a random collection of CUs and TUs.
12723 However, for each CU + set of TUs that came from the same original DWO
12724 file, we can combine them back into a virtual DWO file to save space
12725 (fewer struct dwo_file objects to allocate). Remember that for really
12726 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12727
791afaa2
TT
12728 std::string virtual_dwo_name =
12729 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12730 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12731 (long) (sections.line_size ? sections.line_offset : 0),
12732 (long) (sections.loc_size ? sections.loc_offset : 0),
12733 (long) (sections.str_offsets_size
12734 ? sections.str_offsets_offset : 0));
73869dc2 12735 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12736 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12737 virtual_dwo_name.c_str (),
12738 comp_dir);
73869dc2
DE
12739 /* Create one if necessary. */
12740 if (*dwo_file_slot == NULL)
12741 {
b4f54984 12742 if (dwarf_read_debug)
73869dc2
DE
12743 {
12744 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12745 virtual_dwo_name.c_str ());
73869dc2 12746 }
51ac9db5 12747 dwo_file = new struct dwo_file;
efba19b0
TT
12748 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12749 virtual_dwo_name);
73869dc2
DE
12750 dwo_file->comp_dir = comp_dir;
12751 dwo_file->sections.abbrev =
ed2dc618 12752 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
73869dc2
DE
12753 sections.abbrev_offset, sections.abbrev_size);
12754 dwo_file->sections.line =
ed2dc618 12755 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
73869dc2
DE
12756 sections.line_offset, sections.line_size);
12757 dwo_file->sections.loc =
ed2dc618 12758 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
73869dc2
DE
12759 sections.loc_offset, sections.loc_size);
12760 dwo_file->sections.macinfo =
ed2dc618 12761 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
73869dc2
DE
12762 sections.macinfo_offset, sections.macinfo_size);
12763 dwo_file->sections.macro =
ed2dc618 12764 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
73869dc2
DE
12765 sections.macro_offset, sections.macro_size);
12766 dwo_file->sections.str_offsets =
ed2dc618
SM
12767 create_dwp_v2_section (dwarf2_per_objfile,
12768 &dwp_file->sections.str_offsets,
73869dc2
DE
12769 sections.str_offsets_offset,
12770 sections.str_offsets_size);
12771 /* The "str" section is global to the entire DWP file. */
12772 dwo_file->sections.str = dwp_file->sections.str;
12773 /* The info or types section is assigned below to dwo_unit,
12774 there's no need to record it in dwo_file.
12775 Also, we can't simply record type sections in dwo_file because
12776 we record a pointer into the vector in dwo_unit. As we collect more
12777 types we'll grow the vector and eventually have to reallocate space
12778 for it, invalidating all copies of pointers into the previous
12779 contents. */
12780 *dwo_file_slot = dwo_file;
12781 }
12782 else
12783 {
b4f54984 12784 if (dwarf_read_debug)
73869dc2
DE
12785 {
12786 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12787 virtual_dwo_name.c_str ());
73869dc2 12788 }
9a3c8263 12789 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 12790 }
73869dc2
DE
12791
12792 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12793 dwo_unit->dwo_file = dwo_file;
12794 dwo_unit->signature = signature;
8d749320
SM
12795 dwo_unit->section =
12796 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
ed2dc618
SM
12797 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12798 is_debug_types
73869dc2
DE
12799 ? &dwp_file->sections.types
12800 : &dwp_file->sections.info,
12801 sections.info_or_types_offset,
12802 sections.info_or_types_size);
12803 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12804
12805 return dwo_unit;
12806}
12807
57d63ce2
DE
12808/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12809 Returns NULL if the signature isn't found. */
80626a55
DE
12810
12811static struct dwo_unit *
ed2dc618
SM
12812lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12813 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 12814 ULONGEST signature, int is_debug_types)
80626a55 12815{
57d63ce2
DE
12816 const struct dwp_hash_table *dwp_htab =
12817 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12818 bfd *dbfd = dwp_file->dbfd.get ();
57d63ce2 12819 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
12820 uint32_t hash = signature & mask;
12821 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12822 unsigned int i;
12823 void **slot;
870f88f7 12824 struct dwo_unit find_dwo_cu;
80626a55
DE
12825
12826 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12827 find_dwo_cu.signature = signature;
19ac8c2e
DE
12828 slot = htab_find_slot (is_debug_types
12829 ? dwp_file->loaded_tus
12830 : dwp_file->loaded_cus,
12831 &find_dwo_cu, INSERT);
80626a55
DE
12832
12833 if (*slot != NULL)
9a3c8263 12834 return (struct dwo_unit *) *slot;
80626a55
DE
12835
12836 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 12837 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
12838 {
12839 ULONGEST signature_in_table;
12840
12841 signature_in_table =
57d63ce2 12842 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
12843 if (signature_in_table == signature)
12844 {
57d63ce2
DE
12845 uint32_t unit_index =
12846 read_4_bytes (dbfd,
12847 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 12848
73869dc2
DE
12849 if (dwp_file->version == 1)
12850 {
ed2dc618
SM
12851 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12852 dwp_file, unit_index,
73869dc2
DE
12853 comp_dir, signature,
12854 is_debug_types);
12855 }
12856 else
12857 {
ed2dc618
SM
12858 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12859 dwp_file, unit_index,
73869dc2
DE
12860 comp_dir, signature,
12861 is_debug_types);
12862 }
9a3c8263 12863 return (struct dwo_unit *) *slot;
80626a55
DE
12864 }
12865 if (signature_in_table == 0)
12866 return NULL;
12867 hash = (hash + hash2) & mask;
12868 }
12869
12870 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12871 " [in module %s]"),
12872 dwp_file->name);
12873}
12874
ab5088bf 12875/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
12876 Open the file specified by FILE_NAME and hand it off to BFD for
12877 preliminary analysis. Return a newly initialized bfd *, which
12878 includes a canonicalized copy of FILE_NAME.
80626a55 12879 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
12880 SEARCH_CWD is true if the current directory is to be searched.
12881 It will be searched before debug-file-directory.
13aaf454
DE
12882 If successful, the file is added to the bfd include table of the
12883 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 12884 If unable to find/open the file, return NULL.
3019eac3
DE
12885 NOTE: This function is derived from symfile_bfd_open. */
12886
192b62ce 12887static gdb_bfd_ref_ptr
ed2dc618
SM
12888try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12889 const char *file_name, int is_dwp, int search_cwd)
3019eac3 12890{
24b9144d 12891 int desc;
9c02c129
DE
12892 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12893 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12894 to debug_file_directory. */
e0cc99a6 12895 const char *search_path;
9c02c129
DE
12896 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12897
e0cc99a6 12898 gdb::unique_xmalloc_ptr<char> search_path_holder;
6ac97d4c
DE
12899 if (search_cwd)
12900 {
12901 if (*debug_file_directory != '\0')
e0cc99a6
TT
12902 {
12903 search_path_holder.reset (concat (".", dirname_separator_string,
12904 debug_file_directory,
12905 (char *) NULL));
12906 search_path = search_path_holder.get ();
12907 }
6ac97d4c 12908 else
e0cc99a6 12909 search_path = ".";
6ac97d4c 12910 }
9c02c129 12911 else
e0cc99a6 12912 search_path = debug_file_directory;
3019eac3 12913
24b9144d 12914 openp_flags flags = OPF_RETURN_REALPATH;
80626a55
DE
12915 if (is_dwp)
12916 flags |= OPF_SEARCH_IN_PATH;
e0cc99a6
TT
12917
12918 gdb::unique_xmalloc_ptr<char> absolute_name;
9c02c129 12919 desc = openp (search_path, flags, file_name,
3019eac3
DE
12920 O_RDONLY | O_BINARY, &absolute_name);
12921 if (desc < 0)
12922 return NULL;
12923
e0cc99a6
TT
12924 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12925 gnutarget, desc));
9c02c129
DE
12926 if (sym_bfd == NULL)
12927 return NULL;
192b62ce 12928 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 12929
192b62ce
TT
12930 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12931 return NULL;
3019eac3 12932
13aaf454
DE
12933 /* Success. Record the bfd as having been included by the objfile's bfd.
12934 This is important because things like demangled_names_hash lives in the
12935 objfile's per_bfd space and may have references to things like symbol
12936 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 12937 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 12938
3019eac3
DE
12939 return sym_bfd;
12940}
12941
ab5088bf 12942/* Try to open DWO file FILE_NAME.
3019eac3
DE
12943 COMP_DIR is the DW_AT_comp_dir attribute.
12944 The result is the bfd handle of the file.
12945 If there is a problem finding or opening the file, return NULL.
12946 Upon success, the canonicalized path of the file is stored in the bfd,
12947 same as symfile_bfd_open. */
12948
192b62ce 12949static gdb_bfd_ref_ptr
ed2dc618
SM
12950open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12951 const char *file_name, const char *comp_dir)
3019eac3 12952{
80626a55 12953 if (IS_ABSOLUTE_PATH (file_name))
ed2dc618
SM
12954 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12955 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
12956
12957 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12958
12959 if (comp_dir != NULL)
12960 {
b36cec19
PA
12961 char *path_to_try = concat (comp_dir, SLASH_STRING,
12962 file_name, (char *) NULL);
3019eac3
DE
12963
12964 /* NOTE: If comp_dir is a relative path, this will also try the
12965 search path, which seems useful. */
ed2dc618
SM
12966 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12967 path_to_try,
12968 0 /*is_dwp*/,
192b62ce 12969 1 /*search_cwd*/));
3019eac3
DE
12970 xfree (path_to_try);
12971 if (abfd != NULL)
12972 return abfd;
12973 }
12974
12975 /* That didn't work, try debug-file-directory, which, despite its name,
12976 is a list of paths. */
12977
12978 if (*debug_file_directory == '\0')
12979 return NULL;
12980
ed2dc618
SM
12981 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12982 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
12983}
12984
80626a55
DE
12985/* This function is mapped across the sections and remembers the offset and
12986 size of each of the DWO debugging sections we are interested in. */
12987
12988static void
12989dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12990{
9a3c8263 12991 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
12992 const struct dwop_section_names *names = &dwop_section_names;
12993
12994 if (section_is_p (sectp->name, &names->abbrev_dwo))
12995 {
049412e3 12996 dwo_sections->abbrev.s.section = sectp;
fd361982 12997 dwo_sections->abbrev.size = bfd_section_size (sectp);
80626a55
DE
12998 }
12999 else if (section_is_p (sectp->name, &names->info_dwo))
13000 {
049412e3 13001 dwo_sections->info.s.section = sectp;
fd361982 13002 dwo_sections->info.size = bfd_section_size (sectp);
80626a55
DE
13003 }
13004 else if (section_is_p (sectp->name, &names->line_dwo))
13005 {
049412e3 13006 dwo_sections->line.s.section = sectp;
fd361982 13007 dwo_sections->line.size = bfd_section_size (sectp);
80626a55
DE
13008 }
13009 else if (section_is_p (sectp->name, &names->loc_dwo))
13010 {
049412e3 13011 dwo_sections->loc.s.section = sectp;
fd361982 13012 dwo_sections->loc.size = bfd_section_size (sectp);
80626a55
DE
13013 }
13014 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13015 {
049412e3 13016 dwo_sections->macinfo.s.section = sectp;
fd361982 13017 dwo_sections->macinfo.size = bfd_section_size (sectp);
80626a55
DE
13018 }
13019 else if (section_is_p (sectp->name, &names->macro_dwo))
13020 {
049412e3 13021 dwo_sections->macro.s.section = sectp;
fd361982 13022 dwo_sections->macro.size = bfd_section_size (sectp);
80626a55
DE
13023 }
13024 else if (section_is_p (sectp->name, &names->str_dwo))
13025 {
049412e3 13026 dwo_sections->str.s.section = sectp;
fd361982 13027 dwo_sections->str.size = bfd_section_size (sectp);
80626a55
DE
13028 }
13029 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13030 {
049412e3 13031 dwo_sections->str_offsets.s.section = sectp;
fd361982 13032 dwo_sections->str_offsets.size = bfd_section_size (sectp);
80626a55
DE
13033 }
13034 else if (section_is_p (sectp->name, &names->types_dwo))
13035 {
13036 struct dwarf2_section_info type_section;
13037
13038 memset (&type_section, 0, sizeof (type_section));
049412e3 13039 type_section.s.section = sectp;
fd361982 13040 type_section.size = bfd_section_size (sectp);
fd5866f6 13041 dwo_sections->types.push_back (type_section);
80626a55
DE
13042 }
13043}
13044
ab5088bf 13045/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 13046 by PER_CU. This is for the non-DWP case.
80626a55 13047 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
13048
13049static struct dwo_file *
0ac5b59e
DE
13050open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13051 const char *dwo_name, const char *comp_dir)
3019eac3 13052{
ed2dc618 13053 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3 13054
fb1eb2f9 13055 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
80626a55
DE
13056 if (dbfd == NULL)
13057 {
b4f54984 13058 if (dwarf_read_debug)
80626a55
DE
13059 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13060 return NULL;
13061 }
263db9a1 13062
51ac9db5 13063 dwo_file_up dwo_file (new struct dwo_file);
0ac5b59e
DE
13064 dwo_file->dwo_name = dwo_name;
13065 dwo_file->comp_dir = comp_dir;
fb1eb2f9 13066 dwo_file->dbfd = std::move (dbfd);
3019eac3 13067
fb1eb2f9 13068 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
192b62ce 13069 &dwo_file->sections);
3019eac3 13070
ed2dc618
SM
13071 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13072 dwo_file->cus);
3019eac3 13073
263db9a1 13074 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
ed2dc618 13075 dwo_file->sections.types, dwo_file->tus);
3019eac3 13076
b4f54984 13077 if (dwarf_read_debug)
80626a55
DE
13078 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13079
263db9a1 13080 return dwo_file.release ();
3019eac3
DE
13081}
13082
80626a55 13083/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
13084 size of each of the DWP debugging sections common to version 1 and 2 that
13085 we are interested in. */
3019eac3 13086
80626a55 13087static void
73869dc2
DE
13088dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13089 void *dwp_file_ptr)
3019eac3 13090{
9a3c8263 13091 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
13092 const struct dwop_section_names *names = &dwop_section_names;
13093 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 13094
80626a55 13095 /* Record the ELF section number for later lookup: this is what the
73869dc2 13096 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
13097 gdb_assert (elf_section_nr < dwp_file->num_sections);
13098 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 13099
80626a55
DE
13100 /* Look for specific sections that we need. */
13101 if (section_is_p (sectp->name, &names->str_dwo))
13102 {
049412e3 13103 dwp_file->sections.str.s.section = sectp;
fd361982 13104 dwp_file->sections.str.size = bfd_section_size (sectp);
80626a55
DE
13105 }
13106 else if (section_is_p (sectp->name, &names->cu_index))
13107 {
049412e3 13108 dwp_file->sections.cu_index.s.section = sectp;
fd361982 13109 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
80626a55
DE
13110 }
13111 else if (section_is_p (sectp->name, &names->tu_index))
13112 {
049412e3 13113 dwp_file->sections.tu_index.s.section = sectp;
fd361982 13114 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
80626a55
DE
13115 }
13116}
3019eac3 13117
73869dc2
DE
13118/* This function is mapped across the sections and remembers the offset and
13119 size of each of the DWP version 2 debugging sections that we are interested
13120 in. This is split into a separate function because we don't know if we
13121 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13122
13123static void
13124dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13125{
9a3c8263 13126 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
13127 const struct dwop_section_names *names = &dwop_section_names;
13128 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13129
13130 /* Record the ELF section number for later lookup: this is what the
13131 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13132 gdb_assert (elf_section_nr < dwp_file->num_sections);
13133 dwp_file->elf_sections[elf_section_nr] = sectp;
13134
13135 /* Look for specific sections that we need. */
13136 if (section_is_p (sectp->name, &names->abbrev_dwo))
13137 {
049412e3 13138 dwp_file->sections.abbrev.s.section = sectp;
fd361982 13139 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
73869dc2
DE
13140 }
13141 else if (section_is_p (sectp->name, &names->info_dwo))
13142 {
049412e3 13143 dwp_file->sections.info.s.section = sectp;
fd361982 13144 dwp_file->sections.info.size = bfd_section_size (sectp);
73869dc2
DE
13145 }
13146 else if (section_is_p (sectp->name, &names->line_dwo))
13147 {
049412e3 13148 dwp_file->sections.line.s.section = sectp;
fd361982 13149 dwp_file->sections.line.size = bfd_section_size (sectp);
73869dc2
DE
13150 }
13151 else if (section_is_p (sectp->name, &names->loc_dwo))
13152 {
049412e3 13153 dwp_file->sections.loc.s.section = sectp;
fd361982 13154 dwp_file->sections.loc.size = bfd_section_size (sectp);
73869dc2
DE
13155 }
13156 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13157 {
049412e3 13158 dwp_file->sections.macinfo.s.section = sectp;
fd361982 13159 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
73869dc2
DE
13160 }
13161 else if (section_is_p (sectp->name, &names->macro_dwo))
13162 {
049412e3 13163 dwp_file->sections.macro.s.section = sectp;
fd361982 13164 dwp_file->sections.macro.size = bfd_section_size (sectp);
73869dc2
DE
13165 }
13166 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13167 {
049412e3 13168 dwp_file->sections.str_offsets.s.section = sectp;
fd361982 13169 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
73869dc2
DE
13170 }
13171 else if (section_is_p (sectp->name, &names->types_dwo))
13172 {
049412e3 13173 dwp_file->sections.types.s.section = sectp;
fd361982 13174 dwp_file->sections.types.size = bfd_section_size (sectp);
73869dc2
DE
13175 }
13176}
13177
80626a55 13178/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 13179
80626a55
DE
13180static hashval_t
13181hash_dwp_loaded_cutus (const void *item)
13182{
9a3c8263 13183 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 13184
80626a55
DE
13185 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13186 return dwo_unit->signature;
3019eac3
DE
13187}
13188
80626a55 13189/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 13190
80626a55
DE
13191static int
13192eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 13193{
9a3c8263
SM
13194 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13195 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 13196
80626a55
DE
13197 return dua->signature == dub->signature;
13198}
3019eac3 13199
80626a55 13200/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 13201
80626a55
DE
13202static htab_t
13203allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13204{
13205 return htab_create_alloc_ex (3,
13206 hash_dwp_loaded_cutus,
13207 eq_dwp_loaded_cutus,
13208 NULL,
13209 &objfile->objfile_obstack,
13210 hashtab_obstack_allocate,
13211 dummy_obstack_deallocate);
13212}
3019eac3 13213
ab5088bf
DE
13214/* Try to open DWP file FILE_NAME.
13215 The result is the bfd handle of the file.
13216 If there is a problem finding or opening the file, return NULL.
13217 Upon success, the canonicalized path of the file is stored in the bfd,
13218 same as symfile_bfd_open. */
13219
192b62ce 13220static gdb_bfd_ref_ptr
ed2dc618
SM
13221open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13222 const char *file_name)
ab5088bf 13223{
ed2dc618
SM
13224 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13225 1 /*is_dwp*/,
192b62ce 13226 1 /*search_cwd*/));
6ac97d4c
DE
13227 if (abfd != NULL)
13228 return abfd;
13229
13230 /* Work around upstream bug 15652.
13231 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13232 [Whether that's a "bug" is debatable, but it is getting in our way.]
13233 We have no real idea where the dwp file is, because gdb's realpath-ing
13234 of the executable's path may have discarded the needed info.
13235 [IWBN if the dwp file name was recorded in the executable, akin to
13236 .gnu_debuglink, but that doesn't exist yet.]
13237 Strip the directory from FILE_NAME and search again. */
13238 if (*debug_file_directory != '\0')
13239 {
13240 /* Don't implicitly search the current directory here.
13241 If the user wants to search "." to handle this case,
13242 it must be added to debug-file-directory. */
ed2dc618
SM
13243 return try_open_dwop_file (dwarf2_per_objfile,
13244 lbasename (file_name), 1 /*is_dwp*/,
6ac97d4c
DE
13245 0 /*search_cwd*/);
13246 }
13247
13248 return NULL;
ab5088bf
DE
13249}
13250
80626a55
DE
13251/* Initialize the use of the DWP file for the current objfile.
13252 By convention the name of the DWP file is ${objfile}.dwp.
13253 The result is NULL if it can't be found. */
a766d390 13254
400174b1 13255static std::unique_ptr<struct dwp_file>
ed2dc618 13256open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
80626a55
DE
13257{
13258 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 13259
82bf32bc
JK
13260 /* Try to find first .dwp for the binary file before any symbolic links
13261 resolving. */
6c447423
DE
13262
13263 /* If the objfile is a debug file, find the name of the real binary
13264 file and get the name of dwp file from there. */
d721ba37 13265 std::string dwp_name;
6c447423
DE
13266 if (objfile->separate_debug_objfile_backlink != NULL)
13267 {
13268 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13269 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 13270
d721ba37 13271 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
13272 }
13273 else
d721ba37
PA
13274 dwp_name = objfile->original_name;
13275
13276 dwp_name += ".dwp";
80626a55 13277
ed2dc618 13278 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
82bf32bc
JK
13279 if (dbfd == NULL
13280 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13281 {
13282 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
13283 dwp_name = objfile_name (objfile);
13284 dwp_name += ".dwp";
ed2dc618 13285 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
82bf32bc
JK
13286 }
13287
80626a55
DE
13288 if (dbfd == NULL)
13289 {
b4f54984 13290 if (dwarf_read_debug)
d721ba37 13291 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
400174b1 13292 return std::unique_ptr<dwp_file> ();
3019eac3 13293 }
400174b1
TT
13294
13295 const char *name = bfd_get_filename (dbfd.get ());
13296 std::unique_ptr<struct dwp_file> dwp_file
13297 (new struct dwp_file (name, std::move (dbfd)));
c906108c 13298
0a0f4c01 13299 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
80626a55
DE
13300 dwp_file->elf_sections =
13301 OBSTACK_CALLOC (&objfile->objfile_obstack,
13302 dwp_file->num_sections, asection *);
13303
400174b1
TT
13304 bfd_map_over_sections (dwp_file->dbfd.get (),
13305 dwarf2_locate_common_dwp_sections,
13306 dwp_file.get ());
80626a55 13307
400174b1
TT
13308 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13309 0);
80626a55 13310
400174b1
TT
13311 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13312 1);
80626a55 13313
73869dc2 13314 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
13315 if (dwp_file->cus && dwp_file->tus
13316 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
13317 {
13318 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 13319 pretty bizarre. We use pulongest here because that's the established
4d65956b 13320 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
13321 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13322 " TU version %s [in DWP file %s]"),
13323 pulongest (dwp_file->cus->version),
d721ba37 13324 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 13325 }
08302ed2
DE
13326
13327 if (dwp_file->cus)
13328 dwp_file->version = dwp_file->cus->version;
13329 else if (dwp_file->tus)
13330 dwp_file->version = dwp_file->tus->version;
13331 else
13332 dwp_file->version = 2;
73869dc2
DE
13333
13334 if (dwp_file->version == 2)
400174b1
TT
13335 bfd_map_over_sections (dwp_file->dbfd.get (),
13336 dwarf2_locate_v2_dwp_sections,
13337 dwp_file.get ());
73869dc2 13338
19ac8c2e
DE
13339 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13340 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 13341
b4f54984 13342 if (dwarf_read_debug)
80626a55
DE
13343 {
13344 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13345 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
13346 " %s CUs, %s TUs\n",
13347 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13348 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
13349 }
13350
13351 return dwp_file;
3019eac3 13352}
c906108c 13353
ab5088bf
DE
13354/* Wrapper around open_and_init_dwp_file, only open it once. */
13355
13356static struct dwp_file *
ed2dc618 13357get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
ab5088bf
DE
13358{
13359 if (! dwarf2_per_objfile->dwp_checked)
13360 {
ed2dc618
SM
13361 dwarf2_per_objfile->dwp_file
13362 = open_and_init_dwp_file (dwarf2_per_objfile);
ab5088bf
DE
13363 dwarf2_per_objfile->dwp_checked = 1;
13364 }
400174b1 13365 return dwarf2_per_objfile->dwp_file.get ();
ab5088bf
DE
13366}
13367
80626a55
DE
13368/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13369 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13370 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 13371 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
13372 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13373
13374 This is called, for example, when wanting to read a variable with a
13375 complex location. Therefore we don't want to do file i/o for every call.
13376 Therefore we don't want to look for a DWO file on every call.
13377 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13378 then we check if we've already seen DWO_NAME, and only THEN do we check
13379 for a DWO file.
13380
1c658ad5 13381 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 13382 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 13383
3019eac3 13384static struct dwo_unit *
80626a55
DE
13385lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13386 const char *dwo_name, const char *comp_dir,
13387 ULONGEST signature, int is_debug_types)
3019eac3 13388{
ed2dc618 13389 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
3019eac3 13390 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
13391 const char *kind = is_debug_types ? "TU" : "CU";
13392 void **dwo_file_slot;
3019eac3 13393 struct dwo_file *dwo_file;
80626a55 13394 struct dwp_file *dwp_file;
cb1df416 13395
6a506a2d
DE
13396 /* First see if there's a DWP file.
13397 If we have a DWP file but didn't find the DWO inside it, don't
13398 look for the original DWO file. It makes gdb behave differently
13399 depending on whether one is debugging in the build tree. */
cf2c3c16 13400
ed2dc618 13401 dwp_file = get_dwp_file (dwarf2_per_objfile);
80626a55 13402 if (dwp_file != NULL)
cf2c3c16 13403 {
80626a55
DE
13404 const struct dwp_hash_table *dwp_htab =
13405 is_debug_types ? dwp_file->tus : dwp_file->cus;
13406
13407 if (dwp_htab != NULL)
13408 {
13409 struct dwo_unit *dwo_cutu =
ed2dc618 13410 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
57d63ce2 13411 signature, is_debug_types);
80626a55
DE
13412
13413 if (dwo_cutu != NULL)
13414 {
b4f54984 13415 if (dwarf_read_debug)
80626a55
DE
13416 {
13417 fprintf_unfiltered (gdb_stdlog,
13418 "Virtual DWO %s %s found: @%s\n",
13419 kind, hex_string (signature),
13420 host_address_to_string (dwo_cutu));
13421 }
13422 return dwo_cutu;
13423 }
13424 }
13425 }
6a506a2d 13426 else
80626a55 13427 {
6a506a2d 13428 /* No DWP file, look for the DWO file. */
80626a55 13429
ed2dc618
SM
13430 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13431 dwo_name, comp_dir);
6a506a2d 13432 if (*dwo_file_slot == NULL)
80626a55 13433 {
6a506a2d
DE
13434 /* Read in the file and build a table of the CUs/TUs it contains. */
13435 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 13436 }
6a506a2d 13437 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 13438 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 13439
6a506a2d 13440 if (dwo_file != NULL)
19c3d4c9 13441 {
6a506a2d
DE
13442 struct dwo_unit *dwo_cutu = NULL;
13443
13444 if (is_debug_types && dwo_file->tus)
13445 {
13446 struct dwo_unit find_dwo_cutu;
13447
13448 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13449 find_dwo_cutu.signature = signature;
9a3c8263
SM
13450 dwo_cutu
13451 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 13452 }
33c5cd75 13453 else if (!is_debug_types && dwo_file->cus)
80626a55 13454 {
33c5cd75
DB
13455 struct dwo_unit find_dwo_cutu;
13456
13457 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13458 find_dwo_cutu.signature = signature;
13459 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13460 &find_dwo_cutu);
6a506a2d
DE
13461 }
13462
13463 if (dwo_cutu != NULL)
13464 {
b4f54984 13465 if (dwarf_read_debug)
6a506a2d
DE
13466 {
13467 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13468 kind, dwo_name, hex_string (signature),
13469 host_address_to_string (dwo_cutu));
13470 }
13471 return dwo_cutu;
80626a55
DE
13472 }
13473 }
2e276125 13474 }
9cdd5dbd 13475
80626a55
DE
13476 /* We didn't find it. This could mean a dwo_id mismatch, or
13477 someone deleted the DWO/DWP file, or the search path isn't set up
13478 correctly to find the file. */
13479
b4f54984 13480 if (dwarf_read_debug)
80626a55
DE
13481 {
13482 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13483 kind, dwo_name, hex_string (signature));
13484 }
3019eac3 13485
6656a72d
DE
13486 /* This is a warning and not a complaint because it can be caused by
13487 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
13488 {
13489 /* Print the name of the DWP file if we looked there, helps the user
13490 better diagnose the problem. */
791afaa2 13491 std::string dwp_text;
43942612
DE
13492
13493 if (dwp_file != NULL)
791afaa2
TT
13494 dwp_text = string_printf (" [in DWP file %s]",
13495 lbasename (dwp_file->name));
43942612 13496
9d8780f0 13497 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
43942612
DE
13498 " [in module %s]"),
13499 kind, dwo_name, hex_string (signature),
791afaa2 13500 dwp_text.c_str (),
43942612 13501 this_unit->is_debug_types ? "TU" : "CU",
9d8780f0 13502 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
43942612 13503 }
3019eac3 13504 return NULL;
5fb290d7
DJ
13505}
13506
80626a55
DE
13507/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13508 See lookup_dwo_cutu_unit for details. */
13509
13510static struct dwo_unit *
13511lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13512 const char *dwo_name, const char *comp_dir,
13513 ULONGEST signature)
13514{
13515 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13516}
13517
13518/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13519 See lookup_dwo_cutu_unit for details. */
13520
13521static struct dwo_unit *
13522lookup_dwo_type_unit (struct signatured_type *this_tu,
13523 const char *dwo_name, const char *comp_dir)
13524{
13525 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13526}
13527
89e63ee4
DE
13528/* Traversal function for queue_and_load_all_dwo_tus. */
13529
13530static int
13531queue_and_load_dwo_tu (void **slot, void *info)
13532{
13533 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13534 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13535 ULONGEST signature = dwo_unit->signature;
13536 struct signatured_type *sig_type =
13537 lookup_dwo_signatured_type (per_cu->cu, signature);
13538
13539 if (sig_type != NULL)
13540 {
13541 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13542
13543 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13544 a real dependency of PER_CU on SIG_TYPE. That is detected later
13545 while processing PER_CU. */
13546 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13547 load_full_type_unit (sig_cu);
ae640021 13548 per_cu->imported_symtabs_push (sig_cu);
89e63ee4
DE
13549 }
13550
13551 return 1;
13552}
13553
13554/* Queue all TUs contained in the DWO of PER_CU to be read in.
13555 The DWO may have the only definition of the type, though it may not be
13556 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13557 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13558
13559static void
13560queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13561{
13562 struct dwo_unit *dwo_unit;
13563 struct dwo_file *dwo_file;
13564
13565 gdb_assert (!per_cu->is_debug_types);
ed2dc618 13566 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
89e63ee4
DE
13567 gdb_assert (per_cu->cu != NULL);
13568
13569 dwo_unit = per_cu->cu->dwo_unit;
13570 gdb_assert (dwo_unit != NULL);
13571
13572 dwo_file = dwo_unit->dwo_file;
13573 if (dwo_file->tus != NULL)
13574 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13575}
13576
3019eac3 13577/* Read in various DIEs. */
348e048f 13578
d389af10 13579/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
13580 Inherit only the children of the DW_AT_abstract_origin DIE not being
13581 already referenced by DW_AT_abstract_origin from the children of the
13582 current DIE. */
d389af10
JK
13583
13584static void
13585inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13586{
13587 struct die_info *child_die;
791afaa2 13588 sect_offset *offsetp;
d389af10
JK
13589 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13590 struct die_info *origin_die;
13591 /* Iterator of the ORIGIN_DIE children. */
13592 struct die_info *origin_child_die;
d389af10 13593 struct attribute *attr;
cd02d79d
PA
13594 struct dwarf2_cu *origin_cu;
13595 struct pending **origin_previous_list_in_scope;
d389af10
JK
13596
13597 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13598 if (!attr)
13599 return;
13600
cd02d79d
PA
13601 /* Note that following die references may follow to a die in a
13602 different cu. */
13603
13604 origin_cu = cu;
13605 origin_die = follow_die_ref (die, attr, &origin_cu);
13606
13607 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13608 symbols in. */
13609 origin_previous_list_in_scope = origin_cu->list_in_scope;
13610 origin_cu->list_in_scope = cu->list_in_scope;
13611
edb3359d
DJ
13612 if (die->tag != origin_die->tag
13613 && !(die->tag == DW_TAG_inlined_subroutine
13614 && origin_die->tag == DW_TAG_subprogram))
b98664d3 13615 complaint (_("DIE %s and its abstract origin %s have different tags"),
9d8780f0
SM
13616 sect_offset_str (die->sect_off),
13617 sect_offset_str (origin_die->sect_off));
d389af10 13618
791afaa2 13619 std::vector<sect_offset> offsets;
d389af10 13620
3ea89b92
PMR
13621 for (child_die = die->child;
13622 child_die && child_die->tag;
13623 child_die = sibling_die (child_die))
13624 {
13625 struct die_info *child_origin_die;
13626 struct dwarf2_cu *child_origin_cu;
13627
13628 /* We are trying to process concrete instance entries:
216f72a1 13629 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
13630 it's not relevant to our analysis here. i.e. detecting DIEs that are
13631 present in the abstract instance but not referenced in the concrete
13632 one. */
216f72a1
JK
13633 if (child_die->tag == DW_TAG_call_site
13634 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
13635 continue;
13636
c38f313d
DJ
13637 /* For each CHILD_DIE, find the corresponding child of
13638 ORIGIN_DIE. If there is more than one layer of
13639 DW_AT_abstract_origin, follow them all; there shouldn't be,
13640 but GCC versions at least through 4.4 generate this (GCC PR
13641 40573). */
3ea89b92
PMR
13642 child_origin_die = child_die;
13643 child_origin_cu = cu;
c38f313d
DJ
13644 while (1)
13645 {
cd02d79d
PA
13646 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13647 child_origin_cu);
c38f313d
DJ
13648 if (attr == NULL)
13649 break;
cd02d79d
PA
13650 child_origin_die = follow_die_ref (child_origin_die, attr,
13651 &child_origin_cu);
c38f313d
DJ
13652 }
13653
d389af10
JK
13654 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13655 counterpart may exist. */
c38f313d 13656 if (child_origin_die != child_die)
d389af10 13657 {
edb3359d
DJ
13658 if (child_die->tag != child_origin_die->tag
13659 && !(child_die->tag == DW_TAG_inlined_subroutine
13660 && child_origin_die->tag == DW_TAG_subprogram))
b98664d3 13661 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13662 "different tags"),
9d8780f0
SM
13663 sect_offset_str (child_die->sect_off),
13664 sect_offset_str (child_origin_die->sect_off));
c38f313d 13665 if (child_origin_die->parent != origin_die)
b98664d3 13666 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13667 "different parents"),
9d8780f0
SM
13668 sect_offset_str (child_die->sect_off),
13669 sect_offset_str (child_origin_die->sect_off));
c38f313d 13670 else
791afaa2 13671 offsets.push_back (child_origin_die->sect_off);
d389af10 13672 }
d389af10 13673 }
791afaa2
TT
13674 std::sort (offsets.begin (), offsets.end ());
13675 sect_offset *offsets_end = offsets.data () + offsets.size ();
13676 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 13677 if (offsetp[-1] == *offsetp)
b98664d3 13678 complaint (_("Multiple children of DIE %s refer "
9d8780f0
SM
13679 "to DIE %s as their abstract origin"),
13680 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
d389af10 13681
791afaa2 13682 offsetp = offsets.data ();
d389af10
JK
13683 origin_child_die = origin_die->child;
13684 while (origin_child_die && origin_child_die->tag)
13685 {
13686 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 13687 while (offsetp < offsets_end
9c541725 13688 && *offsetp < origin_child_die->sect_off)
d389af10 13689 offsetp++;
b64f50a1 13690 if (offsetp >= offsets_end
9c541725 13691 || *offsetp > origin_child_die->sect_off)
d389af10 13692 {
adde2bff
DE
13693 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13694 Check whether we're already processing ORIGIN_CHILD_DIE.
13695 This can happen with mutually referenced abstract_origins.
13696 PR 16581. */
13697 if (!origin_child_die->in_process)
13698 process_die (origin_child_die, origin_cu);
d389af10
JK
13699 }
13700 origin_child_die = sibling_die (origin_child_die);
13701 }
cd02d79d 13702 origin_cu->list_in_scope = origin_previous_list_in_scope;
8d9a2568
KB
13703
13704 if (cu != origin_cu)
13705 compute_delayed_physnames (origin_cu);
d389af10
JK
13706}
13707
c906108c 13708static void
e7c27a73 13709read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13710{
518817b3 13711 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13713 struct context_stack *newobj;
c906108c
SS
13714 CORE_ADDR lowpc;
13715 CORE_ADDR highpc;
13716 struct die_info *child_die;
edb3359d 13717 struct attribute *attr, *call_line, *call_file;
15d034d0 13718 const char *name;
e142c38c 13719 CORE_ADDR baseaddr;
801e3a5b 13720 struct block *block;
edb3359d 13721 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
2f4732b0 13722 std::vector<struct symbol *> template_args;
34eaf542 13723 struct template_symbol *templ_func = NULL;
edb3359d
DJ
13724
13725 if (inlined_func)
13726 {
13727 /* If we do not have call site information, we can't show the
13728 caller of this inlined function. That's too confusing, so
13729 only use the scope for local variables. */
13730 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13731 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13732 if (call_line == NULL || call_file == NULL)
13733 {
13734 read_lexical_block_scope (die, cu);
13735 return;
13736 }
13737 }
c906108c 13738
e142c38c
DJ
13739 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13740
94af9270 13741 name = dwarf2_name (die, cu);
c906108c 13742
e8d05480
JB
13743 /* Ignore functions with missing or empty names. These are actually
13744 illegal according to the DWARF standard. */
13745 if (name == NULL)
13746 {
b98664d3 13747 complaint (_("missing name for subprogram DIE at %s"),
9d8780f0 13748 sect_offset_str (die->sect_off));
e8d05480
JB
13749 return;
13750 }
13751
13752 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 13753 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 13754 <= PC_BOUNDS_INVALID)
e8d05480 13755 {
ae4d0c03
PM
13756 attr = dwarf2_attr (die, DW_AT_external, cu);
13757 if (!attr || !DW_UNSND (attr))
b98664d3 13758 complaint (_("cannot get low and high bounds "
9d8780f0
SM
13759 "for subprogram DIE at %s"),
13760 sect_offset_str (die->sect_off));
e8d05480
JB
13761 return;
13762 }
c906108c 13763
3e29f34a
MR
13764 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13765 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13766
34eaf542
TT
13767 /* If we have any template arguments, then we must allocate a
13768 different sort of symbol. */
13769 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13770 {
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13773 {
e623cf5d 13774 templ_func = allocate_template_symbol (objfile);
cf724bc9 13775 templ_func->subclass = SYMBOL_TEMPLATE;
34eaf542
TT
13776 break;
13777 }
13778 }
13779
c24bdb02 13780 newobj = cu->get_builder ()->push_context (0, lowpc);
5e2db402
TT
13781 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13782 (struct symbol *) templ_func);
4c2df51b 13783
81873cc8 13784 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
987012b8 13785 set_objfile_main_name (objfile, newobj->name->linkage_name (),
81873cc8
TV
13786 cu->language);
13787
4cecd739
DJ
13788 /* If there is a location expression for DW_AT_frame_base, record
13789 it. */
e142c38c 13790 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
435d3d88 13791 if (attr != nullptr)
fe978cb0 13792 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 13793
63e43d3a
PMR
13794 /* If there is a location for the static link, record it. */
13795 newobj->static_link = NULL;
13796 attr = dwarf2_attr (die, DW_AT_static_link, cu);
435d3d88 13797 if (attr != nullptr)
63e43d3a 13798 {
224c3ddb
SM
13799 newobj->static_link
13800 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
9a49df9d
AB
13801 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13802 dwarf2_per_cu_addr_type (cu->per_cu));
63e43d3a
PMR
13803 }
13804
c24bdb02 13805 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
c906108c 13806
639d11d3 13807 if (die->child != NULL)
c906108c 13808 {
639d11d3 13809 child_die = die->child;
c906108c
SS
13810 while (child_die && child_die->tag)
13811 {
34eaf542
TT
13812 if (child_die->tag == DW_TAG_template_type_param
13813 || child_die->tag == DW_TAG_template_value_param)
13814 {
13815 struct symbol *arg = new_symbol (child_die, NULL, cu);
13816
f1078f66 13817 if (arg != NULL)
2f4732b0 13818 template_args.push_back (arg);
34eaf542
TT
13819 }
13820 else
13821 process_die (child_die, cu);
c906108c
SS
13822 child_die = sibling_die (child_die);
13823 }
13824 }
13825
d389af10
JK
13826 inherit_abstract_dies (die, cu);
13827
4a811a97
UW
13828 /* If we have a DW_AT_specification, we might need to import using
13829 directives from the context of the specification DIE. See the
13830 comment in determine_prefix. */
13831 if (cu->language == language_cplus
13832 && dwarf2_attr (die, DW_AT_specification, cu))
13833 {
13834 struct dwarf2_cu *spec_cu = cu;
13835 struct die_info *spec_die = die_specification (die, &spec_cu);
13836
13837 while (spec_die)
13838 {
13839 child_die = spec_die->child;
13840 while (child_die && child_die->tag)
13841 {
13842 if (child_die->tag == DW_TAG_imported_module)
13843 process_die (child_die, spec_cu);
13844 child_die = sibling_die (child_die);
13845 }
13846
13847 /* In some cases, GCC generates specification DIEs that
13848 themselves contain DW_AT_specification attributes. */
13849 spec_die = die_specification (spec_die, &spec_cu);
13850 }
13851 }
13852
c24bdb02 13853 struct context_stack cstk = cu->get_builder ()->pop_context ();
c906108c 13854 /* Make a block for the local symbols within. */
c24bdb02 13855 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
804d2729 13856 cstk.static_link, lowpc, highpc);
801e3a5b 13857
df8a16a1 13858 /* For C++, set the block's scope. */
45280282
IB
13859 if ((cu->language == language_cplus
13860 || cu->language == language_fortran
c44af4eb
TT
13861 || cu->language == language_d
13862 || cu->language == language_rust)
4d4ec4e5 13863 && cu->processing_has_namespace_info)
195a3f6c
TT
13864 block_set_scope (block, determine_prefix (die, cu),
13865 &objfile->objfile_obstack);
df8a16a1 13866
801e3a5b
JB
13867 /* If we have address ranges, record them. */
13868 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 13869
a60f3166 13870 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
3e29f34a 13871
34eaf542 13872 /* Attach template arguments to function. */
2f4732b0 13873 if (!template_args.empty ())
34eaf542
TT
13874 {
13875 gdb_assert (templ_func != NULL);
13876
2f4732b0 13877 templ_func->n_template_arguments = template_args.size ();
34eaf542 13878 templ_func->template_arguments
8d749320
SM
13879 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13880 templ_func->n_template_arguments);
34eaf542 13881 memcpy (templ_func->template_arguments,
2f4732b0 13882 template_args.data (),
34eaf542 13883 (templ_func->n_template_arguments * sizeof (struct symbol *)));
3e1d3d8c
TT
13884
13885 /* Make sure that the symtab is set on the new symbols. Even
13886 though they don't appear in this symtab directly, other parts
13887 of gdb assume that symbols do, and this is reasonably
13888 true. */
8634679f 13889 for (symbol *sym : template_args)
3e1d3d8c 13890 symbol_set_symtab (sym, symbol_symtab (templ_func));
34eaf542
TT
13891 }
13892
208d8187
JB
13893 /* In C++, we can have functions nested inside functions (e.g., when
13894 a function declares a class that has methods). This means that
13895 when we finish processing a function scope, we may need to go
13896 back to building a containing block's symbol lists. */
c24bdb02
KS
13897 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13898 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
208d8187 13899
921e78cf
JB
13900 /* If we've finished processing a top-level function, subsequent
13901 symbols go in the file symbol list. */
c24bdb02
KS
13902 if (cu->get_builder ()->outermost_context_p ())
13903 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
c906108c
SS
13904}
13905
13906/* Process all the DIES contained within a lexical block scope. Start
13907 a new scope, process the dies, and then close the scope. */
13908
13909static void
e7c27a73 13910read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13911{
518817b3 13912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13914 CORE_ADDR lowpc, highpc;
13915 struct die_info *child_die;
e142c38c
DJ
13916 CORE_ADDR baseaddr;
13917
13918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
13919
13920 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
13921 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13922 as multiple lexical blocks? Handling children in a sane way would
6e70227d 13923 be nasty. Might be easier to properly extend generic blocks to
af34e669 13924 describe ranges. */
e385593e
JK
13925 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13926 {
13927 case PC_BOUNDS_NOT_PRESENT:
13928 /* DW_TAG_lexical_block has no attributes, process its children as if
13929 there was no wrapping by that DW_TAG_lexical_block.
13930 GCC does no longer produces such DWARF since GCC r224161. */
13931 for (child_die = die->child;
13932 child_die != NULL && child_die->tag;
13933 child_die = sibling_die (child_die))
13934 process_die (child_die, cu);
13935 return;
13936 case PC_BOUNDS_INVALID:
13937 return;
13938 }
3e29f34a
MR
13939 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13940 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13941
c24bdb02 13942 cu->get_builder ()->push_context (0, lowpc);
639d11d3 13943 if (die->child != NULL)
c906108c 13944 {
639d11d3 13945 child_die = die->child;
c906108c
SS
13946 while (child_die && child_die->tag)
13947 {
e7c27a73 13948 process_die (child_die, cu);
c906108c
SS
13949 child_die = sibling_die (child_die);
13950 }
13951 }
3ea89b92 13952 inherit_abstract_dies (die, cu);
c24bdb02 13953 struct context_stack cstk = cu->get_builder ()->pop_context ();
c906108c 13954
c24bdb02
KS
13955 if (*cu->get_builder ()->get_local_symbols () != NULL
13956 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
c906108c 13957 {
801e3a5b 13958 struct block *block
c24bdb02 13959 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
804d2729 13960 cstk.start_addr, highpc);
801e3a5b
JB
13961
13962 /* Note that recording ranges after traversing children, as we
13963 do here, means that recording a parent's ranges entails
13964 walking across all its children's ranges as they appear in
13965 the address map, which is quadratic behavior.
13966
13967 It would be nicer to record the parent's ranges before
13968 traversing its children, simply overriding whatever you find
13969 there. But since we don't even decide whether to create a
13970 block until after we've traversed its children, that's hard
13971 to do. */
13972 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 13973 }
c24bdb02
KS
13974 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13975 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
c906108c
SS
13976}
13977
216f72a1 13978/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
13979
13980static void
13981read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13982{
518817b3 13983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
96408a79
SA
13984 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13985 CORE_ADDR pc, baseaddr;
13986 struct attribute *attr;
13987 struct call_site *call_site, call_site_local;
13988 void **slot;
13989 int nparams;
13990 struct die_info *child_die;
13991
13992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13993
216f72a1
JK
13994 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13995 if (attr == NULL)
13996 {
13997 /* This was a pre-DWARF-5 GNU extension alias
13998 for DW_AT_call_return_pc. */
13999 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14000 }
96408a79
SA
14001 if (!attr)
14002 {
b98664d3 14003 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
9d8780f0
SM
14004 "DIE %s [in module %s]"),
14005 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14006 return;
14007 }
31aa7e4e 14008 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 14009 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
14010
14011 if (cu->call_site_htab == NULL)
14012 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14013 NULL, &objfile->objfile_obstack,
14014 hashtab_obstack_allocate, NULL);
14015 call_site_local.pc = pc;
14016 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14017 if (*slot != NULL)
14018 {
b98664d3 14019 complaint (_("Duplicate PC %s for DW_TAG_call_site "
9d8780f0
SM
14020 "DIE %s [in module %s]"),
14021 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
4262abfb 14022 objfile_name (objfile));
96408a79
SA
14023 return;
14024 }
14025
14026 /* Count parameters at the caller. */
14027
14028 nparams = 0;
14029 for (child_die = die->child; child_die && child_die->tag;
14030 child_die = sibling_die (child_die))
14031 {
216f72a1
JK
14032 if (child_die->tag != DW_TAG_call_site_parameter
14033 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79 14034 {
b98664d3 14035 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
9d8780f0
SM
14036 "DW_TAG_call_site child DIE %s [in module %s]"),
14037 child_die->tag, sect_offset_str (child_die->sect_off),
4262abfb 14038 objfile_name (objfile));
96408a79
SA
14039 continue;
14040 }
14041
14042 nparams++;
14043 }
14044
224c3ddb
SM
14045 call_site
14046 = ((struct call_site *)
14047 obstack_alloc (&objfile->objfile_obstack,
14048 sizeof (*call_site)
14049 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
14050 *slot = call_site;
14051 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14052 call_site->pc = pc;
14053
216f72a1
JK
14054 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14055 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
14056 {
14057 struct die_info *func_die;
14058
14059 /* Skip also over DW_TAG_inlined_subroutine. */
14060 for (func_die = die->parent;
14061 func_die && func_die->tag != DW_TAG_subprogram
14062 && func_die->tag != DW_TAG_subroutine_type;
14063 func_die = func_die->parent);
14064
216f72a1
JK
14065 /* DW_AT_call_all_calls is a superset
14066 of DW_AT_call_all_tail_calls. */
96408a79 14067 if (func_die
216f72a1 14068 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 14069 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 14070 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
14071 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14072 {
14073 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14074 not complete. But keep CALL_SITE for look ups via call_site_htab,
14075 both the initial caller containing the real return address PC and
14076 the final callee containing the current PC of a chain of tail
14077 calls do not need to have the tail call list complete. But any
14078 function candidate for a virtual tail call frame searched via
14079 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14080 determined unambiguously. */
14081 }
14082 else
14083 {
14084 struct type *func_type = NULL;
14085
14086 if (func_die)
14087 func_type = get_die_type (func_die, cu);
14088 if (func_type != NULL)
14089 {
14090 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14091
14092 /* Enlist this call site to the function. */
14093 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14094 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14095 }
14096 else
b98664d3 14097 complaint (_("Cannot find function owning DW_TAG_call_site "
9d8780f0
SM
14098 "DIE %s [in module %s]"),
14099 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14100 }
14101 }
14102
216f72a1
JK
14103 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14104 if (attr == NULL)
14105 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14106 if (attr == NULL)
14107 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 14108 if (attr == NULL)
216f72a1
JK
14109 {
14110 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14111 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14112 }
96408a79
SA
14113 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14114 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14115 /* Keep NULL DWARF_BLOCK. */;
14116 else if (attr_form_is_block (attr))
14117 {
14118 struct dwarf2_locexpr_baton *dlbaton;
14119
8d749320 14120 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
14121 dlbaton->data = DW_BLOCK (attr)->data;
14122 dlbaton->size = DW_BLOCK (attr)->size;
14123 dlbaton->per_cu = cu->per_cu;
14124
14125 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14126 }
7771576e 14127 else if (attr_form_is_ref (attr))
96408a79 14128 {
96408a79
SA
14129 struct dwarf2_cu *target_cu = cu;
14130 struct die_info *target_die;
14131
ac9ec31b 14132 target_die = follow_die_ref (die, attr, &target_cu);
518817b3 14133 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
96408a79
SA
14134 if (die_is_declaration (target_die, target_cu))
14135 {
7d45c7c3 14136 const char *target_physname;
9112db09
JK
14137
14138 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 14139 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 14140 if (target_physname == NULL)
9112db09 14141 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79 14142 if (target_physname == NULL)
b98664d3 14143 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14144 "physname, for referencing DIE %s [in module %s]"),
14145 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14146 else
7d455152 14147 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
14148 }
14149 else
14150 {
14151 CORE_ADDR lowpc;
14152
14153 /* DW_AT_entry_pc should be preferred. */
3a2b436a 14154 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 14155 <= PC_BOUNDS_INVALID)
b98664d3 14156 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14157 "low pc, for referencing DIE %s [in module %s]"),
14158 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14159 else
3e29f34a
MR
14160 {
14161 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14162 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14163 }
96408a79
SA
14164 }
14165 }
14166 else
b98664d3 14167 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
9d8780f0
SM
14168 "block nor reference, for DIE %s [in module %s]"),
14169 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14170
14171 call_site->per_cu = cu->per_cu;
14172
14173 for (child_die = die->child;
14174 child_die && child_die->tag;
14175 child_die = sibling_die (child_die))
14176 {
96408a79 14177 struct call_site_parameter *parameter;
1788b2d3 14178 struct attribute *loc, *origin;
96408a79 14179
216f72a1
JK
14180 if (child_die->tag != DW_TAG_call_site_parameter
14181 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
14182 {
14183 /* Already printed the complaint above. */
14184 continue;
14185 }
14186
14187 gdb_assert (call_site->parameter_count < nparams);
14188 parameter = &call_site->parameter[call_site->parameter_count];
14189
1788b2d3
JK
14190 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14191 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 14192 register is contained in DW_AT_call_value. */
96408a79 14193
24c5c679 14194 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
14195 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14196 if (origin == NULL)
14197 {
14198 /* This was a pre-DWARF-5 GNU extension alias
14199 for DW_AT_call_parameter. */
14200 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14201 }
7771576e 14202 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 14203 {
1788b2d3 14204 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
14205
14206 sect_offset sect_off
14207 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14208 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
14209 {
14210 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14211 binding can be done only inside one CU. Such referenced DIE
14212 therefore cannot be even moved to DW_TAG_partial_unit. */
b98664d3 14213 complaint (_("DW_AT_call_parameter offset is not in CU for "
9d8780f0
SM
14214 "DW_TAG_call_site child DIE %s [in module %s]"),
14215 sect_offset_str (child_die->sect_off),
9c541725 14216 objfile_name (objfile));
d76b7dbc
JK
14217 continue;
14218 }
9c541725
PA
14219 parameter->u.param_cu_off
14220 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
14221 }
14222 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79 14223 {
b98664d3 14224 complaint (_("No DW_FORM_block* DW_AT_location for "
9d8780f0
SM
14225 "DW_TAG_call_site child DIE %s [in module %s]"),
14226 sect_offset_str (child_die->sect_off), objfile_name (objfile));
96408a79
SA
14227 continue;
14228 }
24c5c679 14229 else
96408a79 14230 {
24c5c679
JK
14231 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14232 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14233 if (parameter->u.dwarf_reg != -1)
14234 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14235 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14236 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14237 &parameter->u.fb_offset))
14238 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14239 else
14240 {
b98664d3 14241 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
24c5c679 14242 "for DW_FORM_block* DW_AT_location is supported for "
9d8780f0 14243 "DW_TAG_call_site child DIE %s "
24c5c679 14244 "[in module %s]"),
9d8780f0 14245 sect_offset_str (child_die->sect_off),
9c541725 14246 objfile_name (objfile));
24c5c679
JK
14247 continue;
14248 }
96408a79
SA
14249 }
14250
216f72a1
JK
14251 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14252 if (attr == NULL)
14253 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
14254 if (!attr_form_is_block (attr))
14255 {
b98664d3 14256 complaint (_("No DW_FORM_block* DW_AT_call_value for "
9d8780f0
SM
14257 "DW_TAG_call_site child DIE %s [in module %s]"),
14258 sect_offset_str (child_die->sect_off),
9c541725 14259 objfile_name (objfile));
96408a79
SA
14260 continue;
14261 }
14262 parameter->value = DW_BLOCK (attr)->data;
14263 parameter->value_size = DW_BLOCK (attr)->size;
14264
14265 /* Parameters are not pre-cleared by memset above. */
14266 parameter->data_value = NULL;
14267 parameter->data_value_size = 0;
14268 call_site->parameter_count++;
14269
216f72a1
JK
14270 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14271 if (attr == NULL)
14272 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
435d3d88 14273 if (attr != nullptr)
96408a79
SA
14274 {
14275 if (!attr_form_is_block (attr))
b98664d3 14276 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
9d8780f0
SM
14277 "DW_TAG_call_site child DIE %s [in module %s]"),
14278 sect_offset_str (child_die->sect_off),
9c541725 14279 objfile_name (objfile));
96408a79
SA
14280 else
14281 {
14282 parameter->data_value = DW_BLOCK (attr)->data;
14283 parameter->data_value_size = DW_BLOCK (attr)->size;
14284 }
14285 }
14286 }
14287}
14288
71a3c369
TT
14289/* Helper function for read_variable. If DIE represents a virtual
14290 table, then return the type of the concrete object that is
14291 associated with the virtual table. Otherwise, return NULL. */
14292
14293static struct type *
14294rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14295{
14296 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14297 if (attr == NULL)
14298 return NULL;
14299
14300 /* Find the type DIE. */
14301 struct die_info *type_die = NULL;
14302 struct dwarf2_cu *type_cu = cu;
14303
14304 if (attr_form_is_ref (attr))
14305 type_die = follow_die_ref (die, attr, &type_cu);
14306 if (type_die == NULL)
14307 return NULL;
14308
14309 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14310 return NULL;
14311 return die_containing_type (type_die, type_cu);
14312}
14313
14314/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14315
14316static void
14317read_variable (struct die_info *die, struct dwarf2_cu *cu)
14318{
14319 struct rust_vtable_symbol *storage = NULL;
14320
14321 if (cu->language == language_rust)
14322 {
14323 struct type *containing_type = rust_containing_type (die, cu);
14324
14325 if (containing_type != NULL)
14326 {
518817b3 14327 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
71a3c369 14328
468c0cbb 14329 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
71a3c369
TT
14330 initialize_objfile_symbol (storage);
14331 storage->concrete_type = containing_type;
cf724bc9 14332 storage->subclass = SYMBOL_RUST_VTABLE;
71a3c369
TT
14333 }
14334 }
14335
e4a62c65
TV
14336 struct symbol *res = new_symbol (die, NULL, cu, storage);
14337 struct attribute *abstract_origin
14338 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14339 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14340 if (res == NULL && loc && abstract_origin)
14341 {
14342 /* We have a variable without a name, but with a location and an abstract
14343 origin. This may be a concrete instance of an abstract variable
14344 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14345 later. */
14346 struct dwarf2_cu *origin_cu = cu;
14347 struct die_info *origin_die
14348 = follow_die_ref (die, abstract_origin, &origin_cu);
14349 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
3360b6e7 14350 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
e4a62c65 14351 }
71a3c369
TT
14352}
14353
43988095
JK
14354/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14355 reading .debug_rnglists.
14356 Callback's type should be:
14357 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14358 Return true if the attributes are present and valid, otherwise,
14359 return false. */
14360
14361template <typename Callback>
14362static bool
14363dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14364 Callback &&callback)
14365{
ed2dc618 14366 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14367 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14368 struct objfile *objfile = dwarf2_per_objfile->objfile;
43988095 14369 bfd *obfd = objfile->obfd;
43988095
JK
14370 /* Base address selection entry. */
14371 CORE_ADDR base;
14372 int found_base;
43988095 14373 const gdb_byte *buffer;
43988095
JK
14374 CORE_ADDR baseaddr;
14375 bool overflow = false;
14376
14377 found_base = cu->base_known;
14378 base = cu->base_address;
14379
14380 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14381 if (offset >= dwarf2_per_objfile->rnglists.size)
14382 {
b98664d3 14383 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43988095
JK
14384 offset);
14385 return false;
14386 }
14387 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14388
14389 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14390
14391 while (1)
14392 {
7814882a
JK
14393 /* Initialize it due to a false compiler warning. */
14394 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
14395 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14396 + dwarf2_per_objfile->rnglists.size);
14397 unsigned int bytes_read;
14398
14399 if (buffer == buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14405 switch (rlet)
14406 {
14407 case DW_RLE_end_of_list:
14408 break;
14409 case DW_RLE_base_address:
14410 if (buffer + cu->header.addr_size > buf_end)
14411 {
14412 overflow = true;
14413 break;
14414 }
14415 base = read_address (obfd, buffer, cu, &bytes_read);
14416 found_base = 1;
14417 buffer += bytes_read;
14418 break;
14419 case DW_RLE_start_length:
14420 if (buffer + cu->header.addr_size > buf_end)
14421 {
14422 overflow = true;
14423 break;
14424 }
14425 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14426 buffer += bytes_read;
14427 range_end = (range_beginning
14428 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14429 buffer += bytes_read;
14430 if (buffer > buf_end)
14431 {
14432 overflow = true;
14433 break;
14434 }
14435 break;
14436 case DW_RLE_offset_pair:
14437 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14438 buffer += bytes_read;
14439 if (buffer > buf_end)
14440 {
14441 overflow = true;
14442 break;
14443 }
14444 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14445 buffer += bytes_read;
14446 if (buffer > buf_end)
14447 {
14448 overflow = true;
14449 break;
14450 }
14451 break;
14452 case DW_RLE_start_end:
14453 if (buffer + 2 * cu->header.addr_size > buf_end)
14454 {
14455 overflow = true;
14456 break;
14457 }
14458 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14459 buffer += bytes_read;
14460 range_end = read_address (obfd, buffer, cu, &bytes_read);
14461 buffer += bytes_read;
14462 break;
14463 default:
b98664d3 14464 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14465 return false;
14466 }
14467 if (rlet == DW_RLE_end_of_list || overflow)
14468 break;
14469 if (rlet == DW_RLE_base_address)
14470 continue;
14471
14472 if (!found_base)
14473 {
14474 /* We have no valid base address for the ranges
14475 data. */
b98664d3 14476 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14477 return false;
14478 }
14479
14480 if (range_beginning > range_end)
14481 {
14482 /* Inverted range entries are invalid. */
b98664d3 14483 complaint (_("Invalid .debug_rnglists data (inverted range)"));
43988095
JK
14484 return false;
14485 }
14486
14487 /* Empty range entries have no effect. */
14488 if (range_beginning == range_end)
14489 continue;
14490
14491 range_beginning += base;
14492 range_end += base;
14493
14494 /* A not-uncommon case of bad debug info.
14495 Don't pollute the addrmap with bad data. */
14496 if (range_beginning + baseaddr == 0
14497 && !dwarf2_per_objfile->has_section_at_zero)
14498 {
b98664d3 14499 complaint (_(".debug_rnglists entry has start address of zero"
43988095
JK
14500 " [in module %s]"), objfile_name (objfile));
14501 continue;
14502 }
14503
14504 callback (range_beginning, range_end);
14505 }
14506
14507 if (overflow)
14508 {
b98664d3 14509 complaint (_("Offset %d is not terminated "
43988095
JK
14510 "for DW_AT_ranges attribute"),
14511 offset);
14512 return false;
14513 }
14514
14515 return true;
14516}
14517
14518/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14519 Callback's type should be:
14520 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 14521 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 14522
43988095 14523template <typename Callback>
43039443 14524static int
5f46c5a5 14525dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 14526 Callback &&callback)
43039443 14527{
ed2dc618 14528 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14529 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14530 struct objfile *objfile = dwarf2_per_objfile->objfile;
43039443
JK
14531 struct comp_unit_head *cu_header = &cu->header;
14532 bfd *obfd = objfile->obfd;
14533 unsigned int addr_size = cu_header->addr_size;
14534 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14535 /* Base address selection entry. */
14536 CORE_ADDR base;
14537 int found_base;
14538 unsigned int dummy;
d521ce57 14539 const gdb_byte *buffer;
ff013f42 14540 CORE_ADDR baseaddr;
43039443 14541
43988095
JK
14542 if (cu_header->version >= 5)
14543 return dwarf2_rnglists_process (offset, cu, callback);
14544
d00adf39
DE
14545 found_base = cu->base_known;
14546 base = cu->base_address;
43039443 14547
be391dca 14548 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 14549 if (offset >= dwarf2_per_objfile->ranges.size)
43039443 14550 {
b98664d3 14551 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43039443
JK
14552 offset);
14553 return 0;
14554 }
dce234bc 14555 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 14556
e7030f15 14557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 14558
43039443
JK
14559 while (1)
14560 {
14561 CORE_ADDR range_beginning, range_end;
14562
14563 range_beginning = read_address (obfd, buffer, cu, &dummy);
14564 buffer += addr_size;
14565 range_end = read_address (obfd, buffer, cu, &dummy);
14566 buffer += addr_size;
14567 offset += 2 * addr_size;
14568
14569 /* An end of list marker is a pair of zero addresses. */
14570 if (range_beginning == 0 && range_end == 0)
14571 /* Found the end of list entry. */
14572 break;
14573
14574 /* Each base address selection entry is a pair of 2 values.
14575 The first is the largest possible address, the second is
14576 the base address. Check for a base address here. */
14577 if ((range_beginning & mask) == mask)
14578 {
28d2bfb9
AB
14579 /* If we found the largest possible address, then we already
14580 have the base address in range_end. */
14581 base = range_end;
43039443
JK
14582 found_base = 1;
14583 continue;
14584 }
14585
14586 if (!found_base)
14587 {
14588 /* We have no valid base address for the ranges
14589 data. */
b98664d3 14590 complaint (_("Invalid .debug_ranges data (no base address)"));
43039443
JK
14591 return 0;
14592 }
14593
9277c30c
UW
14594 if (range_beginning > range_end)
14595 {
14596 /* Inverted range entries are invalid. */
b98664d3 14597 complaint (_("Invalid .debug_ranges data (inverted range)"));
9277c30c
UW
14598 return 0;
14599 }
14600
14601 /* Empty range entries have no effect. */
14602 if (range_beginning == range_end)
14603 continue;
14604
43039443
JK
14605 range_beginning += base;
14606 range_end += base;
14607
01093045
DE
14608 /* A not-uncommon case of bad debug info.
14609 Don't pollute the addrmap with bad data. */
14610 if (range_beginning + baseaddr == 0
14611 && !dwarf2_per_objfile->has_section_at_zero)
14612 {
b98664d3 14613 complaint (_(".debug_ranges entry has start address of zero"
4262abfb 14614 " [in module %s]"), objfile_name (objfile));
01093045
DE
14615 continue;
14616 }
14617
5f46c5a5
JK
14618 callback (range_beginning, range_end);
14619 }
14620
14621 return 1;
14622}
14623
14624/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14625 Return 1 if the attributes are present and valid, otherwise, return 0.
14626 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14627
14628static int
14629dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14630 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14631 struct partial_symtab *ranges_pst)
14632{
518817b3 14633 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5f46c5a5
JK
14634 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14635 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14636 SECT_OFF_TEXT (objfile));
14637 int low_set = 0;
14638 CORE_ADDR low = 0;
14639 CORE_ADDR high = 0;
14640 int retval;
14641
14642 retval = dwarf2_ranges_process (offset, cu,
14643 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14644 {
9277c30c 14645 if (ranges_pst != NULL)
3e29f34a
MR
14646 {
14647 CORE_ADDR lowpc;
14648 CORE_ADDR highpc;
14649
79748972
TT
14650 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14651 range_beginning + baseaddr)
14652 - baseaddr);
14653 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14654 range_end + baseaddr)
14655 - baseaddr);
d320c2b5
TT
14656 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14657 lowpc, highpc - 1, ranges_pst);
3e29f34a 14658 }
ff013f42 14659
43039443
JK
14660 /* FIXME: This is recording everything as a low-high
14661 segment of consecutive addresses. We should have a
14662 data structure for discontiguous block ranges
14663 instead. */
14664 if (! low_set)
14665 {
14666 low = range_beginning;
14667 high = range_end;
14668 low_set = 1;
14669 }
14670 else
14671 {
14672 if (range_beginning < low)
14673 low = range_beginning;
14674 if (range_end > high)
14675 high = range_end;
14676 }
5f46c5a5
JK
14677 });
14678 if (!retval)
14679 return 0;
43039443
JK
14680
14681 if (! low_set)
14682 /* If the first entry is an end-of-list marker, the range
14683 describes an empty scope, i.e. no instructions. */
14684 return 0;
14685
14686 if (low_return)
14687 *low_return = low;
14688 if (high_return)
14689 *high_return = high;
14690 return 1;
14691}
14692
3a2b436a
JK
14693/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14694 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 14695 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 14696
3a2b436a 14697static enum pc_bounds_kind
af34e669 14698dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
14699 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14700 struct partial_symtab *pst)
c906108c 14701{
518817b3
SM
14702 struct dwarf2_per_objfile *dwarf2_per_objfile
14703 = cu->per_cu->dwarf2_per_objfile;
c906108c 14704 struct attribute *attr;
91da1414 14705 struct attribute *attr_high;
af34e669
DJ
14706 CORE_ADDR low = 0;
14707 CORE_ADDR high = 0;
e385593e 14708 enum pc_bounds_kind ret;
c906108c 14709
91da1414
MW
14710 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14711 if (attr_high)
af34e669 14712 {
e142c38c 14713 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
435d3d88 14714 if (attr != nullptr)
91da1414 14715 {
31aa7e4e
JB
14716 low = attr_value_as_address (attr);
14717 high = attr_value_as_address (attr_high);
14718 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14719 high += low;
91da1414 14720 }
af34e669
DJ
14721 else
14722 /* Found high w/o low attribute. */
e385593e 14723 return PC_BOUNDS_INVALID;
af34e669
DJ
14724
14725 /* Found consecutive range of addresses. */
3a2b436a 14726 ret = PC_BOUNDS_HIGH_LOW;
af34e669 14727 }
c906108c 14728 else
af34e669 14729 {
e142c38c 14730 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
14731 if (attr != NULL)
14732 {
ab435259
DE
14733 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14734 We take advantage of the fact that DW_AT_ranges does not appear
14735 in DW_TAG_compile_unit of DWO files. */
14736 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14737 unsigned int ranges_offset = (DW_UNSND (attr)
14738 + (need_ranges_base
14739 ? cu->ranges_base
14740 : 0));
2e3cf129 14741
af34e669 14742 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 14743 .debug_ranges section. */
2e3cf129 14744 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 14745 return PC_BOUNDS_INVALID;
43039443 14746 /* Found discontinuous range of addresses. */
3a2b436a 14747 ret = PC_BOUNDS_RANGES;
af34e669 14748 }
e385593e
JK
14749 else
14750 return PC_BOUNDS_NOT_PRESENT;
af34e669 14751 }
c906108c 14752
48fbe735 14753 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
9373cf26 14754 if (high <= low)
e385593e 14755 return PC_BOUNDS_INVALID;
c906108c
SS
14756
14757 /* When using the GNU linker, .gnu.linkonce. sections are used to
14758 eliminate duplicate copies of functions and vtables and such.
14759 The linker will arbitrarily choose one and discard the others.
14760 The AT_*_pc values for such functions refer to local labels in
14761 these sections. If the section from that file was discarded, the
14762 labels are not in the output, so the relocs get a value of 0.
14763 If this is a discarded function, mark the pc bounds as invalid,
14764 so that GDB will ignore it. */
72dca2f5 14765 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 14766 return PC_BOUNDS_INVALID;
c906108c
SS
14767
14768 *lowpc = low;
96408a79
SA
14769 if (highpc)
14770 *highpc = high;
af34e669 14771 return ret;
c906108c
SS
14772}
14773
b084d499
JB
14774/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14775 its low and high PC addresses. Do nothing if these addresses could not
14776 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14777 and HIGHPC to the high address if greater than HIGHPC. */
14778
14779static void
14780dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14781 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14782 struct dwarf2_cu *cu)
14783{
14784 CORE_ADDR low, high;
14785 struct die_info *child = die->child;
14786
e385593e 14787 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 14788 {
325fac50
PA
14789 *lowpc = std::min (*lowpc, low);
14790 *highpc = std::max (*highpc, high);
b084d499
JB
14791 }
14792
14793 /* If the language does not allow nested subprograms (either inside
14794 subprograms or lexical blocks), we're done. */
14795 if (cu->language != language_ada)
14796 return;
6e70227d 14797
b084d499
JB
14798 /* Check all the children of the given DIE. If it contains nested
14799 subprograms, then check their pc bounds. Likewise, we need to
14800 check lexical blocks as well, as they may also contain subprogram
14801 definitions. */
14802 while (child && child->tag)
14803 {
14804 if (child->tag == DW_TAG_subprogram
14805 || child->tag == DW_TAG_lexical_block)
14806 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14807 child = sibling_die (child);
14808 }
14809}
14810
fae299cd
DC
14811/* Get the low and high pc's represented by the scope DIE, and store
14812 them in *LOWPC and *HIGHPC. If the correct values can't be
14813 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14814
14815static void
14816get_scope_pc_bounds (struct die_info *die,
14817 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14818 struct dwarf2_cu *cu)
14819{
14820 CORE_ADDR best_low = (CORE_ADDR) -1;
14821 CORE_ADDR best_high = (CORE_ADDR) 0;
14822 CORE_ADDR current_low, current_high;
14823
3a2b436a 14824 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 14825 >= PC_BOUNDS_RANGES)
fae299cd
DC
14826 {
14827 best_low = current_low;
14828 best_high = current_high;
14829 }
14830 else
14831 {
14832 struct die_info *child = die->child;
14833
14834 while (child && child->tag)
14835 {
14836 switch (child->tag) {
14837 case DW_TAG_subprogram:
b084d499 14838 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
14839 break;
14840 case DW_TAG_namespace:
f55ee35c 14841 case DW_TAG_module:
fae299cd
DC
14842 /* FIXME: carlton/2004-01-16: Should we do this for
14843 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14844 that current GCC's always emit the DIEs corresponding
14845 to definitions of methods of classes as children of a
14846 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14847 the DIEs giving the declarations, which could be
14848 anywhere). But I don't see any reason why the
14849 standards says that they have to be there. */
14850 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14851
14852 if (current_low != ((CORE_ADDR) -1))
14853 {
325fac50
PA
14854 best_low = std::min (best_low, current_low);
14855 best_high = std::max (best_high, current_high);
fae299cd
DC
14856 }
14857 break;
14858 default:
0963b4bd 14859 /* Ignore. */
fae299cd
DC
14860 break;
14861 }
14862
14863 child = sibling_die (child);
14864 }
14865 }
14866
14867 *lowpc = best_low;
14868 *highpc = best_high;
14869}
14870
801e3a5b
JB
14871/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14872 in DIE. */
380bca97 14873
801e3a5b
JB
14874static void
14875dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14876 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14877{
518817b3 14878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 14879 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 14880 struct attribute *attr;
91da1414 14881 struct attribute *attr_high;
801e3a5b 14882
91da1414
MW
14883 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14884 if (attr_high)
801e3a5b 14885 {
801e3a5b 14886 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
435d3d88 14887 if (attr != nullptr)
801e3a5b 14888 {
31aa7e4e
JB
14889 CORE_ADDR low = attr_value_as_address (attr);
14890 CORE_ADDR high = attr_value_as_address (attr_high);
14891
14892 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14893 high += low;
9a619af0 14894
3e29f34a
MR
14895 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14896 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
c24bdb02 14897 cu->get_builder ()->record_block_range (block, low, high - 1);
801e3a5b
JB
14898 }
14899 }
14900
14901 attr = dwarf2_attr (die, DW_AT_ranges, cu);
435d3d88 14902 if (attr != nullptr)
801e3a5b 14903 {
ab435259
DE
14904 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14905 We take advantage of the fact that DW_AT_ranges does not appear
14906 in DW_TAG_compile_unit of DWO files. */
14907 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
14908
14909 /* The value of the DW_AT_ranges attribute is the offset of the
14910 address range list in the .debug_ranges section. */
ab435259
DE
14911 unsigned long offset = (DW_UNSND (attr)
14912 + (need_ranges_base ? cu->ranges_base : 0));
801e3a5b 14913
2d5f09ec 14914 std::vector<blockrange> blockvec;
5f46c5a5
JK
14915 dwarf2_ranges_process (offset, cu,
14916 [&] (CORE_ADDR start, CORE_ADDR end)
14917 {
58fdfd2c
JK
14918 start += baseaddr;
14919 end += baseaddr;
5f46c5a5
JK
14920 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14921 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
c24bdb02 14922 cu->get_builder ()->record_block_range (block, start, end - 1);
2d5f09ec 14923 blockvec.emplace_back (start, end);
5f46c5a5 14924 });
2d5f09ec
KB
14925
14926 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
801e3a5b
JB
14927 }
14928}
14929
685b1105
JK
14930/* Check whether the producer field indicates either of GCC < 4.6, or the
14931 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 14932
685b1105
JK
14933static void
14934check_producer (struct dwarf2_cu *cu)
60d5a603 14935{
38360086 14936 int major, minor;
60d5a603
JK
14937
14938 if (cu->producer == NULL)
14939 {
14940 /* For unknown compilers expect their behavior is DWARF version
14941 compliant.
14942
14943 GCC started to support .debug_types sections by -gdwarf-4 since
14944 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14945 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14946 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14947 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 14948 }
b1ffba5a 14949 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 14950 {
38360086
MW
14951 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14952 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 14953 }
5230b05a 14954 else if (producer_is_icc (cu->producer, &major, &minor))
eb77c9df
AB
14955 {
14956 cu->producer_is_icc = true;
14957 cu->producer_is_icc_lt_14 = major < 14;
14958 }
c258c396
JD
14959 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14960 cu->producer_is_codewarrior = true;
685b1105
JK
14961 else
14962 {
14963 /* For other non-GCC compilers, expect their behavior is DWARF version
14964 compliant. */
60d5a603
JK
14965 }
14966
9068261f 14967 cu->checked_producer = true;
685b1105 14968}
ba919b58 14969
685b1105
JK
14970/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14971 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14972 during 4.6.0 experimental. */
14973
9068261f 14974static bool
685b1105
JK
14975producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14976{
14977 if (!cu->checked_producer)
14978 check_producer (cu);
14979
14980 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
14981}
14982
c258c396
JD
14983
14984/* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14985 with incorrect is_stmt attributes. */
14986
14987static bool
14988producer_is_codewarrior (struct dwarf2_cu *cu)
14989{
14990 if (!cu->checked_producer)
14991 check_producer (cu);
14992
14993 return cu->producer_is_codewarrior;
14994}
14995
405feb71 14996/* Return the default accessibility type if it is not overridden by
60d5a603
JK
14997 DW_AT_accessibility. */
14998
14999static enum dwarf_access_attribute
15000dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15001{
15002 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15003 {
15004 /* The default DWARF 2 accessibility for members is public, the default
15005 accessibility for inheritance is private. */
15006
15007 if (die->tag != DW_TAG_inheritance)
15008 return DW_ACCESS_public;
15009 else
15010 return DW_ACCESS_private;
15011 }
15012 else
15013 {
15014 /* DWARF 3+ defines the default accessibility a different way. The same
15015 rules apply now for DW_TAG_inheritance as for the members and it only
15016 depends on the container kind. */
15017
15018 if (die->parent->tag == DW_TAG_class_type)
15019 return DW_ACCESS_private;
15020 else
15021 return DW_ACCESS_public;
15022 }
15023}
15024
74ac6d43
TT
15025/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15026 offset. If the attribute was not found return 0, otherwise return
15027 1. If it was found but could not properly be handled, set *OFFSET
15028 to 0. */
15029
15030static int
15031handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15032 LONGEST *offset)
15033{
15034 struct attribute *attr;
15035
15036 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15037 if (attr != NULL)
15038 {
15039 *offset = 0;
15040
15041 /* Note that we do not check for a section offset first here.
15042 This is because DW_AT_data_member_location is new in DWARF 4,
15043 so if we see it, we can assume that a constant form is really
15044 a constant and not a section offset. */
15045 if (attr_form_is_constant (attr))
15046 *offset = dwarf2_get_attr_constant_value (attr, 0);
15047 else if (attr_form_is_section_offset (attr))
15048 dwarf2_complex_location_expr_complaint ();
15049 else if (attr_form_is_block (attr))
15050 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15051 else
15052 dwarf2_complex_location_expr_complaint ();
15053
15054 return 1;
15055 }
15056
15057 return 0;
15058}
15059
c906108c
SS
15060/* Add an aggregate field to the field list. */
15061
15062static void
107d2387 15063dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 15064 struct dwarf2_cu *cu)
6e70227d 15065{
518817b3 15066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5e2b427d 15067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
15068 struct nextfield *new_field;
15069 struct attribute *attr;
15070 struct field *fp;
15d034d0 15071 const char *fieldname = "";
c906108c 15072
7d0ccb61
DJ
15073 if (die->tag == DW_TAG_inheritance)
15074 {
be2daae6
TT
15075 fip->baseclasses.emplace_back ();
15076 new_field = &fip->baseclasses.back ();
7d0ccb61
DJ
15077 }
15078 else
15079 {
be2daae6
TT
15080 fip->fields.emplace_back ();
15081 new_field = &fip->fields.back ();
7d0ccb61 15082 }
be2daae6 15083
c906108c
SS
15084 fip->nfields++;
15085
e142c38c 15086 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
435d3d88 15087 if (attr != nullptr)
c906108c 15088 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
15089 else
15090 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
15091 if (new_field->accessibility != DW_ACCESS_public)
15092 fip->non_public_fields = 1;
60d5a603 15093
e142c38c 15094 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
435d3d88 15095 if (attr != nullptr)
c906108c 15096 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
15097 else
15098 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
15099
15100 fp = &new_field->field;
a9a9bd0f 15101
e142c38c 15102 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 15103 {
74ac6d43
TT
15104 LONGEST offset;
15105
a9a9bd0f 15106 /* Data member other than a C++ static data member. */
6e70227d 15107
c906108c 15108 /* Get type of field. */
e7c27a73 15109 fp->type = die_type (die, cu);
c906108c 15110
d6a843b5 15111 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 15112
c906108c 15113 /* Get bit size of field (zero if none). */
e142c38c 15114 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
435d3d88 15115 if (attr != nullptr)
c906108c
SS
15116 {
15117 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15118 }
15119 else
15120 {
15121 FIELD_BITSIZE (*fp) = 0;
15122 }
15123
15124 /* Get bit offset of field. */
74ac6d43
TT
15125 if (handle_data_member_location (die, cu, &offset))
15126 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 15127 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
435d3d88 15128 if (attr != nullptr)
c906108c 15129 {
d5a22e77 15130 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
15131 {
15132 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
15133 additional bit offset from the MSB of the containing
15134 anonymous object to the MSB of the field. We don't
15135 have to do anything special since we don't need to
15136 know the size of the anonymous object. */
f41f5e61 15137 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
15138 }
15139 else
15140 {
15141 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
15142 MSB of the anonymous object, subtract off the number of
15143 bits from the MSB of the field to the MSB of the
15144 object, and then subtract off the number of bits of
15145 the field itself. The result is the bit offset of
15146 the LSB of the field. */
c906108c
SS
15147 int anonymous_size;
15148 int bit_offset = DW_UNSND (attr);
15149
e142c38c 15150 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 15151 if (attr != nullptr)
c906108c
SS
15152 {
15153 /* The size of the anonymous object containing
15154 the bit field is explicit, so use the
15155 indicated size (in bytes). */
15156 anonymous_size = DW_UNSND (attr);
15157 }
15158 else
15159 {
15160 /* The size of the anonymous object containing
15161 the bit field must be inferred from the type
15162 attribute of the data member containing the
15163 bit field. */
15164 anonymous_size = TYPE_LENGTH (fp->type);
15165 }
f41f5e61
PA
15166 SET_FIELD_BITPOS (*fp,
15167 (FIELD_BITPOS (*fp)
15168 + anonymous_size * bits_per_byte
15169 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
15170 }
15171 }
da5b30da
AA
15172 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15173 if (attr != NULL)
15174 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15175 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
15176
15177 /* Get name of field. */
39cbfefa
DJ
15178 fieldname = dwarf2_name (die, cu);
15179 if (fieldname == NULL)
15180 fieldname = "";
d8151005
DJ
15181
15182 /* The name is already allocated along with this objfile, so we don't
15183 need to duplicate it for the type. */
15184 fp->name = fieldname;
c906108c
SS
15185
15186 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 15187 pointer or virtual base class pointer) to private. */
e142c38c 15188 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 15189 {
d48cc9dd 15190 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
15191 new_field->accessibility = DW_ACCESS_private;
15192 fip->non_public_fields = 1;
15193 }
15194 }
a9a9bd0f 15195 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 15196 {
a9a9bd0f
DC
15197 /* C++ static member. */
15198
15199 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15200 is a declaration, but all versions of G++ as of this writing
15201 (so through at least 3.2.1) incorrectly generate
15202 DW_TAG_variable tags. */
6e70227d 15203
ff355380 15204 const char *physname;
c906108c 15205
a9a9bd0f 15206 /* Get name of field. */
39cbfefa
DJ
15207 fieldname = dwarf2_name (die, cu);
15208 if (fieldname == NULL)
c906108c
SS
15209 return;
15210
254e6b9e 15211 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
15212 if (attr
15213 /* Only create a symbol if this is an external value.
15214 new_symbol checks this and puts the value in the global symbol
15215 table, which we want. If it is not external, new_symbol
15216 will try to put the value in cu->list_in_scope which is wrong. */
15217 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
15218 {
15219 /* A static const member, not much different than an enum as far as
15220 we're concerned, except that we can support more types. */
15221 new_symbol (die, NULL, cu);
15222 }
15223
2df3850c 15224 /* Get physical name. */
ff355380 15225 physname = dwarf2_physname (fieldname, die, cu);
c906108c 15226
d8151005
DJ
15227 /* The name is already allocated along with this objfile, so we don't
15228 need to duplicate it for the type. */
15229 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 15230 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 15231 FIELD_NAME (*fp) = fieldname;
c906108c
SS
15232 }
15233 else if (die->tag == DW_TAG_inheritance)
15234 {
74ac6d43 15235 LONGEST offset;
d4b96c9a 15236
74ac6d43
TT
15237 /* C++ base class field. */
15238 if (handle_data_member_location (die, cu, &offset))
15239 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 15240 FIELD_BITSIZE (*fp) = 0;
e7c27a73 15241 FIELD_TYPE (*fp) = die_type (die, cu);
a737d952 15242 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
c906108c 15243 }
2ddeaf8a
TT
15244 else if (die->tag == DW_TAG_variant_part)
15245 {
15246 /* process_structure_scope will treat this DIE as a union. */
15247 process_structure_scope (die, cu);
15248
15249 /* The variant part is relative to the start of the enclosing
15250 structure. */
15251 SET_FIELD_BITPOS (*fp, 0);
15252 fp->type = get_die_type (die, cu);
15253 fp->artificial = 1;
15254 fp->name = "<<variant>>";
c8c81635
TT
15255
15256 /* Normally a DW_TAG_variant_part won't have a size, but our
15257 representation requires one, so set it to the maximum of the
489dbda6
TT
15258 child sizes, being sure to account for the offset at which
15259 each child is seen. */
c8c81635
TT
15260 if (TYPE_LENGTH (fp->type) == 0)
15261 {
15262 unsigned max = 0;
15263 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
489dbda6
TT
15264 {
15265 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
15266 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
15267 if (len > max)
15268 max = len;
15269 }
c8c81635
TT
15270 TYPE_LENGTH (fp->type) = max;
15271 }
2ddeaf8a
TT
15272 }
15273 else
15274 gdb_assert_not_reached ("missing case in dwarf2_add_field");
c906108c
SS
15275}
15276
883fd55a
KS
15277/* Can the type given by DIE define another type? */
15278
15279static bool
15280type_can_define_types (const struct die_info *die)
15281{
15282 switch (die->tag)
15283 {
15284 case DW_TAG_typedef:
15285 case DW_TAG_class_type:
15286 case DW_TAG_structure_type:
15287 case DW_TAG_union_type:
15288 case DW_TAG_enumeration_type:
15289 return true;
15290
15291 default:
15292 return false;
15293 }
15294}
15295
15296/* Add a type definition defined in the scope of the FIP's class. */
98751a41
JK
15297
15298static void
883fd55a
KS
15299dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15300 struct dwarf2_cu *cu)
6e70227d 15301{
be2daae6
TT
15302 struct decl_field fp;
15303 memset (&fp, 0, sizeof (fp));
98751a41 15304
883fd55a 15305 gdb_assert (type_can_define_types (die));
98751a41 15306
883fd55a 15307 /* Get name of field. NULL is okay here, meaning an anonymous type. */
be2daae6
TT
15308 fp.name = dwarf2_name (die, cu);
15309 fp.type = read_type_die (die, cu);
98751a41 15310
c191a687
KS
15311 /* Save accessibility. */
15312 enum dwarf_access_attribute accessibility;
15313 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15314 if (attr != NULL)
15315 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15316 else
15317 accessibility = dwarf2_default_access_attribute (die, cu);
15318 switch (accessibility)
15319 {
15320 case DW_ACCESS_public:
15321 /* The assumed value if neither private nor protected. */
15322 break;
15323 case DW_ACCESS_private:
be2daae6 15324 fp.is_private = 1;
c191a687
KS
15325 break;
15326 case DW_ACCESS_protected:
be2daae6 15327 fp.is_protected = 1;
c191a687
KS
15328 break;
15329 default:
b98664d3 15330 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
15331 }
15332
883fd55a 15333 if (die->tag == DW_TAG_typedef)
be2daae6 15334 fip->typedef_field_list.push_back (fp);
883fd55a 15335 else
be2daae6 15336 fip->nested_types_list.push_back (fp);
98751a41
JK
15337}
15338
c906108c
SS
15339/* Create the vector of fields, and attach it to the type. */
15340
15341static void
fba45db2 15342dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15343 struct dwarf2_cu *cu)
c906108c
SS
15344{
15345 int nfields = fip->nfields;
15346
15347 /* Record the field count, allocate space for the array of fields,
15348 and create blank accessibility bitfields if necessary. */
15349 TYPE_NFIELDS (type) = nfields;
15350 TYPE_FIELDS (type) = (struct field *)
be2daae6 15351 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
c906108c 15352
b4ba55a1 15353 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
15354 {
15355 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15356
15357 TYPE_FIELD_PRIVATE_BITS (type) =
15358 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15359 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15360
15361 TYPE_FIELD_PROTECTED_BITS (type) =
15362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15363 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15364
774b6a14
TT
15365 TYPE_FIELD_IGNORE_BITS (type) =
15366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15367 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
15368 }
15369
15370 /* If the type has baseclasses, allocate and clear a bit vector for
15371 TYPE_FIELD_VIRTUAL_BITS. */
be2daae6 15372 if (!fip->baseclasses.empty () && cu->language != language_ada)
c906108c 15373 {
be2daae6 15374 int num_bytes = B_BYTES (fip->baseclasses.size ());
fe1b8b76 15375 unsigned char *pointer;
c906108c
SS
15376
15377 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 15378 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 15379 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
be2daae6
TT
15380 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15381 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
c906108c
SS
15382 }
15383
2ddeaf8a
TT
15384 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15385 {
15386 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15387
be2daae6 15388 for (int index = 0; index < nfields; ++index)
2ddeaf8a 15389 {
be2daae6
TT
15390 struct nextfield &field = fip->fields[index];
15391
15392 if (field.variant.is_discriminant)
2ddeaf8a 15393 di->discriminant_index = index;
be2daae6 15394 else if (field.variant.default_branch)
2ddeaf8a
TT
15395 di->default_index = index;
15396 else
be2daae6 15397 di->discriminants[index] = field.variant.discriminant_value;
2ddeaf8a
TT
15398 }
15399 }
15400
be2daae6
TT
15401 /* Copy the saved-up fields into the field vector. */
15402 for (int i = 0; i < nfields; ++i)
c906108c 15403 {
be2daae6
TT
15404 struct nextfield &field
15405 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15406 : fip->fields[i - fip->baseclasses.size ()]);
7d0ccb61 15407
be2daae6
TT
15408 TYPE_FIELD (type, i) = field.field;
15409 switch (field.accessibility)
c906108c 15410 {
c5aa993b 15411 case DW_ACCESS_private:
b4ba55a1 15412 if (cu->language != language_ada)
be2daae6 15413 SET_TYPE_FIELD_PRIVATE (type, i);
c5aa993b 15414 break;
c906108c 15415
c5aa993b 15416 case DW_ACCESS_protected:
b4ba55a1 15417 if (cu->language != language_ada)
be2daae6 15418 SET_TYPE_FIELD_PROTECTED (type, i);
c5aa993b 15419 break;
c906108c 15420
c5aa993b
JM
15421 case DW_ACCESS_public:
15422 break;
c906108c 15423
c5aa993b
JM
15424 default:
15425 /* Unknown accessibility. Complain and treat it as public. */
15426 {
b98664d3 15427 complaint (_("unsupported accessibility %d"),
be2daae6 15428 field.accessibility);
c5aa993b
JM
15429 }
15430 break;
c906108c 15431 }
be2daae6 15432 if (i < fip->baseclasses.size ())
c906108c 15433 {
be2daae6 15434 switch (field.virtuality)
c906108c 15435 {
c5aa993b
JM
15436 case DW_VIRTUALITY_virtual:
15437 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 15438 if (cu->language == language_ada)
a73c6dcd 15439 error (_("unexpected virtuality in component of Ada type"));
be2daae6 15440 SET_TYPE_FIELD_VIRTUAL (type, i);
c5aa993b 15441 break;
c906108c
SS
15442 }
15443 }
c906108c
SS
15444 }
15445}
15446
7d27a96d
TT
15447/* Return true if this member function is a constructor, false
15448 otherwise. */
15449
15450static int
15451dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15452{
15453 const char *fieldname;
fe978cb0 15454 const char *type_name;
7d27a96d
TT
15455 int len;
15456
15457 if (die->parent == NULL)
15458 return 0;
15459
15460 if (die->parent->tag != DW_TAG_structure_type
15461 && die->parent->tag != DW_TAG_union_type
15462 && die->parent->tag != DW_TAG_class_type)
15463 return 0;
15464
15465 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
15466 type_name = dwarf2_name (die->parent, cu);
15467 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
15468 return 0;
15469
15470 len = strlen (fieldname);
fe978cb0
PA
15471 return (strncmp (fieldname, type_name, len) == 0
15472 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
15473}
15474
e35000a7
TBA
15475/* Check if the given VALUE is a recognized enum
15476 dwarf_defaulted_attribute constant according to DWARF5 spec,
15477 Table 7.24. */
15478
15479static bool
15480is_valid_DW_AT_defaulted (ULONGEST value)
15481{
15482 switch (value)
15483 {
15484 case DW_DEFAULTED_no:
15485 case DW_DEFAULTED_in_class:
15486 case DW_DEFAULTED_out_of_class:
15487 return true;
15488 }
15489
15490 complaint (_("unrecognized DW_AT_defaulted value (%lu)"), value);
15491 return false;
15492}
15493
c906108c
SS
15494/* Add a member function to the proper fieldlist. */
15495
15496static void
107d2387 15497dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 15498 struct type *type, struct dwarf2_cu *cu)
c906108c 15499{
518817b3 15500 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 15501 struct attribute *attr;
c906108c 15502 int i;
be2daae6 15503 struct fnfieldlist *flp = nullptr;
c906108c 15504 struct fn_field *fnp;
15d034d0 15505 const char *fieldname;
f792889a 15506 struct type *this_type;
60d5a603 15507 enum dwarf_access_attribute accessibility;
c906108c 15508
b4ba55a1 15509 if (cu->language == language_ada)
a73c6dcd 15510 error (_("unexpected member function in Ada type"));
b4ba55a1 15511
2df3850c 15512 /* Get name of member function. */
39cbfefa
DJ
15513 fieldname = dwarf2_name (die, cu);
15514 if (fieldname == NULL)
2df3850c 15515 return;
c906108c 15516
c906108c 15517 /* Look up member function name in fieldlist. */
be2daae6 15518 for (i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15519 {
27bfe10e 15520 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
be2daae6
TT
15521 {
15522 flp = &fip->fnfieldlists[i];
15523 break;
15524 }
c906108c
SS
15525 }
15526
be2daae6
TT
15527 /* Create a new fnfieldlist if necessary. */
15528 if (flp == nullptr)
c906108c 15529 {
be2daae6
TT
15530 fip->fnfieldlists.emplace_back ();
15531 flp = &fip->fnfieldlists.back ();
c906108c 15532 flp->name = fieldname;
be2daae6 15533 i = fip->fnfieldlists.size () - 1;
c906108c
SS
15534 }
15535
be2daae6
TT
15536 /* Create a new member function field and add it to the vector of
15537 fnfieldlists. */
15538 flp->fnfields.emplace_back ();
15539 fnp = &flp->fnfields.back ();
3da10d80
KS
15540
15541 /* Delay processing of the physname until later. */
9c37b5ae 15542 if (cu->language == language_cplus)
be2daae6
TT
15543 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15544 die, cu);
3da10d80
KS
15545 else
15546 {
1d06ead6 15547 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
15548 fnp->physname = physname ? physname : "";
15549 }
15550
c906108c 15551 fnp->type = alloc_type (objfile);
f792889a
DJ
15552 this_type = read_type_die (die, cu);
15553 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 15554 {
f792889a 15555 int nparams = TYPE_NFIELDS (this_type);
c906108c 15556
f792889a 15557 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
15558 of the method itself (TYPE_CODE_METHOD). */
15559 smash_to_method_type (fnp->type, type,
f792889a
DJ
15560 TYPE_TARGET_TYPE (this_type),
15561 TYPE_FIELDS (this_type),
15562 TYPE_NFIELDS (this_type),
15563 TYPE_VARARGS (this_type));
c906108c
SS
15564
15565 /* Handle static member functions.
c5aa993b 15566 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
15567 member functions. G++ helps GDB by marking the first
15568 parameter for non-static member functions (which is the this
15569 pointer) as artificial. We obtain this information from
15570 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 15571 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
15572 fnp->voffset = VOFFSET_STATIC;
15573 }
15574 else
b98664d3 15575 complaint (_("member function type missing for '%s'"),
3da10d80 15576 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
15577
15578 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 15579 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 15580 fnp->fcontext = die_containing_type (die, cu);
c906108c 15581
3e43a32a
MS
15582 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15583 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
15584
15585 /* Get accessibility. */
e142c38c 15586 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
435d3d88 15587 if (attr != nullptr)
aead7601 15588 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
15589 else
15590 accessibility = dwarf2_default_access_attribute (die, cu);
15591 switch (accessibility)
c906108c 15592 {
60d5a603
JK
15593 case DW_ACCESS_private:
15594 fnp->is_private = 1;
15595 break;
15596 case DW_ACCESS_protected:
15597 fnp->is_protected = 1;
15598 break;
c906108c
SS
15599 }
15600
b02dede2 15601 /* Check for artificial methods. */
e142c38c 15602 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
15603 if (attr && DW_UNSND (attr) != 0)
15604 fnp->is_artificial = 1;
15605
e35000a7
TBA
15606 /* Check for defaulted methods. */
15607 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15608 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15609 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15610
15611 /* Check for deleted methods. */
15612 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15613 if (attr != nullptr && DW_UNSND (attr) != 0)
15614 fnp->is_deleted = 1;
15615
7d27a96d
TT
15616 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15617
0d564a31 15618 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
15619 function. For older versions of GCC, this is an offset in the
15620 appropriate virtual table, as specified by DW_AT_containing_type.
15621 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
15622 to the object address. */
15623
e142c38c 15624 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
435d3d88 15625 if (attr != nullptr)
8e19ed76 15626 {
aec5aa8b 15627 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 15628 {
aec5aa8b
TT
15629 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15630 {
15631 /* Old-style GCC. */
15632 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15633 }
15634 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15635 || (DW_BLOCK (attr)->size > 1
15636 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15637 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15638 {
aec5aa8b
TT
15639 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15640 if ((fnp->voffset % cu->header.addr_size) != 0)
15641 dwarf2_complex_location_expr_complaint ();
15642 else
15643 fnp->voffset /= cu->header.addr_size;
15644 fnp->voffset += 2;
15645 }
15646 else
15647 dwarf2_complex_location_expr_complaint ();
15648
15649 if (!fnp->fcontext)
7e993ebf
KS
15650 {
15651 /* If there is no `this' field and no DW_AT_containing_type,
15652 we cannot actually find a base class context for the
15653 vtable! */
15654 if (TYPE_NFIELDS (this_type) == 0
15655 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15656 {
b98664d3 15657 complaint (_("cannot determine context for virtual member "
9d8780f0
SM
15658 "function \"%s\" (offset %s)"),
15659 fieldname, sect_offset_str (die->sect_off));
7e993ebf
KS
15660 }
15661 else
15662 {
15663 fnp->fcontext
15664 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15665 }
15666 }
aec5aa8b 15667 }
3690dd37 15668 else if (attr_form_is_section_offset (attr))
8e19ed76 15669 {
4d3c2250 15670 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15671 }
15672 else
15673 {
4d3c2250
KB
15674 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15675 fieldname);
8e19ed76 15676 }
0d564a31 15677 }
d48cc9dd
DJ
15678 else
15679 {
15680 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15681 if (attr && DW_UNSND (attr))
15682 {
15683 /* GCC does this, as of 2008-08-25; PR debug/37237. */
b98664d3 15684 complaint (_("Member function \"%s\" (offset %s) is virtual "
3e43a32a 15685 "but the vtable offset is not specified"),
9d8780f0 15686 fieldname, sect_offset_str (die->sect_off));
9655fd1a 15687 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
15688 TYPE_CPLUS_DYNAMIC (type) = 1;
15689 }
15690 }
c906108c
SS
15691}
15692
15693/* Create the vector of member function fields, and attach it to the type. */
15694
15695static void
fba45db2 15696dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15697 struct dwarf2_cu *cu)
c906108c 15698{
b4ba55a1 15699 if (cu->language == language_ada)
a73c6dcd 15700 error (_("unexpected member functions in Ada type"));
b4ba55a1 15701
c906108c
SS
15702 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15703 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
be2daae6
TT
15704 TYPE_ALLOC (type,
15705 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
c906108c 15706
be2daae6 15707 for (int i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15708 {
be2daae6 15709 struct fnfieldlist &nf = fip->fnfieldlists[i];
c906108c 15710 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
c906108c 15711
be2daae6
TT
15712 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15713 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
c906108c 15714 fn_flp->fn_fields = (struct fn_field *)
be2daae6
TT
15715 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15716
15717 for (int k = 0; k < nf.fnfields.size (); ++k)
15718 fn_flp->fn_fields[k] = nf.fnfields[k];
c906108c
SS
15719 }
15720
be2daae6 15721 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
c906108c
SS
15722}
15723
1168df01
JB
15724/* Returns non-zero if NAME is the name of a vtable member in CU's
15725 language, zero otherwise. */
15726static int
15727is_vtable_name (const char *name, struct dwarf2_cu *cu)
15728{
15729 static const char vptr[] = "_vptr";
15730
9c37b5ae
TT
15731 /* Look for the C++ form of the vtable. */
15732 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
15733 return 1;
15734
15735 return 0;
15736}
15737
c0dd20ea 15738/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
15739 functions, with the ABI-specified layout. If TYPE describes
15740 such a structure, smash it into a member function type.
61049d3b
DJ
15741
15742 GCC shouldn't do this; it should just output pointer to member DIEs.
15743 This is GCC PR debug/28767. */
c0dd20ea 15744
0b92b5bb
TT
15745static void
15746quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 15747{
09e2d7c7 15748 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
15749
15750 /* Check for a structure with no name and two children. */
0b92b5bb
TT
15751 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15752 return;
c0dd20ea
DJ
15753
15754 /* Check for __pfn and __delta members. */
0b92b5bb
TT
15755 if (TYPE_FIELD_NAME (type, 0) == NULL
15756 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15757 || TYPE_FIELD_NAME (type, 1) == NULL
15758 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15759 return;
c0dd20ea
DJ
15760
15761 /* Find the type of the method. */
0b92b5bb 15762 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
15763 if (pfn_type == NULL
15764 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15765 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 15766 return;
c0dd20ea
DJ
15767
15768 /* Look for the "this" argument. */
15769 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15770 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 15771 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 15772 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 15773 return;
c0dd20ea 15774
09e2d7c7 15775 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 15776 new_type = alloc_type (objfile);
09e2d7c7 15777 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
15778 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15779 TYPE_VARARGS (pfn_type));
0b92b5bb 15780 smash_to_methodptr_type (type, new_type);
c0dd20ea 15781}
1168df01 15782
2b4424c3
TT
15783/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15784 appropriate error checking and issuing complaints if there is a
15785 problem. */
15786
15787static ULONGEST
15788get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15789{
15790 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15791
15792 if (attr == nullptr)
15793 return 0;
15794
15795 if (!attr_form_is_constant (attr))
15796 {
b98664d3 15797 complaint (_("DW_AT_alignment must have constant form"
2b4424c3
TT
15798 " - DIE at %s [in module %s]"),
15799 sect_offset_str (die->sect_off),
15800 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15801 return 0;
15802 }
15803
15804 ULONGEST align;
15805 if (attr->form == DW_FORM_sdata)
15806 {
15807 LONGEST val = DW_SND (attr);
15808 if (val < 0)
15809 {
b98664d3 15810 complaint (_("DW_AT_alignment value must not be negative"
2b4424c3
TT
15811 " - DIE at %s [in module %s]"),
15812 sect_offset_str (die->sect_off),
15813 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15814 return 0;
15815 }
15816 align = val;
15817 }
15818 else
15819 align = DW_UNSND (attr);
15820
15821 if (align == 0)
15822 {
b98664d3 15823 complaint (_("DW_AT_alignment value must not be zero"
2b4424c3
TT
15824 " - DIE at %s [in module %s]"),
15825 sect_offset_str (die->sect_off),
15826 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15827 return 0;
15828 }
15829 if ((align & (align - 1)) != 0)
15830 {
b98664d3 15831 complaint (_("DW_AT_alignment value must be a power of 2"
2b4424c3
TT
15832 " - DIE at %s [in module %s]"),
15833 sect_offset_str (die->sect_off),
15834 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15835 return 0;
15836 }
15837
15838 return align;
15839}
15840
15841/* If the DIE has a DW_AT_alignment attribute, use its value to set
15842 the alignment for TYPE. */
15843
15844static void
15845maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15846 struct type *type)
15847{
15848 if (!set_type_align (type, get_alignment (cu, die)))
b98664d3 15849 complaint (_("DW_AT_alignment value too large"
2b4424c3
TT
15850 " - DIE at %s [in module %s]"),
15851 sect_offset_str (die->sect_off),
15852 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15853}
685b1105 15854
e35000a7
TBA
15855/* Check if the given VALUE is a valid enum dwarf_calling_convention
15856 constant for a type, according to DWARF5 spec, Table 5.5. */
15857
15858static bool
15859is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15860{
15861 switch (value)
15862 {
15863 case DW_CC_normal:
15864 case DW_CC_pass_by_reference:
15865 case DW_CC_pass_by_value:
15866 return true;
15867
15868 default:
15869 complaint (_("unrecognized DW_AT_calling_convention value "
15870 "(%lu) for a type"), value);
15871 return false;
15872 }
15873}
15874
d0922fcf
TBA
15875/* Check if the given VALUE is a valid enum dwarf_calling_convention
15876 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15877 also according to GNU-specific values (see include/dwarf2.h). */
15878
15879static bool
15880is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15881{
15882 switch (value)
15883 {
15884 case DW_CC_normal:
15885 case DW_CC_program:
15886 case DW_CC_nocall:
15887 return true;
15888
15889 case DW_CC_GNU_renesas_sh:
15890 case DW_CC_GNU_borland_fastcall_i386:
15891 case DW_CC_GDB_IBM_OpenCL:
15892 return true;
15893
15894 default:
15895 complaint (_("unrecognized DW_AT_calling_convention value "
15896 "(%lu) for a subroutine"), value);
15897 return false;
15898 }
15899}
15900
c906108c 15901/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
15902 (definition) to create a type for the structure or union. Fill in
15903 the type's name and general properties; the members will not be
83655187
DE
15904 processed until process_structure_scope. A symbol table entry for
15905 the type will also not be done until process_structure_scope (assuming
15906 the type has a name).
c906108c 15907
c767944b
DJ
15908 NOTE: we need to call these functions regardless of whether or not the
15909 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 15910 structure or union. This gets the type entered into our set of
83655187 15911 user defined types. */
c906108c 15912
f792889a 15913static struct type *
134d01f1 15914read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15915{
518817b3 15916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
15917 struct type *type;
15918 struct attribute *attr;
15d034d0 15919 const char *name;
c906108c 15920
348e048f
DE
15921 /* If the definition of this type lives in .debug_types, read that type.
15922 Don't follow DW_AT_specification though, that will take us back up
15923 the chain and we want to go down. */
45e58e77 15924 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
435d3d88 15925 if (attr != nullptr)
348e048f 15926 {
ac9ec31b 15927 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 15928
ac9ec31b 15929 /* The type's CU may not be the same as CU.
02142a6c 15930 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
15931 return set_die_type (die, type, cu);
15932 }
15933
c0dd20ea 15934 type = alloc_type (objfile);
c906108c 15935 INIT_CPLUS_SPECIFIC (type);
93311388 15936
39cbfefa
DJ
15937 name = dwarf2_name (die, cu);
15938 if (name != NULL)
c906108c 15939 {
987504bb 15940 if (cu->language == language_cplus
c44af4eb
TT
15941 || cu->language == language_d
15942 || cu->language == language_rust)
63d06c5c 15943 {
15d034d0 15944 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
15945
15946 /* dwarf2_full_name might have already finished building the DIE's
15947 type. If so, there is no need to continue. */
15948 if (get_die_type (die, cu) != NULL)
15949 return get_die_type (die, cu);
15950
e86ca25f 15951 TYPE_NAME (type) = full_name;
63d06c5c
DC
15952 }
15953 else
15954 {
d8151005
DJ
15955 /* The name is already allocated along with this objfile, so
15956 we don't need to duplicate it for the type. */
e86ca25f 15957 TYPE_NAME (type) = name;
63d06c5c 15958 }
c906108c
SS
15959 }
15960
15961 if (die->tag == DW_TAG_structure_type)
15962 {
15963 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15964 }
15965 else if (die->tag == DW_TAG_union_type)
15966 {
15967 TYPE_CODE (type) = TYPE_CODE_UNION;
15968 }
2ddeaf8a
TT
15969 else if (die->tag == DW_TAG_variant_part)
15970 {
15971 TYPE_CODE (type) = TYPE_CODE_UNION;
15972 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15973 }
c906108c
SS
15974 else
15975 {
4753d33b 15976 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
15977 }
15978
0cc2414c
TT
15979 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15980 TYPE_DECLARED_CLASS (type) = 1;
15981
e35000a7
TBA
15982 /* Store the calling convention in the type if it's available in
15983 the die. Otherwise the calling convention remains set to
15984 the default value DW_CC_normal. */
15985 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15986 if (attr != nullptr
15987 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15988 {
15989 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15990 TYPE_CPLUS_CALLING_CONVENTION (type)
15991 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15992 }
15993
e142c38c 15994 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 15995 if (attr != nullptr)
c906108c 15996 {
155bfbd3
JB
15997 if (attr_form_is_constant (attr))
15998 TYPE_LENGTH (type) = DW_UNSND (attr);
15999 else
16000 {
16001 /* For the moment, dynamic type sizes are not supported
16002 by GDB's struct type. The actual size is determined
16003 on-demand when resolving the type of a given object,
16004 so set the type's length to zero for now. Otherwise,
16005 we record an expression as the length, and that expression
16006 could lead to a very large value, which could eventually
16007 lead to us trying to allocate that much memory when creating
16008 a value of that type. */
16009 TYPE_LENGTH (type) = 0;
16010 }
c906108c
SS
16011 }
16012 else
16013 {
16014 TYPE_LENGTH (type) = 0;
16015 }
16016
2b4424c3
TT
16017 maybe_set_alignment (cu, die, type);
16018
5230b05a 16019 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 16020 {
5230b05a
WT
16021 /* ICC<14 does not output the required DW_AT_declaration on
16022 incomplete types, but gives them a size of zero. */
422b1cb0 16023 TYPE_STUB (type) = 1;
685b1105
JK
16024 }
16025 else
16026 TYPE_STUB_SUPPORTED (type) = 1;
16027
dc718098 16028 if (die_is_declaration (die, cu))
876cecd0 16029 TYPE_STUB (type) = 1;
a6c727b2
DJ
16030 else if (attr == NULL && die->child == NULL
16031 && producer_is_realview (cu->producer))
16032 /* RealView does not output the required DW_AT_declaration
16033 on incomplete types. */
16034 TYPE_STUB (type) = 1;
dc718098 16035
c906108c
SS
16036 /* We need to add the type field to the die immediately so we don't
16037 infinitely recurse when dealing with pointers to the structure
0963b4bd 16038 type within the structure itself. */
1c379e20 16039 set_die_type (die, type, cu);
c906108c 16040
7e314c57
JK
16041 /* set_die_type should be already done. */
16042 set_descriptive_type (type, die, cu);
16043
c767944b
DJ
16044 return type;
16045}
16046
2ddeaf8a
TT
16047/* A helper for process_structure_scope that handles a single member
16048 DIE. */
16049
16050static void
16051handle_struct_member_die (struct die_info *child_die, struct type *type,
16052 struct field_info *fi,
16053 std::vector<struct symbol *> *template_args,
16054 struct dwarf2_cu *cu)
16055{
16056 if (child_die->tag == DW_TAG_member
16057 || child_die->tag == DW_TAG_variable
16058 || child_die->tag == DW_TAG_variant_part)
16059 {
16060 /* NOTE: carlton/2002-11-05: A C++ static data member
16061 should be a DW_TAG_member that is a declaration, but
16062 all versions of G++ as of this writing (so through at
16063 least 3.2.1) incorrectly generate DW_TAG_variable
16064 tags for them instead. */
16065 dwarf2_add_field (fi, child_die, cu);
16066 }
16067 else if (child_die->tag == DW_TAG_subprogram)
16068 {
16069 /* Rust doesn't have member functions in the C++ sense.
16070 However, it does emit ordinary functions as children
16071 of a struct DIE. */
16072 if (cu->language == language_rust)
16073 read_func_scope (child_die, cu);
16074 else
16075 {
16076 /* C++ member function. */
16077 dwarf2_add_member_fn (fi, child_die, type, cu);
16078 }
16079 }
16080 else if (child_die->tag == DW_TAG_inheritance)
16081 {
16082 /* C++ base class field. */
16083 dwarf2_add_field (fi, child_die, cu);
16084 }
16085 else if (type_can_define_types (child_die))
16086 dwarf2_add_type_defn (fi, child_die, cu);
16087 else if (child_die->tag == DW_TAG_template_type_param
16088 || child_die->tag == DW_TAG_template_value_param)
16089 {
16090 struct symbol *arg = new_symbol (child_die, NULL, cu);
16091
16092 if (arg != NULL)
16093 template_args->push_back (arg);
16094 }
16095 else if (child_die->tag == DW_TAG_variant)
16096 {
16097 /* In a variant we want to get the discriminant and also add a
16098 field for our sole member child. */
16099 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
16100
bde09ab7 16101 for (die_info *variant_child = child_die->child;
2ddeaf8a
TT
16102 variant_child != NULL;
16103 variant_child = sibling_die (variant_child))
16104 {
16105 if (variant_child->tag == DW_TAG_member)
16106 {
16107 handle_struct_member_die (variant_child, type, fi,
16108 template_args, cu);
16109 /* Only handle the one. */
16110 break;
16111 }
16112 }
16113
16114 /* We don't handle this but we might as well report it if we see
16115 it. */
16116 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
b98664d3 16117 complaint (_("DW_AT_discr_list is not supported yet"
2ddeaf8a
TT
16118 " - DIE at %s [in module %s]"),
16119 sect_offset_str (child_die->sect_off),
16120 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16121
16122 /* The first field was just added, so we can stash the
16123 discriminant there. */
be2daae6 16124 gdb_assert (!fi->fields.empty ());
2ddeaf8a 16125 if (discr == NULL)
be2daae6 16126 fi->fields.back ().variant.default_branch = true;
2ddeaf8a 16127 else
be2daae6 16128 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
2ddeaf8a
TT
16129 }
16130}
16131
c767944b
DJ
16132/* Finish creating a structure or union type, including filling in
16133 its members and creating a symbol for it. */
16134
16135static void
16136process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16137{
518817b3 16138 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
ca040673 16139 struct die_info *child_die;
c767944b
DJ
16140 struct type *type;
16141
16142 type = get_die_type (die, cu);
16143 if (type == NULL)
16144 type = read_structure_type (die, cu);
16145
2ddeaf8a
TT
16146 /* When reading a DW_TAG_variant_part, we need to notice when we
16147 read the discriminant member, so we can record it later in the
16148 discriminant_info. */
16149 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
feee869b 16150 sect_offset discr_offset {};
3e1d3d8c 16151 bool has_template_parameters = false;
2ddeaf8a
TT
16152
16153 if (is_variant_part)
16154 {
16155 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16156 if (discr == NULL)
16157 {
16158 /* Maybe it's a univariant form, an extension we support.
16159 In this case arrange not to check the offset. */
16160 is_variant_part = false;
16161 }
16162 else if (attr_form_is_ref (discr))
16163 {
16164 struct dwarf2_cu *target_cu = cu;
16165 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16166
16167 discr_offset = target_die->sect_off;
16168 }
16169 else
16170 {
b98664d3 16171 complaint (_("DW_AT_discr does not have DIE reference form"
2ddeaf8a
TT
16172 " - DIE at %s [in module %s]"),
16173 sect_offset_str (die->sect_off),
16174 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16175 is_variant_part = false;
16176 }
16177 }
16178
e142c38c 16179 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
16180 {
16181 struct field_info fi;
2f4732b0 16182 std::vector<struct symbol *> template_args;
c906108c 16183
639d11d3 16184 child_die = die->child;
c906108c
SS
16185
16186 while (child_die && child_die->tag)
16187 {
2ddeaf8a 16188 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
34eaf542 16189
2ddeaf8a 16190 if (is_variant_part && discr_offset == child_die->sect_off)
be2daae6 16191 fi.fields.back ().variant.is_discriminant = true;
34eaf542 16192
c906108c
SS
16193 child_die = sibling_die (child_die);
16194 }
16195
34eaf542 16196 /* Attach template arguments to type. */
2f4732b0 16197 if (!template_args.empty ())
34eaf542 16198 {
3e1d3d8c 16199 has_template_parameters = true;
34eaf542 16200 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2f4732b0 16201 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
34eaf542 16202 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
16203 = XOBNEWVEC (&objfile->objfile_obstack,
16204 struct symbol *,
16205 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542 16206 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
2f4732b0 16207 template_args.data (),
34eaf542
TT
16208 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16209 * sizeof (struct symbol *)));
34eaf542
TT
16210 }
16211
c906108c
SS
16212 /* Attach fields and member functions to the type. */
16213 if (fi.nfields)
e7c27a73 16214 dwarf2_attach_fields_to_type (&fi, type, cu);
be2daae6 16215 if (!fi.fnfieldlists.empty ())
c906108c 16216 {
e7c27a73 16217 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 16218
c5aa993b 16219 /* Get the type which refers to the base class (possibly this
c906108c 16220 class itself) which contains the vtable pointer for the current
0d564a31
DJ
16221 class from the DW_AT_containing_type attribute. This use of
16222 DW_AT_containing_type is a GNU extension. */
c906108c 16223
e142c38c 16224 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 16225 {
e7c27a73 16226 struct type *t = die_containing_type (die, cu);
c906108c 16227
ae6ae975 16228 set_type_vptr_basetype (type, t);
c906108c
SS
16229 if (type == t)
16230 {
c906108c
SS
16231 int i;
16232
16233 /* Our own class provides vtbl ptr. */
16234 for (i = TYPE_NFIELDS (t) - 1;
16235 i >= TYPE_N_BASECLASSES (t);
16236 --i)
16237 {
0d5cff50 16238 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 16239
1168df01 16240 if (is_vtable_name (fieldname, cu))
c906108c 16241 {
ae6ae975 16242 set_type_vptr_fieldno (type, i);
c906108c
SS
16243 break;
16244 }
16245 }
16246
16247 /* Complain if virtual function table field not found. */
16248 if (i < TYPE_N_BASECLASSES (t))
b98664d3 16249 complaint (_("virtual function table pointer "
3e43a32a 16250 "not found when defining class '%s'"),
e86ca25f 16251 TYPE_NAME (type) ? TYPE_NAME (type) : "");
c906108c
SS
16252 }
16253 else
16254 {
ae6ae975 16255 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
16256 }
16257 }
f6235d4c 16258 else if (cu->producer
61012eef 16259 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
16260 {
16261 /* The IBM XLC compiler does not provide direct indication
16262 of the containing type, but the vtable pointer is
16263 always named __vfp. */
16264
16265 int i;
16266
16267 for (i = TYPE_NFIELDS (type) - 1;
16268 i >= TYPE_N_BASECLASSES (type);
16269 --i)
16270 {
16271 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16272 {
ae6ae975
DE
16273 set_type_vptr_fieldno (type, i);
16274 set_type_vptr_basetype (type, type);
f6235d4c
EZ
16275 break;
16276 }
16277 }
16278 }
c906108c 16279 }
98751a41
JK
16280
16281 /* Copy fi.typedef_field_list linked list elements content into the
16282 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
be2daae6 16283 if (!fi.typedef_field_list.empty ())
98751a41 16284 {
be2daae6 16285 int count = fi.typedef_field_list.size ();
98751a41 16286
a0d7a4ff 16287 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 16288 TYPE_TYPEDEF_FIELD_ARRAY (type)
883fd55a 16289 = ((struct decl_field *)
be2daae6
TT
16290 TYPE_ALLOC (type,
16291 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16292 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
6e70227d 16293
be2daae6
TT
16294 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16295 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
98751a41 16296 }
c767944b 16297
883fd55a
KS
16298 /* Copy fi.nested_types_list linked list elements content into the
16299 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
be2daae6 16300 if (!fi.nested_types_list.empty () && cu->language != language_ada)
883fd55a 16301 {
be2daae6 16302 int count = fi.nested_types_list.size ();
883fd55a
KS
16303
16304 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16305 TYPE_NESTED_TYPES_ARRAY (type)
16306 = ((struct decl_field *)
be2daae6
TT
16307 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16308 TYPE_NESTED_TYPES_COUNT (type) = count;
883fd55a 16309
be2daae6
TT
16310 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16311 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
883fd55a 16312 }
c906108c 16313 }
63d06c5c 16314
bb5ed363 16315 quirk_gcc_member_function_pointer (type, objfile);
c9317f21
TT
16316 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16317 cu->rust_unions.push_back (type);
0b92b5bb 16318
90aeadfc
DC
16319 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16320 snapshots) has been known to create a die giving a declaration
16321 for a class that has, as a child, a die giving a definition for a
16322 nested class. So we have to process our children even if the
16323 current die is a declaration. Normally, of course, a declaration
16324 won't have any children at all. */
134d01f1 16325
ca040673
DE
16326 child_die = die->child;
16327
90aeadfc
DC
16328 while (child_die != NULL && child_die->tag)
16329 {
16330 if (child_die->tag == DW_TAG_member
16331 || child_die->tag == DW_TAG_variable
34eaf542
TT
16332 || child_die->tag == DW_TAG_inheritance
16333 || child_die->tag == DW_TAG_template_value_param
16334 || child_die->tag == DW_TAG_template_type_param)
134d01f1 16335 {
90aeadfc 16336 /* Do nothing. */
134d01f1 16337 }
90aeadfc
DC
16338 else
16339 process_die (child_die, cu);
134d01f1 16340
90aeadfc 16341 child_die = sibling_die (child_die);
134d01f1
DJ
16342 }
16343
fa4028e9
JB
16344 /* Do not consider external references. According to the DWARF standard,
16345 these DIEs are identified by the fact that they have no byte_size
16346 attribute, and a declaration attribute. */
16347 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16348 || !die_is_declaration (die, cu))
3e1d3d8c
TT
16349 {
16350 struct symbol *sym = new_symbol (die, type, cu);
16351
16352 if (has_template_parameters)
16353 {
a776957c
TT
16354 struct symtab *symtab;
16355 if (sym != nullptr)
16356 symtab = symbol_symtab (sym);
16357 else if (cu->line_header != nullptr)
16358 {
16359 /* Any related symtab will do. */
16360 symtab
7ba99d21 16361 = cu->line_header->file_names ()[0].symtab;
a776957c
TT
16362 }
16363 else
16364 {
16365 symtab = nullptr;
16366 complaint (_("could not find suitable "
16367 "symtab for template parameter"
16368 " - DIE at %s [in module %s]"),
16369 sect_offset_str (die->sect_off),
16370 objfile_name (objfile));
16371 }
16372
16373 if (symtab != nullptr)
16374 {
16375 /* Make sure that the symtab is set on the new symbols.
16376 Even though they don't appear in this symtab directly,
16377 other parts of gdb assume that symbols do, and this is
16378 reasonably true. */
16379 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16380 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16381 }
3e1d3d8c
TT
16382 }
16383 }
134d01f1
DJ
16384}
16385
55426c9d
JB
16386/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16387 update TYPE using some information only available in DIE's children. */
16388
16389static void
16390update_enumeration_type_from_children (struct die_info *die,
16391 struct type *type,
16392 struct dwarf2_cu *cu)
16393{
60f7655a 16394 struct die_info *child_die;
55426c9d
JB
16395 int unsigned_enum = 1;
16396 int flag_enum = 1;
16397 ULONGEST mask = 0;
55426c9d 16398
8268c778 16399 auto_obstack obstack;
55426c9d 16400
60f7655a
DE
16401 for (child_die = die->child;
16402 child_die != NULL && child_die->tag;
16403 child_die = sibling_die (child_die))
55426c9d
JB
16404 {
16405 struct attribute *attr;
16406 LONGEST value;
16407 const gdb_byte *bytes;
16408 struct dwarf2_locexpr_baton *baton;
16409 const char *name;
60f7655a 16410
55426c9d
JB
16411 if (child_die->tag != DW_TAG_enumerator)
16412 continue;
16413
16414 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16415 if (attr == NULL)
16416 continue;
16417
16418 name = dwarf2_name (child_die, cu);
16419 if (name == NULL)
16420 name = "<anonymous enumerator>";
16421
16422 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16423 &value, &bytes, &baton);
16424 if (value < 0)
16425 {
16426 unsigned_enum = 0;
16427 flag_enum = 0;
16428 }
16429 else if ((mask & value) != 0)
16430 flag_enum = 0;
16431 else
16432 mask |= value;
16433
16434 /* If we already know that the enum type is neither unsigned, nor
16435 a flag type, no need to look at the rest of the enumerates. */
16436 if (!unsigned_enum && !flag_enum)
16437 break;
55426c9d
JB
16438 }
16439
16440 if (unsigned_enum)
16441 TYPE_UNSIGNED (type) = 1;
16442 if (flag_enum)
16443 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
16444}
16445
134d01f1
DJ
16446/* Given a DW_AT_enumeration_type die, set its type. We do not
16447 complete the type's fields yet, or create any symbols. */
c906108c 16448
f792889a 16449static struct type *
134d01f1 16450read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16451{
518817b3 16452 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16453 struct type *type;
c906108c 16454 struct attribute *attr;
0114d602 16455 const char *name;
134d01f1 16456
348e048f
DE
16457 /* If the definition of this type lives in .debug_types, read that type.
16458 Don't follow DW_AT_specification though, that will take us back up
16459 the chain and we want to go down. */
45e58e77 16460 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
435d3d88 16461 if (attr != nullptr)
348e048f 16462 {
ac9ec31b 16463 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 16464
ac9ec31b 16465 /* The type's CU may not be the same as CU.
02142a6c 16466 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
16467 return set_die_type (die, type, cu);
16468 }
16469
c906108c
SS
16470 type = alloc_type (objfile);
16471
16472 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 16473 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 16474 if (name != NULL)
e86ca25f 16475 TYPE_NAME (type) = name;
c906108c 16476
0626fc76
TT
16477 attr = dwarf2_attr (die, DW_AT_type, cu);
16478 if (attr != NULL)
16479 {
16480 struct type *underlying_type = die_type (die, cu);
16481
16482 TYPE_TARGET_TYPE (type) = underlying_type;
16483 }
16484
e142c38c 16485 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 16486 if (attr != nullptr)
c906108c
SS
16487 {
16488 TYPE_LENGTH (type) = DW_UNSND (attr);
16489 }
16490 else
16491 {
16492 TYPE_LENGTH (type) = 0;
16493 }
16494
2b4424c3
TT
16495 maybe_set_alignment (cu, die, type);
16496
137033e9
JB
16497 /* The enumeration DIE can be incomplete. In Ada, any type can be
16498 declared as private in the package spec, and then defined only
16499 inside the package body. Such types are known as Taft Amendment
16500 Types. When another package uses such a type, an incomplete DIE
16501 may be generated by the compiler. */
02eb380e 16502 if (die_is_declaration (die, cu))
876cecd0 16503 TYPE_STUB (type) = 1;
02eb380e 16504
0626fc76
TT
16505 /* Finish the creation of this type by using the enum's children.
16506 We must call this even when the underlying type has been provided
16507 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
16508 update_enumeration_type_from_children (die, type, cu);
16509
0626fc76
TT
16510 /* If this type has an underlying type that is not a stub, then we
16511 may use its attributes. We always use the "unsigned" attribute
16512 in this situation, because ordinarily we guess whether the type
16513 is unsigned -- but the guess can be wrong and the underlying type
16514 can tell us the reality. However, we defer to a local size
16515 attribute if one exists, because this lets the compiler override
16516 the underlying type if needed. */
16517 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16518 {
16519 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16520 if (TYPE_LENGTH (type) == 0)
16521 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
2b4424c3
TT
16522 if (TYPE_RAW_ALIGN (type) == 0
16523 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16524 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
0626fc76
TT
16525 }
16526
3d567982
TT
16527 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16528
f792889a 16529 return set_die_type (die, type, cu);
134d01f1
DJ
16530}
16531
16532/* Given a pointer to a die which begins an enumeration, process all
16533 the dies that define the members of the enumeration, and create the
16534 symbol for the enumeration type.
16535
16536 NOTE: We reverse the order of the element list. */
16537
16538static void
16539process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16540{
f792889a 16541 struct type *this_type;
134d01f1 16542
f792889a
DJ
16543 this_type = get_die_type (die, cu);
16544 if (this_type == NULL)
16545 this_type = read_enumeration_type (die, cu);
9dc481d3 16546
639d11d3 16547 if (die->child != NULL)
c906108c 16548 {
9dc481d3
DE
16549 struct die_info *child_die;
16550 struct symbol *sym;
16551 struct field *fields = NULL;
16552 int num_fields = 0;
15d034d0 16553 const char *name;
9dc481d3 16554
639d11d3 16555 child_die = die->child;
c906108c
SS
16556 while (child_die && child_die->tag)
16557 {
16558 if (child_die->tag != DW_TAG_enumerator)
16559 {
e7c27a73 16560 process_die (child_die, cu);
c906108c
SS
16561 }
16562 else
16563 {
39cbfefa
DJ
16564 name = dwarf2_name (child_die, cu);
16565 if (name)
c906108c 16566 {
f792889a 16567 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
16568
16569 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16570 {
16571 fields = (struct field *)
16572 xrealloc (fields,
16573 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 16574 * sizeof (struct field));
c906108c
SS
16575 }
16576
987012b8 16577 FIELD_NAME (fields[num_fields]) = sym->linkage_name ();
c906108c 16578 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 16579 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
16580 FIELD_BITSIZE (fields[num_fields]) = 0;
16581
16582 num_fields++;
16583 }
16584 }
16585
16586 child_die = sibling_die (child_die);
16587 }
16588
16589 if (num_fields)
16590 {
f792889a
DJ
16591 TYPE_NFIELDS (this_type) = num_fields;
16592 TYPE_FIELDS (this_type) = (struct field *)
16593 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16594 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 16595 sizeof (struct field) * num_fields);
b8c9b27d 16596 xfree (fields);
c906108c 16597 }
c906108c 16598 }
134d01f1 16599
6c83ed52
TT
16600 /* If we are reading an enum from a .debug_types unit, and the enum
16601 is a declaration, and the enum is not the signatured type in the
16602 unit, then we do not want to add a symbol for it. Adding a
16603 symbol would in some cases obscure the true definition of the
16604 enum, giving users an incomplete type when the definition is
16605 actually available. Note that we do not want to do this for all
16606 enums which are just declarations, because C++0x allows forward
16607 enum declarations. */
3019eac3 16608 if (cu->per_cu->is_debug_types
6c83ed52
TT
16609 && die_is_declaration (die, cu))
16610 {
52dc124a 16611 struct signatured_type *sig_type;
6c83ed52 16612
c0f78cd4 16613 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
16614 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16615 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
16616 return;
16617 }
16618
f792889a 16619 new_symbol (die, this_type, cu);
c906108c
SS
16620}
16621
16622/* Extract all information from a DW_TAG_array_type DIE and put it in
16623 the DIE's type field. For now, this only handles one dimensional
16624 arrays. */
16625
f792889a 16626static struct type *
e7c27a73 16627read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16628{
518817b3 16629 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16630 struct die_info *child_die;
7e314c57 16631 struct type *type;
c906108c 16632 struct type *element_type, *range_type, *index_type;
c906108c 16633 struct attribute *attr;
15d034d0 16634 const char *name;
a405673c 16635 struct dynamic_prop *byte_stride_prop = NULL;
dc53a7ad 16636 unsigned int bit_stride = 0;
c906108c 16637
e7c27a73 16638 element_type = die_type (die, cu);
c906108c 16639
7e314c57
JK
16640 /* The die_type call above may have already set the type for this DIE. */
16641 type = get_die_type (die, cu);
16642 if (type)
16643 return type;
16644
dc53a7ad
JB
16645 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16646 if (attr != NULL)
a405673c
JB
16647 {
16648 int stride_ok;
9a49df9d
AB
16649 struct type *prop_type
16650 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
a405673c
JB
16651
16652 byte_stride_prop
16653 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
9a49df9d
AB
16654 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16655 prop_type);
a405673c
JB
16656 if (!stride_ok)
16657 {
b98664d3 16658 complaint (_("unable to read array DW_AT_byte_stride "
9d8780f0
SM
16659 " - DIE at %s [in module %s]"),
16660 sect_offset_str (die->sect_off),
518817b3 16661 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a405673c
JB
16662 /* Ignore this attribute. We will likely not be able to print
16663 arrays of this type correctly, but there is little we can do
16664 to help if we cannot read the attribute's value. */
16665 byte_stride_prop = NULL;
16666 }
16667 }
dc53a7ad
JB
16668
16669 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16670 if (attr != NULL)
16671 bit_stride = DW_UNSND (attr);
16672
c906108c
SS
16673 /* Irix 6.2 native cc creates array types without children for
16674 arrays with unspecified length. */
639d11d3 16675 if (die->child == NULL)
c906108c 16676 {
46bf5051 16677 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 16678 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad 16679 type = create_array_type_with_stride (NULL, element_type, range_type,
a405673c 16680 byte_stride_prop, bit_stride);
f792889a 16681 return set_die_type (die, type, cu);
c906108c
SS
16682 }
16683
791afaa2 16684 std::vector<struct type *> range_types;
639d11d3 16685 child_die = die->child;
c906108c
SS
16686 while (child_die && child_die->tag)
16687 {
16688 if (child_die->tag == DW_TAG_subrange_type)
16689 {
f792889a 16690 struct type *child_type = read_type_die (child_die, cu);
9a619af0 16691
f792889a 16692 if (child_type != NULL)
a02abb62 16693 {
0963b4bd
MS
16694 /* The range type was succesfully read. Save it for the
16695 array type creation. */
791afaa2 16696 range_types.push_back (child_type);
a02abb62 16697 }
c906108c
SS
16698 }
16699 child_die = sibling_die (child_die);
16700 }
16701
16702 /* Dwarf2 dimensions are output from left to right, create the
16703 necessary array types in backwards order. */
7ca2d3a3 16704
c906108c 16705 type = element_type;
7ca2d3a3
DL
16706
16707 if (read_array_order (die, cu) == DW_ORD_col_major)
16708 {
16709 int i = 0;
9a619af0 16710
791afaa2 16711 while (i < range_types.size ())
dc53a7ad 16712 type = create_array_type_with_stride (NULL, type, range_types[i++],
a405673c 16713 byte_stride_prop, bit_stride);
7ca2d3a3
DL
16714 }
16715 else
16716 {
791afaa2 16717 size_t ndim = range_types.size ();
7ca2d3a3 16718 while (ndim-- > 0)
dc53a7ad 16719 type = create_array_type_with_stride (NULL, type, range_types[ndim],
a405673c 16720 byte_stride_prop, bit_stride);
7ca2d3a3 16721 }
c906108c 16722
f5f8a009
EZ
16723 /* Understand Dwarf2 support for vector types (like they occur on
16724 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16725 array type. This is not part of the Dwarf2/3 standard yet, but a
16726 custom vendor extension. The main difference between a regular
16727 array and the vector variant is that vectors are passed by value
16728 to functions. */
e142c38c 16729 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
435d3d88 16730 if (attr != nullptr)
ea37ba09 16731 make_vector_type (type);
f5f8a009 16732
dbc98a8b
KW
16733 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16734 implementation may choose to implement triple vectors using this
16735 attribute. */
16736 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 16737 if (attr != nullptr)
dbc98a8b
KW
16738 {
16739 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16740 TYPE_LENGTH (type) = DW_UNSND (attr);
16741 else
b98664d3 16742 complaint (_("DW_AT_byte_size for array type smaller "
3e43a32a 16743 "than the total size of elements"));
dbc98a8b
KW
16744 }
16745
39cbfefa
DJ
16746 name = dwarf2_name (die, cu);
16747 if (name)
16748 TYPE_NAME (type) = name;
6e70227d 16749
2b4424c3
TT
16750 maybe_set_alignment (cu, die, type);
16751
0963b4bd 16752 /* Install the type in the die. */
7e314c57
JK
16753 set_die_type (die, type, cu);
16754
16755 /* set_die_type should be already done. */
b4ba55a1
JB
16756 set_descriptive_type (type, die, cu);
16757
7e314c57 16758 return type;
c906108c
SS
16759}
16760
7ca2d3a3 16761static enum dwarf_array_dim_ordering
6e70227d 16762read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
16763{
16764 struct attribute *attr;
16765
16766 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16767
435d3d88 16768 if (attr != nullptr)
aead7601 16769 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 16770
0963b4bd
MS
16771 /* GNU F77 is a special case, as at 08/2004 array type info is the
16772 opposite order to the dwarf2 specification, but data is still
16773 laid out as per normal fortran.
7ca2d3a3 16774
0963b4bd
MS
16775 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16776 version checking. */
7ca2d3a3 16777
905e0470
PM
16778 if (cu->language == language_fortran
16779 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
16780 {
16781 return DW_ORD_row_major;
16782 }
16783
6e70227d 16784 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
16785 {
16786 case array_column_major:
16787 return DW_ORD_col_major;
16788 case array_row_major:
16789 default:
16790 return DW_ORD_row_major;
16791 };
16792}
16793
72019c9c 16794/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 16795 the DIE's type field. */
72019c9c 16796
f792889a 16797static struct type *
72019c9c
GM
16798read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16799{
7e314c57
JK
16800 struct type *domain_type, *set_type;
16801 struct attribute *attr;
f792889a 16802
7e314c57
JK
16803 domain_type = die_type (die, cu);
16804
16805 /* The die_type call above may have already set the type for this DIE. */
16806 set_type = get_die_type (die, cu);
16807 if (set_type)
16808 return set_type;
16809
16810 set_type = create_set_type (NULL, domain_type);
16811
16812 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 16813 if (attr != nullptr)
d09039dd 16814 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 16815
2b4424c3
TT
16816 maybe_set_alignment (cu, die, set_type);
16817
f792889a 16818 return set_die_type (die, set_type, cu);
72019c9c 16819}
7ca2d3a3 16820
0971de02
TT
16821/* A helper for read_common_block that creates a locexpr baton.
16822 SYM is the symbol which we are marking as computed.
16823 COMMON_DIE is the DIE for the common block.
16824 COMMON_LOC is the location expression attribute for the common
16825 block itself.
16826 MEMBER_LOC is the location expression attribute for the particular
16827 member of the common block that we are processing.
16828 CU is the CU from which the above come. */
16829
16830static void
16831mark_common_block_symbol_computed (struct symbol *sym,
16832 struct die_info *common_die,
16833 struct attribute *common_loc,
16834 struct attribute *member_loc,
16835 struct dwarf2_cu *cu)
16836{
518817b3
SM
16837 struct dwarf2_per_objfile *dwarf2_per_objfile
16838 = cu->per_cu->dwarf2_per_objfile;
0971de02
TT
16839 struct objfile *objfile = dwarf2_per_objfile->objfile;
16840 struct dwarf2_locexpr_baton *baton;
16841 gdb_byte *ptr;
16842 unsigned int cu_off;
16843 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16844 LONGEST offset = 0;
16845
16846 gdb_assert (common_loc && member_loc);
16847 gdb_assert (attr_form_is_block (common_loc));
16848 gdb_assert (attr_form_is_block (member_loc)
16849 || attr_form_is_constant (member_loc));
16850
8d749320 16851 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
16852 baton->per_cu = cu->per_cu;
16853 gdb_assert (baton->per_cu);
16854
16855 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16856
16857 if (attr_form_is_constant (member_loc))
16858 {
16859 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16860 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16861 }
16862 else
16863 baton->size += DW_BLOCK (member_loc)->size;
16864
224c3ddb 16865 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
16866 baton->data = ptr;
16867
16868 *ptr++ = DW_OP_call4;
9c541725 16869 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
16870 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16871 ptr += 4;
16872
16873 if (attr_form_is_constant (member_loc))
16874 {
16875 *ptr++ = DW_OP_addr;
16876 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16877 ptr += cu->header.addr_size;
16878 }
16879 else
16880 {
16881 /* We have to copy the data here, because DW_OP_call4 will only
16882 use a DW_AT_location attribute. */
16883 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16884 ptr += DW_BLOCK (member_loc)->size;
16885 }
16886
16887 *ptr++ = DW_OP_plus;
16888 gdb_assert (ptr - baton->data == baton->size);
16889
0971de02 16890 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16891 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
16892}
16893
4357ac6c
TT
16894/* Create appropriate locally-scoped variables for all the
16895 DW_TAG_common_block entries. Also create a struct common_block
16896 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
85102364 16897 is used to separate the common blocks name namespace from regular
4357ac6c 16898 variable names. */
c906108c
SS
16899
16900static void
e7c27a73 16901read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16902{
0971de02
TT
16903 struct attribute *attr;
16904
16905 attr = dwarf2_attr (die, DW_AT_location, cu);
435d3d88 16906 if (attr != nullptr)
0971de02
TT
16907 {
16908 /* Support the .debug_loc offsets. */
16909 if (attr_form_is_block (attr))
16910 {
16911 /* Ok. */
16912 }
16913 else if (attr_form_is_section_offset (attr))
16914 {
16915 dwarf2_complex_location_expr_complaint ();
16916 attr = NULL;
16917 }
16918 else
16919 {
16920 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16921 "common block member");
16922 attr = NULL;
16923 }
16924 }
16925
639d11d3 16926 if (die->child != NULL)
c906108c 16927 {
518817b3 16928 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
4357ac6c
TT
16929 struct die_info *child_die;
16930 size_t n_entries = 0, size;
16931 struct common_block *common_block;
16932 struct symbol *sym;
74ac6d43 16933
4357ac6c
TT
16934 for (child_die = die->child;
16935 child_die && child_die->tag;
16936 child_die = sibling_die (child_die))
16937 ++n_entries;
16938
16939 size = (sizeof (struct common_block)
16940 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
16941 common_block
16942 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16943 size);
4357ac6c
TT
16944 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16945 common_block->n_entries = 0;
16946
16947 for (child_die = die->child;
16948 child_die && child_die->tag;
16949 child_die = sibling_die (child_die))
16950 {
16951 /* Create the symbol in the DW_TAG_common_block block in the current
16952 symbol scope. */
e7c27a73 16953 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
16954 if (sym != NULL)
16955 {
16956 struct attribute *member_loc;
16957
16958 common_block->contents[common_block->n_entries++] = sym;
16959
16960 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16961 cu);
16962 if (member_loc)
16963 {
16964 /* GDB has handled this for a long time, but it is
16965 not specified by DWARF. It seems to have been
16966 emitted by gfortran at least as recently as:
16967 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
b98664d3 16968 complaint (_("Variable in common block has "
0971de02 16969 "DW_AT_data_member_location "
9d8780f0
SM
16970 "- DIE at %s [in module %s]"),
16971 sect_offset_str (child_die->sect_off),
518817b3 16972 objfile_name (objfile));
0971de02
TT
16973
16974 if (attr_form_is_section_offset (member_loc))
16975 dwarf2_complex_location_expr_complaint ();
16976 else if (attr_form_is_constant (member_loc)
16977 || attr_form_is_block (member_loc))
16978 {
435d3d88 16979 if (attr != nullptr)
0971de02
TT
16980 mark_common_block_symbol_computed (sym, die, attr,
16981 member_loc, cu);
16982 }
16983 else
16984 dwarf2_complex_location_expr_complaint ();
16985 }
16986 }
c906108c 16987 }
4357ac6c
TT
16988
16989 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16990 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
16991 }
16992}
16993
0114d602 16994/* Create a type for a C++ namespace. */
d9fa45fe 16995
0114d602
DJ
16996static struct type *
16997read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 16998{
518817b3 16999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17000 const char *previous_prefix, *name;
9219021c 17001 int is_anonymous;
0114d602
DJ
17002 struct type *type;
17003
17004 /* For extensions, reuse the type of the original namespace. */
17005 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17006 {
17007 struct die_info *ext_die;
17008 struct dwarf2_cu *ext_cu = cu;
9a619af0 17009
0114d602
DJ
17010 ext_die = dwarf2_extension (die, &ext_cu);
17011 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
17012
17013 /* EXT_CU may not be the same as CU.
02142a6c 17014 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
17015 return set_die_type (die, type, cu);
17016 }
9219021c 17017
e142c38c 17018 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
17019
17020 /* Now build the name of the current namespace. */
17021
0114d602
DJ
17022 previous_prefix = determine_prefix (die, cu);
17023 if (previous_prefix[0] != '\0')
17024 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 17025 previous_prefix, name, 0, cu);
0114d602
DJ
17026
17027 /* Create the type. */
19f392bc 17028 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602 17029
60531b24 17030 return set_die_type (die, type, cu);
0114d602
DJ
17031}
17032
22cee43f 17033/* Read a namespace scope. */
0114d602
DJ
17034
17035static void
17036read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17037{
518817b3 17038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17039 int is_anonymous;
9219021c 17040
5c4e30ca
DC
17041 /* Add a symbol associated to this if we haven't seen the namespace
17042 before. Also, add a using directive if it's an anonymous
17043 namespace. */
9219021c 17044
f2f0e013 17045 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
17046 {
17047 struct type *type;
17048
0114d602 17049 type = read_type_die (die, cu);
e7c27a73 17050 new_symbol (die, type, cu);
5c4e30ca 17051
e8e80198 17052 namespace_name (die, &is_anonymous, cu);
5c4e30ca 17053 if (is_anonymous)
0114d602
DJ
17054 {
17055 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 17056
eb1e02fd 17057 std::vector<const char *> excludes;
804d2729 17058 add_using_directive (using_directives (cu),
22cee43f 17059 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 17060 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 17061 }
5c4e30ca 17062 }
9219021c 17063
639d11d3 17064 if (die->child != NULL)
d9fa45fe 17065 {
639d11d3 17066 struct die_info *child_die = die->child;
6e70227d 17067
d9fa45fe
DC
17068 while (child_die && child_die->tag)
17069 {
e7c27a73 17070 process_die (child_die, cu);
d9fa45fe
DC
17071 child_die = sibling_die (child_die);
17072 }
17073 }
38d518c9
EZ
17074}
17075
f55ee35c
JK
17076/* Read a Fortran module as type. This DIE can be only a declaration used for
17077 imported module. Still we need that type as local Fortran "use ... only"
17078 declaration imports depend on the created type in determine_prefix. */
17079
17080static struct type *
17081read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17082{
518817b3 17083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15d034d0 17084 const char *module_name;
f55ee35c
JK
17085 struct type *type;
17086
17087 module_name = dwarf2_name (die, cu);
19f392bc 17088 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c 17089
f55ee35c
JK
17090 return set_die_type (die, type, cu);
17091}
17092
5d7cb8df
JK
17093/* Read a Fortran module. */
17094
17095static void
17096read_module (struct die_info *die, struct dwarf2_cu *cu)
17097{
17098 struct die_info *child_die = die->child;
530e8392
KB
17099 struct type *type;
17100
17101 type = read_type_die (die, cu);
17102 new_symbol (die, type, cu);
5d7cb8df 17103
5d7cb8df
JK
17104 while (child_die && child_die->tag)
17105 {
17106 process_die (child_die, cu);
17107 child_die = sibling_die (child_die);
17108 }
17109}
17110
38d518c9
EZ
17111/* Return the name of the namespace represented by DIE. Set
17112 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17113 namespace. */
17114
17115static const char *
e142c38c 17116namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
17117{
17118 struct die_info *current_die;
17119 const char *name = NULL;
17120
17121 /* Loop through the extensions until we find a name. */
17122
17123 for (current_die = die;
17124 current_die != NULL;
f2f0e013 17125 current_die = dwarf2_extension (die, &cu))
38d518c9 17126 {
96553a0c
DE
17127 /* We don't use dwarf2_name here so that we can detect the absence
17128 of a name -> anonymous namespace. */
7d45c7c3 17129 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 17130
38d518c9
EZ
17131 if (name != NULL)
17132 break;
17133 }
17134
17135 /* Is it an anonymous namespace? */
17136
17137 *is_anonymous = (name == NULL);
17138 if (*is_anonymous)
2b1dbab0 17139 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
17140
17141 return name;
d9fa45fe
DC
17142}
17143
c906108c
SS
17144/* Extract all information from a DW_TAG_pointer_type DIE and add to
17145 the user defined type vector. */
17146
f792889a 17147static struct type *
e7c27a73 17148read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17149{
518817b3
SM
17150 struct gdbarch *gdbarch
17151 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
e7c27a73 17152 struct comp_unit_head *cu_header = &cu->header;
c906108c 17153 struct type *type;
8b2dbe47
KB
17154 struct attribute *attr_byte_size;
17155 struct attribute *attr_address_class;
17156 int byte_size, addr_class;
7e314c57
JK
17157 struct type *target_type;
17158
17159 target_type = die_type (die, cu);
c906108c 17160
7e314c57
JK
17161 /* The die_type call above may have already set the type for this DIE. */
17162 type = get_die_type (die, cu);
17163 if (type)
17164 return type;
17165
17166 type = lookup_pointer_type (target_type);
8b2dbe47 17167
e142c38c 17168 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
17169 if (attr_byte_size)
17170 byte_size = DW_UNSND (attr_byte_size);
c906108c 17171 else
8b2dbe47
KB
17172 byte_size = cu_header->addr_size;
17173
e142c38c 17174 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
17175 if (attr_address_class)
17176 addr_class = DW_UNSND (attr_address_class);
17177 else
17178 addr_class = DW_ADDR_none;
17179
2b4424c3
TT
17180 ULONGEST alignment = get_alignment (cu, die);
17181
17182 /* If the pointer size, alignment, or address class is different
17183 than the default, create a type variant marked as such and set
17184 the length accordingly. */
17185 if (TYPE_LENGTH (type) != byte_size
17186 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17187 && alignment != TYPE_RAW_ALIGN (type))
17188 || addr_class != DW_ADDR_none)
c906108c 17189 {
5e2b427d 17190 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
17191 {
17192 int type_flags;
17193
849957d9 17194 type_flags = gdbarch_address_class_type_flags
5e2b427d 17195 (gdbarch, byte_size, addr_class);
876cecd0
TT
17196 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17197 == 0);
8b2dbe47
KB
17198 type = make_type_with_address_space (type, type_flags);
17199 }
17200 else if (TYPE_LENGTH (type) != byte_size)
17201 {
b98664d3 17202 complaint (_("invalid pointer size %d"), byte_size);
8b2dbe47 17203 }
2b4424c3
TT
17204 else if (TYPE_RAW_ALIGN (type) != alignment)
17205 {
b98664d3 17206 complaint (_("Invalid DW_AT_alignment"
2b4424c3
TT
17207 " - DIE at %s [in module %s]"),
17208 sect_offset_str (die->sect_off),
17209 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17210 }
6e70227d 17211 else
9a619af0
MS
17212 {
17213 /* Should we also complain about unhandled address classes? */
17214 }
c906108c 17215 }
8b2dbe47
KB
17216
17217 TYPE_LENGTH (type) = byte_size;
2b4424c3 17218 set_type_align (type, alignment);
f792889a 17219 return set_die_type (die, type, cu);
c906108c
SS
17220}
17221
17222/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17223 the user defined type vector. */
17224
f792889a 17225static struct type *
e7c27a73 17226read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
17227{
17228 struct type *type;
17229 struct type *to_type;
17230 struct type *domain;
17231
e7c27a73
DJ
17232 to_type = die_type (die, cu);
17233 domain = die_containing_type (die, cu);
0d5de010 17234
7e314c57
JK
17235 /* The calls above may have already set the type for this DIE. */
17236 type = get_die_type (die, cu);
17237 if (type)
17238 return type;
17239
0d5de010
DJ
17240 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17241 type = lookup_methodptr_type (to_type);
7078baeb
TT
17242 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17243 {
518817b3
SM
17244 struct type *new_type
17245 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
7078baeb
TT
17246
17247 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17248 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17249 TYPE_VARARGS (to_type));
17250 type = lookup_methodptr_type (new_type);
17251 }
0d5de010
DJ
17252 else
17253 type = lookup_memberptr_type (to_type, domain);
c906108c 17254
f792889a 17255 return set_die_type (die, type, cu);
c906108c
SS
17256}
17257
4297a3f0 17258/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
17259 the user defined type vector. */
17260
f792889a 17261static struct type *
4297a3f0
AV
17262read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17263 enum type_code refcode)
c906108c 17264{
e7c27a73 17265 struct comp_unit_head *cu_header = &cu->header;
7e314c57 17266 struct type *type, *target_type;
c906108c
SS
17267 struct attribute *attr;
17268
4297a3f0
AV
17269 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17270
7e314c57
JK
17271 target_type = die_type (die, cu);
17272
17273 /* The die_type call above may have already set the type for this DIE. */
17274 type = get_die_type (die, cu);
17275 if (type)
17276 return type;
17277
4297a3f0 17278 type = lookup_reference_type (target_type, refcode);
e142c38c 17279 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 17280 if (attr != nullptr)
c906108c
SS
17281 {
17282 TYPE_LENGTH (type) = DW_UNSND (attr);
17283 }
17284 else
17285 {
107d2387 17286 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 17287 }
2b4424c3 17288 maybe_set_alignment (cu, die, type);
f792889a 17289 return set_die_type (die, type, cu);
c906108c
SS
17290}
17291
cf363f18
MW
17292/* Add the given cv-qualifiers to the element type of the array. GCC
17293 outputs DWARF type qualifiers that apply to an array, not the
17294 element type. But GDB relies on the array element type to carry
17295 the cv-qualifiers. This mimics section 6.7.3 of the C99
17296 specification. */
17297
17298static struct type *
17299add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17300 struct type *base_type, int cnst, int voltl)
17301{
17302 struct type *el_type, *inner_array;
17303
17304 base_type = copy_type (base_type);
17305 inner_array = base_type;
17306
17307 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17308 {
17309 TYPE_TARGET_TYPE (inner_array) =
17310 copy_type (TYPE_TARGET_TYPE (inner_array));
17311 inner_array = TYPE_TARGET_TYPE (inner_array);
17312 }
17313
17314 el_type = TYPE_TARGET_TYPE (inner_array);
17315 cnst |= TYPE_CONST (el_type);
17316 voltl |= TYPE_VOLATILE (el_type);
17317 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17318
17319 return set_die_type (die, base_type, cu);
17320}
17321
f792889a 17322static struct type *
e7c27a73 17323read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17324{
f792889a 17325 struct type *base_type, *cv_type;
c906108c 17326
e7c27a73 17327 base_type = die_type (die, cu);
7e314c57
JK
17328
17329 /* The die_type call above may have already set the type for this DIE. */
17330 cv_type = get_die_type (die, cu);
17331 if (cv_type)
17332 return cv_type;
17333
2f608a3a
KW
17334 /* In case the const qualifier is applied to an array type, the element type
17335 is so qualified, not the array type (section 6.7.3 of C99). */
17336 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 17337 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 17338
f792889a
DJ
17339 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17340 return set_die_type (die, cv_type, cu);
c906108c
SS
17341}
17342
f792889a 17343static struct type *
e7c27a73 17344read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17345{
f792889a 17346 struct type *base_type, *cv_type;
c906108c 17347
e7c27a73 17348 base_type = die_type (die, cu);
7e314c57
JK
17349
17350 /* The die_type call above may have already set the type for this DIE. */
17351 cv_type = get_die_type (die, cu);
17352 if (cv_type)
17353 return cv_type;
17354
cf363f18
MW
17355 /* In case the volatile qualifier is applied to an array type, the
17356 element type is so qualified, not the array type (section 6.7.3
17357 of C99). */
17358 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17359 return add_array_cv_type (die, cu, base_type, 0, 1);
17360
f792889a
DJ
17361 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17362 return set_die_type (die, cv_type, cu);
c906108c
SS
17363}
17364
06d66ee9
TT
17365/* Handle DW_TAG_restrict_type. */
17366
17367static struct type *
17368read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17369{
17370 struct type *base_type, *cv_type;
17371
17372 base_type = die_type (die, cu);
17373
17374 /* The die_type call above may have already set the type for this DIE. */
17375 cv_type = get_die_type (die, cu);
17376 if (cv_type)
17377 return cv_type;
17378
17379 cv_type = make_restrict_type (base_type);
17380 return set_die_type (die, cv_type, cu);
17381}
17382
a2c2acaf
MW
17383/* Handle DW_TAG_atomic_type. */
17384
17385static struct type *
17386read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17387{
17388 struct type *base_type, *cv_type;
17389
17390 base_type = die_type (die, cu);
17391
17392 /* The die_type call above may have already set the type for this DIE. */
17393 cv_type = get_die_type (die, cu);
17394 if (cv_type)
17395 return cv_type;
17396
17397 cv_type = make_atomic_type (base_type);
17398 return set_die_type (die, cv_type, cu);
17399}
17400
c906108c
SS
17401/* Extract all information from a DW_TAG_string_type DIE and add to
17402 the user defined type vector. It isn't really a user defined type,
17403 but it behaves like one, with other DIE's using an AT_user_def_type
17404 attribute to reference it. */
17405
f792889a 17406static struct type *
e7c27a73 17407read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17408{
518817b3 17409 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3b7538c0 17410 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
17411 struct type *type, *range_type, *index_type, *char_type;
17412 struct attribute *attr;
216a7e6b
AB
17413 struct dynamic_prop prop;
17414 bool length_is_constant = true;
17415 LONGEST length;
17416
17417 /* There are a couple of places where bit sizes might be made use of
17418 when parsing a DW_TAG_string_type, however, no producer that we know
17419 of make use of these. Handling bit sizes that are a multiple of the
17420 byte size is easy enough, but what about other bit sizes? Lets deal
17421 with that problem when we have to. Warn about these attributes being
17422 unsupported, then parse the type and ignore them like we always
17423 have. */
17424 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17425 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17426 {
17427 static bool warning_printed = false;
17428 if (!warning_printed)
17429 {
17430 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17431 "currently supported on DW_TAG_string_type."));
17432 warning_printed = true;
17433 }
17434 }
c906108c 17435
e142c38c 17436 attr = dwarf2_attr (die, DW_AT_string_length, cu);
216a7e6b
AB
17437 if (attr != nullptr && !attr_form_is_constant (attr))
17438 {
17439 /* The string length describes the location at which the length of
17440 the string can be found. The size of the length field can be
17441 specified with one of the attributes below. */
17442 struct type *prop_type;
17443 struct attribute *len
17444 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17445 if (len == nullptr)
17446 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17447 if (len != nullptr && attr_form_is_constant (len))
17448 {
17449 /* Pass 0 as the default as we know this attribute is constant
17450 and the default value will not be returned. */
17451 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
17452 prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true);
17453 }
17454 else
17455 {
17456 /* If the size is not specified then we assume it is the size of
17457 an address on this target. */
17458 prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true);
17459 }
17460
17461 /* Convert the attribute into a dynamic property. */
17462 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17463 length = 1;
17464 else
17465 length_is_constant = false;
17466 }
17467 else if (attr != nullptr)
17468 {
17469 /* This DW_AT_string_length just contains the length with no
17470 indirection. There's no need to create a dynamic property in this
17471 case. Pass 0 for the default value as we know it will not be
17472 returned in this case. */
17473 length = dwarf2_get_attr_constant_value (attr, 0);
17474 }
17475 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
c906108c 17476 {
216a7e6b
AB
17477 /* We don't currently support non-constant byte sizes for strings. */
17478 length = dwarf2_get_attr_constant_value (attr, 1);
c906108c
SS
17479 }
17480 else
17481 {
216a7e6b
AB
17482 /* Use 1 as a fallback length if we have nothing else. */
17483 length = 1;
c906108c 17484 }
6ccb9162 17485
46bf5051 17486 index_type = objfile_type (objfile)->builtin_int;
216a7e6b
AB
17487 if (length_is_constant)
17488 range_type = create_static_range_type (NULL, index_type, 1, length);
17489 else
17490 {
17491 struct dynamic_prop low_bound;
17492
17493 low_bound.kind = PROP_CONST;
17494 low_bound.data.const_val = 1;
17495 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17496 }
3b7538c0
UW
17497 char_type = language_string_char_type (cu->language_defn, gdbarch);
17498 type = create_string_type (NULL, char_type, range_type);
6ccb9162 17499
f792889a 17500 return set_die_type (die, type, cu);
c906108c
SS
17501}
17502
4d804846
JB
17503/* Assuming that DIE corresponds to a function, returns nonzero
17504 if the function is prototyped. */
17505
17506static int
17507prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17508{
17509 struct attribute *attr;
17510
17511 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17512 if (attr && (DW_UNSND (attr) != 0))
17513 return 1;
17514
17515 /* The DWARF standard implies that the DW_AT_prototyped attribute
85102364 17516 is only meaningful for C, but the concept also extends to other
4d804846
JB
17517 languages that allow unprototyped functions (Eg: Objective C).
17518 For all other languages, assume that functions are always
17519 prototyped. */
17520 if (cu->language != language_c
17521 && cu->language != language_objc
17522 && cu->language != language_opencl)
17523 return 1;
17524
17525 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17526 prototyped and unprototyped functions; default to prototyped,
17527 since that is more common in modern code (and RealView warns
17528 about unprototyped functions). */
17529 if (producer_is_realview (cu->producer))
17530 return 1;
17531
17532 return 0;
17533}
17534
c906108c
SS
17535/* Handle DIES due to C code like:
17536
17537 struct foo
c5aa993b
JM
17538 {
17539 int (*funcp)(int a, long l);
17540 int b;
17541 };
c906108c 17542
0963b4bd 17543 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 17544
f792889a 17545static struct type *
e7c27a73 17546read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17547{
518817b3 17548 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0963b4bd
MS
17549 struct type *type; /* Type that this function returns. */
17550 struct type *ftype; /* Function that returns above type. */
c906108c
SS
17551 struct attribute *attr;
17552
e7c27a73 17553 type = die_type (die, cu);
7e314c57
JK
17554
17555 /* The die_type call above may have already set the type for this DIE. */
17556 ftype = get_die_type (die, cu);
17557 if (ftype)
17558 return ftype;
17559
0c8b41f1 17560 ftype = lookup_function_type (type);
c906108c 17561
4d804846 17562 if (prototyped_function_p (die, cu))
a6c727b2 17563 TYPE_PROTOTYPED (ftype) = 1;
c906108c 17564
c055b101
CV
17565 /* Store the calling convention in the type if it's available in
17566 the subroutine die. Otherwise set the calling convention to
17567 the default value DW_CC_normal. */
17568 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
d0922fcf
TBA
17569 if (attr != nullptr
17570 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17571 TYPE_CALLING_CONVENTION (ftype)
17572 = (enum dwarf_calling_convention) (DW_UNSND (attr));
54fcddd0
UW
17573 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17574 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17575 else
17576 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 17577
743649fd
MW
17578 /* Record whether the function returns normally to its caller or not
17579 if the DWARF producer set that information. */
17580 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17581 if (attr && (DW_UNSND (attr) != 0))
17582 TYPE_NO_RETURN (ftype) = 1;
17583
76c10ea2
GM
17584 /* We need to add the subroutine type to the die immediately so
17585 we don't infinitely recurse when dealing with parameters
0963b4bd 17586 declared as the same subroutine type. */
76c10ea2 17587 set_die_type (die, ftype, cu);
6e70227d 17588
639d11d3 17589 if (die->child != NULL)
c906108c 17590 {
bb5ed363 17591 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 17592 struct die_info *child_die;
8072405b 17593 int nparams, iparams;
c906108c
SS
17594
17595 /* Count the number of parameters.
17596 FIXME: GDB currently ignores vararg functions, but knows about
17597 vararg member functions. */
8072405b 17598 nparams = 0;
639d11d3 17599 child_die = die->child;
c906108c
SS
17600 while (child_die && child_die->tag)
17601 {
17602 if (child_die->tag == DW_TAG_formal_parameter)
17603 nparams++;
17604 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 17605 TYPE_VARARGS (ftype) = 1;
c906108c
SS
17606 child_die = sibling_die (child_die);
17607 }
17608
17609 /* Allocate storage for parameters and fill them in. */
17610 TYPE_NFIELDS (ftype) = nparams;
17611 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 17612 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 17613
8072405b
JK
17614 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17615 even if we error out during the parameters reading below. */
17616 for (iparams = 0; iparams < nparams; iparams++)
17617 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17618
17619 iparams = 0;
639d11d3 17620 child_die = die->child;
c906108c
SS
17621 while (child_die && child_die->tag)
17622 {
17623 if (child_die->tag == DW_TAG_formal_parameter)
17624 {
3ce3b1ba
PA
17625 struct type *arg_type;
17626
17627 /* DWARF version 2 has no clean way to discern C++
17628 static and non-static member functions. G++ helps
17629 GDB by marking the first parameter for non-static
17630 member functions (which is the this pointer) as
17631 artificial. We pass this information to
17632 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17633
17634 DWARF version 3 added DW_AT_object_pointer, which GCC
17635 4.5 does not yet generate. */
e142c38c 17636 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
435d3d88 17637 if (attr != nullptr)
c906108c
SS
17638 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17639 else
9c37b5ae 17640 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
17641 arg_type = die_type (child_die, cu);
17642
17643 /* RealView does not mark THIS as const, which the testsuite
17644 expects. GCC marks THIS as const in method definitions,
17645 but not in the class specifications (GCC PR 43053). */
17646 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17647 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17648 {
17649 int is_this = 0;
17650 struct dwarf2_cu *arg_cu = cu;
17651 const char *name = dwarf2_name (child_die, cu);
17652
17653 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
435d3d88 17654 if (attr != nullptr)
3ce3b1ba
PA
17655 {
17656 /* If the compiler emits this, use it. */
17657 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17658 is_this = 1;
17659 }
17660 else if (name && strcmp (name, "this") == 0)
17661 /* Function definitions will have the argument names. */
17662 is_this = 1;
17663 else if (name == NULL && iparams == 0)
17664 /* Declarations may not have the names, so like
17665 elsewhere in GDB, assume an artificial first
17666 argument is "this". */
17667 is_this = 1;
17668
17669 if (is_this)
17670 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17671 arg_type, 0);
17672 }
17673
17674 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
17675 iparams++;
17676 }
17677 child_die = sibling_die (child_die);
17678 }
17679 }
17680
76c10ea2 17681 return ftype;
c906108c
SS
17682}
17683
f792889a 17684static struct type *
e7c27a73 17685read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17686{
518817b3 17687 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17688 const char *name = NULL;
3c8e0968 17689 struct type *this_type, *target_type;
c906108c 17690
94af9270 17691 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
17692 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17693 TYPE_TARGET_STUB (this_type) = 1;
f792889a 17694 set_die_type (die, this_type, cu);
3c8e0968
DE
17695 target_type = die_type (die, cu);
17696 if (target_type != this_type)
17697 TYPE_TARGET_TYPE (this_type) = target_type;
17698 else
17699 {
17700 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17701 spec and cause infinite loops in GDB. */
b98664d3 17702 complaint (_("Self-referential DW_TAG_typedef "
9d8780f0
SM
17703 "- DIE at %s [in module %s]"),
17704 sect_offset_str (die->sect_off), objfile_name (objfile));
3c8e0968
DE
17705 TYPE_TARGET_TYPE (this_type) = NULL;
17706 }
f792889a 17707 return this_type;
c906108c
SS
17708}
17709
9b790ce7
UW
17710/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17711 (which may be different from NAME) to the architecture back-end to allow
17712 it to guess the correct format if necessary. */
17713
17714static struct type *
17715dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
103a685e 17716 const char *name_hint, enum bfd_endian byte_order)
9b790ce7
UW
17717{
17718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17719 const struct floatformat **format;
17720 struct type *type;
17721
17722 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17723 if (format)
103a685e 17724 type = init_float_type (objfile, bits, name, format, byte_order);
9b790ce7 17725 else
77b7c781 17726 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
17727
17728 return type;
17729}
17730
eb77c9df
AB
17731/* Allocate an integer type of size BITS and name NAME. */
17732
17733static struct type *
17734dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17735 int bits, int unsigned_p, const char *name)
17736{
17737 struct type *type;
17738
17739 /* Versions of Intel's C Compiler generate an integer type called "void"
17740 instead of using DW_TAG_unspecified_type. This has been seen on
17741 at least versions 14, 17, and 18. */
35ee2dc2
AB
17742 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17743 && strcmp (name, "void") == 0)
eb77c9df
AB
17744 type = objfile_type (objfile)->builtin_void;
17745 else
17746 type = init_integer_type (objfile, bits, unsigned_p, name);
17747
17748 return type;
17749}
17750
8bdc1658
AB
17751/* Initialise and return a floating point type of size BITS suitable for
17752 use as a component of a complex number. The NAME_HINT is passed through
17753 when initialising the floating point type and is the name of the complex
17754 type.
17755
17756 As DWARF doesn't currently provide an explicit name for the components
17757 of a complex number, but it can be helpful to have these components
17758 named, we try to select a suitable name based on the size of the
17759 component. */
17760static struct type *
17761dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17762 struct objfile *objfile,
103a685e
TT
17763 int bits, const char *name_hint,
17764 enum bfd_endian byte_order)
8bdc1658
AB
17765{
17766 gdbarch *gdbarch = get_objfile_arch (objfile);
17767 struct type *tt = nullptr;
17768
35add35e
AB
17769 /* Try to find a suitable floating point builtin type of size BITS.
17770 We're going to use the name of this type as the name for the complex
17771 target type that we are about to create. */
1db455a7 17772 switch (cu->language)
8bdc1658 17773 {
1db455a7
AB
17774 case language_fortran:
17775 switch (bits)
17776 {
17777 case 32:
17778 tt = builtin_f_type (gdbarch)->builtin_real;
17779 break;
17780 case 64:
17781 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17782 break;
17783 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17784 case 128:
17785 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17786 break;
17787 }
8bdc1658 17788 break;
1db455a7
AB
17789 default:
17790 switch (bits)
17791 {
17792 case 32:
17793 tt = builtin_type (gdbarch)->builtin_float;
17794 break;
17795 case 64:
17796 tt = builtin_type (gdbarch)->builtin_double;
17797 break;
17798 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17799 case 128:
17800 tt = builtin_type (gdbarch)->builtin_long_double;
17801 break;
17802 }
8bdc1658
AB
17803 break;
17804 }
17805
35add35e
AB
17806 /* If the type we found doesn't match the size we were looking for, then
17807 pretend we didn't find a type at all, the complex target type we
17808 create will then be nameless. */
a12e5744 17809 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
35add35e
AB
17810 tt = nullptr;
17811
8bdc1658 17812 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
103a685e 17813 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
8bdc1658
AB
17814}
17815
c906108c
SS
17816/* Find a representation of a given base type and install
17817 it in the TYPE field of the die. */
17818
f792889a 17819static struct type *
e7c27a73 17820read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17821{
518817b3 17822 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
17823 struct type *type;
17824 struct attribute *attr;
19f392bc 17825 int encoding = 0, bits = 0;
15d034d0 17826 const char *name;
34877895 17827 gdbarch *arch;
c906108c 17828
e142c38c 17829 attr = dwarf2_attr (die, DW_AT_encoding, cu);
435d3d88 17830 if (attr != nullptr)
34877895 17831 encoding = DW_UNSND (attr);
e142c38c 17832 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 17833 if (attr != nullptr)
34877895 17834 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
39cbfefa 17835 name = dwarf2_name (die, cu);
6ccb9162 17836 if (!name)
34877895 17837 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
103a685e
TT
17838
17839 arch = get_objfile_arch (objfile);
17840 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17841
34877895
PJ
17842 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17843 if (attr)
103a685e
TT
17844 {
17845 int endianity = DW_UNSND (attr);
17846
17847 switch (endianity)
17848 {
17849 case DW_END_big:
17850 byte_order = BFD_ENDIAN_BIG;
17851 break;
17852 case DW_END_little:
17853 byte_order = BFD_ENDIAN_LITTLE;
17854 break;
17855 default:
17856 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17857 break;
17858 }
17859 }
6ccb9162
UW
17860
17861 switch (encoding)
c906108c 17862 {
6ccb9162
UW
17863 case DW_ATE_address:
17864 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 17865 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 17866 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
17867 break;
17868 case DW_ATE_boolean:
19f392bc 17869 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
17870 break;
17871 case DW_ATE_complex_float:
103a685e
TT
17872 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17873 byte_order);
19f392bc 17874 type = init_complex_type (objfile, name, type);
6ccb9162
UW
17875 break;
17876 case DW_ATE_decimal_float:
19f392bc 17877 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
17878 break;
17879 case DW_ATE_float:
103a685e 17880 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
6ccb9162
UW
17881 break;
17882 case DW_ATE_signed:
eb77c9df 17883 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17884 break;
17885 case DW_ATE_unsigned:
3b2b8fea
TT
17886 if (cu->language == language_fortran
17887 && name
61012eef 17888 && startswith (name, "character("))
19f392bc
UW
17889 type = init_character_type (objfile, bits, 1, name);
17890 else
eb77c9df 17891 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162
UW
17892 break;
17893 case DW_ATE_signed_char:
6e70227d 17894 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
17895 || cu->language == language_pascal
17896 || cu->language == language_fortran)
19f392bc
UW
17897 type = init_character_type (objfile, bits, 0, name);
17898 else
eb77c9df 17899 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17900 break;
17901 case DW_ATE_unsigned_char:
868a0084 17902 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 17903 || cu->language == language_pascal
c44af4eb
TT
17904 || cu->language == language_fortran
17905 || cu->language == language_rust)
19f392bc
UW
17906 type = init_character_type (objfile, bits, 1, name);
17907 else
eb77c9df 17908 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162 17909 break;
75079b2b 17910 case DW_ATE_UTF:
53e710ac 17911 {
53e710ac
PA
17912 if (bits == 16)
17913 type = builtin_type (arch)->builtin_char16;
17914 else if (bits == 32)
17915 type = builtin_type (arch)->builtin_char32;
17916 else
17917 {
b98664d3 17918 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
53e710ac 17919 bits);
eb77c9df 17920 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
53e710ac
PA
17921 }
17922 return set_die_type (die, type, cu);
17923 }
75079b2b
TT
17924 break;
17925
6ccb9162 17926 default:
b98664d3 17927 complaint (_("unsupported DW_AT_encoding: '%s'"),
6ccb9162 17928 dwarf_type_encoding_name (encoding));
77b7c781 17929 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 17930 break;
c906108c 17931 }
6ccb9162 17932
0114d602 17933 if (name && strcmp (name, "char") == 0)
876cecd0 17934 TYPE_NOSIGN (type) = 1;
0114d602 17935
2b4424c3
TT
17936 maybe_set_alignment (cu, die, type);
17937
103a685e 17938 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
34877895 17939
f792889a 17940 return set_die_type (die, type, cu);
c906108c
SS
17941}
17942
80180f79
SA
17943/* Parse dwarf attribute if it's a block, reference or constant and put the
17944 resulting value of the attribute into struct bound_prop.
17945 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17946
17947static int
17948attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
9a49df9d
AB
17949 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17950 struct type *default_type)
80180f79
SA
17951{
17952 struct dwarf2_property_baton *baton;
518817b3
SM
17953 struct obstack *obstack
17954 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
80180f79 17955
9a49df9d
AB
17956 gdb_assert (default_type != NULL);
17957
80180f79
SA
17958 if (attr == NULL || prop == NULL)
17959 return 0;
17960
17961 if (attr_form_is_block (attr))
17962 {
8d749320 17963 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 17964 baton->property_type = default_type;
80180f79
SA
17965 baton->locexpr.per_cu = cu->per_cu;
17966 baton->locexpr.size = DW_BLOCK (attr)->size;
17967 baton->locexpr.data = DW_BLOCK (attr)->data;
216a7e6b
AB
17968 switch (attr->name)
17969 {
17970 case DW_AT_string_length:
17971 baton->locexpr.is_reference = true;
17972 break;
17973 default:
17974 baton->locexpr.is_reference = false;
17975 break;
17976 }
80180f79
SA
17977 prop->data.baton = baton;
17978 prop->kind = PROP_LOCEXPR;
17979 gdb_assert (prop->data.baton != NULL);
17980 }
17981 else if (attr_form_is_ref (attr))
17982 {
17983 struct dwarf2_cu *target_cu = cu;
17984 struct die_info *target_die;
17985 struct attribute *target_attr;
17986
17987 target_die = follow_die_ref (die, attr, &target_cu);
17988 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
17989 if (target_attr == NULL)
17990 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17991 target_cu);
80180f79
SA
17992 if (target_attr == NULL)
17993 return 0;
17994
df25ebbd 17995 switch (target_attr->name)
80180f79 17996 {
df25ebbd
JB
17997 case DW_AT_location:
17998 if (attr_form_is_section_offset (target_attr))
17999 {
8d749320 18000 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 18001 baton->property_type = die_type (target_die, target_cu);
df25ebbd
JB
18002 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18003 prop->data.baton = baton;
18004 prop->kind = PROP_LOCLIST;
18005 gdb_assert (prop->data.baton != NULL);
18006 }
18007 else if (attr_form_is_block (target_attr))
18008 {
8d749320 18009 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 18010 baton->property_type = die_type (target_die, target_cu);
df25ebbd
JB
18011 baton->locexpr.per_cu = cu->per_cu;
18012 baton->locexpr.size = DW_BLOCK (target_attr)->size;
18013 baton->locexpr.data = DW_BLOCK (target_attr)->data;
9a49df9d 18014 baton->locexpr.is_reference = true;
df25ebbd
JB
18015 prop->data.baton = baton;
18016 prop->kind = PROP_LOCEXPR;
18017 gdb_assert (prop->data.baton != NULL);
18018 }
18019 else
18020 {
18021 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18022 "dynamic property");
18023 return 0;
18024 }
18025 break;
18026 case DW_AT_data_member_location:
18027 {
18028 LONGEST offset;
18029
18030 if (!handle_data_member_location (target_die, target_cu,
18031 &offset))
18032 return 0;
18033
8d749320 18034 baton = XOBNEW (obstack, struct dwarf2_property_baton);
9a49df9d 18035 baton->property_type = read_type_die (target_die->parent,
6ad395a7 18036 target_cu);
df25ebbd
JB
18037 baton->offset_info.offset = offset;
18038 baton->offset_info.type = die_type (target_die, target_cu);
18039 prop->data.baton = baton;
18040 prop->kind = PROP_ADDR_OFFSET;
18041 break;
18042 }
80180f79
SA
18043 }
18044 }
18045 else if (attr_form_is_constant (attr))
18046 {
18047 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
18048 prop->kind = PROP_CONST;
18049 }
18050 else
18051 {
18052 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18053 dwarf2_name (die, cu));
18054 return 0;
18055 }
18056
18057 return 1;
18058}
18059
11a8b164
AB
18060/* Find an integer type SIZE_IN_BYTES bytes in size and return it.
18061 UNSIGNED_P controls if the integer is unsigned or not. */
9a49df9d
AB
18062
18063static struct type *
11a8b164
AB
18064dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu,
18065 int size_in_bytes, bool unsigned_p)
9a49df9d
AB
18066{
18067 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9a49df9d
AB
18068 struct type *int_type;
18069
18070 /* Helper macro to examine the various builtin types. */
11a8b164
AB
18071#define TRY_TYPE(F) \
18072 int_type = (unsigned_p \
18073 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18074 : objfile_type (objfile)->builtin_ ## F); \
18075 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
9a49df9d
AB
18076 return int_type
18077
18078 TRY_TYPE (char);
18079 TRY_TYPE (short);
18080 TRY_TYPE (int);
18081 TRY_TYPE (long);
18082 TRY_TYPE (long_long);
18083
18084#undef TRY_TYPE
18085
18086 gdb_assert_not_reached ("unable to find suitable integer type");
18087}
18088
11a8b164
AB
18089/* Find an integer type the same size as the address size given in the
18090 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
18091 is unsigned or not. */
18092
18093static struct type *
18094dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
18095 bool unsigned_p)
18096{
18097 int addr_size = dwarf2_per_cu_addr_size (per_cu);
18098 return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p);
18099}
18100
b86352cf
AB
18101/* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18102 present (which is valid) then compute the default type based on the
18103 compilation units address size. */
18104
18105static struct type *
18106read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18107{
18108 struct type *index_type = die_type (die, cu);
18109
18110 /* Dwarf-2 specifications explicitly allows to create subrange types
18111 without specifying a base type.
18112 In that case, the base type must be set to the type of
18113 the lower bound, upper bound or count, in that order, if any of these
18114 three attributes references an object that has a type.
18115 If no base type is found, the Dwarf-2 specifications say that
18116 a signed integer type of size equal to the size of an address should
18117 be used.
18118 For the following C code: `extern char gdb_int [];'
18119 GCC produces an empty range DIE.
18120 FIXME: muller/2010-05-28: Possible references to object for low bound,
18121 high bound or count are not yet handled by this code. */
18122 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
9a49df9d 18123 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
b86352cf
AB
18124
18125 return index_type;
18126}
18127
a02abb62
JB
18128/* Read the given DW_AT_subrange DIE. */
18129
f792889a 18130static struct type *
a02abb62
JB
18131read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18132{
4c9ad8c2 18133 struct type *base_type, *orig_base_type;
a02abb62
JB
18134 struct type *range_type;
18135 struct attribute *attr;
729efb13 18136 struct dynamic_prop low, high;
4fae6e18 18137 int low_default_is_valid;
c451ebe5 18138 int high_bound_is_count = 0;
15d034d0 18139 const char *name;
d359392f 18140 ULONGEST negative_mask;
e77813c8 18141
b86352cf
AB
18142 orig_base_type = read_subrange_index_type (die, cu);
18143
4c9ad8c2
TT
18144 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18145 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18146 creating the range type, but we use the result of check_typedef
18147 when examining properties of the type. */
18148 base_type = check_typedef (orig_base_type);
a02abb62 18149
7e314c57
JK
18150 /* The die_type call above may have already set the type for this DIE. */
18151 range_type = get_die_type (die, cu);
18152 if (range_type)
18153 return range_type;
18154
729efb13
SA
18155 low.kind = PROP_CONST;
18156 high.kind = PROP_CONST;
18157 high.data.const_val = 0;
18158
4fae6e18
JK
18159 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18160 omitting DW_AT_lower_bound. */
18161 switch (cu->language)
6e70227d 18162 {
4fae6e18
JK
18163 case language_c:
18164 case language_cplus:
729efb13 18165 low.data.const_val = 0;
4fae6e18
JK
18166 low_default_is_valid = 1;
18167 break;
18168 case language_fortran:
729efb13 18169 low.data.const_val = 1;
4fae6e18
JK
18170 low_default_is_valid = 1;
18171 break;
18172 case language_d:
4fae6e18 18173 case language_objc:
c44af4eb 18174 case language_rust:
729efb13 18175 low.data.const_val = 0;
4fae6e18
JK
18176 low_default_is_valid = (cu->header.version >= 4);
18177 break;
18178 case language_ada:
18179 case language_m2:
18180 case language_pascal:
729efb13 18181 low.data.const_val = 1;
4fae6e18
JK
18182 low_default_is_valid = (cu->header.version >= 4);
18183 break;
18184 default:
729efb13 18185 low.data.const_val = 0;
4fae6e18
JK
18186 low_default_is_valid = 0;
18187 break;
a02abb62
JB
18188 }
18189
e142c38c 18190 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
435d3d88 18191 if (attr != nullptr)
9a49df9d 18192 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
4fae6e18 18193 else if (!low_default_is_valid)
b98664d3 18194 complaint (_("Missing DW_AT_lower_bound "
9d8780f0
SM
18195 "- DIE at %s [in module %s]"),
18196 sect_offset_str (die->sect_off),
518817b3 18197 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a02abb62 18198
506f5c41
TV
18199 struct attribute *attr_ub, *attr_count;
18200 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
9a49df9d 18201 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
e77813c8 18202 {
506f5c41 18203 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
9a49df9d 18204 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
6b662e19 18205 {
c451ebe5
SA
18206 /* If bounds are constant do the final calculation here. */
18207 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18208 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18209 else
18210 high_bound_is_count = 1;
c2ff108b 18211 }
506f5c41
TV
18212 else
18213 {
18214 if (attr_ub != NULL)
18215 complaint (_("Unresolved DW_AT_upper_bound "
18216 "- DIE at %s [in module %s]"),
18217 sect_offset_str (die->sect_off),
18218 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18219 if (attr_count != NULL)
18220 complaint (_("Unresolved DW_AT_count "
18221 "- DIE at %s [in module %s]"),
18222 sect_offset_str (die->sect_off),
18223 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18224 }
e77813c8 18225 }
a02abb62 18226
4e962e74
TT
18227 LONGEST bias = 0;
18228 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18229 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
18230 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
18231
dbb9c2b1
JB
18232 /* Normally, the DWARF producers are expected to use a signed
18233 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18234 But this is unfortunately not always the case, as witnessed
18235 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18236 is used instead. To work around that ambiguity, we treat
18237 the bounds as signed, and thus sign-extend their values, when
18238 the base type is signed. */
6e70227d 18239 negative_mask =
d359392f 18240 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
18241 if (low.kind == PROP_CONST
18242 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18243 low.data.const_val |= negative_mask;
18244 if (high.kind == PROP_CONST
18245 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18246 high.data.const_val |= negative_mask;
43bbcdc2 18247
5bbd8269
AB
18248 /* Check for bit and byte strides. */
18249 struct dynamic_prop byte_stride_prop;
18250 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18251 if (attr_byte_stride != nullptr)
18252 {
18253 struct type *prop_type
18254 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
18255 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18256 prop_type);
18257 }
18258
18259 struct dynamic_prop bit_stride_prop;
18260 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18261 if (attr_bit_stride != nullptr)
18262 {
18263 /* It only makes sense to have either a bit or byte stride. */
18264 if (attr_byte_stride != nullptr)
18265 {
18266 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18267 "- DIE at %s [in module %s]"),
18268 sect_offset_str (die->sect_off),
18269 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18270 attr_bit_stride = nullptr;
18271 }
18272 else
18273 {
18274 struct type *prop_type
18275 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
18276 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18277 prop_type);
18278 }
18279 }
18280
18281 if (attr_byte_stride != nullptr
18282 || attr_bit_stride != nullptr)
18283 {
18284 bool byte_stride_p = (attr_byte_stride != nullptr);
18285 struct dynamic_prop *stride
18286 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18287
18288 range_type
18289 = create_range_type_with_stride (NULL, orig_base_type, &low,
18290 &high, bias, stride, byte_stride_p);
18291 }
18292 else
18293 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
a02abb62 18294
c451ebe5
SA
18295 if (high_bound_is_count)
18296 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18297
c2ff108b
JK
18298 /* Ada expects an empty array on no boundary attributes. */
18299 if (attr == NULL && cu->language != language_ada)
729efb13 18300 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 18301
39cbfefa
DJ
18302 name = dwarf2_name (die, cu);
18303 if (name)
18304 TYPE_NAME (range_type) = name;
6e70227d 18305
e142c38c 18306 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
435d3d88 18307 if (attr != nullptr)
a02abb62
JB
18308 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18309
2b4424c3
TT
18310 maybe_set_alignment (cu, die, range_type);
18311
7e314c57
JK
18312 set_die_type (die, range_type, cu);
18313
18314 /* set_die_type should be already done. */
b4ba55a1
JB
18315 set_descriptive_type (range_type, die, cu);
18316
7e314c57 18317 return range_type;
a02abb62 18318}
6e70227d 18319
f792889a 18320static struct type *
81a17f79
JB
18321read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18322{
18323 struct type *type;
81a17f79 18324
518817b3
SM
18325 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18326 NULL);
0114d602 18327 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 18328
74a2f8ff 18329 /* In Ada, an unspecified type is typically used when the description
85102364 18330 of the type is deferred to a different unit. When encountering
74a2f8ff
JB
18331 such a type, we treat it as a stub, and try to resolve it later on,
18332 when needed. */
18333 if (cu->language == language_ada)
18334 TYPE_STUB (type) = 1;
18335
f792889a 18336 return set_die_type (die, type, cu);
81a17f79 18337}
a02abb62 18338
639d11d3
DC
18339/* Read a single die and all its descendents. Set the die's sibling
18340 field to NULL; set other fields in the die correctly, and set all
18341 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18342 location of the info_ptr after reading all of those dies. PARENT
18343 is the parent of the die in question. */
18344
18345static struct die_info *
dee91e82 18346read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
18347 const gdb_byte *info_ptr,
18348 const gdb_byte **new_info_ptr,
dee91e82 18349 struct die_info *parent)
639d11d3
DC
18350{
18351 struct die_info *die;
d521ce57 18352 const gdb_byte *cur_ptr;
639d11d3
DC
18353 int has_children;
18354
bf6af496 18355 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
18356 if (die == NULL)
18357 {
18358 *new_info_ptr = cur_ptr;
18359 return NULL;
18360 }
93311388 18361 store_in_ref_table (die, reader->cu);
639d11d3
DC
18362
18363 if (has_children)
bf6af496 18364 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
18365 else
18366 {
18367 die->child = NULL;
18368 *new_info_ptr = cur_ptr;
18369 }
18370
18371 die->sibling = NULL;
18372 die->parent = parent;
18373 return die;
18374}
18375
18376/* Read a die, all of its descendents, and all of its siblings; set
18377 all of the fields of all of the dies correctly. Arguments are as
18378 in read_die_and_children. */
18379
18380static struct die_info *
bf6af496 18381read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
18382 const gdb_byte *info_ptr,
18383 const gdb_byte **new_info_ptr,
bf6af496 18384 struct die_info *parent)
639d11d3
DC
18385{
18386 struct die_info *first_die, *last_sibling;
d521ce57 18387 const gdb_byte *cur_ptr;
639d11d3 18388
c906108c 18389 cur_ptr = info_ptr;
639d11d3
DC
18390 first_die = last_sibling = NULL;
18391
18392 while (1)
c906108c 18393 {
639d11d3 18394 struct die_info *die
dee91e82 18395 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 18396
1d325ec1 18397 if (die == NULL)
c906108c 18398 {
639d11d3
DC
18399 *new_info_ptr = cur_ptr;
18400 return first_die;
c906108c 18401 }
1d325ec1
DJ
18402
18403 if (!first_die)
18404 first_die = die;
c906108c 18405 else
1d325ec1
DJ
18406 last_sibling->sibling = die;
18407
18408 last_sibling = die;
c906108c 18409 }
c906108c
SS
18410}
18411
bf6af496
DE
18412/* Read a die, all of its descendents, and all of its siblings; set
18413 all of the fields of all of the dies correctly. Arguments are as
18414 in read_die_and_children.
18415 This the main entry point for reading a DIE and all its children. */
18416
18417static struct die_info *
18418read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
18419 const gdb_byte *info_ptr,
18420 const gdb_byte **new_info_ptr,
bf6af496
DE
18421 struct die_info *parent)
18422{
18423 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18424 new_info_ptr, parent);
18425
b4f54984 18426 if (dwarf_die_debug)
bf6af496
DE
18427 {
18428 fprintf_unfiltered (gdb_stdlog,
18429 "Read die from %s@0x%x of %s:\n",
a32a8923 18430 get_section_name (reader->die_section),
bf6af496
DE
18431 (unsigned) (info_ptr - reader->die_section->buffer),
18432 bfd_get_filename (reader->abfd));
b4f54984 18433 dump_die (die, dwarf_die_debug);
bf6af496
DE
18434 }
18435
18436 return die;
18437}
18438
3019eac3
DE
18439/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18440 attributes.
18441 The caller is responsible for filling in the extra attributes
18442 and updating (*DIEP)->num_attrs.
18443 Set DIEP to point to a newly allocated die with its information,
18444 except for its child, sibling, and parent fields.
18445 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 18446
d521ce57 18447static const gdb_byte *
3019eac3 18448read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 18449 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 18450 int *has_children, int num_extra_attrs)
93311388 18451{
b64f50a1 18452 unsigned int abbrev_number, bytes_read, i;
93311388
DE
18453 struct abbrev_info *abbrev;
18454 struct die_info *die;
18455 struct dwarf2_cu *cu = reader->cu;
18456 bfd *abfd = reader->abfd;
18457
9c541725 18458 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
18459 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18460 info_ptr += bytes_read;
18461 if (!abbrev_number)
18462 {
18463 *diep = NULL;
18464 *has_children = 0;
18465 return info_ptr;
18466 }
18467
685af9cd 18468 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
93311388 18469 if (!abbrev)
348e048f
DE
18470 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18471 abbrev_number,
18472 bfd_get_filename (abfd));
18473
3019eac3 18474 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 18475 die->sect_off = sect_off;
93311388
DE
18476 die->tag = abbrev->tag;
18477 die->abbrev = abbrev_number;
18478
3019eac3
DE
18479 /* Make the result usable.
18480 The caller needs to update num_attrs after adding the extra
18481 attributes. */
93311388
DE
18482 die->num_attrs = abbrev->num_attrs;
18483
18484 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
18485 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18486 info_ptr);
93311388
DE
18487
18488 *diep = die;
18489 *has_children = abbrev->has_children;
18490 return info_ptr;
18491}
18492
3019eac3
DE
18493/* Read a die and all its attributes.
18494 Set DIEP to point to a newly allocated die with its information,
18495 except for its child, sibling, and parent fields.
18496 Set HAS_CHILDREN to tell whether the die has children or not. */
18497
d521ce57 18498static const gdb_byte *
3019eac3 18499read_full_die (const struct die_reader_specs *reader,
d521ce57 18500 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
18501 int *has_children)
18502{
d521ce57 18503 const gdb_byte *result;
bf6af496
DE
18504
18505 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18506
b4f54984 18507 if (dwarf_die_debug)
bf6af496
DE
18508 {
18509 fprintf_unfiltered (gdb_stdlog,
18510 "Read die from %s@0x%x of %s:\n",
a32a8923 18511 get_section_name (reader->die_section),
bf6af496
DE
18512 (unsigned) (info_ptr - reader->die_section->buffer),
18513 bfd_get_filename (reader->abfd));
b4f54984 18514 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
18515 }
18516
18517 return result;
3019eac3 18518}
433df2d4
DE
18519\f
18520/* Abbreviation tables.
3019eac3 18521
433df2d4 18522 In DWARF version 2, the description of the debugging information is
c906108c
SS
18523 stored in a separate .debug_abbrev section. Before we read any
18524 dies from a section we read in all abbreviations and install them
433df2d4
DE
18525 in a hash table. */
18526
18527/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18528
685af9cd
TT
18529struct abbrev_info *
18530abbrev_table::alloc_abbrev ()
433df2d4
DE
18531{
18532 struct abbrev_info *abbrev;
18533
685af9cd 18534 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
433df2d4 18535 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 18536
433df2d4
DE
18537 return abbrev;
18538}
18539
18540/* Add an abbreviation to the table. */
c906108c 18541
685af9cd
TT
18542void
18543abbrev_table::add_abbrev (unsigned int abbrev_number,
18544 struct abbrev_info *abbrev)
433df2d4
DE
18545{
18546 unsigned int hash_number;
18547
18548 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768
YQ
18549 abbrev->next = m_abbrevs[hash_number];
18550 m_abbrevs[hash_number] = abbrev;
433df2d4 18551}
dee91e82 18552
433df2d4
DE
18553/* Look up an abbrev in the table.
18554 Returns NULL if the abbrev is not found. */
18555
685af9cd
TT
18556struct abbrev_info *
18557abbrev_table::lookup_abbrev (unsigned int abbrev_number)
c906108c 18558{
433df2d4
DE
18559 unsigned int hash_number;
18560 struct abbrev_info *abbrev;
18561
18562 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768 18563 abbrev = m_abbrevs[hash_number];
433df2d4
DE
18564
18565 while (abbrev)
18566 {
18567 if (abbrev->number == abbrev_number)
18568 return abbrev;
18569 abbrev = abbrev->next;
18570 }
18571 return NULL;
18572}
18573
18574/* Read in an abbrev table. */
18575
685af9cd 18576static abbrev_table_up
ed2dc618
SM
18577abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18578 struct dwarf2_section_info *section,
9c541725 18579 sect_offset sect_off)
433df2d4
DE
18580{
18581 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 18582 bfd *abfd = get_section_bfd_owner (section);
d521ce57 18583 const gdb_byte *abbrev_ptr;
c906108c
SS
18584 struct abbrev_info *cur_abbrev;
18585 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 18586 unsigned int abbrev_form;
f3dd6933
DJ
18587 struct attr_abbrev *cur_attrs;
18588 unsigned int allocated_attrs;
c906108c 18589
685af9cd 18590 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
c906108c 18591
433df2d4 18592 dwarf2_read_section (objfile, section);
9c541725 18593 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
18594 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18595 abbrev_ptr += bytes_read;
18596
f3dd6933 18597 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 18598 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 18599
0963b4bd 18600 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
18601 while (abbrev_number)
18602 {
685af9cd 18603 cur_abbrev = abbrev_table->alloc_abbrev ();
c906108c
SS
18604
18605 /* read in abbrev header */
18606 cur_abbrev->number = abbrev_number;
aead7601
SM
18607 cur_abbrev->tag
18608 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
18609 abbrev_ptr += bytes_read;
18610 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18611 abbrev_ptr += 1;
18612
18613 /* now read in declarations */
22d2f3ab 18614 for (;;)
c906108c 18615 {
43988095
JK
18616 LONGEST implicit_const;
18617
22d2f3ab
JK
18618 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18619 abbrev_ptr += bytes_read;
18620 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18621 abbrev_ptr += bytes_read;
43988095
JK
18622 if (abbrev_form == DW_FORM_implicit_const)
18623 {
18624 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18625 &bytes_read);
18626 abbrev_ptr += bytes_read;
18627 }
18628 else
18629 {
18630 /* Initialize it due to a false compiler warning. */
18631 implicit_const = -1;
18632 }
22d2f3ab
JK
18633
18634 if (abbrev_name == 0)
18635 break;
18636
f3dd6933 18637 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 18638 {
f3dd6933
DJ
18639 allocated_attrs += ATTR_ALLOC_CHUNK;
18640 cur_attrs
224c3ddb 18641 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 18642 }
ae038cb0 18643
aead7601
SM
18644 cur_attrs[cur_abbrev->num_attrs].name
18645 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 18646 cur_attrs[cur_abbrev->num_attrs].form
aead7601 18647 = (enum dwarf_form) abbrev_form;
43988095 18648 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 18649 ++cur_abbrev->num_attrs;
c906108c
SS
18650 }
18651
8d749320
SM
18652 cur_abbrev->attrs =
18653 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18654 cur_abbrev->num_attrs);
f3dd6933
DJ
18655 memcpy (cur_abbrev->attrs, cur_attrs,
18656 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18657
685af9cd 18658 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
c906108c
SS
18659
18660 /* Get next abbreviation.
18661 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
18662 always properly terminated with an abbrev number of 0.
18663 Exit loop if we encounter an abbreviation which we have
18664 already read (which means we are about to read the abbreviations
18665 for the next compile unit) or if the end of the abbreviation
18666 table is reached. */
433df2d4 18667 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
18668 break;
18669 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18670 abbrev_ptr += bytes_read;
685af9cd 18671 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
c906108c
SS
18672 break;
18673 }
f3dd6933
DJ
18674
18675 xfree (cur_attrs);
433df2d4 18676 return abbrev_table;
c906108c
SS
18677}
18678
72bf9492
DJ
18679/* Returns nonzero if TAG represents a type that we might generate a partial
18680 symbol for. */
18681
18682static int
18683is_type_tag_for_partial (int tag)
18684{
18685 switch (tag)
18686 {
18687#if 0
18688 /* Some types that would be reasonable to generate partial symbols for,
18689 that we don't at present. */
18690 case DW_TAG_array_type:
18691 case DW_TAG_file_type:
18692 case DW_TAG_ptr_to_member_type:
18693 case DW_TAG_set_type:
18694 case DW_TAG_string_type:
18695 case DW_TAG_subroutine_type:
18696#endif
18697 case DW_TAG_base_type:
18698 case DW_TAG_class_type:
680b30c7 18699 case DW_TAG_interface_type:
72bf9492
DJ
18700 case DW_TAG_enumeration_type:
18701 case DW_TAG_structure_type:
18702 case DW_TAG_subrange_type:
18703 case DW_TAG_typedef:
18704 case DW_TAG_union_type:
18705 return 1;
18706 default:
18707 return 0;
18708 }
18709}
18710
18711/* Load all DIEs that are interesting for partial symbols into memory. */
18712
18713static struct partial_die_info *
dee91e82 18714load_partial_dies (const struct die_reader_specs *reader,
d521ce57 18715 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 18716{
dee91e82 18717 struct dwarf2_cu *cu = reader->cu;
518817b3 18718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
72bf9492 18719 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
72bf9492 18720 unsigned int bytes_read;
5afb4e99 18721 unsigned int load_all = 0;
72bf9492
DJ
18722 int nesting_level = 1;
18723
18724 parent_die = NULL;
18725 last_die = NULL;
18726
7adf1e79
DE
18727 gdb_assert (cu->per_cu != NULL);
18728 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
18729 load_all = 1;
18730
72bf9492
DJ
18731 cu->partial_dies
18732 = htab_create_alloc_ex (cu->header.length / 12,
18733 partial_die_hash,
18734 partial_die_eq,
18735 NULL,
18736 &cu->comp_unit_obstack,
18737 hashtab_obstack_allocate,
18738 dummy_obstack_deallocate);
18739
72bf9492
DJ
18740 while (1)
18741 {
685af9cd 18742 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
72bf9492
DJ
18743
18744 /* A NULL abbrev means the end of a series of children. */
18745 if (abbrev == NULL)
18746 {
18747 if (--nesting_level == 0)
cd9983dd
YQ
18748 return first_die;
18749
72bf9492
DJ
18750 info_ptr += bytes_read;
18751 last_die = parent_die;
18752 parent_die = parent_die->die_parent;
18753 continue;
18754 }
18755
98bfdba5
PA
18756 /* Check for template arguments. We never save these; if
18757 they're seen, we just mark the parent, and go on our way. */
18758 if (parent_die != NULL
18759 && cu->language == language_cplus
18760 && (abbrev->tag == DW_TAG_template_type_param
18761 || abbrev->tag == DW_TAG_template_value_param))
18762 {
18763 parent_die->has_template_arguments = 1;
18764
18765 if (!load_all)
18766 {
18767 /* We don't need a partial DIE for the template argument. */
dee91e82 18768 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18769 continue;
18770 }
18771 }
18772
0d99eb77 18773 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
18774 Skip their other children. */
18775 if (!load_all
18776 && cu->language == language_cplus
18777 && parent_die != NULL
18778 && parent_die->tag == DW_TAG_subprogram)
18779 {
dee91e82 18780 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18781 continue;
18782 }
18783
5afb4e99
DJ
18784 /* Check whether this DIE is interesting enough to save. Normally
18785 we would not be interested in members here, but there may be
18786 later variables referencing them via DW_AT_specification (for
18787 static members). */
18788 if (!load_all
18789 && !is_type_tag_for_partial (abbrev->tag)
72929c62 18790 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
18791 && abbrev->tag != DW_TAG_enumerator
18792 && abbrev->tag != DW_TAG_subprogram
b1dc1806 18793 && abbrev->tag != DW_TAG_inlined_subroutine
bc30ff58 18794 && abbrev->tag != DW_TAG_lexical_block
72bf9492 18795 && abbrev->tag != DW_TAG_variable
5afb4e99 18796 && abbrev->tag != DW_TAG_namespace
f55ee35c 18797 && abbrev->tag != DW_TAG_module
95554aad 18798 && abbrev->tag != DW_TAG_member
74921315
KS
18799 && abbrev->tag != DW_TAG_imported_unit
18800 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
18801 {
18802 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18803 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
18804 continue;
18805 }
18806
6f06d47b
YQ
18807 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18808 abbrev);
cd9983dd 18809
48fbe735 18810 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
72bf9492
DJ
18811
18812 /* This two-pass algorithm for processing partial symbols has a
18813 high cost in cache pressure. Thus, handle some simple cases
18814 here which cover the majority of C partial symbols. DIEs
18815 which neither have specification tags in them, nor could have
18816 specification tags elsewhere pointing at them, can simply be
18817 processed and discarded.
18818
18819 This segment is also optional; scan_partial_symbols and
18820 add_partial_symbol will handle these DIEs if we chain
18821 them in normally. When compilers which do not emit large
18822 quantities of duplicate debug information are more common,
18823 this code can probably be removed. */
18824
18825 /* Any complete simple types at the top level (pretty much all
18826 of them, for a language without namespaces), can be processed
18827 directly. */
18828 if (parent_die == NULL
cd9983dd
YQ
18829 && pdi.has_specification == 0
18830 && pdi.is_declaration == 0
18831 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18832 || pdi.tag == DW_TAG_base_type
18833 || pdi.tag == DW_TAG_subrange_type))
72bf9492 18834 {
cd9983dd 18835 if (building_psymtab && pdi.name != NULL)
31edb802 18836 add_psymbol_to_list (pdi.name, false,
79748972 18837 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 18838 psymbol_placement::STATIC,
1762568f 18839 0, cu->language, objfile);
cd9983dd 18840 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18841 continue;
18842 }
18843
d8228535
JK
18844 /* The exception for DW_TAG_typedef with has_children above is
18845 a workaround of GCC PR debug/47510. In the case of this complaint
a737d952 18846 type_name_or_error will error on such types later.
d8228535
JK
18847
18848 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18849 it could not find the child DIEs referenced later, this is checked
18850 above. In correct DWARF DW_TAG_typedef should have no children. */
18851
cd9983dd 18852 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
b98664d3 18853 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9d8780f0 18854 "- DIE at %s [in module %s]"),
cd9983dd 18855 sect_offset_str (pdi.sect_off), objfile_name (objfile));
d8228535 18856
72bf9492
DJ
18857 /* If we're at the second level, and we're an enumerator, and
18858 our parent has no specification (meaning possibly lives in a
18859 namespace elsewhere), then we can add the partial symbol now
18860 instead of queueing it. */
cd9983dd 18861 if (pdi.tag == DW_TAG_enumerator
72bf9492
DJ
18862 && parent_die != NULL
18863 && parent_die->die_parent == NULL
18864 && parent_die->tag == DW_TAG_enumeration_type
18865 && parent_die->has_specification == 0)
18866 {
cd9983dd 18867 if (pdi.name == NULL)
b98664d3 18868 complaint (_("malformed enumerator DIE ignored"));
72bf9492 18869 else if (building_psymtab)
31edb802 18870 add_psymbol_to_list (pdi.name, false,
79748972 18871 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 18872 cu->language == language_cplus
75aedd27
TT
18873 ? psymbol_placement::GLOBAL
18874 : psymbol_placement::STATIC,
1762568f 18875 0, cu->language, objfile);
72bf9492 18876
cd9983dd 18877 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18878 continue;
18879 }
18880
cd9983dd 18881 struct partial_die_info *part_die
6f06d47b 18882 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
cd9983dd 18883
72bf9492
DJ
18884 /* We'll save this DIE so link it in. */
18885 part_die->die_parent = parent_die;
18886 part_die->die_sibling = NULL;
18887 part_die->die_child = NULL;
18888
18889 if (last_die && last_die == parent_die)
18890 last_die->die_child = part_die;
18891 else if (last_die)
18892 last_die->die_sibling = part_die;
18893
18894 last_die = part_die;
18895
18896 if (first_die == NULL)
18897 first_die = part_die;
18898
18899 /* Maybe add the DIE to the hash table. Not all DIEs that we
18900 find interesting need to be in the hash table, because we
18901 also have the parent/sibling/child chains; only those that we
18902 might refer to by offset later during partial symbol reading.
18903
18904 For now this means things that might have be the target of a
18905 DW_AT_specification, DW_AT_abstract_origin, or
18906 DW_AT_extension. DW_AT_extension will refer only to
18907 namespaces; DW_AT_abstract_origin refers to functions (and
18908 many things under the function DIE, but we do not recurse
18909 into function DIEs during partial symbol reading) and
18910 possibly variables as well; DW_AT_specification refers to
18911 declarations. Declarations ought to have the DW_AT_declaration
18912 flag. It happens that GCC forgets to put it in sometimes, but
18913 only for functions, not for types.
18914
18915 Adding more things than necessary to the hash table is harmless
18916 except for the performance cost. Adding too few will result in
5afb4e99
DJ
18917 wasted time in find_partial_die, when we reread the compilation
18918 unit with load_all_dies set. */
72bf9492 18919
5afb4e99 18920 if (load_all
72929c62 18921 || abbrev->tag == DW_TAG_constant
5afb4e99 18922 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
18923 || abbrev->tag == DW_TAG_variable
18924 || abbrev->tag == DW_TAG_namespace
18925 || part_die->is_declaration)
18926 {
18927 void **slot;
18928
18929 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
18930 to_underlying (part_die->sect_off),
18931 INSERT);
72bf9492
DJ
18932 *slot = part_die;
18933 }
18934
72bf9492 18935 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 18936 we have no reason to follow the children of structures; for other
98bfdba5
PA
18937 languages we have to, so that we can get at method physnames
18938 to infer fully qualified class names, for DW_AT_specification,
18939 and for C++ template arguments. For C++, we also look one level
18940 inside functions to find template arguments (if the name of the
18941 function does not already contain the template arguments).
bc30ff58 18942
0a4b0913
AB
18943 For Ada and Fortran, we need to scan the children of subprograms
18944 and lexical blocks as well because these languages allow the
18945 definition of nested entities that could be interesting for the
18946 debugger, such as nested subprograms for instance. */
72bf9492 18947 if (last_die->has_children
5afb4e99
DJ
18948 && (load_all
18949 || last_die->tag == DW_TAG_namespace
f55ee35c 18950 || last_die->tag == DW_TAG_module
72bf9492 18951 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
18952 || (cu->language == language_cplus
18953 && last_die->tag == DW_TAG_subprogram
18954 && (last_die->name == NULL
18955 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
18956 || (cu->language != language_c
18957 && (last_die->tag == DW_TAG_class_type
680b30c7 18958 || last_die->tag == DW_TAG_interface_type
72bf9492 18959 || last_die->tag == DW_TAG_structure_type
bc30ff58 18960 || last_die->tag == DW_TAG_union_type))
0a4b0913
AB
18961 || ((cu->language == language_ada
18962 || cu->language == language_fortran)
bc30ff58
JB
18963 && (last_die->tag == DW_TAG_subprogram
18964 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
18965 {
18966 nesting_level++;
18967 parent_die = last_die;
18968 continue;
18969 }
18970
18971 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18972 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
18973
18974 /* Back to the top, do it again. */
18975 }
18976}
18977
6f06d47b
YQ
18978partial_die_info::partial_die_info (sect_offset sect_off_,
18979 struct abbrev_info *abbrev)
18980 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18981{
18982}
18983
35cc7ed7
YQ
18984/* Read a minimal amount of information into the minimal die structure.
18985 INFO_PTR should point just after the initial uleb128 of a DIE. */
c906108c 18986
48fbe735
YQ
18987const gdb_byte *
18988partial_die_info::read (const struct die_reader_specs *reader,
18989 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
c906108c 18990{
dee91e82 18991 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18992 struct dwarf2_per_objfile *dwarf2_per_objfile
18993 = cu->per_cu->dwarf2_per_objfile;
fa238c03 18994 unsigned int i;
c5aa993b 18995 int has_low_pc_attr = 0;
c906108c 18996 int has_high_pc_attr = 0;
91da1414 18997 int high_pc_relative = 0;
c906108c 18998
fd0a254f 18999 for (i = 0; i < abbrev.num_attrs; ++i)
c906108c 19000 {
48fbe735
YQ
19001 struct attribute attr;
19002
fd0a254f 19003 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
c906108c
SS
19004
19005 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 19006 partial symbol table. */
c906108c
SS
19007 switch (attr.name)
19008 {
19009 case DW_AT_name:
48fbe735 19010 switch (tag)
71c25dea
TT
19011 {
19012 case DW_TAG_compile_unit:
95554aad 19013 case DW_TAG_partial_unit:
348e048f 19014 case DW_TAG_type_unit:
71c25dea
TT
19015 /* Compilation units have a DW_AT_name that is a filename, not
19016 a source language identifier. */
19017 case DW_TAG_enumeration_type:
19018 case DW_TAG_enumerator:
19019 /* These tags always have simple identifiers already; no need
19020 to canonicalize them. */
48fbe735 19021 name = DW_STRING (&attr);
71c25dea
TT
19022 break;
19023 default:
48fbe735
YQ
19024 {
19025 struct objfile *objfile = dwarf2_per_objfile->objfile;
19026
19027 name
19028 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
19029 &objfile->per_bfd->storage_obstack);
19030 }
71c25dea
TT
19031 break;
19032 }
c906108c 19033 break;
31ef98ae 19034 case DW_AT_linkage_name:
c906108c 19035 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
19036 /* Note that both forms of linkage name might appear. We
19037 assume they will be the same, and we only store the last
19038 one we see. */
48fbe735 19039 linkage_name = DW_STRING (&attr);
c906108c
SS
19040 break;
19041 case DW_AT_low_pc:
19042 has_low_pc_attr = 1;
48fbe735 19043 lowpc = attr_value_as_address (&attr);
c906108c
SS
19044 break;
19045 case DW_AT_high_pc:
19046 has_high_pc_attr = 1;
48fbe735 19047 highpc = attr_value_as_address (&attr);
31aa7e4e
JB
19048 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
19049 high_pc_relative = 1;
c906108c
SS
19050 break;
19051 case DW_AT_location:
0963b4bd 19052 /* Support the .debug_loc offsets. */
8e19ed76
PS
19053 if (attr_form_is_block (&attr))
19054 {
48fbe735 19055 d.locdesc = DW_BLOCK (&attr);
8e19ed76 19056 }
3690dd37 19057 else if (attr_form_is_section_offset (&attr))
8e19ed76 19058 {
4d3c2250 19059 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
19060 }
19061 else
19062 {
4d3c2250
KB
19063 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19064 "partial symbol information");
8e19ed76 19065 }
c906108c 19066 break;
c906108c 19067 case DW_AT_external:
48fbe735 19068 is_external = DW_UNSND (&attr);
c906108c
SS
19069 break;
19070 case DW_AT_declaration:
48fbe735 19071 is_declaration = DW_UNSND (&attr);
c906108c
SS
19072 break;
19073 case DW_AT_type:
48fbe735 19074 has_type = 1;
c906108c
SS
19075 break;
19076 case DW_AT_abstract_origin:
19077 case DW_AT_specification:
72bf9492 19078 case DW_AT_extension:
48fbe735
YQ
19079 has_specification = 1;
19080 spec_offset = dwarf2_get_ref_die_offset (&attr);
19081 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728 19082 || cu->per_cu->is_dwz);
c906108c
SS
19083 break;
19084 case DW_AT_sibling:
19085 /* Ignore absolute siblings, they might point outside of
19086 the current compile unit. */
19087 if (attr.form == DW_FORM_ref_addr)
b98664d3 19088 complaint (_("ignoring absolute DW_AT_sibling"));
c906108c 19089 else
b9502d3f 19090 {
48fbe735 19091 const gdb_byte *buffer = reader->buffer;
9c541725
PA
19092 sect_offset off = dwarf2_get_ref_die_offset (&attr);
19093 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
19094
19095 if (sibling_ptr < info_ptr)
b98664d3 19096 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
19097 else if (sibling_ptr > reader->buffer_end)
19098 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f 19099 else
48fbe735 19100 sibling = sibling_ptr;
b9502d3f 19101 }
c906108c 19102 break;
fa4028e9 19103 case DW_AT_byte_size:
48fbe735 19104 has_byte_size = 1;
fa4028e9 19105 break;
ff908ebf 19106 case DW_AT_const_value:
48fbe735 19107 has_const_value = 1;
ff908ebf 19108 break;
68511cec
CES
19109 case DW_AT_calling_convention:
19110 /* DWARF doesn't provide a way to identify a program's source-level
19111 entry point. DW_AT_calling_convention attributes are only meant
19112 to describe functions' calling conventions.
19113
19114 However, because it's a necessary piece of information in
0c1b455e
TT
19115 Fortran, and before DWARF 4 DW_CC_program was the only
19116 piece of debugging information whose definition refers to
19117 a 'main program' at all, several compilers marked Fortran
19118 main programs with DW_CC_program --- even when those
19119 functions use the standard calling conventions.
19120
19121 Although DWARF now specifies a way to provide this
19122 information, we support this practice for backward
19123 compatibility. */
68511cec 19124 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e 19125 && cu->language == language_fortran)
48fbe735 19126 main_subprogram = 1;
68511cec 19127 break;
481860b3
GB
19128 case DW_AT_inline:
19129 if (DW_UNSND (&attr) == DW_INL_inlined
19130 || DW_UNSND (&attr) == DW_INL_declared_inlined)
48fbe735 19131 may_be_inlined = 1;
481860b3 19132 break;
95554aad
TT
19133
19134 case DW_AT_import:
48fbe735 19135 if (tag == DW_TAG_imported_unit)
36586728 19136 {
48fbe735
YQ
19137 d.sect_off = dwarf2_get_ref_die_offset (&attr);
19138 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728
TT
19139 || cu->per_cu->is_dwz);
19140 }
95554aad
TT
19141 break;
19142
0c1b455e 19143 case DW_AT_main_subprogram:
48fbe735 19144 main_subprogram = DW_UNSND (&attr);
0c1b455e
TT
19145 break;
19146
05caa1d2
TT
19147 case DW_AT_ranges:
19148 {
19149 /* It would be nice to reuse dwarf2_get_pc_bounds here,
19150 but that requires a full DIE, so instead we just
19151 reimplement it. */
19152 int need_ranges_base = tag != DW_TAG_compile_unit;
19153 unsigned int ranges_offset = (DW_UNSND (&attr)
19154 + (need_ranges_base
19155 ? cu->ranges_base
19156 : 0));
19157
19158 /* Value of the DW_AT_ranges attribute is the offset in the
19159 .debug_ranges section. */
19160 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
19161 nullptr))
19162 has_pc_info = 1;
19163 }
19164 break;
19165
c906108c
SS
19166 default:
19167 break;
19168 }
19169 }
19170
10d06d82
TT
19171 /* For Ada, if both the name and the linkage name appear, we prefer
19172 the latter. This lets "catch exception" work better, regardless
19173 of the order in which the name and linkage name were emitted.
19174 Really, though, this is just a workaround for the fact that gdb
19175 doesn't store both the name and the linkage name. */
19176 if (cu->language == language_ada && linkage_name != nullptr)
19177 name = linkage_name;
19178
91da1414 19179 if (high_pc_relative)
48fbe735 19180 highpc += lowpc;
91da1414 19181
9373cf26
JK
19182 if (has_low_pc_attr && has_high_pc_attr)
19183 {
19184 /* When using the GNU linker, .gnu.linkonce. sections are used to
19185 eliminate duplicate copies of functions and vtables and such.
19186 The linker will arbitrarily choose one and discard the others.
19187 The AT_*_pc values for such functions refer to local labels in
19188 these sections. If the section from that file was discarded, the
19189 labels are not in the output, so the relocs get a value of 0.
19190 If this is a discarded function, mark the pc bounds as invalid,
19191 so that GDB will ignore it. */
48fbe735 19192 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9373cf26 19193 {
48fbe735 19194 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 19195 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 19196
b98664d3 19197 complaint (_("DW_AT_low_pc %s is zero "
9d8780f0 19198 "for DIE at %s [in module %s]"),
48fbe735
YQ
19199 paddress (gdbarch, lowpc),
19200 sect_offset_str (sect_off),
9d8780f0 19201 objfile_name (objfile));
9373cf26
JK
19202 }
19203 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
48fbe735 19204 else if (lowpc >= highpc)
9373cf26 19205 {
48fbe735 19206 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 19207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 19208
b98664d3 19209 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9d8780f0 19210 "for DIE at %s [in module %s]"),
48fbe735
YQ
19211 paddress (gdbarch, lowpc),
19212 paddress (gdbarch, highpc),
19213 sect_offset_str (sect_off),
9c541725 19214 objfile_name (objfile));
9373cf26
JK
19215 }
19216 else
48fbe735 19217 has_pc_info = 1;
9373cf26 19218 }
85cbf3d3 19219
c906108c
SS
19220 return info_ptr;
19221}
19222
72bf9492
DJ
19223/* Find a cached partial DIE at OFFSET in CU. */
19224
d590ff25
YQ
19225struct partial_die_info *
19226dwarf2_cu::find_partial_die (sect_offset sect_off)
72bf9492
DJ
19227{
19228 struct partial_die_info *lookup_die = NULL;
6f06d47b 19229 struct partial_die_info part_die (sect_off);
72bf9492 19230
9a3c8263 19231 lookup_die = ((struct partial_die_info *)
d590ff25 19232 htab_find_with_hash (partial_dies, &part_die,
9c541725 19233 to_underlying (sect_off)));
72bf9492 19234
72bf9492
DJ
19235 return lookup_die;
19236}
19237
348e048f
DE
19238/* Find a partial DIE at OFFSET, which may or may not be in CU,
19239 except in the case of .debug_types DIEs which do not reference
19240 outside their CU (they do however referencing other types via
55f1336d 19241 DW_FORM_ref_sig8). */
72bf9492 19242
122cf0f2 19243static const struct cu_partial_die_info
9c541725 19244find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 19245{
518817b3
SM
19246 struct dwarf2_per_objfile *dwarf2_per_objfile
19247 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 19248 struct objfile *objfile = dwarf2_per_objfile->objfile;
5afb4e99
DJ
19249 struct dwarf2_per_cu_data *per_cu = NULL;
19250 struct partial_die_info *pd = NULL;
72bf9492 19251
36586728 19252 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 19253 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 19254 {
d590ff25 19255 pd = cu->find_partial_die (sect_off);
5afb4e99 19256 if (pd != NULL)
fb816e8b 19257 return { cu, pd };
0d99eb77
DE
19258 /* We missed recording what we needed.
19259 Load all dies and try again. */
19260 per_cu = cu->per_cu;
5afb4e99 19261 }
0d99eb77
DE
19262 else
19263 {
19264 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 19265 if (cu->per_cu->is_debug_types)
0d99eb77 19266 {
9d8780f0
SM
19267 error (_("Dwarf Error: Type Unit at offset %s contains"
19268 " external reference to offset %s [in module %s].\n"),
19269 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
0d99eb77
DE
19270 bfd_get_filename (objfile->obfd));
19271 }
9c541725 19272 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 19273 dwarf2_per_objfile);
72bf9492 19274
0d99eb77
DE
19275 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19276 load_partial_comp_unit (per_cu);
ae038cb0 19277
0d99eb77 19278 per_cu->cu->last_used = 0;
d590ff25 19279 pd = per_cu->cu->find_partial_die (sect_off);
0d99eb77 19280 }
5afb4e99 19281
dee91e82
DE
19282 /* If we didn't find it, and not all dies have been loaded,
19283 load them all and try again. */
19284
5afb4e99
DJ
19285 if (pd == NULL && per_cu->load_all_dies == 0)
19286 {
5afb4e99 19287 per_cu->load_all_dies = 1;
fd820528
DE
19288
19289 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19290 THIS_CU->cu may already be in use. So we can't just free it and
19291 replace its DIEs with the ones we read in. Instead, we leave those
19292 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19293 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19294 set. */
dee91e82 19295 load_partial_comp_unit (per_cu);
5afb4e99 19296
d590ff25 19297 pd = per_cu->cu->find_partial_die (sect_off);
5afb4e99
DJ
19298 }
19299
19300 if (pd == NULL)
19301 internal_error (__FILE__, __LINE__,
9d8780f0 19302 _("could not find partial DIE %s "
3e43a32a 19303 "in cache [from module %s]\n"),
9d8780f0 19304 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
fb816e8b 19305 return { per_cu->cu, pd };
72bf9492
DJ
19306}
19307
abc72ce4
DE
19308/* See if we can figure out if the class lives in a namespace. We do
19309 this by looking for a member function; its demangled name will
19310 contain namespace info, if there is any. */
19311
19312static void
19313guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19314 struct dwarf2_cu *cu)
19315{
19316 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19317 what template types look like, because the demangler
19318 frequently doesn't give the same name as the debug info. We
19319 could fix this by only using the demangled name to get the
19320 prefix (but see comment in read_structure_type). */
19321
19322 struct partial_die_info *real_pdi;
19323 struct partial_die_info *child_pdi;
19324
19325 /* If this DIE (this DIE's specification, if any) has a parent, then
19326 we should not do this. We'll prepend the parent's fully qualified
19327 name when we create the partial symbol. */
19328
19329 real_pdi = struct_pdi;
19330 while (real_pdi->has_specification)
fb816e8b 19331 {
122cf0f2
AB
19332 auto res = find_partial_die (real_pdi->spec_offset,
19333 real_pdi->spec_is_dwz, cu);
fb816e8b
TV
19334 real_pdi = res.pdi;
19335 cu = res.cu;
19336 }
abc72ce4
DE
19337
19338 if (real_pdi->die_parent != NULL)
19339 return;
19340
19341 for (child_pdi = struct_pdi->die_child;
19342 child_pdi != NULL;
19343 child_pdi = child_pdi->die_sibling)
19344 {
19345 if (child_pdi->tag == DW_TAG_subprogram
19346 && child_pdi->linkage_name != NULL)
19347 {
19348 char *actual_class_name
19349 = language_class_name_from_physname (cu->language_defn,
19350 child_pdi->linkage_name);
19351 if (actual_class_name != NULL)
19352 {
518817b3 19353 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4 19354 struct_pdi->name
021887d8
TT
19355 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19356 actual_class_name);
abc72ce4
DE
19357 xfree (actual_class_name);
19358 }
19359 break;
19360 }
19361 }
19362}
19363
52356b79
YQ
19364void
19365partial_die_info::fixup (struct dwarf2_cu *cu)
72bf9492 19366{
abc72ce4
DE
19367 /* Once we've fixed up a die, there's no point in doing so again.
19368 This also avoids a memory leak if we were to call
19369 guess_partial_die_structure_name multiple times. */
52356b79 19370 if (fixup_called)
abc72ce4
DE
19371 return;
19372
72bf9492
DJ
19373 /* If we found a reference attribute and the DIE has no name, try
19374 to find a name in the referred to DIE. */
19375
52356b79 19376 if (name == NULL && has_specification)
72bf9492
DJ
19377 {
19378 struct partial_die_info *spec_die;
72bf9492 19379
122cf0f2 19380 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
fb816e8b
TV
19381 spec_die = res.pdi;
19382 cu = res.cu;
72bf9492 19383
52356b79 19384 spec_die->fixup (cu);
72bf9492
DJ
19385
19386 if (spec_die->name)
19387 {
52356b79 19388 name = spec_die->name;
72bf9492
DJ
19389
19390 /* Copy DW_AT_external attribute if it is set. */
19391 if (spec_die->is_external)
52356b79 19392 is_external = spec_die->is_external;
72bf9492
DJ
19393 }
19394 }
19395
19396 /* Set default names for some unnamed DIEs. */
72bf9492 19397
52356b79
YQ
19398 if (name == NULL && tag == DW_TAG_namespace)
19399 name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 19400
abc72ce4
DE
19401 /* If there is no parent die to provide a namespace, and there are
19402 children, see if we can determine the namespace from their linkage
122d1940 19403 name. */
abc72ce4 19404 if (cu->language == language_cplus
fd5866f6 19405 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
52356b79
YQ
19406 && die_parent == NULL
19407 && has_children
19408 && (tag == DW_TAG_class_type
19409 || tag == DW_TAG_structure_type
19410 || tag == DW_TAG_union_type))
19411 guess_partial_die_structure_name (this, cu);
abc72ce4 19412
53832f31
TT
19413 /* GCC might emit a nameless struct or union that has a linkage
19414 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
52356b79
YQ
19415 if (name == NULL
19416 && (tag == DW_TAG_class_type
19417 || tag == DW_TAG_interface_type
19418 || tag == DW_TAG_structure_type
19419 || tag == DW_TAG_union_type)
19420 && linkage_name != NULL)
53832f31
TT
19421 {
19422 char *demangled;
19423
52356b79 19424 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
53832f31
TT
19425 if (demangled)
19426 {
96408a79
SA
19427 const char *base;
19428
19429 /* Strip any leading namespaces/classes, keep only the base name.
19430 DW_AT_name for named DIEs does not contain the prefixes. */
19431 base = strrchr (demangled, ':');
19432 if (base && base > demangled && base[-1] == ':')
19433 base++;
19434 else
19435 base = demangled;
19436
518817b3 19437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
021887d8 19438 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
53832f31
TT
19439 xfree (demangled);
19440 }
19441 }
19442
52356b79 19443 fixup_called = 1;
72bf9492
DJ
19444}
19445
a8329558 19446/* Read an attribute value described by an attribute form. */
c906108c 19447
d521ce57 19448static const gdb_byte *
dee91e82
DE
19449read_attribute_value (const struct die_reader_specs *reader,
19450 struct attribute *attr, unsigned form,
43988095 19451 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 19452{
dee91e82 19453 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19454 struct dwarf2_per_objfile *dwarf2_per_objfile
19455 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 19456 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 19457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 19458 bfd *abfd = reader->abfd;
e7c27a73 19459 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19460 unsigned int bytes_read;
19461 struct dwarf_block *blk;
19462
aead7601 19463 attr->form = (enum dwarf_form) form;
a8329558 19464 switch (form)
c906108c 19465 {
c906108c 19466 case DW_FORM_ref_addr:
ae411497 19467 if (cu->header.version == 2)
4568ecf9 19468 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 19469 else
4568ecf9
DE
19470 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19471 &cu->header, &bytes_read);
ae411497
TT
19472 info_ptr += bytes_read;
19473 break;
36586728
TT
19474 case DW_FORM_GNU_ref_alt:
19475 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19476 info_ptr += bytes_read;
19477 break;
ae411497 19478 case DW_FORM_addr:
e7c27a73 19479 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 19480 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 19481 info_ptr += bytes_read;
c906108c
SS
19482 break;
19483 case DW_FORM_block2:
7b5a2f43 19484 blk = dwarf_alloc_block (cu);
c906108c
SS
19485 blk->size = read_2_bytes (abfd, info_ptr);
19486 info_ptr += 2;
19487 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19488 info_ptr += blk->size;
19489 DW_BLOCK (attr) = blk;
19490 break;
19491 case DW_FORM_block4:
7b5a2f43 19492 blk = dwarf_alloc_block (cu);
c906108c
SS
19493 blk->size = read_4_bytes (abfd, info_ptr);
19494 info_ptr += 4;
19495 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19496 info_ptr += blk->size;
19497 DW_BLOCK (attr) = blk;
19498 break;
19499 case DW_FORM_data2:
19500 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19501 info_ptr += 2;
19502 break;
19503 case DW_FORM_data4:
19504 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19505 info_ptr += 4;
19506 break;
19507 case DW_FORM_data8:
19508 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19509 info_ptr += 8;
19510 break;
0224619f
JK
19511 case DW_FORM_data16:
19512 blk = dwarf_alloc_block (cu);
19513 blk->size = 16;
19514 blk->data = read_n_bytes (abfd, info_ptr, 16);
19515 info_ptr += 16;
19516 DW_BLOCK (attr) = blk;
19517 break;
2dc7f7b3
TT
19518 case DW_FORM_sec_offset:
19519 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19520 info_ptr += bytes_read;
19521 break;
c906108c 19522 case DW_FORM_string:
9b1c24c8 19523 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 19524 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
19525 info_ptr += bytes_read;
19526 break;
4bdf3d34 19527 case DW_FORM_strp:
36586728
TT
19528 if (!cu->per_cu->is_dwz)
19529 {
ed2dc618
SM
19530 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19531 abfd, info_ptr, cu_header,
36586728
TT
19532 &bytes_read);
19533 DW_STRING_IS_CANONICAL (attr) = 0;
19534 info_ptr += bytes_read;
19535 break;
19536 }
19537 /* FALLTHROUGH */
43988095
JK
19538 case DW_FORM_line_strp:
19539 if (!cu->per_cu->is_dwz)
19540 {
ed2dc618
SM
19541 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19542 abfd, info_ptr,
43988095
JK
19543 cu_header, &bytes_read);
19544 DW_STRING_IS_CANONICAL (attr) = 0;
19545 info_ptr += bytes_read;
19546 break;
19547 }
19548 /* FALLTHROUGH */
36586728
TT
19549 case DW_FORM_GNU_strp_alt:
19550 {
ed2dc618 19551 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
19552 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19553 &bytes_read);
19554
ed2dc618
SM
19555 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19556 dwz, str_offset);
36586728
TT
19557 DW_STRING_IS_CANONICAL (attr) = 0;
19558 info_ptr += bytes_read;
19559 }
4bdf3d34 19560 break;
2dc7f7b3 19561 case DW_FORM_exprloc:
c906108c 19562 case DW_FORM_block:
7b5a2f43 19563 blk = dwarf_alloc_block (cu);
c906108c
SS
19564 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19565 info_ptr += bytes_read;
19566 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19567 info_ptr += blk->size;
19568 DW_BLOCK (attr) = blk;
19569 break;
19570 case DW_FORM_block1:
7b5a2f43 19571 blk = dwarf_alloc_block (cu);
c906108c
SS
19572 blk->size = read_1_byte (abfd, info_ptr);
19573 info_ptr += 1;
19574 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19575 info_ptr += blk->size;
19576 DW_BLOCK (attr) = blk;
19577 break;
19578 case DW_FORM_data1:
19579 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19580 info_ptr += 1;
19581 break;
19582 case DW_FORM_flag:
19583 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19584 info_ptr += 1;
19585 break;
2dc7f7b3
TT
19586 case DW_FORM_flag_present:
19587 DW_UNSND (attr) = 1;
19588 break;
c906108c
SS
19589 case DW_FORM_sdata:
19590 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19591 info_ptr += bytes_read;
19592 break;
19593 case DW_FORM_udata:
19594 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19595 info_ptr += bytes_read;
19596 break;
19597 case DW_FORM_ref1:
9c541725 19598 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19599 + read_1_byte (abfd, info_ptr));
c906108c
SS
19600 info_ptr += 1;
19601 break;
19602 case DW_FORM_ref2:
9c541725 19603 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19604 + read_2_bytes (abfd, info_ptr));
c906108c
SS
19605 info_ptr += 2;
19606 break;
19607 case DW_FORM_ref4:
9c541725 19608 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19609 + read_4_bytes (abfd, info_ptr));
c906108c
SS
19610 info_ptr += 4;
19611 break;
613e1657 19612 case DW_FORM_ref8:
9c541725 19613 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19614 + read_8_bytes (abfd, info_ptr));
613e1657
KB
19615 info_ptr += 8;
19616 break;
55f1336d 19617 case DW_FORM_ref_sig8:
ac9ec31b 19618 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
19619 info_ptr += 8;
19620 break;
c906108c 19621 case DW_FORM_ref_udata:
9c541725 19622 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19623 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
19624 info_ptr += bytes_read;
19625 break;
c906108c 19626 case DW_FORM_indirect:
a8329558
KW
19627 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19628 info_ptr += bytes_read;
43988095
JK
19629 if (form == DW_FORM_implicit_const)
19630 {
19631 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19632 info_ptr += bytes_read;
19633 }
19634 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19635 info_ptr);
19636 break;
19637 case DW_FORM_implicit_const:
19638 DW_SND (attr) = implicit_const;
a8329558 19639 break;
336d760d 19640 case DW_FORM_addrx:
3019eac3
DE
19641 case DW_FORM_GNU_addr_index:
19642 if (reader->dwo_file == NULL)
19643 {
19644 /* For now flag a hard error.
19645 Later we can turn this into a complaint. */
19646 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19647 dwarf_form_name (form),
19648 bfd_get_filename (abfd));
19649 }
19650 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19651 info_ptr += bytes_read;
19652 break;
cf532bd1 19653 case DW_FORM_strx:
15f18d14
AT
19654 case DW_FORM_strx1:
19655 case DW_FORM_strx2:
19656 case DW_FORM_strx3:
19657 case DW_FORM_strx4:
3019eac3
DE
19658 case DW_FORM_GNU_str_index:
19659 if (reader->dwo_file == NULL)
19660 {
19661 /* For now flag a hard error.
19662 Later we can turn this into a complaint if warranted. */
19663 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19664 dwarf_form_name (form),
19665 bfd_get_filename (abfd));
19666 }
19667 {
15f18d14
AT
19668 ULONGEST str_index;
19669 if (form == DW_FORM_strx1)
19670 {
19671 str_index = read_1_byte (abfd, info_ptr);
19672 info_ptr += 1;
19673 }
19674 else if (form == DW_FORM_strx2)
19675 {
19676 str_index = read_2_bytes (abfd, info_ptr);
19677 info_ptr += 2;
19678 }
19679 else if (form == DW_FORM_strx3)
19680 {
19681 str_index = read_3_bytes (abfd, info_ptr);
19682 info_ptr += 3;
19683 }
19684 else if (form == DW_FORM_strx4)
19685 {
19686 str_index = read_4_bytes (abfd, info_ptr);
19687 info_ptr += 4;
19688 }
19689 else
19690 {
19691 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19692 info_ptr += bytes_read;
19693 }
342587c4 19694 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3 19695 DW_STRING_IS_CANONICAL (attr) = 0;
3019eac3
DE
19696 }
19697 break;
c906108c 19698 default:
8a3fe4f8 19699 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
19700 dwarf_form_name (form),
19701 bfd_get_filename (abfd));
c906108c 19702 }
28e94949 19703
36586728 19704 /* Super hack. */
7771576e 19705 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
19706 attr->form = DW_FORM_GNU_ref_alt;
19707
28e94949
JB
19708 /* We have seen instances where the compiler tried to emit a byte
19709 size attribute of -1 which ended up being encoded as an unsigned
19710 0xffffffff. Although 0xffffffff is technically a valid size value,
19711 an object of this size seems pretty unlikely so we can relatively
19712 safely treat these cases as if the size attribute was invalid and
19713 treat them as zero by default. */
19714 if (attr->name == DW_AT_byte_size
19715 && form == DW_FORM_data4
19716 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
19717 {
19718 complaint
b98664d3 19719 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
43bbcdc2 19720 hex_string (DW_UNSND (attr)));
01c66ae6
JB
19721 DW_UNSND (attr) = 0;
19722 }
28e94949 19723
c906108c
SS
19724 return info_ptr;
19725}
19726
a8329558
KW
19727/* Read an attribute described by an abbreviated attribute. */
19728
d521ce57 19729static const gdb_byte *
dee91e82
DE
19730read_attribute (const struct die_reader_specs *reader,
19731 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 19732 const gdb_byte *info_ptr)
a8329558
KW
19733{
19734 attr->name = abbrev->name;
43988095
JK
19735 return read_attribute_value (reader, attr, abbrev->form,
19736 abbrev->implicit_const, info_ptr);
a8329558
KW
19737}
19738
0963b4bd 19739/* Read dwarf information from a buffer. */
c906108c
SS
19740
19741static unsigned int
a1855c1d 19742read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19743{
fe1b8b76 19744 return bfd_get_8 (abfd, buf);
c906108c
SS
19745}
19746
19747static int
a1855c1d 19748read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19749{
fe1b8b76 19750 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
19751}
19752
19753static unsigned int
a1855c1d 19754read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19755{
fe1b8b76 19756 return bfd_get_16 (abfd, buf);
c906108c
SS
19757}
19758
21ae7a4d 19759static int
a1855c1d 19760read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19761{
19762 return bfd_get_signed_16 (abfd, buf);
19763}
19764
15f18d14
AT
19765static unsigned int
19766read_3_bytes (bfd *abfd, const gdb_byte *buf)
19767{
19768 unsigned int result = 0;
19769 for (int i = 0; i < 3; ++i)
19770 {
19771 unsigned char byte = bfd_get_8 (abfd, buf);
19772 buf++;
19773 result |= ((unsigned int) byte << (i * 8));
19774 }
19775 return result;
19776}
19777
c906108c 19778static unsigned int
a1855c1d 19779read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19780{
fe1b8b76 19781 return bfd_get_32 (abfd, buf);
c906108c
SS
19782}
19783
21ae7a4d 19784static int
a1855c1d 19785read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19786{
19787 return bfd_get_signed_32 (abfd, buf);
19788}
19789
93311388 19790static ULONGEST
a1855c1d 19791read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19792{
fe1b8b76 19793 return bfd_get_64 (abfd, buf);
c906108c
SS
19794}
19795
19796static CORE_ADDR
d521ce57 19797read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 19798 unsigned int *bytes_read)
c906108c 19799{
e7c27a73 19800 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19801 CORE_ADDR retval = 0;
19802
107d2387 19803 if (cu_header->signed_addr_p)
c906108c 19804 {
107d2387
AC
19805 switch (cu_header->addr_size)
19806 {
19807 case 2:
fe1b8b76 19808 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
19809 break;
19810 case 4:
fe1b8b76 19811 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
19812 break;
19813 case 8:
fe1b8b76 19814 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
19815 break;
19816 default:
8e65ff28 19817 internal_error (__FILE__, __LINE__,
e2e0b3e5 19818 _("read_address: bad switch, signed [in module %s]"),
659b0389 19819 bfd_get_filename (abfd));
107d2387
AC
19820 }
19821 }
19822 else
19823 {
19824 switch (cu_header->addr_size)
19825 {
19826 case 2:
fe1b8b76 19827 retval = bfd_get_16 (abfd, buf);
107d2387
AC
19828 break;
19829 case 4:
fe1b8b76 19830 retval = bfd_get_32 (abfd, buf);
107d2387
AC
19831 break;
19832 case 8:
fe1b8b76 19833 retval = bfd_get_64 (abfd, buf);
107d2387
AC
19834 break;
19835 default:
8e65ff28 19836 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
19837 _("read_address: bad switch, "
19838 "unsigned [in module %s]"),
659b0389 19839 bfd_get_filename (abfd));
107d2387 19840 }
c906108c 19841 }
64367e0a 19842
107d2387
AC
19843 *bytes_read = cu_header->addr_size;
19844 return retval;
c906108c
SS
19845}
19846
f7ef9339 19847/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
19848 specification allows the initial length to take up either 4 bytes
19849 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19850 bytes describe the length and all offsets will be 8 bytes in length
19851 instead of 4.
19852
f7ef9339
KB
19853 An older, non-standard 64-bit format is also handled by this
19854 function. The older format in question stores the initial length
19855 as an 8-byte quantity without an escape value. Lengths greater
19856 than 2^32 aren't very common which means that the initial 4 bytes
19857 is almost always zero. Since a length value of zero doesn't make
19858 sense for the 32-bit format, this initial zero can be considered to
19859 be an escape value which indicates the presence of the older 64-bit
19860 format. As written, the code can't detect (old format) lengths
917c78fc
MK
19861 greater than 4GB. If it becomes necessary to handle lengths
19862 somewhat larger than 4GB, we could allow other small values (such
19863 as the non-sensical values of 1, 2, and 3) to also be used as
19864 escape values indicating the presence of the old format.
f7ef9339 19865
917c78fc
MK
19866 The value returned via bytes_read should be used to increment the
19867 relevant pointer after calling read_initial_length().
c764a876 19868
613e1657
KB
19869 [ Note: read_initial_length() and read_offset() are based on the
19870 document entitled "DWARF Debugging Information Format", revision
f7ef9339 19871 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
19872 from:
19873
f7ef9339 19874 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 19875
613e1657
KB
19876 This document is only a draft and is subject to change. (So beware.)
19877
f7ef9339 19878 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
19879 determined empirically by examining 64-bit ELF files produced by
19880 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
19881
19882 - Kevin, July 16, 2002
613e1657
KB
19883 ] */
19884
19885static LONGEST
d521ce57 19886read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 19887{
fe1b8b76 19888 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 19889
dd373385 19890 if (length == 0xffffffff)
613e1657 19891 {
fe1b8b76 19892 length = bfd_get_64 (abfd, buf + 4);
613e1657 19893 *bytes_read = 12;
613e1657 19894 }
dd373385 19895 else if (length == 0)
f7ef9339 19896 {
dd373385 19897 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 19898 length = bfd_get_64 (abfd, buf);
f7ef9339 19899 *bytes_read = 8;
f7ef9339 19900 }
613e1657
KB
19901 else
19902 {
19903 *bytes_read = 4;
613e1657
KB
19904 }
19905
c764a876
DE
19906 return length;
19907}
dd373385 19908
c764a876
DE
19909/* Cover function for read_initial_length.
19910 Returns the length of the object at BUF, and stores the size of the
19911 initial length in *BYTES_READ and stores the size that offsets will be in
19912 *OFFSET_SIZE.
19913 If the initial length size is not equivalent to that specified in
19914 CU_HEADER then issue a complaint.
19915 This is useful when reading non-comp-unit headers. */
dd373385 19916
c764a876 19917static LONGEST
d521ce57 19918read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
19919 const struct comp_unit_head *cu_header,
19920 unsigned int *bytes_read,
19921 unsigned int *offset_size)
19922{
19923 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19924
19925 gdb_assert (cu_header->initial_length_size == 4
19926 || cu_header->initial_length_size == 8
19927 || cu_header->initial_length_size == 12);
19928
19929 if (cu_header->initial_length_size != *bytes_read)
b98664d3 19930 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 19931
c764a876 19932 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 19933 return length;
613e1657
KB
19934}
19935
19936/* Read an offset from the data stream. The size of the offset is
917c78fc 19937 given by cu_header->offset_size. */
613e1657
KB
19938
19939static LONGEST
d521ce57
TT
19940read_offset (bfd *abfd, const gdb_byte *buf,
19941 const struct comp_unit_head *cu_header,
891d2f0b 19942 unsigned int *bytes_read)
c764a876
DE
19943{
19944 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 19945
c764a876
DE
19946 *bytes_read = cu_header->offset_size;
19947 return offset;
19948}
19949
19950/* Read an offset from the data stream. */
19951
19952static LONGEST
d521ce57 19953read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
19954{
19955 LONGEST retval = 0;
19956
c764a876 19957 switch (offset_size)
613e1657
KB
19958 {
19959 case 4:
fe1b8b76 19960 retval = bfd_get_32 (abfd, buf);
613e1657
KB
19961 break;
19962 case 8:
fe1b8b76 19963 retval = bfd_get_64 (abfd, buf);
613e1657
KB
19964 break;
19965 default:
8e65ff28 19966 internal_error (__FILE__, __LINE__,
c764a876 19967 _("read_offset_1: bad switch [in module %s]"),
659b0389 19968 bfd_get_filename (abfd));
613e1657
KB
19969 }
19970
917c78fc 19971 return retval;
613e1657
KB
19972}
19973
d521ce57
TT
19974static const gdb_byte *
19975read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
19976{
19977 /* If the size of a host char is 8 bits, we can return a pointer
19978 to the buffer, otherwise we have to copy the data to a buffer
19979 allocated on the temporary obstack. */
4bdf3d34 19980 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 19981 return buf;
c906108c
SS
19982}
19983
d521ce57
TT
19984static const char *
19985read_direct_string (bfd *abfd, const gdb_byte *buf,
19986 unsigned int *bytes_read_ptr)
c906108c
SS
19987{
19988 /* If the size of a host char is 8 bits, we can return a pointer
19989 to the string, otherwise we have to copy the string to a buffer
19990 allocated on the temporary obstack. */
4bdf3d34 19991 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
19992 if (*buf == '\0')
19993 {
19994 *bytes_read_ptr = 1;
19995 return NULL;
19996 }
d521ce57
TT
19997 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19998 return (const char *) buf;
4bdf3d34
JJ
19999}
20000
43988095
JK
20001/* Return pointer to string at section SECT offset STR_OFFSET with error
20002 reporting strings FORM_NAME and SECT_NAME. */
20003
d521ce57 20004static const char *
ed2dc618
SM
20005read_indirect_string_at_offset_from (struct objfile *objfile,
20006 bfd *abfd, LONGEST str_offset,
43988095
JK
20007 struct dwarf2_section_info *sect,
20008 const char *form_name,
20009 const char *sect_name)
20010{
ed2dc618 20011 dwarf2_read_section (objfile, sect);
43988095
JK
20012 if (sect->buffer == NULL)
20013 error (_("%s used without %s section [in module %s]"),
20014 form_name, sect_name, bfd_get_filename (abfd));
20015 if (str_offset >= sect->size)
20016 error (_("%s pointing outside of %s section [in module %s]"),
20017 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 20018 gdb_assert (HOST_CHAR_BIT == 8);
43988095 20019 if (sect->buffer[str_offset] == '\0')
4bdf3d34 20020 return NULL;
43988095
JK
20021 return (const char *) (sect->buffer + str_offset);
20022}
20023
20024/* Return pointer to string at .debug_str offset STR_OFFSET. */
20025
20026static const char *
ed2dc618
SM
20027read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
20028 bfd *abfd, LONGEST str_offset)
43988095 20029{
ed2dc618
SM
20030 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
20031 abfd, str_offset,
43988095
JK
20032 &dwarf2_per_objfile->str,
20033 "DW_FORM_strp", ".debug_str");
20034}
20035
20036/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
20037
20038static const char *
ed2dc618
SM
20039read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
20040 bfd *abfd, LONGEST str_offset)
43988095 20041{
ed2dc618
SM
20042 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
20043 abfd, str_offset,
43988095
JK
20044 &dwarf2_per_objfile->line_str,
20045 "DW_FORM_line_strp",
20046 ".debug_line_str");
c906108c
SS
20047}
20048
36586728
TT
20049/* Read a string at offset STR_OFFSET in the .debug_str section from
20050 the .dwz file DWZ. Throw an error if the offset is too large. If
20051 the string consists of a single NUL byte, return NULL; otherwise
20052 return a pointer to the string. */
20053
d521ce57 20054static const char *
ed2dc618
SM
20055read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
20056 LONGEST str_offset)
36586728 20057{
ed2dc618 20058 dwarf2_read_section (objfile, &dwz->str);
36586728
TT
20059
20060 if (dwz->str.buffer == NULL)
20061 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
20062 "section [in module %s]"),
00f93c44 20063 bfd_get_filename (dwz->dwz_bfd.get ()));
36586728
TT
20064 if (str_offset >= dwz->str.size)
20065 error (_("DW_FORM_GNU_strp_alt pointing outside of "
20066 ".debug_str section [in module %s]"),
00f93c44 20067 bfd_get_filename (dwz->dwz_bfd.get ()));
36586728
TT
20068 gdb_assert (HOST_CHAR_BIT == 8);
20069 if (dwz->str.buffer[str_offset] == '\0')
20070 return NULL;
d521ce57 20071 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
20072}
20073
43988095
JK
20074/* Return pointer to string at .debug_str offset as read from BUF.
20075 BUF is assumed to be in a compilation unit described by CU_HEADER.
20076 Return *BYTES_READ_PTR count of bytes read from BUF. */
20077
d521ce57 20078static const char *
ed2dc618
SM
20079read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
20080 const gdb_byte *buf,
cf2c3c16
TT
20081 const struct comp_unit_head *cu_header,
20082 unsigned int *bytes_read_ptr)
20083{
20084 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20085
ed2dc618 20086 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
cf2c3c16
TT
20087}
20088
43988095
JK
20089/* Return pointer to string at .debug_line_str offset as read from BUF.
20090 BUF is assumed to be in a compilation unit described by CU_HEADER.
20091 Return *BYTES_READ_PTR count of bytes read from BUF. */
20092
20093static const char *
ed2dc618
SM
20094read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
20095 bfd *abfd, const gdb_byte *buf,
43988095
JK
20096 const struct comp_unit_head *cu_header,
20097 unsigned int *bytes_read_ptr)
20098{
20099 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20100
ed2dc618
SM
20101 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
20102 str_offset);
43988095
JK
20103}
20104
20105ULONGEST
d521ce57 20106read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 20107 unsigned int *bytes_read_ptr)
c906108c 20108{
12df843f 20109 ULONGEST result;
ce5d95e1 20110 unsigned int num_read;
870f88f7 20111 int shift;
c906108c
SS
20112 unsigned char byte;
20113
20114 result = 0;
20115 shift = 0;
20116 num_read = 0;
c906108c
SS
20117 while (1)
20118 {
fe1b8b76 20119 byte = bfd_get_8 (abfd, buf);
c906108c
SS
20120 buf++;
20121 num_read++;
12df843f 20122 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
20123 if ((byte & 128) == 0)
20124 {
20125 break;
20126 }
20127 shift += 7;
20128 }
20129 *bytes_read_ptr = num_read;
20130 return result;
20131}
20132
12df843f 20133static LONGEST
d521ce57
TT
20134read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
20135 unsigned int *bytes_read_ptr)
c906108c 20136{
4dd1b460 20137 ULONGEST result;
870f88f7 20138 int shift, num_read;
c906108c
SS
20139 unsigned char byte;
20140
20141 result = 0;
20142 shift = 0;
c906108c 20143 num_read = 0;
c906108c
SS
20144 while (1)
20145 {
fe1b8b76 20146 byte = bfd_get_8 (abfd, buf);
c906108c
SS
20147 buf++;
20148 num_read++;
4dd1b460 20149 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
20150 shift += 7;
20151 if ((byte & 128) == 0)
20152 {
20153 break;
20154 }
20155 }
77e0b926 20156 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
4dd1b460 20157 result |= -(((ULONGEST) 1) << shift);
c906108c
SS
20158 *bytes_read_ptr = num_read;
20159 return result;
20160}
20161
3019eac3
DE
20162/* Given index ADDR_INDEX in .debug_addr, fetch the value.
20163 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
20164 ADDR_SIZE is the size of addresses from the CU header. */
20165
20166static CORE_ADDR
ed2dc618
SM
20167read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
20168 unsigned int addr_index, ULONGEST addr_base, int addr_size)
3019eac3
DE
20169{
20170 struct objfile *objfile = dwarf2_per_objfile->objfile;
20171 bfd *abfd = objfile->obfd;
20172 const gdb_byte *info_ptr;
20173
20174 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
20175 if (dwarf2_per_objfile->addr.buffer == NULL)
20176 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 20177 objfile_name (objfile));
3019eac3
DE
20178 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
20179 error (_("DW_FORM_addr_index pointing outside of "
20180 ".debug_addr section [in module %s]"),
4262abfb 20181 objfile_name (objfile));
3019eac3
DE
20182 info_ptr = (dwarf2_per_objfile->addr.buffer
20183 + addr_base + addr_index * addr_size);
20184 if (addr_size == 4)
20185 return bfd_get_32 (abfd, info_ptr);
20186 else
20187 return bfd_get_64 (abfd, info_ptr);
20188}
20189
20190/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20191
20192static CORE_ADDR
20193read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20194{
518817b3
SM
20195 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
20196 cu->addr_base, cu->header.addr_size);
3019eac3
DE
20197}
20198
20199/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20200
20201static CORE_ADDR
d521ce57 20202read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
20203 unsigned int *bytes_read)
20204{
518817b3 20205 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
3019eac3
DE
20206 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20207
20208 return read_addr_index (cu, addr_index);
20209}
20210
20211/* Data structure to pass results from dwarf2_read_addr_index_reader
20212 back to dwarf2_read_addr_index. */
20213
20214struct dwarf2_read_addr_index_data
20215{
20216 ULONGEST addr_base;
20217 int addr_size;
20218};
20219
20220/* die_reader_func for dwarf2_read_addr_index. */
20221
20222static void
20223dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 20224 const gdb_byte *info_ptr,
3019eac3
DE
20225 struct die_info *comp_unit_die,
20226 int has_children,
20227 void *data)
20228{
20229 struct dwarf2_cu *cu = reader->cu;
20230 struct dwarf2_read_addr_index_data *aidata =
20231 (struct dwarf2_read_addr_index_data *) data;
20232
20233 aidata->addr_base = cu->addr_base;
20234 aidata->addr_size = cu->header.addr_size;
20235}
20236
20237/* Given an index in .debug_addr, fetch the value.
20238 NOTE: This can be called during dwarf expression evaluation,
20239 long after the debug information has been read, and thus per_cu->cu
20240 may no longer exist. */
20241
20242CORE_ADDR
20243dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20244 unsigned int addr_index)
20245{
ed2dc618 20246 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3
DE
20247 struct dwarf2_cu *cu = per_cu->cu;
20248 ULONGEST addr_base;
20249 int addr_size;
20250
3019eac3
DE
20251 /* We need addr_base and addr_size.
20252 If we don't have PER_CU->cu, we have to get it.
20253 Nasty, but the alternative is storing the needed info in PER_CU,
20254 which at this point doesn't seem justified: it's not clear how frequently
20255 it would get used and it would increase the size of every PER_CU.
20256 Entry points like dwarf2_per_cu_addr_size do a similar thing
20257 so we're not in uncharted territory here.
20258 Alas we need to be a bit more complicated as addr_base is contained
20259 in the DIE.
20260
20261 We don't need to read the entire CU(/TU).
20262 We just need the header and top level die.
a1b64ce1 20263
3019eac3 20264 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 20265 For now we skip this optimization. */
3019eac3
DE
20266
20267 if (cu != NULL)
20268 {
20269 addr_base = cu->addr_base;
20270 addr_size = cu->header.addr_size;
20271 }
20272 else
20273 {
20274 struct dwarf2_read_addr_index_data aidata;
20275
a1b64ce1
DE
20276 /* Note: We can't use init_cutu_and_read_dies_simple here,
20277 we need addr_base. */
58f0c718 20278 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
a1b64ce1 20279 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
20280 addr_base = aidata.addr_base;
20281 addr_size = aidata.addr_size;
20282 }
20283
ed2dc618
SM
20284 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20285 addr_size);
3019eac3
DE
20286}
20287
cf532bd1 20288/* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
57d63ce2 20289 This is only used by the Fission support. */
3019eac3 20290
d521ce57 20291static const char *
342587c4 20292read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3 20293{
ed2dc618 20294 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
20295 struct dwarf2_per_objfile *dwarf2_per_objfile
20296 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20297 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 20298 const char *objf_name = objfile_name (objfile);
3019eac3 20299 bfd *abfd = objfile->obfd;
73869dc2
DE
20300 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20301 struct dwarf2_section_info *str_offsets_section =
20302 &reader->dwo_file->sections.str_offsets;
d521ce57 20303 const gdb_byte *info_ptr;
3019eac3 20304 ULONGEST str_offset;
cf532bd1 20305 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
3019eac3 20306
73869dc2
DE
20307 dwarf2_read_section (objfile, str_section);
20308 dwarf2_read_section (objfile, str_offsets_section);
20309 if (str_section->buffer == NULL)
57d63ce2 20310 error (_("%s used without .debug_str.dwo section"
9d8780f0
SM
20311 " in CU at offset %s [in module %s]"),
20312 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20313 if (str_offsets_section->buffer == NULL)
57d63ce2 20314 error (_("%s used without .debug_str_offsets.dwo section"
9d8780f0
SM
20315 " in CU at offset %s [in module %s]"),
20316 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20317 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 20318 error (_("%s pointing outside of .debug_str_offsets.dwo"
9d8780f0
SM
20319 " section in CU at offset %s [in module %s]"),
20320 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20321 info_ptr = (str_offsets_section->buffer
3019eac3
DE
20322 + str_index * cu->header.offset_size);
20323 if (cu->header.offset_size == 4)
20324 str_offset = bfd_get_32 (abfd, info_ptr);
20325 else
20326 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 20327 if (str_offset >= str_section->size)
57d63ce2 20328 error (_("Offset from %s pointing outside of"
9d8780f0
SM
20329 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20330 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 20331 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
20332}
20333
3019eac3
DE
20334/* Return the length of an LEB128 number in BUF. */
20335
20336static int
20337leb128_size (const gdb_byte *buf)
20338{
20339 const gdb_byte *begin = buf;
20340 gdb_byte byte;
20341
20342 while (1)
20343 {
20344 byte = *buf++;
20345 if ((byte & 128) == 0)
20346 return buf - begin;
20347 }
20348}
20349
c906108c 20350static void
e142c38c 20351set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
20352{
20353 switch (lang)
20354 {
20355 case DW_LANG_C89:
76bee0cc 20356 case DW_LANG_C99:
0cfd832f 20357 case DW_LANG_C11:
c906108c 20358 case DW_LANG_C:
d1be3247 20359 case DW_LANG_UPC:
e142c38c 20360 cu->language = language_c;
c906108c 20361 break;
9c37b5ae 20362 case DW_LANG_Java:
c906108c 20363 case DW_LANG_C_plus_plus:
0cfd832f
MW
20364 case DW_LANG_C_plus_plus_11:
20365 case DW_LANG_C_plus_plus_14:
e142c38c 20366 cu->language = language_cplus;
c906108c 20367 break;
6aecb9c2
JB
20368 case DW_LANG_D:
20369 cu->language = language_d;
20370 break;
c906108c
SS
20371 case DW_LANG_Fortran77:
20372 case DW_LANG_Fortran90:
b21b22e0 20373 case DW_LANG_Fortran95:
f7de9aab
MW
20374 case DW_LANG_Fortran03:
20375 case DW_LANG_Fortran08:
e142c38c 20376 cu->language = language_fortran;
c906108c 20377 break;
a766d390
DE
20378 case DW_LANG_Go:
20379 cu->language = language_go;
20380 break;
c906108c 20381 case DW_LANG_Mips_Assembler:
e142c38c 20382 cu->language = language_asm;
c906108c
SS
20383 break;
20384 case DW_LANG_Ada83:
8aaf0b47 20385 case DW_LANG_Ada95:
bc5f45f8
JB
20386 cu->language = language_ada;
20387 break;
72019c9c
GM
20388 case DW_LANG_Modula2:
20389 cu->language = language_m2;
20390 break;
fe8e67fd
PM
20391 case DW_LANG_Pascal83:
20392 cu->language = language_pascal;
20393 break;
22566fbd
DJ
20394 case DW_LANG_ObjC:
20395 cu->language = language_objc;
20396 break;
c44af4eb
TT
20397 case DW_LANG_Rust:
20398 case DW_LANG_Rust_old:
20399 cu->language = language_rust;
20400 break;
c906108c
SS
20401 case DW_LANG_Cobol74:
20402 case DW_LANG_Cobol85:
c906108c 20403 default:
e142c38c 20404 cu->language = language_minimal;
c906108c
SS
20405 break;
20406 }
e142c38c 20407 cu->language_defn = language_def (cu->language);
c906108c
SS
20408}
20409
20410/* Return the named attribute or NULL if not there. */
20411
20412static struct attribute *
e142c38c 20413dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 20414{
a48e046c 20415 for (;;)
c906108c 20416 {
a48e046c
TT
20417 unsigned int i;
20418 struct attribute *spec = NULL;
20419
20420 for (i = 0; i < die->num_attrs; ++i)
20421 {
20422 if (die->attrs[i].name == name)
20423 return &die->attrs[i];
20424 if (die->attrs[i].name == DW_AT_specification
20425 || die->attrs[i].name == DW_AT_abstract_origin)
20426 spec = &die->attrs[i];
20427 }
20428
20429 if (!spec)
20430 break;
c906108c 20431
f2f0e013 20432 die = follow_die_ref (die, spec, &cu);
f2f0e013 20433 }
c5aa993b 20434
c906108c
SS
20435 return NULL;
20436}
20437
348e048f
DE
20438/* Return the named attribute or NULL if not there,
20439 but do not follow DW_AT_specification, etc.
20440 This is for use in contexts where we're reading .debug_types dies.
20441 Following DW_AT_specification, DW_AT_abstract_origin will take us
20442 back up the chain, and we want to go down. */
20443
20444static struct attribute *
45e58e77 20445dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
20446{
20447 unsigned int i;
20448
20449 for (i = 0; i < die->num_attrs; ++i)
20450 if (die->attrs[i].name == name)
20451 return &die->attrs[i];
20452
20453 return NULL;
20454}
20455
7d45c7c3
KB
20456/* Return the string associated with a string-typed attribute, or NULL if it
20457 is either not found or is of an incorrect type. */
20458
20459static const char *
20460dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20461{
20462 struct attribute *attr;
20463 const char *str = NULL;
20464
20465 attr = dwarf2_attr (die, name, cu);
20466
20467 if (attr != NULL)
20468 {
43988095 20469 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438 20470 || attr->form == DW_FORM_string
cf532bd1 20471 || attr->form == DW_FORM_strx
8fe0f950
AT
20472 || attr->form == DW_FORM_strx1
20473 || attr->form == DW_FORM_strx2
20474 || attr->form == DW_FORM_strx3
20475 || attr->form == DW_FORM_strx4
b3340438 20476 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 20477 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
20478 str = DW_STRING (attr);
20479 else
b98664d3 20480 complaint (_("string type expected for attribute %s for "
9d8780f0
SM
20481 "DIE at %s in module %s"),
20482 dwarf_attr_name (name), sect_offset_str (die->sect_off),
518817b3 20483 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7d45c7c3
KB
20484 }
20485
20486 return str;
20487}
20488
a084a2a6 20489/* Return the dwo name or NULL if not present. If present, it is in either
85102364 20490 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
a084a2a6
AT
20491static const char *
20492dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20493{
20494 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20495 if (dwo_name == nullptr)
20496 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20497 return dwo_name;
20498}
20499
05cf31d1
JB
20500/* Return non-zero iff the attribute NAME is defined for the given DIE,
20501 and holds a non-zero value. This function should only be used for
2dc7f7b3 20502 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
20503
20504static int
20505dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20506{
20507 struct attribute *attr = dwarf2_attr (die, name, cu);
20508
20509 return (attr && DW_UNSND (attr));
20510}
20511
3ca72b44 20512static int
e142c38c 20513die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 20514{
05cf31d1
JB
20515 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20516 which value is non-zero. However, we have to be careful with
20517 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20518 (via dwarf2_flag_true_p) follows this attribute. So we may
20519 end up accidently finding a declaration attribute that belongs
20520 to a different DIE referenced by the specification attribute,
20521 even though the given DIE does not have a declaration attribute. */
20522 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20523 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
20524}
20525
63d06c5c 20526/* Return the die giving the specification for DIE, if there is
f2f0e013 20527 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
20528 containing the return value on output. If there is no
20529 specification, but there is an abstract origin, that is
20530 returned. */
63d06c5c
DC
20531
20532static struct die_info *
f2f0e013 20533die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 20534{
f2f0e013
DJ
20535 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20536 *spec_cu);
63d06c5c 20537
edb3359d
DJ
20538 if (spec_attr == NULL)
20539 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20540
63d06c5c
DC
20541 if (spec_attr == NULL)
20542 return NULL;
20543 else
f2f0e013 20544 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 20545}
c906108c 20546
527f3840
JK
20547/* Stub for free_line_header to match void * callback types. */
20548
20549static void
20550free_line_header_voidp (void *arg)
20551{
9a3c8263 20552 struct line_header *lh = (struct line_header *) arg;
527f3840 20553
fff8551c 20554 delete lh;
527f3840
JK
20555}
20556
fff8551c
PA
20557void
20558line_header::add_include_dir (const char *include_dir)
c906108c 20559{
27e0867f 20560 if (dwarf_line_debug >= 2)
7ba99d21
AT
20561 {
20562 size_t new_size;
20563 if (version >= 5)
20564 new_size = m_include_dirs.size ();
20565 else
20566 new_size = m_include_dirs.size () + 1;
20567 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20568 new_size, include_dir);
20569 }
20570 m_include_dirs.push_back (include_dir);
debd256d 20571}
6e70227d 20572
fff8551c
PA
20573void
20574line_header::add_file_name (const char *name,
ecfb656c 20575 dir_index d_index,
fff8551c
PA
20576 unsigned int mod_time,
20577 unsigned int length)
debd256d 20578{
27e0867f 20579 if (dwarf_line_debug >= 2)
7ba99d21
AT
20580 {
20581 size_t new_size;
20582 if (version >= 5)
20583 new_size = file_names_size ();
20584 else
20585 new_size = file_names_size () + 1;
20586 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
20587 new_size, name);
20588 }
20589 m_file_names.emplace_back (name, d_index, mod_time, length);
debd256d 20590}
6e70227d 20591
83769d0b 20592/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
20593
20594static struct dwarf2_section_info *
20595get_debug_line_section (struct dwarf2_cu *cu)
20596{
20597 struct dwarf2_section_info *section;
518817b3
SM
20598 struct dwarf2_per_objfile *dwarf2_per_objfile
20599 = cu->per_cu->dwarf2_per_objfile;
36586728
TT
20600
20601 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20602 DWO file. */
20603 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20604 section = &cu->dwo_unit->dwo_file->sections.line;
20605 else if (cu->per_cu->is_dwz)
20606 {
ed2dc618 20607 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
20608
20609 section = &dwz->line;
20610 }
20611 else
20612 section = &dwarf2_per_objfile->line;
20613
20614 return section;
20615}
20616
43988095
JK
20617/* Read directory or file name entry format, starting with byte of
20618 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20619 entries count and the entries themselves in the described entry
20620 format. */
20621
20622static void
ed2dc618
SM
20623read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20624 bfd *abfd, const gdb_byte **bufp,
43988095
JK
20625 struct line_header *lh,
20626 const struct comp_unit_head *cu_header,
20627 void (*callback) (struct line_header *lh,
20628 const char *name,
ecfb656c 20629 dir_index d_index,
43988095
JK
20630 unsigned int mod_time,
20631 unsigned int length))
20632{
20633 gdb_byte format_count, formati;
20634 ULONGEST data_count, datai;
20635 const gdb_byte *buf = *bufp;
20636 const gdb_byte *format_header_data;
43988095
JK
20637 unsigned int bytes_read;
20638
20639 format_count = read_1_byte (abfd, buf);
20640 buf += 1;
20641 format_header_data = buf;
20642 for (formati = 0; formati < format_count; formati++)
20643 {
20644 read_unsigned_leb128 (abfd, buf, &bytes_read);
20645 buf += bytes_read;
20646 read_unsigned_leb128 (abfd, buf, &bytes_read);
20647 buf += bytes_read;
20648 }
20649
20650 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20651 buf += bytes_read;
20652 for (datai = 0; datai < data_count; datai++)
20653 {
20654 const gdb_byte *format = format_header_data;
20655 struct file_entry fe;
20656
43988095
JK
20657 for (formati = 0; formati < format_count; formati++)
20658 {
ecfb656c 20659 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20660 format += bytes_read;
43988095 20661
ecfb656c 20662 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20663 format += bytes_read;
ecfb656c
PA
20664
20665 gdb::optional<const char *> string;
20666 gdb::optional<unsigned int> uint;
20667
43988095
JK
20668 switch (form)
20669 {
20670 case DW_FORM_string:
ecfb656c 20671 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
20672 buf += bytes_read;
20673 break;
20674
20675 case DW_FORM_line_strp:
ed2dc618
SM
20676 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20677 abfd, buf,
ecfb656c
PA
20678 cu_header,
20679 &bytes_read));
43988095
JK
20680 buf += bytes_read;
20681 break;
20682
20683 case DW_FORM_data1:
ecfb656c 20684 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
20685 buf += 1;
20686 break;
20687
20688 case DW_FORM_data2:
ecfb656c 20689 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
20690 buf += 2;
20691 break;
20692
20693 case DW_FORM_data4:
ecfb656c 20694 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
20695 buf += 4;
20696 break;
20697
20698 case DW_FORM_data8:
ecfb656c 20699 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
20700 buf += 8;
20701 break;
20702
7ba99d21
AT
20703 case DW_FORM_data16:
20704 /* This is used for MD5, but file_entry does not record MD5s. */
20705 buf += 16;
20706 break;
20707
43988095 20708 case DW_FORM_udata:
ecfb656c 20709 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
20710 buf += bytes_read;
20711 break;
20712
20713 case DW_FORM_block:
20714 /* It is valid only for DW_LNCT_timestamp which is ignored by
20715 current GDB. */
20716 break;
20717 }
ecfb656c
PA
20718
20719 switch (content_type)
20720 {
20721 case DW_LNCT_path:
20722 if (string.has_value ())
20723 fe.name = *string;
20724 break;
20725 case DW_LNCT_directory_index:
20726 if (uint.has_value ())
20727 fe.d_index = (dir_index) *uint;
20728 break;
20729 case DW_LNCT_timestamp:
20730 if (uint.has_value ())
20731 fe.mod_time = *uint;
20732 break;
20733 case DW_LNCT_size:
20734 if (uint.has_value ())
20735 fe.length = *uint;
20736 break;
20737 case DW_LNCT_MD5:
20738 break;
20739 default:
b98664d3 20740 complaint (_("Unknown format content type %s"),
ecfb656c
PA
20741 pulongest (content_type));
20742 }
43988095
JK
20743 }
20744
ecfb656c 20745 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
20746 }
20747
20748 *bufp = buf;
20749}
20750
debd256d 20751/* Read the statement program header starting at OFFSET in
3019eac3 20752 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 20753 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
20754 Returns NULL if there is a problem reading the header, e.g., if it
20755 has a version we don't understand.
debd256d
JB
20756
20757 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
20758 the returned object point into the dwarf line section buffer,
20759 and must not be freed. */
ae2de4f8 20760
fff8551c 20761static line_header_up
9c541725 20762dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 20763{
d521ce57 20764 const gdb_byte *line_ptr;
c764a876 20765 unsigned int bytes_read, offset_size;
debd256d 20766 int i;
d521ce57 20767 const char *cur_dir, *cur_file;
3019eac3
DE
20768 struct dwarf2_section_info *section;
20769 bfd *abfd;
518817b3
SM
20770 struct dwarf2_per_objfile *dwarf2_per_objfile
20771 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20772
36586728 20773 section = get_debug_line_section (cu);
3019eac3
DE
20774 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20775 if (section->buffer == NULL)
debd256d 20776 {
3019eac3 20777 if (cu->dwo_unit && cu->per_cu->is_debug_types)
b98664d3 20778 complaint (_("missing .debug_line.dwo section"));
3019eac3 20779 else
b98664d3 20780 complaint (_("missing .debug_line section"));
debd256d
JB
20781 return 0;
20782 }
20783
fceca515
DE
20784 /* We can't do this until we know the section is non-empty.
20785 Only then do we know we have such a section. */
a32a8923 20786 abfd = get_section_bfd_owner (section);
fceca515 20787
a738430d
MK
20788 /* Make sure that at least there's room for the total_length field.
20789 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 20790 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 20791 {
4d3c2250 20792 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20793 return 0;
20794 }
20795
fff8551c 20796 line_header_up lh (new line_header ());
debd256d 20797
9c541725 20798 lh->sect_off = sect_off;
527f3840
JK
20799 lh->offset_in_dwz = cu->per_cu->is_dwz;
20800
9c541725 20801 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 20802
a738430d 20803 /* Read in the header. */
6e70227d 20804 lh->total_length =
c764a876
DE
20805 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20806 &bytes_read, &offset_size);
debd256d 20807 line_ptr += bytes_read;
7ba99d21
AT
20808
20809 const gdb_byte *start_here = line_ptr;
20810
3019eac3 20811 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 20812 {
4d3c2250 20813 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20814 return 0;
20815 }
7ba99d21 20816 lh->statement_program_end = start_here + lh->total_length;
debd256d
JB
20817 lh->version = read_2_bytes (abfd, line_ptr);
20818 line_ptr += 2;
43988095 20819 if (lh->version > 5)
cd366ee8
DE
20820 {
20821 /* This is a version we don't understand. The format could have
20822 changed in ways we don't handle properly so just punt. */
b98664d3 20823 complaint (_("unsupported version in .debug_line section"));
cd366ee8
DE
20824 return NULL;
20825 }
43988095
JK
20826 if (lh->version >= 5)
20827 {
20828 gdb_byte segment_selector_size;
20829
20830 /* Skip address size. */
20831 read_1_byte (abfd, line_ptr);
20832 line_ptr += 1;
20833
20834 segment_selector_size = read_1_byte (abfd, line_ptr);
20835 line_ptr += 1;
20836 if (segment_selector_size != 0)
20837 {
b98664d3 20838 complaint (_("unsupported segment selector size %u "
43988095
JK
20839 "in .debug_line section"),
20840 segment_selector_size);
20841 return NULL;
20842 }
20843 }
c764a876
DE
20844 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20845 line_ptr += offset_size;
7ba99d21 20846 lh->statement_program_start = line_ptr + lh->header_length;
debd256d
JB
20847 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20848 line_ptr += 1;
2dc7f7b3
TT
20849 if (lh->version >= 4)
20850 {
20851 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20852 line_ptr += 1;
20853 }
20854 else
20855 lh->maximum_ops_per_instruction = 1;
20856
20857 if (lh->maximum_ops_per_instruction == 0)
20858 {
20859 lh->maximum_ops_per_instruction = 1;
b98664d3 20860 complaint (_("invalid maximum_ops_per_instruction "
3e43a32a 20861 "in `.debug_line' section"));
2dc7f7b3
TT
20862 }
20863
debd256d
JB
20864 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20865 line_ptr += 1;
20866 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20867 line_ptr += 1;
20868 lh->line_range = read_1_byte (abfd, line_ptr);
20869 line_ptr += 1;
20870 lh->opcode_base = read_1_byte (abfd, line_ptr);
20871 line_ptr += 1;
fff8551c 20872 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
20873
20874 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20875 for (i = 1; i < lh->opcode_base; ++i)
20876 {
20877 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20878 line_ptr += 1;
20879 }
20880
43988095 20881 if (lh->version >= 5)
debd256d 20882 {
43988095 20883 /* Read directory table. */
ed2dc618
SM
20884 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20885 &cu->header,
b926417a 20886 [] (struct line_header *header, const char *name,
ecfb656c 20887 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20888 unsigned int length)
20889 {
b926417a 20890 header->add_include_dir (name);
fff8551c 20891 });
debd256d 20892
43988095 20893 /* Read file name table. */
ed2dc618
SM
20894 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20895 &cu->header,
b926417a 20896 [] (struct line_header *header, const char *name,
ecfb656c 20897 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20898 unsigned int length)
20899 {
b926417a 20900 header->add_file_name (name, d_index, mod_time, length);
fff8551c 20901 });
43988095
JK
20902 }
20903 else
debd256d 20904 {
43988095
JK
20905 /* Read directory table. */
20906 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20907 {
20908 line_ptr += bytes_read;
fff8551c 20909 lh->add_include_dir (cur_dir);
43988095 20910 }
debd256d
JB
20911 line_ptr += bytes_read;
20912
43988095
JK
20913 /* Read file name table. */
20914 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20915 {
ecfb656c
PA
20916 unsigned int mod_time, length;
20917 dir_index d_index;
43988095
JK
20918
20919 line_ptr += bytes_read;
ecfb656c 20920 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
20921 line_ptr += bytes_read;
20922 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20923 line_ptr += bytes_read;
20924 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20925 line_ptr += bytes_read;
20926
ecfb656c 20927 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
20928 }
20929 line_ptr += bytes_read;
debd256d 20930 }
debd256d 20931
3019eac3 20932 if (line_ptr > (section->buffer + section->size))
b98664d3 20933 complaint (_("line number info header doesn't "
3e43a32a 20934 "fit in `.debug_line' section"));
debd256d 20935
debd256d
JB
20936 return lh;
20937}
c906108c 20938
c6da4cef 20939/* Subroutine of dwarf_decode_lines to simplify it.
7ba99d21 20940 Return the file name of the psymtab for the given file_entry.
c6da4cef 20941 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
c89b44cd
TT
20942 If space for the result is malloc'd, *NAME_HOLDER will be set.
20943 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
c6da4cef 20944
d521ce57 20945static const char *
7ba99d21 20946psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
c6da4cef 20947 const struct partial_symtab *pst,
c89b44cd
TT
20948 const char *comp_dir,
20949 gdb::unique_xmalloc_ptr<char> *name_holder)
c6da4cef 20950{
d521ce57
TT
20951 const char *include_name = fe.name;
20952 const char *include_name_to_compare = include_name;
72b9f47f 20953 const char *pst_filename;
c6da4cef
DE
20954 int file_is_pst;
20955
8c43009f 20956 const char *dir_name = fe.include_dir (lh);
c6da4cef 20957
c89b44cd 20958 gdb::unique_xmalloc_ptr<char> hold_compare;
c6da4cef
DE
20959 if (!IS_ABSOLUTE_PATH (include_name)
20960 && (dir_name != NULL || comp_dir != NULL))
20961 {
20962 /* Avoid creating a duplicate psymtab for PST.
20963 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20964 Before we do the comparison, however, we need to account
20965 for DIR_NAME and COMP_DIR.
20966 First prepend dir_name (if non-NULL). If we still don't
20967 have an absolute path prepend comp_dir (if non-NULL).
20968 However, the directory we record in the include-file's
20969 psymtab does not contain COMP_DIR (to match the
20970 corresponding symtab(s)).
20971
20972 Example:
20973
20974 bash$ cd /tmp
20975 bash$ gcc -g ./hello.c
20976 include_name = "hello.c"
20977 dir_name = "."
20978 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
20979 DW_AT_name = "./hello.c"
20980
20981 */
c6da4cef
DE
20982
20983 if (dir_name != NULL)
20984 {
c89b44cd
TT
20985 name_holder->reset (concat (dir_name, SLASH_STRING,
20986 include_name, (char *) NULL));
20987 include_name = name_holder->get ();
c6da4cef 20988 include_name_to_compare = include_name;
c6da4cef
DE
20989 }
20990 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20991 {
c89b44cd
TT
20992 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20993 include_name, (char *) NULL));
20994 include_name_to_compare = hold_compare.get ();
c6da4cef
DE
20995 }
20996 }
20997
20998 pst_filename = pst->filename;
c89b44cd 20999 gdb::unique_xmalloc_ptr<char> copied_name;
c6da4cef
DE
21000 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
21001 {
c89b44cd
TT
21002 copied_name.reset (concat (pst->dirname, SLASH_STRING,
21003 pst_filename, (char *) NULL));
21004 pst_filename = copied_name.get ();
c6da4cef
DE
21005 }
21006
1e3fad37 21007 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 21008
c6da4cef
DE
21009 if (file_is_pst)
21010 return NULL;
21011 return include_name;
21012}
21013
d9b3de22
DE
21014/* State machine to track the state of the line number program. */
21015
6f77053d 21016class lnp_state_machine
d9b3de22 21017{
6f77053d
PA
21018public:
21019 /* Initialize a machine state for the start of a line number
21020 program. */
804d2729
TT
21021 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
21022 bool record_lines_p);
6f77053d 21023
8c43009f
PA
21024 file_entry *current_file ()
21025 {
21026 /* lh->file_names is 0-based, but the file name numbers in the
21027 statement program are 1-based. */
6f77053d
PA
21028 return m_line_header->file_name_at (m_file);
21029 }
21030
21031 /* Record the line in the state machine. END_SEQUENCE is true if
21032 we're processing the end of a sequence. */
21033 void record_line (bool end_sequence);
21034
7ab6656f
OJ
21035 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
21036 nop-out rest of the lines in this sequence. */
6f77053d
PA
21037 void check_line_address (struct dwarf2_cu *cu,
21038 const gdb_byte *line_ptr,
7ab6656f 21039 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
6f77053d
PA
21040
21041 void handle_set_discriminator (unsigned int discriminator)
21042 {
21043 m_discriminator = discriminator;
21044 m_line_has_non_zero_discriminator |= discriminator != 0;
21045 }
21046
21047 /* Handle DW_LNE_set_address. */
21048 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
21049 {
21050 m_op_index = 0;
21051 address += baseaddr;
21052 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
21053 }
21054
21055 /* Handle DW_LNS_advance_pc. */
21056 void handle_advance_pc (CORE_ADDR adjust);
21057
21058 /* Handle a special opcode. */
21059 void handle_special_opcode (unsigned char op_code);
21060
21061 /* Handle DW_LNS_advance_line. */
21062 void handle_advance_line (int line_delta)
21063 {
21064 advance_line (line_delta);
21065 }
21066
21067 /* Handle DW_LNS_set_file. */
21068 void handle_set_file (file_name_index file);
21069
21070 /* Handle DW_LNS_negate_stmt. */
21071 void handle_negate_stmt ()
21072 {
21073 m_is_stmt = !m_is_stmt;
21074 }
21075
21076 /* Handle DW_LNS_const_add_pc. */
21077 void handle_const_add_pc ();
21078
21079 /* Handle DW_LNS_fixed_advance_pc. */
21080 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
21081 {
21082 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21083 m_op_index = 0;
21084 }
21085
21086 /* Handle DW_LNS_copy. */
21087 void handle_copy ()
21088 {
21089 record_line (false);
21090 m_discriminator = 0;
21091 }
21092
21093 /* Handle DW_LNE_end_sequence. */
21094 void handle_end_sequence ()
21095 {
804d2729 21096 m_currently_recording_lines = true;
6f77053d
PA
21097 }
21098
21099private:
21100 /* Advance the line by LINE_DELTA. */
21101 void advance_line (int line_delta)
21102 {
21103 m_line += line_delta;
21104
21105 if (line_delta != 0)
21106 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
21107 }
21108
804d2729
TT
21109 struct dwarf2_cu *m_cu;
21110
6f77053d
PA
21111 gdbarch *m_gdbarch;
21112
21113 /* True if we're recording lines.
21114 Otherwise we're building partial symtabs and are just interested in
21115 finding include files mentioned by the line number program. */
21116 bool m_record_lines_p;
21117
8c43009f 21118 /* The line number header. */
6f77053d 21119 line_header *m_line_header;
8c43009f 21120
6f77053d
PA
21121 /* These are part of the standard DWARF line number state machine,
21122 and initialized according to the DWARF spec. */
d9b3de22 21123
6f77053d 21124 unsigned char m_op_index = 0;
7ba99d21
AT
21125 /* The line table index of the current file. */
21126 file_name_index m_file = 1;
6f77053d
PA
21127 unsigned int m_line = 1;
21128
21129 /* These are initialized in the constructor. */
21130
21131 CORE_ADDR m_address;
21132 bool m_is_stmt;
21133 unsigned int m_discriminator;
d9b3de22
DE
21134
21135 /* Additional bits of state we need to track. */
21136
21137 /* The last file that we called dwarf2_start_subfile for.
21138 This is only used for TLLs. */
6f77053d 21139 unsigned int m_last_file = 0;
d9b3de22 21140 /* The last file a line number was recorded for. */
6f77053d 21141 struct subfile *m_last_subfile = NULL;
d9b3de22 21142
804d2729
TT
21143 /* When true, record the lines we decode. */
21144 bool m_currently_recording_lines = false;
d9b3de22
DE
21145
21146 /* The last line number that was recorded, used to coalesce
21147 consecutive entries for the same line. This can happen, for
21148 example, when discriminators are present. PR 17276. */
6f77053d
PA
21149 unsigned int m_last_line = 0;
21150 bool m_line_has_non_zero_discriminator = false;
8c43009f 21151};
d9b3de22 21152
6f77053d
PA
21153void
21154lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
21155{
21156 CORE_ADDR addr_adj = (((m_op_index + adjust)
21157 / m_line_header->maximum_ops_per_instruction)
21158 * m_line_header->minimum_instruction_length);
21159 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21160 m_op_index = ((m_op_index + adjust)
21161 % m_line_header->maximum_ops_per_instruction);
21162}
d9b3de22 21163
6f77053d
PA
21164void
21165lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 21166{
6f77053d
PA
21167 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
21168 CORE_ADDR addr_adj = (((m_op_index
21169 + (adj_opcode / m_line_header->line_range))
21170 / m_line_header->maximum_ops_per_instruction)
21171 * m_line_header->minimum_instruction_length);
21172 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21173 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
21174 % m_line_header->maximum_ops_per_instruction);
d9b3de22 21175
6f77053d
PA
21176 int line_delta = (m_line_header->line_base
21177 + (adj_opcode % m_line_header->line_range));
21178 advance_line (line_delta);
21179 record_line (false);
21180 m_discriminator = 0;
21181}
d9b3de22 21182
6f77053d
PA
21183void
21184lnp_state_machine::handle_set_file (file_name_index file)
21185{
21186 m_file = file;
21187
21188 const file_entry *fe = current_file ();
21189 if (fe == NULL)
21190 dwarf2_debug_line_missing_file_complaint ();
21191 else if (m_record_lines_p)
21192 {
21193 const char *dir = fe->include_dir (m_line_header);
21194
c24bdb02 21195 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
6f77053d 21196 m_line_has_non_zero_discriminator = m_discriminator != 0;
804d2729 21197 dwarf2_start_subfile (m_cu, fe->name, dir);
6f77053d
PA
21198 }
21199}
21200
21201void
21202lnp_state_machine::handle_const_add_pc ()
21203{
21204 CORE_ADDR adjust
21205 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
21206
21207 CORE_ADDR addr_adj
21208 = (((m_op_index + adjust)
21209 / m_line_header->maximum_ops_per_instruction)
21210 * m_line_header->minimum_instruction_length);
21211
21212 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21213 m_op_index = ((m_op_index + adjust)
21214 % m_line_header->maximum_ops_per_instruction);
21215}
d9b3de22 21216
a05a36a5
DE
21217/* Return non-zero if we should add LINE to the line number table.
21218 LINE is the line to add, LAST_LINE is the last line that was added,
21219 LAST_SUBFILE is the subfile for LAST_LINE.
21220 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
21221 had a non-zero discriminator.
21222
21223 We have to be careful in the presence of discriminators.
21224 E.g., for this line:
21225
21226 for (i = 0; i < 100000; i++);
21227
21228 clang can emit four line number entries for that one line,
21229 each with a different discriminator.
21230 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21231
21232 However, we want gdb to coalesce all four entries into one.
21233 Otherwise the user could stepi into the middle of the line and
21234 gdb would get confused about whether the pc really was in the
21235 middle of the line.
21236
21237 Things are further complicated by the fact that two consecutive
21238 line number entries for the same line is a heuristic used by gcc
21239 to denote the end of the prologue. So we can't just discard duplicate
21240 entries, we have to be selective about it. The heuristic we use is
21241 that we only collapse consecutive entries for the same line if at least
21242 one of those entries has a non-zero discriminator. PR 17276.
21243
21244 Note: Addresses in the line number state machine can never go backwards
21245 within one sequence, thus this coalescing is ok. */
21246
21247static int
804d2729
TT
21248dwarf_record_line_p (struct dwarf2_cu *cu,
21249 unsigned int line, unsigned int last_line,
a05a36a5
DE
21250 int line_has_non_zero_discriminator,
21251 struct subfile *last_subfile)
21252{
c24bdb02 21253 if (cu->get_builder ()->get_current_subfile () != last_subfile)
a05a36a5
DE
21254 return 1;
21255 if (line != last_line)
21256 return 1;
21257 /* Same line for the same file that we've seen already.
21258 As a last check, for pr 17276, only record the line if the line
21259 has never had a non-zero discriminator. */
21260 if (!line_has_non_zero_discriminator)
21261 return 1;
21262 return 0;
21263}
21264
804d2729
TT
21265/* Use the CU's builder to record line number LINE beginning at
21266 address ADDRESS in the line table of subfile SUBFILE. */
252a6764
DE
21267
21268static void
d9b3de22
DE
21269dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21270 unsigned int line, CORE_ADDR address,
804d2729 21271 struct dwarf2_cu *cu)
252a6764
DE
21272{
21273 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21274
27e0867f
DE
21275 if (dwarf_line_debug)
21276 {
21277 fprintf_unfiltered (gdb_stdlog,
21278 "Recording line %u, file %s, address %s\n",
21279 line, lbasename (subfile->name),
21280 paddress (gdbarch, address));
21281 }
21282
804d2729 21283 if (cu != nullptr)
c24bdb02 21284 cu->get_builder ()->record_line (subfile, line, addr);
252a6764
DE
21285}
21286
21287/* Subroutine of dwarf_decode_lines_1 to simplify it.
21288 Mark the end of a set of line number records.
d9b3de22 21289 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
21290 If SUBFILE is NULL the request is ignored. */
21291
21292static void
21293dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
804d2729 21294 CORE_ADDR address, struct dwarf2_cu *cu)
252a6764 21295{
27e0867f
DE
21296 if (subfile == NULL)
21297 return;
21298
21299 if (dwarf_line_debug)
21300 {
21301 fprintf_unfiltered (gdb_stdlog,
21302 "Finishing current line, file %s, address %s\n",
21303 lbasename (subfile->name),
21304 paddress (gdbarch, address));
21305 }
21306
804d2729 21307 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
d9b3de22
DE
21308}
21309
6f77053d
PA
21310void
21311lnp_state_machine::record_line (bool end_sequence)
d9b3de22 21312{
d9b3de22
DE
21313 if (dwarf_line_debug)
21314 {
21315 fprintf_unfiltered (gdb_stdlog,
21316 "Processing actual line %u: file %u,"
21317 " address %s, is_stmt %u, discrim %u\n",
7ba99d21 21318 m_line, m_file,
6f77053d
PA
21319 paddress (m_gdbarch, m_address),
21320 m_is_stmt, m_discriminator);
d9b3de22
DE
21321 }
21322
6f77053d 21323 file_entry *fe = current_file ();
8c43009f
PA
21324
21325 if (fe == NULL)
d9b3de22
DE
21326 dwarf2_debug_line_missing_file_complaint ();
21327 /* For now we ignore lines not starting on an instruction boundary.
21328 But not when processing end_sequence for compatibility with the
21329 previous version of the code. */
6f77053d 21330 else if (m_op_index == 0 || end_sequence)
d9b3de22 21331 {
8c43009f 21332 fe->included_p = 1;
c258c396 21333 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
d9b3de22 21334 {
c24bdb02 21335 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
804d2729 21336 || end_sequence)
d9b3de22 21337 {
804d2729
TT
21338 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21339 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22
DE
21340 }
21341
21342 if (!end_sequence)
21343 {
804d2729 21344 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
6f77053d
PA
21345 m_line_has_non_zero_discriminator,
21346 m_last_subfile))
d9b3de22 21347 {
c24bdb02 21348 buildsym_compunit *builder = m_cu->get_builder ();
804d2729 21349 dwarf_record_line_1 (m_gdbarch,
c24bdb02 21350 builder->get_current_subfile (),
6f77053d 21351 m_line, m_address,
804d2729 21352 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22 21353 }
c24bdb02 21354 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
6f77053d 21355 m_last_line = m_line;
d9b3de22
DE
21356 }
21357 }
21358 }
21359}
21360
804d2729
TT
21361lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21362 line_header *lh, bool record_lines_p)
d9b3de22 21363{
804d2729 21364 m_cu = cu;
6f77053d
PA
21365 m_gdbarch = arch;
21366 m_record_lines_p = record_lines_p;
21367 m_line_header = lh;
d9b3de22 21368
804d2729 21369 m_currently_recording_lines = true;
d9b3de22 21370
d9b3de22
DE
21371 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21372 was a line entry for it so that the backend has a chance to adjust it
21373 and also record it in case it needs it. This is currently used by MIPS
21374 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
21375 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21376 m_is_stmt = lh->default_is_stmt;
21377 m_discriminator = 0;
252a6764
DE
21378}
21379
6f77053d
PA
21380void
21381lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21382 const gdb_byte *line_ptr,
7ab6656f 21383 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
924c2928 21384{
7ab6656f
OJ
21385 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21386 the pc range of the CU. However, we restrict the test to only ADDRESS
21387 values of zero to preserve GDB's previous behaviour which is to handle
21388 the specific case of a function being GC'd by the linker. */
924c2928 21389
7ab6656f 21390 if (address == 0 && address < unrelocated_lowpc)
924c2928
DE
21391 {
21392 /* This line table is for a function which has been
21393 GCd by the linker. Ignore it. PR gdb/12528 */
21394
518817b3 21395 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
924c2928
DE
21396 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21397
b98664d3 21398 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
924c2928 21399 line_offset, objfile_name (objfile));
804d2729
TT
21400 m_currently_recording_lines = false;
21401 /* Note: m_currently_recording_lines is left as false until we see
21402 DW_LNE_end_sequence. */
924c2928
DE
21403 }
21404}
21405
f3f5162e 21406/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
21407 Process the line number information in LH.
21408 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21409 program in order to set included_p for every referenced header. */
debd256d 21410
c906108c 21411static void
43f3e411
DE
21412dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21413 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 21414{
d521ce57
TT
21415 const gdb_byte *line_ptr, *extended_end;
21416 const gdb_byte *line_end;
a8c50c1f 21417 unsigned int bytes_read, extended_len;
699ca60a 21418 unsigned char op_code, extended_op;
e142c38c 21419 CORE_ADDR baseaddr;
518817b3 21420 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21421 bfd *abfd = objfile->obfd;
fbf65064 21422 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
21423 /* True if we're recording line info (as opposed to building partial
21424 symtabs and just interested in finding include files mentioned by
21425 the line number program). */
21426 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
21427
21428 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21429
debd256d
JB
21430 line_ptr = lh->statement_program_start;
21431 line_end = lh->statement_program_end;
c906108c
SS
21432
21433 /* Read the statement sequences until there's nothing left. */
21434 while (line_ptr < line_end)
21435 {
6f77053d
PA
21436 /* The DWARF line number program state machine. Reset the state
21437 machine at the start of each sequence. */
804d2729 21438 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
6f77053d 21439 bool end_sequence = false;
d9b3de22 21440
8c43009f 21441 if (record_lines_p)
c906108c 21442 {
8c43009f
PA
21443 /* Start a subfile for the current file of the state
21444 machine. */
21445 const file_entry *fe = state_machine.current_file ();
21446
21447 if (fe != NULL)
804d2729 21448 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
c906108c
SS
21449 }
21450
a738430d 21451 /* Decode the table. */
d9b3de22 21452 while (line_ptr < line_end && !end_sequence)
c906108c
SS
21453 {
21454 op_code = read_1_byte (abfd, line_ptr);
21455 line_ptr += 1;
9aa1fe7e 21456
debd256d 21457 if (op_code >= lh->opcode_base)
6e70227d 21458 {
8e07a239 21459 /* Special opcode. */
6f77053d 21460 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
21461 }
21462 else switch (op_code)
c906108c
SS
21463 {
21464 case DW_LNS_extended_op:
3e43a32a
MS
21465 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21466 &bytes_read);
473b7be6 21467 line_ptr += bytes_read;
a8c50c1f 21468 extended_end = line_ptr + extended_len;
c906108c
SS
21469 extended_op = read_1_byte (abfd, line_ptr);
21470 line_ptr += 1;
21471 switch (extended_op)
21472 {
21473 case DW_LNE_end_sequence:
6f77053d
PA
21474 state_machine.handle_end_sequence ();
21475 end_sequence = true;
c906108c
SS
21476 break;
21477 case DW_LNE_set_address:
d9b3de22
DE
21478 {
21479 CORE_ADDR address
21480 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 21481 line_ptr += bytes_read;
6f77053d
PA
21482
21483 state_machine.check_line_address (cu, line_ptr,
7ab6656f 21484 lowpc - baseaddr, address);
6f77053d 21485 state_machine.handle_set_address (baseaddr, address);
d9b3de22 21486 }
c906108c
SS
21487 break;
21488 case DW_LNE_define_file:
debd256d 21489 {
d521ce57 21490 const char *cur_file;
ecfb656c
PA
21491 unsigned int mod_time, length;
21492 dir_index dindex;
6e70227d 21493
3e43a32a
MS
21494 cur_file = read_direct_string (abfd, line_ptr,
21495 &bytes_read);
debd256d 21496 line_ptr += bytes_read;
ecfb656c 21497 dindex = (dir_index)
debd256d
JB
21498 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21499 line_ptr += bytes_read;
21500 mod_time =
21501 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21502 line_ptr += bytes_read;
21503 length =
21504 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21505 line_ptr += bytes_read;
ecfb656c 21506 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 21507 }
c906108c 21508 break;
d0c6ba3d 21509 case DW_LNE_set_discriminator:
6f77053d
PA
21510 {
21511 /* The discriminator is not interesting to the
21512 debugger; just ignore it. We still need to
21513 check its value though:
21514 if there are consecutive entries for the same
21515 (non-prologue) line we want to coalesce them.
21516 PR 17276. */
21517 unsigned int discr
21518 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21519 line_ptr += bytes_read;
21520
21521 state_machine.handle_set_discriminator (discr);
21522 }
d0c6ba3d 21523 break;
c906108c 21524 default:
b98664d3 21525 complaint (_("mangled .debug_line section"));
debd256d 21526 return;
c906108c 21527 }
a8c50c1f
DJ
21528 /* Make sure that we parsed the extended op correctly. If e.g.
21529 we expected a different address size than the producer used,
21530 we may have read the wrong number of bytes. */
21531 if (line_ptr != extended_end)
21532 {
b98664d3 21533 complaint (_("mangled .debug_line section"));
a8c50c1f
DJ
21534 return;
21535 }
c906108c
SS
21536 break;
21537 case DW_LNS_copy:
6f77053d 21538 state_machine.handle_copy ();
c906108c
SS
21539 break;
21540 case DW_LNS_advance_pc:
2dc7f7b3
TT
21541 {
21542 CORE_ADDR adjust
21543 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 21544 line_ptr += bytes_read;
6f77053d
PA
21545
21546 state_machine.handle_advance_pc (adjust);
2dc7f7b3 21547 }
c906108c
SS
21548 break;
21549 case DW_LNS_advance_line:
a05a36a5
DE
21550 {
21551 int line_delta
21552 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 21553 line_ptr += bytes_read;
6f77053d
PA
21554
21555 state_machine.handle_advance_line (line_delta);
a05a36a5 21556 }
c906108c
SS
21557 break;
21558 case DW_LNS_set_file:
d9b3de22 21559 {
6f77053d 21560 file_name_index file
ecfb656c
PA
21561 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21562 &bytes_read);
d9b3de22 21563 line_ptr += bytes_read;
8c43009f 21564
6f77053d 21565 state_machine.handle_set_file (file);
d9b3de22 21566 }
c906108c
SS
21567 break;
21568 case DW_LNS_set_column:
0ad93d4f 21569 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
21570 line_ptr += bytes_read;
21571 break;
21572 case DW_LNS_negate_stmt:
6f77053d 21573 state_machine.handle_negate_stmt ();
c906108c
SS
21574 break;
21575 case DW_LNS_set_basic_block:
c906108c 21576 break;
c2c6d25f
JM
21577 /* Add to the address register of the state machine the
21578 address increment value corresponding to special opcode
a738430d
MK
21579 255. I.e., this value is scaled by the minimum
21580 instruction length since special opcode 255 would have
b021a221 21581 scaled the increment. */
c906108c 21582 case DW_LNS_const_add_pc:
6f77053d 21583 state_machine.handle_const_add_pc ();
c906108c
SS
21584 break;
21585 case DW_LNS_fixed_advance_pc:
3e29f34a 21586 {
6f77053d 21587 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 21588 line_ptr += 2;
6f77053d
PA
21589
21590 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 21591 }
c906108c 21592 break;
9aa1fe7e 21593 default:
a738430d
MK
21594 {
21595 /* Unknown standard opcode, ignore it. */
9aa1fe7e 21596 int i;
a738430d 21597
debd256d 21598 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
21599 {
21600 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21601 line_ptr += bytes_read;
21602 }
21603 }
c906108c
SS
21604 }
21605 }
d9b3de22
DE
21606
21607 if (!end_sequence)
21608 dwarf2_debug_line_missing_end_sequence_complaint ();
21609
21610 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21611 in which case we still finish recording the last line). */
6f77053d 21612 state_machine.record_line (true);
c906108c 21613 }
f3f5162e
DE
21614}
21615
21616/* Decode the Line Number Program (LNP) for the given line_header
21617 structure and CU. The actual information extracted and the type
21618 of structures created from the LNP depends on the value of PST.
21619
21620 1. If PST is NULL, then this procedure uses the data from the program
21621 to create all necessary symbol tables, and their linetables.
21622
21623 2. If PST is not NULL, this procedure reads the program to determine
21624 the list of files included by the unit represented by PST, and
21625 builds all the associated partial symbol tables.
21626
21627 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21628 It is used for relative paths in the line table.
21629 NOTE: When processing partial symtabs (pst != NULL),
21630 comp_dir == pst->dirname.
21631
21632 NOTE: It is important that psymtabs have the same file name (via strcmp)
21633 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21634 symtab we don't use it in the name of the psymtabs we create.
21635 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
21636 A good testcase for this is mb-inline.exp.
21637
527f3840
JK
21638 LOWPC is the lowest address in CU (or 0 if not known).
21639
21640 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21641 for its PC<->lines mapping information. Otherwise only the filename
21642 table is read in. */
f3f5162e
DE
21643
21644static void
21645dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 21646 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 21647 CORE_ADDR lowpc, int decode_mapping)
f3f5162e 21648{
518817b3 21649 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21650 const int decode_for_pst_p = (pst != NULL);
f3f5162e 21651
527f3840
JK
21652 if (decode_mapping)
21653 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
21654
21655 if (decode_for_pst_p)
21656 {
aaa75496
JB
21657 /* Now that we're done scanning the Line Header Program, we can
21658 create the psymtab of each included file. */
7ba99d21
AT
21659 for (auto &file_entry : lh->file_names ())
21660 if (file_entry.included_p == 1)
aaa75496 21661 {
c89b44cd 21662 gdb::unique_xmalloc_ptr<char> name_holder;
d521ce57 21663 const char *include_name =
7ba99d21
AT
21664 psymtab_include_file_name (lh, file_entry, pst,
21665 comp_dir, &name_holder);
c6da4cef 21666 if (include_name != NULL)
aaa75496
JB
21667 dwarf2_create_include_psymtab (include_name, pst, objfile);
21668 }
21669 }
cb1df416
DJ
21670 else
21671 {
21672 /* Make sure a symtab is created for every file, even files
21673 which contain only variables (i.e. no code with associated
21674 line numbers). */
c24bdb02
KS
21675 buildsym_compunit *builder = cu->get_builder ();
21676 struct compunit_symtab *cust = builder->get_compunit_symtab ();
cb1df416 21677
7ba99d21 21678 for (auto &fe : lh->file_names ())
cb1df416 21679 {
804d2729 21680 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
c24bdb02 21681 if (builder->get_current_subfile ()->symtab == NULL)
43f3e411 21682 {
c24bdb02 21683 builder->get_current_subfile ()->symtab
804d2729 21684 = allocate_symtab (cust,
c24bdb02 21685 builder->get_current_subfile ()->name);
43f3e411 21686 }
c24bdb02 21687 fe.symtab = builder->get_current_subfile ()->symtab;
cb1df416
DJ
21688 }
21689 }
c906108c
SS
21690}
21691
21692/* Start a subfile for DWARF. FILENAME is the name of the file and
21693 DIRNAME the name of the source directory which contains FILENAME
4d663531 21694 or NULL if not known.
c906108c
SS
21695 This routine tries to keep line numbers from identical absolute and
21696 relative file names in a common subfile.
21697
21698 Using the `list' example from the GDB testsuite, which resides in
21699 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21700 of /srcdir/list0.c yields the following debugging information for list0.c:
21701
c5aa993b 21702 DW_AT_name: /srcdir/list0.c
4d663531 21703 DW_AT_comp_dir: /compdir
357e46e7 21704 files.files[0].name: list0.h
c5aa993b 21705 files.files[0].dir: /srcdir
357e46e7 21706 files.files[1].name: list0.c
c5aa993b 21707 files.files[1].dir: /srcdir
c906108c
SS
21708
21709 The line number information for list0.c has to end up in a single
4f1520fb
FR
21710 subfile, so that `break /srcdir/list0.c:1' works as expected.
21711 start_subfile will ensure that this happens provided that we pass the
21712 concatenation of files.files[1].dir and files.files[1].name as the
21713 subfile's name. */
c906108c
SS
21714
21715static void
804d2729
TT
21716dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21717 const char *dirname)
c906108c 21718{
d521ce57 21719 char *copy = NULL;
4f1520fb 21720
4d663531 21721 /* In order not to lose the line information directory,
4f1520fb
FR
21722 we concatenate it to the filename when it makes sense.
21723 Note that the Dwarf3 standard says (speaking of filenames in line
21724 information): ``The directory index is ignored for file names
21725 that represent full path names''. Thus ignoring dirname in the
21726 `else' branch below isn't an issue. */
c906108c 21727
d5166ae1 21728 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
21729 {
21730 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21731 filename = copy;
21732 }
c906108c 21733
c24bdb02 21734 cu->get_builder ()->start_subfile (filename);
4f1520fb 21735
d521ce57
TT
21736 if (copy != NULL)
21737 xfree (copy);
c906108c
SS
21738}
21739
804d2729
TT
21740/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21741 buildsym_compunit constructor. */
f4dc4d17 21742
c24bdb02
KS
21743struct compunit_symtab *
21744dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21745 CORE_ADDR low_pc)
f4dc4d17 21746{
c24bdb02 21747 gdb_assert (m_builder == nullptr);
43f3e411 21748
c24bdb02
KS
21749 m_builder.reset (new struct buildsym_compunit
21750 (per_cu->dwarf2_per_objfile->objfile,
21751 name, comp_dir, language, low_pc));
93b8bea4 21752
c24bdb02 21753 list_in_scope = get_builder ()->get_file_symbols ();
804d2729 21754
c24bdb02
KS
21755 get_builder ()->record_debugformat ("DWARF 2");
21756 get_builder ()->record_producer (producer);
f4dc4d17 21757
c24bdb02 21758 processing_has_namespace_info = false;
43f3e411 21759
c24bdb02 21760 return get_builder ()->get_compunit_symtab ();
f4dc4d17
DE
21761}
21762
4c2df51b
DJ
21763static void
21764var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 21765 struct dwarf2_cu *cu)
4c2df51b 21766{
518817b3 21767 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e7c27a73
DJ
21768 struct comp_unit_head *cu_header = &cu->header;
21769
4c2df51b
DJ
21770 /* NOTE drow/2003-01-30: There used to be a comment and some special
21771 code here to turn a symbol with DW_AT_external and a
21772 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21773 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21774 with some versions of binutils) where shared libraries could have
21775 relocations against symbols in their debug information - the
21776 minimal symbol would have the right address, but the debug info
21777 would not. It's no longer necessary, because we will explicitly
21778 apply relocations when we read in the debug information now. */
21779
21780 /* A DW_AT_location attribute with no contents indicates that a
21781 variable has been optimized away. */
21782 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21783 {
f1e6e072 21784 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
21785 return;
21786 }
21787
21788 /* Handle one degenerate form of location expression specially, to
21789 preserve GDB's previous behavior when section offsets are
336d760d
AT
21790 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21791 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
21792
21793 if (attr_form_is_block (attr)
3019eac3
DE
21794 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21795 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
336d760d
AT
21796 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21797 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
3019eac3
DE
21798 && (DW_BLOCK (attr)->size
21799 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 21800 {
891d2f0b 21801 unsigned int dummy;
4c2df51b 21802
3019eac3 21803 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
38583298
TT
21804 SET_SYMBOL_VALUE_ADDRESS (sym,
21805 read_address (objfile->obfd,
21806 DW_BLOCK (attr)->data + 1,
21807 cu, &dummy));
3019eac3 21808 else
38583298
TT
21809 SET_SYMBOL_VALUE_ADDRESS
21810 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21811 &dummy));
f1e6e072 21812 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b 21813 fixup_symbol_section (sym, objfile);
38583298
TT
21814 SET_SYMBOL_VALUE_ADDRESS (sym,
21815 SYMBOL_VALUE_ADDRESS (sym)
21816 + ANOFFSET (objfile->section_offsets,
21817 SYMBOL_SECTION (sym)));
4c2df51b
DJ
21818 return;
21819 }
21820
21821 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21822 expression evaluator, and use LOC_COMPUTED only when necessary
21823 (i.e. when the value of a register or memory location is
21824 referenced, or a thread-local block, etc.). Then again, it might
21825 not be worthwhile. I'm assuming that it isn't unless performance
21826 or memory numbers show me otherwise. */
21827
f1e6e072 21828 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 21829
f1e6e072 21830 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
9068261f 21831 cu->has_loclist = true;
4c2df51b
DJ
21832}
21833
c906108c
SS
21834/* Given a pointer to a DWARF information entry, figure out if we need
21835 to make a symbol table entry for it, and if so, create a new entry
21836 and return a pointer to it.
21837 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
21838 used the passed type.
21839 If SPACE is not NULL, use it to hold the new symbol. If it is
21840 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
21841
21842static struct symbol *
5e2db402
TT
21843new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21844 struct symbol *space)
c906108c 21845{
518817b3
SM
21846 struct dwarf2_per_objfile *dwarf2_per_objfile
21847 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21848 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 21849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 21850 struct symbol *sym = NULL;
15d034d0 21851 const char *name;
c906108c
SS
21852 struct attribute *attr = NULL;
21853 struct attribute *attr2 = NULL;
e142c38c 21854 CORE_ADDR baseaddr;
e37fd15a
SW
21855 struct pending **list_to_add = NULL;
21856
edb3359d 21857 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
21858
21859 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21860
94af9270 21861 name = dwarf2_name (die, cu);
c906108c
SS
21862 if (name)
21863 {
94af9270 21864 const char *linkagename;
34eaf542 21865 int suppress_add = 0;
94af9270 21866
34eaf542
TT
21867 if (space)
21868 sym = space;
21869 else
e623cf5d 21870 sym = allocate_symbol (objfile);
c906108c 21871 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
21872
21873 /* Cache this symbol's name and the name's demangled form (if any). */
d3ecddab 21874 sym->set_language (cu->language, &objfile->objfile_obstack);
94af9270 21875 linkagename = dwarf2_physname (name, die, cu);
31edb802 21876 SYMBOL_SET_NAMES (sym, linkagename, false, objfile);
c906108c 21877
f55ee35c
JK
21878 /* Fortran does not have mangling standard and the mangling does differ
21879 between gfortran, iFort etc. */
21880 if (cu->language == language_fortran
468c0cbb
CB
21881 && symbol_get_demangled_name (sym) == NULL)
21882 symbol_set_demangled_name (sym,
cfc594ee 21883 dwarf2_full_name (name, die, cu),
29df156d 21884 NULL);
f55ee35c 21885
c906108c 21886 /* Default assumptions.
c5aa993b 21887 Use the passed type or decode it from the die. */
176620f1 21888 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 21889 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
21890 if (type != NULL)
21891 SYMBOL_TYPE (sym) = type;
21892 else
e7c27a73 21893 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
21894 attr = dwarf2_attr (die,
21895 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21896 cu);
435d3d88 21897 if (attr != nullptr)
c906108c
SS
21898 {
21899 SYMBOL_LINE (sym) = DW_UNSND (attr);
21900 }
cb1df416 21901
edb3359d
DJ
21902 attr = dwarf2_attr (die,
21903 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21904 cu);
435d3d88 21905 if (attr != nullptr)
cb1df416 21906 {
ecfb656c 21907 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 21908 struct file_entry *fe;
9a619af0 21909
ecfb656c
PA
21910 if (cu->line_header != NULL)
21911 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
21912 else
21913 fe = NULL;
21914
21915 if (fe == NULL)
b98664d3 21916 complaint (_("file index out of range"));
8c43009f
PA
21917 else
21918 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
21919 }
21920
c906108c
SS
21921 switch (die->tag)
21922 {
21923 case DW_TAG_label:
e142c38c 21924 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
435d3d88 21925 if (attr != nullptr)
3e29f34a
MR
21926 {
21927 CORE_ADDR addr;
21928
21929 addr = attr_value_as_address (attr);
21930 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
38583298 21931 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
3e29f34a 21932 }
0f5238ed
TT
21933 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21934 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 21935 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
d3cb6808 21936 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
21937 break;
21938 case DW_TAG_subprogram:
21939 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21940 finish_block. */
f1e6e072 21941 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 21942 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d 21943 if ((attr2 && (DW_UNSND (attr2) != 0))
0a4b0913
AB
21944 || cu->language == language_ada
21945 || cu->language == language_fortran)
c906108c 21946 {
2cfa0c8d 21947 /* Subprograms marked external are stored as a global symbol.
0a4b0913
AB
21948 Ada and Fortran subprograms, whether marked external or
21949 not, are always stored as a global symbol, because we want
21950 to be able to access them globally. For instance, we want
21951 to be able to break on a nested subprogram without having
21952 to specify the context. */
c24bdb02 21953 list_to_add = cu->get_builder ()->get_global_symbols ();
c906108c
SS
21954 }
21955 else
21956 {
e37fd15a 21957 list_to_add = cu->list_in_scope;
c906108c
SS
21958 }
21959 break;
edb3359d
DJ
21960 case DW_TAG_inlined_subroutine:
21961 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21962 finish_block. */
f1e6e072 21963 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 21964 SYMBOL_INLINED (sym) = 1;
481860b3 21965 list_to_add = cu->list_in_scope;
edb3359d 21966 break;
34eaf542
TT
21967 case DW_TAG_template_value_param:
21968 suppress_add = 1;
21969 /* Fall through. */
72929c62 21970 case DW_TAG_constant:
c906108c 21971 case DW_TAG_variable:
254e6b9e 21972 case DW_TAG_member:
0963b4bd
MS
21973 /* Compilation with minimal debug info may result in
21974 variables with missing type entries. Change the
21975 misleading `void' type to something sensible. */
c906108c 21976 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 21977 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 21978
e142c38c 21979 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
21980 /* In the case of DW_TAG_member, we should only be called for
21981 static const members. */
21982 if (die->tag == DW_TAG_member)
21983 {
3863f96c
DE
21984 /* dwarf2_add_field uses die_is_declaration,
21985 so we do the same. */
254e6b9e
DE
21986 gdb_assert (die_is_declaration (die, cu));
21987 gdb_assert (attr);
21988 }
435d3d88 21989 if (attr != nullptr)
c906108c 21990 {
e7c27a73 21991 dwarf2_const_value (attr, sym, cu);
e142c38c 21992 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 21993 if (!suppress_add)
34eaf542
TT
21994 {
21995 if (attr2 && (DW_UNSND (attr2) != 0))
c24bdb02 21996 list_to_add = cu->get_builder ()->get_global_symbols ();
34eaf542 21997 else
e37fd15a 21998 list_to_add = cu->list_in_scope;
34eaf542 21999 }
c906108c
SS
22000 break;
22001 }
e142c38c 22002 attr = dwarf2_attr (die, DW_AT_location, cu);
435d3d88 22003 if (attr != nullptr)
c906108c 22004 {
e7c27a73 22005 var_decode_location (attr, sym, cu);
e142c38c 22006 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
22007
22008 /* Fortran explicitly imports any global symbols to the local
22009 scope by DW_TAG_common_block. */
22010 if (cu->language == language_fortran && die->parent
22011 && die->parent->tag == DW_TAG_common_block)
22012 attr2 = NULL;
22013
caac4577
JG
22014 if (SYMBOL_CLASS (sym) == LOC_STATIC
22015 && SYMBOL_VALUE_ADDRESS (sym) == 0
22016 && !dwarf2_per_objfile->has_section_at_zero)
22017 {
22018 /* When a static variable is eliminated by the linker,
22019 the corresponding debug information is not stripped
22020 out, but the variable address is set to null;
22021 do not add such variables into symbol table. */
22022 }
22023 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 22024 {
4b610737
TT
22025 if (SYMBOL_CLASS (sym) == LOC_STATIC
22026 && (objfile->flags & OBJF_MAINLINE) == 0
22027 && dwarf2_per_objfile->can_copy)
22028 {
22029 /* A global static variable might be subject to
22030 copy relocation. We first check for a local
22031 minsym, though, because maybe the symbol was
22032 marked hidden, in which case this would not
22033 apply. */
22034 bound_minimal_symbol found
22035 = (lookup_minimal_symbol_linkage
987012b8 22036 (sym->linkage_name (), objfile));
4b610737
TT
22037 if (found.minsym != nullptr)
22038 sym->maybe_copied = 1;
22039 }
f55ee35c 22040
1c809c68
TT
22041 /* A variable with DW_AT_external is never static,
22042 but it may be block-scoped. */
804d2729 22043 list_to_add
c24bdb02
KS
22044 = ((cu->list_in_scope
22045 == cu->get_builder ()->get_file_symbols ())
22046 ? cu->get_builder ()->get_global_symbols ()
804d2729 22047 : cu->list_in_scope);
1c809c68 22048 }
c906108c 22049 else
e37fd15a 22050 list_to_add = cu->list_in_scope;
c906108c
SS
22051 }
22052 else
22053 {
22054 /* We do not know the address of this symbol.
c5aa993b
JM
22055 If it is an external symbol and we have type information
22056 for it, enter the symbol as a LOC_UNRESOLVED symbol.
22057 The address of the variable will then be determined from
22058 the minimal symbol table whenever the variable is
22059 referenced. */
e142c38c 22060 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
22061
22062 /* Fortran explicitly imports any global symbols to the local
22063 scope by DW_TAG_common_block. */
22064 if (cu->language == language_fortran && die->parent
22065 && die->parent->tag == DW_TAG_common_block)
22066 {
22067 /* SYMBOL_CLASS doesn't matter here because
22068 read_common_block is going to reset it. */
22069 if (!suppress_add)
22070 list_to_add = cu->list_in_scope;
22071 }
22072 else if (attr2 && (DW_UNSND (attr2) != 0)
22073 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 22074 {
0fe7935b
DJ
22075 /* A variable with DW_AT_external is never static, but it
22076 may be block-scoped. */
804d2729 22077 list_to_add
c24bdb02
KS
22078 = ((cu->list_in_scope
22079 == cu->get_builder ()->get_file_symbols ())
22080 ? cu->get_builder ()->get_global_symbols ()
804d2729 22081 : cu->list_in_scope);
0fe7935b 22082
f1e6e072 22083 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 22084 }
442ddf59
JK
22085 else if (!die_is_declaration (die, cu))
22086 {
22087 /* Use the default LOC_OPTIMIZED_OUT class. */
22088 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
22089 if (!suppress_add)
22090 list_to_add = cu->list_in_scope;
442ddf59 22091 }
c906108c
SS
22092 }
22093 break;
22094 case DW_TAG_formal_parameter:
a60f3166
TT
22095 {
22096 /* If we are inside a function, mark this as an argument. If
22097 not, we might be looking at an argument to an inlined function
22098 when we do not have enough information to show inlined frames;
22099 pretend it's a local variable in that case so that the user can
22100 still see it. */
804d2729 22101 struct context_stack *curr
c24bdb02 22102 = cu->get_builder ()->get_current_context_stack ();
a60f3166
TT
22103 if (curr != nullptr && curr->name != nullptr)
22104 SYMBOL_IS_ARGUMENT (sym) = 1;
22105 attr = dwarf2_attr (die, DW_AT_location, cu);
435d3d88 22106 if (attr != nullptr)
a60f3166
TT
22107 {
22108 var_decode_location (attr, sym, cu);
22109 }
22110 attr = dwarf2_attr (die, DW_AT_const_value, cu);
435d3d88 22111 if (attr != nullptr)
a60f3166
TT
22112 {
22113 dwarf2_const_value (attr, sym, cu);
22114 }
f346a30d 22115
a60f3166
TT
22116 list_to_add = cu->list_in_scope;
22117 }
c906108c
SS
22118 break;
22119 case DW_TAG_unspecified_parameters:
22120 /* From varargs functions; gdb doesn't seem to have any
22121 interest in this information, so just ignore it for now.
22122 (FIXME?) */
22123 break;
34eaf542
TT
22124 case DW_TAG_template_type_param:
22125 suppress_add = 1;
22126 /* Fall through. */
c906108c 22127 case DW_TAG_class_type:
680b30c7 22128 case DW_TAG_interface_type:
c906108c
SS
22129 case DW_TAG_structure_type:
22130 case DW_TAG_union_type:
72019c9c 22131 case DW_TAG_set_type:
c906108c 22132 case DW_TAG_enumeration_type:
f1e6e072 22133 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 22134 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 22135
63d06c5c 22136 {
9c37b5ae 22137 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
22138 really ever be static objects: otherwise, if you try
22139 to, say, break of a class's method and you're in a file
22140 which doesn't mention that class, it won't work unless
22141 the check for all static symbols in lookup_symbol_aux
22142 saves you. See the OtherFileClass tests in
22143 gdb.c++/namespace.exp. */
22144
e37fd15a 22145 if (!suppress_add)
34eaf542 22146 {
c24bdb02 22147 buildsym_compunit *builder = cu->get_builder ();
804d2729 22148 list_to_add
c24bdb02 22149 = (cu->list_in_scope == builder->get_file_symbols ()
804d2729 22150 && cu->language == language_cplus
c24bdb02 22151 ? builder->get_global_symbols ()
804d2729 22152 : cu->list_in_scope);
63d06c5c 22153
64382290 22154 /* The semantics of C++ state that "struct foo {
9c37b5ae 22155 ... }" also defines a typedef for "foo". */
64382290 22156 if (cu->language == language_cplus
45280282 22157 || cu->language == language_ada
c44af4eb
TT
22158 || cu->language == language_d
22159 || cu->language == language_rust)
64382290
TT
22160 {
22161 /* The symbol's name is already allocated along
22162 with this objfile, so we don't need to
22163 duplicate it for the type. */
22164 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
987012b8 22165 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
64382290 22166 }
63d06c5c
DC
22167 }
22168 }
c906108c
SS
22169 break;
22170 case DW_TAG_typedef:
f1e6e072 22171 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 22172 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 22173 list_to_add = cu->list_in_scope;
63d06c5c 22174 break;
c906108c 22175 case DW_TAG_base_type:
a02abb62 22176 case DW_TAG_subrange_type:
f1e6e072 22177 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 22178 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 22179 list_to_add = cu->list_in_scope;
c906108c
SS
22180 break;
22181 case DW_TAG_enumerator:
e142c38c 22182 attr = dwarf2_attr (die, DW_AT_const_value, cu);
435d3d88 22183 if (attr != nullptr)
c906108c 22184 {
e7c27a73 22185 dwarf2_const_value (attr, sym, cu);
c906108c 22186 }
63d06c5c
DC
22187 {
22188 /* NOTE: carlton/2003-11-10: See comment above in the
22189 DW_TAG_class_type, etc. block. */
22190
804d2729 22191 list_to_add
c24bdb02 22192 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
804d2729 22193 && cu->language == language_cplus
c24bdb02 22194 ? cu->get_builder ()->get_global_symbols ()
804d2729 22195 : cu->list_in_scope);
63d06c5c 22196 }
c906108c 22197 break;
74921315 22198 case DW_TAG_imported_declaration:
5c4e30ca 22199 case DW_TAG_namespace:
f1e6e072 22200 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c24bdb02 22201 list_to_add = cu->get_builder ()->get_global_symbols ();
5c4e30ca 22202 break;
530e8392
KB
22203 case DW_TAG_module:
22204 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22205 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
c24bdb02 22206 list_to_add = cu->get_builder ()->get_global_symbols ();
530e8392 22207 break;
4357ac6c 22208 case DW_TAG_common_block:
f1e6e072 22209 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c 22210 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
d3cb6808 22211 add_symbol_to_list (sym, cu->list_in_scope);
4357ac6c 22212 break;
c906108c
SS
22213 default:
22214 /* Not a tag we recognize. Hopefully we aren't processing
22215 trash data, but since we must specifically ignore things
22216 we don't recognize, there is nothing else we should do at
0963b4bd 22217 this point. */
b98664d3 22218 complaint (_("unsupported tag: '%s'"),
4d3c2250 22219 dwarf_tag_name (die->tag));
c906108c
SS
22220 break;
22221 }
df8a16a1 22222
e37fd15a
SW
22223 if (suppress_add)
22224 {
22225 sym->hash_next = objfile->template_symbols;
22226 objfile->template_symbols = sym;
22227 list_to_add = NULL;
22228 }
22229
22230 if (list_to_add != NULL)
d3cb6808 22231 add_symbol_to_list (sym, list_to_add);
e37fd15a 22232
df8a16a1
DJ
22233 /* For the benefit of old versions of GCC, check for anonymous
22234 namespaces based on the demangled name. */
4d4ec4e5 22235 if (!cu->processing_has_namespace_info
94af9270 22236 && cu->language == language_cplus)
c24bdb02 22237 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
c906108c
SS
22238 }
22239 return (sym);
22240}
22241
98bfdba5
PA
22242/* Given an attr with a DW_FORM_dataN value in host byte order,
22243 zero-extend it as appropriate for the symbol's type. The DWARF
22244 standard (v4) is not entirely clear about the meaning of using
22245 DW_FORM_dataN for a constant with a signed type, where the type is
22246 wider than the data. The conclusion of a discussion on the DWARF
22247 list was that this is unspecified. We choose to always zero-extend
22248 because that is the interpretation long in use by GCC. */
c906108c 22249
98bfdba5 22250static gdb_byte *
ff39bb5e 22251dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 22252 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 22253{
518817b3 22254 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e17a4113
UW
22255 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22256 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
22257 LONGEST l = DW_UNSND (attr);
22258
22259 if (bits < sizeof (*value) * 8)
22260 {
22261 l &= ((LONGEST) 1 << bits) - 1;
22262 *value = l;
22263 }
22264 else if (bits == sizeof (*value) * 8)
22265 *value = l;
22266 else
22267 {
224c3ddb 22268 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
22269 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22270 return bytes;
22271 }
22272
22273 return NULL;
22274}
22275
22276/* Read a constant value from an attribute. Either set *VALUE, or if
22277 the value does not fit in *VALUE, set *BYTES - either already
22278 allocated on the objfile obstack, or newly allocated on OBSTACK,
22279 or, set *BATON, if we translated the constant to a location
22280 expression. */
22281
22282static void
ff39bb5e 22283dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
22284 const char *name, struct obstack *obstack,
22285 struct dwarf2_cu *cu,
d521ce57 22286 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
22287 struct dwarf2_locexpr_baton **baton)
22288{
518817b3 22289 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
98bfdba5 22290 struct comp_unit_head *cu_header = &cu->header;
c906108c 22291 struct dwarf_block *blk;
98bfdba5
PA
22292 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22293 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22294
22295 *value = 0;
22296 *bytes = NULL;
22297 *baton = NULL;
c906108c
SS
22298
22299 switch (attr->form)
22300 {
22301 case DW_FORM_addr:
336d760d 22302 case DW_FORM_addrx:
3019eac3 22303 case DW_FORM_GNU_addr_index:
ac56253d 22304 {
ac56253d
TT
22305 gdb_byte *data;
22306
98bfdba5
PA
22307 if (TYPE_LENGTH (type) != cu_header->addr_size)
22308 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 22309 cu_header->addr_size,
98bfdba5 22310 TYPE_LENGTH (type));
ac56253d
TT
22311 /* Symbols of this form are reasonably rare, so we just
22312 piggyback on the existing location code rather than writing
22313 a new implementation of symbol_computed_ops. */
8d749320 22314 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
22315 (*baton)->per_cu = cu->per_cu;
22316 gdb_assert ((*baton)->per_cu);
ac56253d 22317
98bfdba5 22318 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 22319 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 22320 (*baton)->data = data;
ac56253d
TT
22321
22322 data[0] = DW_OP_addr;
22323 store_unsigned_integer (&data[1], cu_header->addr_size,
22324 byte_order, DW_ADDR (attr));
22325 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 22326 }
c906108c 22327 break;
4ac36638 22328 case DW_FORM_string:
93b5768b 22329 case DW_FORM_strp:
cf532bd1 22330 case DW_FORM_strx:
3019eac3 22331 case DW_FORM_GNU_str_index:
36586728 22332 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
22333 /* DW_STRING is already allocated on the objfile obstack, point
22334 directly to it. */
d521ce57 22335 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 22336 break;
c906108c
SS
22337 case DW_FORM_block1:
22338 case DW_FORM_block2:
22339 case DW_FORM_block4:
22340 case DW_FORM_block:
2dc7f7b3 22341 case DW_FORM_exprloc:
0224619f 22342 case DW_FORM_data16:
c906108c 22343 blk = DW_BLOCK (attr);
98bfdba5
PA
22344 if (TYPE_LENGTH (type) != blk->size)
22345 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22346 TYPE_LENGTH (type));
22347 *bytes = blk->data;
c906108c 22348 break;
2df3850c
JM
22349
22350 /* The DW_AT_const_value attributes are supposed to carry the
22351 symbol's value "represented as it would be on the target
22352 architecture." By the time we get here, it's already been
22353 converted to host endianness, so we just need to sign- or
22354 zero-extend it as appropriate. */
22355 case DW_FORM_data1:
3aef2284 22356 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 22357 break;
c906108c 22358 case DW_FORM_data2:
3aef2284 22359 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 22360 break;
c906108c 22361 case DW_FORM_data4:
3aef2284 22362 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 22363 break;
c906108c 22364 case DW_FORM_data8:
3aef2284 22365 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
22366 break;
22367
c906108c 22368 case DW_FORM_sdata:
663c44ac 22369 case DW_FORM_implicit_const:
98bfdba5 22370 *value = DW_SND (attr);
2df3850c
JM
22371 break;
22372
c906108c 22373 case DW_FORM_udata:
98bfdba5 22374 *value = DW_UNSND (attr);
c906108c 22375 break;
2df3850c 22376
c906108c 22377 default:
b98664d3 22378 complaint (_("unsupported const value attribute form: '%s'"),
4d3c2250 22379 dwarf_form_name (attr->form));
98bfdba5 22380 *value = 0;
c906108c
SS
22381 break;
22382 }
22383}
22384
2df3850c 22385
98bfdba5
PA
22386/* Copy constant value from an attribute to a symbol. */
22387
2df3850c 22388static void
ff39bb5e 22389dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 22390 struct dwarf2_cu *cu)
2df3850c 22391{
518817b3 22392 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12df843f 22393 LONGEST value;
d521ce57 22394 const gdb_byte *bytes;
98bfdba5 22395 struct dwarf2_locexpr_baton *baton;
2df3850c 22396
98bfdba5 22397 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
987012b8 22398 sym->print_name (),
98bfdba5
PA
22399 &objfile->objfile_obstack, cu,
22400 &value, &bytes, &baton);
2df3850c 22401
98bfdba5
PA
22402 if (baton != NULL)
22403 {
98bfdba5 22404 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 22405 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
22406 }
22407 else if (bytes != NULL)
22408 {
22409 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 22410 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
22411 }
22412 else
22413 {
22414 SYMBOL_VALUE (sym) = value;
f1e6e072 22415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 22416 }
2df3850c
JM
22417}
22418
c906108c
SS
22419/* Return the type of the die in question using its DW_AT_type attribute. */
22420
22421static struct type *
e7c27a73 22422die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22423{
c906108c 22424 struct attribute *type_attr;
c906108c 22425
e142c38c 22426 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
22427 if (!type_attr)
22428 {
518817b3 22429 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 22430 /* A missing DW_AT_type represents a void type. */
518817b3 22431 return objfile_type (objfile)->builtin_void;
c906108c 22432 }
348e048f 22433
673bfd45 22434 return lookup_die_type (die, type_attr, cu);
c906108c
SS
22435}
22436
b4ba55a1
JB
22437/* True iff CU's producer generates GNAT Ada auxiliary information
22438 that allows to find parallel types through that information instead
22439 of having to do expensive parallel lookups by type name. */
22440
22441static int
22442need_gnat_info (struct dwarf2_cu *cu)
22443{
de4cb04a
JB
22444 /* Assume that the Ada compiler was GNAT, which always produces
22445 the auxiliary information. */
22446 return (cu->language == language_ada);
b4ba55a1
JB
22447}
22448
b4ba55a1
JB
22449/* Return the auxiliary type of the die in question using its
22450 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22451 attribute is not present. */
22452
22453static struct type *
22454die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22455{
b4ba55a1 22456 struct attribute *type_attr;
b4ba55a1
JB
22457
22458 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22459 if (!type_attr)
22460 return NULL;
22461
673bfd45 22462 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
22463}
22464
22465/* If DIE has a descriptive_type attribute, then set the TYPE's
22466 descriptive type accordingly. */
22467
22468static void
22469set_descriptive_type (struct type *type, struct die_info *die,
22470 struct dwarf2_cu *cu)
22471{
22472 struct type *descriptive_type = die_descriptive_type (die, cu);
22473
22474 if (descriptive_type)
22475 {
22476 ALLOCATE_GNAT_AUX_TYPE (type);
22477 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22478 }
22479}
22480
c906108c
SS
22481/* Return the containing type of the die in question using its
22482 DW_AT_containing_type attribute. */
22483
22484static struct type *
e7c27a73 22485die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22486{
c906108c 22487 struct attribute *type_attr;
518817b3 22488 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 22489
e142c38c 22490 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
22491 if (!type_attr)
22492 error (_("Dwarf Error: Problem turning containing type into gdb type "
518817b3 22493 "[in module %s]"), objfile_name (objfile));
33ac96f0 22494
673bfd45 22495 return lookup_die_type (die, type_attr, cu);
c906108c
SS
22496}
22497
ac9ec31b
DE
22498/* Return an error marker type to use for the ill formed type in DIE/CU. */
22499
22500static struct type *
22501build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22502{
518817b3
SM
22503 struct dwarf2_per_objfile *dwarf2_per_objfile
22504 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b 22505 struct objfile *objfile = dwarf2_per_objfile->objfile;
528e1572 22506 char *saved;
ac9ec31b 22507
528e1572
SM
22508 std::string message
22509 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22510 objfile_name (objfile),
22511 sect_offset_str (cu->header.sect_off),
22512 sect_offset_str (die->sect_off));
efba19b0 22513 saved = obstack_strdup (&objfile->objfile_obstack, message);
ac9ec31b 22514
19f392bc 22515 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
22516}
22517
673bfd45 22518/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
22519 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22520 DW_AT_containing_type.
673bfd45
DE
22521 If there is no type substitute an error marker. */
22522
c906108c 22523static struct type *
ff39bb5e 22524lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 22525 struct dwarf2_cu *cu)
c906108c 22526{
518817b3
SM
22527 struct dwarf2_per_objfile *dwarf2_per_objfile
22528 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 22529 struct objfile *objfile = dwarf2_per_objfile->objfile;
f792889a
DJ
22530 struct type *this_type;
22531
ac9ec31b
DE
22532 gdb_assert (attr->name == DW_AT_type
22533 || attr->name == DW_AT_GNAT_descriptive_type
22534 || attr->name == DW_AT_containing_type);
22535
673bfd45
DE
22536 /* First see if we have it cached. */
22537
36586728
TT
22538 if (attr->form == DW_FORM_GNU_ref_alt)
22539 {
22540 struct dwarf2_per_cu_data *per_cu;
9c541725 22541 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 22542
ed2dc618
SM
22543 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22544 dwarf2_per_objfile);
9c541725 22545 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 22546 }
7771576e 22547 else if (attr_form_is_ref (attr))
673bfd45 22548 {
9c541725 22549 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 22550
9c541725 22551 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 22552 }
55f1336d 22553 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 22554 {
ac9ec31b 22555 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 22556
ac9ec31b 22557 return get_signatured_type (die, signature, cu);
673bfd45
DE
22558 }
22559 else
22560 {
b98664d3 22561 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
9d8780f0
SM
22562 " at %s [in module %s]"),
22563 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
4262abfb 22564 objfile_name (objfile));
ac9ec31b 22565 return build_error_marker_type (cu, die);
673bfd45
DE
22566 }
22567
22568 /* If not cached we need to read it in. */
22569
22570 if (this_type == NULL)
22571 {
ac9ec31b 22572 struct die_info *type_die = NULL;
673bfd45
DE
22573 struct dwarf2_cu *type_cu = cu;
22574
7771576e 22575 if (attr_form_is_ref (attr))
ac9ec31b
DE
22576 type_die = follow_die_ref (die, attr, &type_cu);
22577 if (type_die == NULL)
22578 return build_error_marker_type (cu, die);
22579 /* If we find the type now, it's probably because the type came
3019eac3
DE
22580 from an inter-CU reference and the type's CU got expanded before
22581 ours. */
ac9ec31b 22582 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
22583 }
22584
22585 /* If we still don't have a type use an error marker. */
22586
22587 if (this_type == NULL)
ac9ec31b 22588 return build_error_marker_type (cu, die);
673bfd45 22589
f792889a 22590 return this_type;
c906108c
SS
22591}
22592
673bfd45
DE
22593/* Return the type in DIE, CU.
22594 Returns NULL for invalid types.
22595
02142a6c 22596 This first does a lookup in die_type_hash,
673bfd45
DE
22597 and only reads the die in if necessary.
22598
22599 NOTE: This can be called when reading in partial or full symbols. */
22600
f792889a 22601static struct type *
e7c27a73 22602read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22603{
f792889a
DJ
22604 struct type *this_type;
22605
22606 this_type = get_die_type (die, cu);
22607 if (this_type)
22608 return this_type;
22609
673bfd45
DE
22610 return read_type_die_1 (die, cu);
22611}
22612
22613/* Read the type in DIE, CU.
22614 Returns NULL for invalid types. */
22615
22616static struct type *
22617read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22618{
22619 struct type *this_type = NULL;
22620
c906108c
SS
22621 switch (die->tag)
22622 {
22623 case DW_TAG_class_type:
680b30c7 22624 case DW_TAG_interface_type:
c906108c
SS
22625 case DW_TAG_structure_type:
22626 case DW_TAG_union_type:
f792889a 22627 this_type = read_structure_type (die, cu);
c906108c
SS
22628 break;
22629 case DW_TAG_enumeration_type:
f792889a 22630 this_type = read_enumeration_type (die, cu);
c906108c
SS
22631 break;
22632 case DW_TAG_subprogram:
22633 case DW_TAG_subroutine_type:
edb3359d 22634 case DW_TAG_inlined_subroutine:
f792889a 22635 this_type = read_subroutine_type (die, cu);
c906108c
SS
22636 break;
22637 case DW_TAG_array_type:
f792889a 22638 this_type = read_array_type (die, cu);
c906108c 22639 break;
72019c9c 22640 case DW_TAG_set_type:
f792889a 22641 this_type = read_set_type (die, cu);
72019c9c 22642 break;
c906108c 22643 case DW_TAG_pointer_type:
f792889a 22644 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
22645 break;
22646 case DW_TAG_ptr_to_member_type:
f792889a 22647 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
22648 break;
22649 case DW_TAG_reference_type:
4297a3f0
AV
22650 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22651 break;
22652 case DW_TAG_rvalue_reference_type:
22653 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
22654 break;
22655 case DW_TAG_const_type:
f792889a 22656 this_type = read_tag_const_type (die, cu);
c906108c
SS
22657 break;
22658 case DW_TAG_volatile_type:
f792889a 22659 this_type = read_tag_volatile_type (die, cu);
c906108c 22660 break;
06d66ee9
TT
22661 case DW_TAG_restrict_type:
22662 this_type = read_tag_restrict_type (die, cu);
22663 break;
c906108c 22664 case DW_TAG_string_type:
f792889a 22665 this_type = read_tag_string_type (die, cu);
c906108c
SS
22666 break;
22667 case DW_TAG_typedef:
f792889a 22668 this_type = read_typedef (die, cu);
c906108c 22669 break;
a02abb62 22670 case DW_TAG_subrange_type:
f792889a 22671 this_type = read_subrange_type (die, cu);
a02abb62 22672 break;
c906108c 22673 case DW_TAG_base_type:
f792889a 22674 this_type = read_base_type (die, cu);
c906108c 22675 break;
81a17f79 22676 case DW_TAG_unspecified_type:
f792889a 22677 this_type = read_unspecified_type (die, cu);
81a17f79 22678 break;
0114d602
DJ
22679 case DW_TAG_namespace:
22680 this_type = read_namespace_type (die, cu);
22681 break;
f55ee35c
JK
22682 case DW_TAG_module:
22683 this_type = read_module_type (die, cu);
22684 break;
a2c2acaf
MW
22685 case DW_TAG_atomic_type:
22686 this_type = read_tag_atomic_type (die, cu);
22687 break;
c906108c 22688 default:
b98664d3 22689 complaint (_("unexpected tag in read_type_die: '%s'"),
4d3c2250 22690 dwarf_tag_name (die->tag));
c906108c
SS
22691 break;
22692 }
63d06c5c 22693
f792889a 22694 return this_type;
63d06c5c
DC
22695}
22696
abc72ce4
DE
22697/* See if we can figure out if the class lives in a namespace. We do
22698 this by looking for a member function; its demangled name will
22699 contain namespace info, if there is any.
22700 Return the computed name or NULL.
22701 Space for the result is allocated on the objfile's obstack.
22702 This is the full-die version of guess_partial_die_structure_name.
22703 In this case we know DIE has no useful parent. */
22704
22705static char *
22706guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22707{
22708 struct die_info *spec_die;
22709 struct dwarf2_cu *spec_cu;
22710 struct die_info *child;
518817b3 22711 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4
DE
22712
22713 spec_cu = cu;
22714 spec_die = die_specification (die, &spec_cu);
22715 if (spec_die != NULL)
22716 {
22717 die = spec_die;
22718 cu = spec_cu;
22719 }
22720
22721 for (child = die->child;
22722 child != NULL;
22723 child = child->sibling)
22724 {
22725 if (child->tag == DW_TAG_subprogram)
22726 {
73b9be8b 22727 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 22728
7d45c7c3 22729 if (linkage_name != NULL)
abc72ce4
DE
22730 {
22731 char *actual_name
22732 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 22733 linkage_name);
abc72ce4
DE
22734 char *name = NULL;
22735
22736 if (actual_name != NULL)
22737 {
15d034d0 22738 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
22739
22740 if (die_name != NULL
22741 && strcmp (die_name, actual_name) != 0)
22742 {
22743 /* Strip off the class name from the full name.
22744 We want the prefix. */
22745 int die_name_len = strlen (die_name);
22746 int actual_name_len = strlen (actual_name);
22747
22748 /* Test for '::' as a sanity check. */
22749 if (actual_name_len > die_name_len + 2
3e43a32a
MS
22750 && actual_name[actual_name_len
22751 - die_name_len - 1] == ':')
0cf9feb9 22752 name = obstack_strndup (
e3b94546 22753 &objfile->per_bfd->storage_obstack,
224c3ddb 22754 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
22755 }
22756 }
22757 xfree (actual_name);
22758 return name;
22759 }
22760 }
22761 }
22762
22763 return NULL;
22764}
22765
96408a79
SA
22766/* GCC might emit a nameless typedef that has a linkage name. Determine the
22767 prefix part in such case. See
22768 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22769
a121b7c1 22770static const char *
96408a79
SA
22771anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22772{
22773 struct attribute *attr;
e6a959d6 22774 const char *base;
96408a79
SA
22775
22776 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22777 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22778 return NULL;
22779
7d45c7c3 22780 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
22781 return NULL;
22782
73b9be8b 22783 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
22784 if (attr == NULL || DW_STRING (attr) == NULL)
22785 return NULL;
22786
22787 /* dwarf2_name had to be already called. */
22788 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22789
22790 /* Strip the base name, keep any leading namespaces/classes. */
22791 base = strrchr (DW_STRING (attr), ':');
22792 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22793 return "";
22794
518817b3 22795 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0cf9feb9
TT
22796 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22797 DW_STRING (attr),
22798 &base[-1] - DW_STRING (attr));
96408a79
SA
22799}
22800
fdde2d81 22801/* Return the name of the namespace/class that DIE is defined within,
0114d602 22802 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 22803
0114d602
DJ
22804 For example, if we're within the method foo() in the following
22805 code:
22806
22807 namespace N {
22808 class C {
22809 void foo () {
22810 }
22811 };
22812 }
22813
22814 then determine_prefix on foo's die will return "N::C". */
fdde2d81 22815
0d5cff50 22816static const char *
e142c38c 22817determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 22818{
518817b3
SM
22819 struct dwarf2_per_objfile *dwarf2_per_objfile
22820 = cu->per_cu->dwarf2_per_objfile;
0114d602
DJ
22821 struct die_info *parent, *spec_die;
22822 struct dwarf2_cu *spec_cu;
22823 struct type *parent_type;
a121b7c1 22824 const char *retval;
63d06c5c 22825
9c37b5ae 22826 if (cu->language != language_cplus
c44af4eb
TT
22827 && cu->language != language_fortran && cu->language != language_d
22828 && cu->language != language_rust)
0114d602
DJ
22829 return "";
22830
96408a79
SA
22831 retval = anonymous_struct_prefix (die, cu);
22832 if (retval)
22833 return retval;
22834
0114d602
DJ
22835 /* We have to be careful in the presence of DW_AT_specification.
22836 For example, with GCC 3.4, given the code
22837
22838 namespace N {
22839 void foo() {
22840 // Definition of N::foo.
22841 }
22842 }
22843
22844 then we'll have a tree of DIEs like this:
22845
22846 1: DW_TAG_compile_unit
22847 2: DW_TAG_namespace // N
22848 3: DW_TAG_subprogram // declaration of N::foo
22849 4: DW_TAG_subprogram // definition of N::foo
22850 DW_AT_specification // refers to die #3
22851
22852 Thus, when processing die #4, we have to pretend that we're in
22853 the context of its DW_AT_specification, namely the contex of die
22854 #3. */
22855 spec_cu = cu;
22856 spec_die = die_specification (die, &spec_cu);
22857 if (spec_die == NULL)
22858 parent = die->parent;
22859 else
63d06c5c 22860 {
0114d602
DJ
22861 parent = spec_die->parent;
22862 cu = spec_cu;
63d06c5c 22863 }
0114d602
DJ
22864
22865 if (parent == NULL)
22866 return "";
98bfdba5
PA
22867 else if (parent->building_fullname)
22868 {
22869 const char *name;
22870 const char *parent_name;
22871
22872 /* It has been seen on RealView 2.2 built binaries,
22873 DW_TAG_template_type_param types actually _defined_ as
22874 children of the parent class:
22875
22876 enum E {};
22877 template class <class Enum> Class{};
22878 Class<enum E> class_e;
22879
22880 1: DW_TAG_class_type (Class)
22881 2: DW_TAG_enumeration_type (E)
22882 3: DW_TAG_enumerator (enum1:0)
22883 3: DW_TAG_enumerator (enum2:1)
22884 ...
22885 2: DW_TAG_template_type_param
22886 DW_AT_type DW_FORM_ref_udata (E)
22887
22888 Besides being broken debug info, it can put GDB into an
22889 infinite loop. Consider:
22890
22891 When we're building the full name for Class<E>, we'll start
22892 at Class, and go look over its template type parameters,
22893 finding E. We'll then try to build the full name of E, and
22894 reach here. We're now trying to build the full name of E,
22895 and look over the parent DIE for containing scope. In the
22896 broken case, if we followed the parent DIE of E, we'd again
22897 find Class, and once again go look at its template type
22898 arguments, etc., etc. Simply don't consider such parent die
22899 as source-level parent of this die (it can't be, the language
22900 doesn't allow it), and break the loop here. */
22901 name = dwarf2_name (die, cu);
22902 parent_name = dwarf2_name (parent, cu);
b98664d3 22903 complaint (_("template param type '%s' defined within parent '%s'"),
98bfdba5
PA
22904 name ? name : "<unknown>",
22905 parent_name ? parent_name : "<unknown>");
22906 return "";
22907 }
63d06c5c 22908 else
0114d602
DJ
22909 switch (parent->tag)
22910 {
63d06c5c 22911 case DW_TAG_namespace:
0114d602 22912 parent_type = read_type_die (parent, cu);
acebe513
UW
22913 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22914 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22915 Work around this problem here. */
22916 if (cu->language == language_cplus
e86ca25f 22917 && strcmp (TYPE_NAME (parent_type), "::") == 0)
acebe513 22918 return "";
0114d602 22919 /* We give a name to even anonymous namespaces. */
e86ca25f 22920 return TYPE_NAME (parent_type);
63d06c5c 22921 case DW_TAG_class_type:
680b30c7 22922 case DW_TAG_interface_type:
63d06c5c 22923 case DW_TAG_structure_type:
0114d602 22924 case DW_TAG_union_type:
f55ee35c 22925 case DW_TAG_module:
0114d602 22926 parent_type = read_type_die (parent, cu);
e86ca25f
TT
22927 if (TYPE_NAME (parent_type) != NULL)
22928 return TYPE_NAME (parent_type);
0114d602
DJ
22929 else
22930 /* An anonymous structure is only allowed non-static data
22931 members; no typedefs, no member functions, et cetera.
22932 So it does not need a prefix. */
22933 return "";
abc72ce4 22934 case DW_TAG_compile_unit:
95554aad 22935 case DW_TAG_partial_unit:
abc72ce4
DE
22936 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22937 if (cu->language == language_cplus
fd5866f6 22938 && !dwarf2_per_objfile->types.empty ()
abc72ce4
DE
22939 && die->child != NULL
22940 && (die->tag == DW_TAG_class_type
22941 || die->tag == DW_TAG_structure_type
22942 || die->tag == DW_TAG_union_type))
22943 {
22944 char *name = guess_full_die_structure_name (die, cu);
22945 if (name != NULL)
22946 return name;
22947 }
22948 return "";
0a4b0913
AB
22949 case DW_TAG_subprogram:
22950 /* Nested subroutines in Fortran get a prefix with the name
22951 of the parent's subroutine. */
22952 if (cu->language == language_fortran)
22953 {
22954 if ((die->tag == DW_TAG_subprogram)
22955 && (dwarf2_name (parent, cu) != NULL))
22956 return dwarf2_name (parent, cu);
22957 }
22958 return determine_prefix (parent, cu);
3d567982
TT
22959 case DW_TAG_enumeration_type:
22960 parent_type = read_type_die (parent, cu);
22961 if (TYPE_DECLARED_CLASS (parent_type))
22962 {
e86ca25f
TT
22963 if (TYPE_NAME (parent_type) != NULL)
22964 return TYPE_NAME (parent_type);
3d567982
TT
22965 return "";
22966 }
22967 /* Fall through. */
63d06c5c 22968 default:
8176b9b8 22969 return determine_prefix (parent, cu);
63d06c5c 22970 }
63d06c5c
DC
22971}
22972
3e43a32a
MS
22973/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22974 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22975 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22976 an obconcat, otherwise allocate storage for the result. The CU argument is
22977 used to determine the language and hence, the appropriate separator. */
987504bb 22978
f55ee35c 22979#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
22980
22981static char *
f55ee35c
JK
22982typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22983 int physname, struct dwarf2_cu *cu)
63d06c5c 22984{
f55ee35c 22985 const char *lead = "";
5c315b68 22986 const char *sep;
63d06c5c 22987
3e43a32a
MS
22988 if (suffix == NULL || suffix[0] == '\0'
22989 || prefix == NULL || prefix[0] == '\0')
987504bb 22990 sep = "";
45280282
IB
22991 else if (cu->language == language_d)
22992 {
22993 /* For D, the 'main' function could be defined in any module, but it
22994 should never be prefixed. */
22995 if (strcmp (suffix, "D main") == 0)
22996 {
22997 prefix = "";
22998 sep = "";
22999 }
23000 else
23001 sep = ".";
23002 }
f55ee35c
JK
23003 else if (cu->language == language_fortran && physname)
23004 {
23005 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
23006 DW_AT_MIPS_linkage_name is preferred and used instead. */
23007
23008 lead = "__";
23009 sep = "_MOD_";
23010 }
987504bb
JJ
23011 else
23012 sep = "::";
63d06c5c 23013
6dd47d34
DE
23014 if (prefix == NULL)
23015 prefix = "";
23016 if (suffix == NULL)
23017 suffix = "";
23018
987504bb
JJ
23019 if (obs == NULL)
23020 {
3e43a32a 23021 char *retval
224c3ddb
SM
23022 = ((char *)
23023 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 23024
f55ee35c
JK
23025 strcpy (retval, lead);
23026 strcat (retval, prefix);
6dd47d34
DE
23027 strcat (retval, sep);
23028 strcat (retval, suffix);
63d06c5c
DC
23029 return retval;
23030 }
987504bb
JJ
23031 else
23032 {
23033 /* We have an obstack. */
f55ee35c 23034 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 23035 }
63d06c5c
DC
23036}
23037
c906108c
SS
23038/* Return sibling of die, NULL if no sibling. */
23039
f9aca02d 23040static struct die_info *
fba45db2 23041sibling_die (struct die_info *die)
c906108c 23042{
639d11d3 23043 return die->sibling;
c906108c
SS
23044}
23045
71c25dea
TT
23046/* Get name of a die, return NULL if not found. */
23047
15d034d0
TT
23048static const char *
23049dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
23050 struct obstack *obstack)
23051{
23052 if (name && cu->language == language_cplus)
23053 {
2f408ecb 23054 std::string canon_name = cp_canonicalize_string (name);
71c25dea 23055
2f408ecb 23056 if (!canon_name.empty ())
71c25dea 23057 {
2f408ecb 23058 if (canon_name != name)
efba19b0 23059 name = obstack_strdup (obstack, canon_name);
71c25dea
TT
23060 }
23061 }
23062
23063 return name;
c906108c
SS
23064}
23065
96553a0c
DE
23066/* Get name of a die, return NULL if not found.
23067 Anonymous namespaces are converted to their magic string. */
9219021c 23068
15d034d0 23069static const char *
e142c38c 23070dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
23071{
23072 struct attribute *attr;
518817b3 23073 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9219021c 23074
e142c38c 23075 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 23076 if ((!attr || !DW_STRING (attr))
96553a0c 23077 && die->tag != DW_TAG_namespace
53832f31
TT
23078 && die->tag != DW_TAG_class_type
23079 && die->tag != DW_TAG_interface_type
23080 && die->tag != DW_TAG_structure_type
23081 && die->tag != DW_TAG_union_type)
71c25dea
TT
23082 return NULL;
23083
23084 switch (die->tag)
23085 {
23086 case DW_TAG_compile_unit:
95554aad 23087 case DW_TAG_partial_unit:
71c25dea
TT
23088 /* Compilation units have a DW_AT_name that is a filename, not
23089 a source language identifier. */
23090 case DW_TAG_enumeration_type:
23091 case DW_TAG_enumerator:
23092 /* These tags always have simple identifiers already; no need
23093 to canonicalize them. */
23094 return DW_STRING (attr);
907af001 23095
96553a0c
DE
23096 case DW_TAG_namespace:
23097 if (attr != NULL && DW_STRING (attr) != NULL)
23098 return DW_STRING (attr);
23099 return CP_ANONYMOUS_NAMESPACE_STR;
23100
907af001
UW
23101 case DW_TAG_class_type:
23102 case DW_TAG_interface_type:
23103 case DW_TAG_structure_type:
23104 case DW_TAG_union_type:
23105 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
23106 structures or unions. These were of the form "._%d" in GCC 4.1,
23107 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
23108 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 23109 if (attr && DW_STRING (attr)
61012eef
GB
23110 && (startswith (DW_STRING (attr), "._")
23111 || startswith (DW_STRING (attr), "<anonymous")))
907af001 23112 return NULL;
53832f31
TT
23113
23114 /* GCC might emit a nameless typedef that has a linkage name. See
23115 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
23116 if (!attr || DW_STRING (attr) == NULL)
23117 {
df5c6c50 23118 char *demangled = NULL;
53832f31 23119
73b9be8b 23120 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
23121 if (attr == NULL || DW_STRING (attr) == NULL)
23122 return NULL;
23123
df5c6c50
JK
23124 /* Avoid demangling DW_STRING (attr) the second time on a second
23125 call for the same DIE. */
23126 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 23127 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
23128
23129 if (demangled)
23130 {
e6a959d6 23131 const char *base;
96408a79 23132
53832f31 23133 /* FIXME: we already did this for the partial symbol... */
34a68019 23134 DW_STRING (attr)
021887d8
TT
23135 = obstack_strdup (&objfile->per_bfd->storage_obstack,
23136 demangled);
53832f31
TT
23137 DW_STRING_IS_CANONICAL (attr) = 1;
23138 xfree (demangled);
96408a79
SA
23139
23140 /* Strip any leading namespaces/classes, keep only the base name.
23141 DW_AT_name for named DIEs does not contain the prefixes. */
23142 base = strrchr (DW_STRING (attr), ':');
23143 if (base && base > DW_STRING (attr) && base[-1] == ':')
23144 return &base[1];
23145 else
23146 return DW_STRING (attr);
53832f31
TT
23147 }
23148 }
907af001
UW
23149 break;
23150
71c25dea 23151 default:
907af001
UW
23152 break;
23153 }
23154
23155 if (!DW_STRING_IS_CANONICAL (attr))
23156 {
23157 DW_STRING (attr)
23158 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
e3b94546 23159 &objfile->per_bfd->storage_obstack);
907af001 23160 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 23161 }
907af001 23162 return DW_STRING (attr);
9219021c
DC
23163}
23164
23165/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
23166 is none. *EXT_CU is the CU containing DIE on input, and the CU
23167 containing the return value on output. */
9219021c
DC
23168
23169static struct die_info *
f2f0e013 23170dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
23171{
23172 struct attribute *attr;
9219021c 23173
f2f0e013 23174 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
23175 if (attr == NULL)
23176 return NULL;
23177
f2f0e013 23178 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
23179}
23180
fa9c3fa0
TT
23181/* A convenience function that returns an "unknown" DWARF name,
23182 including the value of V. STR is the name of the entity being
23183 printed, e.g., "TAG". */
23184
23185static const char *
23186dwarf_unknown (const char *str, unsigned v)
23187{
23188 char *cell = get_print_cell ();
23189 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
23190 return cell;
23191}
23192
c906108c
SS
23193/* Convert a DIE tag into its string name. */
23194
f39c6ffd 23195static const char *
aa1ee363 23196dwarf_tag_name (unsigned tag)
c906108c 23197{
f39c6ffd
TT
23198 const char *name = get_DW_TAG_name (tag);
23199
23200 if (name == NULL)
fa9c3fa0 23201 return dwarf_unknown ("TAG", tag);
f39c6ffd
TT
23202
23203 return name;
c906108c
SS
23204}
23205
23206/* Convert a DWARF attribute code into its string name. */
23207
f39c6ffd 23208static const char *
aa1ee363 23209dwarf_attr_name (unsigned attr)
c906108c 23210{
f39c6ffd
TT
23211 const char *name;
23212
c764a876 23213#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
23214 if (attr == DW_AT_MIPS_fde)
23215 return "DW_AT_MIPS_fde";
23216#else
23217 if (attr == DW_AT_HP_block_index)
23218 return "DW_AT_HP_block_index";
c764a876 23219#endif
f39c6ffd
TT
23220
23221 name = get_DW_AT_name (attr);
23222
23223 if (name == NULL)
fa9c3fa0 23224 return dwarf_unknown ("AT", attr);
f39c6ffd
TT
23225
23226 return name;
c906108c
SS
23227}
23228
a084a2a6
AT
23229/* Convert a unit type to corresponding DW_UT name. */
23230
23231static const char *
23232dwarf_unit_type_name (int unit_type) {
23233 switch (unit_type)
23234 {
23235 case 0x01:
23236 return "DW_UT_compile (0x01)";
23237 case 0x02:
23238 return "DW_UT_type (0x02)";
23239 case 0x03:
23240 return "DW_UT_partial (0x03)";
23241 case 0x04:
23242 return "DW_UT_skeleton (0x04)";
23243 case 0x05:
23244 return "DW_UT_split_compile (0x05)";
23245 case 0x06:
23246 return "DW_UT_split_type (0x06)";
23247 case 0x80:
23248 return "DW_UT_lo_user (0x80)";
23249 case 0xff:
23250 return "DW_UT_hi_user (0xff)";
23251 default:
23252 return nullptr;
23253 }
23254}
23255
c906108c
SS
23256/* Convert a DWARF value form code into its string name. */
23257
f39c6ffd 23258static const char *
aa1ee363 23259dwarf_form_name (unsigned form)
c906108c 23260{
f39c6ffd
TT
23261 const char *name = get_DW_FORM_name (form);
23262
23263 if (name == NULL)
fa9c3fa0 23264 return dwarf_unknown ("FORM", form);
f39c6ffd
TT
23265
23266 return name;
c906108c
SS
23267}
23268
a121b7c1 23269static const char *
fba45db2 23270dwarf_bool_name (unsigned mybool)
c906108c
SS
23271{
23272 if (mybool)
23273 return "TRUE";
23274 else
23275 return "FALSE";
23276}
23277
23278/* Convert a DWARF type code into its string name. */
23279
f39c6ffd 23280static const char *
aa1ee363 23281dwarf_type_encoding_name (unsigned enc)
c906108c 23282{
f39c6ffd 23283 const char *name = get_DW_ATE_name (enc);
c906108c 23284
f39c6ffd 23285 if (name == NULL)
fa9c3fa0 23286 return dwarf_unknown ("ATE", enc);
c906108c 23287
f39c6ffd 23288 return name;
c906108c 23289}
c906108c 23290
f9aca02d 23291static void
d97bc12b 23292dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
23293{
23294 unsigned int i;
23295
d97bc12b 23296 print_spaces (indent, f);
9d8780f0 23297 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
9c541725 23298 dwarf_tag_name (die->tag), die->abbrev,
9d8780f0 23299 sect_offset_str (die->sect_off));
d97bc12b
DE
23300
23301 if (die->parent != NULL)
23302 {
23303 print_spaces (indent, f);
9d8780f0
SM
23304 fprintf_unfiltered (f, " parent at offset: %s\n",
23305 sect_offset_str (die->parent->sect_off));
d97bc12b
DE
23306 }
23307
23308 print_spaces (indent, f);
23309 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 23310 dwarf_bool_name (die->child != NULL));
c906108c 23311
d97bc12b
DE
23312 print_spaces (indent, f);
23313 fprintf_unfiltered (f, " attributes:\n");
23314
c906108c
SS
23315 for (i = 0; i < die->num_attrs; ++i)
23316 {
d97bc12b
DE
23317 print_spaces (indent, f);
23318 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
23319 dwarf_attr_name (die->attrs[i].name),
23320 dwarf_form_name (die->attrs[i].form));
d97bc12b 23321
c906108c
SS
23322 switch (die->attrs[i].form)
23323 {
c906108c 23324 case DW_FORM_addr:
336d760d 23325 case DW_FORM_addrx:
3019eac3 23326 case DW_FORM_GNU_addr_index:
d97bc12b 23327 fprintf_unfiltered (f, "address: ");
5af949e3 23328 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
23329 break;
23330 case DW_FORM_block2:
23331 case DW_FORM_block4:
23332 case DW_FORM_block:
23333 case DW_FORM_block1:
56eb65bd
SP
23334 fprintf_unfiltered (f, "block: size %s",
23335 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 23336 break;
2dc7f7b3 23337 case DW_FORM_exprloc:
56eb65bd
SP
23338 fprintf_unfiltered (f, "expression: size %s",
23339 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 23340 break;
0224619f
JK
23341 case DW_FORM_data16:
23342 fprintf_unfiltered (f, "constant of 16 bytes");
23343 break;
4568ecf9
DE
23344 case DW_FORM_ref_addr:
23345 fprintf_unfiltered (f, "ref address: ");
23346 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23347 break;
36586728
TT
23348 case DW_FORM_GNU_ref_alt:
23349 fprintf_unfiltered (f, "alt ref address: ");
23350 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23351 break;
10b3939b
DJ
23352 case DW_FORM_ref1:
23353 case DW_FORM_ref2:
23354 case DW_FORM_ref4:
4568ecf9
DE
23355 case DW_FORM_ref8:
23356 case DW_FORM_ref_udata:
d97bc12b 23357 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 23358 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 23359 break;
c906108c
SS
23360 case DW_FORM_data1:
23361 case DW_FORM_data2:
23362 case DW_FORM_data4:
ce5d95e1 23363 case DW_FORM_data8:
c906108c
SS
23364 case DW_FORM_udata:
23365 case DW_FORM_sdata:
43bbcdc2
PH
23366 fprintf_unfiltered (f, "constant: %s",
23367 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 23368 break;
2dc7f7b3
TT
23369 case DW_FORM_sec_offset:
23370 fprintf_unfiltered (f, "section offset: %s",
23371 pulongest (DW_UNSND (&die->attrs[i])));
23372 break;
55f1336d 23373 case DW_FORM_ref_sig8:
ac9ec31b
DE
23374 fprintf_unfiltered (f, "signature: %s",
23375 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 23376 break;
c906108c 23377 case DW_FORM_string:
4bdf3d34 23378 case DW_FORM_strp:
43988095 23379 case DW_FORM_line_strp:
cf532bd1 23380 case DW_FORM_strx:
3019eac3 23381 case DW_FORM_GNU_str_index:
36586728 23382 case DW_FORM_GNU_strp_alt:
8285870a 23383 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 23384 DW_STRING (&die->attrs[i])
8285870a
JK
23385 ? DW_STRING (&die->attrs[i]) : "",
23386 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
23387 break;
23388 case DW_FORM_flag:
23389 if (DW_UNSND (&die->attrs[i]))
d97bc12b 23390 fprintf_unfiltered (f, "flag: TRUE");
c906108c 23391 else
d97bc12b 23392 fprintf_unfiltered (f, "flag: FALSE");
c906108c 23393 break;
2dc7f7b3
TT
23394 case DW_FORM_flag_present:
23395 fprintf_unfiltered (f, "flag: TRUE");
23396 break;
a8329558 23397 case DW_FORM_indirect:
0963b4bd
MS
23398 /* The reader will have reduced the indirect form to
23399 the "base form" so this form should not occur. */
5f48f8f3 23400 fprintf_unfiltered (f,
3e43a32a 23401 "unexpected attribute form: DW_FORM_indirect");
a8329558 23402 break;
663c44ac
JK
23403 case DW_FORM_implicit_const:
23404 fprintf_unfiltered (f, "constant: %s",
23405 plongest (DW_SND (&die->attrs[i])));
23406 break;
c906108c 23407 default:
d97bc12b 23408 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 23409 die->attrs[i].form);
d97bc12b 23410 break;
c906108c 23411 }
d97bc12b 23412 fprintf_unfiltered (f, "\n");
c906108c
SS
23413 }
23414}
23415
f9aca02d 23416static void
d97bc12b 23417dump_die_for_error (struct die_info *die)
c906108c 23418{
d97bc12b
DE
23419 dump_die_shallow (gdb_stderr, 0, die);
23420}
23421
23422static void
23423dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23424{
23425 int indent = level * 4;
23426
23427 gdb_assert (die != NULL);
23428
23429 if (level >= max_level)
23430 return;
23431
23432 dump_die_shallow (f, indent, die);
23433
23434 if (die->child != NULL)
c906108c 23435 {
d97bc12b
DE
23436 print_spaces (indent, f);
23437 fprintf_unfiltered (f, " Children:");
23438 if (level + 1 < max_level)
23439 {
23440 fprintf_unfiltered (f, "\n");
23441 dump_die_1 (f, level + 1, max_level, die->child);
23442 }
23443 else
23444 {
3e43a32a
MS
23445 fprintf_unfiltered (f,
23446 " [not printed, max nesting level reached]\n");
d97bc12b
DE
23447 }
23448 }
23449
23450 if (die->sibling != NULL && level > 0)
23451 {
23452 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
23453 }
23454}
23455
d97bc12b
DE
23456/* This is called from the pdie macro in gdbinit.in.
23457 It's not static so gcc will keep a copy callable from gdb. */
23458
23459void
23460dump_die (struct die_info *die, int max_level)
23461{
23462 dump_die_1 (gdb_stdlog, 0, max_level, die);
23463}
23464
f9aca02d 23465static void
51545339 23466store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 23467{
51545339 23468 void **slot;
c906108c 23469
9c541725
PA
23470 slot = htab_find_slot_with_hash (cu->die_hash, die,
23471 to_underlying (die->sect_off),
b64f50a1 23472 INSERT);
51545339
DJ
23473
23474 *slot = die;
c906108c
SS
23475}
23476
b64f50a1
JK
23477/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23478 required kind. */
23479
23480static sect_offset
ff39bb5e 23481dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 23482{
7771576e 23483 if (attr_form_is_ref (attr))
9c541725 23484 return (sect_offset) DW_UNSND (attr);
93311388 23485
b98664d3 23486 complaint (_("unsupported die ref attribute form: '%s'"),
93311388 23487 dwarf_form_name (attr->form));
9c541725 23488 return {};
c906108c
SS
23489}
23490
43bbcdc2
PH
23491/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23492 * the value held by the attribute is not constant. */
a02abb62 23493
43bbcdc2 23494static LONGEST
ff39bb5e 23495dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 23496{
663c44ac 23497 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
23498 return DW_SND (attr);
23499 else if (attr->form == DW_FORM_udata
23500 || attr->form == DW_FORM_data1
23501 || attr->form == DW_FORM_data2
23502 || attr->form == DW_FORM_data4
23503 || attr->form == DW_FORM_data8)
23504 return DW_UNSND (attr);
23505 else
23506 {
0224619f 23507 /* For DW_FORM_data16 see attr_form_is_constant. */
b98664d3 23508 complaint (_("Attribute value is not a constant (%s)"),
a02abb62
JB
23509 dwarf_form_name (attr->form));
23510 return default_value;
23511 }
23512}
23513
348e048f
DE
23514/* Follow reference or signature attribute ATTR of SRC_DIE.
23515 On entry *REF_CU is the CU of SRC_DIE.
23516 On exit *REF_CU is the CU of the result. */
23517
23518static struct die_info *
ff39bb5e 23519follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
23520 struct dwarf2_cu **ref_cu)
23521{
23522 struct die_info *die;
23523
7771576e 23524 if (attr_form_is_ref (attr))
348e048f 23525 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 23526 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
23527 die = follow_die_sig (src_die, attr, ref_cu);
23528 else
23529 {
23530 dump_die_for_error (src_die);
23531 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
518817b3 23532 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
348e048f
DE
23533 }
23534
23535 return die;
03dd20cc
DJ
23536}
23537
5c631832 23538/* Follow reference OFFSET.
673bfd45
DE
23539 On entry *REF_CU is the CU of the source die referencing OFFSET.
23540 On exit *REF_CU is the CU of the result.
23541 Returns NULL if OFFSET is invalid. */
f504f079 23542
f9aca02d 23543static struct die_info *
9c541725 23544follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 23545 struct dwarf2_cu **ref_cu)
c906108c 23546{
10b3939b 23547 struct die_info temp_die;
f2f0e013 23548 struct dwarf2_cu *target_cu, *cu = *ref_cu;
518817b3
SM
23549 struct dwarf2_per_objfile *dwarf2_per_objfile
23550 = cu->per_cu->dwarf2_per_objfile;
10b3939b 23551
348e048f
DE
23552 gdb_assert (cu->per_cu != NULL);
23553
98bfdba5
PA
23554 target_cu = cu;
23555
3019eac3 23556 if (cu->per_cu->is_debug_types)
348e048f
DE
23557 {
23558 /* .debug_types CUs cannot reference anything outside their CU.
23559 If they need to, they have to reference a signatured type via
55f1336d 23560 DW_FORM_ref_sig8. */
9c541725 23561 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 23562 return NULL;
348e048f 23563 }
36586728 23564 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 23565 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
23566 {
23567 struct dwarf2_per_cu_data *per_cu;
9a619af0 23568
9c541725 23569 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 23570 dwarf2_per_objfile);
03dd20cc
DJ
23571
23572 /* If necessary, add it to the queue and load its DIEs. */
95554aad 23573 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 23574 load_full_comp_unit (per_cu, false, cu->language);
03dd20cc 23575
10b3939b
DJ
23576 target_cu = per_cu->cu;
23577 }
98bfdba5
PA
23578 else if (cu->dies == NULL)
23579 {
23580 /* We're loading full DIEs during partial symbol reading. */
23581 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
58f0c718 23582 load_full_comp_unit (cu->per_cu, false, language_minimal);
98bfdba5 23583 }
c906108c 23584
f2f0e013 23585 *ref_cu = target_cu;
9c541725 23586 temp_die.sect_off = sect_off;
c24bdb02
KS
23587
23588 if (target_cu != cu)
23589 target_cu->ancestor = cu;
23590
9a3c8263 23591 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
23592 &temp_die,
23593 to_underlying (sect_off));
5c631832 23594}
10b3939b 23595
5c631832
JK
23596/* Follow reference attribute ATTR of SRC_DIE.
23597 On entry *REF_CU is the CU of SRC_DIE.
23598 On exit *REF_CU is the CU of the result. */
23599
23600static struct die_info *
ff39bb5e 23601follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
23602 struct dwarf2_cu **ref_cu)
23603{
9c541725 23604 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
23605 struct dwarf2_cu *cu = *ref_cu;
23606 struct die_info *die;
23607
9c541725 23608 die = follow_die_offset (sect_off,
36586728
TT
23609 (attr->form == DW_FORM_GNU_ref_alt
23610 || cu->per_cu->is_dwz),
23611 ref_cu);
5c631832 23612 if (!die)
9d8780f0
SM
23613 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23614 "at %s [in module %s]"),
23615 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
518817b3 23616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
348e048f 23617
5c631832
JK
23618 return die;
23619}
23620
9c541725 23621/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b 23622 Returned value is intended for DW_OP_call*. Returned
e3b94546
SM
23623 dwarf2_locexpr_baton->data has lifetime of
23624 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
5c631832
JK
23625
23626struct dwarf2_locexpr_baton
9c541725 23627dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
23628 struct dwarf2_per_cu_data *per_cu,
23629 CORE_ADDR (*get_frame_pc) (void *baton),
e4a62c65 23630 void *baton, bool resolve_abstract_p)
5c631832 23631{
918dd910 23632 struct dwarf2_cu *cu;
5c631832
JK
23633 struct die_info *die;
23634 struct attribute *attr;
23635 struct dwarf2_locexpr_baton retval;
12359b5e
SM
23636 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23637 struct objfile *objfile = dwarf2_per_objfile->objfile;
8cf6f0b1 23638
918dd910 23639 if (per_cu->cu == NULL)
58f0c718 23640 load_cu (per_cu, false);
918dd910 23641 cu = per_cu->cu;
cc12ce38
DE
23642 if (cu == NULL)
23643 {
23644 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23645 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23646 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23647 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23648 }
918dd910 23649
9c541725 23650 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832 23651 if (!die)
9d8780f0
SM
23652 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23653 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23654
23655 attr = dwarf2_attr (die, DW_AT_location, cu);
e4a62c65 23656 if (!attr && resolve_abstract_p
3360b6e7 23657 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
e4a62c65
TV
23658 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23659 {
23660 CORE_ADDR pc = (*get_frame_pc) (baton);
eba4caf2
TV
23661 CORE_ADDR baseaddr
23662 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23663 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e4a62c65 23664
3360b6e7
TV
23665 for (const auto &cand_off
23666 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
e4a62c65 23667 {
3360b6e7
TV
23668 struct dwarf2_cu *cand_cu = cu;
23669 struct die_info *cand
23670 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23671 if (!cand
23672 || !cand->parent
e4a62c65
TV
23673 || cand->parent->tag != DW_TAG_subprogram)
23674 continue;
23675
23676 CORE_ADDR pc_low, pc_high;
23677 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
eba4caf2
TV
23678 if (pc_low == ((CORE_ADDR) -1))
23679 continue;
23680 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23681 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23682 if (!(pc_low <= pc && pc < pc_high))
e4a62c65
TV
23683 continue;
23684
23685 die = cand;
23686 attr = dwarf2_attr (die, DW_AT_location, cu);
23687 break;
23688 }
23689 }
23690
5c631832
JK
23691 if (!attr)
23692 {
e103e986
JK
23693 /* DWARF: "If there is no such attribute, then there is no effect.".
23694 DATA is ignored if SIZE is 0. */
5c631832 23695
e103e986 23696 retval.data = NULL;
5c631832
JK
23697 retval.size = 0;
23698 }
8cf6f0b1
TT
23699 else if (attr_form_is_section_offset (attr))
23700 {
23701 struct dwarf2_loclist_baton loclist_baton;
23702 CORE_ADDR pc = (*get_frame_pc) (baton);
23703 size_t size;
23704
23705 fill_in_loclist_baton (cu, &loclist_baton, attr);
23706
23707 retval.data = dwarf2_find_location_expression (&loclist_baton,
23708 &size, pc);
23709 retval.size = size;
23710 }
5c631832
JK
23711 else
23712 {
23713 if (!attr_form_is_block (attr))
9d8780f0 23714 error (_("Dwarf Error: DIE at %s referenced in module %s "
5c631832 23715 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9d8780f0 23716 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23717
23718 retval.data = DW_BLOCK (attr)->data;
23719 retval.size = DW_BLOCK (attr)->size;
23720 }
23721 retval.per_cu = cu->per_cu;
918dd910 23722
ed2dc618 23723 age_cached_comp_units (dwarf2_per_objfile);
918dd910 23724
5c631832 23725 return retval;
348e048f
DE
23726}
23727
8b9737bf
TT
23728/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23729 offset. */
23730
23731struct dwarf2_locexpr_baton
23732dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23733 struct dwarf2_per_cu_data *per_cu,
23734 CORE_ADDR (*get_frame_pc) (void *baton),
23735 void *baton)
23736{
9c541725 23737 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 23738
9c541725 23739 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
23740}
23741
b6807d98
TT
23742/* Write a constant of a given type as target-ordered bytes into
23743 OBSTACK. */
23744
23745static const gdb_byte *
23746write_constant_as_bytes (struct obstack *obstack,
23747 enum bfd_endian byte_order,
23748 struct type *type,
23749 ULONGEST value,
23750 LONGEST *len)
23751{
23752 gdb_byte *result;
23753
23754 *len = TYPE_LENGTH (type);
224c3ddb 23755 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23756 store_unsigned_integer (result, *len, byte_order, value);
23757
23758 return result;
23759}
23760
23761/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23762 pointer to the constant bytes and set LEN to the length of the
23763 data. If memory is needed, allocate it on OBSTACK. If the DIE
23764 does not have a DW_AT_const_value, return NULL. */
23765
23766const gdb_byte *
9c541725 23767dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
23768 struct dwarf2_per_cu_data *per_cu,
23769 struct obstack *obstack,
23770 LONGEST *len)
23771{
23772 struct dwarf2_cu *cu;
23773 struct die_info *die;
23774 struct attribute *attr;
23775 const gdb_byte *result = NULL;
23776 struct type *type;
23777 LONGEST value;
23778 enum bfd_endian byte_order;
e3b94546 23779 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
b6807d98 23780
b6807d98 23781 if (per_cu->cu == NULL)
58f0c718 23782 load_cu (per_cu, false);
b6807d98 23783 cu = per_cu->cu;
cc12ce38
DE
23784 if (cu == NULL)
23785 {
23786 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23787 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23788 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23789 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23790 }
b6807d98 23791
9c541725 23792 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98 23793 if (!die)
9d8780f0
SM
23794 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23795 sect_offset_str (sect_off), objfile_name (objfile));
b6807d98
TT
23796
23797 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23798 if (attr == NULL)
23799 return NULL;
23800
e3b94546 23801 byte_order = (bfd_big_endian (objfile->obfd)
b6807d98
TT
23802 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23803
23804 switch (attr->form)
23805 {
23806 case DW_FORM_addr:
336d760d 23807 case DW_FORM_addrx:
b6807d98
TT
23808 case DW_FORM_GNU_addr_index:
23809 {
23810 gdb_byte *tem;
23811
23812 *len = cu->header.addr_size;
224c3ddb 23813 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23814 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23815 result = tem;
23816 }
23817 break;
23818 case DW_FORM_string:
23819 case DW_FORM_strp:
cf532bd1 23820 case DW_FORM_strx:
b6807d98
TT
23821 case DW_FORM_GNU_str_index:
23822 case DW_FORM_GNU_strp_alt:
23823 /* DW_STRING is already allocated on the objfile obstack, point
23824 directly to it. */
23825 result = (const gdb_byte *) DW_STRING (attr);
23826 *len = strlen (DW_STRING (attr));
23827 break;
23828 case DW_FORM_block1:
23829 case DW_FORM_block2:
23830 case DW_FORM_block4:
23831 case DW_FORM_block:
23832 case DW_FORM_exprloc:
0224619f 23833 case DW_FORM_data16:
b6807d98
TT
23834 result = DW_BLOCK (attr)->data;
23835 *len = DW_BLOCK (attr)->size;
23836 break;
23837
23838 /* The DW_AT_const_value attributes are supposed to carry the
23839 symbol's value "represented as it would be on the target
23840 architecture." By the time we get here, it's already been
23841 converted to host endianness, so we just need to sign- or
23842 zero-extend it as appropriate. */
23843 case DW_FORM_data1:
23844 type = die_type (die, cu);
23845 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23846 if (result == NULL)
23847 result = write_constant_as_bytes (obstack, byte_order,
23848 type, value, len);
23849 break;
23850 case DW_FORM_data2:
23851 type = die_type (die, cu);
23852 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23853 if (result == NULL)
23854 result = write_constant_as_bytes (obstack, byte_order,
23855 type, value, len);
23856 break;
23857 case DW_FORM_data4:
23858 type = die_type (die, cu);
23859 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23860 if (result == NULL)
23861 result = write_constant_as_bytes (obstack, byte_order,
23862 type, value, len);
23863 break;
23864 case DW_FORM_data8:
23865 type = die_type (die, cu);
23866 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23867 if (result == NULL)
23868 result = write_constant_as_bytes (obstack, byte_order,
23869 type, value, len);
23870 break;
23871
23872 case DW_FORM_sdata:
663c44ac 23873 case DW_FORM_implicit_const:
b6807d98
TT
23874 type = die_type (die, cu);
23875 result = write_constant_as_bytes (obstack, byte_order,
23876 type, DW_SND (attr), len);
23877 break;
23878
23879 case DW_FORM_udata:
23880 type = die_type (die, cu);
23881 result = write_constant_as_bytes (obstack, byte_order,
23882 type, DW_UNSND (attr), len);
23883 break;
23884
23885 default:
b98664d3 23886 complaint (_("unsupported const value attribute form: '%s'"),
b6807d98
TT
23887 dwarf_form_name (attr->form));
23888 break;
23889 }
23890
23891 return result;
23892}
23893
7942e96e
AA
23894/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23895 valid type for this die is found. */
23896
23897struct type *
9c541725 23898dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
23899 struct dwarf2_per_cu_data *per_cu)
23900{
23901 struct dwarf2_cu *cu;
23902 struct die_info *die;
23903
7942e96e 23904 if (per_cu->cu == NULL)
58f0c718 23905 load_cu (per_cu, false);
7942e96e
AA
23906 cu = per_cu->cu;
23907 if (!cu)
23908 return NULL;
23909
9c541725 23910 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
23911 if (!die)
23912 return NULL;
23913
23914 return die_type (die, cu);
23915}
23916
8a9b8146
TT
23917/* Return the type of the DIE at DIE_OFFSET in the CU named by
23918 PER_CU. */
23919
23920struct type *
b64f50a1 23921dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
23922 struct dwarf2_per_cu_data *per_cu)
23923{
9c541725 23924 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 23925 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
23926}
23927
ac9ec31b 23928/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 23929 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
23930 On exit *REF_CU is the CU of the result.
23931 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
23932
23933static struct die_info *
ac9ec31b
DE
23934follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23935 struct dwarf2_cu **ref_cu)
348e048f 23936{
348e048f 23937 struct die_info temp_die;
c24bdb02 23938 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
348e048f
DE
23939 struct die_info *die;
23940
ac9ec31b
DE
23941 /* While it might be nice to assert sig_type->type == NULL here,
23942 we can get here for DW_AT_imported_declaration where we need
23943 the DIE not the type. */
348e048f
DE
23944
23945 /* If necessary, add it to the queue and load its DIEs. */
23946
95554aad 23947 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 23948 read_signatured_type (sig_type);
348e048f 23949
348e048f 23950 sig_cu = sig_type->per_cu.cu;
69d751e3 23951 gdb_assert (sig_cu != NULL);
9c541725
PA
23952 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23953 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 23954 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 23955 to_underlying (temp_die.sect_off));
348e048f
DE
23956 if (die)
23957 {
ed2dc618 23958 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 23959 = (*ref_cu)->per_cu->dwarf2_per_objfile;
ed2dc618 23960
796a7ff8
DE
23961 /* For .gdb_index version 7 keep track of included TUs.
23962 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23963 if (dwarf2_per_objfile->index_table != NULL
23964 && dwarf2_per_objfile->index_table->version <= 7)
23965 {
ae640021 23966 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
796a7ff8
DE
23967 }
23968
348e048f 23969 *ref_cu = sig_cu;
c24bdb02
KS
23970 if (sig_cu != cu)
23971 sig_cu->ancestor = cu;
23972
348e048f
DE
23973 return die;
23974 }
23975
ac9ec31b
DE
23976 return NULL;
23977}
23978
23979/* Follow signatured type referenced by ATTR in SRC_DIE.
23980 On entry *REF_CU is the CU of SRC_DIE.
23981 On exit *REF_CU is the CU of the result.
23982 The result is the DIE of the type.
23983 If the referenced type cannot be found an error is thrown. */
23984
23985static struct die_info *
ff39bb5e 23986follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
23987 struct dwarf2_cu **ref_cu)
23988{
23989 ULONGEST signature = DW_SIGNATURE (attr);
23990 struct signatured_type *sig_type;
23991 struct die_info *die;
23992
23993 gdb_assert (attr->form == DW_FORM_ref_sig8);
23994
a2ce51a0 23995 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
23996 /* sig_type will be NULL if the signatured type is missing from
23997 the debug info. */
23998 if (sig_type == NULL)
23999 {
24000 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
24001 " from DIE at %s [in module %s]"),
24002 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 24003 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
24004 }
24005
24006 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
24007 if (die == NULL)
24008 {
24009 dump_die_for_error (src_die);
24010 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
24011 " from DIE at %s [in module %s]"),
24012 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 24013 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
24014 }
24015
24016 return die;
24017}
24018
24019/* Get the type specified by SIGNATURE referenced in DIE/CU,
24020 reading in and processing the type unit if necessary. */
24021
24022static struct type *
24023get_signatured_type (struct die_info *die, ULONGEST signature,
24024 struct dwarf2_cu *cu)
24025{
518817b3
SM
24026 struct dwarf2_per_objfile *dwarf2_per_objfile
24027 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
24028 struct signatured_type *sig_type;
24029 struct dwarf2_cu *type_cu;
24030 struct die_info *type_die;
24031 struct type *type;
24032
a2ce51a0 24033 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
24034 /* sig_type will be NULL if the signatured type is missing from
24035 the debug info. */
24036 if (sig_type == NULL)
24037 {
b98664d3 24038 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
24039 " from DIE at %s [in module %s]"),
24040 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 24041 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
24042 return build_error_marker_type (cu, die);
24043 }
24044
24045 /* If we already know the type we're done. */
24046 if (sig_type->type != NULL)
24047 return sig_type->type;
24048
24049 type_cu = cu;
24050 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
24051 if (type_die != NULL)
24052 {
24053 /* N.B. We need to call get_die_type to ensure only one type for this DIE
24054 is created. This is important, for example, because for c++ classes
24055 we need TYPE_NAME set which is only done by new_symbol. Blech. */
24056 type = read_type_die (type_die, type_cu);
24057 if (type == NULL)
24058 {
b98664d3 24059 complaint (_("Dwarf Error: Cannot build signatured type %s"
9d8780f0
SM
24060 " referenced from DIE at %s [in module %s]"),
24061 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 24062 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
24063 type = build_error_marker_type (cu, die);
24064 }
24065 }
24066 else
24067 {
b98664d3 24068 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
24069 " from DIE at %s [in module %s]"),
24070 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 24071 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
24072 type = build_error_marker_type (cu, die);
24073 }
24074 sig_type->type = type;
24075
24076 return type;
24077}
24078
24079/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
24080 reading in and processing the type unit if necessary. */
24081
24082static struct type *
ff39bb5e 24083get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 24084 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
24085{
24086 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 24087 if (attr_form_is_ref (attr))
ac9ec31b
DE
24088 {
24089 struct dwarf2_cu *type_cu = cu;
24090 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
24091
24092 return read_type_die (type_die, type_cu);
24093 }
24094 else if (attr->form == DW_FORM_ref_sig8)
24095 {
24096 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
24097 }
24098 else
24099 {
518817b3
SM
24100 struct dwarf2_per_objfile *dwarf2_per_objfile
24101 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 24102
b98664d3 24103 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
9d8780f0
SM
24104 " at %s [in module %s]"),
24105 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
4262abfb 24106 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
24107 return build_error_marker_type (cu, die);
24108 }
348e048f
DE
24109}
24110
e5fe5e75 24111/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
24112
24113static void
e5fe5e75 24114load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 24115{
52dc124a 24116 struct signatured_type *sig_type;
348e048f 24117
f4dc4d17
DE
24118 /* Caller is responsible for ensuring type_unit_groups don't get here. */
24119 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
24120
6721b2ec
DE
24121 /* We have the per_cu, but we need the signatured_type.
24122 Fortunately this is an easy translation. */
24123 gdb_assert (per_cu->is_debug_types);
24124 sig_type = (struct signatured_type *) per_cu;
348e048f 24125
6721b2ec 24126 gdb_assert (per_cu->cu == NULL);
348e048f 24127
52dc124a 24128 read_signatured_type (sig_type);
348e048f 24129
6721b2ec 24130 gdb_assert (per_cu->cu != NULL);
348e048f
DE
24131}
24132
dee91e82
DE
24133/* die_reader_func for read_signatured_type.
24134 This is identical to load_full_comp_unit_reader,
24135 but is kept separate for now. */
348e048f
DE
24136
24137static void
dee91e82 24138read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 24139 const gdb_byte *info_ptr,
dee91e82
DE
24140 struct die_info *comp_unit_die,
24141 int has_children,
24142 void *data)
348e048f 24143{
dee91e82 24144 struct dwarf2_cu *cu = reader->cu;
348e048f 24145
dee91e82
DE
24146 gdb_assert (cu->die_hash == NULL);
24147 cu->die_hash =
24148 htab_create_alloc_ex (cu->header.length / 12,
24149 die_hash,
24150 die_eq,
24151 NULL,
24152 &cu->comp_unit_obstack,
24153 hashtab_obstack_allocate,
24154 dummy_obstack_deallocate);
348e048f 24155
dee91e82
DE
24156 if (has_children)
24157 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
24158 &info_ptr, comp_unit_die);
24159 cu->dies = comp_unit_die;
24160 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
24161
24162 /* We try not to read any attributes in this function, because not
9cdd5dbd 24163 all CUs needed for references have been loaded yet, and symbol
348e048f 24164 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
24165 or we won't be able to build types correctly.
24166 Similarly, if we do not read the producer, we can not apply
24167 producer-specific interpretation. */
95554aad 24168 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 24169}
348e048f 24170
3019eac3
DE
24171/* Read in a signatured type and build its CU and DIEs.
24172 If the type is a stub for the real type in a DWO file,
24173 read in the real type from the DWO file as well. */
dee91e82
DE
24174
24175static void
24176read_signatured_type (struct signatured_type *sig_type)
24177{
24178 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 24179
3019eac3 24180 gdb_assert (per_cu->is_debug_types);
dee91e82 24181 gdb_assert (per_cu->cu == NULL);
348e048f 24182
58f0c718 24183 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
f4dc4d17 24184 read_signatured_type_reader, NULL);
7ee85ab1 24185 sig_type->per_cu.tu_read = 1;
c906108c
SS
24186}
24187
c906108c
SS
24188/* Decode simple location descriptions.
24189 Given a pointer to a dwarf block that defines a location, compute
24190 the location and return the value.
24191
4cecd739
DJ
24192 NOTE drow/2003-11-18: This function is called in two situations
24193 now: for the address of static or global variables (partial symbols
24194 only) and for offsets into structures which are expected to be
24195 (more or less) constant. The partial symbol case should go away,
24196 and only the constant case should remain. That will let this
24197 function complain more accurately. A few special modes are allowed
24198 without complaint for global variables (for instance, global
24199 register values and thread-local values).
c906108c
SS
24200
24201 A location description containing no operations indicates that the
4cecd739 24202 object is optimized out. The return value is 0 for that case.
6b992462
DJ
24203 FIXME drow/2003-11-16: No callers check for this case any more; soon all
24204 callers will only want a very basic result and this can become a
21ae7a4d
JK
24205 complaint.
24206
24207 Note that stack[0] is unused except as a default error return. */
c906108c
SS
24208
24209static CORE_ADDR
e7c27a73 24210decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 24211{
518817b3 24212 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
56eb65bd
SP
24213 size_t i;
24214 size_t size = blk->size;
d521ce57 24215 const gdb_byte *data = blk->data;
21ae7a4d
JK
24216 CORE_ADDR stack[64];
24217 int stacki;
24218 unsigned int bytes_read, unsnd;
24219 gdb_byte op;
c906108c 24220
21ae7a4d
JK
24221 i = 0;
24222 stacki = 0;
24223 stack[stacki] = 0;
24224 stack[++stacki] = 0;
24225
24226 while (i < size)
24227 {
24228 op = data[i++];
24229 switch (op)
24230 {
24231 case DW_OP_lit0:
24232 case DW_OP_lit1:
24233 case DW_OP_lit2:
24234 case DW_OP_lit3:
24235 case DW_OP_lit4:
24236 case DW_OP_lit5:
24237 case DW_OP_lit6:
24238 case DW_OP_lit7:
24239 case DW_OP_lit8:
24240 case DW_OP_lit9:
24241 case DW_OP_lit10:
24242 case DW_OP_lit11:
24243 case DW_OP_lit12:
24244 case DW_OP_lit13:
24245 case DW_OP_lit14:
24246 case DW_OP_lit15:
24247 case DW_OP_lit16:
24248 case DW_OP_lit17:
24249 case DW_OP_lit18:
24250 case DW_OP_lit19:
24251 case DW_OP_lit20:
24252 case DW_OP_lit21:
24253 case DW_OP_lit22:
24254 case DW_OP_lit23:
24255 case DW_OP_lit24:
24256 case DW_OP_lit25:
24257 case DW_OP_lit26:
24258 case DW_OP_lit27:
24259 case DW_OP_lit28:
24260 case DW_OP_lit29:
24261 case DW_OP_lit30:
24262 case DW_OP_lit31:
24263 stack[++stacki] = op - DW_OP_lit0;
24264 break;
f1bea926 24265
21ae7a4d
JK
24266 case DW_OP_reg0:
24267 case DW_OP_reg1:
24268 case DW_OP_reg2:
24269 case DW_OP_reg3:
24270 case DW_OP_reg4:
24271 case DW_OP_reg5:
24272 case DW_OP_reg6:
24273 case DW_OP_reg7:
24274 case DW_OP_reg8:
24275 case DW_OP_reg9:
24276 case DW_OP_reg10:
24277 case DW_OP_reg11:
24278 case DW_OP_reg12:
24279 case DW_OP_reg13:
24280 case DW_OP_reg14:
24281 case DW_OP_reg15:
24282 case DW_OP_reg16:
24283 case DW_OP_reg17:
24284 case DW_OP_reg18:
24285 case DW_OP_reg19:
24286 case DW_OP_reg20:
24287 case DW_OP_reg21:
24288 case DW_OP_reg22:
24289 case DW_OP_reg23:
24290 case DW_OP_reg24:
24291 case DW_OP_reg25:
24292 case DW_OP_reg26:
24293 case DW_OP_reg27:
24294 case DW_OP_reg28:
24295 case DW_OP_reg29:
24296 case DW_OP_reg30:
24297 case DW_OP_reg31:
24298 stack[++stacki] = op - DW_OP_reg0;
24299 if (i < size)
24300 dwarf2_complex_location_expr_complaint ();
24301 break;
c906108c 24302
21ae7a4d
JK
24303 case DW_OP_regx:
24304 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24305 i += bytes_read;
24306 stack[++stacki] = unsnd;
24307 if (i < size)
24308 dwarf2_complex_location_expr_complaint ();
24309 break;
c906108c 24310
21ae7a4d
JK
24311 case DW_OP_addr:
24312 stack[++stacki] = read_address (objfile->obfd, &data[i],
24313 cu, &bytes_read);
24314 i += bytes_read;
24315 break;
d53d4ac5 24316
21ae7a4d
JK
24317 case DW_OP_const1u:
24318 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24319 i += 1;
24320 break;
24321
24322 case DW_OP_const1s:
24323 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24324 i += 1;
24325 break;
24326
24327 case DW_OP_const2u:
24328 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24329 i += 2;
24330 break;
24331
24332 case DW_OP_const2s:
24333 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24334 i += 2;
24335 break;
d53d4ac5 24336
21ae7a4d
JK
24337 case DW_OP_const4u:
24338 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24339 i += 4;
24340 break;
24341
24342 case DW_OP_const4s:
24343 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24344 i += 4;
24345 break;
24346
585861ea
JK
24347 case DW_OP_const8u:
24348 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24349 i += 8;
24350 break;
24351
21ae7a4d
JK
24352 case DW_OP_constu:
24353 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24354 &bytes_read);
24355 i += bytes_read;
24356 break;
24357
24358 case DW_OP_consts:
24359 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24360 i += bytes_read;
24361 break;
24362
24363 case DW_OP_dup:
24364 stack[stacki + 1] = stack[stacki];
24365 stacki++;
24366 break;
24367
24368 case DW_OP_plus:
24369 stack[stacki - 1] += stack[stacki];
24370 stacki--;
24371 break;
24372
24373 case DW_OP_plus_uconst:
24374 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24375 &bytes_read);
24376 i += bytes_read;
24377 break;
24378
24379 case DW_OP_minus:
24380 stack[stacki - 1] -= stack[stacki];
24381 stacki--;
24382 break;
24383
24384 case DW_OP_deref:
24385 /* If we're not the last op, then we definitely can't encode
24386 this using GDB's address_class enum. This is valid for partial
24387 global symbols, although the variable's address will be bogus
24388 in the psymtab. */
24389 if (i < size)
24390 dwarf2_complex_location_expr_complaint ();
24391 break;
24392
24393 case DW_OP_GNU_push_tls_address:
4aa4e28b 24394 case DW_OP_form_tls_address:
21ae7a4d
JK
24395 /* The top of the stack has the offset from the beginning
24396 of the thread control block at which the variable is located. */
24397 /* Nothing should follow this operator, so the top of stack would
24398 be returned. */
24399 /* This is valid for partial global symbols, but the variable's
585861ea
JK
24400 address will be bogus in the psymtab. Make it always at least
24401 non-zero to not look as a variable garbage collected by linker
24402 which have DW_OP_addr 0. */
21ae7a4d
JK
24403 if (i < size)
24404 dwarf2_complex_location_expr_complaint ();
585861ea 24405 stack[stacki]++;
21ae7a4d
JK
24406 break;
24407
24408 case DW_OP_GNU_uninit:
24409 break;
24410
336d760d 24411 case DW_OP_addrx:
3019eac3 24412 case DW_OP_GNU_addr_index:
49f6c839 24413 case DW_OP_GNU_const_index:
3019eac3
DE
24414 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24415 &bytes_read);
24416 i += bytes_read;
24417 break;
24418
21ae7a4d
JK
24419 default:
24420 {
f39c6ffd 24421 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
24422
24423 if (name)
b98664d3 24424 complaint (_("unsupported stack op: '%s'"),
21ae7a4d
JK
24425 name);
24426 else
b98664d3 24427 complaint (_("unsupported stack op: '%02x'"),
21ae7a4d
JK
24428 op);
24429 }
24430
24431 return (stack[stacki]);
d53d4ac5 24432 }
3c6e0cb3 24433
21ae7a4d
JK
24434 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24435 outside of the allocated space. Also enforce minimum>0. */
24436 if (stacki >= ARRAY_SIZE (stack) - 1)
24437 {
b98664d3 24438 complaint (_("location description stack overflow"));
21ae7a4d
JK
24439 return 0;
24440 }
24441
24442 if (stacki <= 0)
24443 {
b98664d3 24444 complaint (_("location description stack underflow"));
21ae7a4d
JK
24445 return 0;
24446 }
24447 }
24448 return (stack[stacki]);
c906108c
SS
24449}
24450
24451/* memory allocation interface */
24452
c906108c 24453static struct dwarf_block *
7b5a2f43 24454dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 24455{
8d749320 24456 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
24457}
24458
c906108c 24459static struct die_info *
b60c80d6 24460dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
24461{
24462 struct die_info *die;
b60c80d6
DJ
24463 size_t size = sizeof (struct die_info);
24464
24465 if (num_attrs > 1)
24466 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 24467
b60c80d6 24468 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
24469 memset (die, 0, sizeof (struct die_info));
24470 return (die);
24471}
2e276125
JB
24472
24473\f
24474/* Macro support. */
24475
233d95b5
JK
24476/* Return file name relative to the compilation directory of file number I in
24477 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 24478 responsible for freeing it. */
233d95b5 24479
2e276125 24480static char *
233d95b5 24481file_file_name (int file, struct line_header *lh)
2e276125 24482{
6a83a1e6
EZ
24483 /* Is the file number a valid index into the line header's file name
24484 table? Remember that file numbers start with one, not zero. */
7ba99d21 24485 if (lh->is_valid_file_index (file))
6a83a1e6 24486 {
7ba99d21 24487 const file_entry *fe = lh->file_name_at (file);
6e70227d 24488
7ba99d21 24489 if (!IS_ABSOLUTE_PATH (fe->name))
8c43009f 24490 {
7ba99d21 24491 const char *dir = fe->include_dir (lh);
8c43009f 24492 if (dir != NULL)
7ba99d21 24493 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
8c43009f 24494 }
7ba99d21 24495 return xstrdup (fe->name);
6a83a1e6 24496 }
2e276125
JB
24497 else
24498 {
6a83a1e6
EZ
24499 /* The compiler produced a bogus file number. We can at least
24500 record the macro definitions made in the file, even if we
24501 won't be able to find the file by name. */
24502 char fake_name[80];
9a619af0 24503
8c042590
PM
24504 xsnprintf (fake_name, sizeof (fake_name),
24505 "<bad macro file number %d>", file);
2e276125 24506
b98664d3 24507 complaint (_("bad file number in macro information (%d)"),
6a83a1e6 24508 file);
2e276125 24509
6a83a1e6 24510 return xstrdup (fake_name);
2e276125
JB
24511 }
24512}
24513
233d95b5
JK
24514/* Return the full name of file number I in *LH's file name table.
24515 Use COMP_DIR as the name of the current directory of the
24516 compilation. The result is allocated using xmalloc; the caller is
24517 responsible for freeing it. */
24518static char *
24519file_full_name (int file, struct line_header *lh, const char *comp_dir)
24520{
24521 /* Is the file number a valid index into the line header's file name
24522 table? Remember that file numbers start with one, not zero. */
7ba99d21 24523 if (lh->is_valid_file_index (file))
233d95b5
JK
24524 {
24525 char *relative = file_file_name (file, lh);
24526
24527 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24528 return relative;
b36cec19
PA
24529 return reconcat (relative, comp_dir, SLASH_STRING,
24530 relative, (char *) NULL);
233d95b5
JK
24531 }
24532 else
24533 return file_file_name (file, lh);
24534}
24535
2e276125
JB
24536
24537static struct macro_source_file *
804d2729
TT
24538macro_start_file (struct dwarf2_cu *cu,
24539 int file, int line,
2e276125 24540 struct macro_source_file *current_file,
43f3e411 24541 struct line_header *lh)
2e276125 24542{
233d95b5
JK
24543 /* File name relative to the compilation directory of this source file. */
24544 char *file_name = file_file_name (file, lh);
2e276125 24545
2e276125 24546 if (! current_file)
abc9d0dc 24547 {
fc474241
DE
24548 /* Note: We don't create a macro table for this compilation unit
24549 at all until we actually get a filename. */
c24bdb02 24550 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
fc474241 24551
abc9d0dc
TT
24552 /* If we have no current file, then this must be the start_file
24553 directive for the compilation unit's main source file. */
fc474241
DE
24554 current_file = macro_set_main (macro_table, file_name);
24555 macro_define_special (macro_table);
abc9d0dc 24556 }
2e276125 24557 else
233d95b5 24558 current_file = macro_include (current_file, line, file_name);
2e276125 24559
233d95b5 24560 xfree (file_name);
6e70227d 24561
2e276125
JB
24562 return current_file;
24563}
24564
2e276125
JB
24565static const char *
24566consume_improper_spaces (const char *p, const char *body)
24567{
24568 if (*p == ' ')
24569 {
b98664d3 24570 complaint (_("macro definition contains spaces "
3e43a32a 24571 "in formal argument list:\n`%s'"),
4d3c2250 24572 body);
2e276125
JB
24573
24574 while (*p == ' ')
24575 p++;
24576 }
24577
24578 return p;
24579}
24580
24581
24582static void
24583parse_macro_definition (struct macro_source_file *file, int line,
24584 const char *body)
24585{
24586 const char *p;
24587
24588 /* The body string takes one of two forms. For object-like macro
24589 definitions, it should be:
24590
24591 <macro name> " " <definition>
24592
24593 For function-like macro definitions, it should be:
24594
24595 <macro name> "() " <definition>
24596 or
24597 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24598
24599 Spaces may appear only where explicitly indicated, and in the
24600 <definition>.
24601
24602 The Dwarf 2 spec says that an object-like macro's name is always
24603 followed by a space, but versions of GCC around March 2002 omit
6e70227d 24604 the space when the macro's definition is the empty string.
2e276125
JB
24605
24606 The Dwarf 2 spec says that there should be no spaces between the
24607 formal arguments in a function-like macro's formal argument list,
24608 but versions of GCC around March 2002 include spaces after the
24609 commas. */
24610
24611
24612 /* Find the extent of the macro name. The macro name is terminated
24613 by either a space or null character (for an object-like macro) or
24614 an opening paren (for a function-like macro). */
24615 for (p = body; *p; p++)
24616 if (*p == ' ' || *p == '(')
24617 break;
24618
24619 if (*p == ' ' || *p == '\0')
24620 {
24621 /* It's an object-like macro. */
24622 int name_len = p - body;
3f8a7804 24623 char *name = savestring (body, name_len);
2e276125
JB
24624 const char *replacement;
24625
24626 if (*p == ' ')
24627 replacement = body + name_len + 1;
24628 else
24629 {
4d3c2250 24630 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24631 replacement = body + name_len;
24632 }
6e70227d 24633
2e276125
JB
24634 macro_define_object (file, line, name, replacement);
24635
24636 xfree (name);
24637 }
24638 else if (*p == '(')
24639 {
24640 /* It's a function-like macro. */
3f8a7804 24641 char *name = savestring (body, p - body);
2e276125
JB
24642 int argc = 0;
24643 int argv_size = 1;
8d749320 24644 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
24645
24646 p++;
24647
24648 p = consume_improper_spaces (p, body);
24649
24650 /* Parse the formal argument list. */
24651 while (*p && *p != ')')
24652 {
24653 /* Find the extent of the current argument name. */
24654 const char *arg_start = p;
24655
24656 while (*p && *p != ',' && *p != ')' && *p != ' ')
24657 p++;
24658
24659 if (! *p || p == arg_start)
4d3c2250 24660 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24661 else
24662 {
24663 /* Make sure argv has room for the new argument. */
24664 if (argc >= argv_size)
24665 {
24666 argv_size *= 2;
224c3ddb 24667 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
24668 }
24669
3f8a7804 24670 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
24671 }
24672
24673 p = consume_improper_spaces (p, body);
24674
24675 /* Consume the comma, if present. */
24676 if (*p == ',')
24677 {
24678 p++;
24679
24680 p = consume_improper_spaces (p, body);
24681 }
24682 }
24683
24684 if (*p == ')')
24685 {
24686 p++;
24687
24688 if (*p == ' ')
24689 /* Perfectly formed definition, no complaints. */
24690 macro_define_function (file, line, name,
6e70227d 24691 argc, (const char **) argv,
2e276125
JB
24692 p + 1);
24693 else if (*p == '\0')
24694 {
24695 /* Complain, but do define it. */
4d3c2250 24696 dwarf2_macro_malformed_definition_complaint (body);
2e276125 24697 macro_define_function (file, line, name,
6e70227d 24698 argc, (const char **) argv,
2e276125
JB
24699 p);
24700 }
24701 else
24702 /* Just complain. */
4d3c2250 24703 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24704 }
24705 else
24706 /* Just complain. */
4d3c2250 24707 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24708
24709 xfree (name);
24710 {
24711 int i;
24712
24713 for (i = 0; i < argc; i++)
24714 xfree (argv[i]);
24715 }
24716 xfree (argv);
24717 }
24718 else
4d3c2250 24719 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24720}
24721
cf2c3c16
TT
24722/* Skip some bytes from BYTES according to the form given in FORM.
24723 Returns the new pointer. */
2e276125 24724
d521ce57
TT
24725static const gdb_byte *
24726skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
24727 enum dwarf_form form,
24728 unsigned int offset_size,
24729 struct dwarf2_section_info *section)
2e276125 24730{
cf2c3c16 24731 unsigned int bytes_read;
2e276125 24732
cf2c3c16 24733 switch (form)
2e276125 24734 {
cf2c3c16
TT
24735 case DW_FORM_data1:
24736 case DW_FORM_flag:
24737 ++bytes;
24738 break;
24739
24740 case DW_FORM_data2:
24741 bytes += 2;
24742 break;
24743
24744 case DW_FORM_data4:
24745 bytes += 4;
24746 break;
24747
24748 case DW_FORM_data8:
24749 bytes += 8;
24750 break;
24751
0224619f
JK
24752 case DW_FORM_data16:
24753 bytes += 16;
24754 break;
24755
cf2c3c16
TT
24756 case DW_FORM_string:
24757 read_direct_string (abfd, bytes, &bytes_read);
24758 bytes += bytes_read;
24759 break;
24760
24761 case DW_FORM_sec_offset:
24762 case DW_FORM_strp:
36586728 24763 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
24764 bytes += offset_size;
24765 break;
24766
24767 case DW_FORM_block:
24768 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24769 bytes += bytes_read;
24770 break;
24771
24772 case DW_FORM_block1:
24773 bytes += 1 + read_1_byte (abfd, bytes);
24774 break;
24775 case DW_FORM_block2:
24776 bytes += 2 + read_2_bytes (abfd, bytes);
24777 break;
24778 case DW_FORM_block4:
24779 bytes += 4 + read_4_bytes (abfd, bytes);
24780 break;
24781
336d760d 24782 case DW_FORM_addrx:
cf2c3c16 24783 case DW_FORM_sdata:
cf532bd1 24784 case DW_FORM_strx:
cf2c3c16 24785 case DW_FORM_udata:
3019eac3
DE
24786 case DW_FORM_GNU_addr_index:
24787 case DW_FORM_GNU_str_index:
d521ce57 24788 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
24789 if (bytes == NULL)
24790 {
24791 dwarf2_section_buffer_overflow_complaint (section);
24792 return NULL;
24793 }
cf2c3c16
TT
24794 break;
24795
663c44ac
JK
24796 case DW_FORM_implicit_const:
24797 break;
24798
cf2c3c16
TT
24799 default:
24800 {
b98664d3 24801 complaint (_("invalid form 0x%x in `%s'"),
a32a8923 24802 form, get_section_name (section));
cf2c3c16
TT
24803 return NULL;
24804 }
2e276125
JB
24805 }
24806
cf2c3c16
TT
24807 return bytes;
24808}
757a13d0 24809
cf2c3c16
TT
24810/* A helper for dwarf_decode_macros that handles skipping an unknown
24811 opcode. Returns an updated pointer to the macro data buffer; or,
24812 on error, issues a complaint and returns NULL. */
757a13d0 24813
d521ce57 24814static const gdb_byte *
cf2c3c16 24815skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
24816 const gdb_byte **opcode_definitions,
24817 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
24818 bfd *abfd,
24819 unsigned int offset_size,
24820 struct dwarf2_section_info *section)
24821{
24822 unsigned int bytes_read, i;
24823 unsigned long arg;
d521ce57 24824 const gdb_byte *defn;
2e276125 24825
cf2c3c16 24826 if (opcode_definitions[opcode] == NULL)
2e276125 24827 {
b98664d3 24828 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
cf2c3c16
TT
24829 opcode);
24830 return NULL;
24831 }
2e276125 24832
cf2c3c16
TT
24833 defn = opcode_definitions[opcode];
24834 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24835 defn += bytes_read;
2e276125 24836
cf2c3c16
TT
24837 for (i = 0; i < arg; ++i)
24838 {
aead7601
SM
24839 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24840 (enum dwarf_form) defn[i], offset_size,
f664829e 24841 section);
cf2c3c16
TT
24842 if (mac_ptr == NULL)
24843 {
24844 /* skip_form_bytes already issued the complaint. */
24845 return NULL;
24846 }
24847 }
757a13d0 24848
cf2c3c16
TT
24849 return mac_ptr;
24850}
757a13d0 24851
cf2c3c16
TT
24852/* A helper function which parses the header of a macro section.
24853 If the macro section is the extended (for now called "GNU") type,
24854 then this updates *OFFSET_SIZE. Returns a pointer to just after
24855 the header, or issues a complaint and returns NULL on error. */
757a13d0 24856
d521ce57
TT
24857static const gdb_byte *
24858dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 24859 bfd *abfd,
d521ce57 24860 const gdb_byte *mac_ptr,
cf2c3c16
TT
24861 unsigned int *offset_size,
24862 int section_is_gnu)
24863{
24864 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 24865
cf2c3c16
TT
24866 if (section_is_gnu)
24867 {
24868 unsigned int version, flags;
757a13d0 24869
cf2c3c16 24870 version = read_2_bytes (abfd, mac_ptr);
0af92d60 24871 if (version != 4 && version != 5)
cf2c3c16 24872 {
b98664d3 24873 complaint (_("unrecognized version `%d' in .debug_macro section"),
cf2c3c16
TT
24874 version);
24875 return NULL;
24876 }
24877 mac_ptr += 2;
757a13d0 24878
cf2c3c16
TT
24879 flags = read_1_byte (abfd, mac_ptr);
24880 ++mac_ptr;
24881 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 24882
cf2c3c16
TT
24883 if ((flags & 2) != 0)
24884 /* We don't need the line table offset. */
24885 mac_ptr += *offset_size;
757a13d0 24886
cf2c3c16
TT
24887 /* Vendor opcode descriptions. */
24888 if ((flags & 4) != 0)
24889 {
24890 unsigned int i, count;
757a13d0 24891
cf2c3c16
TT
24892 count = read_1_byte (abfd, mac_ptr);
24893 ++mac_ptr;
24894 for (i = 0; i < count; ++i)
24895 {
24896 unsigned int opcode, bytes_read;
24897 unsigned long arg;
24898
24899 opcode = read_1_byte (abfd, mac_ptr);
24900 ++mac_ptr;
24901 opcode_definitions[opcode] = mac_ptr;
24902 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24903 mac_ptr += bytes_read;
24904 mac_ptr += arg;
24905 }
757a13d0 24906 }
cf2c3c16 24907 }
757a13d0 24908
cf2c3c16
TT
24909 return mac_ptr;
24910}
757a13d0 24911
cf2c3c16 24912/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 24913 including DW_MACRO_import. */
cf2c3c16
TT
24914
24915static void
804d2729 24916dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
ed2dc618 24917 bfd *abfd,
d521ce57 24918 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 24919 struct macro_source_file *current_file,
43f3e411 24920 struct line_header *lh,
cf2c3c16 24921 struct dwarf2_section_info *section,
36586728 24922 int section_is_gnu, int section_is_dwz,
cf2c3c16 24923 unsigned int offset_size,
8fc3fc34 24924 htab_t include_hash)
cf2c3c16 24925{
804d2729
TT
24926 struct dwarf2_per_objfile *dwarf2_per_objfile
24927 = cu->per_cu->dwarf2_per_objfile;
4d663531 24928 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
24929 enum dwarf_macro_record_type macinfo_type;
24930 int at_commandline;
d521ce57 24931 const gdb_byte *opcode_definitions[256];
757a13d0 24932
cf2c3c16
TT
24933 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24934 &offset_size, section_is_gnu);
24935 if (mac_ptr == NULL)
24936 {
24937 /* We already issued a complaint. */
24938 return;
24939 }
757a13d0
JK
24940
24941 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24942 GDB is still reading the definitions from command line. First
24943 DW_MACINFO_start_file will need to be ignored as it was already executed
24944 to create CURRENT_FILE for the main source holding also the command line
24945 definitions. On first met DW_MACINFO_start_file this flag is reset to
24946 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24947
24948 at_commandline = 1;
24949
24950 do
24951 {
24952 /* Do we at least have room for a macinfo type byte? */
24953 if (mac_ptr >= mac_end)
24954 {
f664829e 24955 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
24956 break;
24957 }
24958
aead7601 24959 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
24960 mac_ptr++;
24961
cf2c3c16
TT
24962 /* Note that we rely on the fact that the corresponding GNU and
24963 DWARF constants are the same. */
132448f8
SM
24964 DIAGNOSTIC_PUSH
24965 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
757a13d0
JK
24966 switch (macinfo_type)
24967 {
24968 /* A zero macinfo type indicates the end of the macro
24969 information. */
24970 case 0:
24971 break;
2e276125 24972
0af92d60
JK
24973 case DW_MACRO_define:
24974 case DW_MACRO_undef:
24975 case DW_MACRO_define_strp:
24976 case DW_MACRO_undef_strp:
24977 case DW_MACRO_define_sup:
24978 case DW_MACRO_undef_sup:
2e276125 24979 {
891d2f0b 24980 unsigned int bytes_read;
2e276125 24981 int line;
d521ce57 24982 const char *body;
cf2c3c16 24983 int is_define;
2e276125 24984
cf2c3c16
TT
24985 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24986 mac_ptr += bytes_read;
24987
0af92d60
JK
24988 if (macinfo_type == DW_MACRO_define
24989 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
24990 {
24991 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24992 mac_ptr += bytes_read;
24993 }
24994 else
24995 {
24996 LONGEST str_offset;
24997
24998 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24999 mac_ptr += offset_size;
2e276125 25000
0af92d60
JK
25001 if (macinfo_type == DW_MACRO_define_sup
25002 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 25003 || section_is_dwz)
36586728 25004 {
ed2dc618
SM
25005 struct dwz_file *dwz
25006 = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728 25007
ed2dc618
SM
25008 body = read_indirect_string_from_dwz (objfile,
25009 dwz, str_offset);
36586728
TT
25010 }
25011 else
ed2dc618
SM
25012 body = read_indirect_string_at_offset (dwarf2_per_objfile,
25013 abfd, str_offset);
cf2c3c16
TT
25014 }
25015
0af92d60
JK
25016 is_define = (macinfo_type == DW_MACRO_define
25017 || macinfo_type == DW_MACRO_define_strp
25018 || macinfo_type == DW_MACRO_define_sup);
2e276125 25019 if (! current_file)
757a13d0
JK
25020 {
25021 /* DWARF violation as no main source is present. */
b98664d3 25022 complaint (_("debug info with no main source gives macro %s "
757a13d0 25023 "on line %d: %s"),
cf2c3c16
TT
25024 is_define ? _("definition") : _("undefinition"),
25025 line, body);
757a13d0
JK
25026 break;
25027 }
3e43a32a
MS
25028 if ((line == 0 && !at_commandline)
25029 || (line != 0 && at_commandline))
b98664d3 25030 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
757a13d0 25031 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 25032 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
25033 line == 0 ? _("zero") : _("non-zero"), line, body);
25034
955b06fa 25035 if (body == NULL)
7bede828 25036 {
955b06fa
SDJ
25037 /* Fedora's rpm-build's "debugedit" binary
25038 corrupted .debug_macro sections.
25039
25040 For more info, see
25041 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
25042 complaint (_("debug info gives %s invalid macro %s "
25043 "without body (corrupted?) at line %d "
25044 "on file %s"),
25045 at_commandline ? _("command-line") : _("in-file"),
25046 is_define ? _("definition") : _("undefinition"),
25047 line, current_file->filename);
7bede828 25048 }
955b06fa
SDJ
25049 else if (is_define)
25050 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
25051 else
25052 {
0af92d60
JK
25053 gdb_assert (macinfo_type == DW_MACRO_undef
25054 || macinfo_type == DW_MACRO_undef_strp
25055 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
25056 macro_undef (current_file, line, body);
25057 }
2e276125
JB
25058 }
25059 break;
25060
0af92d60 25061 case DW_MACRO_start_file:
2e276125 25062 {
891d2f0b 25063 unsigned int bytes_read;
2e276125
JB
25064 int line, file;
25065
25066 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25067 mac_ptr += bytes_read;
25068 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25069 mac_ptr += bytes_read;
25070
3e43a32a
MS
25071 if ((line == 0 && !at_commandline)
25072 || (line != 0 && at_commandline))
b98664d3 25073 complaint (_("debug info gives source %d included "
757a13d0
JK
25074 "from %s at %s line %d"),
25075 file, at_commandline ? _("command-line") : _("file"),
25076 line == 0 ? _("zero") : _("non-zero"), line);
25077
25078 if (at_commandline)
25079 {
0af92d60 25080 /* This DW_MACRO_start_file was executed in the
cf2c3c16 25081 pass one. */
757a13d0
JK
25082 at_commandline = 0;
25083 }
25084 else
804d2729
TT
25085 current_file = macro_start_file (cu, file, line, current_file,
25086 lh);
2e276125
JB
25087 }
25088 break;
25089
0af92d60 25090 case DW_MACRO_end_file:
2e276125 25091 if (! current_file)
b98664d3 25092 complaint (_("macro debug info has an unmatched "
3e43a32a 25093 "`close_file' directive"));
2e276125
JB
25094 else
25095 {
25096 current_file = current_file->included_by;
25097 if (! current_file)
25098 {
cf2c3c16 25099 enum dwarf_macro_record_type next_type;
2e276125
JB
25100
25101 /* GCC circa March 2002 doesn't produce the zero
25102 type byte marking the end of the compilation
25103 unit. Complain if it's not there, but exit no
25104 matter what. */
25105
25106 /* Do we at least have room for a macinfo type byte? */
25107 if (mac_ptr >= mac_end)
25108 {
f664829e 25109 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
25110 return;
25111 }
25112
25113 /* We don't increment mac_ptr here, so this is just
25114 a look-ahead. */
aead7601
SM
25115 next_type
25116 = (enum dwarf_macro_record_type) read_1_byte (abfd,
25117 mac_ptr);
2e276125 25118 if (next_type != 0)
b98664d3 25119 complaint (_("no terminating 0-type entry for "
3e43a32a 25120 "macros in `.debug_macinfo' section"));
2e276125
JB
25121
25122 return;
25123 }
25124 }
25125 break;
25126
0af92d60
JK
25127 case DW_MACRO_import:
25128 case DW_MACRO_import_sup:
cf2c3c16
TT
25129 {
25130 LONGEST offset;
8fc3fc34 25131 void **slot;
a036ba48
TT
25132 bfd *include_bfd = abfd;
25133 struct dwarf2_section_info *include_section = section;
d521ce57 25134 const gdb_byte *include_mac_end = mac_end;
a036ba48 25135 int is_dwz = section_is_dwz;
d521ce57 25136 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
25137
25138 offset = read_offset_1 (abfd, mac_ptr, offset_size);
25139 mac_ptr += offset_size;
25140
0af92d60 25141 if (macinfo_type == DW_MACRO_import_sup)
a036ba48 25142 {
ed2dc618 25143 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
a036ba48 25144
4d663531 25145 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 25146
a036ba48 25147 include_section = &dwz->macro;
a32a8923 25148 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
25149 include_mac_end = dwz->macro.buffer + dwz->macro.size;
25150 is_dwz = 1;
25151 }
25152
25153 new_mac_ptr = include_section->buffer + offset;
25154 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
25155
8fc3fc34
TT
25156 if (*slot != NULL)
25157 {
25158 /* This has actually happened; see
25159 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
b98664d3 25160 complaint (_("recursive DW_MACRO_import in "
8fc3fc34
TT
25161 ".debug_macro section"));
25162 }
25163 else
25164 {
d521ce57 25165 *slot = (void *) new_mac_ptr;
36586728 25166
804d2729 25167 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
43f3e411 25168 include_mac_end, current_file, lh,
36586728 25169 section, section_is_gnu, is_dwz,
4d663531 25170 offset_size, include_hash);
8fc3fc34 25171
d521ce57 25172 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 25173 }
cf2c3c16
TT
25174 }
25175 break;
25176
2e276125 25177 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
25178 if (!section_is_gnu)
25179 {
25180 unsigned int bytes_read;
2e276125 25181
ac298888
TT
25182 /* This reads the constant, but since we don't recognize
25183 any vendor extensions, we ignore it. */
25184 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
25185 mac_ptr += bytes_read;
25186 read_direct_string (abfd, mac_ptr, &bytes_read);
25187 mac_ptr += bytes_read;
2e276125 25188
cf2c3c16
TT
25189 /* We don't recognize any vendor extensions. */
25190 break;
25191 }
25192 /* FALLTHROUGH */
25193
25194 default:
25195 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 25196 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
25197 section);
25198 if (mac_ptr == NULL)
25199 return;
25200 break;
2e276125 25201 }
132448f8 25202 DIAGNOSTIC_POP
757a13d0 25203 } while (macinfo_type != 0);
2e276125 25204}
8e19ed76 25205
cf2c3c16 25206static void
09262596 25207dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 25208 int section_is_gnu)
cf2c3c16 25209{
518817b3
SM
25210 struct dwarf2_per_objfile *dwarf2_per_objfile
25211 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 25212 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
25213 struct line_header *lh = cu->line_header;
25214 bfd *abfd;
d521ce57 25215 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
25216 struct macro_source_file *current_file = 0;
25217 enum dwarf_macro_record_type macinfo_type;
25218 unsigned int offset_size = cu->header.offset_size;
d521ce57 25219 const gdb_byte *opcode_definitions[256];
8fc3fc34 25220 void **slot;
09262596
DE
25221 struct dwarf2_section_info *section;
25222 const char *section_name;
25223
25224 if (cu->dwo_unit != NULL)
25225 {
25226 if (section_is_gnu)
25227 {
25228 section = &cu->dwo_unit->dwo_file->sections.macro;
25229 section_name = ".debug_macro.dwo";
25230 }
25231 else
25232 {
25233 section = &cu->dwo_unit->dwo_file->sections.macinfo;
25234 section_name = ".debug_macinfo.dwo";
25235 }
25236 }
25237 else
25238 {
25239 if (section_is_gnu)
25240 {
25241 section = &dwarf2_per_objfile->macro;
25242 section_name = ".debug_macro";
25243 }
25244 else
25245 {
25246 section = &dwarf2_per_objfile->macinfo;
25247 section_name = ".debug_macinfo";
25248 }
25249 }
cf2c3c16 25250
bb5ed363 25251 dwarf2_read_section (objfile, section);
cf2c3c16
TT
25252 if (section->buffer == NULL)
25253 {
b98664d3 25254 complaint (_("missing %s section"), section_name);
cf2c3c16
TT
25255 return;
25256 }
a32a8923 25257 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
25258
25259 /* First pass: Find the name of the base filename.
25260 This filename is needed in order to process all macros whose definition
25261 (or undefinition) comes from the command line. These macros are defined
25262 before the first DW_MACINFO_start_file entry, and yet still need to be
25263 associated to the base file.
25264
25265 To determine the base file name, we scan the macro definitions until we
25266 reach the first DW_MACINFO_start_file entry. We then initialize
25267 CURRENT_FILE accordingly so that any macro definition found before the
25268 first DW_MACINFO_start_file can still be associated to the base file. */
25269
25270 mac_ptr = section->buffer + offset;
25271 mac_end = section->buffer + section->size;
25272
25273 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25274 &offset_size, section_is_gnu);
25275 if (mac_ptr == NULL)
25276 {
25277 /* We already issued a complaint. */
25278 return;
25279 }
25280
25281 do
25282 {
25283 /* Do we at least have room for a macinfo type byte? */
25284 if (mac_ptr >= mac_end)
25285 {
25286 /* Complaint is printed during the second pass as GDB will probably
25287 stop the first pass earlier upon finding
25288 DW_MACINFO_start_file. */
25289 break;
25290 }
25291
aead7601 25292 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
25293 mac_ptr++;
25294
25295 /* Note that we rely on the fact that the corresponding GNU and
25296 DWARF constants are the same. */
132448f8
SM
25297 DIAGNOSTIC_PUSH
25298 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
cf2c3c16
TT
25299 switch (macinfo_type)
25300 {
25301 /* A zero macinfo type indicates the end of the macro
25302 information. */
25303 case 0:
25304 break;
25305
0af92d60
JK
25306 case DW_MACRO_define:
25307 case DW_MACRO_undef:
cf2c3c16
TT
25308 /* Only skip the data by MAC_PTR. */
25309 {
25310 unsigned int bytes_read;
25311
25312 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25313 mac_ptr += bytes_read;
25314 read_direct_string (abfd, mac_ptr, &bytes_read);
25315 mac_ptr += bytes_read;
25316 }
25317 break;
25318
0af92d60 25319 case DW_MACRO_start_file:
cf2c3c16
TT
25320 {
25321 unsigned int bytes_read;
25322 int line, file;
25323
25324 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25325 mac_ptr += bytes_read;
25326 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25327 mac_ptr += bytes_read;
25328
804d2729 25329 current_file = macro_start_file (cu, file, line, current_file, lh);
cf2c3c16
TT
25330 }
25331 break;
25332
0af92d60 25333 case DW_MACRO_end_file:
cf2c3c16
TT
25334 /* No data to skip by MAC_PTR. */
25335 break;
25336
0af92d60
JK
25337 case DW_MACRO_define_strp:
25338 case DW_MACRO_undef_strp:
25339 case DW_MACRO_define_sup:
25340 case DW_MACRO_undef_sup:
cf2c3c16
TT
25341 {
25342 unsigned int bytes_read;
25343
25344 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25345 mac_ptr += bytes_read;
25346 mac_ptr += offset_size;
25347 }
25348 break;
25349
0af92d60
JK
25350 case DW_MACRO_import:
25351 case DW_MACRO_import_sup:
cf2c3c16 25352 /* Note that, according to the spec, a transparent include
0af92d60 25353 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
25354 skip this opcode. */
25355 mac_ptr += offset_size;
25356 break;
25357
25358 case DW_MACINFO_vendor_ext:
25359 /* Only skip the data by MAC_PTR. */
25360 if (!section_is_gnu)
25361 {
25362 unsigned int bytes_read;
25363
25364 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25365 mac_ptr += bytes_read;
25366 read_direct_string (abfd, mac_ptr, &bytes_read);
25367 mac_ptr += bytes_read;
25368 }
25369 /* FALLTHROUGH */
25370
25371 default:
25372 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 25373 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
25374 section);
25375 if (mac_ptr == NULL)
25376 return;
25377 break;
25378 }
132448f8 25379 DIAGNOSTIC_POP
cf2c3c16
TT
25380 } while (macinfo_type != 0 && current_file == NULL);
25381
25382 /* Second pass: Process all entries.
25383
25384 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25385 command-line macro definitions/undefinitions. This flag is unset when we
25386 reach the first DW_MACINFO_start_file entry. */
25387
fc4007c9
TT
25388 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25389 htab_eq_pointer,
25390 NULL, xcalloc, xfree));
8fc3fc34 25391 mac_ptr = section->buffer + offset;
fc4007c9 25392 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 25393 *slot = (void *) mac_ptr;
804d2729 25394 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
43f3e411 25395 current_file, lh, section,
fc4007c9
TT
25396 section_is_gnu, 0, offset_size,
25397 include_hash.get ());
cf2c3c16
TT
25398}
25399
8e19ed76 25400/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 25401 if so return true else false. */
380bca97 25402
8e19ed76 25403static int
6e5a29e1 25404attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
25405{
25406 return (attr == NULL ? 0 :
25407 attr->form == DW_FORM_block1
25408 || attr->form == DW_FORM_block2
25409 || attr->form == DW_FORM_block4
2dc7f7b3
TT
25410 || attr->form == DW_FORM_block
25411 || attr->form == DW_FORM_exprloc);
8e19ed76 25412}
4c2df51b 25413
c6a0999f
JB
25414/* Return non-zero if ATTR's value is a section offset --- classes
25415 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25416 You may use DW_UNSND (attr) to retrieve such offsets.
25417
25418 Section 7.5.4, "Attribute Encodings", explains that no attribute
25419 may have a value that belongs to more than one of these classes; it
25420 would be ambiguous if we did, because we use the same forms for all
25421 of them. */
380bca97 25422
3690dd37 25423static int
6e5a29e1 25424attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
25425{
25426 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
25427 || attr->form == DW_FORM_data8
25428 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
25429}
25430
3690dd37
JB
25431/* Return non-zero if ATTR's value falls in the 'constant' class, or
25432 zero otherwise. When this function returns true, you can apply
25433 dwarf2_get_attr_constant_value to it.
25434
25435 However, note that for some attributes you must check
25436 attr_form_is_section_offset before using this test. DW_FORM_data4
25437 and DW_FORM_data8 are members of both the constant class, and of
25438 the classes that contain offsets into other debug sections
25439 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25440 that, if an attribute's can be either a constant or one of the
25441 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
25442 taken as section offsets, not constants.
25443
25444 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25445 cannot handle that. */
380bca97 25446
3690dd37 25447static int
6e5a29e1 25448attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
25449{
25450 switch (attr->form)
25451 {
25452 case DW_FORM_sdata:
25453 case DW_FORM_udata:
25454 case DW_FORM_data1:
25455 case DW_FORM_data2:
25456 case DW_FORM_data4:
25457 case DW_FORM_data8:
663c44ac 25458 case DW_FORM_implicit_const:
3690dd37
JB
25459 return 1;
25460 default:
25461 return 0;
25462 }
25463}
25464
7771576e
SA
25465
25466/* DW_ADDR is always stored already as sect_offset; despite for the forms
25467 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25468
25469static int
6e5a29e1 25470attr_form_is_ref (const struct attribute *attr)
7771576e
SA
25471{
25472 switch (attr->form)
25473 {
25474 case DW_FORM_ref_addr:
25475 case DW_FORM_ref1:
25476 case DW_FORM_ref2:
25477 case DW_FORM_ref4:
25478 case DW_FORM_ref8:
25479 case DW_FORM_ref_udata:
25480 case DW_FORM_GNU_ref_alt:
25481 return 1;
25482 default:
25483 return 0;
25484 }
25485}
25486
3019eac3
DE
25487/* Return the .debug_loc section to use for CU.
25488 For DWO files use .debug_loc.dwo. */
25489
25490static struct dwarf2_section_info *
25491cu_debug_loc_section (struct dwarf2_cu *cu)
25492{
518817b3
SM
25493 struct dwarf2_per_objfile *dwarf2_per_objfile
25494 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 25495
3019eac3 25496 if (cu->dwo_unit)
43988095
JK
25497 {
25498 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
5f48f8f3 25499
43988095
JK
25500 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25501 }
25502 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25503 : &dwarf2_per_objfile->loc);
3019eac3
DE
25504}
25505
8cf6f0b1
TT
25506/* A helper function that fills in a dwarf2_loclist_baton. */
25507
25508static void
25509fill_in_loclist_baton (struct dwarf2_cu *cu,
25510 struct dwarf2_loclist_baton *baton,
ff39bb5e 25511 const struct attribute *attr)
8cf6f0b1 25512{
518817b3
SM
25513 struct dwarf2_per_objfile *dwarf2_per_objfile
25514 = cu->per_cu->dwarf2_per_objfile;
3019eac3
DE
25515 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25516
25517 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
25518
25519 baton->per_cu = cu->per_cu;
25520 gdb_assert (baton->per_cu);
25521 /* We don't know how long the location list is, but make sure we
25522 don't run off the edge of the section. */
3019eac3
DE
25523 baton->size = section->size - DW_UNSND (attr);
25524 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 25525 baton->base_address = cu->base_address;
f664829e 25526 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
25527}
25528
4c2df51b 25529static void
ff39bb5e 25530dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 25531 struct dwarf2_cu *cu, int is_block)
4c2df51b 25532{
518817b3
SM
25533 struct dwarf2_per_objfile *dwarf2_per_objfile
25534 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 25535 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 25536 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 25537
3690dd37 25538 if (attr_form_is_section_offset (attr)
3019eac3 25539 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
25540 the section. If so, fall through to the complaint in the
25541 other branch. */
3019eac3 25542 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 25543 {
0d53c4c4 25544 struct dwarf2_loclist_baton *baton;
4c2df51b 25545
8d749320 25546 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 25547
8cf6f0b1 25548 fill_in_loclist_baton (cu, baton, attr);
be391dca 25549
d00adf39 25550 if (cu->base_known == 0)
b98664d3 25551 complaint (_("Location list used without "
3e43a32a 25552 "specifying the CU base address."));
4c2df51b 25553
f1e6e072
TT
25554 SYMBOL_ACLASS_INDEX (sym) = (is_block
25555 ? dwarf2_loclist_block_index
25556 : dwarf2_loclist_index);
0d53c4c4
DJ
25557 SYMBOL_LOCATION_BATON (sym) = baton;
25558 }
25559 else
25560 {
25561 struct dwarf2_locexpr_baton *baton;
25562
8d749320 25563 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
25564 baton->per_cu = cu->per_cu;
25565 gdb_assert (baton->per_cu);
0d53c4c4
DJ
25566
25567 if (attr_form_is_block (attr))
25568 {
25569 /* Note that we're just copying the block's data pointer
25570 here, not the actual data. We're still pointing into the
6502dd73
DJ
25571 info_buffer for SYM's objfile; right now we never release
25572 that buffer, but when we do clean up properly this may
25573 need to change. */
0d53c4c4
DJ
25574 baton->size = DW_BLOCK (attr)->size;
25575 baton->data = DW_BLOCK (attr)->data;
25576 }
25577 else
25578 {
25579 dwarf2_invalid_attrib_class_complaint ("location description",
987012b8 25580 sym->natural_name ());
0d53c4c4 25581 baton->size = 0;
0d53c4c4 25582 }
6e70227d 25583
f1e6e072
TT
25584 SYMBOL_ACLASS_INDEX (sym) = (is_block
25585 ? dwarf2_locexpr_block_index
25586 : dwarf2_locexpr_index);
0d53c4c4
DJ
25587 SYMBOL_LOCATION_BATON (sym) = baton;
25588 }
4c2df51b 25589}
6502dd73 25590
9aa1f1e3
TT
25591/* Return the OBJFILE associated with the compilation unit CU. If CU
25592 came from a separate debuginfo file, then the master objfile is
25593 returned. */
ae0d2f24
UW
25594
25595struct objfile *
25596dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25597{
e3b94546 25598 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
ae0d2f24
UW
25599
25600 /* Return the master objfile, so that we can report and look up the
25601 correct file containing this variable. */
25602 if (objfile->separate_debug_objfile_backlink)
25603 objfile = objfile->separate_debug_objfile_backlink;
25604
25605 return objfile;
25606}
25607
96408a79
SA
25608/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25609 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25610 CU_HEADERP first. */
25611
25612static const struct comp_unit_head *
25613per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25614 struct dwarf2_per_cu_data *per_cu)
25615{
d521ce57 25616 const gdb_byte *info_ptr;
96408a79
SA
25617
25618 if (per_cu->cu)
25619 return &per_cu->cu->header;
25620
9c541725 25621 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
25622
25623 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
25624 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25625 rcuh_kind::COMPILE);
96408a79
SA
25626
25627 return cu_headerp;
25628}
25629
ae0d2f24
UW
25630/* Return the address size given in the compilation unit header for CU. */
25631
98714339 25632int
ae0d2f24
UW
25633dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25634{
96408a79
SA
25635 struct comp_unit_head cu_header_local;
25636 const struct comp_unit_head *cu_headerp;
c471e790 25637
96408a79
SA
25638 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25639
25640 return cu_headerp->addr_size;
ae0d2f24
UW
25641}
25642
9eae7c52
TT
25643/* Return the offset size given in the compilation unit header for CU. */
25644
25645int
25646dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25647{
96408a79
SA
25648 struct comp_unit_head cu_header_local;
25649 const struct comp_unit_head *cu_headerp;
9c6c53f7 25650
96408a79
SA
25651 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25652
25653 return cu_headerp->offset_size;
25654}
25655
25656/* See its dwarf2loc.h declaration. */
25657
25658int
25659dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25660{
25661 struct comp_unit_head cu_header_local;
25662 const struct comp_unit_head *cu_headerp;
25663
25664 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25665
25666 if (cu_headerp->version == 2)
25667 return cu_headerp->addr_size;
25668 else
25669 return cu_headerp->offset_size;
181cebd4
JK
25670}
25671
9aa1f1e3
TT
25672/* Return the text offset of the CU. The returned offset comes from
25673 this CU's objfile. If this objfile came from a separate debuginfo
25674 file, then the offset may be different from the corresponding
25675 offset in the parent objfile. */
25676
25677CORE_ADDR
25678dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25679{
e3b94546 25680 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9aa1f1e3
TT
25681
25682 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25683}
25684
9a49df9d
AB
25685/* Return a type that is a generic pointer type, the size of which matches
25686 the address size given in the compilation unit header for PER_CU. */
25687static struct type *
25688dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25689{
25690 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25691 struct type *void_type = objfile_type (objfile)->builtin_void;
25692 struct type *addr_type = lookup_pointer_type (void_type);
25693 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25694
25695 if (TYPE_LENGTH (addr_type) == addr_size)
25696 return addr_type;
25697
25698 addr_type
25699 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25700 return addr_type;
25701}
25702
43988095
JK
25703/* Return DWARF version number of PER_CU. */
25704
25705short
25706dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25707{
25708 return per_cu->dwarf_version;
25709}
25710
348e048f
DE
25711/* Locate the .debug_info compilation unit from CU's objfile which contains
25712 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
25713
25714static struct dwarf2_per_cu_data *
9c541725 25715dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 25716 unsigned int offset_in_dwz,
ed2dc618 25717 struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25718{
25719 struct dwarf2_per_cu_data *this_cu;
25720 int low, high;
25721
ae038cb0 25722 low = 0;
b76e467d 25723 high = dwarf2_per_objfile->all_comp_units.size () - 1;
ae038cb0
DJ
25724 while (high > low)
25725 {
36586728 25726 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 25727 int mid = low + (high - low) / 2;
9a619af0 25728
36586728 25729 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
36586728 25730 if (mid_cu->is_dwz > offset_in_dwz
81fbbaf9 25731 || (mid_cu->is_dwz == offset_in_dwz
45b8ae0c 25732 && mid_cu->sect_off + mid_cu->length >= sect_off))
ae038cb0
DJ
25733 high = mid;
25734 else
25735 low = mid + 1;
25736 }
25737 gdb_assert (low == high);
36586728 25738 this_cu = dwarf2_per_objfile->all_comp_units[low];
45b8ae0c 25739 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
ae038cb0 25740 {
36586728 25741 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 25742 error (_("Dwarf Error: could not find partial DIE containing "
9d8780f0
SM
25743 "offset %s [in module %s]"),
25744 sect_offset_str (sect_off),
ed2dc618 25745 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
10b3939b 25746
9c541725
PA
25747 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25748 <= sect_off);
ae038cb0
DJ
25749 return dwarf2_per_objfile->all_comp_units[low-1];
25750 }
25751 else
25752 {
b76e467d 25753 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
9c541725 25754 && sect_off >= this_cu->sect_off + this_cu->length)
9d8780f0 25755 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
9c541725 25756 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
25757 return this_cu;
25758 }
25759}
25760
23745b47 25761/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 25762
fcd3b13d
SM
25763dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25764 : per_cu (per_cu_),
9068261f
AB
25765 mark (false),
25766 has_loclist (false),
25767 checked_producer (false),
25768 producer_is_gxx_lt_4_6 (false),
25769 producer_is_gcc_lt_4_3 (false),
eb77c9df 25770 producer_is_icc (false),
9068261f 25771 producer_is_icc_lt_14 (false),
c258c396 25772 producer_is_codewarrior (false),
9068261f 25773 processing_has_namespace_info (false)
93311388 25774{
fcd3b13d
SM
25775 per_cu->cu = this;
25776}
25777
25778/* Destroy a dwarf2_cu. */
25779
25780dwarf2_cu::~dwarf2_cu ()
25781{
25782 per_cu->cu = NULL;
9816fde3
JK
25783}
25784
25785/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25786
25787static void
95554aad
TT
25788prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25789 enum language pretend_language)
9816fde3
JK
25790{
25791 struct attribute *attr;
25792
25793 /* Set the language we're debugging. */
25794 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
435d3d88 25795 if (attr != nullptr)
9816fde3
JK
25796 set_cu_language (DW_UNSND (attr), cu);
25797 else
9cded63f 25798 {
95554aad 25799 cu->language = pretend_language;
9cded63f
TT
25800 cu->language_defn = language_def (cu->language);
25801 }
dee91e82 25802
7d45c7c3 25803 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
25804}
25805
ae038cb0
DJ
25806/* Increase the age counter on each cached compilation unit, and free
25807 any that are too old. */
25808
25809static void
ed2dc618 25810age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25811{
25812 struct dwarf2_per_cu_data *per_cu, **last_chain;
25813
25814 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25815 per_cu = dwarf2_per_objfile->read_in_chain;
25816 while (per_cu != NULL)
25817 {
25818 per_cu->cu->last_used ++;
b4f54984 25819 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
25820 dwarf2_mark (per_cu->cu);
25821 per_cu = per_cu->cu->read_in_chain;
25822 }
25823
25824 per_cu = dwarf2_per_objfile->read_in_chain;
25825 last_chain = &dwarf2_per_objfile->read_in_chain;
25826 while (per_cu != NULL)
25827 {
25828 struct dwarf2_per_cu_data *next_cu;
25829
25830 next_cu = per_cu->cu->read_in_chain;
25831
25832 if (!per_cu->cu->mark)
25833 {
fcd3b13d 25834 delete per_cu->cu;
ae038cb0
DJ
25835 *last_chain = next_cu;
25836 }
25837 else
25838 last_chain = &per_cu->cu->read_in_chain;
25839
25840 per_cu = next_cu;
25841 }
25842}
25843
25844/* Remove a single compilation unit from the cache. */
25845
25846static void
dee91e82 25847free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
25848{
25849 struct dwarf2_per_cu_data *per_cu, **last_chain;
ed2dc618
SM
25850 struct dwarf2_per_objfile *dwarf2_per_objfile
25851 = target_per_cu->dwarf2_per_objfile;
ae038cb0
DJ
25852
25853 per_cu = dwarf2_per_objfile->read_in_chain;
25854 last_chain = &dwarf2_per_objfile->read_in_chain;
25855 while (per_cu != NULL)
25856 {
25857 struct dwarf2_per_cu_data *next_cu;
25858
25859 next_cu = per_cu->cu->read_in_chain;
25860
dee91e82 25861 if (per_cu == target_per_cu)
ae038cb0 25862 {
fcd3b13d 25863 delete per_cu->cu;
dee91e82 25864 per_cu->cu = NULL;
ae038cb0
DJ
25865 *last_chain = next_cu;
25866 break;
25867 }
25868 else
25869 last_chain = &per_cu->cu->read_in_chain;
25870
25871 per_cu = next_cu;
25872 }
25873}
25874
dee91e82
DE
25875/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25876 We store these in a hash table separate from the DIEs, and preserve them
25877 when the DIEs are flushed out of cache.
25878
25879 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 25880 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
25881 or the type may come from a DWO file. Furthermore, while it's more logical
25882 to use per_cu->section+offset, with Fission the section with the data is in
25883 the DWO file but we don't know that section at the point we need it.
25884 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25885 because we can enter the lookup routine, get_die_type_at_offset, from
25886 outside this file, and thus won't necessarily have PER_CU->cu.
25887 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 25888
dee91e82 25889struct dwarf2_per_cu_offset_and_type
1c379e20 25890{
dee91e82 25891 const struct dwarf2_per_cu_data *per_cu;
9c541725 25892 sect_offset sect_off;
1c379e20
DJ
25893 struct type *type;
25894};
25895
dee91e82 25896/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25897
25898static hashval_t
dee91e82 25899per_cu_offset_and_type_hash (const void *item)
1c379e20 25900{
9a3c8263
SM
25901 const struct dwarf2_per_cu_offset_and_type *ofs
25902 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 25903
9c541725 25904 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
25905}
25906
dee91e82 25907/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25908
25909static int
dee91e82 25910per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 25911{
9a3c8263
SM
25912 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25913 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25914 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25915 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 25916
dee91e82 25917 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 25918 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
25919}
25920
25921/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
25922 table if necessary. For convenience, return TYPE.
25923
25924 The DIEs reading must have careful ordering to:
85102364 25925 * Not cause infinite loops trying to read in DIEs as a prerequisite for
7e314c57
JK
25926 reading current DIE.
25927 * Not trying to dereference contents of still incompletely read in types
25928 while reading in other DIEs.
25929 * Enable referencing still incompletely read in types just by a pointer to
25930 the type without accessing its fields.
25931
25932 Therefore caller should follow these rules:
25933 * Try to fetch any prerequisite types we may need to build this DIE type
25934 before building the type and calling set_die_type.
e71ec853 25935 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
25936 possible before fetching more types to complete the current type.
25937 * Make the type as complete as possible before fetching more types. */
1c379e20 25938
f792889a 25939static struct type *
1c379e20
DJ
25940set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25941{
518817b3
SM
25942 struct dwarf2_per_objfile *dwarf2_per_objfile
25943 = cu->per_cu->dwarf2_per_objfile;
dee91e82 25944 struct dwarf2_per_cu_offset_and_type **slot, ofs;
ed2dc618 25945 struct objfile *objfile = dwarf2_per_objfile->objfile;
3cdcd0ce
JB
25946 struct attribute *attr;
25947 struct dynamic_prop prop;
1c379e20 25948
b4ba55a1
JB
25949 /* For Ada types, make sure that the gnat-specific data is always
25950 initialized (if not already set). There are a few types where
25951 we should not be doing so, because the type-specific area is
25952 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25953 where the type-specific area is used to store the floatformat).
25954 But this is not a problem, because the gnat-specific information
25955 is actually not needed for these types. */
25956 if (need_gnat_info (cu)
25957 && TYPE_CODE (type) != TYPE_CODE_FUNC
25958 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
25959 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25960 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25961 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
25962 && !HAVE_GNAT_AUX_INFO (type))
25963 INIT_GNAT_SPECIFIC (type);
25964
3f2f83dd
KB
25965 /* Read DW_AT_allocated and set in type. */
25966 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25967 if (attr_form_is_block (attr))
25968 {
9a49df9d
AB
25969 struct type *prop_type
25970 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25971 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
50a82047 25972 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
3f2f83dd
KB
25973 }
25974 else if (attr != NULL)
25975 {
b98664d3 25976 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
9c541725 25977 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25978 sect_offset_str (die->sect_off));
3f2f83dd
KB
25979 }
25980
25981 /* Read DW_AT_associated and set in type. */
25982 attr = dwarf2_attr (die, DW_AT_associated, cu);
25983 if (attr_form_is_block (attr))
25984 {
9a49df9d
AB
25985 struct type *prop_type
25986 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25987 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
50a82047 25988 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
3f2f83dd
KB
25989 }
25990 else if (attr != NULL)
25991 {
b98664d3 25992 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
9c541725 25993 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25994 sect_offset_str (die->sect_off));
3f2f83dd
KB
25995 }
25996
3cdcd0ce
JB
25997 /* Read DW_AT_data_location and set in type. */
25998 attr = dwarf2_attr (die, DW_AT_data_location, cu);
9a49df9d
AB
25999 if (attr_to_dynamic_prop (attr, die, cu, &prop,
26000 dwarf2_per_cu_addr_type (cu->per_cu)))
50a82047 26001 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
3cdcd0ce 26002
dee91e82 26003 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 26004 {
dee91e82
DE
26005 dwarf2_per_objfile->die_type_hash =
26006 htab_create_alloc_ex (127,
26007 per_cu_offset_and_type_hash,
26008 per_cu_offset_and_type_eq,
26009 NULL,
26010 &objfile->objfile_obstack,
26011 hashtab_obstack_allocate,
26012 dummy_obstack_deallocate);
f792889a 26013 }
1c379e20 26014
dee91e82 26015 ofs.per_cu = cu->per_cu;
9c541725 26016 ofs.sect_off = die->sect_off;
1c379e20 26017 ofs.type = type;
dee91e82
DE
26018 slot = (struct dwarf2_per_cu_offset_and_type **)
26019 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57 26020 if (*slot)
b98664d3 26021 complaint (_("A problem internal to GDB: DIE %s has type already set"),
9d8780f0 26022 sect_offset_str (die->sect_off));
8d749320
SM
26023 *slot = XOBNEW (&objfile->objfile_obstack,
26024 struct dwarf2_per_cu_offset_and_type);
1c379e20 26025 **slot = ofs;
f792889a 26026 return type;
1c379e20
DJ
26027}
26028
9c541725 26029/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 26030 or return NULL if the die does not have a saved type. */
1c379e20
DJ
26031
26032static struct type *
9c541725 26033get_die_type_at_offset (sect_offset sect_off,
673bfd45 26034 struct dwarf2_per_cu_data *per_cu)
1c379e20 26035{
dee91e82 26036 struct dwarf2_per_cu_offset_and_type *slot, ofs;
ed2dc618 26037 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
f792889a 26038
dee91e82 26039 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 26040 return NULL;
1c379e20 26041
dee91e82 26042 ofs.per_cu = per_cu;
9c541725 26043 ofs.sect_off = sect_off;
9a3c8263
SM
26044 slot = ((struct dwarf2_per_cu_offset_and_type *)
26045 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
26046 if (slot)
26047 return slot->type;
26048 else
26049 return NULL;
26050}
26051
02142a6c 26052/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
26053 or return NULL if DIE does not have a saved type. */
26054
26055static struct type *
26056get_die_type (struct die_info *die, struct dwarf2_cu *cu)
26057{
9c541725 26058 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
26059}
26060
10b3939b
DJ
26061/* Add a dependence relationship from CU to REF_PER_CU. */
26062
26063static void
26064dwarf2_add_dependence (struct dwarf2_cu *cu,
26065 struct dwarf2_per_cu_data *ref_per_cu)
26066{
26067 void **slot;
26068
26069 if (cu->dependencies == NULL)
26070 cu->dependencies
26071 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
26072 NULL, &cu->comp_unit_obstack,
26073 hashtab_obstack_allocate,
26074 dummy_obstack_deallocate);
26075
26076 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
26077 if (*slot == NULL)
26078 *slot = ref_per_cu;
26079}
1c379e20 26080
f504f079
DE
26081/* Subroutine of dwarf2_mark to pass to htab_traverse.
26082 Set the mark field in every compilation unit in the
ae038cb0
DJ
26083 cache that we must keep because we are keeping CU. */
26084
10b3939b
DJ
26085static int
26086dwarf2_mark_helper (void **slot, void *data)
26087{
26088 struct dwarf2_per_cu_data *per_cu;
26089
26090 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
26091
26092 /* cu->dependencies references may not yet have been ever read if QUIT aborts
26093 reading of the chain. As such dependencies remain valid it is not much
26094 useful to track and undo them during QUIT cleanups. */
26095 if (per_cu->cu == NULL)
26096 return 1;
26097
10b3939b
DJ
26098 if (per_cu->cu->mark)
26099 return 1;
9068261f 26100 per_cu->cu->mark = true;
10b3939b
DJ
26101
26102 if (per_cu->cu->dependencies != NULL)
26103 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
26104
26105 return 1;
26106}
26107
f504f079
DE
26108/* Set the mark field in CU and in every other compilation unit in the
26109 cache that we must keep because we are keeping CU. */
26110
ae038cb0
DJ
26111static void
26112dwarf2_mark (struct dwarf2_cu *cu)
26113{
26114 if (cu->mark)
26115 return;
9068261f 26116 cu->mark = true;
10b3939b
DJ
26117 if (cu->dependencies != NULL)
26118 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
26119}
26120
26121static void
26122dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
26123{
26124 while (per_cu)
26125 {
9068261f 26126 per_cu->cu->mark = false;
ae038cb0
DJ
26127 per_cu = per_cu->cu->read_in_chain;
26128 }
72bf9492
DJ
26129}
26130
72bf9492
DJ
26131/* Trivial hash function for partial_die_info: the hash value of a DIE
26132 is its offset in .debug_info for this objfile. */
26133
26134static hashval_t
26135partial_die_hash (const void *item)
26136{
9a3c8263
SM
26137 const struct partial_die_info *part_die
26138 = (const struct partial_die_info *) item;
9a619af0 26139
9c541725 26140 return to_underlying (part_die->sect_off);
72bf9492
DJ
26141}
26142
26143/* Trivial comparison function for partial_die_info structures: two DIEs
26144 are equal if they have the same offset. */
26145
26146static int
26147partial_die_eq (const void *item_lhs, const void *item_rhs)
26148{
9a3c8263
SM
26149 const struct partial_die_info *part_die_lhs
26150 = (const struct partial_die_info *) item_lhs;
26151 const struct partial_die_info *part_die_rhs
26152 = (const struct partial_die_info *) item_rhs;
9a619af0 26153
9c541725 26154 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
26155}
26156
3c3bb058
AB
26157struct cmd_list_element *set_dwarf_cmdlist;
26158struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
26159
26160static void
981a3fb3 26161set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 26162{
b4f54984 26163 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 26164 gdb_stdout);
ae038cb0
DJ
26165}
26166
26167static void
981a3fb3 26168show_dwarf_cmd (const char *args, int from_tty)
6e70227d 26169{
b4f54984 26170 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
26171}
26172
491144b5 26173bool dwarf_always_disassemble;
437afbb8 26174
437afbb8 26175static void
cd4fb1b2
SM
26176show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
26177 struct cmd_list_element *c, const char *value)
9291a0cd 26178{
cd4fb1b2
SM
26179 fprintf_filtered (file,
26180 _("Whether to always disassemble "
26181 "DWARF expressions is %s.\n"),
26182 value);
9291a0cd
TT
26183}
26184
9291a0cd 26185static void
cd4fb1b2
SM
26186show_check_physname (struct ui_file *file, int from_tty,
26187 struct cmd_list_element *c, const char *value)
9291a0cd 26188{
cd4fb1b2
SM
26189 fprintf_filtered (file,
26190 _("Whether to check \"physname\" is %s.\n"),
26191 value);
9291a0cd
TT
26192}
26193
cd4fb1b2
SM
26194void
26195_initialize_dwarf2_read (void)
9291a0cd 26196{
cd4fb1b2
SM
26197 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
26198Set DWARF specific variables.\n\
590042fc 26199Configure DWARF variables such as the cache size."),
cd4fb1b2
SM
26200 &set_dwarf_cmdlist, "maintenance set dwarf ",
26201 0/*allow-unknown*/, &maintenance_set_cmdlist);
156942c7 26202
cd4fb1b2 26203 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
590042fc
PW
26204Show DWARF specific variables.\n\
26205Show DWARF variables such as the cache size."),
cd4fb1b2
SM
26206 &show_dwarf_cmdlist, "maintenance show dwarf ",
26207 0/*allow-unknown*/, &maintenance_show_cmdlist);
156942c7 26208
cd4fb1b2
SM
26209 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
26210 &dwarf_max_cache_age, _("\
26211Set the upper bound on the age of cached DWARF compilation units."), _("\
26212Show the upper bound on the age of cached DWARF compilation units."), _("\
26213A higher limit means that cached compilation units will be stored\n\
26214in memory longer, and more total memory will be used. Zero disables\n\
26215caching, which can slow down startup."),
26216 NULL,
26217 show_dwarf_max_cache_age,
26218 &set_dwarf_cmdlist,
26219 &show_dwarf_cmdlist);
156942c7 26220
cd4fb1b2
SM
26221 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
26222 &dwarf_always_disassemble, _("\
26223Set whether `info address' always disassembles DWARF expressions."), _("\
26224Show whether `info address' always disassembles DWARF expressions."), _("\
26225When enabled, DWARF expressions are always printed in an assembly-like\n\
26226syntax. When disabled, expressions will be printed in a more\n\
26227conversational style, when possible."),
26228 NULL,
26229 show_dwarf_always_disassemble,
26230 &set_dwarf_cmdlist,
26231 &show_dwarf_cmdlist);
9291a0cd 26232
cd4fb1b2
SM
26233 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
26234Set debugging of the DWARF reader."), _("\
26235Show debugging of the DWARF reader."), _("\
26236When enabled (non-zero), debugging messages are printed during DWARF\n\
26237reading and symtab expansion. A value of 1 (one) provides basic\n\
26238information. A value greater than 1 provides more verbose information."),
26239 NULL,
26240 NULL,
26241 &setdebuglist, &showdebuglist);
9291a0cd 26242
cd4fb1b2
SM
26243 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
26244Set debugging of the DWARF DIE reader."), _("\
26245Show debugging of the DWARF DIE reader."), _("\
26246When enabled (non-zero), DIEs are dumped after they are read in.\n\
26247The value is the maximum depth to print."),
26248 NULL,
26249 NULL,
26250 &setdebuglist, &showdebuglist);
9291a0cd 26251
cd4fb1b2
SM
26252 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
26253Set debugging of the dwarf line reader."), _("\
26254Show debugging of the dwarf line reader."), _("\
26255When enabled (non-zero), line number entries are dumped as they are read in.\n\
26256A value of 1 (one) provides basic information.\n\
26257A value greater than 1 provides more verbose information."),
26258 NULL,
26259 NULL,
26260 &setdebuglist, &showdebuglist);
437afbb8 26261
cd4fb1b2
SM
26262 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
26263Set cross-checking of \"physname\" code against demangler."), _("\
26264Show cross-checking of \"physname\" code against demangler."), _("\
26265When enabled, GDB's internal \"physname\" code is checked against\n\
26266the demangler."),
26267 NULL, show_check_physname,
26268 &setdebuglist, &showdebuglist);
900e11f9 26269
e615022a
DE
26270 add_setshow_boolean_cmd ("use-deprecated-index-sections",
26271 no_class, &use_deprecated_index_sections, _("\
26272Set whether to use deprecated gdb_index sections."), _("\
26273Show whether to use deprecated gdb_index sections."), _("\
26274When enabled, deprecated .gdb_index sections are used anyway.\n\
26275Normally they are ignored either because of a missing feature or\n\
26276performance issue.\n\
26277Warning: This option must be enabled before gdb reads the file."),
26278 NULL,
26279 NULL,
26280 &setlist, &showlist);
26281
f1e6e072
TT
26282 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
26283 &dwarf2_locexpr_funcs);
26284 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
26285 &dwarf2_loclist_funcs);
26286
26287 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
26288 &dwarf2_block_frame_base_locexpr_funcs);
26289 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
26290 &dwarf2_block_frame_base_loclist_funcs);
c62446b1
PA
26291
26292#if GDB_SELF_TEST
26293 selftests::register_test ("dw2_expand_symtabs_matching",
26294 selftests::dw2_expand_symtabs_matching::run_test);
26295#endif
6502dd73 26296}
This page took 6.192236 seconds and 4 git commands to generate.