Use ui_file_as_string in gdb/language.c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
325fac50 75#include <algorithm>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
3a2b436a 1609/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1610 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1611enum pc_bounds_kind
1612{
e385593e 1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1614 PC_BOUNDS_NOT_PRESENT,
1615
e385593e
JK
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
3a2b436a
JK
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625};
1626
1627static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
c906108c 1631
fae299cd
DC
1632static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
801e3a5b
JB
1636static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
a14ed312 1639static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1640 struct dwarf2_cu *);
c906108c 1641
a14ed312 1642static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1643 struct type *, struct dwarf2_cu *);
c906108c 1644
a14ed312 1645static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1646 struct die_info *, struct type *,
e7c27a73 1647 struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1650 struct type *,
1651 struct dwarf2_cu *);
c906108c 1652
134d01f1 1653static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1654
e7c27a73 1655static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1656
e7c27a73 1657static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1658
5d7cb8df
JK
1659static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
22cee43f
PMR
1661static struct using_direct **using_directives (enum language);
1662
27aa8d6a
SW
1663static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
74921315
KS
1665static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
f55ee35c
JK
1667static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
38d518c9 1670static const char *namespace_name (struct die_info *die,
e142c38c 1671 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1672
134d01f1 1673static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1674
e7c27a73 1675static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1676
6e70227d 1677static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1678 struct dwarf2_cu *);
1679
bf6af496 1680static struct die_info *read_die_and_siblings_1
d521ce57 1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1682 struct die_info *);
639d11d3 1683
dee91e82 1684static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
639d11d3
DC
1687 struct die_info *parent);
1688
d521ce57
TT
1689static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
3019eac3 1692
d521ce57
TT
1693static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
93311388 1696
e7c27a73 1697static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1698
15d034d0
TT
1699static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
71c25dea 1701
15d034d0 1702static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1703
15d034d0 1704static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
ca69b9e6
DE
1708static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
e142c38c 1711static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1712 struct dwarf2_cu **);
9219021c 1713
f39c6ffd 1714static const char *dwarf_tag_name (unsigned int);
c906108c 1715
f39c6ffd 1716static const char *dwarf_attr_name (unsigned int);
c906108c 1717
f39c6ffd 1718static const char *dwarf_form_name (unsigned int);
c906108c 1719
a14ed312 1720static char *dwarf_bool_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1723
f9aca02d 1724static struct die_info *sibling_die (struct die_info *);
c906108c 1725
d97bc12b
DE
1726static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728static void dump_die_for_error (struct die_info *);
1729
1730static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
c906108c 1732
d97bc12b 1733/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1734
51545339 1735static void store_in_ref_table (struct die_info *,
10b3939b 1736 struct dwarf2_cu *);
c906108c 1737
ff39bb5e 1738static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1739
ff39bb5e 1740static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1741
348e048f 1742static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1743 const struct attribute *,
348e048f
DE
1744 struct dwarf2_cu **);
1745
10b3939b 1746static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1747 const struct attribute *,
f2f0e013 1748 struct dwarf2_cu **);
c906108c 1749
348e048f 1750static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1751 const struct attribute *,
348e048f
DE
1752 struct dwarf2_cu **);
1753
ac9ec31b
DE
1754static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1758 const struct attribute *,
ac9ec31b
DE
1759 struct dwarf2_cu *);
1760
e5fe5e75 1761static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1762
52dc124a 1763static void read_signatured_type (struct signatured_type *);
348e048f 1764
63e43d3a
PMR
1765static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
c906108c
SS
1769/* memory allocation interface */
1770
7b5a2f43 1771static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1772
b60c80d6 1773static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1774
43f3e411 1775static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1776
6e5a29e1 1777static int attr_form_is_block (const struct attribute *);
8e19ed76 1778
6e5a29e1 1779static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1780
6e5a29e1 1781static int attr_form_is_constant (const struct attribute *);
3690dd37 1782
6e5a29e1 1783static int attr_form_is_ref (const struct attribute *);
7771576e 1784
8cf6f0b1
TT
1785static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
ff39bb5e 1787 const struct attribute *attr);
8cf6f0b1 1788
ff39bb5e 1789static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1790 struct symbol *sym,
f1e6e072
TT
1791 struct dwarf2_cu *cu,
1792 int is_block);
4c2df51b 1793
d521ce57
TT
1794static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
4bb7a0a7 1797
72bf9492
DJ
1798static void free_stack_comp_unit (void *);
1799
72bf9492
DJ
1800static hashval_t partial_die_hash (const void *item);
1801
1802static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
ae038cb0 1804static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1806
9816fde3 1807static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1808 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1809
1810static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
93311388 1813
68dc6402 1814static void free_heap_comp_unit (void *);
ae038cb0
DJ
1815
1816static void free_cached_comp_units (void *);
1817
1818static void age_cached_comp_units (void);
1819
dee91e82 1820static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1821
f792889a
DJ
1822static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1c379e20 1824
ae038cb0
DJ
1825static void create_all_comp_units (struct objfile *);
1826
0e50663e 1827static int create_all_type_units (struct objfile *);
1fd400ff 1828
95554aad
TT
1829static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
10b3939b 1831
95554aad
TT
1832static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
10b3939b 1834
f4dc4d17
DE
1835static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
10b3939b
DJ
1838static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
ae038cb0
DJ
1841static void dwarf2_mark (struct dwarf2_cu *);
1842
1843static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
b64f50a1 1845static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1846 struct dwarf2_per_cu_data *);
673bfd45 1847
f792889a 1848static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1849
9291a0cd
TT
1850static void dwarf2_release_queue (void *dummy);
1851
95554aad
TT
1852static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
a0f42c21 1855static void process_queue (void);
9291a0cd
TT
1856
1857static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
15d034d0 1859 const char **name, const char **comp_dir);
9291a0cd
TT
1860
1861static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
d521ce57 1864static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
d521ce57 1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1868 int is_debug_types_section);
1869
fd820528 1870static void init_cutu_and_read_dies
f4dc4d17
DE
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
3019eac3
DE
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
dee91e82
DE
1875static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1878
673bfd45 1879static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1880
3019eac3
DE
1881static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
57d63ce2
DE
1883static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1886
1887static struct dwp_file *get_dwp_file (void);
1888
3019eac3 1889static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1891
1892static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1893 (struct signatured_type *, const char *, const char *);
3019eac3 1894
89e63ee4
DE
1895static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
3019eac3
DE
1897static void free_dwo_file_cleanup (void *);
1898
95554aad
TT
1899static void process_cu_includes (void);
1900
1b80a9fa 1901static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1902
1903static void free_line_header_voidp (void *arg);
4390d890
DE
1904\f
1905/* Various complaints about symbol reading that don't abort the process. */
1906
1907static void
1908dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909{
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912}
1913
1914static void
1915dwarf2_debug_line_missing_file_complaint (void)
1916{
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919}
1920
1921static void
1922dwarf2_debug_line_missing_end_sequence_complaint (void)
1923{
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927}
1928
1929static void
1930dwarf2_complex_location_expr_complaint (void)
1931{
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933}
1934
1935static void
1936dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938{
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942}
1943
1944static void
1945dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946{
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
a32a8923
DE
1950 get_section_name (section),
1951 get_section_file_name (section));
4390d890 1952}
1b80a9fa 1953
4390d890
DE
1954static void
1955dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956{
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961}
1962
1963static void
1964dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965{
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969}
527f3840
JK
1970
1971/* Hash function for line_header_hash. */
1972
1973static hashval_t
1974line_header_hash (const struct line_header *ofs)
1975{
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977}
1978
1979/* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981static hashval_t
1982line_header_hash_voidp (const void *item)
1983{
9a3c8263 1984 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1985
1986 return line_header_hash (ofs);
1987}
1988
1989/* Equality function for line_header_hash. */
1990
1991static int
1992line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993{
9a3c8263
SM
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999}
2000
4390d890 2001\f
9291a0cd
TT
2002#if WORDS_BIGENDIAN
2003
2004/* Convert VALUE between big- and little-endian. */
2005static offset_type
2006byte_swap (offset_type value)
2007{
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015}
2016
2017#define MAYBE_SWAP(V) byte_swap (V)
2018
2019#else
2020#define MAYBE_SWAP(V) (V)
2021#endif /* WORDS_BIGENDIAN */
2022
31aa7e4e
JB
2023/* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026static CORE_ADDR
2027attr_value_as_address (struct attribute *attr)
2028{
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051}
2052
9291a0cd
TT
2053/* The suffix for an index file. */
2054#define INDEX_SUFFIX ".gdb-index"
2055
c906108c 2056/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
c906108c
SS
2060
2061int
251d32d9
TG
2062dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
c906108c 2064{
9a3c8263
SM
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
8d749320 2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2072
be391dca
TT
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
6502dd73 2076
251d32d9
TG
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
be391dca
TT
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
73869dc2 2081 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2082 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2083 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2085}
2086
2087/* Return the containing section of virtual section SECTION. */
2088
2089static struct dwarf2_section_info *
2090get_containing_section (const struct dwarf2_section_info *section)
2091{
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
c906108c
SS
2094}
2095
a32a8923
DE
2096/* Return the bfd owner of SECTION. */
2097
2098static struct bfd *
2099get_section_bfd_owner (const struct dwarf2_section_info *section)
2100{
73869dc2
DE
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
049412e3 2106 return section->s.section->owner;
a32a8923
DE
2107}
2108
2109/* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112static asection *
2113get_section_bfd_section (const struct dwarf2_section_info *section)
2114{
73869dc2
DE
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
049412e3 2120 return section->s.section;
a32a8923
DE
2121}
2122
2123/* Return the name of SECTION. */
2124
2125static const char *
2126get_section_name (const struct dwarf2_section_info *section)
2127{
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132}
2133
2134/* Return the name of the file SECTION is in. */
2135
2136static const char *
2137get_section_file_name (const struct dwarf2_section_info *section)
2138{
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142}
2143
2144/* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147static int
2148get_section_id (const struct dwarf2_section_info *section)
2149{
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155}
2156
2157/* Return the flags of SECTION.
73869dc2 2158 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2159
2160static int
2161get_section_flags (const struct dwarf2_section_info *section)
2162{
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167}
2168
251d32d9
TG
2169/* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
233a11ab
CS
2171
2172static int
251d32d9
TG
2173section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
233a11ab 2175{
251d32d9
TG
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
233a11ab
CS
2183}
2184
c906108c
SS
2185/* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189static void
251d32d9 2190dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2191{
251d32d9 2192 const struct dwarf2_debug_sections *names;
dc7650b8 2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
dc7650b8
JK
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2207 }
251d32d9 2208 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2209 {
049412e3 2210 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->line))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2217 }
251d32d9 2218 else if (section_is_p (sectp->name, &names->loc))
c906108c 2219 {
049412e3 2220 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2224 {
049412e3 2225 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2227 }
cf2c3c16
TT
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
049412e3 2230 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->str))
c906108c 2234 {
049412e3 2235 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2237 }
3019eac3
DE
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
049412e3 2240 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
251d32d9 2243 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2244 {
049412e3 2245 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2247 }
251d32d9 2248 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2249 {
049412e3 2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2252 }
251d32d9 2253 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2254 {
049412e3 2255 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2257 }
251d32d9 2258 else if (section_is_p (sectp->name, &names->types))
348e048f 2259 {
8b70b953
TT
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
049412e3 2263 type_section.s.section = sectp;
8b70b953
TT
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
348e048f 2268 }
251d32d9 2269 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2270 {
049412e3 2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
dce234bc 2274
b4e1fd61 2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2278}
2279
fceca515
DE
2280/* A helper function that decides whether a section is empty,
2281 or not present. */
9e0ac564
TT
2282
2283static int
19ac8c2e 2284dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2285{
73869dc2
DE
2286 if (section->is_virtual)
2287 return section->size == 0;
049412e3 2288 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2289}
2290
3019eac3
DE
2291/* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
dce234bc 2295 If the section is compressed, uncompress it before returning. */
c906108c 2296
dce234bc
PP
2297static void
2298dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2299{
a32a8923 2300 asection *sectp;
3019eac3 2301 bfd *abfd;
dce234bc 2302 gdb_byte *buf, *retbuf;
c906108c 2303
be391dca
TT
2304 if (info->readin)
2305 return;
dce234bc 2306 info->buffer = NULL;
be391dca 2307 info->readin = 1;
188dd5d6 2308
9e0ac564 2309 if (dwarf2_section_empty_p (info))
dce234bc 2310 return;
c906108c 2311
a32a8923 2312 sectp = get_section_bfd_section (info);
3019eac3 2313
73869dc2
DE
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
4bf44c1c
TT
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2342 {
d521ce57 2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2344 return;
dce234bc 2345 }
dce234bc 2346
224c3ddb 2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2348 info->buffer = buf;
dce234bc
PP
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
ac8035ab 2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
a32a8923
DE
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
dce234bc
PP
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
dce234bc
PP
2371}
2372
9e0ac564
TT
2373/* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380static bfd_size_type
2381dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383{
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387}
2388
dce234bc 2389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2390 SECTION_NAME. */
af34e669 2391
dce234bc 2392void
3017a003
TG
2393dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
d521ce57 2395 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2396 bfd_size_type *sizep)
2397{
2398 struct dwarf2_per_objfile *data
9a3c8263
SM
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
dce234bc 2401 struct dwarf2_section_info *info;
a3b2a86b
TT
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
3017a003
TG
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
dce234bc 2423
9e0ac564 2424 dwarf2_read_section (objfile, info);
dce234bc 2425
a32a8923 2426 *sectp = get_section_bfd_section (info);
dce234bc
PP
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429}
2430
36586728
TT
2431/* A helper function to find the sections for a .dwz file. */
2432
2433static void
2434locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435{
9a3c8263 2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
049412e3 2442 dwz_file->abbrev.s.section = sectp;
36586728
TT
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
049412e3 2447 dwz_file->info.s.section = sectp;
36586728
TT
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
049412e3 2452 dwz_file->str.s.section = sectp;
36586728
TT
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
049412e3 2457 dwz_file->line.s.section = sectp;
36586728
TT
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
049412e3 2462 dwz_file->macro.s.section = sectp;
36586728
TT
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2ec9a5e0
TT
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
049412e3 2467 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
36586728
TT
2470}
2471
4db1a1dc
TT
2472/* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
36586728
TT
2475
2476static struct dwz_file *
2477dwarf2_get_dwz_file (void)
2478{
4db1a1dc
TT
2479 bfd *dwz_bfd;
2480 char *data;
36586728
TT
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
acd13123 2484 bfd_size_type buildid_len_arg;
dc294be5
TT
2485 size_t buildid_len;
2486 bfd_byte *buildid;
36586728
TT
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
4db1a1dc
TT
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2493 &buildid_len_arg, &buildid);
4db1a1dc
TT
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
36586728 2501 cleanup = make_cleanup (xfree, data);
dc294be5 2502 make_cleanup (xfree, buildid);
36586728 2503
acd13123
TT
2504 buildid_len = (size_t) buildid_len_arg;
2505
f9d83a0b 2506 filename = (const char *) data;
36586728
TT
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
4262abfb 2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
dc294be5
TT
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
36586728 2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2524 if (dwz_bfd != NULL)
36586728 2525 {
dc294be5
TT
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
13aaf454 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49 3008 if (current_language->la_language == language_cplus
45280282
IB
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
0cf03b49
JK
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
a8719064 3014
72998fb3 3015 if (strchr (name, '(') != NULL)
0cf03b49 3016 {
72998fb3 3017 char *without_params = cp_remove_params (name);
0cf03b49 3018
72998fb3
DE
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
0cf03b49
JK
3024 }
3025 }
3026
559a7a62 3027 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3028 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3876f04e
DE
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3876f04e 3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
9291a0cd 3049
3876f04e 3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3051 if (!cmp (name, str))
9291a0cd
TT
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3055 do_cleanups (back_to);
9291a0cd
TT
3056 return 1;
3057 }
3058
3876f04e 3059 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3060 }
3061}
3062
2ec9a5e0
TT
3063/* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3073
9291a0cd 3074static int
2ec9a5e0
TT
3075read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
9291a0cd 3084{
948f8e3d 3085 const gdb_byte *addr;
2ec9a5e0 3086 offset_type version;
b3b272e1 3087 offset_type *metadata;
1fd400ff 3088 int i;
9291a0cd 3089
2ec9a5e0 3090 if (dwarf2_section_empty_p (section))
9291a0cd 3091 return 0;
82430852
JK
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
a32a8923 3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3096 return 0;
3097
2ec9a5e0 3098 dwarf2_read_section (objfile, section);
9291a0cd 3099
2ec9a5e0 3100 addr = section->buffer;
9291a0cd 3101 /* Version check. */
1fd400ff 3102 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3104 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3105 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3106 indices. */
831adc1f 3107 if (version < 4)
481860b3
GB
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3113 filename);
481860b3
GB
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
2ec9a5e0 3126 if (version < 6 && !deprecated_ok)
481860b3
GB
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
e615022a
DE
3131 warning (_("\
3132Skipping deprecated .gdb_index section in %s.\n\
3133Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134to use the section anyway."),
2ec9a5e0 3135 filename);
481860b3
GB
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
796a7ff8 3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3147
481860b3 3148 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3149 longer backward compatible. */
796a7ff8 3150 if (version > 8)
594e8718 3151 return 0;
9291a0cd 3152
559a7a62 3153 map->version = version;
2ec9a5e0 3154 map->total_size = section->size;
9291a0cd
TT
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3157
3158 i = 0;
2ec9a5e0
TT
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
1fd400ff
TT
3162 ++i;
3163
2ec9a5e0
TT
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
987d643c 3168 ++i;
1fd400ff
TT
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3876f04e
DE
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
1fd400ff 3179 ++i;
9291a0cd 3180
f9d83a0b 3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3182
2ec9a5e0
TT
3183 return 1;
3184}
3185
3186
3187/* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190static int
3191dwarf2_read_index (struct objfile *objfile)
3192{
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3196 struct dwz_file *dwz;
2ec9a5e0 3197
4262abfb 3198 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
0fefef59 3205 /* Don't use the index if it's empty. */
2ec9a5e0 3206 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3207 return 0;
3208
2ec9a5e0
TT
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
4db1a1dc
TT
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
2ec9a5e0 3213 {
2ec9a5e0
TT
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
74a0d9f6
JK
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
1fd400ff 3233
8b70b953
TT
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
74a0d9f6
JK
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
8b70b953 3248 }
9291a0cd 3249
2ec9a5e0
TT
3250 create_addrmap_from_index (objfile, &local_map);
3251
8d749320 3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3253 *map = local_map;
9291a0cd
TT
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3259
3260 return 1;
3261}
3262
3263/* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3265
9291a0cd
TT
3266static void
3267dw2_setup (struct objfile *objfile)
3268{
9a3c8263
SM
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3271 gdb_assert (dwarf2_per_objfile);
3272}
3273
dee91e82 3274/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3275
dee91e82
DE
3276static void
3277dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3278 const gdb_byte *info_ptr,
dee91e82
DE
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
9291a0cd 3282{
dee91e82
DE
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3286 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3287 struct line_header *lh;
9291a0cd 3288 struct attribute *attr;
dee91e82 3289 int i;
15d034d0 3290 const char *name, *comp_dir;
7b9f3c50
DE
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
9291a0cd 3294
0186c6a7
DE
3295 gdb_assert (! this_cu->is_debug_types);
3296
07261596
TT
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
0186c6a7 3305 lh_cu = this_cu;
7b9f3c50
DE
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
dee91e82
DE
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3311 if (attr)
3312 {
7b9f3c50
DE
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
094b34ac
DE
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
9a3c8263 3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3326 return;
7b9f3c50
DE
3327 }
3328
3019eac3 3329 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3330 }
3331 if (lh == NULL)
3332 {
094b34ac 3333 lh_cu->v.quick->no_file_data = 1;
dee91e82 3334 return;
9291a0cd
TT
3335 }
3336
8d749320 3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
9291a0cd 3342
dee91e82 3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3344
7b9f3c50 3345 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3348 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
9291a0cd 3351
7b9f3c50 3352 free_line_header (lh);
7b9f3c50 3353
094b34ac 3354 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3355}
3356
3357/* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360static struct quick_file_names *
e4a48d9d 3361dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3362{
0186c6a7
DE
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3367
dee91e82
DE
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
0186c6a7 3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
9291a0cd
TT
3379}
3380
3381/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3382 real path for a given file name from the line table. */
2fdf6df6 3383
9291a0cd 3384static const char *
7b9f3c50
DE
3385dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
9291a0cd 3387{
7b9f3c50
DE
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3390 qfn->num_file_names, const char *);
9291a0cd 3391
7b9f3c50
DE
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3394
7b9f3c50 3395 return qfn->real_names[index];
9291a0cd
TT
3396}
3397
3398static struct symtab *
3399dw2_find_last_source_symtab (struct objfile *objfile)
3400{
43f3e411 3401 struct compunit_symtab *cust;
9291a0cd 3402 int index;
ae2de4f8 3403
9291a0cd
TT
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
9291a0cd
TT
3410}
3411
7b9f3c50
DE
3412/* Traversal function for dw2_forget_cached_source_info. */
3413
3414static int
3415dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3416{
7b9f3c50 3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3418
7b9f3c50 3419 if (file_data->real_names)
9291a0cd 3420 {
7b9f3c50 3421 int i;
9291a0cd 3422
7b9f3c50 3423 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3424 {
7b9f3c50
DE
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
9291a0cd
TT
3427 }
3428 }
7b9f3c50
DE
3429
3430 return 1;
3431}
3432
3433static void
3434dw2_forget_cached_source_info (struct objfile *objfile)
3435{
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3440}
3441
f8eba3c6
TT
3442/* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445static int
3446dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3448 const char *name, const char *real_path,
f8eba3c6
TT
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451{
43f3e411 3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3453
3454 /* Don't visit already-expanded CUs. */
43f3e411 3455 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
a0f42c21 3460 dw2_instantiate_symtab (per_cu);
f8eba3c6 3461
f5b95b50 3462 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3463 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3464}
3465
3466/* Implementation of the map_symtabs_matching_filename method. */
3467
9291a0cd 3468static int
f8eba3c6 3469dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3470 const char *real_path,
f8eba3c6
TT
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
9291a0cd
TT
3473{
3474 int i;
c011a4f4 3475 const char *name_basename = lbasename (name);
9291a0cd
TT
3476
3477 dw2_setup (objfile);
ae2de4f8 3478
848e3e78
DE
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
f4dc4d17 3481
848e3e78 3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3483 {
3484 int j;
8832e7e3 3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3486 struct quick_file_names *file_data;
9291a0cd 3487
3d7bb9d9 3488 /* We only need to look at symtabs not already expanded. */
43f3e411 3489 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3490 continue;
3491
e4a48d9d 3492 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3493 if (file_data == NULL)
9291a0cd
TT
3494 continue;
3495
7b9f3c50 3496 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3497 {
7b9f3c50 3498 const char *this_name = file_data->file_names[j];
da235a7c 3499 const char *this_real_name;
9291a0cd 3500
af529f8f 3501 if (compare_filenames_for_search (this_name, name))
9291a0cd 3502 {
f5b95b50 3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3504 callback, data))
3505 return 1;
288e77a7 3506 continue;
4aac40c8 3507 }
9291a0cd 3508
c011a4f4
DE
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
da235a7c
JK
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3517 {
da235a7c
JK
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
288e77a7 3521 continue;
da235a7c 3522 }
9291a0cd 3523
da235a7c
JK
3524 if (real_path != NULL)
3525 {
af529f8f
JK
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3528 if (this_real_name != NULL
af529f8f 3529 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3530 {
f5b95b50 3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3532 callback, data))
3533 return 1;
288e77a7 3534 continue;
9291a0cd
TT
3535 }
3536 }
3537 }
3538 }
3539
9291a0cd
TT
3540 return 0;
3541}
3542
da51c347
DE
3543/* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545struct dw2_symtab_iterator
9291a0cd 3546{
da51c347
DE
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
8943b874
DE
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
da51c347 3568};
9291a0cd 3569
da51c347
DE
3570/* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3573
9291a0cd 3574static void
da51c347
DE
3575dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581{
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
8943b874 3587 iter->global_seen = 0;
da51c347
DE
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596}
3597
3598/* Return the next matching CU or NULL if there are no more. */
3599
3600static struct dwarf2_per_cu_data *
3601dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602{
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3608 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3190f0c6
DE
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
4262abfb
JK
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3630 continue;
3631 }
3632
8832e7e3 3633 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3634
da51c347 3635 /* Skip if already read in. */
43f3e411 3636 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3637 continue;
3638
8943b874
DE
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
da51c347
DE
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682}
3683
43f3e411 3684static struct compunit_symtab *
da51c347
DE
3685dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
9291a0cd 3687{
43f3e411 3688 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3689 struct mapped_index *index;
3690
9291a0cd
TT
3691 dw2_setup (objfile);
3692
156942c7
DE
3693 index = dwarf2_per_objfile->index_table;
3694
da51c347 3695 /* index is NULL if OBJF_READNOW. */
156942c7 3696 if (index)
9291a0cd 3697 {
da51c347
DE
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3702
da51c347 3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3704 {
b2e2f908 3705 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3709
b2e2f908
DE
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
da51c347
DE
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
da51c347 3717
b2e2f908
DE
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
da51c347
DE
3724
3725 /* Keep looking through other CUs. */
9291a0cd
TT
3726 }
3727 }
9291a0cd 3728
da51c347 3729 return stab_best;
9291a0cd
TT
3730}
3731
3732static void
3733dw2_print_stats (struct objfile *objfile)
3734{
e4a48d9d 3735 int i, total, count;
9291a0cd
TT
3736
3737 dw2_setup (objfile);
e4a48d9d 3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3739 count = 0;
e4a48d9d 3740 for (i = 0; i < total; ++i)
9291a0cd 3741 {
8832e7e3 3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3743
43f3e411 3744 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3745 ++count;
3746 }
e4a48d9d 3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749}
3750
779bd270
DE
3751/* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
9291a0cd
TT
3756static void
3757dw2_dump (struct objfile *objfile)
3758{
779bd270
DE
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
9291a0cd
TT
3770}
3771
3772static void
3189cb12
DE
3773dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
9291a0cd
TT
3776{
3777 /* There's nothing to relocate here. */
3778}
3779
3780static void
3781dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783{
da51c347
DE
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
9291a0cd
TT
3803}
3804
3805static void
3806dw2_expand_all_symtabs (struct objfile *objfile)
3807{
3808 int i;
3809
3810 dw2_setup (objfile);
1fd400ff
TT
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3813 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3814 {
8832e7e3 3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3816
a0f42c21 3817 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3818 }
3819}
3820
3821static void
652a8996
JK
3822dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
9291a0cd
TT
3824{
3825 int i;
3826
3827 dw2_setup (objfile);
d4637a04
DE
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3835 {
3836 int j;
8832e7e3 3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3838 struct quick_file_names *file_data;
9291a0cd 3839
3d7bb9d9 3840 /* We only need to look at symtabs not already expanded. */
43f3e411 3841 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3842 continue;
3843
e4a48d9d 3844 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3845 if (file_data == NULL)
9291a0cd
TT
3846 continue;
3847
7b9f3c50 3848 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3849 {
652a8996
JK
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3853 {
a0f42c21 3854 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3855 break;
3856 }
3857 }
3858 }
3859}
3860
9291a0cd 3861static void
ade7ed9e 3862dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3863 const char * name, domain_enum domain,
ade7ed9e 3864 int global,
40658b94
PH
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
2edb89d3
JK
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
9291a0cd 3869{
40658b94 3870 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3873}
3874
3875static void
f8eba3c6
TT
3876dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
206f2a57
DE
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3880 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3881 enum search_domain kind,
3882 void *data)
9291a0cd
TT
3883{
3884 int i;
3885 offset_type iter;
4b5246aa 3886 struct mapped_index *index;
9291a0cd
TT
3887
3888 dw2_setup (objfile);
ae2de4f8
DE
3889
3890 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
4b5246aa 3893 index = dwarf2_per_objfile->index_table;
9291a0cd 3894
7b08b9eb 3895 if (file_matcher != NULL)
24c79950
TT
3896 {
3897 struct cleanup *cleanup;
3898 htab_t visited_found, visited_not_found;
3899
3900 visited_found = htab_create_alloc (10,
3901 htab_hash_pointer, htab_eq_pointer,
3902 NULL, xcalloc, xfree);
3903 cleanup = make_cleanup_htab_delete (visited_found);
3904 visited_not_found = htab_create_alloc (10,
3905 htab_hash_pointer, htab_eq_pointer,
3906 NULL, xcalloc, xfree);
3907 make_cleanup_htab_delete (visited_not_found);
3908
848e3e78
DE
3909 /* The rule is CUs specify all the files, including those used by
3910 any TU, so there's no need to scan TUs here. */
3911
3912 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3913 {
3914 int j;
8832e7e3 3915 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3916 struct quick_file_names *file_data;
3917 void **slot;
7b08b9eb 3918
61d96d7e
DE
3919 QUIT;
3920
24c79950 3921 per_cu->v.quick->mark = 0;
3d7bb9d9 3922
24c79950 3923 /* We only need to look at symtabs not already expanded. */
43f3e411 3924 if (per_cu->v.quick->compunit_symtab)
24c79950 3925 continue;
7b08b9eb 3926
e4a48d9d 3927 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3928 if (file_data == NULL)
3929 continue;
7b08b9eb 3930
24c79950
TT
3931 if (htab_find (visited_not_found, file_data) != NULL)
3932 continue;
3933 else if (htab_find (visited_found, file_data) != NULL)
3934 {
3935 per_cu->v.quick->mark = 1;
3936 continue;
3937 }
3938
3939 for (j = 0; j < file_data->num_file_names; ++j)
3940 {
da235a7c
JK
3941 const char *this_real_name;
3942
fbd9ab74 3943 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3944 {
3945 per_cu->v.quick->mark = 1;
3946 break;
3947 }
da235a7c
JK
3948
3949 /* Before we invoke realpath, which can get expensive when many
3950 files are involved, do a quick comparison of the basenames. */
3951 if (!basenames_may_differ
3952 && !file_matcher (lbasename (file_data->file_names[j]),
3953 data, 1))
3954 continue;
3955
3956 this_real_name = dw2_get_real_path (objfile, file_data, j);
3957 if (file_matcher (this_real_name, data, 0))
3958 {
3959 per_cu->v.quick->mark = 1;
3960 break;
3961 }
24c79950
TT
3962 }
3963
3964 slot = htab_find_slot (per_cu->v.quick->mark
3965 ? visited_found
3966 : visited_not_found,
3967 file_data, INSERT);
3968 *slot = file_data;
3969 }
3970
3971 do_cleanups (cleanup);
3972 }
9291a0cd 3973
3876f04e 3974 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3975 {
3976 offset_type idx = 2 * iter;
3977 const char *name;
3978 offset_type *vec, vec_len, vec_idx;
8943b874 3979 int global_seen = 0;
9291a0cd 3980
61d96d7e
DE
3981 QUIT;
3982
3876f04e 3983 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3984 continue;
3985
3876f04e 3986 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3987
206f2a57 3988 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3989 continue;
3990
3991 /* The name was matched, now expand corresponding CUs that were
3992 marked. */
4b5246aa 3993 vec = (offset_type *) (index->constant_pool
3876f04e 3994 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3995 vec_len = MAYBE_SWAP (vec[0]);
3996 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3997 {
e254ef6a 3998 struct dwarf2_per_cu_data *per_cu;
156942c7 3999 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4000 /* This value is only valid for index versions >= 7. */
4001 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4002 gdb_index_symbol_kind symbol_kind =
4003 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4004 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4005 /* Only check the symbol attributes if they're present.
4006 Indices prior to version 7 don't record them,
4007 and indices >= 7 may elide them for certain symbols
4008 (gold does this). */
4009 int attrs_valid =
4010 (index->version >= 7
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4012
8943b874
DE
4013 /* Work around gold/15646. */
4014 if (attrs_valid)
4015 {
4016 if (!is_static && global_seen)
4017 continue;
4018 if (!is_static)
4019 global_seen = 1;
4020 }
4021
3190f0c6
DE
4022 /* Only check the symbol's kind if it has one. */
4023 if (attrs_valid)
156942c7
DE
4024 {
4025 switch (kind)
4026 {
4027 case VARIABLES_DOMAIN:
4028 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4029 continue;
4030 break;
4031 case FUNCTIONS_DOMAIN:
4032 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4033 continue;
4034 break;
4035 case TYPES_DOMAIN:
4036 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4037 continue;
4038 break;
4039 default:
4040 break;
4041 }
4042 }
4043
3190f0c6
DE
4044 /* Don't crash on bad data. */
4045 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4046 + dwarf2_per_objfile->n_type_units))
4047 {
4048 complaint (&symfile_complaints,
4049 _(".gdb_index entry has bad CU index"
4262abfb 4050 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4051 continue;
4052 }
4053
8832e7e3 4054 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4055 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4056 {
4057 int symtab_was_null =
4058 (per_cu->v.quick->compunit_symtab == NULL);
4059
4060 dw2_instantiate_symtab (per_cu);
4061
4062 if (expansion_notify != NULL
4063 && symtab_was_null
4064 && per_cu->v.quick->compunit_symtab != NULL)
4065 {
4066 expansion_notify (per_cu->v.quick->compunit_symtab,
4067 data);
4068 }
4069 }
9291a0cd
TT
4070 }
4071 }
4072}
4073
43f3e411 4074/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4075 symtab. */
4076
43f3e411
DE
4077static struct compunit_symtab *
4078recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4079 CORE_ADDR pc)
9703b513
TT
4080{
4081 int i;
4082
43f3e411
DE
4083 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4084 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4085 return cust;
9703b513 4086
43f3e411 4087 if (cust->includes == NULL)
a3ec0bb1
DE
4088 return NULL;
4089
43f3e411 4090 for (i = 0; cust->includes[i]; ++i)
9703b513 4091 {
43f3e411 4092 struct compunit_symtab *s = cust->includes[i];
9703b513 4093
43f3e411 4094 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4095 if (s != NULL)
4096 return s;
4097 }
4098
4099 return NULL;
4100}
4101
43f3e411
DE
4102static struct compunit_symtab *
4103dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4104 struct bound_minimal_symbol msymbol,
4105 CORE_ADDR pc,
4106 struct obj_section *section,
4107 int warn_if_readin)
9291a0cd
TT
4108{
4109 struct dwarf2_per_cu_data *data;
43f3e411 4110 struct compunit_symtab *result;
9291a0cd
TT
4111
4112 dw2_setup (objfile);
4113
4114 if (!objfile->psymtabs_addrmap)
4115 return NULL;
4116
9a3c8263
SM
4117 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4118 pc);
9291a0cd
TT
4119 if (!data)
4120 return NULL;
4121
43f3e411 4122 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4123 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4124 paddress (get_objfile_arch (objfile), pc));
4125
43f3e411
DE
4126 result
4127 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4128 pc);
9703b513
TT
4129 gdb_assert (result != NULL);
4130 return result;
9291a0cd
TT
4131}
4132
9291a0cd 4133static void
44b13c5a 4134dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4135 void *data, int need_fullname)
9291a0cd
TT
4136{
4137 int i;
24c79950
TT
4138 struct cleanup *cleanup;
4139 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4140 NULL, xcalloc, xfree);
9291a0cd 4141
24c79950 4142 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4143 dw2_setup (objfile);
ae2de4f8 4144
848e3e78
DE
4145 /* The rule is CUs specify all the files, including those used by
4146 any TU, so there's no need to scan TUs here.
4147 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4148
848e3e78 4149 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4150 {
8832e7e3 4151 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4152
43f3e411 4153 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4154 {
4155 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4156 INSERT);
4157
4158 *slot = per_cu->v.quick->file_names;
4159 }
4160 }
4161
848e3e78 4162 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4163 {
4164 int j;
8832e7e3 4165 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4166 struct quick_file_names *file_data;
24c79950 4167 void **slot;
9291a0cd 4168
3d7bb9d9 4169 /* We only need to look at symtabs not already expanded. */
43f3e411 4170 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4171 continue;
4172
e4a48d9d 4173 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4174 if (file_data == NULL)
9291a0cd
TT
4175 continue;
4176
24c79950
TT
4177 slot = htab_find_slot (visited, file_data, INSERT);
4178 if (*slot)
4179 {
4180 /* Already visited. */
4181 continue;
4182 }
4183 *slot = file_data;
4184
7b9f3c50 4185 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4186 {
74e2f255
DE
4187 const char *this_real_name;
4188
4189 if (need_fullname)
4190 this_real_name = dw2_get_real_path (objfile, file_data, j);
4191 else
4192 this_real_name = NULL;
7b9f3c50 4193 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4194 }
4195 }
24c79950
TT
4196
4197 do_cleanups (cleanup);
9291a0cd
TT
4198}
4199
4200static int
4201dw2_has_symbols (struct objfile *objfile)
4202{
4203 return 1;
4204}
4205
4206const struct quick_symbol_functions dwarf2_gdb_index_functions =
4207{
4208 dw2_has_symbols,
4209 dw2_find_last_source_symtab,
4210 dw2_forget_cached_source_info,
f8eba3c6 4211 dw2_map_symtabs_matching_filename,
9291a0cd 4212 dw2_lookup_symbol,
9291a0cd
TT
4213 dw2_print_stats,
4214 dw2_dump,
4215 dw2_relocate,
4216 dw2_expand_symtabs_for_function,
4217 dw2_expand_all_symtabs,
652a8996 4218 dw2_expand_symtabs_with_fullname,
40658b94 4219 dw2_map_matching_symbols,
9291a0cd 4220 dw2_expand_symtabs_matching,
43f3e411 4221 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4222 dw2_map_symbol_filenames
4223};
4224
4225/* Initialize for reading DWARF for this objfile. Return 0 if this
4226 file will use psymtabs, or 1 if using the GNU index. */
4227
4228int
4229dwarf2_initialize_objfile (struct objfile *objfile)
4230{
4231 /* If we're about to read full symbols, don't bother with the
4232 indices. In this case we also don't care if some other debug
4233 format is making psymtabs, because they are all about to be
4234 expanded anyway. */
4235 if ((objfile->flags & OBJF_READNOW))
4236 {
4237 int i;
4238
4239 dwarf2_per_objfile->using_index = 1;
4240 create_all_comp_units (objfile);
0e50663e 4241 create_all_type_units (objfile);
7b9f3c50
DE
4242 dwarf2_per_objfile->quick_file_names_table =
4243 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4244
1fd400ff 4245 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4246 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4247 {
8832e7e3 4248 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4249
e254ef6a
DE
4250 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4251 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4252 }
4253
4254 /* Return 1 so that gdb sees the "quick" functions. However,
4255 these functions will be no-ops because we will have expanded
4256 all symtabs. */
4257 return 1;
4258 }
4259
4260 if (dwarf2_read_index (objfile))
4261 return 1;
4262
9291a0cd
TT
4263 return 0;
4264}
4265
4266\f
4267
dce234bc
PP
4268/* Build a partial symbol table. */
4269
4270void
f29dff0a 4271dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4272{
c9bf0622 4273
f29dff0a 4274 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4275 {
4276 init_psymbol_list (objfile, 1024);
4277 }
4278
492d29ea 4279 TRY
c9bf0622
TT
4280 {
4281 /* This isn't really ideal: all the data we allocate on the
4282 objfile's obstack is still uselessly kept around. However,
4283 freeing it seems unsafe. */
4284 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4285
4286 dwarf2_build_psymtabs_hard (objfile);
4287 discard_cleanups (cleanups);
4288 }
492d29ea
PA
4289 CATCH (except, RETURN_MASK_ERROR)
4290 {
4291 exception_print (gdb_stderr, except);
4292 }
4293 END_CATCH
c906108c 4294}
c906108c 4295
1ce1cefd
DE
4296/* Return the total length of the CU described by HEADER. */
4297
4298static unsigned int
4299get_cu_length (const struct comp_unit_head *header)
4300{
4301 return header->initial_length_size + header->length;
4302}
4303
45452591
DE
4304/* Return TRUE if OFFSET is within CU_HEADER. */
4305
4306static inline int
b64f50a1 4307offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4308{
b64f50a1 4309 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4310 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4311
b64f50a1 4312 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4313}
4314
3b80fe9b
DE
4315/* Find the base address of the compilation unit for range lists and
4316 location lists. It will normally be specified by DW_AT_low_pc.
4317 In DWARF-3 draft 4, the base address could be overridden by
4318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4319 compilation units with discontinuous ranges. */
4320
4321static void
4322dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4323{
4324 struct attribute *attr;
4325
4326 cu->base_known = 0;
4327 cu->base_address = 0;
4328
4329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4330 if (attr)
4331 {
31aa7e4e 4332 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4333 cu->base_known = 1;
4334 }
4335 else
4336 {
4337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4338 if (attr)
4339 {
31aa7e4e 4340 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4341 cu->base_known = 1;
4342 }
4343 }
4344}
4345
93311388
DE
4346/* Read in the comp unit header information from the debug_info at info_ptr.
4347 NOTE: This leaves members offset, first_die_offset to be filled in
4348 by the caller. */
107d2387 4349
d521ce57 4350static const gdb_byte *
107d2387 4351read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4352 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4353{
4354 int signed_addr;
891d2f0b 4355 unsigned int bytes_read;
c764a876
DE
4356
4357 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4358 cu_header->initial_length_size = bytes_read;
4359 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4360 info_ptr += bytes_read;
107d2387
AC
4361 cu_header->version = read_2_bytes (abfd, info_ptr);
4362 info_ptr += 2;
b64f50a1
JK
4363 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4364 &bytes_read);
613e1657 4365 info_ptr += bytes_read;
107d2387
AC
4366 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4367 info_ptr += 1;
4368 signed_addr = bfd_get_sign_extend_vma (abfd);
4369 if (signed_addr < 0)
8e65ff28 4370 internal_error (__FILE__, __LINE__,
e2e0b3e5 4371 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4372 cu_header->signed_addr_p = signed_addr;
c764a876 4373
107d2387
AC
4374 return info_ptr;
4375}
4376
36586728
TT
4377/* Helper function that returns the proper abbrev section for
4378 THIS_CU. */
4379
4380static struct dwarf2_section_info *
4381get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4382{
4383 struct dwarf2_section_info *abbrev;
4384
4385 if (this_cu->is_dwz)
4386 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4387 else
4388 abbrev = &dwarf2_per_objfile->abbrev;
4389
4390 return abbrev;
4391}
4392
9ff913ba
DE
4393/* Subroutine of read_and_check_comp_unit_head and
4394 read_and_check_type_unit_head to simplify them.
4395 Perform various error checking on the header. */
4396
4397static void
4398error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4399 struct dwarf2_section_info *section,
4400 struct dwarf2_section_info *abbrev_section)
9ff913ba 4401{
a32a8923 4402 const char *filename = get_section_file_name (section);
9ff913ba
DE
4403
4404 if (header->version != 2 && header->version != 3 && header->version != 4)
4405 error (_("Dwarf Error: wrong version in compilation unit header "
4406 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4407 filename);
4408
b64f50a1 4409 if (header->abbrev_offset.sect_off
36586728 4410 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4411 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4412 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4413 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4414 filename);
4415
4416 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4417 avoid potential 32-bit overflow. */
1ce1cefd 4418 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4419 > section->size)
4420 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4421 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4422 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4423 filename);
4424}
4425
4426/* Read in a CU/TU header and perform some basic error checking.
4427 The contents of the header are stored in HEADER.
4428 The result is a pointer to the start of the first DIE. */
adabb602 4429
d521ce57 4430static const gdb_byte *
9ff913ba
DE
4431read_and_check_comp_unit_head (struct comp_unit_head *header,
4432 struct dwarf2_section_info *section,
4bdcc0c1 4433 struct dwarf2_section_info *abbrev_section,
d521ce57 4434 const gdb_byte *info_ptr,
9ff913ba 4435 int is_debug_types_section)
72bf9492 4436{
d521ce57 4437 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4438 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4439
b64f50a1 4440 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4441
72bf9492
DJ
4442 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4443
460c1c54
CC
4444 /* If we're reading a type unit, skip over the signature and
4445 type_offset fields. */
b0df02fd 4446 if (is_debug_types_section)
460c1c54
CC
4447 info_ptr += 8 /*signature*/ + header->offset_size;
4448
b64f50a1 4449 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4450
4bdcc0c1 4451 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4452
4453 return info_ptr;
4454}
4455
348e048f
DE
4456/* Read in the types comp unit header information from .debug_types entry at
4457 types_ptr. The result is a pointer to one past the end of the header. */
4458
d521ce57 4459static const gdb_byte *
9ff913ba
DE
4460read_and_check_type_unit_head (struct comp_unit_head *header,
4461 struct dwarf2_section_info *section,
4bdcc0c1 4462 struct dwarf2_section_info *abbrev_section,
d521ce57 4463 const gdb_byte *info_ptr,
dee91e82
DE
4464 ULONGEST *signature,
4465 cu_offset *type_offset_in_tu)
348e048f 4466{
d521ce57 4467 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4468 bfd *abfd = get_section_bfd_owner (section);
348e048f 4469
b64f50a1 4470 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4471
9ff913ba 4472 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4473
9ff913ba
DE
4474 /* If we're reading a type unit, skip over the signature and
4475 type_offset fields. */
4476 if (signature != NULL)
4477 *signature = read_8_bytes (abfd, info_ptr);
4478 info_ptr += 8;
dee91e82
DE
4479 if (type_offset_in_tu != NULL)
4480 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4481 header->offset_size);
9ff913ba
DE
4482 info_ptr += header->offset_size;
4483
b64f50a1 4484 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4485
4bdcc0c1 4486 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4487
4488 return info_ptr;
348e048f
DE
4489}
4490
f4dc4d17
DE
4491/* Fetch the abbreviation table offset from a comp or type unit header. */
4492
4493static sect_offset
4494read_abbrev_offset (struct dwarf2_section_info *section,
4495 sect_offset offset)
4496{
a32a8923 4497 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4498 const gdb_byte *info_ptr;
ac298888 4499 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4500 sect_offset abbrev_offset;
4501
4502 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4503 info_ptr = section->buffer + offset.sect_off;
ac298888 4504 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4505 offset_size = initial_length_size == 4 ? 4 : 8;
4506 info_ptr += initial_length_size + 2 /*version*/;
4507 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4508 return abbrev_offset;
4509}
4510
aaa75496
JB
4511/* Allocate a new partial symtab for file named NAME and mark this new
4512 partial symtab as being an include of PST. */
4513
4514static void
d521ce57 4515dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4516 struct objfile *objfile)
4517{
4518 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4519
fbd9ab74
JK
4520 if (!IS_ABSOLUTE_PATH (subpst->filename))
4521 {
4522 /* It shares objfile->objfile_obstack. */
4523 subpst->dirname = pst->dirname;
4524 }
4525
aaa75496
JB
4526 subpst->textlow = 0;
4527 subpst->texthigh = 0;
4528
8d749320
SM
4529 subpst->dependencies
4530 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4531 subpst->dependencies[0] = pst;
4532 subpst->number_of_dependencies = 1;
4533
4534 subpst->globals_offset = 0;
4535 subpst->n_global_syms = 0;
4536 subpst->statics_offset = 0;
4537 subpst->n_static_syms = 0;
43f3e411 4538 subpst->compunit_symtab = NULL;
aaa75496
JB
4539 subpst->read_symtab = pst->read_symtab;
4540 subpst->readin = 0;
4541
4542 /* No private part is necessary for include psymtabs. This property
4543 can be used to differentiate between such include psymtabs and
10b3939b 4544 the regular ones. */
58a9656e 4545 subpst->read_symtab_private = NULL;
aaa75496
JB
4546}
4547
4548/* Read the Line Number Program data and extract the list of files
4549 included by the source file represented by PST. Build an include
d85a05f0 4550 partial symtab for each of these included files. */
aaa75496
JB
4551
4552static void
4553dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4554 struct die_info *die,
4555 struct partial_symtab *pst)
aaa75496 4556{
d85a05f0
DJ
4557 struct line_header *lh = NULL;
4558 struct attribute *attr;
aaa75496 4559
d85a05f0
DJ
4560 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4561 if (attr)
3019eac3 4562 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4563 if (lh == NULL)
4564 return; /* No linetable, so no includes. */
4565
c6da4cef 4566 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4567 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4568
4569 free_line_header (lh);
4570}
4571
348e048f 4572static hashval_t
52dc124a 4573hash_signatured_type (const void *item)
348e048f 4574{
9a3c8263
SM
4575 const struct signatured_type *sig_type
4576 = (const struct signatured_type *) item;
9a619af0 4577
348e048f 4578 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4579 return sig_type->signature;
348e048f
DE
4580}
4581
4582static int
52dc124a 4583eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4584{
9a3c8263
SM
4585 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4586 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4587
348e048f
DE
4588 return lhs->signature == rhs->signature;
4589}
4590
1fd400ff
TT
4591/* Allocate a hash table for signatured types. */
4592
4593static htab_t
673bfd45 4594allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4595{
4596 return htab_create_alloc_ex (41,
52dc124a
DE
4597 hash_signatured_type,
4598 eq_signatured_type,
1fd400ff
TT
4599 NULL,
4600 &objfile->objfile_obstack,
4601 hashtab_obstack_allocate,
4602 dummy_obstack_deallocate);
4603}
4604
d467dd73 4605/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4606
4607static int
d467dd73 4608add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4609{
9a3c8263
SM
4610 struct signatured_type *sigt = (struct signatured_type *) *slot;
4611 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4612
b4dd5633 4613 **datap = sigt;
1fd400ff
TT
4614 ++*datap;
4615
4616 return 1;
4617}
4618
c88ee1f0
DE
4619/* Create the hash table of all entries in the .debug_types
4620 (or .debug_types.dwo) section(s).
4621 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4622 otherwise it is NULL.
4623
4624 The result is a pointer to the hash table or NULL if there are no types.
4625
4626 Note: This function processes DWO files only, not DWP files. */
348e048f 4627
3019eac3
DE
4628static htab_t
4629create_debug_types_hash_table (struct dwo_file *dwo_file,
4630 VEC (dwarf2_section_info_def) *types)
348e048f 4631{
3019eac3 4632 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4633 htab_t types_htab = NULL;
8b70b953
TT
4634 int ix;
4635 struct dwarf2_section_info *section;
4bdcc0c1 4636 struct dwarf2_section_info *abbrev_section;
348e048f 4637
3019eac3
DE
4638 if (VEC_empty (dwarf2_section_info_def, types))
4639 return NULL;
348e048f 4640
4bdcc0c1
DE
4641 abbrev_section = (dwo_file != NULL
4642 ? &dwo_file->sections.abbrev
4643 : &dwarf2_per_objfile->abbrev);
4644
b4f54984 4645 if (dwarf_read_debug)
09406207
DE
4646 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4647 dwo_file ? ".dwo" : "",
a32a8923 4648 get_section_file_name (abbrev_section));
09406207 4649
8b70b953 4650 for (ix = 0;
3019eac3 4651 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4652 ++ix)
4653 {
3019eac3 4654 bfd *abfd;
d521ce57 4655 const gdb_byte *info_ptr, *end_ptr;
348e048f 4656
8b70b953
TT
4657 dwarf2_read_section (objfile, section);
4658 info_ptr = section->buffer;
348e048f 4659
8b70b953
TT
4660 if (info_ptr == NULL)
4661 continue;
348e048f 4662
3019eac3 4663 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4664 not present, in which case the bfd is unknown. */
4665 abfd = get_section_bfd_owner (section);
3019eac3 4666
dee91e82
DE
4667 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4668 because we don't need to read any dies: the signature is in the
4669 header. */
8b70b953
TT
4670
4671 end_ptr = info_ptr + section->size;
4672 while (info_ptr < end_ptr)
4673 {
b64f50a1 4674 sect_offset offset;
3019eac3 4675 cu_offset type_offset_in_tu;
8b70b953 4676 ULONGEST signature;
52dc124a 4677 struct signatured_type *sig_type;
3019eac3 4678 struct dwo_unit *dwo_tu;
8b70b953 4679 void **slot;
d521ce57 4680 const gdb_byte *ptr = info_ptr;
9ff913ba 4681 struct comp_unit_head header;
dee91e82 4682 unsigned int length;
348e048f 4683
b64f50a1 4684 offset.sect_off = ptr - section->buffer;
348e048f 4685
8b70b953 4686 /* We need to read the type's signature in order to build the hash
9ff913ba 4687 table, but we don't need anything else just yet. */
348e048f 4688
4bdcc0c1
DE
4689 ptr = read_and_check_type_unit_head (&header, section,
4690 abbrev_section, ptr,
3019eac3 4691 &signature, &type_offset_in_tu);
6caca83c 4692
1ce1cefd 4693 length = get_cu_length (&header);
dee91e82 4694
6caca83c 4695 /* Skip dummy type units. */
dee91e82
DE
4696 if (ptr >= info_ptr + length
4697 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4698 {
1ce1cefd 4699 info_ptr += length;
6caca83c
CC
4700 continue;
4701 }
8b70b953 4702
0349ea22
DE
4703 if (types_htab == NULL)
4704 {
4705 if (dwo_file)
4706 types_htab = allocate_dwo_unit_table (objfile);
4707 else
4708 types_htab = allocate_signatured_type_table (objfile);
4709 }
4710
3019eac3
DE
4711 if (dwo_file)
4712 {
4713 sig_type = NULL;
4714 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4715 struct dwo_unit);
4716 dwo_tu->dwo_file = dwo_file;
4717 dwo_tu->signature = signature;
4718 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4719 dwo_tu->section = section;
3019eac3
DE
4720 dwo_tu->offset = offset;
4721 dwo_tu->length = length;
4722 }
4723 else
4724 {
4725 /* N.B.: type_offset is not usable if this type uses a DWO file.
4726 The real type_offset is in the DWO file. */
4727 dwo_tu = NULL;
4728 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4729 struct signatured_type);
4730 sig_type->signature = signature;
4731 sig_type->type_offset_in_tu = type_offset_in_tu;
4732 sig_type->per_cu.objfile = objfile;
4733 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4734 sig_type->per_cu.section = section;
3019eac3
DE
4735 sig_type->per_cu.offset = offset;
4736 sig_type->per_cu.length = length;
4737 }
8b70b953 4738
3019eac3
DE
4739 slot = htab_find_slot (types_htab,
4740 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4741 INSERT);
8b70b953
TT
4742 gdb_assert (slot != NULL);
4743 if (*slot != NULL)
4744 {
3019eac3
DE
4745 sect_offset dup_offset;
4746
4747 if (dwo_file)
4748 {
9a3c8263
SM
4749 const struct dwo_unit *dup_tu
4750 = (const struct dwo_unit *) *slot;
3019eac3
DE
4751
4752 dup_offset = dup_tu->offset;
4753 }
4754 else
4755 {
9a3c8263
SM
4756 const struct signatured_type *dup_tu
4757 = (const struct signatured_type *) *slot;
3019eac3
DE
4758
4759 dup_offset = dup_tu->per_cu.offset;
4760 }
b3c8eb43 4761
8b70b953 4762 complaint (&symfile_complaints,
c88ee1f0 4763 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4764 " the entry at offset 0x%x, signature %s"),
3019eac3 4765 offset.sect_off, dup_offset.sect_off,
4031ecc5 4766 hex_string (signature));
8b70b953 4767 }
3019eac3 4768 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4769
b4f54984 4770 if (dwarf_read_debug > 1)
4031ecc5 4771 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4772 offset.sect_off,
4031ecc5 4773 hex_string (signature));
348e048f 4774
dee91e82 4775 info_ptr += length;
8b70b953 4776 }
348e048f
DE
4777 }
4778
3019eac3
DE
4779 return types_htab;
4780}
4781
4782/* Create the hash table of all entries in the .debug_types section,
4783 and initialize all_type_units.
4784 The result is zero if there is an error (e.g. missing .debug_types section),
4785 otherwise non-zero. */
4786
4787static int
4788create_all_type_units (struct objfile *objfile)
4789{
4790 htab_t types_htab;
b4dd5633 4791 struct signatured_type **iter;
3019eac3
DE
4792
4793 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4794 if (types_htab == NULL)
4795 {
4796 dwarf2_per_objfile->signatured_types = NULL;
4797 return 0;
4798 }
4799
348e048f
DE
4800 dwarf2_per_objfile->signatured_types = types_htab;
4801
6aa5f3a6
DE
4802 dwarf2_per_objfile->n_type_units
4803 = dwarf2_per_objfile->n_allocated_type_units
4804 = htab_elements (types_htab);
8d749320
SM
4805 dwarf2_per_objfile->all_type_units =
4806 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4807 iter = &dwarf2_per_objfile->all_type_units[0];
4808 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4809 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4810 == dwarf2_per_objfile->n_type_units);
1fd400ff 4811
348e048f
DE
4812 return 1;
4813}
4814
6aa5f3a6
DE
4815/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4816 If SLOT is non-NULL, it is the entry to use in the hash table.
4817 Otherwise we find one. */
4818
4819static struct signatured_type *
4820add_type_unit (ULONGEST sig, void **slot)
4821{
4822 struct objfile *objfile = dwarf2_per_objfile->objfile;
4823 int n_type_units = dwarf2_per_objfile->n_type_units;
4824 struct signatured_type *sig_type;
4825
4826 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4827 ++n_type_units;
4828 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4829 {
4830 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4831 dwarf2_per_objfile->n_allocated_type_units = 1;
4832 dwarf2_per_objfile->n_allocated_type_units *= 2;
4833 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4834 = XRESIZEVEC (struct signatured_type *,
4835 dwarf2_per_objfile->all_type_units,
4836 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4837 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4838 }
4839 dwarf2_per_objfile->n_type_units = n_type_units;
4840
4841 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4842 struct signatured_type);
4843 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4844 sig_type->signature = sig;
4845 sig_type->per_cu.is_debug_types = 1;
4846 if (dwarf2_per_objfile->using_index)
4847 {
4848 sig_type->per_cu.v.quick =
4849 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4850 struct dwarf2_per_cu_quick_data);
4851 }
4852
4853 if (slot == NULL)
4854 {
4855 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4856 sig_type, INSERT);
4857 }
4858 gdb_assert (*slot == NULL);
4859 *slot = sig_type;
4860 /* The rest of sig_type must be filled in by the caller. */
4861 return sig_type;
4862}
4863
a2ce51a0
DE
4864/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4865 Fill in SIG_ENTRY with DWO_ENTRY. */
4866
4867static void
4868fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4869 struct signatured_type *sig_entry,
4870 struct dwo_unit *dwo_entry)
4871{
7ee85ab1 4872 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4873 gdb_assert (! sig_entry->per_cu.queued);
4874 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4875 if (dwarf2_per_objfile->using_index)
4876 {
4877 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4878 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4879 }
4880 else
4881 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4882 gdb_assert (sig_entry->signature == dwo_entry->signature);
4883 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4884 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4885 gdb_assert (sig_entry->dwo_unit == NULL);
4886
4887 sig_entry->per_cu.section = dwo_entry->section;
4888 sig_entry->per_cu.offset = dwo_entry->offset;
4889 sig_entry->per_cu.length = dwo_entry->length;
4890 sig_entry->per_cu.reading_dwo_directly = 1;
4891 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4892 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4893 sig_entry->dwo_unit = dwo_entry;
4894}
4895
4896/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4897 If we haven't read the TU yet, create the signatured_type data structure
4898 for a TU to be read in directly from a DWO file, bypassing the stub.
4899 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4900 using .gdb_index, then when reading a CU we want to stay in the DWO file
4901 containing that CU. Otherwise we could end up reading several other DWO
4902 files (due to comdat folding) to process the transitive closure of all the
4903 mentioned TUs, and that can be slow. The current DWO file will have every
4904 type signature that it needs.
a2ce51a0
DE
4905 We only do this for .gdb_index because in the psymtab case we already have
4906 to read all the DWOs to build the type unit groups. */
4907
4908static struct signatured_type *
4909lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910{
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 struct dwo_file *dwo_file;
4913 struct dwo_unit find_dwo_entry, *dwo_entry;
4914 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4915 void **slot;
a2ce51a0
DE
4916
4917 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4918
6aa5f3a6
DE
4919 /* If TU skeletons have been removed then we may not have read in any
4920 TUs yet. */
4921 if (dwarf2_per_objfile->signatured_types == NULL)
4922 {
4923 dwarf2_per_objfile->signatured_types
4924 = allocate_signatured_type_table (objfile);
4925 }
a2ce51a0
DE
4926
4927 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4928 Use the global signatured_types array to do our own comdat-folding
4929 of types. If this is the first time we're reading this TU, and
4930 the TU has an entry in .gdb_index, replace the recorded data from
4931 .gdb_index with this TU. */
a2ce51a0 4932
a2ce51a0 4933 find_sig_entry.signature = sig;
6aa5f3a6
DE
4934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4935 &find_sig_entry, INSERT);
9a3c8263 4936 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4937
4938 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4939 read. Don't reassign the global entry to point to this DWO if that's
4940 the case. Also note that if the TU is already being read, it may not
4941 have come from a DWO, the program may be a mix of Fission-compiled
4942 code and non-Fission-compiled code. */
4943
4944 /* Have we already tried to read this TU?
4945 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4946 needn't exist in the global table yet). */
4947 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4948 return sig_entry;
4949
6aa5f3a6
DE
4950 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4951 dwo_unit of the TU itself. */
4952 dwo_file = cu->dwo_unit->dwo_file;
4953
a2ce51a0
DE
4954 /* Ok, this is the first time we're reading this TU. */
4955 if (dwo_file->tus == NULL)
4956 return NULL;
4957 find_dwo_entry.signature = sig;
9a3c8263 4958 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4959 if (dwo_entry == NULL)
4960 return NULL;
4961
6aa5f3a6
DE
4962 /* If the global table doesn't have an entry for this TU, add one. */
4963 if (sig_entry == NULL)
4964 sig_entry = add_type_unit (sig, slot);
4965
a2ce51a0 4966 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4967 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4968 return sig_entry;
4969}
4970
a2ce51a0
DE
4971/* Subroutine of lookup_signatured_type.
4972 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4973 then try the DWP file. If the TU stub (skeleton) has been removed then
4974 it won't be in .gdb_index. */
a2ce51a0
DE
4975
4976static struct signatured_type *
4977lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4978{
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwp_file *dwp_file = get_dwp_file ();
4981 struct dwo_unit *dwo_entry;
4982 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4983 void **slot;
a2ce51a0
DE
4984
4985 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4986 gdb_assert (dwp_file != NULL);
4987
6aa5f3a6
DE
4988 /* If TU skeletons have been removed then we may not have read in any
4989 TUs yet. */
4990 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4991 {
6aa5f3a6
DE
4992 dwarf2_per_objfile->signatured_types
4993 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4994 }
4995
6aa5f3a6
DE
4996 find_sig_entry.signature = sig;
4997 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4998 &find_sig_entry, INSERT);
9a3c8263 4999 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5000
5001 /* Have we already tried to read this TU?
5002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5003 needn't exist in the global table yet). */
5004 if (sig_entry != NULL)
5005 return sig_entry;
5006
a2ce51a0
DE
5007 if (dwp_file->tus == NULL)
5008 return NULL;
57d63ce2
DE
5009 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5010 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5011 if (dwo_entry == NULL)
5012 return NULL;
5013
6aa5f3a6 5014 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5015 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5016
a2ce51a0
DE
5017 return sig_entry;
5018}
5019
380bca97 5020/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5021 Returns NULL if signature SIG is not present in the table.
5022 It is up to the caller to complain about this. */
348e048f
DE
5023
5024static struct signatured_type *
a2ce51a0 5025lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5026{
a2ce51a0
DE
5027 if (cu->dwo_unit
5028 && dwarf2_per_objfile->using_index)
5029 {
5030 /* We're in a DWO/DWP file, and we're using .gdb_index.
5031 These cases require special processing. */
5032 if (get_dwp_file () == NULL)
5033 return lookup_dwo_signatured_type (cu, sig);
5034 else
5035 return lookup_dwp_signatured_type (cu, sig);
5036 }
5037 else
5038 {
5039 struct signatured_type find_entry, *entry;
348e048f 5040
a2ce51a0
DE
5041 if (dwarf2_per_objfile->signatured_types == NULL)
5042 return NULL;
5043 find_entry.signature = sig;
9a3c8263
SM
5044 entry = ((struct signatured_type *)
5045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5046 return entry;
5047 }
348e048f 5048}
42e7ad6c
DE
5049\f
5050/* Low level DIE reading support. */
348e048f 5051
d85a05f0
DJ
5052/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5053
5054static void
5055init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5056 struct dwarf2_cu *cu,
3019eac3
DE
5057 struct dwarf2_section_info *section,
5058 struct dwo_file *dwo_file)
d85a05f0 5059{
fceca515 5060 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5061 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5062 reader->cu = cu;
3019eac3 5063 reader->dwo_file = dwo_file;
dee91e82
DE
5064 reader->die_section = section;
5065 reader->buffer = section->buffer;
f664829e 5066 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5067 reader->comp_dir = NULL;
d85a05f0
DJ
5068}
5069
b0c7bfa9
DE
5070/* Subroutine of init_cutu_and_read_dies to simplify it.
5071 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5072 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5073 already.
5074
5075 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5076 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5077 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5078 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5079 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5080 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5081 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5082 are filled in with the info of the DIE from the DWO file.
5083 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5084 provided an abbrev table to use.
5085 The result is non-zero if a valid (non-dummy) DIE was found. */
5086
5087static int
5088read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5089 struct dwo_unit *dwo_unit,
5090 int abbrev_table_provided,
5091 struct die_info *stub_comp_unit_die,
a2ce51a0 5092 const char *stub_comp_dir,
b0c7bfa9 5093 struct die_reader_specs *result_reader,
d521ce57 5094 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5095 struct die_info **result_comp_unit_die,
5096 int *result_has_children)
5097{
5098 struct objfile *objfile = dwarf2_per_objfile->objfile;
5099 struct dwarf2_cu *cu = this_cu->cu;
5100 struct dwarf2_section_info *section;
5101 bfd *abfd;
d521ce57 5102 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5103 ULONGEST signature; /* Or dwo_id. */
5104 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5105 int i,num_extra_attrs;
5106 struct dwarf2_section_info *dwo_abbrev_section;
5107 struct attribute *attr;
5108 struct die_info *comp_unit_die;
5109
b0aeadb3
DE
5110 /* At most one of these may be provided. */
5111 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5112
b0c7bfa9
DE
5113 /* These attributes aren't processed until later:
5114 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5115 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5116 referenced later. However, these attributes are found in the stub
5117 which we won't have later. In order to not impose this complication
5118 on the rest of the code, we read them here and copy them to the
5119 DWO CU/TU die. */
b0c7bfa9
DE
5120
5121 stmt_list = NULL;
5122 low_pc = NULL;
5123 high_pc = NULL;
5124 ranges = NULL;
5125 comp_dir = NULL;
5126
5127 if (stub_comp_unit_die != NULL)
5128 {
5129 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5130 DWO file. */
5131 if (! this_cu->is_debug_types)
5132 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5133 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5134 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5135 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5136 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5137
5138 /* There should be a DW_AT_addr_base attribute here (if needed).
5139 We need the value before we can process DW_FORM_GNU_addr_index. */
5140 cu->addr_base = 0;
5141 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5142 if (attr)
5143 cu->addr_base = DW_UNSND (attr);
5144
5145 /* There should be a DW_AT_ranges_base attribute here (if needed).
5146 We need the value before we can process DW_AT_ranges. */
5147 cu->ranges_base = 0;
5148 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5149 if (attr)
5150 cu->ranges_base = DW_UNSND (attr);
5151 }
a2ce51a0
DE
5152 else if (stub_comp_dir != NULL)
5153 {
5154 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5155 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5156 comp_dir->name = DW_AT_comp_dir;
5157 comp_dir->form = DW_FORM_string;
5158 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5159 DW_STRING (comp_dir) = stub_comp_dir;
5160 }
b0c7bfa9
DE
5161
5162 /* Set up for reading the DWO CU/TU. */
5163 cu->dwo_unit = dwo_unit;
5164 section = dwo_unit->section;
5165 dwarf2_read_section (objfile, section);
a32a8923 5166 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5167 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5168 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5169 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5170
5171 if (this_cu->is_debug_types)
5172 {
5173 ULONGEST header_signature;
5174 cu_offset type_offset_in_tu;
5175 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5176
5177 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr,
5180 &header_signature,
5181 &type_offset_in_tu);
a2ce51a0
DE
5182 /* This is not an assert because it can be caused by bad debug info. */
5183 if (sig_type->signature != header_signature)
5184 {
5185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5186 " TU at offset 0x%x [in module %s]"),
5187 hex_string (sig_type->signature),
5188 hex_string (header_signature),
5189 dwo_unit->offset.sect_off,
5190 bfd_get_filename (abfd));
5191 }
b0c7bfa9
DE
5192 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5193 /* For DWOs coming from DWP files, we don't know the CU length
5194 nor the type's offset in the TU until now. */
5195 dwo_unit->length = get_cu_length (&cu->header);
5196 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5197
5198 /* Establish the type offset that can be used to lookup the type.
5199 For DWO files, we don't know it until now. */
5200 sig_type->type_offset_in_section.sect_off =
5201 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5202 }
5203 else
5204 {
5205 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5206 dwo_abbrev_section,
5207 info_ptr, 0);
5208 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5209 /* For DWOs coming from DWP files, we don't know the CU length
5210 until now. */
5211 dwo_unit->length = get_cu_length (&cu->header);
5212 }
5213
02142a6c
DE
5214 /* Replace the CU's original abbrev table with the DWO's.
5215 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5216 if (abbrev_table_provided)
5217 {
5218 /* Don't free the provided abbrev table, the caller of
5219 init_cutu_and_read_dies owns it. */
5220 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5221 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5222 make_cleanup (dwarf2_free_abbrev_table, cu);
5223 }
5224 else
5225 {
5226 dwarf2_free_abbrev_table (cu);
5227 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5228 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5229 }
5230
5231 /* Read in the die, but leave space to copy over the attributes
5232 from the stub. This has the benefit of simplifying the rest of
5233 the code - all the work to maintain the illusion of a single
5234 DW_TAG_{compile,type}_unit DIE is done here. */
5235 num_extra_attrs = ((stmt_list != NULL)
5236 + (low_pc != NULL)
5237 + (high_pc != NULL)
5238 + (ranges != NULL)
5239 + (comp_dir != NULL));
5240 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5241 result_has_children, num_extra_attrs);
5242
5243 /* Copy over the attributes from the stub to the DIE we just read in. */
5244 comp_unit_die = *result_comp_unit_die;
5245 i = comp_unit_die->num_attrs;
5246 if (stmt_list != NULL)
5247 comp_unit_die->attrs[i++] = *stmt_list;
5248 if (low_pc != NULL)
5249 comp_unit_die->attrs[i++] = *low_pc;
5250 if (high_pc != NULL)
5251 comp_unit_die->attrs[i++] = *high_pc;
5252 if (ranges != NULL)
5253 comp_unit_die->attrs[i++] = *ranges;
5254 if (comp_dir != NULL)
5255 comp_unit_die->attrs[i++] = *comp_dir;
5256 comp_unit_die->num_attrs += num_extra_attrs;
5257
b4f54984 5258 if (dwarf_die_debug)
bf6af496
DE
5259 {
5260 fprintf_unfiltered (gdb_stdlog,
5261 "Read die from %s@0x%x of %s:\n",
a32a8923 5262 get_section_name (section),
bf6af496
DE
5263 (unsigned) (begin_info_ptr - section->buffer),
5264 bfd_get_filename (abfd));
b4f54984 5265 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5266 }
5267
a2ce51a0
DE
5268 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5269 TUs by skipping the stub and going directly to the entry in the DWO file.
5270 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5271 to get it via circuitous means. Blech. */
5272 if (comp_dir != NULL)
5273 result_reader->comp_dir = DW_STRING (comp_dir);
5274
b0c7bfa9
DE
5275 /* Skip dummy compilation units. */
5276 if (info_ptr >= begin_info_ptr + dwo_unit->length
5277 || peek_abbrev_code (abfd, info_ptr) == 0)
5278 return 0;
5279
5280 *result_info_ptr = info_ptr;
5281 return 1;
5282}
5283
5284/* Subroutine of init_cutu_and_read_dies to simplify it.
5285 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5286 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5287
5288static struct dwo_unit *
5289lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5290 struct die_info *comp_unit_die)
5291{
5292 struct dwarf2_cu *cu = this_cu->cu;
5293 struct attribute *attr;
5294 ULONGEST signature;
5295 struct dwo_unit *dwo_unit;
5296 const char *comp_dir, *dwo_name;
5297
a2ce51a0
DE
5298 gdb_assert (cu != NULL);
5299
b0c7bfa9 5300 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5301 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5302 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5303
5304 if (this_cu->is_debug_types)
5305 {
5306 struct signatured_type *sig_type;
5307
5308 /* Since this_cu is the first member of struct signatured_type,
5309 we can go from a pointer to one to a pointer to the other. */
5310 sig_type = (struct signatured_type *) this_cu;
5311 signature = sig_type->signature;
5312 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5313 }
5314 else
5315 {
5316 struct attribute *attr;
5317
5318 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5319 if (! attr)
5320 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5321 " [in module %s]"),
4262abfb 5322 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5323 signature = DW_UNSND (attr);
5324 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5325 signature);
5326 }
5327
b0c7bfa9
DE
5328 return dwo_unit;
5329}
5330
a2ce51a0 5331/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5332 See it for a description of the parameters.
5333 Read a TU directly from a DWO file, bypassing the stub.
5334
5335 Note: This function could be a little bit simpler if we shared cleanups
5336 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5337 to do, so we keep this function self-contained. Or we could move this
5338 into our caller, but it's complex enough already. */
a2ce51a0
DE
5339
5340static void
6aa5f3a6
DE
5341init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5342 int use_existing_cu, int keep,
a2ce51a0
DE
5343 die_reader_func_ftype *die_reader_func,
5344 void *data)
5345{
5346 struct dwarf2_cu *cu;
5347 struct signatured_type *sig_type;
6aa5f3a6 5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5349 struct die_reader_specs reader;
5350 const gdb_byte *info_ptr;
5351 struct die_info *comp_unit_die;
5352 int has_children;
5353
5354 /* Verify we can do the following downcast, and that we have the
5355 data we need. */
5356 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->dwo_unit != NULL);
5359
5360 cleanups = make_cleanup (null_cleanup, NULL);
5361
6aa5f3a6
DE
5362 if (use_existing_cu && this_cu->cu != NULL)
5363 {
5364 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5365 cu = this_cu->cu;
5366 /* There's no need to do the rereading_dwo_cu handling that
5367 init_cutu_and_read_dies does since we don't read the stub. */
5368 }
5369 else
5370 {
5371 /* If !use_existing_cu, this_cu->cu must be NULL. */
5372 gdb_assert (this_cu->cu == NULL);
8d749320 5373 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5374 init_one_comp_unit (cu, this_cu);
5375 /* If an error occurs while loading, release our storage. */
5376 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5377 }
5378
5379 /* A future optimization, if needed, would be to use an existing
5380 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5381 could share abbrev tables. */
a2ce51a0
DE
5382
5383 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5384 0 /* abbrev_table_provided */,
5385 NULL /* stub_comp_unit_die */,
5386 sig_type->dwo_unit->dwo_file->comp_dir,
5387 &reader, &info_ptr,
5388 &comp_unit_die, &has_children) == 0)
5389 {
5390 /* Dummy die. */
5391 do_cleanups (cleanups);
5392 return;
5393 }
5394
5395 /* All the "real" work is done here. */
5396 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5397
6aa5f3a6 5398 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5399 but the alternative is making the latter more complex.
5400 This function is only for the special case of using DWO files directly:
5401 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5402 if (free_cu_cleanup != NULL)
a2ce51a0 5403 {
6aa5f3a6
DE
5404 if (keep)
5405 {
5406 /* We've successfully allocated this compilation unit. Let our
5407 caller clean it up when finished with it. */
5408 discard_cleanups (free_cu_cleanup);
a2ce51a0 5409
6aa5f3a6
DE
5410 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5411 So we have to manually free the abbrev table. */
5412 dwarf2_free_abbrev_table (cu);
a2ce51a0 5413
6aa5f3a6
DE
5414 /* Link this CU into read_in_chain. */
5415 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5416 dwarf2_per_objfile->read_in_chain = this_cu;
5417 }
5418 else
5419 do_cleanups (free_cu_cleanup);
a2ce51a0 5420 }
a2ce51a0
DE
5421
5422 do_cleanups (cleanups);
5423}
5424
fd820528 5425/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5426 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5427
f4dc4d17
DE
5428 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5429 Otherwise the table specified in the comp unit header is read in and used.
5430 This is an optimization for when we already have the abbrev table.
5431
dee91e82
DE
5432 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5433 Otherwise, a new CU is allocated with xmalloc.
5434
5435 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5436 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5437
5438 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5439 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5440
70221824 5441static void
fd820528 5442init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5443 struct abbrev_table *abbrev_table,
fd820528
DE
5444 int use_existing_cu, int keep,
5445 die_reader_func_ftype *die_reader_func,
5446 void *data)
c906108c 5447{
dee91e82 5448 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5449 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5450 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5451 struct dwarf2_cu *cu;
d521ce57 5452 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5453 struct die_reader_specs reader;
d85a05f0 5454 struct die_info *comp_unit_die;
dee91e82 5455 int has_children;
d85a05f0 5456 struct attribute *attr;
365156ad 5457 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5458 struct signatured_type *sig_type = NULL;
4bdcc0c1 5459 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5460 /* Non-zero if CU currently points to a DWO file and we need to
5461 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5462 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5463 int rereading_dwo_cu = 0;
c906108c 5464
b4f54984 5465 if (dwarf_die_debug)
09406207
DE
5466 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5467 this_cu->is_debug_types ? "type" : "comp",
5468 this_cu->offset.sect_off);
5469
dee91e82
DE
5470 if (use_existing_cu)
5471 gdb_assert (keep);
23745b47 5472
a2ce51a0
DE
5473 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5474 file (instead of going through the stub), short-circuit all of this. */
5475 if (this_cu->reading_dwo_directly)
5476 {
5477 /* Narrow down the scope of possibilities to have to understand. */
5478 gdb_assert (this_cu->is_debug_types);
5479 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5480 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5481 die_reader_func, data);
a2ce51a0
DE
5482 return;
5483 }
5484
dee91e82
DE
5485 cleanups = make_cleanup (null_cleanup, NULL);
5486
5487 /* This is cheap if the section is already read in. */
5488 dwarf2_read_section (objfile, section);
5489
5490 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5491
5492 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5493
5494 if (use_existing_cu && this_cu->cu != NULL)
5495 {
5496 cu = this_cu->cu;
42e7ad6c
DE
5497 /* If this CU is from a DWO file we need to start over, we need to
5498 refetch the attributes from the skeleton CU.
5499 This could be optimized by retrieving those attributes from when we
5500 were here the first time: the previous comp_unit_die was stored in
5501 comp_unit_obstack. But there's no data yet that we need this
5502 optimization. */
5503 if (cu->dwo_unit != NULL)
5504 rereading_dwo_cu = 1;
dee91e82
DE
5505 }
5506 else
5507 {
5508 /* If !use_existing_cu, this_cu->cu must be NULL. */
5509 gdb_assert (this_cu->cu == NULL);
8d749320 5510 cu = XNEW (struct dwarf2_cu);
dee91e82 5511 init_one_comp_unit (cu, this_cu);
dee91e82 5512 /* If an error occurs while loading, release our storage. */
365156ad 5513 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5514 }
dee91e82 5515
b0c7bfa9 5516 /* Get the header. */
42e7ad6c
DE
5517 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5518 {
5519 /* We already have the header, there's no need to read it in again. */
5520 info_ptr += cu->header.first_die_offset.cu_off;
5521 }
5522 else
5523 {
3019eac3 5524 if (this_cu->is_debug_types)
dee91e82
DE
5525 {
5526 ULONGEST signature;
42e7ad6c 5527 cu_offset type_offset_in_tu;
dee91e82 5528
4bdcc0c1
DE
5529 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5530 abbrev_section, info_ptr,
42e7ad6c
DE
5531 &signature,
5532 &type_offset_in_tu);
dee91e82 5533
42e7ad6c
DE
5534 /* Since per_cu is the first member of struct signatured_type,
5535 we can go from a pointer to one to a pointer to the other. */
5536 sig_type = (struct signatured_type *) this_cu;
5537 gdb_assert (sig_type->signature == signature);
5538 gdb_assert (sig_type->type_offset_in_tu.cu_off
5539 == type_offset_in_tu.cu_off);
dee91e82
DE
5540 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5541
42e7ad6c
DE
5542 /* LENGTH has not been set yet for type units if we're
5543 using .gdb_index. */
1ce1cefd 5544 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5545
5546 /* Establish the type offset that can be used to lookup the type. */
5547 sig_type->type_offset_in_section.sect_off =
5548 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5549 }
5550 else
5551 {
4bdcc0c1
DE
5552 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5553 abbrev_section,
5554 info_ptr, 0);
dee91e82
DE
5555
5556 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5558 }
5559 }
10b3939b 5560
6caca83c 5561 /* Skip dummy compilation units. */
dee91e82 5562 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5563 || peek_abbrev_code (abfd, info_ptr) == 0)
5564 {
dee91e82 5565 do_cleanups (cleanups);
21b2bd31 5566 return;
6caca83c
CC
5567 }
5568
433df2d4
DE
5569 /* If we don't have them yet, read the abbrevs for this compilation unit.
5570 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5571 done. Note that it's important that if the CU had an abbrev table
5572 on entry we don't free it when we're done: Somewhere up the call stack
5573 it may be in use. */
f4dc4d17
DE
5574 if (abbrev_table != NULL)
5575 {
5576 gdb_assert (cu->abbrev_table == NULL);
5577 gdb_assert (cu->header.abbrev_offset.sect_off
5578 == abbrev_table->offset.sect_off);
5579 cu->abbrev_table = abbrev_table;
5580 }
5581 else if (cu->abbrev_table == NULL)
dee91e82 5582 {
4bdcc0c1 5583 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5584 make_cleanup (dwarf2_free_abbrev_table, cu);
5585 }
42e7ad6c
DE
5586 else if (rereading_dwo_cu)
5587 {
5588 dwarf2_free_abbrev_table (cu);
5589 dwarf2_read_abbrevs (cu, abbrev_section);
5590 }
af703f96 5591
dee91e82 5592 /* Read the top level CU/TU die. */
3019eac3 5593 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5594 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5595
b0c7bfa9
DE
5596 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5597 from the DWO file.
5598 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5599 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5600 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5601 if (attr)
5602 {
3019eac3 5603 struct dwo_unit *dwo_unit;
b0c7bfa9 5604 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5605
5606 if (has_children)
6a506a2d
DE
5607 {
5608 complaint (&symfile_complaints,
5609 _("compilation unit with DW_AT_GNU_dwo_name"
5610 " has children (offset 0x%x) [in module %s]"),
5611 this_cu->offset.sect_off, bfd_get_filename (abfd));
5612 }
b0c7bfa9 5613 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5614 if (dwo_unit != NULL)
3019eac3 5615 {
6a506a2d
DE
5616 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5617 abbrev_table != NULL,
a2ce51a0 5618 comp_unit_die, NULL,
6a506a2d
DE
5619 &reader, &info_ptr,
5620 &dwo_comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626 comp_unit_die = dwo_comp_unit_die;
5627 }
5628 else
5629 {
5630 /* Yikes, we couldn't find the rest of the DIE, we only have
5631 the stub. A complaint has already been logged. There's
5632 not much more we can do except pass on the stub DIE to
5633 die_reader_func. We don't want to throw an error on bad
5634 debug info. */
3019eac3
DE
5635 }
5636 }
5637
b0c7bfa9 5638 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5639 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5640
b0c7bfa9 5641 /* Done, clean up. */
365156ad 5642 if (free_cu_cleanup != NULL)
348e048f 5643 {
365156ad
TT
5644 if (keep)
5645 {
5646 /* We've successfully allocated this compilation unit. Let our
5647 caller clean it up when finished with it. */
5648 discard_cleanups (free_cu_cleanup);
dee91e82 5649
365156ad
TT
5650 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5651 So we have to manually free the abbrev table. */
5652 dwarf2_free_abbrev_table (cu);
dee91e82 5653
365156ad
TT
5654 /* Link this CU into read_in_chain. */
5655 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5656 dwarf2_per_objfile->read_in_chain = this_cu;
5657 }
5658 else
5659 do_cleanups (free_cu_cleanup);
348e048f 5660 }
365156ad
TT
5661
5662 do_cleanups (cleanups);
dee91e82
DE
5663}
5664
33e80786
DE
5665/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5666 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5667 to have already done the lookup to find the DWO file).
dee91e82
DE
5668
5669 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5670 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5671
5672 We fill in THIS_CU->length.
5673
5674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5675 linker) then DIE_READER_FUNC will not get called.
5676
5677 THIS_CU->cu is always freed when done.
3019eac3
DE
5678 This is done in order to not leave THIS_CU->cu in a state where we have
5679 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5680
5681static void
5682init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5683 struct dwo_file *dwo_file,
dee91e82
DE
5684 die_reader_func_ftype *die_reader_func,
5685 void *data)
5686{
5687 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5688 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5689 bfd *abfd = get_section_bfd_owner (section);
33e80786 5690 struct dwarf2_section_info *abbrev_section;
dee91e82 5691 struct dwarf2_cu cu;
d521ce57 5692 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5693 struct die_reader_specs reader;
5694 struct cleanup *cleanups;
5695 struct die_info *comp_unit_die;
5696 int has_children;
5697
b4f54984 5698 if (dwarf_die_debug)
09406207
DE
5699 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5700 this_cu->is_debug_types ? "type" : "comp",
5701 this_cu->offset.sect_off);
5702
dee91e82
DE
5703 gdb_assert (this_cu->cu == NULL);
5704
33e80786
DE
5705 abbrev_section = (dwo_file != NULL
5706 ? &dwo_file->sections.abbrev
5707 : get_abbrev_section_for_cu (this_cu));
5708
dee91e82
DE
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 init_one_comp_unit (&cu, this_cu);
5713
5714 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5715
5716 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5717 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5718 abbrev_section, info_ptr,
3019eac3 5719 this_cu->is_debug_types);
dee91e82 5720
1ce1cefd 5721 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5722
5723 /* Skip dummy compilation units. */
5724 if (info_ptr >= begin_info_ptr + this_cu->length
5725 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5726 {
dee91e82 5727 do_cleanups (cleanups);
21b2bd31 5728 return;
93311388 5729 }
72bf9492 5730
dee91e82
DE
5731 dwarf2_read_abbrevs (&cu, abbrev_section);
5732 make_cleanup (dwarf2_free_abbrev_table, &cu);
5733
3019eac3 5734 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5735 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5736
5737 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5738
5739 do_cleanups (cleanups);
5740}
5741
3019eac3
DE
5742/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5743 does not lookup the specified DWO file.
5744 This cannot be used to read DWO files.
dee91e82
DE
5745
5746 THIS_CU->cu is always freed when done.
3019eac3
DE
5747 This is done in order to not leave THIS_CU->cu in a state where we have
5748 to care whether it refers to the "main" CU or the DWO CU.
5749 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5750
5751static void
5752init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5753 die_reader_func_ftype *die_reader_func,
5754 void *data)
5755{
33e80786 5756 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5757}
0018ea6f
DE
5758\f
5759/* Type Unit Groups.
dee91e82 5760
0018ea6f
DE
5761 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5762 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5763 so that all types coming from the same compilation (.o file) are grouped
5764 together. A future step could be to put the types in the same symtab as
5765 the CU the types ultimately came from. */
ff013f42 5766
f4dc4d17
DE
5767static hashval_t
5768hash_type_unit_group (const void *item)
5769{
9a3c8263
SM
5770 const struct type_unit_group *tu_group
5771 = (const struct type_unit_group *) item;
f4dc4d17 5772
094b34ac 5773 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5774}
348e048f
DE
5775
5776static int
f4dc4d17 5777eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5778{
9a3c8263
SM
5779 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5780 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5781
094b34ac 5782 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5783}
348e048f 5784
f4dc4d17
DE
5785/* Allocate a hash table for type unit groups. */
5786
5787static htab_t
5788allocate_type_unit_groups_table (void)
5789{
5790 return htab_create_alloc_ex (3,
5791 hash_type_unit_group,
5792 eq_type_unit_group,
5793 NULL,
5794 &dwarf2_per_objfile->objfile->objfile_obstack,
5795 hashtab_obstack_allocate,
5796 dummy_obstack_deallocate);
5797}
dee91e82 5798
f4dc4d17
DE
5799/* Type units that don't have DW_AT_stmt_list are grouped into their own
5800 partial symtabs. We combine several TUs per psymtab to not let the size
5801 of any one psymtab grow too big. */
5802#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5803#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5804
094b34ac 5805/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5806 Create the type_unit_group object used to hold one or more TUs. */
5807
5808static struct type_unit_group *
094b34ac 5809create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5810{
5811 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5812 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5813 struct type_unit_group *tu_group;
f4dc4d17
DE
5814
5815 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5816 struct type_unit_group);
094b34ac 5817 per_cu = &tu_group->per_cu;
f4dc4d17 5818 per_cu->objfile = objfile;
f4dc4d17 5819
094b34ac
DE
5820 if (dwarf2_per_objfile->using_index)
5821 {
5822 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5823 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5824 }
5825 else
5826 {
5827 unsigned int line_offset = line_offset_struct.sect_off;
5828 struct partial_symtab *pst;
5829 char *name;
5830
5831 /* Give the symtab a useful name for debug purposes. */
5832 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5833 name = xstrprintf ("<type_units_%d>",
5834 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5835 else
5836 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5837
5838 pst = create_partial_symtab (per_cu, name);
5839 pst->anonymous = 1;
f4dc4d17 5840
094b34ac
DE
5841 xfree (name);
5842 }
f4dc4d17 5843
094b34ac
DE
5844 tu_group->hash.dwo_unit = cu->dwo_unit;
5845 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5846
5847 return tu_group;
5848}
5849
094b34ac
DE
5850/* Look up the type_unit_group for type unit CU, and create it if necessary.
5851 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5852
5853static struct type_unit_group *
ff39bb5e 5854get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5855{
5856 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5857 struct type_unit_group *tu_group;
5858 void **slot;
5859 unsigned int line_offset;
5860 struct type_unit_group type_unit_group_for_lookup;
5861
5862 if (dwarf2_per_objfile->type_unit_groups == NULL)
5863 {
5864 dwarf2_per_objfile->type_unit_groups =
5865 allocate_type_unit_groups_table ();
5866 }
5867
5868 /* Do we need to create a new group, or can we use an existing one? */
5869
5870 if (stmt_list)
5871 {
5872 line_offset = DW_UNSND (stmt_list);
5873 ++tu_stats->nr_symtab_sharers;
5874 }
5875 else
5876 {
5877 /* Ugh, no stmt_list. Rare, but we have to handle it.
5878 We can do various things here like create one group per TU or
5879 spread them over multiple groups to split up the expansion work.
5880 To avoid worst case scenarios (too many groups or too large groups)
5881 we, umm, group them in bunches. */
5882 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5883 | (tu_stats->nr_stmt_less_type_units
5884 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5885 ++tu_stats->nr_stmt_less_type_units;
5886 }
5887
094b34ac
DE
5888 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5889 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5890 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5891 &type_unit_group_for_lookup, INSERT);
5892 if (*slot != NULL)
5893 {
9a3c8263 5894 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5895 gdb_assert (tu_group != NULL);
5896 }
5897 else
5898 {
5899 sect_offset line_offset_struct;
5900
5901 line_offset_struct.sect_off = line_offset;
094b34ac 5902 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5903 *slot = tu_group;
5904 ++tu_stats->nr_symtabs;
5905 }
5906
5907 return tu_group;
5908}
0018ea6f
DE
5909\f
5910/* Partial symbol tables. */
5911
5912/* Create a psymtab named NAME and assign it to PER_CU.
5913
5914 The caller must fill in the following details:
5915 dirname, textlow, texthigh. */
5916
5917static struct partial_symtab *
5918create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5919{
5920 struct objfile *objfile = per_cu->objfile;
5921 struct partial_symtab *pst;
5922
18a94d75 5923 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5924 objfile->global_psymbols.next,
5925 objfile->static_psymbols.next);
5926
5927 pst->psymtabs_addrmap_supported = 1;
5928
5929 /* This is the glue that links PST into GDB's symbol API. */
5930 pst->read_symtab_private = per_cu;
5931 pst->read_symtab = dwarf2_read_symtab;
5932 per_cu->v.psymtab = pst;
5933
5934 return pst;
5935}
5936
b93601f3
TT
5937/* The DATA object passed to process_psymtab_comp_unit_reader has this
5938 type. */
5939
5940struct process_psymtab_comp_unit_data
5941{
5942 /* True if we are reading a DW_TAG_partial_unit. */
5943
5944 int want_partial_unit;
5945
5946 /* The "pretend" language that is used if the CU doesn't declare a
5947 language. */
5948
5949 enum language pretend_language;
5950};
5951
0018ea6f
DE
5952/* die_reader_func for process_psymtab_comp_unit. */
5953
5954static void
5955process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5956 const gdb_byte *info_ptr,
0018ea6f
DE
5957 struct die_info *comp_unit_die,
5958 int has_children,
5959 void *data)
5960{
5961 struct dwarf2_cu *cu = reader->cu;
5962 struct objfile *objfile = cu->objfile;
3e29f34a 5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5964 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5965 CORE_ADDR baseaddr;
5966 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5967 struct partial_symtab *pst;
3a2b436a 5968 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5969 const char *filename;
9a3c8263
SM
5970 struct process_psymtab_comp_unit_data *info
5971 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5972
b93601f3 5973 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5974 return;
5975
5976 gdb_assert (! per_cu->is_debug_types);
5977
b93601f3 5978 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5979
5980 cu->list_in_scope = &file_symbols;
5981
5982 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5983 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5984 if (filename == NULL)
0018ea6f 5985 filename = "";
0018ea6f
DE
5986
5987 pst = create_partial_symtab (per_cu, filename);
5988
5989 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5990 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5991
5992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5993
5994 dwarf2_find_base_address (comp_unit_die, cu);
5995
5996 /* Possibly set the default values of LOWPC and HIGHPC from
5997 `DW_AT_ranges'. */
3a2b436a
JK
5998 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5999 &best_highpc, cu, pst);
6000 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6001 /* Store the contiguous range if it is not empty; it can be empty for
6002 CUs with no code. */
6003 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6004 gdbarch_adjust_dwarf2_addr (gdbarch,
6005 best_lowpc + baseaddr),
6006 gdbarch_adjust_dwarf2_addr (gdbarch,
6007 best_highpc + baseaddr) - 1,
6008 pst);
0018ea6f
DE
6009
6010 /* Check if comp unit has_children.
6011 If so, read the rest of the partial symbols from this comp unit.
6012 If not, there's no more debug_info for this comp unit. */
6013 if (has_children)
6014 {
6015 struct partial_die_info *first_die;
6016 CORE_ADDR lowpc, highpc;
6017
6018 lowpc = ((CORE_ADDR) -1);
6019 highpc = ((CORE_ADDR) 0);
6020
6021 first_die = load_partial_dies (reader, info_ptr, 1);
6022
6023 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6024 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6025
6026 /* If we didn't find a lowpc, set it to highpc to avoid
6027 complaints from `maint check'. */
6028 if (lowpc == ((CORE_ADDR) -1))
6029 lowpc = highpc;
6030
6031 /* If the compilation unit didn't have an explicit address range,
6032 then use the information extracted from its child dies. */
e385593e 6033 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6034 {
6035 best_lowpc = lowpc;
6036 best_highpc = highpc;
6037 }
6038 }
3e29f34a
MR
6039 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6040 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6041
8763cede 6042 end_psymtab_common (objfile, pst);
0018ea6f
DE
6043
6044 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6045 {
6046 int i;
6047 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6048 struct dwarf2_per_cu_data *iter;
6049
6050 /* Fill in 'dependencies' here; we fill in 'users' in a
6051 post-pass. */
6052 pst->number_of_dependencies = len;
8d749320
SM
6053 pst->dependencies =
6054 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6055 for (i = 0;
6056 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6057 i, iter);
6058 ++i)
6059 pst->dependencies[i] = iter->v.psymtab;
6060
6061 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6062 }
6063
6064 /* Get the list of files included in the current compilation unit,
6065 and build a psymtab for each of them. */
6066 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6067
b4f54984 6068 if (dwarf_read_debug)
0018ea6f
DE
6069 {
6070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6071
6072 fprintf_unfiltered (gdb_stdlog,
6073 "Psymtab for %s unit @0x%x: %s - %s"
6074 ", %d global, %d static syms\n",
6075 per_cu->is_debug_types ? "type" : "comp",
6076 per_cu->offset.sect_off,
6077 paddress (gdbarch, pst->textlow),
6078 paddress (gdbarch, pst->texthigh),
6079 pst->n_global_syms, pst->n_static_syms);
6080 }
6081}
6082
6083/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6084 Process compilation unit THIS_CU for a psymtab. */
6085
6086static void
6087process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6088 int want_partial_unit,
6089 enum language pretend_language)
0018ea6f 6090{
b93601f3
TT
6091 struct process_psymtab_comp_unit_data info;
6092
0018ea6f
DE
6093 /* If this compilation unit was already read in, free the
6094 cached copy in order to read it in again. This is
6095 necessary because we skipped some symbols when we first
6096 read in the compilation unit (see load_partial_dies).
6097 This problem could be avoided, but the benefit is unclear. */
6098 if (this_cu->cu != NULL)
6099 free_one_cached_comp_unit (this_cu);
6100
6101 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6102 info.want_partial_unit = want_partial_unit;
6103 info.pretend_language = pretend_language;
0018ea6f
DE
6104 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6105 process_psymtab_comp_unit_reader,
b93601f3 6106 &info);
0018ea6f
DE
6107
6108 /* Age out any secondary CUs. */
6109 age_cached_comp_units ();
6110}
f4dc4d17
DE
6111
6112/* Reader function for build_type_psymtabs. */
6113
6114static void
6115build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6116 const gdb_byte *info_ptr,
f4dc4d17
DE
6117 struct die_info *type_unit_die,
6118 int has_children,
6119 void *data)
6120{
6121 struct objfile *objfile = dwarf2_per_objfile->objfile;
6122 struct dwarf2_cu *cu = reader->cu;
6123 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6124 struct signatured_type *sig_type;
f4dc4d17
DE
6125 struct type_unit_group *tu_group;
6126 struct attribute *attr;
6127 struct partial_die_info *first_die;
6128 CORE_ADDR lowpc, highpc;
6129 struct partial_symtab *pst;
6130
6131 gdb_assert (data == NULL);
0186c6a7
DE
6132 gdb_assert (per_cu->is_debug_types);
6133 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6134
6135 if (! has_children)
6136 return;
6137
6138 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6139 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6140
0186c6a7 6141 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6142
6143 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6144 cu->list_in_scope = &file_symbols;
6145 pst = create_partial_symtab (per_cu, "");
6146 pst->anonymous = 1;
6147
6148 first_die = load_partial_dies (reader, info_ptr, 1);
6149
6150 lowpc = (CORE_ADDR) -1;
6151 highpc = (CORE_ADDR) 0;
6152 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6153
8763cede 6154 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6155}
6156
73051182
DE
6157/* Struct used to sort TUs by their abbreviation table offset. */
6158
6159struct tu_abbrev_offset
6160{
6161 struct signatured_type *sig_type;
6162 sect_offset abbrev_offset;
6163};
6164
6165/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6166
6167static int
6168sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6169{
9a3c8263
SM
6170 const struct tu_abbrev_offset * const *a
6171 = (const struct tu_abbrev_offset * const*) ap;
6172 const struct tu_abbrev_offset * const *b
6173 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6174 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6175 unsigned int boff = (*b)->abbrev_offset.sect_off;
6176
6177 return (aoff > boff) - (aoff < boff);
6178}
6179
6180/* Efficiently read all the type units.
6181 This does the bulk of the work for build_type_psymtabs.
6182
6183 The efficiency is because we sort TUs by the abbrev table they use and
6184 only read each abbrev table once. In one program there are 200K TUs
6185 sharing 8K abbrev tables.
6186
6187 The main purpose of this function is to support building the
6188 dwarf2_per_objfile->type_unit_groups table.
6189 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6190 can collapse the search space by grouping them by stmt_list.
6191 The savings can be significant, in the same program from above the 200K TUs
6192 share 8K stmt_list tables.
6193
6194 FUNC is expected to call get_type_unit_group, which will create the
6195 struct type_unit_group if necessary and add it to
6196 dwarf2_per_objfile->type_unit_groups. */
6197
6198static void
6199build_type_psymtabs_1 (void)
6200{
73051182
DE
6201 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6202 struct cleanup *cleanups;
6203 struct abbrev_table *abbrev_table;
6204 sect_offset abbrev_offset;
6205 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6206 int i;
6207
6208 /* It's up to the caller to not call us multiple times. */
6209 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6210
6211 if (dwarf2_per_objfile->n_type_units == 0)
6212 return;
6213
6214 /* TUs typically share abbrev tables, and there can be way more TUs than
6215 abbrev tables. Sort by abbrev table to reduce the number of times we
6216 read each abbrev table in.
6217 Alternatives are to punt or to maintain a cache of abbrev tables.
6218 This is simpler and efficient enough for now.
6219
6220 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6221 symtab to use). Typically TUs with the same abbrev offset have the same
6222 stmt_list value too so in practice this should work well.
6223
6224 The basic algorithm here is:
6225
6226 sort TUs by abbrev table
6227 for each TU with same abbrev table:
6228 read abbrev table if first user
6229 read TU top level DIE
6230 [IWBN if DWO skeletons had DW_AT_stmt_list]
6231 call FUNC */
6232
b4f54984 6233 if (dwarf_read_debug)
73051182
DE
6234 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6235
6236 /* Sort in a separate table to maintain the order of all_type_units
6237 for .gdb_index: TU indices directly index all_type_units. */
6238 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6239 dwarf2_per_objfile->n_type_units);
6240 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6241 {
6242 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6243
6244 sorted_by_abbrev[i].sig_type = sig_type;
6245 sorted_by_abbrev[i].abbrev_offset =
6246 read_abbrev_offset (sig_type->per_cu.section,
6247 sig_type->per_cu.offset);
6248 }
6249 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6250 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6251 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6252
6253 abbrev_offset.sect_off = ~(unsigned) 0;
6254 abbrev_table = NULL;
6255 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6256
6257 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6258 {
6259 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6260
6261 /* Switch to the next abbrev table if necessary. */
6262 if (abbrev_table == NULL
6263 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6264 {
6265 if (abbrev_table != NULL)
6266 {
6267 abbrev_table_free (abbrev_table);
6268 /* Reset to NULL in case abbrev_table_read_table throws
6269 an error: abbrev_table_free_cleanup will get called. */
6270 abbrev_table = NULL;
6271 }
6272 abbrev_offset = tu->abbrev_offset;
6273 abbrev_table =
6274 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6275 abbrev_offset);
6276 ++tu_stats->nr_uniq_abbrev_tables;
6277 }
6278
6279 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6280 build_type_psymtabs_reader, NULL);
6281 }
6282
73051182 6283 do_cleanups (cleanups);
6aa5f3a6 6284}
73051182 6285
6aa5f3a6
DE
6286/* Print collected type unit statistics. */
6287
6288static void
6289print_tu_stats (void)
6290{
6291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6292
6293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6294 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6295 dwarf2_per_objfile->n_type_units);
6296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6297 tu_stats->nr_uniq_abbrev_tables);
6298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6299 tu_stats->nr_symtabs);
6300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6301 tu_stats->nr_symtab_sharers);
6302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6303 tu_stats->nr_stmt_less_type_units);
6304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6305 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6306}
6307
f4dc4d17
DE
6308/* Traversal function for build_type_psymtabs. */
6309
6310static int
6311build_type_psymtab_dependencies (void **slot, void *info)
6312{
6313 struct objfile *objfile = dwarf2_per_objfile->objfile;
6314 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6315 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6316 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6317 int len = VEC_length (sig_type_ptr, tu_group->tus);
6318 struct signatured_type *iter;
f4dc4d17
DE
6319 int i;
6320
6321 gdb_assert (len > 0);
0186c6a7 6322 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6323
6324 pst->number_of_dependencies = len;
8d749320
SM
6325 pst->dependencies =
6326 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6327 for (i = 0;
0186c6a7 6328 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6329 ++i)
6330 {
0186c6a7
DE
6331 gdb_assert (iter->per_cu.is_debug_types);
6332 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6333 iter->type_unit_group = tu_group;
f4dc4d17
DE
6334 }
6335
0186c6a7 6336 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6337
6338 return 1;
6339}
6340
6341/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6342 Build partial symbol tables for the .debug_types comp-units. */
6343
6344static void
6345build_type_psymtabs (struct objfile *objfile)
6346{
0e50663e 6347 if (! create_all_type_units (objfile))
348e048f
DE
6348 return;
6349
73051182 6350 build_type_psymtabs_1 ();
6aa5f3a6 6351}
f4dc4d17 6352
6aa5f3a6
DE
6353/* Traversal function for process_skeletonless_type_unit.
6354 Read a TU in a DWO file and build partial symbols for it. */
6355
6356static int
6357process_skeletonless_type_unit (void **slot, void *info)
6358{
6359 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6360 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6361 struct signatured_type find_entry, *entry;
6362
6363 /* If this TU doesn't exist in the global table, add it and read it in. */
6364
6365 if (dwarf2_per_objfile->signatured_types == NULL)
6366 {
6367 dwarf2_per_objfile->signatured_types
6368 = allocate_signatured_type_table (objfile);
6369 }
6370
6371 find_entry.signature = dwo_unit->signature;
6372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6373 INSERT);
6374 /* If we've already seen this type there's nothing to do. What's happening
6375 is we're doing our own version of comdat-folding here. */
6376 if (*slot != NULL)
6377 return 1;
6378
6379 /* This does the job that create_all_type_units would have done for
6380 this TU. */
6381 entry = add_type_unit (dwo_unit->signature, slot);
6382 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6383 *slot = entry;
6384
6385 /* This does the job that build_type_psymtabs_1 would have done. */
6386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6387 build_type_psymtabs_reader, NULL);
6388
6389 return 1;
6390}
6391
6392/* Traversal function for process_skeletonless_type_units. */
6393
6394static int
6395process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6396{
6397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6398
6399 if (dwo_file->tus != NULL)
6400 {
6401 htab_traverse_noresize (dwo_file->tus,
6402 process_skeletonless_type_unit, info);
6403 }
6404
6405 return 1;
6406}
6407
6408/* Scan all TUs of DWO files, verifying we've processed them.
6409 This is needed in case a TU was emitted without its skeleton.
6410 Note: This can't be done until we know what all the DWO files are. */
6411
6412static void
6413process_skeletonless_type_units (struct objfile *objfile)
6414{
6415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6416 if (get_dwp_file () == NULL
6417 && dwarf2_per_objfile->dwo_files != NULL)
6418 {
6419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6420 process_dwo_file_for_skeletonless_type_units,
6421 objfile);
6422 }
348e048f
DE
6423}
6424
60606b2c
TT
6425/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6426
6427static void
6428psymtabs_addrmap_cleanup (void *o)
6429{
9a3c8263 6430 struct objfile *objfile = (struct objfile *) o;
ec61707d 6431
60606b2c
TT
6432 objfile->psymtabs_addrmap = NULL;
6433}
6434
95554aad
TT
6435/* Compute the 'user' field for each psymtab in OBJFILE. */
6436
6437static void
6438set_partial_user (struct objfile *objfile)
6439{
6440 int i;
6441
6442 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6443 {
8832e7e3 6444 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6445 struct partial_symtab *pst = per_cu->v.psymtab;
6446 int j;
6447
36586728
TT
6448 if (pst == NULL)
6449 continue;
6450
95554aad
TT
6451 for (j = 0; j < pst->number_of_dependencies; ++j)
6452 {
6453 /* Set the 'user' field only if it is not already set. */
6454 if (pst->dependencies[j]->user == NULL)
6455 pst->dependencies[j]->user = pst;
6456 }
6457 }
6458}
6459
93311388
DE
6460/* Build the partial symbol table by doing a quick pass through the
6461 .debug_info and .debug_abbrev sections. */
72bf9492 6462
93311388 6463static void
c67a9c90 6464dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6465{
60606b2c
TT
6466 struct cleanup *back_to, *addrmap_cleanup;
6467 struct obstack temp_obstack;
21b2bd31 6468 int i;
93311388 6469
b4f54984 6470 if (dwarf_read_debug)
45cfd468
DE
6471 {
6472 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6473 objfile_name (objfile));
45cfd468
DE
6474 }
6475
98bfdba5
PA
6476 dwarf2_per_objfile->reading_partial_symbols = 1;
6477
be391dca 6478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6479
93311388
DE
6480 /* Any cached compilation units will be linked by the per-objfile
6481 read_in_chain. Make sure to free them when we're done. */
6482 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6483
348e048f
DE
6484 build_type_psymtabs (objfile);
6485
93311388 6486 create_all_comp_units (objfile);
c906108c 6487
60606b2c
TT
6488 /* Create a temporary address map on a temporary obstack. We later
6489 copy this to the final obstack. */
6490 obstack_init (&temp_obstack);
6491 make_cleanup_obstack_free (&temp_obstack);
6492 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6493 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6494
21b2bd31 6495 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6496 {
8832e7e3 6497 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6498
b93601f3 6499 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6500 }
ff013f42 6501
6aa5f3a6
DE
6502 /* This has to wait until we read the CUs, we need the list of DWOs. */
6503 process_skeletonless_type_units (objfile);
6504
6505 /* Now that all TUs have been processed we can fill in the dependencies. */
6506 if (dwarf2_per_objfile->type_unit_groups != NULL)
6507 {
6508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6509 build_type_psymtab_dependencies, NULL);
6510 }
6511
b4f54984 6512 if (dwarf_read_debug)
6aa5f3a6
DE
6513 print_tu_stats ();
6514
95554aad
TT
6515 set_partial_user (objfile);
6516
ff013f42
JK
6517 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6518 &objfile->objfile_obstack);
60606b2c 6519 discard_cleanups (addrmap_cleanup);
ff013f42 6520
ae038cb0 6521 do_cleanups (back_to);
45cfd468 6522
b4f54984 6523 if (dwarf_read_debug)
45cfd468 6524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6525 objfile_name (objfile));
ae038cb0
DJ
6526}
6527
3019eac3 6528/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6529
6530static void
dee91e82 6531load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6532 const gdb_byte *info_ptr,
dee91e82
DE
6533 struct die_info *comp_unit_die,
6534 int has_children,
6535 void *data)
ae038cb0 6536{
dee91e82 6537 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6538
95554aad 6539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6540
ae038cb0
DJ
6541 /* Check if comp unit has_children.
6542 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6543 If not, there's no more debug_info for this comp unit. */
d85a05f0 6544 if (has_children)
dee91e82
DE
6545 load_partial_dies (reader, info_ptr, 0);
6546}
98bfdba5 6547
dee91e82
DE
6548/* Load the partial DIEs for a secondary CU into memory.
6549 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6550
dee91e82
DE
6551static void
6552load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6553{
f4dc4d17
DE
6554 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6555 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6556}
6557
ae038cb0 6558static void
36586728
TT
6559read_comp_units_from_section (struct objfile *objfile,
6560 struct dwarf2_section_info *section,
6561 unsigned int is_dwz,
6562 int *n_allocated,
6563 int *n_comp_units,
6564 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6565{
d521ce57 6566 const gdb_byte *info_ptr;
a32a8923 6567 bfd *abfd = get_section_bfd_owner (section);
be391dca 6568
b4f54984 6569 if (dwarf_read_debug)
bf6af496 6570 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6571 get_section_name (section),
6572 get_section_file_name (section));
bf6af496 6573
36586728 6574 dwarf2_read_section (objfile, section);
ae038cb0 6575
36586728 6576 info_ptr = section->buffer;
6e70227d 6577
36586728 6578 while (info_ptr < section->buffer + section->size)
ae038cb0 6579 {
c764a876 6580 unsigned int length, initial_length_size;
ae038cb0 6581 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6582 sect_offset offset;
ae038cb0 6583
36586728 6584 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6585
6586 /* Read just enough information to find out where the next
6587 compilation unit is. */
36586728 6588 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6589
6590 /* Save the compilation unit for later lookup. */
8d749320 6591 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6592 memset (this_cu, 0, sizeof (*this_cu));
6593 this_cu->offset = offset;
c764a876 6594 this_cu->length = length + initial_length_size;
36586728 6595 this_cu->is_dwz = is_dwz;
9291a0cd 6596 this_cu->objfile = objfile;
8a0459fd 6597 this_cu->section = section;
ae038cb0 6598
36586728 6599 if (*n_comp_units == *n_allocated)
ae038cb0 6600 {
36586728 6601 *n_allocated *= 2;
224c3ddb
SM
6602 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6603 *all_comp_units, *n_allocated);
ae038cb0 6604 }
36586728
TT
6605 (*all_comp_units)[*n_comp_units] = this_cu;
6606 ++*n_comp_units;
ae038cb0
DJ
6607
6608 info_ptr = info_ptr + this_cu->length;
6609 }
36586728
TT
6610}
6611
6612/* Create a list of all compilation units in OBJFILE.
6613 This is only done for -readnow and building partial symtabs. */
6614
6615static void
6616create_all_comp_units (struct objfile *objfile)
6617{
6618 int n_allocated;
6619 int n_comp_units;
6620 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6621 struct dwz_file *dwz;
36586728
TT
6622
6623 n_comp_units = 0;
6624 n_allocated = 10;
8d749320 6625 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6626
6627 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6628 &n_allocated, &n_comp_units, &all_comp_units);
6629
4db1a1dc
TT
6630 dwz = dwarf2_get_dwz_file ();
6631 if (dwz != NULL)
6632 read_comp_units_from_section (objfile, &dwz->info, 1,
6633 &n_allocated, &n_comp_units,
6634 &all_comp_units);
ae038cb0 6635
8d749320
SM
6636 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6637 struct dwarf2_per_cu_data *,
6638 n_comp_units);
ae038cb0
DJ
6639 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6640 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6641 xfree (all_comp_units);
6642 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6643}
6644
5734ee8b 6645/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6646 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6647 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6648 DW_AT_ranges). See the comments of add_partial_subprogram on how
6649 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6650
72bf9492
DJ
6651static void
6652scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6653 CORE_ADDR *highpc, int set_addrmap,
6654 struct dwarf2_cu *cu)
c906108c 6655{
72bf9492 6656 struct partial_die_info *pdi;
c906108c 6657
91c24f0a
DC
6658 /* Now, march along the PDI's, descending into ones which have
6659 interesting children but skipping the children of the other ones,
6660 until we reach the end of the compilation unit. */
c906108c 6661
72bf9492 6662 pdi = first_die;
91c24f0a 6663
72bf9492
DJ
6664 while (pdi != NULL)
6665 {
6666 fixup_partial_die (pdi, cu);
c906108c 6667
f55ee35c 6668 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6669 children, so we need to look at them. Ditto for anonymous
6670 enums. */
933c6fe4 6671
72bf9492 6672 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6673 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6674 || pdi->tag == DW_TAG_imported_unit)
c906108c 6675 {
72bf9492 6676 switch (pdi->tag)
c906108c
SS
6677 {
6678 case DW_TAG_subprogram:
cdc07690 6679 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6680 break;
72929c62 6681 case DW_TAG_constant:
c906108c
SS
6682 case DW_TAG_variable:
6683 case DW_TAG_typedef:
91c24f0a 6684 case DW_TAG_union_type:
72bf9492 6685 if (!pdi->is_declaration)
63d06c5c 6686 {
72bf9492 6687 add_partial_symbol (pdi, cu);
63d06c5c
DC
6688 }
6689 break;
c906108c 6690 case DW_TAG_class_type:
680b30c7 6691 case DW_TAG_interface_type:
c906108c 6692 case DW_TAG_structure_type:
72bf9492 6693 if (!pdi->is_declaration)
c906108c 6694 {
72bf9492 6695 add_partial_symbol (pdi, cu);
c906108c 6696 }
e98c9e7c
TT
6697 if (cu->language == language_rust && pdi->has_children)
6698 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6699 set_addrmap, cu);
c906108c 6700 break;
91c24f0a 6701 case DW_TAG_enumeration_type:
72bf9492
DJ
6702 if (!pdi->is_declaration)
6703 add_partial_enumeration (pdi, cu);
c906108c
SS
6704 break;
6705 case DW_TAG_base_type:
a02abb62 6706 case DW_TAG_subrange_type:
c906108c 6707 /* File scope base type definitions are added to the partial
c5aa993b 6708 symbol table. */
72bf9492 6709 add_partial_symbol (pdi, cu);
c906108c 6710 break;
d9fa45fe 6711 case DW_TAG_namespace:
cdc07690 6712 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6713 break;
5d7cb8df 6714 case DW_TAG_module:
cdc07690 6715 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6716 break;
95554aad
TT
6717 case DW_TAG_imported_unit:
6718 {
6719 struct dwarf2_per_cu_data *per_cu;
6720
f4dc4d17
DE
6721 /* For now we don't handle imported units in type units. */
6722 if (cu->per_cu->is_debug_types)
6723 {
6724 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6725 " supported in type units [in module %s]"),
4262abfb 6726 objfile_name (cu->objfile));
f4dc4d17
DE
6727 }
6728
95554aad 6729 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6730 pdi->is_dwz,
95554aad
TT
6731 cu->objfile);
6732
6733 /* Go read the partial unit, if needed. */
6734 if (per_cu->v.psymtab == NULL)
b93601f3 6735 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6736
f4dc4d17 6737 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6738 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6739 }
6740 break;
74921315
KS
6741 case DW_TAG_imported_declaration:
6742 add_partial_symbol (pdi, cu);
6743 break;
c906108c
SS
6744 default:
6745 break;
6746 }
6747 }
6748
72bf9492
DJ
6749 /* If the die has a sibling, skip to the sibling. */
6750
6751 pdi = pdi->die_sibling;
6752 }
6753}
6754
6755/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6756
72bf9492 6757 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6758 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6759 Enumerators are an exception; they use the scope of their parent
6760 enumeration type, i.e. the name of the enumeration type is not
6761 prepended to the enumerator.
91c24f0a 6762
72bf9492
DJ
6763 There are two complexities. One is DW_AT_specification; in this
6764 case "parent" means the parent of the target of the specification,
6765 instead of the direct parent of the DIE. The other is compilers
6766 which do not emit DW_TAG_namespace; in this case we try to guess
6767 the fully qualified name of structure types from their members'
6768 linkage names. This must be done using the DIE's children rather
6769 than the children of any DW_AT_specification target. We only need
6770 to do this for structures at the top level, i.e. if the target of
6771 any DW_AT_specification (if any; otherwise the DIE itself) does not
6772 have a parent. */
6773
6774/* Compute the scope prefix associated with PDI's parent, in
6775 compilation unit CU. The result will be allocated on CU's
6776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6777 field. NULL is returned if no prefix is necessary. */
15d034d0 6778static const char *
72bf9492
DJ
6779partial_die_parent_scope (struct partial_die_info *pdi,
6780 struct dwarf2_cu *cu)
6781{
15d034d0 6782 const char *grandparent_scope;
72bf9492 6783 struct partial_die_info *parent, *real_pdi;
91c24f0a 6784
72bf9492
DJ
6785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6786 then this means the parent of the specification DIE. */
6787
6788 real_pdi = pdi;
72bf9492 6789 while (real_pdi->has_specification)
36586728
TT
6790 real_pdi = find_partial_die (real_pdi->spec_offset,
6791 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6792
6793 parent = real_pdi->die_parent;
6794 if (parent == NULL)
6795 return NULL;
6796
6797 if (parent->scope_set)
6798 return parent->scope;
6799
6800 fixup_partial_die (parent, cu);
6801
10b3939b 6802 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6803
acebe513
UW
6804 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6805 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6806 Work around this problem here. */
6807 if (cu->language == language_cplus
6e70227d 6808 && parent->tag == DW_TAG_namespace
acebe513
UW
6809 && strcmp (parent->name, "::") == 0
6810 && grandparent_scope == NULL)
6811 {
6812 parent->scope = NULL;
6813 parent->scope_set = 1;
6814 return NULL;
6815 }
6816
9c6c53f7
SA
6817 if (pdi->tag == DW_TAG_enumerator)
6818 /* Enumerators should not get the name of the enumeration as a prefix. */
6819 parent->scope = grandparent_scope;
6820 else if (parent->tag == DW_TAG_namespace
f55ee35c 6821 || parent->tag == DW_TAG_module
72bf9492
DJ
6822 || parent->tag == DW_TAG_structure_type
6823 || parent->tag == DW_TAG_class_type
680b30c7 6824 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6825 || parent->tag == DW_TAG_union_type
6826 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6827 {
6828 if (grandparent_scope == NULL)
6829 parent->scope = parent->name;
6830 else
3e43a32a
MS
6831 parent->scope = typename_concat (&cu->comp_unit_obstack,
6832 grandparent_scope,
f55ee35c 6833 parent->name, 0, cu);
72bf9492 6834 }
72bf9492
DJ
6835 else
6836 {
6837 /* FIXME drow/2004-04-01: What should we be doing with
6838 function-local names? For partial symbols, we should probably be
6839 ignoring them. */
6840 complaint (&symfile_complaints,
e2e0b3e5 6841 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6842 parent->tag, pdi->offset.sect_off);
72bf9492 6843 parent->scope = grandparent_scope;
c906108c
SS
6844 }
6845
72bf9492
DJ
6846 parent->scope_set = 1;
6847 return parent->scope;
6848}
6849
6850/* Return the fully scoped name associated with PDI, from compilation unit
6851 CU. The result will be allocated with malloc. */
4568ecf9 6852
72bf9492
DJ
6853static char *
6854partial_die_full_name (struct partial_die_info *pdi,
6855 struct dwarf2_cu *cu)
6856{
15d034d0 6857 const char *parent_scope;
72bf9492 6858
98bfdba5
PA
6859 /* If this is a template instantiation, we can not work out the
6860 template arguments from partial DIEs. So, unfortunately, we have
6861 to go through the full DIEs. At least any work we do building
6862 types here will be reused if full symbols are loaded later. */
6863 if (pdi->has_template_arguments)
6864 {
6865 fixup_partial_die (pdi, cu);
6866
6867 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6868 {
6869 struct die_info *die;
6870 struct attribute attr;
6871 struct dwarf2_cu *ref_cu = cu;
6872
b64f50a1 6873 /* DW_FORM_ref_addr is using section offset. */
b4069958 6874 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6875 attr.form = DW_FORM_ref_addr;
4568ecf9 6876 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6877 die = follow_die_ref (NULL, &attr, &ref_cu);
6878
6879 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6880 }
6881 }
6882
72bf9492
DJ
6883 parent_scope = partial_die_parent_scope (pdi, cu);
6884 if (parent_scope == NULL)
6885 return NULL;
6886 else
f55ee35c 6887 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6888}
6889
6890static void
72bf9492 6891add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6892{
e7c27a73 6893 struct objfile *objfile = cu->objfile;
3e29f34a 6894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6895 CORE_ADDR addr = 0;
15d034d0 6896 const char *actual_name = NULL;
e142c38c 6897 CORE_ADDR baseaddr;
15d034d0 6898 char *built_actual_name;
e142c38c
DJ
6899
6900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6901
15d034d0
TT
6902 built_actual_name = partial_die_full_name (pdi, cu);
6903 if (built_actual_name != NULL)
6904 actual_name = built_actual_name;
63d06c5c 6905
72bf9492
DJ
6906 if (actual_name == NULL)
6907 actual_name = pdi->name;
6908
c906108c
SS
6909 switch (pdi->tag)
6910 {
6911 case DW_TAG_subprogram:
3e29f34a 6912 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6913 if (pdi->is_external || cu->language == language_ada)
c906108c 6914 {
2cfa0c8d
JB
6915 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6916 of the global scope. But in Ada, we want to be able to access
6917 nested procedures globally. So all Ada subprograms are stored
6918 in the global scope. */
f47fb265 6919 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6920 built_actual_name != NULL,
f47fb265
MS
6921 VAR_DOMAIN, LOC_BLOCK,
6922 &objfile->global_psymbols,
1762568f 6923 addr, cu->language, objfile);
c906108c
SS
6924 }
6925 else
6926 {
f47fb265 6927 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6928 built_actual_name != NULL,
f47fb265
MS
6929 VAR_DOMAIN, LOC_BLOCK,
6930 &objfile->static_psymbols,
1762568f 6931 addr, cu->language, objfile);
c906108c
SS
6932 }
6933 break;
72929c62
JB
6934 case DW_TAG_constant:
6935 {
6936 struct psymbol_allocation_list *list;
6937
6938 if (pdi->is_external)
6939 list = &objfile->global_psymbols;
6940 else
6941 list = &objfile->static_psymbols;
f47fb265 6942 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6943 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6944 list, 0, cu->language, objfile);
72929c62
JB
6945 }
6946 break;
c906108c 6947 case DW_TAG_variable:
95554aad
TT
6948 if (pdi->d.locdesc)
6949 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6950
95554aad 6951 if (pdi->d.locdesc
caac4577
JG
6952 && addr == 0
6953 && !dwarf2_per_objfile->has_section_at_zero)
6954 {
6955 /* A global or static variable may also have been stripped
6956 out by the linker if unused, in which case its address
6957 will be nullified; do not add such variables into partial
6958 symbol table then. */
6959 }
6960 else if (pdi->is_external)
c906108c
SS
6961 {
6962 /* Global Variable.
6963 Don't enter into the minimal symbol tables as there is
6964 a minimal symbol table entry from the ELF symbols already.
6965 Enter into partial symbol table if it has a location
6966 descriptor or a type.
6967 If the location descriptor is missing, new_symbol will create
6968 a LOC_UNRESOLVED symbol, the address of the variable will then
6969 be determined from the minimal symbol table whenever the variable
6970 is referenced.
6971 The address for the partial symbol table entry is not
6972 used by GDB, but it comes in handy for debugging partial symbol
6973 table building. */
6974
95554aad 6975 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6976 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6977 built_actual_name != NULL,
f47fb265
MS
6978 VAR_DOMAIN, LOC_STATIC,
6979 &objfile->global_psymbols,
1762568f 6980 addr + baseaddr,
f47fb265 6981 cu->language, objfile);
c906108c
SS
6982 }
6983 else
6984 {
ff908ebf
AW
6985 int has_loc = pdi->d.locdesc != NULL;
6986
6987 /* Static Variable. Skip symbols whose value we cannot know (those
6988 without location descriptors or constant values). */
6989 if (!has_loc && !pdi->has_const_value)
decbce07 6990 {
15d034d0 6991 xfree (built_actual_name);
decbce07
MS
6992 return;
6993 }
ff908ebf 6994
f47fb265 6995 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6996 built_actual_name != NULL,
f47fb265
MS
6997 VAR_DOMAIN, LOC_STATIC,
6998 &objfile->static_psymbols,
ff908ebf 6999 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7000 cu->language, objfile);
c906108c
SS
7001 }
7002 break;
7003 case DW_TAG_typedef:
7004 case DW_TAG_base_type:
a02abb62 7005 case DW_TAG_subrange_type:
38d518c9 7006 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7007 built_actual_name != NULL,
176620f1 7008 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7009 &objfile->static_psymbols,
1762568f 7010 0, cu->language, objfile);
c906108c 7011 break;
74921315 7012 case DW_TAG_imported_declaration:
72bf9492
DJ
7013 case DW_TAG_namespace:
7014 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7015 built_actual_name != NULL,
72bf9492
DJ
7016 VAR_DOMAIN, LOC_TYPEDEF,
7017 &objfile->global_psymbols,
1762568f 7018 0, cu->language, objfile);
72bf9492 7019 break;
530e8392
KB
7020 case DW_TAG_module:
7021 add_psymbol_to_list (actual_name, strlen (actual_name),
7022 built_actual_name != NULL,
7023 MODULE_DOMAIN, LOC_TYPEDEF,
7024 &objfile->global_psymbols,
1762568f 7025 0, cu->language, objfile);
530e8392 7026 break;
c906108c 7027 case DW_TAG_class_type:
680b30c7 7028 case DW_TAG_interface_type:
c906108c
SS
7029 case DW_TAG_structure_type:
7030 case DW_TAG_union_type:
7031 case DW_TAG_enumeration_type:
fa4028e9
JB
7032 /* Skip external references. The DWARF standard says in the section
7033 about "Structure, Union, and Class Type Entries": "An incomplete
7034 structure, union or class type is represented by a structure,
7035 union or class entry that does not have a byte size attribute
7036 and that has a DW_AT_declaration attribute." */
7037 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7038 {
15d034d0 7039 xfree (built_actual_name);
decbce07
MS
7040 return;
7041 }
fa4028e9 7042
63d06c5c
DC
7043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7044 static vs. global. */
38d518c9 7045 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7046 built_actual_name != NULL,
176620f1 7047 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7048 cu->language == language_cplus
63d06c5c
DC
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
1762568f 7051 0, cu->language, objfile);
c906108c 7052
c906108c
SS
7053 break;
7054 case DW_TAG_enumerator:
38d518c9 7055 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7056 built_actual_name != NULL,
176620f1 7057 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7058 cu->language == language_cplus
f6fe98ef
DJ
7059 ? &objfile->global_psymbols
7060 : &objfile->static_psymbols,
1762568f 7061 0, cu->language, objfile);
c906108c
SS
7062 break;
7063 default:
7064 break;
7065 }
5c4e30ca 7066
15d034d0 7067 xfree (built_actual_name);
c906108c
SS
7068}
7069
5c4e30ca
DC
7070/* Read a partial die corresponding to a namespace; also, add a symbol
7071 corresponding to that namespace to the symbol table. NAMESPACE is
7072 the name of the enclosing namespace. */
91c24f0a 7073
72bf9492
DJ
7074static void
7075add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7077 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7078{
72bf9492 7079 /* Add a symbol for the namespace. */
e7c27a73 7080
72bf9492 7081 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7082
7083 /* Now scan partial symbols in that namespace. */
7084
91c24f0a 7085 if (pdi->has_children)
cdc07690 7086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7087}
7088
5d7cb8df
JK
7089/* Read a partial die corresponding to a Fortran module. */
7090
7091static void
7092add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7094{
530e8392
KB
7095 /* Add a symbol for the namespace. */
7096
7097 add_partial_symbol (pdi, cu);
7098
f55ee35c 7099 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7100
7101 if (pdi->has_children)
cdc07690 7102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7103}
7104
bc30ff58
JB
7105/* Read a partial die corresponding to a subprogram and create a partial
7106 symbol for that subprogram. When the CU language allows it, this
7107 routine also defines a partial symbol for each nested subprogram
cdc07690 7108 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7109 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7110 and highest PC values found in PDI.
6e70227d 7111
cdc07690
YQ
7112 PDI may also be a lexical block, in which case we simply search
7113 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7114 Again, this is only performed when the CU language allows this
7115 type of definitions. */
7116
7117static void
7118add_partial_subprogram (struct partial_die_info *pdi,
7119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7120 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7121{
7122 if (pdi->tag == DW_TAG_subprogram)
7123 {
7124 if (pdi->has_pc_info)
7125 {
7126 if (pdi->lowpc < *lowpc)
7127 *lowpc = pdi->lowpc;
7128 if (pdi->highpc > *highpc)
7129 *highpc = pdi->highpc;
cdc07690 7130 if (set_addrmap)
5734ee8b 7131 {
5734ee8b 7132 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7134 CORE_ADDR baseaddr;
7135 CORE_ADDR highpc;
7136 CORE_ADDR lowpc;
5734ee8b
DJ
7137
7138 baseaddr = ANOFFSET (objfile->section_offsets,
7139 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7140 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->lowpc + baseaddr);
7142 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7143 pdi->highpc + baseaddr);
7144 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7145 cu->per_cu->v.psymtab);
5734ee8b 7146 }
481860b3
GB
7147 }
7148
7149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7150 {
bc30ff58 7151 if (!pdi->is_declaration)
e8d05480
JB
7152 /* Ignore subprogram DIEs that do not have a name, they are
7153 illegal. Do not emit a complaint at this point, we will
7154 do so when we convert this psymtab into a symtab. */
7155 if (pdi->name)
7156 add_partial_symbol (pdi, cu);
bc30ff58
JB
7157 }
7158 }
6e70227d 7159
bc30ff58
JB
7160 if (! pdi->has_children)
7161 return;
7162
7163 if (cu->language == language_ada)
7164 {
7165 pdi = pdi->die_child;
7166 while (pdi != NULL)
7167 {
7168 fixup_partial_die (pdi, cu);
7169 if (pdi->tag == DW_TAG_subprogram
7170 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7171 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7172 pdi = pdi->die_sibling;
7173 }
7174 }
7175}
7176
91c24f0a
DC
7177/* Read a partial die corresponding to an enumeration type. */
7178
72bf9492
DJ
7179static void
7180add_partial_enumeration (struct partial_die_info *enum_pdi,
7181 struct dwarf2_cu *cu)
91c24f0a 7182{
72bf9492 7183 struct partial_die_info *pdi;
91c24f0a
DC
7184
7185 if (enum_pdi->name != NULL)
72bf9492
DJ
7186 add_partial_symbol (enum_pdi, cu);
7187
7188 pdi = enum_pdi->die_child;
7189 while (pdi)
91c24f0a 7190 {
72bf9492 7191 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7192 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7193 else
72bf9492
DJ
7194 add_partial_symbol (pdi, cu);
7195 pdi = pdi->die_sibling;
91c24f0a 7196 }
91c24f0a
DC
7197}
7198
6caca83c
CC
7199/* Return the initial uleb128 in the die at INFO_PTR. */
7200
7201static unsigned int
d521ce57 7202peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7203{
7204 unsigned int bytes_read;
7205
7206 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7207}
7208
4bb7a0a7
DJ
7209/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7210 Return the corresponding abbrev, or NULL if the number is zero (indicating
7211 an empty DIE). In either case *BYTES_READ will be set to the length of
7212 the initial number. */
7213
7214static struct abbrev_info *
d521ce57 7215peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7216 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7217{
7218 bfd *abfd = cu->objfile->obfd;
7219 unsigned int abbrev_number;
7220 struct abbrev_info *abbrev;
7221
7222 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7223
7224 if (abbrev_number == 0)
7225 return NULL;
7226
433df2d4 7227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7228 if (!abbrev)
7229 {
422b9917
DE
7230 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7231 " at offset 0x%x [in module %s]"),
7232 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7233 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7234 }
7235
7236 return abbrev;
7237}
7238
93311388
DE
7239/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7241 DIE. Any children of the skipped DIEs will also be skipped. */
7242
d521ce57
TT
7243static const gdb_byte *
7244skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7245{
dee91e82 7246 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7247 struct abbrev_info *abbrev;
7248 unsigned int bytes_read;
7249
7250 while (1)
7251 {
7252 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7253 if (abbrev == NULL)
7254 return info_ptr + bytes_read;
7255 else
dee91e82 7256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7257 }
7258}
7259
93311388
DE
7260/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7262 abbrev corresponding to that skipped uleb128 should be passed in
7263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7264 children. */
7265
d521ce57
TT
7266static const gdb_byte *
7267skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7268 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7269{
7270 unsigned int bytes_read;
7271 struct attribute attr;
dee91e82
DE
7272 bfd *abfd = reader->abfd;
7273 struct dwarf2_cu *cu = reader->cu;
d521ce57 7274 const gdb_byte *buffer = reader->buffer;
f664829e 7275 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7276 unsigned int form, i;
7277
7278 for (i = 0; i < abbrev->num_attrs; i++)
7279 {
7280 /* The only abbrev we care about is DW_AT_sibling. */
7281 if (abbrev->attrs[i].name == DW_AT_sibling)
7282 {
dee91e82 7283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7284 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7285 complaint (&symfile_complaints,
7286 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7287 else
b9502d3f
WN
7288 {
7289 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7290 const gdb_byte *sibling_ptr = buffer + off;
7291
7292 if (sibling_ptr < info_ptr)
7293 complaint (&symfile_complaints,
7294 _("DW_AT_sibling points backwards"));
22869d73
KS
7295 else if (sibling_ptr > reader->buffer_end)
7296 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7297 else
7298 return sibling_ptr;
7299 }
4bb7a0a7
DJ
7300 }
7301
7302 /* If it isn't DW_AT_sibling, skip this attribute. */
7303 form = abbrev->attrs[i].form;
7304 skip_attribute:
7305 switch (form)
7306 {
4bb7a0a7 7307 case DW_FORM_ref_addr:
ae411497
TT
7308 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7309 and later it is offset sized. */
7310 if (cu->header.version == 2)
7311 info_ptr += cu->header.addr_size;
7312 else
7313 info_ptr += cu->header.offset_size;
7314 break;
36586728
TT
7315 case DW_FORM_GNU_ref_alt:
7316 info_ptr += cu->header.offset_size;
7317 break;
ae411497 7318 case DW_FORM_addr:
4bb7a0a7
DJ
7319 info_ptr += cu->header.addr_size;
7320 break;
7321 case DW_FORM_data1:
7322 case DW_FORM_ref1:
7323 case DW_FORM_flag:
7324 info_ptr += 1;
7325 break;
2dc7f7b3
TT
7326 case DW_FORM_flag_present:
7327 break;
4bb7a0a7
DJ
7328 case DW_FORM_data2:
7329 case DW_FORM_ref2:
7330 info_ptr += 2;
7331 break;
7332 case DW_FORM_data4:
7333 case DW_FORM_ref4:
7334 info_ptr += 4;
7335 break;
7336 case DW_FORM_data8:
7337 case DW_FORM_ref8:
55f1336d 7338 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7339 info_ptr += 8;
7340 break;
7341 case DW_FORM_string:
9b1c24c8 7342 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7343 info_ptr += bytes_read;
7344 break;
2dc7f7b3 7345 case DW_FORM_sec_offset:
4bb7a0a7 7346 case DW_FORM_strp:
36586728 7347 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7348 info_ptr += cu->header.offset_size;
7349 break;
2dc7f7b3 7350 case DW_FORM_exprloc:
4bb7a0a7
DJ
7351 case DW_FORM_block:
7352 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 break;
7355 case DW_FORM_block1:
7356 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7357 break;
7358 case DW_FORM_block2:
7359 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7360 break;
7361 case DW_FORM_block4:
7362 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7363 break;
7364 case DW_FORM_sdata:
7365 case DW_FORM_udata:
7366 case DW_FORM_ref_udata:
3019eac3
DE
7367 case DW_FORM_GNU_addr_index:
7368 case DW_FORM_GNU_str_index:
d521ce57 7369 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7370 break;
7371 case DW_FORM_indirect:
7372 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7373 info_ptr += bytes_read;
7374 /* We need to continue parsing from here, so just go back to
7375 the top. */
7376 goto skip_attribute;
7377
7378 default:
3e43a32a
MS
7379 error (_("Dwarf Error: Cannot handle %s "
7380 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7381 dwarf_form_name (form),
7382 bfd_get_filename (abfd));
7383 }
7384 }
7385
7386 if (abbrev->has_children)
dee91e82 7387 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7388 else
7389 return info_ptr;
7390}
7391
93311388 7392/* Locate ORIG_PDI's sibling.
dee91e82 7393 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7394
d521ce57 7395static const gdb_byte *
dee91e82
DE
7396locate_pdi_sibling (const struct die_reader_specs *reader,
7397 struct partial_die_info *orig_pdi,
d521ce57 7398 const gdb_byte *info_ptr)
91c24f0a
DC
7399{
7400 /* Do we know the sibling already? */
72bf9492 7401
91c24f0a
DC
7402 if (orig_pdi->sibling)
7403 return orig_pdi->sibling;
7404
7405 /* Are there any children to deal with? */
7406
7407 if (!orig_pdi->has_children)
7408 return info_ptr;
7409
4bb7a0a7 7410 /* Skip the children the long way. */
91c24f0a 7411
dee91e82 7412 return skip_children (reader, info_ptr);
91c24f0a
DC
7413}
7414
257e7a09 7415/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7416 not NULL. */
c906108c
SS
7417
7418static void
257e7a09
YQ
7419dwarf2_read_symtab (struct partial_symtab *self,
7420 struct objfile *objfile)
c906108c 7421{
257e7a09 7422 if (self->readin)
c906108c 7423 {
442e4d9c 7424 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7425 self->filename);
442e4d9c
YQ
7426 }
7427 else
7428 {
7429 if (info_verbose)
c906108c 7430 {
442e4d9c 7431 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7432 self->filename);
442e4d9c 7433 gdb_flush (gdb_stdout);
c906108c 7434 }
c906108c 7435
442e4d9c 7436 /* Restore our global data. */
9a3c8263
SM
7437 dwarf2_per_objfile
7438 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7439 dwarf2_objfile_data_key);
10b3939b 7440
442e4d9c
YQ
7441 /* If this psymtab is constructed from a debug-only objfile, the
7442 has_section_at_zero flag will not necessarily be correct. We
7443 can get the correct value for this flag by looking at the data
7444 associated with the (presumably stripped) associated objfile. */
7445 if (objfile->separate_debug_objfile_backlink)
7446 {
7447 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7448 = ((struct dwarf2_per_objfile *)
7449 objfile_data (objfile->separate_debug_objfile_backlink,
7450 dwarf2_objfile_data_key));
9a619af0 7451
442e4d9c
YQ
7452 dwarf2_per_objfile->has_section_at_zero
7453 = dpo_backlink->has_section_at_zero;
7454 }
b2ab525c 7455
442e4d9c 7456 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7457
257e7a09 7458 psymtab_to_symtab_1 (self);
c906108c 7459
442e4d9c
YQ
7460 /* Finish up the debug error message. */
7461 if (info_verbose)
7462 printf_filtered (_("done.\n"));
c906108c 7463 }
95554aad
TT
7464
7465 process_cu_includes ();
c906108c 7466}
9cdd5dbd
DE
7467\f
7468/* Reading in full CUs. */
c906108c 7469
10b3939b
DJ
7470/* Add PER_CU to the queue. */
7471
7472static void
95554aad
TT
7473queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
10b3939b
DJ
7475{
7476 struct dwarf2_queue_item *item;
7477
7478 per_cu->queued = 1;
8d749320 7479 item = XNEW (struct dwarf2_queue_item);
10b3939b 7480 item->per_cu = per_cu;
95554aad 7481 item->pretend_language = pretend_language;
10b3939b
DJ
7482 item->next = NULL;
7483
7484 if (dwarf2_queue == NULL)
7485 dwarf2_queue = item;
7486 else
7487 dwarf2_queue_tail->next = item;
7488
7489 dwarf2_queue_tail = item;
7490}
7491
89e63ee4
DE
7492/* If PER_CU is not yet queued, add it to the queue.
7493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7494 dependency.
0907af0c 7495 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7496 meaning either PER_CU is already queued or it is already loaded.
7497
7498 N.B. There is an invariant here that if a CU is queued then it is loaded.
7499 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7500
7501static int
89e63ee4 7502maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7503 struct dwarf2_per_cu_data *per_cu,
7504 enum language pretend_language)
7505{
7506 /* We may arrive here during partial symbol reading, if we need full
7507 DIEs to process an unusual case (e.g. template arguments). Do
7508 not queue PER_CU, just tell our caller to load its DIEs. */
7509 if (dwarf2_per_objfile->reading_partial_symbols)
7510 {
7511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7512 return 1;
7513 return 0;
7514 }
7515
7516 /* Mark the dependence relation so that we don't flush PER_CU
7517 too early. */
89e63ee4
DE
7518 if (dependent_cu != NULL)
7519 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7520
7521 /* If it's already on the queue, we have nothing to do. */
7522 if (per_cu->queued)
7523 return 0;
7524
7525 /* If the compilation unit is already loaded, just mark it as
7526 used. */
7527 if (per_cu->cu != NULL)
7528 {
7529 per_cu->cu->last_used = 0;
7530 return 0;
7531 }
7532
7533 /* Add it to the queue. */
7534 queue_comp_unit (per_cu, pretend_language);
7535
7536 return 1;
7537}
7538
10b3939b
DJ
7539/* Process the queue. */
7540
7541static void
a0f42c21 7542process_queue (void)
10b3939b
DJ
7543{
7544 struct dwarf2_queue_item *item, *next_item;
7545
b4f54984 7546 if (dwarf_read_debug)
45cfd468
DE
7547 {
7548 fprintf_unfiltered (gdb_stdlog,
7549 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7550 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7551 }
7552
03dd20cc
DJ
7553 /* The queue starts out with one item, but following a DIE reference
7554 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7556 {
cc12ce38
DE
7557 if ((dwarf2_per_objfile->using_index
7558 ? !item->per_cu->v.quick->compunit_symtab
7559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7560 /* Skip dummy CUs. */
7561 && item->per_cu->cu != NULL)
f4dc4d17
DE
7562 {
7563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7564 unsigned int debug_print_threshold;
247f5c4f 7565 char buf[100];
f4dc4d17 7566
247f5c4f 7567 if (per_cu->is_debug_types)
f4dc4d17 7568 {
247f5c4f
DE
7569 struct signatured_type *sig_type =
7570 (struct signatured_type *) per_cu;
7571
7572 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7573 hex_string (sig_type->signature),
7574 per_cu->offset.sect_off);
7575 /* There can be 100s of TUs.
7576 Only print them in verbose mode. */
7577 debug_print_threshold = 2;
f4dc4d17 7578 }
247f5c4f 7579 else
73be47f5
DE
7580 {
7581 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7582 debug_print_threshold = 1;
7583 }
247f5c4f 7584
b4f54984 7585 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7586 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7587
7588 if (per_cu->is_debug_types)
7589 process_full_type_unit (per_cu, item->pretend_language);
7590 else
7591 process_full_comp_unit (per_cu, item->pretend_language);
7592
b4f54984 7593 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7594 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7595 }
10b3939b
DJ
7596
7597 item->per_cu->queued = 0;
7598 next_item = item->next;
7599 xfree (item);
7600 }
7601
7602 dwarf2_queue_tail = NULL;
45cfd468 7603
b4f54984 7604 if (dwarf_read_debug)
45cfd468
DE
7605 {
7606 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7607 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7608 }
10b3939b
DJ
7609}
7610
7611/* Free all allocated queue entries. This function only releases anything if
7612 an error was thrown; if the queue was processed then it would have been
7613 freed as we went along. */
7614
7615static void
7616dwarf2_release_queue (void *dummy)
7617{
7618 struct dwarf2_queue_item *item, *last;
7619
7620 item = dwarf2_queue;
7621 while (item)
7622 {
7623 /* Anything still marked queued is likely to be in an
7624 inconsistent state, so discard it. */
7625 if (item->per_cu->queued)
7626 {
7627 if (item->per_cu->cu != NULL)
dee91e82 7628 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7629 item->per_cu->queued = 0;
7630 }
7631
7632 last = item;
7633 item = item->next;
7634 xfree (last);
7635 }
7636
7637 dwarf2_queue = dwarf2_queue_tail = NULL;
7638}
7639
7640/* Read in full symbols for PST, and anything it depends on. */
7641
c906108c 7642static void
fba45db2 7643psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7644{
10b3939b 7645 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7646 int i;
7647
95554aad
TT
7648 if (pst->readin)
7649 return;
7650
aaa75496 7651 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7652 if (!pst->dependencies[i]->readin
7653 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7654 {
7655 /* Inform about additional files that need to be read in. */
7656 if (info_verbose)
7657 {
a3f17187 7658 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7659 fputs_filtered (" ", gdb_stdout);
7660 wrap_here ("");
7661 fputs_filtered ("and ", gdb_stdout);
7662 wrap_here ("");
7663 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7664 wrap_here (""); /* Flush output. */
aaa75496
JB
7665 gdb_flush (gdb_stdout);
7666 }
7667 psymtab_to_symtab_1 (pst->dependencies[i]);
7668 }
7669
9a3c8263 7670 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7671
7672 if (per_cu == NULL)
aaa75496
JB
7673 {
7674 /* It's an include file, no symbols to read for it.
7675 Everything is in the parent symtab. */
7676 pst->readin = 1;
7677 return;
7678 }
c906108c 7679
a0f42c21 7680 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7681}
7682
dee91e82
DE
7683/* Trivial hash function for die_info: the hash value of a DIE
7684 is its offset in .debug_info for this objfile. */
10b3939b 7685
dee91e82
DE
7686static hashval_t
7687die_hash (const void *item)
10b3939b 7688{
9a3c8263 7689 const struct die_info *die = (const struct die_info *) item;
6502dd73 7690
dee91e82
DE
7691 return die->offset.sect_off;
7692}
63d06c5c 7693
dee91e82
DE
7694/* Trivial comparison function for die_info structures: two DIEs
7695 are equal if they have the same offset. */
98bfdba5 7696
dee91e82
DE
7697static int
7698die_eq (const void *item_lhs, const void *item_rhs)
7699{
9a3c8263
SM
7700 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7701 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7702
dee91e82
DE
7703 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7704}
c906108c 7705
dee91e82
DE
7706/* die_reader_func for load_full_comp_unit.
7707 This is identical to read_signatured_type_reader,
7708 but is kept separate for now. */
c906108c 7709
dee91e82
DE
7710static void
7711load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7712 const gdb_byte *info_ptr,
dee91e82
DE
7713 struct die_info *comp_unit_die,
7714 int has_children,
7715 void *data)
7716{
7717 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7718 enum language *language_ptr = (enum language *) data;
6caca83c 7719
dee91e82
DE
7720 gdb_assert (cu->die_hash == NULL);
7721 cu->die_hash =
7722 htab_create_alloc_ex (cu->header.length / 12,
7723 die_hash,
7724 die_eq,
7725 NULL,
7726 &cu->comp_unit_obstack,
7727 hashtab_obstack_allocate,
7728 dummy_obstack_deallocate);
e142c38c 7729
dee91e82
DE
7730 if (has_children)
7731 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7732 &info_ptr, comp_unit_die);
7733 cu->dies = comp_unit_die;
7734 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7735
7736 /* We try not to read any attributes in this function, because not
9cdd5dbd 7737 all CUs needed for references have been loaded yet, and symbol
10b3939b 7738 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7739 or we won't be able to build types correctly.
7740 Similarly, if we do not read the producer, we can not apply
7741 producer-specific interpretation. */
95554aad 7742 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7743}
10b3939b 7744
dee91e82 7745/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7746
dee91e82 7747static void
95554aad
TT
7748load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7749 enum language pretend_language)
dee91e82 7750{
3019eac3 7751 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7752
f4dc4d17
DE
7753 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7754 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7755}
7756
3da10d80
KS
7757/* Add a DIE to the delayed physname list. */
7758
7759static void
7760add_to_method_list (struct type *type, int fnfield_index, int index,
7761 const char *name, struct die_info *die,
7762 struct dwarf2_cu *cu)
7763{
7764 struct delayed_method_info mi;
7765 mi.type = type;
7766 mi.fnfield_index = fnfield_index;
7767 mi.index = index;
7768 mi.name = name;
7769 mi.die = die;
7770 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7771}
7772
7773/* A cleanup for freeing the delayed method list. */
7774
7775static void
7776free_delayed_list (void *ptr)
7777{
7778 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7779 if (cu->method_list != NULL)
7780 {
7781 VEC_free (delayed_method_info, cu->method_list);
7782 cu->method_list = NULL;
7783 }
7784}
7785
7786/* Compute the physnames of any methods on the CU's method list.
7787
7788 The computation of method physnames is delayed in order to avoid the
7789 (bad) condition that one of the method's formal parameters is of an as yet
7790 incomplete type. */
7791
7792static void
7793compute_delayed_physnames (struct dwarf2_cu *cu)
7794{
7795 int i;
7796 struct delayed_method_info *mi;
7797 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7798 {
1d06ead6 7799 const char *physname;
3da10d80
KS
7800 struct fn_fieldlist *fn_flp
7801 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7802 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7803 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7804 = physname ? physname : "";
3da10d80
KS
7805 }
7806}
7807
a766d390
DE
7808/* Go objects should be embedded in a DW_TAG_module DIE,
7809 and it's not clear if/how imported objects will appear.
7810 To keep Go support simple until that's worked out,
7811 go back through what we've read and create something usable.
7812 We could do this while processing each DIE, and feels kinda cleaner,
7813 but that way is more invasive.
7814 This is to, for example, allow the user to type "p var" or "b main"
7815 without having to specify the package name, and allow lookups
7816 of module.object to work in contexts that use the expression
7817 parser. */
7818
7819static void
7820fixup_go_packaging (struct dwarf2_cu *cu)
7821{
7822 char *package_name = NULL;
7823 struct pending *list;
7824 int i;
7825
7826 for (list = global_symbols; list != NULL; list = list->next)
7827 {
7828 for (i = 0; i < list->nsyms; ++i)
7829 {
7830 struct symbol *sym = list->symbol[i];
7831
7832 if (SYMBOL_LANGUAGE (sym) == language_go
7833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7834 {
7835 char *this_package_name = go_symbol_package_name (sym);
7836
7837 if (this_package_name == NULL)
7838 continue;
7839 if (package_name == NULL)
7840 package_name = this_package_name;
7841 else
7842 {
7843 if (strcmp (package_name, this_package_name) != 0)
7844 complaint (&symfile_complaints,
7845 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7846 (symbol_symtab (sym) != NULL
7847 ? symtab_to_filename_for_display
7848 (symbol_symtab (sym))
4262abfb 7849 : objfile_name (cu->objfile)),
a766d390
DE
7850 this_package_name, package_name);
7851 xfree (this_package_name);
7852 }
7853 }
7854 }
7855 }
7856
7857 if (package_name != NULL)
7858 {
7859 struct objfile *objfile = cu->objfile;
34a68019 7860 const char *saved_package_name
224c3ddb
SM
7861 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7862 package_name,
7863 strlen (package_name));
19f392bc
UW
7864 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7865 saved_package_name);
a766d390
DE
7866 struct symbol *sym;
7867
7868 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7869
e623cf5d 7870 sym = allocate_symbol (objfile);
f85f34ed 7871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7872 SYMBOL_SET_NAMES (sym, saved_package_name,
7873 strlen (saved_package_name), 0, objfile);
a766d390
DE
7874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7875 e.g., "main" finds the "main" module and not C's main(). */
7876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7878 SYMBOL_TYPE (sym) = type;
7879
7880 add_symbol_to_list (sym, &global_symbols);
7881
7882 xfree (package_name);
7883 }
7884}
7885
95554aad
TT
7886/* Return the symtab for PER_CU. This works properly regardless of
7887 whether we're using the index or psymtabs. */
7888
43f3e411
DE
7889static struct compunit_symtab *
7890get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7891{
7892 return (dwarf2_per_objfile->using_index
43f3e411
DE
7893 ? per_cu->v.quick->compunit_symtab
7894 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7895}
7896
7897/* A helper function for computing the list of all symbol tables
7898 included by PER_CU. */
7899
7900static void
43f3e411 7901recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7902 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7903 struct dwarf2_per_cu_data *per_cu,
43f3e411 7904 struct compunit_symtab *immediate_parent)
95554aad
TT
7905{
7906 void **slot;
7907 int ix;
43f3e411 7908 struct compunit_symtab *cust;
95554aad
TT
7909 struct dwarf2_per_cu_data *iter;
7910
7911 slot = htab_find_slot (all_children, per_cu, INSERT);
7912 if (*slot != NULL)
7913 {
7914 /* This inclusion and its children have been processed. */
7915 return;
7916 }
7917
7918 *slot = per_cu;
7919 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7920 cust = get_compunit_symtab (per_cu);
7921 if (cust != NULL)
ec94af83
DE
7922 {
7923 /* If this is a type unit only add its symbol table if we haven't
7924 seen it yet (type unit per_cu's can share symtabs). */
7925 if (per_cu->is_debug_types)
7926 {
43f3e411 7927 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7928 if (*slot == NULL)
7929 {
43f3e411
DE
7930 *slot = cust;
7931 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7932 if (cust->user == NULL)
7933 cust->user = immediate_parent;
ec94af83
DE
7934 }
7935 }
7936 else
f9125b6c 7937 {
43f3e411
DE
7938 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7939 if (cust->user == NULL)
7940 cust->user = immediate_parent;
f9125b6c 7941 }
ec94af83 7942 }
95554aad
TT
7943
7944 for (ix = 0;
796a7ff8 7945 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7946 ++ix)
ec94af83
DE
7947 {
7948 recursively_compute_inclusions (result, all_children,
43f3e411 7949 all_type_symtabs, iter, cust);
ec94af83 7950 }
95554aad
TT
7951}
7952
43f3e411 7953/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7954 PER_CU. */
7955
7956static void
43f3e411 7957compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7958{
f4dc4d17
DE
7959 gdb_assert (! per_cu->is_debug_types);
7960
796a7ff8 7961 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7962 {
7963 int ix, len;
ec94af83 7964 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7965 struct compunit_symtab *compunit_symtab_iter;
7966 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7967 htab_t all_children, all_type_symtabs;
43f3e411 7968 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7969
7970 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7971 if (cust == NULL)
95554aad
TT
7972 return;
7973
7974 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
ec94af83
DE
7976 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7977 NULL, xcalloc, xfree);
95554aad
TT
7978
7979 for (ix = 0;
796a7ff8 7980 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7981 ix, per_cu_iter);
95554aad 7982 ++ix)
ec94af83
DE
7983 {
7984 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7985 all_type_symtabs, per_cu_iter,
43f3e411 7986 cust);
ec94af83 7987 }
95554aad 7988
ec94af83 7989 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7990 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7991 cust->includes
8d749320
SM
7992 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7993 struct compunit_symtab *, len + 1);
95554aad 7994 for (ix = 0;
43f3e411
DE
7995 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7996 compunit_symtab_iter);
95554aad 7997 ++ix)
43f3e411
DE
7998 cust->includes[ix] = compunit_symtab_iter;
7999 cust->includes[len] = NULL;
95554aad 8000
43f3e411 8001 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8002 htab_delete (all_children);
ec94af83 8003 htab_delete (all_type_symtabs);
95554aad
TT
8004 }
8005}
8006
8007/* Compute the 'includes' field for the symtabs of all the CUs we just
8008 read. */
8009
8010static void
8011process_cu_includes (void)
8012{
8013 int ix;
8014 struct dwarf2_per_cu_data *iter;
8015
8016 for (ix = 0;
8017 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8018 ix, iter);
8019 ++ix)
f4dc4d17
DE
8020 {
8021 if (! iter->is_debug_types)
43f3e411 8022 compute_compunit_symtab_includes (iter);
f4dc4d17 8023 }
95554aad
TT
8024
8025 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8026}
8027
9cdd5dbd 8028/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8029 already been loaded into memory. */
8030
8031static void
95554aad
TT
8032process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8033 enum language pretend_language)
10b3939b 8034{
10b3939b 8035 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8036 struct objfile *objfile = per_cu->objfile;
3e29f34a 8037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8038 CORE_ADDR lowpc, highpc;
43f3e411 8039 struct compunit_symtab *cust;
3da10d80 8040 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8041 CORE_ADDR baseaddr;
4359dff1 8042 struct block *static_block;
3e29f34a 8043 CORE_ADDR addr;
10b3939b
DJ
8044
8045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8046
10b3939b
DJ
8047 buildsym_init ();
8048 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8049 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8050
8051 cu->list_in_scope = &file_symbols;
c906108c 8052
95554aad
TT
8053 cu->language = pretend_language;
8054 cu->language_defn = language_def (cu->language);
8055
c906108c 8056 /* Do line number decoding in read_file_scope () */
10b3939b 8057 process_die (cu->dies, cu);
c906108c 8058
a766d390
DE
8059 /* For now fudge the Go package. */
8060 if (cu->language == language_go)
8061 fixup_go_packaging (cu);
8062
3da10d80
KS
8063 /* Now that we have processed all the DIEs in the CU, all the types
8064 should be complete, and it should now be safe to compute all of the
8065 physnames. */
8066 compute_delayed_physnames (cu);
8067 do_cleanups (delayed_list_cleanup);
8068
fae299cd
DC
8069 /* Some compilers don't define a DW_AT_high_pc attribute for the
8070 compilation unit. If the DW_AT_high_pc is missing, synthesize
8071 it, by scanning the DIE's below the compilation unit. */
10b3939b 8072 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8073
3e29f34a
MR
8074 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8075 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8076
8077 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8078 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8079 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8080 addrmap to help ensure it has an accurate map of pc values belonging to
8081 this comp unit. */
8082 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8083
43f3e411
DE
8084 cust = end_symtab_from_static_block (static_block,
8085 SECT_OFF_TEXT (objfile), 0);
c906108c 8086
43f3e411 8087 if (cust != NULL)
c906108c 8088 {
df15bd07 8089 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8090
8be455d7
JK
8091 /* Set symtab language to language from DW_AT_language. If the
8092 compilation is from a C file generated by language preprocessors, do
8093 not set the language if it was already deduced by start_subfile. */
43f3e411 8094 if (!(cu->language == language_c
40e3ad0e 8095 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8096 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8097
8098 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8099 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8100 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8101 there were bugs in prologue debug info, fixed later in GCC-4.5
8102 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8103
8104 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8105 needed, it would be wrong due to missing DW_AT_producer there.
8106
8107 Still one can confuse GDB by using non-standard GCC compilation
8108 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8109 */
ab260dad 8110 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8111 cust->locations_valid = 1;
e0d00bc7
JK
8112
8113 if (gcc_4_minor >= 5)
43f3e411 8114 cust->epilogue_unwind_valid = 1;
96408a79 8115
43f3e411 8116 cust->call_site_htab = cu->call_site_htab;
c906108c 8117 }
9291a0cd
TT
8118
8119 if (dwarf2_per_objfile->using_index)
43f3e411 8120 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8121 else
8122 {
8123 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8124 pst->compunit_symtab = cust;
9291a0cd
TT
8125 pst->readin = 1;
8126 }
c906108c 8127
95554aad
TT
8128 /* Push it for inclusion processing later. */
8129 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8130
c906108c 8131 do_cleanups (back_to);
f4dc4d17 8132}
45cfd468 8133
f4dc4d17
DE
8134/* Generate full symbol information for type unit PER_CU, whose DIEs have
8135 already been loaded into memory. */
8136
8137static void
8138process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8139 enum language pretend_language)
8140{
8141 struct dwarf2_cu *cu = per_cu->cu;
8142 struct objfile *objfile = per_cu->objfile;
43f3e411 8143 struct compunit_symtab *cust;
f4dc4d17 8144 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8145 struct signatured_type *sig_type;
8146
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8149
8150 buildsym_init ();
8151 back_to = make_cleanup (really_free_pendings, NULL);
8152 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8153
8154 cu->list_in_scope = &file_symbols;
8155
8156 cu->language = pretend_language;
8157 cu->language_defn = language_def (cu->language);
8158
8159 /* The symbol tables are set up in read_type_unit_scope. */
8160 process_die (cu->dies, cu);
8161
8162 /* For now fudge the Go package. */
8163 if (cu->language == language_go)
8164 fixup_go_packaging (cu);
8165
8166 /* Now that we have processed all the DIEs in the CU, all the types
8167 should be complete, and it should now be safe to compute all of the
8168 physnames. */
8169 compute_delayed_physnames (cu);
8170 do_cleanups (delayed_list_cleanup);
8171
8172 /* TUs share symbol tables.
8173 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8174 of it with end_expandable_symtab. Otherwise, complete the addition of
8175 this TU's symbols to the existing symtab. */
43f3e411 8176 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8177 {
43f3e411
DE
8178 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8179 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8180
43f3e411 8181 if (cust != NULL)
f4dc4d17
DE
8182 {
8183 /* Set symtab language to language from DW_AT_language. If the
8184 compilation is from a C file generated by language preprocessors,
8185 do not set the language if it was already deduced by
8186 start_subfile. */
43f3e411
DE
8187 if (!(cu->language == language_c
8188 && COMPUNIT_FILETABS (cust)->language != language_c))
8189 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8190 }
8191 }
8192 else
8193 {
0ab9ce85 8194 augment_type_symtab ();
43f3e411 8195 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
43f3e411 8199 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8203 pst->compunit_symtab = cust;
f4dc4d17 8204 pst->readin = 1;
45cfd468 8205 }
f4dc4d17
DE
8206
8207 do_cleanups (back_to);
c906108c
SS
8208}
8209
95554aad
TT
8210/* Process an imported unit DIE. */
8211
8212static void
8213process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8214{
8215 struct attribute *attr;
8216
f4dc4d17
DE
8217 /* For now we don't handle imported units in type units. */
8218 if (cu->per_cu->is_debug_types)
8219 {
8220 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8221 " supported in type units [in module %s]"),
4262abfb 8222 objfile_name (cu->objfile));
f4dc4d17
DE
8223 }
8224
95554aad
TT
8225 attr = dwarf2_attr (die, DW_AT_import, cu);
8226 if (attr != NULL)
8227 {
8228 struct dwarf2_per_cu_data *per_cu;
95554aad 8229 sect_offset offset;
36586728 8230 int is_dwz;
95554aad
TT
8231
8232 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8233 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8234 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8235
69d751e3 8236 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8237 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8238 load_full_comp_unit (per_cu, cu->language);
8239
796a7ff8 8240 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8241 per_cu);
8242 }
8243}
8244
adde2bff
DE
8245/* Reset the in_process bit of a die. */
8246
8247static void
8248reset_die_in_process (void *arg)
8249{
9a3c8263 8250 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8251
adde2bff
DE
8252 die->in_process = 0;
8253}
8254
c906108c
SS
8255/* Process a die and its children. */
8256
8257static void
e7c27a73 8258process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8259{
adde2bff
DE
8260 struct cleanup *in_process;
8261
8262 /* We should only be processing those not already in process. */
8263 gdb_assert (!die->in_process);
8264
8265 die->in_process = 1;
8266 in_process = make_cleanup (reset_die_in_process,die);
8267
c906108c
SS
8268 switch (die->tag)
8269 {
8270 case DW_TAG_padding:
8271 break;
8272 case DW_TAG_compile_unit:
95554aad 8273 case DW_TAG_partial_unit:
e7c27a73 8274 read_file_scope (die, cu);
c906108c 8275 break;
348e048f
DE
8276 case DW_TAG_type_unit:
8277 read_type_unit_scope (die, cu);
8278 break;
c906108c 8279 case DW_TAG_subprogram:
c906108c 8280 case DW_TAG_inlined_subroutine:
edb3359d 8281 read_func_scope (die, cu);
c906108c
SS
8282 break;
8283 case DW_TAG_lexical_block:
14898363
L
8284 case DW_TAG_try_block:
8285 case DW_TAG_catch_block:
e7c27a73 8286 read_lexical_block_scope (die, cu);
c906108c 8287 break;
96408a79
SA
8288 case DW_TAG_GNU_call_site:
8289 read_call_site_scope (die, cu);
8290 break;
c906108c 8291 case DW_TAG_class_type:
680b30c7 8292 case DW_TAG_interface_type:
c906108c
SS
8293 case DW_TAG_structure_type:
8294 case DW_TAG_union_type:
134d01f1 8295 process_structure_scope (die, cu);
c906108c
SS
8296 break;
8297 case DW_TAG_enumeration_type:
134d01f1 8298 process_enumeration_scope (die, cu);
c906108c 8299 break;
134d01f1 8300
f792889a
DJ
8301 /* These dies have a type, but processing them does not create
8302 a symbol or recurse to process the children. Therefore we can
8303 read them on-demand through read_type_die. */
c906108c 8304 case DW_TAG_subroutine_type:
72019c9c 8305 case DW_TAG_set_type:
c906108c 8306 case DW_TAG_array_type:
c906108c 8307 case DW_TAG_pointer_type:
c906108c 8308 case DW_TAG_ptr_to_member_type:
c906108c 8309 case DW_TAG_reference_type:
c906108c 8310 case DW_TAG_string_type:
c906108c 8311 break;
134d01f1 8312
c906108c 8313 case DW_TAG_base_type:
a02abb62 8314 case DW_TAG_subrange_type:
cb249c71 8315 case DW_TAG_typedef:
134d01f1
DJ
8316 /* Add a typedef symbol for the type definition, if it has a
8317 DW_AT_name. */
f792889a 8318 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8319 break;
c906108c 8320 case DW_TAG_common_block:
e7c27a73 8321 read_common_block (die, cu);
c906108c
SS
8322 break;
8323 case DW_TAG_common_inclusion:
8324 break;
d9fa45fe 8325 case DW_TAG_namespace:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
e7c27a73 8327 read_namespace (die, cu);
d9fa45fe 8328 break;
5d7cb8df 8329 case DW_TAG_module:
4d4ec4e5 8330 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8331 read_module (die, cu);
8332 break;
d9fa45fe 8333 case DW_TAG_imported_declaration:
74921315
KS
8334 cu->processing_has_namespace_info = 1;
8335 if (read_namespace_alias (die, cu))
8336 break;
8337 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8338 case DW_TAG_imported_module:
4d4ec4e5 8339 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8340 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8341 || cu->language != language_fortran))
8342 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8343 dwarf_tag_name (die->tag));
8344 read_import_statement (die, cu);
d9fa45fe 8345 break;
95554aad
TT
8346
8347 case DW_TAG_imported_unit:
8348 process_imported_unit_die (die, cu);
8349 break;
8350
c906108c 8351 default:
e7c27a73 8352 new_symbol (die, NULL, cu);
c906108c
SS
8353 break;
8354 }
adde2bff
DE
8355
8356 do_cleanups (in_process);
c906108c 8357}
ca69b9e6
DE
8358\f
8359/* DWARF name computation. */
c906108c 8360
94af9270
KS
8361/* A helper function for dwarf2_compute_name which determines whether DIE
8362 needs to have the name of the scope prepended to the name listed in the
8363 die. */
8364
8365static int
8366die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367{
1c809c68
TT
8368 struct attribute *attr;
8369
94af9270
KS
8370 switch (die->tag)
8371 {
8372 case DW_TAG_namespace:
8373 case DW_TAG_typedef:
8374 case DW_TAG_class_type:
8375 case DW_TAG_interface_type:
8376 case DW_TAG_structure_type:
8377 case DW_TAG_union_type:
8378 case DW_TAG_enumeration_type:
8379 case DW_TAG_enumerator:
8380 case DW_TAG_subprogram:
08a76f8a 8381 case DW_TAG_inlined_subroutine:
94af9270 8382 case DW_TAG_member:
74921315 8383 case DW_TAG_imported_declaration:
94af9270
KS
8384 return 1;
8385
8386 case DW_TAG_variable:
c2b0a229 8387 case DW_TAG_constant:
94af9270
KS
8388 /* We only need to prefix "globally" visible variables. These include
8389 any variable marked with DW_AT_external or any variable that
8390 lives in a namespace. [Variables in anonymous namespaces
8391 require prefixing, but they are not DW_AT_external.] */
8392
8393 if (dwarf2_attr (die, DW_AT_specification, cu))
8394 {
8395 struct dwarf2_cu *spec_cu = cu;
9a619af0 8396
94af9270
KS
8397 return die_needs_namespace (die_specification (die, &spec_cu),
8398 spec_cu);
8399 }
8400
1c809c68 8401 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8402 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8403 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8404 return 0;
8405 /* A variable in a lexical block of some kind does not need a
8406 namespace, even though in C++ such variables may be external
8407 and have a mangled name. */
8408 if (die->parent->tag == DW_TAG_lexical_block
8409 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8410 || die->parent->tag == DW_TAG_catch_block
8411 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8412 return 0;
8413 return 1;
94af9270
KS
8414
8415 default:
8416 return 0;
8417 }
8418}
8419
98bfdba5
PA
8420/* Retrieve the last character from a mem_file. */
8421
8422static void
8423do_ui_file_peek_last (void *object, const char *buffer, long length)
8424{
8425 char *last_char_p = (char *) object;
8426
8427 if (length > 0)
8428 *last_char_p = buffer[length - 1];
8429}
8430
94af9270 8431/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8432 compute the physname for the object, which include a method's:
9c37b5ae 8433 - formal parameters (C++),
a766d390 8434 - receiver type (Go),
a766d390
DE
8435
8436 The term "physname" is a bit confusing.
8437 For C++, for example, it is the demangled name.
8438 For Go, for example, it's the mangled name.
94af9270 8439
af6b7be1
JB
8440 For Ada, return the DIE's linkage name rather than the fully qualified
8441 name. PHYSNAME is ignored..
8442
94af9270
KS
8443 The result is allocated on the objfile_obstack and canonicalized. */
8444
8445static const char *
15d034d0
TT
8446dwarf2_compute_name (const char *name,
8447 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8448 int physname)
8449{
bb5ed363
DE
8450 struct objfile *objfile = cu->objfile;
8451
94af9270
KS
8452 if (name == NULL)
8453 name = dwarf2_name (die, cu);
8454
2ee7123e
DE
8455 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8456 but otherwise compute it by typename_concat inside GDB.
8457 FIXME: Actually this is not really true, or at least not always true.
8458 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8459 Fortran names because there is no mangling standard. So new_symbol_full
8460 will set the demangled name to the result of dwarf2_full_name, and it is
8461 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8462 if (cu->language == language_ada
8463 || (cu->language == language_fortran && physname))
8464 {
8465 /* For Ada unit, we prefer the linkage name over the name, as
8466 the former contains the exported name, which the user expects
8467 to be able to reference. Ideally, we want the user to be able
8468 to reference this entity using either natural or linkage name,
8469 but we haven't started looking at this enhancement yet. */
2ee7123e 8470 const char *linkage_name;
f55ee35c 8471
2ee7123e
DE
8472 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8473 if (linkage_name == NULL)
8474 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8475 if (linkage_name != NULL)
8476 return linkage_name;
f55ee35c
JK
8477 }
8478
94af9270
KS
8479 /* These are the only languages we know how to qualify names in. */
8480 if (name != NULL
9c37b5ae 8481 && (cu->language == language_cplus
c44af4eb
TT
8482 || cu->language == language_fortran || cu->language == language_d
8483 || cu->language == language_rust))
94af9270
KS
8484 {
8485 if (die_needs_namespace (die, cu))
8486 {
8487 long length;
0d5cff50 8488 const char *prefix;
94af9270 8489 struct ui_file *buf;
34a68019 8490 const char *canonical_name = NULL;
94af9270
KS
8491
8492 prefix = determine_prefix (die, cu);
8493 buf = mem_fileopen ();
8494 if (*prefix != '\0')
8495 {
f55ee35c
JK
8496 char *prefixed_name = typename_concat (NULL, prefix, name,
8497 physname, cu);
9a619af0 8498
94af9270
KS
8499 fputs_unfiltered (prefixed_name, buf);
8500 xfree (prefixed_name);
8501 }
8502 else
62d5b8da 8503 fputs_unfiltered (name, buf);
94af9270 8504
98bfdba5
PA
8505 /* Template parameters may be specified in the DIE's DW_AT_name, or
8506 as children with DW_TAG_template_type_param or
8507 DW_TAG_value_type_param. If the latter, add them to the name
8508 here. If the name already has template parameters, then
8509 skip this step; some versions of GCC emit both, and
8510 it is more efficient to use the pre-computed name.
8511
8512 Something to keep in mind about this process: it is very
8513 unlikely, or in some cases downright impossible, to produce
8514 something that will match the mangled name of a function.
8515 If the definition of the function has the same debug info,
8516 we should be able to match up with it anyway. But fallbacks
8517 using the minimal symbol, for instance to find a method
8518 implemented in a stripped copy of libstdc++, will not work.
8519 If we do not have debug info for the definition, we will have to
8520 match them up some other way.
8521
8522 When we do name matching there is a related problem with function
8523 templates; two instantiated function templates are allowed to
8524 differ only by their return types, which we do not add here. */
8525
8526 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8527 {
8528 struct attribute *attr;
8529 struct die_info *child;
8530 int first = 1;
8531
8532 die->building_fullname = 1;
8533
8534 for (child = die->child; child != NULL; child = child->sibling)
8535 {
8536 struct type *type;
12df843f 8537 LONGEST value;
d521ce57 8538 const gdb_byte *bytes;
98bfdba5
PA
8539 struct dwarf2_locexpr_baton *baton;
8540 struct value *v;
8541
8542 if (child->tag != DW_TAG_template_type_param
8543 && child->tag != DW_TAG_template_value_param)
8544 continue;
8545
8546 if (first)
8547 {
8548 fputs_unfiltered ("<", buf);
8549 first = 0;
8550 }
8551 else
8552 fputs_unfiltered (", ", buf);
8553
8554 attr = dwarf2_attr (child, DW_AT_type, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing DW_AT_type"));
8559 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8560 continue;
8561 }
8562 type = die_type (child, cu);
8563
8564 if (child->tag == DW_TAG_template_type_param)
8565 {
79d43c61 8566 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8567 continue;
8568 }
8569
8570 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8571 if (attr == NULL)
8572 {
8573 complaint (&symfile_complaints,
3e43a32a
MS
8574 _("template parameter missing "
8575 "DW_AT_const_value"));
98bfdba5
PA
8576 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8577 continue;
8578 }
8579
8580 dwarf2_const_value_attr (attr, type, name,
8581 &cu->comp_unit_obstack, cu,
8582 &value, &bytes, &baton);
8583
8584 if (TYPE_NOSIGN (type))
8585 /* GDB prints characters as NUMBER 'CHAR'. If that's
8586 changed, this can use value_print instead. */
8587 c_printchar (value, type, buf);
8588 else
8589 {
8590 struct value_print_options opts;
8591
8592 if (baton != NULL)
8593 v = dwarf2_evaluate_loc_desc (type, NULL,
8594 baton->data,
8595 baton->size,
8596 baton->per_cu);
8597 else if (bytes != NULL)
8598 {
8599 v = allocate_value (type);
8600 memcpy (value_contents_writeable (v), bytes,
8601 TYPE_LENGTH (type));
8602 }
8603 else
8604 v = value_from_longest (type, value);
8605
3e43a32a
MS
8606 /* Specify decimal so that we do not depend on
8607 the radix. */
98bfdba5
PA
8608 get_formatted_print_options (&opts, 'd');
8609 opts.raw = 1;
8610 value_print (v, buf, &opts);
8611 release_value (v);
8612 value_free (v);
8613 }
8614 }
8615
8616 die->building_fullname = 0;
8617
8618 if (!first)
8619 {
8620 /* Close the argument list, with a space if necessary
8621 (nested templates). */
8622 char last_char = '\0';
8623 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8624 if (last_char == '>')
8625 fputs_unfiltered (" >", buf);
8626 else
8627 fputs_unfiltered (">", buf);
8628 }
8629 }
8630
9c37b5ae 8631 /* For C++ methods, append formal parameter type
94af9270 8632 information, if PHYSNAME. */
6e70227d 8633
94af9270 8634 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8635 && cu->language == language_cplus)
94af9270
KS
8636 {
8637 struct type *type = read_type_die (die, cu);
8638
79d43c61
TT
8639 c_type_print_args (type, buf, 1, cu->language,
8640 &type_print_raw_options);
94af9270 8641
9c37b5ae 8642 if (cu->language == language_cplus)
94af9270 8643 {
60430eff
DJ
8644 /* Assume that an artificial first parameter is
8645 "this", but do not crash if it is not. RealView
8646 marks unnamed (and thus unused) parameters as
8647 artificial; there is no way to differentiate
8648 the two cases. */
94af9270
KS
8649 if (TYPE_NFIELDS (type) > 0
8650 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8651 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8652 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8653 0))))
94af9270
KS
8654 fputs_unfiltered (" const", buf);
8655 }
8656 }
8657
322a8516 8658 std::string intermediate_name = ui_file_as_string (buf);
94af9270
KS
8659 ui_file_delete (buf);
8660
8661 if (cu->language == language_cplus)
34a68019 8662 canonical_name
322a8516 8663 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8664 &objfile->per_bfd->storage_obstack);
8665
8666 /* If we only computed INTERMEDIATE_NAME, or if
8667 INTERMEDIATE_NAME is already canonical, then we need to
8668 copy it to the appropriate obstack. */
322a8516 8669 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8670 name = ((const char *)
8671 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8672 intermediate_name.c_str (),
8673 intermediate_name.length ()));
34a68019
TT
8674 else
8675 name = canonical_name;
94af9270
KS
8676 }
8677 }
8678
8679 return name;
8680}
8681
0114d602
DJ
8682/* Return the fully qualified name of DIE, based on its DW_AT_name.
8683 If scope qualifiers are appropriate they will be added. The result
34a68019 8684 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8685 not have a name. NAME may either be from a previous call to
8686 dwarf2_name or NULL.
8687
9c37b5ae 8688 The output string will be canonicalized (if C++). */
0114d602
DJ
8689
8690static const char *
15d034d0 8691dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8692{
94af9270
KS
8693 return dwarf2_compute_name (name, die, cu, 0);
8694}
0114d602 8695
94af9270
KS
8696/* Construct a physname for the given DIE in CU. NAME may either be
8697 from a previous call to dwarf2_name or NULL. The result will be
8698 allocated on the objfile_objstack or NULL if the DIE does not have a
8699 name.
0114d602 8700
9c37b5ae 8701 The output string will be canonicalized (if C++). */
0114d602 8702
94af9270 8703static const char *
15d034d0 8704dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8705{
bb5ed363 8706 struct objfile *objfile = cu->objfile;
900e11f9
JK
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
7d45c7c3
KB
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8721
e98c9e7c
TT
8722 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8723 See https://github.com/rust-lang/rust/issues/32925. */
8724 if (cu->language == language_rust && mangled != NULL
8725 && strchr (mangled, '{') != NULL)
8726 mangled = NULL;
8727
900e11f9
JK
8728 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8729 has computed. */
7d45c7c3 8730 if (mangled != NULL)
900e11f9
JK
8731 {
8732 char *demangled;
8733
900e11f9
JK
8734 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8735 type. It is easier for GDB users to search for such functions as
8736 `name(params)' than `long name(params)'. In such case the minimal
8737 symbol names do not match the full symbol names but for template
8738 functions there is never a need to look up their definition from their
8739 declaration so the only disadvantage remains the minimal symbol
8740 variant `long name(params)' does not have the proper inferior type.
8741 */
8742
a766d390
DE
8743 if (cu->language == language_go)
8744 {
8745 /* This is a lie, but we already lie to the caller new_symbol_full.
8746 new_symbol_full assumes we return the mangled name.
8747 This just undoes that lie until things are cleaned up. */
8748 demangled = NULL;
8749 }
8750 else
8751 {
8de20a37 8752 demangled = gdb_demangle (mangled,
9c37b5ae 8753 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8754 }
900e11f9
JK
8755 if (demangled)
8756 {
8757 make_cleanup (xfree, demangled);
8758 canon = demangled;
8759 }
8760 else
8761 {
8762 canon = mangled;
8763 need_copy = 0;
8764 }
8765 }
8766
8767 if (canon == NULL || check_physname)
8768 {
8769 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8770
8771 if (canon != NULL && strcmp (physname, canon) != 0)
8772 {
8773 /* It may not mean a bug in GDB. The compiler could also
8774 compute DW_AT_linkage_name incorrectly. But in such case
8775 GDB would need to be bug-to-bug compatible. */
8776
8777 complaint (&symfile_complaints,
8778 _("Computed physname <%s> does not match demangled <%s> "
8779 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8780 physname, canon, mangled, die->offset.sect_off,
8781 objfile_name (objfile));
900e11f9
JK
8782
8783 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8784 is available here - over computed PHYSNAME. It is safer
8785 against both buggy GDB and buggy compilers. */
8786
8787 retval = canon;
8788 }
8789 else
8790 {
8791 retval = physname;
8792 need_copy = 0;
8793 }
8794 }
8795 else
8796 retval = canon;
8797
8798 if (need_copy)
224c3ddb
SM
8799 retval = ((const char *)
8800 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8801 retval, strlen (retval)));
900e11f9
JK
8802
8803 do_cleanups (back_to);
8804 return retval;
0114d602
DJ
8805}
8806
74921315
KS
8807/* Inspect DIE in CU for a namespace alias. If one exists, record
8808 a new symbol for it.
8809
8810 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8811
8812static int
8813read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8814{
8815 struct attribute *attr;
8816
8817 /* If the die does not have a name, this is not a namespace
8818 alias. */
8819 attr = dwarf2_attr (die, DW_AT_name, cu);
8820 if (attr != NULL)
8821 {
8822 int num;
8823 struct die_info *d = die;
8824 struct dwarf2_cu *imported_cu = cu;
8825
8826 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8827 keep inspecting DIEs until we hit the underlying import. */
8828#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8829 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8830 {
8831 attr = dwarf2_attr (d, DW_AT_import, cu);
8832 if (attr == NULL)
8833 break;
8834
8835 d = follow_die_ref (d, attr, &imported_cu);
8836 if (d->tag != DW_TAG_imported_declaration)
8837 break;
8838 }
8839
8840 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8841 {
8842 complaint (&symfile_complaints,
8843 _("DIE at 0x%x has too many recursively imported "
8844 "declarations"), d->offset.sect_off);
8845 return 0;
8846 }
8847
8848 if (attr != NULL)
8849 {
8850 struct type *type;
8851 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8852
8853 type = get_die_type_at_offset (offset, cu->per_cu);
8854 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8855 {
8856 /* This declaration is a global namespace alias. Add
8857 a symbol for it whose type is the aliased namespace. */
8858 new_symbol (die, type, cu);
8859 return 1;
8860 }
8861 }
8862 }
8863
8864 return 0;
8865}
8866
22cee43f
PMR
8867/* Return the using directives repository (global or local?) to use in the
8868 current context for LANGUAGE.
8869
8870 For Ada, imported declarations can materialize renamings, which *may* be
8871 global. However it is impossible (for now?) in DWARF to distinguish
8872 "external" imported declarations and "static" ones. As all imported
8873 declarations seem to be static in all other languages, make them all CU-wide
8874 global only in Ada. */
8875
8876static struct using_direct **
8877using_directives (enum language language)
8878{
8879 if (language == language_ada && context_stack_depth == 0)
8880 return &global_using_directives;
8881 else
8882 return &local_using_directives;
8883}
8884
27aa8d6a
SW
8885/* Read the import statement specified by the given die and record it. */
8886
8887static void
8888read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8889{
bb5ed363 8890 struct objfile *objfile = cu->objfile;
27aa8d6a 8891 struct attribute *import_attr;
32019081 8892 struct die_info *imported_die, *child_die;
de4affc9 8893 struct dwarf2_cu *imported_cu;
27aa8d6a 8894 const char *imported_name;
794684b6 8895 const char *imported_name_prefix;
13387711
SW
8896 const char *canonical_name;
8897 const char *import_alias;
8898 const char *imported_declaration = NULL;
794684b6 8899 const char *import_prefix;
32019081
JK
8900 VEC (const_char_ptr) *excludes = NULL;
8901 struct cleanup *cleanups;
13387711 8902
27aa8d6a
SW
8903 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8904 if (import_attr == NULL)
8905 {
8906 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8907 dwarf_tag_name (die->tag));
8908 return;
8909 }
8910
de4affc9
CC
8911 imported_cu = cu;
8912 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8913 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8914 if (imported_name == NULL)
8915 {
8916 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8917
8918 The import in the following code:
8919 namespace A
8920 {
8921 typedef int B;
8922 }
8923
8924 int main ()
8925 {
8926 using A::B;
8927 B b;
8928 return b;
8929 }
8930
8931 ...
8932 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8933 <52> DW_AT_decl_file : 1
8934 <53> DW_AT_decl_line : 6
8935 <54> DW_AT_import : <0x75>
8936 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8937 <59> DW_AT_name : B
8938 <5b> DW_AT_decl_file : 1
8939 <5c> DW_AT_decl_line : 2
8940 <5d> DW_AT_type : <0x6e>
8941 ...
8942 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8943 <76> DW_AT_byte_size : 4
8944 <77> DW_AT_encoding : 5 (signed)
8945
8946 imports the wrong die ( 0x75 instead of 0x58 ).
8947 This case will be ignored until the gcc bug is fixed. */
8948 return;
8949 }
8950
82856980
SW
8951 /* Figure out the local name after import. */
8952 import_alias = dwarf2_name (die, cu);
27aa8d6a 8953
794684b6
SW
8954 /* Figure out where the statement is being imported to. */
8955 import_prefix = determine_prefix (die, cu);
8956
8957 /* Figure out what the scope of the imported die is and prepend it
8958 to the name of the imported die. */
de4affc9 8959 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8960
f55ee35c
JK
8961 if (imported_die->tag != DW_TAG_namespace
8962 && imported_die->tag != DW_TAG_module)
794684b6 8963 {
13387711
SW
8964 imported_declaration = imported_name;
8965 canonical_name = imported_name_prefix;
794684b6 8966 }
13387711 8967 else if (strlen (imported_name_prefix) > 0)
12aaed36 8968 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8969 imported_name_prefix,
8970 (cu->language == language_d ? "." : "::"),
8971 imported_name, (char *) NULL);
13387711
SW
8972 else
8973 canonical_name = imported_name;
794684b6 8974
32019081
JK
8975 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8976
8977 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8978 for (child_die = die->child; child_die && child_die->tag;
8979 child_die = sibling_die (child_die))
8980 {
8981 /* DWARF-4: A Fortran use statement with a “rename list” may be
8982 represented by an imported module entry with an import attribute
8983 referring to the module and owned entries corresponding to those
8984 entities that are renamed as part of being imported. */
8985
8986 if (child_die->tag != DW_TAG_imported_declaration)
8987 {
8988 complaint (&symfile_complaints,
8989 _("child DW_TAG_imported_declaration expected "
8990 "- DIE at 0x%x [in module %s]"),
4262abfb 8991 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8992 continue;
8993 }
8994
8995 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8996 if (import_attr == NULL)
8997 {
8998 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8999 dwarf_tag_name (child_die->tag));
9000 continue;
9001 }
9002
9003 imported_cu = cu;
9004 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9005 &imported_cu);
9006 imported_name = dwarf2_name (imported_die, imported_cu);
9007 if (imported_name == NULL)
9008 {
9009 complaint (&symfile_complaints,
9010 _("child DW_TAG_imported_declaration has unknown "
9011 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9012 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9013 continue;
9014 }
9015
9016 VEC_safe_push (const_char_ptr, excludes, imported_name);
9017
9018 process_die (child_die, cu);
9019 }
9020
22cee43f
PMR
9021 add_using_directive (using_directives (cu->language),
9022 import_prefix,
9023 canonical_name,
9024 import_alias,
9025 imported_declaration,
9026 excludes,
9027 0,
9028 &objfile->objfile_obstack);
32019081
JK
9029
9030 do_cleanups (cleanups);
27aa8d6a
SW
9031}
9032
f4dc4d17 9033/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9034
cb1df416
DJ
9035static void
9036free_cu_line_header (void *arg)
9037{
9a3c8263 9038 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9039
9040 free_line_header (cu->line_header);
9041 cu->line_header = NULL;
9042}
9043
1b80a9fa
JK
9044/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9045 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9046 this, it was first present in GCC release 4.3.0. */
9047
9048static int
9049producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9050{
9051 if (!cu->checked_producer)
9052 check_producer (cu);
9053
9054 return cu->producer_is_gcc_lt_4_3;
9055}
9056
9291a0cd
TT
9057static void
9058find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9059 const char **name, const char **comp_dir)
9291a0cd 9060{
9291a0cd
TT
9061 /* Find the filename. Do not use dwarf2_name here, since the filename
9062 is not a source language identifier. */
7d45c7c3
KB
9063 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9064 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9065
7d45c7c3
KB
9066 if (*comp_dir == NULL
9067 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9068 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9069 {
15d034d0
TT
9070 char *d = ldirname (*name);
9071
9072 *comp_dir = d;
9073 if (d != NULL)
9074 make_cleanup (xfree, d);
9291a0cd
TT
9075 }
9076 if (*comp_dir != NULL)
9077 {
9078 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9079 directory, get rid of it. */
e6a959d6 9080 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9081
9082 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9083 *comp_dir = cp + 1;
9084 }
9085
9086 if (*name == NULL)
9087 *name = "<unknown>";
9088}
9089
f4dc4d17
DE
9090/* Handle DW_AT_stmt_list for a compilation unit.
9091 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9092 COMP_DIR is the compilation directory. LOWPC is passed to
9093 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9094
9095static void
9096handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9097 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9098{
527f3840 9099 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9100 struct attribute *attr;
527f3840
JK
9101 unsigned int line_offset;
9102 struct line_header line_header_local;
9103 hashval_t line_header_local_hash;
9104 unsigned u;
9105 void **slot;
9106 int decode_mapping;
2ab95328 9107
f4dc4d17
DE
9108 gdb_assert (! cu->per_cu->is_debug_types);
9109
2ab95328 9110 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9111 if (attr == NULL)
9112 return;
9113
9114 line_offset = DW_UNSND (attr);
9115
9116 /* The line header hash table is only created if needed (it exists to
9117 prevent redundant reading of the line table for partial_units).
9118 If we're given a partial_unit, we'll need it. If we're given a
9119 compile_unit, then use the line header hash table if it's already
9120 created, but don't create one just yet. */
9121
9122 if (dwarf2_per_objfile->line_header_hash == NULL
9123 && die->tag == DW_TAG_partial_unit)
2ab95328 9124 {
527f3840
JK
9125 dwarf2_per_objfile->line_header_hash
9126 = htab_create_alloc_ex (127, line_header_hash_voidp,
9127 line_header_eq_voidp,
9128 free_line_header_voidp,
9129 &objfile->objfile_obstack,
9130 hashtab_obstack_allocate,
9131 dummy_obstack_deallocate);
9132 }
2ab95328 9133
527f3840
JK
9134 line_header_local.offset.sect_off = line_offset;
9135 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9136 line_header_local_hash = line_header_hash (&line_header_local);
9137 if (dwarf2_per_objfile->line_header_hash != NULL)
9138 {
9139 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9140 &line_header_local,
9141 line_header_local_hash, NO_INSERT);
9142
9143 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9144 is not present in *SLOT (since if there is something in *SLOT then
9145 it will be for a partial_unit). */
9146 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9147 {
527f3840 9148 gdb_assert (*slot != NULL);
9a3c8263 9149 cu->line_header = (struct line_header *) *slot;
527f3840 9150 return;
dee91e82 9151 }
2ab95328 9152 }
527f3840
JK
9153
9154 /* dwarf_decode_line_header does not yet provide sufficient information.
9155 We always have to call also dwarf_decode_lines for it. */
9156 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9157 if (cu->line_header == NULL)
9158 return;
9159
9160 if (dwarf2_per_objfile->line_header_hash == NULL)
9161 slot = NULL;
9162 else
9163 {
9164 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9165 &line_header_local,
9166 line_header_local_hash, INSERT);
9167 gdb_assert (slot != NULL);
9168 }
9169 if (slot != NULL && *slot == NULL)
9170 {
9171 /* This newly decoded line number information unit will be owned
9172 by line_header_hash hash table. */
9173 *slot = cu->line_header;
9174 }
9175 else
9176 {
9177 /* We cannot free any current entry in (*slot) as that struct line_header
9178 may be already used by multiple CUs. Create only temporary decoded
9179 line_header for this CU - it may happen at most once for each line
9180 number information unit. And if we're not using line_header_hash
9181 then this is what we want as well. */
9182 gdb_assert (die->tag != DW_TAG_partial_unit);
9183 make_cleanup (free_cu_line_header, cu);
9184 }
9185 decode_mapping = (die->tag != DW_TAG_partial_unit);
9186 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9187 decode_mapping);
2ab95328
TT
9188}
9189
95554aad 9190/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9191
c906108c 9192static void
e7c27a73 9193read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9194{
dee91e82 9195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9197 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9198 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9199 CORE_ADDR highpc = ((CORE_ADDR) 0);
9200 struct attribute *attr;
15d034d0
TT
9201 const char *name = NULL;
9202 const char *comp_dir = NULL;
c906108c 9203 struct die_info *child_die;
e142c38c 9204 CORE_ADDR baseaddr;
6e70227d 9205
e142c38c 9206 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9207
fae299cd 9208 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9209
9210 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9211 from finish_block. */
2acceee2 9212 if (lowpc == ((CORE_ADDR) -1))
c906108c 9213 lowpc = highpc;
3e29f34a 9214 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9215
9291a0cd 9216 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9217
95554aad 9218 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9219
f4b8a18d
KW
9220 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9221 standardised yet. As a workaround for the language detection we fall
9222 back to the DW_AT_producer string. */
9223 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9224 cu->language = language_opencl;
9225
3019eac3
DE
9226 /* Similar hack for Go. */
9227 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9228 set_cu_language (DW_LANG_Go, cu);
9229
f4dc4d17 9230 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9231
9232 /* Decode line number information if present. We do this before
9233 processing child DIEs, so that the line header table is available
9234 for DW_AT_decl_file. */
c3b7b696 9235 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9236
9237 /* Process all dies in compilation unit. */
9238 if (die->child != NULL)
9239 {
9240 child_die = die->child;
9241 while (child_die && child_die->tag)
9242 {
9243 process_die (child_die, cu);
9244 child_die = sibling_die (child_die);
9245 }
9246 }
9247
9248 /* Decode macro information, if present. Dwarf 2 macro information
9249 refers to information in the line number info statement program
9250 header, so we can only read it if we've read the header
9251 successfully. */
9252 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9253 if (attr && cu->line_header)
9254 {
9255 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9256 complaint (&symfile_complaints,
9257 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9258
43f3e411 9259 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9260 }
9261 else
9262 {
9263 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9264 if (attr && cu->line_header)
9265 {
9266 unsigned int macro_offset = DW_UNSND (attr);
9267
43f3e411 9268 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9269 }
9270 }
9271
9272 do_cleanups (back_to);
9273}
9274
f4dc4d17
DE
9275/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9276 Create the set of symtabs used by this TU, or if this TU is sharing
9277 symtabs with another TU and the symtabs have already been created
9278 then restore those symtabs in the line header.
9279 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9280
9281static void
f4dc4d17 9282setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9283{
f4dc4d17
DE
9284 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9285 struct type_unit_group *tu_group;
9286 int first_time;
9287 struct line_header *lh;
3019eac3 9288 struct attribute *attr;
f4dc4d17 9289 unsigned int i, line_offset;
0186c6a7 9290 struct signatured_type *sig_type;
3019eac3 9291
f4dc4d17 9292 gdb_assert (per_cu->is_debug_types);
0186c6a7 9293 sig_type = (struct signatured_type *) per_cu;
3019eac3 9294
f4dc4d17 9295 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9296
f4dc4d17 9297 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9298 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9299 if (sig_type->type_unit_group == NULL)
9300 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9301 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9302
9303 /* If we've already processed this stmt_list there's no real need to
9304 do it again, we could fake it and just recreate the part we need
9305 (file name,index -> symtab mapping). If data shows this optimization
9306 is useful we can do it then. */
43f3e411 9307 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9308
9309 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9310 debug info. */
9311 lh = NULL;
9312 if (attr != NULL)
3019eac3 9313 {
f4dc4d17
DE
9314 line_offset = DW_UNSND (attr);
9315 lh = dwarf_decode_line_header (line_offset, cu);
9316 }
9317 if (lh == NULL)
9318 {
9319 if (first_time)
9320 dwarf2_start_symtab (cu, "", NULL, 0);
9321 else
9322 {
9323 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9324 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9325 }
f4dc4d17 9326 return;
3019eac3
DE
9327 }
9328
f4dc4d17
DE
9329 cu->line_header = lh;
9330 make_cleanup (free_cu_line_header, cu);
3019eac3 9331
f4dc4d17
DE
9332 if (first_time)
9333 {
43f3e411 9334 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9335
1fd60fc0
DE
9336 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9337 still initializing it, and our caller (a few levels up)
9338 process_full_type_unit still needs to know if this is the first
9339 time. */
9340
f4dc4d17
DE
9341 tu_group->num_symtabs = lh->num_file_names;
9342 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9343
f4dc4d17
DE
9344 for (i = 0; i < lh->num_file_names; ++i)
9345 {
d521ce57 9346 const char *dir = NULL;
f4dc4d17 9347 struct file_entry *fe = &lh->file_names[i];
3019eac3 9348
afa6c9ab 9349 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9350 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9351 dwarf2_start_subfile (fe->name, dir);
3019eac3 9352
f4dc4d17
DE
9353 if (current_subfile->symtab == NULL)
9354 {
9355 /* NOTE: start_subfile will recognize when it's been passed
9356 a file it has already seen. So we can't assume there's a
43f3e411 9357 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9358 lh->file_names may contain dups. */
43f3e411
DE
9359 current_subfile->symtab
9360 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9361 }
9362
9363 fe->symtab = current_subfile->symtab;
9364 tu_group->symtabs[i] = fe->symtab;
9365 }
9366 }
9367 else
3019eac3 9368 {
0ab9ce85 9369 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9370
9371 for (i = 0; i < lh->num_file_names; ++i)
9372 {
9373 struct file_entry *fe = &lh->file_names[i];
9374
9375 fe->symtab = tu_group->symtabs[i];
9376 }
3019eac3
DE
9377 }
9378
f4dc4d17
DE
9379 /* The main symtab is allocated last. Type units don't have DW_AT_name
9380 so they don't have a "real" (so to speak) symtab anyway.
9381 There is later code that will assign the main symtab to all symbols
9382 that don't have one. We need to handle the case of a symbol with a
9383 missing symtab (DW_AT_decl_file) anyway. */
9384}
3019eac3 9385
f4dc4d17
DE
9386/* Process DW_TAG_type_unit.
9387 For TUs we want to skip the first top level sibling if it's not the
9388 actual type being defined by this TU. In this case the first top
9389 level sibling is there to provide context only. */
3019eac3 9390
f4dc4d17
DE
9391static void
9392read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9393{
9394 struct die_info *child_die;
3019eac3 9395
f4dc4d17
DE
9396 prepare_one_comp_unit (cu, die, language_minimal);
9397
9398 /* Initialize (or reinitialize) the machinery for building symtabs.
9399 We do this before processing child DIEs, so that the line header table
9400 is available for DW_AT_decl_file. */
9401 setup_type_unit_groups (die, cu);
9402
9403 if (die->child != NULL)
9404 {
9405 child_die = die->child;
9406 while (child_die && child_die->tag)
9407 {
9408 process_die (child_die, cu);
9409 child_die = sibling_die (child_die);
9410 }
9411 }
3019eac3
DE
9412}
9413\f
80626a55
DE
9414/* DWO/DWP files.
9415
9416 http://gcc.gnu.org/wiki/DebugFission
9417 http://gcc.gnu.org/wiki/DebugFissionDWP
9418
9419 To simplify handling of both DWO files ("object" files with the DWARF info)
9420 and DWP files (a file with the DWOs packaged up into one file), we treat
9421 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9422
9423static hashval_t
9424hash_dwo_file (const void *item)
9425{
9a3c8263 9426 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9427 hashval_t hash;
3019eac3 9428
a2ce51a0
DE
9429 hash = htab_hash_string (dwo_file->dwo_name);
9430 if (dwo_file->comp_dir != NULL)
9431 hash += htab_hash_string (dwo_file->comp_dir);
9432 return hash;
3019eac3
DE
9433}
9434
9435static int
9436eq_dwo_file (const void *item_lhs, const void *item_rhs)
9437{
9a3c8263
SM
9438 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9439 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9440
a2ce51a0
DE
9441 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9442 return 0;
9443 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9444 return lhs->comp_dir == rhs->comp_dir;
9445 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9446}
9447
9448/* Allocate a hash table for DWO files. */
9449
9450static htab_t
9451allocate_dwo_file_hash_table (void)
9452{
9453 struct objfile *objfile = dwarf2_per_objfile->objfile;
9454
9455 return htab_create_alloc_ex (41,
9456 hash_dwo_file,
9457 eq_dwo_file,
9458 NULL,
9459 &objfile->objfile_obstack,
9460 hashtab_obstack_allocate,
9461 dummy_obstack_deallocate);
9462}
9463
80626a55
DE
9464/* Lookup DWO file DWO_NAME. */
9465
9466static void **
0ac5b59e 9467lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9468{
9469 struct dwo_file find_entry;
9470 void **slot;
9471
9472 if (dwarf2_per_objfile->dwo_files == NULL)
9473 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9474
9475 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9476 find_entry.dwo_name = dwo_name;
9477 find_entry.comp_dir = comp_dir;
80626a55
DE
9478 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9479
9480 return slot;
9481}
9482
3019eac3
DE
9483static hashval_t
9484hash_dwo_unit (const void *item)
9485{
9a3c8263 9486 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9487
9488 /* This drops the top 32 bits of the id, but is ok for a hash. */
9489 return dwo_unit->signature;
9490}
9491
9492static int
9493eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9494{
9a3c8263
SM
9495 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9496 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9497
9498 /* The signature is assumed to be unique within the DWO file.
9499 So while object file CU dwo_id's always have the value zero,
9500 that's OK, assuming each object file DWO file has only one CU,
9501 and that's the rule for now. */
9502 return lhs->signature == rhs->signature;
9503}
9504
9505/* Allocate a hash table for DWO CUs,TUs.
9506 There is one of these tables for each of CUs,TUs for each DWO file. */
9507
9508static htab_t
9509allocate_dwo_unit_table (struct objfile *objfile)
9510{
9511 /* Start out with a pretty small number.
9512 Generally DWO files contain only one CU and maybe some TUs. */
9513 return htab_create_alloc_ex (3,
9514 hash_dwo_unit,
9515 eq_dwo_unit,
9516 NULL,
9517 &objfile->objfile_obstack,
9518 hashtab_obstack_allocate,
9519 dummy_obstack_deallocate);
9520}
9521
80626a55 9522/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9523
19c3d4c9 9524struct create_dwo_cu_data
3019eac3
DE
9525{
9526 struct dwo_file *dwo_file;
19c3d4c9 9527 struct dwo_unit dwo_unit;
3019eac3
DE
9528};
9529
19c3d4c9 9530/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9531
9532static void
19c3d4c9
DE
9533create_dwo_cu_reader (const struct die_reader_specs *reader,
9534 const gdb_byte *info_ptr,
9535 struct die_info *comp_unit_die,
9536 int has_children,
9537 void *datap)
3019eac3
DE
9538{
9539 struct dwarf2_cu *cu = reader->cu;
3019eac3 9540 sect_offset offset = cu->per_cu->offset;
8a0459fd 9541 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9543 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9545 struct attribute *attr;
3019eac3
DE
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
19c3d4c9
DE
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9554 return;
9555 }
9556
3019eac3
DE
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9559 dwo_unit->section = section;
3019eac3
DE
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
b4f54984 9563 if (dwarf_read_debug)
4031ecc5
DE
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9566}
9567
19c3d4c9
DE
9568/* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
3019eac3 9570
19c3d4c9
DE
9571static struct dwo_unit *
9572create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9573{
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9576 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9577 struct create_dwo_cu_data create_dwo_cu_data;
9578 struct dwo_unit *dwo_unit;
3019eac3
DE
9579
9580 dwarf2_read_section (objfile, section);
9581 info_ptr = section->buffer;
9582
9583 if (info_ptr == NULL)
9584 return NULL;
9585
b4f54984 9586 if (dwarf_read_debug)
19c3d4c9
DE
9587 {
9588 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9589 get_section_name (section),
9590 get_section_file_name (section));
19c3d4c9 9591 }
3019eac3 9592
19c3d4c9
DE
9593 create_dwo_cu_data.dwo_file = dwo_file;
9594 dwo_unit = NULL;
3019eac3
DE
9595
9596 end_ptr = info_ptr + section->size;
9597 while (info_ptr < end_ptr)
9598 {
9599 struct dwarf2_per_cu_data per_cu;
9600
19c3d4c9
DE
9601 memset (&create_dwo_cu_data.dwo_unit, 0,
9602 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9603 memset (&per_cu, 0, sizeof (per_cu));
9604 per_cu.objfile = objfile;
9605 per_cu.is_debug_types = 0;
9606 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9607 per_cu.section = section;
3019eac3 9608
33e80786 9609 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9610 create_dwo_cu_reader,
9611 &create_dwo_cu_data);
9612
9613 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9614 {
9615 /* If we've already found one, complain. We only support one
9616 because having more than one requires hacking the dwo_name of
9617 each to match, which is highly unlikely to happen. */
9618 if (dwo_unit != NULL)
9619 {
9620 complaint (&symfile_complaints,
9621 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9622 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9623 break;
9624 }
9625
9626 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9627 *dwo_unit = create_dwo_cu_data.dwo_unit;
9628 }
3019eac3
DE
9629
9630 info_ptr += per_cu.length;
9631 }
9632
19c3d4c9 9633 return dwo_unit;
3019eac3
DE
9634}
9635
80626a55
DE
9636/* DWP file .debug_{cu,tu}_index section format:
9637 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9638
d2415c6c
DE
9639 DWP Version 1:
9640
80626a55
DE
9641 Both index sections have the same format, and serve to map a 64-bit
9642 signature to a set of section numbers. Each section begins with a header,
9643 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9644 indexes, and a pool of 32-bit section numbers. The index sections will be
9645 aligned at 8-byte boundaries in the file.
9646
d2415c6c
DE
9647 The index section header consists of:
9648
9649 V, 32 bit version number
9650 -, 32 bits unused
9651 N, 32 bit number of compilation units or type units in the index
9652 M, 32 bit number of slots in the hash table
80626a55 9653
d2415c6c 9654 Numbers are recorded using the byte order of the application binary.
80626a55 9655
d2415c6c
DE
9656 The hash table begins at offset 16 in the section, and consists of an array
9657 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9658 order of the application binary). Unused slots in the hash table are 0.
9659 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9660
d2415c6c
DE
9661 The parallel table begins immediately after the hash table
9662 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9663 array of 32-bit indexes (using the byte order of the application binary),
9664 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9665 table contains a 32-bit index into the pool of section numbers. For unused
9666 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9667
73869dc2
DE
9668 The pool of section numbers begins immediately following the hash table
9669 (at offset 16 + 12 * M from the beginning of the section). The pool of
9670 section numbers consists of an array of 32-bit words (using the byte order
9671 of the application binary). Each item in the array is indexed starting
9672 from 0. The hash table entry provides the index of the first section
9673 number in the set. Additional section numbers in the set follow, and the
9674 set is terminated by a 0 entry (section number 0 is not used in ELF).
9675
9676 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9677 section must be the first entry in the set, and the .debug_abbrev.dwo must
9678 be the second entry. Other members of the set may follow in any order.
9679
9680 ---
9681
9682 DWP Version 2:
9683
9684 DWP Version 2 combines all the .debug_info, etc. sections into one,
9685 and the entries in the index tables are now offsets into these sections.
9686 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9687 section.
9688
9689 Index Section Contents:
9690 Header
9691 Hash Table of Signatures dwp_hash_table.hash_table
9692 Parallel Table of Indices dwp_hash_table.unit_table
9693 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9694 Table of Section Sizes dwp_hash_table.v2.sizes
9695
9696 The index section header consists of:
9697
9698 V, 32 bit version number
9699 L, 32 bit number of columns in the table of section offsets
9700 N, 32 bit number of compilation units or type units in the index
9701 M, 32 bit number of slots in the hash table
9702
9703 Numbers are recorded using the byte order of the application binary.
9704
9705 The hash table has the same format as version 1.
9706 The parallel table of indices has the same format as version 1,
9707 except that the entries are origin-1 indices into the table of sections
9708 offsets and the table of section sizes.
9709
9710 The table of offsets begins immediately following the parallel table
9711 (at offset 16 + 12 * M from the beginning of the section). The table is
9712 a two-dimensional array of 32-bit words (using the byte order of the
9713 application binary), with L columns and N+1 rows, in row-major order.
9714 Each row in the array is indexed starting from 0. The first row provides
9715 a key to the remaining rows: each column in this row provides an identifier
9716 for a debug section, and the offsets in the same column of subsequent rows
9717 refer to that section. The section identifiers are:
9718
9719 DW_SECT_INFO 1 .debug_info.dwo
9720 DW_SECT_TYPES 2 .debug_types.dwo
9721 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9722 DW_SECT_LINE 4 .debug_line.dwo
9723 DW_SECT_LOC 5 .debug_loc.dwo
9724 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9725 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9726 DW_SECT_MACRO 8 .debug_macro.dwo
9727
9728 The offsets provided by the CU and TU index sections are the base offsets
9729 for the contributions made by each CU or TU to the corresponding section
9730 in the package file. Each CU and TU header contains an abbrev_offset
9731 field, used to find the abbreviations table for that CU or TU within the
9732 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9733 be interpreted as relative to the base offset given in the index section.
9734 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9735 should be interpreted as relative to the base offset for .debug_line.dwo,
9736 and offsets into other debug sections obtained from DWARF attributes should
9737 also be interpreted as relative to the corresponding base offset.
9738
9739 The table of sizes begins immediately following the table of offsets.
9740 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9741 with L columns and N rows, in row-major order. Each row in the array is
9742 indexed starting from 1 (row 0 is shared by the two tables).
9743
9744 ---
9745
9746 Hash table lookup is handled the same in version 1 and 2:
9747
9748 We assume that N and M will not exceed 2^32 - 1.
9749 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9750
d2415c6c
DE
9751 Given a 64-bit compilation unit signature or a type signature S, an entry
9752 in the hash table is located as follows:
80626a55 9753
d2415c6c
DE
9754 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9755 the low-order k bits all set to 1.
80626a55 9756
d2415c6c 9757 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9758
d2415c6c
DE
9759 3) If the hash table entry at index H matches the signature, use that
9760 entry. If the hash table entry at index H is unused (all zeroes),
9761 terminate the search: the signature is not present in the table.
80626a55 9762
d2415c6c 9763 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9764
d2415c6c 9765 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9766 to stop at an unused slot or find the match. */
80626a55
DE
9767
9768/* Create a hash table to map DWO IDs to their CU/TU entry in
9769 .debug_{info,types}.dwo in DWP_FILE.
9770 Returns NULL if there isn't one.
9771 Note: This function processes DWP files only, not DWO files. */
9772
9773static struct dwp_hash_table *
9774create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9775{
9776 struct objfile *objfile = dwarf2_per_objfile->objfile;
9777 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9778 const gdb_byte *index_ptr, *index_end;
80626a55 9779 struct dwarf2_section_info *index;
73869dc2 9780 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9781 struct dwp_hash_table *htab;
9782
9783 if (is_debug_types)
9784 index = &dwp_file->sections.tu_index;
9785 else
9786 index = &dwp_file->sections.cu_index;
9787
9788 if (dwarf2_section_empty_p (index))
9789 return NULL;
9790 dwarf2_read_section (objfile, index);
9791
9792 index_ptr = index->buffer;
9793 index_end = index_ptr + index->size;
9794
9795 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9796 index_ptr += 4;
9797 if (version == 2)
9798 nr_columns = read_4_bytes (dbfd, index_ptr);
9799 else
9800 nr_columns = 0;
9801 index_ptr += 4;
80626a55
DE
9802 nr_units = read_4_bytes (dbfd, index_ptr);
9803 index_ptr += 4;
9804 nr_slots = read_4_bytes (dbfd, index_ptr);
9805 index_ptr += 4;
9806
73869dc2 9807 if (version != 1 && version != 2)
80626a55 9808 {
21aa081e 9809 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9810 " [in module %s]"),
21aa081e 9811 pulongest (version), dwp_file->name);
80626a55
DE
9812 }
9813 if (nr_slots != (nr_slots & -nr_slots))
9814 {
21aa081e 9815 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9816 " is not power of 2 [in module %s]"),
21aa081e 9817 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9818 }
9819
9820 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9821 htab->version = version;
9822 htab->nr_columns = nr_columns;
80626a55
DE
9823 htab->nr_units = nr_units;
9824 htab->nr_slots = nr_slots;
9825 htab->hash_table = index_ptr;
9826 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9827
9828 /* Exit early if the table is empty. */
9829 if (nr_slots == 0 || nr_units == 0
9830 || (version == 2 && nr_columns == 0))
9831 {
9832 /* All must be zero. */
9833 if (nr_slots != 0 || nr_units != 0
9834 || (version == 2 && nr_columns != 0))
9835 {
9836 complaint (&symfile_complaints,
9837 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9838 " all zero [in modules %s]"),
9839 dwp_file->name);
9840 }
9841 return htab;
9842 }
9843
9844 if (version == 1)
9845 {
9846 htab->section_pool.v1.indices =
9847 htab->unit_table + sizeof (uint32_t) * nr_slots;
9848 /* It's harder to decide whether the section is too small in v1.
9849 V1 is deprecated anyway so we punt. */
9850 }
9851 else
9852 {
9853 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 int *ids = htab->section_pool.v2.section_ids;
9855 /* Reverse map for error checking. */
9856 int ids_seen[DW_SECT_MAX + 1];
9857 int i;
9858
9859 if (nr_columns < 2)
9860 {
9861 error (_("Dwarf Error: bad DWP hash table, too few columns"
9862 " in section table [in module %s]"),
9863 dwp_file->name);
9864 }
9865 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too many columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9872 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9873 for (i = 0; i < nr_columns; ++i)
9874 {
9875 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9876
9877 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9878 {
9879 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9880 " in section table [in module %s]"),
9881 id, dwp_file->name);
9882 }
9883 if (ids_seen[id] != -1)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9886 " id %d in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 ids_seen[id] = i;
9890 ids[i] = id;
9891 }
9892 /* Must have exactly one info or types section. */
9893 if (((ids_seen[DW_SECT_INFO] != -1)
9894 + (ids_seen[DW_SECT_TYPES] != -1))
9895 != 1)
9896 {
9897 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9898 " DWO info/types section [in module %s]"),
9899 dwp_file->name);
9900 }
9901 /* Must have an abbrev section. */
9902 if (ids_seen[DW_SECT_ABBREV] == -1)
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9905 " section [in module %s]"),
9906 dwp_file->name);
9907 }
9908 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9909 htab->section_pool.v2.sizes =
9910 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9911 * nr_units * nr_columns);
9912 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9913 * nr_units * nr_columns))
9914 > index_end)
9915 {
9916 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9917 " [in module %s]"),
9918 dwp_file->name);
9919 }
9920 }
80626a55
DE
9921
9922 return htab;
9923}
9924
9925/* Update SECTIONS with the data from SECTP.
9926
9927 This function is like the other "locate" section routines that are
9928 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9929 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9930
9931 The result is non-zero for success, or zero if an error was found. */
9932
9933static int
73869dc2
DE
9934locate_v1_virtual_dwo_sections (asection *sectp,
9935 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9936{
9937 const struct dwop_section_names *names = &dwop_section_names;
9938
9939 if (section_is_p (sectp->name, &names->abbrev_dwo))
9940 {
9941 /* There can be only one. */
049412e3 9942 if (sections->abbrev.s.section != NULL)
80626a55 9943 return 0;
049412e3 9944 sections->abbrev.s.section = sectp;
80626a55
DE
9945 sections->abbrev.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->info_dwo)
9948 || section_is_p (sectp->name, &names->types_dwo))
9949 {
9950 /* There can be only one. */
049412e3 9951 if (sections->info_or_types.s.section != NULL)
80626a55 9952 return 0;
049412e3 9953 sections->info_or_types.s.section = sectp;
80626a55
DE
9954 sections->info_or_types.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->line_dwo))
9957 {
9958 /* There can be only one. */
049412e3 9959 if (sections->line.s.section != NULL)
80626a55 9960 return 0;
049412e3 9961 sections->line.s.section = sectp;
80626a55
DE
9962 sections->line.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->loc_dwo))
9965 {
9966 /* There can be only one. */
049412e3 9967 if (sections->loc.s.section != NULL)
80626a55 9968 return 0;
049412e3 9969 sections->loc.s.section = sectp;
80626a55
DE
9970 sections->loc.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9973 {
9974 /* There can be only one. */
049412e3 9975 if (sections->macinfo.s.section != NULL)
80626a55 9976 return 0;
049412e3 9977 sections->macinfo.s.section = sectp;
80626a55
DE
9978 sections->macinfo.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->macro_dwo))
9981 {
9982 /* There can be only one. */
049412e3 9983 if (sections->macro.s.section != NULL)
80626a55 9984 return 0;
049412e3 9985 sections->macro.s.section = sectp;
80626a55
DE
9986 sections->macro.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9989 {
9990 /* There can be only one. */
049412e3 9991 if (sections->str_offsets.s.section != NULL)
80626a55 9992 return 0;
049412e3 9993 sections->str_offsets.s.section = sectp;
80626a55
DE
9994 sections->str_offsets.size = bfd_get_section_size (sectp);
9995 }
9996 else
9997 {
9998 /* No other kind of section is valid. */
9999 return 0;
10000 }
10001
10002 return 1;
10003}
10004
73869dc2
DE
10005/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10006 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10007 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10008 This is for DWP version 1 files. */
80626a55
DE
10009
10010static struct dwo_unit *
73869dc2
DE
10011create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10012 uint32_t unit_index,
10013 const char *comp_dir,
10014 ULONGEST signature, int is_debug_types)
80626a55
DE
10015{
10016 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10017 const struct dwp_hash_table *dwp_htab =
10018 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10019 bfd *dbfd = dwp_file->dbfd;
10020 const char *kind = is_debug_types ? "TU" : "CU";
10021 struct dwo_file *dwo_file;
10022 struct dwo_unit *dwo_unit;
73869dc2 10023 struct virtual_v1_dwo_sections sections;
80626a55
DE
10024 void **dwo_file_slot;
10025 char *virtual_dwo_name;
80626a55
DE
10026 struct cleanup *cleanups;
10027 int i;
10028
73869dc2
DE
10029 gdb_assert (dwp_file->version == 1);
10030
b4f54984 10031 if (dwarf_read_debug)
80626a55 10032 {
73869dc2 10033 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10034 kind,
73869dc2 10035 pulongest (unit_index), hex_string (signature),
80626a55
DE
10036 dwp_file->name);
10037 }
10038
19ac8c2e 10039 /* Fetch the sections of this DWO unit.
80626a55
DE
10040 Put a limit on the number of sections we look for so that bad data
10041 doesn't cause us to loop forever. */
10042
73869dc2 10043#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10044 (1 /* .debug_info or .debug_types */ \
10045 + 1 /* .debug_abbrev */ \
10046 + 1 /* .debug_line */ \
10047 + 1 /* .debug_loc */ \
10048 + 1 /* .debug_str_offsets */ \
19ac8c2e 10049 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10050 + 1 /* trailing zero */)
10051
10052 memset (&sections, 0, sizeof (sections));
10053 cleanups = make_cleanup (null_cleanup, 0);
10054
73869dc2 10055 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10056 {
10057 asection *sectp;
10058 uint32_t section_nr =
10059 read_4_bytes (dbfd,
73869dc2
DE
10060 dwp_htab->section_pool.v1.indices
10061 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10062
10063 if (section_nr == 0)
10064 break;
10065 if (section_nr >= dwp_file->num_sections)
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, section number too large"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071
10072 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10073 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079 }
10080
10081 if (i < 2
a32a8923
DE
10082 || dwarf2_section_empty_p (&sections.info_or_types)
10083 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10084 {
10085 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10086 " [in module %s]"),
10087 dwp_file->name);
10088 }
73869dc2 10089 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10092 " [in module %s]"),
10093 dwp_file->name);
10094 }
10095
10096 /* It's easier for the rest of the code if we fake a struct dwo_file and
10097 have dwo_unit "live" in that. At least for now.
10098
10099 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10100 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10101 file, we can combine them back into a virtual DWO file to save space
10102 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10103 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10104
2792b94d
PM
10105 virtual_dwo_name =
10106 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10107 get_section_id (&sections.abbrev),
10108 get_section_id (&sections.line),
10109 get_section_id (&sections.loc),
10110 get_section_id (&sections.str_offsets));
80626a55
DE
10111 make_cleanup (xfree, virtual_dwo_name);
10112 /* Can we use an existing virtual DWO file? */
0ac5b59e 10113 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10114 /* Create one if necessary. */
10115 if (*dwo_file_slot == NULL)
10116 {
b4f54984 10117 if (dwarf_read_debug)
80626a55
DE
10118 {
10119 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10120 virtual_dwo_name);
10121 }
10122 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10123 dwo_file->dwo_name
10124 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10125 virtual_dwo_name,
10126 strlen (virtual_dwo_name));
0ac5b59e 10127 dwo_file->comp_dir = comp_dir;
80626a55
DE
10128 dwo_file->sections.abbrev = sections.abbrev;
10129 dwo_file->sections.line = sections.line;
10130 dwo_file->sections.loc = sections.loc;
10131 dwo_file->sections.macinfo = sections.macinfo;
10132 dwo_file->sections.macro = sections.macro;
10133 dwo_file->sections.str_offsets = sections.str_offsets;
10134 /* The "str" section is global to the entire DWP file. */
10135 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10136 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10137 there's no need to record it in dwo_file.
10138 Also, we can't simply record type sections in dwo_file because
10139 we record a pointer into the vector in dwo_unit. As we collect more
10140 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10141 for it, invalidating all copies of pointers into the previous
10142 contents. */
80626a55
DE
10143 *dwo_file_slot = dwo_file;
10144 }
10145 else
10146 {
b4f54984 10147 if (dwarf_read_debug)
80626a55
DE
10148 {
10149 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10150 virtual_dwo_name);
10151 }
9a3c8263 10152 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10153 }
10154 do_cleanups (cleanups);
10155
10156 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10157 dwo_unit->dwo_file = dwo_file;
10158 dwo_unit->signature = signature;
8d749320
SM
10159 dwo_unit->section =
10160 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10161 *dwo_unit->section = sections.info_or_types;
57d63ce2 10162 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10163
10164 return dwo_unit;
10165}
10166
73869dc2
DE
10167/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10168 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10169 piece within that section used by a TU/CU, return a virtual section
10170 of just that piece. */
10171
10172static struct dwarf2_section_info
10173create_dwp_v2_section (struct dwarf2_section_info *section,
10174 bfd_size_type offset, bfd_size_type size)
10175{
10176 struct dwarf2_section_info result;
10177 asection *sectp;
10178
10179 gdb_assert (section != NULL);
10180 gdb_assert (!section->is_virtual);
10181
10182 memset (&result, 0, sizeof (result));
10183 result.s.containing_section = section;
10184 result.is_virtual = 1;
10185
10186 if (size == 0)
10187 return result;
10188
10189 sectp = get_section_bfd_section (section);
10190
10191 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10192 bounds of the real section. This is a pretty-rare event, so just
10193 flag an error (easier) instead of a warning and trying to cope. */
10194 if (sectp == NULL
10195 || offset + size > bfd_get_section_size (sectp))
10196 {
10197 bfd *abfd = sectp->owner;
10198
10199 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10200 " in section %s [in module %s]"),
10201 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10202 objfile_name (dwarf2_per_objfile->objfile));
10203 }
10204
10205 result.virtual_offset = offset;
10206 result.size = size;
10207 return result;
10208}
10209
10210/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10211 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10212 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10213 This is for DWP version 2 files. */
10214
10215static struct dwo_unit *
10216create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10217 uint32_t unit_index,
10218 const char *comp_dir,
10219 ULONGEST signature, int is_debug_types)
10220{
10221 struct objfile *objfile = dwarf2_per_objfile->objfile;
10222 const struct dwp_hash_table *dwp_htab =
10223 is_debug_types ? dwp_file->tus : dwp_file->cus;
10224 bfd *dbfd = dwp_file->dbfd;
10225 const char *kind = is_debug_types ? "TU" : "CU";
10226 struct dwo_file *dwo_file;
10227 struct dwo_unit *dwo_unit;
10228 struct virtual_v2_dwo_sections sections;
10229 void **dwo_file_slot;
10230 char *virtual_dwo_name;
73869dc2
DE
10231 struct cleanup *cleanups;
10232 int i;
10233
10234 gdb_assert (dwp_file->version == 2);
10235
b4f54984 10236 if (dwarf_read_debug)
73869dc2
DE
10237 {
10238 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10239 kind,
10240 pulongest (unit_index), hex_string (signature),
10241 dwp_file->name);
10242 }
10243
10244 /* Fetch the section offsets of this DWO unit. */
10245
10246 memset (&sections, 0, sizeof (sections));
10247 cleanups = make_cleanup (null_cleanup, 0);
10248
10249 for (i = 0; i < dwp_htab->nr_columns; ++i)
10250 {
10251 uint32_t offset = read_4_bytes (dbfd,
10252 dwp_htab->section_pool.v2.offsets
10253 + (((unit_index - 1) * dwp_htab->nr_columns
10254 + i)
10255 * sizeof (uint32_t)));
10256 uint32_t size = read_4_bytes (dbfd,
10257 dwp_htab->section_pool.v2.sizes
10258 + (((unit_index - 1) * dwp_htab->nr_columns
10259 + i)
10260 * sizeof (uint32_t)));
10261
10262 switch (dwp_htab->section_pool.v2.section_ids[i])
10263 {
10264 case DW_SECT_INFO:
10265 case DW_SECT_TYPES:
10266 sections.info_or_types_offset = offset;
10267 sections.info_or_types_size = size;
10268 break;
10269 case DW_SECT_ABBREV:
10270 sections.abbrev_offset = offset;
10271 sections.abbrev_size = size;
10272 break;
10273 case DW_SECT_LINE:
10274 sections.line_offset = offset;
10275 sections.line_size = size;
10276 break;
10277 case DW_SECT_LOC:
10278 sections.loc_offset = offset;
10279 sections.loc_size = size;
10280 break;
10281 case DW_SECT_STR_OFFSETS:
10282 sections.str_offsets_offset = offset;
10283 sections.str_offsets_size = size;
10284 break;
10285 case DW_SECT_MACINFO:
10286 sections.macinfo_offset = offset;
10287 sections.macinfo_size = size;
10288 break;
10289 case DW_SECT_MACRO:
10290 sections.macro_offset = offset;
10291 sections.macro_size = size;
10292 break;
10293 }
10294 }
10295
10296 /* It's easier for the rest of the code if we fake a struct dwo_file and
10297 have dwo_unit "live" in that. At least for now.
10298
10299 The DWP file can be made up of a random collection of CUs and TUs.
10300 However, for each CU + set of TUs that came from the same original DWO
10301 file, we can combine them back into a virtual DWO file to save space
10302 (fewer struct dwo_file objects to allocate). Remember that for really
10303 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10304
10305 virtual_dwo_name =
10306 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10307 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10308 (long) (sections.line_size ? sections.line_offset : 0),
10309 (long) (sections.loc_size ? sections.loc_offset : 0),
10310 (long) (sections.str_offsets_size
10311 ? sections.str_offsets_offset : 0));
10312 make_cleanup (xfree, virtual_dwo_name);
10313 /* Can we use an existing virtual DWO file? */
10314 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10315 /* Create one if necessary. */
10316 if (*dwo_file_slot == NULL)
10317 {
b4f54984 10318 if (dwarf_read_debug)
73869dc2
DE
10319 {
10320 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10321 virtual_dwo_name);
10322 }
10323 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10324 dwo_file->dwo_name
10325 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10326 virtual_dwo_name,
10327 strlen (virtual_dwo_name));
73869dc2
DE
10328 dwo_file->comp_dir = comp_dir;
10329 dwo_file->sections.abbrev =
10330 create_dwp_v2_section (&dwp_file->sections.abbrev,
10331 sections.abbrev_offset, sections.abbrev_size);
10332 dwo_file->sections.line =
10333 create_dwp_v2_section (&dwp_file->sections.line,
10334 sections.line_offset, sections.line_size);
10335 dwo_file->sections.loc =
10336 create_dwp_v2_section (&dwp_file->sections.loc,
10337 sections.loc_offset, sections.loc_size);
10338 dwo_file->sections.macinfo =
10339 create_dwp_v2_section (&dwp_file->sections.macinfo,
10340 sections.macinfo_offset, sections.macinfo_size);
10341 dwo_file->sections.macro =
10342 create_dwp_v2_section (&dwp_file->sections.macro,
10343 sections.macro_offset, sections.macro_size);
10344 dwo_file->sections.str_offsets =
10345 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10346 sections.str_offsets_offset,
10347 sections.str_offsets_size);
10348 /* The "str" section is global to the entire DWP file. */
10349 dwo_file->sections.str = dwp_file->sections.str;
10350 /* The info or types section is assigned below to dwo_unit,
10351 there's no need to record it in dwo_file.
10352 Also, we can't simply record type sections in dwo_file because
10353 we record a pointer into the vector in dwo_unit. As we collect more
10354 types we'll grow the vector and eventually have to reallocate space
10355 for it, invalidating all copies of pointers into the previous
10356 contents. */
10357 *dwo_file_slot = dwo_file;
10358 }
10359 else
10360 {
b4f54984 10361 if (dwarf_read_debug)
73869dc2
DE
10362 {
10363 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10364 virtual_dwo_name);
10365 }
9a3c8263 10366 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10367 }
10368 do_cleanups (cleanups);
10369
10370 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10371 dwo_unit->dwo_file = dwo_file;
10372 dwo_unit->signature = signature;
8d749320
SM
10373 dwo_unit->section =
10374 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10375 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10376 ? &dwp_file->sections.types
10377 : &dwp_file->sections.info,
10378 sections.info_or_types_offset,
10379 sections.info_or_types_size);
10380 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10381
10382 return dwo_unit;
10383}
10384
57d63ce2
DE
10385/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10386 Returns NULL if the signature isn't found. */
80626a55
DE
10387
10388static struct dwo_unit *
57d63ce2
DE
10389lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10390 ULONGEST signature, int is_debug_types)
80626a55 10391{
57d63ce2
DE
10392 const struct dwp_hash_table *dwp_htab =
10393 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10394 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10395 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10396 uint32_t hash = signature & mask;
10397 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10398 unsigned int i;
10399 void **slot;
870f88f7 10400 struct dwo_unit find_dwo_cu;
80626a55
DE
10401
10402 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10403 find_dwo_cu.signature = signature;
19ac8c2e
DE
10404 slot = htab_find_slot (is_debug_types
10405 ? dwp_file->loaded_tus
10406 : dwp_file->loaded_cus,
10407 &find_dwo_cu, INSERT);
80626a55
DE
10408
10409 if (*slot != NULL)
9a3c8263 10410 return (struct dwo_unit *) *slot;
80626a55
DE
10411
10412 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10413 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10414 {
10415 ULONGEST signature_in_table;
10416
10417 signature_in_table =
57d63ce2 10418 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10419 if (signature_in_table == signature)
10420 {
57d63ce2
DE
10421 uint32_t unit_index =
10422 read_4_bytes (dbfd,
10423 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10424
73869dc2
DE
10425 if (dwp_file->version == 1)
10426 {
10427 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10428 comp_dir, signature,
10429 is_debug_types);
10430 }
10431 else
10432 {
10433 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10434 comp_dir, signature,
10435 is_debug_types);
10436 }
9a3c8263 10437 return (struct dwo_unit *) *slot;
80626a55
DE
10438 }
10439 if (signature_in_table == 0)
10440 return NULL;
10441 hash = (hash + hash2) & mask;
10442 }
10443
10444 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10445 " [in module %s]"),
10446 dwp_file->name);
10447}
10448
ab5088bf 10449/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10450 Open the file specified by FILE_NAME and hand it off to BFD for
10451 preliminary analysis. Return a newly initialized bfd *, which
10452 includes a canonicalized copy of FILE_NAME.
80626a55 10453 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10454 SEARCH_CWD is true if the current directory is to be searched.
10455 It will be searched before debug-file-directory.
13aaf454
DE
10456 If successful, the file is added to the bfd include table of the
10457 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10458 If unable to find/open the file, return NULL.
3019eac3
DE
10459 NOTE: This function is derived from symfile_bfd_open. */
10460
10461static bfd *
6ac97d4c 10462try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10463{
10464 bfd *sym_bfd;
80626a55 10465 int desc, flags;
3019eac3 10466 char *absolute_name;
9c02c129
DE
10467 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10468 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10469 to debug_file_directory. */
10470 char *search_path;
10471 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10472
6ac97d4c
DE
10473 if (search_cwd)
10474 {
10475 if (*debug_file_directory != '\0')
10476 search_path = concat (".", dirname_separator_string,
b36cec19 10477 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10478 else
10479 search_path = xstrdup (".");
10480 }
9c02c129 10481 else
6ac97d4c 10482 search_path = xstrdup (debug_file_directory);
3019eac3 10483
492c0ab7 10484 flags = OPF_RETURN_REALPATH;
80626a55
DE
10485 if (is_dwp)
10486 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10487 desc = openp (search_path, flags, file_name,
3019eac3 10488 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10489 xfree (search_path);
3019eac3
DE
10490 if (desc < 0)
10491 return NULL;
10492
bb397797 10493 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10494 xfree (absolute_name);
9c02c129
DE
10495 if (sym_bfd == NULL)
10496 return NULL;
3019eac3
DE
10497 bfd_set_cacheable (sym_bfd, 1);
10498
10499 if (!bfd_check_format (sym_bfd, bfd_object))
10500 {
cbb099e8 10501 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10502 return NULL;
10503 }
10504
13aaf454
DE
10505 /* Success. Record the bfd as having been included by the objfile's bfd.
10506 This is important because things like demangled_names_hash lives in the
10507 objfile's per_bfd space and may have references to things like symbol
10508 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10509 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10510
3019eac3
DE
10511 return sym_bfd;
10512}
10513
ab5088bf 10514/* Try to open DWO file FILE_NAME.
3019eac3
DE
10515 COMP_DIR is the DW_AT_comp_dir attribute.
10516 The result is the bfd handle of the file.
10517 If there is a problem finding or opening the file, return NULL.
10518 Upon success, the canonicalized path of the file is stored in the bfd,
10519 same as symfile_bfd_open. */
10520
10521static bfd *
ab5088bf 10522open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10523{
10524 bfd *abfd;
3019eac3 10525
80626a55 10526 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10527 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10528
10529 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10530
10531 if (comp_dir != NULL)
10532 {
b36cec19
PA
10533 char *path_to_try = concat (comp_dir, SLASH_STRING,
10534 file_name, (char *) NULL);
3019eac3
DE
10535
10536 /* NOTE: If comp_dir is a relative path, this will also try the
10537 search path, which seems useful. */
6ac97d4c 10538 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10539 xfree (path_to_try);
10540 if (abfd != NULL)
10541 return abfd;
10542 }
10543
10544 /* That didn't work, try debug-file-directory, which, despite its name,
10545 is a list of paths. */
10546
10547 if (*debug_file_directory == '\0')
10548 return NULL;
10549
6ac97d4c 10550 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10551}
10552
80626a55
DE
10553/* This function is mapped across the sections and remembers the offset and
10554 size of each of the DWO debugging sections we are interested in. */
10555
10556static void
10557dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10558{
9a3c8263 10559 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10560 const struct dwop_section_names *names = &dwop_section_names;
10561
10562 if (section_is_p (sectp->name, &names->abbrev_dwo))
10563 {
049412e3 10564 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10565 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->info_dwo))
10568 {
049412e3 10569 dwo_sections->info.s.section = sectp;
80626a55
DE
10570 dwo_sections->info.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->line_dwo))
10573 {
049412e3 10574 dwo_sections->line.s.section = sectp;
80626a55
DE
10575 dwo_sections->line.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->loc_dwo))
10578 {
049412e3 10579 dwo_sections->loc.s.section = sectp;
80626a55
DE
10580 dwo_sections->loc.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10583 {
049412e3 10584 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10585 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->macro_dwo))
10588 {
049412e3 10589 dwo_sections->macro.s.section = sectp;
80626a55
DE
10590 dwo_sections->macro.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->str_dwo))
10593 {
049412e3 10594 dwo_sections->str.s.section = sectp;
80626a55
DE
10595 dwo_sections->str.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10598 {
049412e3 10599 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10600 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->types_dwo))
10603 {
10604 struct dwarf2_section_info type_section;
10605
10606 memset (&type_section, 0, sizeof (type_section));
049412e3 10607 type_section.s.section = sectp;
80626a55
DE
10608 type_section.size = bfd_get_section_size (sectp);
10609 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10610 &type_section);
10611 }
10612}
10613
ab5088bf 10614/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10615 by PER_CU. This is for the non-DWP case.
80626a55 10616 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10617
10618static struct dwo_file *
0ac5b59e
DE
10619open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10620 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10621{
10622 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10623 struct dwo_file *dwo_file;
10624 bfd *dbfd;
3019eac3
DE
10625 struct cleanup *cleanups;
10626
ab5088bf 10627 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10628 if (dbfd == NULL)
10629 {
b4f54984 10630 if (dwarf_read_debug)
80626a55
DE
10631 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10632 return NULL;
10633 }
10634 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10635 dwo_file->dwo_name = dwo_name;
10636 dwo_file->comp_dir = comp_dir;
80626a55 10637 dwo_file->dbfd = dbfd;
3019eac3
DE
10638
10639 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10640
80626a55 10641 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10642
19c3d4c9 10643 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10644
10645 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10646 dwo_file->sections.types);
10647
10648 discard_cleanups (cleanups);
10649
b4f54984 10650 if (dwarf_read_debug)
80626a55
DE
10651 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10652
3019eac3
DE
10653 return dwo_file;
10654}
10655
80626a55 10656/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10657 size of each of the DWP debugging sections common to version 1 and 2 that
10658 we are interested in. */
3019eac3 10659
80626a55 10660static void
73869dc2
DE
10661dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10662 void *dwp_file_ptr)
3019eac3 10663{
9a3c8263 10664 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10665 const struct dwop_section_names *names = &dwop_section_names;
10666 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10667
80626a55 10668 /* Record the ELF section number for later lookup: this is what the
73869dc2 10669 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10670 gdb_assert (elf_section_nr < dwp_file->num_sections);
10671 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10672
80626a55
DE
10673 /* Look for specific sections that we need. */
10674 if (section_is_p (sectp->name, &names->str_dwo))
10675 {
049412e3 10676 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10677 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10678 }
10679 else if (section_is_p (sectp->name, &names->cu_index))
10680 {
049412e3 10681 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10682 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10683 }
10684 else if (section_is_p (sectp->name, &names->tu_index))
10685 {
049412e3 10686 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10687 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10688 }
10689}
3019eac3 10690
73869dc2
DE
10691/* This function is mapped across the sections and remembers the offset and
10692 size of each of the DWP version 2 debugging sections that we are interested
10693 in. This is split into a separate function because we don't know if we
10694 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10695
10696static void
10697dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10698{
9a3c8263 10699 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10700 const struct dwop_section_names *names = &dwop_section_names;
10701 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10702
10703 /* Record the ELF section number for later lookup: this is what the
10704 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10705 gdb_assert (elf_section_nr < dwp_file->num_sections);
10706 dwp_file->elf_sections[elf_section_nr] = sectp;
10707
10708 /* Look for specific sections that we need. */
10709 if (section_is_p (sectp->name, &names->abbrev_dwo))
10710 {
049412e3 10711 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10712 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->info_dwo))
10715 {
049412e3 10716 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10717 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->line_dwo))
10720 {
049412e3 10721 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10722 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->loc_dwo))
10725 {
049412e3 10726 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10727 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10730 {
049412e3 10731 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10732 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->macro_dwo))
10735 {
049412e3 10736 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10737 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10740 {
049412e3 10741 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10742 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->types_dwo))
10745 {
049412e3 10746 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10747 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10748 }
10749}
10750
80626a55 10751/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10752
80626a55
DE
10753static hashval_t
10754hash_dwp_loaded_cutus (const void *item)
10755{
9a3c8263 10756 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10757
80626a55
DE
10758 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10759 return dwo_unit->signature;
3019eac3
DE
10760}
10761
80626a55 10762/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10763
80626a55
DE
10764static int
10765eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10766{
9a3c8263
SM
10767 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10768 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10769
80626a55
DE
10770 return dua->signature == dub->signature;
10771}
3019eac3 10772
80626a55 10773/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10774
80626a55
DE
10775static htab_t
10776allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10777{
10778 return htab_create_alloc_ex (3,
10779 hash_dwp_loaded_cutus,
10780 eq_dwp_loaded_cutus,
10781 NULL,
10782 &objfile->objfile_obstack,
10783 hashtab_obstack_allocate,
10784 dummy_obstack_deallocate);
10785}
3019eac3 10786
ab5088bf
DE
10787/* Try to open DWP file FILE_NAME.
10788 The result is the bfd handle of the file.
10789 If there is a problem finding or opening the file, return NULL.
10790 Upon success, the canonicalized path of the file is stored in the bfd,
10791 same as symfile_bfd_open. */
10792
10793static bfd *
10794open_dwp_file (const char *file_name)
10795{
6ac97d4c
DE
10796 bfd *abfd;
10797
10798 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10799 if (abfd != NULL)
10800 return abfd;
10801
10802 /* Work around upstream bug 15652.
10803 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10804 [Whether that's a "bug" is debatable, but it is getting in our way.]
10805 We have no real idea where the dwp file is, because gdb's realpath-ing
10806 of the executable's path may have discarded the needed info.
10807 [IWBN if the dwp file name was recorded in the executable, akin to
10808 .gnu_debuglink, but that doesn't exist yet.]
10809 Strip the directory from FILE_NAME and search again. */
10810 if (*debug_file_directory != '\0')
10811 {
10812 /* Don't implicitly search the current directory here.
10813 If the user wants to search "." to handle this case,
10814 it must be added to debug-file-directory. */
10815 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10816 0 /*search_cwd*/);
10817 }
10818
10819 return NULL;
ab5088bf
DE
10820}
10821
80626a55
DE
10822/* Initialize the use of the DWP file for the current objfile.
10823 By convention the name of the DWP file is ${objfile}.dwp.
10824 The result is NULL if it can't be found. */
a766d390 10825
80626a55 10826static struct dwp_file *
ab5088bf 10827open_and_init_dwp_file (void)
80626a55
DE
10828{
10829 struct objfile *objfile = dwarf2_per_objfile->objfile;
10830 struct dwp_file *dwp_file;
10831 char *dwp_name;
10832 bfd *dbfd;
6c447423 10833 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10834
82bf32bc
JK
10835 /* Try to find first .dwp for the binary file before any symbolic links
10836 resolving. */
6c447423
DE
10837
10838 /* If the objfile is a debug file, find the name of the real binary
10839 file and get the name of dwp file from there. */
10840 if (objfile->separate_debug_objfile_backlink != NULL)
10841 {
10842 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10843 const char *backlink_basename = lbasename (backlink->original_name);
10844 char *debug_dirname = ldirname (objfile->original_name);
10845
10846 make_cleanup (xfree, debug_dirname);
10847 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10848 SLASH_STRING, backlink_basename);
10849 }
10850 else
10851 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10852 make_cleanup (xfree, dwp_name);
80626a55 10853
ab5088bf 10854 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10855 if (dbfd == NULL
10856 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10857 {
10858 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10859 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10860 make_cleanup (xfree, dwp_name);
10861 dbfd = open_dwp_file (dwp_name);
10862 }
10863
80626a55
DE
10864 if (dbfd == NULL)
10865 {
b4f54984 10866 if (dwarf_read_debug)
80626a55
DE
10867 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10868 do_cleanups (cleanups);
10869 return NULL;
3019eac3 10870 }
80626a55 10871 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10872 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10873 dwp_file->dbfd = dbfd;
10874 do_cleanups (cleanups);
c906108c 10875
80626a55
DE
10876 /* +1: section 0 is unused */
10877 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10878 dwp_file->elf_sections =
10879 OBSTACK_CALLOC (&objfile->objfile_obstack,
10880 dwp_file->num_sections, asection *);
10881
73869dc2 10882 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10883
10884 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10885
10886 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10887
73869dc2
DE
10888 /* The DWP file version is stored in the hash table. Oh well. */
10889 if (dwp_file->cus->version != dwp_file->tus->version)
10890 {
10891 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10892 pretty bizarre. We use pulongest here because that's the established
4d65956b 10893 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10894 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10895 " TU version %s [in DWP file %s]"),
10896 pulongest (dwp_file->cus->version),
10897 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10898 }
10899 dwp_file->version = dwp_file->cus->version;
10900
10901 if (dwp_file->version == 2)
10902 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10903
19ac8c2e
DE
10904 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10905 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10906
b4f54984 10907 if (dwarf_read_debug)
80626a55
DE
10908 {
10909 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10910 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10911 " %s CUs, %s TUs\n",
10912 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10913 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10914 }
10915
10916 return dwp_file;
3019eac3 10917}
c906108c 10918
ab5088bf
DE
10919/* Wrapper around open_and_init_dwp_file, only open it once. */
10920
10921static struct dwp_file *
10922get_dwp_file (void)
10923{
10924 if (! dwarf2_per_objfile->dwp_checked)
10925 {
10926 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10927 dwarf2_per_objfile->dwp_checked = 1;
10928 }
10929 return dwarf2_per_objfile->dwp_file;
10930}
10931
80626a55
DE
10932/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10933 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10934 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10935 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10936 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10937
10938 This is called, for example, when wanting to read a variable with a
10939 complex location. Therefore we don't want to do file i/o for every call.
10940 Therefore we don't want to look for a DWO file on every call.
10941 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10942 then we check if we've already seen DWO_NAME, and only THEN do we check
10943 for a DWO file.
10944
1c658ad5 10945 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10946 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10947
3019eac3 10948static struct dwo_unit *
80626a55
DE
10949lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10950 const char *dwo_name, const char *comp_dir,
10951 ULONGEST signature, int is_debug_types)
3019eac3
DE
10952{
10953 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10954 const char *kind = is_debug_types ? "TU" : "CU";
10955 void **dwo_file_slot;
3019eac3 10956 struct dwo_file *dwo_file;
80626a55 10957 struct dwp_file *dwp_file;
cb1df416 10958
6a506a2d
DE
10959 /* First see if there's a DWP file.
10960 If we have a DWP file but didn't find the DWO inside it, don't
10961 look for the original DWO file. It makes gdb behave differently
10962 depending on whether one is debugging in the build tree. */
cf2c3c16 10963
ab5088bf 10964 dwp_file = get_dwp_file ();
80626a55 10965 if (dwp_file != NULL)
cf2c3c16 10966 {
80626a55
DE
10967 const struct dwp_hash_table *dwp_htab =
10968 is_debug_types ? dwp_file->tus : dwp_file->cus;
10969
10970 if (dwp_htab != NULL)
10971 {
10972 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10973 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10974 signature, is_debug_types);
80626a55
DE
10975
10976 if (dwo_cutu != NULL)
10977 {
b4f54984 10978 if (dwarf_read_debug)
80626a55
DE
10979 {
10980 fprintf_unfiltered (gdb_stdlog,
10981 "Virtual DWO %s %s found: @%s\n",
10982 kind, hex_string (signature),
10983 host_address_to_string (dwo_cutu));
10984 }
10985 return dwo_cutu;
10986 }
10987 }
10988 }
6a506a2d 10989 else
80626a55 10990 {
6a506a2d 10991 /* No DWP file, look for the DWO file. */
80626a55 10992
6a506a2d
DE
10993 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10994 if (*dwo_file_slot == NULL)
80626a55 10995 {
6a506a2d
DE
10996 /* Read in the file and build a table of the CUs/TUs it contains. */
10997 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10998 }
6a506a2d 10999 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11000 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11001
6a506a2d 11002 if (dwo_file != NULL)
19c3d4c9 11003 {
6a506a2d
DE
11004 struct dwo_unit *dwo_cutu = NULL;
11005
11006 if (is_debug_types && dwo_file->tus)
11007 {
11008 struct dwo_unit find_dwo_cutu;
11009
11010 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11011 find_dwo_cutu.signature = signature;
9a3c8263
SM
11012 dwo_cutu
11013 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11014 }
11015 else if (!is_debug_types && dwo_file->cu)
80626a55 11016 {
6a506a2d
DE
11017 if (signature == dwo_file->cu->signature)
11018 dwo_cutu = dwo_file->cu;
11019 }
11020
11021 if (dwo_cutu != NULL)
11022 {
b4f54984 11023 if (dwarf_read_debug)
6a506a2d
DE
11024 {
11025 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11026 kind, dwo_name, hex_string (signature),
11027 host_address_to_string (dwo_cutu));
11028 }
11029 return dwo_cutu;
80626a55
DE
11030 }
11031 }
2e276125 11032 }
9cdd5dbd 11033
80626a55
DE
11034 /* We didn't find it. This could mean a dwo_id mismatch, or
11035 someone deleted the DWO/DWP file, or the search path isn't set up
11036 correctly to find the file. */
11037
b4f54984 11038 if (dwarf_read_debug)
80626a55
DE
11039 {
11040 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11041 kind, dwo_name, hex_string (signature));
11042 }
3019eac3 11043
6656a72d
DE
11044 /* This is a warning and not a complaint because it can be caused by
11045 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11046 {
11047 /* Print the name of the DWP file if we looked there, helps the user
11048 better diagnose the problem. */
11049 char *dwp_text = NULL;
11050 struct cleanup *cleanups;
11051
11052 if (dwp_file != NULL)
11053 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11054 cleanups = make_cleanup (xfree, dwp_text);
11055
11056 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11057 " [in module %s]"),
11058 kind, dwo_name, hex_string (signature),
11059 dwp_text != NULL ? dwp_text : "",
11060 this_unit->is_debug_types ? "TU" : "CU",
11061 this_unit->offset.sect_off, objfile_name (objfile));
11062
11063 do_cleanups (cleanups);
11064 }
3019eac3 11065 return NULL;
5fb290d7
DJ
11066}
11067
80626a55
DE
11068/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11069 See lookup_dwo_cutu_unit for details. */
11070
11071static struct dwo_unit *
11072lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11073 const char *dwo_name, const char *comp_dir,
11074 ULONGEST signature)
11075{
11076 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11077}
11078
11079/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082static struct dwo_unit *
11083lookup_dwo_type_unit (struct signatured_type *this_tu,
11084 const char *dwo_name, const char *comp_dir)
11085{
11086 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11087}
11088
89e63ee4
DE
11089/* Traversal function for queue_and_load_all_dwo_tus. */
11090
11091static int
11092queue_and_load_dwo_tu (void **slot, void *info)
11093{
11094 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11095 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11096 ULONGEST signature = dwo_unit->signature;
11097 struct signatured_type *sig_type =
11098 lookup_dwo_signatured_type (per_cu->cu, signature);
11099
11100 if (sig_type != NULL)
11101 {
11102 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11103
11104 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11105 a real dependency of PER_CU on SIG_TYPE. That is detected later
11106 while processing PER_CU. */
11107 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11108 load_full_type_unit (sig_cu);
11109 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11110 }
11111
11112 return 1;
11113}
11114
11115/* Queue all TUs contained in the DWO of PER_CU to be read in.
11116 The DWO may have the only definition of the type, though it may not be
11117 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11119
11120static void
11121queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11122{
11123 struct dwo_unit *dwo_unit;
11124 struct dwo_file *dwo_file;
11125
11126 gdb_assert (!per_cu->is_debug_types);
11127 gdb_assert (get_dwp_file () == NULL);
11128 gdb_assert (per_cu->cu != NULL);
11129
11130 dwo_unit = per_cu->cu->dwo_unit;
11131 gdb_assert (dwo_unit != NULL);
11132
11133 dwo_file = dwo_unit->dwo_file;
11134 if (dwo_file->tus != NULL)
11135 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11136}
11137
3019eac3
DE
11138/* Free all resources associated with DWO_FILE.
11139 Close the DWO file and munmap the sections.
11140 All memory should be on the objfile obstack. */
348e048f
DE
11141
11142static void
3019eac3 11143free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11144{
348e048f 11145
5c6fa7ab 11146 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11147 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11148
3019eac3
DE
11149 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11150}
348e048f 11151
3019eac3 11152/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11153
3019eac3
DE
11154static void
11155free_dwo_file_cleanup (void *arg)
11156{
11157 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11158 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11159
3019eac3
DE
11160 free_dwo_file (dwo_file, objfile);
11161}
348e048f 11162
3019eac3 11163/* Traversal function for free_dwo_files. */
2ab95328 11164
3019eac3
DE
11165static int
11166free_dwo_file_from_slot (void **slot, void *info)
11167{
11168 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11169 struct objfile *objfile = (struct objfile *) info;
348e048f 11170
3019eac3 11171 free_dwo_file (dwo_file, objfile);
348e048f 11172
3019eac3
DE
11173 return 1;
11174}
348e048f 11175
3019eac3 11176/* Free all resources associated with DWO_FILES. */
348e048f 11177
3019eac3
DE
11178static void
11179free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11180{
11181 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11182}
3019eac3
DE
11183\f
11184/* Read in various DIEs. */
348e048f 11185
d389af10
JK
11186/* qsort helper for inherit_abstract_dies. */
11187
11188static int
11189unsigned_int_compar (const void *ap, const void *bp)
11190{
11191 unsigned int a = *(unsigned int *) ap;
11192 unsigned int b = *(unsigned int *) bp;
11193
11194 return (a > b) - (b > a);
11195}
11196
11197/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11198 Inherit only the children of the DW_AT_abstract_origin DIE not being
11199 already referenced by DW_AT_abstract_origin from the children of the
11200 current DIE. */
d389af10
JK
11201
11202static void
11203inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11204{
11205 struct die_info *child_die;
11206 unsigned die_children_count;
11207 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11208 sect_offset *offsets;
11209 sect_offset *offsets_end, *offsetp;
d389af10
JK
11210 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11211 struct die_info *origin_die;
11212 /* Iterator of the ORIGIN_DIE children. */
11213 struct die_info *origin_child_die;
11214 struct cleanup *cleanups;
11215 struct attribute *attr;
cd02d79d
PA
11216 struct dwarf2_cu *origin_cu;
11217 struct pending **origin_previous_list_in_scope;
d389af10
JK
11218
11219 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11220 if (!attr)
11221 return;
11222
cd02d79d
PA
11223 /* Note that following die references may follow to a die in a
11224 different cu. */
11225
11226 origin_cu = cu;
11227 origin_die = follow_die_ref (die, attr, &origin_cu);
11228
11229 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11230 symbols in. */
11231 origin_previous_list_in_scope = origin_cu->list_in_scope;
11232 origin_cu->list_in_scope = cu->list_in_scope;
11233
edb3359d
DJ
11234 if (die->tag != origin_die->tag
11235 && !(die->tag == DW_TAG_inlined_subroutine
11236 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11237 complaint (&symfile_complaints,
11238 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11239 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11240
11241 child_die = die->child;
11242 die_children_count = 0;
11243 while (child_die && child_die->tag)
11244 {
11245 child_die = sibling_die (child_die);
11246 die_children_count++;
11247 }
8d749320 11248 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11249 cleanups = make_cleanup (xfree, offsets);
11250
11251 offsets_end = offsets;
3ea89b92
PMR
11252 for (child_die = die->child;
11253 child_die && child_die->tag;
11254 child_die = sibling_die (child_die))
11255 {
11256 struct die_info *child_origin_die;
11257 struct dwarf2_cu *child_origin_cu;
11258
11259 /* We are trying to process concrete instance entries:
11260 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11261 it's not relevant to our analysis here. i.e. detecting DIEs that are
11262 present in the abstract instance but not referenced in the concrete
11263 one. */
11264 if (child_die->tag == DW_TAG_GNU_call_site)
11265 continue;
11266
c38f313d
DJ
11267 /* For each CHILD_DIE, find the corresponding child of
11268 ORIGIN_DIE. If there is more than one layer of
11269 DW_AT_abstract_origin, follow them all; there shouldn't be,
11270 but GCC versions at least through 4.4 generate this (GCC PR
11271 40573). */
3ea89b92
PMR
11272 child_origin_die = child_die;
11273 child_origin_cu = cu;
c38f313d
DJ
11274 while (1)
11275 {
cd02d79d
PA
11276 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11277 child_origin_cu);
c38f313d
DJ
11278 if (attr == NULL)
11279 break;
cd02d79d
PA
11280 child_origin_die = follow_die_ref (child_origin_die, attr,
11281 &child_origin_cu);
c38f313d
DJ
11282 }
11283
d389af10
JK
11284 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11285 counterpart may exist. */
c38f313d 11286 if (child_origin_die != child_die)
d389af10 11287 {
edb3359d
DJ
11288 if (child_die->tag != child_origin_die->tag
11289 && !(child_die->tag == DW_TAG_inlined_subroutine
11290 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11293 "different tags"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
c38f313d
DJ
11295 if (child_origin_die->parent != origin_die)
11296 complaint (&symfile_complaints,
11297 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11298 "different parents"), child_die->offset.sect_off,
11299 child_origin_die->offset.sect_off);
c38f313d
DJ
11300 else
11301 *offsets_end++ = child_origin_die->offset;
d389af10 11302 }
d389af10
JK
11303 }
11304 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11305 unsigned_int_compar);
11306 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11307 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11308 complaint (&symfile_complaints,
11309 _("Multiple children of DIE 0x%x refer "
11310 "to DIE 0x%x as their abstract origin"),
b64f50a1 11311 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11312
11313 offsetp = offsets;
11314 origin_child_die = origin_die->child;
11315 while (origin_child_die && origin_child_die->tag)
11316 {
11317 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11318 while (offsetp < offsets_end
11319 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11320 offsetp++;
b64f50a1
JK
11321 if (offsetp >= offsets_end
11322 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11323 {
adde2bff
DE
11324 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11325 Check whether we're already processing ORIGIN_CHILD_DIE.
11326 This can happen with mutually referenced abstract_origins.
11327 PR 16581. */
11328 if (!origin_child_die->in_process)
11329 process_die (origin_child_die, origin_cu);
d389af10
JK
11330 }
11331 origin_child_die = sibling_die (origin_child_die);
11332 }
cd02d79d 11333 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11334
11335 do_cleanups (cleanups);
11336}
11337
c906108c 11338static void
e7c27a73 11339read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11340{
e7c27a73 11341 struct objfile *objfile = cu->objfile;
3e29f34a 11342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11343 struct context_stack *newobj;
c906108c
SS
11344 CORE_ADDR lowpc;
11345 CORE_ADDR highpc;
11346 struct die_info *child_die;
edb3359d 11347 struct attribute *attr, *call_line, *call_file;
15d034d0 11348 const char *name;
e142c38c 11349 CORE_ADDR baseaddr;
801e3a5b 11350 struct block *block;
edb3359d 11351 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11352 VEC (symbolp) *template_args = NULL;
11353 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11354
11355 if (inlined_func)
11356 {
11357 /* If we do not have call site information, we can't show the
11358 caller of this inlined function. That's too confusing, so
11359 only use the scope for local variables. */
11360 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11361 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11362 if (call_line == NULL || call_file == NULL)
11363 {
11364 read_lexical_block_scope (die, cu);
11365 return;
11366 }
11367 }
c906108c 11368
e142c38c
DJ
11369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11370
94af9270 11371 name = dwarf2_name (die, cu);
c906108c 11372
e8d05480
JB
11373 /* Ignore functions with missing or empty names. These are actually
11374 illegal according to the DWARF standard. */
11375 if (name == NULL)
11376 {
11377 complaint (&symfile_complaints,
b64f50a1
JK
11378 _("missing name for subprogram DIE at %d"),
11379 die->offset.sect_off);
e8d05480
JB
11380 return;
11381 }
11382
11383 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11384 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11385 <= PC_BOUNDS_INVALID)
e8d05480 11386 {
ae4d0c03
PM
11387 attr = dwarf2_attr (die, DW_AT_external, cu);
11388 if (!attr || !DW_UNSND (attr))
11389 complaint (&symfile_complaints,
3e43a32a
MS
11390 _("cannot get low and high bounds "
11391 "for subprogram DIE at %d"),
b64f50a1 11392 die->offset.sect_off);
e8d05480
JB
11393 return;
11394 }
c906108c 11395
3e29f34a
MR
11396 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11397 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11398
34eaf542
TT
11399 /* If we have any template arguments, then we must allocate a
11400 different sort of symbol. */
11401 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11402 {
11403 if (child_die->tag == DW_TAG_template_type_param
11404 || child_die->tag == DW_TAG_template_value_param)
11405 {
e623cf5d 11406 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11407 templ_func->base.is_cplus_template_function = 1;
11408 break;
11409 }
11410 }
11411
fe978cb0
PA
11412 newobj = push_context (0, lowpc);
11413 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11414 (struct symbol *) templ_func);
4c2df51b 11415
4cecd739
DJ
11416 /* If there is a location expression for DW_AT_frame_base, record
11417 it. */
e142c38c 11418 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11419 if (attr)
fe978cb0 11420 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11421
63e43d3a
PMR
11422 /* If there is a location for the static link, record it. */
11423 newobj->static_link = NULL;
11424 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11425 if (attr)
11426 {
224c3ddb
SM
11427 newobj->static_link
11428 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11429 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11430 }
11431
e142c38c 11432 cu->list_in_scope = &local_symbols;
c906108c 11433
639d11d3 11434 if (die->child != NULL)
c906108c 11435 {
639d11d3 11436 child_die = die->child;
c906108c
SS
11437 while (child_die && child_die->tag)
11438 {
34eaf542
TT
11439 if (child_die->tag == DW_TAG_template_type_param
11440 || child_die->tag == DW_TAG_template_value_param)
11441 {
11442 struct symbol *arg = new_symbol (child_die, NULL, cu);
11443
f1078f66
DJ
11444 if (arg != NULL)
11445 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11446 }
11447 else
11448 process_die (child_die, cu);
c906108c
SS
11449 child_die = sibling_die (child_die);
11450 }
11451 }
11452
d389af10
JK
11453 inherit_abstract_dies (die, cu);
11454
4a811a97
UW
11455 /* If we have a DW_AT_specification, we might need to import using
11456 directives from the context of the specification DIE. See the
11457 comment in determine_prefix. */
11458 if (cu->language == language_cplus
11459 && dwarf2_attr (die, DW_AT_specification, cu))
11460 {
11461 struct dwarf2_cu *spec_cu = cu;
11462 struct die_info *spec_die = die_specification (die, &spec_cu);
11463
11464 while (spec_die)
11465 {
11466 child_die = spec_die->child;
11467 while (child_die && child_die->tag)
11468 {
11469 if (child_die->tag == DW_TAG_imported_module)
11470 process_die (child_die, spec_cu);
11471 child_die = sibling_die (child_die);
11472 }
11473
11474 /* In some cases, GCC generates specification DIEs that
11475 themselves contain DW_AT_specification attributes. */
11476 spec_die = die_specification (spec_die, &spec_cu);
11477 }
11478 }
11479
fe978cb0 11480 newobj = pop_context ();
c906108c 11481 /* Make a block for the local symbols within. */
fe978cb0 11482 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11483 newobj->static_link, lowpc, highpc);
801e3a5b 11484
df8a16a1 11485 /* For C++, set the block's scope. */
45280282
IB
11486 if ((cu->language == language_cplus
11487 || cu->language == language_fortran
c44af4eb
TT
11488 || cu->language == language_d
11489 || cu->language == language_rust)
4d4ec4e5 11490 && cu->processing_has_namespace_info)
195a3f6c
TT
11491 block_set_scope (block, determine_prefix (die, cu),
11492 &objfile->objfile_obstack);
df8a16a1 11493
801e3a5b
JB
11494 /* If we have address ranges, record them. */
11495 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11496
fe978cb0 11497 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11498
34eaf542
TT
11499 /* Attach template arguments to function. */
11500 if (! VEC_empty (symbolp, template_args))
11501 {
11502 gdb_assert (templ_func != NULL);
11503
11504 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11505 templ_func->template_arguments
8d749320
SM
11506 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11507 templ_func->n_template_arguments);
34eaf542
TT
11508 memcpy (templ_func->template_arguments,
11509 VEC_address (symbolp, template_args),
11510 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11511 VEC_free (symbolp, template_args);
11512 }
11513
208d8187
JB
11514 /* In C++, we can have functions nested inside functions (e.g., when
11515 a function declares a class that has methods). This means that
11516 when we finish processing a function scope, we may need to go
11517 back to building a containing block's symbol lists. */
fe978cb0 11518 local_symbols = newobj->locals;
22cee43f 11519 local_using_directives = newobj->local_using_directives;
208d8187 11520
921e78cf
JB
11521 /* If we've finished processing a top-level function, subsequent
11522 symbols go in the file symbol list. */
11523 if (outermost_context_p ())
e142c38c 11524 cu->list_in_scope = &file_symbols;
c906108c
SS
11525}
11526
11527/* Process all the DIES contained within a lexical block scope. Start
11528 a new scope, process the dies, and then close the scope. */
11529
11530static void
e7c27a73 11531read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11532{
e7c27a73 11533 struct objfile *objfile = cu->objfile;
3e29f34a 11534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11535 struct context_stack *newobj;
c906108c
SS
11536 CORE_ADDR lowpc, highpc;
11537 struct die_info *child_die;
e142c38c
DJ
11538 CORE_ADDR baseaddr;
11539
11540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11541
11542 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11543 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11544 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11545 be nasty. Might be easier to properly extend generic blocks to
af34e669 11546 describe ranges. */
e385593e
JK
11547 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11548 {
11549 case PC_BOUNDS_NOT_PRESENT:
11550 /* DW_TAG_lexical_block has no attributes, process its children as if
11551 there was no wrapping by that DW_TAG_lexical_block.
11552 GCC does no longer produces such DWARF since GCC r224161. */
11553 for (child_die = die->child;
11554 child_die != NULL && child_die->tag;
11555 child_die = sibling_die (child_die))
11556 process_die (child_die, cu);
11557 return;
11558 case PC_BOUNDS_INVALID:
11559 return;
11560 }
3e29f34a
MR
11561 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11562 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11563
11564 push_context (0, lowpc);
639d11d3 11565 if (die->child != NULL)
c906108c 11566 {
639d11d3 11567 child_die = die->child;
c906108c
SS
11568 while (child_die && child_die->tag)
11569 {
e7c27a73 11570 process_die (child_die, cu);
c906108c
SS
11571 child_die = sibling_die (child_die);
11572 }
11573 }
3ea89b92 11574 inherit_abstract_dies (die, cu);
fe978cb0 11575 newobj = pop_context ();
c906108c 11576
22cee43f 11577 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11578 {
801e3a5b 11579 struct block *block
63e43d3a 11580 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11581 newobj->start_addr, highpc);
801e3a5b
JB
11582
11583 /* Note that recording ranges after traversing children, as we
11584 do here, means that recording a parent's ranges entails
11585 walking across all its children's ranges as they appear in
11586 the address map, which is quadratic behavior.
11587
11588 It would be nicer to record the parent's ranges before
11589 traversing its children, simply overriding whatever you find
11590 there. But since we don't even decide whether to create a
11591 block until after we've traversed its children, that's hard
11592 to do. */
11593 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11594 }
fe978cb0 11595 local_symbols = newobj->locals;
22cee43f 11596 local_using_directives = newobj->local_using_directives;
c906108c
SS
11597}
11598
96408a79
SA
11599/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11600
11601static void
11602read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11603{
11604 struct objfile *objfile = cu->objfile;
11605 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11606 CORE_ADDR pc, baseaddr;
11607 struct attribute *attr;
11608 struct call_site *call_site, call_site_local;
11609 void **slot;
11610 int nparams;
11611 struct die_info *child_die;
11612
11613 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11614
11615 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11616 if (!attr)
11617 {
11618 complaint (&symfile_complaints,
11619 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11620 "DIE 0x%x [in module %s]"),
4262abfb 11621 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11622 return;
11623 }
31aa7e4e 11624 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11625 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11626
11627 if (cu->call_site_htab == NULL)
11628 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11629 NULL, &objfile->objfile_obstack,
11630 hashtab_obstack_allocate, NULL);
11631 call_site_local.pc = pc;
11632 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11633 if (*slot != NULL)
11634 {
11635 complaint (&symfile_complaints,
11636 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11637 "DIE 0x%x [in module %s]"),
4262abfb
JK
11638 paddress (gdbarch, pc), die->offset.sect_off,
11639 objfile_name (objfile));
96408a79
SA
11640 return;
11641 }
11642
11643 /* Count parameters at the caller. */
11644
11645 nparams = 0;
11646 for (child_die = die->child; child_die && child_die->tag;
11647 child_die = sibling_die (child_die))
11648 {
11649 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11650 {
11651 complaint (&symfile_complaints,
11652 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11653 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11654 child_die->tag, child_die->offset.sect_off,
11655 objfile_name (objfile));
96408a79
SA
11656 continue;
11657 }
11658
11659 nparams++;
11660 }
11661
224c3ddb
SM
11662 call_site
11663 = ((struct call_site *)
11664 obstack_alloc (&objfile->objfile_obstack,
11665 sizeof (*call_site)
11666 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11667 *slot = call_site;
11668 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11669 call_site->pc = pc;
11670
11671 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11672 {
11673 struct die_info *func_die;
11674
11675 /* Skip also over DW_TAG_inlined_subroutine. */
11676 for (func_die = die->parent;
11677 func_die && func_die->tag != DW_TAG_subprogram
11678 && func_die->tag != DW_TAG_subroutine_type;
11679 func_die = func_die->parent);
11680
11681 /* DW_AT_GNU_all_call_sites is a superset
11682 of DW_AT_GNU_all_tail_call_sites. */
11683 if (func_die
11684 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11685 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11686 {
11687 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11688 not complete. But keep CALL_SITE for look ups via call_site_htab,
11689 both the initial caller containing the real return address PC and
11690 the final callee containing the current PC of a chain of tail
11691 calls do not need to have the tail call list complete. But any
11692 function candidate for a virtual tail call frame searched via
11693 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11694 determined unambiguously. */
11695 }
11696 else
11697 {
11698 struct type *func_type = NULL;
11699
11700 if (func_die)
11701 func_type = get_die_type (func_die, cu);
11702 if (func_type != NULL)
11703 {
11704 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11705
11706 /* Enlist this call site to the function. */
11707 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11708 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11709 }
11710 else
11711 complaint (&symfile_complaints,
11712 _("Cannot find function owning DW_TAG_GNU_call_site "
11713 "DIE 0x%x [in module %s]"),
4262abfb 11714 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11715 }
11716 }
11717
11718 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11719 if (attr == NULL)
11720 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11721 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11722 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11723 /* Keep NULL DWARF_BLOCK. */;
11724 else if (attr_form_is_block (attr))
11725 {
11726 struct dwarf2_locexpr_baton *dlbaton;
11727
8d749320 11728 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11729 dlbaton->data = DW_BLOCK (attr)->data;
11730 dlbaton->size = DW_BLOCK (attr)->size;
11731 dlbaton->per_cu = cu->per_cu;
11732
11733 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11734 }
7771576e 11735 else if (attr_form_is_ref (attr))
96408a79 11736 {
96408a79
SA
11737 struct dwarf2_cu *target_cu = cu;
11738 struct die_info *target_die;
11739
ac9ec31b 11740 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11741 gdb_assert (target_cu->objfile == objfile);
11742 if (die_is_declaration (target_die, target_cu))
11743 {
7d45c7c3 11744 const char *target_physname;
9112db09
JK
11745
11746 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11747 target_physname = dwarf2_string_attr (target_die,
11748 DW_AT_linkage_name,
11749 target_cu);
11750 if (target_physname == NULL)
11751 target_physname = dwarf2_string_attr (target_die,
11752 DW_AT_MIPS_linkage_name,
11753 target_cu);
11754 if (target_physname == NULL)
9112db09 11755 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11756 if (target_physname == NULL)
11757 complaint (&symfile_complaints,
11758 _("DW_AT_GNU_call_site_target target DIE has invalid "
11759 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11760 die->offset.sect_off, objfile_name (objfile));
96408a79 11761 else
7d455152 11762 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11763 }
11764 else
11765 {
11766 CORE_ADDR lowpc;
11767
11768 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11769 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11770 <= PC_BOUNDS_INVALID)
96408a79
SA
11771 complaint (&symfile_complaints,
11772 _("DW_AT_GNU_call_site_target target DIE has invalid "
11773 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11774 die->offset.sect_off, objfile_name (objfile));
96408a79 11775 else
3e29f34a
MR
11776 {
11777 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11778 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11779 }
96408a79
SA
11780 }
11781 }
11782 else
11783 complaint (&symfile_complaints,
11784 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11785 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11786 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11787
11788 call_site->per_cu = cu->per_cu;
11789
11790 for (child_die = die->child;
11791 child_die && child_die->tag;
11792 child_die = sibling_die (child_die))
11793 {
96408a79 11794 struct call_site_parameter *parameter;
1788b2d3 11795 struct attribute *loc, *origin;
96408a79
SA
11796
11797 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11798 {
11799 /* Already printed the complaint above. */
11800 continue;
11801 }
11802
11803 gdb_assert (call_site->parameter_count < nparams);
11804 parameter = &call_site->parameter[call_site->parameter_count];
11805
1788b2d3
JK
11806 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11807 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11808 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11809
24c5c679 11810 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11811 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11812 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11813 {
11814 sect_offset offset;
11815
11816 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11817 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11818 if (!offset_in_cu_p (&cu->header, offset))
11819 {
11820 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11821 binding can be done only inside one CU. Such referenced DIE
11822 therefore cannot be even moved to DW_TAG_partial_unit. */
11823 complaint (&symfile_complaints,
11824 _("DW_AT_abstract_origin offset is not in CU for "
11825 "DW_TAG_GNU_call_site child DIE 0x%x "
11826 "[in module %s]"),
4262abfb 11827 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11828 continue;
11829 }
1788b2d3
JK
11830 parameter->u.param_offset.cu_off = (offset.sect_off
11831 - cu->header.offset.sect_off);
11832 }
11833 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11834 {
11835 complaint (&symfile_complaints,
11836 _("No DW_FORM_block* DW_AT_location for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11839 continue;
11840 }
24c5c679 11841 else
96408a79 11842 {
24c5c679
JK
11843 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11844 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11845 if (parameter->u.dwarf_reg != -1)
11846 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11847 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11848 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11849 &parameter->u.fb_offset))
11850 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11851 else
11852 {
11853 complaint (&symfile_complaints,
11854 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11855 "for DW_FORM_block* DW_AT_location is supported for "
11856 "DW_TAG_GNU_call_site child DIE 0x%x "
11857 "[in module %s]"),
4262abfb 11858 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11859 continue;
11860 }
96408a79
SA
11861 }
11862
11863 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11864 if (!attr_form_is_block (attr))
11865 {
11866 complaint (&symfile_complaints,
11867 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11868 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11869 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11870 continue;
11871 }
11872 parameter->value = DW_BLOCK (attr)->data;
11873 parameter->value_size = DW_BLOCK (attr)->size;
11874
11875 /* Parameters are not pre-cleared by memset above. */
11876 parameter->data_value = NULL;
11877 parameter->data_value_size = 0;
11878 call_site->parameter_count++;
11879
11880 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11881 if (attr)
11882 {
11883 if (!attr_form_is_block (attr))
11884 complaint (&symfile_complaints,
11885 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11886 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11887 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11888 else
11889 {
11890 parameter->data_value = DW_BLOCK (attr)->data;
11891 parameter->data_value_size = DW_BLOCK (attr)->size;
11892 }
11893 }
11894 }
11895}
11896
43039443 11897/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11898 Return 1 if the attributes are present and valid, otherwise, return 0.
11899 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11900
11901static int
11902dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11903 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11904 struct partial_symtab *ranges_pst)
43039443
JK
11905{
11906 struct objfile *objfile = cu->objfile;
3e29f34a 11907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11908 struct comp_unit_head *cu_header = &cu->header;
11909 bfd *obfd = objfile->obfd;
11910 unsigned int addr_size = cu_header->addr_size;
11911 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11912 /* Base address selection entry. */
11913 CORE_ADDR base;
11914 int found_base;
11915 unsigned int dummy;
d521ce57 11916 const gdb_byte *buffer;
43039443
JK
11917 int low_set;
11918 CORE_ADDR low = 0;
11919 CORE_ADDR high = 0;
ff013f42 11920 CORE_ADDR baseaddr;
43039443 11921
d00adf39
DE
11922 found_base = cu->base_known;
11923 base = cu->base_address;
43039443 11924
be391dca 11925 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11926 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11927 {
11928 complaint (&symfile_complaints,
11929 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11930 offset);
11931 return 0;
11932 }
dce234bc 11933 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11934
43039443
JK
11935 low_set = 0;
11936
e7030f15 11937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11938
43039443
JK
11939 while (1)
11940 {
11941 CORE_ADDR range_beginning, range_end;
11942
11943 range_beginning = read_address (obfd, buffer, cu, &dummy);
11944 buffer += addr_size;
11945 range_end = read_address (obfd, buffer, cu, &dummy);
11946 buffer += addr_size;
11947 offset += 2 * addr_size;
11948
11949 /* An end of list marker is a pair of zero addresses. */
11950 if (range_beginning == 0 && range_end == 0)
11951 /* Found the end of list entry. */
11952 break;
11953
11954 /* Each base address selection entry is a pair of 2 values.
11955 The first is the largest possible address, the second is
11956 the base address. Check for a base address here. */
11957 if ((range_beginning & mask) == mask)
11958 {
28d2bfb9
AB
11959 /* If we found the largest possible address, then we already
11960 have the base address in range_end. */
11961 base = range_end;
43039443
JK
11962 found_base = 1;
11963 continue;
11964 }
11965
11966 if (!found_base)
11967 {
11968 /* We have no valid base address for the ranges
11969 data. */
11970 complaint (&symfile_complaints,
11971 _("Invalid .debug_ranges data (no base address)"));
11972 return 0;
11973 }
11974
9277c30c
UW
11975 if (range_beginning > range_end)
11976 {
11977 /* Inverted range entries are invalid. */
11978 complaint (&symfile_complaints,
11979 _("Invalid .debug_ranges data (inverted range)"));
11980 return 0;
11981 }
11982
11983 /* Empty range entries have no effect. */
11984 if (range_beginning == range_end)
11985 continue;
11986
43039443
JK
11987 range_beginning += base;
11988 range_end += base;
11989
01093045
DE
11990 /* A not-uncommon case of bad debug info.
11991 Don't pollute the addrmap with bad data. */
11992 if (range_beginning + baseaddr == 0
11993 && !dwarf2_per_objfile->has_section_at_zero)
11994 {
11995 complaint (&symfile_complaints,
11996 _(".debug_ranges entry has start address of zero"
4262abfb 11997 " [in module %s]"), objfile_name (objfile));
01093045
DE
11998 continue;
11999 }
12000
9277c30c 12001 if (ranges_pst != NULL)
3e29f34a
MR
12002 {
12003 CORE_ADDR lowpc;
12004 CORE_ADDR highpc;
12005
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12007 range_beginning + baseaddr);
12008 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12009 range_end + baseaddr);
12010 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12011 ranges_pst);
12012 }
ff013f42 12013
43039443
JK
12014 /* FIXME: This is recording everything as a low-high
12015 segment of consecutive addresses. We should have a
12016 data structure for discontiguous block ranges
12017 instead. */
12018 if (! low_set)
12019 {
12020 low = range_beginning;
12021 high = range_end;
12022 low_set = 1;
12023 }
12024 else
12025 {
12026 if (range_beginning < low)
12027 low = range_beginning;
12028 if (range_end > high)
12029 high = range_end;
12030 }
12031 }
12032
12033 if (! low_set)
12034 /* If the first entry is an end-of-list marker, the range
12035 describes an empty scope, i.e. no instructions. */
12036 return 0;
12037
12038 if (low_return)
12039 *low_return = low;
12040 if (high_return)
12041 *high_return = high;
12042 return 1;
12043}
12044
3a2b436a
JK
12045/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12046 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12047 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12048
3a2b436a 12049static enum pc_bounds_kind
af34e669 12050dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12051 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12052 struct partial_symtab *pst)
c906108c
SS
12053{
12054 struct attribute *attr;
91da1414 12055 struct attribute *attr_high;
af34e669
DJ
12056 CORE_ADDR low = 0;
12057 CORE_ADDR high = 0;
e385593e 12058 enum pc_bounds_kind ret;
c906108c 12059
91da1414
MW
12060 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12061 if (attr_high)
af34e669 12062 {
e142c38c 12063 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12064 if (attr)
91da1414 12065 {
31aa7e4e
JB
12066 low = attr_value_as_address (attr);
12067 high = attr_value_as_address (attr_high);
12068 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12069 high += low;
91da1414 12070 }
af34e669
DJ
12071 else
12072 /* Found high w/o low attribute. */
e385593e 12073 return PC_BOUNDS_INVALID;
af34e669
DJ
12074
12075 /* Found consecutive range of addresses. */
3a2b436a 12076 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12077 }
c906108c 12078 else
af34e669 12079 {
e142c38c 12080 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12081 if (attr != NULL)
12082 {
ab435259
DE
12083 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12084 We take advantage of the fact that DW_AT_ranges does not appear
12085 in DW_TAG_compile_unit of DWO files. */
12086 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12087 unsigned int ranges_offset = (DW_UNSND (attr)
12088 + (need_ranges_base
12089 ? cu->ranges_base
12090 : 0));
2e3cf129 12091
af34e669 12092 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12093 .debug_ranges section. */
2e3cf129 12094 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12095 return PC_BOUNDS_INVALID;
43039443 12096 /* Found discontinuous range of addresses. */
3a2b436a 12097 ret = PC_BOUNDS_RANGES;
af34e669 12098 }
e385593e
JK
12099 else
12100 return PC_BOUNDS_NOT_PRESENT;
af34e669 12101 }
c906108c 12102
9373cf26
JK
12103 /* read_partial_die has also the strict LOW < HIGH requirement. */
12104 if (high <= low)
e385593e 12105 return PC_BOUNDS_INVALID;
c906108c
SS
12106
12107 /* When using the GNU linker, .gnu.linkonce. sections are used to
12108 eliminate duplicate copies of functions and vtables and such.
12109 The linker will arbitrarily choose one and discard the others.
12110 The AT_*_pc values for such functions refer to local labels in
12111 these sections. If the section from that file was discarded, the
12112 labels are not in the output, so the relocs get a value of 0.
12113 If this is a discarded function, mark the pc bounds as invalid,
12114 so that GDB will ignore it. */
72dca2f5 12115 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12116 return PC_BOUNDS_INVALID;
c906108c
SS
12117
12118 *lowpc = low;
96408a79
SA
12119 if (highpc)
12120 *highpc = high;
af34e669 12121 return ret;
c906108c
SS
12122}
12123
b084d499
JB
12124/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12125 its low and high PC addresses. Do nothing if these addresses could not
12126 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12127 and HIGHPC to the high address if greater than HIGHPC. */
12128
12129static void
12130dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12131 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12132 struct dwarf2_cu *cu)
12133{
12134 CORE_ADDR low, high;
12135 struct die_info *child = die->child;
12136
e385593e 12137 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12138 {
325fac50
PA
12139 *lowpc = std::min (*lowpc, low);
12140 *highpc = std::max (*highpc, high);
b084d499
JB
12141 }
12142
12143 /* If the language does not allow nested subprograms (either inside
12144 subprograms or lexical blocks), we're done. */
12145 if (cu->language != language_ada)
12146 return;
6e70227d 12147
b084d499
JB
12148 /* Check all the children of the given DIE. If it contains nested
12149 subprograms, then check their pc bounds. Likewise, we need to
12150 check lexical blocks as well, as they may also contain subprogram
12151 definitions. */
12152 while (child && child->tag)
12153 {
12154 if (child->tag == DW_TAG_subprogram
12155 || child->tag == DW_TAG_lexical_block)
12156 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12157 child = sibling_die (child);
12158 }
12159}
12160
fae299cd
DC
12161/* Get the low and high pc's represented by the scope DIE, and store
12162 them in *LOWPC and *HIGHPC. If the correct values can't be
12163 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12164
12165static void
12166get_scope_pc_bounds (struct die_info *die,
12167 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12168 struct dwarf2_cu *cu)
12169{
12170 CORE_ADDR best_low = (CORE_ADDR) -1;
12171 CORE_ADDR best_high = (CORE_ADDR) 0;
12172 CORE_ADDR current_low, current_high;
12173
3a2b436a 12174 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12175 >= PC_BOUNDS_RANGES)
fae299cd
DC
12176 {
12177 best_low = current_low;
12178 best_high = current_high;
12179 }
12180 else
12181 {
12182 struct die_info *child = die->child;
12183
12184 while (child && child->tag)
12185 {
12186 switch (child->tag) {
12187 case DW_TAG_subprogram:
b084d499 12188 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12189 break;
12190 case DW_TAG_namespace:
f55ee35c 12191 case DW_TAG_module:
fae299cd
DC
12192 /* FIXME: carlton/2004-01-16: Should we do this for
12193 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12194 that current GCC's always emit the DIEs corresponding
12195 to definitions of methods of classes as children of a
12196 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12197 the DIEs giving the declarations, which could be
12198 anywhere). But I don't see any reason why the
12199 standards says that they have to be there. */
12200 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12201
12202 if (current_low != ((CORE_ADDR) -1))
12203 {
325fac50
PA
12204 best_low = std::min (best_low, current_low);
12205 best_high = std::max (best_high, current_high);
fae299cd
DC
12206 }
12207 break;
12208 default:
0963b4bd 12209 /* Ignore. */
fae299cd
DC
12210 break;
12211 }
12212
12213 child = sibling_die (child);
12214 }
12215 }
12216
12217 *lowpc = best_low;
12218 *highpc = best_high;
12219}
12220
801e3a5b
JB
12221/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12222 in DIE. */
380bca97 12223
801e3a5b
JB
12224static void
12225dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12226 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12227{
bb5ed363 12228 struct objfile *objfile = cu->objfile;
3e29f34a 12229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12230 struct attribute *attr;
91da1414 12231 struct attribute *attr_high;
801e3a5b 12232
91da1414
MW
12233 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12234 if (attr_high)
801e3a5b 12235 {
801e3a5b
JB
12236 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12237 if (attr)
12238 {
31aa7e4e
JB
12239 CORE_ADDR low = attr_value_as_address (attr);
12240 CORE_ADDR high = attr_value_as_address (attr_high);
12241
12242 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12243 high += low;
9a619af0 12244
3e29f34a
MR
12245 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12246 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12247 record_block_range (block, low, high - 1);
801e3a5b
JB
12248 }
12249 }
12250
12251 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12252 if (attr)
12253 {
bb5ed363 12254 bfd *obfd = objfile->obfd;
ab435259
DE
12255 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12256 We take advantage of the fact that DW_AT_ranges does not appear
12257 in DW_TAG_compile_unit of DWO files. */
12258 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12259
12260 /* The value of the DW_AT_ranges attribute is the offset of the
12261 address range list in the .debug_ranges section. */
ab435259
DE
12262 unsigned long offset = (DW_UNSND (attr)
12263 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12264 const gdb_byte *buffer;
801e3a5b
JB
12265
12266 /* For some target architectures, but not others, the
12267 read_address function sign-extends the addresses it returns.
12268 To recognize base address selection entries, we need a
12269 mask. */
12270 unsigned int addr_size = cu->header.addr_size;
12271 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12272
12273 /* The base address, to which the next pair is relative. Note
12274 that this 'base' is a DWARF concept: most entries in a range
12275 list are relative, to reduce the number of relocs against the
12276 debugging information. This is separate from this function's
12277 'baseaddr' argument, which GDB uses to relocate debugging
12278 information from a shared library based on the address at
12279 which the library was loaded. */
d00adf39
DE
12280 CORE_ADDR base = cu->base_address;
12281 int base_known = cu->base_known;
801e3a5b 12282
d62bfeaf 12283 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12284 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12285 {
12286 complaint (&symfile_complaints,
12287 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12288 offset);
12289 return;
12290 }
d62bfeaf 12291 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12292
12293 for (;;)
12294 {
12295 unsigned int bytes_read;
12296 CORE_ADDR start, end;
12297
12298 start = read_address (obfd, buffer, cu, &bytes_read);
12299 buffer += bytes_read;
12300 end = read_address (obfd, buffer, cu, &bytes_read);
12301 buffer += bytes_read;
12302
12303 /* Did we find the end of the range list? */
12304 if (start == 0 && end == 0)
12305 break;
12306
12307 /* Did we find a base address selection entry? */
12308 else if ((start & base_select_mask) == base_select_mask)
12309 {
12310 base = end;
12311 base_known = 1;
12312 }
12313
12314 /* We found an ordinary address range. */
12315 else
12316 {
12317 if (!base_known)
12318 {
12319 complaint (&symfile_complaints,
3e43a32a
MS
12320 _("Invalid .debug_ranges data "
12321 "(no base address)"));
801e3a5b
JB
12322 return;
12323 }
12324
9277c30c
UW
12325 if (start > end)
12326 {
12327 /* Inverted range entries are invalid. */
12328 complaint (&symfile_complaints,
12329 _("Invalid .debug_ranges data "
12330 "(inverted range)"));
12331 return;
12332 }
12333
12334 /* Empty range entries have no effect. */
12335 if (start == end)
12336 continue;
12337
01093045
DE
12338 start += base + baseaddr;
12339 end += base + baseaddr;
12340
12341 /* A not-uncommon case of bad debug info.
12342 Don't pollute the addrmap with bad data. */
12343 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12344 {
12345 complaint (&symfile_complaints,
12346 _(".debug_ranges entry has start address of zero"
4262abfb 12347 " [in module %s]"), objfile_name (objfile));
01093045
DE
12348 continue;
12349 }
12350
3e29f34a
MR
12351 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12352 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12353 record_block_range (block, start, end - 1);
801e3a5b
JB
12354 }
12355 }
12356 }
12357}
12358
685b1105
JK
12359/* Check whether the producer field indicates either of GCC < 4.6, or the
12360 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12361
685b1105
JK
12362static void
12363check_producer (struct dwarf2_cu *cu)
60d5a603 12364{
38360086 12365 int major, minor;
60d5a603
JK
12366
12367 if (cu->producer == NULL)
12368 {
12369 /* For unknown compilers expect their behavior is DWARF version
12370 compliant.
12371
12372 GCC started to support .debug_types sections by -gdwarf-4 since
12373 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12374 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12375 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12376 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12377 }
b1ffba5a 12378 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12379 {
38360086
MW
12380 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12381 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12382 }
61012eef 12383 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12384 cu->producer_is_icc = 1;
12385 else
12386 {
12387 /* For other non-GCC compilers, expect their behavior is DWARF version
12388 compliant. */
60d5a603
JK
12389 }
12390
ba919b58 12391 cu->checked_producer = 1;
685b1105 12392}
ba919b58 12393
685b1105
JK
12394/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12395 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12396 during 4.6.0 experimental. */
12397
12398static int
12399producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12400{
12401 if (!cu->checked_producer)
12402 check_producer (cu);
12403
12404 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12405}
12406
12407/* Return the default accessibility type if it is not overriden by
12408 DW_AT_accessibility. */
12409
12410static enum dwarf_access_attribute
12411dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12412{
12413 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12414 {
12415 /* The default DWARF 2 accessibility for members is public, the default
12416 accessibility for inheritance is private. */
12417
12418 if (die->tag != DW_TAG_inheritance)
12419 return DW_ACCESS_public;
12420 else
12421 return DW_ACCESS_private;
12422 }
12423 else
12424 {
12425 /* DWARF 3+ defines the default accessibility a different way. The same
12426 rules apply now for DW_TAG_inheritance as for the members and it only
12427 depends on the container kind. */
12428
12429 if (die->parent->tag == DW_TAG_class_type)
12430 return DW_ACCESS_private;
12431 else
12432 return DW_ACCESS_public;
12433 }
12434}
12435
74ac6d43
TT
12436/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12437 offset. If the attribute was not found return 0, otherwise return
12438 1. If it was found but could not properly be handled, set *OFFSET
12439 to 0. */
12440
12441static int
12442handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12443 LONGEST *offset)
12444{
12445 struct attribute *attr;
12446
12447 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12448 if (attr != NULL)
12449 {
12450 *offset = 0;
12451
12452 /* Note that we do not check for a section offset first here.
12453 This is because DW_AT_data_member_location is new in DWARF 4,
12454 so if we see it, we can assume that a constant form is really
12455 a constant and not a section offset. */
12456 if (attr_form_is_constant (attr))
12457 *offset = dwarf2_get_attr_constant_value (attr, 0);
12458 else if (attr_form_is_section_offset (attr))
12459 dwarf2_complex_location_expr_complaint ();
12460 else if (attr_form_is_block (attr))
12461 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12462 else
12463 dwarf2_complex_location_expr_complaint ();
12464
12465 return 1;
12466 }
12467
12468 return 0;
12469}
12470
c906108c
SS
12471/* Add an aggregate field to the field list. */
12472
12473static void
107d2387 12474dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12475 struct dwarf2_cu *cu)
6e70227d 12476{
e7c27a73 12477 struct objfile *objfile = cu->objfile;
5e2b427d 12478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12479 struct nextfield *new_field;
12480 struct attribute *attr;
12481 struct field *fp;
15d034d0 12482 const char *fieldname = "";
c906108c
SS
12483
12484 /* Allocate a new field list entry and link it in. */
8d749320 12485 new_field = XNEW (struct nextfield);
b8c9b27d 12486 make_cleanup (xfree, new_field);
c906108c 12487 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12488
12489 if (die->tag == DW_TAG_inheritance)
12490 {
12491 new_field->next = fip->baseclasses;
12492 fip->baseclasses = new_field;
12493 }
12494 else
12495 {
12496 new_field->next = fip->fields;
12497 fip->fields = new_field;
12498 }
c906108c
SS
12499 fip->nfields++;
12500
e142c38c 12501 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12502 if (attr)
12503 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12504 else
12505 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12506 if (new_field->accessibility != DW_ACCESS_public)
12507 fip->non_public_fields = 1;
60d5a603 12508
e142c38c 12509 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12510 if (attr)
12511 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12512 else
12513 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12514
12515 fp = &new_field->field;
a9a9bd0f 12516
e142c38c 12517 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12518 {
74ac6d43
TT
12519 LONGEST offset;
12520
a9a9bd0f 12521 /* Data member other than a C++ static data member. */
6e70227d 12522
c906108c 12523 /* Get type of field. */
e7c27a73 12524 fp->type = die_type (die, cu);
c906108c 12525
d6a843b5 12526 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12527
c906108c 12528 /* Get bit size of field (zero if none). */
e142c38c 12529 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12530 if (attr)
12531 {
12532 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12533 }
12534 else
12535 {
12536 FIELD_BITSIZE (*fp) = 0;
12537 }
12538
12539 /* Get bit offset of field. */
74ac6d43
TT
12540 if (handle_data_member_location (die, cu, &offset))
12541 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12542 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12543 if (attr)
12544 {
5e2b427d 12545 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12546 {
12547 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12548 additional bit offset from the MSB of the containing
12549 anonymous object to the MSB of the field. We don't
12550 have to do anything special since we don't need to
12551 know the size of the anonymous object. */
f41f5e61 12552 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12553 }
12554 else
12555 {
12556 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12557 MSB of the anonymous object, subtract off the number of
12558 bits from the MSB of the field to the MSB of the
12559 object, and then subtract off the number of bits of
12560 the field itself. The result is the bit offset of
12561 the LSB of the field. */
c906108c
SS
12562 int anonymous_size;
12563 int bit_offset = DW_UNSND (attr);
12564
e142c38c 12565 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12566 if (attr)
12567 {
12568 /* The size of the anonymous object containing
12569 the bit field is explicit, so use the
12570 indicated size (in bytes). */
12571 anonymous_size = DW_UNSND (attr);
12572 }
12573 else
12574 {
12575 /* The size of the anonymous object containing
12576 the bit field must be inferred from the type
12577 attribute of the data member containing the
12578 bit field. */
12579 anonymous_size = TYPE_LENGTH (fp->type);
12580 }
f41f5e61
PA
12581 SET_FIELD_BITPOS (*fp,
12582 (FIELD_BITPOS (*fp)
12583 + anonymous_size * bits_per_byte
12584 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12585 }
12586 }
12587
12588 /* Get name of field. */
39cbfefa
DJ
12589 fieldname = dwarf2_name (die, cu);
12590 if (fieldname == NULL)
12591 fieldname = "";
d8151005
DJ
12592
12593 /* The name is already allocated along with this objfile, so we don't
12594 need to duplicate it for the type. */
12595 fp->name = fieldname;
c906108c
SS
12596
12597 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12598 pointer or virtual base class pointer) to private. */
e142c38c 12599 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12600 {
d48cc9dd 12601 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12602 new_field->accessibility = DW_ACCESS_private;
12603 fip->non_public_fields = 1;
12604 }
12605 }
a9a9bd0f 12606 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12607 {
a9a9bd0f
DC
12608 /* C++ static member. */
12609
12610 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12611 is a declaration, but all versions of G++ as of this writing
12612 (so through at least 3.2.1) incorrectly generate
12613 DW_TAG_variable tags. */
6e70227d 12614
ff355380 12615 const char *physname;
c906108c 12616
a9a9bd0f 12617 /* Get name of field. */
39cbfefa
DJ
12618 fieldname = dwarf2_name (die, cu);
12619 if (fieldname == NULL)
c906108c
SS
12620 return;
12621
254e6b9e 12622 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12623 if (attr
12624 /* Only create a symbol if this is an external value.
12625 new_symbol checks this and puts the value in the global symbol
12626 table, which we want. If it is not external, new_symbol
12627 will try to put the value in cu->list_in_scope which is wrong. */
12628 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12629 {
12630 /* A static const member, not much different than an enum as far as
12631 we're concerned, except that we can support more types. */
12632 new_symbol (die, NULL, cu);
12633 }
12634
2df3850c 12635 /* Get physical name. */
ff355380 12636 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12637
d8151005
DJ
12638 /* The name is already allocated along with this objfile, so we don't
12639 need to duplicate it for the type. */
12640 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12641 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12642 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12643 }
12644 else if (die->tag == DW_TAG_inheritance)
12645 {
74ac6d43 12646 LONGEST offset;
d4b96c9a 12647
74ac6d43
TT
12648 /* C++ base class field. */
12649 if (handle_data_member_location (die, cu, &offset))
12650 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12651 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12652 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12653 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12654 fip->nbaseclasses++;
12655 }
12656}
12657
98751a41
JK
12658/* Add a typedef defined in the scope of the FIP's class. */
12659
12660static void
12661dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12662 struct dwarf2_cu *cu)
6e70227d 12663{
98751a41 12664 struct typedef_field_list *new_field;
98751a41 12665 struct typedef_field *fp;
98751a41
JK
12666
12667 /* Allocate a new field list entry and link it in. */
8d749320 12668 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12669 make_cleanup (xfree, new_field);
12670
12671 gdb_assert (die->tag == DW_TAG_typedef);
12672
12673 fp = &new_field->field;
12674
12675 /* Get name of field. */
12676 fp->name = dwarf2_name (die, cu);
12677 if (fp->name == NULL)
12678 return;
12679
12680 fp->type = read_type_die (die, cu);
12681
12682 new_field->next = fip->typedef_field_list;
12683 fip->typedef_field_list = new_field;
12684 fip->typedef_field_list_count++;
12685}
12686
c906108c
SS
12687/* Create the vector of fields, and attach it to the type. */
12688
12689static void
fba45db2 12690dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12691 struct dwarf2_cu *cu)
c906108c
SS
12692{
12693 int nfields = fip->nfields;
12694
12695 /* Record the field count, allocate space for the array of fields,
12696 and create blank accessibility bitfields if necessary. */
12697 TYPE_NFIELDS (type) = nfields;
12698 TYPE_FIELDS (type) = (struct field *)
12699 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12700 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12701
b4ba55a1 12702 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12703 {
12704 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12705
12706 TYPE_FIELD_PRIVATE_BITS (type) =
12707 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12708 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12709
12710 TYPE_FIELD_PROTECTED_BITS (type) =
12711 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12712 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12713
774b6a14
TT
12714 TYPE_FIELD_IGNORE_BITS (type) =
12715 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12716 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12717 }
12718
12719 /* If the type has baseclasses, allocate and clear a bit vector for
12720 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12721 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12722 {
12723 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12724 unsigned char *pointer;
c906108c
SS
12725
12726 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12727 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12728 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12729 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12730 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12731 }
12732
3e43a32a
MS
12733 /* Copy the saved-up fields into the field vector. Start from the head of
12734 the list, adding to the tail of the field array, so that they end up in
12735 the same order in the array in which they were added to the list. */
c906108c
SS
12736 while (nfields-- > 0)
12737 {
7d0ccb61
DJ
12738 struct nextfield *fieldp;
12739
12740 if (fip->fields)
12741 {
12742 fieldp = fip->fields;
12743 fip->fields = fieldp->next;
12744 }
12745 else
12746 {
12747 fieldp = fip->baseclasses;
12748 fip->baseclasses = fieldp->next;
12749 }
12750
12751 TYPE_FIELD (type, nfields) = fieldp->field;
12752 switch (fieldp->accessibility)
c906108c 12753 {
c5aa993b 12754 case DW_ACCESS_private:
b4ba55a1
JB
12755 if (cu->language != language_ada)
12756 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12757 break;
c906108c 12758
c5aa993b 12759 case DW_ACCESS_protected:
b4ba55a1
JB
12760 if (cu->language != language_ada)
12761 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12762 break;
c906108c 12763
c5aa993b
JM
12764 case DW_ACCESS_public:
12765 break;
c906108c 12766
c5aa993b
JM
12767 default:
12768 /* Unknown accessibility. Complain and treat it as public. */
12769 {
e2e0b3e5 12770 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12771 fieldp->accessibility);
c5aa993b
JM
12772 }
12773 break;
c906108c
SS
12774 }
12775 if (nfields < fip->nbaseclasses)
12776 {
7d0ccb61 12777 switch (fieldp->virtuality)
c906108c 12778 {
c5aa993b
JM
12779 case DW_VIRTUALITY_virtual:
12780 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12781 if (cu->language == language_ada)
a73c6dcd 12782 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12783 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12784 break;
c906108c
SS
12785 }
12786 }
c906108c
SS
12787 }
12788}
12789
7d27a96d
TT
12790/* Return true if this member function is a constructor, false
12791 otherwise. */
12792
12793static int
12794dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12795{
12796 const char *fieldname;
fe978cb0 12797 const char *type_name;
7d27a96d
TT
12798 int len;
12799
12800 if (die->parent == NULL)
12801 return 0;
12802
12803 if (die->parent->tag != DW_TAG_structure_type
12804 && die->parent->tag != DW_TAG_union_type
12805 && die->parent->tag != DW_TAG_class_type)
12806 return 0;
12807
12808 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12809 type_name = dwarf2_name (die->parent, cu);
12810 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12811 return 0;
12812
12813 len = strlen (fieldname);
fe978cb0
PA
12814 return (strncmp (fieldname, type_name, len) == 0
12815 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12816}
12817
c906108c
SS
12818/* Add a member function to the proper fieldlist. */
12819
12820static void
107d2387 12821dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12822 struct type *type, struct dwarf2_cu *cu)
c906108c 12823{
e7c27a73 12824 struct objfile *objfile = cu->objfile;
c906108c
SS
12825 struct attribute *attr;
12826 struct fnfieldlist *flp;
12827 int i;
12828 struct fn_field *fnp;
15d034d0 12829 const char *fieldname;
c906108c 12830 struct nextfnfield *new_fnfield;
f792889a 12831 struct type *this_type;
60d5a603 12832 enum dwarf_access_attribute accessibility;
c906108c 12833
b4ba55a1 12834 if (cu->language == language_ada)
a73c6dcd 12835 error (_("unexpected member function in Ada type"));
b4ba55a1 12836
2df3850c 12837 /* Get name of member function. */
39cbfefa
DJ
12838 fieldname = dwarf2_name (die, cu);
12839 if (fieldname == NULL)
2df3850c 12840 return;
c906108c 12841
c906108c
SS
12842 /* Look up member function name in fieldlist. */
12843 for (i = 0; i < fip->nfnfields; i++)
12844 {
27bfe10e 12845 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12846 break;
12847 }
12848
12849 /* Create new list element if necessary. */
12850 if (i < fip->nfnfields)
12851 flp = &fip->fnfieldlists[i];
12852 else
12853 {
12854 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12855 {
12856 fip->fnfieldlists = (struct fnfieldlist *)
12857 xrealloc (fip->fnfieldlists,
12858 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12859 * sizeof (struct fnfieldlist));
c906108c 12860 if (fip->nfnfields == 0)
c13c43fd 12861 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12862 }
12863 flp = &fip->fnfieldlists[fip->nfnfields];
12864 flp->name = fieldname;
12865 flp->length = 0;
12866 flp->head = NULL;
3da10d80 12867 i = fip->nfnfields++;
c906108c
SS
12868 }
12869
12870 /* Create a new member function field and chain it to the field list
0963b4bd 12871 entry. */
8d749320 12872 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12873 make_cleanup (xfree, new_fnfield);
c906108c
SS
12874 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12875 new_fnfield->next = flp->head;
12876 flp->head = new_fnfield;
12877 flp->length++;
12878
12879 /* Fill in the member function field info. */
12880 fnp = &new_fnfield->fnfield;
3da10d80
KS
12881
12882 /* Delay processing of the physname until later. */
9c37b5ae 12883 if (cu->language == language_cplus)
3da10d80
KS
12884 {
12885 add_to_method_list (type, i, flp->length - 1, fieldname,
12886 die, cu);
12887 }
12888 else
12889 {
1d06ead6 12890 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12891 fnp->physname = physname ? physname : "";
12892 }
12893
c906108c 12894 fnp->type = alloc_type (objfile);
f792889a
DJ
12895 this_type = read_type_die (die, cu);
12896 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12897 {
f792889a 12898 int nparams = TYPE_NFIELDS (this_type);
c906108c 12899
f792889a 12900 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12901 of the method itself (TYPE_CODE_METHOD). */
12902 smash_to_method_type (fnp->type, type,
f792889a
DJ
12903 TYPE_TARGET_TYPE (this_type),
12904 TYPE_FIELDS (this_type),
12905 TYPE_NFIELDS (this_type),
12906 TYPE_VARARGS (this_type));
c906108c
SS
12907
12908 /* Handle static member functions.
c5aa993b 12909 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12910 member functions. G++ helps GDB by marking the first
12911 parameter for non-static member functions (which is the this
12912 pointer) as artificial. We obtain this information from
12913 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12914 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12915 fnp->voffset = VOFFSET_STATIC;
12916 }
12917 else
e2e0b3e5 12918 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12919 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12920
12921 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12922 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12923 fnp->fcontext = die_containing_type (die, cu);
c906108c 12924
3e43a32a
MS
12925 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12926 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12927
12928 /* Get accessibility. */
e142c38c 12929 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12930 if (attr)
aead7601 12931 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12932 else
12933 accessibility = dwarf2_default_access_attribute (die, cu);
12934 switch (accessibility)
c906108c 12935 {
60d5a603
JK
12936 case DW_ACCESS_private:
12937 fnp->is_private = 1;
12938 break;
12939 case DW_ACCESS_protected:
12940 fnp->is_protected = 1;
12941 break;
c906108c
SS
12942 }
12943
b02dede2 12944 /* Check for artificial methods. */
e142c38c 12945 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12946 if (attr && DW_UNSND (attr) != 0)
12947 fnp->is_artificial = 1;
12948
7d27a96d
TT
12949 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12950
0d564a31 12951 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12952 function. For older versions of GCC, this is an offset in the
12953 appropriate virtual table, as specified by DW_AT_containing_type.
12954 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12955 to the object address. */
12956
e142c38c 12957 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12958 if (attr)
8e19ed76 12959 {
aec5aa8b 12960 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12961 {
aec5aa8b
TT
12962 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12963 {
12964 /* Old-style GCC. */
12965 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12966 }
12967 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12968 || (DW_BLOCK (attr)->size > 1
12969 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12970 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12971 {
aec5aa8b
TT
12972 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12973 if ((fnp->voffset % cu->header.addr_size) != 0)
12974 dwarf2_complex_location_expr_complaint ();
12975 else
12976 fnp->voffset /= cu->header.addr_size;
12977 fnp->voffset += 2;
12978 }
12979 else
12980 dwarf2_complex_location_expr_complaint ();
12981
12982 if (!fnp->fcontext)
7e993ebf
KS
12983 {
12984 /* If there is no `this' field and no DW_AT_containing_type,
12985 we cannot actually find a base class context for the
12986 vtable! */
12987 if (TYPE_NFIELDS (this_type) == 0
12988 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12989 {
12990 complaint (&symfile_complaints,
12991 _("cannot determine context for virtual member "
12992 "function \"%s\" (offset %d)"),
12993 fieldname, die->offset.sect_off);
12994 }
12995 else
12996 {
12997 fnp->fcontext
12998 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12999 }
13000 }
aec5aa8b 13001 }
3690dd37 13002 else if (attr_form_is_section_offset (attr))
8e19ed76 13003 {
4d3c2250 13004 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13005 }
13006 else
13007 {
4d3c2250
KB
13008 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13009 fieldname);
8e19ed76 13010 }
0d564a31 13011 }
d48cc9dd
DJ
13012 else
13013 {
13014 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13015 if (attr && DW_UNSND (attr))
13016 {
13017 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13018 complaint (&symfile_complaints,
3e43a32a
MS
13019 _("Member function \"%s\" (offset %d) is virtual "
13020 "but the vtable offset is not specified"),
b64f50a1 13021 fieldname, die->offset.sect_off);
9655fd1a 13022 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13023 TYPE_CPLUS_DYNAMIC (type) = 1;
13024 }
13025 }
c906108c
SS
13026}
13027
13028/* Create the vector of member function fields, and attach it to the type. */
13029
13030static void
fba45db2 13031dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13032 struct dwarf2_cu *cu)
c906108c
SS
13033{
13034 struct fnfieldlist *flp;
c906108c
SS
13035 int i;
13036
b4ba55a1 13037 if (cu->language == language_ada)
a73c6dcd 13038 error (_("unexpected member functions in Ada type"));
b4ba55a1 13039
c906108c
SS
13040 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13041 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13042 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13043
13044 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13045 {
13046 struct nextfnfield *nfp = flp->head;
13047 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13048 int k;
13049
13050 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13051 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13052 fn_flp->fn_fields = (struct fn_field *)
13053 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13054 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13055 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13056 }
13057
13058 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13059}
13060
1168df01
JB
13061/* Returns non-zero if NAME is the name of a vtable member in CU's
13062 language, zero otherwise. */
13063static int
13064is_vtable_name (const char *name, struct dwarf2_cu *cu)
13065{
13066 static const char vptr[] = "_vptr";
987504bb 13067 static const char vtable[] = "vtable";
1168df01 13068
9c37b5ae
TT
13069 /* Look for the C++ form of the vtable. */
13070 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13071 return 1;
13072
13073 return 0;
13074}
13075
c0dd20ea 13076/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13077 functions, with the ABI-specified layout. If TYPE describes
13078 such a structure, smash it into a member function type.
61049d3b
DJ
13079
13080 GCC shouldn't do this; it should just output pointer to member DIEs.
13081 This is GCC PR debug/28767. */
c0dd20ea 13082
0b92b5bb
TT
13083static void
13084quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13085{
09e2d7c7 13086 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13087
13088 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13089 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13090 return;
c0dd20ea
DJ
13091
13092 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13093 if (TYPE_FIELD_NAME (type, 0) == NULL
13094 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13095 || TYPE_FIELD_NAME (type, 1) == NULL
13096 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13097 return;
c0dd20ea
DJ
13098
13099 /* Find the type of the method. */
0b92b5bb 13100 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13101 if (pfn_type == NULL
13102 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13103 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13104 return;
c0dd20ea
DJ
13105
13106 /* Look for the "this" argument. */
13107 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13108 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13109 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13110 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13111 return;
c0dd20ea 13112
09e2d7c7 13113 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13114 new_type = alloc_type (objfile);
09e2d7c7 13115 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13116 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13117 TYPE_VARARGS (pfn_type));
0b92b5bb 13118 smash_to_methodptr_type (type, new_type);
c0dd20ea 13119}
1168df01 13120
685b1105
JK
13121/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13122 (icc). */
13123
13124static int
13125producer_is_icc (struct dwarf2_cu *cu)
13126{
13127 if (!cu->checked_producer)
13128 check_producer (cu);
13129
13130 return cu->producer_is_icc;
13131}
13132
c906108c 13133/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13134 (definition) to create a type for the structure or union. Fill in
13135 the type's name and general properties; the members will not be
83655187
DE
13136 processed until process_structure_scope. A symbol table entry for
13137 the type will also not be done until process_structure_scope (assuming
13138 the type has a name).
c906108c 13139
c767944b
DJ
13140 NOTE: we need to call these functions regardless of whether or not the
13141 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13142 structure or union. This gets the type entered into our set of
83655187 13143 user defined types. */
c906108c 13144
f792889a 13145static struct type *
134d01f1 13146read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13147{
e7c27a73 13148 struct objfile *objfile = cu->objfile;
c906108c
SS
13149 struct type *type;
13150 struct attribute *attr;
15d034d0 13151 const char *name;
c906108c 13152
348e048f
DE
13153 /* If the definition of this type lives in .debug_types, read that type.
13154 Don't follow DW_AT_specification though, that will take us back up
13155 the chain and we want to go down. */
45e58e77 13156 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13157 if (attr)
13158 {
ac9ec31b 13159 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13160
ac9ec31b 13161 /* The type's CU may not be the same as CU.
02142a6c 13162 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13163 return set_die_type (die, type, cu);
13164 }
13165
c0dd20ea 13166 type = alloc_type (objfile);
c906108c 13167 INIT_CPLUS_SPECIFIC (type);
93311388 13168
39cbfefa
DJ
13169 name = dwarf2_name (die, cu);
13170 if (name != NULL)
c906108c 13171 {
987504bb 13172 if (cu->language == language_cplus
c44af4eb
TT
13173 || cu->language == language_d
13174 || cu->language == language_rust)
63d06c5c 13175 {
15d034d0 13176 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13177
13178 /* dwarf2_full_name might have already finished building the DIE's
13179 type. If so, there is no need to continue. */
13180 if (get_die_type (die, cu) != NULL)
13181 return get_die_type (die, cu);
13182
13183 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13184 if (die->tag == DW_TAG_structure_type
13185 || die->tag == DW_TAG_class_type)
13186 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13187 }
13188 else
13189 {
d8151005
DJ
13190 /* The name is already allocated along with this objfile, so
13191 we don't need to duplicate it for the type. */
7d455152 13192 TYPE_TAG_NAME (type) = name;
94af9270
KS
13193 if (die->tag == DW_TAG_class_type)
13194 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13195 }
c906108c
SS
13196 }
13197
13198 if (die->tag == DW_TAG_structure_type)
13199 {
13200 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13201 }
13202 else if (die->tag == DW_TAG_union_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_UNION;
13205 }
13206 else
13207 {
4753d33b 13208 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13209 }
13210
0cc2414c
TT
13211 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13212 TYPE_DECLARED_CLASS (type) = 1;
13213
e142c38c 13214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13215 if (attr)
13216 {
155bfbd3
JB
13217 if (attr_form_is_constant (attr))
13218 TYPE_LENGTH (type) = DW_UNSND (attr);
13219 else
13220 {
13221 /* For the moment, dynamic type sizes are not supported
13222 by GDB's struct type. The actual size is determined
13223 on-demand when resolving the type of a given object,
13224 so set the type's length to zero for now. Otherwise,
13225 we record an expression as the length, and that expression
13226 could lead to a very large value, which could eventually
13227 lead to us trying to allocate that much memory when creating
13228 a value of that type. */
13229 TYPE_LENGTH (type) = 0;
13230 }
c906108c
SS
13231 }
13232 else
13233 {
13234 TYPE_LENGTH (type) = 0;
13235 }
13236
422b1cb0 13237 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13238 {
13239 /* ICC does not output the required DW_AT_declaration
13240 on incomplete types, but gives them a size of zero. */
422b1cb0 13241 TYPE_STUB (type) = 1;
685b1105
JK
13242 }
13243 else
13244 TYPE_STUB_SUPPORTED (type) = 1;
13245
dc718098 13246 if (die_is_declaration (die, cu))
876cecd0 13247 TYPE_STUB (type) = 1;
a6c727b2
DJ
13248 else if (attr == NULL && die->child == NULL
13249 && producer_is_realview (cu->producer))
13250 /* RealView does not output the required DW_AT_declaration
13251 on incomplete types. */
13252 TYPE_STUB (type) = 1;
dc718098 13253
c906108c
SS
13254 /* We need to add the type field to the die immediately so we don't
13255 infinitely recurse when dealing with pointers to the structure
0963b4bd 13256 type within the structure itself. */
1c379e20 13257 set_die_type (die, type, cu);
c906108c 13258
7e314c57
JK
13259 /* set_die_type should be already done. */
13260 set_descriptive_type (type, die, cu);
13261
c767944b
DJ
13262 return type;
13263}
13264
13265/* Finish creating a structure or union type, including filling in
13266 its members and creating a symbol for it. */
13267
13268static void
13269process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13270{
13271 struct objfile *objfile = cu->objfile;
ca040673 13272 struct die_info *child_die;
c767944b
DJ
13273 struct type *type;
13274
13275 type = get_die_type (die, cu);
13276 if (type == NULL)
13277 type = read_structure_type (die, cu);
13278
e142c38c 13279 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13280 {
13281 struct field_info fi;
34eaf542 13282 VEC (symbolp) *template_args = NULL;
c767944b 13283 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13284
13285 memset (&fi, 0, sizeof (struct field_info));
13286
639d11d3 13287 child_die = die->child;
c906108c
SS
13288
13289 while (child_die && child_die->tag)
13290 {
a9a9bd0f
DC
13291 if (child_die->tag == DW_TAG_member
13292 || child_die->tag == DW_TAG_variable)
c906108c 13293 {
a9a9bd0f
DC
13294 /* NOTE: carlton/2002-11-05: A C++ static data member
13295 should be a DW_TAG_member that is a declaration, but
13296 all versions of G++ as of this writing (so through at
13297 least 3.2.1) incorrectly generate DW_TAG_variable
13298 tags for them instead. */
e7c27a73 13299 dwarf2_add_field (&fi, child_die, cu);
c906108c 13300 }
8713b1b1 13301 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13302 {
e98c9e7c
TT
13303 /* Rust doesn't have member functions in the C++ sense.
13304 However, it does emit ordinary functions as children
13305 of a struct DIE. */
13306 if (cu->language == language_rust)
13307 read_func_scope (child_die, cu);
13308 else
13309 {
13310 /* C++ member function. */
13311 dwarf2_add_member_fn (&fi, child_die, type, cu);
13312 }
c906108c
SS
13313 }
13314 else if (child_die->tag == DW_TAG_inheritance)
13315 {
13316 /* C++ base class field. */
e7c27a73 13317 dwarf2_add_field (&fi, child_die, cu);
c906108c 13318 }
98751a41
JK
13319 else if (child_die->tag == DW_TAG_typedef)
13320 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13321 else if (child_die->tag == DW_TAG_template_type_param
13322 || child_die->tag == DW_TAG_template_value_param)
13323 {
13324 struct symbol *arg = new_symbol (child_die, NULL, cu);
13325
f1078f66
DJ
13326 if (arg != NULL)
13327 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13328 }
13329
c906108c
SS
13330 child_die = sibling_die (child_die);
13331 }
13332
34eaf542
TT
13333 /* Attach template arguments to type. */
13334 if (! VEC_empty (symbolp, template_args))
13335 {
13336 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13337 TYPE_N_TEMPLATE_ARGUMENTS (type)
13338 = VEC_length (symbolp, template_args);
13339 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13340 = XOBNEWVEC (&objfile->objfile_obstack,
13341 struct symbol *,
13342 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13343 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13344 VEC_address (symbolp, template_args),
13345 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13346 * sizeof (struct symbol *)));
13347 VEC_free (symbolp, template_args);
13348 }
13349
c906108c
SS
13350 /* Attach fields and member functions to the type. */
13351 if (fi.nfields)
e7c27a73 13352 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13353 if (fi.nfnfields)
13354 {
e7c27a73 13355 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13356
c5aa993b 13357 /* Get the type which refers to the base class (possibly this
c906108c 13358 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13359 class from the DW_AT_containing_type attribute. This use of
13360 DW_AT_containing_type is a GNU extension. */
c906108c 13361
e142c38c 13362 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13363 {
e7c27a73 13364 struct type *t = die_containing_type (die, cu);
c906108c 13365
ae6ae975 13366 set_type_vptr_basetype (type, t);
c906108c
SS
13367 if (type == t)
13368 {
c906108c
SS
13369 int i;
13370
13371 /* Our own class provides vtbl ptr. */
13372 for (i = TYPE_NFIELDS (t) - 1;
13373 i >= TYPE_N_BASECLASSES (t);
13374 --i)
13375 {
0d5cff50 13376 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13377
1168df01 13378 if (is_vtable_name (fieldname, cu))
c906108c 13379 {
ae6ae975 13380 set_type_vptr_fieldno (type, i);
c906108c
SS
13381 break;
13382 }
13383 }
13384
13385 /* Complain if virtual function table field not found. */
13386 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13387 complaint (&symfile_complaints,
3e43a32a
MS
13388 _("virtual function table pointer "
13389 "not found when defining class '%s'"),
4d3c2250
KB
13390 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13391 "");
c906108c
SS
13392 }
13393 else
13394 {
ae6ae975 13395 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13396 }
13397 }
f6235d4c 13398 else if (cu->producer
61012eef 13399 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13400 {
13401 /* The IBM XLC compiler does not provide direct indication
13402 of the containing type, but the vtable pointer is
13403 always named __vfp. */
13404
13405 int i;
13406
13407 for (i = TYPE_NFIELDS (type) - 1;
13408 i >= TYPE_N_BASECLASSES (type);
13409 --i)
13410 {
13411 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13412 {
ae6ae975
DE
13413 set_type_vptr_fieldno (type, i);
13414 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13415 break;
13416 }
13417 }
13418 }
c906108c 13419 }
98751a41
JK
13420
13421 /* Copy fi.typedef_field_list linked list elements content into the
13422 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13423 if (fi.typedef_field_list)
13424 {
13425 int i = fi.typedef_field_list_count;
13426
a0d7a4ff 13427 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13428 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13429 = ((struct typedef_field *)
13430 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13431 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13432
13433 /* Reverse the list order to keep the debug info elements order. */
13434 while (--i >= 0)
13435 {
13436 struct typedef_field *dest, *src;
6e70227d 13437
98751a41
JK
13438 dest = &TYPE_TYPEDEF_FIELD (type, i);
13439 src = &fi.typedef_field_list->field;
13440 fi.typedef_field_list = fi.typedef_field_list->next;
13441 *dest = *src;
13442 }
13443 }
c767944b
DJ
13444
13445 do_cleanups (back_to);
c906108c 13446 }
63d06c5c 13447
bb5ed363 13448 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13449
90aeadfc
DC
13450 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13451 snapshots) has been known to create a die giving a declaration
13452 for a class that has, as a child, a die giving a definition for a
13453 nested class. So we have to process our children even if the
13454 current die is a declaration. Normally, of course, a declaration
13455 won't have any children at all. */
134d01f1 13456
ca040673
DE
13457 child_die = die->child;
13458
90aeadfc
DC
13459 while (child_die != NULL && child_die->tag)
13460 {
13461 if (child_die->tag == DW_TAG_member
13462 || child_die->tag == DW_TAG_variable
34eaf542
TT
13463 || child_die->tag == DW_TAG_inheritance
13464 || child_die->tag == DW_TAG_template_value_param
13465 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13466 {
90aeadfc 13467 /* Do nothing. */
134d01f1 13468 }
90aeadfc
DC
13469 else
13470 process_die (child_die, cu);
134d01f1 13471
90aeadfc 13472 child_die = sibling_die (child_die);
134d01f1
DJ
13473 }
13474
fa4028e9
JB
13475 /* Do not consider external references. According to the DWARF standard,
13476 these DIEs are identified by the fact that they have no byte_size
13477 attribute, and a declaration attribute. */
13478 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13479 || !die_is_declaration (die, cu))
c767944b 13480 new_symbol (die, type, cu);
134d01f1
DJ
13481}
13482
55426c9d
JB
13483/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13484 update TYPE using some information only available in DIE's children. */
13485
13486static void
13487update_enumeration_type_from_children (struct die_info *die,
13488 struct type *type,
13489 struct dwarf2_cu *cu)
13490{
13491 struct obstack obstack;
60f7655a 13492 struct die_info *child_die;
55426c9d
JB
13493 int unsigned_enum = 1;
13494 int flag_enum = 1;
13495 ULONGEST mask = 0;
13496 struct cleanup *old_chain;
13497
13498 obstack_init (&obstack);
13499 old_chain = make_cleanup_obstack_free (&obstack);
13500
60f7655a
DE
13501 for (child_die = die->child;
13502 child_die != NULL && child_die->tag;
13503 child_die = sibling_die (child_die))
55426c9d
JB
13504 {
13505 struct attribute *attr;
13506 LONGEST value;
13507 const gdb_byte *bytes;
13508 struct dwarf2_locexpr_baton *baton;
13509 const char *name;
60f7655a 13510
55426c9d
JB
13511 if (child_die->tag != DW_TAG_enumerator)
13512 continue;
13513
13514 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13515 if (attr == NULL)
13516 continue;
13517
13518 name = dwarf2_name (child_die, cu);
13519 if (name == NULL)
13520 name = "<anonymous enumerator>";
13521
13522 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13523 &value, &bytes, &baton);
13524 if (value < 0)
13525 {
13526 unsigned_enum = 0;
13527 flag_enum = 0;
13528 }
13529 else if ((mask & value) != 0)
13530 flag_enum = 0;
13531 else
13532 mask |= value;
13533
13534 /* If we already know that the enum type is neither unsigned, nor
13535 a flag type, no need to look at the rest of the enumerates. */
13536 if (!unsigned_enum && !flag_enum)
13537 break;
55426c9d
JB
13538 }
13539
13540 if (unsigned_enum)
13541 TYPE_UNSIGNED (type) = 1;
13542 if (flag_enum)
13543 TYPE_FLAG_ENUM (type) = 1;
13544
13545 do_cleanups (old_chain);
13546}
13547
134d01f1
DJ
13548/* Given a DW_AT_enumeration_type die, set its type. We do not
13549 complete the type's fields yet, or create any symbols. */
c906108c 13550
f792889a 13551static struct type *
134d01f1 13552read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13553{
e7c27a73 13554 struct objfile *objfile = cu->objfile;
c906108c 13555 struct type *type;
c906108c 13556 struct attribute *attr;
0114d602 13557 const char *name;
134d01f1 13558
348e048f
DE
13559 /* If the definition of this type lives in .debug_types, read that type.
13560 Don't follow DW_AT_specification though, that will take us back up
13561 the chain and we want to go down. */
45e58e77 13562 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13563 if (attr)
13564 {
ac9ec31b 13565 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13566
ac9ec31b 13567 /* The type's CU may not be the same as CU.
02142a6c 13568 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13569 return set_die_type (die, type, cu);
13570 }
13571
c906108c
SS
13572 type = alloc_type (objfile);
13573
13574 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13575 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13576 if (name != NULL)
7d455152 13577 TYPE_TAG_NAME (type) = name;
c906108c 13578
0626fc76
TT
13579 attr = dwarf2_attr (die, DW_AT_type, cu);
13580 if (attr != NULL)
13581 {
13582 struct type *underlying_type = die_type (die, cu);
13583
13584 TYPE_TARGET_TYPE (type) = underlying_type;
13585 }
13586
e142c38c 13587 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13588 if (attr)
13589 {
13590 TYPE_LENGTH (type) = DW_UNSND (attr);
13591 }
13592 else
13593 {
13594 TYPE_LENGTH (type) = 0;
13595 }
13596
137033e9
JB
13597 /* The enumeration DIE can be incomplete. In Ada, any type can be
13598 declared as private in the package spec, and then defined only
13599 inside the package body. Such types are known as Taft Amendment
13600 Types. When another package uses such a type, an incomplete DIE
13601 may be generated by the compiler. */
02eb380e 13602 if (die_is_declaration (die, cu))
876cecd0 13603 TYPE_STUB (type) = 1;
02eb380e 13604
0626fc76
TT
13605 /* Finish the creation of this type by using the enum's children.
13606 We must call this even when the underlying type has been provided
13607 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13608 update_enumeration_type_from_children (die, type, cu);
13609
0626fc76
TT
13610 /* If this type has an underlying type that is not a stub, then we
13611 may use its attributes. We always use the "unsigned" attribute
13612 in this situation, because ordinarily we guess whether the type
13613 is unsigned -- but the guess can be wrong and the underlying type
13614 can tell us the reality. However, we defer to a local size
13615 attribute if one exists, because this lets the compiler override
13616 the underlying type if needed. */
13617 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13618 {
13619 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13620 if (TYPE_LENGTH (type) == 0)
13621 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13622 }
13623
3d567982
TT
13624 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13625
f792889a 13626 return set_die_type (die, type, cu);
134d01f1
DJ
13627}
13628
13629/* Given a pointer to a die which begins an enumeration, process all
13630 the dies that define the members of the enumeration, and create the
13631 symbol for the enumeration type.
13632
13633 NOTE: We reverse the order of the element list. */
13634
13635static void
13636process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13637{
f792889a 13638 struct type *this_type;
134d01f1 13639
f792889a
DJ
13640 this_type = get_die_type (die, cu);
13641 if (this_type == NULL)
13642 this_type = read_enumeration_type (die, cu);
9dc481d3 13643
639d11d3 13644 if (die->child != NULL)
c906108c 13645 {
9dc481d3
DE
13646 struct die_info *child_die;
13647 struct symbol *sym;
13648 struct field *fields = NULL;
13649 int num_fields = 0;
15d034d0 13650 const char *name;
9dc481d3 13651
639d11d3 13652 child_die = die->child;
c906108c
SS
13653 while (child_die && child_die->tag)
13654 {
13655 if (child_die->tag != DW_TAG_enumerator)
13656 {
e7c27a73 13657 process_die (child_die, cu);
c906108c
SS
13658 }
13659 else
13660 {
39cbfefa
DJ
13661 name = dwarf2_name (child_die, cu);
13662 if (name)
c906108c 13663 {
f792889a 13664 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13665
13666 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13667 {
13668 fields = (struct field *)
13669 xrealloc (fields,
13670 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13671 * sizeof (struct field));
c906108c
SS
13672 }
13673
3567439c 13674 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13675 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13676 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13677 FIELD_BITSIZE (fields[num_fields]) = 0;
13678
13679 num_fields++;
13680 }
13681 }
13682
13683 child_die = sibling_die (child_die);
13684 }
13685
13686 if (num_fields)
13687 {
f792889a
DJ
13688 TYPE_NFIELDS (this_type) = num_fields;
13689 TYPE_FIELDS (this_type) = (struct field *)
13690 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13691 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13692 sizeof (struct field) * num_fields);
b8c9b27d 13693 xfree (fields);
c906108c 13694 }
c906108c 13695 }
134d01f1 13696
6c83ed52
TT
13697 /* If we are reading an enum from a .debug_types unit, and the enum
13698 is a declaration, and the enum is not the signatured type in the
13699 unit, then we do not want to add a symbol for it. Adding a
13700 symbol would in some cases obscure the true definition of the
13701 enum, giving users an incomplete type when the definition is
13702 actually available. Note that we do not want to do this for all
13703 enums which are just declarations, because C++0x allows forward
13704 enum declarations. */
3019eac3 13705 if (cu->per_cu->is_debug_types
6c83ed52
TT
13706 && die_is_declaration (die, cu))
13707 {
52dc124a 13708 struct signatured_type *sig_type;
6c83ed52 13709
c0f78cd4 13710 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13711 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13712 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13713 return;
13714 }
13715
f792889a 13716 new_symbol (die, this_type, cu);
c906108c
SS
13717}
13718
13719/* Extract all information from a DW_TAG_array_type DIE and put it in
13720 the DIE's type field. For now, this only handles one dimensional
13721 arrays. */
13722
f792889a 13723static struct type *
e7c27a73 13724read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13725{
e7c27a73 13726 struct objfile *objfile = cu->objfile;
c906108c 13727 struct die_info *child_die;
7e314c57 13728 struct type *type;
c906108c
SS
13729 struct type *element_type, *range_type, *index_type;
13730 struct type **range_types = NULL;
13731 struct attribute *attr;
13732 int ndim = 0;
13733 struct cleanup *back_to;
15d034d0 13734 const char *name;
dc53a7ad 13735 unsigned int bit_stride = 0;
c906108c 13736
e7c27a73 13737 element_type = die_type (die, cu);
c906108c 13738
7e314c57
JK
13739 /* The die_type call above may have already set the type for this DIE. */
13740 type = get_die_type (die, cu);
13741 if (type)
13742 return type;
13743
dc53a7ad
JB
13744 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13745 if (attr != NULL)
13746 bit_stride = DW_UNSND (attr) * 8;
13747
13748 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13749 if (attr != NULL)
13750 bit_stride = DW_UNSND (attr);
13751
c906108c
SS
13752 /* Irix 6.2 native cc creates array types without children for
13753 arrays with unspecified length. */
639d11d3 13754 if (die->child == NULL)
c906108c 13755 {
46bf5051 13756 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13757 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13758 type = create_array_type_with_stride (NULL, element_type, range_type,
13759 bit_stride);
f792889a 13760 return set_die_type (die, type, cu);
c906108c
SS
13761 }
13762
13763 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13764 child_die = die->child;
c906108c
SS
13765 while (child_die && child_die->tag)
13766 {
13767 if (child_die->tag == DW_TAG_subrange_type)
13768 {
f792889a 13769 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13770
f792889a 13771 if (child_type != NULL)
a02abb62 13772 {
0963b4bd
MS
13773 /* The range type was succesfully read. Save it for the
13774 array type creation. */
a02abb62
JB
13775 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13776 {
13777 range_types = (struct type **)
13778 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13779 * sizeof (struct type *));
13780 if (ndim == 0)
13781 make_cleanup (free_current_contents, &range_types);
13782 }
f792889a 13783 range_types[ndim++] = child_type;
a02abb62 13784 }
c906108c
SS
13785 }
13786 child_die = sibling_die (child_die);
13787 }
13788
13789 /* Dwarf2 dimensions are output from left to right, create the
13790 necessary array types in backwards order. */
7ca2d3a3 13791
c906108c 13792 type = element_type;
7ca2d3a3
DL
13793
13794 if (read_array_order (die, cu) == DW_ORD_col_major)
13795 {
13796 int i = 0;
9a619af0 13797
7ca2d3a3 13798 while (i < ndim)
dc53a7ad
JB
13799 type = create_array_type_with_stride (NULL, type, range_types[i++],
13800 bit_stride);
7ca2d3a3
DL
13801 }
13802 else
13803 {
13804 while (ndim-- > 0)
dc53a7ad
JB
13805 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13806 bit_stride);
7ca2d3a3 13807 }
c906108c 13808
f5f8a009
EZ
13809 /* Understand Dwarf2 support for vector types (like they occur on
13810 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13811 array type. This is not part of the Dwarf2/3 standard yet, but a
13812 custom vendor extension. The main difference between a regular
13813 array and the vector variant is that vectors are passed by value
13814 to functions. */
e142c38c 13815 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13816 if (attr)
ea37ba09 13817 make_vector_type (type);
f5f8a009 13818
dbc98a8b
KW
13819 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13820 implementation may choose to implement triple vectors using this
13821 attribute. */
13822 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13823 if (attr)
13824 {
13825 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13826 TYPE_LENGTH (type) = DW_UNSND (attr);
13827 else
3e43a32a
MS
13828 complaint (&symfile_complaints,
13829 _("DW_AT_byte_size for array type smaller "
13830 "than the total size of elements"));
dbc98a8b
KW
13831 }
13832
39cbfefa
DJ
13833 name = dwarf2_name (die, cu);
13834 if (name)
13835 TYPE_NAME (type) = name;
6e70227d 13836
0963b4bd 13837 /* Install the type in the die. */
7e314c57
JK
13838 set_die_type (die, type, cu);
13839
13840 /* set_die_type should be already done. */
b4ba55a1
JB
13841 set_descriptive_type (type, die, cu);
13842
c906108c
SS
13843 do_cleanups (back_to);
13844
7e314c57 13845 return type;
c906108c
SS
13846}
13847
7ca2d3a3 13848static enum dwarf_array_dim_ordering
6e70227d 13849read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13850{
13851 struct attribute *attr;
13852
13853 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13854
aead7601
SM
13855 if (attr)
13856 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13857
0963b4bd
MS
13858 /* GNU F77 is a special case, as at 08/2004 array type info is the
13859 opposite order to the dwarf2 specification, but data is still
13860 laid out as per normal fortran.
7ca2d3a3 13861
0963b4bd
MS
13862 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13863 version checking. */
7ca2d3a3 13864
905e0470
PM
13865 if (cu->language == language_fortran
13866 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13867 {
13868 return DW_ORD_row_major;
13869 }
13870
6e70227d 13871 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13872 {
13873 case array_column_major:
13874 return DW_ORD_col_major;
13875 case array_row_major:
13876 default:
13877 return DW_ORD_row_major;
13878 };
13879}
13880
72019c9c 13881/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13882 the DIE's type field. */
72019c9c 13883
f792889a 13884static struct type *
72019c9c
GM
13885read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13886{
7e314c57
JK
13887 struct type *domain_type, *set_type;
13888 struct attribute *attr;
f792889a 13889
7e314c57
JK
13890 domain_type = die_type (die, cu);
13891
13892 /* The die_type call above may have already set the type for this DIE. */
13893 set_type = get_die_type (die, cu);
13894 if (set_type)
13895 return set_type;
13896
13897 set_type = create_set_type (NULL, domain_type);
13898
13899 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13900 if (attr)
13901 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13902
f792889a 13903 return set_die_type (die, set_type, cu);
72019c9c 13904}
7ca2d3a3 13905
0971de02
TT
13906/* A helper for read_common_block that creates a locexpr baton.
13907 SYM is the symbol which we are marking as computed.
13908 COMMON_DIE is the DIE for the common block.
13909 COMMON_LOC is the location expression attribute for the common
13910 block itself.
13911 MEMBER_LOC is the location expression attribute for the particular
13912 member of the common block that we are processing.
13913 CU is the CU from which the above come. */
13914
13915static void
13916mark_common_block_symbol_computed (struct symbol *sym,
13917 struct die_info *common_die,
13918 struct attribute *common_loc,
13919 struct attribute *member_loc,
13920 struct dwarf2_cu *cu)
13921{
13922 struct objfile *objfile = dwarf2_per_objfile->objfile;
13923 struct dwarf2_locexpr_baton *baton;
13924 gdb_byte *ptr;
13925 unsigned int cu_off;
13926 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13927 LONGEST offset = 0;
13928
13929 gdb_assert (common_loc && member_loc);
13930 gdb_assert (attr_form_is_block (common_loc));
13931 gdb_assert (attr_form_is_block (member_loc)
13932 || attr_form_is_constant (member_loc));
13933
8d749320 13934 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13935 baton->per_cu = cu->per_cu;
13936 gdb_assert (baton->per_cu);
13937
13938 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13939
13940 if (attr_form_is_constant (member_loc))
13941 {
13942 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13943 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13944 }
13945 else
13946 baton->size += DW_BLOCK (member_loc)->size;
13947
224c3ddb 13948 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13949 baton->data = ptr;
13950
13951 *ptr++ = DW_OP_call4;
13952 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13953 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13954 ptr += 4;
13955
13956 if (attr_form_is_constant (member_loc))
13957 {
13958 *ptr++ = DW_OP_addr;
13959 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13960 ptr += cu->header.addr_size;
13961 }
13962 else
13963 {
13964 /* We have to copy the data here, because DW_OP_call4 will only
13965 use a DW_AT_location attribute. */
13966 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13967 ptr += DW_BLOCK (member_loc)->size;
13968 }
13969
13970 *ptr++ = DW_OP_plus;
13971 gdb_assert (ptr - baton->data == baton->size);
13972
0971de02 13973 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13974 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13975}
13976
4357ac6c
TT
13977/* Create appropriate locally-scoped variables for all the
13978 DW_TAG_common_block entries. Also create a struct common_block
13979 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13980 is used to sepate the common blocks name namespace from regular
13981 variable names. */
c906108c
SS
13982
13983static void
e7c27a73 13984read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13985{
0971de02
TT
13986 struct attribute *attr;
13987
13988 attr = dwarf2_attr (die, DW_AT_location, cu);
13989 if (attr)
13990 {
13991 /* Support the .debug_loc offsets. */
13992 if (attr_form_is_block (attr))
13993 {
13994 /* Ok. */
13995 }
13996 else if (attr_form_is_section_offset (attr))
13997 {
13998 dwarf2_complex_location_expr_complaint ();
13999 attr = NULL;
14000 }
14001 else
14002 {
14003 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14004 "common block member");
14005 attr = NULL;
14006 }
14007 }
14008
639d11d3 14009 if (die->child != NULL)
c906108c 14010 {
4357ac6c
TT
14011 struct objfile *objfile = cu->objfile;
14012 struct die_info *child_die;
14013 size_t n_entries = 0, size;
14014 struct common_block *common_block;
14015 struct symbol *sym;
74ac6d43 14016
4357ac6c
TT
14017 for (child_die = die->child;
14018 child_die && child_die->tag;
14019 child_die = sibling_die (child_die))
14020 ++n_entries;
14021
14022 size = (sizeof (struct common_block)
14023 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14024 common_block
14025 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14026 size);
4357ac6c
TT
14027 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14028 common_block->n_entries = 0;
14029
14030 for (child_die = die->child;
14031 child_die && child_die->tag;
14032 child_die = sibling_die (child_die))
14033 {
14034 /* Create the symbol in the DW_TAG_common_block block in the current
14035 symbol scope. */
e7c27a73 14036 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14037 if (sym != NULL)
14038 {
14039 struct attribute *member_loc;
14040
14041 common_block->contents[common_block->n_entries++] = sym;
14042
14043 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14044 cu);
14045 if (member_loc)
14046 {
14047 /* GDB has handled this for a long time, but it is
14048 not specified by DWARF. It seems to have been
14049 emitted by gfortran at least as recently as:
14050 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14051 complaint (&symfile_complaints,
14052 _("Variable in common block has "
14053 "DW_AT_data_member_location "
14054 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14055 child_die->offset.sect_off,
14056 objfile_name (cu->objfile));
0971de02
TT
14057
14058 if (attr_form_is_section_offset (member_loc))
14059 dwarf2_complex_location_expr_complaint ();
14060 else if (attr_form_is_constant (member_loc)
14061 || attr_form_is_block (member_loc))
14062 {
14063 if (attr)
14064 mark_common_block_symbol_computed (sym, die, attr,
14065 member_loc, cu);
14066 }
14067 else
14068 dwarf2_complex_location_expr_complaint ();
14069 }
14070 }
c906108c 14071 }
4357ac6c
TT
14072
14073 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14074 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14075 }
14076}
14077
0114d602 14078/* Create a type for a C++ namespace. */
d9fa45fe 14079
0114d602
DJ
14080static struct type *
14081read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14082{
e7c27a73 14083 struct objfile *objfile = cu->objfile;
0114d602 14084 const char *previous_prefix, *name;
9219021c 14085 int is_anonymous;
0114d602
DJ
14086 struct type *type;
14087
14088 /* For extensions, reuse the type of the original namespace. */
14089 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14090 {
14091 struct die_info *ext_die;
14092 struct dwarf2_cu *ext_cu = cu;
9a619af0 14093
0114d602
DJ
14094 ext_die = dwarf2_extension (die, &ext_cu);
14095 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14096
14097 /* EXT_CU may not be the same as CU.
02142a6c 14098 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14099 return set_die_type (die, type, cu);
14100 }
9219021c 14101
e142c38c 14102 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14103
14104 /* Now build the name of the current namespace. */
14105
0114d602
DJ
14106 previous_prefix = determine_prefix (die, cu);
14107 if (previous_prefix[0] != '\0')
14108 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14109 previous_prefix, name, 0, cu);
0114d602
DJ
14110
14111 /* Create the type. */
19f392bc 14112 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14113 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14114
60531b24 14115 return set_die_type (die, type, cu);
0114d602
DJ
14116}
14117
22cee43f 14118/* Read a namespace scope. */
0114d602
DJ
14119
14120static void
14121read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14122{
14123 struct objfile *objfile = cu->objfile;
0114d602 14124 int is_anonymous;
9219021c 14125
5c4e30ca
DC
14126 /* Add a symbol associated to this if we haven't seen the namespace
14127 before. Also, add a using directive if it's an anonymous
14128 namespace. */
9219021c 14129
f2f0e013 14130 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14131 {
14132 struct type *type;
14133
0114d602 14134 type = read_type_die (die, cu);
e7c27a73 14135 new_symbol (die, type, cu);
5c4e30ca 14136
e8e80198 14137 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14138 if (is_anonymous)
0114d602
DJ
14139 {
14140 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14141
22cee43f
PMR
14142 add_using_directive (using_directives (cu->language),
14143 previous_prefix, TYPE_NAME (type), NULL,
14144 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14145 }
5c4e30ca 14146 }
9219021c 14147
639d11d3 14148 if (die->child != NULL)
d9fa45fe 14149 {
639d11d3 14150 struct die_info *child_die = die->child;
6e70227d 14151
d9fa45fe
DC
14152 while (child_die && child_die->tag)
14153 {
e7c27a73 14154 process_die (child_die, cu);
d9fa45fe
DC
14155 child_die = sibling_die (child_die);
14156 }
14157 }
38d518c9
EZ
14158}
14159
f55ee35c
JK
14160/* Read a Fortran module as type. This DIE can be only a declaration used for
14161 imported module. Still we need that type as local Fortran "use ... only"
14162 declaration imports depend on the created type in determine_prefix. */
14163
14164static struct type *
14165read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14166{
14167 struct objfile *objfile = cu->objfile;
15d034d0 14168 const char *module_name;
f55ee35c
JK
14169 struct type *type;
14170
14171 module_name = dwarf2_name (die, cu);
14172 if (!module_name)
3e43a32a
MS
14173 complaint (&symfile_complaints,
14174 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14175 die->offset.sect_off);
19f392bc 14176 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14177
14178 /* determine_prefix uses TYPE_TAG_NAME. */
14179 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14180
14181 return set_die_type (die, type, cu);
14182}
14183
5d7cb8df
JK
14184/* Read a Fortran module. */
14185
14186static void
14187read_module (struct die_info *die, struct dwarf2_cu *cu)
14188{
14189 struct die_info *child_die = die->child;
530e8392
KB
14190 struct type *type;
14191
14192 type = read_type_die (die, cu);
14193 new_symbol (die, type, cu);
5d7cb8df 14194
5d7cb8df
JK
14195 while (child_die && child_die->tag)
14196 {
14197 process_die (child_die, cu);
14198 child_die = sibling_die (child_die);
14199 }
14200}
14201
38d518c9
EZ
14202/* Return the name of the namespace represented by DIE. Set
14203 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14204 namespace. */
14205
14206static const char *
e142c38c 14207namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14208{
14209 struct die_info *current_die;
14210 const char *name = NULL;
14211
14212 /* Loop through the extensions until we find a name. */
14213
14214 for (current_die = die;
14215 current_die != NULL;
f2f0e013 14216 current_die = dwarf2_extension (die, &cu))
38d518c9 14217 {
96553a0c
DE
14218 /* We don't use dwarf2_name here so that we can detect the absence
14219 of a name -> anonymous namespace. */
7d45c7c3 14220 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14221
38d518c9
EZ
14222 if (name != NULL)
14223 break;
14224 }
14225
14226 /* Is it an anonymous namespace? */
14227
14228 *is_anonymous = (name == NULL);
14229 if (*is_anonymous)
2b1dbab0 14230 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14231
14232 return name;
d9fa45fe
DC
14233}
14234
c906108c
SS
14235/* Extract all information from a DW_TAG_pointer_type DIE and add to
14236 the user defined type vector. */
14237
f792889a 14238static struct type *
e7c27a73 14239read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14240{
5e2b427d 14241 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14242 struct comp_unit_head *cu_header = &cu->header;
c906108c 14243 struct type *type;
8b2dbe47
KB
14244 struct attribute *attr_byte_size;
14245 struct attribute *attr_address_class;
14246 int byte_size, addr_class;
7e314c57
JK
14247 struct type *target_type;
14248
14249 target_type = die_type (die, cu);
c906108c 14250
7e314c57
JK
14251 /* The die_type call above may have already set the type for this DIE. */
14252 type = get_die_type (die, cu);
14253 if (type)
14254 return type;
14255
14256 type = lookup_pointer_type (target_type);
8b2dbe47 14257
e142c38c 14258 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14259 if (attr_byte_size)
14260 byte_size = DW_UNSND (attr_byte_size);
c906108c 14261 else
8b2dbe47
KB
14262 byte_size = cu_header->addr_size;
14263
e142c38c 14264 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14265 if (attr_address_class)
14266 addr_class = DW_UNSND (attr_address_class);
14267 else
14268 addr_class = DW_ADDR_none;
14269
14270 /* If the pointer size or address class is different than the
14271 default, create a type variant marked as such and set the
14272 length accordingly. */
14273 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14274 {
5e2b427d 14275 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14276 {
14277 int type_flags;
14278
849957d9 14279 type_flags = gdbarch_address_class_type_flags
5e2b427d 14280 (gdbarch, byte_size, addr_class);
876cecd0
TT
14281 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14282 == 0);
8b2dbe47
KB
14283 type = make_type_with_address_space (type, type_flags);
14284 }
14285 else if (TYPE_LENGTH (type) != byte_size)
14286 {
3e43a32a
MS
14287 complaint (&symfile_complaints,
14288 _("invalid pointer size %d"), byte_size);
8b2dbe47 14289 }
6e70227d 14290 else
9a619af0
MS
14291 {
14292 /* Should we also complain about unhandled address classes? */
14293 }
c906108c 14294 }
8b2dbe47
KB
14295
14296 TYPE_LENGTH (type) = byte_size;
f792889a 14297 return set_die_type (die, type, cu);
c906108c
SS
14298}
14299
14300/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14301 the user defined type vector. */
14302
f792889a 14303static struct type *
e7c27a73 14304read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14305{
14306 struct type *type;
14307 struct type *to_type;
14308 struct type *domain;
14309
e7c27a73
DJ
14310 to_type = die_type (die, cu);
14311 domain = die_containing_type (die, cu);
0d5de010 14312
7e314c57
JK
14313 /* The calls above may have already set the type for this DIE. */
14314 type = get_die_type (die, cu);
14315 if (type)
14316 return type;
14317
0d5de010
DJ
14318 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14319 type = lookup_methodptr_type (to_type);
7078baeb
TT
14320 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14321 {
14322 struct type *new_type = alloc_type (cu->objfile);
14323
14324 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14325 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14326 TYPE_VARARGS (to_type));
14327 type = lookup_methodptr_type (new_type);
14328 }
0d5de010
DJ
14329 else
14330 type = lookup_memberptr_type (to_type, domain);
c906108c 14331
f792889a 14332 return set_die_type (die, type, cu);
c906108c
SS
14333}
14334
14335/* Extract all information from a DW_TAG_reference_type DIE and add to
14336 the user defined type vector. */
14337
f792889a 14338static struct type *
e7c27a73 14339read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14340{
e7c27a73 14341 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14342 struct type *type, *target_type;
c906108c
SS
14343 struct attribute *attr;
14344
7e314c57
JK
14345 target_type = die_type (die, cu);
14346
14347 /* The die_type call above may have already set the type for this DIE. */
14348 type = get_die_type (die, cu);
14349 if (type)
14350 return type;
14351
14352 type = lookup_reference_type (target_type);
e142c38c 14353 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14354 if (attr)
14355 {
14356 TYPE_LENGTH (type) = DW_UNSND (attr);
14357 }
14358 else
14359 {
107d2387 14360 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14361 }
f792889a 14362 return set_die_type (die, type, cu);
c906108c
SS
14363}
14364
cf363f18
MW
14365/* Add the given cv-qualifiers to the element type of the array. GCC
14366 outputs DWARF type qualifiers that apply to an array, not the
14367 element type. But GDB relies on the array element type to carry
14368 the cv-qualifiers. This mimics section 6.7.3 of the C99
14369 specification. */
14370
14371static struct type *
14372add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14373 struct type *base_type, int cnst, int voltl)
14374{
14375 struct type *el_type, *inner_array;
14376
14377 base_type = copy_type (base_type);
14378 inner_array = base_type;
14379
14380 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14381 {
14382 TYPE_TARGET_TYPE (inner_array) =
14383 copy_type (TYPE_TARGET_TYPE (inner_array));
14384 inner_array = TYPE_TARGET_TYPE (inner_array);
14385 }
14386
14387 el_type = TYPE_TARGET_TYPE (inner_array);
14388 cnst |= TYPE_CONST (el_type);
14389 voltl |= TYPE_VOLATILE (el_type);
14390 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14391
14392 return set_die_type (die, base_type, cu);
14393}
14394
f792889a 14395static struct type *
e7c27a73 14396read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14397{
f792889a 14398 struct type *base_type, *cv_type;
c906108c 14399
e7c27a73 14400 base_type = die_type (die, cu);
7e314c57
JK
14401
14402 /* The die_type call above may have already set the type for this DIE. */
14403 cv_type = get_die_type (die, cu);
14404 if (cv_type)
14405 return cv_type;
14406
2f608a3a
KW
14407 /* In case the const qualifier is applied to an array type, the element type
14408 is so qualified, not the array type (section 6.7.3 of C99). */
14409 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14410 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14411
f792889a
DJ
14412 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14413 return set_die_type (die, cv_type, cu);
c906108c
SS
14414}
14415
f792889a 14416static struct type *
e7c27a73 14417read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14418{
f792889a 14419 struct type *base_type, *cv_type;
c906108c 14420
e7c27a73 14421 base_type = die_type (die, cu);
7e314c57
JK
14422
14423 /* The die_type call above may have already set the type for this DIE. */
14424 cv_type = get_die_type (die, cu);
14425 if (cv_type)
14426 return cv_type;
14427
cf363f18
MW
14428 /* In case the volatile qualifier is applied to an array type, the
14429 element type is so qualified, not the array type (section 6.7.3
14430 of C99). */
14431 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14432 return add_array_cv_type (die, cu, base_type, 0, 1);
14433
f792889a
DJ
14434 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14435 return set_die_type (die, cv_type, cu);
c906108c
SS
14436}
14437
06d66ee9
TT
14438/* Handle DW_TAG_restrict_type. */
14439
14440static struct type *
14441read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14442{
14443 struct type *base_type, *cv_type;
14444
14445 base_type = die_type (die, cu);
14446
14447 /* The die_type call above may have already set the type for this DIE. */
14448 cv_type = get_die_type (die, cu);
14449 if (cv_type)
14450 return cv_type;
14451
14452 cv_type = make_restrict_type (base_type);
14453 return set_die_type (die, cv_type, cu);
14454}
14455
a2c2acaf
MW
14456/* Handle DW_TAG_atomic_type. */
14457
14458static struct type *
14459read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14460{
14461 struct type *base_type, *cv_type;
14462
14463 base_type = die_type (die, cu);
14464
14465 /* The die_type call above may have already set the type for this DIE. */
14466 cv_type = get_die_type (die, cu);
14467 if (cv_type)
14468 return cv_type;
14469
14470 cv_type = make_atomic_type (base_type);
14471 return set_die_type (die, cv_type, cu);
14472}
14473
c906108c
SS
14474/* Extract all information from a DW_TAG_string_type DIE and add to
14475 the user defined type vector. It isn't really a user defined type,
14476 but it behaves like one, with other DIE's using an AT_user_def_type
14477 attribute to reference it. */
14478
f792889a 14479static struct type *
e7c27a73 14480read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14481{
e7c27a73 14482 struct objfile *objfile = cu->objfile;
3b7538c0 14483 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14484 struct type *type, *range_type, *index_type, *char_type;
14485 struct attribute *attr;
14486 unsigned int length;
14487
e142c38c 14488 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14489 if (attr)
14490 {
14491 length = DW_UNSND (attr);
14492 }
14493 else
14494 {
0963b4bd 14495 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14496 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14497 if (attr)
14498 {
14499 length = DW_UNSND (attr);
14500 }
14501 else
14502 {
14503 length = 1;
14504 }
c906108c 14505 }
6ccb9162 14506
46bf5051 14507 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14508 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14509 char_type = language_string_char_type (cu->language_defn, gdbarch);
14510 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14511
f792889a 14512 return set_die_type (die, type, cu);
c906108c
SS
14513}
14514
4d804846
JB
14515/* Assuming that DIE corresponds to a function, returns nonzero
14516 if the function is prototyped. */
14517
14518static int
14519prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14520{
14521 struct attribute *attr;
14522
14523 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14524 if (attr && (DW_UNSND (attr) != 0))
14525 return 1;
14526
14527 /* The DWARF standard implies that the DW_AT_prototyped attribute
14528 is only meaninful for C, but the concept also extends to other
14529 languages that allow unprototyped functions (Eg: Objective C).
14530 For all other languages, assume that functions are always
14531 prototyped. */
14532 if (cu->language != language_c
14533 && cu->language != language_objc
14534 && cu->language != language_opencl)
14535 return 1;
14536
14537 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14538 prototyped and unprototyped functions; default to prototyped,
14539 since that is more common in modern code (and RealView warns
14540 about unprototyped functions). */
14541 if (producer_is_realview (cu->producer))
14542 return 1;
14543
14544 return 0;
14545}
14546
c906108c
SS
14547/* Handle DIES due to C code like:
14548
14549 struct foo
c5aa993b
JM
14550 {
14551 int (*funcp)(int a, long l);
14552 int b;
14553 };
c906108c 14554
0963b4bd 14555 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14556
f792889a 14557static struct type *
e7c27a73 14558read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14559{
bb5ed363 14560 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14561 struct type *type; /* Type that this function returns. */
14562 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14563 struct attribute *attr;
14564
e7c27a73 14565 type = die_type (die, cu);
7e314c57
JK
14566
14567 /* The die_type call above may have already set the type for this DIE. */
14568 ftype = get_die_type (die, cu);
14569 if (ftype)
14570 return ftype;
14571
0c8b41f1 14572 ftype = lookup_function_type (type);
c906108c 14573
4d804846 14574 if (prototyped_function_p (die, cu))
a6c727b2 14575 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14576
c055b101
CV
14577 /* Store the calling convention in the type if it's available in
14578 the subroutine die. Otherwise set the calling convention to
14579 the default value DW_CC_normal. */
14580 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14581 if (attr)
14582 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14583 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14584 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14585 else
14586 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14587
743649fd
MW
14588 /* Record whether the function returns normally to its caller or not
14589 if the DWARF producer set that information. */
14590 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14591 if (attr && (DW_UNSND (attr) != 0))
14592 TYPE_NO_RETURN (ftype) = 1;
14593
76c10ea2
GM
14594 /* We need to add the subroutine type to the die immediately so
14595 we don't infinitely recurse when dealing with parameters
0963b4bd 14596 declared as the same subroutine type. */
76c10ea2 14597 set_die_type (die, ftype, cu);
6e70227d 14598
639d11d3 14599 if (die->child != NULL)
c906108c 14600 {
bb5ed363 14601 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14602 struct die_info *child_die;
8072405b 14603 int nparams, iparams;
c906108c
SS
14604
14605 /* Count the number of parameters.
14606 FIXME: GDB currently ignores vararg functions, but knows about
14607 vararg member functions. */
8072405b 14608 nparams = 0;
639d11d3 14609 child_die = die->child;
c906108c
SS
14610 while (child_die && child_die->tag)
14611 {
14612 if (child_die->tag == DW_TAG_formal_parameter)
14613 nparams++;
14614 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14615 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14616 child_die = sibling_die (child_die);
14617 }
14618
14619 /* Allocate storage for parameters and fill them in. */
14620 TYPE_NFIELDS (ftype) = nparams;
14621 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14622 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14623
8072405b
JK
14624 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14625 even if we error out during the parameters reading below. */
14626 for (iparams = 0; iparams < nparams; iparams++)
14627 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14628
14629 iparams = 0;
639d11d3 14630 child_die = die->child;
c906108c
SS
14631 while (child_die && child_die->tag)
14632 {
14633 if (child_die->tag == DW_TAG_formal_parameter)
14634 {
3ce3b1ba
PA
14635 struct type *arg_type;
14636
14637 /* DWARF version 2 has no clean way to discern C++
14638 static and non-static member functions. G++ helps
14639 GDB by marking the first parameter for non-static
14640 member functions (which is the this pointer) as
14641 artificial. We pass this information to
14642 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14643
14644 DWARF version 3 added DW_AT_object_pointer, which GCC
14645 4.5 does not yet generate. */
e142c38c 14646 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14647 if (attr)
14648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14649 else
9c37b5ae 14650 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
14651 arg_type = die_type (child_die, cu);
14652
14653 /* RealView does not mark THIS as const, which the testsuite
14654 expects. GCC marks THIS as const in method definitions,
14655 but not in the class specifications (GCC PR 43053). */
14656 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14657 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14658 {
14659 int is_this = 0;
14660 struct dwarf2_cu *arg_cu = cu;
14661 const char *name = dwarf2_name (child_die, cu);
14662
14663 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14664 if (attr)
14665 {
14666 /* If the compiler emits this, use it. */
14667 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14668 is_this = 1;
14669 }
14670 else if (name && strcmp (name, "this") == 0)
14671 /* Function definitions will have the argument names. */
14672 is_this = 1;
14673 else if (name == NULL && iparams == 0)
14674 /* Declarations may not have the names, so like
14675 elsewhere in GDB, assume an artificial first
14676 argument is "this". */
14677 is_this = 1;
14678
14679 if (is_this)
14680 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14681 arg_type, 0);
14682 }
14683
14684 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14685 iparams++;
14686 }
14687 child_die = sibling_die (child_die);
14688 }
14689 }
14690
76c10ea2 14691 return ftype;
c906108c
SS
14692}
14693
f792889a 14694static struct type *
e7c27a73 14695read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14696{
e7c27a73 14697 struct objfile *objfile = cu->objfile;
0114d602 14698 const char *name = NULL;
3c8e0968 14699 struct type *this_type, *target_type;
c906108c 14700
94af9270 14701 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14702 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14703 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14704 set_die_type (die, this_type, cu);
3c8e0968
DE
14705 target_type = die_type (die, cu);
14706 if (target_type != this_type)
14707 TYPE_TARGET_TYPE (this_type) = target_type;
14708 else
14709 {
14710 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14711 spec and cause infinite loops in GDB. */
14712 complaint (&symfile_complaints,
14713 _("Self-referential DW_TAG_typedef "
14714 "- DIE at 0x%x [in module %s]"),
4262abfb 14715 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14716 TYPE_TARGET_TYPE (this_type) = NULL;
14717 }
f792889a 14718 return this_type;
c906108c
SS
14719}
14720
9b790ce7
UW
14721/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14722 (which may be different from NAME) to the architecture back-end to allow
14723 it to guess the correct format if necessary. */
14724
14725static struct type *
14726dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14727 const char *name_hint)
14728{
14729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14730 const struct floatformat **format;
14731 struct type *type;
14732
14733 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14734 if (format)
14735 type = init_float_type (objfile, bits, name, format);
14736 else
14737 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14738
14739 return type;
14740}
14741
c906108c
SS
14742/* Find a representation of a given base type and install
14743 it in the TYPE field of the die. */
14744
f792889a 14745static struct type *
e7c27a73 14746read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14747{
e7c27a73 14748 struct objfile *objfile = cu->objfile;
c906108c
SS
14749 struct type *type;
14750 struct attribute *attr;
19f392bc 14751 int encoding = 0, bits = 0;
15d034d0 14752 const char *name;
c906108c 14753
e142c38c 14754 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14755 if (attr)
14756 {
14757 encoding = DW_UNSND (attr);
14758 }
e142c38c 14759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14760 if (attr)
14761 {
19f392bc 14762 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14763 }
39cbfefa 14764 name = dwarf2_name (die, cu);
6ccb9162 14765 if (!name)
c906108c 14766 {
6ccb9162
UW
14767 complaint (&symfile_complaints,
14768 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14769 }
6ccb9162
UW
14770
14771 switch (encoding)
c906108c 14772 {
6ccb9162
UW
14773 case DW_ATE_address:
14774 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
14775 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14776 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
14777 break;
14778 case DW_ATE_boolean:
19f392bc 14779 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
14780 break;
14781 case DW_ATE_complex_float:
9b790ce7 14782 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 14783 type = init_complex_type (objfile, name, type);
6ccb9162
UW
14784 break;
14785 case DW_ATE_decimal_float:
19f392bc 14786 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
14787 break;
14788 case DW_ATE_float:
9b790ce7 14789 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
14790 break;
14791 case DW_ATE_signed:
19f392bc 14792 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14793 break;
14794 case DW_ATE_unsigned:
3b2b8fea
TT
14795 if (cu->language == language_fortran
14796 && name
61012eef 14797 && startswith (name, "character("))
19f392bc
UW
14798 type = init_character_type (objfile, bits, 1, name);
14799 else
14800 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
14801 break;
14802 case DW_ATE_signed_char:
6e70227d 14803 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14804 || cu->language == language_pascal
14805 || cu->language == language_fortran)
19f392bc
UW
14806 type = init_character_type (objfile, bits, 0, name);
14807 else
14808 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14809 break;
14810 case DW_ATE_unsigned_char:
868a0084 14811 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14812 || cu->language == language_pascal
c44af4eb
TT
14813 || cu->language == language_fortran
14814 || cu->language == language_rust)
19f392bc
UW
14815 type = init_character_type (objfile, bits, 1, name);
14816 else
14817 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 14818 break;
75079b2b
TT
14819 case DW_ATE_UTF:
14820 /* We just treat this as an integer and then recognize the
14821 type by name elsewhere. */
19f392bc 14822 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
14823 break;
14824
6ccb9162
UW
14825 default:
14826 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14827 dwarf_type_encoding_name (encoding));
19f392bc
UW
14828 type = init_type (objfile, TYPE_CODE_ERROR,
14829 bits / TARGET_CHAR_BIT, name);
6ccb9162 14830 break;
c906108c 14831 }
6ccb9162 14832
0114d602 14833 if (name && strcmp (name, "char") == 0)
876cecd0 14834 TYPE_NOSIGN (type) = 1;
0114d602 14835
f792889a 14836 return set_die_type (die, type, cu);
c906108c
SS
14837}
14838
80180f79
SA
14839/* Parse dwarf attribute if it's a block, reference or constant and put the
14840 resulting value of the attribute into struct bound_prop.
14841 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14842
14843static int
14844attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14845 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14846{
14847 struct dwarf2_property_baton *baton;
14848 struct obstack *obstack = &cu->objfile->objfile_obstack;
14849
14850 if (attr == NULL || prop == NULL)
14851 return 0;
14852
14853 if (attr_form_is_block (attr))
14854 {
8d749320 14855 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14856 baton->referenced_type = NULL;
14857 baton->locexpr.per_cu = cu->per_cu;
14858 baton->locexpr.size = DW_BLOCK (attr)->size;
14859 baton->locexpr.data = DW_BLOCK (attr)->data;
14860 prop->data.baton = baton;
14861 prop->kind = PROP_LOCEXPR;
14862 gdb_assert (prop->data.baton != NULL);
14863 }
14864 else if (attr_form_is_ref (attr))
14865 {
14866 struct dwarf2_cu *target_cu = cu;
14867 struct die_info *target_die;
14868 struct attribute *target_attr;
14869
14870 target_die = follow_die_ref (die, attr, &target_cu);
14871 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14872 if (target_attr == NULL)
14873 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14874 target_cu);
80180f79
SA
14875 if (target_attr == NULL)
14876 return 0;
14877
df25ebbd 14878 switch (target_attr->name)
80180f79 14879 {
df25ebbd
JB
14880 case DW_AT_location:
14881 if (attr_form_is_section_offset (target_attr))
14882 {
8d749320 14883 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14884 baton->referenced_type = die_type (target_die, target_cu);
14885 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14886 prop->data.baton = baton;
14887 prop->kind = PROP_LOCLIST;
14888 gdb_assert (prop->data.baton != NULL);
14889 }
14890 else if (attr_form_is_block (target_attr))
14891 {
8d749320 14892 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14893 baton->referenced_type = die_type (target_die, target_cu);
14894 baton->locexpr.per_cu = cu->per_cu;
14895 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14896 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14897 prop->data.baton = baton;
14898 prop->kind = PROP_LOCEXPR;
14899 gdb_assert (prop->data.baton != NULL);
14900 }
14901 else
14902 {
14903 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14904 "dynamic property");
14905 return 0;
14906 }
14907 break;
14908 case DW_AT_data_member_location:
14909 {
14910 LONGEST offset;
14911
14912 if (!handle_data_member_location (target_die, target_cu,
14913 &offset))
14914 return 0;
14915
8d749320 14916 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14917 baton->referenced_type = read_type_die (target_die->parent,
14918 target_cu);
df25ebbd
JB
14919 baton->offset_info.offset = offset;
14920 baton->offset_info.type = die_type (target_die, target_cu);
14921 prop->data.baton = baton;
14922 prop->kind = PROP_ADDR_OFFSET;
14923 break;
14924 }
80180f79
SA
14925 }
14926 }
14927 else if (attr_form_is_constant (attr))
14928 {
14929 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14930 prop->kind = PROP_CONST;
14931 }
14932 else
14933 {
14934 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14935 dwarf2_name (die, cu));
14936 return 0;
14937 }
14938
14939 return 1;
14940}
14941
a02abb62
JB
14942/* Read the given DW_AT_subrange DIE. */
14943
f792889a 14944static struct type *
a02abb62
JB
14945read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14946{
4c9ad8c2 14947 struct type *base_type, *orig_base_type;
a02abb62
JB
14948 struct type *range_type;
14949 struct attribute *attr;
729efb13 14950 struct dynamic_prop low, high;
4fae6e18 14951 int low_default_is_valid;
c451ebe5 14952 int high_bound_is_count = 0;
15d034d0 14953 const char *name;
43bbcdc2 14954 LONGEST negative_mask;
e77813c8 14955
4c9ad8c2
TT
14956 orig_base_type = die_type (die, cu);
14957 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14958 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14959 creating the range type, but we use the result of check_typedef
14960 when examining properties of the type. */
14961 base_type = check_typedef (orig_base_type);
a02abb62 14962
7e314c57
JK
14963 /* The die_type call above may have already set the type for this DIE. */
14964 range_type = get_die_type (die, cu);
14965 if (range_type)
14966 return range_type;
14967
729efb13
SA
14968 low.kind = PROP_CONST;
14969 high.kind = PROP_CONST;
14970 high.data.const_val = 0;
14971
4fae6e18
JK
14972 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14973 omitting DW_AT_lower_bound. */
14974 switch (cu->language)
6e70227d 14975 {
4fae6e18
JK
14976 case language_c:
14977 case language_cplus:
729efb13 14978 low.data.const_val = 0;
4fae6e18
JK
14979 low_default_is_valid = 1;
14980 break;
14981 case language_fortran:
729efb13 14982 low.data.const_val = 1;
4fae6e18
JK
14983 low_default_is_valid = 1;
14984 break;
14985 case language_d:
4fae6e18 14986 case language_objc:
c44af4eb 14987 case language_rust:
729efb13 14988 low.data.const_val = 0;
4fae6e18
JK
14989 low_default_is_valid = (cu->header.version >= 4);
14990 break;
14991 case language_ada:
14992 case language_m2:
14993 case language_pascal:
729efb13 14994 low.data.const_val = 1;
4fae6e18
JK
14995 low_default_is_valid = (cu->header.version >= 4);
14996 break;
14997 default:
729efb13 14998 low.data.const_val = 0;
4fae6e18
JK
14999 low_default_is_valid = 0;
15000 break;
a02abb62
JB
15001 }
15002
e142c38c 15003 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15004 if (attr)
11c1ba78 15005 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15006 else if (!low_default_is_valid)
15007 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15008 "- DIE at 0x%x [in module %s]"),
4262abfb 15009 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15010
e142c38c 15011 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15012 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15013 {
15014 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15015 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15016 {
c451ebe5
SA
15017 /* If bounds are constant do the final calculation here. */
15018 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15019 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15020 else
15021 high_bound_is_count = 1;
c2ff108b 15022 }
e77813c8
PM
15023 }
15024
15025 /* Dwarf-2 specifications explicitly allows to create subrange types
15026 without specifying a base type.
15027 In that case, the base type must be set to the type of
15028 the lower bound, upper bound or count, in that order, if any of these
15029 three attributes references an object that has a type.
15030 If no base type is found, the Dwarf-2 specifications say that
15031 a signed integer type of size equal to the size of an address should
15032 be used.
15033 For the following C code: `extern char gdb_int [];'
15034 GCC produces an empty range DIE.
15035 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15036 high bound or count are not yet handled by this code. */
e77813c8
PM
15037 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15038 {
15039 struct objfile *objfile = cu->objfile;
15040 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15041 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15042 struct type *int_type = objfile_type (objfile)->builtin_int;
15043
15044 /* Test "int", "long int", and "long long int" objfile types,
15045 and select the first one having a size above or equal to the
15046 architecture address size. */
15047 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15048 base_type = int_type;
15049 else
15050 {
15051 int_type = objfile_type (objfile)->builtin_long;
15052 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15053 base_type = int_type;
15054 else
15055 {
15056 int_type = objfile_type (objfile)->builtin_long_long;
15057 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15058 base_type = int_type;
15059 }
15060 }
15061 }
a02abb62 15062
dbb9c2b1
JB
15063 /* Normally, the DWARF producers are expected to use a signed
15064 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15065 But this is unfortunately not always the case, as witnessed
15066 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15067 is used instead. To work around that ambiguity, we treat
15068 the bounds as signed, and thus sign-extend their values, when
15069 the base type is signed. */
6e70227d 15070 negative_mask =
66c6502d 15071 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15072 if (low.kind == PROP_CONST
15073 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15074 low.data.const_val |= negative_mask;
15075 if (high.kind == PROP_CONST
15076 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15077 high.data.const_val |= negative_mask;
43bbcdc2 15078
729efb13 15079 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15080
c451ebe5
SA
15081 if (high_bound_is_count)
15082 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15083
c2ff108b
JK
15084 /* Ada expects an empty array on no boundary attributes. */
15085 if (attr == NULL && cu->language != language_ada)
729efb13 15086 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15087
39cbfefa
DJ
15088 name = dwarf2_name (die, cu);
15089 if (name)
15090 TYPE_NAME (range_type) = name;
6e70227d 15091
e142c38c 15092 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15093 if (attr)
15094 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15095
7e314c57
JK
15096 set_die_type (die, range_type, cu);
15097
15098 /* set_die_type should be already done. */
b4ba55a1
JB
15099 set_descriptive_type (range_type, die, cu);
15100
7e314c57 15101 return range_type;
a02abb62 15102}
6e70227d 15103
f792889a 15104static struct type *
81a17f79
JB
15105read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15106{
15107 struct type *type;
81a17f79 15108
81a17f79
JB
15109 /* For now, we only support the C meaning of an unspecified type: void. */
15110
19f392bc 15111 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15112 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15113
f792889a 15114 return set_die_type (die, type, cu);
81a17f79 15115}
a02abb62 15116
639d11d3
DC
15117/* Read a single die and all its descendents. Set the die's sibling
15118 field to NULL; set other fields in the die correctly, and set all
15119 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15120 location of the info_ptr after reading all of those dies. PARENT
15121 is the parent of the die in question. */
15122
15123static struct die_info *
dee91e82 15124read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15125 const gdb_byte *info_ptr,
15126 const gdb_byte **new_info_ptr,
dee91e82 15127 struct die_info *parent)
639d11d3
DC
15128{
15129 struct die_info *die;
d521ce57 15130 const gdb_byte *cur_ptr;
639d11d3
DC
15131 int has_children;
15132
bf6af496 15133 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15134 if (die == NULL)
15135 {
15136 *new_info_ptr = cur_ptr;
15137 return NULL;
15138 }
93311388 15139 store_in_ref_table (die, reader->cu);
639d11d3
DC
15140
15141 if (has_children)
bf6af496 15142 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15143 else
15144 {
15145 die->child = NULL;
15146 *new_info_ptr = cur_ptr;
15147 }
15148
15149 die->sibling = NULL;
15150 die->parent = parent;
15151 return die;
15152}
15153
15154/* Read a die, all of its descendents, and all of its siblings; set
15155 all of the fields of all of the dies correctly. Arguments are as
15156 in read_die_and_children. */
15157
15158static struct die_info *
bf6af496 15159read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15160 const gdb_byte *info_ptr,
15161 const gdb_byte **new_info_ptr,
bf6af496 15162 struct die_info *parent)
639d11d3
DC
15163{
15164 struct die_info *first_die, *last_sibling;
d521ce57 15165 const gdb_byte *cur_ptr;
639d11d3 15166
c906108c 15167 cur_ptr = info_ptr;
639d11d3
DC
15168 first_die = last_sibling = NULL;
15169
15170 while (1)
c906108c 15171 {
639d11d3 15172 struct die_info *die
dee91e82 15173 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15174
1d325ec1 15175 if (die == NULL)
c906108c 15176 {
639d11d3
DC
15177 *new_info_ptr = cur_ptr;
15178 return first_die;
c906108c 15179 }
1d325ec1
DJ
15180
15181 if (!first_die)
15182 first_die = die;
c906108c 15183 else
1d325ec1
DJ
15184 last_sibling->sibling = die;
15185
15186 last_sibling = die;
c906108c 15187 }
c906108c
SS
15188}
15189
bf6af496
DE
15190/* Read a die, all of its descendents, and all of its siblings; set
15191 all of the fields of all of the dies correctly. Arguments are as
15192 in read_die_and_children.
15193 This the main entry point for reading a DIE and all its children. */
15194
15195static struct die_info *
15196read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15197 const gdb_byte *info_ptr,
15198 const gdb_byte **new_info_ptr,
bf6af496
DE
15199 struct die_info *parent)
15200{
15201 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15202 new_info_ptr, parent);
15203
b4f54984 15204 if (dwarf_die_debug)
bf6af496
DE
15205 {
15206 fprintf_unfiltered (gdb_stdlog,
15207 "Read die from %s@0x%x of %s:\n",
a32a8923 15208 get_section_name (reader->die_section),
bf6af496
DE
15209 (unsigned) (info_ptr - reader->die_section->buffer),
15210 bfd_get_filename (reader->abfd));
b4f54984 15211 dump_die (die, dwarf_die_debug);
bf6af496
DE
15212 }
15213
15214 return die;
15215}
15216
3019eac3
DE
15217/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15218 attributes.
15219 The caller is responsible for filling in the extra attributes
15220 and updating (*DIEP)->num_attrs.
15221 Set DIEP to point to a newly allocated die with its information,
15222 except for its child, sibling, and parent fields.
15223 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15224
d521ce57 15225static const gdb_byte *
3019eac3 15226read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15227 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15228 int *has_children, int num_extra_attrs)
93311388 15229{
b64f50a1
JK
15230 unsigned int abbrev_number, bytes_read, i;
15231 sect_offset offset;
93311388
DE
15232 struct abbrev_info *abbrev;
15233 struct die_info *die;
15234 struct dwarf2_cu *cu = reader->cu;
15235 bfd *abfd = reader->abfd;
15236
b64f50a1 15237 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15238 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15239 info_ptr += bytes_read;
15240 if (!abbrev_number)
15241 {
15242 *diep = NULL;
15243 *has_children = 0;
15244 return info_ptr;
15245 }
15246
433df2d4 15247 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15248 if (!abbrev)
348e048f
DE
15249 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15250 abbrev_number,
15251 bfd_get_filename (abfd));
15252
3019eac3 15253 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15254 die->offset = offset;
15255 die->tag = abbrev->tag;
15256 die->abbrev = abbrev_number;
15257
3019eac3
DE
15258 /* Make the result usable.
15259 The caller needs to update num_attrs after adding the extra
15260 attributes. */
93311388
DE
15261 die->num_attrs = abbrev->num_attrs;
15262
15263 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15264 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15265 info_ptr);
93311388
DE
15266
15267 *diep = die;
15268 *has_children = abbrev->has_children;
15269 return info_ptr;
15270}
15271
3019eac3
DE
15272/* Read a die and all its attributes.
15273 Set DIEP to point to a newly allocated die with its information,
15274 except for its child, sibling, and parent fields.
15275 Set HAS_CHILDREN to tell whether the die has children or not. */
15276
d521ce57 15277static const gdb_byte *
3019eac3 15278read_full_die (const struct die_reader_specs *reader,
d521ce57 15279 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15280 int *has_children)
15281{
d521ce57 15282 const gdb_byte *result;
bf6af496
DE
15283
15284 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15285
b4f54984 15286 if (dwarf_die_debug)
bf6af496
DE
15287 {
15288 fprintf_unfiltered (gdb_stdlog,
15289 "Read die from %s@0x%x of %s:\n",
a32a8923 15290 get_section_name (reader->die_section),
bf6af496
DE
15291 (unsigned) (info_ptr - reader->die_section->buffer),
15292 bfd_get_filename (reader->abfd));
b4f54984 15293 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15294 }
15295
15296 return result;
3019eac3 15297}
433df2d4
DE
15298\f
15299/* Abbreviation tables.
3019eac3 15300
433df2d4 15301 In DWARF version 2, the description of the debugging information is
c906108c
SS
15302 stored in a separate .debug_abbrev section. Before we read any
15303 dies from a section we read in all abbreviations and install them
433df2d4
DE
15304 in a hash table. */
15305
15306/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15307
15308static struct abbrev_info *
15309abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15310{
15311 struct abbrev_info *abbrev;
15312
8d749320 15313 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15314 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15315
433df2d4
DE
15316 return abbrev;
15317}
15318
15319/* Add an abbreviation to the table. */
c906108c
SS
15320
15321static void
433df2d4
DE
15322abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15323 unsigned int abbrev_number,
15324 struct abbrev_info *abbrev)
15325{
15326 unsigned int hash_number;
15327
15328 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15329 abbrev->next = abbrev_table->abbrevs[hash_number];
15330 abbrev_table->abbrevs[hash_number] = abbrev;
15331}
dee91e82 15332
433df2d4
DE
15333/* Look up an abbrev in the table.
15334 Returns NULL if the abbrev is not found. */
15335
15336static struct abbrev_info *
15337abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15338 unsigned int abbrev_number)
c906108c 15339{
433df2d4
DE
15340 unsigned int hash_number;
15341 struct abbrev_info *abbrev;
15342
15343 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15344 abbrev = abbrev_table->abbrevs[hash_number];
15345
15346 while (abbrev)
15347 {
15348 if (abbrev->number == abbrev_number)
15349 return abbrev;
15350 abbrev = abbrev->next;
15351 }
15352 return NULL;
15353}
15354
15355/* Read in an abbrev table. */
15356
15357static struct abbrev_table *
15358abbrev_table_read_table (struct dwarf2_section_info *section,
15359 sect_offset offset)
15360{
15361 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15362 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15363 struct abbrev_table *abbrev_table;
d521ce57 15364 const gdb_byte *abbrev_ptr;
c906108c
SS
15365 struct abbrev_info *cur_abbrev;
15366 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15367 unsigned int abbrev_form;
f3dd6933
DJ
15368 struct attr_abbrev *cur_attrs;
15369 unsigned int allocated_attrs;
c906108c 15370
70ba0933 15371 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15372 abbrev_table->offset = offset;
433df2d4 15373 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15374 abbrev_table->abbrevs =
15375 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15376 ABBREV_HASH_SIZE);
433df2d4
DE
15377 memset (abbrev_table->abbrevs, 0,
15378 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15379
433df2d4
DE
15380 dwarf2_read_section (objfile, section);
15381 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384
f3dd6933 15385 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15386 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15387
0963b4bd 15388 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15389 while (abbrev_number)
15390 {
433df2d4 15391 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15392
15393 /* read in abbrev header */
15394 cur_abbrev->number = abbrev_number;
aead7601
SM
15395 cur_abbrev->tag
15396 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15397 abbrev_ptr += bytes_read;
15398 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15399 abbrev_ptr += 1;
15400
15401 /* now read in declarations */
15402 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15403 abbrev_ptr += bytes_read;
15404 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15405 abbrev_ptr += bytes_read;
15406 while (abbrev_name)
15407 {
f3dd6933 15408 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15409 {
f3dd6933
DJ
15410 allocated_attrs += ATTR_ALLOC_CHUNK;
15411 cur_attrs
224c3ddb 15412 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15413 }
ae038cb0 15414
aead7601
SM
15415 cur_attrs[cur_abbrev->num_attrs].name
15416 = (enum dwarf_attribute) abbrev_name;
15417 cur_attrs[cur_abbrev->num_attrs++].form
15418 = (enum dwarf_form) abbrev_form;
c906108c
SS
15419 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15420 abbrev_ptr += bytes_read;
15421 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15422 abbrev_ptr += bytes_read;
15423 }
15424
8d749320
SM
15425 cur_abbrev->attrs =
15426 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15427 cur_abbrev->num_attrs);
f3dd6933
DJ
15428 memcpy (cur_abbrev->attrs, cur_attrs,
15429 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15430
433df2d4 15431 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15432
15433 /* Get next abbreviation.
15434 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15435 always properly terminated with an abbrev number of 0.
15436 Exit loop if we encounter an abbreviation which we have
15437 already read (which means we are about to read the abbreviations
15438 for the next compile unit) or if the end of the abbreviation
15439 table is reached. */
433df2d4 15440 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15441 break;
15442 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15443 abbrev_ptr += bytes_read;
433df2d4 15444 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15445 break;
15446 }
f3dd6933
DJ
15447
15448 xfree (cur_attrs);
433df2d4 15449 return abbrev_table;
c906108c
SS
15450}
15451
433df2d4 15452/* Free the resources held by ABBREV_TABLE. */
c906108c 15453
c906108c 15454static void
433df2d4 15455abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15456{
433df2d4
DE
15457 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15458 xfree (abbrev_table);
c906108c
SS
15459}
15460
f4dc4d17
DE
15461/* Same as abbrev_table_free but as a cleanup.
15462 We pass in a pointer to the pointer to the table so that we can
15463 set the pointer to NULL when we're done. It also simplifies
73051182 15464 build_type_psymtabs_1. */
f4dc4d17
DE
15465
15466static void
15467abbrev_table_free_cleanup (void *table_ptr)
15468{
9a3c8263 15469 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15470
15471 if (*abbrev_table_ptr != NULL)
15472 abbrev_table_free (*abbrev_table_ptr);
15473 *abbrev_table_ptr = NULL;
15474}
15475
433df2d4
DE
15476/* Read the abbrev table for CU from ABBREV_SECTION. */
15477
15478static void
15479dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15480 struct dwarf2_section_info *abbrev_section)
c906108c 15481{
433df2d4
DE
15482 cu->abbrev_table =
15483 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15484}
c906108c 15485
433df2d4 15486/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15487
433df2d4
DE
15488static void
15489dwarf2_free_abbrev_table (void *ptr_to_cu)
15490{
9a3c8263 15491 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15492
a2ce51a0
DE
15493 if (cu->abbrev_table != NULL)
15494 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15495 /* Set this to NULL so that we SEGV if we try to read it later,
15496 and also because free_comp_unit verifies this is NULL. */
15497 cu->abbrev_table = NULL;
15498}
15499\f
72bf9492
DJ
15500/* Returns nonzero if TAG represents a type that we might generate a partial
15501 symbol for. */
15502
15503static int
15504is_type_tag_for_partial (int tag)
15505{
15506 switch (tag)
15507 {
15508#if 0
15509 /* Some types that would be reasonable to generate partial symbols for,
15510 that we don't at present. */
15511 case DW_TAG_array_type:
15512 case DW_TAG_file_type:
15513 case DW_TAG_ptr_to_member_type:
15514 case DW_TAG_set_type:
15515 case DW_TAG_string_type:
15516 case DW_TAG_subroutine_type:
15517#endif
15518 case DW_TAG_base_type:
15519 case DW_TAG_class_type:
680b30c7 15520 case DW_TAG_interface_type:
72bf9492
DJ
15521 case DW_TAG_enumeration_type:
15522 case DW_TAG_structure_type:
15523 case DW_TAG_subrange_type:
15524 case DW_TAG_typedef:
15525 case DW_TAG_union_type:
15526 return 1;
15527 default:
15528 return 0;
15529 }
15530}
15531
15532/* Load all DIEs that are interesting for partial symbols into memory. */
15533
15534static struct partial_die_info *
dee91e82 15535load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15536 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15537{
dee91e82 15538 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15539 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15540 struct partial_die_info *part_die;
15541 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15542 struct abbrev_info *abbrev;
15543 unsigned int bytes_read;
5afb4e99 15544 unsigned int load_all = 0;
72bf9492
DJ
15545 int nesting_level = 1;
15546
15547 parent_die = NULL;
15548 last_die = NULL;
15549
7adf1e79
DE
15550 gdb_assert (cu->per_cu != NULL);
15551 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15552 load_all = 1;
15553
72bf9492
DJ
15554 cu->partial_dies
15555 = htab_create_alloc_ex (cu->header.length / 12,
15556 partial_die_hash,
15557 partial_die_eq,
15558 NULL,
15559 &cu->comp_unit_obstack,
15560 hashtab_obstack_allocate,
15561 dummy_obstack_deallocate);
15562
8d749320 15563 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15564
15565 while (1)
15566 {
15567 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15568
15569 /* A NULL abbrev means the end of a series of children. */
15570 if (abbrev == NULL)
15571 {
15572 if (--nesting_level == 0)
15573 {
15574 /* PART_DIE was probably the last thing allocated on the
15575 comp_unit_obstack, so we could call obstack_free
15576 here. We don't do that because the waste is small,
15577 and will be cleaned up when we're done with this
15578 compilation unit. This way, we're also more robust
15579 against other users of the comp_unit_obstack. */
15580 return first_die;
15581 }
15582 info_ptr += bytes_read;
15583 last_die = parent_die;
15584 parent_die = parent_die->die_parent;
15585 continue;
15586 }
15587
98bfdba5
PA
15588 /* Check for template arguments. We never save these; if
15589 they're seen, we just mark the parent, and go on our way. */
15590 if (parent_die != NULL
15591 && cu->language == language_cplus
15592 && (abbrev->tag == DW_TAG_template_type_param
15593 || abbrev->tag == DW_TAG_template_value_param))
15594 {
15595 parent_die->has_template_arguments = 1;
15596
15597 if (!load_all)
15598 {
15599 /* We don't need a partial DIE for the template argument. */
dee91e82 15600 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15601 continue;
15602 }
15603 }
15604
0d99eb77 15605 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15606 Skip their other children. */
15607 if (!load_all
15608 && cu->language == language_cplus
15609 && parent_die != NULL
15610 && parent_die->tag == DW_TAG_subprogram)
15611 {
dee91e82 15612 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15613 continue;
15614 }
15615
5afb4e99
DJ
15616 /* Check whether this DIE is interesting enough to save. Normally
15617 we would not be interested in members here, but there may be
15618 later variables referencing them via DW_AT_specification (for
15619 static members). */
15620 if (!load_all
15621 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15622 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15623 && abbrev->tag != DW_TAG_enumerator
15624 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15625 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15626 && abbrev->tag != DW_TAG_variable
5afb4e99 15627 && abbrev->tag != DW_TAG_namespace
f55ee35c 15628 && abbrev->tag != DW_TAG_module
95554aad 15629 && abbrev->tag != DW_TAG_member
74921315
KS
15630 && abbrev->tag != DW_TAG_imported_unit
15631 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15632 {
15633 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15634 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15635 continue;
15636 }
15637
dee91e82
DE
15638 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15639 info_ptr);
72bf9492
DJ
15640
15641 /* This two-pass algorithm for processing partial symbols has a
15642 high cost in cache pressure. Thus, handle some simple cases
15643 here which cover the majority of C partial symbols. DIEs
15644 which neither have specification tags in them, nor could have
15645 specification tags elsewhere pointing at them, can simply be
15646 processed and discarded.
15647
15648 This segment is also optional; scan_partial_symbols and
15649 add_partial_symbol will handle these DIEs if we chain
15650 them in normally. When compilers which do not emit large
15651 quantities of duplicate debug information are more common,
15652 this code can probably be removed. */
15653
15654 /* Any complete simple types at the top level (pretty much all
15655 of them, for a language without namespaces), can be processed
15656 directly. */
15657 if (parent_die == NULL
15658 && part_die->has_specification == 0
15659 && part_die->is_declaration == 0
d8228535 15660 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15661 || part_die->tag == DW_TAG_base_type
15662 || part_die->tag == DW_TAG_subrange_type))
15663 {
15664 if (building_psymtab && part_die->name != NULL)
04a679b8 15665 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15666 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15667 &objfile->static_psymbols,
1762568f 15668 0, cu->language, objfile);
dee91e82 15669 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15670 continue;
15671 }
15672
d8228535
JK
15673 /* The exception for DW_TAG_typedef with has_children above is
15674 a workaround of GCC PR debug/47510. In the case of this complaint
15675 type_name_no_tag_or_error will error on such types later.
15676
15677 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15678 it could not find the child DIEs referenced later, this is checked
15679 above. In correct DWARF DW_TAG_typedef should have no children. */
15680
15681 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15682 complaint (&symfile_complaints,
15683 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15684 "- DIE at 0x%x [in module %s]"),
4262abfb 15685 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15686
72bf9492
DJ
15687 /* If we're at the second level, and we're an enumerator, and
15688 our parent has no specification (meaning possibly lives in a
15689 namespace elsewhere), then we can add the partial symbol now
15690 instead of queueing it. */
15691 if (part_die->tag == DW_TAG_enumerator
15692 && parent_die != NULL
15693 && parent_die->die_parent == NULL
15694 && parent_die->tag == DW_TAG_enumeration_type
15695 && parent_die->has_specification == 0)
15696 {
15697 if (part_die->name == NULL)
3e43a32a
MS
15698 complaint (&symfile_complaints,
15699 _("malformed enumerator DIE ignored"));
72bf9492 15700 else if (building_psymtab)
04a679b8 15701 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15702 VAR_DOMAIN, LOC_CONST,
9c37b5ae 15703 cu->language == language_cplus
bb5ed363
DE
15704 ? &objfile->global_psymbols
15705 : &objfile->static_psymbols,
1762568f 15706 0, cu->language, objfile);
72bf9492 15707
dee91e82 15708 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15709 continue;
15710 }
15711
15712 /* We'll save this DIE so link it in. */
15713 part_die->die_parent = parent_die;
15714 part_die->die_sibling = NULL;
15715 part_die->die_child = NULL;
15716
15717 if (last_die && last_die == parent_die)
15718 last_die->die_child = part_die;
15719 else if (last_die)
15720 last_die->die_sibling = part_die;
15721
15722 last_die = part_die;
15723
15724 if (first_die == NULL)
15725 first_die = part_die;
15726
15727 /* Maybe add the DIE to the hash table. Not all DIEs that we
15728 find interesting need to be in the hash table, because we
15729 also have the parent/sibling/child chains; only those that we
15730 might refer to by offset later during partial symbol reading.
15731
15732 For now this means things that might have be the target of a
15733 DW_AT_specification, DW_AT_abstract_origin, or
15734 DW_AT_extension. DW_AT_extension will refer only to
15735 namespaces; DW_AT_abstract_origin refers to functions (and
15736 many things under the function DIE, but we do not recurse
15737 into function DIEs during partial symbol reading) and
15738 possibly variables as well; DW_AT_specification refers to
15739 declarations. Declarations ought to have the DW_AT_declaration
15740 flag. It happens that GCC forgets to put it in sometimes, but
15741 only for functions, not for types.
15742
15743 Adding more things than necessary to the hash table is harmless
15744 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15745 wasted time in find_partial_die, when we reread the compilation
15746 unit with load_all_dies set. */
72bf9492 15747
5afb4e99 15748 if (load_all
72929c62 15749 || abbrev->tag == DW_TAG_constant
5afb4e99 15750 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15751 || abbrev->tag == DW_TAG_variable
15752 || abbrev->tag == DW_TAG_namespace
15753 || part_die->is_declaration)
15754 {
15755 void **slot;
15756
15757 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15758 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15759 *slot = part_die;
15760 }
15761
8d749320 15762 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15763
15764 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15765 we have no reason to follow the children of structures; for other
98bfdba5
PA
15766 languages we have to, so that we can get at method physnames
15767 to infer fully qualified class names, for DW_AT_specification,
15768 and for C++ template arguments. For C++, we also look one level
15769 inside functions to find template arguments (if the name of the
15770 function does not already contain the template arguments).
bc30ff58
JB
15771
15772 For Ada, we need to scan the children of subprograms and lexical
15773 blocks as well because Ada allows the definition of nested
15774 entities that could be interesting for the debugger, such as
15775 nested subprograms for instance. */
72bf9492 15776 if (last_die->has_children
5afb4e99
DJ
15777 && (load_all
15778 || last_die->tag == DW_TAG_namespace
f55ee35c 15779 || last_die->tag == DW_TAG_module
72bf9492 15780 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15781 || (cu->language == language_cplus
15782 && last_die->tag == DW_TAG_subprogram
15783 && (last_die->name == NULL
15784 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15785 || (cu->language != language_c
15786 && (last_die->tag == DW_TAG_class_type
680b30c7 15787 || last_die->tag == DW_TAG_interface_type
72bf9492 15788 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15789 || last_die->tag == DW_TAG_union_type))
15790 || (cu->language == language_ada
15791 && (last_die->tag == DW_TAG_subprogram
15792 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15793 {
15794 nesting_level++;
15795 parent_die = last_die;
15796 continue;
15797 }
15798
15799 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15800 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15801
15802 /* Back to the top, do it again. */
15803 }
15804}
15805
c906108c
SS
15806/* Read a minimal amount of information into the minimal die structure. */
15807
d521ce57 15808static const gdb_byte *
dee91e82
DE
15809read_partial_die (const struct die_reader_specs *reader,
15810 struct partial_die_info *part_die,
15811 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15812 const gdb_byte *info_ptr)
c906108c 15813{
dee91e82 15814 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15815 struct objfile *objfile = cu->objfile;
d521ce57 15816 const gdb_byte *buffer = reader->buffer;
fa238c03 15817 unsigned int i;
c906108c 15818 struct attribute attr;
c5aa993b 15819 int has_low_pc_attr = 0;
c906108c 15820 int has_high_pc_attr = 0;
91da1414 15821 int high_pc_relative = 0;
c906108c 15822
72bf9492 15823 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15824
b64f50a1 15825 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15826
15827 info_ptr += abbrev_len;
15828
15829 if (abbrev == NULL)
15830 return info_ptr;
15831
c906108c
SS
15832 part_die->tag = abbrev->tag;
15833 part_die->has_children = abbrev->has_children;
c906108c
SS
15834
15835 for (i = 0; i < abbrev->num_attrs; ++i)
15836 {
dee91e82 15837 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15838
15839 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15840 partial symbol table. */
c906108c
SS
15841 switch (attr.name)
15842 {
15843 case DW_AT_name:
71c25dea
TT
15844 switch (part_die->tag)
15845 {
15846 case DW_TAG_compile_unit:
95554aad 15847 case DW_TAG_partial_unit:
348e048f 15848 case DW_TAG_type_unit:
71c25dea
TT
15849 /* Compilation units have a DW_AT_name that is a filename, not
15850 a source language identifier. */
15851 case DW_TAG_enumeration_type:
15852 case DW_TAG_enumerator:
15853 /* These tags always have simple identifiers already; no need
15854 to canonicalize them. */
15855 part_die->name = DW_STRING (&attr);
15856 break;
15857 default:
15858 part_die->name
15859 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15860 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15861 break;
15862 }
c906108c 15863 break;
31ef98ae 15864 case DW_AT_linkage_name:
c906108c 15865 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15866 /* Note that both forms of linkage name might appear. We
15867 assume they will be the same, and we only store the last
15868 one we see. */
94af9270
KS
15869 if (cu->language == language_ada)
15870 part_die->name = DW_STRING (&attr);
abc72ce4 15871 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15872 break;
15873 case DW_AT_low_pc:
15874 has_low_pc_attr = 1;
31aa7e4e 15875 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15876 break;
15877 case DW_AT_high_pc:
15878 has_high_pc_attr = 1;
31aa7e4e
JB
15879 part_die->highpc = attr_value_as_address (&attr);
15880 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15881 high_pc_relative = 1;
c906108c
SS
15882 break;
15883 case DW_AT_location:
0963b4bd 15884 /* Support the .debug_loc offsets. */
8e19ed76
PS
15885 if (attr_form_is_block (&attr))
15886 {
95554aad 15887 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15888 }
3690dd37 15889 else if (attr_form_is_section_offset (&attr))
8e19ed76 15890 {
4d3c2250 15891 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15892 }
15893 else
15894 {
4d3c2250
KB
15895 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15896 "partial symbol information");
8e19ed76 15897 }
c906108c 15898 break;
c906108c
SS
15899 case DW_AT_external:
15900 part_die->is_external = DW_UNSND (&attr);
15901 break;
15902 case DW_AT_declaration:
15903 part_die->is_declaration = DW_UNSND (&attr);
15904 break;
15905 case DW_AT_type:
15906 part_die->has_type = 1;
15907 break;
15908 case DW_AT_abstract_origin:
15909 case DW_AT_specification:
72bf9492
DJ
15910 case DW_AT_extension:
15911 part_die->has_specification = 1;
c764a876 15912 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15913 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15914 || cu->per_cu->is_dwz);
c906108c
SS
15915 break;
15916 case DW_AT_sibling:
15917 /* Ignore absolute siblings, they might point outside of
15918 the current compile unit. */
15919 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15920 complaint (&symfile_complaints,
15921 _("ignoring absolute DW_AT_sibling"));
c906108c 15922 else
b9502d3f
WN
15923 {
15924 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15925 const gdb_byte *sibling_ptr = buffer + off;
15926
15927 if (sibling_ptr < info_ptr)
15928 complaint (&symfile_complaints,
15929 _("DW_AT_sibling points backwards"));
22869d73
KS
15930 else if (sibling_ptr > reader->buffer_end)
15931 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15932 else
15933 part_die->sibling = sibling_ptr;
15934 }
c906108c 15935 break;
fa4028e9
JB
15936 case DW_AT_byte_size:
15937 part_die->has_byte_size = 1;
15938 break;
ff908ebf
AW
15939 case DW_AT_const_value:
15940 part_die->has_const_value = 1;
15941 break;
68511cec
CES
15942 case DW_AT_calling_convention:
15943 /* DWARF doesn't provide a way to identify a program's source-level
15944 entry point. DW_AT_calling_convention attributes are only meant
15945 to describe functions' calling conventions.
15946
15947 However, because it's a necessary piece of information in
15948 Fortran, and because DW_CC_program is the only piece of debugging
15949 information whose definition refers to a 'main program' at all,
15950 several compilers have begun marking Fortran main programs with
15951 DW_CC_program --- even when those functions use the standard
15952 calling conventions.
15953
15954 So until DWARF specifies a way to provide this information and
15955 compilers pick up the new representation, we'll support this
15956 practice. */
15957 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15958 && cu->language == language_fortran
15959 && part_die->name != NULL)
3d548a53 15960 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15961 break;
481860b3
GB
15962 case DW_AT_inline:
15963 if (DW_UNSND (&attr) == DW_INL_inlined
15964 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15965 part_die->may_be_inlined = 1;
15966 break;
95554aad
TT
15967
15968 case DW_AT_import:
15969 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15970 {
15971 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15972 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15973 || cu->per_cu->is_dwz);
15974 }
95554aad
TT
15975 break;
15976
c906108c
SS
15977 default:
15978 break;
15979 }
15980 }
15981
91da1414
MW
15982 if (high_pc_relative)
15983 part_die->highpc += part_die->lowpc;
15984
9373cf26
JK
15985 if (has_low_pc_attr && has_high_pc_attr)
15986 {
15987 /* When using the GNU linker, .gnu.linkonce. sections are used to
15988 eliminate duplicate copies of functions and vtables and such.
15989 The linker will arbitrarily choose one and discard the others.
15990 The AT_*_pc values for such functions refer to local labels in
15991 these sections. If the section from that file was discarded, the
15992 labels are not in the output, so the relocs get a value of 0.
15993 If this is a discarded function, mark the pc bounds as invalid,
15994 so that GDB will ignore it. */
15995 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15996 {
bb5ed363 15997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15998
15999 complaint (&symfile_complaints,
16000 _("DW_AT_low_pc %s is zero "
16001 "for DIE at 0x%x [in module %s]"),
16002 paddress (gdbarch, part_die->lowpc),
4262abfb 16003 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16004 }
16005 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16006 else if (part_die->lowpc >= part_die->highpc)
16007 {
bb5ed363 16008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16009
16010 complaint (&symfile_complaints,
16011 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16012 "for DIE at 0x%x [in module %s]"),
16013 paddress (gdbarch, part_die->lowpc),
16014 paddress (gdbarch, part_die->highpc),
4262abfb 16015 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16016 }
16017 else
16018 part_die->has_pc_info = 1;
16019 }
85cbf3d3 16020
c906108c
SS
16021 return info_ptr;
16022}
16023
72bf9492
DJ
16024/* Find a cached partial DIE at OFFSET in CU. */
16025
16026static struct partial_die_info *
b64f50a1 16027find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16028{
16029 struct partial_die_info *lookup_die = NULL;
16030 struct partial_die_info part_die;
16031
16032 part_die.offset = offset;
9a3c8263
SM
16033 lookup_die = ((struct partial_die_info *)
16034 htab_find_with_hash (cu->partial_dies, &part_die,
16035 offset.sect_off));
72bf9492 16036
72bf9492
DJ
16037 return lookup_die;
16038}
16039
348e048f
DE
16040/* Find a partial DIE at OFFSET, which may or may not be in CU,
16041 except in the case of .debug_types DIEs which do not reference
16042 outside their CU (they do however referencing other types via
55f1336d 16043 DW_FORM_ref_sig8). */
72bf9492
DJ
16044
16045static struct partial_die_info *
36586728 16046find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16047{
bb5ed363 16048 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16049 struct dwarf2_per_cu_data *per_cu = NULL;
16050 struct partial_die_info *pd = NULL;
72bf9492 16051
36586728
TT
16052 if (offset_in_dwz == cu->per_cu->is_dwz
16053 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16054 {
16055 pd = find_partial_die_in_comp_unit (offset, cu);
16056 if (pd != NULL)
16057 return pd;
0d99eb77
DE
16058 /* We missed recording what we needed.
16059 Load all dies and try again. */
16060 per_cu = cu->per_cu;
5afb4e99 16061 }
0d99eb77
DE
16062 else
16063 {
16064 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16065 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16066 {
16067 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16068 " external reference to offset 0x%lx [in module %s].\n"),
16069 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16070 bfd_get_filename (objfile->obfd));
16071 }
36586728
TT
16072 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16073 objfile);
72bf9492 16074
0d99eb77
DE
16075 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16076 load_partial_comp_unit (per_cu);
ae038cb0 16077
0d99eb77
DE
16078 per_cu->cu->last_used = 0;
16079 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16080 }
5afb4e99 16081
dee91e82
DE
16082 /* If we didn't find it, and not all dies have been loaded,
16083 load them all and try again. */
16084
5afb4e99
DJ
16085 if (pd == NULL && per_cu->load_all_dies == 0)
16086 {
5afb4e99 16087 per_cu->load_all_dies = 1;
fd820528
DE
16088
16089 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16090 THIS_CU->cu may already be in use. So we can't just free it and
16091 replace its DIEs with the ones we read in. Instead, we leave those
16092 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16093 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16094 set. */
dee91e82 16095 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16096
16097 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16098 }
16099
16100 if (pd == NULL)
16101 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16102 _("could not find partial DIE 0x%x "
16103 "in cache [from module %s]\n"),
b64f50a1 16104 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16105 return pd;
72bf9492
DJ
16106}
16107
abc72ce4
DE
16108/* See if we can figure out if the class lives in a namespace. We do
16109 this by looking for a member function; its demangled name will
16110 contain namespace info, if there is any. */
16111
16112static void
16113guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16114 struct dwarf2_cu *cu)
16115{
16116 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16117 what template types look like, because the demangler
16118 frequently doesn't give the same name as the debug info. We
16119 could fix this by only using the demangled name to get the
16120 prefix (but see comment in read_structure_type). */
16121
16122 struct partial_die_info *real_pdi;
16123 struct partial_die_info *child_pdi;
16124
16125 /* If this DIE (this DIE's specification, if any) has a parent, then
16126 we should not do this. We'll prepend the parent's fully qualified
16127 name when we create the partial symbol. */
16128
16129 real_pdi = struct_pdi;
16130 while (real_pdi->has_specification)
36586728
TT
16131 real_pdi = find_partial_die (real_pdi->spec_offset,
16132 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16133
16134 if (real_pdi->die_parent != NULL)
16135 return;
16136
16137 for (child_pdi = struct_pdi->die_child;
16138 child_pdi != NULL;
16139 child_pdi = child_pdi->die_sibling)
16140 {
16141 if (child_pdi->tag == DW_TAG_subprogram
16142 && child_pdi->linkage_name != NULL)
16143 {
16144 char *actual_class_name
16145 = language_class_name_from_physname (cu->language_defn,
16146 child_pdi->linkage_name);
16147 if (actual_class_name != NULL)
16148 {
16149 struct_pdi->name
224c3ddb
SM
16150 = ((const char *)
16151 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16152 actual_class_name,
16153 strlen (actual_class_name)));
abc72ce4
DE
16154 xfree (actual_class_name);
16155 }
16156 break;
16157 }
16158 }
16159}
16160
72bf9492
DJ
16161/* Adjust PART_DIE before generating a symbol for it. This function
16162 may set the is_external flag or change the DIE's name. */
16163
16164static void
16165fixup_partial_die (struct partial_die_info *part_die,
16166 struct dwarf2_cu *cu)
16167{
abc72ce4
DE
16168 /* Once we've fixed up a die, there's no point in doing so again.
16169 This also avoids a memory leak if we were to call
16170 guess_partial_die_structure_name multiple times. */
16171 if (part_die->fixup_called)
16172 return;
16173
72bf9492
DJ
16174 /* If we found a reference attribute and the DIE has no name, try
16175 to find a name in the referred to DIE. */
16176
16177 if (part_die->name == NULL && part_die->has_specification)
16178 {
16179 struct partial_die_info *spec_die;
72bf9492 16180
36586728
TT
16181 spec_die = find_partial_die (part_die->spec_offset,
16182 part_die->spec_is_dwz, cu);
72bf9492 16183
10b3939b 16184 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16185
16186 if (spec_die->name)
16187 {
16188 part_die->name = spec_die->name;
16189
16190 /* Copy DW_AT_external attribute if it is set. */
16191 if (spec_die->is_external)
16192 part_die->is_external = spec_die->is_external;
16193 }
16194 }
16195
16196 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16197
16198 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16199 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16200
abc72ce4
DE
16201 /* If there is no parent die to provide a namespace, and there are
16202 children, see if we can determine the namespace from their linkage
122d1940 16203 name. */
abc72ce4 16204 if (cu->language == language_cplus
8b70b953 16205 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16206 && part_die->die_parent == NULL
16207 && part_die->has_children
16208 && (part_die->tag == DW_TAG_class_type
16209 || part_die->tag == DW_TAG_structure_type
16210 || part_die->tag == DW_TAG_union_type))
16211 guess_partial_die_structure_name (part_die, cu);
16212
53832f31
TT
16213 /* GCC might emit a nameless struct or union that has a linkage
16214 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16215 if (part_die->name == NULL
96408a79
SA
16216 && (part_die->tag == DW_TAG_class_type
16217 || part_die->tag == DW_TAG_interface_type
16218 || part_die->tag == DW_TAG_structure_type
16219 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16220 && part_die->linkage_name != NULL)
16221 {
16222 char *demangled;
16223
8de20a37 16224 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16225 if (demangled)
16226 {
96408a79
SA
16227 const char *base;
16228
16229 /* Strip any leading namespaces/classes, keep only the base name.
16230 DW_AT_name for named DIEs does not contain the prefixes. */
16231 base = strrchr (demangled, ':');
16232 if (base && base > demangled && base[-1] == ':')
16233 base++;
16234 else
16235 base = demangled;
16236
34a68019 16237 part_die->name
224c3ddb
SM
16238 = ((const char *)
16239 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16240 base, strlen (base)));
53832f31
TT
16241 xfree (demangled);
16242 }
16243 }
16244
abc72ce4 16245 part_die->fixup_called = 1;
72bf9492
DJ
16246}
16247
a8329558 16248/* Read an attribute value described by an attribute form. */
c906108c 16249
d521ce57 16250static const gdb_byte *
dee91e82
DE
16251read_attribute_value (const struct die_reader_specs *reader,
16252 struct attribute *attr, unsigned form,
d521ce57 16253 const gdb_byte *info_ptr)
c906108c 16254{
dee91e82 16255 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16256 struct objfile *objfile = cu->objfile;
16257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16258 bfd *abfd = reader->abfd;
e7c27a73 16259 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16260 unsigned int bytes_read;
16261 struct dwarf_block *blk;
16262
aead7601 16263 attr->form = (enum dwarf_form) form;
a8329558 16264 switch (form)
c906108c 16265 {
c906108c 16266 case DW_FORM_ref_addr:
ae411497 16267 if (cu->header.version == 2)
4568ecf9 16268 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16269 else
4568ecf9
DE
16270 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16271 &cu->header, &bytes_read);
ae411497
TT
16272 info_ptr += bytes_read;
16273 break;
36586728
TT
16274 case DW_FORM_GNU_ref_alt:
16275 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16276 info_ptr += bytes_read;
16277 break;
ae411497 16278 case DW_FORM_addr:
e7c27a73 16279 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16280 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16281 info_ptr += bytes_read;
c906108c
SS
16282 break;
16283 case DW_FORM_block2:
7b5a2f43 16284 blk = dwarf_alloc_block (cu);
c906108c
SS
16285 blk->size = read_2_bytes (abfd, info_ptr);
16286 info_ptr += 2;
16287 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16288 info_ptr += blk->size;
16289 DW_BLOCK (attr) = blk;
16290 break;
16291 case DW_FORM_block4:
7b5a2f43 16292 blk = dwarf_alloc_block (cu);
c906108c
SS
16293 blk->size = read_4_bytes (abfd, info_ptr);
16294 info_ptr += 4;
16295 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16296 info_ptr += blk->size;
16297 DW_BLOCK (attr) = blk;
16298 break;
16299 case DW_FORM_data2:
16300 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16301 info_ptr += 2;
16302 break;
16303 case DW_FORM_data4:
16304 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16305 info_ptr += 4;
16306 break;
16307 case DW_FORM_data8:
16308 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16309 info_ptr += 8;
16310 break;
2dc7f7b3
TT
16311 case DW_FORM_sec_offset:
16312 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16313 info_ptr += bytes_read;
16314 break;
c906108c 16315 case DW_FORM_string:
9b1c24c8 16316 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16317 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16318 info_ptr += bytes_read;
16319 break;
4bdf3d34 16320 case DW_FORM_strp:
36586728
TT
16321 if (!cu->per_cu->is_dwz)
16322 {
16323 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16324 &bytes_read);
16325 DW_STRING_IS_CANONICAL (attr) = 0;
16326 info_ptr += bytes_read;
16327 break;
16328 }
16329 /* FALLTHROUGH */
16330 case DW_FORM_GNU_strp_alt:
16331 {
16332 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16333 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16334 &bytes_read);
16335
16336 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16337 DW_STRING_IS_CANONICAL (attr) = 0;
16338 info_ptr += bytes_read;
16339 }
4bdf3d34 16340 break;
2dc7f7b3 16341 case DW_FORM_exprloc:
c906108c 16342 case DW_FORM_block:
7b5a2f43 16343 blk = dwarf_alloc_block (cu);
c906108c
SS
16344 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16345 info_ptr += bytes_read;
16346 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16347 info_ptr += blk->size;
16348 DW_BLOCK (attr) = blk;
16349 break;
16350 case DW_FORM_block1:
7b5a2f43 16351 blk = dwarf_alloc_block (cu);
c906108c
SS
16352 blk->size = read_1_byte (abfd, info_ptr);
16353 info_ptr += 1;
16354 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16355 info_ptr += blk->size;
16356 DW_BLOCK (attr) = blk;
16357 break;
16358 case DW_FORM_data1:
16359 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16360 info_ptr += 1;
16361 break;
16362 case DW_FORM_flag:
16363 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16364 info_ptr += 1;
16365 break;
2dc7f7b3
TT
16366 case DW_FORM_flag_present:
16367 DW_UNSND (attr) = 1;
16368 break;
c906108c
SS
16369 case DW_FORM_sdata:
16370 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16371 info_ptr += bytes_read;
16372 break;
16373 case DW_FORM_udata:
16374 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16375 info_ptr += bytes_read;
16376 break;
16377 case DW_FORM_ref1:
4568ecf9
DE
16378 DW_UNSND (attr) = (cu->header.offset.sect_off
16379 + read_1_byte (abfd, info_ptr));
c906108c
SS
16380 info_ptr += 1;
16381 break;
16382 case DW_FORM_ref2:
4568ecf9
DE
16383 DW_UNSND (attr) = (cu->header.offset.sect_off
16384 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16385 info_ptr += 2;
16386 break;
16387 case DW_FORM_ref4:
4568ecf9
DE
16388 DW_UNSND (attr) = (cu->header.offset.sect_off
16389 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16390 info_ptr += 4;
16391 break;
613e1657 16392 case DW_FORM_ref8:
4568ecf9
DE
16393 DW_UNSND (attr) = (cu->header.offset.sect_off
16394 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16395 info_ptr += 8;
16396 break;
55f1336d 16397 case DW_FORM_ref_sig8:
ac9ec31b 16398 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16399 info_ptr += 8;
16400 break;
c906108c 16401 case DW_FORM_ref_udata:
4568ecf9
DE
16402 DW_UNSND (attr) = (cu->header.offset.sect_off
16403 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16404 info_ptr += bytes_read;
16405 break;
c906108c 16406 case DW_FORM_indirect:
a8329558
KW
16407 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16408 info_ptr += bytes_read;
dee91e82 16409 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16410 break;
3019eac3
DE
16411 case DW_FORM_GNU_addr_index:
16412 if (reader->dwo_file == NULL)
16413 {
16414 /* For now flag a hard error.
16415 Later we can turn this into a complaint. */
16416 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16417 dwarf_form_name (form),
16418 bfd_get_filename (abfd));
16419 }
16420 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16421 info_ptr += bytes_read;
16422 break;
16423 case DW_FORM_GNU_str_index:
16424 if (reader->dwo_file == NULL)
16425 {
16426 /* For now flag a hard error.
16427 Later we can turn this into a complaint if warranted. */
16428 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16429 dwarf_form_name (form),
16430 bfd_get_filename (abfd));
16431 }
16432 {
16433 ULONGEST str_index =
16434 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16435
342587c4 16436 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16437 DW_STRING_IS_CANONICAL (attr) = 0;
16438 info_ptr += bytes_read;
16439 }
16440 break;
c906108c 16441 default:
8a3fe4f8 16442 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16443 dwarf_form_name (form),
16444 bfd_get_filename (abfd));
c906108c 16445 }
28e94949 16446
36586728 16447 /* Super hack. */
7771576e 16448 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16449 attr->form = DW_FORM_GNU_ref_alt;
16450
28e94949
JB
16451 /* We have seen instances where the compiler tried to emit a byte
16452 size attribute of -1 which ended up being encoded as an unsigned
16453 0xffffffff. Although 0xffffffff is technically a valid size value,
16454 an object of this size seems pretty unlikely so we can relatively
16455 safely treat these cases as if the size attribute was invalid and
16456 treat them as zero by default. */
16457 if (attr->name == DW_AT_byte_size
16458 && form == DW_FORM_data4
16459 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16460 {
16461 complaint
16462 (&symfile_complaints,
43bbcdc2
PH
16463 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16464 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16465 DW_UNSND (attr) = 0;
16466 }
28e94949 16467
c906108c
SS
16468 return info_ptr;
16469}
16470
a8329558
KW
16471/* Read an attribute described by an abbreviated attribute. */
16472
d521ce57 16473static const gdb_byte *
dee91e82
DE
16474read_attribute (const struct die_reader_specs *reader,
16475 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16476 const gdb_byte *info_ptr)
a8329558
KW
16477{
16478 attr->name = abbrev->name;
dee91e82 16479 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16480}
16481
0963b4bd 16482/* Read dwarf information from a buffer. */
c906108c
SS
16483
16484static unsigned int
a1855c1d 16485read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16486{
fe1b8b76 16487 return bfd_get_8 (abfd, buf);
c906108c
SS
16488}
16489
16490static int
a1855c1d 16491read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16492{
fe1b8b76 16493 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16494}
16495
16496static unsigned int
a1855c1d 16497read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16498{
fe1b8b76 16499 return bfd_get_16 (abfd, buf);
c906108c
SS
16500}
16501
21ae7a4d 16502static int
a1855c1d 16503read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16504{
16505 return bfd_get_signed_16 (abfd, buf);
16506}
16507
c906108c 16508static unsigned int
a1855c1d 16509read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16510{
fe1b8b76 16511 return bfd_get_32 (abfd, buf);
c906108c
SS
16512}
16513
21ae7a4d 16514static int
a1855c1d 16515read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16516{
16517 return bfd_get_signed_32 (abfd, buf);
16518}
16519
93311388 16520static ULONGEST
a1855c1d 16521read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16522{
fe1b8b76 16523 return bfd_get_64 (abfd, buf);
c906108c
SS
16524}
16525
16526static CORE_ADDR
d521ce57 16527read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16528 unsigned int *bytes_read)
c906108c 16529{
e7c27a73 16530 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16531 CORE_ADDR retval = 0;
16532
107d2387 16533 if (cu_header->signed_addr_p)
c906108c 16534 {
107d2387
AC
16535 switch (cu_header->addr_size)
16536 {
16537 case 2:
fe1b8b76 16538 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16539 break;
16540 case 4:
fe1b8b76 16541 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16542 break;
16543 case 8:
fe1b8b76 16544 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16545 break;
16546 default:
8e65ff28 16547 internal_error (__FILE__, __LINE__,
e2e0b3e5 16548 _("read_address: bad switch, signed [in module %s]"),
659b0389 16549 bfd_get_filename (abfd));
107d2387
AC
16550 }
16551 }
16552 else
16553 {
16554 switch (cu_header->addr_size)
16555 {
16556 case 2:
fe1b8b76 16557 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16558 break;
16559 case 4:
fe1b8b76 16560 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16561 break;
16562 case 8:
fe1b8b76 16563 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16564 break;
16565 default:
8e65ff28 16566 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16567 _("read_address: bad switch, "
16568 "unsigned [in module %s]"),
659b0389 16569 bfd_get_filename (abfd));
107d2387 16570 }
c906108c 16571 }
64367e0a 16572
107d2387
AC
16573 *bytes_read = cu_header->addr_size;
16574 return retval;
c906108c
SS
16575}
16576
f7ef9339 16577/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16578 specification allows the initial length to take up either 4 bytes
16579 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16580 bytes describe the length and all offsets will be 8 bytes in length
16581 instead of 4.
16582
f7ef9339
KB
16583 An older, non-standard 64-bit format is also handled by this
16584 function. The older format in question stores the initial length
16585 as an 8-byte quantity without an escape value. Lengths greater
16586 than 2^32 aren't very common which means that the initial 4 bytes
16587 is almost always zero. Since a length value of zero doesn't make
16588 sense for the 32-bit format, this initial zero can be considered to
16589 be an escape value which indicates the presence of the older 64-bit
16590 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16591 greater than 4GB. If it becomes necessary to handle lengths
16592 somewhat larger than 4GB, we could allow other small values (such
16593 as the non-sensical values of 1, 2, and 3) to also be used as
16594 escape values indicating the presence of the old format.
f7ef9339 16595
917c78fc
MK
16596 The value returned via bytes_read should be used to increment the
16597 relevant pointer after calling read_initial_length().
c764a876 16598
613e1657
KB
16599 [ Note: read_initial_length() and read_offset() are based on the
16600 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16601 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16602 from:
16603
f7ef9339 16604 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16605
613e1657
KB
16606 This document is only a draft and is subject to change. (So beware.)
16607
f7ef9339 16608 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16609 determined empirically by examining 64-bit ELF files produced by
16610 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16611
16612 - Kevin, July 16, 2002
613e1657
KB
16613 ] */
16614
16615static LONGEST
d521ce57 16616read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16617{
fe1b8b76 16618 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16619
dd373385 16620 if (length == 0xffffffff)
613e1657 16621 {
fe1b8b76 16622 length = bfd_get_64 (abfd, buf + 4);
613e1657 16623 *bytes_read = 12;
613e1657 16624 }
dd373385 16625 else if (length == 0)
f7ef9339 16626 {
dd373385 16627 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16628 length = bfd_get_64 (abfd, buf);
f7ef9339 16629 *bytes_read = 8;
f7ef9339 16630 }
613e1657
KB
16631 else
16632 {
16633 *bytes_read = 4;
613e1657
KB
16634 }
16635
c764a876
DE
16636 return length;
16637}
dd373385 16638
c764a876
DE
16639/* Cover function for read_initial_length.
16640 Returns the length of the object at BUF, and stores the size of the
16641 initial length in *BYTES_READ and stores the size that offsets will be in
16642 *OFFSET_SIZE.
16643 If the initial length size is not equivalent to that specified in
16644 CU_HEADER then issue a complaint.
16645 This is useful when reading non-comp-unit headers. */
dd373385 16646
c764a876 16647static LONGEST
d521ce57 16648read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16649 const struct comp_unit_head *cu_header,
16650 unsigned int *bytes_read,
16651 unsigned int *offset_size)
16652{
16653 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16654
16655 gdb_assert (cu_header->initial_length_size == 4
16656 || cu_header->initial_length_size == 8
16657 || cu_header->initial_length_size == 12);
16658
16659 if (cu_header->initial_length_size != *bytes_read)
16660 complaint (&symfile_complaints,
16661 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16662
c764a876 16663 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16664 return length;
613e1657
KB
16665}
16666
16667/* Read an offset from the data stream. The size of the offset is
917c78fc 16668 given by cu_header->offset_size. */
613e1657
KB
16669
16670static LONGEST
d521ce57
TT
16671read_offset (bfd *abfd, const gdb_byte *buf,
16672 const struct comp_unit_head *cu_header,
891d2f0b 16673 unsigned int *bytes_read)
c764a876
DE
16674{
16675 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16676
c764a876
DE
16677 *bytes_read = cu_header->offset_size;
16678 return offset;
16679}
16680
16681/* Read an offset from the data stream. */
16682
16683static LONGEST
d521ce57 16684read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16685{
16686 LONGEST retval = 0;
16687
c764a876 16688 switch (offset_size)
613e1657
KB
16689 {
16690 case 4:
fe1b8b76 16691 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16692 break;
16693 case 8:
fe1b8b76 16694 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16695 break;
16696 default:
8e65ff28 16697 internal_error (__FILE__, __LINE__,
c764a876 16698 _("read_offset_1: bad switch [in module %s]"),
659b0389 16699 bfd_get_filename (abfd));
613e1657
KB
16700 }
16701
917c78fc 16702 return retval;
613e1657
KB
16703}
16704
d521ce57
TT
16705static const gdb_byte *
16706read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16707{
16708 /* If the size of a host char is 8 bits, we can return a pointer
16709 to the buffer, otherwise we have to copy the data to a buffer
16710 allocated on the temporary obstack. */
4bdf3d34 16711 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16712 return buf;
c906108c
SS
16713}
16714
d521ce57
TT
16715static const char *
16716read_direct_string (bfd *abfd, const gdb_byte *buf,
16717 unsigned int *bytes_read_ptr)
c906108c
SS
16718{
16719 /* If the size of a host char is 8 bits, we can return a pointer
16720 to the string, otherwise we have to copy the string to a buffer
16721 allocated on the temporary obstack. */
4bdf3d34 16722 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16723 if (*buf == '\0')
16724 {
16725 *bytes_read_ptr = 1;
16726 return NULL;
16727 }
d521ce57
TT
16728 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16729 return (const char *) buf;
4bdf3d34
JJ
16730}
16731
d521ce57 16732static const char *
cf2c3c16 16733read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16734{
be391dca 16735 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16736 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16737 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16738 bfd_get_filename (abfd));
dce234bc 16739 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16740 error (_("DW_FORM_strp pointing outside of "
16741 ".debug_str section [in module %s]"),
16742 bfd_get_filename (abfd));
4bdf3d34 16743 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16744 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16745 return NULL;
d521ce57 16746 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16747}
16748
36586728
TT
16749/* Read a string at offset STR_OFFSET in the .debug_str section from
16750 the .dwz file DWZ. Throw an error if the offset is too large. If
16751 the string consists of a single NUL byte, return NULL; otherwise
16752 return a pointer to the string. */
16753
d521ce57 16754static const char *
36586728
TT
16755read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16756{
16757 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16758
16759 if (dwz->str.buffer == NULL)
16760 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16761 "section [in module %s]"),
16762 bfd_get_filename (dwz->dwz_bfd));
16763 if (str_offset >= dwz->str.size)
16764 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16765 ".debug_str section [in module %s]"),
16766 bfd_get_filename (dwz->dwz_bfd));
16767 gdb_assert (HOST_CHAR_BIT == 8);
16768 if (dwz->str.buffer[str_offset] == '\0')
16769 return NULL;
d521ce57 16770 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16771}
16772
d521ce57
TT
16773static const char *
16774read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16775 const struct comp_unit_head *cu_header,
16776 unsigned int *bytes_read_ptr)
16777{
16778 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16779
16780 return read_indirect_string_at_offset (abfd, str_offset);
16781}
16782
12df843f 16783static ULONGEST
d521ce57
TT
16784read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16785 unsigned int *bytes_read_ptr)
c906108c 16786{
12df843f 16787 ULONGEST result;
ce5d95e1 16788 unsigned int num_read;
870f88f7 16789 int shift;
c906108c
SS
16790 unsigned char byte;
16791
16792 result = 0;
16793 shift = 0;
16794 num_read = 0;
c906108c
SS
16795 while (1)
16796 {
fe1b8b76 16797 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16798 buf++;
16799 num_read++;
12df843f 16800 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16801 if ((byte & 128) == 0)
16802 {
16803 break;
16804 }
16805 shift += 7;
16806 }
16807 *bytes_read_ptr = num_read;
16808 return result;
16809}
16810
12df843f 16811static LONGEST
d521ce57
TT
16812read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16813 unsigned int *bytes_read_ptr)
c906108c 16814{
12df843f 16815 LONGEST result;
870f88f7 16816 int shift, num_read;
c906108c
SS
16817 unsigned char byte;
16818
16819 result = 0;
16820 shift = 0;
c906108c 16821 num_read = 0;
c906108c
SS
16822 while (1)
16823 {
fe1b8b76 16824 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16825 buf++;
16826 num_read++;
12df843f 16827 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16828 shift += 7;
16829 if ((byte & 128) == 0)
16830 {
16831 break;
16832 }
16833 }
77e0b926 16834 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16835 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16836 *bytes_read_ptr = num_read;
16837 return result;
16838}
16839
3019eac3
DE
16840/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16841 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16842 ADDR_SIZE is the size of addresses from the CU header. */
16843
16844static CORE_ADDR
16845read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16846{
16847 struct objfile *objfile = dwarf2_per_objfile->objfile;
16848 bfd *abfd = objfile->obfd;
16849 const gdb_byte *info_ptr;
16850
16851 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16852 if (dwarf2_per_objfile->addr.buffer == NULL)
16853 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16854 objfile_name (objfile));
3019eac3
DE
16855 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16856 error (_("DW_FORM_addr_index pointing outside of "
16857 ".debug_addr section [in module %s]"),
4262abfb 16858 objfile_name (objfile));
3019eac3
DE
16859 info_ptr = (dwarf2_per_objfile->addr.buffer
16860 + addr_base + addr_index * addr_size);
16861 if (addr_size == 4)
16862 return bfd_get_32 (abfd, info_ptr);
16863 else
16864 return bfd_get_64 (abfd, info_ptr);
16865}
16866
16867/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16868
16869static CORE_ADDR
16870read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16871{
16872 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16873}
16874
16875/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16876
16877static CORE_ADDR
d521ce57 16878read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16879 unsigned int *bytes_read)
16880{
16881 bfd *abfd = cu->objfile->obfd;
16882 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16883
16884 return read_addr_index (cu, addr_index);
16885}
16886
16887/* Data structure to pass results from dwarf2_read_addr_index_reader
16888 back to dwarf2_read_addr_index. */
16889
16890struct dwarf2_read_addr_index_data
16891{
16892 ULONGEST addr_base;
16893 int addr_size;
16894};
16895
16896/* die_reader_func for dwarf2_read_addr_index. */
16897
16898static void
16899dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16900 const gdb_byte *info_ptr,
3019eac3
DE
16901 struct die_info *comp_unit_die,
16902 int has_children,
16903 void *data)
16904{
16905 struct dwarf2_cu *cu = reader->cu;
16906 struct dwarf2_read_addr_index_data *aidata =
16907 (struct dwarf2_read_addr_index_data *) data;
16908
16909 aidata->addr_base = cu->addr_base;
16910 aidata->addr_size = cu->header.addr_size;
16911}
16912
16913/* Given an index in .debug_addr, fetch the value.
16914 NOTE: This can be called during dwarf expression evaluation,
16915 long after the debug information has been read, and thus per_cu->cu
16916 may no longer exist. */
16917
16918CORE_ADDR
16919dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16920 unsigned int addr_index)
16921{
16922 struct objfile *objfile = per_cu->objfile;
16923 struct dwarf2_cu *cu = per_cu->cu;
16924 ULONGEST addr_base;
16925 int addr_size;
16926
16927 /* This is intended to be called from outside this file. */
16928 dw2_setup (objfile);
16929
16930 /* We need addr_base and addr_size.
16931 If we don't have PER_CU->cu, we have to get it.
16932 Nasty, but the alternative is storing the needed info in PER_CU,
16933 which at this point doesn't seem justified: it's not clear how frequently
16934 it would get used and it would increase the size of every PER_CU.
16935 Entry points like dwarf2_per_cu_addr_size do a similar thing
16936 so we're not in uncharted territory here.
16937 Alas we need to be a bit more complicated as addr_base is contained
16938 in the DIE.
16939
16940 We don't need to read the entire CU(/TU).
16941 We just need the header and top level die.
a1b64ce1 16942
3019eac3 16943 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16944 For now we skip this optimization. */
3019eac3
DE
16945
16946 if (cu != NULL)
16947 {
16948 addr_base = cu->addr_base;
16949 addr_size = cu->header.addr_size;
16950 }
16951 else
16952 {
16953 struct dwarf2_read_addr_index_data aidata;
16954
a1b64ce1
DE
16955 /* Note: We can't use init_cutu_and_read_dies_simple here,
16956 we need addr_base. */
16957 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16958 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16959 addr_base = aidata.addr_base;
16960 addr_size = aidata.addr_size;
16961 }
16962
16963 return read_addr_index_1 (addr_index, addr_base, addr_size);
16964}
16965
57d63ce2
DE
16966/* Given a DW_FORM_GNU_str_index, fetch the string.
16967 This is only used by the Fission support. */
3019eac3 16968
d521ce57 16969static const char *
342587c4 16970read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16971{
16972 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16973 const char *objf_name = objfile_name (objfile);
3019eac3 16974 bfd *abfd = objfile->obfd;
342587c4 16975 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16976 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16977 struct dwarf2_section_info *str_offsets_section =
16978 &reader->dwo_file->sections.str_offsets;
d521ce57 16979 const gdb_byte *info_ptr;
3019eac3 16980 ULONGEST str_offset;
57d63ce2 16981 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16982
73869dc2
DE
16983 dwarf2_read_section (objfile, str_section);
16984 dwarf2_read_section (objfile, str_offsets_section);
16985 if (str_section->buffer == NULL)
57d63ce2 16986 error (_("%s used without .debug_str.dwo section"
3019eac3 16987 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16988 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16989 if (str_offsets_section->buffer == NULL)
57d63ce2 16990 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16991 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16992 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16993 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16994 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16995 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16996 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16997 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16998 + str_index * cu->header.offset_size);
16999 if (cu->header.offset_size == 4)
17000 str_offset = bfd_get_32 (abfd, info_ptr);
17001 else
17002 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17003 if (str_offset >= str_section->size)
57d63ce2 17004 error (_("Offset from %s pointing outside of"
3019eac3 17005 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17006 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17007 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17008}
17009
3019eac3
DE
17010/* Return the length of an LEB128 number in BUF. */
17011
17012static int
17013leb128_size (const gdb_byte *buf)
17014{
17015 const gdb_byte *begin = buf;
17016 gdb_byte byte;
17017
17018 while (1)
17019 {
17020 byte = *buf++;
17021 if ((byte & 128) == 0)
17022 return buf - begin;
17023 }
17024}
17025
c906108c 17026static void
e142c38c 17027set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17028{
17029 switch (lang)
17030 {
17031 case DW_LANG_C89:
76bee0cc 17032 case DW_LANG_C99:
0cfd832f 17033 case DW_LANG_C11:
c906108c 17034 case DW_LANG_C:
d1be3247 17035 case DW_LANG_UPC:
e142c38c 17036 cu->language = language_c;
c906108c 17037 break;
9c37b5ae 17038 case DW_LANG_Java:
c906108c 17039 case DW_LANG_C_plus_plus:
0cfd832f
MW
17040 case DW_LANG_C_plus_plus_11:
17041 case DW_LANG_C_plus_plus_14:
e142c38c 17042 cu->language = language_cplus;
c906108c 17043 break;
6aecb9c2
JB
17044 case DW_LANG_D:
17045 cu->language = language_d;
17046 break;
c906108c
SS
17047 case DW_LANG_Fortran77:
17048 case DW_LANG_Fortran90:
b21b22e0 17049 case DW_LANG_Fortran95:
f7de9aab
MW
17050 case DW_LANG_Fortran03:
17051 case DW_LANG_Fortran08:
e142c38c 17052 cu->language = language_fortran;
c906108c 17053 break;
a766d390
DE
17054 case DW_LANG_Go:
17055 cu->language = language_go;
17056 break;
c906108c 17057 case DW_LANG_Mips_Assembler:
e142c38c 17058 cu->language = language_asm;
c906108c
SS
17059 break;
17060 case DW_LANG_Ada83:
8aaf0b47 17061 case DW_LANG_Ada95:
bc5f45f8
JB
17062 cu->language = language_ada;
17063 break;
72019c9c
GM
17064 case DW_LANG_Modula2:
17065 cu->language = language_m2;
17066 break;
fe8e67fd
PM
17067 case DW_LANG_Pascal83:
17068 cu->language = language_pascal;
17069 break;
22566fbd
DJ
17070 case DW_LANG_ObjC:
17071 cu->language = language_objc;
17072 break;
c44af4eb
TT
17073 case DW_LANG_Rust:
17074 case DW_LANG_Rust_old:
17075 cu->language = language_rust;
17076 break;
c906108c
SS
17077 case DW_LANG_Cobol74:
17078 case DW_LANG_Cobol85:
c906108c 17079 default:
e142c38c 17080 cu->language = language_minimal;
c906108c
SS
17081 break;
17082 }
e142c38c 17083 cu->language_defn = language_def (cu->language);
c906108c
SS
17084}
17085
17086/* Return the named attribute or NULL if not there. */
17087
17088static struct attribute *
e142c38c 17089dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17090{
a48e046c 17091 for (;;)
c906108c 17092 {
a48e046c
TT
17093 unsigned int i;
17094 struct attribute *spec = NULL;
17095
17096 for (i = 0; i < die->num_attrs; ++i)
17097 {
17098 if (die->attrs[i].name == name)
17099 return &die->attrs[i];
17100 if (die->attrs[i].name == DW_AT_specification
17101 || die->attrs[i].name == DW_AT_abstract_origin)
17102 spec = &die->attrs[i];
17103 }
17104
17105 if (!spec)
17106 break;
c906108c 17107
f2f0e013 17108 die = follow_die_ref (die, spec, &cu);
f2f0e013 17109 }
c5aa993b 17110
c906108c
SS
17111 return NULL;
17112}
17113
348e048f
DE
17114/* Return the named attribute or NULL if not there,
17115 but do not follow DW_AT_specification, etc.
17116 This is for use in contexts where we're reading .debug_types dies.
17117 Following DW_AT_specification, DW_AT_abstract_origin will take us
17118 back up the chain, and we want to go down. */
17119
17120static struct attribute *
45e58e77 17121dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17122{
17123 unsigned int i;
17124
17125 for (i = 0; i < die->num_attrs; ++i)
17126 if (die->attrs[i].name == name)
17127 return &die->attrs[i];
17128
17129 return NULL;
17130}
17131
7d45c7c3
KB
17132/* Return the string associated with a string-typed attribute, or NULL if it
17133 is either not found or is of an incorrect type. */
17134
17135static const char *
17136dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17137{
17138 struct attribute *attr;
17139 const char *str = NULL;
17140
17141 attr = dwarf2_attr (die, name, cu);
17142
17143 if (attr != NULL)
17144 {
17145 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17146 || attr->form == DW_FORM_GNU_strp_alt)
17147 str = DW_STRING (attr);
17148 else
17149 complaint (&symfile_complaints,
17150 _("string type expected for attribute %s for "
17151 "DIE at 0x%x in module %s"),
17152 dwarf_attr_name (name), die->offset.sect_off,
17153 objfile_name (cu->objfile));
17154 }
17155
17156 return str;
17157}
17158
05cf31d1
JB
17159/* Return non-zero iff the attribute NAME is defined for the given DIE,
17160 and holds a non-zero value. This function should only be used for
2dc7f7b3 17161 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17162
17163static int
17164dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17165{
17166 struct attribute *attr = dwarf2_attr (die, name, cu);
17167
17168 return (attr && DW_UNSND (attr));
17169}
17170
3ca72b44 17171static int
e142c38c 17172die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17173{
05cf31d1
JB
17174 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17175 which value is non-zero. However, we have to be careful with
17176 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17177 (via dwarf2_flag_true_p) follows this attribute. So we may
17178 end up accidently finding a declaration attribute that belongs
17179 to a different DIE referenced by the specification attribute,
17180 even though the given DIE does not have a declaration attribute. */
17181 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17182 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17183}
17184
63d06c5c 17185/* Return the die giving the specification for DIE, if there is
f2f0e013 17186 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17187 containing the return value on output. If there is no
17188 specification, but there is an abstract origin, that is
17189 returned. */
63d06c5c
DC
17190
17191static struct die_info *
f2f0e013 17192die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17193{
f2f0e013
DJ
17194 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17195 *spec_cu);
63d06c5c 17196
edb3359d
DJ
17197 if (spec_attr == NULL)
17198 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17199
63d06c5c
DC
17200 if (spec_attr == NULL)
17201 return NULL;
17202 else
f2f0e013 17203 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17204}
c906108c 17205
debd256d 17206/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17207 refers to.
17208 NOTE: This is also used as a "cleanup" function. */
17209
debd256d
JB
17210static void
17211free_line_header (struct line_header *lh)
17212{
17213 if (lh->standard_opcode_lengths)
a8bc7b56 17214 xfree (lh->standard_opcode_lengths);
debd256d
JB
17215
17216 /* Remember that all the lh->file_names[i].name pointers are
17217 pointers into debug_line_buffer, and don't need to be freed. */
17218 if (lh->file_names)
a8bc7b56 17219 xfree (lh->file_names);
debd256d
JB
17220
17221 /* Similarly for the include directory names. */
17222 if (lh->include_dirs)
a8bc7b56 17223 xfree (lh->include_dirs);
debd256d 17224
a8bc7b56 17225 xfree (lh);
debd256d
JB
17226}
17227
527f3840
JK
17228/* Stub for free_line_header to match void * callback types. */
17229
17230static void
17231free_line_header_voidp (void *arg)
17232{
9a3c8263 17233 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17234
17235 free_line_header (lh);
17236}
17237
debd256d 17238/* Add an entry to LH's include directory table. */
ae2de4f8 17239
debd256d 17240static void
d521ce57 17241add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17242{
27e0867f
DE
17243 if (dwarf_line_debug >= 2)
17244 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17245 lh->num_include_dirs + 1, include_dir);
17246
debd256d
JB
17247 /* Grow the array if necessary. */
17248 if (lh->include_dirs_size == 0)
c5aa993b 17249 {
debd256d 17250 lh->include_dirs_size = 1; /* for testing */
8d749320 17251 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17252 }
17253 else if (lh->num_include_dirs >= lh->include_dirs_size)
17254 {
17255 lh->include_dirs_size *= 2;
8d749320
SM
17256 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17257 lh->include_dirs_size);
c5aa993b 17258 }
c906108c 17259
debd256d
JB
17260 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17261}
6e70227d 17262
debd256d 17263/* Add an entry to LH's file name table. */
ae2de4f8 17264
debd256d
JB
17265static void
17266add_file_name (struct line_header *lh,
d521ce57 17267 const char *name,
debd256d
JB
17268 unsigned int dir_index,
17269 unsigned int mod_time,
17270 unsigned int length)
17271{
17272 struct file_entry *fe;
17273
27e0867f
DE
17274 if (dwarf_line_debug >= 2)
17275 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17276 lh->num_file_names + 1, name);
17277
debd256d
JB
17278 /* Grow the array if necessary. */
17279 if (lh->file_names_size == 0)
17280 {
17281 lh->file_names_size = 1; /* for testing */
8d749320 17282 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17283 }
17284 else if (lh->num_file_names >= lh->file_names_size)
17285 {
17286 lh->file_names_size *= 2;
224c3ddb
SM
17287 lh->file_names
17288 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17289 }
17290
17291 fe = &lh->file_names[lh->num_file_names++];
17292 fe->name = name;
17293 fe->dir_index = dir_index;
17294 fe->mod_time = mod_time;
17295 fe->length = length;
aaa75496 17296 fe->included_p = 0;
cb1df416 17297 fe->symtab = NULL;
debd256d 17298}
6e70227d 17299
83769d0b 17300/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17301
17302static struct dwarf2_section_info *
17303get_debug_line_section (struct dwarf2_cu *cu)
17304{
17305 struct dwarf2_section_info *section;
17306
17307 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17308 DWO file. */
17309 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17310 section = &cu->dwo_unit->dwo_file->sections.line;
17311 else if (cu->per_cu->is_dwz)
17312 {
17313 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17314
17315 section = &dwz->line;
17316 }
17317 else
17318 section = &dwarf2_per_objfile->line;
17319
17320 return section;
17321}
17322
debd256d 17323/* Read the statement program header starting at OFFSET in
3019eac3 17324 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17325 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17326 Returns NULL if there is a problem reading the header, e.g., if it
17327 has a version we don't understand.
debd256d
JB
17328
17329 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17330 the returned object point into the dwarf line section buffer,
17331 and must not be freed. */
ae2de4f8 17332
debd256d 17333static struct line_header *
3019eac3 17334dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17335{
17336 struct cleanup *back_to;
17337 struct line_header *lh;
d521ce57 17338 const gdb_byte *line_ptr;
c764a876 17339 unsigned int bytes_read, offset_size;
debd256d 17340 int i;
d521ce57 17341 const char *cur_dir, *cur_file;
3019eac3
DE
17342 struct dwarf2_section_info *section;
17343 bfd *abfd;
17344
36586728 17345 section = get_debug_line_section (cu);
3019eac3
DE
17346 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17347 if (section->buffer == NULL)
debd256d 17348 {
3019eac3
DE
17349 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17350 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17351 else
17352 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17353 return 0;
17354 }
17355
fceca515
DE
17356 /* We can't do this until we know the section is non-empty.
17357 Only then do we know we have such a section. */
a32a8923 17358 abfd = get_section_bfd_owner (section);
fceca515 17359
a738430d
MK
17360 /* Make sure that at least there's room for the total_length field.
17361 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17362 if (offset + 4 >= section->size)
debd256d 17363 {
4d3c2250 17364 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17365 return 0;
17366 }
17367
8d749320 17368 lh = XNEW (struct line_header);
debd256d
JB
17369 memset (lh, 0, sizeof (*lh));
17370 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17371 (void *) lh);
17372
527f3840
JK
17373 lh->offset.sect_off = offset;
17374 lh->offset_in_dwz = cu->per_cu->is_dwz;
17375
3019eac3 17376 line_ptr = section->buffer + offset;
debd256d 17377
a738430d 17378 /* Read in the header. */
6e70227d 17379 lh->total_length =
c764a876
DE
17380 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17381 &bytes_read, &offset_size);
debd256d 17382 line_ptr += bytes_read;
3019eac3 17383 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17384 {
4d3c2250 17385 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17386 do_cleanups (back_to);
debd256d
JB
17387 return 0;
17388 }
17389 lh->statement_program_end = line_ptr + lh->total_length;
17390 lh->version = read_2_bytes (abfd, line_ptr);
17391 line_ptr += 2;
cd366ee8
DE
17392 if (lh->version > 4)
17393 {
17394 /* This is a version we don't understand. The format could have
17395 changed in ways we don't handle properly so just punt. */
17396 complaint (&symfile_complaints,
17397 _("unsupported version in .debug_line section"));
17398 return NULL;
17399 }
c764a876
DE
17400 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17401 line_ptr += offset_size;
debd256d
JB
17402 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17403 line_ptr += 1;
2dc7f7b3
TT
17404 if (lh->version >= 4)
17405 {
17406 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
17408 }
17409 else
17410 lh->maximum_ops_per_instruction = 1;
17411
17412 if (lh->maximum_ops_per_instruction == 0)
17413 {
17414 lh->maximum_ops_per_instruction = 1;
17415 complaint (&symfile_complaints,
3e43a32a
MS
17416 _("invalid maximum_ops_per_instruction "
17417 "in `.debug_line' section"));
2dc7f7b3
TT
17418 }
17419
debd256d
JB
17420 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17421 line_ptr += 1;
17422 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17423 line_ptr += 1;
17424 lh->line_range = read_1_byte (abfd, line_ptr);
17425 line_ptr += 1;
17426 lh->opcode_base = read_1_byte (abfd, line_ptr);
17427 line_ptr += 1;
8d749320 17428 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17429
17430 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17431 for (i = 1; i < lh->opcode_base; ++i)
17432 {
17433 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17434 line_ptr += 1;
17435 }
17436
a738430d 17437 /* Read directory table. */
9b1c24c8 17438 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17439 {
17440 line_ptr += bytes_read;
17441 add_include_dir (lh, cur_dir);
17442 }
17443 line_ptr += bytes_read;
17444
a738430d 17445 /* Read file name table. */
9b1c24c8 17446 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17447 {
17448 unsigned int dir_index, mod_time, length;
17449
17450 line_ptr += bytes_read;
17451 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17452 line_ptr += bytes_read;
17453 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17454 line_ptr += bytes_read;
17455 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17456 line_ptr += bytes_read;
17457
17458 add_file_name (lh, cur_file, dir_index, mod_time, length);
17459 }
17460 line_ptr += bytes_read;
6e70227d 17461 lh->statement_program_start = line_ptr;
debd256d 17462
3019eac3 17463 if (line_ptr > (section->buffer + section->size))
4d3c2250 17464 complaint (&symfile_complaints,
3e43a32a
MS
17465 _("line number info header doesn't "
17466 "fit in `.debug_line' section"));
debd256d
JB
17467
17468 discard_cleanups (back_to);
17469 return lh;
17470}
c906108c 17471
c6da4cef
DE
17472/* Subroutine of dwarf_decode_lines to simplify it.
17473 Return the file name of the psymtab for included file FILE_INDEX
17474 in line header LH of PST.
17475 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17476 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17477 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17478
17479 The function creates dangling cleanup registration. */
c6da4cef 17480
d521ce57 17481static const char *
c6da4cef
DE
17482psymtab_include_file_name (const struct line_header *lh, int file_index,
17483 const struct partial_symtab *pst,
17484 const char *comp_dir)
17485{
17486 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17487 const char *include_name = fe.name;
17488 const char *include_name_to_compare = include_name;
17489 const char *dir_name = NULL;
72b9f47f
TT
17490 const char *pst_filename;
17491 char *copied_name = NULL;
c6da4cef
DE
17492 int file_is_pst;
17493
afa6c9ab 17494 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17495 dir_name = lh->include_dirs[fe.dir_index - 1];
17496
17497 if (!IS_ABSOLUTE_PATH (include_name)
17498 && (dir_name != NULL || comp_dir != NULL))
17499 {
17500 /* Avoid creating a duplicate psymtab for PST.
17501 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17502 Before we do the comparison, however, we need to account
17503 for DIR_NAME and COMP_DIR.
17504 First prepend dir_name (if non-NULL). If we still don't
17505 have an absolute path prepend comp_dir (if non-NULL).
17506 However, the directory we record in the include-file's
17507 psymtab does not contain COMP_DIR (to match the
17508 corresponding symtab(s)).
17509
17510 Example:
17511
17512 bash$ cd /tmp
17513 bash$ gcc -g ./hello.c
17514 include_name = "hello.c"
17515 dir_name = "."
17516 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17517 DW_AT_name = "./hello.c"
17518
17519 */
c6da4cef
DE
17520
17521 if (dir_name != NULL)
17522 {
d521ce57
TT
17523 char *tem = concat (dir_name, SLASH_STRING,
17524 include_name, (char *)NULL);
17525
17526 make_cleanup (xfree, tem);
17527 include_name = tem;
c6da4cef 17528 include_name_to_compare = include_name;
c6da4cef
DE
17529 }
17530 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17531 {
d521ce57
TT
17532 char *tem = concat (comp_dir, SLASH_STRING,
17533 include_name, (char *)NULL);
17534
17535 make_cleanup (xfree, tem);
17536 include_name_to_compare = tem;
c6da4cef
DE
17537 }
17538 }
17539
17540 pst_filename = pst->filename;
17541 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17542 {
72b9f47f
TT
17543 copied_name = concat (pst->dirname, SLASH_STRING,
17544 pst_filename, (char *)NULL);
17545 pst_filename = copied_name;
c6da4cef
DE
17546 }
17547
1e3fad37 17548 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17549
72b9f47f
TT
17550 if (copied_name != NULL)
17551 xfree (copied_name);
c6da4cef
DE
17552
17553 if (file_is_pst)
17554 return NULL;
17555 return include_name;
17556}
17557
d9b3de22
DE
17558/* State machine to track the state of the line number program. */
17559
17560typedef struct
17561{
17562 /* These are part of the standard DWARF line number state machine. */
17563
17564 unsigned char op_index;
17565 unsigned int file;
17566 unsigned int line;
17567 CORE_ADDR address;
17568 int is_stmt;
17569 unsigned int discriminator;
17570
17571 /* Additional bits of state we need to track. */
17572
17573 /* The last file that we called dwarf2_start_subfile for.
17574 This is only used for TLLs. */
17575 unsigned int last_file;
17576 /* The last file a line number was recorded for. */
17577 struct subfile *last_subfile;
17578
17579 /* The function to call to record a line. */
17580 record_line_ftype *record_line;
17581
17582 /* The last line number that was recorded, used to coalesce
17583 consecutive entries for the same line. This can happen, for
17584 example, when discriminators are present. PR 17276. */
17585 unsigned int last_line;
17586 int line_has_non_zero_discriminator;
17587} lnp_state_machine;
17588
17589/* There's a lot of static state to pass to dwarf_record_line.
17590 This keeps it all together. */
17591
17592typedef struct
17593{
17594 /* The gdbarch. */
17595 struct gdbarch *gdbarch;
17596
17597 /* The line number header. */
17598 struct line_header *line_header;
17599
17600 /* Non-zero if we're recording lines.
17601 Otherwise we're building partial symtabs and are just interested in
17602 finding include files mentioned by the line number program. */
17603 int record_lines_p;
17604} lnp_reader_state;
17605
c91513d8
PP
17606/* Ignore this record_line request. */
17607
17608static void
17609noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17610{
17611 return;
17612}
17613
a05a36a5
DE
17614/* Return non-zero if we should add LINE to the line number table.
17615 LINE is the line to add, LAST_LINE is the last line that was added,
17616 LAST_SUBFILE is the subfile for LAST_LINE.
17617 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17618 had a non-zero discriminator.
17619
17620 We have to be careful in the presence of discriminators.
17621 E.g., for this line:
17622
17623 for (i = 0; i < 100000; i++);
17624
17625 clang can emit four line number entries for that one line,
17626 each with a different discriminator.
17627 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17628
17629 However, we want gdb to coalesce all four entries into one.
17630 Otherwise the user could stepi into the middle of the line and
17631 gdb would get confused about whether the pc really was in the
17632 middle of the line.
17633
17634 Things are further complicated by the fact that two consecutive
17635 line number entries for the same line is a heuristic used by gcc
17636 to denote the end of the prologue. So we can't just discard duplicate
17637 entries, we have to be selective about it. The heuristic we use is
17638 that we only collapse consecutive entries for the same line if at least
17639 one of those entries has a non-zero discriminator. PR 17276.
17640
17641 Note: Addresses in the line number state machine can never go backwards
17642 within one sequence, thus this coalescing is ok. */
17643
17644static int
17645dwarf_record_line_p (unsigned int line, unsigned int last_line,
17646 int line_has_non_zero_discriminator,
17647 struct subfile *last_subfile)
17648{
17649 if (current_subfile != last_subfile)
17650 return 1;
17651 if (line != last_line)
17652 return 1;
17653 /* Same line for the same file that we've seen already.
17654 As a last check, for pr 17276, only record the line if the line
17655 has never had a non-zero discriminator. */
17656 if (!line_has_non_zero_discriminator)
17657 return 1;
17658 return 0;
17659}
17660
252a6764
DE
17661/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17662 in the line table of subfile SUBFILE. */
17663
17664static void
d9b3de22
DE
17665dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17666 unsigned int line, CORE_ADDR address,
17667 record_line_ftype p_record_line)
252a6764
DE
17668{
17669 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17670
27e0867f
DE
17671 if (dwarf_line_debug)
17672 {
17673 fprintf_unfiltered (gdb_stdlog,
17674 "Recording line %u, file %s, address %s\n",
17675 line, lbasename (subfile->name),
17676 paddress (gdbarch, address));
17677 }
17678
d5962de5 17679 (*p_record_line) (subfile, line, addr);
252a6764
DE
17680}
17681
17682/* Subroutine of dwarf_decode_lines_1 to simplify it.
17683 Mark the end of a set of line number records.
d9b3de22 17684 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17685 If SUBFILE is NULL the request is ignored. */
17686
17687static void
17688dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17689 CORE_ADDR address, record_line_ftype p_record_line)
17690{
27e0867f
DE
17691 if (subfile == NULL)
17692 return;
17693
17694 if (dwarf_line_debug)
17695 {
17696 fprintf_unfiltered (gdb_stdlog,
17697 "Finishing current line, file %s, address %s\n",
17698 lbasename (subfile->name),
17699 paddress (gdbarch, address));
17700 }
17701
d9b3de22
DE
17702 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17703}
17704
17705/* Record the line in STATE.
17706 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17707
17708static void
17709dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17710 int end_sequence)
17711{
17712 const struct line_header *lh = reader->line_header;
17713 unsigned int file, line, discriminator;
17714 int is_stmt;
17715
17716 file = state->file;
17717 line = state->line;
17718 is_stmt = state->is_stmt;
17719 discriminator = state->discriminator;
17720
17721 if (dwarf_line_debug)
17722 {
17723 fprintf_unfiltered (gdb_stdlog,
17724 "Processing actual line %u: file %u,"
17725 " address %s, is_stmt %u, discrim %u\n",
17726 line, file,
17727 paddress (reader->gdbarch, state->address),
17728 is_stmt, discriminator);
17729 }
17730
17731 if (file == 0 || file - 1 >= lh->num_file_names)
17732 dwarf2_debug_line_missing_file_complaint ();
17733 /* For now we ignore lines not starting on an instruction boundary.
17734 But not when processing end_sequence for compatibility with the
17735 previous version of the code. */
17736 else if (state->op_index == 0 || end_sequence)
17737 {
17738 lh->file_names[file - 1].included_p = 1;
17739 if (reader->record_lines_p && is_stmt)
17740 {
e815d2d2 17741 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17742 {
17743 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17744 state->address, state->record_line);
17745 }
17746
17747 if (!end_sequence)
17748 {
17749 if (dwarf_record_line_p (line, state->last_line,
17750 state->line_has_non_zero_discriminator,
17751 state->last_subfile))
17752 {
17753 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17754 line, state->address,
17755 state->record_line);
17756 }
17757 state->last_subfile = current_subfile;
17758 state->last_line = line;
17759 }
17760 }
17761 }
17762}
17763
17764/* Initialize STATE for the start of a line number program. */
17765
17766static void
17767init_lnp_state_machine (lnp_state_machine *state,
17768 const lnp_reader_state *reader)
17769{
17770 memset (state, 0, sizeof (*state));
17771
17772 /* Just starting, there is no "last file". */
17773 state->last_file = 0;
17774 state->last_subfile = NULL;
17775
17776 state->record_line = record_line;
17777
17778 state->last_line = 0;
17779 state->line_has_non_zero_discriminator = 0;
17780
17781 /* Initialize these according to the DWARF spec. */
17782 state->op_index = 0;
17783 state->file = 1;
17784 state->line = 1;
17785 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17786 was a line entry for it so that the backend has a chance to adjust it
17787 and also record it in case it needs it. This is currently used by MIPS
17788 code, cf. `mips_adjust_dwarf2_line'. */
17789 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17790 state->is_stmt = reader->line_header->default_is_stmt;
17791 state->discriminator = 0;
252a6764
DE
17792}
17793
924c2928
DE
17794/* Check address and if invalid nop-out the rest of the lines in this
17795 sequence. */
17796
17797static void
d9b3de22 17798check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17799 const gdb_byte *line_ptr,
17800 CORE_ADDR lowpc, CORE_ADDR address)
17801{
17802 /* If address < lowpc then it's not a usable value, it's outside the
17803 pc range of the CU. However, we restrict the test to only address
17804 values of zero to preserve GDB's previous behaviour which is to
17805 handle the specific case of a function being GC'd by the linker. */
17806
17807 if (address == 0 && address < lowpc)
17808 {
17809 /* This line table is for a function which has been
17810 GCd by the linker. Ignore it. PR gdb/12528 */
17811
17812 struct objfile *objfile = cu->objfile;
17813 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17814
17815 complaint (&symfile_complaints,
17816 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17817 line_offset, objfile_name (objfile));
d9b3de22
DE
17818 state->record_line = noop_record_line;
17819 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17820 until we see DW_LNE_end_sequence. */
17821 }
17822}
17823
f3f5162e 17824/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17825 Process the line number information in LH.
17826 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17827 program in order to set included_p for every referenced header. */
debd256d 17828
c906108c 17829static void
43f3e411
DE
17830dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17831 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17832{
d521ce57
TT
17833 const gdb_byte *line_ptr, *extended_end;
17834 const gdb_byte *line_end;
a8c50c1f 17835 unsigned int bytes_read, extended_len;
699ca60a 17836 unsigned char op_code, extended_op;
e142c38c
DJ
17837 CORE_ADDR baseaddr;
17838 struct objfile *objfile = cu->objfile;
f3f5162e 17839 bfd *abfd = objfile->obfd;
fbf65064 17840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17841 /* Non-zero if we're recording line info (as opposed to building partial
17842 symtabs). */
17843 int record_lines_p = !decode_for_pst_p;
17844 /* A collection of things we need to pass to dwarf_record_line. */
17845 lnp_reader_state reader_state;
e142c38c
DJ
17846
17847 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17848
debd256d
JB
17849 line_ptr = lh->statement_program_start;
17850 line_end = lh->statement_program_end;
c906108c 17851
d9b3de22
DE
17852 reader_state.gdbarch = gdbarch;
17853 reader_state.line_header = lh;
17854 reader_state.record_lines_p = record_lines_p;
17855
c906108c
SS
17856 /* Read the statement sequences until there's nothing left. */
17857 while (line_ptr < line_end)
17858 {
d9b3de22
DE
17859 /* The DWARF line number program state machine. */
17860 lnp_state_machine state_machine;
c906108c 17861 int end_sequence = 0;
d9b3de22
DE
17862
17863 /* Reset the state machine at the start of each sequence. */
17864 init_lnp_state_machine (&state_machine, &reader_state);
17865
17866 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17867 {
aaa75496 17868 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17869 /* lh->include_dirs and lh->file_names are 0-based, but the
17870 directory and file name numbers in the statement program
17871 are 1-based. */
d9b3de22 17872 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17873 const char *dir = NULL;
a738430d 17874
afa6c9ab 17875 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17876 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17877
4d663531 17878 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17879 }
17880
a738430d 17881 /* Decode the table. */
d9b3de22 17882 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17883 {
17884 op_code = read_1_byte (abfd, line_ptr);
17885 line_ptr += 1;
9aa1fe7e 17886
debd256d 17887 if (op_code >= lh->opcode_base)
6e70227d 17888 {
8e07a239 17889 /* Special opcode. */
699ca60a 17890 unsigned char adj_opcode;
3e29f34a 17891 CORE_ADDR addr_adj;
a05a36a5 17892 int line_delta;
8e07a239 17893
debd256d 17894 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17895 addr_adj = (((state_machine.op_index
17896 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17897 / lh->maximum_ops_per_instruction)
17898 * lh->minimum_instruction_length);
d9b3de22
DE
17899 state_machine.address
17900 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17901 state_machine.op_index = ((state_machine.op_index
17902 + (adj_opcode / lh->line_range))
17903 % lh->maximum_ops_per_instruction);
a05a36a5 17904 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17905 state_machine.line += line_delta;
a05a36a5 17906 if (line_delta != 0)
d9b3de22
DE
17907 state_machine.line_has_non_zero_discriminator
17908 = state_machine.discriminator != 0;
17909
17910 dwarf_record_line (&reader_state, &state_machine, 0);
17911 state_machine.discriminator = 0;
9aa1fe7e
GK
17912 }
17913 else switch (op_code)
c906108c
SS
17914 {
17915 case DW_LNS_extended_op:
3e43a32a
MS
17916 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17917 &bytes_read);
473b7be6 17918 line_ptr += bytes_read;
a8c50c1f 17919 extended_end = line_ptr + extended_len;
c906108c
SS
17920 extended_op = read_1_byte (abfd, line_ptr);
17921 line_ptr += 1;
17922 switch (extended_op)
17923 {
17924 case DW_LNE_end_sequence:
d9b3de22 17925 state_machine.record_line = record_line;
c906108c 17926 end_sequence = 1;
c906108c
SS
17927 break;
17928 case DW_LNE_set_address:
d9b3de22
DE
17929 {
17930 CORE_ADDR address
17931 = read_address (abfd, line_ptr, cu, &bytes_read);
17932
17933 line_ptr += bytes_read;
17934 check_line_address (cu, &state_machine, line_ptr,
17935 lowpc, address);
17936 state_machine.op_index = 0;
17937 address += baseaddr;
17938 state_machine.address
17939 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17940 }
c906108c
SS
17941 break;
17942 case DW_LNE_define_file:
debd256d 17943 {
d521ce57 17944 const char *cur_file;
debd256d 17945 unsigned int dir_index, mod_time, length;
6e70227d 17946
3e43a32a
MS
17947 cur_file = read_direct_string (abfd, line_ptr,
17948 &bytes_read);
debd256d
JB
17949 line_ptr += bytes_read;
17950 dir_index =
17951 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17952 line_ptr += bytes_read;
17953 mod_time =
17954 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17955 line_ptr += bytes_read;
17956 length =
17957 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17958 line_ptr += bytes_read;
17959 add_file_name (lh, cur_file, dir_index, mod_time, length);
17960 }
c906108c 17961 break;
d0c6ba3d
CC
17962 case DW_LNE_set_discriminator:
17963 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17964 just ignore it. We still need to check its value though:
17965 if there are consecutive entries for the same
17966 (non-prologue) line we want to coalesce them.
17967 PR 17276. */
d9b3de22
DE
17968 state_machine.discriminator
17969 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17970 state_machine.line_has_non_zero_discriminator
17971 |= state_machine.discriminator != 0;
a05a36a5 17972 line_ptr += bytes_read;
d0c6ba3d 17973 break;
c906108c 17974 default:
4d3c2250 17975 complaint (&symfile_complaints,
e2e0b3e5 17976 _("mangled .debug_line section"));
debd256d 17977 return;
c906108c 17978 }
a8c50c1f
DJ
17979 /* Make sure that we parsed the extended op correctly. If e.g.
17980 we expected a different address size than the producer used,
17981 we may have read the wrong number of bytes. */
17982 if (line_ptr != extended_end)
17983 {
17984 complaint (&symfile_complaints,
17985 _("mangled .debug_line section"));
17986 return;
17987 }
c906108c
SS
17988 break;
17989 case DW_LNS_copy:
d9b3de22
DE
17990 dwarf_record_line (&reader_state, &state_machine, 0);
17991 state_machine.discriminator = 0;
c906108c
SS
17992 break;
17993 case DW_LNS_advance_pc:
2dc7f7b3
TT
17994 {
17995 CORE_ADDR adjust
17996 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17997 CORE_ADDR addr_adj;
2dc7f7b3 17998
d9b3de22 17999 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18000 / lh->maximum_ops_per_instruction)
18001 * lh->minimum_instruction_length);
d9b3de22
DE
18002 state_machine.address
18003 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18004 state_machine.op_index = ((state_machine.op_index + adjust)
18005 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18006 line_ptr += bytes_read;
18007 }
c906108c
SS
18008 break;
18009 case DW_LNS_advance_line:
a05a36a5
DE
18010 {
18011 int line_delta
18012 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18013
d9b3de22 18014 state_machine.line += line_delta;
a05a36a5 18015 if (line_delta != 0)
d9b3de22
DE
18016 state_machine.line_has_non_zero_discriminator
18017 = state_machine.discriminator != 0;
a05a36a5
DE
18018 line_ptr += bytes_read;
18019 }
c906108c
SS
18020 break;
18021 case DW_LNS_set_file:
d9b3de22
DE
18022 {
18023 /* The arrays lh->include_dirs and lh->file_names are
18024 0-based, but the directory and file name numbers in
18025 the statement program are 1-based. */
18026 struct file_entry *fe;
18027 const char *dir = NULL;
18028
18029 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18030 &bytes_read);
18031 line_ptr += bytes_read;
18032 if (state_machine.file == 0
18033 || state_machine.file - 1 >= lh->num_file_names)
18034 dwarf2_debug_line_missing_file_complaint ();
18035 else
18036 {
18037 fe = &lh->file_names[state_machine.file - 1];
18038 if (fe->dir_index && lh->include_dirs != NULL)
18039 dir = lh->include_dirs[fe->dir_index - 1];
18040 if (record_lines_p)
18041 {
18042 state_machine.last_subfile = current_subfile;
18043 state_machine.line_has_non_zero_discriminator
18044 = state_machine.discriminator != 0;
18045 dwarf2_start_subfile (fe->name, dir);
18046 }
18047 }
18048 }
c906108c
SS
18049 break;
18050 case DW_LNS_set_column:
0ad93d4f 18051 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18052 line_ptr += bytes_read;
18053 break;
18054 case DW_LNS_negate_stmt:
d9b3de22 18055 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18056 break;
18057 case DW_LNS_set_basic_block:
c906108c 18058 break;
c2c6d25f
JM
18059 /* Add to the address register of the state machine the
18060 address increment value corresponding to special opcode
a738430d
MK
18061 255. I.e., this value is scaled by the minimum
18062 instruction length since special opcode 255 would have
b021a221 18063 scaled the increment. */
c906108c 18064 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18065 {
18066 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18067 CORE_ADDR addr_adj;
2dc7f7b3 18068
d9b3de22 18069 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18070 / lh->maximum_ops_per_instruction)
18071 * lh->minimum_instruction_length);
d9b3de22
DE
18072 state_machine.address
18073 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18074 state_machine.op_index = ((state_machine.op_index + adjust)
18075 % lh->maximum_ops_per_instruction);
2dc7f7b3 18076 }
c906108c
SS
18077 break;
18078 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18079 {
18080 CORE_ADDR addr_adj;
18081
18082 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18083 state_machine.address
18084 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18085 state_machine.op_index = 0;
3e29f34a
MR
18086 line_ptr += 2;
18087 }
c906108c 18088 break;
9aa1fe7e 18089 default:
a738430d
MK
18090 {
18091 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18092 int i;
a738430d 18093
debd256d 18094 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18095 {
18096 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18097 line_ptr += bytes_read;
18098 }
18099 }
c906108c
SS
18100 }
18101 }
d9b3de22
DE
18102
18103 if (!end_sequence)
18104 dwarf2_debug_line_missing_end_sequence_complaint ();
18105
18106 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18107 in which case we still finish recording the last line). */
18108 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18109 }
f3f5162e
DE
18110}
18111
18112/* Decode the Line Number Program (LNP) for the given line_header
18113 structure and CU. The actual information extracted and the type
18114 of structures created from the LNP depends on the value of PST.
18115
18116 1. If PST is NULL, then this procedure uses the data from the program
18117 to create all necessary symbol tables, and their linetables.
18118
18119 2. If PST is not NULL, this procedure reads the program to determine
18120 the list of files included by the unit represented by PST, and
18121 builds all the associated partial symbol tables.
18122
18123 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18124 It is used for relative paths in the line table.
18125 NOTE: When processing partial symtabs (pst != NULL),
18126 comp_dir == pst->dirname.
18127
18128 NOTE: It is important that psymtabs have the same file name (via strcmp)
18129 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18130 symtab we don't use it in the name of the psymtabs we create.
18131 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18132 A good testcase for this is mb-inline.exp.
18133
527f3840
JK
18134 LOWPC is the lowest address in CU (or 0 if not known).
18135
18136 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18137 for its PC<->lines mapping information. Otherwise only the filename
18138 table is read in. */
f3f5162e
DE
18139
18140static void
18141dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18142 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18143 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18144{
18145 struct objfile *objfile = cu->objfile;
18146 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18147
527f3840
JK
18148 if (decode_mapping)
18149 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18150
18151 if (decode_for_pst_p)
18152 {
18153 int file_index;
18154
18155 /* Now that we're done scanning the Line Header Program, we can
18156 create the psymtab of each included file. */
18157 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18158 if (lh->file_names[file_index].included_p == 1)
18159 {
d521ce57 18160 const char *include_name =
c6da4cef
DE
18161 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18162 if (include_name != NULL)
aaa75496
JB
18163 dwarf2_create_include_psymtab (include_name, pst, objfile);
18164 }
18165 }
cb1df416
DJ
18166 else
18167 {
18168 /* Make sure a symtab is created for every file, even files
18169 which contain only variables (i.e. no code with associated
18170 line numbers). */
43f3e411 18171 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18172 int i;
cb1df416
DJ
18173
18174 for (i = 0; i < lh->num_file_names; i++)
18175 {
d521ce57 18176 const char *dir = NULL;
f3f5162e 18177 struct file_entry *fe;
9a619af0 18178
cb1df416 18179 fe = &lh->file_names[i];
afa6c9ab 18180 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18181 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18182 dwarf2_start_subfile (fe->name, dir);
cb1df416 18183
cb1df416 18184 if (current_subfile->symtab == NULL)
43f3e411
DE
18185 {
18186 current_subfile->symtab
18187 = allocate_symtab (cust, current_subfile->name);
18188 }
cb1df416
DJ
18189 fe->symtab = current_subfile->symtab;
18190 }
18191 }
c906108c
SS
18192}
18193
18194/* Start a subfile for DWARF. FILENAME is the name of the file and
18195 DIRNAME the name of the source directory which contains FILENAME
4d663531 18196 or NULL if not known.
c906108c
SS
18197 This routine tries to keep line numbers from identical absolute and
18198 relative file names in a common subfile.
18199
18200 Using the `list' example from the GDB testsuite, which resides in
18201 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18202 of /srcdir/list0.c yields the following debugging information for list0.c:
18203
c5aa993b 18204 DW_AT_name: /srcdir/list0.c
4d663531 18205 DW_AT_comp_dir: /compdir
357e46e7 18206 files.files[0].name: list0.h
c5aa993b 18207 files.files[0].dir: /srcdir
357e46e7 18208 files.files[1].name: list0.c
c5aa993b 18209 files.files[1].dir: /srcdir
c906108c
SS
18210
18211 The line number information for list0.c has to end up in a single
4f1520fb
FR
18212 subfile, so that `break /srcdir/list0.c:1' works as expected.
18213 start_subfile will ensure that this happens provided that we pass the
18214 concatenation of files.files[1].dir and files.files[1].name as the
18215 subfile's name. */
c906108c
SS
18216
18217static void
4d663531 18218dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18219{
d521ce57 18220 char *copy = NULL;
4f1520fb 18221
4d663531 18222 /* In order not to lose the line information directory,
4f1520fb
FR
18223 we concatenate it to the filename when it makes sense.
18224 Note that the Dwarf3 standard says (speaking of filenames in line
18225 information): ``The directory index is ignored for file names
18226 that represent full path names''. Thus ignoring dirname in the
18227 `else' branch below isn't an issue. */
c906108c 18228
d5166ae1 18229 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18230 {
18231 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18232 filename = copy;
18233 }
c906108c 18234
4d663531 18235 start_subfile (filename);
4f1520fb 18236
d521ce57
TT
18237 if (copy != NULL)
18238 xfree (copy);
c906108c
SS
18239}
18240
f4dc4d17
DE
18241/* Start a symtab for DWARF.
18242 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18243
43f3e411 18244static struct compunit_symtab *
f4dc4d17 18245dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18246 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18247{
43f3e411
DE
18248 struct compunit_symtab *cust
18249 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18250
f4dc4d17
DE
18251 record_debugformat ("DWARF 2");
18252 record_producer (cu->producer);
18253
18254 /* We assume that we're processing GCC output. */
18255 processing_gcc_compilation = 2;
18256
4d4ec4e5 18257 cu->processing_has_namespace_info = 0;
43f3e411
DE
18258
18259 return cust;
f4dc4d17
DE
18260}
18261
4c2df51b
DJ
18262static void
18263var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18264 struct dwarf2_cu *cu)
4c2df51b 18265{
e7c27a73
DJ
18266 struct objfile *objfile = cu->objfile;
18267 struct comp_unit_head *cu_header = &cu->header;
18268
4c2df51b
DJ
18269 /* NOTE drow/2003-01-30: There used to be a comment and some special
18270 code here to turn a symbol with DW_AT_external and a
18271 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18272 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18273 with some versions of binutils) where shared libraries could have
18274 relocations against symbols in their debug information - the
18275 minimal symbol would have the right address, but the debug info
18276 would not. It's no longer necessary, because we will explicitly
18277 apply relocations when we read in the debug information now. */
18278
18279 /* A DW_AT_location attribute with no contents indicates that a
18280 variable has been optimized away. */
18281 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18282 {
f1e6e072 18283 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18284 return;
18285 }
18286
18287 /* Handle one degenerate form of location expression specially, to
18288 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18289 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18290 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18291
18292 if (attr_form_is_block (attr)
3019eac3
DE
18293 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18294 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18295 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18296 && (DW_BLOCK (attr)->size
18297 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18298 {
891d2f0b 18299 unsigned int dummy;
4c2df51b 18300
3019eac3
DE
18301 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18302 SYMBOL_VALUE_ADDRESS (sym) =
18303 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18304 else
18305 SYMBOL_VALUE_ADDRESS (sym) =
18306 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18307 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18308 fixup_symbol_section (sym, objfile);
18309 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18310 SYMBOL_SECTION (sym));
4c2df51b
DJ
18311 return;
18312 }
18313
18314 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18315 expression evaluator, and use LOC_COMPUTED only when necessary
18316 (i.e. when the value of a register or memory location is
18317 referenced, or a thread-local block, etc.). Then again, it might
18318 not be worthwhile. I'm assuming that it isn't unless performance
18319 or memory numbers show me otherwise. */
18320
f1e6e072 18321 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18322
f1e6e072 18323 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18324 cu->has_loclist = 1;
4c2df51b
DJ
18325}
18326
c906108c
SS
18327/* Given a pointer to a DWARF information entry, figure out if we need
18328 to make a symbol table entry for it, and if so, create a new entry
18329 and return a pointer to it.
18330 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18331 used the passed type.
18332 If SPACE is not NULL, use it to hold the new symbol. If it is
18333 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18334
18335static struct symbol *
34eaf542
TT
18336new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18337 struct symbol *space)
c906108c 18338{
e7c27a73 18339 struct objfile *objfile = cu->objfile;
3e29f34a 18340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18341 struct symbol *sym = NULL;
15d034d0 18342 const char *name;
c906108c
SS
18343 struct attribute *attr = NULL;
18344 struct attribute *attr2 = NULL;
e142c38c 18345 CORE_ADDR baseaddr;
e37fd15a
SW
18346 struct pending **list_to_add = NULL;
18347
edb3359d 18348 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18349
18350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18351
94af9270 18352 name = dwarf2_name (die, cu);
c906108c
SS
18353 if (name)
18354 {
94af9270 18355 const char *linkagename;
34eaf542 18356 int suppress_add = 0;
94af9270 18357
34eaf542
TT
18358 if (space)
18359 sym = space;
18360 else
e623cf5d 18361 sym = allocate_symbol (objfile);
c906108c 18362 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18363
18364 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18365 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18366 linkagename = dwarf2_physname (name, die, cu);
18367 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18368
f55ee35c
JK
18369 /* Fortran does not have mangling standard and the mangling does differ
18370 between gfortran, iFort etc. */
18371 if (cu->language == language_fortran
b250c185 18372 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18373 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18374 dwarf2_full_name (name, die, cu),
29df156d 18375 NULL);
f55ee35c 18376
c906108c 18377 /* Default assumptions.
c5aa993b 18378 Use the passed type or decode it from the die. */
176620f1 18379 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18380 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18381 if (type != NULL)
18382 SYMBOL_TYPE (sym) = type;
18383 else
e7c27a73 18384 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18385 attr = dwarf2_attr (die,
18386 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18387 cu);
c906108c
SS
18388 if (attr)
18389 {
18390 SYMBOL_LINE (sym) = DW_UNSND (attr);
18391 }
cb1df416 18392
edb3359d
DJ
18393 attr = dwarf2_attr (die,
18394 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18395 cu);
cb1df416
DJ
18396 if (attr)
18397 {
18398 int file_index = DW_UNSND (attr);
9a619af0 18399
cb1df416
DJ
18400 if (cu->line_header == NULL
18401 || file_index > cu->line_header->num_file_names)
18402 complaint (&symfile_complaints,
18403 _("file index out of range"));
1c3d648d 18404 else if (file_index > 0)
cb1df416
DJ
18405 {
18406 struct file_entry *fe;
9a619af0 18407
cb1df416 18408 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18409 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18410 }
18411 }
18412
c906108c
SS
18413 switch (die->tag)
18414 {
18415 case DW_TAG_label:
e142c38c 18416 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18417 if (attr)
3e29f34a
MR
18418 {
18419 CORE_ADDR addr;
18420
18421 addr = attr_value_as_address (attr);
18422 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18423 SYMBOL_VALUE_ADDRESS (sym) = addr;
18424 }
0f5238ed
TT
18425 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18426 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18427 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18428 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18429 break;
18430 case DW_TAG_subprogram:
18431 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18432 finish_block. */
f1e6e072 18433 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18434 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18435 if ((attr2 && (DW_UNSND (attr2) != 0))
18436 || cu->language == language_ada)
c906108c 18437 {
2cfa0c8d
JB
18438 /* Subprograms marked external are stored as a global symbol.
18439 Ada subprograms, whether marked external or not, are always
18440 stored as a global symbol, because we want to be able to
18441 access them globally. For instance, we want to be able
18442 to break on a nested subprogram without having to
18443 specify the context. */
e37fd15a 18444 list_to_add = &global_symbols;
c906108c
SS
18445 }
18446 else
18447 {
e37fd15a 18448 list_to_add = cu->list_in_scope;
c906108c
SS
18449 }
18450 break;
edb3359d
DJ
18451 case DW_TAG_inlined_subroutine:
18452 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18453 finish_block. */
f1e6e072 18454 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18455 SYMBOL_INLINED (sym) = 1;
481860b3 18456 list_to_add = cu->list_in_scope;
edb3359d 18457 break;
34eaf542
TT
18458 case DW_TAG_template_value_param:
18459 suppress_add = 1;
18460 /* Fall through. */
72929c62 18461 case DW_TAG_constant:
c906108c 18462 case DW_TAG_variable:
254e6b9e 18463 case DW_TAG_member:
0963b4bd
MS
18464 /* Compilation with minimal debug info may result in
18465 variables with missing type entries. Change the
18466 misleading `void' type to something sensible. */
c906108c 18467 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18468 SYMBOL_TYPE (sym)
46bf5051 18469 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18470
e142c38c 18471 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18472 /* In the case of DW_TAG_member, we should only be called for
18473 static const members. */
18474 if (die->tag == DW_TAG_member)
18475 {
3863f96c
DE
18476 /* dwarf2_add_field uses die_is_declaration,
18477 so we do the same. */
254e6b9e
DE
18478 gdb_assert (die_is_declaration (die, cu));
18479 gdb_assert (attr);
18480 }
c906108c
SS
18481 if (attr)
18482 {
e7c27a73 18483 dwarf2_const_value (attr, sym, cu);
e142c38c 18484 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18485 if (!suppress_add)
34eaf542
TT
18486 {
18487 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18488 list_to_add = &global_symbols;
34eaf542 18489 else
e37fd15a 18490 list_to_add = cu->list_in_scope;
34eaf542 18491 }
c906108c
SS
18492 break;
18493 }
e142c38c 18494 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18495 if (attr)
18496 {
e7c27a73 18497 var_decode_location (attr, sym, cu);
e142c38c 18498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18499
18500 /* Fortran explicitly imports any global symbols to the local
18501 scope by DW_TAG_common_block. */
18502 if (cu->language == language_fortran && die->parent
18503 && die->parent->tag == DW_TAG_common_block)
18504 attr2 = NULL;
18505
caac4577
JG
18506 if (SYMBOL_CLASS (sym) == LOC_STATIC
18507 && SYMBOL_VALUE_ADDRESS (sym) == 0
18508 && !dwarf2_per_objfile->has_section_at_zero)
18509 {
18510 /* When a static variable is eliminated by the linker,
18511 the corresponding debug information is not stripped
18512 out, but the variable address is set to null;
18513 do not add such variables into symbol table. */
18514 }
18515 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18516 {
f55ee35c
JK
18517 /* Workaround gfortran PR debug/40040 - it uses
18518 DW_AT_location for variables in -fPIC libraries which may
18519 get overriden by other libraries/executable and get
18520 a different address. Resolve it by the minimal symbol
18521 which may come from inferior's executable using copy
18522 relocation. Make this workaround only for gfortran as for
18523 other compilers GDB cannot guess the minimal symbol
18524 Fortran mangling kind. */
18525 if (cu->language == language_fortran && die->parent
18526 && die->parent->tag == DW_TAG_module
18527 && cu->producer
28586665 18528 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18529 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18530
1c809c68
TT
18531 /* A variable with DW_AT_external is never static,
18532 but it may be block-scoped. */
18533 list_to_add = (cu->list_in_scope == &file_symbols
18534 ? &global_symbols : cu->list_in_scope);
1c809c68 18535 }
c906108c 18536 else
e37fd15a 18537 list_to_add = cu->list_in_scope;
c906108c
SS
18538 }
18539 else
18540 {
18541 /* We do not know the address of this symbol.
c5aa993b
JM
18542 If it is an external symbol and we have type information
18543 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18544 The address of the variable will then be determined from
18545 the minimal symbol table whenever the variable is
18546 referenced. */
e142c38c 18547 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18548
18549 /* Fortran explicitly imports any global symbols to the local
18550 scope by DW_TAG_common_block. */
18551 if (cu->language == language_fortran && die->parent
18552 && die->parent->tag == DW_TAG_common_block)
18553 {
18554 /* SYMBOL_CLASS doesn't matter here because
18555 read_common_block is going to reset it. */
18556 if (!suppress_add)
18557 list_to_add = cu->list_in_scope;
18558 }
18559 else if (attr2 && (DW_UNSND (attr2) != 0)
18560 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18561 {
0fe7935b
DJ
18562 /* A variable with DW_AT_external is never static, but it
18563 may be block-scoped. */
18564 list_to_add = (cu->list_in_scope == &file_symbols
18565 ? &global_symbols : cu->list_in_scope);
18566
f1e6e072 18567 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18568 }
442ddf59
JK
18569 else if (!die_is_declaration (die, cu))
18570 {
18571 /* Use the default LOC_OPTIMIZED_OUT class. */
18572 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18573 if (!suppress_add)
18574 list_to_add = cu->list_in_scope;
442ddf59 18575 }
c906108c
SS
18576 }
18577 break;
18578 case DW_TAG_formal_parameter:
edb3359d
DJ
18579 /* If we are inside a function, mark this as an argument. If
18580 not, we might be looking at an argument to an inlined function
18581 when we do not have enough information to show inlined frames;
18582 pretend it's a local variable in that case so that the user can
18583 still see it. */
18584 if (context_stack_depth > 0
18585 && context_stack[context_stack_depth - 1].name != NULL)
18586 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18587 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18588 if (attr)
18589 {
e7c27a73 18590 var_decode_location (attr, sym, cu);
c906108c 18591 }
e142c38c 18592 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18593 if (attr)
18594 {
e7c27a73 18595 dwarf2_const_value (attr, sym, cu);
c906108c 18596 }
f346a30d 18597
e37fd15a 18598 list_to_add = cu->list_in_scope;
c906108c
SS
18599 break;
18600 case DW_TAG_unspecified_parameters:
18601 /* From varargs functions; gdb doesn't seem to have any
18602 interest in this information, so just ignore it for now.
18603 (FIXME?) */
18604 break;
34eaf542
TT
18605 case DW_TAG_template_type_param:
18606 suppress_add = 1;
18607 /* Fall through. */
c906108c 18608 case DW_TAG_class_type:
680b30c7 18609 case DW_TAG_interface_type:
c906108c
SS
18610 case DW_TAG_structure_type:
18611 case DW_TAG_union_type:
72019c9c 18612 case DW_TAG_set_type:
c906108c 18613 case DW_TAG_enumeration_type:
f1e6e072 18614 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18615 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18616
63d06c5c 18617 {
9c37b5ae 18618 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
18619 really ever be static objects: otherwise, if you try
18620 to, say, break of a class's method and you're in a file
18621 which doesn't mention that class, it won't work unless
18622 the check for all static symbols in lookup_symbol_aux
18623 saves you. See the OtherFileClass tests in
18624 gdb.c++/namespace.exp. */
18625
e37fd15a 18626 if (!suppress_add)
34eaf542 18627 {
34eaf542 18628 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 18629 && cu->language == language_cplus
34eaf542 18630 ? &global_symbols : cu->list_in_scope);
63d06c5c 18631
64382290 18632 /* The semantics of C++ state that "struct foo {
9c37b5ae 18633 ... }" also defines a typedef for "foo". */
64382290 18634 if (cu->language == language_cplus
45280282 18635 || cu->language == language_ada
c44af4eb
TT
18636 || cu->language == language_d
18637 || cu->language == language_rust)
64382290
TT
18638 {
18639 /* The symbol's name is already allocated along
18640 with this objfile, so we don't need to
18641 duplicate it for the type. */
18642 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18643 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18644 }
63d06c5c
DC
18645 }
18646 }
c906108c
SS
18647 break;
18648 case DW_TAG_typedef:
f1e6e072 18649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18650 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18651 list_to_add = cu->list_in_scope;
63d06c5c 18652 break;
c906108c 18653 case DW_TAG_base_type:
a02abb62 18654 case DW_TAG_subrange_type:
f1e6e072 18655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18656 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18657 list_to_add = cu->list_in_scope;
c906108c
SS
18658 break;
18659 case DW_TAG_enumerator:
e142c38c 18660 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18661 if (attr)
18662 {
e7c27a73 18663 dwarf2_const_value (attr, sym, cu);
c906108c 18664 }
63d06c5c
DC
18665 {
18666 /* NOTE: carlton/2003-11-10: See comment above in the
18667 DW_TAG_class_type, etc. block. */
18668
e142c38c 18669 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 18670 && cu->language == language_cplus
e142c38c 18671 ? &global_symbols : cu->list_in_scope);
63d06c5c 18672 }
c906108c 18673 break;
74921315 18674 case DW_TAG_imported_declaration:
5c4e30ca 18675 case DW_TAG_namespace:
f1e6e072 18676 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18677 list_to_add = &global_symbols;
5c4e30ca 18678 break;
530e8392
KB
18679 case DW_TAG_module:
18680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18681 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18682 list_to_add = &global_symbols;
18683 break;
4357ac6c 18684 case DW_TAG_common_block:
f1e6e072 18685 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18686 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18687 add_symbol_to_list (sym, cu->list_in_scope);
18688 break;
c906108c
SS
18689 default:
18690 /* Not a tag we recognize. Hopefully we aren't processing
18691 trash data, but since we must specifically ignore things
18692 we don't recognize, there is nothing else we should do at
0963b4bd 18693 this point. */
e2e0b3e5 18694 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18695 dwarf_tag_name (die->tag));
c906108c
SS
18696 break;
18697 }
df8a16a1 18698
e37fd15a
SW
18699 if (suppress_add)
18700 {
18701 sym->hash_next = objfile->template_symbols;
18702 objfile->template_symbols = sym;
18703 list_to_add = NULL;
18704 }
18705
18706 if (list_to_add != NULL)
18707 add_symbol_to_list (sym, list_to_add);
18708
df8a16a1
DJ
18709 /* For the benefit of old versions of GCC, check for anonymous
18710 namespaces based on the demangled name. */
4d4ec4e5 18711 if (!cu->processing_has_namespace_info
94af9270 18712 && cu->language == language_cplus)
a10964d1 18713 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18714 }
18715 return (sym);
18716}
18717
34eaf542
TT
18718/* A wrapper for new_symbol_full that always allocates a new symbol. */
18719
18720static struct symbol *
18721new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18722{
18723 return new_symbol_full (die, type, cu, NULL);
18724}
18725
98bfdba5
PA
18726/* Given an attr with a DW_FORM_dataN value in host byte order,
18727 zero-extend it as appropriate for the symbol's type. The DWARF
18728 standard (v4) is not entirely clear about the meaning of using
18729 DW_FORM_dataN for a constant with a signed type, where the type is
18730 wider than the data. The conclusion of a discussion on the DWARF
18731 list was that this is unspecified. We choose to always zero-extend
18732 because that is the interpretation long in use by GCC. */
c906108c 18733
98bfdba5 18734static gdb_byte *
ff39bb5e 18735dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18736 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18737{
e7c27a73 18738 struct objfile *objfile = cu->objfile;
e17a4113
UW
18739 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18740 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18741 LONGEST l = DW_UNSND (attr);
18742
18743 if (bits < sizeof (*value) * 8)
18744 {
18745 l &= ((LONGEST) 1 << bits) - 1;
18746 *value = l;
18747 }
18748 else if (bits == sizeof (*value) * 8)
18749 *value = l;
18750 else
18751 {
224c3ddb 18752 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18753 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18754 return bytes;
18755 }
18756
18757 return NULL;
18758}
18759
18760/* Read a constant value from an attribute. Either set *VALUE, or if
18761 the value does not fit in *VALUE, set *BYTES - either already
18762 allocated on the objfile obstack, or newly allocated on OBSTACK,
18763 or, set *BATON, if we translated the constant to a location
18764 expression. */
18765
18766static void
ff39bb5e 18767dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18768 const char *name, struct obstack *obstack,
18769 struct dwarf2_cu *cu,
d521ce57 18770 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18771 struct dwarf2_locexpr_baton **baton)
18772{
18773 struct objfile *objfile = cu->objfile;
18774 struct comp_unit_head *cu_header = &cu->header;
c906108c 18775 struct dwarf_block *blk;
98bfdba5
PA
18776 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18777 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18778
18779 *value = 0;
18780 *bytes = NULL;
18781 *baton = NULL;
c906108c
SS
18782
18783 switch (attr->form)
18784 {
18785 case DW_FORM_addr:
3019eac3 18786 case DW_FORM_GNU_addr_index:
ac56253d 18787 {
ac56253d
TT
18788 gdb_byte *data;
18789
98bfdba5
PA
18790 if (TYPE_LENGTH (type) != cu_header->addr_size)
18791 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18792 cu_header->addr_size,
98bfdba5 18793 TYPE_LENGTH (type));
ac56253d
TT
18794 /* Symbols of this form are reasonably rare, so we just
18795 piggyback on the existing location code rather than writing
18796 a new implementation of symbol_computed_ops. */
8d749320 18797 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18798 (*baton)->per_cu = cu->per_cu;
18799 gdb_assert ((*baton)->per_cu);
ac56253d 18800
98bfdba5 18801 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18802 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18803 (*baton)->data = data;
ac56253d
TT
18804
18805 data[0] = DW_OP_addr;
18806 store_unsigned_integer (&data[1], cu_header->addr_size,
18807 byte_order, DW_ADDR (attr));
18808 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18809 }
c906108c 18810 break;
4ac36638 18811 case DW_FORM_string:
93b5768b 18812 case DW_FORM_strp:
3019eac3 18813 case DW_FORM_GNU_str_index:
36586728 18814 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18815 /* DW_STRING is already allocated on the objfile obstack, point
18816 directly to it. */
d521ce57 18817 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18818 break;
c906108c
SS
18819 case DW_FORM_block1:
18820 case DW_FORM_block2:
18821 case DW_FORM_block4:
18822 case DW_FORM_block:
2dc7f7b3 18823 case DW_FORM_exprloc:
c906108c 18824 blk = DW_BLOCK (attr);
98bfdba5
PA
18825 if (TYPE_LENGTH (type) != blk->size)
18826 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18827 TYPE_LENGTH (type));
18828 *bytes = blk->data;
c906108c 18829 break;
2df3850c
JM
18830
18831 /* The DW_AT_const_value attributes are supposed to carry the
18832 symbol's value "represented as it would be on the target
18833 architecture." By the time we get here, it's already been
18834 converted to host endianness, so we just need to sign- or
18835 zero-extend it as appropriate. */
18836 case DW_FORM_data1:
3aef2284 18837 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18838 break;
c906108c 18839 case DW_FORM_data2:
3aef2284 18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18841 break;
c906108c 18842 case DW_FORM_data4:
3aef2284 18843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18844 break;
c906108c 18845 case DW_FORM_data8:
3aef2284 18846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18847 break;
18848
c906108c 18849 case DW_FORM_sdata:
98bfdba5 18850 *value = DW_SND (attr);
2df3850c
JM
18851 break;
18852
c906108c 18853 case DW_FORM_udata:
98bfdba5 18854 *value = DW_UNSND (attr);
c906108c 18855 break;
2df3850c 18856
c906108c 18857 default:
4d3c2250 18858 complaint (&symfile_complaints,
e2e0b3e5 18859 _("unsupported const value attribute form: '%s'"),
4d3c2250 18860 dwarf_form_name (attr->form));
98bfdba5 18861 *value = 0;
c906108c
SS
18862 break;
18863 }
18864}
18865
2df3850c 18866
98bfdba5
PA
18867/* Copy constant value from an attribute to a symbol. */
18868
2df3850c 18869static void
ff39bb5e 18870dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18871 struct dwarf2_cu *cu)
2df3850c 18872{
98bfdba5 18873 struct objfile *objfile = cu->objfile;
12df843f 18874 LONGEST value;
d521ce57 18875 const gdb_byte *bytes;
98bfdba5 18876 struct dwarf2_locexpr_baton *baton;
2df3850c 18877
98bfdba5
PA
18878 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18879 SYMBOL_PRINT_NAME (sym),
18880 &objfile->objfile_obstack, cu,
18881 &value, &bytes, &baton);
2df3850c 18882
98bfdba5
PA
18883 if (baton != NULL)
18884 {
98bfdba5 18885 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18886 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18887 }
18888 else if (bytes != NULL)
18889 {
18890 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18891 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18892 }
18893 else
18894 {
18895 SYMBOL_VALUE (sym) = value;
f1e6e072 18896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18897 }
2df3850c
JM
18898}
18899
c906108c
SS
18900/* Return the type of the die in question using its DW_AT_type attribute. */
18901
18902static struct type *
e7c27a73 18903die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18904{
c906108c 18905 struct attribute *type_attr;
c906108c 18906
e142c38c 18907 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18908 if (!type_attr)
18909 {
18910 /* A missing DW_AT_type represents a void type. */
46bf5051 18911 return objfile_type (cu->objfile)->builtin_void;
c906108c 18912 }
348e048f 18913
673bfd45 18914 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18915}
18916
b4ba55a1
JB
18917/* True iff CU's producer generates GNAT Ada auxiliary information
18918 that allows to find parallel types through that information instead
18919 of having to do expensive parallel lookups by type name. */
18920
18921static int
18922need_gnat_info (struct dwarf2_cu *cu)
18923{
18924 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18925 of GNAT produces this auxiliary information, without any indication
18926 that it is produced. Part of enhancing the FSF version of GNAT
18927 to produce that information will be to put in place an indicator
18928 that we can use in order to determine whether the descriptive type
18929 info is available or not. One suggestion that has been made is
18930 to use a new attribute, attached to the CU die. For now, assume
18931 that the descriptive type info is not available. */
18932 return 0;
18933}
18934
b4ba55a1
JB
18935/* Return the auxiliary type of the die in question using its
18936 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18937 attribute is not present. */
18938
18939static struct type *
18940die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18941{
b4ba55a1 18942 struct attribute *type_attr;
b4ba55a1
JB
18943
18944 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18945 if (!type_attr)
18946 return NULL;
18947
673bfd45 18948 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18949}
18950
18951/* If DIE has a descriptive_type attribute, then set the TYPE's
18952 descriptive type accordingly. */
18953
18954static void
18955set_descriptive_type (struct type *type, struct die_info *die,
18956 struct dwarf2_cu *cu)
18957{
18958 struct type *descriptive_type = die_descriptive_type (die, cu);
18959
18960 if (descriptive_type)
18961 {
18962 ALLOCATE_GNAT_AUX_TYPE (type);
18963 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18964 }
18965}
18966
c906108c
SS
18967/* Return the containing type of the die in question using its
18968 DW_AT_containing_type attribute. */
18969
18970static struct type *
e7c27a73 18971die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18972{
c906108c 18973 struct attribute *type_attr;
c906108c 18974
e142c38c 18975 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18976 if (!type_attr)
18977 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18978 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18979
673bfd45 18980 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18981}
18982
ac9ec31b
DE
18983/* Return an error marker type to use for the ill formed type in DIE/CU. */
18984
18985static struct type *
18986build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18987{
18988 struct objfile *objfile = dwarf2_per_objfile->objfile;
18989 char *message, *saved;
18990
18991 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18992 objfile_name (objfile),
ac9ec31b
DE
18993 cu->header.offset.sect_off,
18994 die->offset.sect_off);
224c3ddb
SM
18995 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18996 message, strlen (message));
ac9ec31b
DE
18997 xfree (message);
18998
19f392bc 18999 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19000}
19001
673bfd45 19002/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19003 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19004 DW_AT_containing_type.
673bfd45
DE
19005 If there is no type substitute an error marker. */
19006
c906108c 19007static struct type *
ff39bb5e 19008lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19009 struct dwarf2_cu *cu)
c906108c 19010{
bb5ed363 19011 struct objfile *objfile = cu->objfile;
f792889a
DJ
19012 struct type *this_type;
19013
ac9ec31b
DE
19014 gdb_assert (attr->name == DW_AT_type
19015 || attr->name == DW_AT_GNAT_descriptive_type
19016 || attr->name == DW_AT_containing_type);
19017
673bfd45
DE
19018 /* First see if we have it cached. */
19019
36586728
TT
19020 if (attr->form == DW_FORM_GNU_ref_alt)
19021 {
19022 struct dwarf2_per_cu_data *per_cu;
19023 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19024
19025 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19026 this_type = get_die_type_at_offset (offset, per_cu);
19027 }
7771576e 19028 else if (attr_form_is_ref (attr))
673bfd45 19029 {
b64f50a1 19030 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19031
19032 this_type = get_die_type_at_offset (offset, cu->per_cu);
19033 }
55f1336d 19034 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19035 {
ac9ec31b 19036 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19037
ac9ec31b 19038 return get_signatured_type (die, signature, cu);
673bfd45
DE
19039 }
19040 else
19041 {
ac9ec31b
DE
19042 complaint (&symfile_complaints,
19043 _("Dwarf Error: Bad type attribute %s in DIE"
19044 " at 0x%x [in module %s]"),
19045 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19046 objfile_name (objfile));
ac9ec31b 19047 return build_error_marker_type (cu, die);
673bfd45
DE
19048 }
19049
19050 /* If not cached we need to read it in. */
19051
19052 if (this_type == NULL)
19053 {
ac9ec31b 19054 struct die_info *type_die = NULL;
673bfd45
DE
19055 struct dwarf2_cu *type_cu = cu;
19056
7771576e 19057 if (attr_form_is_ref (attr))
ac9ec31b
DE
19058 type_die = follow_die_ref (die, attr, &type_cu);
19059 if (type_die == NULL)
19060 return build_error_marker_type (cu, die);
19061 /* If we find the type now, it's probably because the type came
3019eac3
DE
19062 from an inter-CU reference and the type's CU got expanded before
19063 ours. */
ac9ec31b 19064 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19065 }
19066
19067 /* If we still don't have a type use an error marker. */
19068
19069 if (this_type == NULL)
ac9ec31b 19070 return build_error_marker_type (cu, die);
673bfd45 19071
f792889a 19072 return this_type;
c906108c
SS
19073}
19074
673bfd45
DE
19075/* Return the type in DIE, CU.
19076 Returns NULL for invalid types.
19077
02142a6c 19078 This first does a lookup in die_type_hash,
673bfd45
DE
19079 and only reads the die in if necessary.
19080
19081 NOTE: This can be called when reading in partial or full symbols. */
19082
f792889a 19083static struct type *
e7c27a73 19084read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19085{
f792889a
DJ
19086 struct type *this_type;
19087
19088 this_type = get_die_type (die, cu);
19089 if (this_type)
19090 return this_type;
19091
673bfd45
DE
19092 return read_type_die_1 (die, cu);
19093}
19094
19095/* Read the type in DIE, CU.
19096 Returns NULL for invalid types. */
19097
19098static struct type *
19099read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19100{
19101 struct type *this_type = NULL;
19102
c906108c
SS
19103 switch (die->tag)
19104 {
19105 case DW_TAG_class_type:
680b30c7 19106 case DW_TAG_interface_type:
c906108c
SS
19107 case DW_TAG_structure_type:
19108 case DW_TAG_union_type:
f792889a 19109 this_type = read_structure_type (die, cu);
c906108c
SS
19110 break;
19111 case DW_TAG_enumeration_type:
f792889a 19112 this_type = read_enumeration_type (die, cu);
c906108c
SS
19113 break;
19114 case DW_TAG_subprogram:
19115 case DW_TAG_subroutine_type:
edb3359d 19116 case DW_TAG_inlined_subroutine:
f792889a 19117 this_type = read_subroutine_type (die, cu);
c906108c
SS
19118 break;
19119 case DW_TAG_array_type:
f792889a 19120 this_type = read_array_type (die, cu);
c906108c 19121 break;
72019c9c 19122 case DW_TAG_set_type:
f792889a 19123 this_type = read_set_type (die, cu);
72019c9c 19124 break;
c906108c 19125 case DW_TAG_pointer_type:
f792889a 19126 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19127 break;
19128 case DW_TAG_ptr_to_member_type:
f792889a 19129 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19130 break;
19131 case DW_TAG_reference_type:
f792889a 19132 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19133 break;
19134 case DW_TAG_const_type:
f792889a 19135 this_type = read_tag_const_type (die, cu);
c906108c
SS
19136 break;
19137 case DW_TAG_volatile_type:
f792889a 19138 this_type = read_tag_volatile_type (die, cu);
c906108c 19139 break;
06d66ee9
TT
19140 case DW_TAG_restrict_type:
19141 this_type = read_tag_restrict_type (die, cu);
19142 break;
c906108c 19143 case DW_TAG_string_type:
f792889a 19144 this_type = read_tag_string_type (die, cu);
c906108c
SS
19145 break;
19146 case DW_TAG_typedef:
f792889a 19147 this_type = read_typedef (die, cu);
c906108c 19148 break;
a02abb62 19149 case DW_TAG_subrange_type:
f792889a 19150 this_type = read_subrange_type (die, cu);
a02abb62 19151 break;
c906108c 19152 case DW_TAG_base_type:
f792889a 19153 this_type = read_base_type (die, cu);
c906108c 19154 break;
81a17f79 19155 case DW_TAG_unspecified_type:
f792889a 19156 this_type = read_unspecified_type (die, cu);
81a17f79 19157 break;
0114d602
DJ
19158 case DW_TAG_namespace:
19159 this_type = read_namespace_type (die, cu);
19160 break;
f55ee35c
JK
19161 case DW_TAG_module:
19162 this_type = read_module_type (die, cu);
19163 break;
a2c2acaf
MW
19164 case DW_TAG_atomic_type:
19165 this_type = read_tag_atomic_type (die, cu);
19166 break;
c906108c 19167 default:
3e43a32a
MS
19168 complaint (&symfile_complaints,
19169 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19170 dwarf_tag_name (die->tag));
c906108c
SS
19171 break;
19172 }
63d06c5c 19173
f792889a 19174 return this_type;
63d06c5c
DC
19175}
19176
abc72ce4
DE
19177/* See if we can figure out if the class lives in a namespace. We do
19178 this by looking for a member function; its demangled name will
19179 contain namespace info, if there is any.
19180 Return the computed name or NULL.
19181 Space for the result is allocated on the objfile's obstack.
19182 This is the full-die version of guess_partial_die_structure_name.
19183 In this case we know DIE has no useful parent. */
19184
19185static char *
19186guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19187{
19188 struct die_info *spec_die;
19189 struct dwarf2_cu *spec_cu;
19190 struct die_info *child;
19191
19192 spec_cu = cu;
19193 spec_die = die_specification (die, &spec_cu);
19194 if (spec_die != NULL)
19195 {
19196 die = spec_die;
19197 cu = spec_cu;
19198 }
19199
19200 for (child = die->child;
19201 child != NULL;
19202 child = child->sibling)
19203 {
19204 if (child->tag == DW_TAG_subprogram)
19205 {
7d45c7c3 19206 const char *linkage_name;
abc72ce4 19207
7d45c7c3
KB
19208 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19209 if (linkage_name == NULL)
19210 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19211 cu);
19212 if (linkage_name != NULL)
abc72ce4
DE
19213 {
19214 char *actual_name
19215 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19216 linkage_name);
abc72ce4
DE
19217 char *name = NULL;
19218
19219 if (actual_name != NULL)
19220 {
15d034d0 19221 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19222
19223 if (die_name != NULL
19224 && strcmp (die_name, actual_name) != 0)
19225 {
19226 /* Strip off the class name from the full name.
19227 We want the prefix. */
19228 int die_name_len = strlen (die_name);
19229 int actual_name_len = strlen (actual_name);
19230
19231 /* Test for '::' as a sanity check. */
19232 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19233 && actual_name[actual_name_len
19234 - die_name_len - 1] == ':')
224c3ddb
SM
19235 name = (char *) obstack_copy0 (
19236 &cu->objfile->per_bfd->storage_obstack,
19237 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19238 }
19239 }
19240 xfree (actual_name);
19241 return name;
19242 }
19243 }
19244 }
19245
19246 return NULL;
19247}
19248
96408a79
SA
19249/* GCC might emit a nameless typedef that has a linkage name. Determine the
19250 prefix part in such case. See
19251 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19252
19253static char *
19254anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19255{
19256 struct attribute *attr;
e6a959d6 19257 const char *base;
96408a79
SA
19258
19259 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19260 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19261 return NULL;
19262
7d45c7c3 19263 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19264 return NULL;
19265
19266 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19267 if (attr == NULL)
19268 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19269 if (attr == NULL || DW_STRING (attr) == NULL)
19270 return NULL;
19271
19272 /* dwarf2_name had to be already called. */
19273 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19274
19275 /* Strip the base name, keep any leading namespaces/classes. */
19276 base = strrchr (DW_STRING (attr), ':');
19277 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19278 return "";
19279
224c3ddb
SM
19280 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19281 DW_STRING (attr),
19282 &base[-1] - DW_STRING (attr));
96408a79
SA
19283}
19284
fdde2d81 19285/* Return the name of the namespace/class that DIE is defined within,
0114d602 19286 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19287
0114d602
DJ
19288 For example, if we're within the method foo() in the following
19289 code:
19290
19291 namespace N {
19292 class C {
19293 void foo () {
19294 }
19295 };
19296 }
19297
19298 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19299
0d5cff50 19300static const char *
e142c38c 19301determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19302{
0114d602
DJ
19303 struct die_info *parent, *spec_die;
19304 struct dwarf2_cu *spec_cu;
19305 struct type *parent_type;
96408a79 19306 char *retval;
63d06c5c 19307
9c37b5ae 19308 if (cu->language != language_cplus
c44af4eb
TT
19309 && cu->language != language_fortran && cu->language != language_d
19310 && cu->language != language_rust)
0114d602
DJ
19311 return "";
19312
96408a79
SA
19313 retval = anonymous_struct_prefix (die, cu);
19314 if (retval)
19315 return retval;
19316
0114d602
DJ
19317 /* We have to be careful in the presence of DW_AT_specification.
19318 For example, with GCC 3.4, given the code
19319
19320 namespace N {
19321 void foo() {
19322 // Definition of N::foo.
19323 }
19324 }
19325
19326 then we'll have a tree of DIEs like this:
19327
19328 1: DW_TAG_compile_unit
19329 2: DW_TAG_namespace // N
19330 3: DW_TAG_subprogram // declaration of N::foo
19331 4: DW_TAG_subprogram // definition of N::foo
19332 DW_AT_specification // refers to die #3
19333
19334 Thus, when processing die #4, we have to pretend that we're in
19335 the context of its DW_AT_specification, namely the contex of die
19336 #3. */
19337 spec_cu = cu;
19338 spec_die = die_specification (die, &spec_cu);
19339 if (spec_die == NULL)
19340 parent = die->parent;
19341 else
63d06c5c 19342 {
0114d602
DJ
19343 parent = spec_die->parent;
19344 cu = spec_cu;
63d06c5c 19345 }
0114d602
DJ
19346
19347 if (parent == NULL)
19348 return "";
98bfdba5
PA
19349 else if (parent->building_fullname)
19350 {
19351 const char *name;
19352 const char *parent_name;
19353
19354 /* It has been seen on RealView 2.2 built binaries,
19355 DW_TAG_template_type_param types actually _defined_ as
19356 children of the parent class:
19357
19358 enum E {};
19359 template class <class Enum> Class{};
19360 Class<enum E> class_e;
19361
19362 1: DW_TAG_class_type (Class)
19363 2: DW_TAG_enumeration_type (E)
19364 3: DW_TAG_enumerator (enum1:0)
19365 3: DW_TAG_enumerator (enum2:1)
19366 ...
19367 2: DW_TAG_template_type_param
19368 DW_AT_type DW_FORM_ref_udata (E)
19369
19370 Besides being broken debug info, it can put GDB into an
19371 infinite loop. Consider:
19372
19373 When we're building the full name for Class<E>, we'll start
19374 at Class, and go look over its template type parameters,
19375 finding E. We'll then try to build the full name of E, and
19376 reach here. We're now trying to build the full name of E,
19377 and look over the parent DIE for containing scope. In the
19378 broken case, if we followed the parent DIE of E, we'd again
19379 find Class, and once again go look at its template type
19380 arguments, etc., etc. Simply don't consider such parent die
19381 as source-level parent of this die (it can't be, the language
19382 doesn't allow it), and break the loop here. */
19383 name = dwarf2_name (die, cu);
19384 parent_name = dwarf2_name (parent, cu);
19385 complaint (&symfile_complaints,
19386 _("template param type '%s' defined within parent '%s'"),
19387 name ? name : "<unknown>",
19388 parent_name ? parent_name : "<unknown>");
19389 return "";
19390 }
63d06c5c 19391 else
0114d602
DJ
19392 switch (parent->tag)
19393 {
63d06c5c 19394 case DW_TAG_namespace:
0114d602 19395 parent_type = read_type_die (parent, cu);
acebe513
UW
19396 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19397 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19398 Work around this problem here. */
19399 if (cu->language == language_cplus
19400 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19401 return "";
0114d602
DJ
19402 /* We give a name to even anonymous namespaces. */
19403 return TYPE_TAG_NAME (parent_type);
63d06c5c 19404 case DW_TAG_class_type:
680b30c7 19405 case DW_TAG_interface_type:
63d06c5c 19406 case DW_TAG_structure_type:
0114d602 19407 case DW_TAG_union_type:
f55ee35c 19408 case DW_TAG_module:
0114d602
DJ
19409 parent_type = read_type_die (parent, cu);
19410 if (TYPE_TAG_NAME (parent_type) != NULL)
19411 return TYPE_TAG_NAME (parent_type);
19412 else
19413 /* An anonymous structure is only allowed non-static data
19414 members; no typedefs, no member functions, et cetera.
19415 So it does not need a prefix. */
19416 return "";
abc72ce4 19417 case DW_TAG_compile_unit:
95554aad 19418 case DW_TAG_partial_unit:
abc72ce4
DE
19419 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19420 if (cu->language == language_cplus
8b70b953 19421 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19422 && die->child != NULL
19423 && (die->tag == DW_TAG_class_type
19424 || die->tag == DW_TAG_structure_type
19425 || die->tag == DW_TAG_union_type))
19426 {
19427 char *name = guess_full_die_structure_name (die, cu);
19428 if (name != NULL)
19429 return name;
19430 }
19431 return "";
3d567982
TT
19432 case DW_TAG_enumeration_type:
19433 parent_type = read_type_die (parent, cu);
19434 if (TYPE_DECLARED_CLASS (parent_type))
19435 {
19436 if (TYPE_TAG_NAME (parent_type) != NULL)
19437 return TYPE_TAG_NAME (parent_type);
19438 return "";
19439 }
19440 /* Fall through. */
63d06c5c 19441 default:
8176b9b8 19442 return determine_prefix (parent, cu);
63d06c5c 19443 }
63d06c5c
DC
19444}
19445
3e43a32a
MS
19446/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19447 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19448 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19449 an obconcat, otherwise allocate storage for the result. The CU argument is
19450 used to determine the language and hence, the appropriate separator. */
987504bb 19451
f55ee35c 19452#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19453
19454static char *
f55ee35c
JK
19455typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19456 int physname, struct dwarf2_cu *cu)
63d06c5c 19457{
f55ee35c 19458 const char *lead = "";
5c315b68 19459 const char *sep;
63d06c5c 19460
3e43a32a
MS
19461 if (suffix == NULL || suffix[0] == '\0'
19462 || prefix == NULL || prefix[0] == '\0')
987504bb 19463 sep = "";
45280282
IB
19464 else if (cu->language == language_d)
19465 {
19466 /* For D, the 'main' function could be defined in any module, but it
19467 should never be prefixed. */
19468 if (strcmp (suffix, "D main") == 0)
19469 {
19470 prefix = "";
19471 sep = "";
19472 }
19473 else
19474 sep = ".";
19475 }
f55ee35c
JK
19476 else if (cu->language == language_fortran && physname)
19477 {
19478 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19479 DW_AT_MIPS_linkage_name is preferred and used instead. */
19480
19481 lead = "__";
19482 sep = "_MOD_";
19483 }
987504bb
JJ
19484 else
19485 sep = "::";
63d06c5c 19486
6dd47d34
DE
19487 if (prefix == NULL)
19488 prefix = "";
19489 if (suffix == NULL)
19490 suffix = "";
19491
987504bb
JJ
19492 if (obs == NULL)
19493 {
3e43a32a 19494 char *retval
224c3ddb
SM
19495 = ((char *)
19496 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19497
f55ee35c
JK
19498 strcpy (retval, lead);
19499 strcat (retval, prefix);
6dd47d34
DE
19500 strcat (retval, sep);
19501 strcat (retval, suffix);
63d06c5c
DC
19502 return retval;
19503 }
987504bb
JJ
19504 else
19505 {
19506 /* We have an obstack. */
f55ee35c 19507 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19508 }
63d06c5c
DC
19509}
19510
c906108c
SS
19511/* Return sibling of die, NULL if no sibling. */
19512
f9aca02d 19513static struct die_info *
fba45db2 19514sibling_die (struct die_info *die)
c906108c 19515{
639d11d3 19516 return die->sibling;
c906108c
SS
19517}
19518
71c25dea
TT
19519/* Get name of a die, return NULL if not found. */
19520
15d034d0
TT
19521static const char *
19522dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19523 struct obstack *obstack)
19524{
19525 if (name && cu->language == language_cplus)
19526 {
19527 char *canon_name = cp_canonicalize_string (name);
19528
19529 if (canon_name != NULL)
19530 {
19531 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19532 name = (const char *) obstack_copy0 (obstack, canon_name,
19533 strlen (canon_name));
71c25dea
TT
19534 xfree (canon_name);
19535 }
19536 }
19537
19538 return name;
c906108c
SS
19539}
19540
96553a0c
DE
19541/* Get name of a die, return NULL if not found.
19542 Anonymous namespaces are converted to their magic string. */
9219021c 19543
15d034d0 19544static const char *
e142c38c 19545dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19546{
19547 struct attribute *attr;
19548
e142c38c 19549 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19550 if ((!attr || !DW_STRING (attr))
96553a0c 19551 && die->tag != DW_TAG_namespace
53832f31
TT
19552 && die->tag != DW_TAG_class_type
19553 && die->tag != DW_TAG_interface_type
19554 && die->tag != DW_TAG_structure_type
19555 && die->tag != DW_TAG_union_type)
71c25dea
TT
19556 return NULL;
19557
19558 switch (die->tag)
19559 {
19560 case DW_TAG_compile_unit:
95554aad 19561 case DW_TAG_partial_unit:
71c25dea
TT
19562 /* Compilation units have a DW_AT_name that is a filename, not
19563 a source language identifier. */
19564 case DW_TAG_enumeration_type:
19565 case DW_TAG_enumerator:
19566 /* These tags always have simple identifiers already; no need
19567 to canonicalize them. */
19568 return DW_STRING (attr);
907af001 19569
96553a0c
DE
19570 case DW_TAG_namespace:
19571 if (attr != NULL && DW_STRING (attr) != NULL)
19572 return DW_STRING (attr);
19573 return CP_ANONYMOUS_NAMESPACE_STR;
19574
907af001
UW
19575 case DW_TAG_class_type:
19576 case DW_TAG_interface_type:
19577 case DW_TAG_structure_type:
19578 case DW_TAG_union_type:
19579 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19580 structures or unions. These were of the form "._%d" in GCC 4.1,
19581 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19582 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19583 if (attr && DW_STRING (attr)
61012eef
GB
19584 && (startswith (DW_STRING (attr), "._")
19585 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19586 return NULL;
53832f31
TT
19587
19588 /* GCC might emit a nameless typedef that has a linkage name. See
19589 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19590 if (!attr || DW_STRING (attr) == NULL)
19591 {
df5c6c50 19592 char *demangled = NULL;
53832f31
TT
19593
19594 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19595 if (attr == NULL)
19596 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19597
19598 if (attr == NULL || DW_STRING (attr) == NULL)
19599 return NULL;
19600
df5c6c50
JK
19601 /* Avoid demangling DW_STRING (attr) the second time on a second
19602 call for the same DIE. */
19603 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19604 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19605
19606 if (demangled)
19607 {
e6a959d6 19608 const char *base;
96408a79 19609
53832f31 19610 /* FIXME: we already did this for the partial symbol... */
34a68019 19611 DW_STRING (attr)
224c3ddb
SM
19612 = ((const char *)
19613 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19614 demangled, strlen (demangled)));
53832f31
TT
19615 DW_STRING_IS_CANONICAL (attr) = 1;
19616 xfree (demangled);
96408a79
SA
19617
19618 /* Strip any leading namespaces/classes, keep only the base name.
19619 DW_AT_name for named DIEs does not contain the prefixes. */
19620 base = strrchr (DW_STRING (attr), ':');
19621 if (base && base > DW_STRING (attr) && base[-1] == ':')
19622 return &base[1];
19623 else
19624 return DW_STRING (attr);
53832f31
TT
19625 }
19626 }
907af001
UW
19627 break;
19628
71c25dea 19629 default:
907af001
UW
19630 break;
19631 }
19632
19633 if (!DW_STRING_IS_CANONICAL (attr))
19634 {
19635 DW_STRING (attr)
19636 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19637 &cu->objfile->per_bfd->storage_obstack);
907af001 19638 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19639 }
907af001 19640 return DW_STRING (attr);
9219021c
DC
19641}
19642
19643/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19644 is none. *EXT_CU is the CU containing DIE on input, and the CU
19645 containing the return value on output. */
9219021c
DC
19646
19647static struct die_info *
f2f0e013 19648dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19649{
19650 struct attribute *attr;
9219021c 19651
f2f0e013 19652 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19653 if (attr == NULL)
19654 return NULL;
19655
f2f0e013 19656 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19657}
19658
c906108c
SS
19659/* Convert a DIE tag into its string name. */
19660
f39c6ffd 19661static const char *
aa1ee363 19662dwarf_tag_name (unsigned tag)
c906108c 19663{
f39c6ffd
TT
19664 const char *name = get_DW_TAG_name (tag);
19665
19666 if (name == NULL)
19667 return "DW_TAG_<unknown>";
19668
19669 return name;
c906108c
SS
19670}
19671
19672/* Convert a DWARF attribute code into its string name. */
19673
f39c6ffd 19674static const char *
aa1ee363 19675dwarf_attr_name (unsigned attr)
c906108c 19676{
f39c6ffd
TT
19677 const char *name;
19678
c764a876 19679#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19680 if (attr == DW_AT_MIPS_fde)
19681 return "DW_AT_MIPS_fde";
19682#else
19683 if (attr == DW_AT_HP_block_index)
19684 return "DW_AT_HP_block_index";
c764a876 19685#endif
f39c6ffd
TT
19686
19687 name = get_DW_AT_name (attr);
19688
19689 if (name == NULL)
19690 return "DW_AT_<unknown>";
19691
19692 return name;
c906108c
SS
19693}
19694
19695/* Convert a DWARF value form code into its string name. */
19696
f39c6ffd 19697static const char *
aa1ee363 19698dwarf_form_name (unsigned form)
c906108c 19699{
f39c6ffd
TT
19700 const char *name = get_DW_FORM_name (form);
19701
19702 if (name == NULL)
19703 return "DW_FORM_<unknown>";
19704
19705 return name;
c906108c
SS
19706}
19707
19708static char *
fba45db2 19709dwarf_bool_name (unsigned mybool)
c906108c
SS
19710{
19711 if (mybool)
19712 return "TRUE";
19713 else
19714 return "FALSE";
19715}
19716
19717/* Convert a DWARF type code into its string name. */
19718
f39c6ffd 19719static const char *
aa1ee363 19720dwarf_type_encoding_name (unsigned enc)
c906108c 19721{
f39c6ffd 19722 const char *name = get_DW_ATE_name (enc);
c906108c 19723
f39c6ffd
TT
19724 if (name == NULL)
19725 return "DW_ATE_<unknown>";
c906108c 19726
f39c6ffd 19727 return name;
c906108c 19728}
c906108c 19729
f9aca02d 19730static void
d97bc12b 19731dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19732{
19733 unsigned int i;
19734
d97bc12b
DE
19735 print_spaces (indent, f);
19736 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19737 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19738
19739 if (die->parent != NULL)
19740 {
19741 print_spaces (indent, f);
19742 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19743 die->parent->offset.sect_off);
d97bc12b
DE
19744 }
19745
19746 print_spaces (indent, f);
19747 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19748 dwarf_bool_name (die->child != NULL));
c906108c 19749
d97bc12b
DE
19750 print_spaces (indent, f);
19751 fprintf_unfiltered (f, " attributes:\n");
19752
c906108c
SS
19753 for (i = 0; i < die->num_attrs; ++i)
19754 {
d97bc12b
DE
19755 print_spaces (indent, f);
19756 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19757 dwarf_attr_name (die->attrs[i].name),
19758 dwarf_form_name (die->attrs[i].form));
d97bc12b 19759
c906108c
SS
19760 switch (die->attrs[i].form)
19761 {
c906108c 19762 case DW_FORM_addr:
3019eac3 19763 case DW_FORM_GNU_addr_index:
d97bc12b 19764 fprintf_unfiltered (f, "address: ");
5af949e3 19765 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19766 break;
19767 case DW_FORM_block2:
19768 case DW_FORM_block4:
19769 case DW_FORM_block:
19770 case DW_FORM_block1:
56eb65bd
SP
19771 fprintf_unfiltered (f, "block: size %s",
19772 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19773 break;
2dc7f7b3 19774 case DW_FORM_exprloc:
56eb65bd
SP
19775 fprintf_unfiltered (f, "expression: size %s",
19776 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19777 break;
4568ecf9
DE
19778 case DW_FORM_ref_addr:
19779 fprintf_unfiltered (f, "ref address: ");
19780 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19781 break;
36586728
TT
19782 case DW_FORM_GNU_ref_alt:
19783 fprintf_unfiltered (f, "alt ref address: ");
19784 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19785 break;
10b3939b
DJ
19786 case DW_FORM_ref1:
19787 case DW_FORM_ref2:
19788 case DW_FORM_ref4:
4568ecf9
DE
19789 case DW_FORM_ref8:
19790 case DW_FORM_ref_udata:
d97bc12b 19791 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19792 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19793 break;
c906108c
SS
19794 case DW_FORM_data1:
19795 case DW_FORM_data2:
19796 case DW_FORM_data4:
ce5d95e1 19797 case DW_FORM_data8:
c906108c
SS
19798 case DW_FORM_udata:
19799 case DW_FORM_sdata:
43bbcdc2
PH
19800 fprintf_unfiltered (f, "constant: %s",
19801 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19802 break;
2dc7f7b3
TT
19803 case DW_FORM_sec_offset:
19804 fprintf_unfiltered (f, "section offset: %s",
19805 pulongest (DW_UNSND (&die->attrs[i])));
19806 break;
55f1336d 19807 case DW_FORM_ref_sig8:
ac9ec31b
DE
19808 fprintf_unfiltered (f, "signature: %s",
19809 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19810 break;
c906108c 19811 case DW_FORM_string:
4bdf3d34 19812 case DW_FORM_strp:
3019eac3 19813 case DW_FORM_GNU_str_index:
36586728 19814 case DW_FORM_GNU_strp_alt:
8285870a 19815 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19816 DW_STRING (&die->attrs[i])
8285870a
JK
19817 ? DW_STRING (&die->attrs[i]) : "",
19818 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19819 break;
19820 case DW_FORM_flag:
19821 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19822 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19823 else
d97bc12b 19824 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19825 break;
2dc7f7b3
TT
19826 case DW_FORM_flag_present:
19827 fprintf_unfiltered (f, "flag: TRUE");
19828 break;
a8329558 19829 case DW_FORM_indirect:
0963b4bd
MS
19830 /* The reader will have reduced the indirect form to
19831 the "base form" so this form should not occur. */
3e43a32a
MS
19832 fprintf_unfiltered (f,
19833 "unexpected attribute form: DW_FORM_indirect");
a8329558 19834 break;
c906108c 19835 default:
d97bc12b 19836 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19837 die->attrs[i].form);
d97bc12b 19838 break;
c906108c 19839 }
d97bc12b 19840 fprintf_unfiltered (f, "\n");
c906108c
SS
19841 }
19842}
19843
f9aca02d 19844static void
d97bc12b 19845dump_die_for_error (struct die_info *die)
c906108c 19846{
d97bc12b
DE
19847 dump_die_shallow (gdb_stderr, 0, die);
19848}
19849
19850static void
19851dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19852{
19853 int indent = level * 4;
19854
19855 gdb_assert (die != NULL);
19856
19857 if (level >= max_level)
19858 return;
19859
19860 dump_die_shallow (f, indent, die);
19861
19862 if (die->child != NULL)
c906108c 19863 {
d97bc12b
DE
19864 print_spaces (indent, f);
19865 fprintf_unfiltered (f, " Children:");
19866 if (level + 1 < max_level)
19867 {
19868 fprintf_unfiltered (f, "\n");
19869 dump_die_1 (f, level + 1, max_level, die->child);
19870 }
19871 else
19872 {
3e43a32a
MS
19873 fprintf_unfiltered (f,
19874 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19875 }
19876 }
19877
19878 if (die->sibling != NULL && level > 0)
19879 {
19880 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19881 }
19882}
19883
d97bc12b
DE
19884/* This is called from the pdie macro in gdbinit.in.
19885 It's not static so gcc will keep a copy callable from gdb. */
19886
19887void
19888dump_die (struct die_info *die, int max_level)
19889{
19890 dump_die_1 (gdb_stdlog, 0, max_level, die);
19891}
19892
f9aca02d 19893static void
51545339 19894store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19895{
51545339 19896 void **slot;
c906108c 19897
b64f50a1
JK
19898 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19899 INSERT);
51545339
DJ
19900
19901 *slot = die;
c906108c
SS
19902}
19903
b64f50a1
JK
19904/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19905 required kind. */
19906
19907static sect_offset
ff39bb5e 19908dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19909{
4568ecf9 19910 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19911
7771576e 19912 if (attr_form_is_ref (attr))
b64f50a1 19913 return retval;
93311388 19914
b64f50a1 19915 retval.sect_off = 0;
93311388
DE
19916 complaint (&symfile_complaints,
19917 _("unsupported die ref attribute form: '%s'"),
19918 dwarf_form_name (attr->form));
b64f50a1 19919 return retval;
c906108c
SS
19920}
19921
43bbcdc2
PH
19922/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19923 * the value held by the attribute is not constant. */
a02abb62 19924
43bbcdc2 19925static LONGEST
ff39bb5e 19926dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19927{
19928 if (attr->form == DW_FORM_sdata)
19929 return DW_SND (attr);
19930 else if (attr->form == DW_FORM_udata
19931 || attr->form == DW_FORM_data1
19932 || attr->form == DW_FORM_data2
19933 || attr->form == DW_FORM_data4
19934 || attr->form == DW_FORM_data8)
19935 return DW_UNSND (attr);
19936 else
19937 {
3e43a32a
MS
19938 complaint (&symfile_complaints,
19939 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19940 dwarf_form_name (attr->form));
19941 return default_value;
19942 }
19943}
19944
348e048f
DE
19945/* Follow reference or signature attribute ATTR of SRC_DIE.
19946 On entry *REF_CU is the CU of SRC_DIE.
19947 On exit *REF_CU is the CU of the result. */
19948
19949static struct die_info *
ff39bb5e 19950follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19951 struct dwarf2_cu **ref_cu)
19952{
19953 struct die_info *die;
19954
7771576e 19955 if (attr_form_is_ref (attr))
348e048f 19956 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19957 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19958 die = follow_die_sig (src_die, attr, ref_cu);
19959 else
19960 {
19961 dump_die_for_error (src_die);
19962 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19963 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19964 }
19965
19966 return die;
03dd20cc
DJ
19967}
19968
5c631832 19969/* Follow reference OFFSET.
673bfd45
DE
19970 On entry *REF_CU is the CU of the source die referencing OFFSET.
19971 On exit *REF_CU is the CU of the result.
19972 Returns NULL if OFFSET is invalid. */
f504f079 19973
f9aca02d 19974static struct die_info *
36586728
TT
19975follow_die_offset (sect_offset offset, int offset_in_dwz,
19976 struct dwarf2_cu **ref_cu)
c906108c 19977{
10b3939b 19978 struct die_info temp_die;
f2f0e013 19979 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19980
348e048f
DE
19981 gdb_assert (cu->per_cu != NULL);
19982
98bfdba5
PA
19983 target_cu = cu;
19984
3019eac3 19985 if (cu->per_cu->is_debug_types)
348e048f
DE
19986 {
19987 /* .debug_types CUs cannot reference anything outside their CU.
19988 If they need to, they have to reference a signatured type via
55f1336d 19989 DW_FORM_ref_sig8. */
348e048f 19990 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19991 return NULL;
348e048f 19992 }
36586728
TT
19993 else if (offset_in_dwz != cu->per_cu->is_dwz
19994 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19995 {
19996 struct dwarf2_per_cu_data *per_cu;
9a619af0 19997
36586728
TT
19998 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19999 cu->objfile);
03dd20cc
DJ
20000
20001 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20002 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20003 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20004
10b3939b
DJ
20005 target_cu = per_cu->cu;
20006 }
98bfdba5
PA
20007 else if (cu->dies == NULL)
20008 {
20009 /* We're loading full DIEs during partial symbol reading. */
20010 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20011 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20012 }
c906108c 20013
f2f0e013 20014 *ref_cu = target_cu;
51545339 20015 temp_die.offset = offset;
9a3c8263
SM
20016 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20017 &temp_die, offset.sect_off);
5c631832 20018}
10b3939b 20019
5c631832
JK
20020/* Follow reference attribute ATTR of SRC_DIE.
20021 On entry *REF_CU is the CU of SRC_DIE.
20022 On exit *REF_CU is the CU of the result. */
20023
20024static struct die_info *
ff39bb5e 20025follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20026 struct dwarf2_cu **ref_cu)
20027{
b64f50a1 20028 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20029 struct dwarf2_cu *cu = *ref_cu;
20030 struct die_info *die;
20031
36586728
TT
20032 die = follow_die_offset (offset,
20033 (attr->form == DW_FORM_GNU_ref_alt
20034 || cu->per_cu->is_dwz),
20035 ref_cu);
5c631832
JK
20036 if (!die)
20037 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20038 "at 0x%x [in module %s]"),
4262abfb
JK
20039 offset.sect_off, src_die->offset.sect_off,
20040 objfile_name (cu->objfile));
348e048f 20041
5c631832
JK
20042 return die;
20043}
20044
d83e736b
JK
20045/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20046 Returned value is intended for DW_OP_call*. Returned
20047 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20048
20049struct dwarf2_locexpr_baton
8b9737bf
TT
20050dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20051 struct dwarf2_per_cu_data *per_cu,
20052 CORE_ADDR (*get_frame_pc) (void *baton),
20053 void *baton)
5c631832 20054{
918dd910 20055 struct dwarf2_cu *cu;
5c631832
JK
20056 struct die_info *die;
20057 struct attribute *attr;
20058 struct dwarf2_locexpr_baton retval;
20059
8cf6f0b1
TT
20060 dw2_setup (per_cu->objfile);
20061
918dd910
JK
20062 if (per_cu->cu == NULL)
20063 load_cu (per_cu);
20064 cu = per_cu->cu;
cc12ce38
DE
20065 if (cu == NULL)
20066 {
20067 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20068 Instead just throw an error, not much else we can do. */
20069 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20070 offset.sect_off, objfile_name (per_cu->objfile));
20071 }
918dd910 20072
36586728 20073 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20074 if (!die)
20075 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20076 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20077
20078 attr = dwarf2_attr (die, DW_AT_location, cu);
20079 if (!attr)
20080 {
e103e986
JK
20081 /* DWARF: "If there is no such attribute, then there is no effect.".
20082 DATA is ignored if SIZE is 0. */
5c631832 20083
e103e986 20084 retval.data = NULL;
5c631832
JK
20085 retval.size = 0;
20086 }
8cf6f0b1
TT
20087 else if (attr_form_is_section_offset (attr))
20088 {
20089 struct dwarf2_loclist_baton loclist_baton;
20090 CORE_ADDR pc = (*get_frame_pc) (baton);
20091 size_t size;
20092
20093 fill_in_loclist_baton (cu, &loclist_baton, attr);
20094
20095 retval.data = dwarf2_find_location_expression (&loclist_baton,
20096 &size, pc);
20097 retval.size = size;
20098 }
5c631832
JK
20099 else
20100 {
20101 if (!attr_form_is_block (attr))
20102 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20103 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20104 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20105
20106 retval.data = DW_BLOCK (attr)->data;
20107 retval.size = DW_BLOCK (attr)->size;
20108 }
20109 retval.per_cu = cu->per_cu;
918dd910 20110
918dd910
JK
20111 age_cached_comp_units ();
20112
5c631832 20113 return retval;
348e048f
DE
20114}
20115
8b9737bf
TT
20116/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20117 offset. */
20118
20119struct dwarf2_locexpr_baton
20120dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20121 struct dwarf2_per_cu_data *per_cu,
20122 CORE_ADDR (*get_frame_pc) (void *baton),
20123 void *baton)
20124{
20125 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20126
20127 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20128}
20129
b6807d98
TT
20130/* Write a constant of a given type as target-ordered bytes into
20131 OBSTACK. */
20132
20133static const gdb_byte *
20134write_constant_as_bytes (struct obstack *obstack,
20135 enum bfd_endian byte_order,
20136 struct type *type,
20137 ULONGEST value,
20138 LONGEST *len)
20139{
20140 gdb_byte *result;
20141
20142 *len = TYPE_LENGTH (type);
224c3ddb 20143 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20144 store_unsigned_integer (result, *len, byte_order, value);
20145
20146 return result;
20147}
20148
20149/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20150 pointer to the constant bytes and set LEN to the length of the
20151 data. If memory is needed, allocate it on OBSTACK. If the DIE
20152 does not have a DW_AT_const_value, return NULL. */
20153
20154const gdb_byte *
20155dwarf2_fetch_constant_bytes (sect_offset offset,
20156 struct dwarf2_per_cu_data *per_cu,
20157 struct obstack *obstack,
20158 LONGEST *len)
20159{
20160 struct dwarf2_cu *cu;
20161 struct die_info *die;
20162 struct attribute *attr;
20163 const gdb_byte *result = NULL;
20164 struct type *type;
20165 LONGEST value;
20166 enum bfd_endian byte_order;
20167
20168 dw2_setup (per_cu->objfile);
20169
20170 if (per_cu->cu == NULL)
20171 load_cu (per_cu);
20172 cu = per_cu->cu;
cc12ce38
DE
20173 if (cu == NULL)
20174 {
20175 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20176 Instead just throw an error, not much else we can do. */
20177 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20178 offset.sect_off, objfile_name (per_cu->objfile));
20179 }
b6807d98
TT
20180
20181 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20182 if (!die)
20183 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20184 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20185
20186
20187 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20188 if (attr == NULL)
20189 return NULL;
20190
20191 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20192 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20193
20194 switch (attr->form)
20195 {
20196 case DW_FORM_addr:
20197 case DW_FORM_GNU_addr_index:
20198 {
20199 gdb_byte *tem;
20200
20201 *len = cu->header.addr_size;
224c3ddb 20202 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20203 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20204 result = tem;
20205 }
20206 break;
20207 case DW_FORM_string:
20208 case DW_FORM_strp:
20209 case DW_FORM_GNU_str_index:
20210 case DW_FORM_GNU_strp_alt:
20211 /* DW_STRING is already allocated on the objfile obstack, point
20212 directly to it. */
20213 result = (const gdb_byte *) DW_STRING (attr);
20214 *len = strlen (DW_STRING (attr));
20215 break;
20216 case DW_FORM_block1:
20217 case DW_FORM_block2:
20218 case DW_FORM_block4:
20219 case DW_FORM_block:
20220 case DW_FORM_exprloc:
20221 result = DW_BLOCK (attr)->data;
20222 *len = DW_BLOCK (attr)->size;
20223 break;
20224
20225 /* The DW_AT_const_value attributes are supposed to carry the
20226 symbol's value "represented as it would be on the target
20227 architecture." By the time we get here, it's already been
20228 converted to host endianness, so we just need to sign- or
20229 zero-extend it as appropriate. */
20230 case DW_FORM_data1:
20231 type = die_type (die, cu);
20232 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20233 if (result == NULL)
20234 result = write_constant_as_bytes (obstack, byte_order,
20235 type, value, len);
20236 break;
20237 case DW_FORM_data2:
20238 type = die_type (die, cu);
20239 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20240 if (result == NULL)
20241 result = write_constant_as_bytes (obstack, byte_order,
20242 type, value, len);
20243 break;
20244 case DW_FORM_data4:
20245 type = die_type (die, cu);
20246 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20247 if (result == NULL)
20248 result = write_constant_as_bytes (obstack, byte_order,
20249 type, value, len);
20250 break;
20251 case DW_FORM_data8:
20252 type = die_type (die, cu);
20253 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20254 if (result == NULL)
20255 result = write_constant_as_bytes (obstack, byte_order,
20256 type, value, len);
20257 break;
20258
20259 case DW_FORM_sdata:
20260 type = die_type (die, cu);
20261 result = write_constant_as_bytes (obstack, byte_order,
20262 type, DW_SND (attr), len);
20263 break;
20264
20265 case DW_FORM_udata:
20266 type = die_type (die, cu);
20267 result = write_constant_as_bytes (obstack, byte_order,
20268 type, DW_UNSND (attr), len);
20269 break;
20270
20271 default:
20272 complaint (&symfile_complaints,
20273 _("unsupported const value attribute form: '%s'"),
20274 dwarf_form_name (attr->form));
20275 break;
20276 }
20277
20278 return result;
20279}
20280
8a9b8146
TT
20281/* Return the type of the DIE at DIE_OFFSET in the CU named by
20282 PER_CU. */
20283
20284struct type *
b64f50a1 20285dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20286 struct dwarf2_per_cu_data *per_cu)
20287{
b64f50a1
JK
20288 sect_offset die_offset_sect;
20289
8a9b8146 20290 dw2_setup (per_cu->objfile);
b64f50a1
JK
20291
20292 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20293 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20294}
20295
ac9ec31b 20296/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20297 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20298 On exit *REF_CU is the CU of the result.
20299 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20300
20301static struct die_info *
ac9ec31b
DE
20302follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20303 struct dwarf2_cu **ref_cu)
348e048f 20304{
348e048f 20305 struct die_info temp_die;
348e048f
DE
20306 struct dwarf2_cu *sig_cu;
20307 struct die_info *die;
20308
ac9ec31b
DE
20309 /* While it might be nice to assert sig_type->type == NULL here,
20310 we can get here for DW_AT_imported_declaration where we need
20311 the DIE not the type. */
348e048f
DE
20312
20313 /* If necessary, add it to the queue and load its DIEs. */
20314
95554aad 20315 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20316 read_signatured_type (sig_type);
348e048f 20317
348e048f 20318 sig_cu = sig_type->per_cu.cu;
69d751e3 20319 gdb_assert (sig_cu != NULL);
3019eac3
DE
20320 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20321 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20322 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20323 temp_die.offset.sect_off);
348e048f
DE
20324 if (die)
20325 {
796a7ff8
DE
20326 /* For .gdb_index version 7 keep track of included TUs.
20327 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20328 if (dwarf2_per_objfile->index_table != NULL
20329 && dwarf2_per_objfile->index_table->version <= 7)
20330 {
20331 VEC_safe_push (dwarf2_per_cu_ptr,
20332 (*ref_cu)->per_cu->imported_symtabs,
20333 sig_cu->per_cu);
20334 }
20335
348e048f
DE
20336 *ref_cu = sig_cu;
20337 return die;
20338 }
20339
ac9ec31b
DE
20340 return NULL;
20341}
20342
20343/* Follow signatured type referenced by ATTR in SRC_DIE.
20344 On entry *REF_CU is the CU of SRC_DIE.
20345 On exit *REF_CU is the CU of the result.
20346 The result is the DIE of the type.
20347 If the referenced type cannot be found an error is thrown. */
20348
20349static struct die_info *
ff39bb5e 20350follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20351 struct dwarf2_cu **ref_cu)
20352{
20353 ULONGEST signature = DW_SIGNATURE (attr);
20354 struct signatured_type *sig_type;
20355 struct die_info *die;
20356
20357 gdb_assert (attr->form == DW_FORM_ref_sig8);
20358
a2ce51a0 20359 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20360 /* sig_type will be NULL if the signatured type is missing from
20361 the debug info. */
20362 if (sig_type == NULL)
20363 {
20364 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20365 " from DIE at 0x%x [in module %s]"),
20366 hex_string (signature), src_die->offset.sect_off,
4262abfb 20367 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20368 }
20369
20370 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20371 if (die == NULL)
20372 {
20373 dump_die_for_error (src_die);
20374 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20375 " from DIE at 0x%x [in module %s]"),
20376 hex_string (signature), src_die->offset.sect_off,
4262abfb 20377 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20378 }
20379
20380 return die;
20381}
20382
20383/* Get the type specified by SIGNATURE referenced in DIE/CU,
20384 reading in and processing the type unit if necessary. */
20385
20386static struct type *
20387get_signatured_type (struct die_info *die, ULONGEST signature,
20388 struct dwarf2_cu *cu)
20389{
20390 struct signatured_type *sig_type;
20391 struct dwarf2_cu *type_cu;
20392 struct die_info *type_die;
20393 struct type *type;
20394
a2ce51a0 20395 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20396 /* sig_type will be NULL if the signatured type is missing from
20397 the debug info. */
20398 if (sig_type == NULL)
20399 {
20400 complaint (&symfile_complaints,
20401 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20402 " from DIE at 0x%x [in module %s]"),
20403 hex_string (signature), die->offset.sect_off,
4262abfb 20404 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20405 return build_error_marker_type (cu, die);
20406 }
20407
20408 /* If we already know the type we're done. */
20409 if (sig_type->type != NULL)
20410 return sig_type->type;
20411
20412 type_cu = cu;
20413 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20414 if (type_die != NULL)
20415 {
20416 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20417 is created. This is important, for example, because for c++ classes
20418 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20419 type = read_type_die (type_die, type_cu);
20420 if (type == NULL)
20421 {
20422 complaint (&symfile_complaints,
20423 _("Dwarf Error: Cannot build signatured type %s"
20424 " referenced from DIE at 0x%x [in module %s]"),
20425 hex_string (signature), die->offset.sect_off,
4262abfb 20426 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20427 type = build_error_marker_type (cu, die);
20428 }
20429 }
20430 else
20431 {
20432 complaint (&symfile_complaints,
20433 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20434 " from DIE at 0x%x [in module %s]"),
20435 hex_string (signature), die->offset.sect_off,
4262abfb 20436 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20437 type = build_error_marker_type (cu, die);
20438 }
20439 sig_type->type = type;
20440
20441 return type;
20442}
20443
20444/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20445 reading in and processing the type unit if necessary. */
20446
20447static struct type *
ff39bb5e 20448get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20449 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20450{
20451 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20452 if (attr_form_is_ref (attr))
ac9ec31b
DE
20453 {
20454 struct dwarf2_cu *type_cu = cu;
20455 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20456
20457 return read_type_die (type_die, type_cu);
20458 }
20459 else if (attr->form == DW_FORM_ref_sig8)
20460 {
20461 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20462 }
20463 else
20464 {
20465 complaint (&symfile_complaints,
20466 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20467 " at 0x%x [in module %s]"),
20468 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20469 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20470 return build_error_marker_type (cu, die);
20471 }
348e048f
DE
20472}
20473
e5fe5e75 20474/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20475
20476static void
e5fe5e75 20477load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20478{
52dc124a 20479 struct signatured_type *sig_type;
348e048f 20480
f4dc4d17
DE
20481 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20482 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20483
6721b2ec
DE
20484 /* We have the per_cu, but we need the signatured_type.
20485 Fortunately this is an easy translation. */
20486 gdb_assert (per_cu->is_debug_types);
20487 sig_type = (struct signatured_type *) per_cu;
348e048f 20488
6721b2ec 20489 gdb_assert (per_cu->cu == NULL);
348e048f 20490
52dc124a 20491 read_signatured_type (sig_type);
348e048f 20492
6721b2ec 20493 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20494}
20495
dee91e82
DE
20496/* die_reader_func for read_signatured_type.
20497 This is identical to load_full_comp_unit_reader,
20498 but is kept separate for now. */
348e048f
DE
20499
20500static void
dee91e82 20501read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20502 const gdb_byte *info_ptr,
dee91e82
DE
20503 struct die_info *comp_unit_die,
20504 int has_children,
20505 void *data)
348e048f 20506{
dee91e82 20507 struct dwarf2_cu *cu = reader->cu;
348e048f 20508
dee91e82
DE
20509 gdb_assert (cu->die_hash == NULL);
20510 cu->die_hash =
20511 htab_create_alloc_ex (cu->header.length / 12,
20512 die_hash,
20513 die_eq,
20514 NULL,
20515 &cu->comp_unit_obstack,
20516 hashtab_obstack_allocate,
20517 dummy_obstack_deallocate);
348e048f 20518
dee91e82
DE
20519 if (has_children)
20520 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20521 &info_ptr, comp_unit_die);
20522 cu->dies = comp_unit_die;
20523 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20524
20525 /* We try not to read any attributes in this function, because not
9cdd5dbd 20526 all CUs needed for references have been loaded yet, and symbol
348e048f 20527 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20528 or we won't be able to build types correctly.
20529 Similarly, if we do not read the producer, we can not apply
20530 producer-specific interpretation. */
95554aad 20531 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20532}
348e048f 20533
3019eac3
DE
20534/* Read in a signatured type and build its CU and DIEs.
20535 If the type is a stub for the real type in a DWO file,
20536 read in the real type from the DWO file as well. */
dee91e82
DE
20537
20538static void
20539read_signatured_type (struct signatured_type *sig_type)
20540{
20541 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20542
3019eac3 20543 gdb_assert (per_cu->is_debug_types);
dee91e82 20544 gdb_assert (per_cu->cu == NULL);
348e048f 20545
f4dc4d17
DE
20546 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20547 read_signatured_type_reader, NULL);
7ee85ab1 20548 sig_type->per_cu.tu_read = 1;
c906108c
SS
20549}
20550
c906108c
SS
20551/* Decode simple location descriptions.
20552 Given a pointer to a dwarf block that defines a location, compute
20553 the location and return the value.
20554
4cecd739
DJ
20555 NOTE drow/2003-11-18: This function is called in two situations
20556 now: for the address of static or global variables (partial symbols
20557 only) and for offsets into structures which are expected to be
20558 (more or less) constant. The partial symbol case should go away,
20559 and only the constant case should remain. That will let this
20560 function complain more accurately. A few special modes are allowed
20561 without complaint for global variables (for instance, global
20562 register values and thread-local values).
c906108c
SS
20563
20564 A location description containing no operations indicates that the
4cecd739 20565 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20566 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20567 callers will only want a very basic result and this can become a
21ae7a4d
JK
20568 complaint.
20569
20570 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20571
20572static CORE_ADDR
e7c27a73 20573decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20574{
e7c27a73 20575 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20576 size_t i;
20577 size_t size = blk->size;
d521ce57 20578 const gdb_byte *data = blk->data;
21ae7a4d
JK
20579 CORE_ADDR stack[64];
20580 int stacki;
20581 unsigned int bytes_read, unsnd;
20582 gdb_byte op;
c906108c 20583
21ae7a4d
JK
20584 i = 0;
20585 stacki = 0;
20586 stack[stacki] = 0;
20587 stack[++stacki] = 0;
20588
20589 while (i < size)
20590 {
20591 op = data[i++];
20592 switch (op)
20593 {
20594 case DW_OP_lit0:
20595 case DW_OP_lit1:
20596 case DW_OP_lit2:
20597 case DW_OP_lit3:
20598 case DW_OP_lit4:
20599 case DW_OP_lit5:
20600 case DW_OP_lit6:
20601 case DW_OP_lit7:
20602 case DW_OP_lit8:
20603 case DW_OP_lit9:
20604 case DW_OP_lit10:
20605 case DW_OP_lit11:
20606 case DW_OP_lit12:
20607 case DW_OP_lit13:
20608 case DW_OP_lit14:
20609 case DW_OP_lit15:
20610 case DW_OP_lit16:
20611 case DW_OP_lit17:
20612 case DW_OP_lit18:
20613 case DW_OP_lit19:
20614 case DW_OP_lit20:
20615 case DW_OP_lit21:
20616 case DW_OP_lit22:
20617 case DW_OP_lit23:
20618 case DW_OP_lit24:
20619 case DW_OP_lit25:
20620 case DW_OP_lit26:
20621 case DW_OP_lit27:
20622 case DW_OP_lit28:
20623 case DW_OP_lit29:
20624 case DW_OP_lit30:
20625 case DW_OP_lit31:
20626 stack[++stacki] = op - DW_OP_lit0;
20627 break;
f1bea926 20628
21ae7a4d
JK
20629 case DW_OP_reg0:
20630 case DW_OP_reg1:
20631 case DW_OP_reg2:
20632 case DW_OP_reg3:
20633 case DW_OP_reg4:
20634 case DW_OP_reg5:
20635 case DW_OP_reg6:
20636 case DW_OP_reg7:
20637 case DW_OP_reg8:
20638 case DW_OP_reg9:
20639 case DW_OP_reg10:
20640 case DW_OP_reg11:
20641 case DW_OP_reg12:
20642 case DW_OP_reg13:
20643 case DW_OP_reg14:
20644 case DW_OP_reg15:
20645 case DW_OP_reg16:
20646 case DW_OP_reg17:
20647 case DW_OP_reg18:
20648 case DW_OP_reg19:
20649 case DW_OP_reg20:
20650 case DW_OP_reg21:
20651 case DW_OP_reg22:
20652 case DW_OP_reg23:
20653 case DW_OP_reg24:
20654 case DW_OP_reg25:
20655 case DW_OP_reg26:
20656 case DW_OP_reg27:
20657 case DW_OP_reg28:
20658 case DW_OP_reg29:
20659 case DW_OP_reg30:
20660 case DW_OP_reg31:
20661 stack[++stacki] = op - DW_OP_reg0;
20662 if (i < size)
20663 dwarf2_complex_location_expr_complaint ();
20664 break;
c906108c 20665
21ae7a4d
JK
20666 case DW_OP_regx:
20667 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20668 i += bytes_read;
20669 stack[++stacki] = unsnd;
20670 if (i < size)
20671 dwarf2_complex_location_expr_complaint ();
20672 break;
c906108c 20673
21ae7a4d
JK
20674 case DW_OP_addr:
20675 stack[++stacki] = read_address (objfile->obfd, &data[i],
20676 cu, &bytes_read);
20677 i += bytes_read;
20678 break;
d53d4ac5 20679
21ae7a4d
JK
20680 case DW_OP_const1u:
20681 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20682 i += 1;
20683 break;
20684
20685 case DW_OP_const1s:
20686 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20687 i += 1;
20688 break;
20689
20690 case DW_OP_const2u:
20691 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20692 i += 2;
20693 break;
20694
20695 case DW_OP_const2s:
20696 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20697 i += 2;
20698 break;
d53d4ac5 20699
21ae7a4d
JK
20700 case DW_OP_const4u:
20701 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20702 i += 4;
20703 break;
20704
20705 case DW_OP_const4s:
20706 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20707 i += 4;
20708 break;
20709
585861ea
JK
20710 case DW_OP_const8u:
20711 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20712 i += 8;
20713 break;
20714
21ae7a4d
JK
20715 case DW_OP_constu:
20716 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20717 &bytes_read);
20718 i += bytes_read;
20719 break;
20720
20721 case DW_OP_consts:
20722 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20723 i += bytes_read;
20724 break;
20725
20726 case DW_OP_dup:
20727 stack[stacki + 1] = stack[stacki];
20728 stacki++;
20729 break;
20730
20731 case DW_OP_plus:
20732 stack[stacki - 1] += stack[stacki];
20733 stacki--;
20734 break;
20735
20736 case DW_OP_plus_uconst:
20737 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20738 &bytes_read);
20739 i += bytes_read;
20740 break;
20741
20742 case DW_OP_minus:
20743 stack[stacki - 1] -= stack[stacki];
20744 stacki--;
20745 break;
20746
20747 case DW_OP_deref:
20748 /* If we're not the last op, then we definitely can't encode
20749 this using GDB's address_class enum. This is valid for partial
20750 global symbols, although the variable's address will be bogus
20751 in the psymtab. */
20752 if (i < size)
20753 dwarf2_complex_location_expr_complaint ();
20754 break;
20755
20756 case DW_OP_GNU_push_tls_address:
4aa4e28b 20757 case DW_OP_form_tls_address:
21ae7a4d
JK
20758 /* The top of the stack has the offset from the beginning
20759 of the thread control block at which the variable is located. */
20760 /* Nothing should follow this operator, so the top of stack would
20761 be returned. */
20762 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20763 address will be bogus in the psymtab. Make it always at least
20764 non-zero to not look as a variable garbage collected by linker
20765 which have DW_OP_addr 0. */
21ae7a4d
JK
20766 if (i < size)
20767 dwarf2_complex_location_expr_complaint ();
585861ea 20768 stack[stacki]++;
21ae7a4d
JK
20769 break;
20770
20771 case DW_OP_GNU_uninit:
20772 break;
20773
3019eac3 20774 case DW_OP_GNU_addr_index:
49f6c839 20775 case DW_OP_GNU_const_index:
3019eac3
DE
20776 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20777 &bytes_read);
20778 i += bytes_read;
20779 break;
20780
21ae7a4d
JK
20781 default:
20782 {
f39c6ffd 20783 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20784
20785 if (name)
20786 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20787 name);
20788 else
20789 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20790 op);
20791 }
20792
20793 return (stack[stacki]);
d53d4ac5 20794 }
3c6e0cb3 20795
21ae7a4d
JK
20796 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20797 outside of the allocated space. Also enforce minimum>0. */
20798 if (stacki >= ARRAY_SIZE (stack) - 1)
20799 {
20800 complaint (&symfile_complaints,
20801 _("location description stack overflow"));
20802 return 0;
20803 }
20804
20805 if (stacki <= 0)
20806 {
20807 complaint (&symfile_complaints,
20808 _("location description stack underflow"));
20809 return 0;
20810 }
20811 }
20812 return (stack[stacki]);
c906108c
SS
20813}
20814
20815/* memory allocation interface */
20816
c906108c 20817static struct dwarf_block *
7b5a2f43 20818dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20819{
8d749320 20820 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20821}
20822
c906108c 20823static struct die_info *
b60c80d6 20824dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20825{
20826 struct die_info *die;
b60c80d6
DJ
20827 size_t size = sizeof (struct die_info);
20828
20829 if (num_attrs > 1)
20830 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20831
b60c80d6 20832 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20833 memset (die, 0, sizeof (struct die_info));
20834 return (die);
20835}
2e276125
JB
20836
20837\f
20838/* Macro support. */
20839
233d95b5
JK
20840/* Return file name relative to the compilation directory of file number I in
20841 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20842 responsible for freeing it. */
233d95b5 20843
2e276125 20844static char *
233d95b5 20845file_file_name (int file, struct line_header *lh)
2e276125 20846{
6a83a1e6
EZ
20847 /* Is the file number a valid index into the line header's file name
20848 table? Remember that file numbers start with one, not zero. */
20849 if (1 <= file && file <= lh->num_file_names)
20850 {
20851 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20852
afa6c9ab
SL
20853 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20854 || lh->include_dirs == NULL)
6a83a1e6 20855 return xstrdup (fe->name);
233d95b5 20856 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20857 fe->name, (char *) NULL);
6a83a1e6 20858 }
2e276125
JB
20859 else
20860 {
6a83a1e6
EZ
20861 /* The compiler produced a bogus file number. We can at least
20862 record the macro definitions made in the file, even if we
20863 won't be able to find the file by name. */
20864 char fake_name[80];
9a619af0 20865
8c042590
PM
20866 xsnprintf (fake_name, sizeof (fake_name),
20867 "<bad macro file number %d>", file);
2e276125 20868
6e70227d 20869 complaint (&symfile_complaints,
6a83a1e6
EZ
20870 _("bad file number in macro information (%d)"),
20871 file);
2e276125 20872
6a83a1e6 20873 return xstrdup (fake_name);
2e276125
JB
20874 }
20875}
20876
233d95b5
JK
20877/* Return the full name of file number I in *LH's file name table.
20878 Use COMP_DIR as the name of the current directory of the
20879 compilation. The result is allocated using xmalloc; the caller is
20880 responsible for freeing it. */
20881static char *
20882file_full_name (int file, struct line_header *lh, const char *comp_dir)
20883{
20884 /* Is the file number a valid index into the line header's file name
20885 table? Remember that file numbers start with one, not zero. */
20886 if (1 <= file && file <= lh->num_file_names)
20887 {
20888 char *relative = file_file_name (file, lh);
20889
20890 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20891 return relative;
b36cec19
PA
20892 return reconcat (relative, comp_dir, SLASH_STRING,
20893 relative, (char *) NULL);
233d95b5
JK
20894 }
20895 else
20896 return file_file_name (file, lh);
20897}
20898
2e276125
JB
20899
20900static struct macro_source_file *
20901macro_start_file (int file, int line,
20902 struct macro_source_file *current_file,
43f3e411 20903 struct line_header *lh)
2e276125 20904{
233d95b5
JK
20905 /* File name relative to the compilation directory of this source file. */
20906 char *file_name = file_file_name (file, lh);
2e276125 20907
2e276125 20908 if (! current_file)
abc9d0dc 20909 {
fc474241
DE
20910 /* Note: We don't create a macro table for this compilation unit
20911 at all until we actually get a filename. */
43f3e411 20912 struct macro_table *macro_table = get_macro_table ();
fc474241 20913
abc9d0dc
TT
20914 /* If we have no current file, then this must be the start_file
20915 directive for the compilation unit's main source file. */
fc474241
DE
20916 current_file = macro_set_main (macro_table, file_name);
20917 macro_define_special (macro_table);
abc9d0dc 20918 }
2e276125 20919 else
233d95b5 20920 current_file = macro_include (current_file, line, file_name);
2e276125 20921
233d95b5 20922 xfree (file_name);
6e70227d 20923
2e276125
JB
20924 return current_file;
20925}
20926
20927
20928/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20929 followed by a null byte. */
20930static char *
20931copy_string (const char *buf, int len)
20932{
224c3ddb 20933 char *s = (char *) xmalloc (len + 1);
9a619af0 20934
2e276125
JB
20935 memcpy (s, buf, len);
20936 s[len] = '\0';
2e276125
JB
20937 return s;
20938}
20939
20940
20941static const char *
20942consume_improper_spaces (const char *p, const char *body)
20943{
20944 if (*p == ' ')
20945 {
4d3c2250 20946 complaint (&symfile_complaints,
3e43a32a
MS
20947 _("macro definition contains spaces "
20948 "in formal argument list:\n`%s'"),
4d3c2250 20949 body);
2e276125
JB
20950
20951 while (*p == ' ')
20952 p++;
20953 }
20954
20955 return p;
20956}
20957
20958
20959static void
20960parse_macro_definition (struct macro_source_file *file, int line,
20961 const char *body)
20962{
20963 const char *p;
20964
20965 /* The body string takes one of two forms. For object-like macro
20966 definitions, it should be:
20967
20968 <macro name> " " <definition>
20969
20970 For function-like macro definitions, it should be:
20971
20972 <macro name> "() " <definition>
20973 or
20974 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20975
20976 Spaces may appear only where explicitly indicated, and in the
20977 <definition>.
20978
20979 The Dwarf 2 spec says that an object-like macro's name is always
20980 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20981 the space when the macro's definition is the empty string.
2e276125
JB
20982
20983 The Dwarf 2 spec says that there should be no spaces between the
20984 formal arguments in a function-like macro's formal argument list,
20985 but versions of GCC around March 2002 include spaces after the
20986 commas. */
20987
20988
20989 /* Find the extent of the macro name. The macro name is terminated
20990 by either a space or null character (for an object-like macro) or
20991 an opening paren (for a function-like macro). */
20992 for (p = body; *p; p++)
20993 if (*p == ' ' || *p == '(')
20994 break;
20995
20996 if (*p == ' ' || *p == '\0')
20997 {
20998 /* It's an object-like macro. */
20999 int name_len = p - body;
21000 char *name = copy_string (body, name_len);
21001 const char *replacement;
21002
21003 if (*p == ' ')
21004 replacement = body + name_len + 1;
21005 else
21006 {
4d3c2250 21007 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21008 replacement = body + name_len;
21009 }
6e70227d 21010
2e276125
JB
21011 macro_define_object (file, line, name, replacement);
21012
21013 xfree (name);
21014 }
21015 else if (*p == '(')
21016 {
21017 /* It's a function-like macro. */
21018 char *name = copy_string (body, p - body);
21019 int argc = 0;
21020 int argv_size = 1;
8d749320 21021 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21022
21023 p++;
21024
21025 p = consume_improper_spaces (p, body);
21026
21027 /* Parse the formal argument list. */
21028 while (*p && *p != ')')
21029 {
21030 /* Find the extent of the current argument name. */
21031 const char *arg_start = p;
21032
21033 while (*p && *p != ',' && *p != ')' && *p != ' ')
21034 p++;
21035
21036 if (! *p || p == arg_start)
4d3c2250 21037 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21038 else
21039 {
21040 /* Make sure argv has room for the new argument. */
21041 if (argc >= argv_size)
21042 {
21043 argv_size *= 2;
224c3ddb 21044 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21045 }
21046
21047 argv[argc++] = copy_string (arg_start, p - arg_start);
21048 }
21049
21050 p = consume_improper_spaces (p, body);
21051
21052 /* Consume the comma, if present. */
21053 if (*p == ',')
21054 {
21055 p++;
21056
21057 p = consume_improper_spaces (p, body);
21058 }
21059 }
21060
21061 if (*p == ')')
21062 {
21063 p++;
21064
21065 if (*p == ' ')
21066 /* Perfectly formed definition, no complaints. */
21067 macro_define_function (file, line, name,
6e70227d 21068 argc, (const char **) argv,
2e276125
JB
21069 p + 1);
21070 else if (*p == '\0')
21071 {
21072 /* Complain, but do define it. */
4d3c2250 21073 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21074 macro_define_function (file, line, name,
6e70227d 21075 argc, (const char **) argv,
2e276125
JB
21076 p);
21077 }
21078 else
21079 /* Just complain. */
4d3c2250 21080 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21081 }
21082 else
21083 /* Just complain. */
4d3c2250 21084 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21085
21086 xfree (name);
21087 {
21088 int i;
21089
21090 for (i = 0; i < argc; i++)
21091 xfree (argv[i]);
21092 }
21093 xfree (argv);
21094 }
21095 else
4d3c2250 21096 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21097}
21098
cf2c3c16
TT
21099/* Skip some bytes from BYTES according to the form given in FORM.
21100 Returns the new pointer. */
2e276125 21101
d521ce57
TT
21102static const gdb_byte *
21103skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21104 enum dwarf_form form,
21105 unsigned int offset_size,
21106 struct dwarf2_section_info *section)
2e276125 21107{
cf2c3c16 21108 unsigned int bytes_read;
2e276125 21109
cf2c3c16 21110 switch (form)
2e276125 21111 {
cf2c3c16
TT
21112 case DW_FORM_data1:
21113 case DW_FORM_flag:
21114 ++bytes;
21115 break;
21116
21117 case DW_FORM_data2:
21118 bytes += 2;
21119 break;
21120
21121 case DW_FORM_data4:
21122 bytes += 4;
21123 break;
21124
21125 case DW_FORM_data8:
21126 bytes += 8;
21127 break;
21128
21129 case DW_FORM_string:
21130 read_direct_string (abfd, bytes, &bytes_read);
21131 bytes += bytes_read;
21132 break;
21133
21134 case DW_FORM_sec_offset:
21135 case DW_FORM_strp:
36586728 21136 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21137 bytes += offset_size;
21138 break;
21139
21140 case DW_FORM_block:
21141 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21142 bytes += bytes_read;
21143 break;
21144
21145 case DW_FORM_block1:
21146 bytes += 1 + read_1_byte (abfd, bytes);
21147 break;
21148 case DW_FORM_block2:
21149 bytes += 2 + read_2_bytes (abfd, bytes);
21150 break;
21151 case DW_FORM_block4:
21152 bytes += 4 + read_4_bytes (abfd, bytes);
21153 break;
21154
21155 case DW_FORM_sdata:
21156 case DW_FORM_udata:
3019eac3
DE
21157 case DW_FORM_GNU_addr_index:
21158 case DW_FORM_GNU_str_index:
d521ce57 21159 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21160 if (bytes == NULL)
21161 {
21162 dwarf2_section_buffer_overflow_complaint (section);
21163 return NULL;
21164 }
cf2c3c16
TT
21165 break;
21166
21167 default:
21168 {
21169 complain:
21170 complaint (&symfile_complaints,
21171 _("invalid form 0x%x in `%s'"),
a32a8923 21172 form, get_section_name (section));
cf2c3c16
TT
21173 return NULL;
21174 }
2e276125
JB
21175 }
21176
cf2c3c16
TT
21177 return bytes;
21178}
757a13d0 21179
cf2c3c16
TT
21180/* A helper for dwarf_decode_macros that handles skipping an unknown
21181 opcode. Returns an updated pointer to the macro data buffer; or,
21182 on error, issues a complaint and returns NULL. */
757a13d0 21183
d521ce57 21184static const gdb_byte *
cf2c3c16 21185skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21186 const gdb_byte **opcode_definitions,
21187 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21188 bfd *abfd,
21189 unsigned int offset_size,
21190 struct dwarf2_section_info *section)
21191{
21192 unsigned int bytes_read, i;
21193 unsigned long arg;
d521ce57 21194 const gdb_byte *defn;
2e276125 21195
cf2c3c16 21196 if (opcode_definitions[opcode] == NULL)
2e276125 21197 {
cf2c3c16
TT
21198 complaint (&symfile_complaints,
21199 _("unrecognized DW_MACFINO opcode 0x%x"),
21200 opcode);
21201 return NULL;
21202 }
2e276125 21203
cf2c3c16
TT
21204 defn = opcode_definitions[opcode];
21205 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21206 defn += bytes_read;
2e276125 21207
cf2c3c16
TT
21208 for (i = 0; i < arg; ++i)
21209 {
aead7601
SM
21210 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21211 (enum dwarf_form) defn[i], offset_size,
f664829e 21212 section);
cf2c3c16
TT
21213 if (mac_ptr == NULL)
21214 {
21215 /* skip_form_bytes already issued the complaint. */
21216 return NULL;
21217 }
21218 }
757a13d0 21219
cf2c3c16
TT
21220 return mac_ptr;
21221}
757a13d0 21222
cf2c3c16
TT
21223/* A helper function which parses the header of a macro section.
21224 If the macro section is the extended (for now called "GNU") type,
21225 then this updates *OFFSET_SIZE. Returns a pointer to just after
21226 the header, or issues a complaint and returns NULL on error. */
757a13d0 21227
d521ce57
TT
21228static const gdb_byte *
21229dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21230 bfd *abfd,
d521ce57 21231 const gdb_byte *mac_ptr,
cf2c3c16
TT
21232 unsigned int *offset_size,
21233 int section_is_gnu)
21234{
21235 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21236
cf2c3c16
TT
21237 if (section_is_gnu)
21238 {
21239 unsigned int version, flags;
757a13d0 21240
cf2c3c16
TT
21241 version = read_2_bytes (abfd, mac_ptr);
21242 if (version != 4)
21243 {
21244 complaint (&symfile_complaints,
21245 _("unrecognized version `%d' in .debug_macro section"),
21246 version);
21247 return NULL;
21248 }
21249 mac_ptr += 2;
757a13d0 21250
cf2c3c16
TT
21251 flags = read_1_byte (abfd, mac_ptr);
21252 ++mac_ptr;
21253 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21254
cf2c3c16
TT
21255 if ((flags & 2) != 0)
21256 /* We don't need the line table offset. */
21257 mac_ptr += *offset_size;
757a13d0 21258
cf2c3c16
TT
21259 /* Vendor opcode descriptions. */
21260 if ((flags & 4) != 0)
21261 {
21262 unsigned int i, count;
757a13d0 21263
cf2c3c16
TT
21264 count = read_1_byte (abfd, mac_ptr);
21265 ++mac_ptr;
21266 for (i = 0; i < count; ++i)
21267 {
21268 unsigned int opcode, bytes_read;
21269 unsigned long arg;
21270
21271 opcode = read_1_byte (abfd, mac_ptr);
21272 ++mac_ptr;
21273 opcode_definitions[opcode] = mac_ptr;
21274 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21275 mac_ptr += bytes_read;
21276 mac_ptr += arg;
21277 }
757a13d0 21278 }
cf2c3c16 21279 }
757a13d0 21280
cf2c3c16
TT
21281 return mac_ptr;
21282}
757a13d0 21283
cf2c3c16 21284/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21285 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21286
21287static void
d521ce57
TT
21288dwarf_decode_macro_bytes (bfd *abfd,
21289 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21290 struct macro_source_file *current_file,
43f3e411 21291 struct line_header *lh,
cf2c3c16 21292 struct dwarf2_section_info *section,
36586728 21293 int section_is_gnu, int section_is_dwz,
cf2c3c16 21294 unsigned int offset_size,
8fc3fc34 21295 htab_t include_hash)
cf2c3c16 21296{
4d663531 21297 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21298 enum dwarf_macro_record_type macinfo_type;
21299 int at_commandline;
d521ce57 21300 const gdb_byte *opcode_definitions[256];
757a13d0 21301
cf2c3c16
TT
21302 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21303 &offset_size, section_is_gnu);
21304 if (mac_ptr == NULL)
21305 {
21306 /* We already issued a complaint. */
21307 return;
21308 }
757a13d0
JK
21309
21310 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21311 GDB is still reading the definitions from command line. First
21312 DW_MACINFO_start_file will need to be ignored as it was already executed
21313 to create CURRENT_FILE for the main source holding also the command line
21314 definitions. On first met DW_MACINFO_start_file this flag is reset to
21315 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21316
21317 at_commandline = 1;
21318
21319 do
21320 {
21321 /* Do we at least have room for a macinfo type byte? */
21322 if (mac_ptr >= mac_end)
21323 {
f664829e 21324 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21325 break;
21326 }
21327
aead7601 21328 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21329 mac_ptr++;
21330
cf2c3c16
TT
21331 /* Note that we rely on the fact that the corresponding GNU and
21332 DWARF constants are the same. */
757a13d0
JK
21333 switch (macinfo_type)
21334 {
21335 /* A zero macinfo type indicates the end of the macro
21336 information. */
21337 case 0:
21338 break;
2e276125 21339
cf2c3c16
TT
21340 case DW_MACRO_GNU_define:
21341 case DW_MACRO_GNU_undef:
21342 case DW_MACRO_GNU_define_indirect:
21343 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21344 case DW_MACRO_GNU_define_indirect_alt:
21345 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21346 {
891d2f0b 21347 unsigned int bytes_read;
2e276125 21348 int line;
d521ce57 21349 const char *body;
cf2c3c16 21350 int is_define;
2e276125 21351
cf2c3c16
TT
21352 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21353 mac_ptr += bytes_read;
21354
21355 if (macinfo_type == DW_MACRO_GNU_define
21356 || macinfo_type == DW_MACRO_GNU_undef)
21357 {
21358 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21359 mac_ptr += bytes_read;
21360 }
21361 else
21362 {
21363 LONGEST str_offset;
21364
21365 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21366 mac_ptr += offset_size;
2e276125 21367
36586728 21368 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21369 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21370 || section_is_dwz)
36586728
TT
21371 {
21372 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21373
21374 body = read_indirect_string_from_dwz (dwz, str_offset);
21375 }
21376 else
21377 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21378 }
21379
21380 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21381 || macinfo_type == DW_MACRO_GNU_define_indirect
21382 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21383 if (! current_file)
757a13d0
JK
21384 {
21385 /* DWARF violation as no main source is present. */
21386 complaint (&symfile_complaints,
21387 _("debug info with no main source gives macro %s "
21388 "on line %d: %s"),
cf2c3c16
TT
21389 is_define ? _("definition") : _("undefinition"),
21390 line, body);
757a13d0
JK
21391 break;
21392 }
3e43a32a
MS
21393 if ((line == 0 && !at_commandline)
21394 || (line != 0 && at_commandline))
4d3c2250 21395 complaint (&symfile_complaints,
757a13d0
JK
21396 _("debug info gives %s macro %s with %s line %d: %s"),
21397 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21398 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21399 line == 0 ? _("zero") : _("non-zero"), line, body);
21400
cf2c3c16 21401 if (is_define)
757a13d0 21402 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21403 else
21404 {
21405 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21406 || macinfo_type == DW_MACRO_GNU_undef_indirect
21407 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21408 macro_undef (current_file, line, body);
21409 }
2e276125
JB
21410 }
21411 break;
21412
cf2c3c16 21413 case DW_MACRO_GNU_start_file:
2e276125 21414 {
891d2f0b 21415 unsigned int bytes_read;
2e276125
JB
21416 int line, file;
21417
21418 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21419 mac_ptr += bytes_read;
21420 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21421 mac_ptr += bytes_read;
21422
3e43a32a
MS
21423 if ((line == 0 && !at_commandline)
21424 || (line != 0 && at_commandline))
757a13d0
JK
21425 complaint (&symfile_complaints,
21426 _("debug info gives source %d included "
21427 "from %s at %s line %d"),
21428 file, at_commandline ? _("command-line") : _("file"),
21429 line == 0 ? _("zero") : _("non-zero"), line);
21430
21431 if (at_commandline)
21432 {
cf2c3c16
TT
21433 /* This DW_MACRO_GNU_start_file was executed in the
21434 pass one. */
757a13d0
JK
21435 at_commandline = 0;
21436 }
21437 else
43f3e411 21438 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21439 }
21440 break;
21441
cf2c3c16 21442 case DW_MACRO_GNU_end_file:
2e276125 21443 if (! current_file)
4d3c2250 21444 complaint (&symfile_complaints,
3e43a32a
MS
21445 _("macro debug info has an unmatched "
21446 "`close_file' directive"));
2e276125
JB
21447 else
21448 {
21449 current_file = current_file->included_by;
21450 if (! current_file)
21451 {
cf2c3c16 21452 enum dwarf_macro_record_type next_type;
2e276125
JB
21453
21454 /* GCC circa March 2002 doesn't produce the zero
21455 type byte marking the end of the compilation
21456 unit. Complain if it's not there, but exit no
21457 matter what. */
21458
21459 /* Do we at least have room for a macinfo type byte? */
21460 if (mac_ptr >= mac_end)
21461 {
f664829e 21462 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21463 return;
21464 }
21465
21466 /* We don't increment mac_ptr here, so this is just
21467 a look-ahead. */
aead7601
SM
21468 next_type
21469 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21470 mac_ptr);
2e276125 21471 if (next_type != 0)
4d3c2250 21472 complaint (&symfile_complaints,
3e43a32a
MS
21473 _("no terminating 0-type entry for "
21474 "macros in `.debug_macinfo' section"));
2e276125
JB
21475
21476 return;
21477 }
21478 }
21479 break;
21480
cf2c3c16 21481 case DW_MACRO_GNU_transparent_include:
36586728 21482 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21483 {
21484 LONGEST offset;
8fc3fc34 21485 void **slot;
a036ba48
TT
21486 bfd *include_bfd = abfd;
21487 struct dwarf2_section_info *include_section = section;
d521ce57 21488 const gdb_byte *include_mac_end = mac_end;
a036ba48 21489 int is_dwz = section_is_dwz;
d521ce57 21490 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21491
21492 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21493 mac_ptr += offset_size;
21494
a036ba48
TT
21495 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21496 {
21497 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21498
4d663531 21499 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21500
a036ba48 21501 include_section = &dwz->macro;
a32a8923 21502 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21503 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21504 is_dwz = 1;
21505 }
21506
21507 new_mac_ptr = include_section->buffer + offset;
21508 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21509
8fc3fc34
TT
21510 if (*slot != NULL)
21511 {
21512 /* This has actually happened; see
21513 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21514 complaint (&symfile_complaints,
21515 _("recursive DW_MACRO_GNU_transparent_include in "
21516 ".debug_macro section"));
21517 }
21518 else
21519 {
d521ce57 21520 *slot = (void *) new_mac_ptr;
36586728 21521
a036ba48 21522 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21523 include_mac_end, current_file, lh,
36586728 21524 section, section_is_gnu, is_dwz,
4d663531 21525 offset_size, include_hash);
8fc3fc34 21526
d521ce57 21527 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21528 }
cf2c3c16
TT
21529 }
21530 break;
21531
2e276125 21532 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21533 if (!section_is_gnu)
21534 {
21535 unsigned int bytes_read;
2e276125 21536
ac298888
TT
21537 /* This reads the constant, but since we don't recognize
21538 any vendor extensions, we ignore it. */
21539 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21540 mac_ptr += bytes_read;
21541 read_direct_string (abfd, mac_ptr, &bytes_read);
21542 mac_ptr += bytes_read;
2e276125 21543
cf2c3c16
TT
21544 /* We don't recognize any vendor extensions. */
21545 break;
21546 }
21547 /* FALLTHROUGH */
21548
21549 default:
21550 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21551 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21552 section);
21553 if (mac_ptr == NULL)
21554 return;
21555 break;
2e276125 21556 }
757a13d0 21557 } while (macinfo_type != 0);
2e276125 21558}
8e19ed76 21559
cf2c3c16 21560static void
09262596 21561dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21562 int section_is_gnu)
cf2c3c16 21563{
bb5ed363 21564 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21565 struct line_header *lh = cu->line_header;
21566 bfd *abfd;
d521ce57 21567 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21568 struct macro_source_file *current_file = 0;
21569 enum dwarf_macro_record_type macinfo_type;
21570 unsigned int offset_size = cu->header.offset_size;
d521ce57 21571 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21572 struct cleanup *cleanup;
21573 htab_t include_hash;
21574 void **slot;
09262596
DE
21575 struct dwarf2_section_info *section;
21576 const char *section_name;
21577
21578 if (cu->dwo_unit != NULL)
21579 {
21580 if (section_is_gnu)
21581 {
21582 section = &cu->dwo_unit->dwo_file->sections.macro;
21583 section_name = ".debug_macro.dwo";
21584 }
21585 else
21586 {
21587 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21588 section_name = ".debug_macinfo.dwo";
21589 }
21590 }
21591 else
21592 {
21593 if (section_is_gnu)
21594 {
21595 section = &dwarf2_per_objfile->macro;
21596 section_name = ".debug_macro";
21597 }
21598 else
21599 {
21600 section = &dwarf2_per_objfile->macinfo;
21601 section_name = ".debug_macinfo";
21602 }
21603 }
cf2c3c16 21604
bb5ed363 21605 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21606 if (section->buffer == NULL)
21607 {
fceca515 21608 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21609 return;
21610 }
a32a8923 21611 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21612
21613 /* First pass: Find the name of the base filename.
21614 This filename is needed in order to process all macros whose definition
21615 (or undefinition) comes from the command line. These macros are defined
21616 before the first DW_MACINFO_start_file entry, and yet still need to be
21617 associated to the base file.
21618
21619 To determine the base file name, we scan the macro definitions until we
21620 reach the first DW_MACINFO_start_file entry. We then initialize
21621 CURRENT_FILE accordingly so that any macro definition found before the
21622 first DW_MACINFO_start_file can still be associated to the base file. */
21623
21624 mac_ptr = section->buffer + offset;
21625 mac_end = section->buffer + section->size;
21626
21627 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21628 &offset_size, section_is_gnu);
21629 if (mac_ptr == NULL)
21630 {
21631 /* We already issued a complaint. */
21632 return;
21633 }
21634
21635 do
21636 {
21637 /* Do we at least have room for a macinfo type byte? */
21638 if (mac_ptr >= mac_end)
21639 {
21640 /* Complaint is printed during the second pass as GDB will probably
21641 stop the first pass earlier upon finding
21642 DW_MACINFO_start_file. */
21643 break;
21644 }
21645
aead7601 21646 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21647 mac_ptr++;
21648
21649 /* Note that we rely on the fact that the corresponding GNU and
21650 DWARF constants are the same. */
21651 switch (macinfo_type)
21652 {
21653 /* A zero macinfo type indicates the end of the macro
21654 information. */
21655 case 0:
21656 break;
21657
21658 case DW_MACRO_GNU_define:
21659 case DW_MACRO_GNU_undef:
21660 /* Only skip the data by MAC_PTR. */
21661 {
21662 unsigned int bytes_read;
21663
21664 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21665 mac_ptr += bytes_read;
21666 read_direct_string (abfd, mac_ptr, &bytes_read);
21667 mac_ptr += bytes_read;
21668 }
21669 break;
21670
21671 case DW_MACRO_GNU_start_file:
21672 {
21673 unsigned int bytes_read;
21674 int line, file;
21675
21676 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21677 mac_ptr += bytes_read;
21678 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21679 mac_ptr += bytes_read;
21680
43f3e411 21681 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21682 }
21683 break;
21684
21685 case DW_MACRO_GNU_end_file:
21686 /* No data to skip by MAC_PTR. */
21687 break;
21688
21689 case DW_MACRO_GNU_define_indirect:
21690 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21691 case DW_MACRO_GNU_define_indirect_alt:
21692 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21693 {
21694 unsigned int bytes_read;
21695
21696 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21697 mac_ptr += bytes_read;
21698 mac_ptr += offset_size;
21699 }
21700 break;
21701
21702 case DW_MACRO_GNU_transparent_include:
f7a35f02 21703 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21704 /* Note that, according to the spec, a transparent include
21705 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21706 skip this opcode. */
21707 mac_ptr += offset_size;
21708 break;
21709
21710 case DW_MACINFO_vendor_ext:
21711 /* Only skip the data by MAC_PTR. */
21712 if (!section_is_gnu)
21713 {
21714 unsigned int bytes_read;
21715
21716 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21717 mac_ptr += bytes_read;
21718 read_direct_string (abfd, mac_ptr, &bytes_read);
21719 mac_ptr += bytes_read;
21720 }
21721 /* FALLTHROUGH */
21722
21723 default:
21724 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21725 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21726 section);
21727 if (mac_ptr == NULL)
21728 return;
21729 break;
21730 }
21731 } while (macinfo_type != 0 && current_file == NULL);
21732
21733 /* Second pass: Process all entries.
21734
21735 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21736 command-line macro definitions/undefinitions. This flag is unset when we
21737 reach the first DW_MACINFO_start_file entry. */
21738
8fc3fc34
TT
21739 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21740 NULL, xcalloc, xfree);
21741 cleanup = make_cleanup_htab_delete (include_hash);
21742 mac_ptr = section->buffer + offset;
21743 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21744 *slot = (void *) mac_ptr;
8fc3fc34 21745 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21746 current_file, lh, section,
4d663531 21747 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21748 do_cleanups (cleanup);
cf2c3c16
TT
21749}
21750
8e19ed76 21751/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21752 if so return true else false. */
380bca97 21753
8e19ed76 21754static int
6e5a29e1 21755attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21756{
21757 return (attr == NULL ? 0 :
21758 attr->form == DW_FORM_block1
21759 || attr->form == DW_FORM_block2
21760 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21761 || attr->form == DW_FORM_block
21762 || attr->form == DW_FORM_exprloc);
8e19ed76 21763}
4c2df51b 21764
c6a0999f
JB
21765/* Return non-zero if ATTR's value is a section offset --- classes
21766 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21767 You may use DW_UNSND (attr) to retrieve such offsets.
21768
21769 Section 7.5.4, "Attribute Encodings", explains that no attribute
21770 may have a value that belongs to more than one of these classes; it
21771 would be ambiguous if we did, because we use the same forms for all
21772 of them. */
380bca97 21773
3690dd37 21774static int
6e5a29e1 21775attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21776{
21777 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21778 || attr->form == DW_FORM_data8
21779 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21780}
21781
3690dd37
JB
21782/* Return non-zero if ATTR's value falls in the 'constant' class, or
21783 zero otherwise. When this function returns true, you can apply
21784 dwarf2_get_attr_constant_value to it.
21785
21786 However, note that for some attributes you must check
21787 attr_form_is_section_offset before using this test. DW_FORM_data4
21788 and DW_FORM_data8 are members of both the constant class, and of
21789 the classes that contain offsets into other debug sections
21790 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21791 that, if an attribute's can be either a constant or one of the
21792 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21793 taken as section offsets, not constants. */
380bca97 21794
3690dd37 21795static int
6e5a29e1 21796attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21797{
21798 switch (attr->form)
21799 {
21800 case DW_FORM_sdata:
21801 case DW_FORM_udata:
21802 case DW_FORM_data1:
21803 case DW_FORM_data2:
21804 case DW_FORM_data4:
21805 case DW_FORM_data8:
21806 return 1;
21807 default:
21808 return 0;
21809 }
21810}
21811
7771576e
SA
21812
21813/* DW_ADDR is always stored already as sect_offset; despite for the forms
21814 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21815
21816static int
6e5a29e1 21817attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21818{
21819 switch (attr->form)
21820 {
21821 case DW_FORM_ref_addr:
21822 case DW_FORM_ref1:
21823 case DW_FORM_ref2:
21824 case DW_FORM_ref4:
21825 case DW_FORM_ref8:
21826 case DW_FORM_ref_udata:
21827 case DW_FORM_GNU_ref_alt:
21828 return 1;
21829 default:
21830 return 0;
21831 }
21832}
21833
3019eac3
DE
21834/* Return the .debug_loc section to use for CU.
21835 For DWO files use .debug_loc.dwo. */
21836
21837static struct dwarf2_section_info *
21838cu_debug_loc_section (struct dwarf2_cu *cu)
21839{
21840 if (cu->dwo_unit)
21841 return &cu->dwo_unit->dwo_file->sections.loc;
21842 return &dwarf2_per_objfile->loc;
21843}
21844
8cf6f0b1
TT
21845/* A helper function that fills in a dwarf2_loclist_baton. */
21846
21847static void
21848fill_in_loclist_baton (struct dwarf2_cu *cu,
21849 struct dwarf2_loclist_baton *baton,
ff39bb5e 21850 const struct attribute *attr)
8cf6f0b1 21851{
3019eac3
DE
21852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21853
21854 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21855
21856 baton->per_cu = cu->per_cu;
21857 gdb_assert (baton->per_cu);
21858 /* We don't know how long the location list is, but make sure we
21859 don't run off the edge of the section. */
3019eac3
DE
21860 baton->size = section->size - DW_UNSND (attr);
21861 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21862 baton->base_address = cu->base_address;
f664829e 21863 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21864}
21865
4c2df51b 21866static void
ff39bb5e 21867dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21868 struct dwarf2_cu *cu, int is_block)
4c2df51b 21869{
bb5ed363 21870 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21871 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21872
3690dd37 21873 if (attr_form_is_section_offset (attr)
3019eac3 21874 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21875 the section. If so, fall through to the complaint in the
21876 other branch. */
3019eac3 21877 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21878 {
0d53c4c4 21879 struct dwarf2_loclist_baton *baton;
4c2df51b 21880
8d749320 21881 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21882
8cf6f0b1 21883 fill_in_loclist_baton (cu, baton, attr);
be391dca 21884
d00adf39 21885 if (cu->base_known == 0)
0d53c4c4 21886 complaint (&symfile_complaints,
3e43a32a
MS
21887 _("Location list used without "
21888 "specifying the CU base address."));
4c2df51b 21889
f1e6e072
TT
21890 SYMBOL_ACLASS_INDEX (sym) = (is_block
21891 ? dwarf2_loclist_block_index
21892 : dwarf2_loclist_index);
0d53c4c4
DJ
21893 SYMBOL_LOCATION_BATON (sym) = baton;
21894 }
21895 else
21896 {
21897 struct dwarf2_locexpr_baton *baton;
21898
8d749320 21899 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21900 baton->per_cu = cu->per_cu;
21901 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21902
21903 if (attr_form_is_block (attr))
21904 {
21905 /* Note that we're just copying the block's data pointer
21906 here, not the actual data. We're still pointing into the
6502dd73
DJ
21907 info_buffer for SYM's objfile; right now we never release
21908 that buffer, but when we do clean up properly this may
21909 need to change. */
0d53c4c4
DJ
21910 baton->size = DW_BLOCK (attr)->size;
21911 baton->data = DW_BLOCK (attr)->data;
21912 }
21913 else
21914 {
21915 dwarf2_invalid_attrib_class_complaint ("location description",
21916 SYMBOL_NATURAL_NAME (sym));
21917 baton->size = 0;
0d53c4c4 21918 }
6e70227d 21919
f1e6e072
TT
21920 SYMBOL_ACLASS_INDEX (sym) = (is_block
21921 ? dwarf2_locexpr_block_index
21922 : dwarf2_locexpr_index);
0d53c4c4
DJ
21923 SYMBOL_LOCATION_BATON (sym) = baton;
21924 }
4c2df51b 21925}
6502dd73 21926
9aa1f1e3
TT
21927/* Return the OBJFILE associated with the compilation unit CU. If CU
21928 came from a separate debuginfo file, then the master objfile is
21929 returned. */
ae0d2f24
UW
21930
21931struct objfile *
21932dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21933{
9291a0cd 21934 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21935
21936 /* Return the master objfile, so that we can report and look up the
21937 correct file containing this variable. */
21938 if (objfile->separate_debug_objfile_backlink)
21939 objfile = objfile->separate_debug_objfile_backlink;
21940
21941 return objfile;
21942}
21943
96408a79
SA
21944/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21945 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21946 CU_HEADERP first. */
21947
21948static const struct comp_unit_head *
21949per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21950 struct dwarf2_per_cu_data *per_cu)
21951{
d521ce57 21952 const gdb_byte *info_ptr;
96408a79
SA
21953
21954 if (per_cu->cu)
21955 return &per_cu->cu->header;
21956
8a0459fd 21957 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21958
21959 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21960 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21961
21962 return cu_headerp;
21963}
21964
ae0d2f24
UW
21965/* Return the address size given in the compilation unit header for CU. */
21966
98714339 21967int
ae0d2f24
UW
21968dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21969{
96408a79
SA
21970 struct comp_unit_head cu_header_local;
21971 const struct comp_unit_head *cu_headerp;
c471e790 21972
96408a79
SA
21973 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21974
21975 return cu_headerp->addr_size;
ae0d2f24
UW
21976}
21977
9eae7c52
TT
21978/* Return the offset size given in the compilation unit header for CU. */
21979
21980int
21981dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21982{
96408a79
SA
21983 struct comp_unit_head cu_header_local;
21984 const struct comp_unit_head *cu_headerp;
9c6c53f7 21985
96408a79
SA
21986 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21987
21988 return cu_headerp->offset_size;
21989}
21990
21991/* See its dwarf2loc.h declaration. */
21992
21993int
21994dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21995{
21996 struct comp_unit_head cu_header_local;
21997 const struct comp_unit_head *cu_headerp;
21998
21999 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22000
22001 if (cu_headerp->version == 2)
22002 return cu_headerp->addr_size;
22003 else
22004 return cu_headerp->offset_size;
181cebd4
JK
22005}
22006
9aa1f1e3
TT
22007/* Return the text offset of the CU. The returned offset comes from
22008 this CU's objfile. If this objfile came from a separate debuginfo
22009 file, then the offset may be different from the corresponding
22010 offset in the parent objfile. */
22011
22012CORE_ADDR
22013dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22014{
bb3fa9d0 22015 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22016
22017 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22018}
22019
348e048f
DE
22020/* Locate the .debug_info compilation unit from CU's objfile which contains
22021 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22022
22023static struct dwarf2_per_cu_data *
b64f50a1 22024dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22025 unsigned int offset_in_dwz,
ae038cb0
DJ
22026 struct objfile *objfile)
22027{
22028 struct dwarf2_per_cu_data *this_cu;
22029 int low, high;
36586728 22030 const sect_offset *cu_off;
ae038cb0 22031
ae038cb0
DJ
22032 low = 0;
22033 high = dwarf2_per_objfile->n_comp_units - 1;
22034 while (high > low)
22035 {
36586728 22036 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22037 int mid = low + (high - low) / 2;
9a619af0 22038
36586728
TT
22039 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22040 cu_off = &mid_cu->offset;
22041 if (mid_cu->is_dwz > offset_in_dwz
22042 || (mid_cu->is_dwz == offset_in_dwz
22043 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22044 high = mid;
22045 else
22046 low = mid + 1;
22047 }
22048 gdb_assert (low == high);
36586728
TT
22049 this_cu = dwarf2_per_objfile->all_comp_units[low];
22050 cu_off = &this_cu->offset;
22051 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22052 {
36586728 22053 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22054 error (_("Dwarf Error: could not find partial DIE containing "
22055 "offset 0x%lx [in module %s]"),
b64f50a1 22056 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22057
b64f50a1
JK
22058 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22059 <= offset.sect_off);
ae038cb0
DJ
22060 return dwarf2_per_objfile->all_comp_units[low-1];
22061 }
22062 else
22063 {
22064 this_cu = dwarf2_per_objfile->all_comp_units[low];
22065 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22066 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22067 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22068 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22069 return this_cu;
22070 }
22071}
22072
23745b47 22073/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22074
9816fde3 22075static void
23745b47 22076init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22077{
9816fde3 22078 memset (cu, 0, sizeof (*cu));
23745b47
DE
22079 per_cu->cu = cu;
22080 cu->per_cu = per_cu;
22081 cu->objfile = per_cu->objfile;
93311388 22082 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22083}
22084
22085/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22086
22087static void
95554aad
TT
22088prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22089 enum language pretend_language)
9816fde3
JK
22090{
22091 struct attribute *attr;
22092
22093 /* Set the language we're debugging. */
22094 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22095 if (attr)
22096 set_cu_language (DW_UNSND (attr), cu);
22097 else
9cded63f 22098 {
95554aad 22099 cu->language = pretend_language;
9cded63f
TT
22100 cu->language_defn = language_def (cu->language);
22101 }
dee91e82 22102
7d45c7c3 22103 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22104}
22105
ae038cb0
DJ
22106/* Release one cached compilation unit, CU. We unlink it from the tree
22107 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22108 the caller is responsible for that.
22109 NOTE: DATA is a void * because this function is also used as a
22110 cleanup routine. */
ae038cb0
DJ
22111
22112static void
68dc6402 22113free_heap_comp_unit (void *data)
ae038cb0 22114{
9a3c8263 22115 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22116
23745b47
DE
22117 gdb_assert (cu->per_cu != NULL);
22118 cu->per_cu->cu = NULL;
ae038cb0
DJ
22119 cu->per_cu = NULL;
22120
22121 obstack_free (&cu->comp_unit_obstack, NULL);
22122
22123 xfree (cu);
22124}
22125
72bf9492 22126/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22127 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22128 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22129
22130static void
22131free_stack_comp_unit (void *data)
22132{
9a3c8263 22133 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22134
23745b47
DE
22135 gdb_assert (cu->per_cu != NULL);
22136 cu->per_cu->cu = NULL;
22137 cu->per_cu = NULL;
22138
72bf9492
DJ
22139 obstack_free (&cu->comp_unit_obstack, NULL);
22140 cu->partial_dies = NULL;
ae038cb0
DJ
22141}
22142
22143/* Free all cached compilation units. */
22144
22145static void
22146free_cached_comp_units (void *data)
22147{
22148 struct dwarf2_per_cu_data *per_cu, **last_chain;
22149
22150 per_cu = dwarf2_per_objfile->read_in_chain;
22151 last_chain = &dwarf2_per_objfile->read_in_chain;
22152 while (per_cu != NULL)
22153 {
22154 struct dwarf2_per_cu_data *next_cu;
22155
22156 next_cu = per_cu->cu->read_in_chain;
22157
68dc6402 22158 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22159 *last_chain = next_cu;
22160
22161 per_cu = next_cu;
22162 }
22163}
22164
22165/* Increase the age counter on each cached compilation unit, and free
22166 any that are too old. */
22167
22168static void
22169age_cached_comp_units (void)
22170{
22171 struct dwarf2_per_cu_data *per_cu, **last_chain;
22172
22173 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22174 per_cu = dwarf2_per_objfile->read_in_chain;
22175 while (per_cu != NULL)
22176 {
22177 per_cu->cu->last_used ++;
b4f54984 22178 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22179 dwarf2_mark (per_cu->cu);
22180 per_cu = per_cu->cu->read_in_chain;
22181 }
22182
22183 per_cu = dwarf2_per_objfile->read_in_chain;
22184 last_chain = &dwarf2_per_objfile->read_in_chain;
22185 while (per_cu != NULL)
22186 {
22187 struct dwarf2_per_cu_data *next_cu;
22188
22189 next_cu = per_cu->cu->read_in_chain;
22190
22191 if (!per_cu->cu->mark)
22192 {
68dc6402 22193 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22194 *last_chain = next_cu;
22195 }
22196 else
22197 last_chain = &per_cu->cu->read_in_chain;
22198
22199 per_cu = next_cu;
22200 }
22201}
22202
22203/* Remove a single compilation unit from the cache. */
22204
22205static void
dee91e82 22206free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22207{
22208 struct dwarf2_per_cu_data *per_cu, **last_chain;
22209
22210 per_cu = dwarf2_per_objfile->read_in_chain;
22211 last_chain = &dwarf2_per_objfile->read_in_chain;
22212 while (per_cu != NULL)
22213 {
22214 struct dwarf2_per_cu_data *next_cu;
22215
22216 next_cu = per_cu->cu->read_in_chain;
22217
dee91e82 22218 if (per_cu == target_per_cu)
ae038cb0 22219 {
68dc6402 22220 free_heap_comp_unit (per_cu->cu);
dee91e82 22221 per_cu->cu = NULL;
ae038cb0
DJ
22222 *last_chain = next_cu;
22223 break;
22224 }
22225 else
22226 last_chain = &per_cu->cu->read_in_chain;
22227
22228 per_cu = next_cu;
22229 }
22230}
22231
fe3e1990
DJ
22232/* Release all extra memory associated with OBJFILE. */
22233
22234void
22235dwarf2_free_objfile (struct objfile *objfile)
22236{
9a3c8263
SM
22237 dwarf2_per_objfile
22238 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22239 dwarf2_objfile_data_key);
fe3e1990
DJ
22240
22241 if (dwarf2_per_objfile == NULL)
22242 return;
22243
22244 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22245 free_cached_comp_units (NULL);
22246
7b9f3c50
DE
22247 if (dwarf2_per_objfile->quick_file_names_table)
22248 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22249
527f3840
JK
22250 if (dwarf2_per_objfile->line_header_hash)
22251 htab_delete (dwarf2_per_objfile->line_header_hash);
22252
fe3e1990
DJ
22253 /* Everything else should be on the objfile obstack. */
22254}
22255
dee91e82
DE
22256/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22257 We store these in a hash table separate from the DIEs, and preserve them
22258 when the DIEs are flushed out of cache.
22259
22260 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22261 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22262 or the type may come from a DWO file. Furthermore, while it's more logical
22263 to use per_cu->section+offset, with Fission the section with the data is in
22264 the DWO file but we don't know that section at the point we need it.
22265 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22266 because we can enter the lookup routine, get_die_type_at_offset, from
22267 outside this file, and thus won't necessarily have PER_CU->cu.
22268 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22269
dee91e82 22270struct dwarf2_per_cu_offset_and_type
1c379e20 22271{
dee91e82 22272 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22273 sect_offset offset;
1c379e20
DJ
22274 struct type *type;
22275};
22276
dee91e82 22277/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22278
22279static hashval_t
dee91e82 22280per_cu_offset_and_type_hash (const void *item)
1c379e20 22281{
9a3c8263
SM
22282 const struct dwarf2_per_cu_offset_and_type *ofs
22283 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22284
dee91e82 22285 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22286}
22287
dee91e82 22288/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22289
22290static int
dee91e82 22291per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22292{
9a3c8263
SM
22293 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22294 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22295 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22296 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22297
dee91e82
DE
22298 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22299 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22300}
22301
22302/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22303 table if necessary. For convenience, return TYPE.
22304
22305 The DIEs reading must have careful ordering to:
22306 * Not cause infite loops trying to read in DIEs as a prerequisite for
22307 reading current DIE.
22308 * Not trying to dereference contents of still incompletely read in types
22309 while reading in other DIEs.
22310 * Enable referencing still incompletely read in types just by a pointer to
22311 the type without accessing its fields.
22312
22313 Therefore caller should follow these rules:
22314 * Try to fetch any prerequisite types we may need to build this DIE type
22315 before building the type and calling set_die_type.
e71ec853 22316 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22317 possible before fetching more types to complete the current type.
22318 * Make the type as complete as possible before fetching more types. */
1c379e20 22319
f792889a 22320static struct type *
1c379e20
DJ
22321set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22322{
dee91e82 22323 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22324 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22325 struct attribute *attr;
22326 struct dynamic_prop prop;
1c379e20 22327
b4ba55a1
JB
22328 /* For Ada types, make sure that the gnat-specific data is always
22329 initialized (if not already set). There are a few types where
22330 we should not be doing so, because the type-specific area is
22331 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22332 where the type-specific area is used to store the floatformat).
22333 But this is not a problem, because the gnat-specific information
22334 is actually not needed for these types. */
22335 if (need_gnat_info (cu)
22336 && TYPE_CODE (type) != TYPE_CODE_FUNC
22337 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22338 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22339 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22340 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22341 && !HAVE_GNAT_AUX_INFO (type))
22342 INIT_GNAT_SPECIFIC (type);
22343
3f2f83dd
KB
22344 /* Read DW_AT_allocated and set in type. */
22345 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22346 if (attr_form_is_block (attr))
22347 {
22348 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22349 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22350 }
22351 else if (attr != NULL)
22352 {
22353 complaint (&symfile_complaints,
22354 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22355 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22356 die->offset.sect_off);
22357 }
22358
22359 /* Read DW_AT_associated and set in type. */
22360 attr = dwarf2_attr (die, DW_AT_associated, cu);
22361 if (attr_form_is_block (attr))
22362 {
22363 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22364 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22365 }
22366 else if (attr != NULL)
22367 {
22368 complaint (&symfile_complaints,
22369 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22370 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22371 die->offset.sect_off);
22372 }
22373
3cdcd0ce
JB
22374 /* Read DW_AT_data_location and set in type. */
22375 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22376 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22377 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22378
dee91e82 22379 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22380 {
dee91e82
DE
22381 dwarf2_per_objfile->die_type_hash =
22382 htab_create_alloc_ex (127,
22383 per_cu_offset_and_type_hash,
22384 per_cu_offset_and_type_eq,
22385 NULL,
22386 &objfile->objfile_obstack,
22387 hashtab_obstack_allocate,
22388 dummy_obstack_deallocate);
f792889a 22389 }
1c379e20 22390
dee91e82 22391 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22392 ofs.offset = die->offset;
22393 ofs.type = type;
dee91e82
DE
22394 slot = (struct dwarf2_per_cu_offset_and_type **)
22395 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22396 if (*slot)
22397 complaint (&symfile_complaints,
22398 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22399 die->offset.sect_off);
8d749320
SM
22400 *slot = XOBNEW (&objfile->objfile_obstack,
22401 struct dwarf2_per_cu_offset_and_type);
1c379e20 22402 **slot = ofs;
f792889a 22403 return type;
1c379e20
DJ
22404}
22405
02142a6c
DE
22406/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22407 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22408
22409static struct type *
b64f50a1 22410get_die_type_at_offset (sect_offset offset,
673bfd45 22411 struct dwarf2_per_cu_data *per_cu)
1c379e20 22412{
dee91e82 22413 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22414
dee91e82 22415 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22416 return NULL;
1c379e20 22417
dee91e82 22418 ofs.per_cu = per_cu;
673bfd45 22419 ofs.offset = offset;
9a3c8263
SM
22420 slot = ((struct dwarf2_per_cu_offset_and_type *)
22421 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22422 if (slot)
22423 return slot->type;
22424 else
22425 return NULL;
22426}
22427
02142a6c 22428/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22429 or return NULL if DIE does not have a saved type. */
22430
22431static struct type *
22432get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22433{
22434 return get_die_type_at_offset (die->offset, cu->per_cu);
22435}
22436
10b3939b
DJ
22437/* Add a dependence relationship from CU to REF_PER_CU. */
22438
22439static void
22440dwarf2_add_dependence (struct dwarf2_cu *cu,
22441 struct dwarf2_per_cu_data *ref_per_cu)
22442{
22443 void **slot;
22444
22445 if (cu->dependencies == NULL)
22446 cu->dependencies
22447 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22448 NULL, &cu->comp_unit_obstack,
22449 hashtab_obstack_allocate,
22450 dummy_obstack_deallocate);
22451
22452 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22453 if (*slot == NULL)
22454 *slot = ref_per_cu;
22455}
1c379e20 22456
f504f079
DE
22457/* Subroutine of dwarf2_mark to pass to htab_traverse.
22458 Set the mark field in every compilation unit in the
ae038cb0
DJ
22459 cache that we must keep because we are keeping CU. */
22460
10b3939b
DJ
22461static int
22462dwarf2_mark_helper (void **slot, void *data)
22463{
22464 struct dwarf2_per_cu_data *per_cu;
22465
22466 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22467
22468 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22469 reading of the chain. As such dependencies remain valid it is not much
22470 useful to track and undo them during QUIT cleanups. */
22471 if (per_cu->cu == NULL)
22472 return 1;
22473
10b3939b
DJ
22474 if (per_cu->cu->mark)
22475 return 1;
22476 per_cu->cu->mark = 1;
22477
22478 if (per_cu->cu->dependencies != NULL)
22479 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22480
22481 return 1;
22482}
22483
f504f079
DE
22484/* Set the mark field in CU and in every other compilation unit in the
22485 cache that we must keep because we are keeping CU. */
22486
ae038cb0
DJ
22487static void
22488dwarf2_mark (struct dwarf2_cu *cu)
22489{
22490 if (cu->mark)
22491 return;
22492 cu->mark = 1;
10b3939b
DJ
22493 if (cu->dependencies != NULL)
22494 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22495}
22496
22497static void
22498dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22499{
22500 while (per_cu)
22501 {
22502 per_cu->cu->mark = 0;
22503 per_cu = per_cu->cu->read_in_chain;
22504 }
72bf9492
DJ
22505}
22506
72bf9492
DJ
22507/* Trivial hash function for partial_die_info: the hash value of a DIE
22508 is its offset in .debug_info for this objfile. */
22509
22510static hashval_t
22511partial_die_hash (const void *item)
22512{
9a3c8263
SM
22513 const struct partial_die_info *part_die
22514 = (const struct partial_die_info *) item;
9a619af0 22515
b64f50a1 22516 return part_die->offset.sect_off;
72bf9492
DJ
22517}
22518
22519/* Trivial comparison function for partial_die_info structures: two DIEs
22520 are equal if they have the same offset. */
22521
22522static int
22523partial_die_eq (const void *item_lhs, const void *item_rhs)
22524{
9a3c8263
SM
22525 const struct partial_die_info *part_die_lhs
22526 = (const struct partial_die_info *) item_lhs;
22527 const struct partial_die_info *part_die_rhs
22528 = (const struct partial_die_info *) item_rhs;
9a619af0 22529
b64f50a1 22530 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22531}
22532
b4f54984
DE
22533static struct cmd_list_element *set_dwarf_cmdlist;
22534static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22535
22536static void
b4f54984 22537set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22538{
b4f54984 22539 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22540 gdb_stdout);
ae038cb0
DJ
22541}
22542
22543static void
b4f54984 22544show_dwarf_cmd (char *args, int from_tty)
6e70227d 22545{
b4f54984 22546 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22547}
22548
4bf44c1c 22549/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22550
22551static void
c1bd65d0 22552dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22553{
9a3c8263 22554 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22555 int ix;
8b70b953 22556
626f2d1c
TT
22557 /* Make sure we don't accidentally use dwarf2_per_objfile while
22558 cleaning up. */
22559 dwarf2_per_objfile = NULL;
22560
59b0c7c1
JB
22561 for (ix = 0; ix < data->n_comp_units; ++ix)
22562 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22563
59b0c7c1 22564 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22565 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22566 data->all_type_units[ix]->per_cu.imported_symtabs);
22567 xfree (data->all_type_units);
95554aad 22568
8b70b953 22569 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22570
22571 if (data->dwo_files)
22572 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22573 if (data->dwp_file)
22574 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22575
22576 if (data->dwz_file && data->dwz_file->dwz_bfd)
22577 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22578}
22579
22580\f
ae2de4f8 22581/* The "save gdb-index" command. */
9291a0cd
TT
22582
22583/* The contents of the hash table we create when building the string
22584 table. */
22585struct strtab_entry
22586{
22587 offset_type offset;
22588 const char *str;
22589};
22590
559a7a62
JK
22591/* Hash function for a strtab_entry.
22592
22593 Function is used only during write_hash_table so no index format backward
22594 compatibility is needed. */
b89be57b 22595
9291a0cd
TT
22596static hashval_t
22597hash_strtab_entry (const void *e)
22598{
9a3c8263 22599 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22600 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22601}
22602
22603/* Equality function for a strtab_entry. */
b89be57b 22604
9291a0cd
TT
22605static int
22606eq_strtab_entry (const void *a, const void *b)
22607{
9a3c8263
SM
22608 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22609 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22610 return !strcmp (ea->str, eb->str);
22611}
22612
22613/* Create a strtab_entry hash table. */
b89be57b 22614
9291a0cd
TT
22615static htab_t
22616create_strtab (void)
22617{
22618 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22619 xfree, xcalloc, xfree);
22620}
22621
22622/* Add a string to the constant pool. Return the string's offset in
22623 host order. */
b89be57b 22624
9291a0cd
TT
22625static offset_type
22626add_string (htab_t table, struct obstack *cpool, const char *str)
22627{
22628 void **slot;
22629 struct strtab_entry entry;
22630 struct strtab_entry *result;
22631
22632 entry.str = str;
22633 slot = htab_find_slot (table, &entry, INSERT);
22634 if (*slot)
9a3c8263 22635 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22636 else
22637 {
22638 result = XNEW (struct strtab_entry);
22639 result->offset = obstack_object_size (cpool);
22640 result->str = str;
22641 obstack_grow_str0 (cpool, str);
22642 *slot = result;
22643 }
22644 return result->offset;
22645}
22646
22647/* An entry in the symbol table. */
22648struct symtab_index_entry
22649{
22650 /* The name of the symbol. */
22651 const char *name;
22652 /* The offset of the name in the constant pool. */
22653 offset_type index_offset;
22654 /* A sorted vector of the indices of all the CUs that hold an object
22655 of this name. */
22656 VEC (offset_type) *cu_indices;
22657};
22658
22659/* The symbol table. This is a power-of-2-sized hash table. */
22660struct mapped_symtab
22661{
22662 offset_type n_elements;
22663 offset_type size;
22664 struct symtab_index_entry **data;
22665};
22666
22667/* Hash function for a symtab_index_entry. */
b89be57b 22668
9291a0cd
TT
22669static hashval_t
22670hash_symtab_entry (const void *e)
22671{
9a3c8263
SM
22672 const struct symtab_index_entry *entry
22673 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22674 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22675 sizeof (offset_type) * VEC_length (offset_type,
22676 entry->cu_indices),
22677 0);
22678}
22679
22680/* Equality function for a symtab_index_entry. */
b89be57b 22681
9291a0cd
TT
22682static int
22683eq_symtab_entry (const void *a, const void *b)
22684{
9a3c8263
SM
22685 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22686 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22687 int len = VEC_length (offset_type, ea->cu_indices);
22688 if (len != VEC_length (offset_type, eb->cu_indices))
22689 return 0;
22690 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22691 VEC_address (offset_type, eb->cu_indices),
22692 sizeof (offset_type) * len);
22693}
22694
22695/* Destroy a symtab_index_entry. */
b89be57b 22696
9291a0cd
TT
22697static void
22698delete_symtab_entry (void *p)
22699{
9a3c8263 22700 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22701 VEC_free (offset_type, entry->cu_indices);
22702 xfree (entry);
22703}
22704
22705/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22706
9291a0cd 22707static htab_t
3876f04e 22708create_symbol_hash_table (void)
9291a0cd
TT
22709{
22710 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22711 delete_symtab_entry, xcalloc, xfree);
22712}
22713
22714/* Create a new mapped symtab object. */
b89be57b 22715
9291a0cd
TT
22716static struct mapped_symtab *
22717create_mapped_symtab (void)
22718{
22719 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22720 symtab->n_elements = 0;
22721 symtab->size = 1024;
22722 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22723 return symtab;
22724}
22725
22726/* Destroy a mapped_symtab. */
b89be57b 22727
9291a0cd
TT
22728static void
22729cleanup_mapped_symtab (void *p)
22730{
9a3c8263 22731 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22732 /* The contents of the array are freed when the other hash table is
22733 destroyed. */
22734 xfree (symtab->data);
22735 xfree (symtab);
22736}
22737
22738/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22739 the slot.
22740
22741 Function is used only during write_hash_table so no index format backward
22742 compatibility is needed. */
b89be57b 22743
9291a0cd
TT
22744static struct symtab_index_entry **
22745find_slot (struct mapped_symtab *symtab, const char *name)
22746{
559a7a62 22747 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22748
22749 index = hash & (symtab->size - 1);
22750 step = ((hash * 17) & (symtab->size - 1)) | 1;
22751
22752 for (;;)
22753 {
22754 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22755 return &symtab->data[index];
22756 index = (index + step) & (symtab->size - 1);
22757 }
22758}
22759
22760/* Expand SYMTAB's hash table. */
b89be57b 22761
9291a0cd
TT
22762static void
22763hash_expand (struct mapped_symtab *symtab)
22764{
22765 offset_type old_size = symtab->size;
22766 offset_type i;
22767 struct symtab_index_entry **old_entries = symtab->data;
22768
22769 symtab->size *= 2;
22770 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22771
22772 for (i = 0; i < old_size; ++i)
22773 {
22774 if (old_entries[i])
22775 {
22776 struct symtab_index_entry **slot = find_slot (symtab,
22777 old_entries[i]->name);
22778 *slot = old_entries[i];
22779 }
22780 }
22781
22782 xfree (old_entries);
22783}
22784
156942c7
DE
22785/* Add an entry to SYMTAB. NAME is the name of the symbol.
22786 CU_INDEX is the index of the CU in which the symbol appears.
22787 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22788
9291a0cd
TT
22789static void
22790add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22791 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22792 offset_type cu_index)
22793{
22794 struct symtab_index_entry **slot;
156942c7 22795 offset_type cu_index_and_attrs;
9291a0cd
TT
22796
22797 ++symtab->n_elements;
22798 if (4 * symtab->n_elements / 3 >= symtab->size)
22799 hash_expand (symtab);
22800
22801 slot = find_slot (symtab, name);
22802 if (!*slot)
22803 {
22804 *slot = XNEW (struct symtab_index_entry);
22805 (*slot)->name = name;
156942c7 22806 /* index_offset is set later. */
9291a0cd
TT
22807 (*slot)->cu_indices = NULL;
22808 }
156942c7
DE
22809
22810 cu_index_and_attrs = 0;
22811 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22812 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22813 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22814
22815 /* We don't want to record an index value twice as we want to avoid the
22816 duplication.
22817 We process all global symbols and then all static symbols
22818 (which would allow us to avoid the duplication by only having to check
22819 the last entry pushed), but a symbol could have multiple kinds in one CU.
22820 To keep things simple we don't worry about the duplication here and
22821 sort and uniqufy the list after we've processed all symbols. */
22822 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22823}
22824
22825/* qsort helper routine for uniquify_cu_indices. */
22826
22827static int
22828offset_type_compare (const void *ap, const void *bp)
22829{
22830 offset_type a = *(offset_type *) ap;
22831 offset_type b = *(offset_type *) bp;
22832
22833 return (a > b) - (b > a);
22834}
22835
22836/* Sort and remove duplicates of all symbols' cu_indices lists. */
22837
22838static void
22839uniquify_cu_indices (struct mapped_symtab *symtab)
22840{
22841 int i;
22842
22843 for (i = 0; i < symtab->size; ++i)
22844 {
22845 struct symtab_index_entry *entry = symtab->data[i];
22846
22847 if (entry
22848 && entry->cu_indices != NULL)
22849 {
22850 unsigned int next_to_insert, next_to_check;
22851 offset_type last_value;
22852
22853 qsort (VEC_address (offset_type, entry->cu_indices),
22854 VEC_length (offset_type, entry->cu_indices),
22855 sizeof (offset_type), offset_type_compare);
22856
22857 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22858 next_to_insert = 1;
22859 for (next_to_check = 1;
22860 next_to_check < VEC_length (offset_type, entry->cu_indices);
22861 ++next_to_check)
22862 {
22863 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22864 != last_value)
22865 {
22866 last_value = VEC_index (offset_type, entry->cu_indices,
22867 next_to_check);
22868 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22869 last_value);
22870 ++next_to_insert;
22871 }
22872 }
22873 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22874 }
22875 }
9291a0cd
TT
22876}
22877
22878/* Add a vector of indices to the constant pool. */
b89be57b 22879
9291a0cd 22880static offset_type
3876f04e 22881add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22882 struct symtab_index_entry *entry)
22883{
22884 void **slot;
22885
3876f04e 22886 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22887 if (!*slot)
22888 {
22889 offset_type len = VEC_length (offset_type, entry->cu_indices);
22890 offset_type val = MAYBE_SWAP (len);
22891 offset_type iter;
22892 int i;
22893
22894 *slot = entry;
22895 entry->index_offset = obstack_object_size (cpool);
22896
22897 obstack_grow (cpool, &val, sizeof (val));
22898 for (i = 0;
22899 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22900 ++i)
22901 {
22902 val = MAYBE_SWAP (iter);
22903 obstack_grow (cpool, &val, sizeof (val));
22904 }
22905 }
22906 else
22907 {
9a3c8263
SM
22908 struct symtab_index_entry *old_entry
22909 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22910 entry->index_offset = old_entry->index_offset;
22911 entry = old_entry;
22912 }
22913 return entry->index_offset;
22914}
22915
22916/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22917 constant pool entries going into the obstack CPOOL. */
b89be57b 22918
9291a0cd
TT
22919static void
22920write_hash_table (struct mapped_symtab *symtab,
22921 struct obstack *output, struct obstack *cpool)
22922{
22923 offset_type i;
3876f04e 22924 htab_t symbol_hash_table;
9291a0cd
TT
22925 htab_t str_table;
22926
3876f04e 22927 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22928 str_table = create_strtab ();
3876f04e 22929
9291a0cd
TT
22930 /* We add all the index vectors to the constant pool first, to
22931 ensure alignment is ok. */
22932 for (i = 0; i < symtab->size; ++i)
22933 {
22934 if (symtab->data[i])
3876f04e 22935 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22936 }
22937
22938 /* Now write out the hash table. */
22939 for (i = 0; i < symtab->size; ++i)
22940 {
22941 offset_type str_off, vec_off;
22942
22943 if (symtab->data[i])
22944 {
22945 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22946 vec_off = symtab->data[i]->index_offset;
22947 }
22948 else
22949 {
22950 /* While 0 is a valid constant pool index, it is not valid
22951 to have 0 for both offsets. */
22952 str_off = 0;
22953 vec_off = 0;
22954 }
22955
22956 str_off = MAYBE_SWAP (str_off);
22957 vec_off = MAYBE_SWAP (vec_off);
22958
22959 obstack_grow (output, &str_off, sizeof (str_off));
22960 obstack_grow (output, &vec_off, sizeof (vec_off));
22961 }
22962
22963 htab_delete (str_table);
3876f04e 22964 htab_delete (symbol_hash_table);
9291a0cd
TT
22965}
22966
0a5429f6
DE
22967/* Struct to map psymtab to CU index in the index file. */
22968struct psymtab_cu_index_map
22969{
22970 struct partial_symtab *psymtab;
22971 unsigned int cu_index;
22972};
22973
22974static hashval_t
22975hash_psymtab_cu_index (const void *item)
22976{
9a3c8263
SM
22977 const struct psymtab_cu_index_map *map
22978 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
22979
22980 return htab_hash_pointer (map->psymtab);
22981}
22982
22983static int
22984eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22985{
9a3c8263
SM
22986 const struct psymtab_cu_index_map *lhs
22987 = (const struct psymtab_cu_index_map *) item_lhs;
22988 const struct psymtab_cu_index_map *rhs
22989 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
22990
22991 return lhs->psymtab == rhs->psymtab;
22992}
22993
22994/* Helper struct for building the address table. */
22995struct addrmap_index_data
22996{
22997 struct objfile *objfile;
22998 struct obstack *addr_obstack;
22999 htab_t cu_index_htab;
23000
23001 /* Non-zero if the previous_* fields are valid.
23002 We can't write an entry until we see the next entry (since it is only then
23003 that we know the end of the entry). */
23004 int previous_valid;
23005 /* Index of the CU in the table of all CUs in the index file. */
23006 unsigned int previous_cu_index;
0963b4bd 23007 /* Start address of the CU. */
0a5429f6
DE
23008 CORE_ADDR previous_cu_start;
23009};
23010
23011/* Write an address entry to OBSTACK. */
b89be57b 23012
9291a0cd 23013static void
0a5429f6
DE
23014add_address_entry (struct objfile *objfile, struct obstack *obstack,
23015 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23016{
0a5429f6 23017 offset_type cu_index_to_write;
948f8e3d 23018 gdb_byte addr[8];
9291a0cd
TT
23019 CORE_ADDR baseaddr;
23020
23021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23022
0a5429f6
DE
23023 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23024 obstack_grow (obstack, addr, 8);
23025 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23026 obstack_grow (obstack, addr, 8);
23027 cu_index_to_write = MAYBE_SWAP (cu_index);
23028 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23029}
23030
23031/* Worker function for traversing an addrmap to build the address table. */
23032
23033static int
23034add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23035{
9a3c8263
SM
23036 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23037 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23038
23039 if (data->previous_valid)
23040 add_address_entry (data->objfile, data->addr_obstack,
23041 data->previous_cu_start, start_addr,
23042 data->previous_cu_index);
23043
23044 data->previous_cu_start = start_addr;
23045 if (pst != NULL)
23046 {
23047 struct psymtab_cu_index_map find_map, *map;
23048 find_map.psymtab = pst;
9a3c8263
SM
23049 map = ((struct psymtab_cu_index_map *)
23050 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23051 gdb_assert (map != NULL);
23052 data->previous_cu_index = map->cu_index;
23053 data->previous_valid = 1;
23054 }
23055 else
23056 data->previous_valid = 0;
23057
23058 return 0;
23059}
23060
23061/* Write OBJFILE's address map to OBSTACK.
23062 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23063 in the index file. */
23064
23065static void
23066write_address_map (struct objfile *objfile, struct obstack *obstack,
23067 htab_t cu_index_htab)
23068{
23069 struct addrmap_index_data addrmap_index_data;
23070
23071 /* When writing the address table, we have to cope with the fact that
23072 the addrmap iterator only provides the start of a region; we have to
23073 wait until the next invocation to get the start of the next region. */
23074
23075 addrmap_index_data.objfile = objfile;
23076 addrmap_index_data.addr_obstack = obstack;
23077 addrmap_index_data.cu_index_htab = cu_index_htab;
23078 addrmap_index_data.previous_valid = 0;
23079
23080 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23081 &addrmap_index_data);
23082
23083 /* It's highly unlikely the last entry (end address = 0xff...ff)
23084 is valid, but we should still handle it.
23085 The end address is recorded as the start of the next region, but that
23086 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23087 anyway. */
23088 if (addrmap_index_data.previous_valid)
23089 add_address_entry (objfile, obstack,
23090 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23091 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23092}
23093
156942c7
DE
23094/* Return the symbol kind of PSYM. */
23095
23096static gdb_index_symbol_kind
23097symbol_kind (struct partial_symbol *psym)
23098{
23099 domain_enum domain = PSYMBOL_DOMAIN (psym);
23100 enum address_class aclass = PSYMBOL_CLASS (psym);
23101
23102 switch (domain)
23103 {
23104 case VAR_DOMAIN:
23105 switch (aclass)
23106 {
23107 case LOC_BLOCK:
23108 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23109 case LOC_TYPEDEF:
23110 return GDB_INDEX_SYMBOL_KIND_TYPE;
23111 case LOC_COMPUTED:
23112 case LOC_CONST_BYTES:
23113 case LOC_OPTIMIZED_OUT:
23114 case LOC_STATIC:
23115 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23116 case LOC_CONST:
23117 /* Note: It's currently impossible to recognize psyms as enum values
23118 short of reading the type info. For now punt. */
23119 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23120 default:
23121 /* There are other LOC_FOO values that one might want to classify
23122 as variables, but dwarf2read.c doesn't currently use them. */
23123 return GDB_INDEX_SYMBOL_KIND_OTHER;
23124 }
23125 case STRUCT_DOMAIN:
23126 return GDB_INDEX_SYMBOL_KIND_TYPE;
23127 default:
23128 return GDB_INDEX_SYMBOL_KIND_OTHER;
23129 }
23130}
23131
9291a0cd 23132/* Add a list of partial symbols to SYMTAB. */
b89be57b 23133
9291a0cd
TT
23134static void
23135write_psymbols (struct mapped_symtab *symtab,
987d643c 23136 htab_t psyms_seen,
9291a0cd
TT
23137 struct partial_symbol **psymp,
23138 int count,
987d643c
TT
23139 offset_type cu_index,
23140 int is_static)
9291a0cd
TT
23141{
23142 for (; count-- > 0; ++psymp)
23143 {
156942c7
DE
23144 struct partial_symbol *psym = *psymp;
23145 void **slot;
987d643c 23146
156942c7 23147 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23148 error (_("Ada is not currently supported by the index"));
987d643c 23149
987d643c 23150 /* Only add a given psymbol once. */
156942c7 23151 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23152 if (!*slot)
23153 {
156942c7
DE
23154 gdb_index_symbol_kind kind = symbol_kind (psym);
23155
23156 *slot = psym;
23157 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23158 is_static, kind, cu_index);
987d643c 23159 }
9291a0cd
TT
23160 }
23161}
23162
23163/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23164 exception if there is an error. */
b89be57b 23165
9291a0cd
TT
23166static void
23167write_obstack (FILE *file, struct obstack *obstack)
23168{
23169 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23170 file)
23171 != obstack_object_size (obstack))
23172 error (_("couldn't data write to file"));
23173}
23174
23175/* Unlink a file if the argument is not NULL. */
b89be57b 23176
9291a0cd
TT
23177static void
23178unlink_if_set (void *p)
23179{
9a3c8263 23180 char **filename = (char **) p;
9291a0cd
TT
23181 if (*filename)
23182 unlink (*filename);
23183}
23184
1fd400ff
TT
23185/* A helper struct used when iterating over debug_types. */
23186struct signatured_type_index_data
23187{
23188 struct objfile *objfile;
23189 struct mapped_symtab *symtab;
23190 struct obstack *types_list;
987d643c 23191 htab_t psyms_seen;
1fd400ff
TT
23192 int cu_index;
23193};
23194
23195/* A helper function that writes a single signatured_type to an
23196 obstack. */
b89be57b 23197
1fd400ff
TT
23198static int
23199write_one_signatured_type (void **slot, void *d)
23200{
9a3c8263
SM
23201 struct signatured_type_index_data *info
23202 = (struct signatured_type_index_data *) d;
1fd400ff 23203 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23204 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23205 gdb_byte val[8];
23206
23207 write_psymbols (info->symtab,
987d643c 23208 info->psyms_seen,
3e43a32a
MS
23209 info->objfile->global_psymbols.list
23210 + psymtab->globals_offset,
987d643c
TT
23211 psymtab->n_global_syms, info->cu_index,
23212 0);
1fd400ff 23213 write_psymbols (info->symtab,
987d643c 23214 info->psyms_seen,
3e43a32a
MS
23215 info->objfile->static_psymbols.list
23216 + psymtab->statics_offset,
987d643c
TT
23217 psymtab->n_static_syms, info->cu_index,
23218 1);
1fd400ff 23219
b64f50a1
JK
23220 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23221 entry->per_cu.offset.sect_off);
1fd400ff 23222 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23223 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23224 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23225 obstack_grow (info->types_list, val, 8);
23226 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23227 obstack_grow (info->types_list, val, 8);
23228
23229 ++info->cu_index;
23230
23231 return 1;
23232}
23233
95554aad
TT
23234/* Recurse into all "included" dependencies and write their symbols as
23235 if they appeared in this psymtab. */
23236
23237static void
23238recursively_write_psymbols (struct objfile *objfile,
23239 struct partial_symtab *psymtab,
23240 struct mapped_symtab *symtab,
23241 htab_t psyms_seen,
23242 offset_type cu_index)
23243{
23244 int i;
23245
23246 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23247 if (psymtab->dependencies[i]->user != NULL)
23248 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23249 symtab, psyms_seen, cu_index);
23250
23251 write_psymbols (symtab,
23252 psyms_seen,
23253 objfile->global_psymbols.list + psymtab->globals_offset,
23254 psymtab->n_global_syms, cu_index,
23255 0);
23256 write_psymbols (symtab,
23257 psyms_seen,
23258 objfile->static_psymbols.list + psymtab->statics_offset,
23259 psymtab->n_static_syms, cu_index,
23260 1);
23261}
23262
9291a0cd 23263/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23264
9291a0cd
TT
23265static void
23266write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23267{
23268 struct cleanup *cleanup;
23269 char *filename, *cleanup_filename;
1fd400ff
TT
23270 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23271 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23272 int i;
23273 FILE *out_file;
23274 struct mapped_symtab *symtab;
23275 offset_type val, size_of_contents, total_len;
23276 struct stat st;
987d643c 23277 htab_t psyms_seen;
0a5429f6
DE
23278 htab_t cu_index_htab;
23279 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23280
9291a0cd
TT
23281 if (dwarf2_per_objfile->using_index)
23282 error (_("Cannot use an index to create the index"));
23283
8b70b953
TT
23284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23285 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23286
260b681b
DE
23287 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23288 return;
23289
4262abfb
JK
23290 if (stat (objfile_name (objfile), &st) < 0)
23291 perror_with_name (objfile_name (objfile));
9291a0cd 23292
4262abfb 23293 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23294 INDEX_SUFFIX, (char *) NULL);
23295 cleanup = make_cleanup (xfree, filename);
23296
614c279d 23297 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23298 if (!out_file)
23299 error (_("Can't open `%s' for writing"), filename);
23300
23301 cleanup_filename = filename;
23302 make_cleanup (unlink_if_set, &cleanup_filename);
23303
23304 symtab = create_mapped_symtab ();
23305 make_cleanup (cleanup_mapped_symtab, symtab);
23306
23307 obstack_init (&addr_obstack);
23308 make_cleanup_obstack_free (&addr_obstack);
23309
23310 obstack_init (&cu_list);
23311 make_cleanup_obstack_free (&cu_list);
23312
1fd400ff
TT
23313 obstack_init (&types_cu_list);
23314 make_cleanup_obstack_free (&types_cu_list);
23315
987d643c
TT
23316 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23317 NULL, xcalloc, xfree);
96408a79 23318 make_cleanup_htab_delete (psyms_seen);
987d643c 23319
0a5429f6
DE
23320 /* While we're scanning CU's create a table that maps a psymtab pointer
23321 (which is what addrmap records) to its index (which is what is recorded
23322 in the index file). This will later be needed to write the address
23323 table. */
23324 cu_index_htab = htab_create_alloc (100,
23325 hash_psymtab_cu_index,
23326 eq_psymtab_cu_index,
23327 NULL, xcalloc, xfree);
96408a79 23328 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23329 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23330 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23331 make_cleanup (xfree, psymtab_cu_index_map);
23332
23333 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23334 work here. Also, the debug_types entries do not appear in
23335 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23336 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23337 {
3e43a32a
MS
23338 struct dwarf2_per_cu_data *per_cu
23339 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23340 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23341 gdb_byte val[8];
0a5429f6
DE
23342 struct psymtab_cu_index_map *map;
23343 void **slot;
9291a0cd 23344
92fac807
JK
23345 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23346 It may be referenced from a local scope but in such case it does not
23347 need to be present in .gdb_index. */
23348 if (psymtab == NULL)
23349 continue;
23350
95554aad
TT
23351 if (psymtab->user == NULL)
23352 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23353
0a5429f6
DE
23354 map = &psymtab_cu_index_map[i];
23355 map->psymtab = psymtab;
23356 map->cu_index = i;
23357 slot = htab_find_slot (cu_index_htab, map, INSERT);
23358 gdb_assert (slot != NULL);
23359 gdb_assert (*slot == NULL);
23360 *slot = map;
9291a0cd 23361
b64f50a1
JK
23362 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23363 per_cu->offset.sect_off);
9291a0cd 23364 obstack_grow (&cu_list, val, 8);
e254ef6a 23365 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23366 obstack_grow (&cu_list, val, 8);
23367 }
23368
0a5429f6
DE
23369 /* Dump the address map. */
23370 write_address_map (objfile, &addr_obstack, cu_index_htab);
23371
1fd400ff
TT
23372 /* Write out the .debug_type entries, if any. */
23373 if (dwarf2_per_objfile->signatured_types)
23374 {
23375 struct signatured_type_index_data sig_data;
23376
23377 sig_data.objfile = objfile;
23378 sig_data.symtab = symtab;
23379 sig_data.types_list = &types_cu_list;
987d643c 23380 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23381 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23382 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23383 write_one_signatured_type, &sig_data);
23384 }
23385
156942c7
DE
23386 /* Now that we've processed all symbols we can shrink their cu_indices
23387 lists. */
23388 uniquify_cu_indices (symtab);
23389
9291a0cd
TT
23390 obstack_init (&constant_pool);
23391 make_cleanup_obstack_free (&constant_pool);
23392 obstack_init (&symtab_obstack);
23393 make_cleanup_obstack_free (&symtab_obstack);
23394 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23395
23396 obstack_init (&contents);
23397 make_cleanup_obstack_free (&contents);
1fd400ff 23398 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23399 total_len = size_of_contents;
23400
23401 /* The version number. */
796a7ff8 23402 val = MAYBE_SWAP (8);
9291a0cd
TT
23403 obstack_grow (&contents, &val, sizeof (val));
23404
23405 /* The offset of the CU list from the start of the file. */
23406 val = MAYBE_SWAP (total_len);
23407 obstack_grow (&contents, &val, sizeof (val));
23408 total_len += obstack_object_size (&cu_list);
23409
1fd400ff
TT
23410 /* The offset of the types CU list from the start of the file. */
23411 val = MAYBE_SWAP (total_len);
23412 obstack_grow (&contents, &val, sizeof (val));
23413 total_len += obstack_object_size (&types_cu_list);
23414
9291a0cd
TT
23415 /* The offset of the address table from the start of the file. */
23416 val = MAYBE_SWAP (total_len);
23417 obstack_grow (&contents, &val, sizeof (val));
23418 total_len += obstack_object_size (&addr_obstack);
23419
23420 /* The offset of the symbol table from the start of the file. */
23421 val = MAYBE_SWAP (total_len);
23422 obstack_grow (&contents, &val, sizeof (val));
23423 total_len += obstack_object_size (&symtab_obstack);
23424
23425 /* The offset of the constant pool from the start of the file. */
23426 val = MAYBE_SWAP (total_len);
23427 obstack_grow (&contents, &val, sizeof (val));
23428 total_len += obstack_object_size (&constant_pool);
23429
23430 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23431
23432 write_obstack (out_file, &contents);
23433 write_obstack (out_file, &cu_list);
1fd400ff 23434 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23435 write_obstack (out_file, &addr_obstack);
23436 write_obstack (out_file, &symtab_obstack);
23437 write_obstack (out_file, &constant_pool);
23438
23439 fclose (out_file);
23440
23441 /* We want to keep the file, so we set cleanup_filename to NULL
23442 here. See unlink_if_set. */
23443 cleanup_filename = NULL;
23444
23445 do_cleanups (cleanup);
23446}
23447
90476074
TT
23448/* Implementation of the `save gdb-index' command.
23449
23450 Note that the file format used by this command is documented in the
23451 GDB manual. Any changes here must be documented there. */
11570e71 23452
9291a0cd
TT
23453static void
23454save_gdb_index_command (char *arg, int from_tty)
23455{
23456 struct objfile *objfile;
23457
23458 if (!arg || !*arg)
96d19272 23459 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23460
23461 ALL_OBJFILES (objfile)
23462 {
23463 struct stat st;
23464
23465 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23466 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23467 continue;
23468
9a3c8263
SM
23469 dwarf2_per_objfile
23470 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23471 dwarf2_objfile_data_key);
9291a0cd
TT
23472 if (dwarf2_per_objfile)
23473 {
9291a0cd 23474
492d29ea 23475 TRY
9291a0cd
TT
23476 {
23477 write_psymtabs_to_index (objfile, arg);
23478 }
492d29ea
PA
23479 CATCH (except, RETURN_MASK_ERROR)
23480 {
23481 exception_fprintf (gdb_stderr, except,
23482 _("Error while writing index for `%s': "),
23483 objfile_name (objfile));
23484 }
23485 END_CATCH
9291a0cd
TT
23486 }
23487 }
dce234bc
PP
23488}
23489
9291a0cd
TT
23490\f
23491
b4f54984 23492int dwarf_always_disassemble;
9eae7c52
TT
23493
23494static void
b4f54984
DE
23495show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23496 struct cmd_list_element *c, const char *value)
9eae7c52 23497{
3e43a32a
MS
23498 fprintf_filtered (file,
23499 _("Whether to always disassemble "
23500 "DWARF expressions is %s.\n"),
9eae7c52
TT
23501 value);
23502}
23503
900e11f9
JK
23504static void
23505show_check_physname (struct ui_file *file, int from_tty,
23506 struct cmd_list_element *c, const char *value)
23507{
23508 fprintf_filtered (file,
23509 _("Whether to check \"physname\" is %s.\n"),
23510 value);
23511}
23512
6502dd73
DJ
23513void _initialize_dwarf2_read (void);
23514
23515void
23516_initialize_dwarf2_read (void)
23517{
96d19272
JK
23518 struct cmd_list_element *c;
23519
dce234bc 23520 dwarf2_objfile_data_key
c1bd65d0 23521 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23522
b4f54984
DE
23523 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23524Set DWARF specific variables.\n\
23525Configure DWARF variables such as the cache size"),
23526 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23527 0/*allow-unknown*/, &maintenance_set_cmdlist);
23528
b4f54984
DE
23529 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23530Show DWARF specific variables\n\
23531Show DWARF variables such as the cache size"),
23532 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23533 0/*allow-unknown*/, &maintenance_show_cmdlist);
23534
23535 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23536 &dwarf_max_cache_age, _("\
23537Set the upper bound on the age of cached DWARF compilation units."), _("\
23538Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23539A higher limit means that cached compilation units will be stored\n\
23540in memory longer, and more total memory will be used. Zero disables\n\
23541caching, which can slow down startup."),
2c5b56ce 23542 NULL,
b4f54984
DE
23543 show_dwarf_max_cache_age,
23544 &set_dwarf_cmdlist,
23545 &show_dwarf_cmdlist);
d97bc12b 23546
9eae7c52 23547 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23548 &dwarf_always_disassemble, _("\
9eae7c52
TT
23549Set whether `info address' always disassembles DWARF expressions."), _("\
23550Show whether `info address' always disassembles DWARF expressions."), _("\
23551When enabled, DWARF expressions are always printed in an assembly-like\n\
23552syntax. When disabled, expressions will be printed in a more\n\
23553conversational style, when possible."),
23554 NULL,
b4f54984
DE
23555 show_dwarf_always_disassemble,
23556 &set_dwarf_cmdlist,
23557 &show_dwarf_cmdlist);
23558
23559 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23560Set debugging of the DWARF reader."), _("\
23561Show debugging of the DWARF reader."), _("\
23562When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23563reading and symtab expansion. A value of 1 (one) provides basic\n\
23564information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23565 NULL,
23566 NULL,
23567 &setdebuglist, &showdebuglist);
23568
b4f54984
DE
23569 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23570Set debugging of the DWARF DIE reader."), _("\
23571Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23572When enabled (non-zero), DIEs are dumped after they are read in.\n\
23573The value is the maximum depth to print."),
ccce17b0
YQ
23574 NULL,
23575 NULL,
23576 &setdebuglist, &showdebuglist);
9291a0cd 23577
27e0867f
DE
23578 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23579Set debugging of the dwarf line reader."), _("\
23580Show debugging of the dwarf line reader."), _("\
23581When enabled (non-zero), line number entries are dumped as they are read in.\n\
23582A value of 1 (one) provides basic information.\n\
23583A value greater than 1 provides more verbose information."),
23584 NULL,
23585 NULL,
23586 &setdebuglist, &showdebuglist);
23587
900e11f9
JK
23588 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23589Set cross-checking of \"physname\" code against demangler."), _("\
23590Show cross-checking of \"physname\" code against demangler."), _("\
23591When enabled, GDB's internal \"physname\" code is checked against\n\
23592the demangler."),
23593 NULL, show_check_physname,
23594 &setdebuglist, &showdebuglist);
23595
e615022a
DE
23596 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23597 no_class, &use_deprecated_index_sections, _("\
23598Set whether to use deprecated gdb_index sections."), _("\
23599Show whether to use deprecated gdb_index sections."), _("\
23600When enabled, deprecated .gdb_index sections are used anyway.\n\
23601Normally they are ignored either because of a missing feature or\n\
23602performance issue.\n\
23603Warning: This option must be enabled before gdb reads the file."),
23604 NULL,
23605 NULL,
23606 &setlist, &showlist);
23607
96d19272 23608 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23609 _("\
fc1a9d6e 23610Save a gdb-index file.\n\
11570e71 23611Usage: save gdb-index DIRECTORY"),
96d19272
JK
23612 &save_cmdlist);
23613 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23614
23615 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23616 &dwarf2_locexpr_funcs);
23617 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23618 &dwarf2_loclist_funcs);
23619
23620 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23621 &dwarf2_block_frame_base_locexpr_funcs);
23622 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23623 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23624}
This page took 3.705173 seconds and 4 git commands to generate.