gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
7b6bb8da 4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
4c2df51b 60
c906108c
SS
61#include <fcntl.h>
62#include "gdb_string.h"
4bdf3d34 63#include "gdb_assert.h"
c906108c 64#include <sys/types.h>
233a11ab
CS
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
dce234bc
PP
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
85d9bd0e
TT
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
dce234bc 73#endif
d8151005 74
34eaf542
TT
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
107d2387 78#if 0
357e46e7 79/* .debug_info header for a compilation unit
c906108c
SS
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 93#endif
c906108c 94
c906108c
SS
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
d97bc12b
DE
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
dce234bc
PP
121static int pagesize;
122
df8a16a1
DJ
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
6502dd73
DJ
129static const struct objfile_data *dwarf2_objfile_data_key;
130
dce234bc
PP
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
be391dca
TT
137 /* True if we have tried to read this section. */
138 int readin;
dce234bc
PP
139};
140
9291a0cd
TT
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
3876f04e
DE
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
9291a0cd
TT
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
6502dd73
DJ
165struct dwarf2_per_objfile
166{
dce234bc
PP
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
dce234bc
PP
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
348e048f 174 struct dwarf2_section_info types;
dce234bc
PP
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
9291a0cd 177 struct dwarf2_section_info gdb_index;
ae038cb0 178
be391dca
TT
179 /* Back link. */
180 struct objfile *objfile;
181
10b3939b
DJ
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
ae038cb0
DJ
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
1fd400ff
TT
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
ae038cb0
DJ
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 198
348e048f
DE
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
72dca2f5
FR
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
9291a0cd 206
ae2de4f8
DE
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
209 unsigned char using_index;
210
ae2de4f8 211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 212 struct mapped_index *index_table;
98bfdba5 213
7b9f3c50
DE
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
98bfdba5
PA
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
673bfd45
DE
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
6502dd73
DJ
233};
234
235static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
236
237/* names of the debugging sections */
238
233a11ab
CS
239/* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242#define INFO_SECTION "debug_info"
243#define ABBREV_SECTION "debug_abbrev"
244#define LINE_SECTION "debug_line"
233a11ab
CS
245#define LOC_SECTION "debug_loc"
246#define MACINFO_SECTION "debug_macinfo"
247#define STR_SECTION "debug_str"
248#define RANGES_SECTION "debug_ranges"
348e048f 249#define TYPES_SECTION "debug_types"
233a11ab
CS
250#define FRAME_SECTION "debug_frame"
251#define EH_FRAME_SECTION "eh_frame"
9291a0cd 252#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
253
254/* local data types */
255
0963b4bd 256/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
257#ifndef ABBREV_HASH_SIZE
258#define ABBREV_HASH_SIZE 121
259#endif
260
107d2387
AC
261/* The data in a compilation unit header, after target2host
262 translation, looks like this. */
c906108c 263struct comp_unit_head
a738430d 264{
c764a876 265 unsigned int length;
a738430d 266 short version;
a738430d
MK
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
9cbfa09e 269 unsigned int abbrev_offset;
57349743 270
a738430d
MK
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
57349743 273
a738430d
MK
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
57349743 276
a738430d
MK
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
57349743 280
d00adf39
DE
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
a738430d 284};
c906108c 285
3da10d80
KS
286/* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288struct delayed_method_info
289{
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304};
305
306typedef struct delayed_method_info delayed_method_info;
307DEF_VEC_O (delayed_method_info);
308
e7c27a73
DJ
309/* Internal state when decoding a particular compilation unit. */
310struct dwarf2_cu
311{
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
d00adf39 315 /* The header of the compilation unit. */
e7c27a73 316 struct comp_unit_head header;
e142c38c 317
d00adf39
DE
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
e142c38c
DJ
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
b0f35d58
DL
330 const char *producer;
331
e142c38c
DJ
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
f3dd6933
DJ
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
72bf9492
DJ
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
ae038cb0
DJ
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
10b3939b 368 /* A hash table of die offsets for following references. */
51545339 369 htab_t die_hash;
10b3939b
DJ
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
cb1df416
DJ
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
3da10d80
KS
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
ae038cb0
DJ
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
72bf9492
DJ
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
e7c27a73
DJ
398};
399
10b3939b
DJ
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
ae038cb0
DJ
406struct dwarf2_per_cu_data
407{
348e048f 408 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 409 bytes should suffice to store the length of any compilation unit
45452591
DE
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
c764a876 413 unsigned int offset;
348e048f 414 unsigned int length : 29;
ae038cb0
DJ
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
c764a876 418 unsigned int queued : 1;
ae038cb0 419
5afb4e99
DJ
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
348e048f
DE
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
17ea53c3
JK
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
ae038cb0 432 struct dwarf2_cu *cu;
1c379e20 433
9291a0cd
TT
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
ae038cb0
DJ
449};
450
348e048f
DE
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465};
466
0963b4bd
MS
467/* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
93311388
DE
472
473struct die_reader_specs
474{
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484};
485
debd256d
JB
486/* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489struct line_header
490{
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
2dc7f7b3 495 unsigned char maximum_ops_per_instruction;
debd256d
JB
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
c906108c 519 {
debd256d
JB
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
aaa75496 524 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 525 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
526 } *file_names;
527
528 /* The start and end of the statement program following this
6502dd73 529 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 530 gdb_byte *statement_program_start, *statement_program_end;
debd256d 531};
c906108c
SS
532
533/* When we construct a partial symbol table entry we only
0963b4bd 534 need this much information. */
c906108c
SS
535struct partial_die_info
536 {
72bf9492 537 /* Offset of this DIE. */
c906108c 538 unsigned int offset;
72bf9492
DJ
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
72bf9492
DJ
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
fa4028e9
JB
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
98bfdba5
PA
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
abc72ce4
DE
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
72bf9492 564 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 565 sometimes a default name for unnamed DIEs. */
c906108c 566 char *name;
72bf9492 567
abc72ce4
DE
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
72bf9492
DJ
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
72bf9492 582
93311388 583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 584 DW_AT_sibling, if any. */
abc72ce4
DE
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 587 gdb_byte *sibling;
72bf9492
DJ
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
597 };
598
0963b4bd 599/* This data structure holds the information of an abbrev. */
c906108c
SS
600struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
c906108c
SS
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610struct attr_abbrev
611 {
9d25dd43
DE
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
614 };
615
0963b4bd 616/* Attributes have a name and a value. */
b60c80d6
DJ
617struct attribute
618 {
9d25dd43 619 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
b60c80d6
DJ
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
43bbcdc2
PH
631 ULONGEST unsnd;
632 LONGEST snd;
b60c80d6 633 CORE_ADDR addr;
348e048f 634 struct signatured_type *signatured_type;
b60c80d6
DJ
635 }
636 u;
637 };
638
0963b4bd 639/* This data structure holds a complete die structure. */
c906108c
SS
640struct die_info
641 {
76815b17
DE
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
98bfdba5
PA
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
76815b17
DE
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
93311388 655 /* Offset in .debug_info or .debug_types section. */
76815b17 656 unsigned int offset;
78ba4af6
JB
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
4950bc1c 661 together via their SIBLING fields. */
639d11d3
DC
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
c906108c 665
b60c80d6
DJ
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
c906108c
SS
670 };
671
5fb290d7
DJ
672struct function_range
673{
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678};
679
0963b4bd 680/* Get at parts of an attribute structure. */
c906108c
SS
681
682#define DW_STRING(attr) ((attr)->u.str)
8285870a 683#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
684#define DW_UNSND(attr) ((attr)->u.unsnd)
685#define DW_BLOCK(attr) ((attr)->u.blk)
686#define DW_SND(attr) ((attr)->u.snd)
687#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 688#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 689
0963b4bd 690/* Blocks are a bunch of untyped bytes. */
c906108c
SS
691struct dwarf_block
692 {
693 unsigned int size;
fe1b8b76 694 gdb_byte *data;
c906108c
SS
695 };
696
c906108c
SS
697#ifndef ATTR_ALLOC_CHUNK
698#define ATTR_ALLOC_CHUNK 4
699#endif
700
c906108c
SS
701/* Allocate fields for structs, unions and enums in this size. */
702#ifndef DW_FIELD_ALLOC_CHUNK
703#define DW_FIELD_ALLOC_CHUNK 4
704#endif
705
c906108c
SS
706/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709static int bits_per_byte = 8;
710
711/* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714struct field_info
c5aa993b 715 {
0963b4bd 716 /* List of data member and baseclasses fields. */
c5aa993b
JM
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
7d0ccb61 724 *fields, *baseclasses;
c906108c 725
7d0ccb61 726 /* Number of fields (including baseclasses). */
c5aa993b 727 int nfields;
c906108c 728
c5aa993b
JM
729 /* Number of baseclasses. */
730 int nbaseclasses;
c906108c 731
c5aa993b
JM
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
c906108c 734
c5aa993b
JM
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
c906108c 743
c5aa993b
JM
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
c906108c 754
c5aa993b
JM
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
98751a41
JK
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
c5aa993b 767 };
c906108c 768
10b3939b
DJ
769/* One item on the queue of compilation units to read in full symbols
770 for. */
771struct dwarf2_queue_item
772{
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775};
776
777/* The current queue. */
778static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
ae038cb0
DJ
780/* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785static int dwarf2_max_cache_age = 5;
920d2a44
AC
786static void
787show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789{
3e43a32a
MS
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
792 value);
793}
794
ae038cb0 795
0963b4bd 796/* Various complaints about symbol reading that don't abort the process. */
c906108c 797
4d3c2250
KB
798static void
799dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 800{
4d3c2250 801 complaint (&symfile_complaints,
e2e0b3e5 802 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
803}
804
25e43795
DJ
805static void
806dwarf2_debug_line_missing_file_complaint (void)
807{
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810}
811
59205f5a
JB
812static void
813dwarf2_debug_line_missing_end_sequence_complaint (void)
814{
815 complaint (&symfile_complaints,
3e43a32a
MS
816 _(".debug_line section has line "
817 "program sequence without an end"));
59205f5a
JB
818}
819
4d3c2250
KB
820static void
821dwarf2_complex_location_expr_complaint (void)
2e276125 822{
e2e0b3e5 823 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
824}
825
4d3c2250
KB
826static void
827dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
2e276125 829{
4d3c2250 830 complaint (&symfile_complaints,
3e43a32a
MS
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
4d3c2250
KB
833}
834
835static void
836dwarf2_macros_too_long_complaint (void)
2e276125 837{
4d3c2250 838 complaint (&symfile_complaints,
e2e0b3e5 839 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
840}
841
842static void
843dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 844{
4d3c2250 845 complaint (&symfile_complaints,
3e43a32a
MS
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
4d3c2250
KB
848 arg1);
849}
850
851static void
852dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 853{
4d3c2250 854 complaint (&symfile_complaints,
3e43a32a
MS
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
4d3c2250 857}
c906108c 858
c906108c
SS
859/* local function prototypes */
860
4efb68b1 861static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 862
aaa75496
JB
863static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
c67a9c90 866static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 867
72bf9492
DJ
868static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
5734ee8b 870 int, struct dwarf2_cu *);
c906108c 871
72bf9492
DJ
872static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
63d06c5c 874
72bf9492
DJ
875static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 877 int need_pc, struct dwarf2_cu *cu);
63d06c5c 878
5d7cb8df
JK
879static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
72bf9492
DJ
883static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
91c24f0a 885
bc30ff58
JB
886static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 888 int need_pc, struct dwarf2_cu *cu);
bc30ff58 889
fe1b8b76 890static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 893
a14ed312 894static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 895
a14ed312 896static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 897
e7c27a73 898static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 899
f3dd6933 900static void dwarf2_free_abbrev_table (void *);
c906108c 901
fe1b8b76 902static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 903 struct dwarf2_cu *);
72bf9492 904
57349743 905static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 906 struct dwarf2_cu *);
c906108c 907
93311388
DE
908static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
72bf9492 911
fe1b8b76 912static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
c906108c 917
c764a876 918static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 919 struct dwarf2_cu *);
72bf9492
DJ
920
921static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
fe1b8b76
JB
924static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 926
fe1b8b76
JB
927static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 929
fe1b8b76 930static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 931
fe1b8b76 932static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 933
fe1b8b76 934static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 935
fe1b8b76 936static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 937
93311388 938static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 939
fe1b8b76 940static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 941 unsigned int *);
c906108c 942
c764a876
DE
943static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
613e1657 948
fe1b8b76 949static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
950 unsigned int *);
951
952static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 953
fe1b8b76 954static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 955
9b1c24c8 956static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 957
fe1b8b76
JB
958static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
4bdf3d34 961
fe1b8b76 962static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 963
fe1b8b76 964static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 965
fe1b8b76 966static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 967
e142c38c 968static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 969
e142c38c
DJ
970static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
c906108c 972
348e048f
DE
973static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
05cf31d1
JB
977static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
e142c38c 980static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 981
e142c38c 982static struct die_info *die_specification (struct die_info *die,
f2f0e013 983 struct dwarf2_cu **);
63d06c5c 984
debd256d
JB
985static void free_line_header (struct line_header *lh);
986
aaa75496
JB
987static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
debd256d
JB
990static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
e7c27a73 992 bfd *abfd, struct dwarf2_cu *cu));
debd256d 993
72b9f47f 994static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 995 struct dwarf2_cu *, struct partial_symtab *);
c906108c 996
72b9f47f 997static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 998
a14ed312 999static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1000 struct dwarf2_cu *);
c906108c 1001
34eaf542
TT
1002static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
a14ed312 1005static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1006 struct dwarf2_cu *);
c906108c 1007
98bfdba5
PA
1008static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
2df3850c 1015
e7c27a73 1016static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1017
b4ba55a1
JB
1018static int need_gnat_info (struct dwarf2_cu *);
1019
3e43a32a
MS
1020static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
b4ba55a1
JB
1022
1023static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
e7c27a73
DJ
1026static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
c906108c 1028
673bfd45
DE
1029static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
c906108c 1031
f792889a 1032static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1033
673bfd45
DE
1034static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
086ed43d 1036static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1037
6e70227d 1038static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
63d06c5c 1041
e7c27a73 1042static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1043
348e048f
DE
1044static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
e7c27a73 1046static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1047
e7c27a73 1048static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1049
ff013f42
JK
1050static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
a14ed312 1053static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
c906108c 1056
fae299cd
DC
1057static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
801e3a5b
JB
1061static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
a14ed312 1064static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1065 struct dwarf2_cu *);
c906108c 1066
a14ed312 1067static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1068 struct type *, struct dwarf2_cu *);
c906108c 1069
a14ed312 1070static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1071 struct die_info *, struct type *,
e7c27a73 1072 struct dwarf2_cu *);
c906108c 1073
a14ed312 1074static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1075 struct type *,
1076 struct dwarf2_cu *);
c906108c 1077
134d01f1 1078static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1081
e7c27a73 1082static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1083
5d7cb8df
JK
1084static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
27aa8d6a
SW
1086static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
f55ee35c
JK
1088static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
38d518c9 1091static const char *namespace_name (struct die_info *die,
e142c38c 1092 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1093
134d01f1 1094static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1095
e7c27a73 1096static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1097
6e70227d 1098static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1099 struct dwarf2_cu *);
1100
93311388 1101static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1102
93311388
DE
1103static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
d97bc12b
DE
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
93311388
DE
1108static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
fe1b8b76 1110 gdb_byte **new_info_ptr,
639d11d3
DC
1111 struct die_info *parent);
1112
93311388
DE
1113static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
fe1b8b76 1115 gdb_byte **new_info_ptr,
639d11d3
DC
1116 struct die_info *parent);
1117
93311388
DE
1118static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
e7c27a73 1122static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1123
71c25dea
TT
1124static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
e142c38c 1127static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1128
98bfdba5
PA
1129static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
e142c38c 1133static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1134 struct dwarf2_cu **);
9219021c 1135
a14ed312 1136static char *dwarf_tag_name (unsigned int);
c906108c 1137
a14ed312 1138static char *dwarf_attr_name (unsigned int);
c906108c 1139
a14ed312 1140static char *dwarf_form_name (unsigned int);
c906108c 1141
a14ed312 1142static char *dwarf_bool_name (unsigned int);
c906108c 1143
a14ed312 1144static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1145
1146#if 0
a14ed312 1147static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1148#endif
1149
f9aca02d 1150static struct die_info *sibling_die (struct die_info *);
c906108c 1151
d97bc12b
DE
1152static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154static void dump_die_for_error (struct die_info *);
1155
1156static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
c906108c 1158
d97bc12b 1159/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1160
51545339 1161static void store_in_ref_table (struct die_info *,
10b3939b 1162 struct dwarf2_cu *);
c906108c 1163
93311388
DE
1164static int is_ref_attr (struct attribute *);
1165
c764a876 1166static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1167
43bbcdc2 1168static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1169
348e048f
DE
1170static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
10b3939b
DJ
1174static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
f2f0e013 1176 struct dwarf2_cu **);
c906108c 1177
348e048f
DE
1178static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
c906108c
SS
1188/* memory allocation interface */
1189
7b5a2f43 1190static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1191
f3dd6933 1192static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1193
b60c80d6 1194static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1195
e142c38c 1196static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1197
e142c38c
DJ
1198static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
5fb290d7 1200
2e276125 1201static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1202 char *, bfd *, struct dwarf2_cu *);
2e276125 1203
8e19ed76
PS
1204static int attr_form_is_block (struct attribute *);
1205
3690dd37
JB
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
8cf6f0b1
TT
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
93e7bd98
DJ
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
4c2df51b 1217
93311388
DE
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
4bb7a0a7 1221
72bf9492
DJ
1222static void free_stack_comp_unit (void *);
1223
72bf9492
DJ
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
ae038cb0 1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1229 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1230
1231static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1232 (unsigned int offset, struct objfile *objfile);
ae038cb0 1233
9816fde3
JK
1234static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
93311388 1239
ae038cb0
DJ
1240static void free_one_comp_unit (void *);
1241
1242static void free_cached_comp_units (void *);
1243
1244static void age_cached_comp_units (void);
1245
1246static void free_one_cached_comp_unit (void *);
1247
f792889a
DJ
1248static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1c379e20 1250
ae038cb0
DJ
1251static void create_all_comp_units (struct objfile *);
1252
1fd400ff
TT
1253static int create_debug_types_hash_table (struct objfile *objfile);
1254
93311388
DE
1255static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
10b3939b
DJ
1257
1258static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
ae038cb0
DJ
1263static void dwarf2_mark (struct dwarf2_cu *);
1264
1265static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
673bfd45
DE
1267static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
f792889a 1270static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1271
9291a0cd
TT
1272static void dwarf2_release_queue (void *dummy);
1273
1274static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277static void process_queue (struct objfile *objfile);
1278
1279static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
673bfd45 1295static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1296
9291a0cd
TT
1297#if WORDS_BIGENDIAN
1298
1299/* Convert VALUE between big- and little-endian. */
1300static offset_type
1301byte_swap (offset_type value)
1302{
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310}
1311
1312#define MAYBE_SWAP(V) byte_swap (V)
1313
1314#else
1315#define MAYBE_SWAP(V) (V)
1316#endif /* WORDS_BIGENDIAN */
1317
1318/* The suffix for an index file. */
1319#define INDEX_SUFFIX ".gdb-index"
1320
3da10d80
KS
1321static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
c906108c
SS
1324/* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327int
6502dd73 1328dwarf2_has_info (struct objfile *objfile)
c906108c 1329{
be391dca
TT
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1336
be391dca
TT
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
6502dd73 1340
be391dca
TT
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1346}
1347
233a11ab
CS
1348/* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351static int
dce234bc 1352section_is_p (const char *section_name, const char *name)
233a11ab 1353{
dce234bc
PP
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1358}
1359
c906108c
SS
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
72dca2f5 1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1366{
dce234bc 1367 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1368 {
dce234bc
PP
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1371 }
dce234bc 1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1373 {
dce234bc
PP
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1376 }
dce234bc 1377 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1378 {
dce234bc
PP
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1381 }
dce234bc 1382 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1383 {
dce234bc
PP
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1386 }
dce234bc 1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1388 {
dce234bc
PP
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1391 }
dce234bc 1392 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1393 {
dce234bc
PP
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1396 }
dce234bc 1397 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1398 {
dce234bc
PP
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1401 }
dce234bc 1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1403 {
3799ccc6 1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1405
3799ccc6
EZ
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
dce234bc
PP
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1410 }
b6af0555 1411 }
dce234bc 1412 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1413 {
dce234bc
PP
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1416 }
348e048f
DE
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
9291a0cd
TT
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
dce234bc 1427
72dca2f5
FR
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1431}
1432
dce234bc
PP
1433/* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1435
1436static void
dce234bc
PP
1437zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439{
1440 bfd *abfd = objfile->obfd;
1441#ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445#else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
dce234bc
PP
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
affddf13 1506 do_cleanups (cleanup);
dce234bc
PP
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509#endif
233a11ab
CS
1510}
1511
9e0ac564
TT
1512/* A helper function that decides whether a section is empty. */
1513
1514static int
1515dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516{
1517 return info->asection == NULL || info->size == 0;
1518}
1519
dce234bc
PP
1520/* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
c906108c 1523
dce234bc
PP
1524static void
1525dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1526{
dce234bc
PP
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
c906108c 1531
be391dca
TT
1532 if (info->readin)
1533 return;
dce234bc
PP
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
be391dca 1536 info->readin = 1;
188dd5d6 1537
9e0ac564 1538 if (dwarf2_section_empty_p (info))
dce234bc 1539 return;
c906108c 1540
dce234bc
PP
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
4bdf3d34 1554
dce234bc
PP
1555#ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
2e276125 1558
dce234bc
PP
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1574#if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576#endif
dce234bc
PP
1577 return;
1578 }
1579 }
1580#endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
ac8035ab 1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601}
1602
9e0ac564
TT
1603/* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610static bfd_size_type
1611dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613{
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617}
1618
dce234bc 1619/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1620 SECTION_NAME. */
af34e669 1621
dce234bc
PP
1622void
1623dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626{
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
a3b2a86b
TT
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
dce234bc
PP
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
0d53c4c4 1644 else
f3574227 1645 gdb_assert_not_reached ("unexpected section");
dce234bc 1646
9e0ac564 1647 dwarf2_read_section (objfile, info);
dce234bc
PP
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652}
1653
9291a0cd 1654\f
7b9f3c50
DE
1655/* DWARF quick_symbols_functions support. */
1656
1657/* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662struct quick_file_names
1663{
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677};
1678
1679/* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682struct dwarf2_per_cu_quick_data
1683{
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700};
1701
1702/* Hash function for a quick_file_names. */
1703
1704static hashval_t
1705hash_file_name_entry (const void *e)
1706{
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710}
1711
1712/* Equality function for a quick_file_names. */
1713
1714static int
1715eq_file_name_entry (const void *a, const void *b)
1716{
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721}
1722
1723/* Delete function for a quick_file_names. */
1724
1725static void
1726delete_file_name_entry (void *e)
1727{
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740}
1741
1742/* Create a quick_file_names hash table. */
1743
1744static htab_t
1745create_quick_file_names_table (unsigned int nr_initial_entries)
1746{
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750}
9291a0cd
TT
1751
1752/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
2fdf6df6 1754
9291a0cd
TT
1755static void
1756dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758{
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777}
1778
1779/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
2fdf6df6 1782
9291a0cd
TT
1783static struct symtab *
1784dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786{
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795}
1796
1fd400ff 1797/* Return the CU given its index. */
2fdf6df6 1798
1fd400ff
TT
1799static struct dwarf2_per_cu_data *
1800dw2_get_cu (int index)
1801{
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808}
1809
9291a0cd
TT
1810/* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
2fdf6df6 1813
9291a0cd
TT
1814static int
1815extract_cu_value (const char *bytes, ULONGEST *result)
1816{
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831}
1832
1833/* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
2fdf6df6 1836
9291a0cd 1837static int
1fd400ff
TT
1838create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
9291a0cd
TT
1840{
1841 offset_type i;
9291a0cd
TT
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870}
1871
1fd400ff 1872/* Create the signatured type hash table from the index. */
673bfd45 1873
1fd400ff 1874static int
673bfd45
DE
1875create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1fd400ff
TT
1878{
1879 offset_type i;
673bfd45 1880 htab_t sig_types_hash;
1fd400ff
TT
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
673bfd45 1888 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
673bfd45 1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
673bfd45 1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1921
1922 return 1;
1923}
1924
9291a0cd
TT
1925/* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1927
9291a0cd
TT
1928static void
1929create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930{
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1957 dw2_get_cu (cu_index));
9291a0cd
TT
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963}
1964
1965/* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
2fdf6df6 1970
9291a0cd
TT
1971static hashval_t
1972mapped_index_string_hash (const void *p)
1973{
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982}
1983
1984/* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 1987
9291a0cd
TT
1988static int
1989find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991{
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
3876f04e
DE
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
9291a0cd
TT
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
3876f04e 2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
9291a0cd
TT
2004 return 0;
2005
3876f04e 2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
9291a0cd
TT
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
9291a0cd
TT
2011 return 1;
2012 }
2013
3876f04e 2014 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2015 }
2016}
2017
2018/* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 2020
9291a0cd
TT
2021static int
2022dwarf2_read_index (struct objfile *objfile)
2023{
9291a0cd
TT
2024 char *addr;
2025 struct mapped_index *map;
b3b272e1 2026 offset_type *metadata;
ac0b195c
KW
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
1fd400ff 2031 int i;
9291a0cd 2032
9e0ac564 2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
9291a0cd 2034 return 0;
82430852
JK
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
9291a0cd
TT
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
1fd400ff 2046 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
831adc1f
JK
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
9291a0cd 2052 return 0;
594e8718
JK
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
831adc1f 2055 if (version > 4)
594e8718 2056 return 0;
9291a0cd
TT
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
b3b272e1 2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2066 / 8);
1fd400ff
TT
2067 ++i;
2068
987d643c
TT
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
1fd400ff
TT
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
3876f04e
DE
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
1fd400ff 2084 ++i;
9291a0cd 2085
1fd400ff
TT
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
987d643c 2091 if (types_list_elements
673bfd45
DE
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
9291a0cd
TT
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2102
2103 return 1;
2104}
2105
2106/* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2108
9291a0cd
TT
2109static void
2110dw2_setup (struct objfile *objfile)
2111{
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114}
2115
2116/* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2fdf6df6 2118
7b9f3c50
DE
2119static struct quick_file_names *
2120dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2122{
2123 bfd *abfd = objfile->obfd;
7b9f3c50 2124 struct line_header *lh;
9291a0cd
TT
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
36374493 2128 struct dwarf2_section_info* sec;
9291a0cd
TT
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
7b9f3c50
DE
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
9291a0cd 2138
7b9f3c50
DE
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
9291a0cd 2144
9816fde3 2145 init_one_comp_unit (&cu, objfile);
9291a0cd
TT
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
36374493
DE
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
9291a0cd
TT
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
e8e80198
MS
2175 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
9291a0cd 2177
7b9f3c50
DE
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
9291a0cd
TT
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
7b9f3c50
DE
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
9291a0cd
TT
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
7b9f3c50
DE
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
9291a0cd
TT
2207 }
2208
7b9f3c50
DE
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
9291a0cd 2213
7b9f3c50 2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2215
7b9f3c50
DE
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
9291a0cd 2219 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
9291a0cd 2222
7b9f3c50 2223 free_line_header (lh);
9291a0cd 2224 do_cleanups (cleanups);
7b9f3c50
DE
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
9291a0cd
TT
2228}
2229
2230/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2231 real path for a given file name from the line table. */
2fdf6df6 2232
9291a0cd 2233static const char *
7b9f3c50
DE
2234dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
9291a0cd 2236{
7b9f3c50
DE
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
9291a0cd 2240
7b9f3c50
DE
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2243
7b9f3c50 2244 return qfn->real_names[index];
9291a0cd
TT
2245}
2246
2247static struct symtab *
2248dw2_find_last_source_symtab (struct objfile *objfile)
2249{
2250 int index;
ae2de4f8 2251
9291a0cd
TT
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2255}
2256
7b9f3c50
DE
2257/* Traversal function for dw2_forget_cached_source_info. */
2258
2259static int
2260dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2261{
7b9f3c50 2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2263
7b9f3c50 2264 if (file_data->real_names)
9291a0cd 2265 {
7b9f3c50 2266 int i;
9291a0cd 2267
7b9f3c50 2268 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2269 {
7b9f3c50
DE
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
9291a0cd
TT
2272 }
2273 }
7b9f3c50
DE
2274
2275 return 1;
2276}
2277
2278static void
2279dw2_forget_cached_source_info (struct objfile *objfile)
2280{
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2285}
2286
2287static int
2288dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291{
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
ae2de4f8 2297
1fd400ff
TT
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2300 {
2301 int j;
e254ef6a 2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2303 struct quick_file_names *file_data;
9291a0cd 2304
e254ef6a 2305 if (per_cu->v.quick->symtab)
9291a0cd
TT
2306 continue;
2307
7b9f3c50
DE
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
9291a0cd
TT
2310 continue;
2311
7b9f3c50 2312 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2313 {
7b9f3c50 2314 const char *this_name = file_data->file_names[j];
9291a0cd
TT
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
e254ef6a 2318 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2324 base_cu = per_cu;
9291a0cd
TT
2325
2326 if (full_path != NULL)
2327 {
7b9f3c50
DE
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
9291a0cd 2330
7b9f3c50
DE
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
9291a0cd 2333 {
e254ef6a 2334 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
7b9f3c50
DE
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
9291a0cd 2343
7b9f3c50
DE
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 2346 {
74dd2ca6
DE
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
9291a0cd
TT
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361}
2362
2363static struct symtab *
2364dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366{
774b6a14 2367 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2368 instead. */
2369 return NULL;
2370}
2371
2372/* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2fdf6df6 2374
9291a0cd
TT
2375static void
2376dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377{
2378 dw2_setup (objfile);
2379
ae2de4f8 2380 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2393
e254ef6a 2394 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2395 }
2396 }
2397 }
2398}
2399
774b6a14
TT
2400static void
2401dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
9291a0cd 2404{
774b6a14 2405 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2406}
2407
2408static void
2409dw2_print_stats (struct objfile *objfile)
2410{
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
1fd400ff
TT
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2417 {
e254ef6a 2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2419
e254ef6a 2420 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424}
2425
2426static void
2427dw2_dump (struct objfile *objfile)
2428{
2429 /* Nothing worth printing. */
2430}
2431
2432static void
2433dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435{
2436 /* There's nothing to relocate here. */
2437}
2438
2439static void
2440dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442{
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444}
2445
2446static void
2447dw2_expand_all_symtabs (struct objfile *objfile)
2448{
2449 int i;
2450
2451 dw2_setup (objfile);
1fd400ff
TT
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2455 {
e254ef6a 2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2457
e254ef6a 2458 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2459 }
2460}
2461
2462static void
2463dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465{
2466 int i;
2467
2468 dw2_setup (objfile);
d4637a04
DE
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2476 {
2477 int j;
e254ef6a 2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2479 struct quick_file_names *file_data;
9291a0cd 2480
e254ef6a 2481 if (per_cu->v.quick->symtab)
9291a0cd
TT
2482 continue;
2483
7b9f3c50
DE
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
9291a0cd
TT
2486 continue;
2487
7b9f3c50 2488 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2489 {
7b9f3c50 2490 const char *this_name = file_data->file_names[j];
1ef75ecc 2491 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2492 {
e254ef6a 2493 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2494 break;
2495 }
2496 }
2497 }
2498}
2499
dd786858 2500static const char *
9291a0cd
TT
2501dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502{
e254ef6a 2503 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2504 offset_type *vec;
7b9f3c50 2505 struct quick_file_names *file_data;
9291a0cd
TT
2506
2507 dw2_setup (objfile);
2508
ae2de4f8 2509 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
e254ef6a 2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2523
7b9f3c50
DE
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
9291a0cd
TT
2526 return NULL;
2527
7b9f3c50 2528 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2529}
2530
2531static void
40658b94
PH
2532dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2edb89d3
JK
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
9291a0cd 2538{
40658b94 2539 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2542}
2543
2544static void
2545dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550{
2551 int i;
2552 offset_type iter;
4b5246aa 2553 struct mapped_index *index;
9291a0cd
TT
2554
2555 dw2_setup (objfile);
ae2de4f8
DE
2556
2557 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
4b5246aa 2560 index = dwarf2_per_objfile->index_table;
9291a0cd 2561
1fd400ff
TT
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2564 {
2565 int j;
e254ef6a 2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2567 struct quick_file_names *file_data;
9291a0cd 2568
e254ef6a
DE
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
9291a0cd
TT
2571 continue;
2572
7b9f3c50
DE
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
9291a0cd
TT
2575 continue;
2576
7b9f3c50 2577 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2578 {
7b9f3c50 2579 if (file_matcher (file_data->file_names[j], data))
9291a0cd 2580 {
e254ef6a 2581 per_cu->v.quick->mark = 1;
9291a0cd
TT
2582 break;
2583 }
2584 }
2585 }
2586
3876f04e 2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
3876f04e 2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2594 continue;
2595
3876f04e 2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
4b5246aa 2603 vec = (offset_type *) (index->constant_pool
3876f04e 2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
e254ef6a 2608 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2609
e254ef6a
DE
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2613 }
2614 }
2615}
2616
2617static struct symtab *
2618dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623{
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640}
2641
2642static void
2643dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646{
2647 offset_type iter;
4b5246aa
TT
2648 struct mapped_index *index;
2649
9291a0cd
TT
2650 dw2_setup (objfile);
2651
ae2de4f8 2652 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
4b5246aa 2655 index = dwarf2_per_objfile->index_table;
9291a0cd 2656
3876f04e 2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
3876f04e 2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2664 continue;
2665
3876f04e 2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
9291a0cd
TT
2667
2668 (*fun) (name, data);
2669 }
2670}
2671
2672static void
2673dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676{
2677 int i;
2678
2679 dw2_setup (objfile);
ae2de4f8 2680
1fd400ff
TT
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2683 {
2684 int j;
e254ef6a 2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2686 struct quick_file_names *file_data;
9291a0cd 2687
e254ef6a 2688 if (per_cu->v.quick->symtab)
9291a0cd
TT
2689 continue;
2690
7b9f3c50
DE
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
9291a0cd
TT
2693 continue;
2694
7b9f3c50 2695 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2696 {
7b9f3c50
DE
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2700 }
2701 }
2702}
2703
2704static int
2705dw2_has_symbols (struct objfile *objfile)
2706{
2707 return 1;
2708}
2709
2710const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711{
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
774b6a14 2717 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
40658b94 2725 dw2_map_matching_symbols,
9291a0cd
TT
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730};
2731
2732/* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735int
2736dwarf2_initialize_objfile (struct objfile *objfile)
2737{
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
1fd400ff 2748 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2751
1fd400ff
TT
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2754 {
e254ef6a 2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2756
e254ef6a
DE
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
9291a0cd
TT
2770 return 0;
2771}
2772
2773\f
2774
dce234bc
PP
2775/* Build a partial symbol table. */
2776
2777void
f29dff0a 2778dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2779{
f29dff0a 2780 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2781 {
2782 init_psymbol_list (objfile, 1024);
2783 }
2784
d146bf1e 2785 dwarf2_build_psymtabs_hard (objfile);
c906108c 2786}
c906108c 2787
45452591
DE
2788/* Return TRUE if OFFSET is within CU_HEADER. */
2789
2790static inline int
2791offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2792{
2793 unsigned int bottom = cu_header->offset;
2794 unsigned int top = (cu_header->offset
2795 + cu_header->length
2796 + cu_header->initial_length_size);
9a619af0 2797
45452591
DE
2798 return (offset >= bottom && offset < top);
2799}
2800
93311388
DE
2801/* Read in the comp unit header information from the debug_info at info_ptr.
2802 NOTE: This leaves members offset, first_die_offset to be filled in
2803 by the caller. */
107d2387 2804
fe1b8b76 2805static gdb_byte *
107d2387 2806read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2807 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2808{
2809 int signed_addr;
891d2f0b 2810 unsigned int bytes_read;
c764a876
DE
2811
2812 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2813 cu_header->initial_length_size = bytes_read;
2814 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2815 info_ptr += bytes_read;
107d2387
AC
2816 cu_header->version = read_2_bytes (abfd, info_ptr);
2817 info_ptr += 2;
613e1657 2818 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2819 &bytes_read);
613e1657 2820 info_ptr += bytes_read;
107d2387
AC
2821 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2822 info_ptr += 1;
2823 signed_addr = bfd_get_sign_extend_vma (abfd);
2824 if (signed_addr < 0)
8e65ff28 2825 internal_error (__FILE__, __LINE__,
e2e0b3e5 2826 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2827 cu_header->signed_addr_p = signed_addr;
c764a876 2828
107d2387
AC
2829 return info_ptr;
2830}
2831
fe1b8b76
JB
2832static gdb_byte *
2833partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2834 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2835 bfd *abfd)
2836{
fe1b8b76 2837 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2838
2839 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2840
2dc7f7b3 2841 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2842 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2843 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2844 bfd_get_filename (abfd));
72bf9492 2845
9e0ac564
TT
2846 if (header->abbrev_offset
2847 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2848 &dwarf2_per_objfile->abbrev))
8a3fe4f8
AC
2849 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2850 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2851 (long) header->abbrev_offset,
93311388 2852 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2853 bfd_get_filename (abfd));
2854
2855 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2856 > buffer + buffer_size)
8a3fe4f8
AC
2857 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2858 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2859 (long) header->length,
93311388 2860 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2861 bfd_get_filename (abfd));
2862
2863 return info_ptr;
2864}
2865
348e048f
DE
2866/* Read in the types comp unit header information from .debug_types entry at
2867 types_ptr. The result is a pointer to one past the end of the header. */
2868
2869static gdb_byte *
2870read_type_comp_unit_head (struct comp_unit_head *cu_header,
2871 ULONGEST *signature,
2872 gdb_byte *types_ptr, bfd *abfd)
2873{
348e048f
DE
2874 gdb_byte *initial_types_ptr = types_ptr;
2875
6e70227d 2876 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2877 &dwarf2_per_objfile->types);
348e048f
DE
2878 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2879
2880 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2881
2882 *signature = read_8_bytes (abfd, types_ptr);
2883 types_ptr += 8;
2884 types_ptr += cu_header->offset_size;
2885 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2886
2887 return types_ptr;
2888}
2889
aaa75496
JB
2890/* Allocate a new partial symtab for file named NAME and mark this new
2891 partial symtab as being an include of PST. */
2892
2893static void
2894dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2895 struct objfile *objfile)
2896{
2897 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2898
2899 subpst->section_offsets = pst->section_offsets;
2900 subpst->textlow = 0;
2901 subpst->texthigh = 0;
2902
2903 subpst->dependencies = (struct partial_symtab **)
2904 obstack_alloc (&objfile->objfile_obstack,
2905 sizeof (struct partial_symtab *));
2906 subpst->dependencies[0] = pst;
2907 subpst->number_of_dependencies = 1;
2908
2909 subpst->globals_offset = 0;
2910 subpst->n_global_syms = 0;
2911 subpst->statics_offset = 0;
2912 subpst->n_static_syms = 0;
2913 subpst->symtab = NULL;
2914 subpst->read_symtab = pst->read_symtab;
2915 subpst->readin = 0;
2916
2917 /* No private part is necessary for include psymtabs. This property
2918 can be used to differentiate between such include psymtabs and
10b3939b 2919 the regular ones. */
58a9656e 2920 subpst->read_symtab_private = NULL;
aaa75496
JB
2921}
2922
2923/* Read the Line Number Program data and extract the list of files
2924 included by the source file represented by PST. Build an include
d85a05f0 2925 partial symtab for each of these included files. */
aaa75496
JB
2926
2927static void
2928dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2929 struct die_info *die,
aaa75496
JB
2930 struct partial_symtab *pst)
2931{
2932 struct objfile *objfile = cu->objfile;
2933 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2934 struct line_header *lh = NULL;
2935 struct attribute *attr;
aaa75496 2936
d85a05f0
DJ
2937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2938 if (attr)
2939 {
2940 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2941
d85a05f0
DJ
2942 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2943 }
aaa75496
JB
2944 if (lh == NULL)
2945 return; /* No linetable, so no includes. */
2946
c6da4cef
DE
2947 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2948 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
2949
2950 free_line_header (lh);
2951}
2952
348e048f
DE
2953static hashval_t
2954hash_type_signature (const void *item)
2955{
2956 const struct signatured_type *type_sig = item;
9a619af0 2957
348e048f
DE
2958 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2959 return type_sig->signature;
2960}
2961
2962static int
2963eq_type_signature (const void *item_lhs, const void *item_rhs)
2964{
2965 const struct signatured_type *lhs = item_lhs;
2966 const struct signatured_type *rhs = item_rhs;
9a619af0 2967
348e048f
DE
2968 return lhs->signature == rhs->signature;
2969}
2970
1fd400ff
TT
2971/* Allocate a hash table for signatured types. */
2972
2973static htab_t
673bfd45 2974allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
2975{
2976 return htab_create_alloc_ex (41,
2977 hash_type_signature,
2978 eq_type_signature,
2979 NULL,
2980 &objfile->objfile_obstack,
2981 hashtab_obstack_allocate,
2982 dummy_obstack_deallocate);
2983}
2984
2985/* A helper function to add a signatured type CU to a list. */
2986
2987static int
2988add_signatured_type_cu_to_list (void **slot, void *datum)
2989{
2990 struct signatured_type *sigt = *slot;
2991 struct dwarf2_per_cu_data ***datap = datum;
2992
2993 **datap = &sigt->per_cu;
2994 ++*datap;
2995
2996 return 1;
2997}
2998
348e048f
DE
2999/* Create the hash table of all entries in the .debug_types section.
3000 The result is zero if there is an error (e.g. missing .debug_types section),
3001 otherwise non-zero. */
3002
3003static int
3004create_debug_types_hash_table (struct objfile *objfile)
3005{
be391dca 3006 gdb_byte *info_ptr;
348e048f 3007 htab_t types_htab;
1fd400ff 3008 struct dwarf2_per_cu_data **iter;
348e048f 3009
be391dca
TT
3010 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3011 info_ptr = dwarf2_per_objfile->types.buffer;
3012
348e048f
DE
3013 if (info_ptr == NULL)
3014 {
3015 dwarf2_per_objfile->signatured_types = NULL;
3016 return 0;
3017 }
3018
673bfd45 3019 types_htab = allocate_signatured_type_table (objfile);
348e048f
DE
3020
3021 if (dwarf2_die_debug)
3022 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3023
3e43a32a
MS
3024 while (info_ptr < dwarf2_per_objfile->types.buffer
3025 + dwarf2_per_objfile->types.size)
348e048f
DE
3026 {
3027 unsigned int offset;
3028 unsigned int offset_size;
3029 unsigned int type_offset;
3030 unsigned int length, initial_length_size;
3031 unsigned short version;
3032 ULONGEST signature;
3033 struct signatured_type *type_sig;
3034 void **slot;
3035 gdb_byte *ptr = info_ptr;
3036
3037 offset = ptr - dwarf2_per_objfile->types.buffer;
3038
3039 /* We need to read the type's signature in order to build the hash
3040 table, but we don't need to read anything else just yet. */
3041
3042 /* Sanity check to ensure entire cu is present. */
3043 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3044 if (ptr + length + initial_length_size
3045 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3046 {
3047 complaint (&symfile_complaints,
3e43a32a
MS
3048 _("debug type entry runs off end "
3049 "of `.debug_types' section, ignored"));
348e048f
DE
3050 break;
3051 }
3052
3053 offset_size = initial_length_size == 4 ? 4 : 8;
3054 ptr += initial_length_size;
3055 version = bfd_get_16 (objfile->obfd, ptr);
3056 ptr += 2;
3057 ptr += offset_size; /* abbrev offset */
3058 ptr += 1; /* address size */
3059 signature = bfd_get_64 (objfile->obfd, ptr);
3060 ptr += 8;
3061 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3062
3063 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3064 memset (type_sig, 0, sizeof (*type_sig));
3065 type_sig->signature = signature;
3066 type_sig->offset = offset;
3067 type_sig->type_offset = type_offset;
ca1f3406 3068 type_sig->per_cu.objfile = objfile;
1fd400ff 3069 type_sig->per_cu.from_debug_types = 1;
348e048f
DE
3070
3071 slot = htab_find_slot (types_htab, type_sig, INSERT);
3072 gdb_assert (slot != NULL);
3073 *slot = type_sig;
3074
3075 if (dwarf2_die_debug)
3076 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3077 offset, phex (signature, sizeof (signature)));
3078
3079 info_ptr = info_ptr + initial_length_size + length;
3080 }
3081
3082 dwarf2_per_objfile->signatured_types = types_htab;
3083
1fd400ff
TT
3084 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3085 dwarf2_per_objfile->type_comp_units
3086 = obstack_alloc (&objfile->objfile_obstack,
3087 dwarf2_per_objfile->n_type_comp_units
3088 * sizeof (struct dwarf2_per_cu_data *));
3089 iter = &dwarf2_per_objfile->type_comp_units[0];
3090 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3091 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3092 == dwarf2_per_objfile->n_type_comp_units);
3093
348e048f
DE
3094 return 1;
3095}
3096
3097/* Lookup a signature based type.
3098 Returns NULL if SIG is not present in the table. */
3099
3100static struct signatured_type *
3101lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3102{
3103 struct signatured_type find_entry, *entry;
3104
3105 if (dwarf2_per_objfile->signatured_types == NULL)
3106 {
3107 complaint (&symfile_complaints,
3108 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3109 return 0;
3110 }
3111
3112 find_entry.signature = sig;
3113 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3114 return entry;
3115}
3116
d85a05f0
DJ
3117/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3118
3119static void
3120init_cu_die_reader (struct die_reader_specs *reader,
3121 struct dwarf2_cu *cu)
3122{
3123 reader->abfd = cu->objfile->obfd;
3124 reader->cu = cu;
3125 if (cu->per_cu->from_debug_types)
be391dca
TT
3126 {
3127 gdb_assert (dwarf2_per_objfile->types.readin);
3128 reader->buffer = dwarf2_per_objfile->types.buffer;
3129 }
d85a05f0 3130 else
be391dca
TT
3131 {
3132 gdb_assert (dwarf2_per_objfile->info.readin);
3133 reader->buffer = dwarf2_per_objfile->info.buffer;
3134 }
d85a05f0
DJ
3135}
3136
3137/* Find the base address of the compilation unit for range lists and
3138 location lists. It will normally be specified by DW_AT_low_pc.
3139 In DWARF-3 draft 4, the base address could be overridden by
3140 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3141 compilation units with discontinuous ranges. */
3142
3143static void
3144dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3145{
3146 struct attribute *attr;
3147
3148 cu->base_known = 0;
3149 cu->base_address = 0;
3150
3151 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3152 if (attr)
3153 {
3154 cu->base_address = DW_ADDR (attr);
3155 cu->base_known = 1;
3156 }
3157 else
3158 {
3159 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3160 if (attr)
3161 {
3162 cu->base_address = DW_ADDR (attr);
3163 cu->base_known = 1;
3164 }
3165 }
3166}
3167
348e048f
DE
3168/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3169 to combine the common parts.
93311388 3170 Process a compilation unit for a psymtab.
348e048f
DE
3171 BUFFER is a pointer to the beginning of the dwarf section buffer,
3172 either .debug_info or debug_types.
93311388
DE
3173 INFO_PTR is a pointer to the start of the CU.
3174 Returns a pointer to the next CU. */
aaa75496 3175
93311388
DE
3176static gdb_byte *
3177process_psymtab_comp_unit (struct objfile *objfile,
3178 struct dwarf2_per_cu_data *this_cu,
3179 gdb_byte *buffer, gdb_byte *info_ptr,
3180 unsigned int buffer_size)
c906108c 3181{
c906108c 3182 bfd *abfd = objfile->obfd;
93311388 3183 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3184 struct die_info *comp_unit_die;
c906108c 3185 struct partial_symtab *pst;
5734ee8b 3186 CORE_ADDR baseaddr;
93311388
DE
3187 struct cleanup *back_to_inner;
3188 struct dwarf2_cu cu;
d85a05f0
DJ
3189 int has_children, has_pc_info;
3190 struct attribute *attr;
d85a05f0
DJ
3191 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3192 struct die_reader_specs reader_specs;
3e2a0cee 3193 const char *filename;
c906108c 3194
9816fde3 3195 init_one_comp_unit (&cu, objfile);
93311388 3196 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3197
93311388
DE
3198 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3199 buffer, buffer_size,
3200 abfd);
10b3939b 3201
93311388
DE
3202 /* Complete the cu_header. */
3203 cu.header.offset = beg_of_comp_unit - buffer;
3204 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3205
93311388 3206 cu.list_in_scope = &file_symbols;
af703f96 3207
328c9494
DJ
3208 /* If this compilation unit was already read in, free the
3209 cached copy in order to read it in again. This is
3210 necessary because we skipped some symbols when we first
3211 read in the compilation unit (see load_partial_dies).
3212 This problem could be avoided, but the benefit is
3213 unclear. */
3214 if (this_cu->cu != NULL)
3215 free_one_cached_comp_unit (this_cu->cu);
3216
3217 /* Note that this is a pointer to our stack frame, being
3218 added to a global data structure. It will be cleaned up
3219 in free_stack_comp_unit when we finish with this
3220 compilation unit. */
3221 this_cu->cu = &cu;
d85a05f0
DJ
3222 cu.per_cu = this_cu;
3223
93311388
DE
3224 /* Read the abbrevs for this compilation unit into a table. */
3225 dwarf2_read_abbrevs (abfd, &cu);
3226 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3227
93311388 3228 /* Read the compilation unit die. */
348e048f
DE
3229 if (this_cu->from_debug_types)
3230 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3231 init_cu_die_reader (&reader_specs, &cu);
3232 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3233 &has_children);
93311388 3234
348e048f
DE
3235 if (this_cu->from_debug_types)
3236 {
3237 /* offset,length haven't been set yet for type units. */
3238 this_cu->offset = cu.header.offset;
3239 this_cu->length = cu.header.length + cu.header.initial_length_size;
3240 }
d85a05f0 3241 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3242 {
93311388
DE
3243 info_ptr = (beg_of_comp_unit + cu.header.length
3244 + cu.header.initial_length_size);
3245 do_cleanups (back_to_inner);
3246 return info_ptr;
3247 }
72bf9492 3248
9816fde3 3249 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3250
93311388 3251 /* Allocate a new partial symbol table structure. */
d85a05f0 3252 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3e2a0cee
TT
3253 if (attr == NULL || !DW_STRING (attr))
3254 filename = "";
3255 else
3256 filename = DW_STRING (attr);
93311388 3257 pst = start_psymtab_common (objfile, objfile->section_offsets,
3e2a0cee 3258 filename,
93311388
DE
3259 /* TEXTLOW and TEXTHIGH are set below. */
3260 0,
3261 objfile->global_psymbols.next,
3262 objfile->static_psymbols.next);
72bf9492 3263
d85a05f0
DJ
3264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3265 if (attr != NULL)
3266 pst->dirname = DW_STRING (attr);
72bf9492 3267
e38df1d0 3268 pst->read_symtab_private = this_cu;
72bf9492 3269
93311388 3270 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3271
0963b4bd 3272 /* Store the function that reads in the rest of the symbol table. */
93311388 3273 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3274
9291a0cd 3275 this_cu->v.psymtab = pst;
c906108c 3276
d85a05f0
DJ
3277 dwarf2_find_base_address (comp_unit_die, &cu);
3278
93311388
DE
3279 /* Possibly set the default values of LOWPC and HIGHPC from
3280 `DW_AT_ranges'. */
d85a05f0
DJ
3281 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3282 &best_highpc, &cu, pst);
3283 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3284 /* Store the contiguous range if it is not empty; it can be empty for
3285 CUs with no code. */
3286 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3287 best_lowpc + baseaddr,
3288 best_highpc + baseaddr - 1, pst);
93311388
DE
3289
3290 /* Check if comp unit has_children.
3291 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3292 If not, there's no more debug_info for this comp unit. */
d85a05f0 3293 if (has_children)
93311388
DE
3294 {
3295 struct partial_die_info *first_die;
3296 CORE_ADDR lowpc, highpc;
31ffec48 3297
93311388
DE
3298 lowpc = ((CORE_ADDR) -1);
3299 highpc = ((CORE_ADDR) 0);
c906108c 3300
93311388 3301 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3302
93311388 3303 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3304 ! has_pc_info, &cu);
57c22c6c 3305
93311388
DE
3306 /* If we didn't find a lowpc, set it to highpc to avoid
3307 complaints from `maint check'. */
3308 if (lowpc == ((CORE_ADDR) -1))
3309 lowpc = highpc;
10b3939b 3310
93311388
DE
3311 /* If the compilation unit didn't have an explicit address range,
3312 then use the information extracted from its child dies. */
d85a05f0 3313 if (! has_pc_info)
93311388 3314 {
d85a05f0
DJ
3315 best_lowpc = lowpc;
3316 best_highpc = highpc;
93311388
DE
3317 }
3318 }
d85a05f0
DJ
3319 pst->textlow = best_lowpc + baseaddr;
3320 pst->texthigh = best_highpc + baseaddr;
c906108c 3321
93311388
DE
3322 pst->n_global_syms = objfile->global_psymbols.next -
3323 (objfile->global_psymbols.list + pst->globals_offset);
3324 pst->n_static_syms = objfile->static_psymbols.next -
3325 (objfile->static_psymbols.list + pst->statics_offset);
3326 sort_pst_symbols (pst);
c906108c 3327
93311388
DE
3328 info_ptr = (beg_of_comp_unit + cu.header.length
3329 + cu.header.initial_length_size);
ae038cb0 3330
348e048f
DE
3331 if (this_cu->from_debug_types)
3332 {
3333 /* It's not clear we want to do anything with stmt lists here.
3334 Waiting to see what gcc ultimately does. */
3335 }
d85a05f0 3336 else
93311388
DE
3337 {
3338 /* Get the list of files included in the current compilation unit,
3339 and build a psymtab for each of them. */
d85a05f0 3340 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3341 }
ae038cb0 3342
93311388 3343 do_cleanups (back_to_inner);
ae038cb0 3344
93311388
DE
3345 return info_ptr;
3346}
ff013f42 3347
348e048f
DE
3348/* Traversal function for htab_traverse_noresize.
3349 Process one .debug_types comp-unit. */
3350
3351static int
3352process_type_comp_unit (void **slot, void *info)
3353{
3354 struct signatured_type *entry = (struct signatured_type *) *slot;
3355 struct objfile *objfile = (struct objfile *) info;
3356 struct dwarf2_per_cu_data *this_cu;
3357
3358 this_cu = &entry->per_cu;
348e048f 3359
be391dca 3360 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
3361 process_psymtab_comp_unit (objfile, this_cu,
3362 dwarf2_per_objfile->types.buffer,
3363 dwarf2_per_objfile->types.buffer + entry->offset,
3364 dwarf2_per_objfile->types.size);
3365
3366 return 1;
3367}
3368
3369/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3370 Build partial symbol tables for the .debug_types comp-units. */
3371
3372static void
3373build_type_psymtabs (struct objfile *objfile)
3374{
3375 if (! create_debug_types_hash_table (objfile))
3376 return;
3377
3378 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3379 process_type_comp_unit, objfile);
3380}
3381
60606b2c
TT
3382/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3383
3384static void
3385psymtabs_addrmap_cleanup (void *o)
3386{
3387 struct objfile *objfile = o;
ec61707d 3388
60606b2c
TT
3389 objfile->psymtabs_addrmap = NULL;
3390}
3391
93311388
DE
3392/* Build the partial symbol table by doing a quick pass through the
3393 .debug_info and .debug_abbrev sections. */
72bf9492 3394
93311388 3395static void
c67a9c90 3396dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3397{
93311388 3398 gdb_byte *info_ptr;
60606b2c
TT
3399 struct cleanup *back_to, *addrmap_cleanup;
3400 struct obstack temp_obstack;
93311388 3401
98bfdba5
PA
3402 dwarf2_per_objfile->reading_partial_symbols = 1;
3403
be391dca 3404 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3405 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3406
93311388
DE
3407 /* Any cached compilation units will be linked by the per-objfile
3408 read_in_chain. Make sure to free them when we're done. */
3409 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3410
348e048f
DE
3411 build_type_psymtabs (objfile);
3412
93311388 3413 create_all_comp_units (objfile);
c906108c 3414
60606b2c
TT
3415 /* Create a temporary address map on a temporary obstack. We later
3416 copy this to the final obstack. */
3417 obstack_init (&temp_obstack);
3418 make_cleanup_obstack_free (&temp_obstack);
3419 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3420 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3421
93311388
DE
3422 /* Since the objects we're extracting from .debug_info vary in
3423 length, only the individual functions to extract them (like
3424 read_comp_unit_head and load_partial_die) can really know whether
3425 the buffer is large enough to hold another complete object.
c906108c 3426
93311388
DE
3427 At the moment, they don't actually check that. If .debug_info
3428 holds just one extra byte after the last compilation unit's dies,
3429 then read_comp_unit_head will happily read off the end of the
3430 buffer. read_partial_die is similarly casual. Those functions
3431 should be fixed.
c906108c 3432
93311388
DE
3433 For this loop condition, simply checking whether there's any data
3434 left at all should be sufficient. */
c906108c 3435
93311388
DE
3436 while (info_ptr < (dwarf2_per_objfile->info.buffer
3437 + dwarf2_per_objfile->info.size))
3438 {
3439 struct dwarf2_per_cu_data *this_cu;
dd373385 3440
3e43a32a
MS
3441 this_cu = dwarf2_find_comp_unit (info_ptr
3442 - dwarf2_per_objfile->info.buffer,
93311388 3443 objfile);
aaa75496 3444
93311388
DE
3445 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3446 dwarf2_per_objfile->info.buffer,
3447 info_ptr,
3448 dwarf2_per_objfile->info.size);
c906108c 3449 }
ff013f42
JK
3450
3451 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3452 &objfile->objfile_obstack);
60606b2c 3453 discard_cleanups (addrmap_cleanup);
ff013f42 3454
ae038cb0
DJ
3455 do_cleanups (back_to);
3456}
3457
93311388 3458/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3459
3460static void
93311388
DE
3461load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3462 struct objfile *objfile)
ae038cb0
DJ
3463{
3464 bfd *abfd = objfile->obfd;
fe1b8b76 3465 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3466 struct die_info *comp_unit_die;
ae038cb0 3467 struct dwarf2_cu *cu;
1d9ec526 3468 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3469 int has_children;
3470 struct die_reader_specs reader_specs;
98bfdba5 3471 int read_cu = 0;
ae038cb0 3472
348e048f
DE
3473 gdb_assert (! this_cu->from_debug_types);
3474
be391dca 3475 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3476 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3477 beg_of_comp_unit = info_ptr;
3478
98bfdba5
PA
3479 if (this_cu->cu == NULL)
3480 {
9816fde3
JK
3481 cu = xmalloc (sizeof (*cu));
3482 init_one_comp_unit (cu, objfile);
ae038cb0 3483
98bfdba5 3484 read_cu = 1;
ae038cb0 3485
98bfdba5
PA
3486 /* If an error occurs while loading, release our storage. */
3487 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3488
98bfdba5
PA
3489 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3490 dwarf2_per_objfile->info.buffer,
3491 dwarf2_per_objfile->info.size,
3492 abfd);
ae038cb0 3493
98bfdba5
PA
3494 /* Complete the cu_header. */
3495 cu->header.offset = this_cu->offset;
3496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3497
3498 /* Link this compilation unit into the compilation unit tree. */
3499 this_cu->cu = cu;
3500 cu->per_cu = this_cu;
98bfdba5
PA
3501
3502 /* Link this CU into read_in_chain. */
3503 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3504 dwarf2_per_objfile->read_in_chain = this_cu;
3505 }
3506 else
3507 {
3508 cu = this_cu->cu;
3509 info_ptr += cu->header.first_die_offset;
3510 }
ae038cb0
DJ
3511
3512 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3513 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3514 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3515 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3516
3517 /* Read the compilation unit die. */
d85a05f0
DJ
3518 init_cu_die_reader (&reader_specs, cu);
3519 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3520 &has_children);
ae038cb0 3521
9816fde3 3522 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3523
ae038cb0
DJ
3524 /* Check if comp unit has_children.
3525 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3526 If not, there's no more debug_info for this comp unit. */
d85a05f0 3527 if (has_children)
93311388 3528 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3529
98bfdba5
PA
3530 do_cleanups (free_abbrevs_cleanup);
3531
3532 if (read_cu)
3533 {
3534 /* We've successfully allocated this compilation unit. Let our
3535 caller clean it up when finished with it. */
3536 discard_cleanups (free_cu_cleanup);
3537 }
ae038cb0
DJ
3538}
3539
3540/* Create a list of all compilation units in OBJFILE. We do this only
3541 if an inter-comp-unit reference is found; presumably if there is one,
3542 there will be many, and one will occur early in the .debug_info section.
3543 So there's no point in building this list incrementally. */
3544
3545static void
3546create_all_comp_units (struct objfile *objfile)
3547{
3548 int n_allocated;
3549 int n_comp_units;
3550 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3551 gdb_byte *info_ptr;
3552
3553 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3554 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3555
3556 n_comp_units = 0;
3557 n_allocated = 10;
3558 all_comp_units = xmalloc (n_allocated
3559 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3560
3e43a32a
MS
3561 while (info_ptr < dwarf2_per_objfile->info.buffer
3562 + dwarf2_per_objfile->info.size)
ae038cb0 3563 {
c764a876 3564 unsigned int length, initial_length_size;
ae038cb0 3565 struct dwarf2_per_cu_data *this_cu;
c764a876 3566 unsigned int offset;
ae038cb0 3567
dce234bc 3568 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3569
3570 /* Read just enough information to find out where the next
3571 compilation unit is. */
c764a876
DE
3572 length = read_initial_length (objfile->obfd, info_ptr,
3573 &initial_length_size);
ae038cb0
DJ
3574
3575 /* Save the compilation unit for later lookup. */
3576 this_cu = obstack_alloc (&objfile->objfile_obstack,
3577 sizeof (struct dwarf2_per_cu_data));
3578 memset (this_cu, 0, sizeof (*this_cu));
3579 this_cu->offset = offset;
c764a876 3580 this_cu->length = length + initial_length_size;
9291a0cd 3581 this_cu->objfile = objfile;
ae038cb0
DJ
3582
3583 if (n_comp_units == n_allocated)
3584 {
3585 n_allocated *= 2;
3586 all_comp_units = xrealloc (all_comp_units,
3587 n_allocated
3588 * sizeof (struct dwarf2_per_cu_data *));
3589 }
3590 all_comp_units[n_comp_units++] = this_cu;
3591
3592 info_ptr = info_ptr + this_cu->length;
3593 }
3594
3595 dwarf2_per_objfile->all_comp_units
3596 = obstack_alloc (&objfile->objfile_obstack,
3597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3600 xfree (all_comp_units);
3601 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3602}
3603
5734ee8b
DJ
3604/* Process all loaded DIEs for compilation unit CU, starting at
3605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3607 DW_AT_ranges). If NEED_PC is set, then this function will set
3608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3609 and record the covered ranges in the addrmap. */
c906108c 3610
72bf9492
DJ
3611static void
3612scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3614{
72bf9492 3615 struct partial_die_info *pdi;
c906108c 3616
91c24f0a
DC
3617 /* Now, march along the PDI's, descending into ones which have
3618 interesting children but skipping the children of the other ones,
3619 until we reach the end of the compilation unit. */
c906108c 3620
72bf9492 3621 pdi = first_die;
91c24f0a 3622
72bf9492
DJ
3623 while (pdi != NULL)
3624 {
3625 fixup_partial_die (pdi, cu);
c906108c 3626
f55ee35c 3627 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3628 children, so we need to look at them. Ditto for anonymous
3629 enums. */
933c6fe4 3630
72bf9492 3631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3633 {
72bf9492 3634 switch (pdi->tag)
c906108c
SS
3635 {
3636 case DW_TAG_subprogram:
5734ee8b 3637 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3638 break;
72929c62 3639 case DW_TAG_constant:
c906108c
SS
3640 case DW_TAG_variable:
3641 case DW_TAG_typedef:
91c24f0a 3642 case DW_TAG_union_type:
72bf9492 3643 if (!pdi->is_declaration)
63d06c5c 3644 {
72bf9492 3645 add_partial_symbol (pdi, cu);
63d06c5c
DC
3646 }
3647 break;
c906108c 3648 case DW_TAG_class_type:
680b30c7 3649 case DW_TAG_interface_type:
c906108c 3650 case DW_TAG_structure_type:
72bf9492 3651 if (!pdi->is_declaration)
c906108c 3652 {
72bf9492 3653 add_partial_symbol (pdi, cu);
c906108c
SS
3654 }
3655 break;
91c24f0a 3656 case DW_TAG_enumeration_type:
72bf9492
DJ
3657 if (!pdi->is_declaration)
3658 add_partial_enumeration (pdi, cu);
c906108c
SS
3659 break;
3660 case DW_TAG_base_type:
a02abb62 3661 case DW_TAG_subrange_type:
c906108c 3662 /* File scope base type definitions are added to the partial
c5aa993b 3663 symbol table. */
72bf9492 3664 add_partial_symbol (pdi, cu);
c906108c 3665 break;
d9fa45fe 3666 case DW_TAG_namespace:
5734ee8b 3667 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3668 break;
5d7cb8df
JK
3669 case DW_TAG_module:
3670 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3671 break;
c906108c
SS
3672 default:
3673 break;
3674 }
3675 }
3676
72bf9492
DJ
3677 /* If the die has a sibling, skip to the sibling. */
3678
3679 pdi = pdi->die_sibling;
3680 }
3681}
3682
3683/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3684
72bf9492 3685 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3686 name is concatenated with "::" and the partial DIE's name. For
3687 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3688 Enumerators are an exception; they use the scope of their parent
3689 enumeration type, i.e. the name of the enumeration type is not
3690 prepended to the enumerator.
91c24f0a 3691
72bf9492
DJ
3692 There are two complexities. One is DW_AT_specification; in this
3693 case "parent" means the parent of the target of the specification,
3694 instead of the direct parent of the DIE. The other is compilers
3695 which do not emit DW_TAG_namespace; in this case we try to guess
3696 the fully qualified name of structure types from their members'
3697 linkage names. This must be done using the DIE's children rather
3698 than the children of any DW_AT_specification target. We only need
3699 to do this for structures at the top level, i.e. if the target of
3700 any DW_AT_specification (if any; otherwise the DIE itself) does not
3701 have a parent. */
3702
3703/* Compute the scope prefix associated with PDI's parent, in
3704 compilation unit CU. The result will be allocated on CU's
3705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3706 field. NULL is returned if no prefix is necessary. */
3707static char *
3708partial_die_parent_scope (struct partial_die_info *pdi,
3709 struct dwarf2_cu *cu)
3710{
3711 char *grandparent_scope;
3712 struct partial_die_info *parent, *real_pdi;
91c24f0a 3713
72bf9492
DJ
3714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3715 then this means the parent of the specification DIE. */
3716
3717 real_pdi = pdi;
72bf9492 3718 while (real_pdi->has_specification)
10b3939b 3719 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3720
3721 parent = real_pdi->die_parent;
3722 if (parent == NULL)
3723 return NULL;
3724
3725 if (parent->scope_set)
3726 return parent->scope;
3727
3728 fixup_partial_die (parent, cu);
3729
10b3939b 3730 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3731
acebe513
UW
3732 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3733 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3734 Work around this problem here. */
3735 if (cu->language == language_cplus
6e70227d 3736 && parent->tag == DW_TAG_namespace
acebe513
UW
3737 && strcmp (parent->name, "::") == 0
3738 && grandparent_scope == NULL)
3739 {
3740 parent->scope = NULL;
3741 parent->scope_set = 1;
3742 return NULL;
3743 }
3744
72bf9492 3745 if (parent->tag == DW_TAG_namespace
f55ee35c 3746 || parent->tag == DW_TAG_module
72bf9492
DJ
3747 || parent->tag == DW_TAG_structure_type
3748 || parent->tag == DW_TAG_class_type
680b30c7 3749 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3750 || parent->tag == DW_TAG_union_type
3751 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3752 {
3753 if (grandparent_scope == NULL)
3754 parent->scope = parent->name;
3755 else
3e43a32a
MS
3756 parent->scope = typename_concat (&cu->comp_unit_obstack,
3757 grandparent_scope,
f55ee35c 3758 parent->name, 0, cu);
72bf9492 3759 }
ceeb3d5a 3760 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3761 /* Enumerators should not get the name of the enumeration as a prefix. */
3762 parent->scope = grandparent_scope;
3763 else
3764 {
3765 /* FIXME drow/2004-04-01: What should we be doing with
3766 function-local names? For partial symbols, we should probably be
3767 ignoring them. */
3768 complaint (&symfile_complaints,
e2e0b3e5 3769 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3770 parent->tag, pdi->offset);
3771 parent->scope = grandparent_scope;
c906108c
SS
3772 }
3773
72bf9492
DJ
3774 parent->scope_set = 1;
3775 return parent->scope;
3776}
3777
3778/* Return the fully scoped name associated with PDI, from compilation unit
3779 CU. The result will be allocated with malloc. */
3780static char *
3781partial_die_full_name (struct partial_die_info *pdi,
3782 struct dwarf2_cu *cu)
3783{
3784 char *parent_scope;
3785
98bfdba5
PA
3786 /* If this is a template instantiation, we can not work out the
3787 template arguments from partial DIEs. So, unfortunately, we have
3788 to go through the full DIEs. At least any work we do building
3789 types here will be reused if full symbols are loaded later. */
3790 if (pdi->has_template_arguments)
3791 {
3792 fixup_partial_die (pdi, cu);
3793
3794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3795 {
3796 struct die_info *die;
3797 struct attribute attr;
3798 struct dwarf2_cu *ref_cu = cu;
3799
3800 attr.name = 0;
3801 attr.form = DW_FORM_ref_addr;
3802 attr.u.addr = pdi->offset;
3803 die = follow_die_ref (NULL, &attr, &ref_cu);
3804
3805 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3806 }
3807 }
3808
72bf9492
DJ
3809 parent_scope = partial_die_parent_scope (pdi, cu);
3810 if (parent_scope == NULL)
3811 return NULL;
3812 else
f55ee35c 3813 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3814}
3815
3816static void
72bf9492 3817add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3818{
e7c27a73 3819 struct objfile *objfile = cu->objfile;
c906108c 3820 CORE_ADDR addr = 0;
decbce07 3821 char *actual_name = NULL;
5c4e30ca 3822 const struct partial_symbol *psym = NULL;
e142c38c 3823 CORE_ADDR baseaddr;
72bf9492 3824 int built_actual_name = 0;
e142c38c
DJ
3825
3826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3827
94af9270
KS
3828 actual_name = partial_die_full_name (pdi, cu);
3829 if (actual_name)
3830 built_actual_name = 1;
63d06c5c 3831
72bf9492
DJ
3832 if (actual_name == NULL)
3833 actual_name = pdi->name;
3834
c906108c
SS
3835 switch (pdi->tag)
3836 {
3837 case DW_TAG_subprogram:
2cfa0c8d 3838 if (pdi->is_external || cu->language == language_ada)
c906108c 3839 {
2cfa0c8d
JB
3840 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3841 of the global scope. But in Ada, we want to be able to access
3842 nested procedures globally. So all Ada subprograms are stored
3843 in the global scope. */
f47fb265 3844 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3845 mst_text, objfile); */
f47fb265
MS
3846 add_psymbol_to_list (actual_name, strlen (actual_name),
3847 built_actual_name,
3848 VAR_DOMAIN, LOC_BLOCK,
3849 &objfile->global_psymbols,
3850 0, pdi->lowpc + baseaddr,
3851 cu->language, objfile);
c906108c
SS
3852 }
3853 else
3854 {
f47fb265 3855 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3856 mst_file_text, objfile); */
f47fb265
MS
3857 add_psymbol_to_list (actual_name, strlen (actual_name),
3858 built_actual_name,
3859 VAR_DOMAIN, LOC_BLOCK,
3860 &objfile->static_psymbols,
3861 0, pdi->lowpc + baseaddr,
3862 cu->language, objfile);
c906108c
SS
3863 }
3864 break;
72929c62
JB
3865 case DW_TAG_constant:
3866 {
3867 struct psymbol_allocation_list *list;
3868
3869 if (pdi->is_external)
3870 list = &objfile->global_psymbols;
3871 else
3872 list = &objfile->static_psymbols;
f47fb265
MS
3873 add_psymbol_to_list (actual_name, strlen (actual_name),
3874 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3875 list, 0, 0, cu->language, objfile);
72929c62
JB
3876 }
3877 break;
c906108c 3878 case DW_TAG_variable:
caac4577
JG
3879 if (pdi->locdesc)
3880 addr = decode_locdesc (pdi->locdesc, cu);
3881
3882 if (pdi->locdesc
3883 && addr == 0
3884 && !dwarf2_per_objfile->has_section_at_zero)
3885 {
3886 /* A global or static variable may also have been stripped
3887 out by the linker if unused, in which case its address
3888 will be nullified; do not add such variables into partial
3889 symbol table then. */
3890 }
3891 else if (pdi->is_external)
c906108c
SS
3892 {
3893 /* Global Variable.
3894 Don't enter into the minimal symbol tables as there is
3895 a minimal symbol table entry from the ELF symbols already.
3896 Enter into partial symbol table if it has a location
3897 descriptor or a type.
3898 If the location descriptor is missing, new_symbol will create
3899 a LOC_UNRESOLVED symbol, the address of the variable will then
3900 be determined from the minimal symbol table whenever the variable
3901 is referenced.
3902 The address for the partial symbol table entry is not
3903 used by GDB, but it comes in handy for debugging partial symbol
3904 table building. */
3905
c906108c 3906 if (pdi->locdesc || pdi->has_type)
f47fb265
MS
3907 add_psymbol_to_list (actual_name, strlen (actual_name),
3908 built_actual_name,
3909 VAR_DOMAIN, LOC_STATIC,
3910 &objfile->global_psymbols,
3911 0, addr + baseaddr,
3912 cu->language, objfile);
c906108c
SS
3913 }
3914 else
3915 {
0963b4bd 3916 /* Static Variable. Skip symbols without location descriptors. */
c906108c 3917 if (pdi->locdesc == NULL)
decbce07
MS
3918 {
3919 if (built_actual_name)
3920 xfree (actual_name);
3921 return;
3922 }
f47fb265 3923 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3924 mst_file_data, objfile); */
f47fb265
MS
3925 add_psymbol_to_list (actual_name, strlen (actual_name),
3926 built_actual_name,
3927 VAR_DOMAIN, LOC_STATIC,
3928 &objfile->static_psymbols,
3929 0, addr + baseaddr,
3930 cu->language, objfile);
c906108c
SS
3931 }
3932 break;
3933 case DW_TAG_typedef:
3934 case DW_TAG_base_type:
a02abb62 3935 case DW_TAG_subrange_type:
38d518c9 3936 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3937 built_actual_name,
176620f1 3938 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3939 &objfile->static_psymbols,
e142c38c 3940 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3941 break;
72bf9492
DJ
3942 case DW_TAG_namespace:
3943 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3944 built_actual_name,
72bf9492
DJ
3945 VAR_DOMAIN, LOC_TYPEDEF,
3946 &objfile->global_psymbols,
3947 0, (CORE_ADDR) 0, cu->language, objfile);
3948 break;
c906108c 3949 case DW_TAG_class_type:
680b30c7 3950 case DW_TAG_interface_type:
c906108c
SS
3951 case DW_TAG_structure_type:
3952 case DW_TAG_union_type:
3953 case DW_TAG_enumeration_type:
fa4028e9
JB
3954 /* Skip external references. The DWARF standard says in the section
3955 about "Structure, Union, and Class Type Entries": "An incomplete
3956 structure, union or class type is represented by a structure,
3957 union or class entry that does not have a byte size attribute
3958 and that has a DW_AT_declaration attribute." */
3959 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3960 {
3961 if (built_actual_name)
3962 xfree (actual_name);
3963 return;
3964 }
fa4028e9 3965
63d06c5c
DC
3966 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3967 static vs. global. */
38d518c9 3968 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3969 built_actual_name,
176620f1 3970 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3971 (cu->language == language_cplus
3972 || cu->language == language_java)
63d06c5c
DC
3973 ? &objfile->global_psymbols
3974 : &objfile->static_psymbols,
e142c38c 3975 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3976
c906108c
SS
3977 break;
3978 case DW_TAG_enumerator:
38d518c9 3979 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3980 built_actual_name,
176620f1 3981 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3982 (cu->language == language_cplus
3983 || cu->language == language_java)
f6fe98ef
DJ
3984 ? &objfile->global_psymbols
3985 : &objfile->static_psymbols,
e142c38c 3986 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3987 break;
3988 default:
3989 break;
3990 }
5c4e30ca 3991
72bf9492
DJ
3992 if (built_actual_name)
3993 xfree (actual_name);
c906108c
SS
3994}
3995
5c4e30ca
DC
3996/* Read a partial die corresponding to a namespace; also, add a symbol
3997 corresponding to that namespace to the symbol table. NAMESPACE is
3998 the name of the enclosing namespace. */
91c24f0a 3999
72bf9492
DJ
4000static void
4001add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 4002 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4003 int need_pc, struct dwarf2_cu *cu)
91c24f0a 4004{
72bf9492 4005 /* Add a symbol for the namespace. */
e7c27a73 4006
72bf9492 4007 add_partial_symbol (pdi, cu);
5c4e30ca
DC
4008
4009 /* Now scan partial symbols in that namespace. */
4010
91c24f0a 4011 if (pdi->has_children)
5734ee8b 4012 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
4013}
4014
5d7cb8df
JK
4015/* Read a partial die corresponding to a Fortran module. */
4016
4017static void
4018add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4019 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4020{
f55ee35c 4021 /* Now scan partial symbols in that module. */
5d7cb8df
JK
4022
4023 if (pdi->has_children)
4024 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4025}
4026
bc30ff58
JB
4027/* Read a partial die corresponding to a subprogram and create a partial
4028 symbol for that subprogram. When the CU language allows it, this
4029 routine also defines a partial symbol for each nested subprogram
4030 that this subprogram contains.
6e70227d 4031
bc30ff58
JB
4032 DIE my also be a lexical block, in which case we simply search
4033 recursively for suprograms defined inside that lexical block.
4034 Again, this is only performed when the CU language allows this
4035 type of definitions. */
4036
4037static void
4038add_partial_subprogram (struct partial_die_info *pdi,
4039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4040 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4041{
4042 if (pdi->tag == DW_TAG_subprogram)
4043 {
4044 if (pdi->has_pc_info)
4045 {
4046 if (pdi->lowpc < *lowpc)
4047 *lowpc = pdi->lowpc;
4048 if (pdi->highpc > *highpc)
4049 *highpc = pdi->highpc;
5734ee8b
DJ
4050 if (need_pc)
4051 {
4052 CORE_ADDR baseaddr;
4053 struct objfile *objfile = cu->objfile;
4054
4055 baseaddr = ANOFFSET (objfile->section_offsets,
4056 SECT_OFF_TEXT (objfile));
4057 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4058 pdi->lowpc + baseaddr,
4059 pdi->highpc - 1 + baseaddr,
9291a0cd 4060 cu->per_cu->v.psymtab);
5734ee8b 4061 }
bc30ff58 4062 if (!pdi->is_declaration)
e8d05480
JB
4063 /* Ignore subprogram DIEs that do not have a name, they are
4064 illegal. Do not emit a complaint at this point, we will
4065 do so when we convert this psymtab into a symtab. */
4066 if (pdi->name)
4067 add_partial_symbol (pdi, cu);
bc30ff58
JB
4068 }
4069 }
6e70227d 4070
bc30ff58
JB
4071 if (! pdi->has_children)
4072 return;
4073
4074 if (cu->language == language_ada)
4075 {
4076 pdi = pdi->die_child;
4077 while (pdi != NULL)
4078 {
4079 fixup_partial_die (pdi, cu);
4080 if (pdi->tag == DW_TAG_subprogram
4081 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4082 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4083 pdi = pdi->die_sibling;
4084 }
4085 }
4086}
4087
91c24f0a
DC
4088/* Read a partial die corresponding to an enumeration type. */
4089
72bf9492
DJ
4090static void
4091add_partial_enumeration (struct partial_die_info *enum_pdi,
4092 struct dwarf2_cu *cu)
91c24f0a 4093{
72bf9492 4094 struct partial_die_info *pdi;
91c24f0a
DC
4095
4096 if (enum_pdi->name != NULL)
72bf9492
DJ
4097 add_partial_symbol (enum_pdi, cu);
4098
4099 pdi = enum_pdi->die_child;
4100 while (pdi)
91c24f0a 4101 {
72bf9492 4102 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4103 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4104 else
72bf9492
DJ
4105 add_partial_symbol (pdi, cu);
4106 pdi = pdi->die_sibling;
91c24f0a 4107 }
91c24f0a
DC
4108}
4109
4bb7a0a7
DJ
4110/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4111 Return the corresponding abbrev, or NULL if the number is zero (indicating
4112 an empty DIE). In either case *BYTES_READ will be set to the length of
4113 the initial number. */
4114
4115static struct abbrev_info *
fe1b8b76 4116peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4117 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4118{
4119 bfd *abfd = cu->objfile->obfd;
4120 unsigned int abbrev_number;
4121 struct abbrev_info *abbrev;
4122
4123 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4124
4125 if (abbrev_number == 0)
4126 return NULL;
4127
4128 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4129 if (!abbrev)
4130 {
3e43a32a
MS
4131 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4132 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4133 }
4134
4135 return abbrev;
4136}
4137
93311388
DE
4138/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4139 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4140 DIE. Any children of the skipped DIEs will also be skipped. */
4141
fe1b8b76 4142static gdb_byte *
93311388 4143skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4144{
4145 struct abbrev_info *abbrev;
4146 unsigned int bytes_read;
4147
4148 while (1)
4149 {
4150 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4151 if (abbrev == NULL)
4152 return info_ptr + bytes_read;
4153 else
93311388 4154 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4155 }
4156}
4157
93311388
DE
4158/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4159 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4160 abbrev corresponding to that skipped uleb128 should be passed in
4161 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4162 children. */
4163
fe1b8b76 4164static gdb_byte *
93311388
DE
4165skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4166 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4167{
4168 unsigned int bytes_read;
4169 struct attribute attr;
4170 bfd *abfd = cu->objfile->obfd;
4171 unsigned int form, i;
4172
4173 for (i = 0; i < abbrev->num_attrs; i++)
4174 {
4175 /* The only abbrev we care about is DW_AT_sibling. */
4176 if (abbrev->attrs[i].name == DW_AT_sibling)
4177 {
4178 read_attribute (&attr, &abbrev->attrs[i],
4179 abfd, info_ptr, cu);
4180 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4181 complaint (&symfile_complaints,
4182 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4183 else
93311388 4184 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4185 }
4186
4187 /* If it isn't DW_AT_sibling, skip this attribute. */
4188 form = abbrev->attrs[i].form;
4189 skip_attribute:
4190 switch (form)
4191 {
4bb7a0a7 4192 case DW_FORM_ref_addr:
ae411497
TT
4193 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4194 and later it is offset sized. */
4195 if (cu->header.version == 2)
4196 info_ptr += cu->header.addr_size;
4197 else
4198 info_ptr += cu->header.offset_size;
4199 break;
4200 case DW_FORM_addr:
4bb7a0a7
DJ
4201 info_ptr += cu->header.addr_size;
4202 break;
4203 case DW_FORM_data1:
4204 case DW_FORM_ref1:
4205 case DW_FORM_flag:
4206 info_ptr += 1;
4207 break;
2dc7f7b3
TT
4208 case DW_FORM_flag_present:
4209 break;
4bb7a0a7
DJ
4210 case DW_FORM_data2:
4211 case DW_FORM_ref2:
4212 info_ptr += 2;
4213 break;
4214 case DW_FORM_data4:
4215 case DW_FORM_ref4:
4216 info_ptr += 4;
4217 break;
4218 case DW_FORM_data8:
4219 case DW_FORM_ref8:
348e048f 4220 case DW_FORM_sig8:
4bb7a0a7
DJ
4221 info_ptr += 8;
4222 break;
4223 case DW_FORM_string:
9b1c24c8 4224 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4225 info_ptr += bytes_read;
4226 break;
2dc7f7b3 4227 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4228 case DW_FORM_strp:
4229 info_ptr += cu->header.offset_size;
4230 break;
2dc7f7b3 4231 case DW_FORM_exprloc:
4bb7a0a7
DJ
4232 case DW_FORM_block:
4233 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4234 info_ptr += bytes_read;
4235 break;
4236 case DW_FORM_block1:
4237 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4238 break;
4239 case DW_FORM_block2:
4240 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4241 break;
4242 case DW_FORM_block4:
4243 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4244 break;
4245 case DW_FORM_sdata:
4246 case DW_FORM_udata:
4247 case DW_FORM_ref_udata:
4248 info_ptr = skip_leb128 (abfd, info_ptr);
4249 break;
4250 case DW_FORM_indirect:
4251 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4252 info_ptr += bytes_read;
4253 /* We need to continue parsing from here, so just go back to
4254 the top. */
4255 goto skip_attribute;
4256
4257 default:
3e43a32a
MS
4258 error (_("Dwarf Error: Cannot handle %s "
4259 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4260 dwarf_form_name (form),
4261 bfd_get_filename (abfd));
4262 }
4263 }
4264
4265 if (abbrev->has_children)
93311388 4266 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4267 else
4268 return info_ptr;
4269}
4270
93311388
DE
4271/* Locate ORIG_PDI's sibling.
4272 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4273 in BUFFER. */
91c24f0a 4274
fe1b8b76 4275static gdb_byte *
93311388
DE
4276locate_pdi_sibling (struct partial_die_info *orig_pdi,
4277 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4278 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4279{
4280 /* Do we know the sibling already? */
72bf9492 4281
91c24f0a
DC
4282 if (orig_pdi->sibling)
4283 return orig_pdi->sibling;
4284
4285 /* Are there any children to deal with? */
4286
4287 if (!orig_pdi->has_children)
4288 return info_ptr;
4289
4bb7a0a7 4290 /* Skip the children the long way. */
91c24f0a 4291
93311388 4292 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4293}
4294
c906108c
SS
4295/* Expand this partial symbol table into a full symbol table. */
4296
4297static void
fba45db2 4298dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4299{
c906108c
SS
4300 if (pst != NULL)
4301 {
4302 if (pst->readin)
4303 {
3e43a32a
MS
4304 warning (_("bug: psymtab for %s is already read in."),
4305 pst->filename);
c906108c
SS
4306 }
4307 else
4308 {
4309 if (info_verbose)
4310 {
3e43a32a
MS
4311 printf_filtered (_("Reading in symbols for %s..."),
4312 pst->filename);
c906108c
SS
4313 gdb_flush (gdb_stdout);
4314 }
4315
10b3939b
DJ
4316 /* Restore our global data. */
4317 dwarf2_per_objfile = objfile_data (pst->objfile,
4318 dwarf2_objfile_data_key);
4319
b2ab525c
KB
4320 /* If this psymtab is constructed from a debug-only objfile, the
4321 has_section_at_zero flag will not necessarily be correct. We
4322 can get the correct value for this flag by looking at the data
4323 associated with the (presumably stripped) associated objfile. */
4324 if (pst->objfile->separate_debug_objfile_backlink)
4325 {
4326 struct dwarf2_per_objfile *dpo_backlink
4327 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4328 dwarf2_objfile_data_key);
9a619af0 4329
b2ab525c
KB
4330 dwarf2_per_objfile->has_section_at_zero
4331 = dpo_backlink->has_section_at_zero;
4332 }
4333
98bfdba5
PA
4334 dwarf2_per_objfile->reading_partial_symbols = 0;
4335
c906108c
SS
4336 psymtab_to_symtab_1 (pst);
4337
4338 /* Finish up the debug error message. */
4339 if (info_verbose)
a3f17187 4340 printf_filtered (_("done.\n"));
c906108c
SS
4341 }
4342 }
4343}
4344
10b3939b
DJ
4345/* Add PER_CU to the queue. */
4346
4347static void
03dd20cc 4348queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4349{
4350 struct dwarf2_queue_item *item;
4351
4352 per_cu->queued = 1;
4353 item = xmalloc (sizeof (*item));
4354 item->per_cu = per_cu;
4355 item->next = NULL;
4356
4357 if (dwarf2_queue == NULL)
4358 dwarf2_queue = item;
4359 else
4360 dwarf2_queue_tail->next = item;
4361
4362 dwarf2_queue_tail = item;
4363}
4364
4365/* Process the queue. */
4366
4367static void
4368process_queue (struct objfile *objfile)
4369{
4370 struct dwarf2_queue_item *item, *next_item;
4371
03dd20cc
DJ
4372 /* The queue starts out with one item, but following a DIE reference
4373 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4374 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4375 {
9291a0cd
TT
4376 if (dwarf2_per_objfile->using_index
4377 ? !item->per_cu->v.quick->symtab
4378 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4379 process_full_comp_unit (item->per_cu);
4380
4381 item->per_cu->queued = 0;
4382 next_item = item->next;
4383 xfree (item);
4384 }
4385
4386 dwarf2_queue_tail = NULL;
4387}
4388
4389/* Free all allocated queue entries. This function only releases anything if
4390 an error was thrown; if the queue was processed then it would have been
4391 freed as we went along. */
4392
4393static void
4394dwarf2_release_queue (void *dummy)
4395{
4396 struct dwarf2_queue_item *item, *last;
4397
4398 item = dwarf2_queue;
4399 while (item)
4400 {
4401 /* Anything still marked queued is likely to be in an
4402 inconsistent state, so discard it. */
4403 if (item->per_cu->queued)
4404 {
4405 if (item->per_cu->cu != NULL)
4406 free_one_cached_comp_unit (item->per_cu->cu);
4407 item->per_cu->queued = 0;
4408 }
4409
4410 last = item;
4411 item = item->next;
4412 xfree (last);
4413 }
4414
4415 dwarf2_queue = dwarf2_queue_tail = NULL;
4416}
4417
4418/* Read in full symbols for PST, and anything it depends on. */
4419
c906108c 4420static void
fba45db2 4421psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4422{
10b3939b 4423 struct dwarf2_per_cu_data *per_cu;
c906108c 4424 struct cleanup *back_to;
aaa75496
JB
4425 int i;
4426
4427 for (i = 0; i < pst->number_of_dependencies; i++)
4428 if (!pst->dependencies[i]->readin)
4429 {
4430 /* Inform about additional files that need to be read in. */
4431 if (info_verbose)
4432 {
a3f17187 4433 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4434 fputs_filtered (" ", gdb_stdout);
4435 wrap_here ("");
4436 fputs_filtered ("and ", gdb_stdout);
4437 wrap_here ("");
4438 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 4439 wrap_here (""); /* Flush output. */
aaa75496
JB
4440 gdb_flush (gdb_stdout);
4441 }
4442 psymtab_to_symtab_1 (pst->dependencies[i]);
4443 }
4444
e38df1d0 4445 per_cu = pst->read_symtab_private;
10b3939b
DJ
4446
4447 if (per_cu == NULL)
aaa75496
JB
4448 {
4449 /* It's an include file, no symbols to read for it.
4450 Everything is in the parent symtab. */
4451 pst->readin = 1;
4452 return;
4453 }
c906108c 4454
9291a0cd 4455 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4456}
4457
93311388 4458/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4459
93311388 4460static void
3e43a32a
MS
4461load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4462 struct objfile *objfile)
10b3939b 4463{
31ffec48 4464 bfd *abfd = objfile->obfd;
10b3939b 4465 struct dwarf2_cu *cu;
c764a876 4466 unsigned int offset;
93311388 4467 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4468 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4469 struct attribute *attr;
98bfdba5 4470 int read_cu = 0;
6502dd73 4471
348e048f
DE
4472 gdb_assert (! per_cu->from_debug_types);
4473
c906108c 4474 /* Set local variables from the partial symbol table info. */
10b3939b 4475 offset = per_cu->offset;
6502dd73 4476
be391dca 4477 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4478 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4479 beg_of_comp_unit = info_ptr;
63d06c5c 4480
98bfdba5
PA
4481 if (per_cu->cu == NULL)
4482 {
9816fde3
JK
4483 cu = xmalloc (sizeof (*cu));
4484 init_one_comp_unit (cu, objfile);
98bfdba5
PA
4485
4486 read_cu = 1;
c906108c 4487
98bfdba5
PA
4488 /* If an error occurs while loading, release our storage. */
4489 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4490
98bfdba5
PA
4491 /* Read in the comp_unit header. */
4492 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4493
98bfdba5
PA
4494 /* Complete the cu_header. */
4495 cu->header.offset = offset;
4496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4497
98bfdba5
PA
4498 /* Read the abbrevs for this compilation unit. */
4499 dwarf2_read_abbrevs (abfd, cu);
4500 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4501
98bfdba5
PA
4502 /* Link this compilation unit into the compilation unit tree. */
4503 per_cu->cu = cu;
4504 cu->per_cu = per_cu;
98bfdba5
PA
4505
4506 /* Link this CU into read_in_chain. */
4507 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4508 dwarf2_per_objfile->read_in_chain = per_cu;
4509 }
4510 else
4511 {
4512 cu = per_cu->cu;
4513 info_ptr += cu->header.first_die_offset;
4514 }
e142c38c 4515
93311388 4516 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4517
4518 /* We try not to read any attributes in this function, because not
4519 all objfiles needed for references have been loaded yet, and symbol
4520 table processing isn't initialized. But we have to set the CU language,
4521 or we won't be able to build types correctly. */
9816fde3 4522 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4523
a6c727b2
DJ
4524 /* Similarly, if we do not read the producer, we can not apply
4525 producer-specific interpretation. */
4526 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4527 if (attr)
4528 cu->producer = DW_STRING (attr);
4529
98bfdba5
PA
4530 if (read_cu)
4531 {
4532 do_cleanups (free_abbrevs_cleanup);
e142c38c 4533
98bfdba5
PA
4534 /* We've successfully allocated this compilation unit. Let our
4535 caller clean it up when finished with it. */
4536 discard_cleanups (free_cu_cleanup);
4537 }
10b3939b
DJ
4538}
4539
3da10d80
KS
4540/* Add a DIE to the delayed physname list. */
4541
4542static void
4543add_to_method_list (struct type *type, int fnfield_index, int index,
4544 const char *name, struct die_info *die,
4545 struct dwarf2_cu *cu)
4546{
4547 struct delayed_method_info mi;
4548 mi.type = type;
4549 mi.fnfield_index = fnfield_index;
4550 mi.index = index;
4551 mi.name = name;
4552 mi.die = die;
4553 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4554}
4555
4556/* A cleanup for freeing the delayed method list. */
4557
4558static void
4559free_delayed_list (void *ptr)
4560{
4561 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4562 if (cu->method_list != NULL)
4563 {
4564 VEC_free (delayed_method_info, cu->method_list);
4565 cu->method_list = NULL;
4566 }
4567}
4568
4569/* Compute the physnames of any methods on the CU's method list.
4570
4571 The computation of method physnames is delayed in order to avoid the
4572 (bad) condition that one of the method's formal parameters is of an as yet
4573 incomplete type. */
4574
4575static void
4576compute_delayed_physnames (struct dwarf2_cu *cu)
4577{
4578 int i;
4579 struct delayed_method_info *mi;
4580 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4581 {
4582 char *physname;
4583 struct fn_fieldlist *fn_flp
4584 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4585 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4586 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4587 }
4588}
4589
10b3939b
DJ
4590/* Generate full symbol information for PST and CU, whose DIEs have
4591 already been loaded into memory. */
4592
4593static void
4594process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4595{
10b3939b 4596 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4597 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4598 CORE_ADDR lowpc, highpc;
4599 struct symtab *symtab;
3da10d80 4600 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4601 CORE_ADDR baseaddr;
4602
4603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4604
10b3939b
DJ
4605 buildsym_init ();
4606 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4607 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4608
4609 cu->list_in_scope = &file_symbols;
c906108c 4610
d85a05f0 4611 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4612
c906108c 4613 /* Do line number decoding in read_file_scope () */
10b3939b 4614 process_die (cu->dies, cu);
c906108c 4615
3da10d80
KS
4616 /* Now that we have processed all the DIEs in the CU, all the types
4617 should be complete, and it should now be safe to compute all of the
4618 physnames. */
4619 compute_delayed_physnames (cu);
4620 do_cleanups (delayed_list_cleanup);
4621
fae299cd
DC
4622 /* Some compilers don't define a DW_AT_high_pc attribute for the
4623 compilation unit. If the DW_AT_high_pc is missing, synthesize
4624 it, by scanning the DIE's below the compilation unit. */
10b3939b 4625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4626
613e1657 4627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4628
4629 /* Set symtab language to language from DW_AT_language.
4630 If the compilation is from a C file generated by language preprocessors,
4631 do not set the language if it was already deduced by start_subfile. */
4632 if (symtab != NULL
10b3939b 4633 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4634 {
10b3939b 4635 symtab->language = cu->language;
c906108c 4636 }
9291a0cd
TT
4637
4638 if (dwarf2_per_objfile->using_index)
4639 per_cu->v.quick->symtab = symtab;
4640 else
4641 {
4642 struct partial_symtab *pst = per_cu->v.psymtab;
4643 pst->symtab = symtab;
4644 pst->readin = 1;
4645 }
c906108c
SS
4646
4647 do_cleanups (back_to);
4648}
4649
4650/* Process a die and its children. */
4651
4652static void
e7c27a73 4653process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4654{
4655 switch (die->tag)
4656 {
4657 case DW_TAG_padding:
4658 break;
4659 case DW_TAG_compile_unit:
e7c27a73 4660 read_file_scope (die, cu);
c906108c 4661 break;
348e048f
DE
4662 case DW_TAG_type_unit:
4663 read_type_unit_scope (die, cu);
4664 break;
c906108c 4665 case DW_TAG_subprogram:
c906108c 4666 case DW_TAG_inlined_subroutine:
edb3359d 4667 read_func_scope (die, cu);
c906108c
SS
4668 break;
4669 case DW_TAG_lexical_block:
14898363
L
4670 case DW_TAG_try_block:
4671 case DW_TAG_catch_block:
e7c27a73 4672 read_lexical_block_scope (die, cu);
c906108c
SS
4673 break;
4674 case DW_TAG_class_type:
680b30c7 4675 case DW_TAG_interface_type:
c906108c
SS
4676 case DW_TAG_structure_type:
4677 case DW_TAG_union_type:
134d01f1 4678 process_structure_scope (die, cu);
c906108c
SS
4679 break;
4680 case DW_TAG_enumeration_type:
134d01f1 4681 process_enumeration_scope (die, cu);
c906108c 4682 break;
134d01f1 4683
f792889a
DJ
4684 /* These dies have a type, but processing them does not create
4685 a symbol or recurse to process the children. Therefore we can
4686 read them on-demand through read_type_die. */
c906108c 4687 case DW_TAG_subroutine_type:
72019c9c 4688 case DW_TAG_set_type:
c906108c 4689 case DW_TAG_array_type:
c906108c 4690 case DW_TAG_pointer_type:
c906108c 4691 case DW_TAG_ptr_to_member_type:
c906108c 4692 case DW_TAG_reference_type:
c906108c 4693 case DW_TAG_string_type:
c906108c 4694 break;
134d01f1 4695
c906108c 4696 case DW_TAG_base_type:
a02abb62 4697 case DW_TAG_subrange_type:
cb249c71 4698 case DW_TAG_typedef:
134d01f1
DJ
4699 /* Add a typedef symbol for the type definition, if it has a
4700 DW_AT_name. */
f792889a 4701 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4702 break;
c906108c 4703 case DW_TAG_common_block:
e7c27a73 4704 read_common_block (die, cu);
c906108c
SS
4705 break;
4706 case DW_TAG_common_inclusion:
4707 break;
d9fa45fe 4708 case DW_TAG_namespace:
63d06c5c 4709 processing_has_namespace_info = 1;
e7c27a73 4710 read_namespace (die, cu);
d9fa45fe 4711 break;
5d7cb8df 4712 case DW_TAG_module:
f55ee35c 4713 processing_has_namespace_info = 1;
5d7cb8df
JK
4714 read_module (die, cu);
4715 break;
d9fa45fe
DC
4716 case DW_TAG_imported_declaration:
4717 case DW_TAG_imported_module:
63d06c5c 4718 processing_has_namespace_info = 1;
27aa8d6a
SW
4719 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4720 || cu->language != language_fortran))
4721 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4722 dwarf_tag_name (die->tag));
4723 read_import_statement (die, cu);
d9fa45fe 4724 break;
c906108c 4725 default:
e7c27a73 4726 new_symbol (die, NULL, cu);
c906108c
SS
4727 break;
4728 }
4729}
4730
94af9270
KS
4731/* A helper function for dwarf2_compute_name which determines whether DIE
4732 needs to have the name of the scope prepended to the name listed in the
4733 die. */
4734
4735static int
4736die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4737{
1c809c68
TT
4738 struct attribute *attr;
4739
94af9270
KS
4740 switch (die->tag)
4741 {
4742 case DW_TAG_namespace:
4743 case DW_TAG_typedef:
4744 case DW_TAG_class_type:
4745 case DW_TAG_interface_type:
4746 case DW_TAG_structure_type:
4747 case DW_TAG_union_type:
4748 case DW_TAG_enumeration_type:
4749 case DW_TAG_enumerator:
4750 case DW_TAG_subprogram:
4751 case DW_TAG_member:
4752 return 1;
4753
4754 case DW_TAG_variable:
c2b0a229 4755 case DW_TAG_constant:
94af9270
KS
4756 /* We only need to prefix "globally" visible variables. These include
4757 any variable marked with DW_AT_external or any variable that
4758 lives in a namespace. [Variables in anonymous namespaces
4759 require prefixing, but they are not DW_AT_external.] */
4760
4761 if (dwarf2_attr (die, DW_AT_specification, cu))
4762 {
4763 struct dwarf2_cu *spec_cu = cu;
9a619af0 4764
94af9270
KS
4765 return die_needs_namespace (die_specification (die, &spec_cu),
4766 spec_cu);
4767 }
4768
1c809c68 4769 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4770 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4771 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4772 return 0;
4773 /* A variable in a lexical block of some kind does not need a
4774 namespace, even though in C++ such variables may be external
4775 and have a mangled name. */
4776 if (die->parent->tag == DW_TAG_lexical_block
4777 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4778 || die->parent->tag == DW_TAG_catch_block
4779 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4780 return 0;
4781 return 1;
94af9270
KS
4782
4783 default:
4784 return 0;
4785 }
4786}
4787
98bfdba5
PA
4788/* Retrieve the last character from a mem_file. */
4789
4790static void
4791do_ui_file_peek_last (void *object, const char *buffer, long length)
4792{
4793 char *last_char_p = (char *) object;
4794
4795 if (length > 0)
4796 *last_char_p = buffer[length - 1];
4797}
4798
94af9270
KS
4799/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4800 compute the physname for the object, which include a method's
4801 formal parameters (C++/Java) and return type (Java).
4802
af6b7be1
JB
4803 For Ada, return the DIE's linkage name rather than the fully qualified
4804 name. PHYSNAME is ignored..
4805
94af9270
KS
4806 The result is allocated on the objfile_obstack and canonicalized. */
4807
4808static const char *
4809dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4810 int physname)
4811{
4812 if (name == NULL)
4813 name = dwarf2_name (die, cu);
4814
f55ee35c
JK
4815 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4816 compute it by typename_concat inside GDB. */
4817 if (cu->language == language_ada
4818 || (cu->language == language_fortran && physname))
4819 {
4820 /* For Ada unit, we prefer the linkage name over the name, as
4821 the former contains the exported name, which the user expects
4822 to be able to reference. Ideally, we want the user to be able
4823 to reference this entity using either natural or linkage name,
4824 but we haven't started looking at this enhancement yet. */
4825 struct attribute *attr;
4826
4827 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4828 if (attr == NULL)
4829 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4830 if (attr && DW_STRING (attr))
4831 return DW_STRING (attr);
4832 }
4833
94af9270
KS
4834 /* These are the only languages we know how to qualify names in. */
4835 if (name != NULL
f55ee35c
JK
4836 && (cu->language == language_cplus || cu->language == language_java
4837 || cu->language == language_fortran))
94af9270
KS
4838 {
4839 if (die_needs_namespace (die, cu))
4840 {
4841 long length;
4842 char *prefix;
4843 struct ui_file *buf;
4844
4845 prefix = determine_prefix (die, cu);
4846 buf = mem_fileopen ();
4847 if (*prefix != '\0')
4848 {
f55ee35c
JK
4849 char *prefixed_name = typename_concat (NULL, prefix, name,
4850 physname, cu);
9a619af0 4851
94af9270
KS
4852 fputs_unfiltered (prefixed_name, buf);
4853 xfree (prefixed_name);
4854 }
4855 else
62d5b8da 4856 fputs_unfiltered (name, buf);
94af9270 4857
98bfdba5
PA
4858 /* Template parameters may be specified in the DIE's DW_AT_name, or
4859 as children with DW_TAG_template_type_param or
4860 DW_TAG_value_type_param. If the latter, add them to the name
4861 here. If the name already has template parameters, then
4862 skip this step; some versions of GCC emit both, and
4863 it is more efficient to use the pre-computed name.
4864
4865 Something to keep in mind about this process: it is very
4866 unlikely, or in some cases downright impossible, to produce
4867 something that will match the mangled name of a function.
4868 If the definition of the function has the same debug info,
4869 we should be able to match up with it anyway. But fallbacks
4870 using the minimal symbol, for instance to find a method
4871 implemented in a stripped copy of libstdc++, will not work.
4872 If we do not have debug info for the definition, we will have to
4873 match them up some other way.
4874
4875 When we do name matching there is a related problem with function
4876 templates; two instantiated function templates are allowed to
4877 differ only by their return types, which we do not add here. */
4878
4879 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4880 {
4881 struct attribute *attr;
4882 struct die_info *child;
4883 int first = 1;
4884
4885 die->building_fullname = 1;
4886
4887 for (child = die->child; child != NULL; child = child->sibling)
4888 {
4889 struct type *type;
4890 long value;
4891 gdb_byte *bytes;
4892 struct dwarf2_locexpr_baton *baton;
4893 struct value *v;
4894
4895 if (child->tag != DW_TAG_template_type_param
4896 && child->tag != DW_TAG_template_value_param)
4897 continue;
4898
4899 if (first)
4900 {
4901 fputs_unfiltered ("<", buf);
4902 first = 0;
4903 }
4904 else
4905 fputs_unfiltered (", ", buf);
4906
4907 attr = dwarf2_attr (child, DW_AT_type, cu);
4908 if (attr == NULL)
4909 {
4910 complaint (&symfile_complaints,
4911 _("template parameter missing DW_AT_type"));
4912 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4913 continue;
4914 }
4915 type = die_type (child, cu);
4916
4917 if (child->tag == DW_TAG_template_type_param)
4918 {
4919 c_print_type (type, "", buf, -1, 0);
4920 continue;
4921 }
4922
4923 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4924 if (attr == NULL)
4925 {
4926 complaint (&symfile_complaints,
3e43a32a
MS
4927 _("template parameter missing "
4928 "DW_AT_const_value"));
98bfdba5
PA
4929 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4930 continue;
4931 }
4932
4933 dwarf2_const_value_attr (attr, type, name,
4934 &cu->comp_unit_obstack, cu,
4935 &value, &bytes, &baton);
4936
4937 if (TYPE_NOSIGN (type))
4938 /* GDB prints characters as NUMBER 'CHAR'. If that's
4939 changed, this can use value_print instead. */
4940 c_printchar (value, type, buf);
4941 else
4942 {
4943 struct value_print_options opts;
4944
4945 if (baton != NULL)
4946 v = dwarf2_evaluate_loc_desc (type, NULL,
4947 baton->data,
4948 baton->size,
4949 baton->per_cu);
4950 else if (bytes != NULL)
4951 {
4952 v = allocate_value (type);
4953 memcpy (value_contents_writeable (v), bytes,
4954 TYPE_LENGTH (type));
4955 }
4956 else
4957 v = value_from_longest (type, value);
4958
3e43a32a
MS
4959 /* Specify decimal so that we do not depend on
4960 the radix. */
98bfdba5
PA
4961 get_formatted_print_options (&opts, 'd');
4962 opts.raw = 1;
4963 value_print (v, buf, &opts);
4964 release_value (v);
4965 value_free (v);
4966 }
4967 }
4968
4969 die->building_fullname = 0;
4970
4971 if (!first)
4972 {
4973 /* Close the argument list, with a space if necessary
4974 (nested templates). */
4975 char last_char = '\0';
4976 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4977 if (last_char == '>')
4978 fputs_unfiltered (" >", buf);
4979 else
4980 fputs_unfiltered (">", buf);
4981 }
4982 }
4983
94af9270
KS
4984 /* For Java and C++ methods, append formal parameter type
4985 information, if PHYSNAME. */
6e70227d 4986
94af9270
KS
4987 if (physname && die->tag == DW_TAG_subprogram
4988 && (cu->language == language_cplus
4989 || cu->language == language_java))
4990 {
4991 struct type *type = read_type_die (die, cu);
4992
4993 c_type_print_args (type, buf, 0, cu->language);
4994
4995 if (cu->language == language_java)
4996 {
4997 /* For java, we must append the return type to method
0963b4bd 4998 names. */
94af9270
KS
4999 if (die->tag == DW_TAG_subprogram)
5000 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5001 0, 0);
5002 }
5003 else if (cu->language == language_cplus)
5004 {
60430eff
DJ
5005 /* Assume that an artificial first parameter is
5006 "this", but do not crash if it is not. RealView
5007 marks unnamed (and thus unused) parameters as
5008 artificial; there is no way to differentiate
5009 the two cases. */
94af9270
KS
5010 if (TYPE_NFIELDS (type) > 0
5011 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 5012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
5013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5014 0))))
94af9270
KS
5015 fputs_unfiltered (" const", buf);
5016 }
5017 }
5018
5019 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5020 &length);
5021 ui_file_delete (buf);
5022
5023 if (cu->language == language_cplus)
5024 {
5025 char *cname
5026 = dwarf2_canonicalize_name (name, cu,
5027 &cu->objfile->objfile_obstack);
9a619af0 5028
94af9270
KS
5029 if (cname != NULL)
5030 name = cname;
5031 }
5032 }
5033 }
5034
5035 return name;
5036}
5037
0114d602
DJ
5038/* Return the fully qualified name of DIE, based on its DW_AT_name.
5039 If scope qualifiers are appropriate they will be added. The result
5040 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5041 not have a name. NAME may either be from a previous call to
5042 dwarf2_name or NULL.
5043
0963b4bd 5044 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5045
5046static const char *
94af9270 5047dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5048{
94af9270
KS
5049 return dwarf2_compute_name (name, die, cu, 0);
5050}
0114d602 5051
94af9270
KS
5052/* Construct a physname for the given DIE in CU. NAME may either be
5053 from a previous call to dwarf2_name or NULL. The result will be
5054 allocated on the objfile_objstack or NULL if the DIE does not have a
5055 name.
0114d602 5056
94af9270 5057 The output string will be canonicalized (if C++/Java). */
0114d602 5058
94af9270
KS
5059static const char *
5060dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5061{
5062 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
5063}
5064
27aa8d6a
SW
5065/* Read the import statement specified by the given die and record it. */
5066
5067static void
5068read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5069{
5070 struct attribute *import_attr;
5071 struct die_info *imported_die;
de4affc9 5072 struct dwarf2_cu *imported_cu;
27aa8d6a 5073 const char *imported_name;
794684b6 5074 const char *imported_name_prefix;
13387711
SW
5075 const char *canonical_name;
5076 const char *import_alias;
5077 const char *imported_declaration = NULL;
794684b6 5078 const char *import_prefix;
13387711
SW
5079
5080 char *temp;
27aa8d6a
SW
5081
5082 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5083 if (import_attr == NULL)
5084 {
5085 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5086 dwarf_tag_name (die->tag));
5087 return;
5088 }
5089
de4affc9
CC
5090 imported_cu = cu;
5091 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5092 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5093 if (imported_name == NULL)
5094 {
5095 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5096
5097 The import in the following code:
5098 namespace A
5099 {
5100 typedef int B;
5101 }
5102
5103 int main ()
5104 {
5105 using A::B;
5106 B b;
5107 return b;
5108 }
5109
5110 ...
5111 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5112 <52> DW_AT_decl_file : 1
5113 <53> DW_AT_decl_line : 6
5114 <54> DW_AT_import : <0x75>
5115 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5116 <59> DW_AT_name : B
5117 <5b> DW_AT_decl_file : 1
5118 <5c> DW_AT_decl_line : 2
5119 <5d> DW_AT_type : <0x6e>
5120 ...
5121 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5122 <76> DW_AT_byte_size : 4
5123 <77> DW_AT_encoding : 5 (signed)
5124
5125 imports the wrong die ( 0x75 instead of 0x58 ).
5126 This case will be ignored until the gcc bug is fixed. */
5127 return;
5128 }
5129
82856980
SW
5130 /* Figure out the local name after import. */
5131 import_alias = dwarf2_name (die, cu);
27aa8d6a 5132
794684b6
SW
5133 /* Figure out where the statement is being imported to. */
5134 import_prefix = determine_prefix (die, cu);
5135
5136 /* Figure out what the scope of the imported die is and prepend it
5137 to the name of the imported die. */
de4affc9 5138 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5139
f55ee35c
JK
5140 if (imported_die->tag != DW_TAG_namespace
5141 && imported_die->tag != DW_TAG_module)
794684b6 5142 {
13387711
SW
5143 imported_declaration = imported_name;
5144 canonical_name = imported_name_prefix;
794684b6 5145 }
13387711 5146 else if (strlen (imported_name_prefix) > 0)
794684b6 5147 {
13387711
SW
5148 temp = alloca (strlen (imported_name_prefix)
5149 + 2 + strlen (imported_name) + 1);
5150 strcpy (temp, imported_name_prefix);
5151 strcat (temp, "::");
5152 strcat (temp, imported_name);
5153 canonical_name = temp;
794684b6 5154 }
13387711
SW
5155 else
5156 canonical_name = imported_name;
794684b6 5157
c0cc3a76
SW
5158 cp_add_using_directive (import_prefix,
5159 canonical_name,
5160 import_alias,
13387711 5161 imported_declaration,
c0cc3a76 5162 &cu->objfile->objfile_obstack);
27aa8d6a
SW
5163}
5164
5fb290d7 5165static void
e142c38c 5166initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5167{
e142c38c 5168 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5169}
5170
ae2de4f8
DE
5171/* Cleanup function for read_file_scope. */
5172
cb1df416
DJ
5173static void
5174free_cu_line_header (void *arg)
5175{
5176 struct dwarf2_cu *cu = arg;
5177
5178 free_line_header (cu->line_header);
5179 cu->line_header = NULL;
5180}
5181
9291a0cd
TT
5182static void
5183find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5184 char **name, char **comp_dir)
5185{
5186 struct attribute *attr;
5187
5188 *name = NULL;
5189 *comp_dir = NULL;
5190
5191 /* Find the filename. Do not use dwarf2_name here, since the filename
5192 is not a source language identifier. */
5193 attr = dwarf2_attr (die, DW_AT_name, cu);
5194 if (attr)
5195 {
5196 *name = DW_STRING (attr);
5197 }
5198
5199 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5200 if (attr)
5201 *comp_dir = DW_STRING (attr);
5202 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5203 {
5204 *comp_dir = ldirname (*name);
5205 if (*comp_dir != NULL)
5206 make_cleanup (xfree, *comp_dir);
5207 }
5208 if (*comp_dir != NULL)
5209 {
5210 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5211 directory, get rid of it. */
5212 char *cp = strchr (*comp_dir, ':');
5213
5214 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5215 *comp_dir = cp + 1;
5216 }
5217
5218 if (*name == NULL)
5219 *name = "<unknown>";
5220}
5221
ae2de4f8
DE
5222/* Process DW_TAG_compile_unit. */
5223
c906108c 5224static void
e7c27a73 5225read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5226{
e7c27a73 5227 struct objfile *objfile = cu->objfile;
debd256d 5228 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5229 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5230 CORE_ADDR highpc = ((CORE_ADDR) 0);
5231 struct attribute *attr;
e1024ff1 5232 char *name = NULL;
c906108c
SS
5233 char *comp_dir = NULL;
5234 struct die_info *child_die;
5235 bfd *abfd = objfile->obfd;
debd256d 5236 struct line_header *line_header = 0;
e142c38c 5237 CORE_ADDR baseaddr;
6e70227d 5238
e142c38c 5239 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5240
fae299cd 5241 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5242
5243 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5244 from finish_block. */
2acceee2 5245 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5246 lowpc = highpc;
5247 lowpc += baseaddr;
5248 highpc += baseaddr;
5249
9291a0cd 5250 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5251
e142c38c 5252 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5253 if (attr)
5254 {
e142c38c 5255 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5256 }
5257
b0f35d58 5258 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5259 if (attr)
b0f35d58 5260 cu->producer = DW_STRING (attr);
303b6f5d 5261
f4b8a18d
KW
5262 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5263 standardised yet. As a workaround for the language detection we fall
5264 back to the DW_AT_producer string. */
5265 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5266 cu->language = language_opencl;
5267
0963b4bd 5268 /* We assume that we're processing GCC output. */
c906108c 5269 processing_gcc_compilation = 2;
c906108c 5270
df8a16a1
DJ
5271 processing_has_namespace_info = 0;
5272
c906108c
SS
5273 start_symtab (name, comp_dir, lowpc);
5274 record_debugformat ("DWARF 2");
303b6f5d 5275 record_producer (cu->producer);
c906108c 5276
e142c38c 5277 initialize_cu_func_list (cu);
c906108c 5278
cb1df416
DJ
5279 /* Decode line number information if present. We do this before
5280 processing child DIEs, so that the line header table is available
5281 for DW_AT_decl_file. */
e142c38c 5282 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
5283 if (attr)
5284 {
debd256d 5285 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 5286 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
5287 if (line_header)
5288 {
cb1df416
DJ
5289 cu->line_header = line_header;
5290 make_cleanup (free_cu_line_header, cu);
aaa75496 5291 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 5292 }
5fb290d7 5293 }
debd256d 5294
cb1df416
DJ
5295 /* Process all dies in compilation unit. */
5296 if (die->child != NULL)
5297 {
5298 child_die = die->child;
5299 while (child_die && child_die->tag)
5300 {
5301 process_die (child_die, cu);
5302 child_die = sibling_die (child_die);
5303 }
5304 }
5305
2e276125
JB
5306 /* Decode macro information, if present. Dwarf 2 macro information
5307 refers to information in the line number info statement program
5308 header, so we can only read it if we've read the header
5309 successfully. */
e142c38c 5310 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 5311 if (attr && line_header)
2e276125
JB
5312 {
5313 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5314
2e276125 5315 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 5316 comp_dir, abfd, cu);
2e276125 5317 }
debd256d 5318 do_cleanups (back_to);
5fb290d7
DJ
5319}
5320
ae2de4f8
DE
5321/* Process DW_TAG_type_unit.
5322 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5323 actual type being defined by this TU. In this case the first top
5324 level sibling is there to provide context only. */
5325
5326static void
5327read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5328{
5329 struct objfile *objfile = cu->objfile;
5330 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5331 CORE_ADDR lowpc;
5332 struct attribute *attr;
5333 char *name = NULL;
5334 char *comp_dir = NULL;
5335 struct die_info *child_die;
5336 bfd *abfd = objfile->obfd;
348e048f
DE
5337
5338 /* start_symtab needs a low pc, but we don't really have one.
5339 Do what read_file_scope would do in the absence of such info. */
5340 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5341
5342 /* Find the filename. Do not use dwarf2_name here, since the filename
5343 is not a source language identifier. */
5344 attr = dwarf2_attr (die, DW_AT_name, cu);
5345 if (attr)
5346 name = DW_STRING (attr);
5347
5348 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5349 if (attr)
5350 comp_dir = DW_STRING (attr);
5351 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5352 {
5353 comp_dir = ldirname (name);
5354 if (comp_dir != NULL)
5355 make_cleanup (xfree, comp_dir);
5356 }
5357
5358 if (name == NULL)
5359 name = "<unknown>";
5360
5361 attr = dwarf2_attr (die, DW_AT_language, cu);
5362 if (attr)
5363 set_cu_language (DW_UNSND (attr), cu);
5364
5365 /* This isn't technically needed today. It is done for symmetry
5366 with read_file_scope. */
5367 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5368 if (attr)
348e048f
DE
5369 cu->producer = DW_STRING (attr);
5370
0963b4bd 5371 /* We assume that we're processing GCC output. */
348e048f
DE
5372 processing_gcc_compilation = 2;
5373
5374 processing_has_namespace_info = 0;
5375
5376 start_symtab (name, comp_dir, lowpc);
5377 record_debugformat ("DWARF 2");
5378 record_producer (cu->producer);
5379
5380 /* Process the dies in the type unit. */
5381 if (die->child == NULL)
5382 {
5383 dump_die_for_error (die);
5384 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5385 bfd_get_filename (abfd));
5386 }
5387
5388 child_die = die->child;
5389
5390 while (child_die && child_die->tag)
5391 {
5392 process_die (child_die, cu);
5393
5394 child_die = sibling_die (child_die);
5395 }
5396
5397 do_cleanups (back_to);
5398}
5399
5fb290d7 5400static void
e142c38c
DJ
5401add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5402 struct dwarf2_cu *cu)
5fb290d7
DJ
5403{
5404 struct function_range *thisfn;
5405
5406 thisfn = (struct function_range *)
7b5a2f43 5407 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5408 thisfn->name = name;
5409 thisfn->lowpc = lowpc;
5410 thisfn->highpc = highpc;
5411 thisfn->seen_line = 0;
5412 thisfn->next = NULL;
5413
e142c38c
DJ
5414 if (cu->last_fn == NULL)
5415 cu->first_fn = thisfn;
5fb290d7 5416 else
e142c38c 5417 cu->last_fn->next = thisfn;
5fb290d7 5418
e142c38c 5419 cu->last_fn = thisfn;
c906108c
SS
5420}
5421
d389af10
JK
5422/* qsort helper for inherit_abstract_dies. */
5423
5424static int
5425unsigned_int_compar (const void *ap, const void *bp)
5426{
5427 unsigned int a = *(unsigned int *) ap;
5428 unsigned int b = *(unsigned int *) bp;
5429
5430 return (a > b) - (b > a);
5431}
5432
5433/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5434 Inherit only the children of the DW_AT_abstract_origin DIE not being
5435 already referenced by DW_AT_abstract_origin from the children of the
5436 current DIE. */
d389af10
JK
5437
5438static void
5439inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5440{
5441 struct die_info *child_die;
5442 unsigned die_children_count;
5443 /* CU offsets which were referenced by children of the current DIE. */
5444 unsigned *offsets;
5445 unsigned *offsets_end, *offsetp;
5446 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5447 struct die_info *origin_die;
5448 /* Iterator of the ORIGIN_DIE children. */
5449 struct die_info *origin_child_die;
5450 struct cleanup *cleanups;
5451 struct attribute *attr;
cd02d79d
PA
5452 struct dwarf2_cu *origin_cu;
5453 struct pending **origin_previous_list_in_scope;
d389af10
JK
5454
5455 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5456 if (!attr)
5457 return;
5458
cd02d79d
PA
5459 /* Note that following die references may follow to a die in a
5460 different cu. */
5461
5462 origin_cu = cu;
5463 origin_die = follow_die_ref (die, attr, &origin_cu);
5464
5465 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5466 symbols in. */
5467 origin_previous_list_in_scope = origin_cu->list_in_scope;
5468 origin_cu->list_in_scope = cu->list_in_scope;
5469
edb3359d
DJ
5470 if (die->tag != origin_die->tag
5471 && !(die->tag == DW_TAG_inlined_subroutine
5472 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5473 complaint (&symfile_complaints,
5474 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5475 die->offset, origin_die->offset);
5476
5477 child_die = die->child;
5478 die_children_count = 0;
5479 while (child_die && child_die->tag)
5480 {
5481 child_die = sibling_die (child_die);
5482 die_children_count++;
5483 }
5484 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5485 cleanups = make_cleanup (xfree, offsets);
5486
5487 offsets_end = offsets;
5488 child_die = die->child;
5489 while (child_die && child_die->tag)
5490 {
c38f313d
DJ
5491 /* For each CHILD_DIE, find the corresponding child of
5492 ORIGIN_DIE. If there is more than one layer of
5493 DW_AT_abstract_origin, follow them all; there shouldn't be,
5494 but GCC versions at least through 4.4 generate this (GCC PR
5495 40573). */
5496 struct die_info *child_origin_die = child_die;
cd02d79d 5497 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5498
c38f313d
DJ
5499 while (1)
5500 {
cd02d79d
PA
5501 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5502 child_origin_cu);
c38f313d
DJ
5503 if (attr == NULL)
5504 break;
cd02d79d
PA
5505 child_origin_die = follow_die_ref (child_origin_die, attr,
5506 &child_origin_cu);
c38f313d
DJ
5507 }
5508
d389af10
JK
5509 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5510 counterpart may exist. */
c38f313d 5511 if (child_origin_die != child_die)
d389af10 5512 {
edb3359d
DJ
5513 if (child_die->tag != child_origin_die->tag
5514 && !(child_die->tag == DW_TAG_inlined_subroutine
5515 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5516 complaint (&symfile_complaints,
5517 _("Child DIE 0x%x and its abstract origin 0x%x have "
5518 "different tags"), child_die->offset,
5519 child_origin_die->offset);
c38f313d
DJ
5520 if (child_origin_die->parent != origin_die)
5521 complaint (&symfile_complaints,
5522 _("Child DIE 0x%x and its abstract origin 0x%x have "
5523 "different parents"), child_die->offset,
5524 child_origin_die->offset);
5525 else
5526 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5527 }
5528 child_die = sibling_die (child_die);
5529 }
5530 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5531 unsigned_int_compar);
5532 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5533 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5534 complaint (&symfile_complaints,
5535 _("Multiple children of DIE 0x%x refer "
5536 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5537 die->offset, *offsetp);
5538
5539 offsetp = offsets;
5540 origin_child_die = origin_die->child;
5541 while (origin_child_die && origin_child_die->tag)
5542 {
5543 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5544 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5545 offsetp++;
5546 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5547 {
5548 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5549 process_die (origin_child_die, origin_cu);
d389af10
JK
5550 }
5551 origin_child_die = sibling_die (origin_child_die);
5552 }
cd02d79d 5553 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5554
5555 do_cleanups (cleanups);
5556}
5557
c906108c 5558static void
e7c27a73 5559read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5560{
e7c27a73 5561 struct objfile *objfile = cu->objfile;
52f0bd74 5562 struct context_stack *new;
c906108c
SS
5563 CORE_ADDR lowpc;
5564 CORE_ADDR highpc;
5565 struct die_info *child_die;
edb3359d 5566 struct attribute *attr, *call_line, *call_file;
c906108c 5567 char *name;
e142c38c 5568 CORE_ADDR baseaddr;
801e3a5b 5569 struct block *block;
edb3359d 5570 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5571 VEC (symbolp) *template_args = NULL;
5572 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5573
5574 if (inlined_func)
5575 {
5576 /* If we do not have call site information, we can't show the
5577 caller of this inlined function. That's too confusing, so
5578 only use the scope for local variables. */
5579 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5580 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5581 if (call_line == NULL || call_file == NULL)
5582 {
5583 read_lexical_block_scope (die, cu);
5584 return;
5585 }
5586 }
c906108c 5587
e142c38c
DJ
5588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5589
94af9270 5590 name = dwarf2_name (die, cu);
c906108c 5591
e8d05480
JB
5592 /* Ignore functions with missing or empty names. These are actually
5593 illegal according to the DWARF standard. */
5594 if (name == NULL)
5595 {
5596 complaint (&symfile_complaints,
5597 _("missing name for subprogram DIE at %d"), die->offset);
5598 return;
5599 }
5600
5601 /* Ignore functions with missing or invalid low and high pc attributes. */
5602 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5603 {
ae4d0c03
PM
5604 attr = dwarf2_attr (die, DW_AT_external, cu);
5605 if (!attr || !DW_UNSND (attr))
5606 complaint (&symfile_complaints,
3e43a32a
MS
5607 _("cannot get low and high bounds "
5608 "for subprogram DIE at %d"),
ae4d0c03 5609 die->offset);
e8d05480
JB
5610 return;
5611 }
c906108c
SS
5612
5613 lowpc += baseaddr;
5614 highpc += baseaddr;
5615
5fb290d7 5616 /* Record the function range for dwarf_decode_lines. */
e142c38c 5617 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5618
34eaf542
TT
5619 /* If we have any template arguments, then we must allocate a
5620 different sort of symbol. */
5621 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5622 {
5623 if (child_die->tag == DW_TAG_template_type_param
5624 || child_die->tag == DW_TAG_template_value_param)
5625 {
5626 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5627 struct template_symbol);
5628 templ_func->base.is_cplus_template_function = 1;
5629 break;
5630 }
5631 }
5632
c906108c 5633 new = push_context (0, lowpc);
34eaf542
TT
5634 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5635 (struct symbol *) templ_func);
4c2df51b 5636
4cecd739
DJ
5637 /* If there is a location expression for DW_AT_frame_base, record
5638 it. */
e142c38c 5639 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5640 if (attr)
c034e007
AC
5641 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5642 expression is being recorded directly in the function's symbol
5643 and not in a separate frame-base object. I guess this hack is
5644 to avoid adding some sort of frame-base adjunct/annex to the
5645 function's symbol :-(. The problem with doing this is that it
5646 results in a function symbol with a location expression that
5647 has nothing to do with the location of the function, ouch! The
5648 relationship should be: a function's symbol has-a frame base; a
5649 frame-base has-a location expression. */
e7c27a73 5650 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5651
e142c38c 5652 cu->list_in_scope = &local_symbols;
c906108c 5653
639d11d3 5654 if (die->child != NULL)
c906108c 5655 {
639d11d3 5656 child_die = die->child;
c906108c
SS
5657 while (child_die && child_die->tag)
5658 {
34eaf542
TT
5659 if (child_die->tag == DW_TAG_template_type_param
5660 || child_die->tag == DW_TAG_template_value_param)
5661 {
5662 struct symbol *arg = new_symbol (child_die, NULL, cu);
5663
f1078f66
DJ
5664 if (arg != NULL)
5665 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5666 }
5667 else
5668 process_die (child_die, cu);
c906108c
SS
5669 child_die = sibling_die (child_die);
5670 }
5671 }
5672
d389af10
JK
5673 inherit_abstract_dies (die, cu);
5674
4a811a97
UW
5675 /* If we have a DW_AT_specification, we might need to import using
5676 directives from the context of the specification DIE. See the
5677 comment in determine_prefix. */
5678 if (cu->language == language_cplus
5679 && dwarf2_attr (die, DW_AT_specification, cu))
5680 {
5681 struct dwarf2_cu *spec_cu = cu;
5682 struct die_info *spec_die = die_specification (die, &spec_cu);
5683
5684 while (spec_die)
5685 {
5686 child_die = spec_die->child;
5687 while (child_die && child_die->tag)
5688 {
5689 if (child_die->tag == DW_TAG_imported_module)
5690 process_die (child_die, spec_cu);
5691 child_die = sibling_die (child_die);
5692 }
5693
5694 /* In some cases, GCC generates specification DIEs that
5695 themselves contain DW_AT_specification attributes. */
5696 spec_die = die_specification (spec_die, &spec_cu);
5697 }
5698 }
5699
c906108c
SS
5700 new = pop_context ();
5701 /* Make a block for the local symbols within. */
801e3a5b
JB
5702 block = finish_block (new->name, &local_symbols, new->old_blocks,
5703 lowpc, highpc, objfile);
5704
df8a16a1 5705 /* For C++, set the block's scope. */
f55ee35c 5706 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5707 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5708 determine_prefix (die, cu),
df8a16a1
DJ
5709 processing_has_namespace_info);
5710
801e3a5b
JB
5711 /* If we have address ranges, record them. */
5712 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5713
34eaf542
TT
5714 /* Attach template arguments to function. */
5715 if (! VEC_empty (symbolp, template_args))
5716 {
5717 gdb_assert (templ_func != NULL);
5718
5719 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5720 templ_func->template_arguments
5721 = obstack_alloc (&objfile->objfile_obstack,
5722 (templ_func->n_template_arguments
5723 * sizeof (struct symbol *)));
5724 memcpy (templ_func->template_arguments,
5725 VEC_address (symbolp, template_args),
5726 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5727 VEC_free (symbolp, template_args);
5728 }
5729
208d8187
JB
5730 /* In C++, we can have functions nested inside functions (e.g., when
5731 a function declares a class that has methods). This means that
5732 when we finish processing a function scope, we may need to go
5733 back to building a containing block's symbol lists. */
5734 local_symbols = new->locals;
5735 param_symbols = new->params;
27aa8d6a 5736 using_directives = new->using_directives;
208d8187 5737
921e78cf
JB
5738 /* If we've finished processing a top-level function, subsequent
5739 symbols go in the file symbol list. */
5740 if (outermost_context_p ())
e142c38c 5741 cu->list_in_scope = &file_symbols;
c906108c
SS
5742}
5743
5744/* Process all the DIES contained within a lexical block scope. Start
5745 a new scope, process the dies, and then close the scope. */
5746
5747static void
e7c27a73 5748read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5749{
e7c27a73 5750 struct objfile *objfile = cu->objfile;
52f0bd74 5751 struct context_stack *new;
c906108c
SS
5752 CORE_ADDR lowpc, highpc;
5753 struct die_info *child_die;
e142c38c
DJ
5754 CORE_ADDR baseaddr;
5755
5756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5757
5758 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5759 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5760 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5761 be nasty. Might be easier to properly extend generic blocks to
af34e669 5762 describe ranges. */
d85a05f0 5763 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5764 return;
5765 lowpc += baseaddr;
5766 highpc += baseaddr;
5767
5768 push_context (0, lowpc);
639d11d3 5769 if (die->child != NULL)
c906108c 5770 {
639d11d3 5771 child_die = die->child;
c906108c
SS
5772 while (child_die && child_die->tag)
5773 {
e7c27a73 5774 process_die (child_die, cu);
c906108c
SS
5775 child_die = sibling_die (child_die);
5776 }
5777 }
5778 new = pop_context ();
5779
8540c487 5780 if (local_symbols != NULL || using_directives != NULL)
c906108c 5781 {
801e3a5b
JB
5782 struct block *block
5783 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5784 highpc, objfile);
5785
5786 /* Note that recording ranges after traversing children, as we
5787 do here, means that recording a parent's ranges entails
5788 walking across all its children's ranges as they appear in
5789 the address map, which is quadratic behavior.
5790
5791 It would be nicer to record the parent's ranges before
5792 traversing its children, simply overriding whatever you find
5793 there. But since we don't even decide whether to create a
5794 block until after we've traversed its children, that's hard
5795 to do. */
5796 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5797 }
5798 local_symbols = new->locals;
27aa8d6a 5799 using_directives = new->using_directives;
c906108c
SS
5800}
5801
43039443 5802/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5803 Return 1 if the attributes are present and valid, otherwise, return 0.
5804 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5805
5806static int
5807dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5808 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5809 struct partial_symtab *ranges_pst)
43039443
JK
5810{
5811 struct objfile *objfile = cu->objfile;
5812 struct comp_unit_head *cu_header = &cu->header;
5813 bfd *obfd = objfile->obfd;
5814 unsigned int addr_size = cu_header->addr_size;
5815 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5816 /* Base address selection entry. */
5817 CORE_ADDR base;
5818 int found_base;
5819 unsigned int dummy;
5820 gdb_byte *buffer;
5821 CORE_ADDR marker;
5822 int low_set;
5823 CORE_ADDR low = 0;
5824 CORE_ADDR high = 0;
ff013f42 5825 CORE_ADDR baseaddr;
43039443 5826
d00adf39
DE
5827 found_base = cu->base_known;
5828 base = cu->base_address;
43039443 5829
be391dca 5830 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5831 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5832 {
5833 complaint (&symfile_complaints,
5834 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5835 offset);
5836 return 0;
5837 }
dce234bc 5838 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5839
5840 /* Read in the largest possible address. */
5841 marker = read_address (obfd, buffer, cu, &dummy);
5842 if ((marker & mask) == mask)
5843 {
5844 /* If we found the largest possible address, then
5845 read the base address. */
5846 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5847 buffer += 2 * addr_size;
5848 offset += 2 * addr_size;
5849 found_base = 1;
5850 }
5851
5852 low_set = 0;
5853
e7030f15 5854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5855
43039443
JK
5856 while (1)
5857 {
5858 CORE_ADDR range_beginning, range_end;
5859
5860 range_beginning = read_address (obfd, buffer, cu, &dummy);
5861 buffer += addr_size;
5862 range_end = read_address (obfd, buffer, cu, &dummy);
5863 buffer += addr_size;
5864 offset += 2 * addr_size;
5865
5866 /* An end of list marker is a pair of zero addresses. */
5867 if (range_beginning == 0 && range_end == 0)
5868 /* Found the end of list entry. */
5869 break;
5870
5871 /* Each base address selection entry is a pair of 2 values.
5872 The first is the largest possible address, the second is
5873 the base address. Check for a base address here. */
5874 if ((range_beginning & mask) == mask)
5875 {
5876 /* If we found the largest possible address, then
5877 read the base address. */
5878 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5879 found_base = 1;
5880 continue;
5881 }
5882
5883 if (!found_base)
5884 {
5885 /* We have no valid base address for the ranges
5886 data. */
5887 complaint (&symfile_complaints,
5888 _("Invalid .debug_ranges data (no base address)"));
5889 return 0;
5890 }
5891
9277c30c
UW
5892 if (range_beginning > range_end)
5893 {
5894 /* Inverted range entries are invalid. */
5895 complaint (&symfile_complaints,
5896 _("Invalid .debug_ranges data (inverted range)"));
5897 return 0;
5898 }
5899
5900 /* Empty range entries have no effect. */
5901 if (range_beginning == range_end)
5902 continue;
5903
43039443
JK
5904 range_beginning += base;
5905 range_end += base;
5906
9277c30c 5907 if (ranges_pst != NULL)
ff013f42 5908 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
5909 range_beginning + baseaddr,
5910 range_end - 1 + baseaddr,
ff013f42
JK
5911 ranges_pst);
5912
43039443
JK
5913 /* FIXME: This is recording everything as a low-high
5914 segment of consecutive addresses. We should have a
5915 data structure for discontiguous block ranges
5916 instead. */
5917 if (! low_set)
5918 {
5919 low = range_beginning;
5920 high = range_end;
5921 low_set = 1;
5922 }
5923 else
5924 {
5925 if (range_beginning < low)
5926 low = range_beginning;
5927 if (range_end > high)
5928 high = range_end;
5929 }
5930 }
5931
5932 if (! low_set)
5933 /* If the first entry is an end-of-list marker, the range
5934 describes an empty scope, i.e. no instructions. */
5935 return 0;
5936
5937 if (low_return)
5938 *low_return = low;
5939 if (high_return)
5940 *high_return = high;
5941 return 1;
5942}
5943
af34e669
DJ
5944/* Get low and high pc attributes from a die. Return 1 if the attributes
5945 are present and valid, otherwise, return 0. Return -1 if the range is
5946 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5947static int
af34e669 5948dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5949 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5950 struct partial_symtab *pst)
c906108c
SS
5951{
5952 struct attribute *attr;
af34e669
DJ
5953 CORE_ADDR low = 0;
5954 CORE_ADDR high = 0;
5955 int ret = 0;
c906108c 5956
e142c38c 5957 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5958 if (attr)
af34e669
DJ
5959 {
5960 high = DW_ADDR (attr);
e142c38c 5961 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5962 if (attr)
5963 low = DW_ADDR (attr);
5964 else
5965 /* Found high w/o low attribute. */
5966 return 0;
5967
5968 /* Found consecutive range of addresses. */
5969 ret = 1;
5970 }
c906108c 5971 else
af34e669 5972 {
e142c38c 5973 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5974 if (attr != NULL)
5975 {
af34e669 5976 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5977 .debug_ranges section. */
d85a05f0 5978 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5979 return 0;
43039443 5980 /* Found discontinuous range of addresses. */
af34e669
DJ
5981 ret = -1;
5982 }
5983 }
c906108c
SS
5984
5985 if (high < low)
5986 return 0;
5987
5988 /* When using the GNU linker, .gnu.linkonce. sections are used to
5989 eliminate duplicate copies of functions and vtables and such.
5990 The linker will arbitrarily choose one and discard the others.
5991 The AT_*_pc values for such functions refer to local labels in
5992 these sections. If the section from that file was discarded, the
5993 labels are not in the output, so the relocs get a value of 0.
5994 If this is a discarded function, mark the pc bounds as invalid,
5995 so that GDB will ignore it. */
72dca2f5 5996 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5997 return 0;
5998
5999 *lowpc = low;
6000 *highpc = high;
af34e669 6001 return ret;
c906108c
SS
6002}
6003
b084d499
JB
6004/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6005 its low and high PC addresses. Do nothing if these addresses could not
6006 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6007 and HIGHPC to the high address if greater than HIGHPC. */
6008
6009static void
6010dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6011 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6012 struct dwarf2_cu *cu)
6013{
6014 CORE_ADDR low, high;
6015 struct die_info *child = die->child;
6016
d85a05f0 6017 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
6018 {
6019 *lowpc = min (*lowpc, low);
6020 *highpc = max (*highpc, high);
6021 }
6022
6023 /* If the language does not allow nested subprograms (either inside
6024 subprograms or lexical blocks), we're done. */
6025 if (cu->language != language_ada)
6026 return;
6e70227d 6027
b084d499
JB
6028 /* Check all the children of the given DIE. If it contains nested
6029 subprograms, then check their pc bounds. Likewise, we need to
6030 check lexical blocks as well, as they may also contain subprogram
6031 definitions. */
6032 while (child && child->tag)
6033 {
6034 if (child->tag == DW_TAG_subprogram
6035 || child->tag == DW_TAG_lexical_block)
6036 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6037 child = sibling_die (child);
6038 }
6039}
6040
fae299cd
DC
6041/* Get the low and high pc's represented by the scope DIE, and store
6042 them in *LOWPC and *HIGHPC. If the correct values can't be
6043 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6044
6045static void
6046get_scope_pc_bounds (struct die_info *die,
6047 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6048 struct dwarf2_cu *cu)
6049{
6050 CORE_ADDR best_low = (CORE_ADDR) -1;
6051 CORE_ADDR best_high = (CORE_ADDR) 0;
6052 CORE_ADDR current_low, current_high;
6053
d85a05f0 6054 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6055 {
6056 best_low = current_low;
6057 best_high = current_high;
6058 }
6059 else
6060 {
6061 struct die_info *child = die->child;
6062
6063 while (child && child->tag)
6064 {
6065 switch (child->tag) {
6066 case DW_TAG_subprogram:
b084d499 6067 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6068 break;
6069 case DW_TAG_namespace:
f55ee35c 6070 case DW_TAG_module:
fae299cd
DC
6071 /* FIXME: carlton/2004-01-16: Should we do this for
6072 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6073 that current GCC's always emit the DIEs corresponding
6074 to definitions of methods of classes as children of a
6075 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6076 the DIEs giving the declarations, which could be
6077 anywhere). But I don't see any reason why the
6078 standards says that they have to be there. */
6079 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6080
6081 if (current_low != ((CORE_ADDR) -1))
6082 {
6083 best_low = min (best_low, current_low);
6084 best_high = max (best_high, current_high);
6085 }
6086 break;
6087 default:
0963b4bd 6088 /* Ignore. */
fae299cd
DC
6089 break;
6090 }
6091
6092 child = sibling_die (child);
6093 }
6094 }
6095
6096 *lowpc = best_low;
6097 *highpc = best_high;
6098}
6099
801e3a5b
JB
6100/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6101 in DIE. */
6102static void
6103dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6104 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6105{
6106 struct attribute *attr;
6107
6108 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6109 if (attr)
6110 {
6111 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6112
801e3a5b
JB
6113 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6114 if (attr)
6115 {
6116 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6117
801e3a5b
JB
6118 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6119 }
6120 }
6121
6122 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6123 if (attr)
6124 {
6125 bfd *obfd = cu->objfile->obfd;
6126
6127 /* The value of the DW_AT_ranges attribute is the offset of the
6128 address range list in the .debug_ranges section. */
6129 unsigned long offset = DW_UNSND (attr);
dce234bc 6130 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6131
6132 /* For some target architectures, but not others, the
6133 read_address function sign-extends the addresses it returns.
6134 To recognize base address selection entries, we need a
6135 mask. */
6136 unsigned int addr_size = cu->header.addr_size;
6137 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6138
6139 /* The base address, to which the next pair is relative. Note
6140 that this 'base' is a DWARF concept: most entries in a range
6141 list are relative, to reduce the number of relocs against the
6142 debugging information. This is separate from this function's
6143 'baseaddr' argument, which GDB uses to relocate debugging
6144 information from a shared library based on the address at
6145 which the library was loaded. */
d00adf39
DE
6146 CORE_ADDR base = cu->base_address;
6147 int base_known = cu->base_known;
801e3a5b 6148
be391dca 6149 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6150 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6151 {
6152 complaint (&symfile_complaints,
6153 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6154 offset);
6155 return;
6156 }
6157
6158 for (;;)
6159 {
6160 unsigned int bytes_read;
6161 CORE_ADDR start, end;
6162
6163 start = read_address (obfd, buffer, cu, &bytes_read);
6164 buffer += bytes_read;
6165 end = read_address (obfd, buffer, cu, &bytes_read);
6166 buffer += bytes_read;
6167
6168 /* Did we find the end of the range list? */
6169 if (start == 0 && end == 0)
6170 break;
6171
6172 /* Did we find a base address selection entry? */
6173 else if ((start & base_select_mask) == base_select_mask)
6174 {
6175 base = end;
6176 base_known = 1;
6177 }
6178
6179 /* We found an ordinary address range. */
6180 else
6181 {
6182 if (!base_known)
6183 {
6184 complaint (&symfile_complaints,
3e43a32a
MS
6185 _("Invalid .debug_ranges data "
6186 "(no base address)"));
801e3a5b
JB
6187 return;
6188 }
6189
9277c30c
UW
6190 if (start > end)
6191 {
6192 /* Inverted range entries are invalid. */
6193 complaint (&symfile_complaints,
6194 _("Invalid .debug_ranges data "
6195 "(inverted range)"));
6196 return;
6197 }
6198
6199 /* Empty range entries have no effect. */
6200 if (start == end)
6201 continue;
6202
6e70227d
DE
6203 record_block_range (block,
6204 baseaddr + base + start,
801e3a5b
JB
6205 baseaddr + base + end - 1);
6206 }
6207 }
6208 }
6209}
6210
c906108c
SS
6211/* Add an aggregate field to the field list. */
6212
6213static void
107d2387 6214dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6215 struct dwarf2_cu *cu)
6e70227d 6216{
e7c27a73 6217 struct objfile *objfile = cu->objfile;
5e2b427d 6218 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6219 struct nextfield *new_field;
6220 struct attribute *attr;
6221 struct field *fp;
6222 char *fieldname = "";
6223
6224 /* Allocate a new field list entry and link it in. */
6225 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6226 make_cleanup (xfree, new_field);
c906108c 6227 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6228
6229 if (die->tag == DW_TAG_inheritance)
6230 {
6231 new_field->next = fip->baseclasses;
6232 fip->baseclasses = new_field;
6233 }
6234 else
6235 {
6236 new_field->next = fip->fields;
6237 fip->fields = new_field;
6238 }
c906108c
SS
6239 fip->nfields++;
6240
421d5c74
JK
6241 if (cu->header.version < 3)
6242 {
6243 /* The default DWARF 2 accessibility for members is public, the default
6244 accessibility for inheritance is private. */
6245
6246 if (die->tag != DW_TAG_inheritance)
6247 new_field->accessibility = DW_ACCESS_public;
6248 else
6249 new_field->accessibility = DW_ACCESS_private;
6250 }
c906108c 6251 else
421d5c74
JK
6252 {
6253 /* DWARF 3 specifies the default accessibility explicitly. */
6254
6255 if (die->parent->tag == DW_TAG_class_type)
6256 new_field->accessibility = DW_ACCESS_private;
6257 else
6258 new_field->accessibility = DW_ACCESS_public;
6259 }
c906108c
SS
6260 new_field->virtuality = DW_VIRTUALITY_none;
6261
e142c38c 6262 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6263 if (attr)
6264 new_field->accessibility = DW_UNSND (attr);
6265 if (new_field->accessibility != DW_ACCESS_public)
6266 fip->non_public_fields = 1;
e142c38c 6267 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6268 if (attr)
6269 new_field->virtuality = DW_UNSND (attr);
6270
6271 fp = &new_field->field;
a9a9bd0f 6272
e142c38c 6273 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6274 {
a9a9bd0f 6275 /* Data member other than a C++ static data member. */
6e70227d 6276
c906108c 6277 /* Get type of field. */
e7c27a73 6278 fp->type = die_type (die, cu);
c906108c 6279
d6a843b5 6280 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6281
c906108c 6282 /* Get bit size of field (zero if none). */
e142c38c 6283 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6284 if (attr)
6285 {
6286 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6287 }
6288 else
6289 {
6290 FIELD_BITSIZE (*fp) = 0;
6291 }
6292
6293 /* Get bit offset of field. */
e142c38c 6294 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
6295 if (attr)
6296 {
d4b96c9a 6297 int byte_offset = 0;
c6a0999f 6298
3690dd37 6299 if (attr_form_is_section_offset (attr))
d4b96c9a 6300 dwarf2_complex_location_expr_complaint ();
3690dd37 6301 else if (attr_form_is_constant (attr))
c6a0999f 6302 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 6303 else if (attr_form_is_block (attr))
c6a0999f 6304 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
6305 else
6306 dwarf2_complex_location_expr_complaint ();
c6a0999f 6307
d6a843b5 6308 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 6309 }
e142c38c 6310 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6311 if (attr)
6312 {
5e2b427d 6313 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6314 {
6315 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6316 additional bit offset from the MSB of the containing
6317 anonymous object to the MSB of the field. We don't
6318 have to do anything special since we don't need to
6319 know the size of the anonymous object. */
c906108c
SS
6320 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6321 }
6322 else
6323 {
6324 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6325 MSB of the anonymous object, subtract off the number of
6326 bits from the MSB of the field to the MSB of the
6327 object, and then subtract off the number of bits of
6328 the field itself. The result is the bit offset of
6329 the LSB of the field. */
c906108c
SS
6330 int anonymous_size;
6331 int bit_offset = DW_UNSND (attr);
6332
e142c38c 6333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6334 if (attr)
6335 {
6336 /* The size of the anonymous object containing
6337 the bit field is explicit, so use the
6338 indicated size (in bytes). */
6339 anonymous_size = DW_UNSND (attr);
6340 }
6341 else
6342 {
6343 /* The size of the anonymous object containing
6344 the bit field must be inferred from the type
6345 attribute of the data member containing the
6346 bit field. */
6347 anonymous_size = TYPE_LENGTH (fp->type);
6348 }
6349 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6350 - bit_offset - FIELD_BITSIZE (*fp);
6351 }
6352 }
6353
6354 /* Get name of field. */
39cbfefa
DJ
6355 fieldname = dwarf2_name (die, cu);
6356 if (fieldname == NULL)
6357 fieldname = "";
d8151005
DJ
6358
6359 /* The name is already allocated along with this objfile, so we don't
6360 need to duplicate it for the type. */
6361 fp->name = fieldname;
c906108c
SS
6362
6363 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6364 pointer or virtual base class pointer) to private. */
e142c38c 6365 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6366 {
d48cc9dd 6367 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6368 new_field->accessibility = DW_ACCESS_private;
6369 fip->non_public_fields = 1;
6370 }
6371 }
a9a9bd0f 6372 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6373 {
a9a9bd0f
DC
6374 /* C++ static member. */
6375
6376 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6377 is a declaration, but all versions of G++ as of this writing
6378 (so through at least 3.2.1) incorrectly generate
6379 DW_TAG_variable tags. */
6e70227d 6380
c906108c 6381 char *physname;
c906108c 6382
a9a9bd0f 6383 /* Get name of field. */
39cbfefa
DJ
6384 fieldname = dwarf2_name (die, cu);
6385 if (fieldname == NULL)
c906108c
SS
6386 return;
6387
254e6b9e 6388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6389 if (attr
6390 /* Only create a symbol if this is an external value.
6391 new_symbol checks this and puts the value in the global symbol
6392 table, which we want. If it is not external, new_symbol
6393 will try to put the value in cu->list_in_scope which is wrong. */
6394 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6395 {
6396 /* A static const member, not much different than an enum as far as
6397 we're concerned, except that we can support more types. */
6398 new_symbol (die, NULL, cu);
6399 }
6400
2df3850c 6401 /* Get physical name. */
94af9270 6402 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 6403
d8151005
DJ
6404 /* The name is already allocated along with this objfile, so we don't
6405 need to duplicate it for the type. */
6406 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6407 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6408 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6409 }
6410 else if (die->tag == DW_TAG_inheritance)
6411 {
6412 /* C++ base class field. */
e142c38c 6413 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 6414 if (attr)
d4b96c9a
JK
6415 {
6416 int byte_offset = 0;
6417
6418 if (attr_form_is_section_offset (attr))
6419 dwarf2_complex_location_expr_complaint ();
6420 else if (attr_form_is_constant (attr))
6421 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6422 else if (attr_form_is_block (attr))
6423 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6424 else
6425 dwarf2_complex_location_expr_complaint ();
6426
6427 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6428 }
c906108c 6429 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6430 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6431 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6432 fip->nbaseclasses++;
6433 }
6434}
6435
98751a41
JK
6436/* Add a typedef defined in the scope of the FIP's class. */
6437
6438static void
6439dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6440 struct dwarf2_cu *cu)
6e70227d 6441{
98751a41 6442 struct objfile *objfile = cu->objfile;
98751a41
JK
6443 struct typedef_field_list *new_field;
6444 struct attribute *attr;
6445 struct typedef_field *fp;
6446 char *fieldname = "";
6447
6448 /* Allocate a new field list entry and link it in. */
6449 new_field = xzalloc (sizeof (*new_field));
6450 make_cleanup (xfree, new_field);
6451
6452 gdb_assert (die->tag == DW_TAG_typedef);
6453
6454 fp = &new_field->field;
6455
6456 /* Get name of field. */
6457 fp->name = dwarf2_name (die, cu);
6458 if (fp->name == NULL)
6459 return;
6460
6461 fp->type = read_type_die (die, cu);
6462
6463 new_field->next = fip->typedef_field_list;
6464 fip->typedef_field_list = new_field;
6465 fip->typedef_field_list_count++;
6466}
6467
c906108c
SS
6468/* Create the vector of fields, and attach it to the type. */
6469
6470static void
fba45db2 6471dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6472 struct dwarf2_cu *cu)
c906108c
SS
6473{
6474 int nfields = fip->nfields;
6475
6476 /* Record the field count, allocate space for the array of fields,
6477 and create blank accessibility bitfields if necessary. */
6478 TYPE_NFIELDS (type) = nfields;
6479 TYPE_FIELDS (type) = (struct field *)
6480 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6481 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6482
b4ba55a1 6483 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6484 {
6485 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6486
6487 TYPE_FIELD_PRIVATE_BITS (type) =
6488 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6489 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6490
6491 TYPE_FIELD_PROTECTED_BITS (type) =
6492 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6493 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6494
774b6a14
TT
6495 TYPE_FIELD_IGNORE_BITS (type) =
6496 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6497 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6498 }
6499
6500 /* If the type has baseclasses, allocate and clear a bit vector for
6501 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6502 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6503 {
6504 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6505 unsigned char *pointer;
c906108c
SS
6506
6507 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6508 pointer = TYPE_ALLOC (type, num_bytes);
6509 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6510 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6511 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6512 }
6513
3e43a32a
MS
6514 /* Copy the saved-up fields into the field vector. Start from the head of
6515 the list, adding to the tail of the field array, so that they end up in
6516 the same order in the array in which they were added to the list. */
c906108c
SS
6517 while (nfields-- > 0)
6518 {
7d0ccb61
DJ
6519 struct nextfield *fieldp;
6520
6521 if (fip->fields)
6522 {
6523 fieldp = fip->fields;
6524 fip->fields = fieldp->next;
6525 }
6526 else
6527 {
6528 fieldp = fip->baseclasses;
6529 fip->baseclasses = fieldp->next;
6530 }
6531
6532 TYPE_FIELD (type, nfields) = fieldp->field;
6533 switch (fieldp->accessibility)
c906108c 6534 {
c5aa993b 6535 case DW_ACCESS_private:
b4ba55a1
JB
6536 if (cu->language != language_ada)
6537 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6538 break;
c906108c 6539
c5aa993b 6540 case DW_ACCESS_protected:
b4ba55a1
JB
6541 if (cu->language != language_ada)
6542 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6543 break;
c906108c 6544
c5aa993b
JM
6545 case DW_ACCESS_public:
6546 break;
c906108c 6547
c5aa993b
JM
6548 default:
6549 /* Unknown accessibility. Complain and treat it as public. */
6550 {
e2e0b3e5 6551 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6552 fieldp->accessibility);
c5aa993b
JM
6553 }
6554 break;
c906108c
SS
6555 }
6556 if (nfields < fip->nbaseclasses)
6557 {
7d0ccb61 6558 switch (fieldp->virtuality)
c906108c 6559 {
c5aa993b
JM
6560 case DW_VIRTUALITY_virtual:
6561 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 6562 if (cu->language == language_ada)
a73c6dcd 6563 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
6564 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6565 break;
c906108c
SS
6566 }
6567 }
c906108c
SS
6568 }
6569}
6570
c906108c
SS
6571/* Add a member function to the proper fieldlist. */
6572
6573static void
107d2387 6574dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6575 struct type *type, struct dwarf2_cu *cu)
c906108c 6576{
e7c27a73 6577 struct objfile *objfile = cu->objfile;
c906108c
SS
6578 struct attribute *attr;
6579 struct fnfieldlist *flp;
6580 int i;
6581 struct fn_field *fnp;
6582 char *fieldname;
c906108c 6583 struct nextfnfield *new_fnfield;
f792889a 6584 struct type *this_type;
c906108c 6585
b4ba55a1 6586 if (cu->language == language_ada)
a73c6dcd 6587 error (_("unexpected member function in Ada type"));
b4ba55a1 6588
2df3850c 6589 /* Get name of member function. */
39cbfefa
DJ
6590 fieldname = dwarf2_name (die, cu);
6591 if (fieldname == NULL)
2df3850c 6592 return;
c906108c 6593
c906108c
SS
6594 /* Look up member function name in fieldlist. */
6595 for (i = 0; i < fip->nfnfields; i++)
6596 {
27bfe10e 6597 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6598 break;
6599 }
6600
6601 /* Create new list element if necessary. */
6602 if (i < fip->nfnfields)
6603 flp = &fip->fnfieldlists[i];
6604 else
6605 {
6606 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6607 {
6608 fip->fnfieldlists = (struct fnfieldlist *)
6609 xrealloc (fip->fnfieldlists,
6610 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6611 * sizeof (struct fnfieldlist));
c906108c 6612 if (fip->nfnfields == 0)
c13c43fd 6613 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
6614 }
6615 flp = &fip->fnfieldlists[fip->nfnfields];
6616 flp->name = fieldname;
6617 flp->length = 0;
6618 flp->head = NULL;
3da10d80 6619 i = fip->nfnfields++;
c906108c
SS
6620 }
6621
6622 /* Create a new member function field and chain it to the field list
0963b4bd 6623 entry. */
c906108c 6624 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 6625 make_cleanup (xfree, new_fnfield);
c906108c
SS
6626 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6627 new_fnfield->next = flp->head;
6628 flp->head = new_fnfield;
6629 flp->length++;
6630
6631 /* Fill in the member function field info. */
6632 fnp = &new_fnfield->fnfield;
3da10d80
KS
6633
6634 /* Delay processing of the physname until later. */
6635 if (cu->language == language_cplus || cu->language == language_java)
6636 {
6637 add_to_method_list (type, i, flp->length - 1, fieldname,
6638 die, cu);
6639 }
6640 else
6641 {
6642 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6643 fnp->physname = physname ? physname : "";
6644 }
6645
c906108c 6646 fnp->type = alloc_type (objfile);
f792889a
DJ
6647 this_type = read_type_die (die, cu);
6648 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 6649 {
f792889a 6650 int nparams = TYPE_NFIELDS (this_type);
c906108c 6651
f792889a 6652 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
6653 of the method itself (TYPE_CODE_METHOD). */
6654 smash_to_method_type (fnp->type, type,
f792889a
DJ
6655 TYPE_TARGET_TYPE (this_type),
6656 TYPE_FIELDS (this_type),
6657 TYPE_NFIELDS (this_type),
6658 TYPE_VARARGS (this_type));
c906108c
SS
6659
6660 /* Handle static member functions.
c5aa993b 6661 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
6662 member functions. G++ helps GDB by marking the first
6663 parameter for non-static member functions (which is the this
6664 pointer) as artificial. We obtain this information from
6665 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 6666 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
6667 fnp->voffset = VOFFSET_STATIC;
6668 }
6669 else
e2e0b3e5 6670 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 6671 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
6672
6673 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 6674 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 6675 fnp->fcontext = die_containing_type (die, cu);
c906108c 6676
3e43a32a
MS
6677 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6678 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
6679
6680 /* Get accessibility. */
e142c38c 6681 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6682 if (attr)
6683 {
6684 switch (DW_UNSND (attr))
6685 {
c5aa993b
JM
6686 case DW_ACCESS_private:
6687 fnp->is_private = 1;
6688 break;
6689 case DW_ACCESS_protected:
6690 fnp->is_protected = 1;
6691 break;
c906108c
SS
6692 }
6693 }
6694
b02dede2 6695 /* Check for artificial methods. */
e142c38c 6696 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
6697 if (attr && DW_UNSND (attr) != 0)
6698 fnp->is_artificial = 1;
6699
0d564a31 6700 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
6701 function. For older versions of GCC, this is an offset in the
6702 appropriate virtual table, as specified by DW_AT_containing_type.
6703 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
6704 to the object address. */
6705
e142c38c 6706 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 6707 if (attr)
8e19ed76 6708 {
aec5aa8b 6709 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 6710 {
aec5aa8b
TT
6711 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6712 {
6713 /* Old-style GCC. */
6714 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6715 }
6716 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6717 || (DW_BLOCK (attr)->size > 1
6718 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6719 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6720 {
6721 struct dwarf_block blk;
6722 int offset;
6723
6724 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6725 ? 1 : 2);
6726 blk.size = DW_BLOCK (attr)->size - offset;
6727 blk.data = DW_BLOCK (attr)->data + offset;
6728 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6729 if ((fnp->voffset % cu->header.addr_size) != 0)
6730 dwarf2_complex_location_expr_complaint ();
6731 else
6732 fnp->voffset /= cu->header.addr_size;
6733 fnp->voffset += 2;
6734 }
6735 else
6736 dwarf2_complex_location_expr_complaint ();
6737
6738 if (!fnp->fcontext)
6739 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6740 }
3690dd37 6741 else if (attr_form_is_section_offset (attr))
8e19ed76 6742 {
4d3c2250 6743 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6744 }
6745 else
6746 {
4d3c2250
KB
6747 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6748 fieldname);
8e19ed76 6749 }
0d564a31 6750 }
d48cc9dd
DJ
6751 else
6752 {
6753 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6754 if (attr && DW_UNSND (attr))
6755 {
6756 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6757 complaint (&symfile_complaints,
3e43a32a
MS
6758 _("Member function \"%s\" (offset %d) is virtual "
6759 "but the vtable offset is not specified"),
d48cc9dd 6760 fieldname, die->offset);
9655fd1a 6761 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6762 TYPE_CPLUS_DYNAMIC (type) = 1;
6763 }
6764 }
c906108c
SS
6765}
6766
6767/* Create the vector of member function fields, and attach it to the type. */
6768
6769static void
fba45db2 6770dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6771 struct dwarf2_cu *cu)
c906108c
SS
6772{
6773 struct fnfieldlist *flp;
6774 int total_length = 0;
6775 int i;
6776
b4ba55a1 6777 if (cu->language == language_ada)
a73c6dcd 6778 error (_("unexpected member functions in Ada type"));
b4ba55a1 6779
c906108c
SS
6780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6781 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6782 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6783
6784 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6785 {
6786 struct nextfnfield *nfp = flp->head;
6787 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6788 int k;
6789
6790 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6791 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6792 fn_flp->fn_fields = (struct fn_field *)
6793 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6794 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6795 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6796
6797 total_length += flp->length;
6798 }
6799
6800 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6801 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6802}
6803
1168df01
JB
6804/* Returns non-zero if NAME is the name of a vtable member in CU's
6805 language, zero otherwise. */
6806static int
6807is_vtable_name (const char *name, struct dwarf2_cu *cu)
6808{
6809 static const char vptr[] = "_vptr";
987504bb 6810 static const char vtable[] = "vtable";
1168df01 6811
987504bb
JJ
6812 /* Look for the C++ and Java forms of the vtable. */
6813 if ((cu->language == language_java
6814 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6815 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6816 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6817 return 1;
6818
6819 return 0;
6820}
6821
c0dd20ea 6822/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6823 functions, with the ABI-specified layout. If TYPE describes
6824 such a structure, smash it into a member function type.
61049d3b
DJ
6825
6826 GCC shouldn't do this; it should just output pointer to member DIEs.
6827 This is GCC PR debug/28767. */
c0dd20ea 6828
0b92b5bb
TT
6829static void
6830quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6831{
0b92b5bb 6832 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6833
6834 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6835 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6836 return;
c0dd20ea
DJ
6837
6838 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6839 if (TYPE_FIELD_NAME (type, 0) == NULL
6840 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6841 || TYPE_FIELD_NAME (type, 1) == NULL
6842 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6843 return;
c0dd20ea
DJ
6844
6845 /* Find the type of the method. */
0b92b5bb 6846 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6847 if (pfn_type == NULL
6848 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6849 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6850 return;
c0dd20ea
DJ
6851
6852 /* Look for the "this" argument. */
6853 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6854 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6855 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6856 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6857 return;
c0dd20ea
DJ
6858
6859 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6860 new_type = alloc_type (objfile);
6861 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6862 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6863 TYPE_VARARGS (pfn_type));
0b92b5bb 6864 smash_to_methodptr_type (type, new_type);
c0dd20ea 6865}
1168df01 6866
c906108c 6867/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
6868 (definition) to create a type for the structure or union. Fill in
6869 the type's name and general properties; the members will not be
6870 processed until process_structure_type.
c906108c 6871
c767944b
DJ
6872 NOTE: we need to call these functions regardless of whether or not the
6873 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
6874 structure or union. This gets the type entered into our set of
6875 user defined types.
6876
6877 However, if the structure is incomplete (an opaque struct/union)
6878 then suppress creating a symbol table entry for it since gdb only
6879 wants to find the one with the complete definition. Note that if
6880 it is complete, we just call new_symbol, which does it's own
6881 checking about whether the struct/union is anonymous or not (and
6882 suppresses creating a symbol table entry itself). */
6883
f792889a 6884static struct type *
134d01f1 6885read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6886{
e7c27a73 6887 struct objfile *objfile = cu->objfile;
c906108c
SS
6888 struct type *type;
6889 struct attribute *attr;
39cbfefa 6890 char *name;
c906108c 6891
348e048f
DE
6892 /* If the definition of this type lives in .debug_types, read that type.
6893 Don't follow DW_AT_specification though, that will take us back up
6894 the chain and we want to go down. */
6895 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6896 if (attr)
6897 {
6898 struct dwarf2_cu *type_cu = cu;
6899 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6900
348e048f
DE
6901 /* We could just recurse on read_structure_type, but we need to call
6902 get_die_type to ensure only one type for this DIE is created.
6903 This is important, for example, because for c++ classes we need
6904 TYPE_NAME set which is only done by new_symbol. Blech. */
6905 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6906
6907 /* TYPE_CU may not be the same as CU.
6908 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
6909 return set_die_type (die, type, cu);
6910 }
6911
c0dd20ea 6912 type = alloc_type (objfile);
c906108c 6913 INIT_CPLUS_SPECIFIC (type);
93311388 6914
39cbfefa
DJ
6915 name = dwarf2_name (die, cu);
6916 if (name != NULL)
c906108c 6917 {
987504bb
JJ
6918 if (cu->language == language_cplus
6919 || cu->language == language_java)
63d06c5c 6920 {
3da10d80
KS
6921 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6922
6923 /* dwarf2_full_name might have already finished building the DIE's
6924 type. If so, there is no need to continue. */
6925 if (get_die_type (die, cu) != NULL)
6926 return get_die_type (die, cu);
6927
6928 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
6929 if (die->tag == DW_TAG_structure_type
6930 || die->tag == DW_TAG_class_type)
6931 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6932 }
6933 else
6934 {
d8151005
DJ
6935 /* The name is already allocated along with this objfile, so
6936 we don't need to duplicate it for the type. */
94af9270
KS
6937 TYPE_TAG_NAME (type) = (char *) name;
6938 if (die->tag == DW_TAG_class_type)
6939 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6940 }
c906108c
SS
6941 }
6942
6943 if (die->tag == DW_TAG_structure_type)
6944 {
6945 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6946 }
6947 else if (die->tag == DW_TAG_union_type)
6948 {
6949 TYPE_CODE (type) = TYPE_CODE_UNION;
6950 }
6951 else
6952 {
c906108c
SS
6953 TYPE_CODE (type) = TYPE_CODE_CLASS;
6954 }
6955
0cc2414c
TT
6956 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6957 TYPE_DECLARED_CLASS (type) = 1;
6958
e142c38c 6959 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6960 if (attr)
6961 {
6962 TYPE_LENGTH (type) = DW_UNSND (attr);
6963 }
6964 else
6965 {
6966 TYPE_LENGTH (type) = 0;
6967 }
6968
876cecd0 6969 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6970 if (die_is_declaration (die, cu))
876cecd0 6971 TYPE_STUB (type) = 1;
a6c727b2
DJ
6972 else if (attr == NULL && die->child == NULL
6973 && producer_is_realview (cu->producer))
6974 /* RealView does not output the required DW_AT_declaration
6975 on incomplete types. */
6976 TYPE_STUB (type) = 1;
dc718098 6977
c906108c
SS
6978 /* We need to add the type field to the die immediately so we don't
6979 infinitely recurse when dealing with pointers to the structure
0963b4bd 6980 type within the structure itself. */
1c379e20 6981 set_die_type (die, type, cu);
c906108c 6982
7e314c57
JK
6983 /* set_die_type should be already done. */
6984 set_descriptive_type (type, die, cu);
6985
c767944b
DJ
6986 return type;
6987}
6988
6989/* Finish creating a structure or union type, including filling in
6990 its members and creating a symbol for it. */
6991
6992static void
6993process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6994{
6995 struct objfile *objfile = cu->objfile;
6996 struct die_info *child_die = die->child;
6997 struct type *type;
6998
6999 type = get_die_type (die, cu);
7000 if (type == NULL)
7001 type = read_structure_type (die, cu);
7002
e142c38c 7003 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
7004 {
7005 struct field_info fi;
7006 struct die_info *child_die;
34eaf542 7007 VEC (symbolp) *template_args = NULL;
c767944b 7008 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
7009
7010 memset (&fi, 0, sizeof (struct field_info));
7011
639d11d3 7012 child_die = die->child;
c906108c
SS
7013
7014 while (child_die && child_die->tag)
7015 {
a9a9bd0f
DC
7016 if (child_die->tag == DW_TAG_member
7017 || child_die->tag == DW_TAG_variable)
c906108c 7018 {
a9a9bd0f
DC
7019 /* NOTE: carlton/2002-11-05: A C++ static data member
7020 should be a DW_TAG_member that is a declaration, but
7021 all versions of G++ as of this writing (so through at
7022 least 3.2.1) incorrectly generate DW_TAG_variable
7023 tags for them instead. */
e7c27a73 7024 dwarf2_add_field (&fi, child_die, cu);
c906108c 7025 }
8713b1b1 7026 else if (child_die->tag == DW_TAG_subprogram)
c906108c 7027 {
0963b4bd 7028 /* C++ member function. */
e7c27a73 7029 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
7030 }
7031 else if (child_die->tag == DW_TAG_inheritance)
7032 {
7033 /* C++ base class field. */
e7c27a73 7034 dwarf2_add_field (&fi, child_die, cu);
c906108c 7035 }
98751a41
JK
7036 else if (child_die->tag == DW_TAG_typedef)
7037 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
7038 else if (child_die->tag == DW_TAG_template_type_param
7039 || child_die->tag == DW_TAG_template_value_param)
7040 {
7041 struct symbol *arg = new_symbol (child_die, NULL, cu);
7042
f1078f66
DJ
7043 if (arg != NULL)
7044 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
7045 }
7046
c906108c
SS
7047 child_die = sibling_die (child_die);
7048 }
7049
34eaf542
TT
7050 /* Attach template arguments to type. */
7051 if (! VEC_empty (symbolp, template_args))
7052 {
7053 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7054 TYPE_N_TEMPLATE_ARGUMENTS (type)
7055 = VEC_length (symbolp, template_args);
7056 TYPE_TEMPLATE_ARGUMENTS (type)
7057 = obstack_alloc (&objfile->objfile_obstack,
7058 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7059 * sizeof (struct symbol *)));
7060 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7061 VEC_address (symbolp, template_args),
7062 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7063 * sizeof (struct symbol *)));
7064 VEC_free (symbolp, template_args);
7065 }
7066
c906108c
SS
7067 /* Attach fields and member functions to the type. */
7068 if (fi.nfields)
e7c27a73 7069 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7070 if (fi.nfnfields)
7071 {
e7c27a73 7072 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7073
c5aa993b 7074 /* Get the type which refers to the base class (possibly this
c906108c 7075 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7076 class from the DW_AT_containing_type attribute. This use of
7077 DW_AT_containing_type is a GNU extension. */
c906108c 7078
e142c38c 7079 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7080 {
e7c27a73 7081 struct type *t = die_containing_type (die, cu);
c906108c
SS
7082
7083 TYPE_VPTR_BASETYPE (type) = t;
7084 if (type == t)
7085 {
c906108c
SS
7086 int i;
7087
7088 /* Our own class provides vtbl ptr. */
7089 for (i = TYPE_NFIELDS (t) - 1;
7090 i >= TYPE_N_BASECLASSES (t);
7091 --i)
7092 {
7093 char *fieldname = TYPE_FIELD_NAME (t, i);
7094
1168df01 7095 if (is_vtable_name (fieldname, cu))
c906108c
SS
7096 {
7097 TYPE_VPTR_FIELDNO (type) = i;
7098 break;
7099 }
7100 }
7101
7102 /* Complain if virtual function table field not found. */
7103 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7104 complaint (&symfile_complaints,
3e43a32a
MS
7105 _("virtual function table pointer "
7106 "not found when defining class '%s'"),
4d3c2250
KB
7107 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7108 "");
c906108c
SS
7109 }
7110 else
7111 {
7112 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7113 }
7114 }
f6235d4c
EZ
7115 else if (cu->producer
7116 && strncmp (cu->producer,
7117 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7118 {
7119 /* The IBM XLC compiler does not provide direct indication
7120 of the containing type, but the vtable pointer is
7121 always named __vfp. */
7122
7123 int i;
7124
7125 for (i = TYPE_NFIELDS (type) - 1;
7126 i >= TYPE_N_BASECLASSES (type);
7127 --i)
7128 {
7129 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7130 {
7131 TYPE_VPTR_FIELDNO (type) = i;
7132 TYPE_VPTR_BASETYPE (type) = type;
7133 break;
7134 }
7135 }
7136 }
c906108c 7137 }
98751a41
JK
7138
7139 /* Copy fi.typedef_field_list linked list elements content into the
7140 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7141 if (fi.typedef_field_list)
7142 {
7143 int i = fi.typedef_field_list_count;
7144
a0d7a4ff 7145 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7146 TYPE_TYPEDEF_FIELD_ARRAY (type)
7147 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7148 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7149
7150 /* Reverse the list order to keep the debug info elements order. */
7151 while (--i >= 0)
7152 {
7153 struct typedef_field *dest, *src;
6e70227d 7154
98751a41
JK
7155 dest = &TYPE_TYPEDEF_FIELD (type, i);
7156 src = &fi.typedef_field_list->field;
7157 fi.typedef_field_list = fi.typedef_field_list->next;
7158 *dest = *src;
7159 }
7160 }
c767944b
DJ
7161
7162 do_cleanups (back_to);
c906108c 7163 }
63d06c5c 7164
0b92b5bb
TT
7165 quirk_gcc_member_function_pointer (type, cu->objfile);
7166
90aeadfc
DC
7167 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7168 snapshots) has been known to create a die giving a declaration
7169 for a class that has, as a child, a die giving a definition for a
7170 nested class. So we have to process our children even if the
7171 current die is a declaration. Normally, of course, a declaration
7172 won't have any children at all. */
134d01f1 7173
90aeadfc
DC
7174 while (child_die != NULL && child_die->tag)
7175 {
7176 if (child_die->tag == DW_TAG_member
7177 || child_die->tag == DW_TAG_variable
34eaf542
TT
7178 || child_die->tag == DW_TAG_inheritance
7179 || child_die->tag == DW_TAG_template_value_param
7180 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7181 {
90aeadfc 7182 /* Do nothing. */
134d01f1 7183 }
90aeadfc
DC
7184 else
7185 process_die (child_die, cu);
134d01f1 7186
90aeadfc 7187 child_die = sibling_die (child_die);
134d01f1
DJ
7188 }
7189
fa4028e9
JB
7190 /* Do not consider external references. According to the DWARF standard,
7191 these DIEs are identified by the fact that they have no byte_size
7192 attribute, and a declaration attribute. */
7193 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7194 || !die_is_declaration (die, cu))
c767944b 7195 new_symbol (die, type, cu);
134d01f1
DJ
7196}
7197
7198/* Given a DW_AT_enumeration_type die, set its type. We do not
7199 complete the type's fields yet, or create any symbols. */
c906108c 7200
f792889a 7201static struct type *
134d01f1 7202read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7203{
e7c27a73 7204 struct objfile *objfile = cu->objfile;
c906108c 7205 struct type *type;
c906108c 7206 struct attribute *attr;
0114d602 7207 const char *name;
134d01f1 7208
348e048f
DE
7209 /* If the definition of this type lives in .debug_types, read that type.
7210 Don't follow DW_AT_specification though, that will take us back up
7211 the chain and we want to go down. */
7212 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7213 if (attr)
7214 {
7215 struct dwarf2_cu *type_cu = cu;
7216 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7217
348e048f 7218 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7219
7220 /* TYPE_CU may not be the same as CU.
7221 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7222 return set_die_type (die, type, cu);
7223 }
7224
c906108c
SS
7225 type = alloc_type (objfile);
7226
7227 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7228 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7229 if (name != NULL)
0114d602 7230 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7231
e142c38c 7232 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7233 if (attr)
7234 {
7235 TYPE_LENGTH (type) = DW_UNSND (attr);
7236 }
7237 else
7238 {
7239 TYPE_LENGTH (type) = 0;
7240 }
7241
137033e9
JB
7242 /* The enumeration DIE can be incomplete. In Ada, any type can be
7243 declared as private in the package spec, and then defined only
7244 inside the package body. Such types are known as Taft Amendment
7245 Types. When another package uses such a type, an incomplete DIE
7246 may be generated by the compiler. */
02eb380e 7247 if (die_is_declaration (die, cu))
876cecd0 7248 TYPE_STUB (type) = 1;
02eb380e 7249
f792889a 7250 return set_die_type (die, type, cu);
134d01f1
DJ
7251}
7252
7253/* Given a pointer to a die which begins an enumeration, process all
7254 the dies that define the members of the enumeration, and create the
7255 symbol for the enumeration type.
7256
7257 NOTE: We reverse the order of the element list. */
7258
7259static void
7260process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7261{
f792889a 7262 struct type *this_type;
134d01f1 7263
f792889a
DJ
7264 this_type = get_die_type (die, cu);
7265 if (this_type == NULL)
7266 this_type = read_enumeration_type (die, cu);
9dc481d3 7267
639d11d3 7268 if (die->child != NULL)
c906108c 7269 {
9dc481d3
DE
7270 struct die_info *child_die;
7271 struct symbol *sym;
7272 struct field *fields = NULL;
7273 int num_fields = 0;
7274 int unsigned_enum = 1;
7275 char *name;
7276
639d11d3 7277 child_die = die->child;
c906108c
SS
7278 while (child_die && child_die->tag)
7279 {
7280 if (child_die->tag != DW_TAG_enumerator)
7281 {
e7c27a73 7282 process_die (child_die, cu);
c906108c
SS
7283 }
7284 else
7285 {
39cbfefa
DJ
7286 name = dwarf2_name (child_die, cu);
7287 if (name)
c906108c 7288 {
f792889a 7289 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7290 if (SYMBOL_VALUE (sym) < 0)
7291 unsigned_enum = 0;
7292
7293 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7294 {
7295 fields = (struct field *)
7296 xrealloc (fields,
7297 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7298 * sizeof (struct field));
c906108c
SS
7299 }
7300
3567439c 7301 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7302 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7303 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7304 FIELD_BITSIZE (fields[num_fields]) = 0;
7305
7306 num_fields++;
7307 }
7308 }
7309
7310 child_die = sibling_die (child_die);
7311 }
7312
7313 if (num_fields)
7314 {
f792889a
DJ
7315 TYPE_NFIELDS (this_type) = num_fields;
7316 TYPE_FIELDS (this_type) = (struct field *)
7317 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7318 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7319 sizeof (struct field) * num_fields);
b8c9b27d 7320 xfree (fields);
c906108c
SS
7321 }
7322 if (unsigned_enum)
876cecd0 7323 TYPE_UNSIGNED (this_type) = 1;
c906108c 7324 }
134d01f1 7325
f792889a 7326 new_symbol (die, this_type, cu);
c906108c
SS
7327}
7328
7329/* Extract all information from a DW_TAG_array_type DIE and put it in
7330 the DIE's type field. For now, this only handles one dimensional
7331 arrays. */
7332
f792889a 7333static struct type *
e7c27a73 7334read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7335{
e7c27a73 7336 struct objfile *objfile = cu->objfile;
c906108c 7337 struct die_info *child_die;
7e314c57 7338 struct type *type;
c906108c
SS
7339 struct type *element_type, *range_type, *index_type;
7340 struct type **range_types = NULL;
7341 struct attribute *attr;
7342 int ndim = 0;
7343 struct cleanup *back_to;
39cbfefa 7344 char *name;
c906108c 7345
e7c27a73 7346 element_type = die_type (die, cu);
c906108c 7347
7e314c57
JK
7348 /* The die_type call above may have already set the type for this DIE. */
7349 type = get_die_type (die, cu);
7350 if (type)
7351 return type;
7352
c906108c
SS
7353 /* Irix 6.2 native cc creates array types without children for
7354 arrays with unspecified length. */
639d11d3 7355 if (die->child == NULL)
c906108c 7356 {
46bf5051 7357 index_type = objfile_type (objfile)->builtin_int;
c906108c 7358 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7359 type = create_array_type (NULL, element_type, range_type);
7360 return set_die_type (die, type, cu);
c906108c
SS
7361 }
7362
7363 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7364 child_die = die->child;
c906108c
SS
7365 while (child_die && child_die->tag)
7366 {
7367 if (child_die->tag == DW_TAG_subrange_type)
7368 {
f792889a 7369 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7370
f792889a 7371 if (child_type != NULL)
a02abb62 7372 {
0963b4bd
MS
7373 /* The range type was succesfully read. Save it for the
7374 array type creation. */
a02abb62
JB
7375 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7376 {
7377 range_types = (struct type **)
7378 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7379 * sizeof (struct type *));
7380 if (ndim == 0)
7381 make_cleanup (free_current_contents, &range_types);
7382 }
f792889a 7383 range_types[ndim++] = child_type;
a02abb62 7384 }
c906108c
SS
7385 }
7386 child_die = sibling_die (child_die);
7387 }
7388
7389 /* Dwarf2 dimensions are output from left to right, create the
7390 necessary array types in backwards order. */
7ca2d3a3 7391
c906108c 7392 type = element_type;
7ca2d3a3
DL
7393
7394 if (read_array_order (die, cu) == DW_ORD_col_major)
7395 {
7396 int i = 0;
9a619af0 7397
7ca2d3a3
DL
7398 while (i < ndim)
7399 type = create_array_type (NULL, type, range_types[i++]);
7400 }
7401 else
7402 {
7403 while (ndim-- > 0)
7404 type = create_array_type (NULL, type, range_types[ndim]);
7405 }
c906108c 7406
f5f8a009
EZ
7407 /* Understand Dwarf2 support for vector types (like they occur on
7408 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7409 array type. This is not part of the Dwarf2/3 standard yet, but a
7410 custom vendor extension. The main difference between a regular
7411 array and the vector variant is that vectors are passed by value
7412 to functions. */
e142c38c 7413 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7414 if (attr)
ea37ba09 7415 make_vector_type (type);
f5f8a009 7416
dbc98a8b
KW
7417 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7418 implementation may choose to implement triple vectors using this
7419 attribute. */
7420 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7421 if (attr)
7422 {
7423 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7424 TYPE_LENGTH (type) = DW_UNSND (attr);
7425 else
3e43a32a
MS
7426 complaint (&symfile_complaints,
7427 _("DW_AT_byte_size for array type smaller "
7428 "than the total size of elements"));
dbc98a8b
KW
7429 }
7430
39cbfefa
DJ
7431 name = dwarf2_name (die, cu);
7432 if (name)
7433 TYPE_NAME (type) = name;
6e70227d 7434
0963b4bd 7435 /* Install the type in the die. */
7e314c57
JK
7436 set_die_type (die, type, cu);
7437
7438 /* set_die_type should be already done. */
b4ba55a1
JB
7439 set_descriptive_type (type, die, cu);
7440
c906108c
SS
7441 do_cleanups (back_to);
7442
7e314c57 7443 return type;
c906108c
SS
7444}
7445
7ca2d3a3 7446static enum dwarf_array_dim_ordering
6e70227d 7447read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7448{
7449 struct attribute *attr;
7450
7451 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7452
7453 if (attr) return DW_SND (attr);
7454
0963b4bd
MS
7455 /* GNU F77 is a special case, as at 08/2004 array type info is the
7456 opposite order to the dwarf2 specification, but data is still
7457 laid out as per normal fortran.
7ca2d3a3 7458
0963b4bd
MS
7459 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7460 version checking. */
7ca2d3a3 7461
905e0470
PM
7462 if (cu->language == language_fortran
7463 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7464 {
7465 return DW_ORD_row_major;
7466 }
7467
6e70227d 7468 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7469 {
7470 case array_column_major:
7471 return DW_ORD_col_major;
7472 case array_row_major:
7473 default:
7474 return DW_ORD_row_major;
7475 };
7476}
7477
72019c9c 7478/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 7479 the DIE's type field. */
72019c9c 7480
f792889a 7481static struct type *
72019c9c
GM
7482read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7483{
7e314c57
JK
7484 struct type *domain_type, *set_type;
7485 struct attribute *attr;
f792889a 7486
7e314c57
JK
7487 domain_type = die_type (die, cu);
7488
7489 /* The die_type call above may have already set the type for this DIE. */
7490 set_type = get_die_type (die, cu);
7491 if (set_type)
7492 return set_type;
7493
7494 set_type = create_set_type (NULL, domain_type);
7495
7496 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7497 if (attr)
7498 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7499
f792889a 7500 return set_die_type (die, set_type, cu);
72019c9c 7501}
7ca2d3a3 7502
c906108c
SS
7503/* First cut: install each common block member as a global variable. */
7504
7505static void
e7c27a73 7506read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7507{
7508 struct die_info *child_die;
7509 struct attribute *attr;
7510 struct symbol *sym;
7511 CORE_ADDR base = (CORE_ADDR) 0;
7512
e142c38c 7513 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7514 if (attr)
7515 {
0963b4bd 7516 /* Support the .debug_loc offsets. */
8e19ed76
PS
7517 if (attr_form_is_block (attr))
7518 {
e7c27a73 7519 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7520 }
3690dd37 7521 else if (attr_form_is_section_offset (attr))
8e19ed76 7522 {
4d3c2250 7523 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7524 }
7525 else
7526 {
4d3c2250
KB
7527 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7528 "common block member");
8e19ed76 7529 }
c906108c 7530 }
639d11d3 7531 if (die->child != NULL)
c906108c 7532 {
639d11d3 7533 child_die = die->child;
c906108c
SS
7534 while (child_die && child_die->tag)
7535 {
e7c27a73 7536 sym = new_symbol (child_die, NULL, cu);
e142c38c 7537 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
f1078f66 7538 if (sym != NULL && attr != NULL)
c906108c 7539 {
d4b96c9a
JK
7540 CORE_ADDR byte_offset = 0;
7541
7542 if (attr_form_is_section_offset (attr))
7543 dwarf2_complex_location_expr_complaint ();
7544 else if (attr_form_is_constant (attr))
7545 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7546 else if (attr_form_is_block (attr))
7547 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7548 else
7549 dwarf2_complex_location_expr_complaint ();
7550
7551 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
7552 add_symbol_to_list (sym, &global_symbols);
7553 }
7554 child_die = sibling_die (child_die);
7555 }
7556 }
7557}
7558
0114d602 7559/* Create a type for a C++ namespace. */
d9fa45fe 7560
0114d602
DJ
7561static struct type *
7562read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7563{
e7c27a73 7564 struct objfile *objfile = cu->objfile;
0114d602 7565 const char *previous_prefix, *name;
9219021c 7566 int is_anonymous;
0114d602
DJ
7567 struct type *type;
7568
7569 /* For extensions, reuse the type of the original namespace. */
7570 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7571 {
7572 struct die_info *ext_die;
7573 struct dwarf2_cu *ext_cu = cu;
9a619af0 7574
0114d602
DJ
7575 ext_die = dwarf2_extension (die, &ext_cu);
7576 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7577
7578 /* EXT_CU may not be the same as CU.
7579 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7580 return set_die_type (die, type, cu);
7581 }
9219021c 7582
e142c38c 7583 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7584
7585 /* Now build the name of the current namespace. */
7586
0114d602
DJ
7587 previous_prefix = determine_prefix (die, cu);
7588 if (previous_prefix[0] != '\0')
7589 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7590 previous_prefix, name, 0, cu);
0114d602
DJ
7591
7592 /* Create the type. */
7593 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7594 objfile);
7595 TYPE_NAME (type) = (char *) name;
7596 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7597
60531b24 7598 return set_die_type (die, type, cu);
0114d602
DJ
7599}
7600
7601/* Read a C++ namespace. */
7602
7603static void
7604read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7605{
7606 struct objfile *objfile = cu->objfile;
0114d602 7607 int is_anonymous;
9219021c 7608
5c4e30ca
DC
7609 /* Add a symbol associated to this if we haven't seen the namespace
7610 before. Also, add a using directive if it's an anonymous
7611 namespace. */
9219021c 7612
f2f0e013 7613 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
7614 {
7615 struct type *type;
7616
0114d602 7617 type = read_type_die (die, cu);
e7c27a73 7618 new_symbol (die, type, cu);
5c4e30ca 7619
e8e80198 7620 namespace_name (die, &is_anonymous, cu);
5c4e30ca 7621 if (is_anonymous)
0114d602
DJ
7622 {
7623 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 7624
c0cc3a76 7625 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 7626 NULL, &objfile->objfile_obstack);
0114d602 7627 }
5c4e30ca 7628 }
9219021c 7629
639d11d3 7630 if (die->child != NULL)
d9fa45fe 7631 {
639d11d3 7632 struct die_info *child_die = die->child;
6e70227d 7633
d9fa45fe
DC
7634 while (child_die && child_die->tag)
7635 {
e7c27a73 7636 process_die (child_die, cu);
d9fa45fe
DC
7637 child_die = sibling_die (child_die);
7638 }
7639 }
38d518c9
EZ
7640}
7641
f55ee35c
JK
7642/* Read a Fortran module as type. This DIE can be only a declaration used for
7643 imported module. Still we need that type as local Fortran "use ... only"
7644 declaration imports depend on the created type in determine_prefix. */
7645
7646static struct type *
7647read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7648{
7649 struct objfile *objfile = cu->objfile;
7650 char *module_name;
7651 struct type *type;
7652
7653 module_name = dwarf2_name (die, cu);
7654 if (!module_name)
3e43a32a
MS
7655 complaint (&symfile_complaints,
7656 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
7657 die->offset);
7658 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7659
7660 /* determine_prefix uses TYPE_TAG_NAME. */
7661 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7662
7663 return set_die_type (die, type, cu);
7664}
7665
5d7cb8df
JK
7666/* Read a Fortran module. */
7667
7668static void
7669read_module (struct die_info *die, struct dwarf2_cu *cu)
7670{
7671 struct die_info *child_die = die->child;
7672
5d7cb8df
JK
7673 while (child_die && child_die->tag)
7674 {
7675 process_die (child_die, cu);
7676 child_die = sibling_die (child_die);
7677 }
7678}
7679
38d518c9
EZ
7680/* Return the name of the namespace represented by DIE. Set
7681 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7682 namespace. */
7683
7684static const char *
e142c38c 7685namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
7686{
7687 struct die_info *current_die;
7688 const char *name = NULL;
7689
7690 /* Loop through the extensions until we find a name. */
7691
7692 for (current_die = die;
7693 current_die != NULL;
f2f0e013 7694 current_die = dwarf2_extension (die, &cu))
38d518c9 7695 {
e142c38c 7696 name = dwarf2_name (current_die, cu);
38d518c9
EZ
7697 if (name != NULL)
7698 break;
7699 }
7700
7701 /* Is it an anonymous namespace? */
7702
7703 *is_anonymous = (name == NULL);
7704 if (*is_anonymous)
7705 name = "(anonymous namespace)";
7706
7707 return name;
d9fa45fe
DC
7708}
7709
c906108c
SS
7710/* Extract all information from a DW_TAG_pointer_type DIE and add to
7711 the user defined type vector. */
7712
f792889a 7713static struct type *
e7c27a73 7714read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7715{
5e2b427d 7716 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 7717 struct comp_unit_head *cu_header = &cu->header;
c906108c 7718 struct type *type;
8b2dbe47
KB
7719 struct attribute *attr_byte_size;
7720 struct attribute *attr_address_class;
7721 int byte_size, addr_class;
7e314c57
JK
7722 struct type *target_type;
7723
7724 target_type = die_type (die, cu);
c906108c 7725
7e314c57
JK
7726 /* The die_type call above may have already set the type for this DIE. */
7727 type = get_die_type (die, cu);
7728 if (type)
7729 return type;
7730
7731 type = lookup_pointer_type (target_type);
8b2dbe47 7732
e142c38c 7733 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
7734 if (attr_byte_size)
7735 byte_size = DW_UNSND (attr_byte_size);
c906108c 7736 else
8b2dbe47
KB
7737 byte_size = cu_header->addr_size;
7738
e142c38c 7739 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
7740 if (attr_address_class)
7741 addr_class = DW_UNSND (attr_address_class);
7742 else
7743 addr_class = DW_ADDR_none;
7744
7745 /* If the pointer size or address class is different than the
7746 default, create a type variant marked as such and set the
7747 length accordingly. */
7748 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 7749 {
5e2b427d 7750 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
7751 {
7752 int type_flags;
7753
849957d9 7754 type_flags = gdbarch_address_class_type_flags
5e2b427d 7755 (gdbarch, byte_size, addr_class);
876cecd0
TT
7756 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7757 == 0);
8b2dbe47
KB
7758 type = make_type_with_address_space (type, type_flags);
7759 }
7760 else if (TYPE_LENGTH (type) != byte_size)
7761 {
3e43a32a
MS
7762 complaint (&symfile_complaints,
7763 _("invalid pointer size %d"), byte_size);
8b2dbe47 7764 }
6e70227d 7765 else
9a619af0
MS
7766 {
7767 /* Should we also complain about unhandled address classes? */
7768 }
c906108c 7769 }
8b2dbe47
KB
7770
7771 TYPE_LENGTH (type) = byte_size;
f792889a 7772 return set_die_type (die, type, cu);
c906108c
SS
7773}
7774
7775/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7776 the user defined type vector. */
7777
f792889a 7778static struct type *
e7c27a73 7779read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7780{
7781 struct type *type;
7782 struct type *to_type;
7783 struct type *domain;
7784
e7c27a73
DJ
7785 to_type = die_type (die, cu);
7786 domain = die_containing_type (die, cu);
0d5de010 7787
7e314c57
JK
7788 /* The calls above may have already set the type for this DIE. */
7789 type = get_die_type (die, cu);
7790 if (type)
7791 return type;
7792
0d5de010
DJ
7793 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7794 type = lookup_methodptr_type (to_type);
7795 else
7796 type = lookup_memberptr_type (to_type, domain);
c906108c 7797
f792889a 7798 return set_die_type (die, type, cu);
c906108c
SS
7799}
7800
7801/* Extract all information from a DW_TAG_reference_type DIE and add to
7802 the user defined type vector. */
7803
f792889a 7804static struct type *
e7c27a73 7805read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7806{
e7c27a73 7807 struct comp_unit_head *cu_header = &cu->header;
7e314c57 7808 struct type *type, *target_type;
c906108c
SS
7809 struct attribute *attr;
7810
7e314c57
JK
7811 target_type = die_type (die, cu);
7812
7813 /* The die_type call above may have already set the type for this DIE. */
7814 type = get_die_type (die, cu);
7815 if (type)
7816 return type;
7817
7818 type = lookup_reference_type (target_type);
e142c38c 7819 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7820 if (attr)
7821 {
7822 TYPE_LENGTH (type) = DW_UNSND (attr);
7823 }
7824 else
7825 {
107d2387 7826 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7827 }
f792889a 7828 return set_die_type (die, type, cu);
c906108c
SS
7829}
7830
f792889a 7831static struct type *
e7c27a73 7832read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7833{
f792889a 7834 struct type *base_type, *cv_type;
c906108c 7835
e7c27a73 7836 base_type = die_type (die, cu);
7e314c57
JK
7837
7838 /* The die_type call above may have already set the type for this DIE. */
7839 cv_type = get_die_type (die, cu);
7840 if (cv_type)
7841 return cv_type;
7842
2f608a3a
KW
7843 /* In case the const qualifier is applied to an array type, the element type
7844 is so qualified, not the array type (section 6.7.3 of C99). */
7845 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7846 {
7847 struct type *el_type, *inner_array;
7848
7849 base_type = copy_type (base_type);
7850 inner_array = base_type;
7851
7852 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7853 {
7854 TYPE_TARGET_TYPE (inner_array) =
7855 copy_type (TYPE_TARGET_TYPE (inner_array));
7856 inner_array = TYPE_TARGET_TYPE (inner_array);
7857 }
7858
7859 el_type = TYPE_TARGET_TYPE (inner_array);
7860 TYPE_TARGET_TYPE (inner_array) =
7861 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7862
7863 return set_die_type (die, base_type, cu);
7864 }
7865
f792889a
DJ
7866 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7867 return set_die_type (die, cv_type, cu);
c906108c
SS
7868}
7869
f792889a 7870static struct type *
e7c27a73 7871read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7872{
f792889a 7873 struct type *base_type, *cv_type;
c906108c 7874
e7c27a73 7875 base_type = die_type (die, cu);
7e314c57
JK
7876
7877 /* The die_type call above may have already set the type for this DIE. */
7878 cv_type = get_die_type (die, cu);
7879 if (cv_type)
7880 return cv_type;
7881
f792889a
DJ
7882 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7883 return set_die_type (die, cv_type, cu);
c906108c
SS
7884}
7885
7886/* Extract all information from a DW_TAG_string_type DIE and add to
7887 the user defined type vector. It isn't really a user defined type,
7888 but it behaves like one, with other DIE's using an AT_user_def_type
7889 attribute to reference it. */
7890
f792889a 7891static struct type *
e7c27a73 7892read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7893{
e7c27a73 7894 struct objfile *objfile = cu->objfile;
3b7538c0 7895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7896 struct type *type, *range_type, *index_type, *char_type;
7897 struct attribute *attr;
7898 unsigned int length;
7899
e142c38c 7900 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7901 if (attr)
7902 {
7903 length = DW_UNSND (attr);
7904 }
7905 else
7906 {
0963b4bd 7907 /* Check for the DW_AT_byte_size attribute. */
e142c38c 7908 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7909 if (attr)
7910 {
7911 length = DW_UNSND (attr);
7912 }
7913 else
7914 {
7915 length = 1;
7916 }
c906108c 7917 }
6ccb9162 7918
46bf5051 7919 index_type = objfile_type (objfile)->builtin_int;
c906108c 7920 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7921 char_type = language_string_char_type (cu->language_defn, gdbarch);
7922 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7923
f792889a 7924 return set_die_type (die, type, cu);
c906108c
SS
7925}
7926
7927/* Handle DIES due to C code like:
7928
7929 struct foo
c5aa993b
JM
7930 {
7931 int (*funcp)(int a, long l);
7932 int b;
7933 };
c906108c 7934
0963b4bd 7935 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 7936
f792889a 7937static struct type *
e7c27a73 7938read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7939{
0963b4bd
MS
7940 struct type *type; /* Type that this function returns. */
7941 struct type *ftype; /* Function that returns above type. */
c906108c
SS
7942 struct attribute *attr;
7943
e7c27a73 7944 type = die_type (die, cu);
7e314c57
JK
7945
7946 /* The die_type call above may have already set the type for this DIE. */
7947 ftype = get_die_type (die, cu);
7948 if (ftype)
7949 return ftype;
7950
0c8b41f1 7951 ftype = lookup_function_type (type);
c906108c 7952
5b8101ae 7953 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7954 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7955 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7956 || cu->language == language_cplus
5b8101ae
PM
7957 || cu->language == language_java
7958 || cu->language == language_pascal)
876cecd0 7959 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7960 else if (producer_is_realview (cu->producer))
7961 /* RealView does not emit DW_AT_prototyped. We can not
7962 distinguish prototyped and unprototyped functions; default to
7963 prototyped, since that is more common in modern code (and
7964 RealView warns about unprototyped functions). */
7965 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7966
c055b101
CV
7967 /* Store the calling convention in the type if it's available in
7968 the subroutine die. Otherwise set the calling convention to
7969 the default value DW_CC_normal. */
7970 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
7971 if (attr)
7972 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7973 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7974 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7975 else
7976 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
7977
7978 /* We need to add the subroutine type to the die immediately so
7979 we don't infinitely recurse when dealing with parameters
0963b4bd 7980 declared as the same subroutine type. */
76c10ea2 7981 set_die_type (die, ftype, cu);
6e70227d 7982
639d11d3 7983 if (die->child != NULL)
c906108c 7984 {
8072405b 7985 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7986 struct die_info *child_die;
8072405b 7987 int nparams, iparams;
c906108c
SS
7988
7989 /* Count the number of parameters.
7990 FIXME: GDB currently ignores vararg functions, but knows about
7991 vararg member functions. */
8072405b 7992 nparams = 0;
639d11d3 7993 child_die = die->child;
c906108c
SS
7994 while (child_die && child_die->tag)
7995 {
7996 if (child_die->tag == DW_TAG_formal_parameter)
7997 nparams++;
7998 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7999 TYPE_VARARGS (ftype) = 1;
c906108c
SS
8000 child_die = sibling_die (child_die);
8001 }
8002
8003 /* Allocate storage for parameters and fill them in. */
8004 TYPE_NFIELDS (ftype) = nparams;
8005 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 8006 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 8007
8072405b
JK
8008 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8009 even if we error out during the parameters reading below. */
8010 for (iparams = 0; iparams < nparams; iparams++)
8011 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8012
8013 iparams = 0;
639d11d3 8014 child_die = die->child;
c906108c
SS
8015 while (child_die && child_die->tag)
8016 {
8017 if (child_die->tag == DW_TAG_formal_parameter)
8018 {
3ce3b1ba
PA
8019 struct type *arg_type;
8020
8021 /* DWARF version 2 has no clean way to discern C++
8022 static and non-static member functions. G++ helps
8023 GDB by marking the first parameter for non-static
8024 member functions (which is the this pointer) as
8025 artificial. We pass this information to
8026 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8027
8028 DWARF version 3 added DW_AT_object_pointer, which GCC
8029 4.5 does not yet generate. */
e142c38c 8030 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
8031 if (attr)
8032 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8033 else
418835cc
KS
8034 {
8035 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8036
8037 /* GCC/43521: In java, the formal parameter
8038 "this" is sometimes not marked with DW_AT_artificial. */
8039 if (cu->language == language_java)
8040 {
8041 const char *name = dwarf2_name (child_die, cu);
9a619af0 8042
418835cc
KS
8043 if (name && !strcmp (name, "this"))
8044 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8045 }
8046 }
3ce3b1ba
PA
8047 arg_type = die_type (child_die, cu);
8048
8049 /* RealView does not mark THIS as const, which the testsuite
8050 expects. GCC marks THIS as const in method definitions,
8051 but not in the class specifications (GCC PR 43053). */
8052 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8053 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8054 {
8055 int is_this = 0;
8056 struct dwarf2_cu *arg_cu = cu;
8057 const char *name = dwarf2_name (child_die, cu);
8058
8059 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8060 if (attr)
8061 {
8062 /* If the compiler emits this, use it. */
8063 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8064 is_this = 1;
8065 }
8066 else if (name && strcmp (name, "this") == 0)
8067 /* Function definitions will have the argument names. */
8068 is_this = 1;
8069 else if (name == NULL && iparams == 0)
8070 /* Declarations may not have the names, so like
8071 elsewhere in GDB, assume an artificial first
8072 argument is "this". */
8073 is_this = 1;
8074
8075 if (is_this)
8076 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8077 arg_type, 0);
8078 }
8079
8080 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8081 iparams++;
8082 }
8083 child_die = sibling_die (child_die);
8084 }
8085 }
8086
76c10ea2 8087 return ftype;
c906108c
SS
8088}
8089
f792889a 8090static struct type *
e7c27a73 8091read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8092{
e7c27a73 8093 struct objfile *objfile = cu->objfile;
0114d602 8094 const char *name = NULL;
f792889a 8095 struct type *this_type;
c906108c 8096
94af9270 8097 name = dwarf2_full_name (NULL, die, cu);
f792889a 8098 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8099 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8100 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
8101 set_die_type (die, this_type, cu);
8102 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8103 return this_type;
c906108c
SS
8104}
8105
8106/* Find a representation of a given base type and install
8107 it in the TYPE field of the die. */
8108
f792889a 8109static struct type *
e7c27a73 8110read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8111{
e7c27a73 8112 struct objfile *objfile = cu->objfile;
c906108c
SS
8113 struct type *type;
8114 struct attribute *attr;
8115 int encoding = 0, size = 0;
39cbfefa 8116 char *name;
6ccb9162
UW
8117 enum type_code code = TYPE_CODE_INT;
8118 int type_flags = 0;
8119 struct type *target_type = NULL;
c906108c 8120
e142c38c 8121 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8122 if (attr)
8123 {
8124 encoding = DW_UNSND (attr);
8125 }
e142c38c 8126 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8127 if (attr)
8128 {
8129 size = DW_UNSND (attr);
8130 }
39cbfefa 8131 name = dwarf2_name (die, cu);
6ccb9162 8132 if (!name)
c906108c 8133 {
6ccb9162
UW
8134 complaint (&symfile_complaints,
8135 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8136 }
6ccb9162
UW
8137
8138 switch (encoding)
c906108c 8139 {
6ccb9162
UW
8140 case DW_ATE_address:
8141 /* Turn DW_ATE_address into a void * pointer. */
8142 code = TYPE_CODE_PTR;
8143 type_flags |= TYPE_FLAG_UNSIGNED;
8144 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8145 break;
8146 case DW_ATE_boolean:
8147 code = TYPE_CODE_BOOL;
8148 type_flags |= TYPE_FLAG_UNSIGNED;
8149 break;
8150 case DW_ATE_complex_float:
8151 code = TYPE_CODE_COMPLEX;
8152 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8153 break;
8154 case DW_ATE_decimal_float:
8155 code = TYPE_CODE_DECFLOAT;
8156 break;
8157 case DW_ATE_float:
8158 code = TYPE_CODE_FLT;
8159 break;
8160 case DW_ATE_signed:
8161 break;
8162 case DW_ATE_unsigned:
8163 type_flags |= TYPE_FLAG_UNSIGNED;
8164 break;
8165 case DW_ATE_signed_char:
6e70227d 8166 if (cu->language == language_ada || cu->language == language_m2
868a0084 8167 || cu->language == language_pascal)
6ccb9162
UW
8168 code = TYPE_CODE_CHAR;
8169 break;
8170 case DW_ATE_unsigned_char:
868a0084
PM
8171 if (cu->language == language_ada || cu->language == language_m2
8172 || cu->language == language_pascal)
6ccb9162
UW
8173 code = TYPE_CODE_CHAR;
8174 type_flags |= TYPE_FLAG_UNSIGNED;
8175 break;
75079b2b
TT
8176 case DW_ATE_UTF:
8177 /* We just treat this as an integer and then recognize the
8178 type by name elsewhere. */
8179 break;
8180
6ccb9162
UW
8181 default:
8182 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8183 dwarf_type_encoding_name (encoding));
8184 break;
c906108c 8185 }
6ccb9162 8186
0114d602
DJ
8187 type = init_type (code, size, type_flags, NULL, objfile);
8188 TYPE_NAME (type) = name;
6ccb9162
UW
8189 TYPE_TARGET_TYPE (type) = target_type;
8190
0114d602 8191 if (name && strcmp (name, "char") == 0)
876cecd0 8192 TYPE_NOSIGN (type) = 1;
0114d602 8193
f792889a 8194 return set_die_type (die, type, cu);
c906108c
SS
8195}
8196
a02abb62
JB
8197/* Read the given DW_AT_subrange DIE. */
8198
f792889a 8199static struct type *
a02abb62
JB
8200read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8201{
8202 struct type *base_type;
8203 struct type *range_type;
8204 struct attribute *attr;
43bbcdc2
PH
8205 LONGEST low = 0;
8206 LONGEST high = -1;
39cbfefa 8207 char *name;
43bbcdc2 8208 LONGEST negative_mask;
e77813c8 8209
a02abb62 8210 base_type = die_type (die, cu);
953ac07e
JK
8211 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8212 check_typedef (base_type);
a02abb62 8213
7e314c57
JK
8214 /* The die_type call above may have already set the type for this DIE. */
8215 range_type = get_die_type (die, cu);
8216 if (range_type)
8217 return range_type;
8218
e142c38c 8219 if (cu->language == language_fortran)
6e70227d 8220 {
a02abb62
JB
8221 /* FORTRAN implies a lower bound of 1, if not given. */
8222 low = 1;
8223 }
8224
dd5e6932
DJ
8225 /* FIXME: For variable sized arrays either of these could be
8226 a variable rather than a constant value. We'll allow it,
8227 but we don't know how to handle it. */
e142c38c 8228 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8229 if (attr)
8230 low = dwarf2_get_attr_constant_value (attr, 0);
8231
e142c38c 8232 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8233 if (attr)
6e70227d 8234 {
e77813c8 8235 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
8236 {
8237 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8238 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8239 FIXME: GDB does not yet know how to handle dynamic
8240 arrays properly, treat them as arrays with unspecified
8241 length for now.
8242
8243 FIXME: jimb/2003-09-22: GDB does not really know
8244 how to handle arrays of unspecified length
8245 either; we just represent them as zero-length
8246 arrays. Choose an appropriate upper bound given
8247 the lower bound we've computed above. */
8248 high = low - 1;
8249 }
8250 else
8251 high = dwarf2_get_attr_constant_value (attr, 1);
8252 }
e77813c8
PM
8253 else
8254 {
8255 attr = dwarf2_attr (die, DW_AT_count, cu);
8256 if (attr)
8257 {
8258 int count = dwarf2_get_attr_constant_value (attr, 1);
8259 high = low + count - 1;
8260 }
c2ff108b
JK
8261 else
8262 {
8263 /* Unspecified array length. */
8264 high = low - 1;
8265 }
e77813c8
PM
8266 }
8267
8268 /* Dwarf-2 specifications explicitly allows to create subrange types
8269 without specifying a base type.
8270 In that case, the base type must be set to the type of
8271 the lower bound, upper bound or count, in that order, if any of these
8272 three attributes references an object that has a type.
8273 If no base type is found, the Dwarf-2 specifications say that
8274 a signed integer type of size equal to the size of an address should
8275 be used.
8276 For the following C code: `extern char gdb_int [];'
8277 GCC produces an empty range DIE.
8278 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 8279 high bound or count are not yet handled by this code. */
e77813c8
PM
8280 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8281 {
8282 struct objfile *objfile = cu->objfile;
8283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8284 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8285 struct type *int_type = objfile_type (objfile)->builtin_int;
8286
8287 /* Test "int", "long int", and "long long int" objfile types,
8288 and select the first one having a size above or equal to the
8289 architecture address size. */
8290 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8291 base_type = int_type;
8292 else
8293 {
8294 int_type = objfile_type (objfile)->builtin_long;
8295 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8296 base_type = int_type;
8297 else
8298 {
8299 int_type = objfile_type (objfile)->builtin_long_long;
8300 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8301 base_type = int_type;
8302 }
8303 }
8304 }
a02abb62 8305
6e70227d 8306 negative_mask =
43bbcdc2
PH
8307 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8308 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8309 low |= negative_mask;
8310 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8311 high |= negative_mask;
8312
a02abb62
JB
8313 range_type = create_range_type (NULL, base_type, low, high);
8314
bbb0eef6
JK
8315 /* Mark arrays with dynamic length at least as an array of unspecified
8316 length. GDB could check the boundary but before it gets implemented at
8317 least allow accessing the array elements. */
8318 if (attr && attr->form == DW_FORM_block1)
8319 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8320
c2ff108b
JK
8321 /* Ada expects an empty array on no boundary attributes. */
8322 if (attr == NULL && cu->language != language_ada)
8323 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8324
39cbfefa
DJ
8325 name = dwarf2_name (die, cu);
8326 if (name)
8327 TYPE_NAME (range_type) = name;
6e70227d 8328
e142c38c 8329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8330 if (attr)
8331 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8332
7e314c57
JK
8333 set_die_type (die, range_type, cu);
8334
8335 /* set_die_type should be already done. */
b4ba55a1
JB
8336 set_descriptive_type (range_type, die, cu);
8337
7e314c57 8338 return range_type;
a02abb62 8339}
6e70227d 8340
f792889a 8341static struct type *
81a17f79
JB
8342read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8343{
8344 struct type *type;
81a17f79 8345
81a17f79
JB
8346 /* For now, we only support the C meaning of an unspecified type: void. */
8347
0114d602
DJ
8348 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8349 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8350
f792889a 8351 return set_die_type (die, type, cu);
81a17f79 8352}
a02abb62 8353
51545339
DJ
8354/* Trivial hash function for die_info: the hash value of a DIE
8355 is its offset in .debug_info for this objfile. */
8356
8357static hashval_t
8358die_hash (const void *item)
8359{
8360 const struct die_info *die = item;
9a619af0 8361
51545339
DJ
8362 return die->offset;
8363}
8364
8365/* Trivial comparison function for die_info structures: two DIEs
8366 are equal if they have the same offset. */
8367
8368static int
8369die_eq (const void *item_lhs, const void *item_rhs)
8370{
8371 const struct die_info *die_lhs = item_lhs;
8372 const struct die_info *die_rhs = item_rhs;
9a619af0 8373
51545339
DJ
8374 return die_lhs->offset == die_rhs->offset;
8375}
8376
c906108c
SS
8377/* Read a whole compilation unit into a linked list of dies. */
8378
f9aca02d 8379static struct die_info *
93311388 8380read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8381{
93311388 8382 struct die_reader_specs reader_specs;
98bfdba5 8383 int read_abbrevs = 0;
1d9ec526 8384 struct cleanup *back_to = NULL;
98bfdba5
PA
8385 struct die_info *die;
8386
8387 if (cu->dwarf2_abbrevs == NULL)
8388 {
8389 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8390 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8391 read_abbrevs = 1;
8392 }
93311388 8393
348e048f 8394 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8395 cu->die_hash
8396 = htab_create_alloc_ex (cu->header.length / 12,
8397 die_hash,
8398 die_eq,
8399 NULL,
8400 &cu->comp_unit_obstack,
8401 hashtab_obstack_allocate,
8402 dummy_obstack_deallocate);
8403
93311388
DE
8404 init_cu_die_reader (&reader_specs, cu);
8405
98bfdba5
PA
8406 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8407
8408 if (read_abbrevs)
8409 do_cleanups (back_to);
8410
8411 return die;
639d11d3
DC
8412}
8413
d97bc12b
DE
8414/* Main entry point for reading a DIE and all children.
8415 Read the DIE and dump it if requested. */
8416
8417static struct die_info *
93311388
DE
8418read_die_and_children (const struct die_reader_specs *reader,
8419 gdb_byte *info_ptr,
d97bc12b
DE
8420 gdb_byte **new_info_ptr,
8421 struct die_info *parent)
8422{
93311388 8423 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8424 new_info_ptr, parent);
8425
8426 if (dwarf2_die_debug)
8427 {
348e048f
DE
8428 fprintf_unfiltered (gdb_stdlog,
8429 "\nRead die from %s of %s:\n",
8430 reader->buffer == dwarf2_per_objfile->info.buffer
8431 ? ".debug_info"
8432 : reader->buffer == dwarf2_per_objfile->types.buffer
8433 ? ".debug_types"
8434 : "unknown section",
8435 reader->abfd->filename);
d97bc12b
DE
8436 dump_die (result, dwarf2_die_debug);
8437 }
8438
8439 return result;
8440}
8441
639d11d3
DC
8442/* Read a single die and all its descendents. Set the die's sibling
8443 field to NULL; set other fields in the die correctly, and set all
8444 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8445 location of the info_ptr after reading all of those dies. PARENT
8446 is the parent of the die in question. */
8447
8448static struct die_info *
93311388
DE
8449read_die_and_children_1 (const struct die_reader_specs *reader,
8450 gdb_byte *info_ptr,
d97bc12b
DE
8451 gdb_byte **new_info_ptr,
8452 struct die_info *parent)
639d11d3
DC
8453{
8454 struct die_info *die;
fe1b8b76 8455 gdb_byte *cur_ptr;
639d11d3
DC
8456 int has_children;
8457
93311388 8458 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8459 if (die == NULL)
8460 {
8461 *new_info_ptr = cur_ptr;
8462 return NULL;
8463 }
93311388 8464 store_in_ref_table (die, reader->cu);
639d11d3
DC
8465
8466 if (has_children)
348e048f 8467 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8468 else
8469 {
8470 die->child = NULL;
8471 *new_info_ptr = cur_ptr;
8472 }
8473
8474 die->sibling = NULL;
8475 die->parent = parent;
8476 return die;
8477}
8478
8479/* Read a die, all of its descendents, and all of its siblings; set
8480 all of the fields of all of the dies correctly. Arguments are as
8481 in read_die_and_children. */
8482
8483static struct die_info *
93311388
DE
8484read_die_and_siblings (const struct die_reader_specs *reader,
8485 gdb_byte *info_ptr,
fe1b8b76 8486 gdb_byte **new_info_ptr,
639d11d3
DC
8487 struct die_info *parent)
8488{
8489 struct die_info *first_die, *last_sibling;
fe1b8b76 8490 gdb_byte *cur_ptr;
639d11d3 8491
c906108c 8492 cur_ptr = info_ptr;
639d11d3
DC
8493 first_die = last_sibling = NULL;
8494
8495 while (1)
c906108c 8496 {
639d11d3 8497 struct die_info *die
93311388 8498 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8499
1d325ec1 8500 if (die == NULL)
c906108c 8501 {
639d11d3
DC
8502 *new_info_ptr = cur_ptr;
8503 return first_die;
c906108c 8504 }
1d325ec1
DJ
8505
8506 if (!first_die)
8507 first_die = die;
c906108c 8508 else
1d325ec1
DJ
8509 last_sibling->sibling = die;
8510
8511 last_sibling = die;
c906108c 8512 }
c906108c
SS
8513}
8514
93311388
DE
8515/* Read the die from the .debug_info section buffer. Set DIEP to
8516 point to a newly allocated die with its information, except for its
8517 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8518 whether the die has children or not. */
8519
8520static gdb_byte *
8521read_full_die (const struct die_reader_specs *reader,
8522 struct die_info **diep, gdb_byte *info_ptr,
8523 int *has_children)
8524{
8525 unsigned int abbrev_number, bytes_read, i, offset;
8526 struct abbrev_info *abbrev;
8527 struct die_info *die;
8528 struct dwarf2_cu *cu = reader->cu;
8529 bfd *abfd = reader->abfd;
8530
8531 offset = info_ptr - reader->buffer;
8532 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8533 info_ptr += bytes_read;
8534 if (!abbrev_number)
8535 {
8536 *diep = NULL;
8537 *has_children = 0;
8538 return info_ptr;
8539 }
8540
8541 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8542 if (!abbrev)
348e048f
DE
8543 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8544 abbrev_number,
8545 bfd_get_filename (abfd));
8546
93311388
DE
8547 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8548 die->offset = offset;
8549 die->tag = abbrev->tag;
8550 die->abbrev = abbrev_number;
8551
8552 die->num_attrs = abbrev->num_attrs;
8553
8554 for (i = 0; i < abbrev->num_attrs; ++i)
8555 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8556 abfd, info_ptr, cu);
8557
8558 *diep = die;
8559 *has_children = abbrev->has_children;
8560 return info_ptr;
8561}
8562
c906108c
SS
8563/* In DWARF version 2, the description of the debugging information is
8564 stored in a separate .debug_abbrev section. Before we read any
8565 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8566 in a hash table. This function also sets flags in CU describing
8567 the data found in the abbrev table. */
c906108c
SS
8568
8569static void
e7c27a73 8570dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8571{
e7c27a73 8572 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8573 gdb_byte *abbrev_ptr;
c906108c
SS
8574 struct abbrev_info *cur_abbrev;
8575 unsigned int abbrev_number, bytes_read, abbrev_name;
8576 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8577 struct attr_abbrev *cur_attrs;
8578 unsigned int allocated_attrs;
c906108c 8579
0963b4bd 8580 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
8581 obstack_init (&cu->abbrev_obstack);
8582 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8583 (ABBREV_HASH_SIZE
8584 * sizeof (struct abbrev_info *)));
8585 memset (cu->dwarf2_abbrevs, 0,
8586 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8587
be391dca
TT
8588 dwarf2_read_section (dwarf2_per_objfile->objfile,
8589 &dwarf2_per_objfile->abbrev);
dce234bc 8590 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
8591 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8592 abbrev_ptr += bytes_read;
8593
f3dd6933
DJ
8594 allocated_attrs = ATTR_ALLOC_CHUNK;
8595 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 8596
0963b4bd 8597 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
8598 while (abbrev_number)
8599 {
f3dd6933 8600 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
8601
8602 /* read in abbrev header */
8603 cur_abbrev->number = abbrev_number;
8604 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8605 abbrev_ptr += bytes_read;
8606 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8607 abbrev_ptr += 1;
8608
72bf9492
DJ
8609 if (cur_abbrev->tag == DW_TAG_namespace)
8610 cu->has_namespace_info = 1;
8611
c906108c
SS
8612 /* now read in declarations */
8613 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8614 abbrev_ptr += bytes_read;
8615 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8616 abbrev_ptr += bytes_read;
8617 while (abbrev_name)
8618 {
f3dd6933 8619 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 8620 {
f3dd6933
DJ
8621 allocated_attrs += ATTR_ALLOC_CHUNK;
8622 cur_attrs
8623 = xrealloc (cur_attrs, (allocated_attrs
8624 * sizeof (struct attr_abbrev)));
c906108c 8625 }
ae038cb0
DJ
8626
8627 /* Record whether this compilation unit might have
8628 inter-compilation-unit references. If we don't know what form
8629 this attribute will have, then it might potentially be a
8630 DW_FORM_ref_addr, so we conservatively expect inter-CU
8631 references. */
8632
8633 if (abbrev_form == DW_FORM_ref_addr
8634 || abbrev_form == DW_FORM_indirect)
8635 cu->has_form_ref_addr = 1;
8636
f3dd6933
DJ
8637 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8638 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
8639 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8640 abbrev_ptr += bytes_read;
8641 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8642 abbrev_ptr += bytes_read;
8643 }
8644
f3dd6933
DJ
8645 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8646 (cur_abbrev->num_attrs
8647 * sizeof (struct attr_abbrev)));
8648 memcpy (cur_abbrev->attrs, cur_attrs,
8649 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8650
c906108c 8651 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
8652 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8653 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
8654
8655 /* Get next abbreviation.
8656 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
8657 always properly terminated with an abbrev number of 0.
8658 Exit loop if we encounter an abbreviation which we have
8659 already read (which means we are about to read the abbreviations
8660 for the next compile unit) or if the end of the abbreviation
8661 table is reached. */
dce234bc
PP
8662 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8663 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
8664 break;
8665 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8666 abbrev_ptr += bytes_read;
e7c27a73 8667 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
8668 break;
8669 }
f3dd6933
DJ
8670
8671 xfree (cur_attrs);
c906108c
SS
8672}
8673
f3dd6933 8674/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 8675
c906108c 8676static void
f3dd6933 8677dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 8678{
f3dd6933 8679 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 8680
f3dd6933
DJ
8681 obstack_free (&cu->abbrev_obstack, NULL);
8682 cu->dwarf2_abbrevs = NULL;
c906108c
SS
8683}
8684
8685/* Lookup an abbrev_info structure in the abbrev hash table. */
8686
8687static struct abbrev_info *
e7c27a73 8688dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
8689{
8690 unsigned int hash_number;
8691 struct abbrev_info *abbrev;
8692
8693 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 8694 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
8695
8696 while (abbrev)
8697 {
8698 if (abbrev->number == number)
8699 return abbrev;
8700 else
8701 abbrev = abbrev->next;
8702 }
8703 return NULL;
8704}
8705
72bf9492
DJ
8706/* Returns nonzero if TAG represents a type that we might generate a partial
8707 symbol for. */
8708
8709static int
8710is_type_tag_for_partial (int tag)
8711{
8712 switch (tag)
8713 {
8714#if 0
8715 /* Some types that would be reasonable to generate partial symbols for,
8716 that we don't at present. */
8717 case DW_TAG_array_type:
8718 case DW_TAG_file_type:
8719 case DW_TAG_ptr_to_member_type:
8720 case DW_TAG_set_type:
8721 case DW_TAG_string_type:
8722 case DW_TAG_subroutine_type:
8723#endif
8724 case DW_TAG_base_type:
8725 case DW_TAG_class_type:
680b30c7 8726 case DW_TAG_interface_type:
72bf9492
DJ
8727 case DW_TAG_enumeration_type:
8728 case DW_TAG_structure_type:
8729 case DW_TAG_subrange_type:
8730 case DW_TAG_typedef:
8731 case DW_TAG_union_type:
8732 return 1;
8733 default:
8734 return 0;
8735 }
8736}
8737
8738/* Load all DIEs that are interesting for partial symbols into memory. */
8739
8740static struct partial_die_info *
93311388
DE
8741load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8742 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
8743{
8744 struct partial_die_info *part_die;
8745 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8746 struct abbrev_info *abbrev;
8747 unsigned int bytes_read;
5afb4e99 8748 unsigned int load_all = 0;
72bf9492
DJ
8749
8750 int nesting_level = 1;
8751
8752 parent_die = NULL;
8753 last_die = NULL;
8754
5afb4e99
DJ
8755 if (cu->per_cu && cu->per_cu->load_all_dies)
8756 load_all = 1;
8757
72bf9492
DJ
8758 cu->partial_dies
8759 = htab_create_alloc_ex (cu->header.length / 12,
8760 partial_die_hash,
8761 partial_die_eq,
8762 NULL,
8763 &cu->comp_unit_obstack,
8764 hashtab_obstack_allocate,
8765 dummy_obstack_deallocate);
8766
8767 part_die = obstack_alloc (&cu->comp_unit_obstack,
8768 sizeof (struct partial_die_info));
8769
8770 while (1)
8771 {
8772 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8773
8774 /* A NULL abbrev means the end of a series of children. */
8775 if (abbrev == NULL)
8776 {
8777 if (--nesting_level == 0)
8778 {
8779 /* PART_DIE was probably the last thing allocated on the
8780 comp_unit_obstack, so we could call obstack_free
8781 here. We don't do that because the waste is small,
8782 and will be cleaned up when we're done with this
8783 compilation unit. This way, we're also more robust
8784 against other users of the comp_unit_obstack. */
8785 return first_die;
8786 }
8787 info_ptr += bytes_read;
8788 last_die = parent_die;
8789 parent_die = parent_die->die_parent;
8790 continue;
8791 }
8792
98bfdba5
PA
8793 /* Check for template arguments. We never save these; if
8794 they're seen, we just mark the parent, and go on our way. */
8795 if (parent_die != NULL
8796 && cu->language == language_cplus
8797 && (abbrev->tag == DW_TAG_template_type_param
8798 || abbrev->tag == DW_TAG_template_value_param))
8799 {
8800 parent_die->has_template_arguments = 1;
8801
8802 if (!load_all)
8803 {
8804 /* We don't need a partial DIE for the template argument. */
8805 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8806 cu);
8807 continue;
8808 }
8809 }
8810
8811 /* We only recurse into subprograms looking for template arguments.
8812 Skip their other children. */
8813 if (!load_all
8814 && cu->language == language_cplus
8815 && parent_die != NULL
8816 && parent_die->tag == DW_TAG_subprogram)
8817 {
8818 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8819 continue;
8820 }
8821
5afb4e99
DJ
8822 /* Check whether this DIE is interesting enough to save. Normally
8823 we would not be interested in members here, but there may be
8824 later variables referencing them via DW_AT_specification (for
8825 static members). */
8826 if (!load_all
8827 && !is_type_tag_for_partial (abbrev->tag)
72929c62 8828 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
8829 && abbrev->tag != DW_TAG_enumerator
8830 && abbrev->tag != DW_TAG_subprogram
bc30ff58 8831 && abbrev->tag != DW_TAG_lexical_block
72bf9492 8832 && abbrev->tag != DW_TAG_variable
5afb4e99 8833 && abbrev->tag != DW_TAG_namespace
f55ee35c 8834 && abbrev->tag != DW_TAG_module
5afb4e99 8835 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
8836 {
8837 /* Otherwise we skip to the next sibling, if any. */
93311388 8838 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
8839 continue;
8840 }
8841
93311388
DE
8842 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8843 buffer, info_ptr, cu);
72bf9492
DJ
8844
8845 /* This two-pass algorithm for processing partial symbols has a
8846 high cost in cache pressure. Thus, handle some simple cases
8847 here which cover the majority of C partial symbols. DIEs
8848 which neither have specification tags in them, nor could have
8849 specification tags elsewhere pointing at them, can simply be
8850 processed and discarded.
8851
8852 This segment is also optional; scan_partial_symbols and
8853 add_partial_symbol will handle these DIEs if we chain
8854 them in normally. When compilers which do not emit large
8855 quantities of duplicate debug information are more common,
8856 this code can probably be removed. */
8857
8858 /* Any complete simple types at the top level (pretty much all
8859 of them, for a language without namespaces), can be processed
8860 directly. */
8861 if (parent_die == NULL
8862 && part_die->has_specification == 0
8863 && part_die->is_declaration == 0
8864 && (part_die->tag == DW_TAG_typedef
8865 || part_die->tag == DW_TAG_base_type
8866 || part_die->tag == DW_TAG_subrange_type))
8867 {
8868 if (building_psymtab && part_die->name != NULL)
04a679b8 8869 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
8870 VAR_DOMAIN, LOC_TYPEDEF,
8871 &cu->objfile->static_psymbols,
8872 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 8873 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8874 continue;
8875 }
8876
8877 /* If we're at the second level, and we're an enumerator, and
8878 our parent has no specification (meaning possibly lives in a
8879 namespace elsewhere), then we can add the partial symbol now
8880 instead of queueing it. */
8881 if (part_die->tag == DW_TAG_enumerator
8882 && parent_die != NULL
8883 && parent_die->die_parent == NULL
8884 && parent_die->tag == DW_TAG_enumeration_type
8885 && parent_die->has_specification == 0)
8886 {
8887 if (part_die->name == NULL)
3e43a32a
MS
8888 complaint (&symfile_complaints,
8889 _("malformed enumerator DIE ignored"));
72bf9492 8890 else if (building_psymtab)
04a679b8 8891 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 8892 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
8893 (cu->language == language_cplus
8894 || cu->language == language_java)
72bf9492
DJ
8895 ? &cu->objfile->global_psymbols
8896 : &cu->objfile->static_psymbols,
8897 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8898
93311388 8899 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8900 continue;
8901 }
8902
8903 /* We'll save this DIE so link it in. */
8904 part_die->die_parent = parent_die;
8905 part_die->die_sibling = NULL;
8906 part_die->die_child = NULL;
8907
8908 if (last_die && last_die == parent_die)
8909 last_die->die_child = part_die;
8910 else if (last_die)
8911 last_die->die_sibling = part_die;
8912
8913 last_die = part_die;
8914
8915 if (first_die == NULL)
8916 first_die = part_die;
8917
8918 /* Maybe add the DIE to the hash table. Not all DIEs that we
8919 find interesting need to be in the hash table, because we
8920 also have the parent/sibling/child chains; only those that we
8921 might refer to by offset later during partial symbol reading.
8922
8923 For now this means things that might have be the target of a
8924 DW_AT_specification, DW_AT_abstract_origin, or
8925 DW_AT_extension. DW_AT_extension will refer only to
8926 namespaces; DW_AT_abstract_origin refers to functions (and
8927 many things under the function DIE, but we do not recurse
8928 into function DIEs during partial symbol reading) and
8929 possibly variables as well; DW_AT_specification refers to
8930 declarations. Declarations ought to have the DW_AT_declaration
8931 flag. It happens that GCC forgets to put it in sometimes, but
8932 only for functions, not for types.
8933
8934 Adding more things than necessary to the hash table is harmless
8935 except for the performance cost. Adding too few will result in
5afb4e99
DJ
8936 wasted time in find_partial_die, when we reread the compilation
8937 unit with load_all_dies set. */
72bf9492 8938
5afb4e99 8939 if (load_all
72929c62 8940 || abbrev->tag == DW_TAG_constant
5afb4e99 8941 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
8942 || abbrev->tag == DW_TAG_variable
8943 || abbrev->tag == DW_TAG_namespace
8944 || part_die->is_declaration)
8945 {
8946 void **slot;
8947
8948 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8949 part_die->offset, INSERT);
8950 *slot = part_die;
8951 }
8952
8953 part_die = obstack_alloc (&cu->comp_unit_obstack,
8954 sizeof (struct partial_die_info));
8955
8956 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8957 we have no reason to follow the children of structures; for other
98bfdba5
PA
8958 languages we have to, so that we can get at method physnames
8959 to infer fully qualified class names, for DW_AT_specification,
8960 and for C++ template arguments. For C++, we also look one level
8961 inside functions to find template arguments (if the name of the
8962 function does not already contain the template arguments).
bc30ff58
JB
8963
8964 For Ada, we need to scan the children of subprograms and lexical
8965 blocks as well because Ada allows the definition of nested
8966 entities that could be interesting for the debugger, such as
8967 nested subprograms for instance. */
72bf9492 8968 if (last_die->has_children
5afb4e99
DJ
8969 && (load_all
8970 || last_die->tag == DW_TAG_namespace
f55ee35c 8971 || last_die->tag == DW_TAG_module
72bf9492 8972 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
8973 || (cu->language == language_cplus
8974 && last_die->tag == DW_TAG_subprogram
8975 && (last_die->name == NULL
8976 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
8977 || (cu->language != language_c
8978 && (last_die->tag == DW_TAG_class_type
680b30c7 8979 || last_die->tag == DW_TAG_interface_type
72bf9492 8980 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8981 || last_die->tag == DW_TAG_union_type))
8982 || (cu->language == language_ada
8983 && (last_die->tag == DW_TAG_subprogram
8984 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8985 {
8986 nesting_level++;
8987 parent_die = last_die;
8988 continue;
8989 }
8990
8991 /* Otherwise we skip to the next sibling, if any. */
93311388 8992 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8993
8994 /* Back to the top, do it again. */
8995 }
8996}
8997
c906108c
SS
8998/* Read a minimal amount of information into the minimal die structure. */
8999
fe1b8b76 9000static gdb_byte *
72bf9492
DJ
9001read_partial_die (struct partial_die_info *part_die,
9002 struct abbrev_info *abbrev,
9003 unsigned int abbrev_len, bfd *abfd,
93311388
DE
9004 gdb_byte *buffer, gdb_byte *info_ptr,
9005 struct dwarf2_cu *cu)
c906108c 9006{
fa238c03 9007 unsigned int i;
c906108c 9008 struct attribute attr;
c5aa993b 9009 int has_low_pc_attr = 0;
c906108c
SS
9010 int has_high_pc_attr = 0;
9011
72bf9492 9012 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 9013
93311388 9014 part_die->offset = info_ptr - buffer;
72bf9492
DJ
9015
9016 info_ptr += abbrev_len;
9017
9018 if (abbrev == NULL)
9019 return info_ptr;
9020
c906108c
SS
9021 part_die->tag = abbrev->tag;
9022 part_die->has_children = abbrev->has_children;
c906108c
SS
9023
9024 for (i = 0; i < abbrev->num_attrs; ++i)
9025 {
e7c27a73 9026 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
9027
9028 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 9029 partial symbol table. */
c906108c
SS
9030 switch (attr.name)
9031 {
9032 case DW_AT_name:
71c25dea
TT
9033 switch (part_die->tag)
9034 {
9035 case DW_TAG_compile_unit:
348e048f 9036 case DW_TAG_type_unit:
71c25dea
TT
9037 /* Compilation units have a DW_AT_name that is a filename, not
9038 a source language identifier. */
9039 case DW_TAG_enumeration_type:
9040 case DW_TAG_enumerator:
9041 /* These tags always have simple identifiers already; no need
9042 to canonicalize them. */
9043 part_die->name = DW_STRING (&attr);
9044 break;
9045 default:
9046 part_die->name
9047 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 9048 &cu->objfile->objfile_obstack);
71c25dea
TT
9049 break;
9050 }
c906108c 9051 break;
31ef98ae 9052 case DW_AT_linkage_name:
c906108c 9053 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
9054 /* Note that both forms of linkage name might appear. We
9055 assume they will be the same, and we only store the last
9056 one we see. */
94af9270
KS
9057 if (cu->language == language_ada)
9058 part_die->name = DW_STRING (&attr);
abc72ce4 9059 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
9060 break;
9061 case DW_AT_low_pc:
9062 has_low_pc_attr = 1;
9063 part_die->lowpc = DW_ADDR (&attr);
9064 break;
9065 case DW_AT_high_pc:
9066 has_high_pc_attr = 1;
9067 part_die->highpc = DW_ADDR (&attr);
9068 break;
9069 case DW_AT_location:
0963b4bd 9070 /* Support the .debug_loc offsets. */
8e19ed76
PS
9071 if (attr_form_is_block (&attr))
9072 {
9073 part_die->locdesc = DW_BLOCK (&attr);
9074 }
3690dd37 9075 else if (attr_form_is_section_offset (&attr))
8e19ed76 9076 {
4d3c2250 9077 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9078 }
9079 else
9080 {
4d3c2250
KB
9081 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9082 "partial symbol information");
8e19ed76 9083 }
c906108c 9084 break;
c906108c
SS
9085 case DW_AT_external:
9086 part_die->is_external = DW_UNSND (&attr);
9087 break;
9088 case DW_AT_declaration:
9089 part_die->is_declaration = DW_UNSND (&attr);
9090 break;
9091 case DW_AT_type:
9092 part_die->has_type = 1;
9093 break;
9094 case DW_AT_abstract_origin:
9095 case DW_AT_specification:
72bf9492
DJ
9096 case DW_AT_extension:
9097 part_die->has_specification = 1;
c764a876 9098 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9099 break;
9100 case DW_AT_sibling:
9101 /* Ignore absolute siblings, they might point outside of
9102 the current compile unit. */
9103 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9104 complaint (&symfile_complaints,
9105 _("ignoring absolute DW_AT_sibling"));
c906108c 9106 else
93311388 9107 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9108 break;
fa4028e9
JB
9109 case DW_AT_byte_size:
9110 part_die->has_byte_size = 1;
9111 break;
68511cec
CES
9112 case DW_AT_calling_convention:
9113 /* DWARF doesn't provide a way to identify a program's source-level
9114 entry point. DW_AT_calling_convention attributes are only meant
9115 to describe functions' calling conventions.
9116
9117 However, because it's a necessary piece of information in
9118 Fortran, and because DW_CC_program is the only piece of debugging
9119 information whose definition refers to a 'main program' at all,
9120 several compilers have begun marking Fortran main programs with
9121 DW_CC_program --- even when those functions use the standard
9122 calling conventions.
9123
9124 So until DWARF specifies a way to provide this information and
9125 compilers pick up the new representation, we'll support this
9126 practice. */
9127 if (DW_UNSND (&attr) == DW_CC_program
9128 && cu->language == language_fortran)
01f8c46d
JK
9129 {
9130 set_main_name (part_die->name);
9131
9132 /* As this DIE has a static linkage the name would be difficult
9133 to look up later. */
9134 language_of_main = language_fortran;
9135 }
68511cec 9136 break;
c906108c
SS
9137 default:
9138 break;
9139 }
9140 }
9141
c906108c
SS
9142 /* When using the GNU linker, .gnu.linkonce. sections are used to
9143 eliminate duplicate copies of functions and vtables and such.
9144 The linker will arbitrarily choose one and discard the others.
9145 The AT_*_pc values for such functions refer to local labels in
9146 these sections. If the section from that file was discarded, the
9147 labels are not in the output, so the relocs get a value of 0.
9148 If this is a discarded function, mark the pc bounds as invalid,
9149 so that GDB will ignore it. */
9150 if (has_low_pc_attr && has_high_pc_attr
9151 && part_die->lowpc < part_die->highpc
9152 && (part_die->lowpc != 0
72dca2f5 9153 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 9154 part_die->has_pc_info = 1;
85cbf3d3 9155
c906108c
SS
9156 return info_ptr;
9157}
9158
72bf9492
DJ
9159/* Find a cached partial DIE at OFFSET in CU. */
9160
9161static struct partial_die_info *
c764a876 9162find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9163{
9164 struct partial_die_info *lookup_die = NULL;
9165 struct partial_die_info part_die;
9166
9167 part_die.offset = offset;
9168 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9169
72bf9492
DJ
9170 return lookup_die;
9171}
9172
348e048f
DE
9173/* Find a partial DIE at OFFSET, which may or may not be in CU,
9174 except in the case of .debug_types DIEs which do not reference
9175 outside their CU (they do however referencing other types via
9176 DW_FORM_sig8). */
72bf9492
DJ
9177
9178static struct partial_die_info *
c764a876 9179find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9180{
5afb4e99
DJ
9181 struct dwarf2_per_cu_data *per_cu = NULL;
9182 struct partial_die_info *pd = NULL;
72bf9492 9183
348e048f
DE
9184 if (cu->per_cu->from_debug_types)
9185 {
9186 pd = find_partial_die_in_comp_unit (offset, cu);
9187 if (pd != NULL)
9188 return pd;
9189 goto not_found;
9190 }
9191
45452591 9192 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9193 {
9194 pd = find_partial_die_in_comp_unit (offset, cu);
9195 if (pd != NULL)
9196 return pd;
9197 }
72bf9492 9198
ae038cb0
DJ
9199 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9200
98bfdba5
PA
9201 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9202 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
9203
9204 per_cu->cu->last_used = 0;
5afb4e99
DJ
9205 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9206
9207 if (pd == NULL && per_cu->load_all_dies == 0)
9208 {
9209 struct cleanup *back_to;
9210 struct partial_die_info comp_unit_die;
9211 struct abbrev_info *abbrev;
9212 unsigned int bytes_read;
9213 char *info_ptr;
9214
9215 per_cu->load_all_dies = 1;
9216
9217 /* Re-read the DIEs. */
9218 back_to = make_cleanup (null_cleanup, 0);
9219 if (per_cu->cu->dwarf2_abbrevs == NULL)
9220 {
9221 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 9222 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9223 }
dce234bc 9224 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9225 + per_cu->cu->header.offset
9226 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9227 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9228 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
9229 per_cu->cu->objfile->obfd,
9230 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9231 per_cu->cu);
9232 if (comp_unit_die.has_children)
93311388
DE
9233 load_partial_dies (per_cu->cu->objfile->obfd,
9234 dwarf2_per_objfile->info.buffer, info_ptr,
9235 0, per_cu->cu);
5afb4e99
DJ
9236 do_cleanups (back_to);
9237
9238 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9239 }
9240
348e048f
DE
9241 not_found:
9242
5afb4e99
DJ
9243 if (pd == NULL)
9244 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9245 _("could not find partial DIE 0x%x "
9246 "in cache [from module %s]\n"),
5afb4e99
DJ
9247 offset, bfd_get_filename (cu->objfile->obfd));
9248 return pd;
72bf9492
DJ
9249}
9250
abc72ce4
DE
9251/* See if we can figure out if the class lives in a namespace. We do
9252 this by looking for a member function; its demangled name will
9253 contain namespace info, if there is any. */
9254
9255static void
9256guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9257 struct dwarf2_cu *cu)
9258{
9259 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9260 what template types look like, because the demangler
9261 frequently doesn't give the same name as the debug info. We
9262 could fix this by only using the demangled name to get the
9263 prefix (but see comment in read_structure_type). */
9264
9265 struct partial_die_info *real_pdi;
9266 struct partial_die_info *child_pdi;
9267
9268 /* If this DIE (this DIE's specification, if any) has a parent, then
9269 we should not do this. We'll prepend the parent's fully qualified
9270 name when we create the partial symbol. */
9271
9272 real_pdi = struct_pdi;
9273 while (real_pdi->has_specification)
9274 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9275
9276 if (real_pdi->die_parent != NULL)
9277 return;
9278
9279 for (child_pdi = struct_pdi->die_child;
9280 child_pdi != NULL;
9281 child_pdi = child_pdi->die_sibling)
9282 {
9283 if (child_pdi->tag == DW_TAG_subprogram
9284 && child_pdi->linkage_name != NULL)
9285 {
9286 char *actual_class_name
9287 = language_class_name_from_physname (cu->language_defn,
9288 child_pdi->linkage_name);
9289 if (actual_class_name != NULL)
9290 {
9291 struct_pdi->name
9292 = obsavestring (actual_class_name,
9293 strlen (actual_class_name),
9294 &cu->objfile->objfile_obstack);
9295 xfree (actual_class_name);
9296 }
9297 break;
9298 }
9299 }
9300}
9301
72bf9492
DJ
9302/* Adjust PART_DIE before generating a symbol for it. This function
9303 may set the is_external flag or change the DIE's name. */
9304
9305static void
9306fixup_partial_die (struct partial_die_info *part_die,
9307 struct dwarf2_cu *cu)
9308{
abc72ce4
DE
9309 /* Once we've fixed up a die, there's no point in doing so again.
9310 This also avoids a memory leak if we were to call
9311 guess_partial_die_structure_name multiple times. */
9312 if (part_die->fixup_called)
9313 return;
9314
72bf9492
DJ
9315 /* If we found a reference attribute and the DIE has no name, try
9316 to find a name in the referred to DIE. */
9317
9318 if (part_die->name == NULL && part_die->has_specification)
9319 {
9320 struct partial_die_info *spec_die;
72bf9492 9321
10b3939b 9322 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9323
10b3939b 9324 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9325
9326 if (spec_die->name)
9327 {
9328 part_die->name = spec_die->name;
9329
9330 /* Copy DW_AT_external attribute if it is set. */
9331 if (spec_die->is_external)
9332 part_die->is_external = spec_die->is_external;
9333 }
9334 }
9335
9336 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9337
9338 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9339 part_die->name = "(anonymous namespace)";
9340
abc72ce4
DE
9341 /* If there is no parent die to provide a namespace, and there are
9342 children, see if we can determine the namespace from their linkage
9343 name.
9344 NOTE: We need to do this even if cu->has_namespace_info != 0.
9345 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9346 if (cu->language == language_cplus
9347 && dwarf2_per_objfile->types.asection != NULL
9348 && part_die->die_parent == NULL
9349 && part_die->has_children
9350 && (part_die->tag == DW_TAG_class_type
9351 || part_die->tag == DW_TAG_structure_type
9352 || part_die->tag == DW_TAG_union_type))
9353 guess_partial_die_structure_name (part_die, cu);
9354
9355 part_die->fixup_called = 1;
72bf9492
DJ
9356}
9357
a8329558 9358/* Read an attribute value described by an attribute form. */
c906108c 9359
fe1b8b76 9360static gdb_byte *
a8329558 9361read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9362 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9363 struct dwarf2_cu *cu)
c906108c 9364{
e7c27a73 9365 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9366 unsigned int bytes_read;
9367 struct dwarf_block *blk;
9368
a8329558
KW
9369 attr->form = form;
9370 switch (form)
c906108c 9371 {
c906108c 9372 case DW_FORM_ref_addr:
ae411497
TT
9373 if (cu->header.version == 2)
9374 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9375 else
3e43a32a
MS
9376 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9377 &cu->header, &bytes_read);
ae411497
TT
9378 info_ptr += bytes_read;
9379 break;
9380 case DW_FORM_addr:
e7c27a73 9381 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9382 info_ptr += bytes_read;
c906108c
SS
9383 break;
9384 case DW_FORM_block2:
7b5a2f43 9385 blk = dwarf_alloc_block (cu);
c906108c
SS
9386 blk->size = read_2_bytes (abfd, info_ptr);
9387 info_ptr += 2;
9388 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9389 info_ptr += blk->size;
9390 DW_BLOCK (attr) = blk;
9391 break;
9392 case DW_FORM_block4:
7b5a2f43 9393 blk = dwarf_alloc_block (cu);
c906108c
SS
9394 blk->size = read_4_bytes (abfd, info_ptr);
9395 info_ptr += 4;
9396 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9397 info_ptr += blk->size;
9398 DW_BLOCK (attr) = blk;
9399 break;
9400 case DW_FORM_data2:
9401 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9402 info_ptr += 2;
9403 break;
9404 case DW_FORM_data4:
9405 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9406 info_ptr += 4;
9407 break;
9408 case DW_FORM_data8:
9409 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9410 info_ptr += 8;
9411 break;
2dc7f7b3
TT
9412 case DW_FORM_sec_offset:
9413 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9414 info_ptr += bytes_read;
9415 break;
c906108c 9416 case DW_FORM_string:
9b1c24c8 9417 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9418 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9419 info_ptr += bytes_read;
9420 break;
4bdf3d34
JJ
9421 case DW_FORM_strp:
9422 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9423 &bytes_read);
8285870a 9424 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9425 info_ptr += bytes_read;
9426 break;
2dc7f7b3 9427 case DW_FORM_exprloc:
c906108c 9428 case DW_FORM_block:
7b5a2f43 9429 blk = dwarf_alloc_block (cu);
c906108c
SS
9430 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9431 info_ptr += bytes_read;
9432 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9433 info_ptr += blk->size;
9434 DW_BLOCK (attr) = blk;
9435 break;
9436 case DW_FORM_block1:
7b5a2f43 9437 blk = dwarf_alloc_block (cu);
c906108c
SS
9438 blk->size = read_1_byte (abfd, info_ptr);
9439 info_ptr += 1;
9440 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9441 info_ptr += blk->size;
9442 DW_BLOCK (attr) = blk;
9443 break;
9444 case DW_FORM_data1:
9445 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9446 info_ptr += 1;
9447 break;
9448 case DW_FORM_flag:
9449 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9450 info_ptr += 1;
9451 break;
2dc7f7b3
TT
9452 case DW_FORM_flag_present:
9453 DW_UNSND (attr) = 1;
9454 break;
c906108c
SS
9455 case DW_FORM_sdata:
9456 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9457 info_ptr += bytes_read;
9458 break;
9459 case DW_FORM_udata:
9460 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9461 info_ptr += bytes_read;
9462 break;
9463 case DW_FORM_ref1:
10b3939b 9464 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9465 info_ptr += 1;
9466 break;
9467 case DW_FORM_ref2:
10b3939b 9468 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9469 info_ptr += 2;
9470 break;
9471 case DW_FORM_ref4:
10b3939b 9472 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9473 info_ptr += 4;
9474 break;
613e1657 9475 case DW_FORM_ref8:
10b3939b 9476 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9477 info_ptr += 8;
9478 break;
348e048f
DE
9479 case DW_FORM_sig8:
9480 /* Convert the signature to something we can record in DW_UNSND
9481 for later lookup.
9482 NOTE: This is NULL if the type wasn't found. */
9483 DW_SIGNATURED_TYPE (attr) =
9484 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9485 info_ptr += 8;
9486 break;
c906108c 9487 case DW_FORM_ref_udata:
10b3939b
DJ
9488 DW_ADDR (attr) = (cu->header.offset
9489 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9490 info_ptr += bytes_read;
9491 break;
c906108c 9492 case DW_FORM_indirect:
a8329558
KW
9493 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9494 info_ptr += bytes_read;
e7c27a73 9495 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9496 break;
c906108c 9497 default:
8a3fe4f8 9498 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9499 dwarf_form_name (form),
9500 bfd_get_filename (abfd));
c906108c 9501 }
28e94949
JB
9502
9503 /* We have seen instances where the compiler tried to emit a byte
9504 size attribute of -1 which ended up being encoded as an unsigned
9505 0xffffffff. Although 0xffffffff is technically a valid size value,
9506 an object of this size seems pretty unlikely so we can relatively
9507 safely treat these cases as if the size attribute was invalid and
9508 treat them as zero by default. */
9509 if (attr->name == DW_AT_byte_size
9510 && form == DW_FORM_data4
9511 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9512 {
9513 complaint
9514 (&symfile_complaints,
43bbcdc2
PH
9515 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9516 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9517 DW_UNSND (attr) = 0;
9518 }
28e94949 9519
c906108c
SS
9520 return info_ptr;
9521}
9522
a8329558
KW
9523/* Read an attribute described by an abbreviated attribute. */
9524
fe1b8b76 9525static gdb_byte *
a8329558 9526read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9527 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9528{
9529 attr->name = abbrev->name;
e7c27a73 9530 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9531}
9532
0963b4bd 9533/* Read dwarf information from a buffer. */
c906108c
SS
9534
9535static unsigned int
fe1b8b76 9536read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 9537{
fe1b8b76 9538 return bfd_get_8 (abfd, buf);
c906108c
SS
9539}
9540
9541static int
fe1b8b76 9542read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 9543{
fe1b8b76 9544 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
9545}
9546
9547static unsigned int
fe1b8b76 9548read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9549{
fe1b8b76 9550 return bfd_get_16 (abfd, buf);
c906108c
SS
9551}
9552
9553static int
fe1b8b76 9554read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9555{
fe1b8b76 9556 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
9557}
9558
9559static unsigned int
fe1b8b76 9560read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9561{
fe1b8b76 9562 return bfd_get_32 (abfd, buf);
c906108c
SS
9563}
9564
9565static int
fe1b8b76 9566read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9567{
fe1b8b76 9568 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
9569}
9570
93311388 9571static ULONGEST
fe1b8b76 9572read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9573{
fe1b8b76 9574 return bfd_get_64 (abfd, buf);
c906108c
SS
9575}
9576
9577static CORE_ADDR
fe1b8b76 9578read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 9579 unsigned int *bytes_read)
c906108c 9580{
e7c27a73 9581 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9582 CORE_ADDR retval = 0;
9583
107d2387 9584 if (cu_header->signed_addr_p)
c906108c 9585 {
107d2387
AC
9586 switch (cu_header->addr_size)
9587 {
9588 case 2:
fe1b8b76 9589 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
9590 break;
9591 case 4:
fe1b8b76 9592 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
9593 break;
9594 case 8:
fe1b8b76 9595 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
9596 break;
9597 default:
8e65ff28 9598 internal_error (__FILE__, __LINE__,
e2e0b3e5 9599 _("read_address: bad switch, signed [in module %s]"),
659b0389 9600 bfd_get_filename (abfd));
107d2387
AC
9601 }
9602 }
9603 else
9604 {
9605 switch (cu_header->addr_size)
9606 {
9607 case 2:
fe1b8b76 9608 retval = bfd_get_16 (abfd, buf);
107d2387
AC
9609 break;
9610 case 4:
fe1b8b76 9611 retval = bfd_get_32 (abfd, buf);
107d2387
AC
9612 break;
9613 case 8:
fe1b8b76 9614 retval = bfd_get_64 (abfd, buf);
107d2387
AC
9615 break;
9616 default:
8e65ff28 9617 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
9618 _("read_address: bad switch, "
9619 "unsigned [in module %s]"),
659b0389 9620 bfd_get_filename (abfd));
107d2387 9621 }
c906108c 9622 }
64367e0a 9623
107d2387
AC
9624 *bytes_read = cu_header->addr_size;
9625 return retval;
c906108c
SS
9626}
9627
f7ef9339 9628/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
9629 specification allows the initial length to take up either 4 bytes
9630 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9631 bytes describe the length and all offsets will be 8 bytes in length
9632 instead of 4.
9633
f7ef9339
KB
9634 An older, non-standard 64-bit format is also handled by this
9635 function. The older format in question stores the initial length
9636 as an 8-byte quantity without an escape value. Lengths greater
9637 than 2^32 aren't very common which means that the initial 4 bytes
9638 is almost always zero. Since a length value of zero doesn't make
9639 sense for the 32-bit format, this initial zero can be considered to
9640 be an escape value which indicates the presence of the older 64-bit
9641 format. As written, the code can't detect (old format) lengths
917c78fc
MK
9642 greater than 4GB. If it becomes necessary to handle lengths
9643 somewhat larger than 4GB, we could allow other small values (such
9644 as the non-sensical values of 1, 2, and 3) to also be used as
9645 escape values indicating the presence of the old format.
f7ef9339 9646
917c78fc
MK
9647 The value returned via bytes_read should be used to increment the
9648 relevant pointer after calling read_initial_length().
c764a876 9649
613e1657
KB
9650 [ Note: read_initial_length() and read_offset() are based on the
9651 document entitled "DWARF Debugging Information Format", revision
f7ef9339 9652 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
9653 from:
9654
f7ef9339 9655 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 9656
613e1657
KB
9657 This document is only a draft and is subject to change. (So beware.)
9658
f7ef9339 9659 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
9660 determined empirically by examining 64-bit ELF files produced by
9661 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
9662
9663 - Kevin, July 16, 2002
613e1657
KB
9664 ] */
9665
9666static LONGEST
c764a876 9667read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 9668{
fe1b8b76 9669 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 9670
dd373385 9671 if (length == 0xffffffff)
613e1657 9672 {
fe1b8b76 9673 length = bfd_get_64 (abfd, buf + 4);
613e1657 9674 *bytes_read = 12;
613e1657 9675 }
dd373385 9676 else if (length == 0)
f7ef9339 9677 {
dd373385 9678 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 9679 length = bfd_get_64 (abfd, buf);
f7ef9339 9680 *bytes_read = 8;
f7ef9339 9681 }
613e1657
KB
9682 else
9683 {
9684 *bytes_read = 4;
613e1657
KB
9685 }
9686
c764a876
DE
9687 return length;
9688}
dd373385 9689
c764a876
DE
9690/* Cover function for read_initial_length.
9691 Returns the length of the object at BUF, and stores the size of the
9692 initial length in *BYTES_READ and stores the size that offsets will be in
9693 *OFFSET_SIZE.
9694 If the initial length size is not equivalent to that specified in
9695 CU_HEADER then issue a complaint.
9696 This is useful when reading non-comp-unit headers. */
dd373385 9697
c764a876
DE
9698static LONGEST
9699read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9700 const struct comp_unit_head *cu_header,
9701 unsigned int *bytes_read,
9702 unsigned int *offset_size)
9703{
9704 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9705
9706 gdb_assert (cu_header->initial_length_size == 4
9707 || cu_header->initial_length_size == 8
9708 || cu_header->initial_length_size == 12);
9709
9710 if (cu_header->initial_length_size != *bytes_read)
9711 complaint (&symfile_complaints,
9712 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 9713
c764a876 9714 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 9715 return length;
613e1657
KB
9716}
9717
9718/* Read an offset from the data stream. The size of the offset is
917c78fc 9719 given by cu_header->offset_size. */
613e1657
KB
9720
9721static LONGEST
fe1b8b76 9722read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 9723 unsigned int *bytes_read)
c764a876
DE
9724{
9725 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 9726
c764a876
DE
9727 *bytes_read = cu_header->offset_size;
9728 return offset;
9729}
9730
9731/* Read an offset from the data stream. */
9732
9733static LONGEST
9734read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
9735{
9736 LONGEST retval = 0;
9737
c764a876 9738 switch (offset_size)
613e1657
KB
9739 {
9740 case 4:
fe1b8b76 9741 retval = bfd_get_32 (abfd, buf);
613e1657
KB
9742 break;
9743 case 8:
fe1b8b76 9744 retval = bfd_get_64 (abfd, buf);
613e1657
KB
9745 break;
9746 default:
8e65ff28 9747 internal_error (__FILE__, __LINE__,
c764a876 9748 _("read_offset_1: bad switch [in module %s]"),
659b0389 9749 bfd_get_filename (abfd));
613e1657
KB
9750 }
9751
917c78fc 9752 return retval;
613e1657
KB
9753}
9754
fe1b8b76
JB
9755static gdb_byte *
9756read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
9757{
9758 /* If the size of a host char is 8 bits, we can return a pointer
9759 to the buffer, otherwise we have to copy the data to a buffer
9760 allocated on the temporary obstack. */
4bdf3d34 9761 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 9762 return buf;
c906108c
SS
9763}
9764
9765static char *
9b1c24c8 9766read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
9767{
9768 /* If the size of a host char is 8 bits, we can return a pointer
9769 to the string, otherwise we have to copy the string to a buffer
9770 allocated on the temporary obstack. */
4bdf3d34 9771 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
9772 if (*buf == '\0')
9773 {
9774 *bytes_read_ptr = 1;
9775 return NULL;
9776 }
fe1b8b76
JB
9777 *bytes_read_ptr = strlen ((char *) buf) + 1;
9778 return (char *) buf;
4bdf3d34
JJ
9779}
9780
9781static char *
fe1b8b76 9782read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
9783 const struct comp_unit_head *cu_header,
9784 unsigned int *bytes_read_ptr)
9785{
c764a876 9786 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 9787
be391dca 9788 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 9789 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 9790 {
8a3fe4f8 9791 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 9792 bfd_get_filename (abfd));
4bdf3d34 9793 return NULL;
c906108c 9794 }
dce234bc 9795 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 9796 {
3e43a32a
MS
9797 error (_("DW_FORM_strp pointing outside of "
9798 ".debug_str section [in module %s]"),
9799 bfd_get_filename (abfd));
c906108c
SS
9800 return NULL;
9801 }
4bdf3d34 9802 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 9803 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 9804 return NULL;
dce234bc 9805 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
9806}
9807
ce5d95e1 9808static unsigned long
fe1b8b76 9809read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9810{
ce5d95e1
JB
9811 unsigned long result;
9812 unsigned int num_read;
c906108c
SS
9813 int i, shift;
9814 unsigned char byte;
9815
9816 result = 0;
9817 shift = 0;
9818 num_read = 0;
9819 i = 0;
9820 while (1)
9821 {
fe1b8b76 9822 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9823 buf++;
9824 num_read++;
ce5d95e1 9825 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
9826 if ((byte & 128) == 0)
9827 {
9828 break;
9829 }
9830 shift += 7;
9831 }
9832 *bytes_read_ptr = num_read;
9833 return result;
9834}
9835
ce5d95e1 9836static long
fe1b8b76 9837read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9838{
ce5d95e1 9839 long result;
77e0b926 9840 int i, shift, num_read;
c906108c
SS
9841 unsigned char byte;
9842
9843 result = 0;
9844 shift = 0;
c906108c
SS
9845 num_read = 0;
9846 i = 0;
9847 while (1)
9848 {
fe1b8b76 9849 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9850 buf++;
9851 num_read++;
ce5d95e1 9852 result |= ((long)(byte & 127) << shift);
c906108c
SS
9853 shift += 7;
9854 if ((byte & 128) == 0)
9855 {
9856 break;
9857 }
9858 }
77e0b926
DJ
9859 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9860 result |= -(((long)1) << shift);
c906108c
SS
9861 *bytes_read_ptr = num_read;
9862 return result;
9863}
9864
4bb7a0a7
DJ
9865/* Return a pointer to just past the end of an LEB128 number in BUF. */
9866
fe1b8b76
JB
9867static gdb_byte *
9868skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
9869{
9870 int byte;
9871
9872 while (1)
9873 {
fe1b8b76 9874 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
9875 buf++;
9876 if ((byte & 128) == 0)
9877 return buf;
9878 }
9879}
9880
c906108c 9881static void
e142c38c 9882set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
9883{
9884 switch (lang)
9885 {
9886 case DW_LANG_C89:
76bee0cc 9887 case DW_LANG_C99:
c906108c 9888 case DW_LANG_C:
e142c38c 9889 cu->language = language_c;
c906108c
SS
9890 break;
9891 case DW_LANG_C_plus_plus:
e142c38c 9892 cu->language = language_cplus;
c906108c 9893 break;
6aecb9c2
JB
9894 case DW_LANG_D:
9895 cu->language = language_d;
9896 break;
c906108c
SS
9897 case DW_LANG_Fortran77:
9898 case DW_LANG_Fortran90:
b21b22e0 9899 case DW_LANG_Fortran95:
e142c38c 9900 cu->language = language_fortran;
c906108c
SS
9901 break;
9902 case DW_LANG_Mips_Assembler:
e142c38c 9903 cu->language = language_asm;
c906108c 9904 break;
bebd888e 9905 case DW_LANG_Java:
e142c38c 9906 cu->language = language_java;
bebd888e 9907 break;
c906108c 9908 case DW_LANG_Ada83:
8aaf0b47 9909 case DW_LANG_Ada95:
bc5f45f8
JB
9910 cu->language = language_ada;
9911 break;
72019c9c
GM
9912 case DW_LANG_Modula2:
9913 cu->language = language_m2;
9914 break;
fe8e67fd
PM
9915 case DW_LANG_Pascal83:
9916 cu->language = language_pascal;
9917 break;
22566fbd
DJ
9918 case DW_LANG_ObjC:
9919 cu->language = language_objc;
9920 break;
c906108c
SS
9921 case DW_LANG_Cobol74:
9922 case DW_LANG_Cobol85:
c906108c 9923 default:
e142c38c 9924 cu->language = language_minimal;
c906108c
SS
9925 break;
9926 }
e142c38c 9927 cu->language_defn = language_def (cu->language);
c906108c
SS
9928}
9929
9930/* Return the named attribute or NULL if not there. */
9931
9932static struct attribute *
e142c38c 9933dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
9934{
9935 unsigned int i;
9936 struct attribute *spec = NULL;
9937
9938 for (i = 0; i < die->num_attrs; ++i)
9939 {
9940 if (die->attrs[i].name == name)
10b3939b 9941 return &die->attrs[i];
c906108c
SS
9942 if (die->attrs[i].name == DW_AT_specification
9943 || die->attrs[i].name == DW_AT_abstract_origin)
9944 spec = &die->attrs[i];
9945 }
c906108c 9946
10b3939b 9947 if (spec)
f2f0e013
DJ
9948 {
9949 die = follow_die_ref (die, spec, &cu);
9950 return dwarf2_attr (die, name, cu);
9951 }
c5aa993b 9952
c906108c
SS
9953 return NULL;
9954}
9955
348e048f
DE
9956/* Return the named attribute or NULL if not there,
9957 but do not follow DW_AT_specification, etc.
9958 This is for use in contexts where we're reading .debug_types dies.
9959 Following DW_AT_specification, DW_AT_abstract_origin will take us
9960 back up the chain, and we want to go down. */
9961
9962static struct attribute *
9963dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9964 struct dwarf2_cu *cu)
9965{
9966 unsigned int i;
9967
9968 for (i = 0; i < die->num_attrs; ++i)
9969 if (die->attrs[i].name == name)
9970 return &die->attrs[i];
9971
9972 return NULL;
9973}
9974
05cf31d1
JB
9975/* Return non-zero iff the attribute NAME is defined for the given DIE,
9976 and holds a non-zero value. This function should only be used for
2dc7f7b3 9977 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
9978
9979static int
9980dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9981{
9982 struct attribute *attr = dwarf2_attr (die, name, cu);
9983
9984 return (attr && DW_UNSND (attr));
9985}
9986
3ca72b44 9987static int
e142c38c 9988die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 9989{
05cf31d1
JB
9990 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9991 which value is non-zero. However, we have to be careful with
9992 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9993 (via dwarf2_flag_true_p) follows this attribute. So we may
9994 end up accidently finding a declaration attribute that belongs
9995 to a different DIE referenced by the specification attribute,
9996 even though the given DIE does not have a declaration attribute. */
9997 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9998 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
9999}
10000
63d06c5c 10001/* Return the die giving the specification for DIE, if there is
f2f0e013 10002 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
10003 containing the return value on output. If there is no
10004 specification, but there is an abstract origin, that is
10005 returned. */
63d06c5c
DC
10006
10007static struct die_info *
f2f0e013 10008die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 10009{
f2f0e013
DJ
10010 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10011 *spec_cu);
63d06c5c 10012
edb3359d
DJ
10013 if (spec_attr == NULL)
10014 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10015
63d06c5c
DC
10016 if (spec_attr == NULL)
10017 return NULL;
10018 else
f2f0e013 10019 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 10020}
c906108c 10021
debd256d 10022/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
10023 refers to.
10024 NOTE: This is also used as a "cleanup" function. */
10025
debd256d
JB
10026static void
10027free_line_header (struct line_header *lh)
10028{
10029 if (lh->standard_opcode_lengths)
a8bc7b56 10030 xfree (lh->standard_opcode_lengths);
debd256d
JB
10031
10032 /* Remember that all the lh->file_names[i].name pointers are
10033 pointers into debug_line_buffer, and don't need to be freed. */
10034 if (lh->file_names)
a8bc7b56 10035 xfree (lh->file_names);
debd256d
JB
10036
10037 /* Similarly for the include directory names. */
10038 if (lh->include_dirs)
a8bc7b56 10039 xfree (lh->include_dirs);
debd256d 10040
a8bc7b56 10041 xfree (lh);
debd256d
JB
10042}
10043
debd256d 10044/* Add an entry to LH's include directory table. */
ae2de4f8 10045
debd256d
JB
10046static void
10047add_include_dir (struct line_header *lh, char *include_dir)
c906108c 10048{
debd256d
JB
10049 /* Grow the array if necessary. */
10050 if (lh->include_dirs_size == 0)
c5aa993b 10051 {
debd256d
JB
10052 lh->include_dirs_size = 1; /* for testing */
10053 lh->include_dirs = xmalloc (lh->include_dirs_size
10054 * sizeof (*lh->include_dirs));
10055 }
10056 else if (lh->num_include_dirs >= lh->include_dirs_size)
10057 {
10058 lh->include_dirs_size *= 2;
10059 lh->include_dirs = xrealloc (lh->include_dirs,
10060 (lh->include_dirs_size
10061 * sizeof (*lh->include_dirs)));
c5aa993b 10062 }
c906108c 10063
debd256d
JB
10064 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10065}
6e70227d 10066
debd256d 10067/* Add an entry to LH's file name table. */
ae2de4f8 10068
debd256d
JB
10069static void
10070add_file_name (struct line_header *lh,
10071 char *name,
10072 unsigned int dir_index,
10073 unsigned int mod_time,
10074 unsigned int length)
10075{
10076 struct file_entry *fe;
10077
10078 /* Grow the array if necessary. */
10079 if (lh->file_names_size == 0)
10080 {
10081 lh->file_names_size = 1; /* for testing */
10082 lh->file_names = xmalloc (lh->file_names_size
10083 * sizeof (*lh->file_names));
10084 }
10085 else if (lh->num_file_names >= lh->file_names_size)
10086 {
10087 lh->file_names_size *= 2;
10088 lh->file_names = xrealloc (lh->file_names,
10089 (lh->file_names_size
10090 * sizeof (*lh->file_names)));
10091 }
10092
10093 fe = &lh->file_names[lh->num_file_names++];
10094 fe->name = name;
10095 fe->dir_index = dir_index;
10096 fe->mod_time = mod_time;
10097 fe->length = length;
aaa75496 10098 fe->included_p = 0;
cb1df416 10099 fe->symtab = NULL;
debd256d 10100}
6e70227d 10101
debd256d 10102/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10103 .debug_line, according to the endianness of ABFD. Return a pointer
10104 to a struct line_header, allocated using xmalloc.
debd256d
JB
10105
10106 NOTE: the strings in the include directory and file name tables of
10107 the returned object point into debug_line_buffer, and must not be
10108 freed. */
ae2de4f8 10109
debd256d
JB
10110static struct line_header *
10111dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10112 struct dwarf2_cu *cu)
debd256d
JB
10113{
10114 struct cleanup *back_to;
10115 struct line_header *lh;
fe1b8b76 10116 gdb_byte *line_ptr;
c764a876 10117 unsigned int bytes_read, offset_size;
debd256d
JB
10118 int i;
10119 char *cur_dir, *cur_file;
10120
be391dca 10121 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10122 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10123 {
e2e0b3e5 10124 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10125 return 0;
10126 }
10127
a738430d
MK
10128 /* Make sure that at least there's room for the total_length field.
10129 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10130 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10131 {
4d3c2250 10132 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10133 return 0;
10134 }
10135
10136 lh = xmalloc (sizeof (*lh));
10137 memset (lh, 0, sizeof (*lh));
10138 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10139 (void *) lh);
10140
dce234bc 10141 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10142
a738430d 10143 /* Read in the header. */
6e70227d 10144 lh->total_length =
c764a876
DE
10145 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10146 &bytes_read, &offset_size);
debd256d 10147 line_ptr += bytes_read;
dce234bc
PP
10148 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10149 + dwarf2_per_objfile->line.size))
debd256d 10150 {
4d3c2250 10151 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10152 return 0;
10153 }
10154 lh->statement_program_end = line_ptr + lh->total_length;
10155 lh->version = read_2_bytes (abfd, line_ptr);
10156 line_ptr += 2;
c764a876
DE
10157 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10158 line_ptr += offset_size;
debd256d
JB
10159 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10160 line_ptr += 1;
2dc7f7b3
TT
10161 if (lh->version >= 4)
10162 {
10163 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10164 line_ptr += 1;
10165 }
10166 else
10167 lh->maximum_ops_per_instruction = 1;
10168
10169 if (lh->maximum_ops_per_instruction == 0)
10170 {
10171 lh->maximum_ops_per_instruction = 1;
10172 complaint (&symfile_complaints,
3e43a32a
MS
10173 _("invalid maximum_ops_per_instruction "
10174 "in `.debug_line' section"));
2dc7f7b3
TT
10175 }
10176
debd256d
JB
10177 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10178 line_ptr += 1;
10179 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10180 line_ptr += 1;
10181 lh->line_range = read_1_byte (abfd, line_ptr);
10182 line_ptr += 1;
10183 lh->opcode_base = read_1_byte (abfd, line_ptr);
10184 line_ptr += 1;
10185 lh->standard_opcode_lengths
fe1b8b76 10186 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10187
10188 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10189 for (i = 1; i < lh->opcode_base; ++i)
10190 {
10191 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10192 line_ptr += 1;
10193 }
10194
a738430d 10195 /* Read directory table. */
9b1c24c8 10196 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10197 {
10198 line_ptr += bytes_read;
10199 add_include_dir (lh, cur_dir);
10200 }
10201 line_ptr += bytes_read;
10202
a738430d 10203 /* Read file name table. */
9b1c24c8 10204 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10205 {
10206 unsigned int dir_index, mod_time, length;
10207
10208 line_ptr += bytes_read;
10209 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10210 line_ptr += bytes_read;
10211 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10212 line_ptr += bytes_read;
10213 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10214 line_ptr += bytes_read;
10215
10216 add_file_name (lh, cur_file, dir_index, mod_time, length);
10217 }
10218 line_ptr += bytes_read;
6e70227d 10219 lh->statement_program_start = line_ptr;
debd256d 10220
dce234bc
PP
10221 if (line_ptr > (dwarf2_per_objfile->line.buffer
10222 + dwarf2_per_objfile->line.size))
4d3c2250 10223 complaint (&symfile_complaints,
3e43a32a
MS
10224 _("line number info header doesn't "
10225 "fit in `.debug_line' section"));
debd256d
JB
10226
10227 discard_cleanups (back_to);
10228 return lh;
10229}
c906108c 10230
5fb290d7
DJ
10231/* This function exists to work around a bug in certain compilers
10232 (particularly GCC 2.95), in which the first line number marker of a
10233 function does not show up until after the prologue, right before
10234 the second line number marker. This function shifts ADDRESS down
10235 to the beginning of the function if necessary, and is called on
10236 addresses passed to record_line. */
10237
10238static CORE_ADDR
e142c38c 10239check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
10240{
10241 struct function_range *fn;
10242
10243 /* Find the function_range containing address. */
e142c38c 10244 if (!cu->first_fn)
5fb290d7
DJ
10245 return address;
10246
e142c38c
DJ
10247 if (!cu->cached_fn)
10248 cu->cached_fn = cu->first_fn;
5fb290d7 10249
e142c38c 10250 fn = cu->cached_fn;
5fb290d7
DJ
10251 while (fn)
10252 if (fn->lowpc <= address && fn->highpc > address)
10253 goto found;
10254 else
10255 fn = fn->next;
10256
e142c38c
DJ
10257 fn = cu->first_fn;
10258 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
10259 if (fn->lowpc <= address && fn->highpc > address)
10260 goto found;
10261 else
10262 fn = fn->next;
10263
10264 return address;
10265
10266 found:
10267 if (fn->seen_line)
10268 return address;
10269 if (address != fn->lowpc)
4d3c2250 10270 complaint (&symfile_complaints,
e2e0b3e5 10271 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10272 (unsigned long) address, fn->name);
5fb290d7
DJ
10273 fn->seen_line = 1;
10274 return fn->lowpc;
10275}
10276
c6da4cef
DE
10277/* Subroutine of dwarf_decode_lines to simplify it.
10278 Return the file name of the psymtab for included file FILE_INDEX
10279 in line header LH of PST.
10280 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10281 If space for the result is malloc'd, it will be freed by a cleanup.
10282 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10283
10284static char *
10285psymtab_include_file_name (const struct line_header *lh, int file_index,
10286 const struct partial_symtab *pst,
10287 const char *comp_dir)
10288{
10289 const struct file_entry fe = lh->file_names [file_index];
10290 char *include_name = fe.name;
10291 char *include_name_to_compare = include_name;
10292 char *dir_name = NULL;
72b9f47f
TT
10293 const char *pst_filename;
10294 char *copied_name = NULL;
c6da4cef
DE
10295 int file_is_pst;
10296
10297 if (fe.dir_index)
10298 dir_name = lh->include_dirs[fe.dir_index - 1];
10299
10300 if (!IS_ABSOLUTE_PATH (include_name)
10301 && (dir_name != NULL || comp_dir != NULL))
10302 {
10303 /* Avoid creating a duplicate psymtab for PST.
10304 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10305 Before we do the comparison, however, we need to account
10306 for DIR_NAME and COMP_DIR.
10307 First prepend dir_name (if non-NULL). If we still don't
10308 have an absolute path prepend comp_dir (if non-NULL).
10309 However, the directory we record in the include-file's
10310 psymtab does not contain COMP_DIR (to match the
10311 corresponding symtab(s)).
10312
10313 Example:
10314
10315 bash$ cd /tmp
10316 bash$ gcc -g ./hello.c
10317 include_name = "hello.c"
10318 dir_name = "."
10319 DW_AT_comp_dir = comp_dir = "/tmp"
10320 DW_AT_name = "./hello.c" */
10321
10322 if (dir_name != NULL)
10323 {
10324 include_name = concat (dir_name, SLASH_STRING,
10325 include_name, (char *)NULL);
10326 include_name_to_compare = include_name;
10327 make_cleanup (xfree, include_name);
10328 }
10329 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10330 {
10331 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10332 include_name, (char *)NULL);
10333 }
10334 }
10335
10336 pst_filename = pst->filename;
10337 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10338 {
72b9f47f
TT
10339 copied_name = concat (pst->dirname, SLASH_STRING,
10340 pst_filename, (char *)NULL);
10341 pst_filename = copied_name;
c6da4cef
DE
10342 }
10343
1e3fad37 10344 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
10345
10346 if (include_name_to_compare != include_name)
10347 xfree (include_name_to_compare);
72b9f47f
TT
10348 if (copied_name != NULL)
10349 xfree (copied_name);
c6da4cef
DE
10350
10351 if (file_is_pst)
10352 return NULL;
10353 return include_name;
10354}
10355
aaa75496
JB
10356/* Decode the Line Number Program (LNP) for the given line_header
10357 structure and CU. The actual information extracted and the type
10358 of structures created from the LNP depends on the value of PST.
10359
10360 1. If PST is NULL, then this procedure uses the data from the program
10361 to create all necessary symbol tables, and their linetables.
6e70227d 10362
aaa75496
JB
10363 2. If PST is not NULL, this procedure reads the program to determine
10364 the list of files included by the unit represented by PST, and
c6da4cef
DE
10365 builds all the associated partial symbol tables.
10366
10367 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10368 It is used for relative paths in the line table.
10369 NOTE: When processing partial symtabs (pst != NULL),
10370 comp_dir == pst->dirname.
10371
10372 NOTE: It is important that psymtabs have the same file name (via strcmp)
10373 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10374 symtab we don't use it in the name of the psymtabs we create.
10375 E.g. expand_line_sal requires this when finding psymtabs to expand.
10376 A good testcase for this is mb-inline.exp. */
debd256d 10377
c906108c 10378static void
72b9f47f 10379dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10380 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10381{
a8c50c1f 10382 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10383 gdb_byte *line_end;
a8c50c1f 10384 unsigned int bytes_read, extended_len;
c906108c 10385 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10386 CORE_ADDR baseaddr;
10387 struct objfile *objfile = cu->objfile;
fbf65064 10388 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10389 const int decode_for_pst_p = (pst != NULL);
cb1df416 10390 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
10391
10392 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10393
debd256d
JB
10394 line_ptr = lh->statement_program_start;
10395 line_end = lh->statement_program_end;
c906108c
SS
10396
10397 /* Read the statement sequences until there's nothing left. */
10398 while (line_ptr < line_end)
10399 {
10400 /* state machine registers */
10401 CORE_ADDR address = 0;
10402 unsigned int file = 1;
10403 unsigned int line = 1;
10404 unsigned int column = 0;
debd256d 10405 int is_stmt = lh->default_is_stmt;
c906108c
SS
10406 int basic_block = 0;
10407 int end_sequence = 0;
fbf65064 10408 CORE_ADDR addr;
2dc7f7b3 10409 unsigned char op_index = 0;
c906108c 10410
aaa75496 10411 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10412 {
aaa75496 10413 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10414 /* lh->include_dirs and lh->file_names are 0-based, but the
10415 directory and file name numbers in the statement program
10416 are 1-based. */
10417 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10418 char *dir = NULL;
a738430d 10419
debd256d
JB
10420 if (fe->dir_index)
10421 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10422
10423 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10424 }
10425
a738430d 10426 /* Decode the table. */
c5aa993b 10427 while (!end_sequence)
c906108c
SS
10428 {
10429 op_code = read_1_byte (abfd, line_ptr);
10430 line_ptr += 1;
59205f5a
JB
10431 if (line_ptr > line_end)
10432 {
10433 dwarf2_debug_line_missing_end_sequence_complaint ();
10434 break;
10435 }
9aa1fe7e 10436
debd256d 10437 if (op_code >= lh->opcode_base)
6e70227d 10438 {
a738430d 10439 /* Special operand. */
debd256d 10440 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10441 address += (((op_index + (adj_opcode / lh->line_range))
10442 / lh->maximum_ops_per_instruction)
10443 * lh->minimum_instruction_length);
10444 op_index = ((op_index + (adj_opcode / lh->line_range))
10445 % lh->maximum_ops_per_instruction);
debd256d 10446 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10447 if (lh->num_file_names < file || file == 0)
25e43795 10448 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10449 /* For now we ignore lines not starting on an
10450 instruction boundary. */
10451 else if (op_index == 0)
25e43795
DJ
10452 {
10453 lh->file_names[file - 1].included_p = 1;
ca5f395d 10454 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10455 {
10456 if (last_subfile != current_subfile)
10457 {
10458 addr = gdbarch_addr_bits_remove (gdbarch, address);
10459 if (last_subfile)
10460 record_line (last_subfile, 0, addr);
10461 last_subfile = current_subfile;
10462 }
25e43795 10463 /* Append row to matrix using current values. */
fbf65064
UW
10464 addr = check_cu_functions (address, cu);
10465 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10466 record_line (current_subfile, line, addr);
366da635 10467 }
25e43795 10468 }
ca5f395d 10469 basic_block = 0;
9aa1fe7e
GK
10470 }
10471 else switch (op_code)
c906108c
SS
10472 {
10473 case DW_LNS_extended_op:
3e43a32a
MS
10474 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10475 &bytes_read);
473b7be6 10476 line_ptr += bytes_read;
a8c50c1f 10477 extended_end = line_ptr + extended_len;
c906108c
SS
10478 extended_op = read_1_byte (abfd, line_ptr);
10479 line_ptr += 1;
10480 switch (extended_op)
10481 {
10482 case DW_LNE_end_sequence:
10483 end_sequence = 1;
c906108c
SS
10484 break;
10485 case DW_LNE_set_address:
e7c27a73 10486 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 10487 op_index = 0;
107d2387
AC
10488 line_ptr += bytes_read;
10489 address += baseaddr;
c906108c
SS
10490 break;
10491 case DW_LNE_define_file:
debd256d
JB
10492 {
10493 char *cur_file;
10494 unsigned int dir_index, mod_time, length;
6e70227d 10495
3e43a32a
MS
10496 cur_file = read_direct_string (abfd, line_ptr,
10497 &bytes_read);
debd256d
JB
10498 line_ptr += bytes_read;
10499 dir_index =
10500 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10501 line_ptr += bytes_read;
10502 mod_time =
10503 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10504 line_ptr += bytes_read;
10505 length =
10506 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10507 line_ptr += bytes_read;
10508 add_file_name (lh, cur_file, dir_index, mod_time, length);
10509 }
c906108c 10510 break;
d0c6ba3d
CC
10511 case DW_LNE_set_discriminator:
10512 /* The discriminator is not interesting to the debugger;
10513 just ignore it. */
10514 line_ptr = extended_end;
10515 break;
c906108c 10516 default:
4d3c2250 10517 complaint (&symfile_complaints,
e2e0b3e5 10518 _("mangled .debug_line section"));
debd256d 10519 return;
c906108c 10520 }
a8c50c1f
DJ
10521 /* Make sure that we parsed the extended op correctly. If e.g.
10522 we expected a different address size than the producer used,
10523 we may have read the wrong number of bytes. */
10524 if (line_ptr != extended_end)
10525 {
10526 complaint (&symfile_complaints,
10527 _("mangled .debug_line section"));
10528 return;
10529 }
c906108c
SS
10530 break;
10531 case DW_LNS_copy:
59205f5a 10532 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10533 dwarf2_debug_line_missing_file_complaint ();
10534 else
366da635 10535 {
25e43795 10536 lh->file_names[file - 1].included_p = 1;
ca5f395d 10537 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10538 {
10539 if (last_subfile != current_subfile)
10540 {
10541 addr = gdbarch_addr_bits_remove (gdbarch, address);
10542 if (last_subfile)
10543 record_line (last_subfile, 0, addr);
10544 last_subfile = current_subfile;
10545 }
10546 addr = check_cu_functions (address, cu);
10547 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10548 record_line (current_subfile, line, addr);
10549 }
366da635 10550 }
c906108c
SS
10551 basic_block = 0;
10552 break;
10553 case DW_LNS_advance_pc:
2dc7f7b3
TT
10554 {
10555 CORE_ADDR adjust
10556 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10557
10558 address += (((op_index + adjust)
10559 / lh->maximum_ops_per_instruction)
10560 * lh->minimum_instruction_length);
10561 op_index = ((op_index + adjust)
10562 % lh->maximum_ops_per_instruction);
10563 line_ptr += bytes_read;
10564 }
c906108c
SS
10565 break;
10566 case DW_LNS_advance_line:
10567 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10568 line_ptr += bytes_read;
10569 break;
10570 case DW_LNS_set_file:
debd256d 10571 {
a738430d
MK
10572 /* The arrays lh->include_dirs and lh->file_names are
10573 0-based, but the directory and file name numbers in
10574 the statement program are 1-based. */
debd256d 10575 struct file_entry *fe;
4f1520fb 10576 char *dir = NULL;
a738430d 10577
debd256d
JB
10578 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10579 line_ptr += bytes_read;
59205f5a 10580 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10581 dwarf2_debug_line_missing_file_complaint ();
10582 else
10583 {
10584 fe = &lh->file_names[file - 1];
10585 if (fe->dir_index)
10586 dir = lh->include_dirs[fe->dir_index - 1];
10587 if (!decode_for_pst_p)
10588 {
10589 last_subfile = current_subfile;
10590 dwarf2_start_subfile (fe->name, dir, comp_dir);
10591 }
10592 }
debd256d 10593 }
c906108c
SS
10594 break;
10595 case DW_LNS_set_column:
10596 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10597 line_ptr += bytes_read;
10598 break;
10599 case DW_LNS_negate_stmt:
10600 is_stmt = (!is_stmt);
10601 break;
10602 case DW_LNS_set_basic_block:
10603 basic_block = 1;
10604 break;
c2c6d25f
JM
10605 /* Add to the address register of the state machine the
10606 address increment value corresponding to special opcode
a738430d
MK
10607 255. I.e., this value is scaled by the minimum
10608 instruction length since special opcode 255 would have
b021a221 10609 scaled the increment. */
c906108c 10610 case DW_LNS_const_add_pc:
2dc7f7b3
TT
10611 {
10612 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10613
10614 address += (((op_index + adjust)
10615 / lh->maximum_ops_per_instruction)
10616 * lh->minimum_instruction_length);
10617 op_index = ((op_index + adjust)
10618 % lh->maximum_ops_per_instruction);
10619 }
c906108c
SS
10620 break;
10621 case DW_LNS_fixed_advance_pc:
10622 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 10623 op_index = 0;
c906108c
SS
10624 line_ptr += 2;
10625 break;
9aa1fe7e 10626 default:
a738430d
MK
10627 {
10628 /* Unknown standard opcode, ignore it. */
9aa1fe7e 10629 int i;
a738430d 10630
debd256d 10631 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
10632 {
10633 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10634 line_ptr += bytes_read;
10635 }
10636 }
c906108c
SS
10637 }
10638 }
59205f5a
JB
10639 if (lh->num_file_names < file || file == 0)
10640 dwarf2_debug_line_missing_file_complaint ();
10641 else
10642 {
10643 lh->file_names[file - 1].included_p = 1;
10644 if (!decode_for_pst_p)
fbf65064
UW
10645 {
10646 addr = gdbarch_addr_bits_remove (gdbarch, address);
10647 record_line (current_subfile, 0, addr);
10648 }
59205f5a 10649 }
c906108c 10650 }
aaa75496
JB
10651
10652 if (decode_for_pst_p)
10653 {
10654 int file_index;
10655
10656 /* Now that we're done scanning the Line Header Program, we can
10657 create the psymtab of each included file. */
10658 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10659 if (lh->file_names[file_index].included_p == 1)
10660 {
c6da4cef
DE
10661 char *include_name =
10662 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10663 if (include_name != NULL)
aaa75496
JB
10664 dwarf2_create_include_psymtab (include_name, pst, objfile);
10665 }
10666 }
cb1df416
DJ
10667 else
10668 {
10669 /* Make sure a symtab is created for every file, even files
10670 which contain only variables (i.e. no code with associated
10671 line numbers). */
10672
10673 int i;
10674 struct file_entry *fe;
10675
10676 for (i = 0; i < lh->num_file_names; i++)
10677 {
10678 char *dir = NULL;
9a619af0 10679
cb1df416
DJ
10680 fe = &lh->file_names[i];
10681 if (fe->dir_index)
10682 dir = lh->include_dirs[fe->dir_index - 1];
10683 dwarf2_start_subfile (fe->name, dir, comp_dir);
10684
10685 /* Skip the main file; we don't need it, and it must be
10686 allocated last, so that it will show up before the
10687 non-primary symtabs in the objfile's symtab list. */
10688 if (current_subfile == first_subfile)
10689 continue;
10690
10691 if (current_subfile->symtab == NULL)
10692 current_subfile->symtab = allocate_symtab (current_subfile->name,
10693 cu->objfile);
10694 fe->symtab = current_subfile->symtab;
10695 }
10696 }
c906108c
SS
10697}
10698
10699/* Start a subfile for DWARF. FILENAME is the name of the file and
10700 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
10701 or NULL if not known. COMP_DIR is the compilation directory for the
10702 linetable's compilation unit or NULL if not known.
c906108c
SS
10703 This routine tries to keep line numbers from identical absolute and
10704 relative file names in a common subfile.
10705
10706 Using the `list' example from the GDB testsuite, which resides in
10707 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10708 of /srcdir/list0.c yields the following debugging information for list0.c:
10709
c5aa993b
JM
10710 DW_AT_name: /srcdir/list0.c
10711 DW_AT_comp_dir: /compdir
357e46e7 10712 files.files[0].name: list0.h
c5aa993b 10713 files.files[0].dir: /srcdir
357e46e7 10714 files.files[1].name: list0.c
c5aa993b 10715 files.files[1].dir: /srcdir
c906108c
SS
10716
10717 The line number information for list0.c has to end up in a single
4f1520fb
FR
10718 subfile, so that `break /srcdir/list0.c:1' works as expected.
10719 start_subfile will ensure that this happens provided that we pass the
10720 concatenation of files.files[1].dir and files.files[1].name as the
10721 subfile's name. */
c906108c
SS
10722
10723static void
3e43a32a
MS
10724dwarf2_start_subfile (char *filename, const char *dirname,
10725 const char *comp_dir)
c906108c 10726{
4f1520fb
FR
10727 char *fullname;
10728
10729 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10730 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10731 second argument to start_subfile. To be consistent, we do the
10732 same here. In order not to lose the line information directory,
10733 we concatenate it to the filename when it makes sense.
10734 Note that the Dwarf3 standard says (speaking of filenames in line
10735 information): ``The directory index is ignored for file names
10736 that represent full path names''. Thus ignoring dirname in the
10737 `else' branch below isn't an issue. */
c906108c 10738
d5166ae1 10739 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
10740 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10741 else
10742 fullname = filename;
c906108c 10743
4f1520fb
FR
10744 start_subfile (fullname, comp_dir);
10745
10746 if (fullname != filename)
10747 xfree (fullname);
c906108c
SS
10748}
10749
4c2df51b
DJ
10750static void
10751var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 10752 struct dwarf2_cu *cu)
4c2df51b 10753{
e7c27a73
DJ
10754 struct objfile *objfile = cu->objfile;
10755 struct comp_unit_head *cu_header = &cu->header;
10756
4c2df51b
DJ
10757 /* NOTE drow/2003-01-30: There used to be a comment and some special
10758 code here to turn a symbol with DW_AT_external and a
10759 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10760 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10761 with some versions of binutils) where shared libraries could have
10762 relocations against symbols in their debug information - the
10763 minimal symbol would have the right address, but the debug info
10764 would not. It's no longer necessary, because we will explicitly
10765 apply relocations when we read in the debug information now. */
10766
10767 /* A DW_AT_location attribute with no contents indicates that a
10768 variable has been optimized away. */
10769 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10770 {
10771 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10772 return;
10773 }
10774
10775 /* Handle one degenerate form of location expression specially, to
10776 preserve GDB's previous behavior when section offsets are
10777 specified. If this is just a DW_OP_addr then mark this symbol
10778 as LOC_STATIC. */
10779
10780 if (attr_form_is_block (attr)
10781 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10782 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10783 {
891d2f0b 10784 unsigned int dummy;
4c2df51b
DJ
10785
10786 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 10787 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 10788 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
10789 fixup_symbol_section (sym, objfile);
10790 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10791 SYMBOL_SECTION (sym));
4c2df51b
DJ
10792 return;
10793 }
10794
10795 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10796 expression evaluator, and use LOC_COMPUTED only when necessary
10797 (i.e. when the value of a register or memory location is
10798 referenced, or a thread-local block, etc.). Then again, it might
10799 not be worthwhile. I'm assuming that it isn't unless performance
10800 or memory numbers show me otherwise. */
10801
e7c27a73 10802 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
10803 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10804}
10805
c906108c
SS
10806/* Given a pointer to a DWARF information entry, figure out if we need
10807 to make a symbol table entry for it, and if so, create a new entry
10808 and return a pointer to it.
10809 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
10810 used the passed type.
10811 If SPACE is not NULL, use it to hold the new symbol. If it is
10812 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
10813
10814static struct symbol *
34eaf542
TT
10815new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10816 struct symbol *space)
c906108c 10817{
e7c27a73 10818 struct objfile *objfile = cu->objfile;
c906108c
SS
10819 struct symbol *sym = NULL;
10820 char *name;
10821 struct attribute *attr = NULL;
10822 struct attribute *attr2 = NULL;
e142c38c 10823 CORE_ADDR baseaddr;
e37fd15a
SW
10824 struct pending **list_to_add = NULL;
10825
edb3359d 10826 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
10827
10828 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10829
94af9270 10830 name = dwarf2_name (die, cu);
c906108c
SS
10831 if (name)
10832 {
94af9270 10833 const char *linkagename;
34eaf542 10834 int suppress_add = 0;
94af9270 10835
34eaf542
TT
10836 if (space)
10837 sym = space;
10838 else
10839 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 10840 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
10841
10842 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 10843 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
10844 linkagename = dwarf2_physname (name, die, cu);
10845 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 10846
f55ee35c
JK
10847 /* Fortran does not have mangling standard and the mangling does differ
10848 between gfortran, iFort etc. */
10849 if (cu->language == language_fortran
b250c185 10850 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
10851 symbol_set_demangled_name (&(sym->ginfo),
10852 (char *) dwarf2_full_name (name, die, cu),
10853 NULL);
f55ee35c 10854
c906108c 10855 /* Default assumptions.
c5aa993b 10856 Use the passed type or decode it from the die. */
176620f1 10857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 10858 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
10859 if (type != NULL)
10860 SYMBOL_TYPE (sym) = type;
10861 else
e7c27a73 10862 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
10863 attr = dwarf2_attr (die,
10864 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10865 cu);
c906108c
SS
10866 if (attr)
10867 {
10868 SYMBOL_LINE (sym) = DW_UNSND (attr);
10869 }
cb1df416 10870
edb3359d
DJ
10871 attr = dwarf2_attr (die,
10872 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10873 cu);
cb1df416
DJ
10874 if (attr)
10875 {
10876 int file_index = DW_UNSND (attr);
9a619af0 10877
cb1df416
DJ
10878 if (cu->line_header == NULL
10879 || file_index > cu->line_header->num_file_names)
10880 complaint (&symfile_complaints,
10881 _("file index out of range"));
1c3d648d 10882 else if (file_index > 0)
cb1df416
DJ
10883 {
10884 struct file_entry *fe;
9a619af0 10885
cb1df416
DJ
10886 fe = &cu->line_header->file_names[file_index - 1];
10887 SYMBOL_SYMTAB (sym) = fe->symtab;
10888 }
10889 }
10890
c906108c
SS
10891 switch (die->tag)
10892 {
10893 case DW_TAG_label:
e142c38c 10894 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
10895 if (attr)
10896 {
10897 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10898 }
0f5238ed
TT
10899 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10900 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 10901 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 10902 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10903 break;
10904 case DW_TAG_subprogram:
10905 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10906 finish_block. */
10907 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 10908 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
10909 if ((attr2 && (DW_UNSND (attr2) != 0))
10910 || cu->language == language_ada)
c906108c 10911 {
2cfa0c8d
JB
10912 /* Subprograms marked external are stored as a global symbol.
10913 Ada subprograms, whether marked external or not, are always
10914 stored as a global symbol, because we want to be able to
10915 access them globally. For instance, we want to be able
10916 to break on a nested subprogram without having to
10917 specify the context. */
e37fd15a 10918 list_to_add = &global_symbols;
c906108c
SS
10919 }
10920 else
10921 {
e37fd15a 10922 list_to_add = cu->list_in_scope;
c906108c
SS
10923 }
10924 break;
edb3359d
DJ
10925 case DW_TAG_inlined_subroutine:
10926 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10927 finish_block. */
10928 SYMBOL_CLASS (sym) = LOC_BLOCK;
10929 SYMBOL_INLINED (sym) = 1;
10930 /* Do not add the symbol to any lists. It will be found via
10931 BLOCK_FUNCTION from the blockvector. */
10932 break;
34eaf542
TT
10933 case DW_TAG_template_value_param:
10934 suppress_add = 1;
10935 /* Fall through. */
72929c62 10936 case DW_TAG_constant:
c906108c 10937 case DW_TAG_variable:
254e6b9e 10938 case DW_TAG_member:
0963b4bd
MS
10939 /* Compilation with minimal debug info may result in
10940 variables with missing type entries. Change the
10941 misleading `void' type to something sensible. */
c906108c 10942 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 10943 SYMBOL_TYPE (sym)
46bf5051 10944 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 10945
e142c38c 10946 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
10947 /* In the case of DW_TAG_member, we should only be called for
10948 static const members. */
10949 if (die->tag == DW_TAG_member)
10950 {
3863f96c
DE
10951 /* dwarf2_add_field uses die_is_declaration,
10952 so we do the same. */
254e6b9e
DE
10953 gdb_assert (die_is_declaration (die, cu));
10954 gdb_assert (attr);
10955 }
c906108c
SS
10956 if (attr)
10957 {
e7c27a73 10958 dwarf2_const_value (attr, sym, cu);
e142c38c 10959 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 10960 if (!suppress_add)
34eaf542
TT
10961 {
10962 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 10963 list_to_add = &global_symbols;
34eaf542 10964 else
e37fd15a 10965 list_to_add = cu->list_in_scope;
34eaf542 10966 }
c906108c
SS
10967 break;
10968 }
e142c38c 10969 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10970 if (attr)
10971 {
e7c27a73 10972 var_decode_location (attr, sym, cu);
e142c38c 10973 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
10974 if (SYMBOL_CLASS (sym) == LOC_STATIC
10975 && SYMBOL_VALUE_ADDRESS (sym) == 0
10976 && !dwarf2_per_objfile->has_section_at_zero)
10977 {
10978 /* When a static variable is eliminated by the linker,
10979 the corresponding debug information is not stripped
10980 out, but the variable address is set to null;
10981 do not add such variables into symbol table. */
10982 }
10983 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 10984 {
f55ee35c
JK
10985 /* Workaround gfortran PR debug/40040 - it uses
10986 DW_AT_location for variables in -fPIC libraries which may
10987 get overriden by other libraries/executable and get
10988 a different address. Resolve it by the minimal symbol
10989 which may come from inferior's executable using copy
10990 relocation. Make this workaround only for gfortran as for
10991 other compilers GDB cannot guess the minimal symbol
10992 Fortran mangling kind. */
10993 if (cu->language == language_fortran && die->parent
10994 && die->parent->tag == DW_TAG_module
10995 && cu->producer
10996 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10997 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10998
1c809c68
TT
10999 /* A variable with DW_AT_external is never static,
11000 but it may be block-scoped. */
11001 list_to_add = (cu->list_in_scope == &file_symbols
11002 ? &global_symbols : cu->list_in_scope);
1c809c68 11003 }
c906108c 11004 else
e37fd15a 11005 list_to_add = cu->list_in_scope;
c906108c
SS
11006 }
11007 else
11008 {
11009 /* We do not know the address of this symbol.
c5aa993b
JM
11010 If it is an external symbol and we have type information
11011 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11012 The address of the variable will then be determined from
11013 the minimal symbol table whenever the variable is
11014 referenced. */
e142c38c 11015 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 11016 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 11017 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 11018 {
0fe7935b
DJ
11019 /* A variable with DW_AT_external is never static, but it
11020 may be block-scoped. */
11021 list_to_add = (cu->list_in_scope == &file_symbols
11022 ? &global_symbols : cu->list_in_scope);
11023
c906108c 11024 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 11025 }
442ddf59
JK
11026 else if (!die_is_declaration (die, cu))
11027 {
11028 /* Use the default LOC_OPTIMIZED_OUT class. */
11029 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
11030 if (!suppress_add)
11031 list_to_add = cu->list_in_scope;
442ddf59 11032 }
c906108c
SS
11033 }
11034 break;
11035 case DW_TAG_formal_parameter:
edb3359d
DJ
11036 /* If we are inside a function, mark this as an argument. If
11037 not, we might be looking at an argument to an inlined function
11038 when we do not have enough information to show inlined frames;
11039 pretend it's a local variable in that case so that the user can
11040 still see it. */
11041 if (context_stack_depth > 0
11042 && context_stack[context_stack_depth - 1].name != NULL)
11043 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 11044 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11045 if (attr)
11046 {
e7c27a73 11047 var_decode_location (attr, sym, cu);
c906108c 11048 }
e142c38c 11049 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11050 if (attr)
11051 {
e7c27a73 11052 dwarf2_const_value (attr, sym, cu);
c906108c 11053 }
f346a30d
PM
11054 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11055 if (attr && DW_UNSND (attr))
11056 {
11057 struct type *ref_type;
11058
11059 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11060 SYMBOL_TYPE (sym) = ref_type;
11061 }
11062
e37fd15a 11063 list_to_add = cu->list_in_scope;
c906108c
SS
11064 break;
11065 case DW_TAG_unspecified_parameters:
11066 /* From varargs functions; gdb doesn't seem to have any
11067 interest in this information, so just ignore it for now.
11068 (FIXME?) */
11069 break;
34eaf542
TT
11070 case DW_TAG_template_type_param:
11071 suppress_add = 1;
11072 /* Fall through. */
c906108c 11073 case DW_TAG_class_type:
680b30c7 11074 case DW_TAG_interface_type:
c906108c
SS
11075 case DW_TAG_structure_type:
11076 case DW_TAG_union_type:
72019c9c 11077 case DW_TAG_set_type:
c906108c
SS
11078 case DW_TAG_enumeration_type:
11079 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11080 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11081
63d06c5c 11082 {
987504bb 11083 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11084 really ever be static objects: otherwise, if you try
11085 to, say, break of a class's method and you're in a file
11086 which doesn't mention that class, it won't work unless
11087 the check for all static symbols in lookup_symbol_aux
11088 saves you. See the OtherFileClass tests in
11089 gdb.c++/namespace.exp. */
11090
e37fd15a 11091 if (!suppress_add)
34eaf542 11092 {
34eaf542
TT
11093 list_to_add = (cu->list_in_scope == &file_symbols
11094 && (cu->language == language_cplus
11095 || cu->language == language_java)
11096 ? &global_symbols : cu->list_in_scope);
63d06c5c 11097
64382290
TT
11098 /* The semantics of C++ state that "struct foo {
11099 ... }" also defines a typedef for "foo". A Java
11100 class declaration also defines a typedef for the
11101 class. */
11102 if (cu->language == language_cplus
11103 || cu->language == language_java
11104 || cu->language == language_ada)
11105 {
11106 /* The symbol's name is already allocated along
11107 with this objfile, so we don't need to
11108 duplicate it for the type. */
11109 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11110 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11111 }
63d06c5c
DC
11112 }
11113 }
c906108c
SS
11114 break;
11115 case DW_TAG_typedef:
63d06c5c
DC
11116 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11117 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11118 list_to_add = cu->list_in_scope;
63d06c5c 11119 break;
c906108c 11120 case DW_TAG_base_type:
a02abb62 11121 case DW_TAG_subrange_type:
c906108c 11122 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11123 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11124 list_to_add = cu->list_in_scope;
c906108c
SS
11125 break;
11126 case DW_TAG_enumerator:
e142c38c 11127 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11128 if (attr)
11129 {
e7c27a73 11130 dwarf2_const_value (attr, sym, cu);
c906108c 11131 }
63d06c5c
DC
11132 {
11133 /* NOTE: carlton/2003-11-10: See comment above in the
11134 DW_TAG_class_type, etc. block. */
11135
e142c38c 11136 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11137 && (cu->language == language_cplus
11138 || cu->language == language_java)
e142c38c 11139 ? &global_symbols : cu->list_in_scope);
63d06c5c 11140 }
c906108c 11141 break;
5c4e30ca
DC
11142 case DW_TAG_namespace:
11143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11144 list_to_add = &global_symbols;
5c4e30ca 11145 break;
c906108c
SS
11146 default:
11147 /* Not a tag we recognize. Hopefully we aren't processing
11148 trash data, but since we must specifically ignore things
11149 we don't recognize, there is nothing else we should do at
0963b4bd 11150 this point. */
e2e0b3e5 11151 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11152 dwarf_tag_name (die->tag));
c906108c
SS
11153 break;
11154 }
df8a16a1 11155
e37fd15a
SW
11156 if (suppress_add)
11157 {
11158 sym->hash_next = objfile->template_symbols;
11159 objfile->template_symbols = sym;
11160 list_to_add = NULL;
11161 }
11162
11163 if (list_to_add != NULL)
11164 add_symbol_to_list (sym, list_to_add);
11165
df8a16a1
DJ
11166 /* For the benefit of old versions of GCC, check for anonymous
11167 namespaces based on the demangled name. */
11168 if (!processing_has_namespace_info
94af9270 11169 && cu->language == language_cplus)
df8a16a1 11170 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
11171 }
11172 return (sym);
11173}
11174
34eaf542
TT
11175/* A wrapper for new_symbol_full that always allocates a new symbol. */
11176
11177static struct symbol *
11178new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11179{
11180 return new_symbol_full (die, type, cu, NULL);
11181}
11182
98bfdba5
PA
11183/* Given an attr with a DW_FORM_dataN value in host byte order,
11184 zero-extend it as appropriate for the symbol's type. The DWARF
11185 standard (v4) is not entirely clear about the meaning of using
11186 DW_FORM_dataN for a constant with a signed type, where the type is
11187 wider than the data. The conclusion of a discussion on the DWARF
11188 list was that this is unspecified. We choose to always zero-extend
11189 because that is the interpretation long in use by GCC. */
c906108c 11190
98bfdba5
PA
11191static gdb_byte *
11192dwarf2_const_value_data (struct attribute *attr, struct type *type,
11193 const char *name, struct obstack *obstack,
11194 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11195{
e7c27a73 11196 struct objfile *objfile = cu->objfile;
e17a4113
UW
11197 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11198 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11199 LONGEST l = DW_UNSND (attr);
11200
11201 if (bits < sizeof (*value) * 8)
11202 {
11203 l &= ((LONGEST) 1 << bits) - 1;
11204 *value = l;
11205 }
11206 else if (bits == sizeof (*value) * 8)
11207 *value = l;
11208 else
11209 {
11210 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11211 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11212 return bytes;
11213 }
11214
11215 return NULL;
11216}
11217
11218/* Read a constant value from an attribute. Either set *VALUE, or if
11219 the value does not fit in *VALUE, set *BYTES - either already
11220 allocated on the objfile obstack, or newly allocated on OBSTACK,
11221 or, set *BATON, if we translated the constant to a location
11222 expression. */
11223
11224static void
11225dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11226 const char *name, struct obstack *obstack,
11227 struct dwarf2_cu *cu,
11228 long *value, gdb_byte **bytes,
11229 struct dwarf2_locexpr_baton **baton)
11230{
11231 struct objfile *objfile = cu->objfile;
11232 struct comp_unit_head *cu_header = &cu->header;
c906108c 11233 struct dwarf_block *blk;
98bfdba5
PA
11234 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11235 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11236
11237 *value = 0;
11238 *bytes = NULL;
11239 *baton = NULL;
c906108c
SS
11240
11241 switch (attr->form)
11242 {
11243 case DW_FORM_addr:
ac56253d 11244 {
ac56253d
TT
11245 gdb_byte *data;
11246
98bfdba5
PA
11247 if (TYPE_LENGTH (type) != cu_header->addr_size)
11248 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11249 cu_header->addr_size,
98bfdba5 11250 TYPE_LENGTH (type));
ac56253d
TT
11251 /* Symbols of this form are reasonably rare, so we just
11252 piggyback on the existing location code rather than writing
11253 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11254 *baton = obstack_alloc (&objfile->objfile_obstack,
11255 sizeof (struct dwarf2_locexpr_baton));
11256 (*baton)->per_cu = cu->per_cu;
11257 gdb_assert ((*baton)->per_cu);
ac56253d 11258
98bfdba5
PA
11259 (*baton)->size = 2 + cu_header->addr_size;
11260 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11261 (*baton)->data = data;
ac56253d
TT
11262
11263 data[0] = DW_OP_addr;
11264 store_unsigned_integer (&data[1], cu_header->addr_size,
11265 byte_order, DW_ADDR (attr));
11266 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11267 }
c906108c 11268 break;
4ac36638 11269 case DW_FORM_string:
93b5768b 11270 case DW_FORM_strp:
98bfdba5
PA
11271 /* DW_STRING is already allocated on the objfile obstack, point
11272 directly to it. */
11273 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11274 break;
c906108c
SS
11275 case DW_FORM_block1:
11276 case DW_FORM_block2:
11277 case DW_FORM_block4:
11278 case DW_FORM_block:
2dc7f7b3 11279 case DW_FORM_exprloc:
c906108c 11280 blk = DW_BLOCK (attr);
98bfdba5
PA
11281 if (TYPE_LENGTH (type) != blk->size)
11282 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11283 TYPE_LENGTH (type));
11284 *bytes = blk->data;
c906108c 11285 break;
2df3850c
JM
11286
11287 /* The DW_AT_const_value attributes are supposed to carry the
11288 symbol's value "represented as it would be on the target
11289 architecture." By the time we get here, it's already been
11290 converted to host endianness, so we just need to sign- or
11291 zero-extend it as appropriate. */
11292 case DW_FORM_data1:
3e43a32a
MS
11293 *bytes = dwarf2_const_value_data (attr, type, name,
11294 obstack, cu, value, 8);
2df3850c 11295 break;
c906108c 11296 case DW_FORM_data2:
3e43a32a
MS
11297 *bytes = dwarf2_const_value_data (attr, type, name,
11298 obstack, cu, value, 16);
2df3850c 11299 break;
c906108c 11300 case DW_FORM_data4:
3e43a32a
MS
11301 *bytes = dwarf2_const_value_data (attr, type, name,
11302 obstack, cu, value, 32);
2df3850c 11303 break;
c906108c 11304 case DW_FORM_data8:
3e43a32a
MS
11305 *bytes = dwarf2_const_value_data (attr, type, name,
11306 obstack, cu, value, 64);
2df3850c
JM
11307 break;
11308
c906108c 11309 case DW_FORM_sdata:
98bfdba5 11310 *value = DW_SND (attr);
2df3850c
JM
11311 break;
11312
c906108c 11313 case DW_FORM_udata:
98bfdba5 11314 *value = DW_UNSND (attr);
c906108c 11315 break;
2df3850c 11316
c906108c 11317 default:
4d3c2250 11318 complaint (&symfile_complaints,
e2e0b3e5 11319 _("unsupported const value attribute form: '%s'"),
4d3c2250 11320 dwarf_form_name (attr->form));
98bfdba5 11321 *value = 0;
c906108c
SS
11322 break;
11323 }
11324}
11325
2df3850c 11326
98bfdba5
PA
11327/* Copy constant value from an attribute to a symbol. */
11328
2df3850c 11329static void
98bfdba5
PA
11330dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11331 struct dwarf2_cu *cu)
2df3850c 11332{
98bfdba5
PA
11333 struct objfile *objfile = cu->objfile;
11334 struct comp_unit_head *cu_header = &cu->header;
11335 long value;
11336 gdb_byte *bytes;
11337 struct dwarf2_locexpr_baton *baton;
2df3850c 11338
98bfdba5
PA
11339 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11340 SYMBOL_PRINT_NAME (sym),
11341 &objfile->objfile_obstack, cu,
11342 &value, &bytes, &baton);
2df3850c 11343
98bfdba5
PA
11344 if (baton != NULL)
11345 {
11346 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11347 SYMBOL_LOCATION_BATON (sym) = baton;
11348 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11349 }
11350 else if (bytes != NULL)
11351 {
11352 SYMBOL_VALUE_BYTES (sym) = bytes;
11353 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11354 }
11355 else
11356 {
11357 SYMBOL_VALUE (sym) = value;
11358 SYMBOL_CLASS (sym) = LOC_CONST;
11359 }
2df3850c
JM
11360}
11361
c906108c
SS
11362/* Return the type of the die in question using its DW_AT_type attribute. */
11363
11364static struct type *
e7c27a73 11365die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11366{
c906108c 11367 struct attribute *type_attr;
c906108c 11368
e142c38c 11369 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11370 if (!type_attr)
11371 {
11372 /* A missing DW_AT_type represents a void type. */
46bf5051 11373 return objfile_type (cu->objfile)->builtin_void;
c906108c 11374 }
348e048f 11375
673bfd45 11376 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11377}
11378
b4ba55a1
JB
11379/* True iff CU's producer generates GNAT Ada auxiliary information
11380 that allows to find parallel types through that information instead
11381 of having to do expensive parallel lookups by type name. */
11382
11383static int
11384need_gnat_info (struct dwarf2_cu *cu)
11385{
11386 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11387 of GNAT produces this auxiliary information, without any indication
11388 that it is produced. Part of enhancing the FSF version of GNAT
11389 to produce that information will be to put in place an indicator
11390 that we can use in order to determine whether the descriptive type
11391 info is available or not. One suggestion that has been made is
11392 to use a new attribute, attached to the CU die. For now, assume
11393 that the descriptive type info is not available. */
11394 return 0;
11395}
11396
b4ba55a1
JB
11397/* Return the auxiliary type of the die in question using its
11398 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11399 attribute is not present. */
11400
11401static struct type *
11402die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11403{
b4ba55a1 11404 struct attribute *type_attr;
b4ba55a1
JB
11405
11406 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11407 if (!type_attr)
11408 return NULL;
11409
673bfd45 11410 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11411}
11412
11413/* If DIE has a descriptive_type attribute, then set the TYPE's
11414 descriptive type accordingly. */
11415
11416static void
11417set_descriptive_type (struct type *type, struct die_info *die,
11418 struct dwarf2_cu *cu)
11419{
11420 struct type *descriptive_type = die_descriptive_type (die, cu);
11421
11422 if (descriptive_type)
11423 {
11424 ALLOCATE_GNAT_AUX_TYPE (type);
11425 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11426 }
11427}
11428
c906108c
SS
11429/* Return the containing type of the die in question using its
11430 DW_AT_containing_type attribute. */
11431
11432static struct type *
e7c27a73 11433die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11434{
c906108c 11435 struct attribute *type_attr;
c906108c 11436
e142c38c 11437 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11438 if (!type_attr)
11439 error (_("Dwarf Error: Problem turning containing type into gdb type "
11440 "[in module %s]"), cu->objfile->name);
11441
673bfd45 11442 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11443}
11444
673bfd45
DE
11445/* Look up the type of DIE in CU using its type attribute ATTR.
11446 If there is no type substitute an error marker. */
11447
c906108c 11448static struct type *
673bfd45
DE
11449lookup_die_type (struct die_info *die, struct attribute *attr,
11450 struct dwarf2_cu *cu)
c906108c 11451{
f792889a
DJ
11452 struct type *this_type;
11453
673bfd45
DE
11454 /* First see if we have it cached. */
11455
11456 if (is_ref_attr (attr))
11457 {
11458 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11459
11460 this_type = get_die_type_at_offset (offset, cu->per_cu);
11461 }
11462 else if (attr->form == DW_FORM_sig8)
11463 {
11464 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11465 struct dwarf2_cu *sig_cu;
11466 unsigned int offset;
11467
11468 /* sig_type will be NULL if the signatured type is missing from
11469 the debug info. */
11470 if (sig_type == NULL)
11471 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11472 "at 0x%x [in module %s]"),
11473 die->offset, cu->objfile->name);
11474
11475 gdb_assert (sig_type->per_cu.from_debug_types);
11476 offset = sig_type->offset + sig_type->type_offset;
11477 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11478 }
11479 else
11480 {
11481 dump_die_for_error (die);
11482 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11483 dwarf_attr_name (attr->name), cu->objfile->name);
11484 }
11485
11486 /* If not cached we need to read it in. */
11487
11488 if (this_type == NULL)
11489 {
11490 struct die_info *type_die;
11491 struct dwarf2_cu *type_cu = cu;
11492
11493 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11494 /* If the type is cached, we should have found it above. */
11495 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11496 this_type = read_type_die_1 (type_die, type_cu);
11497 }
11498
11499 /* If we still don't have a type use an error marker. */
11500
11501 if (this_type == NULL)
c906108c 11502 {
b00fdb78
TT
11503 char *message, *saved;
11504
11505 /* read_type_die already issued a complaint. */
11506 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11507 cu->objfile->name,
11508 cu->header.offset,
11509 die->offset);
11510 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11511 message, strlen (message));
11512 xfree (message);
11513
11514 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11515 }
673bfd45 11516
f792889a 11517 return this_type;
c906108c
SS
11518}
11519
673bfd45
DE
11520/* Return the type in DIE, CU.
11521 Returns NULL for invalid types.
11522
11523 This first does a lookup in the appropriate type_hash table,
11524 and only reads the die in if necessary.
11525
11526 NOTE: This can be called when reading in partial or full symbols. */
11527
f792889a 11528static struct type *
e7c27a73 11529read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11530{
f792889a
DJ
11531 struct type *this_type;
11532
11533 this_type = get_die_type (die, cu);
11534 if (this_type)
11535 return this_type;
11536
673bfd45
DE
11537 return read_type_die_1 (die, cu);
11538}
11539
11540/* Read the type in DIE, CU.
11541 Returns NULL for invalid types. */
11542
11543static struct type *
11544read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11545{
11546 struct type *this_type = NULL;
11547
c906108c
SS
11548 switch (die->tag)
11549 {
11550 case DW_TAG_class_type:
680b30c7 11551 case DW_TAG_interface_type:
c906108c
SS
11552 case DW_TAG_structure_type:
11553 case DW_TAG_union_type:
f792889a 11554 this_type = read_structure_type (die, cu);
c906108c
SS
11555 break;
11556 case DW_TAG_enumeration_type:
f792889a 11557 this_type = read_enumeration_type (die, cu);
c906108c
SS
11558 break;
11559 case DW_TAG_subprogram:
11560 case DW_TAG_subroutine_type:
edb3359d 11561 case DW_TAG_inlined_subroutine:
f792889a 11562 this_type = read_subroutine_type (die, cu);
c906108c
SS
11563 break;
11564 case DW_TAG_array_type:
f792889a 11565 this_type = read_array_type (die, cu);
c906108c 11566 break;
72019c9c 11567 case DW_TAG_set_type:
f792889a 11568 this_type = read_set_type (die, cu);
72019c9c 11569 break;
c906108c 11570 case DW_TAG_pointer_type:
f792889a 11571 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
11572 break;
11573 case DW_TAG_ptr_to_member_type:
f792889a 11574 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
11575 break;
11576 case DW_TAG_reference_type:
f792889a 11577 this_type = read_tag_reference_type (die, cu);
c906108c
SS
11578 break;
11579 case DW_TAG_const_type:
f792889a 11580 this_type = read_tag_const_type (die, cu);
c906108c
SS
11581 break;
11582 case DW_TAG_volatile_type:
f792889a 11583 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
11584 break;
11585 case DW_TAG_string_type:
f792889a 11586 this_type = read_tag_string_type (die, cu);
c906108c
SS
11587 break;
11588 case DW_TAG_typedef:
f792889a 11589 this_type = read_typedef (die, cu);
c906108c 11590 break;
a02abb62 11591 case DW_TAG_subrange_type:
f792889a 11592 this_type = read_subrange_type (die, cu);
a02abb62 11593 break;
c906108c 11594 case DW_TAG_base_type:
f792889a 11595 this_type = read_base_type (die, cu);
c906108c 11596 break;
81a17f79 11597 case DW_TAG_unspecified_type:
f792889a 11598 this_type = read_unspecified_type (die, cu);
81a17f79 11599 break;
0114d602
DJ
11600 case DW_TAG_namespace:
11601 this_type = read_namespace_type (die, cu);
11602 break;
f55ee35c
JK
11603 case DW_TAG_module:
11604 this_type = read_module_type (die, cu);
11605 break;
c906108c 11606 default:
3e43a32a
MS
11607 complaint (&symfile_complaints,
11608 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 11609 dwarf_tag_name (die->tag));
c906108c
SS
11610 break;
11611 }
63d06c5c 11612
f792889a 11613 return this_type;
63d06c5c
DC
11614}
11615
abc72ce4
DE
11616/* See if we can figure out if the class lives in a namespace. We do
11617 this by looking for a member function; its demangled name will
11618 contain namespace info, if there is any.
11619 Return the computed name or NULL.
11620 Space for the result is allocated on the objfile's obstack.
11621 This is the full-die version of guess_partial_die_structure_name.
11622 In this case we know DIE has no useful parent. */
11623
11624static char *
11625guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11626{
11627 struct die_info *spec_die;
11628 struct dwarf2_cu *spec_cu;
11629 struct die_info *child;
11630
11631 spec_cu = cu;
11632 spec_die = die_specification (die, &spec_cu);
11633 if (spec_die != NULL)
11634 {
11635 die = spec_die;
11636 cu = spec_cu;
11637 }
11638
11639 for (child = die->child;
11640 child != NULL;
11641 child = child->sibling)
11642 {
11643 if (child->tag == DW_TAG_subprogram)
11644 {
11645 struct attribute *attr;
11646
11647 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11648 if (attr == NULL)
11649 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11650 if (attr != NULL)
11651 {
11652 char *actual_name
11653 = language_class_name_from_physname (cu->language_defn,
11654 DW_STRING (attr));
11655 char *name = NULL;
11656
11657 if (actual_name != NULL)
11658 {
11659 char *die_name = dwarf2_name (die, cu);
11660
11661 if (die_name != NULL
11662 && strcmp (die_name, actual_name) != 0)
11663 {
11664 /* Strip off the class name from the full name.
11665 We want the prefix. */
11666 int die_name_len = strlen (die_name);
11667 int actual_name_len = strlen (actual_name);
11668
11669 /* Test for '::' as a sanity check. */
11670 if (actual_name_len > die_name_len + 2
3e43a32a
MS
11671 && actual_name[actual_name_len
11672 - die_name_len - 1] == ':')
abc72ce4
DE
11673 name =
11674 obsavestring (actual_name,
11675 actual_name_len - die_name_len - 2,
11676 &cu->objfile->objfile_obstack);
11677 }
11678 }
11679 xfree (actual_name);
11680 return name;
11681 }
11682 }
11683 }
11684
11685 return NULL;
11686}
11687
fdde2d81 11688/* Return the name of the namespace/class that DIE is defined within,
0114d602 11689 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 11690
0114d602
DJ
11691 For example, if we're within the method foo() in the following
11692 code:
11693
11694 namespace N {
11695 class C {
11696 void foo () {
11697 }
11698 };
11699 }
11700
11701 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
11702
11703static char *
e142c38c 11704determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 11705{
0114d602
DJ
11706 struct die_info *parent, *spec_die;
11707 struct dwarf2_cu *spec_cu;
11708 struct type *parent_type;
63d06c5c 11709
f55ee35c
JK
11710 if (cu->language != language_cplus && cu->language != language_java
11711 && cu->language != language_fortran)
0114d602
DJ
11712 return "";
11713
11714 /* We have to be careful in the presence of DW_AT_specification.
11715 For example, with GCC 3.4, given the code
11716
11717 namespace N {
11718 void foo() {
11719 // Definition of N::foo.
11720 }
11721 }
11722
11723 then we'll have a tree of DIEs like this:
11724
11725 1: DW_TAG_compile_unit
11726 2: DW_TAG_namespace // N
11727 3: DW_TAG_subprogram // declaration of N::foo
11728 4: DW_TAG_subprogram // definition of N::foo
11729 DW_AT_specification // refers to die #3
11730
11731 Thus, when processing die #4, we have to pretend that we're in
11732 the context of its DW_AT_specification, namely the contex of die
11733 #3. */
11734 spec_cu = cu;
11735 spec_die = die_specification (die, &spec_cu);
11736 if (spec_die == NULL)
11737 parent = die->parent;
11738 else
63d06c5c 11739 {
0114d602
DJ
11740 parent = spec_die->parent;
11741 cu = spec_cu;
63d06c5c 11742 }
0114d602
DJ
11743
11744 if (parent == NULL)
11745 return "";
98bfdba5
PA
11746 else if (parent->building_fullname)
11747 {
11748 const char *name;
11749 const char *parent_name;
11750
11751 /* It has been seen on RealView 2.2 built binaries,
11752 DW_TAG_template_type_param types actually _defined_ as
11753 children of the parent class:
11754
11755 enum E {};
11756 template class <class Enum> Class{};
11757 Class<enum E> class_e;
11758
11759 1: DW_TAG_class_type (Class)
11760 2: DW_TAG_enumeration_type (E)
11761 3: DW_TAG_enumerator (enum1:0)
11762 3: DW_TAG_enumerator (enum2:1)
11763 ...
11764 2: DW_TAG_template_type_param
11765 DW_AT_type DW_FORM_ref_udata (E)
11766
11767 Besides being broken debug info, it can put GDB into an
11768 infinite loop. Consider:
11769
11770 When we're building the full name for Class<E>, we'll start
11771 at Class, and go look over its template type parameters,
11772 finding E. We'll then try to build the full name of E, and
11773 reach here. We're now trying to build the full name of E,
11774 and look over the parent DIE for containing scope. In the
11775 broken case, if we followed the parent DIE of E, we'd again
11776 find Class, and once again go look at its template type
11777 arguments, etc., etc. Simply don't consider such parent die
11778 as source-level parent of this die (it can't be, the language
11779 doesn't allow it), and break the loop here. */
11780 name = dwarf2_name (die, cu);
11781 parent_name = dwarf2_name (parent, cu);
11782 complaint (&symfile_complaints,
11783 _("template param type '%s' defined within parent '%s'"),
11784 name ? name : "<unknown>",
11785 parent_name ? parent_name : "<unknown>");
11786 return "";
11787 }
63d06c5c 11788 else
0114d602
DJ
11789 switch (parent->tag)
11790 {
63d06c5c 11791 case DW_TAG_namespace:
0114d602 11792 parent_type = read_type_die (parent, cu);
acebe513
UW
11793 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11794 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11795 Work around this problem here. */
11796 if (cu->language == language_cplus
11797 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11798 return "";
0114d602
DJ
11799 /* We give a name to even anonymous namespaces. */
11800 return TYPE_TAG_NAME (parent_type);
63d06c5c 11801 case DW_TAG_class_type:
680b30c7 11802 case DW_TAG_interface_type:
63d06c5c 11803 case DW_TAG_structure_type:
0114d602 11804 case DW_TAG_union_type:
f55ee35c 11805 case DW_TAG_module:
0114d602
DJ
11806 parent_type = read_type_die (parent, cu);
11807 if (TYPE_TAG_NAME (parent_type) != NULL)
11808 return TYPE_TAG_NAME (parent_type);
11809 else
11810 /* An anonymous structure is only allowed non-static data
11811 members; no typedefs, no member functions, et cetera.
11812 So it does not need a prefix. */
11813 return "";
abc72ce4
DE
11814 case DW_TAG_compile_unit:
11815 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11816 if (cu->language == language_cplus
11817 && dwarf2_per_objfile->types.asection != NULL
11818 && die->child != NULL
11819 && (die->tag == DW_TAG_class_type
11820 || die->tag == DW_TAG_structure_type
11821 || die->tag == DW_TAG_union_type))
11822 {
11823 char *name = guess_full_die_structure_name (die, cu);
11824 if (name != NULL)
11825 return name;
11826 }
11827 return "";
63d06c5c 11828 default:
8176b9b8 11829 return determine_prefix (parent, cu);
63d06c5c 11830 }
63d06c5c
DC
11831}
11832
3e43a32a
MS
11833/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11834 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11835 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11836 an obconcat, otherwise allocate storage for the result. The CU argument is
11837 used to determine the language and hence, the appropriate separator. */
987504bb 11838
f55ee35c 11839#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
11840
11841static char *
f55ee35c
JK
11842typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11843 int physname, struct dwarf2_cu *cu)
63d06c5c 11844{
f55ee35c 11845 const char *lead = "";
5c315b68 11846 const char *sep;
63d06c5c 11847
3e43a32a
MS
11848 if (suffix == NULL || suffix[0] == '\0'
11849 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
11850 sep = "";
11851 else if (cu->language == language_java)
11852 sep = ".";
f55ee35c
JK
11853 else if (cu->language == language_fortran && physname)
11854 {
11855 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11856 DW_AT_MIPS_linkage_name is preferred and used instead. */
11857
11858 lead = "__";
11859 sep = "_MOD_";
11860 }
987504bb
JJ
11861 else
11862 sep = "::";
63d06c5c 11863
6dd47d34
DE
11864 if (prefix == NULL)
11865 prefix = "";
11866 if (suffix == NULL)
11867 suffix = "";
11868
987504bb
JJ
11869 if (obs == NULL)
11870 {
3e43a32a
MS
11871 char *retval
11872 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 11873
f55ee35c
JK
11874 strcpy (retval, lead);
11875 strcat (retval, prefix);
6dd47d34
DE
11876 strcat (retval, sep);
11877 strcat (retval, suffix);
63d06c5c
DC
11878 return retval;
11879 }
987504bb
JJ
11880 else
11881 {
11882 /* We have an obstack. */
f55ee35c 11883 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 11884 }
63d06c5c
DC
11885}
11886
c906108c
SS
11887/* Return sibling of die, NULL if no sibling. */
11888
f9aca02d 11889static struct die_info *
fba45db2 11890sibling_die (struct die_info *die)
c906108c 11891{
639d11d3 11892 return die->sibling;
c906108c
SS
11893}
11894
71c25dea
TT
11895/* Get name of a die, return NULL if not found. */
11896
11897static char *
11898dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11899 struct obstack *obstack)
11900{
11901 if (name && cu->language == language_cplus)
11902 {
11903 char *canon_name = cp_canonicalize_string (name);
11904
11905 if (canon_name != NULL)
11906 {
11907 if (strcmp (canon_name, name) != 0)
11908 name = obsavestring (canon_name, strlen (canon_name),
11909 obstack);
11910 xfree (canon_name);
11911 }
11912 }
11913
11914 return name;
c906108c
SS
11915}
11916
9219021c
DC
11917/* Get name of a die, return NULL if not found. */
11918
11919static char *
e142c38c 11920dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
11921{
11922 struct attribute *attr;
11923
e142c38c 11924 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
11925 if (!attr || !DW_STRING (attr))
11926 return NULL;
11927
11928 switch (die->tag)
11929 {
11930 case DW_TAG_compile_unit:
11931 /* Compilation units have a DW_AT_name that is a filename, not
11932 a source language identifier. */
11933 case DW_TAG_enumeration_type:
11934 case DW_TAG_enumerator:
11935 /* These tags always have simple identifiers already; no need
11936 to canonicalize them. */
11937 return DW_STRING (attr);
907af001 11938
418835cc
KS
11939 case DW_TAG_subprogram:
11940 /* Java constructors will all be named "<init>", so return
11941 the class name when we see this special case. */
11942 if (cu->language == language_java
11943 && DW_STRING (attr) != NULL
11944 && strcmp (DW_STRING (attr), "<init>") == 0)
11945 {
11946 struct dwarf2_cu *spec_cu = cu;
11947 struct die_info *spec_die;
11948
11949 /* GCJ will output '<init>' for Java constructor names.
11950 For this special case, return the name of the parent class. */
11951
11952 /* GCJ may output suprogram DIEs with AT_specification set.
11953 If so, use the name of the specified DIE. */
11954 spec_die = die_specification (die, &spec_cu);
11955 if (spec_die != NULL)
11956 return dwarf2_name (spec_die, spec_cu);
11957
11958 do
11959 {
11960 die = die->parent;
11961 if (die->tag == DW_TAG_class_type)
11962 return dwarf2_name (die, cu);
11963 }
11964 while (die->tag != DW_TAG_compile_unit);
11965 }
907af001
UW
11966 break;
11967
11968 case DW_TAG_class_type:
11969 case DW_TAG_interface_type:
11970 case DW_TAG_structure_type:
11971 case DW_TAG_union_type:
11972 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11973 structures or unions. These were of the form "._%d" in GCC 4.1,
11974 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11975 and GCC 4.4. We work around this problem by ignoring these. */
11976 if (strncmp (DW_STRING (attr), "._", 2) == 0
11977 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11978 return NULL;
11979 break;
11980
71c25dea 11981 default:
907af001
UW
11982 break;
11983 }
11984
11985 if (!DW_STRING_IS_CANONICAL (attr))
11986 {
11987 DW_STRING (attr)
11988 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11989 &cu->objfile->objfile_obstack);
11990 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 11991 }
907af001 11992 return DW_STRING (attr);
9219021c
DC
11993}
11994
11995/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
11996 is none. *EXT_CU is the CU containing DIE on input, and the CU
11997 containing the return value on output. */
9219021c
DC
11998
11999static struct die_info *
f2f0e013 12000dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
12001{
12002 struct attribute *attr;
9219021c 12003
f2f0e013 12004 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
12005 if (attr == NULL)
12006 return NULL;
12007
f2f0e013 12008 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
12009}
12010
c906108c
SS
12011/* Convert a DIE tag into its string name. */
12012
12013static char *
aa1ee363 12014dwarf_tag_name (unsigned tag)
c906108c
SS
12015{
12016 switch (tag)
12017 {
12018 case DW_TAG_padding:
12019 return "DW_TAG_padding";
12020 case DW_TAG_array_type:
12021 return "DW_TAG_array_type";
12022 case DW_TAG_class_type:
12023 return "DW_TAG_class_type";
12024 case DW_TAG_entry_point:
12025 return "DW_TAG_entry_point";
12026 case DW_TAG_enumeration_type:
12027 return "DW_TAG_enumeration_type";
12028 case DW_TAG_formal_parameter:
12029 return "DW_TAG_formal_parameter";
12030 case DW_TAG_imported_declaration:
12031 return "DW_TAG_imported_declaration";
12032 case DW_TAG_label:
12033 return "DW_TAG_label";
12034 case DW_TAG_lexical_block:
12035 return "DW_TAG_lexical_block";
12036 case DW_TAG_member:
12037 return "DW_TAG_member";
12038 case DW_TAG_pointer_type:
12039 return "DW_TAG_pointer_type";
12040 case DW_TAG_reference_type:
12041 return "DW_TAG_reference_type";
12042 case DW_TAG_compile_unit:
12043 return "DW_TAG_compile_unit";
12044 case DW_TAG_string_type:
12045 return "DW_TAG_string_type";
12046 case DW_TAG_structure_type:
12047 return "DW_TAG_structure_type";
12048 case DW_TAG_subroutine_type:
12049 return "DW_TAG_subroutine_type";
12050 case DW_TAG_typedef:
12051 return "DW_TAG_typedef";
12052 case DW_TAG_union_type:
12053 return "DW_TAG_union_type";
12054 case DW_TAG_unspecified_parameters:
12055 return "DW_TAG_unspecified_parameters";
12056 case DW_TAG_variant:
12057 return "DW_TAG_variant";
12058 case DW_TAG_common_block:
12059 return "DW_TAG_common_block";
12060 case DW_TAG_common_inclusion:
12061 return "DW_TAG_common_inclusion";
12062 case DW_TAG_inheritance:
12063 return "DW_TAG_inheritance";
12064 case DW_TAG_inlined_subroutine:
12065 return "DW_TAG_inlined_subroutine";
12066 case DW_TAG_module:
12067 return "DW_TAG_module";
12068 case DW_TAG_ptr_to_member_type:
12069 return "DW_TAG_ptr_to_member_type";
12070 case DW_TAG_set_type:
12071 return "DW_TAG_set_type";
12072 case DW_TAG_subrange_type:
12073 return "DW_TAG_subrange_type";
12074 case DW_TAG_with_stmt:
12075 return "DW_TAG_with_stmt";
12076 case DW_TAG_access_declaration:
12077 return "DW_TAG_access_declaration";
12078 case DW_TAG_base_type:
12079 return "DW_TAG_base_type";
12080 case DW_TAG_catch_block:
12081 return "DW_TAG_catch_block";
12082 case DW_TAG_const_type:
12083 return "DW_TAG_const_type";
12084 case DW_TAG_constant:
12085 return "DW_TAG_constant";
12086 case DW_TAG_enumerator:
12087 return "DW_TAG_enumerator";
12088 case DW_TAG_file_type:
12089 return "DW_TAG_file_type";
12090 case DW_TAG_friend:
12091 return "DW_TAG_friend";
12092 case DW_TAG_namelist:
12093 return "DW_TAG_namelist";
12094 case DW_TAG_namelist_item:
12095 return "DW_TAG_namelist_item";
12096 case DW_TAG_packed_type:
12097 return "DW_TAG_packed_type";
12098 case DW_TAG_subprogram:
12099 return "DW_TAG_subprogram";
12100 case DW_TAG_template_type_param:
12101 return "DW_TAG_template_type_param";
12102 case DW_TAG_template_value_param:
12103 return "DW_TAG_template_value_param";
12104 case DW_TAG_thrown_type:
12105 return "DW_TAG_thrown_type";
12106 case DW_TAG_try_block:
12107 return "DW_TAG_try_block";
12108 case DW_TAG_variant_part:
12109 return "DW_TAG_variant_part";
12110 case DW_TAG_variable:
12111 return "DW_TAG_variable";
12112 case DW_TAG_volatile_type:
12113 return "DW_TAG_volatile_type";
d9fa45fe
DC
12114 case DW_TAG_dwarf_procedure:
12115 return "DW_TAG_dwarf_procedure";
12116 case DW_TAG_restrict_type:
12117 return "DW_TAG_restrict_type";
12118 case DW_TAG_interface_type:
12119 return "DW_TAG_interface_type";
12120 case DW_TAG_namespace:
12121 return "DW_TAG_namespace";
12122 case DW_TAG_imported_module:
12123 return "DW_TAG_imported_module";
12124 case DW_TAG_unspecified_type:
12125 return "DW_TAG_unspecified_type";
12126 case DW_TAG_partial_unit:
12127 return "DW_TAG_partial_unit";
12128 case DW_TAG_imported_unit:
12129 return "DW_TAG_imported_unit";
b7619582
GF
12130 case DW_TAG_condition:
12131 return "DW_TAG_condition";
12132 case DW_TAG_shared_type:
12133 return "DW_TAG_shared_type";
348e048f
DE
12134 case DW_TAG_type_unit:
12135 return "DW_TAG_type_unit";
c906108c
SS
12136 case DW_TAG_MIPS_loop:
12137 return "DW_TAG_MIPS_loop";
b7619582
GF
12138 case DW_TAG_HP_array_descriptor:
12139 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12140 case DW_TAG_format_label:
12141 return "DW_TAG_format_label";
12142 case DW_TAG_function_template:
12143 return "DW_TAG_function_template";
12144 case DW_TAG_class_template:
12145 return "DW_TAG_class_template";
b7619582
GF
12146 case DW_TAG_GNU_BINCL:
12147 return "DW_TAG_GNU_BINCL";
12148 case DW_TAG_GNU_EINCL:
12149 return "DW_TAG_GNU_EINCL";
12150 case DW_TAG_upc_shared_type:
12151 return "DW_TAG_upc_shared_type";
12152 case DW_TAG_upc_strict_type:
12153 return "DW_TAG_upc_strict_type";
12154 case DW_TAG_upc_relaxed_type:
12155 return "DW_TAG_upc_relaxed_type";
12156 case DW_TAG_PGI_kanji_type:
12157 return "DW_TAG_PGI_kanji_type";
12158 case DW_TAG_PGI_interface_block:
12159 return "DW_TAG_PGI_interface_block";
c906108c
SS
12160 default:
12161 return "DW_TAG_<unknown>";
12162 }
12163}
12164
12165/* Convert a DWARF attribute code into its string name. */
12166
12167static char *
aa1ee363 12168dwarf_attr_name (unsigned attr)
c906108c
SS
12169{
12170 switch (attr)
12171 {
12172 case DW_AT_sibling:
12173 return "DW_AT_sibling";
12174 case DW_AT_location:
12175 return "DW_AT_location";
12176 case DW_AT_name:
12177 return "DW_AT_name";
12178 case DW_AT_ordering:
12179 return "DW_AT_ordering";
12180 case DW_AT_subscr_data:
12181 return "DW_AT_subscr_data";
12182 case DW_AT_byte_size:
12183 return "DW_AT_byte_size";
12184 case DW_AT_bit_offset:
12185 return "DW_AT_bit_offset";
12186 case DW_AT_bit_size:
12187 return "DW_AT_bit_size";
12188 case DW_AT_element_list:
12189 return "DW_AT_element_list";
12190 case DW_AT_stmt_list:
12191 return "DW_AT_stmt_list";
12192 case DW_AT_low_pc:
12193 return "DW_AT_low_pc";
12194 case DW_AT_high_pc:
12195 return "DW_AT_high_pc";
12196 case DW_AT_language:
12197 return "DW_AT_language";
12198 case DW_AT_member:
12199 return "DW_AT_member";
12200 case DW_AT_discr:
12201 return "DW_AT_discr";
12202 case DW_AT_discr_value:
12203 return "DW_AT_discr_value";
12204 case DW_AT_visibility:
12205 return "DW_AT_visibility";
12206 case DW_AT_import:
12207 return "DW_AT_import";
12208 case DW_AT_string_length:
12209 return "DW_AT_string_length";
12210 case DW_AT_common_reference:
12211 return "DW_AT_common_reference";
12212 case DW_AT_comp_dir:
12213 return "DW_AT_comp_dir";
12214 case DW_AT_const_value:
12215 return "DW_AT_const_value";
12216 case DW_AT_containing_type:
12217 return "DW_AT_containing_type";
12218 case DW_AT_default_value:
12219 return "DW_AT_default_value";
12220 case DW_AT_inline:
12221 return "DW_AT_inline";
12222 case DW_AT_is_optional:
12223 return "DW_AT_is_optional";
12224 case DW_AT_lower_bound:
12225 return "DW_AT_lower_bound";
12226 case DW_AT_producer:
12227 return "DW_AT_producer";
12228 case DW_AT_prototyped:
12229 return "DW_AT_prototyped";
12230 case DW_AT_return_addr:
12231 return "DW_AT_return_addr";
12232 case DW_AT_start_scope:
12233 return "DW_AT_start_scope";
09fa0d7c
JK
12234 case DW_AT_bit_stride:
12235 return "DW_AT_bit_stride";
c906108c
SS
12236 case DW_AT_upper_bound:
12237 return "DW_AT_upper_bound";
12238 case DW_AT_abstract_origin:
12239 return "DW_AT_abstract_origin";
12240 case DW_AT_accessibility:
12241 return "DW_AT_accessibility";
12242 case DW_AT_address_class:
12243 return "DW_AT_address_class";
12244 case DW_AT_artificial:
12245 return "DW_AT_artificial";
12246 case DW_AT_base_types:
12247 return "DW_AT_base_types";
12248 case DW_AT_calling_convention:
12249 return "DW_AT_calling_convention";
12250 case DW_AT_count:
12251 return "DW_AT_count";
12252 case DW_AT_data_member_location:
12253 return "DW_AT_data_member_location";
12254 case DW_AT_decl_column:
12255 return "DW_AT_decl_column";
12256 case DW_AT_decl_file:
12257 return "DW_AT_decl_file";
12258 case DW_AT_decl_line:
12259 return "DW_AT_decl_line";
12260 case DW_AT_declaration:
12261 return "DW_AT_declaration";
12262 case DW_AT_discr_list:
12263 return "DW_AT_discr_list";
12264 case DW_AT_encoding:
12265 return "DW_AT_encoding";
12266 case DW_AT_external:
12267 return "DW_AT_external";
12268 case DW_AT_frame_base:
12269 return "DW_AT_frame_base";
12270 case DW_AT_friend:
12271 return "DW_AT_friend";
12272 case DW_AT_identifier_case:
12273 return "DW_AT_identifier_case";
12274 case DW_AT_macro_info:
12275 return "DW_AT_macro_info";
12276 case DW_AT_namelist_items:
12277 return "DW_AT_namelist_items";
12278 case DW_AT_priority:
12279 return "DW_AT_priority";
12280 case DW_AT_segment:
12281 return "DW_AT_segment";
12282 case DW_AT_specification:
12283 return "DW_AT_specification";
12284 case DW_AT_static_link:
12285 return "DW_AT_static_link";
12286 case DW_AT_type:
12287 return "DW_AT_type";
12288 case DW_AT_use_location:
12289 return "DW_AT_use_location";
12290 case DW_AT_variable_parameter:
12291 return "DW_AT_variable_parameter";
12292 case DW_AT_virtuality:
12293 return "DW_AT_virtuality";
12294 case DW_AT_vtable_elem_location:
12295 return "DW_AT_vtable_elem_location";
b7619582 12296 /* DWARF 3 values. */
d9fa45fe
DC
12297 case DW_AT_allocated:
12298 return "DW_AT_allocated";
12299 case DW_AT_associated:
12300 return "DW_AT_associated";
12301 case DW_AT_data_location:
12302 return "DW_AT_data_location";
09fa0d7c
JK
12303 case DW_AT_byte_stride:
12304 return "DW_AT_byte_stride";
d9fa45fe
DC
12305 case DW_AT_entry_pc:
12306 return "DW_AT_entry_pc";
12307 case DW_AT_use_UTF8:
12308 return "DW_AT_use_UTF8";
12309 case DW_AT_extension:
12310 return "DW_AT_extension";
12311 case DW_AT_ranges:
12312 return "DW_AT_ranges";
12313 case DW_AT_trampoline:
12314 return "DW_AT_trampoline";
12315 case DW_AT_call_column:
12316 return "DW_AT_call_column";
12317 case DW_AT_call_file:
12318 return "DW_AT_call_file";
12319 case DW_AT_call_line:
12320 return "DW_AT_call_line";
b7619582
GF
12321 case DW_AT_description:
12322 return "DW_AT_description";
12323 case DW_AT_binary_scale:
12324 return "DW_AT_binary_scale";
12325 case DW_AT_decimal_scale:
12326 return "DW_AT_decimal_scale";
12327 case DW_AT_small:
12328 return "DW_AT_small";
12329 case DW_AT_decimal_sign:
12330 return "DW_AT_decimal_sign";
12331 case DW_AT_digit_count:
12332 return "DW_AT_digit_count";
12333 case DW_AT_picture_string:
12334 return "DW_AT_picture_string";
12335 case DW_AT_mutable:
12336 return "DW_AT_mutable";
12337 case DW_AT_threads_scaled:
12338 return "DW_AT_threads_scaled";
12339 case DW_AT_explicit:
12340 return "DW_AT_explicit";
12341 case DW_AT_object_pointer:
12342 return "DW_AT_object_pointer";
12343 case DW_AT_endianity:
12344 return "DW_AT_endianity";
12345 case DW_AT_elemental:
12346 return "DW_AT_elemental";
12347 case DW_AT_pure:
12348 return "DW_AT_pure";
12349 case DW_AT_recursive:
12350 return "DW_AT_recursive";
348e048f
DE
12351 /* DWARF 4 values. */
12352 case DW_AT_signature:
12353 return "DW_AT_signature";
31ef98ae
TT
12354 case DW_AT_linkage_name:
12355 return "DW_AT_linkage_name";
b7619582 12356 /* SGI/MIPS extensions. */
c764a876 12357#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12358 case DW_AT_MIPS_fde:
12359 return "DW_AT_MIPS_fde";
c764a876 12360#endif
c906108c
SS
12361 case DW_AT_MIPS_loop_begin:
12362 return "DW_AT_MIPS_loop_begin";
12363 case DW_AT_MIPS_tail_loop_begin:
12364 return "DW_AT_MIPS_tail_loop_begin";
12365 case DW_AT_MIPS_epilog_begin:
12366 return "DW_AT_MIPS_epilog_begin";
12367 case DW_AT_MIPS_loop_unroll_factor:
12368 return "DW_AT_MIPS_loop_unroll_factor";
12369 case DW_AT_MIPS_software_pipeline_depth:
12370 return "DW_AT_MIPS_software_pipeline_depth";
12371 case DW_AT_MIPS_linkage_name:
12372 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12373 case DW_AT_MIPS_stride:
12374 return "DW_AT_MIPS_stride";
12375 case DW_AT_MIPS_abstract_name:
12376 return "DW_AT_MIPS_abstract_name";
12377 case DW_AT_MIPS_clone_origin:
12378 return "DW_AT_MIPS_clone_origin";
12379 case DW_AT_MIPS_has_inlines:
12380 return "DW_AT_MIPS_has_inlines";
b7619582 12381 /* HP extensions. */
c764a876 12382#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12383 case DW_AT_HP_block_index:
12384 return "DW_AT_HP_block_index";
c764a876 12385#endif
b7619582
GF
12386 case DW_AT_HP_unmodifiable:
12387 return "DW_AT_HP_unmodifiable";
12388 case DW_AT_HP_actuals_stmt_list:
12389 return "DW_AT_HP_actuals_stmt_list";
12390 case DW_AT_HP_proc_per_section:
12391 return "DW_AT_HP_proc_per_section";
12392 case DW_AT_HP_raw_data_ptr:
12393 return "DW_AT_HP_raw_data_ptr";
12394 case DW_AT_HP_pass_by_reference:
12395 return "DW_AT_HP_pass_by_reference";
12396 case DW_AT_HP_opt_level:
12397 return "DW_AT_HP_opt_level";
12398 case DW_AT_HP_prof_version_id:
12399 return "DW_AT_HP_prof_version_id";
12400 case DW_AT_HP_opt_flags:
12401 return "DW_AT_HP_opt_flags";
12402 case DW_AT_HP_cold_region_low_pc:
12403 return "DW_AT_HP_cold_region_low_pc";
12404 case DW_AT_HP_cold_region_high_pc:
12405 return "DW_AT_HP_cold_region_high_pc";
12406 case DW_AT_HP_all_variables_modifiable:
12407 return "DW_AT_HP_all_variables_modifiable";
12408 case DW_AT_HP_linkage_name:
12409 return "DW_AT_HP_linkage_name";
12410 case DW_AT_HP_prof_flags:
12411 return "DW_AT_HP_prof_flags";
12412 /* GNU extensions. */
c906108c
SS
12413 case DW_AT_sf_names:
12414 return "DW_AT_sf_names";
12415 case DW_AT_src_info:
12416 return "DW_AT_src_info";
12417 case DW_AT_mac_info:
12418 return "DW_AT_mac_info";
12419 case DW_AT_src_coords:
12420 return "DW_AT_src_coords";
12421 case DW_AT_body_begin:
12422 return "DW_AT_body_begin";
12423 case DW_AT_body_end:
12424 return "DW_AT_body_end";
f5f8a009
EZ
12425 case DW_AT_GNU_vector:
12426 return "DW_AT_GNU_vector";
2de00c64
DE
12427 case DW_AT_GNU_odr_signature:
12428 return "DW_AT_GNU_odr_signature";
b7619582
GF
12429 /* VMS extensions. */
12430 case DW_AT_VMS_rtnbeg_pd_address:
12431 return "DW_AT_VMS_rtnbeg_pd_address";
12432 /* UPC extension. */
12433 case DW_AT_upc_threads_scaled:
12434 return "DW_AT_upc_threads_scaled";
12435 /* PGI (STMicroelectronics) extensions. */
12436 case DW_AT_PGI_lbase:
12437 return "DW_AT_PGI_lbase";
12438 case DW_AT_PGI_soffset:
12439 return "DW_AT_PGI_soffset";
12440 case DW_AT_PGI_lstride:
12441 return "DW_AT_PGI_lstride";
c906108c
SS
12442 default:
12443 return "DW_AT_<unknown>";
12444 }
12445}
12446
12447/* Convert a DWARF value form code into its string name. */
12448
12449static char *
aa1ee363 12450dwarf_form_name (unsigned form)
c906108c
SS
12451{
12452 switch (form)
12453 {
12454 case DW_FORM_addr:
12455 return "DW_FORM_addr";
12456 case DW_FORM_block2:
12457 return "DW_FORM_block2";
12458 case DW_FORM_block4:
12459 return "DW_FORM_block4";
12460 case DW_FORM_data2:
12461 return "DW_FORM_data2";
12462 case DW_FORM_data4:
12463 return "DW_FORM_data4";
12464 case DW_FORM_data8:
12465 return "DW_FORM_data8";
12466 case DW_FORM_string:
12467 return "DW_FORM_string";
12468 case DW_FORM_block:
12469 return "DW_FORM_block";
12470 case DW_FORM_block1:
12471 return "DW_FORM_block1";
12472 case DW_FORM_data1:
12473 return "DW_FORM_data1";
12474 case DW_FORM_flag:
12475 return "DW_FORM_flag";
12476 case DW_FORM_sdata:
12477 return "DW_FORM_sdata";
12478 case DW_FORM_strp:
12479 return "DW_FORM_strp";
12480 case DW_FORM_udata:
12481 return "DW_FORM_udata";
12482 case DW_FORM_ref_addr:
12483 return "DW_FORM_ref_addr";
12484 case DW_FORM_ref1:
12485 return "DW_FORM_ref1";
12486 case DW_FORM_ref2:
12487 return "DW_FORM_ref2";
12488 case DW_FORM_ref4:
12489 return "DW_FORM_ref4";
12490 case DW_FORM_ref8:
12491 return "DW_FORM_ref8";
12492 case DW_FORM_ref_udata:
12493 return "DW_FORM_ref_udata";
12494 case DW_FORM_indirect:
12495 return "DW_FORM_indirect";
348e048f
DE
12496 case DW_FORM_sec_offset:
12497 return "DW_FORM_sec_offset";
12498 case DW_FORM_exprloc:
12499 return "DW_FORM_exprloc";
12500 case DW_FORM_flag_present:
12501 return "DW_FORM_flag_present";
12502 case DW_FORM_sig8:
12503 return "DW_FORM_sig8";
c906108c
SS
12504 default:
12505 return "DW_FORM_<unknown>";
12506 }
12507}
12508
12509/* Convert a DWARF stack opcode into its string name. */
12510
9eae7c52 12511const char *
b1bfef65 12512dwarf_stack_op_name (unsigned op)
c906108c
SS
12513{
12514 switch (op)
12515 {
12516 case DW_OP_addr:
12517 return "DW_OP_addr";
12518 case DW_OP_deref:
12519 return "DW_OP_deref";
12520 case DW_OP_const1u:
12521 return "DW_OP_const1u";
12522 case DW_OP_const1s:
12523 return "DW_OP_const1s";
12524 case DW_OP_const2u:
12525 return "DW_OP_const2u";
12526 case DW_OP_const2s:
12527 return "DW_OP_const2s";
12528 case DW_OP_const4u:
12529 return "DW_OP_const4u";
12530 case DW_OP_const4s:
12531 return "DW_OP_const4s";
12532 case DW_OP_const8u:
12533 return "DW_OP_const8u";
12534 case DW_OP_const8s:
12535 return "DW_OP_const8s";
12536 case DW_OP_constu:
12537 return "DW_OP_constu";
12538 case DW_OP_consts:
12539 return "DW_OP_consts";
12540 case DW_OP_dup:
12541 return "DW_OP_dup";
12542 case DW_OP_drop:
12543 return "DW_OP_drop";
12544 case DW_OP_over:
12545 return "DW_OP_over";
12546 case DW_OP_pick:
12547 return "DW_OP_pick";
12548 case DW_OP_swap:
12549 return "DW_OP_swap";
12550 case DW_OP_rot:
12551 return "DW_OP_rot";
12552 case DW_OP_xderef:
12553 return "DW_OP_xderef";
12554 case DW_OP_abs:
12555 return "DW_OP_abs";
12556 case DW_OP_and:
12557 return "DW_OP_and";
12558 case DW_OP_div:
12559 return "DW_OP_div";
12560 case DW_OP_minus:
12561 return "DW_OP_minus";
12562 case DW_OP_mod:
12563 return "DW_OP_mod";
12564 case DW_OP_mul:
12565 return "DW_OP_mul";
12566 case DW_OP_neg:
12567 return "DW_OP_neg";
12568 case DW_OP_not:
12569 return "DW_OP_not";
12570 case DW_OP_or:
12571 return "DW_OP_or";
12572 case DW_OP_plus:
12573 return "DW_OP_plus";
12574 case DW_OP_plus_uconst:
12575 return "DW_OP_plus_uconst";
12576 case DW_OP_shl:
12577 return "DW_OP_shl";
12578 case DW_OP_shr:
12579 return "DW_OP_shr";
12580 case DW_OP_shra:
12581 return "DW_OP_shra";
12582 case DW_OP_xor:
12583 return "DW_OP_xor";
12584 case DW_OP_bra:
12585 return "DW_OP_bra";
12586 case DW_OP_eq:
12587 return "DW_OP_eq";
12588 case DW_OP_ge:
12589 return "DW_OP_ge";
12590 case DW_OP_gt:
12591 return "DW_OP_gt";
12592 case DW_OP_le:
12593 return "DW_OP_le";
12594 case DW_OP_lt:
12595 return "DW_OP_lt";
12596 case DW_OP_ne:
12597 return "DW_OP_ne";
12598 case DW_OP_skip:
12599 return "DW_OP_skip";
12600 case DW_OP_lit0:
12601 return "DW_OP_lit0";
12602 case DW_OP_lit1:
12603 return "DW_OP_lit1";
12604 case DW_OP_lit2:
12605 return "DW_OP_lit2";
12606 case DW_OP_lit3:
12607 return "DW_OP_lit3";
12608 case DW_OP_lit4:
12609 return "DW_OP_lit4";
12610 case DW_OP_lit5:
12611 return "DW_OP_lit5";
12612 case DW_OP_lit6:
12613 return "DW_OP_lit6";
12614 case DW_OP_lit7:
12615 return "DW_OP_lit7";
12616 case DW_OP_lit8:
12617 return "DW_OP_lit8";
12618 case DW_OP_lit9:
12619 return "DW_OP_lit9";
12620 case DW_OP_lit10:
12621 return "DW_OP_lit10";
12622 case DW_OP_lit11:
12623 return "DW_OP_lit11";
12624 case DW_OP_lit12:
12625 return "DW_OP_lit12";
12626 case DW_OP_lit13:
12627 return "DW_OP_lit13";
12628 case DW_OP_lit14:
12629 return "DW_OP_lit14";
12630 case DW_OP_lit15:
12631 return "DW_OP_lit15";
12632 case DW_OP_lit16:
12633 return "DW_OP_lit16";
12634 case DW_OP_lit17:
12635 return "DW_OP_lit17";
12636 case DW_OP_lit18:
12637 return "DW_OP_lit18";
12638 case DW_OP_lit19:
12639 return "DW_OP_lit19";
12640 case DW_OP_lit20:
12641 return "DW_OP_lit20";
12642 case DW_OP_lit21:
12643 return "DW_OP_lit21";
12644 case DW_OP_lit22:
12645 return "DW_OP_lit22";
12646 case DW_OP_lit23:
12647 return "DW_OP_lit23";
12648 case DW_OP_lit24:
12649 return "DW_OP_lit24";
12650 case DW_OP_lit25:
12651 return "DW_OP_lit25";
12652 case DW_OP_lit26:
12653 return "DW_OP_lit26";
12654 case DW_OP_lit27:
12655 return "DW_OP_lit27";
12656 case DW_OP_lit28:
12657 return "DW_OP_lit28";
12658 case DW_OP_lit29:
12659 return "DW_OP_lit29";
12660 case DW_OP_lit30:
12661 return "DW_OP_lit30";
12662 case DW_OP_lit31:
12663 return "DW_OP_lit31";
12664 case DW_OP_reg0:
12665 return "DW_OP_reg0";
12666 case DW_OP_reg1:
12667 return "DW_OP_reg1";
12668 case DW_OP_reg2:
12669 return "DW_OP_reg2";
12670 case DW_OP_reg3:
12671 return "DW_OP_reg3";
12672 case DW_OP_reg4:
12673 return "DW_OP_reg4";
12674 case DW_OP_reg5:
12675 return "DW_OP_reg5";
12676 case DW_OP_reg6:
12677 return "DW_OP_reg6";
12678 case DW_OP_reg7:
12679 return "DW_OP_reg7";
12680 case DW_OP_reg8:
12681 return "DW_OP_reg8";
12682 case DW_OP_reg9:
12683 return "DW_OP_reg9";
12684 case DW_OP_reg10:
12685 return "DW_OP_reg10";
12686 case DW_OP_reg11:
12687 return "DW_OP_reg11";
12688 case DW_OP_reg12:
12689 return "DW_OP_reg12";
12690 case DW_OP_reg13:
12691 return "DW_OP_reg13";
12692 case DW_OP_reg14:
12693 return "DW_OP_reg14";
12694 case DW_OP_reg15:
12695 return "DW_OP_reg15";
12696 case DW_OP_reg16:
12697 return "DW_OP_reg16";
12698 case DW_OP_reg17:
12699 return "DW_OP_reg17";
12700 case DW_OP_reg18:
12701 return "DW_OP_reg18";
12702 case DW_OP_reg19:
12703 return "DW_OP_reg19";
12704 case DW_OP_reg20:
12705 return "DW_OP_reg20";
12706 case DW_OP_reg21:
12707 return "DW_OP_reg21";
12708 case DW_OP_reg22:
12709 return "DW_OP_reg22";
12710 case DW_OP_reg23:
12711 return "DW_OP_reg23";
12712 case DW_OP_reg24:
12713 return "DW_OP_reg24";
12714 case DW_OP_reg25:
12715 return "DW_OP_reg25";
12716 case DW_OP_reg26:
12717 return "DW_OP_reg26";
12718 case DW_OP_reg27:
12719 return "DW_OP_reg27";
12720 case DW_OP_reg28:
12721 return "DW_OP_reg28";
12722 case DW_OP_reg29:
12723 return "DW_OP_reg29";
12724 case DW_OP_reg30:
12725 return "DW_OP_reg30";
12726 case DW_OP_reg31:
12727 return "DW_OP_reg31";
12728 case DW_OP_breg0:
12729 return "DW_OP_breg0";
12730 case DW_OP_breg1:
12731 return "DW_OP_breg1";
12732 case DW_OP_breg2:
12733 return "DW_OP_breg2";
12734 case DW_OP_breg3:
12735 return "DW_OP_breg3";
12736 case DW_OP_breg4:
12737 return "DW_OP_breg4";
12738 case DW_OP_breg5:
12739 return "DW_OP_breg5";
12740 case DW_OP_breg6:
12741 return "DW_OP_breg6";
12742 case DW_OP_breg7:
12743 return "DW_OP_breg7";
12744 case DW_OP_breg8:
12745 return "DW_OP_breg8";
12746 case DW_OP_breg9:
12747 return "DW_OP_breg9";
12748 case DW_OP_breg10:
12749 return "DW_OP_breg10";
12750 case DW_OP_breg11:
12751 return "DW_OP_breg11";
12752 case DW_OP_breg12:
12753 return "DW_OP_breg12";
12754 case DW_OP_breg13:
12755 return "DW_OP_breg13";
12756 case DW_OP_breg14:
12757 return "DW_OP_breg14";
12758 case DW_OP_breg15:
12759 return "DW_OP_breg15";
12760 case DW_OP_breg16:
12761 return "DW_OP_breg16";
12762 case DW_OP_breg17:
12763 return "DW_OP_breg17";
12764 case DW_OP_breg18:
12765 return "DW_OP_breg18";
12766 case DW_OP_breg19:
12767 return "DW_OP_breg19";
12768 case DW_OP_breg20:
12769 return "DW_OP_breg20";
12770 case DW_OP_breg21:
12771 return "DW_OP_breg21";
12772 case DW_OP_breg22:
12773 return "DW_OP_breg22";
12774 case DW_OP_breg23:
12775 return "DW_OP_breg23";
12776 case DW_OP_breg24:
12777 return "DW_OP_breg24";
12778 case DW_OP_breg25:
12779 return "DW_OP_breg25";
12780 case DW_OP_breg26:
12781 return "DW_OP_breg26";
12782 case DW_OP_breg27:
12783 return "DW_OP_breg27";
12784 case DW_OP_breg28:
12785 return "DW_OP_breg28";
12786 case DW_OP_breg29:
12787 return "DW_OP_breg29";
12788 case DW_OP_breg30:
12789 return "DW_OP_breg30";
12790 case DW_OP_breg31:
12791 return "DW_OP_breg31";
12792 case DW_OP_regx:
12793 return "DW_OP_regx";
12794 case DW_OP_fbreg:
12795 return "DW_OP_fbreg";
12796 case DW_OP_bregx:
12797 return "DW_OP_bregx";
12798 case DW_OP_piece:
12799 return "DW_OP_piece";
12800 case DW_OP_deref_size:
12801 return "DW_OP_deref_size";
12802 case DW_OP_xderef_size:
12803 return "DW_OP_xderef_size";
12804 case DW_OP_nop:
12805 return "DW_OP_nop";
b7619582 12806 /* DWARF 3 extensions. */
ed348acc
EZ
12807 case DW_OP_push_object_address:
12808 return "DW_OP_push_object_address";
12809 case DW_OP_call2:
12810 return "DW_OP_call2";
12811 case DW_OP_call4:
12812 return "DW_OP_call4";
12813 case DW_OP_call_ref:
12814 return "DW_OP_call_ref";
b7619582
GF
12815 case DW_OP_form_tls_address:
12816 return "DW_OP_form_tls_address";
12817 case DW_OP_call_frame_cfa:
12818 return "DW_OP_call_frame_cfa";
12819 case DW_OP_bit_piece:
12820 return "DW_OP_bit_piece";
9eae7c52
TT
12821 /* DWARF 4 extensions. */
12822 case DW_OP_implicit_value:
12823 return "DW_OP_implicit_value";
12824 case DW_OP_stack_value:
12825 return "DW_OP_stack_value";
12826 /* GNU extensions. */
ed348acc
EZ
12827 case DW_OP_GNU_push_tls_address:
12828 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
12829 case DW_OP_GNU_uninit:
12830 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
12831 case DW_OP_GNU_implicit_pointer:
12832 return "DW_OP_GNU_implicit_pointer";
c906108c 12833 default:
b1bfef65 12834 return NULL;
c906108c
SS
12835 }
12836}
12837
12838static char *
fba45db2 12839dwarf_bool_name (unsigned mybool)
c906108c
SS
12840{
12841 if (mybool)
12842 return "TRUE";
12843 else
12844 return "FALSE";
12845}
12846
12847/* Convert a DWARF type code into its string name. */
12848
12849static char *
aa1ee363 12850dwarf_type_encoding_name (unsigned enc)
c906108c
SS
12851{
12852 switch (enc)
12853 {
b7619582
GF
12854 case DW_ATE_void:
12855 return "DW_ATE_void";
c906108c
SS
12856 case DW_ATE_address:
12857 return "DW_ATE_address";
12858 case DW_ATE_boolean:
12859 return "DW_ATE_boolean";
12860 case DW_ATE_complex_float:
12861 return "DW_ATE_complex_float";
12862 case DW_ATE_float:
12863 return "DW_ATE_float";
12864 case DW_ATE_signed:
12865 return "DW_ATE_signed";
12866 case DW_ATE_signed_char:
12867 return "DW_ATE_signed_char";
12868 case DW_ATE_unsigned:
12869 return "DW_ATE_unsigned";
12870 case DW_ATE_unsigned_char:
12871 return "DW_ATE_unsigned_char";
b7619582 12872 /* DWARF 3. */
d9fa45fe
DC
12873 case DW_ATE_imaginary_float:
12874 return "DW_ATE_imaginary_float";
b7619582
GF
12875 case DW_ATE_packed_decimal:
12876 return "DW_ATE_packed_decimal";
12877 case DW_ATE_numeric_string:
12878 return "DW_ATE_numeric_string";
12879 case DW_ATE_edited:
12880 return "DW_ATE_edited";
12881 case DW_ATE_signed_fixed:
12882 return "DW_ATE_signed_fixed";
12883 case DW_ATE_unsigned_fixed:
12884 return "DW_ATE_unsigned_fixed";
12885 case DW_ATE_decimal_float:
12886 return "DW_ATE_decimal_float";
75079b2b
TT
12887 /* DWARF 4. */
12888 case DW_ATE_UTF:
12889 return "DW_ATE_UTF";
b7619582
GF
12890 /* HP extensions. */
12891 case DW_ATE_HP_float80:
12892 return "DW_ATE_HP_float80";
12893 case DW_ATE_HP_complex_float80:
12894 return "DW_ATE_HP_complex_float80";
12895 case DW_ATE_HP_float128:
12896 return "DW_ATE_HP_float128";
12897 case DW_ATE_HP_complex_float128:
12898 return "DW_ATE_HP_complex_float128";
12899 case DW_ATE_HP_floathpintel:
12900 return "DW_ATE_HP_floathpintel";
12901 case DW_ATE_HP_imaginary_float80:
12902 return "DW_ATE_HP_imaginary_float80";
12903 case DW_ATE_HP_imaginary_float128:
12904 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
12905 default:
12906 return "DW_ATE_<unknown>";
12907 }
12908}
12909
0963b4bd 12910/* Convert a DWARF call frame info operation to its string name. */
c906108c
SS
12911
12912#if 0
12913static char *
aa1ee363 12914dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
12915{
12916 switch (cfi_opc)
12917 {
12918 case DW_CFA_advance_loc:
12919 return "DW_CFA_advance_loc";
12920 case DW_CFA_offset:
12921 return "DW_CFA_offset";
12922 case DW_CFA_restore:
12923 return "DW_CFA_restore";
12924 case DW_CFA_nop:
12925 return "DW_CFA_nop";
12926 case DW_CFA_set_loc:
12927 return "DW_CFA_set_loc";
12928 case DW_CFA_advance_loc1:
12929 return "DW_CFA_advance_loc1";
12930 case DW_CFA_advance_loc2:
12931 return "DW_CFA_advance_loc2";
12932 case DW_CFA_advance_loc4:
12933 return "DW_CFA_advance_loc4";
12934 case DW_CFA_offset_extended:
12935 return "DW_CFA_offset_extended";
12936 case DW_CFA_restore_extended:
12937 return "DW_CFA_restore_extended";
12938 case DW_CFA_undefined:
12939 return "DW_CFA_undefined";
12940 case DW_CFA_same_value:
12941 return "DW_CFA_same_value";
12942 case DW_CFA_register:
12943 return "DW_CFA_register";
12944 case DW_CFA_remember_state:
12945 return "DW_CFA_remember_state";
12946 case DW_CFA_restore_state:
12947 return "DW_CFA_restore_state";
12948 case DW_CFA_def_cfa:
12949 return "DW_CFA_def_cfa";
12950 case DW_CFA_def_cfa_register:
12951 return "DW_CFA_def_cfa_register";
12952 case DW_CFA_def_cfa_offset:
12953 return "DW_CFA_def_cfa_offset";
b7619582 12954 /* DWARF 3. */
985cb1a3
JM
12955 case DW_CFA_def_cfa_expression:
12956 return "DW_CFA_def_cfa_expression";
12957 case DW_CFA_expression:
12958 return "DW_CFA_expression";
12959 case DW_CFA_offset_extended_sf:
12960 return "DW_CFA_offset_extended_sf";
12961 case DW_CFA_def_cfa_sf:
12962 return "DW_CFA_def_cfa_sf";
12963 case DW_CFA_def_cfa_offset_sf:
12964 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
12965 case DW_CFA_val_offset:
12966 return "DW_CFA_val_offset";
12967 case DW_CFA_val_offset_sf:
12968 return "DW_CFA_val_offset_sf";
12969 case DW_CFA_val_expression:
12970 return "DW_CFA_val_expression";
12971 /* SGI/MIPS specific. */
c906108c
SS
12972 case DW_CFA_MIPS_advance_loc8:
12973 return "DW_CFA_MIPS_advance_loc8";
b7619582 12974 /* GNU extensions. */
985cb1a3
JM
12975 case DW_CFA_GNU_window_save:
12976 return "DW_CFA_GNU_window_save";
12977 case DW_CFA_GNU_args_size:
12978 return "DW_CFA_GNU_args_size";
12979 case DW_CFA_GNU_negative_offset_extended:
12980 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
12981 default:
12982 return "DW_CFA_<unknown>";
12983 }
12984}
12985#endif
12986
f9aca02d 12987static void
d97bc12b 12988dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
12989{
12990 unsigned int i;
12991
d97bc12b
DE
12992 print_spaces (indent, f);
12993 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 12994 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
12995
12996 if (die->parent != NULL)
12997 {
12998 print_spaces (indent, f);
12999 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13000 die->parent->offset);
13001 }
13002
13003 print_spaces (indent, f);
13004 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 13005 dwarf_bool_name (die->child != NULL));
c906108c 13006
d97bc12b
DE
13007 print_spaces (indent, f);
13008 fprintf_unfiltered (f, " attributes:\n");
13009
c906108c
SS
13010 for (i = 0; i < die->num_attrs; ++i)
13011 {
d97bc12b
DE
13012 print_spaces (indent, f);
13013 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
13014 dwarf_attr_name (die->attrs[i].name),
13015 dwarf_form_name (die->attrs[i].form));
d97bc12b 13016
c906108c
SS
13017 switch (die->attrs[i].form)
13018 {
13019 case DW_FORM_ref_addr:
13020 case DW_FORM_addr:
d97bc12b 13021 fprintf_unfiltered (f, "address: ");
5af949e3 13022 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
13023 break;
13024 case DW_FORM_block2:
13025 case DW_FORM_block4:
13026 case DW_FORM_block:
13027 case DW_FORM_block1:
3e43a32a
MS
13028 fprintf_unfiltered (f, "block: size %d",
13029 DW_BLOCK (&die->attrs[i])->size);
c906108c 13030 break;
2dc7f7b3
TT
13031 case DW_FORM_exprloc:
13032 fprintf_unfiltered (f, "expression: size %u",
13033 DW_BLOCK (&die->attrs[i])->size);
13034 break;
10b3939b
DJ
13035 case DW_FORM_ref1:
13036 case DW_FORM_ref2:
13037 case DW_FORM_ref4:
d97bc12b 13038 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
13039 (long) (DW_ADDR (&die->attrs[i])));
13040 break;
c906108c
SS
13041 case DW_FORM_data1:
13042 case DW_FORM_data2:
13043 case DW_FORM_data4:
ce5d95e1 13044 case DW_FORM_data8:
c906108c
SS
13045 case DW_FORM_udata:
13046 case DW_FORM_sdata:
43bbcdc2
PH
13047 fprintf_unfiltered (f, "constant: %s",
13048 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 13049 break;
2dc7f7b3
TT
13050 case DW_FORM_sec_offset:
13051 fprintf_unfiltered (f, "section offset: %s",
13052 pulongest (DW_UNSND (&die->attrs[i])));
13053 break;
348e048f
DE
13054 case DW_FORM_sig8:
13055 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13056 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13057 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13058 else
13059 fprintf_unfiltered (f, "signatured type, offset: unknown");
13060 break;
c906108c 13061 case DW_FORM_string:
4bdf3d34 13062 case DW_FORM_strp:
8285870a 13063 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 13064 DW_STRING (&die->attrs[i])
8285870a
JK
13065 ? DW_STRING (&die->attrs[i]) : "",
13066 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
13067 break;
13068 case DW_FORM_flag:
13069 if (DW_UNSND (&die->attrs[i]))
d97bc12b 13070 fprintf_unfiltered (f, "flag: TRUE");
c906108c 13071 else
d97bc12b 13072 fprintf_unfiltered (f, "flag: FALSE");
c906108c 13073 break;
2dc7f7b3
TT
13074 case DW_FORM_flag_present:
13075 fprintf_unfiltered (f, "flag: TRUE");
13076 break;
a8329558 13077 case DW_FORM_indirect:
0963b4bd
MS
13078 /* The reader will have reduced the indirect form to
13079 the "base form" so this form should not occur. */
3e43a32a
MS
13080 fprintf_unfiltered (f,
13081 "unexpected attribute form: DW_FORM_indirect");
a8329558 13082 break;
c906108c 13083 default:
d97bc12b 13084 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13085 die->attrs[i].form);
d97bc12b 13086 break;
c906108c 13087 }
d97bc12b 13088 fprintf_unfiltered (f, "\n");
c906108c
SS
13089 }
13090}
13091
f9aca02d 13092static void
d97bc12b 13093dump_die_for_error (struct die_info *die)
c906108c 13094{
d97bc12b
DE
13095 dump_die_shallow (gdb_stderr, 0, die);
13096}
13097
13098static void
13099dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13100{
13101 int indent = level * 4;
13102
13103 gdb_assert (die != NULL);
13104
13105 if (level >= max_level)
13106 return;
13107
13108 dump_die_shallow (f, indent, die);
13109
13110 if (die->child != NULL)
c906108c 13111 {
d97bc12b
DE
13112 print_spaces (indent, f);
13113 fprintf_unfiltered (f, " Children:");
13114 if (level + 1 < max_level)
13115 {
13116 fprintf_unfiltered (f, "\n");
13117 dump_die_1 (f, level + 1, max_level, die->child);
13118 }
13119 else
13120 {
3e43a32a
MS
13121 fprintf_unfiltered (f,
13122 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13123 }
13124 }
13125
13126 if (die->sibling != NULL && level > 0)
13127 {
13128 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13129 }
13130}
13131
d97bc12b
DE
13132/* This is called from the pdie macro in gdbinit.in.
13133 It's not static so gcc will keep a copy callable from gdb. */
13134
13135void
13136dump_die (struct die_info *die, int max_level)
13137{
13138 dump_die_1 (gdb_stdlog, 0, max_level, die);
13139}
13140
f9aca02d 13141static void
51545339 13142store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13143{
51545339 13144 void **slot;
c906108c 13145
51545339
DJ
13146 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13147
13148 *slot = die;
c906108c
SS
13149}
13150
93311388
DE
13151static int
13152is_ref_attr (struct attribute *attr)
c906108c 13153{
c906108c
SS
13154 switch (attr->form)
13155 {
13156 case DW_FORM_ref_addr:
c906108c
SS
13157 case DW_FORM_ref1:
13158 case DW_FORM_ref2:
13159 case DW_FORM_ref4:
613e1657 13160 case DW_FORM_ref8:
c906108c 13161 case DW_FORM_ref_udata:
93311388 13162 return 1;
c906108c 13163 default:
93311388 13164 return 0;
c906108c 13165 }
93311388
DE
13166}
13167
13168static unsigned int
13169dwarf2_get_ref_die_offset (struct attribute *attr)
13170{
13171 if (is_ref_attr (attr))
13172 return DW_ADDR (attr);
13173
13174 complaint (&symfile_complaints,
13175 _("unsupported die ref attribute form: '%s'"),
13176 dwarf_form_name (attr->form));
13177 return 0;
c906108c
SS
13178}
13179
43bbcdc2
PH
13180/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13181 * the value held by the attribute is not constant. */
a02abb62 13182
43bbcdc2 13183static LONGEST
a02abb62
JB
13184dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13185{
13186 if (attr->form == DW_FORM_sdata)
13187 return DW_SND (attr);
13188 else if (attr->form == DW_FORM_udata
13189 || attr->form == DW_FORM_data1
13190 || attr->form == DW_FORM_data2
13191 || attr->form == DW_FORM_data4
13192 || attr->form == DW_FORM_data8)
13193 return DW_UNSND (attr);
13194 else
13195 {
3e43a32a
MS
13196 complaint (&symfile_complaints,
13197 _("Attribute value is not a constant (%s)"),
a02abb62
JB
13198 dwarf_form_name (attr->form));
13199 return default_value;
13200 }
13201}
13202
03dd20cc 13203/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
13204 unit and add it to our queue.
13205 The result is non-zero if PER_CU was queued, otherwise the result is zero
13206 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 13207
348e048f 13208static int
03dd20cc
DJ
13209maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13210 struct dwarf2_per_cu_data *per_cu)
13211{
98bfdba5
PA
13212 /* We may arrive here during partial symbol reading, if we need full
13213 DIEs to process an unusual case (e.g. template arguments). Do
13214 not queue PER_CU, just tell our caller to load its DIEs. */
13215 if (dwarf2_per_objfile->reading_partial_symbols)
13216 {
13217 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13218 return 1;
13219 return 0;
13220 }
13221
03dd20cc
DJ
13222 /* Mark the dependence relation so that we don't flush PER_CU
13223 too early. */
13224 dwarf2_add_dependence (this_cu, per_cu);
13225
13226 /* If it's already on the queue, we have nothing to do. */
13227 if (per_cu->queued)
348e048f 13228 return 0;
03dd20cc
DJ
13229
13230 /* If the compilation unit is already loaded, just mark it as
13231 used. */
13232 if (per_cu->cu != NULL)
13233 {
13234 per_cu->cu->last_used = 0;
348e048f 13235 return 0;
03dd20cc
DJ
13236 }
13237
13238 /* Add it to the queue. */
13239 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
13240
13241 return 1;
13242}
13243
13244/* Follow reference or signature attribute ATTR of SRC_DIE.
13245 On entry *REF_CU is the CU of SRC_DIE.
13246 On exit *REF_CU is the CU of the result. */
13247
13248static struct die_info *
13249follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13250 struct dwarf2_cu **ref_cu)
13251{
13252 struct die_info *die;
13253
13254 if (is_ref_attr (attr))
13255 die = follow_die_ref (src_die, attr, ref_cu);
13256 else if (attr->form == DW_FORM_sig8)
13257 die = follow_die_sig (src_die, attr, ref_cu);
13258 else
13259 {
13260 dump_die_for_error (src_die);
13261 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13262 (*ref_cu)->objfile->name);
13263 }
13264
13265 return die;
03dd20cc
DJ
13266}
13267
5c631832 13268/* Follow reference OFFSET.
673bfd45
DE
13269 On entry *REF_CU is the CU of the source die referencing OFFSET.
13270 On exit *REF_CU is the CU of the result.
13271 Returns NULL if OFFSET is invalid. */
f504f079 13272
f9aca02d 13273static struct die_info *
5c631832 13274follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 13275{
10b3939b 13276 struct die_info temp_die;
f2f0e013 13277 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13278
348e048f
DE
13279 gdb_assert (cu->per_cu != NULL);
13280
98bfdba5
PA
13281 target_cu = cu;
13282
348e048f
DE
13283 if (cu->per_cu->from_debug_types)
13284 {
13285 /* .debug_types CUs cannot reference anything outside their CU.
13286 If they need to, they have to reference a signatured type via
13287 DW_FORM_sig8. */
13288 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13289 return NULL;
348e048f
DE
13290 }
13291 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13292 {
13293 struct dwarf2_per_cu_data *per_cu;
9a619af0 13294
45452591 13295 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13296
13297 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13298 if (maybe_queue_comp_unit (cu, per_cu))
13299 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13300
10b3939b
DJ
13301 target_cu = per_cu->cu;
13302 }
98bfdba5
PA
13303 else if (cu->dies == NULL)
13304 {
13305 /* We're loading full DIEs during partial symbol reading. */
13306 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13307 load_full_comp_unit (cu->per_cu, cu->objfile);
13308 }
c906108c 13309
f2f0e013 13310 *ref_cu = target_cu;
51545339 13311 temp_die.offset = offset;
5c631832
JK
13312 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13313}
10b3939b 13314
5c631832
JK
13315/* Follow reference attribute ATTR of SRC_DIE.
13316 On entry *REF_CU is the CU of SRC_DIE.
13317 On exit *REF_CU is the CU of the result. */
13318
13319static struct die_info *
13320follow_die_ref (struct die_info *src_die, struct attribute *attr,
13321 struct dwarf2_cu **ref_cu)
13322{
13323 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13324 struct dwarf2_cu *cu = *ref_cu;
13325 struct die_info *die;
13326
13327 die = follow_die_offset (offset, ref_cu);
13328 if (!die)
13329 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13330 "at 0x%x [in module %s]"),
13331 offset, src_die->offset, cu->objfile->name);
348e048f 13332
5c631832
JK
13333 return die;
13334}
13335
13336/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13337 value is intended for DW_OP_call*. */
13338
13339struct dwarf2_locexpr_baton
13340dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
13341 struct dwarf2_per_cu_data *per_cu,
13342 CORE_ADDR (*get_frame_pc) (void *baton),
13343 void *baton)
5c631832
JK
13344{
13345 struct dwarf2_cu *cu = per_cu->cu;
13346 struct die_info *die;
13347 struct attribute *attr;
13348 struct dwarf2_locexpr_baton retval;
13349
8cf6f0b1
TT
13350 dw2_setup (per_cu->objfile);
13351
5c631832
JK
13352 die = follow_die_offset (offset, &cu);
13353 if (!die)
13354 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13355 offset, per_cu->cu->objfile->name);
13356
13357 attr = dwarf2_attr (die, DW_AT_location, cu);
13358 if (!attr)
13359 {
13360 /* DWARF: "If there is no such attribute, then there is no effect.". */
13361
13362 retval.data = NULL;
13363 retval.size = 0;
13364 }
8cf6f0b1
TT
13365 else if (attr_form_is_section_offset (attr))
13366 {
13367 struct dwarf2_loclist_baton loclist_baton;
13368 CORE_ADDR pc = (*get_frame_pc) (baton);
13369 size_t size;
13370
13371 fill_in_loclist_baton (cu, &loclist_baton, attr);
13372
13373 retval.data = dwarf2_find_location_expression (&loclist_baton,
13374 &size, pc);
13375 retval.size = size;
13376 }
5c631832
JK
13377 else
13378 {
13379 if (!attr_form_is_block (attr))
13380 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13381 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13382 offset, per_cu->cu->objfile->name);
13383
13384 retval.data = DW_BLOCK (attr)->data;
13385 retval.size = DW_BLOCK (attr)->size;
13386 }
13387 retval.per_cu = cu->per_cu;
13388 return retval;
348e048f
DE
13389}
13390
13391/* Follow the signature attribute ATTR in SRC_DIE.
13392 On entry *REF_CU is the CU of SRC_DIE.
13393 On exit *REF_CU is the CU of the result. */
13394
13395static struct die_info *
13396follow_die_sig (struct die_info *src_die, struct attribute *attr,
13397 struct dwarf2_cu **ref_cu)
13398{
13399 struct objfile *objfile = (*ref_cu)->objfile;
13400 struct die_info temp_die;
13401 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13402 struct dwarf2_cu *sig_cu;
13403 struct die_info *die;
13404
13405 /* sig_type will be NULL if the signatured type is missing from
13406 the debug info. */
13407 if (sig_type == NULL)
13408 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13409 "at 0x%x [in module %s]"),
13410 src_die->offset, objfile->name);
13411
13412 /* If necessary, add it to the queue and load its DIEs. */
13413
13414 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13415 read_signatured_type (objfile, sig_type);
13416
13417 gdb_assert (sig_type->per_cu.cu != NULL);
13418
13419 sig_cu = sig_type->per_cu.cu;
13420 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13421 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13422 if (die)
13423 {
13424 *ref_cu = sig_cu;
13425 return die;
13426 }
13427
3e43a32a
MS
13428 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13429 "from DIE at 0x%x [in module %s]"),
348e048f
DE
13430 sig_type->type_offset, src_die->offset, objfile->name);
13431}
13432
13433/* Given an offset of a signatured type, return its signatured_type. */
13434
13435static struct signatured_type *
13436lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13437{
13438 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13439 unsigned int length, initial_length_size;
13440 unsigned int sig_offset;
13441 struct signatured_type find_entry, *type_sig;
13442
13443 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13444 sig_offset = (initial_length_size
13445 + 2 /*version*/
13446 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13447 + 1 /*address_size*/);
13448 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13449 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13450
13451 /* This is only used to lookup previously recorded types.
13452 If we didn't find it, it's our bug. */
13453 gdb_assert (type_sig != NULL);
13454 gdb_assert (offset == type_sig->offset);
13455
13456 return type_sig;
13457}
13458
13459/* Read in signatured type at OFFSET and build its CU and die(s). */
13460
13461static void
13462read_signatured_type_at_offset (struct objfile *objfile,
13463 unsigned int offset)
13464{
13465 struct signatured_type *type_sig;
13466
be391dca
TT
13467 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13468
348e048f
DE
13469 /* We have the section offset, but we need the signature to do the
13470 hash table lookup. */
13471 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13472
13473 gdb_assert (type_sig->per_cu.cu == NULL);
13474
13475 read_signatured_type (objfile, type_sig);
13476
13477 gdb_assert (type_sig->per_cu.cu != NULL);
13478}
13479
13480/* Read in a signatured type and build its CU and DIEs. */
13481
13482static void
13483read_signatured_type (struct objfile *objfile,
13484 struct signatured_type *type_sig)
13485{
1fd400ff 13486 gdb_byte *types_ptr;
348e048f
DE
13487 struct die_reader_specs reader_specs;
13488 struct dwarf2_cu *cu;
13489 ULONGEST signature;
13490 struct cleanup *back_to, *free_cu_cleanup;
348e048f 13491
1fd400ff
TT
13492 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13493 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13494
348e048f
DE
13495 gdb_assert (type_sig->per_cu.cu == NULL);
13496
9816fde3
JK
13497 cu = xmalloc (sizeof (*cu));
13498 init_one_comp_unit (cu, objfile);
13499
348e048f
DE
13500 type_sig->per_cu.cu = cu;
13501 cu->per_cu = &type_sig->per_cu;
13502
13503 /* If an error occurs while loading, release our storage. */
13504 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13505
13506 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13507 types_ptr, objfile->obfd);
13508 gdb_assert (signature == type_sig->signature);
13509
13510 cu->die_hash
13511 = htab_create_alloc_ex (cu->header.length / 12,
13512 die_hash,
13513 die_eq,
13514 NULL,
13515 &cu->comp_unit_obstack,
13516 hashtab_obstack_allocate,
13517 dummy_obstack_deallocate);
13518
13519 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13520 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13521
13522 init_cu_die_reader (&reader_specs, cu);
13523
13524 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13525 NULL /*parent*/);
13526
13527 /* We try not to read any attributes in this function, because not
13528 all objfiles needed for references have been loaded yet, and symbol
13529 table processing isn't initialized. But we have to set the CU language,
13530 or we won't be able to build types correctly. */
9816fde3 13531 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
13532
13533 do_cleanups (back_to);
13534
13535 /* We've successfully allocated this compilation unit. Let our caller
13536 clean it up when finished with it. */
13537 discard_cleanups (free_cu_cleanup);
13538
13539 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13540 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
13541}
13542
c906108c
SS
13543/* Decode simple location descriptions.
13544 Given a pointer to a dwarf block that defines a location, compute
13545 the location and return the value.
13546
4cecd739
DJ
13547 NOTE drow/2003-11-18: This function is called in two situations
13548 now: for the address of static or global variables (partial symbols
13549 only) and for offsets into structures which are expected to be
13550 (more or less) constant. The partial symbol case should go away,
13551 and only the constant case should remain. That will let this
13552 function complain more accurately. A few special modes are allowed
13553 without complaint for global variables (for instance, global
13554 register values and thread-local values).
c906108c
SS
13555
13556 A location description containing no operations indicates that the
4cecd739 13557 object is optimized out. The return value is 0 for that case.
6b992462
DJ
13558 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13559 callers will only want a very basic result and this can become a
13560 complaint.
c906108c 13561
d53d4ac5 13562 Note that stack[0] is unused except as a default error return. */
c906108c
SS
13563
13564static CORE_ADDR
e7c27a73 13565decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 13566{
e7c27a73 13567 struct objfile *objfile = cu->objfile;
c906108c
SS
13568 int i;
13569 int size = blk->size;
fe1b8b76 13570 gdb_byte *data = blk->data;
c906108c
SS
13571 CORE_ADDR stack[64];
13572 int stacki;
13573 unsigned int bytes_read, unsnd;
fe1b8b76 13574 gdb_byte op;
c906108c
SS
13575
13576 i = 0;
13577 stacki = 0;
13578 stack[stacki] = 0;
d53d4ac5 13579 stack[++stacki] = 0;
c906108c
SS
13580
13581 while (i < size)
13582 {
c906108c
SS
13583 op = data[i++];
13584 switch (op)
13585 {
f1bea926
JM
13586 case DW_OP_lit0:
13587 case DW_OP_lit1:
13588 case DW_OP_lit2:
13589 case DW_OP_lit3:
13590 case DW_OP_lit4:
13591 case DW_OP_lit5:
13592 case DW_OP_lit6:
13593 case DW_OP_lit7:
13594 case DW_OP_lit8:
13595 case DW_OP_lit9:
13596 case DW_OP_lit10:
13597 case DW_OP_lit11:
13598 case DW_OP_lit12:
13599 case DW_OP_lit13:
13600 case DW_OP_lit14:
13601 case DW_OP_lit15:
13602 case DW_OP_lit16:
13603 case DW_OP_lit17:
13604 case DW_OP_lit18:
13605 case DW_OP_lit19:
13606 case DW_OP_lit20:
13607 case DW_OP_lit21:
13608 case DW_OP_lit22:
13609 case DW_OP_lit23:
13610 case DW_OP_lit24:
13611 case DW_OP_lit25:
13612 case DW_OP_lit26:
13613 case DW_OP_lit27:
13614 case DW_OP_lit28:
13615 case DW_OP_lit29:
13616 case DW_OP_lit30:
13617 case DW_OP_lit31:
13618 stack[++stacki] = op - DW_OP_lit0;
13619 break;
13620
c906108c
SS
13621 case DW_OP_reg0:
13622 case DW_OP_reg1:
13623 case DW_OP_reg2:
13624 case DW_OP_reg3:
13625 case DW_OP_reg4:
13626 case DW_OP_reg5:
13627 case DW_OP_reg6:
13628 case DW_OP_reg7:
13629 case DW_OP_reg8:
13630 case DW_OP_reg9:
13631 case DW_OP_reg10:
13632 case DW_OP_reg11:
13633 case DW_OP_reg12:
13634 case DW_OP_reg13:
13635 case DW_OP_reg14:
13636 case DW_OP_reg15:
13637 case DW_OP_reg16:
13638 case DW_OP_reg17:
13639 case DW_OP_reg18:
13640 case DW_OP_reg19:
13641 case DW_OP_reg20:
13642 case DW_OP_reg21:
13643 case DW_OP_reg22:
13644 case DW_OP_reg23:
13645 case DW_OP_reg24:
13646 case DW_OP_reg25:
13647 case DW_OP_reg26:
13648 case DW_OP_reg27:
13649 case DW_OP_reg28:
13650 case DW_OP_reg29:
13651 case DW_OP_reg30:
13652 case DW_OP_reg31:
c906108c 13653 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
13654 if (i < size)
13655 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13656 break;
13657
13658 case DW_OP_regx:
c906108c
SS
13659 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13660 i += bytes_read;
c906108c 13661 stack[++stacki] = unsnd;
4cecd739
DJ
13662 if (i < size)
13663 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13664 break;
13665
13666 case DW_OP_addr:
107d2387 13667 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 13668 cu, &bytes_read);
107d2387 13669 i += bytes_read;
c906108c
SS
13670 break;
13671
13672 case DW_OP_const1u:
13673 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13674 i += 1;
13675 break;
13676
13677 case DW_OP_const1s:
13678 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13679 i += 1;
13680 break;
13681
13682 case DW_OP_const2u:
13683 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13684 i += 2;
13685 break;
13686
13687 case DW_OP_const2s:
13688 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13689 i += 2;
13690 break;
13691
13692 case DW_OP_const4u:
13693 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13694 i += 4;
13695 break;
13696
13697 case DW_OP_const4s:
13698 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13699 i += 4;
13700 break;
13701
13702 case DW_OP_constu:
13703 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 13704 &bytes_read);
c906108c
SS
13705 i += bytes_read;
13706 break;
13707
13708 case DW_OP_consts:
13709 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13710 i += bytes_read;
13711 break;
13712
f1bea926
JM
13713 case DW_OP_dup:
13714 stack[stacki + 1] = stack[stacki];
13715 stacki++;
13716 break;
13717
c906108c
SS
13718 case DW_OP_plus:
13719 stack[stacki - 1] += stack[stacki];
13720 stacki--;
13721 break;
13722
13723 case DW_OP_plus_uconst:
3e43a32a
MS
13724 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13725 &bytes_read);
c906108c
SS
13726 i += bytes_read;
13727 break;
13728
13729 case DW_OP_minus:
f1bea926 13730 stack[stacki - 1] -= stack[stacki];
c906108c
SS
13731 stacki--;
13732 break;
13733
7a292a7a 13734 case DW_OP_deref:
7a292a7a 13735 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
13736 this using GDB's address_class enum. This is valid for partial
13737 global symbols, although the variable's address will be bogus
13738 in the psymtab. */
7a292a7a 13739 if (i < size)
4d3c2250 13740 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
13741 break;
13742
9d774e44 13743 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
13744 /* The top of the stack has the offset from the beginning
13745 of the thread control block at which the variable is located. */
13746 /* Nothing should follow this operator, so the top of stack would
13747 be returned. */
4cecd739
DJ
13748 /* This is valid for partial global symbols, but the variable's
13749 address will be bogus in the psymtab. */
9d774e44 13750 if (i < size)
4d3c2250 13751 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
13752 break;
13753
42be36b3
CT
13754 case DW_OP_GNU_uninit:
13755 break;
13756
c906108c 13757 default:
b1bfef65
TT
13758 {
13759 const char *name = dwarf_stack_op_name (op);
13760
13761 if (name)
13762 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13763 name);
13764 else
13765 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13766 op);
13767 }
13768
c906108c
SS
13769 return (stack[stacki]);
13770 }
d53d4ac5
TT
13771
13772 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13773 outside of the allocated space. Also enforce minimum>0. */
13774 if (stacki >= ARRAY_SIZE (stack) - 1)
13775 {
13776 complaint (&symfile_complaints,
13777 _("location description stack overflow"));
13778 return 0;
13779 }
13780
13781 if (stacki <= 0)
13782 {
13783 complaint (&symfile_complaints,
13784 _("location description stack underflow"));
13785 return 0;
13786 }
c906108c
SS
13787 }
13788 return (stack[stacki]);
13789}
13790
13791/* memory allocation interface */
13792
c906108c 13793static struct dwarf_block *
7b5a2f43 13794dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
13795{
13796 struct dwarf_block *blk;
13797
13798 blk = (struct dwarf_block *)
7b5a2f43 13799 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
13800 return (blk);
13801}
13802
13803static struct abbrev_info *
f3dd6933 13804dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
13805{
13806 struct abbrev_info *abbrev;
13807
f3dd6933
DJ
13808 abbrev = (struct abbrev_info *)
13809 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
13810 memset (abbrev, 0, sizeof (struct abbrev_info));
13811 return (abbrev);
13812}
13813
13814static struct die_info *
b60c80d6 13815dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
13816{
13817 struct die_info *die;
b60c80d6
DJ
13818 size_t size = sizeof (struct die_info);
13819
13820 if (num_attrs > 1)
13821 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 13822
b60c80d6 13823 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
13824 memset (die, 0, sizeof (struct die_info));
13825 return (die);
13826}
2e276125
JB
13827
13828\f
13829/* Macro support. */
13830
2e276125
JB
13831/* Return the full name of file number I in *LH's file name table.
13832 Use COMP_DIR as the name of the current directory of the
13833 compilation. The result is allocated using xmalloc; the caller is
13834 responsible for freeing it. */
13835static char *
13836file_full_name (int file, struct line_header *lh, const char *comp_dir)
13837{
6a83a1e6
EZ
13838 /* Is the file number a valid index into the line header's file name
13839 table? Remember that file numbers start with one, not zero. */
13840 if (1 <= file && file <= lh->num_file_names)
13841 {
13842 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 13843
6a83a1e6
EZ
13844 if (IS_ABSOLUTE_PATH (fe->name))
13845 return xstrdup (fe->name);
13846 else
13847 {
13848 const char *dir;
13849 int dir_len;
13850 char *full_name;
13851
13852 if (fe->dir_index)
13853 dir = lh->include_dirs[fe->dir_index - 1];
13854 else
13855 dir = comp_dir;
13856
13857 if (dir)
13858 {
13859 dir_len = strlen (dir);
13860 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13861 strcpy (full_name, dir);
13862 full_name[dir_len] = '/';
13863 strcpy (full_name + dir_len + 1, fe->name);
13864 return full_name;
13865 }
13866 else
13867 return xstrdup (fe->name);
13868 }
13869 }
2e276125
JB
13870 else
13871 {
6a83a1e6
EZ
13872 /* The compiler produced a bogus file number. We can at least
13873 record the macro definitions made in the file, even if we
13874 won't be able to find the file by name. */
13875 char fake_name[80];
9a619af0 13876
6a83a1e6 13877 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 13878
6e70227d 13879 complaint (&symfile_complaints,
6a83a1e6
EZ
13880 _("bad file number in macro information (%d)"),
13881 file);
2e276125 13882
6a83a1e6 13883 return xstrdup (fake_name);
2e276125
JB
13884 }
13885}
13886
13887
13888static struct macro_source_file *
13889macro_start_file (int file, int line,
13890 struct macro_source_file *current_file,
13891 const char *comp_dir,
13892 struct line_header *lh, struct objfile *objfile)
13893{
13894 /* The full name of this source file. */
13895 char *full_name = file_full_name (file, lh, comp_dir);
13896
13897 /* We don't create a macro table for this compilation unit
13898 at all until we actually get a filename. */
13899 if (! pending_macros)
4a146b47 13900 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 13901 objfile->macro_cache);
2e276125
JB
13902
13903 if (! current_file)
13904 /* If we have no current file, then this must be the start_file
13905 directive for the compilation unit's main source file. */
13906 current_file = macro_set_main (pending_macros, full_name);
13907 else
13908 current_file = macro_include (current_file, line, full_name);
13909
13910 xfree (full_name);
6e70227d 13911
2e276125
JB
13912 return current_file;
13913}
13914
13915
13916/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13917 followed by a null byte. */
13918static char *
13919copy_string (const char *buf, int len)
13920{
13921 char *s = xmalloc (len + 1);
9a619af0 13922
2e276125
JB
13923 memcpy (s, buf, len);
13924 s[len] = '\0';
2e276125
JB
13925 return s;
13926}
13927
13928
13929static const char *
13930consume_improper_spaces (const char *p, const char *body)
13931{
13932 if (*p == ' ')
13933 {
4d3c2250 13934 complaint (&symfile_complaints,
3e43a32a
MS
13935 _("macro definition contains spaces "
13936 "in formal argument list:\n`%s'"),
4d3c2250 13937 body);
2e276125
JB
13938
13939 while (*p == ' ')
13940 p++;
13941 }
13942
13943 return p;
13944}
13945
13946
13947static void
13948parse_macro_definition (struct macro_source_file *file, int line,
13949 const char *body)
13950{
13951 const char *p;
13952
13953 /* The body string takes one of two forms. For object-like macro
13954 definitions, it should be:
13955
13956 <macro name> " " <definition>
13957
13958 For function-like macro definitions, it should be:
13959
13960 <macro name> "() " <definition>
13961 or
13962 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13963
13964 Spaces may appear only where explicitly indicated, and in the
13965 <definition>.
13966
13967 The Dwarf 2 spec says that an object-like macro's name is always
13968 followed by a space, but versions of GCC around March 2002 omit
6e70227d 13969 the space when the macro's definition is the empty string.
2e276125
JB
13970
13971 The Dwarf 2 spec says that there should be no spaces between the
13972 formal arguments in a function-like macro's formal argument list,
13973 but versions of GCC around March 2002 include spaces after the
13974 commas. */
13975
13976
13977 /* Find the extent of the macro name. The macro name is terminated
13978 by either a space or null character (for an object-like macro) or
13979 an opening paren (for a function-like macro). */
13980 for (p = body; *p; p++)
13981 if (*p == ' ' || *p == '(')
13982 break;
13983
13984 if (*p == ' ' || *p == '\0')
13985 {
13986 /* It's an object-like macro. */
13987 int name_len = p - body;
13988 char *name = copy_string (body, name_len);
13989 const char *replacement;
13990
13991 if (*p == ' ')
13992 replacement = body + name_len + 1;
13993 else
13994 {
4d3c2250 13995 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13996 replacement = body + name_len;
13997 }
6e70227d 13998
2e276125
JB
13999 macro_define_object (file, line, name, replacement);
14000
14001 xfree (name);
14002 }
14003 else if (*p == '(')
14004 {
14005 /* It's a function-like macro. */
14006 char *name = copy_string (body, p - body);
14007 int argc = 0;
14008 int argv_size = 1;
14009 char **argv = xmalloc (argv_size * sizeof (*argv));
14010
14011 p++;
14012
14013 p = consume_improper_spaces (p, body);
14014
14015 /* Parse the formal argument list. */
14016 while (*p && *p != ')')
14017 {
14018 /* Find the extent of the current argument name. */
14019 const char *arg_start = p;
14020
14021 while (*p && *p != ',' && *p != ')' && *p != ' ')
14022 p++;
14023
14024 if (! *p || p == arg_start)
4d3c2250 14025 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14026 else
14027 {
14028 /* Make sure argv has room for the new argument. */
14029 if (argc >= argv_size)
14030 {
14031 argv_size *= 2;
14032 argv = xrealloc (argv, argv_size * sizeof (*argv));
14033 }
14034
14035 argv[argc++] = copy_string (arg_start, p - arg_start);
14036 }
14037
14038 p = consume_improper_spaces (p, body);
14039
14040 /* Consume the comma, if present. */
14041 if (*p == ',')
14042 {
14043 p++;
14044
14045 p = consume_improper_spaces (p, body);
14046 }
14047 }
14048
14049 if (*p == ')')
14050 {
14051 p++;
14052
14053 if (*p == ' ')
14054 /* Perfectly formed definition, no complaints. */
14055 macro_define_function (file, line, name,
6e70227d 14056 argc, (const char **) argv,
2e276125
JB
14057 p + 1);
14058 else if (*p == '\0')
14059 {
14060 /* Complain, but do define it. */
4d3c2250 14061 dwarf2_macro_malformed_definition_complaint (body);
2e276125 14062 macro_define_function (file, line, name,
6e70227d 14063 argc, (const char **) argv,
2e276125
JB
14064 p);
14065 }
14066 else
14067 /* Just complain. */
4d3c2250 14068 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14069 }
14070 else
14071 /* Just complain. */
4d3c2250 14072 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14073
14074 xfree (name);
14075 {
14076 int i;
14077
14078 for (i = 0; i < argc; i++)
14079 xfree (argv[i]);
14080 }
14081 xfree (argv);
14082 }
14083 else
4d3c2250 14084 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14085}
14086
14087
14088static void
14089dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14090 char *comp_dir, bfd *abfd,
e7c27a73 14091 struct dwarf2_cu *cu)
2e276125 14092{
fe1b8b76 14093 gdb_byte *mac_ptr, *mac_end;
2e276125 14094 struct macro_source_file *current_file = 0;
757a13d0
JK
14095 enum dwarf_macinfo_record_type macinfo_type;
14096 int at_commandline;
2e276125 14097
be391dca
TT
14098 dwarf2_read_section (dwarf2_per_objfile->objfile,
14099 &dwarf2_per_objfile->macinfo);
dce234bc 14100 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 14101 {
e2e0b3e5 14102 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
14103 return;
14104 }
14105
757a13d0
JK
14106 /* First pass: Find the name of the base filename.
14107 This filename is needed in order to process all macros whose definition
14108 (or undefinition) comes from the command line. These macros are defined
14109 before the first DW_MACINFO_start_file entry, and yet still need to be
14110 associated to the base file.
14111
14112 To determine the base file name, we scan the macro definitions until we
14113 reach the first DW_MACINFO_start_file entry. We then initialize
14114 CURRENT_FILE accordingly so that any macro definition found before the
14115 first DW_MACINFO_start_file can still be associated to the base file. */
14116
dce234bc
PP
14117 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14118 mac_end = dwarf2_per_objfile->macinfo.buffer
14119 + dwarf2_per_objfile->macinfo.size;
2e276125 14120
757a13d0 14121 do
2e276125 14122 {
2e276125
JB
14123 /* Do we at least have room for a macinfo type byte? */
14124 if (mac_ptr >= mac_end)
14125 {
757a13d0 14126 /* Complaint is printed during the second pass as GDB will probably
3e43a32a
MS
14127 stop the first pass earlier upon finding
14128 DW_MACINFO_start_file. */
757a13d0 14129 break;
2e276125
JB
14130 }
14131
14132 macinfo_type = read_1_byte (abfd, mac_ptr);
14133 mac_ptr++;
14134
14135 switch (macinfo_type)
14136 {
14137 /* A zero macinfo type indicates the end of the macro
14138 information. */
14139 case 0:
757a13d0
JK
14140 break;
14141
14142 case DW_MACINFO_define:
14143 case DW_MACINFO_undef:
14144 /* Only skip the data by MAC_PTR. */
14145 {
14146 unsigned int bytes_read;
14147
14148 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14149 mac_ptr += bytes_read;
9b1c24c8 14150 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14151 mac_ptr += bytes_read;
14152 }
14153 break;
14154
14155 case DW_MACINFO_start_file:
14156 {
14157 unsigned int bytes_read;
14158 int line, file;
14159
14160 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14161 mac_ptr += bytes_read;
14162 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14163 mac_ptr += bytes_read;
14164
3e43a32a
MS
14165 current_file = macro_start_file (file, line, current_file,
14166 comp_dir, lh, cu->objfile);
757a13d0
JK
14167 }
14168 break;
14169
14170 case DW_MACINFO_end_file:
14171 /* No data to skip by MAC_PTR. */
14172 break;
14173
14174 case DW_MACINFO_vendor_ext:
14175 /* Only skip the data by MAC_PTR. */
14176 {
14177 unsigned int bytes_read;
14178
14179 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14180 mac_ptr += bytes_read;
9b1c24c8 14181 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14182 mac_ptr += bytes_read;
14183 }
14184 break;
14185
14186 default:
14187 break;
14188 }
14189 } while (macinfo_type != 0 && current_file == NULL);
14190
14191 /* Second pass: Process all entries.
14192
14193 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14194 command-line macro definitions/undefinitions. This flag is unset when we
14195 reach the first DW_MACINFO_start_file entry. */
14196
dce234bc 14197 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
14198
14199 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14200 GDB is still reading the definitions from command line. First
14201 DW_MACINFO_start_file will need to be ignored as it was already executed
14202 to create CURRENT_FILE for the main source holding also the command line
14203 definitions. On first met DW_MACINFO_start_file this flag is reset to
14204 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14205
14206 at_commandline = 1;
14207
14208 do
14209 {
14210 /* Do we at least have room for a macinfo type byte? */
14211 if (mac_ptr >= mac_end)
14212 {
14213 dwarf2_macros_too_long_complaint ();
14214 break;
14215 }
14216
14217 macinfo_type = read_1_byte (abfd, mac_ptr);
14218 mac_ptr++;
14219
14220 switch (macinfo_type)
14221 {
14222 /* A zero macinfo type indicates the end of the macro
14223 information. */
14224 case 0:
14225 break;
2e276125
JB
14226
14227 case DW_MACINFO_define:
14228 case DW_MACINFO_undef:
14229 {
891d2f0b 14230 unsigned int bytes_read;
2e276125
JB
14231 int line;
14232 char *body;
14233
14234 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14235 mac_ptr += bytes_read;
9b1c24c8 14236 body = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14237 mac_ptr += bytes_read;
14238
14239 if (! current_file)
757a13d0
JK
14240 {
14241 /* DWARF violation as no main source is present. */
14242 complaint (&symfile_complaints,
14243 _("debug info with no main source gives macro %s "
14244 "on line %d: %s"),
6e70227d
DE
14245 macinfo_type == DW_MACINFO_define ?
14246 _("definition") :
905e0470
PM
14247 macinfo_type == DW_MACINFO_undef ?
14248 _("undefinition") :
14249 _("something-or-other"), line, body);
757a13d0
JK
14250 break;
14251 }
3e43a32a
MS
14252 if ((line == 0 && !at_commandline)
14253 || (line != 0 && at_commandline))
4d3c2250 14254 complaint (&symfile_complaints,
757a13d0
JK
14255 _("debug info gives %s macro %s with %s line %d: %s"),
14256 at_commandline ? _("command-line") : _("in-file"),
905e0470 14257 macinfo_type == DW_MACINFO_define ?
6e70227d 14258 _("definition") :
905e0470
PM
14259 macinfo_type == DW_MACINFO_undef ?
14260 _("undefinition") :
14261 _("something-or-other"),
757a13d0
JK
14262 line == 0 ? _("zero") : _("non-zero"), line, body);
14263
14264 if (macinfo_type == DW_MACINFO_define)
14265 parse_macro_definition (current_file, line, body);
14266 else if (macinfo_type == DW_MACINFO_undef)
14267 macro_undef (current_file, line, body);
2e276125
JB
14268 }
14269 break;
14270
14271 case DW_MACINFO_start_file:
14272 {
891d2f0b 14273 unsigned int bytes_read;
2e276125
JB
14274 int line, file;
14275
14276 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14277 mac_ptr += bytes_read;
14278 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14279 mac_ptr += bytes_read;
14280
3e43a32a
MS
14281 if ((line == 0 && !at_commandline)
14282 || (line != 0 && at_commandline))
757a13d0
JK
14283 complaint (&symfile_complaints,
14284 _("debug info gives source %d included "
14285 "from %s at %s line %d"),
14286 file, at_commandline ? _("command-line") : _("file"),
14287 line == 0 ? _("zero") : _("non-zero"), line);
14288
14289 if (at_commandline)
14290 {
14291 /* This DW_MACINFO_start_file was executed in the pass one. */
14292 at_commandline = 0;
14293 }
14294 else
14295 current_file = macro_start_file (file, line,
14296 current_file, comp_dir,
14297 lh, cu->objfile);
2e276125
JB
14298 }
14299 break;
14300
14301 case DW_MACINFO_end_file:
14302 if (! current_file)
4d3c2250 14303 complaint (&symfile_complaints,
3e43a32a
MS
14304 _("macro debug info has an unmatched "
14305 "`close_file' directive"));
2e276125
JB
14306 else
14307 {
14308 current_file = current_file->included_by;
14309 if (! current_file)
14310 {
14311 enum dwarf_macinfo_record_type next_type;
14312
14313 /* GCC circa March 2002 doesn't produce the zero
14314 type byte marking the end of the compilation
14315 unit. Complain if it's not there, but exit no
14316 matter what. */
14317
14318 /* Do we at least have room for a macinfo type byte? */
14319 if (mac_ptr >= mac_end)
14320 {
4d3c2250 14321 dwarf2_macros_too_long_complaint ();
2e276125
JB
14322 return;
14323 }
14324
14325 /* We don't increment mac_ptr here, so this is just
14326 a look-ahead. */
14327 next_type = read_1_byte (abfd, mac_ptr);
14328 if (next_type != 0)
4d3c2250 14329 complaint (&symfile_complaints,
3e43a32a
MS
14330 _("no terminating 0-type entry for "
14331 "macros in `.debug_macinfo' section"));
2e276125
JB
14332
14333 return;
14334 }
14335 }
14336 break;
14337
14338 case DW_MACINFO_vendor_ext:
14339 {
891d2f0b 14340 unsigned int bytes_read;
2e276125 14341 int constant;
2e276125
JB
14342
14343 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14344 mac_ptr += bytes_read;
e8e80198 14345 read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14346 mac_ptr += bytes_read;
14347
14348 /* We don't recognize any vendor extensions. */
14349 }
14350 break;
14351 }
757a13d0 14352 } while (macinfo_type != 0);
2e276125 14353}
8e19ed76
PS
14354
14355/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 14356 if so return true else false. */
8e19ed76
PS
14357static int
14358attr_form_is_block (struct attribute *attr)
14359{
14360 return (attr == NULL ? 0 :
14361 attr->form == DW_FORM_block1
14362 || attr->form == DW_FORM_block2
14363 || attr->form == DW_FORM_block4
2dc7f7b3
TT
14364 || attr->form == DW_FORM_block
14365 || attr->form == DW_FORM_exprloc);
8e19ed76 14366}
4c2df51b 14367
c6a0999f
JB
14368/* Return non-zero if ATTR's value is a section offset --- classes
14369 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14370 You may use DW_UNSND (attr) to retrieve such offsets.
14371
14372 Section 7.5.4, "Attribute Encodings", explains that no attribute
14373 may have a value that belongs to more than one of these classes; it
14374 would be ambiguous if we did, because we use the same forms for all
14375 of them. */
3690dd37
JB
14376static int
14377attr_form_is_section_offset (struct attribute *attr)
14378{
14379 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
14380 || attr->form == DW_FORM_data8
14381 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
14382}
14383
14384
14385/* Return non-zero if ATTR's value falls in the 'constant' class, or
14386 zero otherwise. When this function returns true, you can apply
14387 dwarf2_get_attr_constant_value to it.
14388
14389 However, note that for some attributes you must check
14390 attr_form_is_section_offset before using this test. DW_FORM_data4
14391 and DW_FORM_data8 are members of both the constant class, and of
14392 the classes that contain offsets into other debug sections
14393 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14394 that, if an attribute's can be either a constant or one of the
14395 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14396 taken as section offsets, not constants. */
14397static int
14398attr_form_is_constant (struct attribute *attr)
14399{
14400 switch (attr->form)
14401 {
14402 case DW_FORM_sdata:
14403 case DW_FORM_udata:
14404 case DW_FORM_data1:
14405 case DW_FORM_data2:
14406 case DW_FORM_data4:
14407 case DW_FORM_data8:
14408 return 1;
14409 default:
14410 return 0;
14411 }
14412}
14413
8cf6f0b1
TT
14414/* A helper function that fills in a dwarf2_loclist_baton. */
14415
14416static void
14417fill_in_loclist_baton (struct dwarf2_cu *cu,
14418 struct dwarf2_loclist_baton *baton,
14419 struct attribute *attr)
14420{
14421 dwarf2_read_section (dwarf2_per_objfile->objfile,
14422 &dwarf2_per_objfile->loc);
14423
14424 baton->per_cu = cu->per_cu;
14425 gdb_assert (baton->per_cu);
14426 /* We don't know how long the location list is, but make sure we
14427 don't run off the edge of the section. */
14428 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14429 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14430 baton->base_address = cu->base_address;
14431}
14432
4c2df51b
DJ
14433static void
14434dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 14435 struct dwarf2_cu *cu)
4c2df51b 14436{
3690dd37 14437 if (attr_form_is_section_offset (attr)
99bcc461
DJ
14438 /* ".debug_loc" may not exist at all, or the offset may be outside
14439 the section. If so, fall through to the complaint in the
14440 other branch. */
9e0ac564
TT
14441 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14442 &dwarf2_per_objfile->loc))
4c2df51b 14443 {
0d53c4c4 14444 struct dwarf2_loclist_baton *baton;
4c2df51b 14445
4a146b47 14446 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14447 sizeof (struct dwarf2_loclist_baton));
4c2df51b 14448
8cf6f0b1 14449 fill_in_loclist_baton (cu, baton, attr);
be391dca 14450
d00adf39 14451 if (cu->base_known == 0)
0d53c4c4 14452 complaint (&symfile_complaints,
3e43a32a
MS
14453 _("Location list used without "
14454 "specifying the CU base address."));
4c2df51b 14455
768a979c 14456 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
14457 SYMBOL_LOCATION_BATON (sym) = baton;
14458 }
14459 else
14460 {
14461 struct dwarf2_locexpr_baton *baton;
14462
4a146b47 14463 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14464 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
14465 baton->per_cu = cu->per_cu;
14466 gdb_assert (baton->per_cu);
0d53c4c4
DJ
14467
14468 if (attr_form_is_block (attr))
14469 {
14470 /* Note that we're just copying the block's data pointer
14471 here, not the actual data. We're still pointing into the
6502dd73
DJ
14472 info_buffer for SYM's objfile; right now we never release
14473 that buffer, but when we do clean up properly this may
14474 need to change. */
0d53c4c4
DJ
14475 baton->size = DW_BLOCK (attr)->size;
14476 baton->data = DW_BLOCK (attr)->data;
14477 }
14478 else
14479 {
14480 dwarf2_invalid_attrib_class_complaint ("location description",
14481 SYMBOL_NATURAL_NAME (sym));
14482 baton->size = 0;
14483 baton->data = NULL;
14484 }
6e70227d 14485
768a979c 14486 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
14487 SYMBOL_LOCATION_BATON (sym) = baton;
14488 }
4c2df51b 14489}
6502dd73 14490
9aa1f1e3
TT
14491/* Return the OBJFILE associated with the compilation unit CU. If CU
14492 came from a separate debuginfo file, then the master objfile is
14493 returned. */
ae0d2f24
UW
14494
14495struct objfile *
14496dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14497{
9291a0cd 14498 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14499
14500 /* Return the master objfile, so that we can report and look up the
14501 correct file containing this variable. */
14502 if (objfile->separate_debug_objfile_backlink)
14503 objfile = objfile->separate_debug_objfile_backlink;
14504
14505 return objfile;
14506}
14507
14508/* Return the address size given in the compilation unit header for CU. */
14509
14510CORE_ADDR
14511dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14512{
14513 if (per_cu->cu)
14514 return per_cu->cu->header.addr_size;
14515 else
14516 {
14517 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14518 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14519 struct dwarf2_per_objfile *per_objfile
14520 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 14521 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 14522 struct comp_unit_head cu_header;
9a619af0 14523
ae0d2f24
UW
14524 memset (&cu_header, 0, sizeof cu_header);
14525 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14526 return cu_header.addr_size;
14527 }
14528}
14529
9eae7c52
TT
14530/* Return the offset size given in the compilation unit header for CU. */
14531
14532int
14533dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14534{
14535 if (per_cu->cu)
14536 return per_cu->cu->header.offset_size;
14537 else
14538 {
14539 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14540 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
14541 struct dwarf2_per_objfile *per_objfile
14542 = objfile_data (objfile, dwarf2_objfile_data_key);
14543 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14544 struct comp_unit_head cu_header;
14545
14546 memset (&cu_header, 0, sizeof cu_header);
14547 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14548 return cu_header.offset_size;
14549 }
14550}
14551
9aa1f1e3
TT
14552/* Return the text offset of the CU. The returned offset comes from
14553 this CU's objfile. If this objfile came from a separate debuginfo
14554 file, then the offset may be different from the corresponding
14555 offset in the parent objfile. */
14556
14557CORE_ADDR
14558dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14559{
bb3fa9d0 14560 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
14561
14562 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14563}
14564
348e048f
DE
14565/* Locate the .debug_info compilation unit from CU's objfile which contains
14566 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
14567
14568static struct dwarf2_per_cu_data *
c764a876 14569dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
14570 struct objfile *objfile)
14571{
14572 struct dwarf2_per_cu_data *this_cu;
14573 int low, high;
14574
ae038cb0
DJ
14575 low = 0;
14576 high = dwarf2_per_objfile->n_comp_units - 1;
14577 while (high > low)
14578 {
14579 int mid = low + (high - low) / 2;
9a619af0 14580
ae038cb0
DJ
14581 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14582 high = mid;
14583 else
14584 low = mid + 1;
14585 }
14586 gdb_assert (low == high);
14587 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14588 {
10b3939b 14589 if (low == 0)
8a3fe4f8
AC
14590 error (_("Dwarf Error: could not find partial DIE containing "
14591 "offset 0x%lx [in module %s]"),
10b3939b
DJ
14592 (long) offset, bfd_get_filename (objfile->obfd));
14593
ae038cb0
DJ
14594 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14595 return dwarf2_per_objfile->all_comp_units[low-1];
14596 }
14597 else
14598 {
14599 this_cu = dwarf2_per_objfile->all_comp_units[low];
14600 if (low == dwarf2_per_objfile->n_comp_units - 1
14601 && offset >= this_cu->offset + this_cu->length)
c764a876 14602 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
14603 gdb_assert (offset < this_cu->offset + this_cu->length);
14604 return this_cu;
14605 }
14606}
14607
10b3939b
DJ
14608/* Locate the compilation unit from OBJFILE which is located at exactly
14609 OFFSET. Raises an error on failure. */
14610
ae038cb0 14611static struct dwarf2_per_cu_data *
c764a876 14612dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
14613{
14614 struct dwarf2_per_cu_data *this_cu;
9a619af0 14615
ae038cb0
DJ
14616 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14617 if (this_cu->offset != offset)
c764a876 14618 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
14619 return this_cu;
14620}
14621
9816fde3 14622/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
93311388 14623
9816fde3
JK
14624static void
14625init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
93311388 14626{
9816fde3 14627 memset (cu, 0, sizeof (*cu));
93311388
DE
14628 cu->objfile = objfile;
14629 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
14630}
14631
14632/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14633
14634static void
14635prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14636{
14637 struct attribute *attr;
14638
14639 /* Set the language we're debugging. */
14640 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14641 if (attr)
14642 set_cu_language (DW_UNSND (attr), cu);
14643 else
14644 set_cu_language (language_minimal, cu);
93311388
DE
14645}
14646
ae038cb0
DJ
14647/* Release one cached compilation unit, CU. We unlink it from the tree
14648 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
14649 the caller is responsible for that.
14650 NOTE: DATA is a void * because this function is also used as a
14651 cleanup routine. */
ae038cb0
DJ
14652
14653static void
14654free_one_comp_unit (void *data)
14655{
14656 struct dwarf2_cu *cu = data;
14657
14658 if (cu->per_cu != NULL)
14659 cu->per_cu->cu = NULL;
14660 cu->per_cu = NULL;
14661
14662 obstack_free (&cu->comp_unit_obstack, NULL);
14663
14664 xfree (cu);
14665}
14666
72bf9492 14667/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
14668 when we're finished with it. We can't free the pointer itself, but be
14669 sure to unlink it from the cache. Also release any associated storage
14670 and perform cache maintenance.
72bf9492
DJ
14671
14672 Only used during partial symbol parsing. */
14673
14674static void
14675free_stack_comp_unit (void *data)
14676{
14677 struct dwarf2_cu *cu = data;
14678
14679 obstack_free (&cu->comp_unit_obstack, NULL);
14680 cu->partial_dies = NULL;
ae038cb0
DJ
14681
14682 if (cu->per_cu != NULL)
14683 {
14684 /* This compilation unit is on the stack in our caller, so we
14685 should not xfree it. Just unlink it. */
14686 cu->per_cu->cu = NULL;
14687 cu->per_cu = NULL;
14688
14689 /* If we had a per-cu pointer, then we may have other compilation
14690 units loaded, so age them now. */
14691 age_cached_comp_units ();
14692 }
14693}
14694
14695/* Free all cached compilation units. */
14696
14697static void
14698free_cached_comp_units (void *data)
14699{
14700 struct dwarf2_per_cu_data *per_cu, **last_chain;
14701
14702 per_cu = dwarf2_per_objfile->read_in_chain;
14703 last_chain = &dwarf2_per_objfile->read_in_chain;
14704 while (per_cu != NULL)
14705 {
14706 struct dwarf2_per_cu_data *next_cu;
14707
14708 next_cu = per_cu->cu->read_in_chain;
14709
14710 free_one_comp_unit (per_cu->cu);
14711 *last_chain = next_cu;
14712
14713 per_cu = next_cu;
14714 }
14715}
14716
14717/* Increase the age counter on each cached compilation unit, and free
14718 any that are too old. */
14719
14720static void
14721age_cached_comp_units (void)
14722{
14723 struct dwarf2_per_cu_data *per_cu, **last_chain;
14724
14725 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14726 per_cu = dwarf2_per_objfile->read_in_chain;
14727 while (per_cu != NULL)
14728 {
14729 per_cu->cu->last_used ++;
14730 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14731 dwarf2_mark (per_cu->cu);
14732 per_cu = per_cu->cu->read_in_chain;
14733 }
14734
14735 per_cu = dwarf2_per_objfile->read_in_chain;
14736 last_chain = &dwarf2_per_objfile->read_in_chain;
14737 while (per_cu != NULL)
14738 {
14739 struct dwarf2_per_cu_data *next_cu;
14740
14741 next_cu = per_cu->cu->read_in_chain;
14742
14743 if (!per_cu->cu->mark)
14744 {
14745 free_one_comp_unit (per_cu->cu);
14746 *last_chain = next_cu;
14747 }
14748 else
14749 last_chain = &per_cu->cu->read_in_chain;
14750
14751 per_cu = next_cu;
14752 }
14753}
14754
14755/* Remove a single compilation unit from the cache. */
14756
14757static void
14758free_one_cached_comp_unit (void *target_cu)
14759{
14760 struct dwarf2_per_cu_data *per_cu, **last_chain;
14761
14762 per_cu = dwarf2_per_objfile->read_in_chain;
14763 last_chain = &dwarf2_per_objfile->read_in_chain;
14764 while (per_cu != NULL)
14765 {
14766 struct dwarf2_per_cu_data *next_cu;
14767
14768 next_cu = per_cu->cu->read_in_chain;
14769
14770 if (per_cu->cu == target_cu)
14771 {
14772 free_one_comp_unit (per_cu->cu);
14773 *last_chain = next_cu;
14774 break;
14775 }
14776 else
14777 last_chain = &per_cu->cu->read_in_chain;
14778
14779 per_cu = next_cu;
14780 }
14781}
14782
fe3e1990
DJ
14783/* Release all extra memory associated with OBJFILE. */
14784
14785void
14786dwarf2_free_objfile (struct objfile *objfile)
14787{
14788 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14789
14790 if (dwarf2_per_objfile == NULL)
14791 return;
14792
14793 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14794 free_cached_comp_units (NULL);
14795
7b9f3c50
DE
14796 if (dwarf2_per_objfile->quick_file_names_table)
14797 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 14798
fe3e1990
DJ
14799 /* Everything else should be on the objfile obstack. */
14800}
14801
1c379e20
DJ
14802/* A pair of DIE offset and GDB type pointer. We store these
14803 in a hash table separate from the DIEs, and preserve them
14804 when the DIEs are flushed out of cache. */
14805
14806struct dwarf2_offset_and_type
14807{
14808 unsigned int offset;
14809 struct type *type;
14810};
14811
14812/* Hash function for a dwarf2_offset_and_type. */
14813
14814static hashval_t
14815offset_and_type_hash (const void *item)
14816{
14817 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 14818
1c379e20
DJ
14819 return ofs->offset;
14820}
14821
14822/* Equality function for a dwarf2_offset_and_type. */
14823
14824static int
14825offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14826{
14827 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14828 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 14829
1c379e20
DJ
14830 return ofs_lhs->offset == ofs_rhs->offset;
14831}
14832
14833/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
14834 table if necessary. For convenience, return TYPE.
14835
14836 The DIEs reading must have careful ordering to:
14837 * Not cause infite loops trying to read in DIEs as a prerequisite for
14838 reading current DIE.
14839 * Not trying to dereference contents of still incompletely read in types
14840 while reading in other DIEs.
14841 * Enable referencing still incompletely read in types just by a pointer to
14842 the type without accessing its fields.
14843
14844 Therefore caller should follow these rules:
14845 * Try to fetch any prerequisite types we may need to build this DIE type
14846 before building the type and calling set_die_type.
e71ec853 14847 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
14848 possible before fetching more types to complete the current type.
14849 * Make the type as complete as possible before fetching more types. */
1c379e20 14850
f792889a 14851static struct type *
1c379e20
DJ
14852set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14853{
14854 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
14855 struct objfile *objfile = cu->objfile;
14856 htab_t *type_hash_ptr;
1c379e20 14857
b4ba55a1
JB
14858 /* For Ada types, make sure that the gnat-specific data is always
14859 initialized (if not already set). There are a few types where
14860 we should not be doing so, because the type-specific area is
14861 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14862 where the type-specific area is used to store the floatformat).
14863 But this is not a problem, because the gnat-specific information
14864 is actually not needed for these types. */
14865 if (need_gnat_info (cu)
14866 && TYPE_CODE (type) != TYPE_CODE_FUNC
14867 && TYPE_CODE (type) != TYPE_CODE_FLT
14868 && !HAVE_GNAT_AUX_INFO (type))
14869 INIT_GNAT_SPECIFIC (type);
14870
673bfd45
DE
14871 if (cu->per_cu->from_debug_types)
14872 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14873 else
14874 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14875
14876 if (*type_hash_ptr == NULL)
f792889a 14877 {
673bfd45
DE
14878 *type_hash_ptr
14879 = htab_create_alloc_ex (127,
f792889a
DJ
14880 offset_and_type_hash,
14881 offset_and_type_eq,
14882 NULL,
673bfd45 14883 &objfile->objfile_obstack,
f792889a
DJ
14884 hashtab_obstack_allocate,
14885 dummy_obstack_deallocate);
f792889a 14886 }
1c379e20
DJ
14887
14888 ofs.offset = die->offset;
14889 ofs.type = type;
14890 slot = (struct dwarf2_offset_and_type **)
673bfd45 14891 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
14892 if (*slot)
14893 complaint (&symfile_complaints,
14894 _("A problem internal to GDB: DIE 0x%x has type already set"),
14895 die->offset);
673bfd45 14896 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 14897 **slot = ofs;
f792889a 14898 return type;
1c379e20
DJ
14899}
14900
673bfd45
DE
14901/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14902 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
14903
14904static struct type *
673bfd45
DE
14905get_die_type_at_offset (unsigned int offset,
14906 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
14907{
14908 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 14909 htab_t type_hash;
f792889a 14910
673bfd45
DE
14911 if (per_cu->from_debug_types)
14912 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14913 else
14914 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
14915 if (type_hash == NULL)
14916 return NULL;
1c379e20 14917
673bfd45 14918 ofs.offset = offset;
1c379e20
DJ
14919 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14920 if (slot)
14921 return slot->type;
14922 else
14923 return NULL;
14924}
14925
673bfd45
DE
14926/* Look up the type for DIE in the appropriate type_hash table,
14927 or return NULL if DIE does not have a saved type. */
14928
14929static struct type *
14930get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14931{
14932 return get_die_type_at_offset (die->offset, cu->per_cu);
14933}
14934
10b3939b
DJ
14935/* Add a dependence relationship from CU to REF_PER_CU. */
14936
14937static void
14938dwarf2_add_dependence (struct dwarf2_cu *cu,
14939 struct dwarf2_per_cu_data *ref_per_cu)
14940{
14941 void **slot;
14942
14943 if (cu->dependencies == NULL)
14944 cu->dependencies
14945 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14946 NULL, &cu->comp_unit_obstack,
14947 hashtab_obstack_allocate,
14948 dummy_obstack_deallocate);
14949
14950 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14951 if (*slot == NULL)
14952 *slot = ref_per_cu;
14953}
1c379e20 14954
f504f079
DE
14955/* Subroutine of dwarf2_mark to pass to htab_traverse.
14956 Set the mark field in every compilation unit in the
ae038cb0
DJ
14957 cache that we must keep because we are keeping CU. */
14958
10b3939b
DJ
14959static int
14960dwarf2_mark_helper (void **slot, void *data)
14961{
14962 struct dwarf2_per_cu_data *per_cu;
14963
14964 per_cu = (struct dwarf2_per_cu_data *) *slot;
14965 if (per_cu->cu->mark)
14966 return 1;
14967 per_cu->cu->mark = 1;
14968
14969 if (per_cu->cu->dependencies != NULL)
14970 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14971
14972 return 1;
14973}
14974
f504f079
DE
14975/* Set the mark field in CU and in every other compilation unit in the
14976 cache that we must keep because we are keeping CU. */
14977
ae038cb0
DJ
14978static void
14979dwarf2_mark (struct dwarf2_cu *cu)
14980{
14981 if (cu->mark)
14982 return;
14983 cu->mark = 1;
10b3939b
DJ
14984 if (cu->dependencies != NULL)
14985 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
14986}
14987
14988static void
14989dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14990{
14991 while (per_cu)
14992 {
14993 per_cu->cu->mark = 0;
14994 per_cu = per_cu->cu->read_in_chain;
14995 }
72bf9492
DJ
14996}
14997
72bf9492
DJ
14998/* Trivial hash function for partial_die_info: the hash value of a DIE
14999 is its offset in .debug_info for this objfile. */
15000
15001static hashval_t
15002partial_die_hash (const void *item)
15003{
15004 const struct partial_die_info *part_die = item;
9a619af0 15005
72bf9492
DJ
15006 return part_die->offset;
15007}
15008
15009/* Trivial comparison function for partial_die_info structures: two DIEs
15010 are equal if they have the same offset. */
15011
15012static int
15013partial_die_eq (const void *item_lhs, const void *item_rhs)
15014{
15015 const struct partial_die_info *part_die_lhs = item_lhs;
15016 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 15017
72bf9492
DJ
15018 return part_die_lhs->offset == part_die_rhs->offset;
15019}
15020
ae038cb0
DJ
15021static struct cmd_list_element *set_dwarf2_cmdlist;
15022static struct cmd_list_element *show_dwarf2_cmdlist;
15023
15024static void
15025set_dwarf2_cmd (char *args, int from_tty)
15026{
15027 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15028}
15029
15030static void
15031show_dwarf2_cmd (char *args, int from_tty)
6e70227d 15032{
ae038cb0
DJ
15033 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15034}
15035
dce234bc
PP
15036/* If section described by INFO was mmapped, munmap it now. */
15037
15038static void
15039munmap_section_buffer (struct dwarf2_section_info *info)
15040{
15041 if (info->was_mmapped)
15042 {
15043#ifdef HAVE_MMAP
15044 intptr_t begin = (intptr_t) info->buffer;
15045 intptr_t map_begin = begin & ~(pagesize - 1);
15046 size_t map_length = info->size + begin - map_begin;
9a619af0 15047
dce234bc
PP
15048 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15049#else
15050 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 15051 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
15052#endif
15053 }
15054}
15055
15056/* munmap debug sections for OBJFILE, if necessary. */
15057
15058static void
c1bd65d0 15059dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
15060{
15061 struct dwarf2_per_objfile *data = d;
9a619af0 15062
16be1145
DE
15063 /* This is sorted according to the order they're defined in to make it easier
15064 to keep in sync. */
dce234bc
PP
15065 munmap_section_buffer (&data->info);
15066 munmap_section_buffer (&data->abbrev);
15067 munmap_section_buffer (&data->line);
16be1145 15068 munmap_section_buffer (&data->loc);
dce234bc 15069 munmap_section_buffer (&data->macinfo);
16be1145 15070 munmap_section_buffer (&data->str);
dce234bc 15071 munmap_section_buffer (&data->ranges);
16be1145 15072 munmap_section_buffer (&data->types);
dce234bc
PP
15073 munmap_section_buffer (&data->frame);
15074 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
15075 munmap_section_buffer (&data->gdb_index);
15076}
15077
15078\f
ae2de4f8 15079/* The "save gdb-index" command. */
9291a0cd
TT
15080
15081/* The contents of the hash table we create when building the string
15082 table. */
15083struct strtab_entry
15084{
15085 offset_type offset;
15086 const char *str;
15087};
15088
15089/* Hash function for a strtab_entry. */
b89be57b 15090
9291a0cd
TT
15091static hashval_t
15092hash_strtab_entry (const void *e)
15093{
15094 const struct strtab_entry *entry = e;
15095 return mapped_index_string_hash (entry->str);
15096}
15097
15098/* Equality function for a strtab_entry. */
b89be57b 15099
9291a0cd
TT
15100static int
15101eq_strtab_entry (const void *a, const void *b)
15102{
15103 const struct strtab_entry *ea = a;
15104 const struct strtab_entry *eb = b;
15105 return !strcmp (ea->str, eb->str);
15106}
15107
15108/* Create a strtab_entry hash table. */
b89be57b 15109
9291a0cd
TT
15110static htab_t
15111create_strtab (void)
15112{
15113 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15114 xfree, xcalloc, xfree);
15115}
15116
15117/* Add a string to the constant pool. Return the string's offset in
15118 host order. */
b89be57b 15119
9291a0cd
TT
15120static offset_type
15121add_string (htab_t table, struct obstack *cpool, const char *str)
15122{
15123 void **slot;
15124 struct strtab_entry entry;
15125 struct strtab_entry *result;
15126
15127 entry.str = str;
15128 slot = htab_find_slot (table, &entry, INSERT);
15129 if (*slot)
15130 result = *slot;
15131 else
15132 {
15133 result = XNEW (struct strtab_entry);
15134 result->offset = obstack_object_size (cpool);
15135 result->str = str;
15136 obstack_grow_str0 (cpool, str);
15137 *slot = result;
15138 }
15139 return result->offset;
15140}
15141
15142/* An entry in the symbol table. */
15143struct symtab_index_entry
15144{
15145 /* The name of the symbol. */
15146 const char *name;
15147 /* The offset of the name in the constant pool. */
15148 offset_type index_offset;
15149 /* A sorted vector of the indices of all the CUs that hold an object
15150 of this name. */
15151 VEC (offset_type) *cu_indices;
15152};
15153
15154/* The symbol table. This is a power-of-2-sized hash table. */
15155struct mapped_symtab
15156{
15157 offset_type n_elements;
15158 offset_type size;
15159 struct symtab_index_entry **data;
15160};
15161
15162/* Hash function for a symtab_index_entry. */
b89be57b 15163
9291a0cd
TT
15164static hashval_t
15165hash_symtab_entry (const void *e)
15166{
15167 const struct symtab_index_entry *entry = e;
15168 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15169 sizeof (offset_type) * VEC_length (offset_type,
15170 entry->cu_indices),
15171 0);
15172}
15173
15174/* Equality function for a symtab_index_entry. */
b89be57b 15175
9291a0cd
TT
15176static int
15177eq_symtab_entry (const void *a, const void *b)
15178{
15179 const struct symtab_index_entry *ea = a;
15180 const struct symtab_index_entry *eb = b;
15181 int len = VEC_length (offset_type, ea->cu_indices);
15182 if (len != VEC_length (offset_type, eb->cu_indices))
15183 return 0;
15184 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15185 VEC_address (offset_type, eb->cu_indices),
15186 sizeof (offset_type) * len);
15187}
15188
15189/* Destroy a symtab_index_entry. */
b89be57b 15190
9291a0cd
TT
15191static void
15192delete_symtab_entry (void *p)
15193{
15194 struct symtab_index_entry *entry = p;
15195 VEC_free (offset_type, entry->cu_indices);
15196 xfree (entry);
15197}
15198
15199/* Create a hash table holding symtab_index_entry objects. */
b89be57b 15200
9291a0cd 15201static htab_t
3876f04e 15202create_symbol_hash_table (void)
9291a0cd
TT
15203{
15204 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15205 delete_symtab_entry, xcalloc, xfree);
15206}
15207
15208/* Create a new mapped symtab object. */
b89be57b 15209
9291a0cd
TT
15210static struct mapped_symtab *
15211create_mapped_symtab (void)
15212{
15213 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15214 symtab->n_elements = 0;
15215 symtab->size = 1024;
15216 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15217 return symtab;
15218}
15219
15220/* Destroy a mapped_symtab. */
b89be57b 15221
9291a0cd
TT
15222static void
15223cleanup_mapped_symtab (void *p)
15224{
15225 struct mapped_symtab *symtab = p;
15226 /* The contents of the array are freed when the other hash table is
15227 destroyed. */
15228 xfree (symtab->data);
15229 xfree (symtab);
15230}
15231
15232/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15233 the slot. */
b89be57b 15234
9291a0cd
TT
15235static struct symtab_index_entry **
15236find_slot (struct mapped_symtab *symtab, const char *name)
15237{
15238 offset_type index, step, hash = mapped_index_string_hash (name);
15239
15240 index = hash & (symtab->size - 1);
15241 step = ((hash * 17) & (symtab->size - 1)) | 1;
15242
15243 for (;;)
15244 {
15245 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15246 return &symtab->data[index];
15247 index = (index + step) & (symtab->size - 1);
15248 }
15249}
15250
15251/* Expand SYMTAB's hash table. */
b89be57b 15252
9291a0cd
TT
15253static void
15254hash_expand (struct mapped_symtab *symtab)
15255{
15256 offset_type old_size = symtab->size;
15257 offset_type i;
15258 struct symtab_index_entry **old_entries = symtab->data;
15259
15260 symtab->size *= 2;
15261 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15262
15263 for (i = 0; i < old_size; ++i)
15264 {
15265 if (old_entries[i])
15266 {
15267 struct symtab_index_entry **slot = find_slot (symtab,
15268 old_entries[i]->name);
15269 *slot = old_entries[i];
15270 }
15271 }
15272
15273 xfree (old_entries);
15274}
15275
15276/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15277 is the index of the CU in which the symbol appears. */
b89be57b 15278
9291a0cd
TT
15279static void
15280add_index_entry (struct mapped_symtab *symtab, const char *name,
15281 offset_type cu_index)
15282{
15283 struct symtab_index_entry **slot;
15284
15285 ++symtab->n_elements;
15286 if (4 * symtab->n_elements / 3 >= symtab->size)
15287 hash_expand (symtab);
15288
15289 slot = find_slot (symtab, name);
15290 if (!*slot)
15291 {
15292 *slot = XNEW (struct symtab_index_entry);
15293 (*slot)->name = name;
15294 (*slot)->cu_indices = NULL;
15295 }
15296 /* Don't push an index twice. Due to how we add entries we only
15297 have to check the last one. */
15298 if (VEC_empty (offset_type, (*slot)->cu_indices)
15299 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15300 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15301}
15302
15303/* Add a vector of indices to the constant pool. */
b89be57b 15304
9291a0cd 15305static offset_type
3876f04e 15306add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
15307 struct symtab_index_entry *entry)
15308{
15309 void **slot;
15310
3876f04e 15311 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
15312 if (!*slot)
15313 {
15314 offset_type len = VEC_length (offset_type, entry->cu_indices);
15315 offset_type val = MAYBE_SWAP (len);
15316 offset_type iter;
15317 int i;
15318
15319 *slot = entry;
15320 entry->index_offset = obstack_object_size (cpool);
15321
15322 obstack_grow (cpool, &val, sizeof (val));
15323 for (i = 0;
15324 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15325 ++i)
15326 {
15327 val = MAYBE_SWAP (iter);
15328 obstack_grow (cpool, &val, sizeof (val));
15329 }
15330 }
15331 else
15332 {
15333 struct symtab_index_entry *old_entry = *slot;
15334 entry->index_offset = old_entry->index_offset;
15335 entry = old_entry;
15336 }
15337 return entry->index_offset;
15338}
15339
15340/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15341 constant pool entries going into the obstack CPOOL. */
b89be57b 15342
9291a0cd
TT
15343static void
15344write_hash_table (struct mapped_symtab *symtab,
15345 struct obstack *output, struct obstack *cpool)
15346{
15347 offset_type i;
3876f04e 15348 htab_t symbol_hash_table;
9291a0cd
TT
15349 htab_t str_table;
15350
3876f04e 15351 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 15352 str_table = create_strtab ();
3876f04e 15353
9291a0cd
TT
15354 /* We add all the index vectors to the constant pool first, to
15355 ensure alignment is ok. */
15356 for (i = 0; i < symtab->size; ++i)
15357 {
15358 if (symtab->data[i])
3876f04e 15359 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
15360 }
15361
15362 /* Now write out the hash table. */
15363 for (i = 0; i < symtab->size; ++i)
15364 {
15365 offset_type str_off, vec_off;
15366
15367 if (symtab->data[i])
15368 {
15369 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15370 vec_off = symtab->data[i]->index_offset;
15371 }
15372 else
15373 {
15374 /* While 0 is a valid constant pool index, it is not valid
15375 to have 0 for both offsets. */
15376 str_off = 0;
15377 vec_off = 0;
15378 }
15379
15380 str_off = MAYBE_SWAP (str_off);
15381 vec_off = MAYBE_SWAP (vec_off);
15382
15383 obstack_grow (output, &str_off, sizeof (str_off));
15384 obstack_grow (output, &vec_off, sizeof (vec_off));
15385 }
15386
15387 htab_delete (str_table);
3876f04e 15388 htab_delete (symbol_hash_table);
9291a0cd
TT
15389}
15390
0a5429f6
DE
15391/* Struct to map psymtab to CU index in the index file. */
15392struct psymtab_cu_index_map
15393{
15394 struct partial_symtab *psymtab;
15395 unsigned int cu_index;
15396};
15397
15398static hashval_t
15399hash_psymtab_cu_index (const void *item)
15400{
15401 const struct psymtab_cu_index_map *map = item;
15402
15403 return htab_hash_pointer (map->psymtab);
15404}
15405
15406static int
15407eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15408{
15409 const struct psymtab_cu_index_map *lhs = item_lhs;
15410 const struct psymtab_cu_index_map *rhs = item_rhs;
15411
15412 return lhs->psymtab == rhs->psymtab;
15413}
15414
15415/* Helper struct for building the address table. */
15416struct addrmap_index_data
15417{
15418 struct objfile *objfile;
15419 struct obstack *addr_obstack;
15420 htab_t cu_index_htab;
15421
15422 /* Non-zero if the previous_* fields are valid.
15423 We can't write an entry until we see the next entry (since it is only then
15424 that we know the end of the entry). */
15425 int previous_valid;
15426 /* Index of the CU in the table of all CUs in the index file. */
15427 unsigned int previous_cu_index;
0963b4bd 15428 /* Start address of the CU. */
0a5429f6
DE
15429 CORE_ADDR previous_cu_start;
15430};
15431
15432/* Write an address entry to OBSTACK. */
b89be57b 15433
9291a0cd 15434static void
0a5429f6
DE
15435add_address_entry (struct objfile *objfile, struct obstack *obstack,
15436 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 15437{
0a5429f6 15438 offset_type cu_index_to_write;
9291a0cd
TT
15439 char addr[8];
15440 CORE_ADDR baseaddr;
15441
15442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15443
0a5429f6
DE
15444 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15445 obstack_grow (obstack, addr, 8);
15446 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15447 obstack_grow (obstack, addr, 8);
15448 cu_index_to_write = MAYBE_SWAP (cu_index);
15449 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15450}
15451
15452/* Worker function for traversing an addrmap to build the address table. */
15453
15454static int
15455add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15456{
15457 struct addrmap_index_data *data = datap;
15458 struct partial_symtab *pst = obj;
15459 offset_type cu_index;
15460 void **slot;
15461
15462 if (data->previous_valid)
15463 add_address_entry (data->objfile, data->addr_obstack,
15464 data->previous_cu_start, start_addr,
15465 data->previous_cu_index);
15466
15467 data->previous_cu_start = start_addr;
15468 if (pst != NULL)
15469 {
15470 struct psymtab_cu_index_map find_map, *map;
15471 find_map.psymtab = pst;
15472 map = htab_find (data->cu_index_htab, &find_map);
15473 gdb_assert (map != NULL);
15474 data->previous_cu_index = map->cu_index;
15475 data->previous_valid = 1;
15476 }
15477 else
15478 data->previous_valid = 0;
15479
15480 return 0;
15481}
15482
15483/* Write OBJFILE's address map to OBSTACK.
15484 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15485 in the index file. */
15486
15487static void
15488write_address_map (struct objfile *objfile, struct obstack *obstack,
15489 htab_t cu_index_htab)
15490{
15491 struct addrmap_index_data addrmap_index_data;
15492
15493 /* When writing the address table, we have to cope with the fact that
15494 the addrmap iterator only provides the start of a region; we have to
15495 wait until the next invocation to get the start of the next region. */
15496
15497 addrmap_index_data.objfile = objfile;
15498 addrmap_index_data.addr_obstack = obstack;
15499 addrmap_index_data.cu_index_htab = cu_index_htab;
15500 addrmap_index_data.previous_valid = 0;
15501
15502 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15503 &addrmap_index_data);
15504
15505 /* It's highly unlikely the last entry (end address = 0xff...ff)
15506 is valid, but we should still handle it.
15507 The end address is recorded as the start of the next region, but that
15508 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15509 anyway. */
15510 if (addrmap_index_data.previous_valid)
15511 add_address_entry (objfile, obstack,
15512 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15513 addrmap_index_data.previous_cu_index);
9291a0cd
TT
15514}
15515
15516/* Add a list of partial symbols to SYMTAB. */
b89be57b 15517
9291a0cd
TT
15518static void
15519write_psymbols (struct mapped_symtab *symtab,
987d643c 15520 htab_t psyms_seen,
9291a0cd
TT
15521 struct partial_symbol **psymp,
15522 int count,
987d643c
TT
15523 offset_type cu_index,
15524 int is_static)
9291a0cd
TT
15525{
15526 for (; count-- > 0; ++psymp)
15527 {
987d643c
TT
15528 void **slot, *lookup;
15529
9291a0cd
TT
15530 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15531 error (_("Ada is not currently supported by the index"));
987d643c
TT
15532
15533 /* We only want to add a given psymbol once. However, we also
15534 want to account for whether it is global or static. So, we
15535 may add it twice, using slightly different values. */
15536 if (is_static)
15537 {
15538 uintptr_t val = 1 | (uintptr_t) *psymp;
15539
15540 lookup = (void *) val;
15541 }
15542 else
15543 lookup = *psymp;
15544
15545 /* Only add a given psymbol once. */
15546 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15547 if (!*slot)
15548 {
15549 *slot = lookup;
15550 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15551 }
9291a0cd
TT
15552 }
15553}
15554
15555/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15556 exception if there is an error. */
b89be57b 15557
9291a0cd
TT
15558static void
15559write_obstack (FILE *file, struct obstack *obstack)
15560{
15561 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15562 file)
15563 != obstack_object_size (obstack))
15564 error (_("couldn't data write to file"));
15565}
15566
15567/* Unlink a file if the argument is not NULL. */
b89be57b 15568
9291a0cd
TT
15569static void
15570unlink_if_set (void *p)
15571{
15572 char **filename = p;
15573 if (*filename)
15574 unlink (*filename);
15575}
15576
1fd400ff
TT
15577/* A helper struct used when iterating over debug_types. */
15578struct signatured_type_index_data
15579{
15580 struct objfile *objfile;
15581 struct mapped_symtab *symtab;
15582 struct obstack *types_list;
987d643c 15583 htab_t psyms_seen;
1fd400ff
TT
15584 int cu_index;
15585};
15586
15587/* A helper function that writes a single signatured_type to an
15588 obstack. */
b89be57b 15589
1fd400ff
TT
15590static int
15591write_one_signatured_type (void **slot, void *d)
15592{
15593 struct signatured_type_index_data *info = d;
15594 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
15595 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15596 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
15597 gdb_byte val[8];
15598
15599 write_psymbols (info->symtab,
987d643c 15600 info->psyms_seen,
3e43a32a
MS
15601 info->objfile->global_psymbols.list
15602 + psymtab->globals_offset,
987d643c
TT
15603 psymtab->n_global_syms, info->cu_index,
15604 0);
1fd400ff 15605 write_psymbols (info->symtab,
987d643c 15606 info->psyms_seen,
3e43a32a
MS
15607 info->objfile->static_psymbols.list
15608 + psymtab->statics_offset,
987d643c
TT
15609 psymtab->n_static_syms, info->cu_index,
15610 1);
1fd400ff
TT
15611
15612 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15613 obstack_grow (info->types_list, val, 8);
15614 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15615 obstack_grow (info->types_list, val, 8);
15616 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15617 obstack_grow (info->types_list, val, 8);
15618
15619 ++info->cu_index;
15620
15621 return 1;
15622}
15623
987d643c
TT
15624/* A cleanup function for an htab_t. */
15625
15626static void
15627cleanup_htab (void *arg)
15628{
15629 htab_delete (arg);
15630}
15631
9291a0cd 15632/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 15633
9291a0cd
TT
15634static void
15635write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15636{
15637 struct cleanup *cleanup;
15638 char *filename, *cleanup_filename;
1fd400ff
TT
15639 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15640 struct obstack cu_list, types_cu_list;
9291a0cd
TT
15641 int i;
15642 FILE *out_file;
15643 struct mapped_symtab *symtab;
15644 offset_type val, size_of_contents, total_len;
15645 struct stat st;
15646 char buf[8];
987d643c 15647 htab_t psyms_seen;
0a5429f6
DE
15648 htab_t cu_index_htab;
15649 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd
TT
15650
15651 if (!objfile->psymtabs)
15652 return;
15653 if (dwarf2_per_objfile->using_index)
15654 error (_("Cannot use an index to create the index"));
15655
15656 if (stat (objfile->name, &st) < 0)
7e17e088 15657 perror_with_name (objfile->name);
9291a0cd
TT
15658
15659 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15660 INDEX_SUFFIX, (char *) NULL);
15661 cleanup = make_cleanup (xfree, filename);
15662
15663 out_file = fopen (filename, "wb");
15664 if (!out_file)
15665 error (_("Can't open `%s' for writing"), filename);
15666
15667 cleanup_filename = filename;
15668 make_cleanup (unlink_if_set, &cleanup_filename);
15669
15670 symtab = create_mapped_symtab ();
15671 make_cleanup (cleanup_mapped_symtab, symtab);
15672
15673 obstack_init (&addr_obstack);
15674 make_cleanup_obstack_free (&addr_obstack);
15675
15676 obstack_init (&cu_list);
15677 make_cleanup_obstack_free (&cu_list);
15678
1fd400ff
TT
15679 obstack_init (&types_cu_list);
15680 make_cleanup_obstack_free (&types_cu_list);
15681
987d643c
TT
15682 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15683 NULL, xcalloc, xfree);
15684 make_cleanup (cleanup_htab, psyms_seen);
15685
0a5429f6
DE
15686 /* While we're scanning CU's create a table that maps a psymtab pointer
15687 (which is what addrmap records) to its index (which is what is recorded
15688 in the index file). This will later be needed to write the address
15689 table. */
15690 cu_index_htab = htab_create_alloc (100,
15691 hash_psymtab_cu_index,
15692 eq_psymtab_cu_index,
15693 NULL, xcalloc, xfree);
15694 make_cleanup (cleanup_htab, cu_index_htab);
15695 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15696 xmalloc (sizeof (struct psymtab_cu_index_map)
15697 * dwarf2_per_objfile->n_comp_units);
15698 make_cleanup (xfree, psymtab_cu_index_map);
15699
15700 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
15701 work here. Also, the debug_types entries do not appear in
15702 all_comp_units, but only in their own hash table. */
9291a0cd
TT
15703 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15704 {
3e43a32a
MS
15705 struct dwarf2_per_cu_data *per_cu
15706 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 15707 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 15708 gdb_byte val[8];
0a5429f6
DE
15709 struct psymtab_cu_index_map *map;
15710 void **slot;
9291a0cd
TT
15711
15712 write_psymbols (symtab,
987d643c 15713 psyms_seen,
9291a0cd 15714 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15715 psymtab->n_global_syms, i,
15716 0);
9291a0cd 15717 write_psymbols (symtab,
987d643c 15718 psyms_seen,
9291a0cd 15719 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15720 psymtab->n_static_syms, i,
15721 1);
9291a0cd 15722
0a5429f6
DE
15723 map = &psymtab_cu_index_map[i];
15724 map->psymtab = psymtab;
15725 map->cu_index = i;
15726 slot = htab_find_slot (cu_index_htab, map, INSERT);
15727 gdb_assert (slot != NULL);
15728 gdb_assert (*slot == NULL);
15729 *slot = map;
9291a0cd 15730
e254ef6a 15731 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 15732 obstack_grow (&cu_list, val, 8);
e254ef6a 15733 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
15734 obstack_grow (&cu_list, val, 8);
15735 }
15736
0a5429f6
DE
15737 /* Dump the address map. */
15738 write_address_map (objfile, &addr_obstack, cu_index_htab);
15739
1fd400ff
TT
15740 /* Write out the .debug_type entries, if any. */
15741 if (dwarf2_per_objfile->signatured_types)
15742 {
15743 struct signatured_type_index_data sig_data;
15744
15745 sig_data.objfile = objfile;
15746 sig_data.symtab = symtab;
15747 sig_data.types_list = &types_cu_list;
987d643c 15748 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
15749 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15750 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15751 write_one_signatured_type, &sig_data);
15752 }
15753
9291a0cd
TT
15754 obstack_init (&constant_pool);
15755 make_cleanup_obstack_free (&constant_pool);
15756 obstack_init (&symtab_obstack);
15757 make_cleanup_obstack_free (&symtab_obstack);
15758 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15759
15760 obstack_init (&contents);
15761 make_cleanup_obstack_free (&contents);
1fd400ff 15762 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
15763 total_len = size_of_contents;
15764
15765 /* The version number. */
831adc1f 15766 val = MAYBE_SWAP (4);
9291a0cd
TT
15767 obstack_grow (&contents, &val, sizeof (val));
15768
15769 /* The offset of the CU list from the start of the file. */
15770 val = MAYBE_SWAP (total_len);
15771 obstack_grow (&contents, &val, sizeof (val));
15772 total_len += obstack_object_size (&cu_list);
15773
1fd400ff
TT
15774 /* The offset of the types CU list from the start of the file. */
15775 val = MAYBE_SWAP (total_len);
15776 obstack_grow (&contents, &val, sizeof (val));
15777 total_len += obstack_object_size (&types_cu_list);
15778
9291a0cd
TT
15779 /* The offset of the address table from the start of the file. */
15780 val = MAYBE_SWAP (total_len);
15781 obstack_grow (&contents, &val, sizeof (val));
15782 total_len += obstack_object_size (&addr_obstack);
15783
15784 /* The offset of the symbol table from the start of the file. */
15785 val = MAYBE_SWAP (total_len);
15786 obstack_grow (&contents, &val, sizeof (val));
15787 total_len += obstack_object_size (&symtab_obstack);
15788
15789 /* The offset of the constant pool from the start of the file. */
15790 val = MAYBE_SWAP (total_len);
15791 obstack_grow (&contents, &val, sizeof (val));
15792 total_len += obstack_object_size (&constant_pool);
15793
15794 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15795
15796 write_obstack (out_file, &contents);
15797 write_obstack (out_file, &cu_list);
1fd400ff 15798 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
15799 write_obstack (out_file, &addr_obstack);
15800 write_obstack (out_file, &symtab_obstack);
15801 write_obstack (out_file, &constant_pool);
15802
15803 fclose (out_file);
15804
15805 /* We want to keep the file, so we set cleanup_filename to NULL
15806 here. See unlink_if_set. */
15807 cleanup_filename = NULL;
15808
15809 do_cleanups (cleanup);
15810}
15811
15812/* The mapped index file format is designed to be directly mmap()able
15813 on any architecture. In most cases, a datum is represented using a
15814 little-endian 32-bit integer value, called an offset_type. Big
15815 endian machines must byte-swap the values before using them.
15816 Exceptions to this rule are noted. The data is laid out such that
15817 alignment is always respected.
15818
15819 A mapped index consists of several sections.
15820
15821 1. The file header. This is a sequence of values, of offset_type
15822 unless otherwise noted:
987d643c 15823
831adc1f 15824 [0] The version number, currently 4. Versions 1, 2 and 3 are
987d643c 15825 obsolete.
9291a0cd 15826 [1] The offset, from the start of the file, of the CU list.
987d643c
TT
15827 [2] The offset, from the start of the file, of the types CU list.
15828 Note that this section can be empty, in which case this offset will
15829 be equal to the next offset.
15830 [3] The offset, from the start of the file, of the address section.
15831 [4] The offset, from the start of the file, of the symbol table.
15832 [5] The offset, from the start of the file, of the constant pool.
9291a0cd
TT
15833
15834 2. The CU list. This is a sequence of pairs of 64-bit
1fd400ff
TT
15835 little-endian values, sorted by the CU offset. The first element
15836 in each pair is the offset of a CU in the .debug_info section. The
15837 second element in each pair is the length of that CU. References
15838 to a CU elsewhere in the map are done using a CU index, which is
15839 just the 0-based index into this table. Note that if there are
15840 type CUs, then conceptually CUs and type CUs form a single list for
15841 the purposes of CU indices.
15842
987d643c
TT
15843 3. The types CU list. This is a sequence of triplets of 64-bit
15844 little-endian values. In a triplet, the first value is the CU
15845 offset, the second value is the type offset in the CU, and the
15846 third value is the type signature. The types CU list is not
15847 sorted.
9291a0cd 15848
987d643c 15849 4. The address section. The address section consists of a sequence
9291a0cd
TT
15850 of address entries. Each address entry has three elements.
15851 [0] The low address. This is a 64-bit little-endian value.
15852 [1] The high address. This is a 64-bit little-endian value.
148c11bf 15853 Like DW_AT_high_pc, the value is one byte beyond the end.
9291a0cd
TT
15854 [2] The CU index. This is an offset_type value.
15855
987d643c 15856 5. The symbol table. This is a hash table. The size of the hash
9291a0cd
TT
15857 table is always a power of 2. The initial hash and the step are
15858 currently defined by the `find_slot' function.
15859
15860 Each slot in the hash table consists of a pair of offset_type
15861 values. The first value is the offset of the symbol's name in the
15862 constant pool. The second value is the offset of the CU vector in
15863 the constant pool.
15864
15865 If both values are 0, then this slot in the hash table is empty.
15866 This is ok because while 0 is a valid constant pool index, it
15867 cannot be a valid index for both a string and a CU vector.
15868
15869 A string in the constant pool is stored as a \0-terminated string,
15870 as you'd expect.
15871
15872 A CU vector in the constant pool is a sequence of offset_type
15873 values. The first value is the number of CU indices in the vector.
15874 Each subsequent value is the index of a CU in the CU list. This
15875 element in the hash table is used to indicate which CUs define the
15876 symbol.
15877
987d643c 15878 6. The constant pool. This is simply a bunch of bytes. It is
9291a0cd
TT
15879 organized so that alignment is correct: CU vectors are stored
15880 first, followed by strings. */
11570e71 15881
9291a0cd
TT
15882static void
15883save_gdb_index_command (char *arg, int from_tty)
15884{
15885 struct objfile *objfile;
15886
15887 if (!arg || !*arg)
96d19272 15888 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
15889
15890 ALL_OBJFILES (objfile)
15891 {
15892 struct stat st;
15893
15894 /* If the objfile does not correspond to an actual file, skip it. */
15895 if (stat (objfile->name, &st) < 0)
15896 continue;
15897
15898 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15899 if (dwarf2_per_objfile)
15900 {
15901 volatile struct gdb_exception except;
15902
15903 TRY_CATCH (except, RETURN_MASK_ERROR)
15904 {
15905 write_psymtabs_to_index (objfile, arg);
15906 }
15907 if (except.reason < 0)
15908 exception_fprintf (gdb_stderr, except,
15909 _("Error while writing index for `%s': "),
15910 objfile->name);
15911 }
15912 }
dce234bc
PP
15913}
15914
9291a0cd
TT
15915\f
15916
9eae7c52
TT
15917int dwarf2_always_disassemble;
15918
15919static void
15920show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15921 struct cmd_list_element *c, const char *value)
15922{
3e43a32a
MS
15923 fprintf_filtered (file,
15924 _("Whether to always disassemble "
15925 "DWARF expressions is %s.\n"),
9eae7c52
TT
15926 value);
15927}
15928
6502dd73
DJ
15929void _initialize_dwarf2_read (void);
15930
15931void
15932_initialize_dwarf2_read (void)
15933{
96d19272
JK
15934 struct cmd_list_element *c;
15935
dce234bc 15936 dwarf2_objfile_data_key
c1bd65d0 15937 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 15938
1bedd215
AC
15939 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15940Set DWARF 2 specific variables.\n\
15941Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15942 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15943 0/*allow-unknown*/, &maintenance_set_cmdlist);
15944
1bedd215
AC
15945 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15946Show DWARF 2 specific variables\n\
15947Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15948 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15949 0/*allow-unknown*/, &maintenance_show_cmdlist);
15950
15951 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
15952 &dwarf2_max_cache_age, _("\
15953Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15954Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15955A higher limit means that cached compilation units will be stored\n\
15956in memory longer, and more total memory will be used. Zero disables\n\
15957caching, which can slow down startup."),
2c5b56ce 15958 NULL,
920d2a44 15959 show_dwarf2_max_cache_age,
2c5b56ce 15960 &set_dwarf2_cmdlist,
ae038cb0 15961 &show_dwarf2_cmdlist);
d97bc12b 15962
9eae7c52
TT
15963 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15964 &dwarf2_always_disassemble, _("\
15965Set whether `info address' always disassembles DWARF expressions."), _("\
15966Show whether `info address' always disassembles DWARF expressions."), _("\
15967When enabled, DWARF expressions are always printed in an assembly-like\n\
15968syntax. When disabled, expressions will be printed in a more\n\
15969conversational style, when possible."),
15970 NULL,
15971 show_dwarf2_always_disassemble,
15972 &set_dwarf2_cmdlist,
15973 &show_dwarf2_cmdlist);
15974
d97bc12b
DE
15975 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15976Set debugging of the dwarf2 DIE reader."), _("\
15977Show debugging of the dwarf2 DIE reader."), _("\
15978When enabled (non-zero), DIEs are dumped after they are read in.\n\
15979The value is the maximum depth to print."),
15980 NULL,
15981 NULL,
15982 &setdebuglist, &showdebuglist);
9291a0cd 15983
96d19272 15984 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 15985 _("\
fc1a9d6e 15986Save a gdb-index file.\n\
11570e71 15987Usage: save gdb-index DIRECTORY"),
96d19272
JK
15988 &save_cmdlist);
15989 set_cmd_completer (c, filename_completer);
6502dd73 15990}
This page took 2.274074 seconds and 4 git commands to generate.