Remove ref_dynamic_nonweak added by accident
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
0b302171 3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
4c2df51b 70
c906108c
SS
71#include <fcntl.h>
72#include "gdb_string.h"
4bdf3d34 73#include "gdb_assert.h"
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
45cfd468
DE
79/* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81static int dwarf2_read_debug = 0;
82
d97bc12b 83/* When non-zero, dump DIEs after they are read in. */
ccce17b0 84static unsigned int dwarf2_die_debug = 0;
d97bc12b 85
900e11f9
JK
86/* When non-zero, cross-check physname against demangler. */
87static int check_physname = 0;
88
481860b3 89/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 90static int use_deprecated_index_sections = 0;
481860b3 91
df8a16a1
DJ
92/* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96static int processing_has_namespace_info;
97
6502dd73
DJ
98static const struct objfile_data *dwarf2_objfile_data_key;
99
dce234bc
PP
100struct dwarf2_section_info
101{
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
be391dca
TT
105 /* True if we have tried to read this section. */
106 int readin;
dce234bc
PP
107};
108
8b70b953
TT
109typedef struct dwarf2_section_info dwarf2_section_info_def;
110DEF_VEC_O (dwarf2_section_info_def);
111
9291a0cd
TT
112/* All offsets in the index are of this type. It must be
113 architecture-independent. */
114typedef uint32_t offset_type;
115
116DEF_VEC_I (offset_type);
117
156942c7
DE
118/* Ensure only legit values are used. */
119#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125/* Ensure only legit values are used. */
126#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133/* Ensure we don't use more than the alloted nuber of bits for the CU. */
134#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
9291a0cd
TT
140/* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142struct mapped_index
143{
559a7a62
JK
144 /* Index data format version. */
145 int version;
146
9291a0cd
TT
147 /* The total length of the buffer. */
148 off_t total_size;
b11b1f88 149
9291a0cd
TT
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
b11b1f88 152
9291a0cd
TT
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
b11b1f88 155
3876f04e
DE
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
b11b1f88 158
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
b11b1f88 161
9291a0cd
TT
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164};
165
95554aad
TT
166typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167DEF_VEC_P (dwarf2_per_cu_ptr);
168
9cdd5dbd
DE
169/* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
6502dd73
DJ
172struct dwarf2_per_objfile
173{
dce234bc
PP
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
dce234bc
PP
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
cf2c3c16 179 struct dwarf2_section_info macro;
dce234bc
PP
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
3019eac3 182 struct dwarf2_section_info addr;
dce234bc
PP
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
9291a0cd 185 struct dwarf2_section_info gdb_index;
ae038cb0 186
8b70b953
TT
187 VEC (dwarf2_section_info_def) *types;
188
be391dca
TT
189 /* Back link. */
190 struct objfile *objfile;
191
d467dd73 192 /* Table of all the compilation units. This is used to locate
10b3939b 193 the target compilation unit of a particular reference. */
ae038cb0
DJ
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
1fd400ff 199 /* The number of .debug_types-related CUs. */
d467dd73 200 int n_type_units;
1fd400ff 201
d467dd73 202 /* The .debug_types-related CUs (TUs). */
b4dd5633 203 struct signatured_type **all_type_units;
1fd400ff 204
f4dc4d17
DE
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
72dca2f5 215
348e048f
DE
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
f4dc4d17
DE
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
3019eac3
DE
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
80626a55
DE
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
36586728
TT
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
72dca2f5
FR
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
9291a0cd 251
ae2de4f8
DE
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
254 unsigned char using_index;
255
ae2de4f8 256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 257 struct mapped_index *index_table;
98bfdba5 258
7b9f3c50
DE
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs can share line table entries with CUs or other TUs, and there can be
261 a lot more TUs than unique line tables, so we maintain a separate table
262 of all line table entries to support the sharing. */
263 htab_t quick_file_names_table;
264
98bfdba5
PA
265 /* Set during partial symbol reading, to prevent queueing of full
266 symbols. */
267 int reading_partial_symbols;
673bfd45 268
dee91e82 269 /* Table mapping type DIEs to their struct type *.
673bfd45 270 This is NULL if not allocated yet.
dee91e82
DE
271 The mapping is done via (CU/TU signature + DIE offset) -> type. */
272 htab_t die_type_hash;
95554aad
TT
273
274 /* The CUs we recently read. */
275 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
276};
277
278static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 279
251d32d9 280/* Default names of the debugging sections. */
c906108c 281
233a11ab
CS
282/* Note that if the debugging section has been compressed, it might
283 have a name like .zdebug_info. */
284
9cdd5dbd
DE
285static const struct dwarf2_debug_sections dwarf2_elf_names =
286{
251d32d9
TG
287 { ".debug_info", ".zdebug_info" },
288 { ".debug_abbrev", ".zdebug_abbrev" },
289 { ".debug_line", ".zdebug_line" },
290 { ".debug_loc", ".zdebug_loc" },
291 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 292 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
293 { ".debug_str", ".zdebug_str" },
294 { ".debug_ranges", ".zdebug_ranges" },
295 { ".debug_types", ".zdebug_types" },
3019eac3 296 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
297 { ".debug_frame", ".zdebug_frame" },
298 { ".eh_frame", NULL },
24d3216f
TT
299 { ".gdb_index", ".zgdb_index" },
300 23
251d32d9 301};
c906108c 302
80626a55 303/* List of DWO/DWP sections. */
3019eac3 304
80626a55 305static const struct dwop_section_names
3019eac3
DE
306{
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
09262596
DE
311 struct dwarf2_section_names macinfo_dwo;
312 struct dwarf2_section_names macro_dwo;
3019eac3
DE
313 struct dwarf2_section_names str_dwo;
314 struct dwarf2_section_names str_offsets_dwo;
315 struct dwarf2_section_names types_dwo;
80626a55
DE
316 struct dwarf2_section_names cu_index;
317 struct dwarf2_section_names tu_index;
3019eac3 318}
80626a55 319dwop_section_names =
3019eac3
DE
320{
321 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
322 { ".debug_info.dwo", ".zdebug_info.dwo" },
323 { ".debug_line.dwo", ".zdebug_line.dwo" },
324 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
325 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
326 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
327 { ".debug_str.dwo", ".zdebug_str.dwo" },
328 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
329 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
330 { ".debug_cu_index", ".zdebug_cu_index" },
331 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
332};
333
c906108c
SS
334/* local data types */
335
107d2387
AC
336/* The data in a compilation unit header, after target2host
337 translation, looks like this. */
c906108c 338struct comp_unit_head
a738430d 339{
c764a876 340 unsigned int length;
a738430d 341 short version;
a738430d
MK
342 unsigned char addr_size;
343 unsigned char signed_addr_p;
b64f50a1 344 sect_offset abbrev_offset;
57349743 345
a738430d
MK
346 /* Size of file offsets; either 4 or 8. */
347 unsigned int offset_size;
57349743 348
a738430d
MK
349 /* Size of the length field; either 4 or 12. */
350 unsigned int initial_length_size;
57349743 351
a738430d
MK
352 /* Offset to the first byte of this compilation unit header in the
353 .debug_info section, for resolving relative reference dies. */
b64f50a1 354 sect_offset offset;
57349743 355
d00adf39
DE
356 /* Offset to first die in this cu from the start of the cu.
357 This will be the first byte following the compilation unit header. */
b64f50a1 358 cu_offset first_die_offset;
a738430d 359};
c906108c 360
3da10d80
KS
361/* Type used for delaying computation of method physnames.
362 See comments for compute_delayed_physnames. */
363struct delayed_method_info
364{
365 /* The type to which the method is attached, i.e., its parent class. */
366 struct type *type;
367
368 /* The index of the method in the type's function fieldlists. */
369 int fnfield_index;
370
371 /* The index of the method in the fieldlist. */
372 int index;
373
374 /* The name of the DIE. */
375 const char *name;
376
377 /* The DIE associated with this method. */
378 struct die_info *die;
379};
380
381typedef struct delayed_method_info delayed_method_info;
382DEF_VEC_O (delayed_method_info);
383
e7c27a73
DJ
384/* Internal state when decoding a particular compilation unit. */
385struct dwarf2_cu
386{
387 /* The objfile containing this compilation unit. */
388 struct objfile *objfile;
389
d00adf39 390 /* The header of the compilation unit. */
e7c27a73 391 struct comp_unit_head header;
e142c38c 392
d00adf39
DE
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address;
395
396 /* Non-zero if base_address has been set. */
397 int base_known;
398
e142c38c
DJ
399 /* The language we are debugging. */
400 enum language language;
401 const struct language_defn *language_defn;
402
b0f35d58
DL
403 const char *producer;
404
e142c38c
DJ
405 /* The generic symbol table building routines have separate lists for
406 file scope symbols and all all other scopes (local scopes). So
407 we need to select the right one to pass to add_symbol_to_list().
408 We do it by keeping a pointer to the correct list in list_in_scope.
409
410 FIXME: The original dwarf code just treated the file scope as the
411 first local scope, and all other local scopes as nested local
412 scopes, and worked fine. Check to see if we really need to
413 distinguish these in buildsym.c. */
414 struct pending **list_in_scope;
415
433df2d4
DE
416 /* The abbrev table for this CU.
417 Normally this points to the abbrev table in the objfile.
418 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
419 struct abbrev_table *abbrev_table;
72bf9492 420
b64f50a1
JK
421 /* Hash table holding all the loaded partial DIEs
422 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
423 htab_t partial_dies;
424
425 /* Storage for things with the same lifetime as this read-in compilation
426 unit, including partial DIEs. */
427 struct obstack comp_unit_obstack;
428
ae038cb0
DJ
429 /* When multiple dwarf2_cu structures are living in memory, this field
430 chains them all together, so that they can be released efficiently.
431 We will probably also want a generation counter so that most-recently-used
432 compilation units are cached... */
433 struct dwarf2_per_cu_data *read_in_chain;
434
435 /* Backchain to our per_cu entry if the tree has been built. */
436 struct dwarf2_per_cu_data *per_cu;
437
438 /* How many compilation units ago was this CU last referenced? */
439 int last_used;
440
b64f50a1
JK
441 /* A hash table of DIE cu_offset for following references with
442 die_info->offset.sect_off as hash. */
51545339 443 htab_t die_hash;
10b3939b
DJ
444
445 /* Full DIEs if read in. */
446 struct die_info *dies;
447
448 /* A set of pointers to dwarf2_per_cu_data objects for compilation
449 units referenced by this one. Only set during full symbol processing;
450 partial symbol tables do not have dependencies. */
451 htab_t dependencies;
452
cb1df416
DJ
453 /* Header data from the line table, during full symbol processing. */
454 struct line_header *line_header;
455
3da10d80
KS
456 /* A list of methods which need to have physnames computed
457 after all type information has been read. */
458 VEC (delayed_method_info) *method_list;
459
96408a79
SA
460 /* To be copied to symtab->call_site_htab. */
461 htab_t call_site_htab;
462
034e5797
DE
463 /* Non-NULL if this CU came from a DWO file.
464 There is an invariant here that is important to remember:
465 Except for attributes copied from the top level DIE in the "main"
466 (or "stub") file in preparation for reading the DWO file
467 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
468 Either there isn't a DWO file (in which case this is NULL and the point
469 is moot), or there is and either we're not going to read it (in which
470 case this is NULL) or there is and we are reading it (in which case this
471 is non-NULL). */
3019eac3
DE
472 struct dwo_unit *dwo_unit;
473
474 /* The DW_AT_addr_base attribute if present, zero otherwise
475 (zero is a valid value though).
476 Note this value comes from the stub CU/TU's DIE. */
477 ULONGEST addr_base;
478
2e3cf129
DE
479 /* The DW_AT_ranges_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE.
482 Also note that the value is zero in the non-DWO case so this value can
483 be used without needing to know whether DWO files are in use or not. */
484 ULONGEST ranges_base;
485
ae038cb0
DJ
486 /* Mark used when releasing cached dies. */
487 unsigned int mark : 1;
488
8be455d7
JK
489 /* This CU references .debug_loc. See the symtab->locations_valid field.
490 This test is imperfect as there may exist optimized debug code not using
491 any location list and still facing inlining issues if handled as
492 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 493 unsigned int has_loclist : 1;
ba919b58 494
685b1105
JK
495 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
496 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
497 are valid. This information is cached because profiling CU expansion
498 showed excessive time spent in producer_is_gxx_lt_4_6. */
ba919b58
TT
499 unsigned int checked_producer : 1;
500 unsigned int producer_is_gxx_lt_4_6 : 1;
685b1105 501 unsigned int producer_is_icc : 1;
e7c27a73
DJ
502};
503
10b3939b
DJ
504/* Persistent data held for a compilation unit, even when not
505 processing it. We put a pointer to this structure in the
28dee7f5 506 read_symtab_private field of the psymtab. */
10b3939b 507
ae038cb0
DJ
508struct dwarf2_per_cu_data
509{
36586728 510 /* The start offset and length of this compilation unit.
45452591 511 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
512 initial_length_size.
513 If the DIE refers to a DWO file, this is always of the original die,
514 not the DWO file. */
b64f50a1 515 sect_offset offset;
36586728 516 unsigned int length;
ae038cb0
DJ
517
518 /* Flag indicating this compilation unit will be read in before
519 any of the current compilation units are processed. */
c764a876 520 unsigned int queued : 1;
ae038cb0 521
0d99eb77
DE
522 /* This flag will be set when reading partial DIEs if we need to load
523 absolutely all DIEs for this compilation unit, instead of just the ones
524 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
525 hash table and don't find it. */
526 unsigned int load_all_dies : 1;
527
3019eac3
DE
528 /* Non-zero if this CU is from .debug_types. */
529 unsigned int is_debug_types : 1;
530
36586728
TT
531 /* Non-zero if this CU is from the .dwz file. */
532 unsigned int is_dwz : 1;
533
3019eac3
DE
534 /* The section this CU/TU lives in.
535 If the DIE refers to a DWO file, this is always the original die,
536 not the DWO file. */
537 struct dwarf2_section_info *info_or_types_section;
348e048f 538
17ea53c3
JK
539 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
540 of the CU cache it gets reset to NULL again. */
ae038cb0 541 struct dwarf2_cu *cu;
1c379e20 542
9cdd5dbd
DE
543 /* The corresponding objfile.
544 Normally we can get the objfile from dwarf2_per_objfile.
545 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
546 struct objfile *objfile;
547
548 /* When using partial symbol tables, the 'psymtab' field is active.
549 Otherwise the 'quick' field is active. */
550 union
551 {
552 /* The partial symbol table associated with this compilation unit,
95554aad 553 or NULL for unread partial units. */
9291a0cd
TT
554 struct partial_symtab *psymtab;
555
556 /* Data needed by the "quick" functions. */
557 struct dwarf2_per_cu_quick_data *quick;
558 } v;
95554aad 559
f4dc4d17
DE
560 union
561 {
562 /* The CUs we import using DW_TAG_imported_unit. This is filled in
563 while reading psymtabs, used to compute the psymtab dependencies,
564 and then cleared. Then it is filled in again while reading full
565 symbols, and only deleted when the objfile is destroyed. */
566 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
567
568 /* Type units are grouped by their DW_AT_stmt_list entry so that they
569 can share them. If this is a TU, this points to the containing
570 symtab. */
571 struct type_unit_group *type_unit_group;
572 } s;
ae038cb0
DJ
573};
574
348e048f
DE
575/* Entry in the signatured_types hash table. */
576
577struct signatured_type
578{
42e7ad6c
DE
579 /* The "per_cu" object of this type.
580 N.B.: This is the first member so that it's easy to convert pointers
581 between them. */
582 struct dwarf2_per_cu_data per_cu;
583
3019eac3 584 /* The type's signature. */
348e048f
DE
585 ULONGEST signature;
586
3019eac3
DE
587 /* Offset in the TU of the type's DIE, as read from the TU header.
588 If the definition lives in a DWO file, this value is unusable. */
589 cu_offset type_offset_in_tu;
590
591 /* Offset in the section of the type's DIE.
592 If the definition lives in a DWO file, this is the offset in the
593 .debug_types.dwo section.
594 The value is zero until the actual value is known.
595 Zero is otherwise not a valid section offset. */
596 sect_offset type_offset_in_section;
348e048f
DE
597};
598
094b34ac
DE
599/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
600 This includes type_unit_group and quick_file_names. */
601
602struct stmt_list_hash
603{
604 /* The DWO unit this table is from or NULL if there is none. */
605 struct dwo_unit *dwo_unit;
606
607 /* Offset in .debug_line or .debug_line.dwo. */
608 sect_offset line_offset;
609};
610
f4dc4d17
DE
611/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
612 an object of this type. */
613
614struct type_unit_group
615{
616 /* dwarf2read.c's main "handle" on the symtab.
617 To simplify things we create an artificial CU that "includes" all the
618 type units using this stmt_list so that the rest of the code still has
619 a "per_cu" handle on the symtab.
620 This PER_CU is recognized by having no section. */
621#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
094b34ac
DE
622 struct dwarf2_per_cu_data per_cu;
623
624 union
625 {
626 /* The TUs that share this DW_AT_stmt_list entry.
627 This is added to while parsing type units to build partial symtabs,
628 and is deleted afterwards and not used again. */
629 VEC (dwarf2_per_cu_ptr) *tus;
f4dc4d17 630
094b34ac
DE
631 /* When reading the line table in "quick" functions, we need a real TU.
632 Any will do, we know they all share the same DW_AT_stmt_list entry.
633 For simplicity's sake, we pick the first one. */
634 struct dwarf2_per_cu_data *first_tu;
635 } t;
f4dc4d17
DE
636
637 /* The primary symtab.
094b34ac
DE
638 Type units in a group needn't all be defined in the same source file,
639 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
640 struct symtab *primary_symtab;
641
094b34ac
DE
642 /* The data used to construct the hash key. */
643 struct stmt_list_hash hash;
f4dc4d17
DE
644
645 /* The number of symtabs from the line header.
646 The value here must match line_header.num_file_names. */
647 unsigned int num_symtabs;
648
649 /* The symbol tables for this TU (obtained from the files listed in
650 DW_AT_stmt_list).
651 WARNING: The order of entries here must match the order of entries
652 in the line header. After the first TU using this type_unit_group, the
653 line header for the subsequent TUs is recreated from this. This is done
654 because we need to use the same symtabs for each TU using the same
655 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
656 there's no guarantee the line header doesn't have duplicate entries. */
657 struct symtab **symtabs;
658};
659
80626a55 660/* These sections are what may appear in a DWO file. */
3019eac3
DE
661
662struct dwo_sections
663{
664 struct dwarf2_section_info abbrev;
3019eac3
DE
665 struct dwarf2_section_info line;
666 struct dwarf2_section_info loc;
09262596
DE
667 struct dwarf2_section_info macinfo;
668 struct dwarf2_section_info macro;
3019eac3
DE
669 struct dwarf2_section_info str;
670 struct dwarf2_section_info str_offsets;
80626a55
DE
671 /* In the case of a virtual DWO file, these two are unused. */
672 struct dwarf2_section_info info;
3019eac3
DE
673 VEC (dwarf2_section_info_def) *types;
674};
675
676/* Common bits of DWO CUs/TUs. */
677
678struct dwo_unit
679{
680 /* Backlink to the containing struct dwo_file. */
681 struct dwo_file *dwo_file;
682
683 /* The "id" that distinguishes this CU/TU.
684 .debug_info calls this "dwo_id", .debug_types calls this "signature".
685 Since signatures came first, we stick with it for consistency. */
686 ULONGEST signature;
687
688 /* The section this CU/TU lives in, in the DWO file. */
689 struct dwarf2_section_info *info_or_types_section;
690
691 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
692 sect_offset offset;
693 unsigned int length;
694
695 /* For types, offset in the type's DIE of the type defined by this TU. */
696 cu_offset type_offset_in_tu;
697};
698
80626a55
DE
699/* Data for one DWO file.
700 This includes virtual DWO files that have been packaged into a
701 DWP file. */
3019eac3
DE
702
703struct dwo_file
704{
80626a55
DE
705 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
706 For virtual DWO files the name is constructed from the section offsets
707 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
708 from related CU+TUs. */
709 const char *name;
3019eac3 710
80626a55
DE
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 bfd *dbfd;
3019eac3
DE
714
715 /* Section info for this file. */
716 struct dwo_sections sections;
717
718 /* Table of CUs in the file.
719 Each element is a struct dwo_unit. */
720 htab_t cus;
721
722 /* Table of TUs in the file.
723 Each element is a struct dwo_unit. */
724 htab_t tus;
725};
726
80626a55
DE
727/* These sections are what may appear in a DWP file. */
728
729struct dwp_sections
730{
731 struct dwarf2_section_info str;
732 struct dwarf2_section_info cu_index;
733 struct dwarf2_section_info tu_index;
734 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
735 by section number. We don't need to record them here. */
736};
737
738/* These sections are what may appear in a virtual DWO file. */
739
740struct virtual_dwo_sections
741{
742 struct dwarf2_section_info abbrev;
743 struct dwarf2_section_info line;
744 struct dwarf2_section_info loc;
745 struct dwarf2_section_info macinfo;
746 struct dwarf2_section_info macro;
747 struct dwarf2_section_info str_offsets;
748 /* Each DWP hash table entry records one CU or one TU.
749 That is recorded here, and copied to dwo_unit.info_or_types_section. */
750 struct dwarf2_section_info info_or_types;
751};
752
753/* Contents of DWP hash tables. */
754
755struct dwp_hash_table
756{
757 uint32_t nr_units, nr_slots;
758 const gdb_byte *hash_table, *unit_table, *section_pool;
759};
760
761/* Data for one DWP file. */
762
763struct dwp_file
764{
765 /* Name of the file. */
766 const char *name;
767
768 /* The bfd, when the file is open. Otherwise this is NULL. */
769 bfd *dbfd;
770
771 /* Section info for this file. */
772 struct dwp_sections sections;
773
774 /* Table of CUs in the file. */
775 const struct dwp_hash_table *cus;
776
777 /* Table of TUs in the file. */
778 const struct dwp_hash_table *tus;
779
780 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
781 htab_t loaded_cutus;
782
783 /* Table to map ELF section numbers to their sections. */
784 unsigned int num_sections;
785 asection **elf_sections;
786};
787
36586728
TT
788/* This represents a '.dwz' file. */
789
790struct dwz_file
791{
792 /* A dwz file can only contain a few sections. */
793 struct dwarf2_section_info abbrev;
794 struct dwarf2_section_info info;
795 struct dwarf2_section_info str;
796 struct dwarf2_section_info line;
797 struct dwarf2_section_info macro;
2ec9a5e0 798 struct dwarf2_section_info gdb_index;
36586728
TT
799
800 /* The dwz's BFD. */
801 bfd *dwz_bfd;
802};
803
0963b4bd
MS
804/* Struct used to pass misc. parameters to read_die_and_children, et
805 al. which are used for both .debug_info and .debug_types dies.
806 All parameters here are unchanging for the life of the call. This
dee91e82 807 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
808
809struct die_reader_specs
810{
dee91e82 811 /* die_section->asection->owner. */
93311388
DE
812 bfd* abfd;
813
814 /* The CU of the DIE we are parsing. */
815 struct dwarf2_cu *cu;
816
80626a55 817 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
818 struct dwo_file *dwo_file;
819
dee91e82 820 /* The section the die comes from.
3019eac3 821 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
822 struct dwarf2_section_info *die_section;
823
824 /* die_section->buffer. */
825 gdb_byte *buffer;
f664829e
DE
826
827 /* The end of the buffer. */
828 const gdb_byte *buffer_end;
93311388
DE
829};
830
fd820528 831/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82
DE
832typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
833 gdb_byte *info_ptr,
834 struct die_info *comp_unit_die,
835 int has_children,
836 void *data);
837
debd256d
JB
838/* The line number information for a compilation unit (found in the
839 .debug_line section) begins with a "statement program header",
840 which contains the following information. */
841struct line_header
842{
843 unsigned int total_length;
844 unsigned short version;
845 unsigned int header_length;
846 unsigned char minimum_instruction_length;
2dc7f7b3 847 unsigned char maximum_ops_per_instruction;
debd256d
JB
848 unsigned char default_is_stmt;
849 int line_base;
850 unsigned char line_range;
851 unsigned char opcode_base;
852
853 /* standard_opcode_lengths[i] is the number of operands for the
854 standard opcode whose value is i. This means that
855 standard_opcode_lengths[0] is unused, and the last meaningful
856 element is standard_opcode_lengths[opcode_base - 1]. */
857 unsigned char *standard_opcode_lengths;
858
859 /* The include_directories table. NOTE! These strings are not
860 allocated with xmalloc; instead, they are pointers into
861 debug_line_buffer. If you try to free them, `free' will get
862 indigestion. */
863 unsigned int num_include_dirs, include_dirs_size;
864 char **include_dirs;
865
866 /* The file_names table. NOTE! These strings are not allocated
867 with xmalloc; instead, they are pointers into debug_line_buffer.
868 Don't try to free them directly. */
869 unsigned int num_file_names, file_names_size;
870 struct file_entry
c906108c 871 {
debd256d
JB
872 char *name;
873 unsigned int dir_index;
874 unsigned int mod_time;
875 unsigned int length;
aaa75496 876 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 877 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
878 } *file_names;
879
880 /* The start and end of the statement program following this
6502dd73 881 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 882 gdb_byte *statement_program_start, *statement_program_end;
debd256d 883};
c906108c
SS
884
885/* When we construct a partial symbol table entry we only
0963b4bd 886 need this much information. */
c906108c
SS
887struct partial_die_info
888 {
72bf9492 889 /* Offset of this DIE. */
b64f50a1 890 sect_offset offset;
72bf9492
DJ
891
892 /* DWARF-2 tag for this DIE. */
893 ENUM_BITFIELD(dwarf_tag) tag : 16;
894
72bf9492
DJ
895 /* Assorted flags describing the data found in this DIE. */
896 unsigned int has_children : 1;
897 unsigned int is_external : 1;
898 unsigned int is_declaration : 1;
899 unsigned int has_type : 1;
900 unsigned int has_specification : 1;
901 unsigned int has_pc_info : 1;
481860b3 902 unsigned int may_be_inlined : 1;
72bf9492
DJ
903
904 /* Flag set if the SCOPE field of this structure has been
905 computed. */
906 unsigned int scope_set : 1;
907
fa4028e9
JB
908 /* Flag set if the DIE has a byte_size attribute. */
909 unsigned int has_byte_size : 1;
910
98bfdba5
PA
911 /* Flag set if any of the DIE's children are template arguments. */
912 unsigned int has_template_arguments : 1;
913
abc72ce4
DE
914 /* Flag set if fixup_partial_die has been called on this die. */
915 unsigned int fixup_called : 1;
916
36586728
TT
917 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
918 unsigned int is_dwz : 1;
919
920 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
921 unsigned int spec_is_dwz : 1;
922
72bf9492 923 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 924 sometimes a default name for unnamed DIEs. */
c906108c 925 char *name;
72bf9492 926
abc72ce4
DE
927 /* The linkage name, if present. */
928 const char *linkage_name;
929
72bf9492
DJ
930 /* The scope to prepend to our children. This is generally
931 allocated on the comp_unit_obstack, so will disappear
932 when this compilation unit leaves the cache. */
933 char *scope;
934
95554aad
TT
935 /* Some data associated with the partial DIE. The tag determines
936 which field is live. */
937 union
938 {
939 /* The location description associated with this DIE, if any. */
940 struct dwarf_block *locdesc;
941 /* The offset of an import, for DW_TAG_imported_unit. */
942 sect_offset offset;
943 } d;
72bf9492
DJ
944
945 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
946 CORE_ADDR lowpc;
947 CORE_ADDR highpc;
72bf9492 948
93311388 949 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 950 DW_AT_sibling, if any. */
abc72ce4
DE
951 /* NOTE: This member isn't strictly necessary, read_partial_die could
952 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 953 gdb_byte *sibling;
72bf9492
DJ
954
955 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
956 DW_AT_specification (or DW_AT_abstract_origin or
957 DW_AT_extension). */
b64f50a1 958 sect_offset spec_offset;
72bf9492
DJ
959
960 /* Pointers to this DIE's parent, first child, and next sibling,
961 if any. */
962 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
963 };
964
0963b4bd 965/* This data structure holds the information of an abbrev. */
c906108c
SS
966struct abbrev_info
967 {
968 unsigned int number; /* number identifying abbrev */
969 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
970 unsigned short has_children; /* boolean */
971 unsigned short num_attrs; /* number of attributes */
c906108c
SS
972 struct attr_abbrev *attrs; /* an array of attribute descriptions */
973 struct abbrev_info *next; /* next in chain */
974 };
975
976struct attr_abbrev
977 {
9d25dd43
DE
978 ENUM_BITFIELD(dwarf_attribute) name : 16;
979 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
980 };
981
433df2d4
DE
982/* Size of abbrev_table.abbrev_hash_table. */
983#define ABBREV_HASH_SIZE 121
984
985/* Top level data structure to contain an abbreviation table. */
986
987struct abbrev_table
988{
f4dc4d17
DE
989 /* Where the abbrev table came from.
990 This is used as a sanity check when the table is used. */
433df2d4
DE
991 sect_offset offset;
992
993 /* Storage for the abbrev table. */
994 struct obstack abbrev_obstack;
995
996 /* Hash table of abbrevs.
997 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
998 It could be statically allocated, but the previous code didn't so we
999 don't either. */
1000 struct abbrev_info **abbrevs;
1001};
1002
0963b4bd 1003/* Attributes have a name and a value. */
b60c80d6
DJ
1004struct attribute
1005 {
9d25dd43 1006 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1007 ENUM_BITFIELD(dwarf_form) form : 15;
1008
1009 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1010 field should be in u.str (existing only for DW_STRING) but it is kept
1011 here for better struct attribute alignment. */
1012 unsigned int string_is_canonical : 1;
1013
b60c80d6
DJ
1014 union
1015 {
1016 char *str;
1017 struct dwarf_block *blk;
43bbcdc2
PH
1018 ULONGEST unsnd;
1019 LONGEST snd;
b60c80d6 1020 CORE_ADDR addr;
348e048f 1021 struct signatured_type *signatured_type;
b60c80d6
DJ
1022 }
1023 u;
1024 };
1025
0963b4bd 1026/* This data structure holds a complete die structure. */
c906108c
SS
1027struct die_info
1028 {
76815b17
DE
1029 /* DWARF-2 tag for this DIE. */
1030 ENUM_BITFIELD(dwarf_tag) tag : 16;
1031
1032 /* Number of attributes */
98bfdba5
PA
1033 unsigned char num_attrs;
1034
1035 /* True if we're presently building the full type name for the
1036 type derived from this DIE. */
1037 unsigned char building_fullname : 1;
76815b17
DE
1038
1039 /* Abbrev number */
1040 unsigned int abbrev;
1041
93311388 1042 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1043 sect_offset offset;
78ba4af6
JB
1044
1045 /* The dies in a compilation unit form an n-ary tree. PARENT
1046 points to this die's parent; CHILD points to the first child of
1047 this node; and all the children of a given node are chained
4950bc1c 1048 together via their SIBLING fields. */
639d11d3
DC
1049 struct die_info *child; /* Its first child, if any. */
1050 struct die_info *sibling; /* Its next sibling, if any. */
1051 struct die_info *parent; /* Its parent, if any. */
c906108c 1052
b60c80d6
DJ
1053 /* An array of attributes, with NUM_ATTRS elements. There may be
1054 zero, but it's not common and zero-sized arrays are not
1055 sufficiently portable C. */
1056 struct attribute attrs[1];
c906108c
SS
1057 };
1058
0963b4bd 1059/* Get at parts of an attribute structure. */
c906108c
SS
1060
1061#define DW_STRING(attr) ((attr)->u.str)
8285870a 1062#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1063#define DW_UNSND(attr) ((attr)->u.unsnd)
1064#define DW_BLOCK(attr) ((attr)->u.blk)
1065#define DW_SND(attr) ((attr)->u.snd)
1066#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 1067#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 1068
0963b4bd 1069/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1070struct dwarf_block
1071 {
56eb65bd 1072 size_t size;
1d6edc3c
JK
1073
1074 /* Valid only if SIZE is not zero. */
fe1b8b76 1075 gdb_byte *data;
c906108c
SS
1076 };
1077
c906108c
SS
1078#ifndef ATTR_ALLOC_CHUNK
1079#define ATTR_ALLOC_CHUNK 4
1080#endif
1081
c906108c
SS
1082/* Allocate fields for structs, unions and enums in this size. */
1083#ifndef DW_FIELD_ALLOC_CHUNK
1084#define DW_FIELD_ALLOC_CHUNK 4
1085#endif
1086
c906108c
SS
1087/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1088 but this would require a corresponding change in unpack_field_as_long
1089 and friends. */
1090static int bits_per_byte = 8;
1091
1092/* The routines that read and process dies for a C struct or C++ class
1093 pass lists of data member fields and lists of member function fields
1094 in an instance of a field_info structure, as defined below. */
1095struct field_info
c5aa993b 1096 {
0963b4bd 1097 /* List of data member and baseclasses fields. */
c5aa993b
JM
1098 struct nextfield
1099 {
1100 struct nextfield *next;
1101 int accessibility;
1102 int virtuality;
1103 struct field field;
1104 }
7d0ccb61 1105 *fields, *baseclasses;
c906108c 1106
7d0ccb61 1107 /* Number of fields (including baseclasses). */
c5aa993b 1108 int nfields;
c906108c 1109
c5aa993b
JM
1110 /* Number of baseclasses. */
1111 int nbaseclasses;
c906108c 1112
c5aa993b
JM
1113 /* Set if the accesibility of one of the fields is not public. */
1114 int non_public_fields;
c906108c 1115
c5aa993b
JM
1116 /* Member function fields array, entries are allocated in the order they
1117 are encountered in the object file. */
1118 struct nextfnfield
1119 {
1120 struct nextfnfield *next;
1121 struct fn_field fnfield;
1122 }
1123 *fnfields;
c906108c 1124
c5aa993b
JM
1125 /* Member function fieldlist array, contains name of possibly overloaded
1126 member function, number of overloaded member functions and a pointer
1127 to the head of the member function field chain. */
1128 struct fnfieldlist
1129 {
1130 char *name;
1131 int length;
1132 struct nextfnfield *head;
1133 }
1134 *fnfieldlists;
c906108c 1135
c5aa993b
JM
1136 /* Number of entries in the fnfieldlists array. */
1137 int nfnfields;
98751a41
JK
1138
1139 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1140 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1141 struct typedef_field_list
1142 {
1143 struct typedef_field field;
1144 struct typedef_field_list *next;
1145 }
1146 *typedef_field_list;
1147 unsigned typedef_field_list_count;
c5aa993b 1148 };
c906108c 1149
10b3939b
DJ
1150/* One item on the queue of compilation units to read in full symbols
1151 for. */
1152struct dwarf2_queue_item
1153{
1154 struct dwarf2_per_cu_data *per_cu;
95554aad 1155 enum language pretend_language;
10b3939b
DJ
1156 struct dwarf2_queue_item *next;
1157};
1158
1159/* The current queue. */
1160static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1161
ae038cb0
DJ
1162/* Loaded secondary compilation units are kept in memory until they
1163 have not been referenced for the processing of this many
1164 compilation units. Set this to zero to disable caching. Cache
1165 sizes of up to at least twenty will improve startup time for
1166 typical inter-CU-reference binaries, at an obvious memory cost. */
1167static int dwarf2_max_cache_age = 5;
920d2a44
AC
1168static void
1169show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1170 struct cmd_list_element *c, const char *value)
1171{
3e43a32a
MS
1172 fprintf_filtered (file, _("The upper bound on the age of cached "
1173 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1174 value);
1175}
1176
ae038cb0 1177
0963b4bd 1178/* Various complaints about symbol reading that don't abort the process. */
c906108c 1179
4d3c2250
KB
1180static void
1181dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1182{
4d3c2250 1183 complaint (&symfile_complaints,
e2e0b3e5 1184 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1185}
1186
25e43795
DJ
1187static void
1188dwarf2_debug_line_missing_file_complaint (void)
1189{
1190 complaint (&symfile_complaints,
1191 _(".debug_line section has line data without a file"));
1192}
1193
59205f5a
JB
1194static void
1195dwarf2_debug_line_missing_end_sequence_complaint (void)
1196{
1197 complaint (&symfile_complaints,
3e43a32a
MS
1198 _(".debug_line section has line "
1199 "program sequence without an end"));
59205f5a
JB
1200}
1201
4d3c2250
KB
1202static void
1203dwarf2_complex_location_expr_complaint (void)
2e276125 1204{
e2e0b3e5 1205 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1206}
1207
4d3c2250
KB
1208static void
1209dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1210 int arg3)
2e276125 1211{
4d3c2250 1212 complaint (&symfile_complaints,
3e43a32a
MS
1213 _("const value length mismatch for '%s', got %d, expected %d"),
1214 arg1, arg2, arg3);
4d3c2250
KB
1215}
1216
1217static void
f664829e 1218dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1219{
4d3c2250 1220 complaint (&symfile_complaints,
f664829e
DE
1221 _("debug info runs off end of %s section"
1222 " [in module %s]"),
1223 section->asection->name,
1224 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1225}
1226
1227static void
1228dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1229{
4d3c2250 1230 complaint (&symfile_complaints,
3e43a32a
MS
1231 _("macro debug info contains a "
1232 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1233 arg1);
1234}
1235
1236static void
1237dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1238{
4d3c2250 1239 complaint (&symfile_complaints,
3e43a32a
MS
1240 _("invalid attribute class or form for '%s' in '%s'"),
1241 arg1, arg2);
4d3c2250 1242}
c906108c 1243
c906108c
SS
1244/* local function prototypes */
1245
4efb68b1 1246static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1247
aaa75496
JB
1248static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1249 struct objfile *);
1250
918dd910
JK
1251static void dwarf2_find_base_address (struct die_info *die,
1252 struct dwarf2_cu *cu);
1253
c67a9c90 1254static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1255
72bf9492
DJ
1256static void scan_partial_symbols (struct partial_die_info *,
1257 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1258 int, struct dwarf2_cu *);
c906108c 1259
72bf9492
DJ
1260static void add_partial_symbol (struct partial_die_info *,
1261 struct dwarf2_cu *);
63d06c5c 1262
72bf9492
DJ
1263static void add_partial_namespace (struct partial_die_info *pdi,
1264 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1265 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1266
5d7cb8df
JK
1267static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1268 CORE_ADDR *highpc, int need_pc,
1269 struct dwarf2_cu *cu);
1270
72bf9492
DJ
1271static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1272 struct dwarf2_cu *cu);
91c24f0a 1273
bc30ff58
JB
1274static void add_partial_subprogram (struct partial_die_info *pdi,
1275 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1276 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1277
a14ed312 1278static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 1279
a14ed312 1280static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1281
433df2d4
DE
1282static struct abbrev_info *abbrev_table_lookup_abbrev
1283 (const struct abbrev_table *, unsigned int);
1284
1285static struct abbrev_table *abbrev_table_read_table
1286 (struct dwarf2_section_info *, sect_offset);
1287
1288static void abbrev_table_free (struct abbrev_table *);
1289
f4dc4d17
DE
1290static void abbrev_table_free_cleanup (void *);
1291
dee91e82
DE
1292static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1293 struct dwarf2_section_info *);
c906108c 1294
f3dd6933 1295static void dwarf2_free_abbrev_table (void *);
c906108c 1296
6caca83c
CC
1297static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1298
dee91e82
DE
1299static struct partial_die_info *load_partial_dies
1300 (const struct die_reader_specs *, gdb_byte *, int);
72bf9492 1301
dee91e82
DE
1302static gdb_byte *read_partial_die (const struct die_reader_specs *,
1303 struct partial_die_info *,
1304 struct abbrev_info *,
1305 unsigned int,
1306 gdb_byte *);
c906108c 1307
36586728 1308static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1309 struct dwarf2_cu *);
72bf9492
DJ
1310
1311static void fixup_partial_die (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
dee91e82
DE
1314static gdb_byte *read_attribute (const struct die_reader_specs *,
1315 struct attribute *, struct attr_abbrev *,
1316 gdb_byte *);
a8329558 1317
a1855c1d 1318static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1319
a1855c1d 1320static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1321
a1855c1d 1322static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1323
a1855c1d 1324static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1325
a1855c1d 1326static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1327
fe1b8b76 1328static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1329 unsigned int *);
c906108c 1330
c764a876
DE
1331static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1332
1333static LONGEST read_checked_initial_length_and_offset
1334 (bfd *, gdb_byte *, const struct comp_unit_head *,
1335 unsigned int *, unsigned int *);
613e1657 1336
fe1b8b76 1337static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
1338 unsigned int *);
1339
1340static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 1341
f4dc4d17
DE
1342static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1343 sect_offset);
1344
fe1b8b76 1345static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 1346
9b1c24c8 1347static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 1348
fe1b8b76
JB
1349static char *read_indirect_string (bfd *, gdb_byte *,
1350 const struct comp_unit_head *,
1351 unsigned int *);
4bdf3d34 1352
36586728
TT
1353static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1354
12df843f 1355static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 1356
12df843f 1357static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 1358
3019eac3
DE
1359static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1360 unsigned int *);
1361
1362static char *read_str_index (const struct die_reader_specs *reader,
1363 struct dwarf2_cu *cu, ULONGEST str_index);
1364
e142c38c 1365static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1366
e142c38c
DJ
1367static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1368 struct dwarf2_cu *);
c906108c 1369
348e048f 1370static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1371 unsigned int);
348e048f 1372
05cf31d1
JB
1373static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1374 struct dwarf2_cu *cu);
1375
e142c38c 1376static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1377
e142c38c 1378static struct die_info *die_specification (struct die_info *die,
f2f0e013 1379 struct dwarf2_cu **);
63d06c5c 1380
debd256d
JB
1381static void free_line_header (struct line_header *lh);
1382
aaa75496
JB
1383static void add_file_name (struct line_header *, char *, unsigned int,
1384 unsigned int, unsigned int);
1385
3019eac3
DE
1386static struct line_header *dwarf_decode_line_header (unsigned int offset,
1387 struct dwarf2_cu *cu);
debd256d 1388
f3f5162e
DE
1389static void dwarf_decode_lines (struct line_header *, const char *,
1390 struct dwarf2_cu *, struct partial_symtab *,
1391 int);
c906108c 1392
72b9f47f 1393static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 1394
f4dc4d17
DE
1395static void dwarf2_start_symtab (struct dwarf2_cu *,
1396 char *, char *, CORE_ADDR);
1397
a14ed312 1398static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1399 struct dwarf2_cu *);
c906108c 1400
34eaf542
TT
1401static struct symbol *new_symbol_full (struct die_info *, struct type *,
1402 struct dwarf2_cu *, struct symbol *);
1403
a14ed312 1404static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1405 struct dwarf2_cu *);
c906108c 1406
98bfdba5
PA
1407static void dwarf2_const_value_attr (struct attribute *attr,
1408 struct type *type,
1409 const char *name,
1410 struct obstack *obstack,
12df843f 1411 struct dwarf2_cu *cu, LONGEST *value,
98bfdba5
PA
1412 gdb_byte **bytes,
1413 struct dwarf2_locexpr_baton **baton);
2df3850c 1414
e7c27a73 1415static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1416
b4ba55a1
JB
1417static int need_gnat_info (struct dwarf2_cu *);
1418
3e43a32a
MS
1419static struct type *die_descriptive_type (struct die_info *,
1420 struct dwarf2_cu *);
b4ba55a1
JB
1421
1422static void set_descriptive_type (struct type *, struct die_info *,
1423 struct dwarf2_cu *);
1424
e7c27a73
DJ
1425static struct type *die_containing_type (struct die_info *,
1426 struct dwarf2_cu *);
c906108c 1427
673bfd45
DE
1428static struct type *lookup_die_type (struct die_info *, struct attribute *,
1429 struct dwarf2_cu *);
c906108c 1430
f792889a 1431static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1432
673bfd45
DE
1433static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1434
0d5cff50 1435static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1436
6e70227d 1437static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1438 const char *suffix, int physname,
1439 struct dwarf2_cu *cu);
63d06c5c 1440
e7c27a73 1441static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1442
348e048f
DE
1443static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1444
e7c27a73 1445static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1446
e7c27a73 1447static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1448
96408a79
SA
1449static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1450
ff013f42
JK
1451static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1452 struct dwarf2_cu *, struct partial_symtab *);
1453
a14ed312 1454static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1455 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1456 struct partial_symtab *);
c906108c 1457
fae299cd
DC
1458static void get_scope_pc_bounds (struct die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 struct dwarf2_cu *);
1461
801e3a5b
JB
1462static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1463 CORE_ADDR, struct dwarf2_cu *);
1464
a14ed312 1465static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1466 struct dwarf2_cu *);
c906108c 1467
a14ed312 1468static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1469 struct type *, struct dwarf2_cu *);
c906108c 1470
a14ed312 1471static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1472 struct die_info *, struct type *,
e7c27a73 1473 struct dwarf2_cu *);
c906108c 1474
a14ed312 1475static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1476 struct type *,
1477 struct dwarf2_cu *);
c906108c 1478
134d01f1 1479static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1480
e7c27a73 1481static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1482
e7c27a73 1483static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1484
5d7cb8df
JK
1485static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1486
27aa8d6a
SW
1487static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1488
f55ee35c
JK
1489static struct type *read_module_type (struct die_info *die,
1490 struct dwarf2_cu *cu);
1491
38d518c9 1492static const char *namespace_name (struct die_info *die,
e142c38c 1493 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1494
134d01f1 1495static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1496
e7c27a73 1497static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1498
6e70227d 1499static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1500 struct dwarf2_cu *);
1501
dee91e82 1502static struct die_info *read_die_and_children (const struct die_reader_specs *,
93311388 1503 gdb_byte *info_ptr,
fe1b8b76 1504 gdb_byte **new_info_ptr,
639d11d3
DC
1505 struct die_info *parent);
1506
dee91e82 1507static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
93311388 1508 gdb_byte *info_ptr,
fe1b8b76 1509 gdb_byte **new_info_ptr,
639d11d3
DC
1510 struct die_info *parent);
1511
3019eac3
DE
1512static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1513 struct die_info **, gdb_byte *, int *, int);
1514
dee91e82
DE
1515static gdb_byte *read_full_die (const struct die_reader_specs *,
1516 struct die_info **, gdb_byte *, int *);
93311388 1517
e7c27a73 1518static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1519
71c25dea
TT
1520static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1521 struct obstack *);
1522
e142c38c 1523static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1524
98bfdba5
PA
1525static const char *dwarf2_full_name (char *name,
1526 struct die_info *die,
1527 struct dwarf2_cu *cu);
1528
e142c38c 1529static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1530 struct dwarf2_cu **);
9219021c 1531
f39c6ffd 1532static const char *dwarf_tag_name (unsigned int);
c906108c 1533
f39c6ffd 1534static const char *dwarf_attr_name (unsigned int);
c906108c 1535
f39c6ffd 1536static const char *dwarf_form_name (unsigned int);
c906108c 1537
a14ed312 1538static char *dwarf_bool_name (unsigned int);
c906108c 1539
f39c6ffd 1540static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1541
f9aca02d 1542static struct die_info *sibling_die (struct die_info *);
c906108c 1543
d97bc12b
DE
1544static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1545
1546static void dump_die_for_error (struct die_info *);
1547
1548static void dump_die_1 (struct ui_file *, int level, int max_level,
1549 struct die_info *);
c906108c 1550
d97bc12b 1551/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1552
51545339 1553static void store_in_ref_table (struct die_info *,
10b3939b 1554 struct dwarf2_cu *);
c906108c 1555
93311388
DE
1556static int is_ref_attr (struct attribute *);
1557
b64f50a1 1558static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1559
43bbcdc2 1560static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1561
348e048f
DE
1562static struct die_info *follow_die_ref_or_sig (struct die_info *,
1563 struct attribute *,
1564 struct dwarf2_cu **);
1565
10b3939b
DJ
1566static struct die_info *follow_die_ref (struct die_info *,
1567 struct attribute *,
f2f0e013 1568 struct dwarf2_cu **);
c906108c 1569
348e048f
DE
1570static struct die_info *follow_die_sig (struct die_info *,
1571 struct attribute *,
1572 struct dwarf2_cu **);
1573
6c83ed52
TT
1574static struct signatured_type *lookup_signatured_type_at_offset
1575 (struct objfile *objfile,
b64f50a1 1576 struct dwarf2_section_info *section, sect_offset offset);
6c83ed52 1577
e5fe5e75 1578static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1579
52dc124a 1580static void read_signatured_type (struct signatured_type *);
348e048f 1581
f4dc4d17 1582static struct type_unit_group *get_type_unit_group
094b34ac 1583 (struct dwarf2_cu *, struct attribute *);
f4dc4d17
DE
1584
1585static void build_type_unit_groups (die_reader_func_ftype *, void *);
1586
c906108c
SS
1587/* memory allocation interface */
1588
7b5a2f43 1589static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1590
b60c80d6 1591static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1592
09262596
DE
1593static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1594 char *, int);
2e276125 1595
8e19ed76
PS
1596static int attr_form_is_block (struct attribute *);
1597
3690dd37
JB
1598static int attr_form_is_section_offset (struct attribute *);
1599
1600static int attr_form_is_constant (struct attribute *);
1601
8cf6f0b1
TT
1602static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1603 struct dwarf2_loclist_baton *baton,
1604 struct attribute *attr);
1605
93e7bd98
DJ
1606static void dwarf2_symbol_mark_computed (struct attribute *attr,
1607 struct symbol *sym,
1608 struct dwarf2_cu *cu);
4c2df51b 1609
dee91e82
DE
1610static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1611 gdb_byte *info_ptr,
1612 struct abbrev_info *abbrev);
4bb7a0a7 1613
72bf9492
DJ
1614static void free_stack_comp_unit (void *);
1615
72bf9492
DJ
1616static hashval_t partial_die_hash (const void *item);
1617
1618static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1619
ae038cb0 1620static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1621 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1622
9816fde3 1623static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1624 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1625
1626static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1627 struct die_info *comp_unit_die,
1628 enum language pretend_language);
93311388 1629
68dc6402 1630static void free_heap_comp_unit (void *);
ae038cb0
DJ
1631
1632static void free_cached_comp_units (void *);
1633
1634static void age_cached_comp_units (void);
1635
dee91e82 1636static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1637
f792889a
DJ
1638static struct type *set_die_type (struct die_info *, struct type *,
1639 struct dwarf2_cu *);
1c379e20 1640
ae038cb0
DJ
1641static void create_all_comp_units (struct objfile *);
1642
0e50663e 1643static int create_all_type_units (struct objfile *);
1fd400ff 1644
95554aad
TT
1645static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1646 enum language);
10b3939b 1647
95554aad
TT
1648static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1649 enum language);
10b3939b 1650
f4dc4d17
DE
1651static void process_full_type_unit (struct dwarf2_per_cu_data *,
1652 enum language);
1653
10b3939b
DJ
1654static void dwarf2_add_dependence (struct dwarf2_cu *,
1655 struct dwarf2_per_cu_data *);
1656
ae038cb0
DJ
1657static void dwarf2_mark (struct dwarf2_cu *);
1658
1659static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1660
b64f50a1 1661static struct type *get_die_type_at_offset (sect_offset,
673bfd45
DE
1662 struct dwarf2_per_cu_data *per_cu);
1663
f792889a 1664static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1665
9291a0cd
TT
1666static void dwarf2_release_queue (void *dummy);
1667
95554aad
TT
1668static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1669 enum language pretend_language);
1670
1671static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1672 struct dwarf2_per_cu_data *per_cu,
1673 enum language pretend_language);
9291a0cd 1674
a0f42c21 1675static void process_queue (void);
9291a0cd
TT
1676
1677static void find_file_and_directory (struct die_info *die,
1678 struct dwarf2_cu *cu,
1679 char **name, char **comp_dir);
1680
1681static char *file_full_name (int file, struct line_header *lh,
1682 const char *comp_dir);
1683
36586728
TT
1684static gdb_byte *read_and_check_comp_unit_head
1685 (struct comp_unit_head *header,
1686 struct dwarf2_section_info *section,
1687 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1688 int is_debug_types_section);
1689
fd820528 1690static void init_cutu_and_read_dies
f4dc4d17
DE
1691 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1692 int use_existing_cu, int keep,
3019eac3
DE
1693 die_reader_func_ftype *die_reader_func, void *data);
1694
dee91e82
DE
1695static void init_cutu_and_read_dies_simple
1696 (struct dwarf2_per_cu_data *this_cu,
1697 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1698
673bfd45 1699static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1700
3019eac3
DE
1701static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1702
1703static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1704 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1705
1706static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1707 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1708
1709static void free_dwo_file_cleanup (void *);
1710
95554aad
TT
1711static void process_cu_includes (void);
1712
9291a0cd
TT
1713#if WORDS_BIGENDIAN
1714
1715/* Convert VALUE between big- and little-endian. */
1716static offset_type
1717byte_swap (offset_type value)
1718{
1719 offset_type result;
1720
1721 result = (value & 0xff) << 24;
1722 result |= (value & 0xff00) << 8;
1723 result |= (value & 0xff0000) >> 8;
1724 result |= (value & 0xff000000) >> 24;
1725 return result;
1726}
1727
1728#define MAYBE_SWAP(V) byte_swap (V)
1729
1730#else
1731#define MAYBE_SWAP(V) (V)
1732#endif /* WORDS_BIGENDIAN */
1733
1734/* The suffix for an index file. */
1735#define INDEX_SUFFIX ".gdb-index"
1736
3da10d80
KS
1737static const char *dwarf2_physname (char *name, struct die_info *die,
1738 struct dwarf2_cu *cu);
1739
c906108c 1740/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1741 information and return true if we have enough to do something.
1742 NAMES points to the dwarf2 section names, or is NULL if the standard
1743 ELF names are used. */
c906108c
SS
1744
1745int
251d32d9
TG
1746dwarf2_has_info (struct objfile *objfile,
1747 const struct dwarf2_debug_sections *names)
c906108c 1748{
be391dca
TT
1749 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1750 if (!dwarf2_per_objfile)
1751 {
1752 /* Initialize per-objfile state. */
1753 struct dwarf2_per_objfile *data
1754 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1755
be391dca
TT
1756 memset (data, 0, sizeof (*data));
1757 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1758 dwarf2_per_objfile = data;
6502dd73 1759
251d32d9
TG
1760 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1761 (void *) names);
be391dca
TT
1762 dwarf2_per_objfile->objfile = objfile;
1763 }
1764 return (dwarf2_per_objfile->info.asection != NULL
1765 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1766}
1767
251d32d9
TG
1768/* When loading sections, we look either for uncompressed section or for
1769 compressed section names. */
233a11ab
CS
1770
1771static int
251d32d9
TG
1772section_is_p (const char *section_name,
1773 const struct dwarf2_section_names *names)
233a11ab 1774{
251d32d9
TG
1775 if (names->normal != NULL
1776 && strcmp (section_name, names->normal) == 0)
1777 return 1;
1778 if (names->compressed != NULL
1779 && strcmp (section_name, names->compressed) == 0)
1780 return 1;
1781 return 0;
233a11ab
CS
1782}
1783
c906108c
SS
1784/* This function is mapped across the sections and remembers the
1785 offset and size of each of the debugging sections we are interested
1786 in. */
1787
1788static void
251d32d9 1789dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1790{
251d32d9 1791 const struct dwarf2_debug_sections *names;
dc7650b8 1792 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1793
1794 if (vnames == NULL)
1795 names = &dwarf2_elf_names;
1796 else
1797 names = (const struct dwarf2_debug_sections *) vnames;
1798
dc7650b8
JK
1799 if ((aflag & SEC_HAS_CONTENTS) == 0)
1800 {
1801 }
1802 else if (section_is_p (sectp->name, &names->info))
c906108c 1803 {
dce234bc
PP
1804 dwarf2_per_objfile->info.asection = sectp;
1805 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1806 }
251d32d9 1807 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1808 {
dce234bc
PP
1809 dwarf2_per_objfile->abbrev.asection = sectp;
1810 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1811 }
251d32d9 1812 else if (section_is_p (sectp->name, &names->line))
c906108c 1813 {
dce234bc
PP
1814 dwarf2_per_objfile->line.asection = sectp;
1815 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1816 }
251d32d9 1817 else if (section_is_p (sectp->name, &names->loc))
c906108c 1818 {
dce234bc
PP
1819 dwarf2_per_objfile->loc.asection = sectp;
1820 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1821 }
251d32d9 1822 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1823 {
dce234bc
PP
1824 dwarf2_per_objfile->macinfo.asection = sectp;
1825 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1826 }
cf2c3c16
TT
1827 else if (section_is_p (sectp->name, &names->macro))
1828 {
1829 dwarf2_per_objfile->macro.asection = sectp;
1830 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1831 }
251d32d9 1832 else if (section_is_p (sectp->name, &names->str))
c906108c 1833 {
dce234bc
PP
1834 dwarf2_per_objfile->str.asection = sectp;
1835 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1836 }
3019eac3
DE
1837 else if (section_is_p (sectp->name, &names->addr))
1838 {
1839 dwarf2_per_objfile->addr.asection = sectp;
1840 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1841 }
251d32d9 1842 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1843 {
dce234bc
PP
1844 dwarf2_per_objfile->frame.asection = sectp;
1845 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1846 }
251d32d9 1847 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1848 {
dc7650b8
JK
1849 dwarf2_per_objfile->eh_frame.asection = sectp;
1850 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1851 }
251d32d9 1852 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1853 {
dce234bc
PP
1854 dwarf2_per_objfile->ranges.asection = sectp;
1855 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1856 }
251d32d9 1857 else if (section_is_p (sectp->name, &names->types))
348e048f 1858 {
8b70b953
TT
1859 struct dwarf2_section_info type_section;
1860
1861 memset (&type_section, 0, sizeof (type_section));
1862 type_section.asection = sectp;
1863 type_section.size = bfd_get_section_size (sectp);
1864
1865 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1866 &type_section);
348e048f 1867 }
251d32d9 1868 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1869 {
1870 dwarf2_per_objfile->gdb_index.asection = sectp;
1871 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1872 }
dce234bc 1873
72dca2f5
FR
1874 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1875 && bfd_section_vma (abfd, sectp) == 0)
1876 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1877}
1878
fceca515
DE
1879/* A helper function that decides whether a section is empty,
1880 or not present. */
9e0ac564
TT
1881
1882static int
1883dwarf2_section_empty_p (struct dwarf2_section_info *info)
1884{
1885 return info->asection == NULL || info->size == 0;
1886}
1887
3019eac3
DE
1888/* Read the contents of the section INFO.
1889 OBJFILE is the main object file, but not necessarily the file where
1890 the section comes from. E.g., for DWO files INFO->asection->owner
1891 is the bfd of the DWO file.
dce234bc 1892 If the section is compressed, uncompress it before returning. */
c906108c 1893
dce234bc
PP
1894static void
1895dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1896{
dce234bc 1897 asection *sectp = info->asection;
3019eac3 1898 bfd *abfd;
dce234bc
PP
1899 gdb_byte *buf, *retbuf;
1900 unsigned char header[4];
c906108c 1901
be391dca
TT
1902 if (info->readin)
1903 return;
dce234bc 1904 info->buffer = NULL;
be391dca 1905 info->readin = 1;
188dd5d6 1906
9e0ac564 1907 if (dwarf2_section_empty_p (info))
dce234bc 1908 return;
c906108c 1909
3019eac3
DE
1910 abfd = sectp->owner;
1911
4bf44c1c
TT
1912 /* If the section has relocations, we must read it ourselves.
1913 Otherwise we attach it to the BFD. */
1914 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1915 {
4bf44c1c 1916 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
dce234bc 1917
4bf44c1c
TT
1918 /* We have to cast away const here for historical reasons.
1919 Fixing dwarf2read to be const-correct would be quite nice. */
1920 info->buffer = (gdb_byte *) bytes;
1921 return;
dce234bc 1922 }
dce234bc 1923
4bf44c1c
TT
1924 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1925 info->buffer = buf;
dce234bc
PP
1926
1927 /* When debugging .o files, we may need to apply relocations; see
1928 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1929 We never compress sections in .o files, so we only need to
1930 try this when the section is not compressed. */
ac8035ab 1931 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1932 if (retbuf != NULL)
1933 {
1934 info->buffer = retbuf;
1935 return;
1936 }
1937
1938 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1939 || bfd_bread (buf, info->size, abfd) != info->size)
1940 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1941 bfd_get_filename (abfd));
1942}
1943
9e0ac564
TT
1944/* A helper function that returns the size of a section in a safe way.
1945 If you are positive that the section has been read before using the
1946 size, then it is safe to refer to the dwarf2_section_info object's
1947 "size" field directly. In other cases, you must call this
1948 function, because for compressed sections the size field is not set
1949 correctly until the section has been read. */
1950
1951static bfd_size_type
1952dwarf2_section_size (struct objfile *objfile,
1953 struct dwarf2_section_info *info)
1954{
1955 if (!info->readin)
1956 dwarf2_read_section (objfile, info);
1957 return info->size;
1958}
1959
dce234bc 1960/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1961 SECTION_NAME. */
af34e669 1962
dce234bc 1963void
3017a003
TG
1964dwarf2_get_section_info (struct objfile *objfile,
1965 enum dwarf2_section_enum sect,
dce234bc
PP
1966 asection **sectp, gdb_byte **bufp,
1967 bfd_size_type *sizep)
1968{
1969 struct dwarf2_per_objfile *data
1970 = objfile_data (objfile, dwarf2_objfile_data_key);
1971 struct dwarf2_section_info *info;
a3b2a86b
TT
1972
1973 /* We may see an objfile without any DWARF, in which case we just
1974 return nothing. */
1975 if (data == NULL)
1976 {
1977 *sectp = NULL;
1978 *bufp = NULL;
1979 *sizep = 0;
1980 return;
1981 }
3017a003
TG
1982 switch (sect)
1983 {
1984 case DWARF2_DEBUG_FRAME:
1985 info = &data->frame;
1986 break;
1987 case DWARF2_EH_FRAME:
1988 info = &data->eh_frame;
1989 break;
1990 default:
1991 gdb_assert_not_reached ("unexpected section");
1992 }
dce234bc 1993
9e0ac564 1994 dwarf2_read_section (objfile, info);
dce234bc
PP
1995
1996 *sectp = info->asection;
1997 *bufp = info->buffer;
1998 *sizep = info->size;
1999}
2000
36586728
TT
2001/* A helper function to find the sections for a .dwz file. */
2002
2003static void
2004locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2005{
2006 struct dwz_file *dwz_file = arg;
2007
2008 /* Note that we only support the standard ELF names, because .dwz
2009 is ELF-only (at the time of writing). */
2010 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2011 {
2012 dwz_file->abbrev.asection = sectp;
2013 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2014 }
2015 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2016 {
2017 dwz_file->info.asection = sectp;
2018 dwz_file->info.size = bfd_get_section_size (sectp);
2019 }
2020 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2021 {
2022 dwz_file->str.asection = sectp;
2023 dwz_file->str.size = bfd_get_section_size (sectp);
2024 }
2025 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2026 {
2027 dwz_file->line.asection = sectp;
2028 dwz_file->line.size = bfd_get_section_size (sectp);
2029 }
2030 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2031 {
2032 dwz_file->macro.asection = sectp;
2033 dwz_file->macro.size = bfd_get_section_size (sectp);
2034 }
2ec9a5e0
TT
2035 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2036 {
2037 dwz_file->gdb_index.asection = sectp;
2038 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2039 }
36586728
TT
2040}
2041
2042/* Open the separate '.dwz' debug file, if needed. Error if the file
2043 cannot be found. */
2044
2045static struct dwz_file *
2046dwarf2_get_dwz_file (void)
2047{
2048 bfd *abfd, *dwz_bfd;
2049 asection *section;
2050 gdb_byte *data;
2051 struct cleanup *cleanup;
2052 const char *filename;
2053 struct dwz_file *result;
2054
2055 if (dwarf2_per_objfile->dwz_file != NULL)
2056 return dwarf2_per_objfile->dwz_file;
2057
2058 abfd = dwarf2_per_objfile->objfile->obfd;
2059 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2060 if (section == NULL)
2061 error (_("could not find '.gnu_debugaltlink' section"));
2062 if (!bfd_malloc_and_get_section (abfd, section, &data))
2063 error (_("could not read '.gnu_debugaltlink' section: %s"),
2064 bfd_errmsg (bfd_get_error ()));
2065 cleanup = make_cleanup (xfree, data);
2066
2067 filename = data;
2068 if (!IS_ABSOLUTE_PATH (filename))
2069 {
2070 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2071 char *rel;
2072
2073 make_cleanup (xfree, abs);
2074 abs = ldirname (abs);
2075 make_cleanup (xfree, abs);
2076
2077 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2078 make_cleanup (xfree, rel);
2079 filename = rel;
2080 }
2081
2082 /* The format is just a NUL-terminated file name, followed by the
2083 build-id. For now, though, we ignore the build-id. */
2084 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2085 if (dwz_bfd == NULL)
2086 error (_("could not read '%s': %s"), filename,
2087 bfd_errmsg (bfd_get_error ()));
2088
2089 if (!bfd_check_format (dwz_bfd, bfd_object))
2090 {
2091 gdb_bfd_unref (dwz_bfd);
2092 error (_("file '%s' was not usable: %s"), filename,
2093 bfd_errmsg (bfd_get_error ()));
2094 }
2095
2096 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2097 struct dwz_file);
2098 result->dwz_bfd = dwz_bfd;
2099
2100 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2101
2102 do_cleanups (cleanup);
2103
2104 return result;
2105}
9291a0cd 2106\f
7b9f3c50
DE
2107/* DWARF quick_symbols_functions support. */
2108
2109/* TUs can share .debug_line entries, and there can be a lot more TUs than
2110 unique line tables, so we maintain a separate table of all .debug_line
2111 derived entries to support the sharing.
2112 All the quick functions need is the list of file names. We discard the
2113 line_header when we're done and don't need to record it here. */
2114struct quick_file_names
2115{
094b34ac
DE
2116 /* The data used to construct the hash key. */
2117 struct stmt_list_hash hash;
7b9f3c50
DE
2118
2119 /* The number of entries in file_names, real_names. */
2120 unsigned int num_file_names;
2121
2122 /* The file names from the line table, after being run through
2123 file_full_name. */
2124 const char **file_names;
2125
2126 /* The file names from the line table after being run through
2127 gdb_realpath. These are computed lazily. */
2128 const char **real_names;
2129};
2130
2131/* When using the index (and thus not using psymtabs), each CU has an
2132 object of this type. This is used to hold information needed by
2133 the various "quick" methods. */
2134struct dwarf2_per_cu_quick_data
2135{
2136 /* The file table. This can be NULL if there was no file table
2137 or it's currently not read in.
2138 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2139 struct quick_file_names *file_names;
2140
2141 /* The corresponding symbol table. This is NULL if symbols for this
2142 CU have not yet been read. */
2143 struct symtab *symtab;
2144
2145 /* A temporary mark bit used when iterating over all CUs in
2146 expand_symtabs_matching. */
2147 unsigned int mark : 1;
2148
2149 /* True if we've tried to read the file table and found there isn't one.
2150 There will be no point in trying to read it again next time. */
2151 unsigned int no_file_data : 1;
2152};
2153
094b34ac
DE
2154/* Utility hash function for a stmt_list_hash. */
2155
2156static hashval_t
2157hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2158{
2159 hashval_t v = 0;
2160
2161 if (stmt_list_hash->dwo_unit != NULL)
2162 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2163 v += stmt_list_hash->line_offset.sect_off;
2164 return v;
2165}
2166
2167/* Utility equality function for a stmt_list_hash. */
2168
2169static int
2170eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2171 const struct stmt_list_hash *rhs)
2172{
2173 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2174 return 0;
2175 if (lhs->dwo_unit != NULL
2176 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2177 return 0;
2178
2179 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2180}
2181
7b9f3c50
DE
2182/* Hash function for a quick_file_names. */
2183
2184static hashval_t
2185hash_file_name_entry (const void *e)
2186{
2187 const struct quick_file_names *file_data = e;
2188
094b34ac 2189 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2190}
2191
2192/* Equality function for a quick_file_names. */
2193
2194static int
2195eq_file_name_entry (const void *a, const void *b)
2196{
2197 const struct quick_file_names *ea = a;
2198 const struct quick_file_names *eb = b;
2199
094b34ac 2200 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2201}
2202
2203/* Delete function for a quick_file_names. */
2204
2205static void
2206delete_file_name_entry (void *e)
2207{
2208 struct quick_file_names *file_data = e;
2209 int i;
2210
2211 for (i = 0; i < file_data->num_file_names; ++i)
2212 {
2213 xfree ((void*) file_data->file_names[i]);
2214 if (file_data->real_names)
2215 xfree ((void*) file_data->real_names[i]);
2216 }
2217
2218 /* The space for the struct itself lives on objfile_obstack,
2219 so we don't free it here. */
2220}
2221
2222/* Create a quick_file_names hash table. */
2223
2224static htab_t
2225create_quick_file_names_table (unsigned int nr_initial_entries)
2226{
2227 return htab_create_alloc (nr_initial_entries,
2228 hash_file_name_entry, eq_file_name_entry,
2229 delete_file_name_entry, xcalloc, xfree);
2230}
9291a0cd 2231
918dd910
JK
2232/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2233 have to be created afterwards. You should call age_cached_comp_units after
2234 processing PER_CU->CU. dw2_setup must have been already called. */
2235
2236static void
2237load_cu (struct dwarf2_per_cu_data *per_cu)
2238{
3019eac3 2239 if (per_cu->is_debug_types)
e5fe5e75 2240 load_full_type_unit (per_cu);
918dd910 2241 else
95554aad 2242 load_full_comp_unit (per_cu, language_minimal);
918dd910 2243
918dd910 2244 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2245
2246 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2247}
2248
a0f42c21 2249/* Read in the symbols for PER_CU. */
2fdf6df6 2250
9291a0cd 2251static void
a0f42c21 2252dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2253{
2254 struct cleanup *back_to;
2255
f4dc4d17
DE
2256 /* Skip type_unit_groups, reading the type units they contain
2257 is handled elsewhere. */
2258 if (IS_TYPE_UNIT_GROUP (per_cu))
2259 return;
2260
9291a0cd
TT
2261 back_to = make_cleanup (dwarf2_release_queue, NULL);
2262
95554aad
TT
2263 if (dwarf2_per_objfile->using_index
2264 ? per_cu->v.quick->symtab == NULL
2265 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2266 {
2267 queue_comp_unit (per_cu, language_minimal);
2268 load_cu (per_cu);
2269 }
9291a0cd 2270
a0f42c21 2271 process_queue ();
9291a0cd
TT
2272
2273 /* Age the cache, releasing compilation units that have not
2274 been used recently. */
2275 age_cached_comp_units ();
2276
2277 do_cleanups (back_to);
2278}
2279
2280/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2281 the objfile from which this CU came. Returns the resulting symbol
2282 table. */
2fdf6df6 2283
9291a0cd 2284static struct symtab *
a0f42c21 2285dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2286{
95554aad 2287 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2288 if (!per_cu->v.quick->symtab)
2289 {
2290 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2291 increment_reading_symtab ();
a0f42c21 2292 dw2_do_instantiate_symtab (per_cu);
95554aad 2293 process_cu_includes ();
9291a0cd
TT
2294 do_cleanups (back_to);
2295 }
2296 return per_cu->v.quick->symtab;
2297}
2298
f4dc4d17
DE
2299/* Return the CU given its index.
2300
2301 This is intended for loops like:
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_units); ++i)
2305 {
2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2307
2308 ...;
2309 }
2310*/
2fdf6df6 2311
1fd400ff
TT
2312static struct dwarf2_per_cu_data *
2313dw2_get_cu (int index)
2314{
2315 if (index >= dwarf2_per_objfile->n_comp_units)
2316 {
f4dc4d17 2317 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2318 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2319 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2320 }
2321
2322 return dwarf2_per_objfile->all_comp_units[index];
2323}
2324
2325/* Return the primary CU given its index.
2326 The difference between this function and dw2_get_cu is in the handling
2327 of type units (TUs). Here we return the type_unit_group object.
2328
2329 This is intended for loops like:
2330
2331 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2332 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2333 {
2334 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2335
2336 ...;
2337 }
2338*/
2339
2340static struct dwarf2_per_cu_data *
2341dw2_get_primary_cu (int index)
2342{
2343 if (index >= dwarf2_per_objfile->n_comp_units)
2344 {
1fd400ff 2345 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2346 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2347 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2348 }
f4dc4d17 2349
1fd400ff
TT
2350 return dwarf2_per_objfile->all_comp_units[index];
2351}
2352
9291a0cd
TT
2353/* A helper function that knows how to read a 64-bit value in a way
2354 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2355 otherwise. */
2fdf6df6 2356
9291a0cd
TT
2357static int
2358extract_cu_value (const char *bytes, ULONGEST *result)
2359{
2360 if (sizeof (ULONGEST) < 8)
2361 {
2362 int i;
2363
2364 /* Ignore the upper 4 bytes if they are all zero. */
2365 for (i = 0; i < 4; ++i)
2366 if (bytes[i + 4] != 0)
2367 return 0;
2368
2369 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2370 }
2371 else
2372 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2373 return 1;
2374}
2375
2ec9a5e0
TT
2376/* A helper for create_cus_from_index that handles a given list of
2377 CUs. */
2fdf6df6 2378
9291a0cd 2379static int
2ec9a5e0
TT
2380create_cus_from_index_list (struct objfile *objfile,
2381 const gdb_byte *cu_list, offset_type n_elements,
2382 struct dwarf2_section_info *section,
2383 int is_dwz,
2384 int base_offset)
9291a0cd
TT
2385{
2386 offset_type i;
9291a0cd 2387
2ec9a5e0 2388 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2389 {
2390 struct dwarf2_per_cu_data *the_cu;
2391 ULONGEST offset, length;
2392
2393 if (!extract_cu_value (cu_list, &offset)
2394 || !extract_cu_value (cu_list + 8, &length))
2395 return 0;
2396 cu_list += 2 * 8;
2397
2398 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_data);
b64f50a1 2400 the_cu->offset.sect_off = offset;
9291a0cd
TT
2401 the_cu->length = length;
2402 the_cu->objfile = objfile;
2ec9a5e0 2403 the_cu->info_or_types_section = section;
9291a0cd
TT
2404 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2406 the_cu->is_dwz = is_dwz;
2407 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd
TT
2408 }
2409
2410 return 1;
2411}
2412
2ec9a5e0
TT
2413/* Read the CU list from the mapped index, and use it to create all
2414 the CU objects for this objfile. Return 0 if something went wrong,
2415 1 if everything went ok. */
2416
2417static int
2418create_cus_from_index (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type cu_list_elements,
2420 const gdb_byte *dwz_list, offset_type dwz_elements)
2421{
2422 struct dwz_file *dwz;
2423
2424 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2425 dwarf2_per_objfile->all_comp_units
2426 = obstack_alloc (&objfile->objfile_obstack,
2427 dwarf2_per_objfile->n_comp_units
2428 * sizeof (struct dwarf2_per_cu_data *));
2429
2430 if (!create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2431 &dwarf2_per_objfile->info, 0, 0))
2432 return 0;
2433
2434 if (dwz_elements == 0)
2435 return 1;
2436
2437 dwz = dwarf2_get_dwz_file ();
2438 return create_cus_from_index_list (objfile, dwz_list, dwz_elements,
2439 &dwz->info, 1, cu_list_elements / 2);
2440}
2441
1fd400ff 2442/* Create the signatured type hash table from the index. */
673bfd45 2443
1fd400ff 2444static int
673bfd45 2445create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2446 struct dwarf2_section_info *section,
673bfd45
DE
2447 const gdb_byte *bytes,
2448 offset_type elements)
1fd400ff
TT
2449{
2450 offset_type i;
673bfd45 2451 htab_t sig_types_hash;
1fd400ff 2452
d467dd73
DE
2453 dwarf2_per_objfile->n_type_units = elements / 3;
2454 dwarf2_per_objfile->all_type_units
1fd400ff 2455 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 2456 dwarf2_per_objfile->n_type_units
b4dd5633 2457 * sizeof (struct signatured_type *));
1fd400ff 2458
673bfd45 2459 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2460
2461 for (i = 0; i < elements; i += 3)
2462 {
52dc124a
DE
2463 struct signatured_type *sig_type;
2464 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2465 void **slot;
2466
2467 if (!extract_cu_value (bytes, &offset)
52dc124a 2468 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
1fd400ff
TT
2469 return 0;
2470 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 bytes += 3 * 8;
2472
52dc124a 2473 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2474 struct signatured_type);
52dc124a 2475 sig_type->signature = signature;
3019eac3
DE
2476 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2477 sig_type->per_cu.is_debug_types = 1;
2478 sig_type->per_cu.info_or_types_section = section;
52dc124a
DE
2479 sig_type->per_cu.offset.sect_off = offset;
2480 sig_type->per_cu.objfile = objfile;
2481 sig_type->per_cu.v.quick
1fd400ff
TT
2482 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2483 struct dwarf2_per_cu_quick_data);
2484
52dc124a
DE
2485 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2486 *slot = sig_type;
1fd400ff 2487
b4dd5633 2488 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2489 }
2490
673bfd45 2491 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2492
2493 return 1;
2494}
2495
9291a0cd
TT
2496/* Read the address map data from the mapped index, and use it to
2497 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2498
9291a0cd
TT
2499static void
2500create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2501{
2502 const gdb_byte *iter, *end;
2503 struct obstack temp_obstack;
2504 struct addrmap *mutable_map;
2505 struct cleanup *cleanup;
2506 CORE_ADDR baseaddr;
2507
2508 obstack_init (&temp_obstack);
2509 cleanup = make_cleanup_obstack_free (&temp_obstack);
2510 mutable_map = addrmap_create_mutable (&temp_obstack);
2511
2512 iter = index->address_table;
2513 end = iter + index->address_table_size;
2514
2515 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2516
2517 while (iter < end)
2518 {
2519 ULONGEST hi, lo, cu_index;
2520 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2521 iter += 8;
2522 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2523 iter += 8;
2524 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2525 iter += 4;
2526
2527 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 2528 dw2_get_cu (cu_index));
9291a0cd
TT
2529 }
2530
2531 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2532 &objfile->objfile_obstack);
2533 do_cleanups (cleanup);
2534}
2535
59d7bcaf
JK
2536/* The hash function for strings in the mapped index. This is the same as
2537 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2538 implementation. This is necessary because the hash function is tied to the
2539 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2540 SYMBOL_HASH_NEXT.
2541
2542 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2543
9291a0cd 2544static hashval_t
559a7a62 2545mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2546{
2547 const unsigned char *str = (const unsigned char *) p;
2548 hashval_t r = 0;
2549 unsigned char c;
2550
2551 while ((c = *str++) != 0)
559a7a62
JK
2552 {
2553 if (index_version >= 5)
2554 c = tolower (c);
2555 r = r * 67 + c - 113;
2556 }
9291a0cd
TT
2557
2558 return r;
2559}
2560
2561/* Find a slot in the mapped index INDEX for the object named NAME.
2562 If NAME is found, set *VEC_OUT to point to the CU vector in the
2563 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2564
9291a0cd
TT
2565static int
2566find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2567 offset_type **vec_out)
2568{
0cf03b49
JK
2569 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2570 offset_type hash;
9291a0cd 2571 offset_type slot, step;
559a7a62 2572 int (*cmp) (const char *, const char *);
9291a0cd 2573
0cf03b49
JK
2574 if (current_language->la_language == language_cplus
2575 || current_language->la_language == language_java
2576 || current_language->la_language == language_fortran)
2577 {
2578 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2579 not contain any. */
2580 const char *paren = strchr (name, '(');
2581
2582 if (paren)
2583 {
2584 char *dup;
2585
2586 dup = xmalloc (paren - name + 1);
2587 memcpy (dup, name, paren - name);
2588 dup[paren - name] = 0;
2589
2590 make_cleanup (xfree, dup);
2591 name = dup;
2592 }
2593 }
2594
559a7a62 2595 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2596 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2597 simulate our NAME being searched is also lowercased. */
2598 hash = mapped_index_string_hash ((index->version == 4
2599 && case_sensitivity == case_sensitive_off
2600 ? 5 : index->version),
2601 name);
2602
3876f04e
DE
2603 slot = hash & (index->symbol_table_slots - 1);
2604 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2605 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2606
2607 for (;;)
2608 {
2609 /* Convert a slot number to an offset into the table. */
2610 offset_type i = 2 * slot;
2611 const char *str;
3876f04e 2612 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2613 {
2614 do_cleanups (back_to);
2615 return 0;
2616 }
9291a0cd 2617
3876f04e 2618 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2619 if (!cmp (name, str))
9291a0cd
TT
2620 {
2621 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2622 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2623 do_cleanups (back_to);
9291a0cd
TT
2624 return 1;
2625 }
2626
3876f04e 2627 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2628 }
2629}
2630
2ec9a5e0
TT
2631/* A helper function that reads the .gdb_index from SECTION and fills
2632 in MAP. FILENAME is the name of the file containing the section;
2633 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2634 ok to use deprecated sections.
2635
2636 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2637 out parameters that are filled in with information about the CU and
2638 TU lists in the section.
2639
2640 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2641
9291a0cd 2642static int
2ec9a5e0
TT
2643read_index_from_section (struct objfile *objfile,
2644 const char *filename,
2645 int deprecated_ok,
2646 struct dwarf2_section_info *section,
2647 struct mapped_index *map,
2648 const gdb_byte **cu_list,
2649 offset_type *cu_list_elements,
2650 const gdb_byte **types_list,
2651 offset_type *types_list_elements)
9291a0cd 2652{
9291a0cd 2653 char *addr;
2ec9a5e0 2654 offset_type version;
b3b272e1 2655 offset_type *metadata;
1fd400ff 2656 int i;
9291a0cd 2657
2ec9a5e0 2658 if (dwarf2_section_empty_p (section))
9291a0cd 2659 return 0;
82430852
JK
2660
2661 /* Older elfutils strip versions could keep the section in the main
2662 executable while splitting it for the separate debug info file. */
2ec9a5e0 2663 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2664 return 0;
2665
2ec9a5e0 2666 dwarf2_read_section (objfile, section);
9291a0cd 2667
2ec9a5e0 2668 addr = section->buffer;
9291a0cd 2669 /* Version check. */
1fd400ff 2670 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2671 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2672 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2673 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2674 indices. */
831adc1f 2675 if (version < 4)
481860b3
GB
2676 {
2677 static int warning_printed = 0;
2678 if (!warning_printed)
2679 {
2680 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2681 filename);
481860b3
GB
2682 warning_printed = 1;
2683 }
2684 return 0;
2685 }
2686 /* Index version 4 uses a different hash function than index version
2687 5 and later.
2688
2689 Versions earlier than 6 did not emit psymbols for inlined
2690 functions. Using these files will cause GDB not to be able to
2691 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2692 indices unless the user has done
2693 "set use-deprecated-index-sections on". */
2ec9a5e0 2694 if (version < 6 && !deprecated_ok)
481860b3
GB
2695 {
2696 static int warning_printed = 0;
2697 if (!warning_printed)
2698 {
e615022a
DE
2699 warning (_("\
2700Skipping deprecated .gdb_index section in %s.\n\
2701Do \"set use-deprecated-index-sections on\" before the file is read\n\
2702to use the section anyway."),
2ec9a5e0 2703 filename);
481860b3
GB
2704 warning_printed = 1;
2705 }
2706 return 0;
2707 }
2708 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2709 longer backward compatible. */
156942c7 2710 if (version > 7)
594e8718 2711 return 0;
9291a0cd 2712
559a7a62 2713 map->version = version;
2ec9a5e0 2714 map->total_size = section->size;
9291a0cd
TT
2715
2716 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2717
2718 i = 0;
2ec9a5e0
TT
2719 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2720 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2721 / 8);
1fd400ff
TT
2722 ++i;
2723
2ec9a5e0
TT
2724 *types_list = addr + MAYBE_SWAP (metadata[i]);
2725 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2726 - MAYBE_SWAP (metadata[i]))
2727 / 8);
987d643c 2728 ++i;
1fd400ff
TT
2729
2730 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2731 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2732 - MAYBE_SWAP (metadata[i]));
2733 ++i;
2734
3876f04e
DE
2735 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2736 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2737 - MAYBE_SWAP (metadata[i]))
2738 / (2 * sizeof (offset_type)));
1fd400ff 2739 ++i;
9291a0cd 2740
1fd400ff
TT
2741 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2742
2ec9a5e0
TT
2743 return 1;
2744}
2745
2746
2747/* Read the index file. If everything went ok, initialize the "quick"
2748 elements of all the CUs and return 1. Otherwise, return 0. */
2749
2750static int
2751dwarf2_read_index (struct objfile *objfile)
2752{
2753 struct mapped_index local_map, *map;
2754 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2755 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2756
2757 if (!read_index_from_section (objfile, objfile->name,
2758 use_deprecated_index_sections,
2759 &dwarf2_per_objfile->gdb_index, &local_map,
2760 &cu_list, &cu_list_elements,
2761 &types_list, &types_list_elements))
2762 return 0;
2763
0fefef59 2764 /* Don't use the index if it's empty. */
2ec9a5e0 2765 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2766 return 0;
2767
2ec9a5e0
TT
2768 /* If there is a .dwz file, read it so we can get its CU list as
2769 well. */
2770 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2771 {
2772 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2773 struct mapped_index dwz_map;
2774 const gdb_byte *dwz_types_ignore;
2775 offset_type dwz_types_elements_ignore;
2776
2777 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2778 1,
2779 &dwz->gdb_index, &dwz_map,
2780 &dwz_list, &dwz_list_elements,
2781 &dwz_types_ignore,
2782 &dwz_types_elements_ignore))
2783 {
2784 warning (_("could not read '.gdb_index' section from %s; skipping"),
2785 bfd_get_filename (dwz->dwz_bfd));
2786 return 0;
2787 }
2788 }
2789
2790 if (!create_cus_from_index (objfile, cu_list, cu_list_elements,
2791 dwz_list, dwz_list_elements))
1fd400ff
TT
2792 return 0;
2793
8b70b953
TT
2794 if (types_list_elements)
2795 {
2796 struct dwarf2_section_info *section;
2797
2798 /* We can only handle a single .debug_types when we have an
2799 index. */
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2801 return 0;
2802
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2805
2806 if (!create_signatured_type_table_from_index (objfile, section,
2807 types_list,
2808 types_list_elements))
2809 return 0;
2810 }
9291a0cd 2811
2ec9a5e0
TT
2812 create_addrmap_from_index (objfile, &local_map);
2813
2814 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2815 *map = local_map;
9291a0cd
TT
2816
2817 dwarf2_per_objfile->index_table = map;
2818 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2819 dwarf2_per_objfile->quick_file_names_table =
2820 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2821
2822 return 1;
2823}
2824
2825/* A helper for the "quick" functions which sets the global
2826 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2827
9291a0cd
TT
2828static void
2829dw2_setup (struct objfile *objfile)
2830{
2831 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2832 gdb_assert (dwarf2_per_objfile);
2833}
2834
f4dc4d17
DE
2835/* Reader function for dw2_build_type_unit_groups. */
2836
2837static void
2838dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2839 gdb_byte *info_ptr,
2840 struct die_info *type_unit_die,
2841 int has_children,
2842 void *data)
2843{
2844 struct dwarf2_cu *cu = reader->cu;
f4dc4d17
DE
2845 struct attribute *attr;
2846 struct type_unit_group *tu_group;
2847
2848 gdb_assert (data == NULL);
2849
2850 if (! has_children)
2851 return;
2852
2853 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2854 /* Call this for its side-effect of creating the associated
2855 struct type_unit_group if it doesn't already exist. */
094b34ac 2856 tu_group = get_type_unit_group (cu, attr);
f4dc4d17
DE
2857}
2858
2859/* Build dwarf2_per_objfile->type_unit_groups.
2860 This function may be called multiple times. */
2861
2862static void
2863dw2_build_type_unit_groups (void)
2864{
2865 if (dwarf2_per_objfile->type_unit_groups == NULL)
2866 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2867}
2868
dee91e82 2869/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2870
dee91e82
DE
2871static void
2872dw2_get_file_names_reader (const struct die_reader_specs *reader,
2873 gdb_byte *info_ptr,
2874 struct die_info *comp_unit_die,
2875 int has_children,
2876 void *data)
9291a0cd 2877{
dee91e82
DE
2878 struct dwarf2_cu *cu = reader->cu;
2879 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2880 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2881 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2882 struct line_header *lh;
9291a0cd 2883 struct attribute *attr;
dee91e82 2884 int i;
9291a0cd 2885 char *name, *comp_dir;
7b9f3c50
DE
2886 void **slot;
2887 struct quick_file_names *qfn;
2888 unsigned int line_offset;
9291a0cd 2889
07261596
TT
2890 /* Our callers never want to match partial units -- instead they
2891 will match the enclosing full CU. */
2892 if (comp_unit_die->tag == DW_TAG_partial_unit)
2893 {
2894 this_cu->v.quick->no_file_data = 1;
2895 return;
2896 }
2897
094b34ac
DE
2898 /* If we're reading the line header for TUs, store it in the "per_cu"
2899 for tu_group. */
2900 if (this_cu->is_debug_types)
2901 {
2902 struct type_unit_group *tu_group = data;
2903
2904 gdb_assert (tu_group != NULL);
2905 lh_cu = &tu_group->per_cu;
2906 }
2907 else
2908 lh_cu = this_cu;
2909
7b9f3c50
DE
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
dee91e82
DE
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2915 if (attr)
2916 {
7b9f3c50
DE
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
094b34ac
DE
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
094b34ac 2929 lh_cu->v.quick->file_names = *slot;
dee91e82 2930 return;
7b9f3c50
DE
2931 }
2932
3019eac3 2933 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2934 }
2935 if (lh == NULL)
2936 {
094b34ac 2937 lh_cu->v.quick->no_file_data = 1;
dee91e82 2938 return;
9291a0cd
TT
2939 }
2940
7b9f3c50 2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
9291a0cd 2946
dee91e82 2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2948
7b9f3c50
DE
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
9291a0cd 2952 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
9291a0cd 2955
7b9f3c50 2956 free_line_header (lh);
7b9f3c50 2957
094b34ac 2958 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2959}
2960
2961/* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964static struct quick_file_names *
2965dw2_get_file_names (struct objfile *objfile,
2966 struct dwarf2_per_cu_data *this_cu)
2967{
f4dc4d17
DE
2968 /* For TUs this should only be called on the parent group. */
2969 if (this_cu->is_debug_types)
2970 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2971
dee91e82
DE
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
3019eac3
DE
2978 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2979 in the stub for CUs, there's is no need to lookup the DWO file.
2980 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2981 DWO file. */
2982 if (this_cu->is_debug_types)
094b34ac
DE
2983 {
2984 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2985
2986 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2987 dw2_get_file_names_reader, tu_group);
2988 }
3019eac3
DE
2989 else
2990 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2991
2992 if (this_cu->v.quick->no_file_data)
2993 return NULL;
2994 return this_cu->v.quick->file_names;
9291a0cd
TT
2995}
2996
2997/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2998 real path for a given file name from the line table. */
2fdf6df6 2999
9291a0cd 3000static const char *
7b9f3c50
DE
3001dw2_get_real_path (struct objfile *objfile,
3002 struct quick_file_names *qfn, int index)
9291a0cd 3003{
7b9f3c50
DE
3004 if (qfn->real_names == NULL)
3005 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3006 qfn->num_file_names, sizeof (char *));
9291a0cd 3007
7b9f3c50
DE
3008 if (qfn->real_names[index] == NULL)
3009 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3010
7b9f3c50 3011 return qfn->real_names[index];
9291a0cd
TT
3012}
3013
3014static struct symtab *
3015dw2_find_last_source_symtab (struct objfile *objfile)
3016{
3017 int index;
ae2de4f8 3018
9291a0cd
TT
3019 dw2_setup (objfile);
3020 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3021 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3022}
3023
7b9f3c50
DE
3024/* Traversal function for dw2_forget_cached_source_info. */
3025
3026static int
3027dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3028{
7b9f3c50 3029 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3030
7b9f3c50 3031 if (file_data->real_names)
9291a0cd 3032 {
7b9f3c50 3033 int i;
9291a0cd 3034
7b9f3c50 3035 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3036 {
7b9f3c50
DE
3037 xfree ((void*) file_data->real_names[i]);
3038 file_data->real_names[i] = NULL;
9291a0cd
TT
3039 }
3040 }
7b9f3c50
DE
3041
3042 return 1;
3043}
3044
3045static void
3046dw2_forget_cached_source_info (struct objfile *objfile)
3047{
3048 dw2_setup (objfile);
3049
3050 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3051 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3052}
3053
f8eba3c6
TT
3054/* Helper function for dw2_map_symtabs_matching_filename that expands
3055 the symtabs and calls the iterator. */
3056
3057static int
3058dw2_map_expand_apply (struct objfile *objfile,
3059 struct dwarf2_per_cu_data *per_cu,
3060 const char *name,
3061 const char *full_path, const char *real_path,
3062 int (*callback) (struct symtab *, void *),
3063 void *data)
3064{
3065 struct symtab *last_made = objfile->symtabs;
3066
3067 /* Don't visit already-expanded CUs. */
3068 if (per_cu->v.quick->symtab)
3069 return 0;
3070
3071 /* This may expand more than one symtab, and we want to iterate over
3072 all of them. */
a0f42c21 3073 dw2_instantiate_symtab (per_cu);
f8eba3c6
TT
3074
3075 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3076 objfile->symtabs, last_made);
3077}
3078
3079/* Implementation of the map_symtabs_matching_filename method. */
3080
9291a0cd 3081static int
f8eba3c6
TT
3082dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3083 const char *full_path, const char *real_path,
3084 int (*callback) (struct symtab *, void *),
3085 void *data)
9291a0cd
TT
3086{
3087 int i;
c011a4f4 3088 const char *name_basename = lbasename (name);
4aac40c8
TT
3089 int name_len = strlen (name);
3090 int is_abs = IS_ABSOLUTE_PATH (name);
9291a0cd
TT
3091
3092 dw2_setup (objfile);
ae2de4f8 3093
f4dc4d17
DE
3094 dw2_build_type_unit_groups ();
3095
1fd400ff 3096 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
f4dc4d17 3097 + dwarf2_per_objfile->n_type_unit_groups); ++i)
9291a0cd
TT
3098 {
3099 int j;
f4dc4d17 3100 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3101 struct quick_file_names *file_data;
9291a0cd 3102
3d7bb9d9 3103 /* We only need to look at symtabs not already expanded. */
e254ef6a 3104 if (per_cu->v.quick->symtab)
9291a0cd
TT
3105 continue;
3106
7b9f3c50
DE
3107 file_data = dw2_get_file_names (objfile, per_cu);
3108 if (file_data == NULL)
9291a0cd
TT
3109 continue;
3110
7b9f3c50 3111 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3112 {
7b9f3c50 3113 const char *this_name = file_data->file_names[j];
9291a0cd 3114
4aac40c8
TT
3115 if (FILENAME_CMP (name, this_name) == 0
3116 || (!is_abs && compare_filenames_for_search (this_name,
3117 name, name_len)))
9291a0cd 3118 {
f8eba3c6
TT
3119 if (dw2_map_expand_apply (objfile, per_cu,
3120 name, full_path, real_path,
3121 callback, data))
3122 return 1;
4aac40c8 3123 }
9291a0cd 3124
c011a4f4
DE
3125 /* Before we invoke realpath, which can get expensive when many
3126 files are involved, do a quick comparison of the basenames. */
3127 if (! basenames_may_differ
3128 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3129 continue;
3130
9291a0cd
TT
3131 if (full_path != NULL)
3132 {
7b9f3c50
DE
3133 const char *this_real_name = dw2_get_real_path (objfile,
3134 file_data, j);
9291a0cd 3135
7b9f3c50 3136 if (this_real_name != NULL
4aac40c8
TT
3137 && (FILENAME_CMP (full_path, this_real_name) == 0
3138 || (!is_abs
3139 && compare_filenames_for_search (this_real_name,
3140 name, name_len))))
9291a0cd 3141 {
f8eba3c6
TT
3142 if (dw2_map_expand_apply (objfile, per_cu,
3143 name, full_path, real_path,
3144 callback, data))
3145 return 1;
9291a0cd
TT
3146 }
3147 }
3148
3149 if (real_path != NULL)
3150 {
7b9f3c50
DE
3151 const char *this_real_name = dw2_get_real_path (objfile,
3152 file_data, j);
9291a0cd 3153
7b9f3c50 3154 if (this_real_name != NULL
4aac40c8
TT
3155 && (FILENAME_CMP (real_path, this_real_name) == 0
3156 || (!is_abs
3157 && compare_filenames_for_search (this_real_name,
3158 name, name_len))))
9291a0cd 3159 {
f8eba3c6
TT
3160 if (dw2_map_expand_apply (objfile, per_cu,
3161 name, full_path, real_path,
3162 callback, data))
3163 return 1;
9291a0cd
TT
3164 }
3165 }
3166 }
3167 }
3168
9291a0cd
TT
3169 return 0;
3170}
3171
3172static struct symtab *
3173dw2_lookup_symbol (struct objfile *objfile, int block_index,
3174 const char *name, domain_enum domain)
3175{
774b6a14 3176 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
3177 instead. */
3178 return NULL;
3179}
3180
3181/* A helper function that expands all symtabs that hold an object
156942c7
DE
3182 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3183 symbols in block BLOCK_KIND. */
2fdf6df6 3184
9291a0cd 3185static void
156942c7
DE
3186dw2_do_expand_symtabs_matching (struct objfile *objfile,
3187 int want_specific_block,
3188 enum block_enum block_kind,
3189 const char *name, domain_enum domain)
9291a0cd 3190{
156942c7
DE
3191 struct mapped_index *index;
3192
9291a0cd
TT
3193 dw2_setup (objfile);
3194
156942c7
DE
3195 index = dwarf2_per_objfile->index_table;
3196
ae2de4f8 3197 /* index_table is NULL if OBJF_READNOW. */
156942c7 3198 if (index)
9291a0cd
TT
3199 {
3200 offset_type *vec;
3201
156942c7 3202 if (find_slot_in_mapped_hash (index, name, &vec))
9291a0cd
TT
3203 {
3204 offset_type i, len = MAYBE_SWAP (*vec);
3205 for (i = 0; i < len; ++i)
3206 {
156942c7
DE
3207 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3208 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
e254ef6a 3209 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
156942c7
DE
3210 int want_static = block_kind != GLOBAL_BLOCK;
3211 /* This value is only valid for index versions >= 7. */
3212 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3213 gdb_index_symbol_kind symbol_kind =
3214 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
83a788b8
DE
3215 /* Only check the symbol attributes if they're present.
3216 Indices prior to version 7 don't record them,
3217 and indices >= 7 may elide them for certain symbols
3218 (gold does this). */
3219 int attrs_valid =
3220 (index->version >= 7
3221 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3222
3223 if (attrs_valid
3224 && want_specific_block
156942c7
DE
3225 && want_static != is_static)
3226 continue;
3227
83a788b8
DE
3228 /* Only check the symbol's kind if it has one. */
3229 if (attrs_valid)
156942c7
DE
3230 {
3231 switch (domain)
3232 {
3233 case VAR_DOMAIN:
3234 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3235 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3236 /* Some types are also in VAR_DOMAIN. */
3237 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3238 continue;
3239 break;
3240 case STRUCT_DOMAIN:
3241 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3242 continue;
3243 break;
3244 case LABEL_DOMAIN:
3245 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3246 continue;
3247 break;
3248 default:
3249 break;
3250 }
3251 }
1fd400ff 3252
a0f42c21 3253 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3254 }
3255 }
3256 }
3257}
3258
774b6a14
TT
3259static void
3260dw2_pre_expand_symtabs_matching (struct objfile *objfile,
8903c50d 3261 enum block_enum block_kind, const char *name,
774b6a14 3262 domain_enum domain)
9291a0cd 3263{
156942c7 3264 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
9291a0cd
TT
3265}
3266
3267static void
3268dw2_print_stats (struct objfile *objfile)
3269{
3270 int i, count;
3271
3272 dw2_setup (objfile);
3273 count = 0;
1fd400ff 3274 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3275 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3276 {
e254ef6a 3277 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3278
e254ef6a 3279 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3280 ++count;
3281 }
3282 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3283}
3284
3285static void
3286dw2_dump (struct objfile *objfile)
3287{
3288 /* Nothing worth printing. */
3289}
3290
3291static void
3292dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3293 struct section_offsets *delta)
3294{
3295 /* There's nothing to relocate here. */
3296}
3297
3298static void
3299dw2_expand_symtabs_for_function (struct objfile *objfile,
3300 const char *func_name)
3301{
156942c7
DE
3302 /* Note: It doesn't matter what we pass for block_kind here. */
3303 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3304 VAR_DOMAIN);
9291a0cd
TT
3305}
3306
3307static void
3308dw2_expand_all_symtabs (struct objfile *objfile)
3309{
3310 int i;
3311
3312 dw2_setup (objfile);
1fd400ff
TT
3313
3314 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3315 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3316 {
e254ef6a 3317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3318
a0f42c21 3319 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3320 }
3321}
3322
3323static void
3324dw2_expand_symtabs_with_filename (struct objfile *objfile,
3325 const char *filename)
3326{
3327 int i;
3328
3329 dw2_setup (objfile);
d4637a04
DE
3330
3331 /* We don't need to consider type units here.
3332 This is only called for examining code, e.g. expand_line_sal.
3333 There can be an order of magnitude (or more) more type units
3334 than comp units, and we avoid them if we can. */
3335
3336 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3337 {
3338 int j;
e254ef6a 3339 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3340 struct quick_file_names *file_data;
9291a0cd 3341
3d7bb9d9 3342 /* We only need to look at symtabs not already expanded. */
e254ef6a 3343 if (per_cu->v.quick->symtab)
9291a0cd
TT
3344 continue;
3345
7b9f3c50
DE
3346 file_data = dw2_get_file_names (objfile, per_cu);
3347 if (file_data == NULL)
9291a0cd
TT
3348 continue;
3349
7b9f3c50 3350 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3351 {
7b9f3c50 3352 const char *this_name = file_data->file_names[j];
1ef75ecc 3353 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 3354 {
a0f42c21 3355 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3356 break;
3357 }
3358 }
3359 }
3360}
3361
356d9f9d
TT
3362/* A helper function for dw2_find_symbol_file that finds the primary
3363 file name for a given CU. This is a die_reader_func. */
3364
3365static void
3366dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3367 gdb_byte *info_ptr,
3368 struct die_info *comp_unit_die,
3369 int has_children,
3370 void *data)
3371{
3372 const char **result_ptr = data;
3373 struct dwarf2_cu *cu = reader->cu;
3374 struct attribute *attr;
3375
3376 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3377 if (attr == NULL)
3378 *result_ptr = NULL;
3379 else
3380 *result_ptr = DW_STRING (attr);
3381}
3382
dd786858 3383static const char *
9291a0cd
TT
3384dw2_find_symbol_file (struct objfile *objfile, const char *name)
3385{
e254ef6a 3386 struct dwarf2_per_cu_data *per_cu;
9291a0cd 3387 offset_type *vec;
7b9f3c50 3388 struct quick_file_names *file_data;
356d9f9d 3389 const char *filename;
9291a0cd
TT
3390
3391 dw2_setup (objfile);
3392
ae2de4f8 3393 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 3394 if (!dwarf2_per_objfile->index_table)
96408a79
SA
3395 {
3396 struct symtab *s;
3397
d790cf0a
DE
3398 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3399 {
3400 struct blockvector *bv = BLOCKVECTOR (s);
3401 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3402 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3403
3404 if (sym)
3405 return sym->symtab->filename;
3406 }
96408a79
SA
3407 return NULL;
3408 }
9291a0cd
TT
3409
3410 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3411 name, &vec))
3412 return NULL;
3413
3414 /* Note that this just looks at the very first one named NAME -- but
3415 actually we are looking for a function. find_main_filename
3416 should be rewritten so that it doesn't require a custom hook. It
3417 could just use the ordinary symbol tables. */
3418 /* vec[0] is the length, which must always be >0. */
156942c7 3419 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
9291a0cd 3420
356d9f9d
TT
3421 if (per_cu->v.quick->symtab != NULL)
3422 return per_cu->v.quick->symtab->filename;
3423
f4dc4d17
DE
3424 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3425 dw2_get_primary_filename_reader, &filename);
9291a0cd 3426
356d9f9d 3427 return filename;
9291a0cd
TT
3428}
3429
3430static void
40658b94
PH
3431dw2_map_matching_symbols (const char * name, domain_enum namespace,
3432 struct objfile *objfile, int global,
3433 int (*callback) (struct block *,
3434 struct symbol *, void *),
2edb89d3
JK
3435 void *data, symbol_compare_ftype *match,
3436 symbol_compare_ftype *ordered_compare)
9291a0cd 3437{
40658b94 3438 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3439 current language is Ada for a non-Ada objfile using GNU index. As Ada
3440 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3441}
3442
3443static void
f8eba3c6
TT
3444dw2_expand_symtabs_matching
3445 (struct objfile *objfile,
3446 int (*file_matcher) (const char *, void *),
e078317b 3447 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3448 enum search_domain kind,
3449 void *data)
9291a0cd
TT
3450{
3451 int i;
3452 offset_type iter;
4b5246aa 3453 struct mapped_index *index;
9291a0cd
TT
3454
3455 dw2_setup (objfile);
ae2de4f8
DE
3456
3457 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3458 if (!dwarf2_per_objfile->index_table)
3459 return;
4b5246aa 3460 index = dwarf2_per_objfile->index_table;
9291a0cd 3461
7b08b9eb 3462 if (file_matcher != NULL)
24c79950
TT
3463 {
3464 struct cleanup *cleanup;
3465 htab_t visited_found, visited_not_found;
3466
f4dc4d17
DE
3467 dw2_build_type_unit_groups ();
3468
24c79950
TT
3469 visited_found = htab_create_alloc (10,
3470 htab_hash_pointer, htab_eq_pointer,
3471 NULL, xcalloc, xfree);
3472 cleanup = make_cleanup_htab_delete (visited_found);
3473 visited_not_found = htab_create_alloc (10,
3474 htab_hash_pointer, htab_eq_pointer,
3475 NULL, xcalloc, xfree);
3476 make_cleanup_htab_delete (visited_not_found);
3477
3478 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
f4dc4d17 3479 + dwarf2_per_objfile->n_type_unit_groups); ++i)
24c79950
TT
3480 {
3481 int j;
f4dc4d17 3482 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3483 struct quick_file_names *file_data;
3484 void **slot;
7b08b9eb 3485
24c79950 3486 per_cu->v.quick->mark = 0;
3d7bb9d9 3487
24c79950
TT
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->symtab)
3490 continue;
7b08b9eb 3491
24c79950
TT
3492 file_data = dw2_get_file_names (objfile, per_cu);
3493 if (file_data == NULL)
3494 continue;
7b08b9eb 3495
24c79950
TT
3496 if (htab_find (visited_not_found, file_data) != NULL)
3497 continue;
3498 else if (htab_find (visited_found, file_data) != NULL)
3499 {
3500 per_cu->v.quick->mark = 1;
3501 continue;
3502 }
3503
3504 for (j = 0; j < file_data->num_file_names; ++j)
3505 {
3506 if (file_matcher (file_data->file_names[j], data))
3507 {
3508 per_cu->v.quick->mark = 1;
3509 break;
3510 }
3511 }
3512
3513 slot = htab_find_slot (per_cu->v.quick->mark
3514 ? visited_found
3515 : visited_not_found,
3516 file_data, INSERT);
3517 *slot = file_data;
3518 }
3519
3520 do_cleanups (cleanup);
3521 }
9291a0cd 3522
3876f04e 3523 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3524 {
3525 offset_type idx = 2 * iter;
3526 const char *name;
3527 offset_type *vec, vec_len, vec_idx;
3528
3876f04e 3529 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3530 continue;
3531
3876f04e 3532 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3533
e078317b 3534 if (! (*name_matcher) (name, data))
9291a0cd
TT
3535 continue;
3536
3537 /* The name was matched, now expand corresponding CUs that were
3538 marked. */
4b5246aa 3539 vec = (offset_type *) (index->constant_pool
3876f04e 3540 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3541 vec_len = MAYBE_SWAP (vec[0]);
3542 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3543 {
e254ef6a 3544 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3545 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3546 gdb_index_symbol_kind symbol_kind =
3547 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3548 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3549
3550 /* Don't crash on bad data. */
3551 if (cu_index >= (dwarf2_per_objfile->n_comp_units
667e0a4b 3552 + dwarf2_per_objfile->n_type_units))
156942c7 3553 continue;
1fd400ff 3554
156942c7
DE
3555 /* Only check the symbol's kind if it has one.
3556 Indices prior to version 7 don't record it. */
3557 if (index->version >= 7)
3558 {
3559 switch (kind)
3560 {
3561 case VARIABLES_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3563 continue;
3564 break;
3565 case FUNCTIONS_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3567 continue;
3568 break;
3569 case TYPES_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3571 continue;
3572 break;
3573 default:
3574 break;
3575 }
3576 }
3577
3578 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3579 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3580 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3581 }
3582 }
3583}
3584
9703b513
TT
3585/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3586 symtab. */
3587
3588static struct symtab *
3589recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3590{
3591 int i;
3592
3593 if (BLOCKVECTOR (symtab) != NULL
3594 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3595 return symtab;
3596
a3ec0bb1
DE
3597 if (symtab->includes == NULL)
3598 return NULL;
3599
9703b513
TT
3600 for (i = 0; symtab->includes[i]; ++i)
3601 {
a3ec0bb1 3602 struct symtab *s = symtab->includes[i];
9703b513
TT
3603
3604 s = recursively_find_pc_sect_symtab (s, pc);
3605 if (s != NULL)
3606 return s;
3607 }
3608
3609 return NULL;
3610}
3611
9291a0cd
TT
3612static struct symtab *
3613dw2_find_pc_sect_symtab (struct objfile *objfile,
3614 struct minimal_symbol *msymbol,
3615 CORE_ADDR pc,
3616 struct obj_section *section,
3617 int warn_if_readin)
3618{
3619 struct dwarf2_per_cu_data *data;
9703b513 3620 struct symtab *result;
9291a0cd
TT
3621
3622 dw2_setup (objfile);
3623
3624 if (!objfile->psymtabs_addrmap)
3625 return NULL;
3626
3627 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3628 if (!data)
3629 return NULL;
3630
3631 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3632 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3633 paddress (get_objfile_arch (objfile), pc));
3634
9703b513
TT
3635 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3636 gdb_assert (result != NULL);
3637 return result;
9291a0cd
TT
3638}
3639
9291a0cd 3640static void
44b13c5a 3641dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3642 void *data, int need_fullname)
9291a0cd
TT
3643{
3644 int i;
24c79950
TT
3645 struct cleanup *cleanup;
3646 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3647 NULL, xcalloc, xfree);
9291a0cd 3648
24c79950 3649 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3650 dw2_setup (objfile);
ae2de4f8 3651
f4dc4d17
DE
3652 dw2_build_type_unit_groups ();
3653
24c79950
TT
3654 /* We can ignore file names coming from already-expanded CUs. */
3655 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3656 + dwarf2_per_objfile->n_type_units); ++i)
3657 {
3658 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3659
3660 if (per_cu->v.quick->symtab)
3661 {
3662 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3663 INSERT);
3664
3665 *slot = per_cu->v.quick->file_names;
3666 }
3667 }
3668
1fd400ff 3669 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
f4dc4d17 3670 + dwarf2_per_objfile->n_type_unit_groups); ++i)
9291a0cd
TT
3671 {
3672 int j;
f4dc4d17 3673 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3674 struct quick_file_names *file_data;
24c79950 3675 void **slot;
9291a0cd 3676
3d7bb9d9 3677 /* We only need to look at symtabs not already expanded. */
e254ef6a 3678 if (per_cu->v.quick->symtab)
9291a0cd
TT
3679 continue;
3680
7b9f3c50
DE
3681 file_data = dw2_get_file_names (objfile, per_cu);
3682 if (file_data == NULL)
9291a0cd
TT
3683 continue;
3684
24c79950
TT
3685 slot = htab_find_slot (visited, file_data, INSERT);
3686 if (*slot)
3687 {
3688 /* Already visited. */
3689 continue;
3690 }
3691 *slot = file_data;
3692
7b9f3c50 3693 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3694 {
74e2f255
DE
3695 const char *this_real_name;
3696
3697 if (need_fullname)
3698 this_real_name = dw2_get_real_path (objfile, file_data, j);
3699 else
3700 this_real_name = NULL;
7b9f3c50 3701 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3702 }
3703 }
24c79950
TT
3704
3705 do_cleanups (cleanup);
9291a0cd
TT
3706}
3707
3708static int
3709dw2_has_symbols (struct objfile *objfile)
3710{
3711 return 1;
3712}
3713
3714const struct quick_symbol_functions dwarf2_gdb_index_functions =
3715{
3716 dw2_has_symbols,
3717 dw2_find_last_source_symtab,
3718 dw2_forget_cached_source_info,
f8eba3c6 3719 dw2_map_symtabs_matching_filename,
9291a0cd 3720 dw2_lookup_symbol,
774b6a14 3721 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
3722 dw2_print_stats,
3723 dw2_dump,
3724 dw2_relocate,
3725 dw2_expand_symtabs_for_function,
3726 dw2_expand_all_symtabs,
3727 dw2_expand_symtabs_with_filename,
3728 dw2_find_symbol_file,
40658b94 3729 dw2_map_matching_symbols,
9291a0cd
TT
3730 dw2_expand_symtabs_matching,
3731 dw2_find_pc_sect_symtab,
9291a0cd
TT
3732 dw2_map_symbol_filenames
3733};
3734
3735/* Initialize for reading DWARF for this objfile. Return 0 if this
3736 file will use psymtabs, or 1 if using the GNU index. */
3737
3738int
3739dwarf2_initialize_objfile (struct objfile *objfile)
3740{
3741 /* If we're about to read full symbols, don't bother with the
3742 indices. In this case we also don't care if some other debug
3743 format is making psymtabs, because they are all about to be
3744 expanded anyway. */
3745 if ((objfile->flags & OBJF_READNOW))
3746 {
3747 int i;
3748
3749 dwarf2_per_objfile->using_index = 1;
3750 create_all_comp_units (objfile);
0e50663e 3751 create_all_type_units (objfile);
7b9f3c50
DE
3752 dwarf2_per_objfile->quick_file_names_table =
3753 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3754
1fd400ff 3755 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3756 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3757 {
e254ef6a 3758 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3759
e254ef6a
DE
3760 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3761 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3762 }
3763
3764 /* Return 1 so that gdb sees the "quick" functions. However,
3765 these functions will be no-ops because we will have expanded
3766 all symtabs. */
3767 return 1;
3768 }
3769
3770 if (dwarf2_read_index (objfile))
3771 return 1;
3772
9291a0cd
TT
3773 return 0;
3774}
3775
3776\f
3777
dce234bc
PP
3778/* Build a partial symbol table. */
3779
3780void
f29dff0a 3781dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3782{
f29dff0a 3783 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3784 {
3785 init_psymbol_list (objfile, 1024);
3786 }
3787
d146bf1e 3788 dwarf2_build_psymtabs_hard (objfile);
c906108c 3789}
c906108c 3790
1ce1cefd
DE
3791/* Return the total length of the CU described by HEADER. */
3792
3793static unsigned int
3794get_cu_length (const struct comp_unit_head *header)
3795{
3796 return header->initial_length_size + header->length;
3797}
3798
45452591
DE
3799/* Return TRUE if OFFSET is within CU_HEADER. */
3800
3801static inline int
b64f50a1 3802offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3803{
b64f50a1 3804 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3805 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3806
b64f50a1 3807 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3808}
3809
3b80fe9b
DE
3810/* Find the base address of the compilation unit for range lists and
3811 location lists. It will normally be specified by DW_AT_low_pc.
3812 In DWARF-3 draft 4, the base address could be overridden by
3813 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3814 compilation units with discontinuous ranges. */
3815
3816static void
3817dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3818{
3819 struct attribute *attr;
3820
3821 cu->base_known = 0;
3822 cu->base_address = 0;
3823
3824 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3825 if (attr)
3826 {
3827 cu->base_address = DW_ADDR (attr);
3828 cu->base_known = 1;
3829 }
3830 else
3831 {
3832 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3833 if (attr)
3834 {
3835 cu->base_address = DW_ADDR (attr);
3836 cu->base_known = 1;
3837 }
3838 }
3839}
3840
93311388
DE
3841/* Read in the comp unit header information from the debug_info at info_ptr.
3842 NOTE: This leaves members offset, first_die_offset to be filled in
3843 by the caller. */
107d2387 3844
fe1b8b76 3845static gdb_byte *
107d2387 3846read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 3847 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3848{
3849 int signed_addr;
891d2f0b 3850 unsigned int bytes_read;
c764a876
DE
3851
3852 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3853 cu_header->initial_length_size = bytes_read;
3854 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3855 info_ptr += bytes_read;
107d2387
AC
3856 cu_header->version = read_2_bytes (abfd, info_ptr);
3857 info_ptr += 2;
b64f50a1
JK
3858 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3859 &bytes_read);
613e1657 3860 info_ptr += bytes_read;
107d2387
AC
3861 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3862 info_ptr += 1;
3863 signed_addr = bfd_get_sign_extend_vma (abfd);
3864 if (signed_addr < 0)
8e65ff28 3865 internal_error (__FILE__, __LINE__,
e2e0b3e5 3866 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3867 cu_header->signed_addr_p = signed_addr;
c764a876 3868
107d2387
AC
3869 return info_ptr;
3870}
3871
36586728
TT
3872/* Helper function that returns the proper abbrev section for
3873 THIS_CU. */
3874
3875static struct dwarf2_section_info *
3876get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3877{
3878 struct dwarf2_section_info *abbrev;
3879
3880 if (this_cu->is_dwz)
3881 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3882 else
3883 abbrev = &dwarf2_per_objfile->abbrev;
3884
3885 return abbrev;
3886}
3887
9ff913ba
DE
3888/* Subroutine of read_and_check_comp_unit_head and
3889 read_and_check_type_unit_head to simplify them.
3890 Perform various error checking on the header. */
3891
3892static void
3893error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
3894 struct dwarf2_section_info *section,
3895 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
3896{
3897 bfd *abfd = section->asection->owner;
3898 const char *filename = bfd_get_filename (abfd);
3899
3900 if (header->version != 2 && header->version != 3 && header->version != 4)
3901 error (_("Dwarf Error: wrong version in compilation unit header "
3902 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3903 filename);
3904
b64f50a1 3905 if (header->abbrev_offset.sect_off
36586728 3906 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
3907 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3908 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 3909 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
3910 filename);
3911
3912 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3913 avoid potential 32-bit overflow. */
1ce1cefd 3914 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
3915 > section->size)
3916 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3917 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 3918 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
3919 filename);
3920}
3921
3922/* Read in a CU/TU header and perform some basic error checking.
3923 The contents of the header are stored in HEADER.
3924 The result is a pointer to the start of the first DIE. */
adabb602 3925
fe1b8b76 3926static gdb_byte *
9ff913ba
DE
3927read_and_check_comp_unit_head (struct comp_unit_head *header,
3928 struct dwarf2_section_info *section,
4bdcc0c1 3929 struct dwarf2_section_info *abbrev_section,
9ff913ba
DE
3930 gdb_byte *info_ptr,
3931 int is_debug_types_section)
72bf9492 3932{
fe1b8b76 3933 gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 3934 bfd *abfd = section->asection->owner;
72bf9492 3935
b64f50a1 3936 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 3937
72bf9492
DJ
3938 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3939
460c1c54
CC
3940 /* If we're reading a type unit, skip over the signature and
3941 type_offset fields. */
b0df02fd 3942 if (is_debug_types_section)
460c1c54
CC
3943 info_ptr += 8 /*signature*/ + header->offset_size;
3944
b64f50a1 3945 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 3946
4bdcc0c1 3947 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
3948
3949 return info_ptr;
3950}
3951
348e048f
DE
3952/* Read in the types comp unit header information from .debug_types entry at
3953 types_ptr. The result is a pointer to one past the end of the header. */
3954
3955static gdb_byte *
9ff913ba
DE
3956read_and_check_type_unit_head (struct comp_unit_head *header,
3957 struct dwarf2_section_info *section,
4bdcc0c1 3958 struct dwarf2_section_info *abbrev_section,
9ff913ba 3959 gdb_byte *info_ptr,
dee91e82
DE
3960 ULONGEST *signature,
3961 cu_offset *type_offset_in_tu)
348e048f 3962{
9ff913ba
DE
3963 gdb_byte *beg_of_comp_unit = info_ptr;
3964 bfd *abfd = section->asection->owner;
348e048f 3965
b64f50a1 3966 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 3967
9ff913ba 3968 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 3969
9ff913ba
DE
3970 /* If we're reading a type unit, skip over the signature and
3971 type_offset fields. */
3972 if (signature != NULL)
3973 *signature = read_8_bytes (abfd, info_ptr);
3974 info_ptr += 8;
dee91e82
DE
3975 if (type_offset_in_tu != NULL)
3976 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3977 header->offset_size);
9ff913ba
DE
3978 info_ptr += header->offset_size;
3979
b64f50a1 3980 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 3981
4bdcc0c1 3982 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
3983
3984 return info_ptr;
348e048f
DE
3985}
3986
f4dc4d17
DE
3987/* Fetch the abbreviation table offset from a comp or type unit header. */
3988
3989static sect_offset
3990read_abbrev_offset (struct dwarf2_section_info *section,
3991 sect_offset offset)
3992{
3993 bfd *abfd = section->asection->owner;
3994 gdb_byte *info_ptr;
3995 unsigned int length, initial_length_size, offset_size;
3996 sect_offset abbrev_offset;
3997
3998 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3999 info_ptr = section->buffer + offset.sect_off;
4000 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4001 offset_size = initial_length_size == 4 ? 4 : 8;
4002 info_ptr += initial_length_size + 2 /*version*/;
4003 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4004 return abbrev_offset;
4005}
4006
aaa75496
JB
4007/* Allocate a new partial symtab for file named NAME and mark this new
4008 partial symtab as being an include of PST. */
4009
4010static void
4011dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4012 struct objfile *objfile)
4013{
4014 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4015
4016 subpst->section_offsets = pst->section_offsets;
4017 subpst->textlow = 0;
4018 subpst->texthigh = 0;
4019
4020 subpst->dependencies = (struct partial_symtab **)
4021 obstack_alloc (&objfile->objfile_obstack,
4022 sizeof (struct partial_symtab *));
4023 subpst->dependencies[0] = pst;
4024 subpst->number_of_dependencies = 1;
4025
4026 subpst->globals_offset = 0;
4027 subpst->n_global_syms = 0;
4028 subpst->statics_offset = 0;
4029 subpst->n_static_syms = 0;
4030 subpst->symtab = NULL;
4031 subpst->read_symtab = pst->read_symtab;
4032 subpst->readin = 0;
4033
4034 /* No private part is necessary for include psymtabs. This property
4035 can be used to differentiate between such include psymtabs and
10b3939b 4036 the regular ones. */
58a9656e 4037 subpst->read_symtab_private = NULL;
aaa75496
JB
4038}
4039
4040/* Read the Line Number Program data and extract the list of files
4041 included by the source file represented by PST. Build an include
d85a05f0 4042 partial symtab for each of these included files. */
aaa75496
JB
4043
4044static void
4045dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4046 struct die_info *die,
4047 struct partial_symtab *pst)
aaa75496 4048{
d85a05f0
DJ
4049 struct line_header *lh = NULL;
4050 struct attribute *attr;
aaa75496 4051
d85a05f0
DJ
4052 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4053 if (attr)
3019eac3 4054 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4055 if (lh == NULL)
4056 return; /* No linetable, so no includes. */
4057
c6da4cef 4058 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4059 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4060
4061 free_line_header (lh);
4062}
4063
348e048f 4064static hashval_t
52dc124a 4065hash_signatured_type (const void *item)
348e048f 4066{
52dc124a 4067 const struct signatured_type *sig_type = item;
9a619af0 4068
348e048f 4069 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4070 return sig_type->signature;
348e048f
DE
4071}
4072
4073static int
52dc124a 4074eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4075{
4076 const struct signatured_type *lhs = item_lhs;
4077 const struct signatured_type *rhs = item_rhs;
9a619af0 4078
348e048f
DE
4079 return lhs->signature == rhs->signature;
4080}
4081
1fd400ff
TT
4082/* Allocate a hash table for signatured types. */
4083
4084static htab_t
673bfd45 4085allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4086{
4087 return htab_create_alloc_ex (41,
52dc124a
DE
4088 hash_signatured_type,
4089 eq_signatured_type,
1fd400ff
TT
4090 NULL,
4091 &objfile->objfile_obstack,
4092 hashtab_obstack_allocate,
4093 dummy_obstack_deallocate);
4094}
4095
d467dd73 4096/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4097
4098static int
d467dd73 4099add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4100{
4101 struct signatured_type *sigt = *slot;
b4dd5633 4102 struct signatured_type ***datap = datum;
1fd400ff 4103
b4dd5633 4104 **datap = sigt;
1fd400ff
TT
4105 ++*datap;
4106
4107 return 1;
4108}
4109
3019eac3 4110/* Create the hash table of all entries in the .debug_types section.
80626a55
DE
4111 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4112 NULL otherwise.
4113 Note: This function processes DWO files only, not DWP files.
3019eac3
DE
4114 The result is a pointer to the hash table or NULL if there are
4115 no types. */
348e048f 4116
3019eac3
DE
4117static htab_t
4118create_debug_types_hash_table (struct dwo_file *dwo_file,
4119 VEC (dwarf2_section_info_def) *types)
348e048f 4120{
3019eac3 4121 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4122 htab_t types_htab = NULL;
8b70b953
TT
4123 int ix;
4124 struct dwarf2_section_info *section;
4bdcc0c1 4125 struct dwarf2_section_info *abbrev_section;
348e048f 4126
3019eac3
DE
4127 if (VEC_empty (dwarf2_section_info_def, types))
4128 return NULL;
348e048f 4129
4bdcc0c1
DE
4130 abbrev_section = (dwo_file != NULL
4131 ? &dwo_file->sections.abbrev
4132 : &dwarf2_per_objfile->abbrev);
4133
09406207
DE
4134 if (dwarf2_read_debug)
4135 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4136 dwo_file ? ".dwo" : "",
4137 bfd_get_filename (abbrev_section->asection->owner));
4138
8b70b953 4139 for (ix = 0;
3019eac3 4140 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4141 ++ix)
4142 {
3019eac3 4143 bfd *abfd;
8b70b953 4144 gdb_byte *info_ptr, *end_ptr;
36586728 4145 struct dwarf2_section_info *abbrev_section;
348e048f 4146
8b70b953
TT
4147 dwarf2_read_section (objfile, section);
4148 info_ptr = section->buffer;
348e048f 4149
8b70b953
TT
4150 if (info_ptr == NULL)
4151 continue;
348e048f 4152
3019eac3
DE
4153 /* We can't set abfd until now because the section may be empty or
4154 not present, in which case section->asection will be NULL. */
4155 abfd = section->asection->owner;
4156
36586728
TT
4157 if (dwo_file)
4158 abbrev_section = &dwo_file->sections.abbrev;
4159 else
4160 abbrev_section = &dwarf2_per_objfile->abbrev;
4161
8b70b953 4162 if (types_htab == NULL)
3019eac3
DE
4163 {
4164 if (dwo_file)
4165 types_htab = allocate_dwo_unit_table (objfile);
4166 else
4167 types_htab = allocate_signatured_type_table (objfile);
4168 }
348e048f 4169
dee91e82
DE
4170 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4171 because we don't need to read any dies: the signature is in the
4172 header. */
8b70b953
TT
4173
4174 end_ptr = info_ptr + section->size;
4175 while (info_ptr < end_ptr)
4176 {
b64f50a1 4177 sect_offset offset;
3019eac3 4178 cu_offset type_offset_in_tu;
8b70b953 4179 ULONGEST signature;
52dc124a 4180 struct signatured_type *sig_type;
3019eac3 4181 struct dwo_unit *dwo_tu;
8b70b953
TT
4182 void **slot;
4183 gdb_byte *ptr = info_ptr;
9ff913ba 4184 struct comp_unit_head header;
dee91e82 4185 unsigned int length;
348e048f 4186
b64f50a1 4187 offset.sect_off = ptr - section->buffer;
348e048f 4188
8b70b953 4189 /* We need to read the type's signature in order to build the hash
9ff913ba 4190 table, but we don't need anything else just yet. */
348e048f 4191
4bdcc0c1
DE
4192 ptr = read_and_check_type_unit_head (&header, section,
4193 abbrev_section, ptr,
3019eac3 4194 &signature, &type_offset_in_tu);
6caca83c 4195
1ce1cefd 4196 length = get_cu_length (&header);
dee91e82 4197
6caca83c 4198 /* Skip dummy type units. */
dee91e82
DE
4199 if (ptr >= info_ptr + length
4200 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4201 {
1ce1cefd 4202 info_ptr += length;
6caca83c
CC
4203 continue;
4204 }
8b70b953 4205
3019eac3
DE
4206 if (dwo_file)
4207 {
4208 sig_type = NULL;
4209 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4210 struct dwo_unit);
4211 dwo_tu->dwo_file = dwo_file;
4212 dwo_tu->signature = signature;
4213 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4214 dwo_tu->info_or_types_section = section;
4215 dwo_tu->offset = offset;
4216 dwo_tu->length = length;
4217 }
4218 else
4219 {
4220 /* N.B.: type_offset is not usable if this type uses a DWO file.
4221 The real type_offset is in the DWO file. */
4222 dwo_tu = NULL;
4223 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4224 struct signatured_type);
4225 sig_type->signature = signature;
4226 sig_type->type_offset_in_tu = type_offset_in_tu;
4227 sig_type->per_cu.objfile = objfile;
4228 sig_type->per_cu.is_debug_types = 1;
4229 sig_type->per_cu.info_or_types_section = section;
4230 sig_type->per_cu.offset = offset;
4231 sig_type->per_cu.length = length;
4232 }
8b70b953 4233
3019eac3
DE
4234 slot = htab_find_slot (types_htab,
4235 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4236 INSERT);
8b70b953
TT
4237 gdb_assert (slot != NULL);
4238 if (*slot != NULL)
4239 {
3019eac3
DE
4240 sect_offset dup_offset;
4241
4242 if (dwo_file)
4243 {
4244 const struct dwo_unit *dup_tu = *slot;
4245
4246 dup_offset = dup_tu->offset;
4247 }
4248 else
4249 {
4250 const struct signatured_type *dup_tu = *slot;
4251
4252 dup_offset = dup_tu->per_cu.offset;
4253 }
b3c8eb43 4254
8b70b953
TT
4255 complaint (&symfile_complaints,
4256 _("debug type entry at offset 0x%x is duplicate to the "
4257 "entry at offset 0x%x, signature 0x%s"),
3019eac3 4258 offset.sect_off, dup_offset.sect_off,
8b70b953 4259 phex (signature, sizeof (signature)));
8b70b953 4260 }
3019eac3 4261 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4262
09406207 4263 if (dwarf2_read_debug)
8b70b953 4264 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
b64f50a1
JK
4265 offset.sect_off,
4266 phex (signature, sizeof (signature)));
348e048f 4267
dee91e82 4268 info_ptr += length;
8b70b953 4269 }
348e048f
DE
4270 }
4271
3019eac3
DE
4272 return types_htab;
4273}
4274
4275/* Create the hash table of all entries in the .debug_types section,
4276 and initialize all_type_units.
4277 The result is zero if there is an error (e.g. missing .debug_types section),
4278 otherwise non-zero. */
4279
4280static int
4281create_all_type_units (struct objfile *objfile)
4282{
4283 htab_t types_htab;
b4dd5633 4284 struct signatured_type **iter;
3019eac3
DE
4285
4286 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4287 if (types_htab == NULL)
4288 {
4289 dwarf2_per_objfile->signatured_types = NULL;
4290 return 0;
4291 }
4292
348e048f
DE
4293 dwarf2_per_objfile->signatured_types = types_htab;
4294
d467dd73
DE
4295 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4296 dwarf2_per_objfile->all_type_units
1fd400ff 4297 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 4298 dwarf2_per_objfile->n_type_units
b4dd5633 4299 * sizeof (struct signatured_type *));
d467dd73
DE
4300 iter = &dwarf2_per_objfile->all_type_units[0];
4301 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4302 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4303 == dwarf2_per_objfile->n_type_units);
1fd400ff 4304
348e048f
DE
4305 return 1;
4306}
4307
380bca97 4308/* Lookup a signature based type for DW_FORM_ref_sig8.
e319fa28 4309 Returns NULL if signature SIG is not present in the table. */
348e048f
DE
4310
4311static struct signatured_type *
e319fa28 4312lookup_signatured_type (ULONGEST sig)
348e048f
DE
4313{
4314 struct signatured_type find_entry, *entry;
4315
4316 if (dwarf2_per_objfile->signatured_types == NULL)
4317 {
4318 complaint (&symfile_complaints,
55f1336d 4319 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
dcc07052 4320 return NULL;
348e048f
DE
4321 }
4322
4323 find_entry.signature = sig;
4324 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4325 return entry;
4326}
42e7ad6c
DE
4327\f
4328/* Low level DIE reading support. */
348e048f 4329
d85a05f0
DJ
4330/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4331
4332static void
4333init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4334 struct dwarf2_cu *cu,
3019eac3
DE
4335 struct dwarf2_section_info *section,
4336 struct dwo_file *dwo_file)
d85a05f0 4337{
fceca515 4338 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4339 reader->abfd = section->asection->owner;
d85a05f0 4340 reader->cu = cu;
3019eac3 4341 reader->dwo_file = dwo_file;
dee91e82
DE
4342 reader->die_section = section;
4343 reader->buffer = section->buffer;
f664829e 4344 reader->buffer_end = section->buffer + section->size;
d85a05f0
DJ
4345}
4346
fd820528 4347/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4348 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4349
f4dc4d17
DE
4350 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4351 Otherwise the table specified in the comp unit header is read in and used.
4352 This is an optimization for when we already have the abbrev table.
4353
dee91e82
DE
4354 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4355 Otherwise, a new CU is allocated with xmalloc.
4356
4357 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4358 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4359
4360 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 4361 linker) then DIE_READER_FUNC will not get called. */
aaa75496 4362
70221824 4363static void
fd820528 4364init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 4365 struct abbrev_table *abbrev_table,
fd820528
DE
4366 int use_existing_cu, int keep,
4367 die_reader_func_ftype *die_reader_func,
4368 void *data)
c906108c 4369{
dee91e82 4370 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3
DE
4371 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4372 bfd *abfd = section->asection->owner;
dee91e82
DE
4373 struct dwarf2_cu *cu;
4374 gdb_byte *begin_info_ptr, *info_ptr;
4375 struct die_reader_specs reader;
d85a05f0 4376 struct die_info *comp_unit_die;
dee91e82 4377 int has_children;
d85a05f0 4378 struct attribute *attr;
dee91e82
DE
4379 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4380 struct signatured_type *sig_type = NULL;
4bdcc0c1 4381 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
4382 /* Non-zero if CU currently points to a DWO file and we need to
4383 reread it. When this happens we need to reread the skeleton die
4384 before we can reread the DWO file. */
4385 int rereading_dwo_cu = 0;
c906108c 4386
09406207
DE
4387 if (dwarf2_die_debug)
4388 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4389 this_cu->is_debug_types ? "type" : "comp",
4390 this_cu->offset.sect_off);
4391
dee91e82
DE
4392 if (use_existing_cu)
4393 gdb_assert (keep);
23745b47 4394
dee91e82
DE
4395 cleanups = make_cleanup (null_cleanup, NULL);
4396
4397 /* This is cheap if the section is already read in. */
4398 dwarf2_read_section (objfile, section);
4399
4400 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
4401
4402 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
4403
4404 if (use_existing_cu && this_cu->cu != NULL)
4405 {
4406 cu = this_cu->cu;
42e7ad6c
DE
4407
4408 /* If this CU is from a DWO file we need to start over, we need to
4409 refetch the attributes from the skeleton CU.
4410 This could be optimized by retrieving those attributes from when we
4411 were here the first time: the previous comp_unit_die was stored in
4412 comp_unit_obstack. But there's no data yet that we need this
4413 optimization. */
4414 if (cu->dwo_unit != NULL)
4415 rereading_dwo_cu = 1;
dee91e82
DE
4416 }
4417 else
4418 {
4419 /* If !use_existing_cu, this_cu->cu must be NULL. */
4420 gdb_assert (this_cu->cu == NULL);
4421
4422 cu = xmalloc (sizeof (*cu));
4423 init_one_comp_unit (cu, this_cu);
4424
4425 /* If an error occurs while loading, release our storage. */
4426 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 4427 }
dee91e82 4428
42e7ad6c
DE
4429 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4430 {
4431 /* We already have the header, there's no need to read it in again. */
4432 info_ptr += cu->header.first_die_offset.cu_off;
4433 }
4434 else
4435 {
3019eac3 4436 if (this_cu->is_debug_types)
dee91e82
DE
4437 {
4438 ULONGEST signature;
42e7ad6c 4439 cu_offset type_offset_in_tu;
dee91e82 4440
4bdcc0c1
DE
4441 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4442 abbrev_section, info_ptr,
42e7ad6c
DE
4443 &signature,
4444 &type_offset_in_tu);
dee91e82 4445
42e7ad6c
DE
4446 /* Since per_cu is the first member of struct signatured_type,
4447 we can go from a pointer to one to a pointer to the other. */
4448 sig_type = (struct signatured_type *) this_cu;
4449 gdb_assert (sig_type->signature == signature);
4450 gdb_assert (sig_type->type_offset_in_tu.cu_off
4451 == type_offset_in_tu.cu_off);
dee91e82
DE
4452 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4453
42e7ad6c
DE
4454 /* LENGTH has not been set yet for type units if we're
4455 using .gdb_index. */
1ce1cefd 4456 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
4457
4458 /* Establish the type offset that can be used to lookup the type. */
4459 sig_type->type_offset_in_section.sect_off =
4460 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
4461 }
4462 else
4463 {
4bdcc0c1
DE
4464 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4465 abbrev_section,
4466 info_ptr, 0);
dee91e82
DE
4467
4468 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 4469 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
4470 }
4471 }
10b3939b 4472
6caca83c 4473 /* Skip dummy compilation units. */
dee91e82 4474 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
4475 || peek_abbrev_code (abfd, info_ptr) == 0)
4476 {
dee91e82 4477 do_cleanups (cleanups);
21b2bd31 4478 return;
6caca83c
CC
4479 }
4480
433df2d4
DE
4481 /* If we don't have them yet, read the abbrevs for this compilation unit.
4482 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
4483 done. Note that it's important that if the CU had an abbrev table
4484 on entry we don't free it when we're done: Somewhere up the call stack
4485 it may be in use. */
f4dc4d17
DE
4486 if (abbrev_table != NULL)
4487 {
4488 gdb_assert (cu->abbrev_table == NULL);
4489 gdb_assert (cu->header.abbrev_offset.sect_off
4490 == abbrev_table->offset.sect_off);
4491 cu->abbrev_table = abbrev_table;
4492 }
4493 else if (cu->abbrev_table == NULL)
dee91e82 4494 {
4bdcc0c1 4495 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
4496 make_cleanup (dwarf2_free_abbrev_table, cu);
4497 }
42e7ad6c
DE
4498 else if (rereading_dwo_cu)
4499 {
4500 dwarf2_free_abbrev_table (cu);
4501 dwarf2_read_abbrevs (cu, abbrev_section);
4502 }
af703f96 4503
dee91e82 4504 /* Read the top level CU/TU die. */
3019eac3 4505 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 4506 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 4507
3019eac3
DE
4508 /* If we have a DWO stub, process it and then read in the DWO file.
4509 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4510 a DWO CU, that this test will fail. */
4511 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4512 if (attr)
4513 {
4514 char *dwo_name = DW_STRING (attr);
42e7ad6c 4515 const char *comp_dir_string;
3019eac3
DE
4516 struct dwo_unit *dwo_unit;
4517 ULONGEST signature; /* Or dwo_id. */
42e7ad6c 4518 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
3019eac3 4519 int i,num_extra_attrs;
4bdcc0c1 4520 struct dwarf2_section_info *dwo_abbrev_section;
3019eac3
DE
4521
4522 if (has_children)
4523 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4524 " has children (offset 0x%x) [in module %s]"),
4525 this_cu->offset.sect_off, bfd_get_filename (abfd));
4526
4527 /* These attributes aren't processed until later:
4528 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4529 However, the attribute is found in the stub which we won't have later.
4530 In order to not impose this complication on the rest of the code,
4531 we read them here and copy them to the DWO CU/TU die. */
3019eac3
DE
4532
4533 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4534 DWO file. */
42e7ad6c 4535 stmt_list = NULL;
3019eac3
DE
4536 if (! this_cu->is_debug_types)
4537 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4538 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4539 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4540 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
42e7ad6c 4541 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
3019eac3
DE
4542
4543 /* There should be a DW_AT_addr_base attribute here (if needed).
4544 We need the value before we can process DW_FORM_GNU_addr_index. */
4545 cu->addr_base = 0;
3019eac3
DE
4546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4547 if (attr)
2e3cf129
DE
4548 cu->addr_base = DW_UNSND (attr);
4549
4550 /* There should be a DW_AT_ranges_base attribute here (if needed).
4551 We need the value before we can process DW_AT_ranges. */
4552 cu->ranges_base = 0;
4553 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4554 if (attr)
4555 cu->ranges_base = DW_UNSND (attr);
3019eac3
DE
4556
4557 if (this_cu->is_debug_types)
4558 {
4559 gdb_assert (sig_type != NULL);
4560 signature = sig_type->signature;
4561 }
4562 else
4563 {
4564 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4565 if (! attr)
4566 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4567 dwo_name);
4568 signature = DW_UNSND (attr);
4569 }
4570
4571 /* We may need the comp_dir in order to find the DWO file. */
42e7ad6c
DE
4572 comp_dir_string = NULL;
4573 if (comp_dir)
4574 comp_dir_string = DW_STRING (comp_dir);
3019eac3
DE
4575
4576 if (this_cu->is_debug_types)
42e7ad6c 4577 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
3019eac3 4578 else
42e7ad6c 4579 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
3019eac3
DE
4580 signature);
4581
4582 if (dwo_unit == NULL)
4583 {
4584 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4585 " with ID %s [in module %s]"),
4586 this_cu->offset.sect_off,
4587 phex (signature, sizeof (signature)),
4588 objfile->name);
4589 }
4590
4591 /* Set up for reading the DWO CU/TU. */
4592 cu->dwo_unit = dwo_unit;
4593 section = dwo_unit->info_or_types_section;
80626a55 4594 dwarf2_read_section (objfile, section);
3019eac3 4595 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4bdcc0c1 4596 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
3019eac3
DE
4597 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4598
4599 if (this_cu->is_debug_types)
4600 {
4601 ULONGEST signature;
80626a55 4602 cu_offset type_offset_in_tu;
3019eac3 4603
4bdcc0c1
DE
4604 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4605 dwo_abbrev_section,
4606 info_ptr,
80626a55
DE
4607 &signature,
4608 &type_offset_in_tu);
3019eac3
DE
4609 gdb_assert (sig_type->signature == signature);
4610 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
80626a55
DE
4611 /* For DWOs coming from DWP files, we don't know the CU length
4612 nor the type's offset in the TU until now. */
4613 dwo_unit->length = get_cu_length (&cu->header);
4614 dwo_unit->type_offset_in_tu = type_offset_in_tu;
3019eac3
DE
4615
4616 /* Establish the type offset that can be used to lookup the type.
4617 For DWO files, we don't know it until now. */
4618 sig_type->type_offset_in_section.sect_off =
4619 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4620 }
4621 else
4622 {
4bdcc0c1
DE
4623 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4624 dwo_abbrev_section,
4625 info_ptr, 0);
3019eac3 4626 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
80626a55
DE
4627 /* For DWOs coming from DWP files, we don't know the CU length
4628 until now. */
4629 dwo_unit->length = get_cu_length (&cu->header);
3019eac3
DE
4630 }
4631
4632 /* Discard the original CU's abbrev table, and read the DWO's. */
f4dc4d17
DE
4633 if (abbrev_table == NULL)
4634 {
4635 dwarf2_free_abbrev_table (cu);
4636 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4637 }
4638 else
4639 {
4640 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4641 make_cleanup (dwarf2_free_abbrev_table, cu);
4642 }
3019eac3
DE
4643
4644 /* Read in the die, but leave space to copy over the attributes
4645 from the stub. This has the benefit of simplifying the rest of
4646 the code - all the real work is done here. */
4647 num_extra_attrs = ((stmt_list != NULL)
4648 + (low_pc != NULL)
4649 + (high_pc != NULL)
42e7ad6c
DE
4650 + (ranges != NULL)
4651 + (comp_dir != NULL));
3019eac3
DE
4652 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4653 &has_children, num_extra_attrs);
4654
4655 /* Copy over the attributes from the stub to the DWO die. */
4656 i = comp_unit_die->num_attrs;
4657 if (stmt_list != NULL)
4658 comp_unit_die->attrs[i++] = *stmt_list;
4659 if (low_pc != NULL)
4660 comp_unit_die->attrs[i++] = *low_pc;
4661 if (high_pc != NULL)
4662 comp_unit_die->attrs[i++] = *high_pc;
4663 if (ranges != NULL)
4664 comp_unit_die->attrs[i++] = *ranges;
42e7ad6c
DE
4665 if (comp_dir != NULL)
4666 comp_unit_die->attrs[i++] = *comp_dir;
3019eac3
DE
4667 comp_unit_die->num_attrs += num_extra_attrs;
4668
4669 /* Skip dummy compilation units. */
4670 if (info_ptr >= begin_info_ptr + dwo_unit->length
4671 || peek_abbrev_code (abfd, info_ptr) == 0)
4672 {
4673 do_cleanups (cleanups);
4674 return;
4675 }
4676 }
4677
dee91e82
DE
4678 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4679
4680 if (free_cu_cleanup != NULL)
348e048f 4681 {
dee91e82
DE
4682 if (keep)
4683 {
4684 /* We've successfully allocated this compilation unit. Let our
4685 caller clean it up when finished with it. */
4686 discard_cleanups (free_cu_cleanup);
4687
4688 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4689 So we have to manually free the abbrev table. */
4690 dwarf2_free_abbrev_table (cu);
4691
4692 /* Link this CU into read_in_chain. */
4693 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4694 dwarf2_per_objfile->read_in_chain = this_cu;
4695 }
4696 else
4697 do_cleanups (free_cu_cleanup);
348e048f 4698 }
dee91e82
DE
4699
4700 do_cleanups (cleanups);
4701}
4702
3019eac3
DE
4703/* Read CU/TU THIS_CU in section SECTION,
4704 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
4705 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4706 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
4707
4708 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 4709 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
4710
4711 We fill in THIS_CU->length.
4712
4713 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4714 linker) then DIE_READER_FUNC will not get called.
4715
4716 THIS_CU->cu is always freed when done.
3019eac3
DE
4717 This is done in order to not leave THIS_CU->cu in a state where we have
4718 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
4719
4720static void
4721init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4722 struct dwarf2_section_info *abbrev_section,
3019eac3 4723 struct dwo_file *dwo_file,
dee91e82
DE
4724 die_reader_func_ftype *die_reader_func,
4725 void *data)
4726{
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3
DE
4728 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4729 bfd *abfd = section->asection->owner;
dee91e82
DE
4730 struct dwarf2_cu cu;
4731 gdb_byte *begin_info_ptr, *info_ptr;
4732 struct die_reader_specs reader;
4733 struct cleanup *cleanups;
4734 struct die_info *comp_unit_die;
4735 int has_children;
4736
09406207
DE
4737 if (dwarf2_die_debug)
4738 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4739 this_cu->is_debug_types ? "type" : "comp",
4740 this_cu->offset.sect_off);
4741
dee91e82
DE
4742 gdb_assert (this_cu->cu == NULL);
4743
dee91e82
DE
4744 /* This is cheap if the section is already read in. */
4745 dwarf2_read_section (objfile, section);
4746
4747 init_one_comp_unit (&cu, this_cu);
4748
4749 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4750
4751 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
4752 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4753 abbrev_section, info_ptr,
3019eac3 4754 this_cu->is_debug_types);
dee91e82 4755
1ce1cefd 4756 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
4757
4758 /* Skip dummy compilation units. */
4759 if (info_ptr >= begin_info_ptr + this_cu->length
4760 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 4761 {
dee91e82 4762 do_cleanups (cleanups);
21b2bd31 4763 return;
93311388 4764 }
72bf9492 4765
dee91e82
DE
4766 dwarf2_read_abbrevs (&cu, abbrev_section);
4767 make_cleanup (dwarf2_free_abbrev_table, &cu);
4768
3019eac3 4769 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
4770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4771
4772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4773
4774 do_cleanups (cleanups);
4775}
4776
3019eac3
DE
4777/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4778 does not lookup the specified DWO file.
4779 This cannot be used to read DWO files.
dee91e82
DE
4780
4781 THIS_CU->cu is always freed when done.
3019eac3
DE
4782 This is done in order to not leave THIS_CU->cu in a state where we have
4783 to care whether it refers to the "main" CU or the DWO CU.
4784 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
4785
4786static void
4787init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4788 die_reader_func_ftype *die_reader_func,
4789 void *data)
4790{
4791 init_cutu_and_read_dies_no_follow (this_cu,
36586728 4792 get_abbrev_section_for_cu (this_cu),
3019eac3 4793 NULL,
dee91e82
DE
4794 die_reader_func, data);
4795}
4796
f4dc4d17
DE
4797/* Create a psymtab named NAME and assign it to PER_CU.
4798
4799 The caller must fill in the following details:
4800 dirname, textlow, texthigh. */
4801
4802static struct partial_symtab *
4803create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4804{
4805 struct objfile *objfile = per_cu->objfile;
4806 struct partial_symtab *pst;
4807
4808 pst = start_psymtab_common (objfile, objfile->section_offsets,
4809 name, 0,
4810 objfile->global_psymbols.next,
4811 objfile->static_psymbols.next);
4812
4813 pst->psymtabs_addrmap_supported = 1;
4814
4815 /* This is the glue that links PST into GDB's symbol API. */
4816 pst->read_symtab_private = per_cu;
4817 pst->read_symtab = dwarf2_psymtab_to_symtab;
4818 per_cu->v.psymtab = pst;
4819
4820 return pst;
4821}
4822
dee91e82
DE
4823/* die_reader_func for process_psymtab_comp_unit. */
4824
4825static void
4826process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4827 gdb_byte *info_ptr,
4828 struct die_info *comp_unit_die,
4829 int has_children,
4830 void *data)
4831{
4832 struct dwarf2_cu *cu = reader->cu;
4833 struct objfile *objfile = cu->objfile;
4834 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
dee91e82
DE
4835 struct attribute *attr;
4836 CORE_ADDR baseaddr;
4837 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4838 struct partial_symtab *pst;
4839 int has_pc_info;
4840 const char *filename;
95554aad 4841 int *want_partial_unit_ptr = data;
dee91e82 4842
95554aad
TT
4843 if (comp_unit_die->tag == DW_TAG_partial_unit
4844 && (want_partial_unit_ptr == NULL
4845 || !*want_partial_unit_ptr))
dee91e82
DE
4846 return;
4847
f4dc4d17
DE
4848 gdb_assert (! per_cu->is_debug_types);
4849
95554aad 4850 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
dee91e82
DE
4851
4852 cu->list_in_scope = &file_symbols;
c906108c 4853
93311388 4854 /* Allocate a new partial symbol table structure. */
dee91e82 4855 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3e2a0cee
TT
4856 if (attr == NULL || !DW_STRING (attr))
4857 filename = "";
4858 else
4859 filename = DW_STRING (attr);
72bf9492 4860
f4dc4d17
DE
4861 pst = create_partial_symtab (per_cu, filename);
4862
4863 /* This must be done before calling dwarf2_build_include_psymtabs. */
dee91e82 4864 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
d85a05f0
DJ
4865 if (attr != NULL)
4866 pst->dirname = DW_STRING (attr);
72bf9492 4867
93311388 4868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 4869
dee91e82 4870 dwarf2_find_base_address (comp_unit_die, cu);
d85a05f0 4871
93311388
DE
4872 /* Possibly set the default values of LOWPC and HIGHPC from
4873 `DW_AT_ranges'. */
d85a05f0 4874 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
dee91e82 4875 &best_highpc, cu, pst);
d85a05f0 4876 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
4877 /* Store the contiguous range if it is not empty; it can be empty for
4878 CUs with no code. */
4879 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
4880 best_lowpc + baseaddr,
4881 best_highpc + baseaddr - 1, pst);
93311388
DE
4882
4883 /* Check if comp unit has_children.
4884 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 4885 If not, there's no more debug_info for this comp unit. */
d85a05f0 4886 if (has_children)
93311388
DE
4887 {
4888 struct partial_die_info *first_die;
4889 CORE_ADDR lowpc, highpc;
31ffec48 4890
93311388
DE
4891 lowpc = ((CORE_ADDR) -1);
4892 highpc = ((CORE_ADDR) 0);
c906108c 4893
dee91e82 4894 first_die = load_partial_dies (reader, info_ptr, 1);
c906108c 4895
93311388 4896 scan_partial_symbols (first_die, &lowpc, &highpc,
dee91e82 4897 ! has_pc_info, cu);
57c22c6c 4898
93311388
DE
4899 /* If we didn't find a lowpc, set it to highpc to avoid
4900 complaints from `maint check'. */
4901 if (lowpc == ((CORE_ADDR) -1))
4902 lowpc = highpc;
10b3939b 4903
93311388
DE
4904 /* If the compilation unit didn't have an explicit address range,
4905 then use the information extracted from its child dies. */
d85a05f0 4906 if (! has_pc_info)
93311388 4907 {
d85a05f0
DJ
4908 best_lowpc = lowpc;
4909 best_highpc = highpc;
93311388
DE
4910 }
4911 }
d85a05f0
DJ
4912 pst->textlow = best_lowpc + baseaddr;
4913 pst->texthigh = best_highpc + baseaddr;
c906108c 4914
93311388
DE
4915 pst->n_global_syms = objfile->global_psymbols.next -
4916 (objfile->global_psymbols.list + pst->globals_offset);
4917 pst->n_static_syms = objfile->static_psymbols.next -
4918 (objfile->static_psymbols.list + pst->statics_offset);
4919 sort_pst_symbols (pst);
c906108c 4920
f4dc4d17 4921 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
95554aad
TT
4922 {
4923 int i;
f4dc4d17 4924 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
95554aad
TT
4925 struct dwarf2_per_cu_data *iter;
4926
4927 /* Fill in 'dependencies' here; we fill in 'users' in a
4928 post-pass. */
4929 pst->number_of_dependencies = len;
4930 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4931 len * sizeof (struct symtab *));
4932 for (i = 0;
f4dc4d17 4933 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
95554aad
TT
4934 i, iter);
4935 ++i)
4936 pst->dependencies[i] = iter->v.psymtab;
4937
f4dc4d17 4938 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
95554aad
TT
4939 }
4940
f4dc4d17
DE
4941 /* Get the list of files included in the current compilation unit,
4942 and build a psymtab for each of them. */
4943 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
09406207
DE
4944
4945 if (dwarf2_read_debug)
4946 {
4947 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4948
4949 fprintf_unfiltered (gdb_stdlog,
844226d6 4950 "Psymtab for %s unit @0x%x: %s - %s"
09406207
DE
4951 ", %d global, %d static syms\n",
4952 per_cu->is_debug_types ? "type" : "comp",
4953 per_cu->offset.sect_off,
4954 paddress (gdbarch, pst->textlow),
4955 paddress (gdbarch, pst->texthigh),
4956 pst->n_global_syms, pst->n_static_syms);
4957 }
dee91e82 4958}
ae038cb0 4959
dee91e82
DE
4960/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4961 Process compilation unit THIS_CU for a psymtab. */
4962
4963static void
95554aad
TT
4964process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4965 int want_partial_unit)
dee91e82
DE
4966{
4967 /* If this compilation unit was already read in, free the
4968 cached copy in order to read it in again. This is
4969 necessary because we skipped some symbols when we first
4970 read in the compilation unit (see load_partial_dies).
4971 This problem could be avoided, but the benefit is unclear. */
4972 if (this_cu->cu != NULL)
4973 free_one_cached_comp_unit (this_cu);
4974
3019eac3 4975 gdb_assert (! this_cu->is_debug_types);
f4dc4d17
DE
4976 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4977 process_psymtab_comp_unit_reader,
95554aad 4978 &want_partial_unit);
dee91e82
DE
4979
4980 /* Age out any secondary CUs. */
4981 age_cached_comp_units ();
93311388 4982}
ff013f42 4983
f4dc4d17
DE
4984static hashval_t
4985hash_type_unit_group (const void *item)
4986{
094b34ac 4987 const struct type_unit_group *tu_group = item;
f4dc4d17 4988
094b34ac 4989 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 4990}
348e048f
DE
4991
4992static int
f4dc4d17 4993eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 4994{
f4dc4d17
DE
4995 const struct type_unit_group *lhs = item_lhs;
4996 const struct type_unit_group *rhs = item_rhs;
348e048f 4997
094b34ac 4998 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 4999}
348e048f 5000
f4dc4d17
DE
5001/* Allocate a hash table for type unit groups. */
5002
5003static htab_t
5004allocate_type_unit_groups_table (void)
5005{
5006 return htab_create_alloc_ex (3,
5007 hash_type_unit_group,
5008 eq_type_unit_group,
5009 NULL,
5010 &dwarf2_per_objfile->objfile->objfile_obstack,
5011 hashtab_obstack_allocate,
5012 dummy_obstack_deallocate);
5013}
dee91e82 5014
f4dc4d17
DE
5015/* Type units that don't have DW_AT_stmt_list are grouped into their own
5016 partial symtabs. We combine several TUs per psymtab to not let the size
5017 of any one psymtab grow too big. */
5018#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5019#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5020
094b34ac 5021/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5022 Create the type_unit_group object used to hold one or more TUs. */
5023
5024static struct type_unit_group *
094b34ac 5025create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5026{
5027 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5028 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5029 struct type_unit_group *tu_group;
f4dc4d17
DE
5030
5031 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5032 struct type_unit_group);
094b34ac 5033 per_cu = &tu_group->per_cu;
f4dc4d17
DE
5034 per_cu->objfile = objfile;
5035 per_cu->is_debug_types = 1;
5036 per_cu->s.type_unit_group = tu_group;
5037
094b34ac
DE
5038 if (dwarf2_per_objfile->using_index)
5039 {
5040 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5041 struct dwarf2_per_cu_quick_data);
5042 tu_group->t.first_tu = cu->per_cu;
5043 }
5044 else
5045 {
5046 unsigned int line_offset = line_offset_struct.sect_off;
5047 struct partial_symtab *pst;
5048 char *name;
5049
5050 /* Give the symtab a useful name for debug purposes. */
5051 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5052 name = xstrprintf ("<type_units_%d>",
5053 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5054 else
5055 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5056
5057 pst = create_partial_symtab (per_cu, name);
5058 pst->anonymous = 1;
f4dc4d17 5059
094b34ac
DE
5060 xfree (name);
5061 }
f4dc4d17 5062
094b34ac
DE
5063 tu_group->hash.dwo_unit = cu->dwo_unit;
5064 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5065
5066 return tu_group;
5067}
5068
094b34ac
DE
5069/* Look up the type_unit_group for type unit CU, and create it if necessary.
5070 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5071
5072static struct type_unit_group *
094b34ac 5073get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
f4dc4d17
DE
5074{
5075 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5076 struct type_unit_group *tu_group;
5077 void **slot;
5078 unsigned int line_offset;
5079 struct type_unit_group type_unit_group_for_lookup;
5080
5081 if (dwarf2_per_objfile->type_unit_groups == NULL)
5082 {
5083 dwarf2_per_objfile->type_unit_groups =
5084 allocate_type_unit_groups_table ();
5085 }
5086
5087 /* Do we need to create a new group, or can we use an existing one? */
5088
5089 if (stmt_list)
5090 {
5091 line_offset = DW_UNSND (stmt_list);
5092 ++tu_stats->nr_symtab_sharers;
5093 }
5094 else
5095 {
5096 /* Ugh, no stmt_list. Rare, but we have to handle it.
5097 We can do various things here like create one group per TU or
5098 spread them over multiple groups to split up the expansion work.
5099 To avoid worst case scenarios (too many groups or too large groups)
5100 we, umm, group them in bunches. */
5101 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5102 | (tu_stats->nr_stmt_less_type_units
5103 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5104 ++tu_stats->nr_stmt_less_type_units;
5105 }
5106
094b34ac
DE
5107 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5108 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5109 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5110 &type_unit_group_for_lookup, INSERT);
5111 if (*slot != NULL)
5112 {
5113 tu_group = *slot;
5114 gdb_assert (tu_group != NULL);
5115 }
5116 else
5117 {
5118 sect_offset line_offset_struct;
5119
5120 line_offset_struct.sect_off = line_offset;
094b34ac 5121 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5122 *slot = tu_group;
5123 ++tu_stats->nr_symtabs;
5124 }
5125
5126 return tu_group;
5127}
5128
5129/* Struct used to sort TUs by their abbreviation table offset. */
5130
5131struct tu_abbrev_offset
5132{
5133 struct signatured_type *sig_type;
5134 sect_offset abbrev_offset;
5135};
5136
5137/* Helper routine for build_type_unit_groups, passed to qsort. */
5138
5139static int
5140sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5141{
5142 const struct tu_abbrev_offset * const *a = ap;
5143 const struct tu_abbrev_offset * const *b = bp;
5144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5145 unsigned int boff = (*b)->abbrev_offset.sect_off;
5146
5147 return (aoff > boff) - (aoff < boff);
5148}
5149
5150/* A helper function to add a type_unit_group to a table. */
5151
5152static int
5153add_type_unit_group_to_table (void **slot, void *datum)
5154{
5155 struct type_unit_group *tu_group = *slot;
5156 struct type_unit_group ***datap = datum;
5157
5158 **datap = tu_group;
5159 ++*datap;
5160
5161 return 1;
5162}
5163
5164/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5165 each one passing FUNC,DATA.
5166
5167 The efficiency is because we sort TUs by the abbrev table they use and
5168 only read each abbrev table once. In one program there are 200K TUs
5169 sharing 8K abbrev tables.
5170
5171 The main purpose of this function is to support building the
5172 dwarf2_per_objfile->type_unit_groups table.
5173 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5174 can collapse the search space by grouping them by stmt_list.
5175 The savings can be significant, in the same program from above the 200K TUs
5176 share 8K stmt_list tables.
5177
5178 FUNC is expected to call get_type_unit_group, which will create the
5179 struct type_unit_group if necessary and add it to
5180 dwarf2_per_objfile->type_unit_groups. */
5181
5182static void
5183build_type_unit_groups (die_reader_func_ftype *func, void *data)
5184{
5185 struct objfile *objfile = dwarf2_per_objfile->objfile;
5186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5187 struct cleanup *cleanups;
5188 struct abbrev_table *abbrev_table;
5189 sect_offset abbrev_offset;
5190 struct tu_abbrev_offset *sorted_by_abbrev;
5191 struct type_unit_group **iter;
5192 int i;
5193
5194 /* It's up to the caller to not call us multiple times. */
5195 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5196
5197 if (dwarf2_per_objfile->n_type_units == 0)
5198 return;
5199
5200 /* TUs typically share abbrev tables, and there can be way more TUs than
5201 abbrev tables. Sort by abbrev table to reduce the number of times we
5202 read each abbrev table in.
5203 Alternatives are to punt or to maintain a cache of abbrev tables.
5204 This is simpler and efficient enough for now.
5205
5206 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5207 symtab to use). Typically TUs with the same abbrev offset have the same
5208 stmt_list value too so in practice this should work well.
5209
5210 The basic algorithm here is:
5211
5212 sort TUs by abbrev table
5213 for each TU with same abbrev table:
5214 read abbrev table if first user
5215 read TU top level DIE
5216 [IWBN if DWO skeletons had DW_AT_stmt_list]
5217 call FUNC */
5218
5219 if (dwarf2_read_debug)
5220 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5221
5222 /* Sort in a separate table to maintain the order of all_type_units
5223 for .gdb_index: TU indices directly index all_type_units. */
5224 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5225 dwarf2_per_objfile->n_type_units);
5226 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5227 {
5228 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5229
5230 sorted_by_abbrev[i].sig_type = sig_type;
5231 sorted_by_abbrev[i].abbrev_offset =
5232 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5233 sig_type->per_cu.offset);
5234 }
5235 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5236 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5237 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5238
094b34ac
DE
5239 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5240 called any number of times, so we don't reset tu_stats here. */
5241
f4dc4d17
DE
5242 abbrev_offset.sect_off = ~(unsigned) 0;
5243 abbrev_table = NULL;
5244 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5245
5246 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5247 {
5248 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5249
5250 /* Switch to the next abbrev table if necessary. */
5251 if (abbrev_table == NULL
5252 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5253 {
5254 if (abbrev_table != NULL)
5255 {
5256 abbrev_table_free (abbrev_table);
5257 /* Reset to NULL in case abbrev_table_read_table throws
5258 an error: abbrev_table_free_cleanup will get called. */
5259 abbrev_table = NULL;
5260 }
5261 abbrev_offset = tu->abbrev_offset;
5262 abbrev_table =
5263 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5264 abbrev_offset);
5265 ++tu_stats->nr_uniq_abbrev_tables;
5266 }
5267
5268 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5269 func, data);
5270 }
5271
5272 /* Create a vector of pointers to primary type units to make it easy to
5273 iterate over them and CUs. See dw2_get_primary_cu. */
5274 dwarf2_per_objfile->n_type_unit_groups =
5275 htab_elements (dwarf2_per_objfile->type_unit_groups);
5276 dwarf2_per_objfile->all_type_unit_groups =
5277 obstack_alloc (&objfile->objfile_obstack,
5278 dwarf2_per_objfile->n_type_unit_groups
5279 * sizeof (struct type_unit_group *));
5280 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5281 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5282 add_type_unit_group_to_table, &iter);
5283 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5284 == dwarf2_per_objfile->n_type_unit_groups);
5285
5286 do_cleanups (cleanups);
5287
5288 if (dwarf2_read_debug)
5289 {
5290 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5291 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5292 dwarf2_per_objfile->n_type_units);
5293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5294 tu_stats->nr_uniq_abbrev_tables);
5295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5296 tu_stats->nr_symtabs);
5297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5298 tu_stats->nr_symtab_sharers);
5299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5300 tu_stats->nr_stmt_less_type_units);
5301 }
5302}
5303
5304/* Reader function for build_type_psymtabs. */
5305
5306static void
5307build_type_psymtabs_reader (const struct die_reader_specs *reader,
5308 gdb_byte *info_ptr,
5309 struct die_info *type_unit_die,
5310 int has_children,
5311 void *data)
5312{
5313 struct objfile *objfile = dwarf2_per_objfile->objfile;
5314 struct dwarf2_cu *cu = reader->cu;
5315 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5316 struct type_unit_group *tu_group;
5317 struct attribute *attr;
5318 struct partial_die_info *first_die;
5319 CORE_ADDR lowpc, highpc;
5320 struct partial_symtab *pst;
5321
5322 gdb_assert (data == NULL);
5323
5324 if (! has_children)
5325 return;
5326
5327 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5328 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5329
094b34ac 5330 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
f4dc4d17
DE
5331
5332 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5333 cu->list_in_scope = &file_symbols;
5334 pst = create_partial_symtab (per_cu, "");
5335 pst->anonymous = 1;
5336
5337 first_die = load_partial_dies (reader, info_ptr, 1);
5338
5339 lowpc = (CORE_ADDR) -1;
5340 highpc = (CORE_ADDR) 0;
5341 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5342
5343 pst->n_global_syms = objfile->global_psymbols.next -
5344 (objfile->global_psymbols.list + pst->globals_offset);
5345 pst->n_static_syms = objfile->static_psymbols.next -
5346 (objfile->static_psymbols.list + pst->statics_offset);
5347 sort_pst_symbols (pst);
5348}
5349
5350/* Traversal function for build_type_psymtabs. */
5351
5352static int
5353build_type_psymtab_dependencies (void **slot, void *info)
5354{
5355 struct objfile *objfile = dwarf2_per_objfile->objfile;
5356 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5357 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5358 struct partial_symtab *pst = per_cu->v.psymtab;
094b34ac 5359 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
f4dc4d17
DE
5360 struct dwarf2_per_cu_data *iter;
5361 int i;
5362
5363 gdb_assert (len > 0);
5364
5365 pst->number_of_dependencies = len;
5366 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5367 len * sizeof (struct psymtab *));
5368 for (i = 0;
094b34ac 5369 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
f4dc4d17
DE
5370 ++i)
5371 {
5372 pst->dependencies[i] = iter->v.psymtab;
5373 iter->s.type_unit_group = tu_group;
5374 }
5375
094b34ac 5376 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
348e048f
DE
5377
5378 return 1;
5379}
5380
5381/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5382 Build partial symbol tables for the .debug_types comp-units. */
5383
5384static void
5385build_type_psymtabs (struct objfile *objfile)
5386{
0e50663e 5387 if (! create_all_type_units (objfile))
348e048f
DE
5388 return;
5389
f4dc4d17
DE
5390 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5391
5392 /* Now that all TUs have been processed we can fill in the dependencies. */
5393 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5394 build_type_psymtab_dependencies, NULL);
348e048f
DE
5395}
5396
60606b2c
TT
5397/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5398
5399static void
5400psymtabs_addrmap_cleanup (void *o)
5401{
5402 struct objfile *objfile = o;
ec61707d 5403
60606b2c
TT
5404 objfile->psymtabs_addrmap = NULL;
5405}
5406
95554aad
TT
5407/* Compute the 'user' field for each psymtab in OBJFILE. */
5408
5409static void
5410set_partial_user (struct objfile *objfile)
5411{
5412 int i;
5413
5414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5415 {
5416 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5417 struct partial_symtab *pst = per_cu->v.psymtab;
5418 int j;
5419
36586728
TT
5420 if (pst == NULL)
5421 continue;
5422
95554aad
TT
5423 for (j = 0; j < pst->number_of_dependencies; ++j)
5424 {
5425 /* Set the 'user' field only if it is not already set. */
5426 if (pst->dependencies[j]->user == NULL)
5427 pst->dependencies[j]->user = pst;
5428 }
5429 }
5430}
5431
93311388
DE
5432/* Build the partial symbol table by doing a quick pass through the
5433 .debug_info and .debug_abbrev sections. */
72bf9492 5434
93311388 5435static void
c67a9c90 5436dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5437{
60606b2c
TT
5438 struct cleanup *back_to, *addrmap_cleanup;
5439 struct obstack temp_obstack;
21b2bd31 5440 int i;
93311388 5441
45cfd468
DE
5442 if (dwarf2_read_debug)
5443 {
5444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5445 objfile->name);
5446 }
5447
98bfdba5
PA
5448 dwarf2_per_objfile->reading_partial_symbols = 1;
5449
be391dca 5450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5451
93311388
DE
5452 /* Any cached compilation units will be linked by the per-objfile
5453 read_in_chain. Make sure to free them when we're done. */
5454 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 5455
348e048f
DE
5456 build_type_psymtabs (objfile);
5457
93311388 5458 create_all_comp_units (objfile);
c906108c 5459
60606b2c
TT
5460 /* Create a temporary address map on a temporary obstack. We later
5461 copy this to the final obstack. */
5462 obstack_init (&temp_obstack);
5463 make_cleanup_obstack_free (&temp_obstack);
5464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 5466
21b2bd31 5467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 5468 {
21b2bd31 5469 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 5470
95554aad 5471 process_psymtab_comp_unit (per_cu, 0);
c906108c 5472 }
ff013f42 5473
95554aad
TT
5474 set_partial_user (objfile);
5475
ff013f42
JK
5476 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5477 &objfile->objfile_obstack);
60606b2c 5478 discard_cleanups (addrmap_cleanup);
ff013f42 5479
ae038cb0 5480 do_cleanups (back_to);
45cfd468
DE
5481
5482 if (dwarf2_read_debug)
5483 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5484 objfile->name);
ae038cb0
DJ
5485}
5486
3019eac3 5487/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
5488
5489static void
dee91e82
DE
5490load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5491 gdb_byte *info_ptr,
5492 struct die_info *comp_unit_die,
5493 int has_children,
5494 void *data)
ae038cb0 5495{
dee91e82 5496 struct dwarf2_cu *cu = reader->cu;
ae038cb0 5497
95554aad 5498 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 5499
ae038cb0
DJ
5500 /* Check if comp unit has_children.
5501 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 5502 If not, there's no more debug_info for this comp unit. */
d85a05f0 5503 if (has_children)
dee91e82
DE
5504 load_partial_dies (reader, info_ptr, 0);
5505}
98bfdba5 5506
dee91e82
DE
5507/* Load the partial DIEs for a secondary CU into memory.
5508 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 5509
dee91e82
DE
5510static void
5511load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5512{
f4dc4d17
DE
5513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5514 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
5515}
5516
ae038cb0 5517static void
36586728
TT
5518read_comp_units_from_section (struct objfile *objfile,
5519 struct dwarf2_section_info *section,
5520 unsigned int is_dwz,
5521 int *n_allocated,
5522 int *n_comp_units,
5523 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 5524{
be391dca 5525 gdb_byte *info_ptr;
36586728 5526 bfd *abfd = section->asection->owner;
be391dca 5527
36586728 5528 dwarf2_read_section (objfile, section);
ae038cb0 5529
36586728 5530 info_ptr = section->buffer;
6e70227d 5531
36586728 5532 while (info_ptr < section->buffer + section->size)
ae038cb0 5533 {
c764a876 5534 unsigned int length, initial_length_size;
ae038cb0 5535 struct dwarf2_per_cu_data *this_cu;
b64f50a1 5536 sect_offset offset;
ae038cb0 5537
36586728 5538 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
5539
5540 /* Read just enough information to find out where the next
5541 compilation unit is. */
36586728 5542 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
5543
5544 /* Save the compilation unit for later lookup. */
5545 this_cu = obstack_alloc (&objfile->objfile_obstack,
5546 sizeof (struct dwarf2_per_cu_data));
5547 memset (this_cu, 0, sizeof (*this_cu));
5548 this_cu->offset = offset;
c764a876 5549 this_cu->length = length + initial_length_size;
36586728 5550 this_cu->is_dwz = is_dwz;
9291a0cd 5551 this_cu->objfile = objfile;
36586728 5552 this_cu->info_or_types_section = section;
ae038cb0 5553
36586728 5554 if (*n_comp_units == *n_allocated)
ae038cb0 5555 {
36586728
TT
5556 *n_allocated *= 2;
5557 *all_comp_units = xrealloc (*all_comp_units,
5558 *n_allocated
5559 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 5560 }
36586728
TT
5561 (*all_comp_units)[*n_comp_units] = this_cu;
5562 ++*n_comp_units;
ae038cb0
DJ
5563
5564 info_ptr = info_ptr + this_cu->length;
5565 }
36586728
TT
5566}
5567
5568/* Create a list of all compilation units in OBJFILE.
5569 This is only done for -readnow and building partial symtabs. */
5570
5571static void
5572create_all_comp_units (struct objfile *objfile)
5573{
5574 int n_allocated;
5575 int n_comp_units;
5576 struct dwarf2_per_cu_data **all_comp_units;
5577
5578 n_comp_units = 0;
5579 n_allocated = 10;
5580 all_comp_units = xmalloc (n_allocated
5581 * sizeof (struct dwarf2_per_cu_data *));
5582
5583 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5584 &n_allocated, &n_comp_units, &all_comp_units);
5585
5586 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5587 {
5588 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5589
5590 read_comp_units_from_section (objfile, &dwz->info, 1,
5591 &n_allocated, &n_comp_units,
5592 &all_comp_units);
5593 }
ae038cb0
DJ
5594
5595 dwarf2_per_objfile->all_comp_units
5596 = obstack_alloc (&objfile->objfile_obstack,
5597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5600 xfree (all_comp_units);
5601 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
5602}
5603
5734ee8b
DJ
5604/* Process all loaded DIEs for compilation unit CU, starting at
5605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5607 DW_AT_ranges). If NEED_PC is set, then this function will set
5608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5609 and record the covered ranges in the addrmap. */
c906108c 5610
72bf9492
DJ
5611static void
5612scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 5613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 5614{
72bf9492 5615 struct partial_die_info *pdi;
c906108c 5616
91c24f0a
DC
5617 /* Now, march along the PDI's, descending into ones which have
5618 interesting children but skipping the children of the other ones,
5619 until we reach the end of the compilation unit. */
c906108c 5620
72bf9492 5621 pdi = first_die;
91c24f0a 5622
72bf9492
DJ
5623 while (pdi != NULL)
5624 {
5625 fixup_partial_die (pdi, cu);
c906108c 5626
f55ee35c 5627 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
5628 children, so we need to look at them. Ditto for anonymous
5629 enums. */
933c6fe4 5630
72bf9492 5631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
5632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5633 || pdi->tag == DW_TAG_imported_unit)
c906108c 5634 {
72bf9492 5635 switch (pdi->tag)
c906108c
SS
5636 {
5637 case DW_TAG_subprogram:
5734ee8b 5638 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 5639 break;
72929c62 5640 case DW_TAG_constant:
c906108c
SS
5641 case DW_TAG_variable:
5642 case DW_TAG_typedef:
91c24f0a 5643 case DW_TAG_union_type:
72bf9492 5644 if (!pdi->is_declaration)
63d06c5c 5645 {
72bf9492 5646 add_partial_symbol (pdi, cu);
63d06c5c
DC
5647 }
5648 break;
c906108c 5649 case DW_TAG_class_type:
680b30c7 5650 case DW_TAG_interface_type:
c906108c 5651 case DW_TAG_structure_type:
72bf9492 5652 if (!pdi->is_declaration)
c906108c 5653 {
72bf9492 5654 add_partial_symbol (pdi, cu);
c906108c
SS
5655 }
5656 break;
91c24f0a 5657 case DW_TAG_enumeration_type:
72bf9492
DJ
5658 if (!pdi->is_declaration)
5659 add_partial_enumeration (pdi, cu);
c906108c
SS
5660 break;
5661 case DW_TAG_base_type:
a02abb62 5662 case DW_TAG_subrange_type:
c906108c 5663 /* File scope base type definitions are added to the partial
c5aa993b 5664 symbol table. */
72bf9492 5665 add_partial_symbol (pdi, cu);
c906108c 5666 break;
d9fa45fe 5667 case DW_TAG_namespace:
5734ee8b 5668 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 5669 break;
5d7cb8df
JK
5670 case DW_TAG_module:
5671 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5672 break;
95554aad
TT
5673 case DW_TAG_imported_unit:
5674 {
5675 struct dwarf2_per_cu_data *per_cu;
5676
f4dc4d17
DE
5677 /* For now we don't handle imported units in type units. */
5678 if (cu->per_cu->is_debug_types)
5679 {
5680 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5681 " supported in type units [in module %s]"),
5682 cu->objfile->name);
5683 }
5684
95554aad 5685 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 5686 pdi->is_dwz,
95554aad
TT
5687 cu->objfile);
5688
5689 /* Go read the partial unit, if needed. */
5690 if (per_cu->v.psymtab == NULL)
5691 process_psymtab_comp_unit (per_cu, 1);
5692
f4dc4d17
DE
5693 VEC_safe_push (dwarf2_per_cu_ptr,
5694 cu->per_cu->s.imported_symtabs, per_cu);
95554aad
TT
5695 }
5696 break;
c906108c
SS
5697 default:
5698 break;
5699 }
5700 }
5701
72bf9492
DJ
5702 /* If the die has a sibling, skip to the sibling. */
5703
5704 pdi = pdi->die_sibling;
5705 }
5706}
5707
5708/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 5709
72bf9492 5710 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
5711 name is concatenated with "::" and the partial DIE's name. For
5712 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
5713 Enumerators are an exception; they use the scope of their parent
5714 enumeration type, i.e. the name of the enumeration type is not
5715 prepended to the enumerator.
91c24f0a 5716
72bf9492
DJ
5717 There are two complexities. One is DW_AT_specification; in this
5718 case "parent" means the parent of the target of the specification,
5719 instead of the direct parent of the DIE. The other is compilers
5720 which do not emit DW_TAG_namespace; in this case we try to guess
5721 the fully qualified name of structure types from their members'
5722 linkage names. This must be done using the DIE's children rather
5723 than the children of any DW_AT_specification target. We only need
5724 to do this for structures at the top level, i.e. if the target of
5725 any DW_AT_specification (if any; otherwise the DIE itself) does not
5726 have a parent. */
5727
5728/* Compute the scope prefix associated with PDI's parent, in
5729 compilation unit CU. The result will be allocated on CU's
5730 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5731 field. NULL is returned if no prefix is necessary. */
5732static char *
5733partial_die_parent_scope (struct partial_die_info *pdi,
5734 struct dwarf2_cu *cu)
5735{
5736 char *grandparent_scope;
5737 struct partial_die_info *parent, *real_pdi;
91c24f0a 5738
72bf9492
DJ
5739 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5740 then this means the parent of the specification DIE. */
5741
5742 real_pdi = pdi;
72bf9492 5743 while (real_pdi->has_specification)
36586728
TT
5744 real_pdi = find_partial_die (real_pdi->spec_offset,
5745 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
5746
5747 parent = real_pdi->die_parent;
5748 if (parent == NULL)
5749 return NULL;
5750
5751 if (parent->scope_set)
5752 return parent->scope;
5753
5754 fixup_partial_die (parent, cu);
5755
10b3939b 5756 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 5757
acebe513
UW
5758 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5759 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5760 Work around this problem here. */
5761 if (cu->language == language_cplus
6e70227d 5762 && parent->tag == DW_TAG_namespace
acebe513
UW
5763 && strcmp (parent->name, "::") == 0
5764 && grandparent_scope == NULL)
5765 {
5766 parent->scope = NULL;
5767 parent->scope_set = 1;
5768 return NULL;
5769 }
5770
9c6c53f7
SA
5771 if (pdi->tag == DW_TAG_enumerator)
5772 /* Enumerators should not get the name of the enumeration as a prefix. */
5773 parent->scope = grandparent_scope;
5774 else if (parent->tag == DW_TAG_namespace
f55ee35c 5775 || parent->tag == DW_TAG_module
72bf9492
DJ
5776 || parent->tag == DW_TAG_structure_type
5777 || parent->tag == DW_TAG_class_type
680b30c7 5778 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
5779 || parent->tag == DW_TAG_union_type
5780 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
5781 {
5782 if (grandparent_scope == NULL)
5783 parent->scope = parent->name;
5784 else
3e43a32a
MS
5785 parent->scope = typename_concat (&cu->comp_unit_obstack,
5786 grandparent_scope,
f55ee35c 5787 parent->name, 0, cu);
72bf9492 5788 }
72bf9492
DJ
5789 else
5790 {
5791 /* FIXME drow/2004-04-01: What should we be doing with
5792 function-local names? For partial symbols, we should probably be
5793 ignoring them. */
5794 complaint (&symfile_complaints,
e2e0b3e5 5795 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 5796 parent->tag, pdi->offset.sect_off);
72bf9492 5797 parent->scope = grandparent_scope;
c906108c
SS
5798 }
5799
72bf9492
DJ
5800 parent->scope_set = 1;
5801 return parent->scope;
5802}
5803
5804/* Return the fully scoped name associated with PDI, from compilation unit
5805 CU. The result will be allocated with malloc. */
4568ecf9 5806
72bf9492
DJ
5807static char *
5808partial_die_full_name (struct partial_die_info *pdi,
5809 struct dwarf2_cu *cu)
5810{
5811 char *parent_scope;
5812
98bfdba5
PA
5813 /* If this is a template instantiation, we can not work out the
5814 template arguments from partial DIEs. So, unfortunately, we have
5815 to go through the full DIEs. At least any work we do building
5816 types here will be reused if full symbols are loaded later. */
5817 if (pdi->has_template_arguments)
5818 {
5819 fixup_partial_die (pdi, cu);
5820
5821 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5822 {
5823 struct die_info *die;
5824 struct attribute attr;
5825 struct dwarf2_cu *ref_cu = cu;
5826
b64f50a1 5827 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
5828 attr.name = 0;
5829 attr.form = DW_FORM_ref_addr;
4568ecf9 5830 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
5831 die = follow_die_ref (NULL, &attr, &ref_cu);
5832
5833 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5834 }
5835 }
5836
72bf9492
DJ
5837 parent_scope = partial_die_parent_scope (pdi, cu);
5838 if (parent_scope == NULL)
5839 return NULL;
5840 else
f55ee35c 5841 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
5842}
5843
5844static void
72bf9492 5845add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 5846{
e7c27a73 5847 struct objfile *objfile = cu->objfile;
c906108c 5848 CORE_ADDR addr = 0;
decbce07 5849 char *actual_name = NULL;
e142c38c 5850 CORE_ADDR baseaddr;
72bf9492 5851 int built_actual_name = 0;
e142c38c
DJ
5852
5853 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5854
94af9270
KS
5855 actual_name = partial_die_full_name (pdi, cu);
5856 if (actual_name)
5857 built_actual_name = 1;
63d06c5c 5858
72bf9492
DJ
5859 if (actual_name == NULL)
5860 actual_name = pdi->name;
5861
c906108c
SS
5862 switch (pdi->tag)
5863 {
5864 case DW_TAG_subprogram:
2cfa0c8d 5865 if (pdi->is_external || cu->language == language_ada)
c906108c 5866 {
2cfa0c8d
JB
5867 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5868 of the global scope. But in Ada, we want to be able to access
5869 nested procedures globally. So all Ada subprograms are stored
5870 in the global scope. */
f47fb265 5871 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 5872 mst_text, objfile); */
f47fb265
MS
5873 add_psymbol_to_list (actual_name, strlen (actual_name),
5874 built_actual_name,
5875 VAR_DOMAIN, LOC_BLOCK,
5876 &objfile->global_psymbols,
5877 0, pdi->lowpc + baseaddr,
5878 cu->language, objfile);
c906108c
SS
5879 }
5880 else
5881 {
f47fb265 5882 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 5883 mst_file_text, objfile); */
f47fb265
MS
5884 add_psymbol_to_list (actual_name, strlen (actual_name),
5885 built_actual_name,
5886 VAR_DOMAIN, LOC_BLOCK,
5887 &objfile->static_psymbols,
5888 0, pdi->lowpc + baseaddr,
5889 cu->language, objfile);
c906108c
SS
5890 }
5891 break;
72929c62
JB
5892 case DW_TAG_constant:
5893 {
5894 struct psymbol_allocation_list *list;
5895
5896 if (pdi->is_external)
5897 list = &objfile->global_psymbols;
5898 else
5899 list = &objfile->static_psymbols;
f47fb265
MS
5900 add_psymbol_to_list (actual_name, strlen (actual_name),
5901 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5902 list, 0, 0, cu->language, objfile);
72929c62
JB
5903 }
5904 break;
c906108c 5905 case DW_TAG_variable:
95554aad
TT
5906 if (pdi->d.locdesc)
5907 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 5908
95554aad 5909 if (pdi->d.locdesc
caac4577
JG
5910 && addr == 0
5911 && !dwarf2_per_objfile->has_section_at_zero)
5912 {
5913 /* A global or static variable may also have been stripped
5914 out by the linker if unused, in which case its address
5915 will be nullified; do not add such variables into partial
5916 symbol table then. */
5917 }
5918 else if (pdi->is_external)
c906108c
SS
5919 {
5920 /* Global Variable.
5921 Don't enter into the minimal symbol tables as there is
5922 a minimal symbol table entry from the ELF symbols already.
5923 Enter into partial symbol table if it has a location
5924 descriptor or a type.
5925 If the location descriptor is missing, new_symbol will create
5926 a LOC_UNRESOLVED symbol, the address of the variable will then
5927 be determined from the minimal symbol table whenever the variable
5928 is referenced.
5929 The address for the partial symbol table entry is not
5930 used by GDB, but it comes in handy for debugging partial symbol
5931 table building. */
5932
95554aad 5933 if (pdi->d.locdesc || pdi->has_type)
f47fb265
MS
5934 add_psymbol_to_list (actual_name, strlen (actual_name),
5935 built_actual_name,
5936 VAR_DOMAIN, LOC_STATIC,
5937 &objfile->global_psymbols,
5938 0, addr + baseaddr,
5939 cu->language, objfile);
c906108c
SS
5940 }
5941 else
5942 {
0963b4bd 5943 /* Static Variable. Skip symbols without location descriptors. */
95554aad 5944 if (pdi->d.locdesc == NULL)
decbce07
MS
5945 {
5946 if (built_actual_name)
5947 xfree (actual_name);
5948 return;
5949 }
f47fb265 5950 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 5951 mst_file_data, objfile); */
f47fb265
MS
5952 add_psymbol_to_list (actual_name, strlen (actual_name),
5953 built_actual_name,
5954 VAR_DOMAIN, LOC_STATIC,
5955 &objfile->static_psymbols,
5956 0, addr + baseaddr,
5957 cu->language, objfile);
c906108c
SS
5958 }
5959 break;
5960 case DW_TAG_typedef:
5961 case DW_TAG_base_type:
a02abb62 5962 case DW_TAG_subrange_type:
38d518c9 5963 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 5964 built_actual_name,
176620f1 5965 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 5966 &objfile->static_psymbols,
e142c38c 5967 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 5968 break;
72bf9492
DJ
5969 case DW_TAG_namespace:
5970 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 5971 built_actual_name,
72bf9492
DJ
5972 VAR_DOMAIN, LOC_TYPEDEF,
5973 &objfile->global_psymbols,
5974 0, (CORE_ADDR) 0, cu->language, objfile);
5975 break;
c906108c 5976 case DW_TAG_class_type:
680b30c7 5977 case DW_TAG_interface_type:
c906108c
SS
5978 case DW_TAG_structure_type:
5979 case DW_TAG_union_type:
5980 case DW_TAG_enumeration_type:
fa4028e9
JB
5981 /* Skip external references. The DWARF standard says in the section
5982 about "Structure, Union, and Class Type Entries": "An incomplete
5983 structure, union or class type is represented by a structure,
5984 union or class entry that does not have a byte size attribute
5985 and that has a DW_AT_declaration attribute." */
5986 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
5987 {
5988 if (built_actual_name)
5989 xfree (actual_name);
5990 return;
5991 }
fa4028e9 5992
63d06c5c
DC
5993 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5994 static vs. global. */
38d518c9 5995 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 5996 built_actual_name,
176620f1 5997 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
5998 (cu->language == language_cplus
5999 || cu->language == language_java)
63d06c5c
DC
6000 ? &objfile->global_psymbols
6001 : &objfile->static_psymbols,
e142c38c 6002 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6003
c906108c
SS
6004 break;
6005 case DW_TAG_enumerator:
38d518c9 6006 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 6007 built_actual_name,
176620f1 6008 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6009 (cu->language == language_cplus
6010 || cu->language == language_java)
f6fe98ef
DJ
6011 ? &objfile->global_psymbols
6012 : &objfile->static_psymbols,
e142c38c 6013 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6014 break;
6015 default:
6016 break;
6017 }
5c4e30ca 6018
72bf9492
DJ
6019 if (built_actual_name)
6020 xfree (actual_name);
c906108c
SS
6021}
6022
5c4e30ca
DC
6023/* Read a partial die corresponding to a namespace; also, add a symbol
6024 corresponding to that namespace to the symbol table. NAMESPACE is
6025 the name of the enclosing namespace. */
91c24f0a 6026
72bf9492
DJ
6027static void
6028add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6029 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6030 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6031{
72bf9492 6032 /* Add a symbol for the namespace. */
e7c27a73 6033
72bf9492 6034 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6035
6036 /* Now scan partial symbols in that namespace. */
6037
91c24f0a 6038 if (pdi->has_children)
5734ee8b 6039 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6040}
6041
5d7cb8df
JK
6042/* Read a partial die corresponding to a Fortran module. */
6043
6044static void
6045add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6046 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6047{
f55ee35c 6048 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6049
6050 if (pdi->has_children)
6051 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6052}
6053
bc30ff58
JB
6054/* Read a partial die corresponding to a subprogram and create a partial
6055 symbol for that subprogram. When the CU language allows it, this
6056 routine also defines a partial symbol for each nested subprogram
6057 that this subprogram contains.
6e70227d 6058
bc30ff58
JB
6059 DIE my also be a lexical block, in which case we simply search
6060 recursively for suprograms defined inside that lexical block.
6061 Again, this is only performed when the CU language allows this
6062 type of definitions. */
6063
6064static void
6065add_partial_subprogram (struct partial_die_info *pdi,
6066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6067 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6068{
6069 if (pdi->tag == DW_TAG_subprogram)
6070 {
6071 if (pdi->has_pc_info)
6072 {
6073 if (pdi->lowpc < *lowpc)
6074 *lowpc = pdi->lowpc;
6075 if (pdi->highpc > *highpc)
6076 *highpc = pdi->highpc;
5734ee8b
DJ
6077 if (need_pc)
6078 {
6079 CORE_ADDR baseaddr;
6080 struct objfile *objfile = cu->objfile;
6081
6082 baseaddr = ANOFFSET (objfile->section_offsets,
6083 SECT_OFF_TEXT (objfile));
6084 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6085 pdi->lowpc + baseaddr,
6086 pdi->highpc - 1 + baseaddr,
9291a0cd 6087 cu->per_cu->v.psymtab);
5734ee8b 6088 }
481860b3
GB
6089 }
6090
6091 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6092 {
bc30ff58 6093 if (!pdi->is_declaration)
e8d05480
JB
6094 /* Ignore subprogram DIEs that do not have a name, they are
6095 illegal. Do not emit a complaint at this point, we will
6096 do so when we convert this psymtab into a symtab. */
6097 if (pdi->name)
6098 add_partial_symbol (pdi, cu);
bc30ff58
JB
6099 }
6100 }
6e70227d 6101
bc30ff58
JB
6102 if (! pdi->has_children)
6103 return;
6104
6105 if (cu->language == language_ada)
6106 {
6107 pdi = pdi->die_child;
6108 while (pdi != NULL)
6109 {
6110 fixup_partial_die (pdi, cu);
6111 if (pdi->tag == DW_TAG_subprogram
6112 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6113 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6114 pdi = pdi->die_sibling;
6115 }
6116 }
6117}
6118
91c24f0a
DC
6119/* Read a partial die corresponding to an enumeration type. */
6120
72bf9492
DJ
6121static void
6122add_partial_enumeration (struct partial_die_info *enum_pdi,
6123 struct dwarf2_cu *cu)
91c24f0a 6124{
72bf9492 6125 struct partial_die_info *pdi;
91c24f0a
DC
6126
6127 if (enum_pdi->name != NULL)
72bf9492
DJ
6128 add_partial_symbol (enum_pdi, cu);
6129
6130 pdi = enum_pdi->die_child;
6131 while (pdi)
91c24f0a 6132 {
72bf9492 6133 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6134 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6135 else
72bf9492
DJ
6136 add_partial_symbol (pdi, cu);
6137 pdi = pdi->die_sibling;
91c24f0a 6138 }
91c24f0a
DC
6139}
6140
6caca83c
CC
6141/* Return the initial uleb128 in the die at INFO_PTR. */
6142
6143static unsigned int
6144peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6145{
6146 unsigned int bytes_read;
6147
6148 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6149}
6150
4bb7a0a7
DJ
6151/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6152 Return the corresponding abbrev, or NULL if the number is zero (indicating
6153 an empty DIE). In either case *BYTES_READ will be set to the length of
6154 the initial number. */
6155
6156static struct abbrev_info *
fe1b8b76 6157peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6158 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6159{
6160 bfd *abfd = cu->objfile->obfd;
6161 unsigned int abbrev_number;
6162 struct abbrev_info *abbrev;
6163
6164 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6165
6166 if (abbrev_number == 0)
6167 return NULL;
6168
433df2d4 6169 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6170 if (!abbrev)
6171 {
3e43a32a
MS
6172 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6173 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6174 }
6175
6176 return abbrev;
6177}
6178
93311388
DE
6179/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6180 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6181 DIE. Any children of the skipped DIEs will also be skipped. */
6182
fe1b8b76 6183static gdb_byte *
dee91e82 6184skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
4bb7a0a7 6185{
dee91e82 6186 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6187 struct abbrev_info *abbrev;
6188 unsigned int bytes_read;
6189
6190 while (1)
6191 {
6192 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6193 if (abbrev == NULL)
6194 return info_ptr + bytes_read;
6195 else
dee91e82 6196 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6197 }
6198}
6199
93311388
DE
6200/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6201 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6202 abbrev corresponding to that skipped uleb128 should be passed in
6203 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6204 children. */
6205
fe1b8b76 6206static gdb_byte *
dee91e82
DE
6207skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6208 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6209{
6210 unsigned int bytes_read;
6211 struct attribute attr;
dee91e82
DE
6212 bfd *abfd = reader->abfd;
6213 struct dwarf2_cu *cu = reader->cu;
6214 gdb_byte *buffer = reader->buffer;
f664829e
DE
6215 const gdb_byte *buffer_end = reader->buffer_end;
6216 gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6217 unsigned int form, i;
6218
6219 for (i = 0; i < abbrev->num_attrs; i++)
6220 {
6221 /* The only abbrev we care about is DW_AT_sibling. */
6222 if (abbrev->attrs[i].name == DW_AT_sibling)
6223 {
dee91e82 6224 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6225 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6226 complaint (&symfile_complaints,
6227 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6228 else
b64f50a1 6229 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6230 }
6231
6232 /* If it isn't DW_AT_sibling, skip this attribute. */
6233 form = abbrev->attrs[i].form;
6234 skip_attribute:
6235 switch (form)
6236 {
4bb7a0a7 6237 case DW_FORM_ref_addr:
ae411497
TT
6238 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6239 and later it is offset sized. */
6240 if (cu->header.version == 2)
6241 info_ptr += cu->header.addr_size;
6242 else
6243 info_ptr += cu->header.offset_size;
6244 break;
36586728
TT
6245 case DW_FORM_GNU_ref_alt:
6246 info_ptr += cu->header.offset_size;
6247 break;
ae411497 6248 case DW_FORM_addr:
4bb7a0a7
DJ
6249 info_ptr += cu->header.addr_size;
6250 break;
6251 case DW_FORM_data1:
6252 case DW_FORM_ref1:
6253 case DW_FORM_flag:
6254 info_ptr += 1;
6255 break;
2dc7f7b3
TT
6256 case DW_FORM_flag_present:
6257 break;
4bb7a0a7
DJ
6258 case DW_FORM_data2:
6259 case DW_FORM_ref2:
6260 info_ptr += 2;
6261 break;
6262 case DW_FORM_data4:
6263 case DW_FORM_ref4:
6264 info_ptr += 4;
6265 break;
6266 case DW_FORM_data8:
6267 case DW_FORM_ref8:
55f1336d 6268 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6269 info_ptr += 8;
6270 break;
6271 case DW_FORM_string:
9b1c24c8 6272 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6273 info_ptr += bytes_read;
6274 break;
2dc7f7b3 6275 case DW_FORM_sec_offset:
4bb7a0a7 6276 case DW_FORM_strp:
36586728 6277 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6278 info_ptr += cu->header.offset_size;
6279 break;
2dc7f7b3 6280 case DW_FORM_exprloc:
4bb7a0a7
DJ
6281 case DW_FORM_block:
6282 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6283 info_ptr += bytes_read;
6284 break;
6285 case DW_FORM_block1:
6286 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6287 break;
6288 case DW_FORM_block2:
6289 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6290 break;
6291 case DW_FORM_block4:
6292 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6293 break;
6294 case DW_FORM_sdata:
6295 case DW_FORM_udata:
6296 case DW_FORM_ref_udata:
3019eac3
DE
6297 case DW_FORM_GNU_addr_index:
6298 case DW_FORM_GNU_str_index:
f664829e 6299 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6300 break;
6301 case DW_FORM_indirect:
6302 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6303 info_ptr += bytes_read;
6304 /* We need to continue parsing from here, so just go back to
6305 the top. */
6306 goto skip_attribute;
6307
6308 default:
3e43a32a
MS
6309 error (_("Dwarf Error: Cannot handle %s "
6310 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6311 dwarf_form_name (form),
6312 bfd_get_filename (abfd));
6313 }
6314 }
6315
6316 if (abbrev->has_children)
dee91e82 6317 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6318 else
6319 return info_ptr;
6320}
6321
93311388 6322/* Locate ORIG_PDI's sibling.
dee91e82 6323 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6324
fe1b8b76 6325static gdb_byte *
dee91e82
DE
6326locate_pdi_sibling (const struct die_reader_specs *reader,
6327 struct partial_die_info *orig_pdi,
6328 gdb_byte *info_ptr)
91c24f0a
DC
6329{
6330 /* Do we know the sibling already? */
72bf9492 6331
91c24f0a
DC
6332 if (orig_pdi->sibling)
6333 return orig_pdi->sibling;
6334
6335 /* Are there any children to deal with? */
6336
6337 if (!orig_pdi->has_children)
6338 return info_ptr;
6339
4bb7a0a7 6340 /* Skip the children the long way. */
91c24f0a 6341
dee91e82 6342 return skip_children (reader, info_ptr);
91c24f0a
DC
6343}
6344
c906108c
SS
6345/* Expand this partial symbol table into a full symbol table. */
6346
6347static void
fba45db2 6348dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 6349{
c906108c
SS
6350 if (pst != NULL)
6351 {
6352 if (pst->readin)
6353 {
3e43a32a
MS
6354 warning (_("bug: psymtab for %s is already read in."),
6355 pst->filename);
c906108c
SS
6356 }
6357 else
6358 {
6359 if (info_verbose)
6360 {
3e43a32a
MS
6361 printf_filtered (_("Reading in symbols for %s..."),
6362 pst->filename);
c906108c
SS
6363 gdb_flush (gdb_stdout);
6364 }
6365
10b3939b
DJ
6366 /* Restore our global data. */
6367 dwarf2_per_objfile = objfile_data (pst->objfile,
6368 dwarf2_objfile_data_key);
6369
b2ab525c
KB
6370 /* If this psymtab is constructed from a debug-only objfile, the
6371 has_section_at_zero flag will not necessarily be correct. We
6372 can get the correct value for this flag by looking at the data
6373 associated with the (presumably stripped) associated objfile. */
6374 if (pst->objfile->separate_debug_objfile_backlink)
6375 {
6376 struct dwarf2_per_objfile *dpo_backlink
6377 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6378 dwarf2_objfile_data_key);
9a619af0 6379
b2ab525c
KB
6380 dwarf2_per_objfile->has_section_at_zero
6381 = dpo_backlink->has_section_at_zero;
6382 }
6383
98bfdba5
PA
6384 dwarf2_per_objfile->reading_partial_symbols = 0;
6385
c906108c
SS
6386 psymtab_to_symtab_1 (pst);
6387
6388 /* Finish up the debug error message. */
6389 if (info_verbose)
a3f17187 6390 printf_filtered (_("done.\n"));
c906108c
SS
6391 }
6392 }
95554aad
TT
6393
6394 process_cu_includes ();
c906108c 6395}
9cdd5dbd
DE
6396\f
6397/* Reading in full CUs. */
c906108c 6398
10b3939b
DJ
6399/* Add PER_CU to the queue. */
6400
6401static void
95554aad
TT
6402queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6403 enum language pretend_language)
10b3939b
DJ
6404{
6405 struct dwarf2_queue_item *item;
6406
6407 per_cu->queued = 1;
6408 item = xmalloc (sizeof (*item));
6409 item->per_cu = per_cu;
95554aad 6410 item->pretend_language = pretend_language;
10b3939b
DJ
6411 item->next = NULL;
6412
6413 if (dwarf2_queue == NULL)
6414 dwarf2_queue = item;
6415 else
6416 dwarf2_queue_tail->next = item;
6417
6418 dwarf2_queue_tail = item;
6419}
6420
0907af0c
DE
6421/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6422 unit and add it to our queue.
6423 The result is non-zero if PER_CU was queued, otherwise the result is zero
6424 meaning either PER_CU is already queued or it is already loaded. */
6425
6426static int
6427maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6428 struct dwarf2_per_cu_data *per_cu,
6429 enum language pretend_language)
6430{
6431 /* We may arrive here during partial symbol reading, if we need full
6432 DIEs to process an unusual case (e.g. template arguments). Do
6433 not queue PER_CU, just tell our caller to load its DIEs. */
6434 if (dwarf2_per_objfile->reading_partial_symbols)
6435 {
6436 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6437 return 1;
6438 return 0;
6439 }
6440
6441 /* Mark the dependence relation so that we don't flush PER_CU
6442 too early. */
6443 dwarf2_add_dependence (this_cu, per_cu);
6444
6445 /* If it's already on the queue, we have nothing to do. */
6446 if (per_cu->queued)
6447 return 0;
6448
6449 /* If the compilation unit is already loaded, just mark it as
6450 used. */
6451 if (per_cu->cu != NULL)
6452 {
6453 per_cu->cu->last_used = 0;
6454 return 0;
6455 }
6456
6457 /* Add it to the queue. */
6458 queue_comp_unit (per_cu, pretend_language);
6459
6460 return 1;
6461}
6462
10b3939b
DJ
6463/* Process the queue. */
6464
6465static void
a0f42c21 6466process_queue (void)
10b3939b
DJ
6467{
6468 struct dwarf2_queue_item *item, *next_item;
6469
45cfd468
DE
6470 if (dwarf2_read_debug)
6471 {
6472 fprintf_unfiltered (gdb_stdlog,
6473 "Expanding one or more symtabs of objfile %s ...\n",
6474 dwarf2_per_objfile->objfile->name);
6475 }
6476
03dd20cc
DJ
6477 /* The queue starts out with one item, but following a DIE reference
6478 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
6479 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6480 {
9291a0cd
TT
6481 if (dwarf2_per_objfile->using_index
6482 ? !item->per_cu->v.quick->symtab
6483 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
6484 {
6485 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6486
6487 if (dwarf2_read_debug)
6488 {
6489 fprintf_unfiltered (gdb_stdlog,
6490 "Expanding symtab of %s at offset 0x%x\n",
6491 per_cu->is_debug_types ? "TU" : "CU",
6492 per_cu->offset.sect_off);
6493 }
6494
6495 if (per_cu->is_debug_types)
6496 process_full_type_unit (per_cu, item->pretend_language);
6497 else
6498 process_full_comp_unit (per_cu, item->pretend_language);
6499
6500 if (dwarf2_read_debug)
6501 {
6502 fprintf_unfiltered (gdb_stdlog,
6503 "Done expanding %s at offset 0x%x\n",
6504 per_cu->is_debug_types ? "TU" : "CU",
6505 per_cu->offset.sect_off);
6506 }
6507 }
10b3939b
DJ
6508
6509 item->per_cu->queued = 0;
6510 next_item = item->next;
6511 xfree (item);
6512 }
6513
6514 dwarf2_queue_tail = NULL;
45cfd468
DE
6515
6516 if (dwarf2_read_debug)
6517 {
6518 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6519 dwarf2_per_objfile->objfile->name);
6520 }
10b3939b
DJ
6521}
6522
6523/* Free all allocated queue entries. This function only releases anything if
6524 an error was thrown; if the queue was processed then it would have been
6525 freed as we went along. */
6526
6527static void
6528dwarf2_release_queue (void *dummy)
6529{
6530 struct dwarf2_queue_item *item, *last;
6531
6532 item = dwarf2_queue;
6533 while (item)
6534 {
6535 /* Anything still marked queued is likely to be in an
6536 inconsistent state, so discard it. */
6537 if (item->per_cu->queued)
6538 {
6539 if (item->per_cu->cu != NULL)
dee91e82 6540 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
6541 item->per_cu->queued = 0;
6542 }
6543
6544 last = item;
6545 item = item->next;
6546 xfree (last);
6547 }
6548
6549 dwarf2_queue = dwarf2_queue_tail = NULL;
6550}
6551
6552/* Read in full symbols for PST, and anything it depends on. */
6553
c906108c 6554static void
fba45db2 6555psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 6556{
10b3939b 6557 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
6558 int i;
6559
95554aad
TT
6560 if (pst->readin)
6561 return;
6562
aaa75496 6563 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
6564 if (!pst->dependencies[i]->readin
6565 && pst->dependencies[i]->user == NULL)
aaa75496
JB
6566 {
6567 /* Inform about additional files that need to be read in. */
6568 if (info_verbose)
6569 {
a3f17187 6570 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
6571 fputs_filtered (" ", gdb_stdout);
6572 wrap_here ("");
6573 fputs_filtered ("and ", gdb_stdout);
6574 wrap_here ("");
6575 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 6576 wrap_here (""); /* Flush output. */
aaa75496
JB
6577 gdb_flush (gdb_stdout);
6578 }
6579 psymtab_to_symtab_1 (pst->dependencies[i]);
6580 }
6581
e38df1d0 6582 per_cu = pst->read_symtab_private;
10b3939b
DJ
6583
6584 if (per_cu == NULL)
aaa75496
JB
6585 {
6586 /* It's an include file, no symbols to read for it.
6587 Everything is in the parent symtab. */
6588 pst->readin = 1;
6589 return;
6590 }
c906108c 6591
a0f42c21 6592 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
6593}
6594
dee91e82
DE
6595/* Trivial hash function for die_info: the hash value of a DIE
6596 is its offset in .debug_info for this objfile. */
10b3939b 6597
dee91e82
DE
6598static hashval_t
6599die_hash (const void *item)
10b3939b 6600{
dee91e82 6601 const struct die_info *die = item;
6502dd73 6602
dee91e82
DE
6603 return die->offset.sect_off;
6604}
63d06c5c 6605
dee91e82
DE
6606/* Trivial comparison function for die_info structures: two DIEs
6607 are equal if they have the same offset. */
98bfdba5 6608
dee91e82
DE
6609static int
6610die_eq (const void *item_lhs, const void *item_rhs)
6611{
6612 const struct die_info *die_lhs = item_lhs;
6613 const struct die_info *die_rhs = item_rhs;
c906108c 6614
dee91e82
DE
6615 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6616}
c906108c 6617
dee91e82
DE
6618/* die_reader_func for load_full_comp_unit.
6619 This is identical to read_signatured_type_reader,
6620 but is kept separate for now. */
c906108c 6621
dee91e82
DE
6622static void
6623load_full_comp_unit_reader (const struct die_reader_specs *reader,
6624 gdb_byte *info_ptr,
6625 struct die_info *comp_unit_die,
6626 int has_children,
6627 void *data)
6628{
6629 struct dwarf2_cu *cu = reader->cu;
95554aad 6630 enum language *language_ptr = data;
6caca83c 6631
dee91e82
DE
6632 gdb_assert (cu->die_hash == NULL);
6633 cu->die_hash =
6634 htab_create_alloc_ex (cu->header.length / 12,
6635 die_hash,
6636 die_eq,
6637 NULL,
6638 &cu->comp_unit_obstack,
6639 hashtab_obstack_allocate,
6640 dummy_obstack_deallocate);
e142c38c 6641
dee91e82
DE
6642 if (has_children)
6643 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6644 &info_ptr, comp_unit_die);
6645 cu->dies = comp_unit_die;
6646 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
6647
6648 /* We try not to read any attributes in this function, because not
9cdd5dbd 6649 all CUs needed for references have been loaded yet, and symbol
10b3939b 6650 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
6651 or we won't be able to build types correctly.
6652 Similarly, if we do not read the producer, we can not apply
6653 producer-specific interpretation. */
95554aad 6654 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 6655}
10b3939b 6656
dee91e82 6657/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 6658
dee91e82 6659static void
95554aad
TT
6660load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6661 enum language pretend_language)
dee91e82 6662{
3019eac3 6663 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 6664
f4dc4d17
DE
6665 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6666 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
6667}
6668
3da10d80
KS
6669/* Add a DIE to the delayed physname list. */
6670
6671static void
6672add_to_method_list (struct type *type, int fnfield_index, int index,
6673 const char *name, struct die_info *die,
6674 struct dwarf2_cu *cu)
6675{
6676 struct delayed_method_info mi;
6677 mi.type = type;
6678 mi.fnfield_index = fnfield_index;
6679 mi.index = index;
6680 mi.name = name;
6681 mi.die = die;
6682 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6683}
6684
6685/* A cleanup for freeing the delayed method list. */
6686
6687static void
6688free_delayed_list (void *ptr)
6689{
6690 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6691 if (cu->method_list != NULL)
6692 {
6693 VEC_free (delayed_method_info, cu->method_list);
6694 cu->method_list = NULL;
6695 }
6696}
6697
6698/* Compute the physnames of any methods on the CU's method list.
6699
6700 The computation of method physnames is delayed in order to avoid the
6701 (bad) condition that one of the method's formal parameters is of an as yet
6702 incomplete type. */
6703
6704static void
6705compute_delayed_physnames (struct dwarf2_cu *cu)
6706{
6707 int i;
6708 struct delayed_method_info *mi;
6709 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6710 {
1d06ead6 6711 const char *physname;
3da10d80
KS
6712 struct fn_fieldlist *fn_flp
6713 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
1d06ead6 6714 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
3da10d80
KS
6715 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6716 }
6717}
6718
a766d390
DE
6719/* Go objects should be embedded in a DW_TAG_module DIE,
6720 and it's not clear if/how imported objects will appear.
6721 To keep Go support simple until that's worked out,
6722 go back through what we've read and create something usable.
6723 We could do this while processing each DIE, and feels kinda cleaner,
6724 but that way is more invasive.
6725 This is to, for example, allow the user to type "p var" or "b main"
6726 without having to specify the package name, and allow lookups
6727 of module.object to work in contexts that use the expression
6728 parser. */
6729
6730static void
6731fixup_go_packaging (struct dwarf2_cu *cu)
6732{
6733 char *package_name = NULL;
6734 struct pending *list;
6735 int i;
6736
6737 for (list = global_symbols; list != NULL; list = list->next)
6738 {
6739 for (i = 0; i < list->nsyms; ++i)
6740 {
6741 struct symbol *sym = list->symbol[i];
6742
6743 if (SYMBOL_LANGUAGE (sym) == language_go
6744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6745 {
6746 char *this_package_name = go_symbol_package_name (sym);
6747
6748 if (this_package_name == NULL)
6749 continue;
6750 if (package_name == NULL)
6751 package_name = this_package_name;
6752 else
6753 {
6754 if (strcmp (package_name, this_package_name) != 0)
6755 complaint (&symfile_complaints,
6756 _("Symtab %s has objects from two different Go packages: %s and %s"),
6757 (sym->symtab && sym->symtab->filename
6758 ? sym->symtab->filename
6759 : cu->objfile->name),
6760 this_package_name, package_name);
6761 xfree (this_package_name);
6762 }
6763 }
6764 }
6765 }
6766
6767 if (package_name != NULL)
6768 {
6769 struct objfile *objfile = cu->objfile;
6770 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6771 package_name, objfile);
6772 struct symbol *sym;
6773
6774 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6775
6776 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6777 SYMBOL_SET_LANGUAGE (sym, language_go);
6778 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6779 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6780 e.g., "main" finds the "main" module and not C's main(). */
6781 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6782 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6783 SYMBOL_TYPE (sym) = type;
6784
6785 add_symbol_to_list (sym, &global_symbols);
6786
6787 xfree (package_name);
6788 }
6789}
6790
95554aad
TT
6791static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6792
6793/* Return the symtab for PER_CU. This works properly regardless of
6794 whether we're using the index or psymtabs. */
6795
6796static struct symtab *
6797get_symtab (struct dwarf2_per_cu_data *per_cu)
6798{
6799 return (dwarf2_per_objfile->using_index
6800 ? per_cu->v.quick->symtab
6801 : per_cu->v.psymtab->symtab);
6802}
6803
6804/* A helper function for computing the list of all symbol tables
6805 included by PER_CU. */
6806
6807static void
6808recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6809 htab_t all_children,
6810 struct dwarf2_per_cu_data *per_cu)
6811{
6812 void **slot;
6813 int ix;
6814 struct dwarf2_per_cu_data *iter;
6815
6816 slot = htab_find_slot (all_children, per_cu, INSERT);
6817 if (*slot != NULL)
6818 {
6819 /* This inclusion and its children have been processed. */
6820 return;
6821 }
6822
6823 *slot = per_cu;
6824 /* Only add a CU if it has a symbol table. */
6825 if (get_symtab (per_cu) != NULL)
6826 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6827
6828 for (ix = 0;
f4dc4d17 6829 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
95554aad
TT
6830 ++ix)
6831 recursively_compute_inclusions (result, all_children, iter);
6832}
6833
6834/* Compute the symtab 'includes' fields for the symtab related to
6835 PER_CU. */
6836
6837static void
6838compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6839{
f4dc4d17
DE
6840 gdb_assert (! per_cu->is_debug_types);
6841
6842 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
95554aad
TT
6843 {
6844 int ix, len;
6845 struct dwarf2_per_cu_data *iter;
6846 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6847 htab_t all_children;
6848 struct symtab *symtab = get_symtab (per_cu);
6849
6850 /* If we don't have a symtab, we can just skip this case. */
6851 if (symtab == NULL)
6852 return;
6853
6854 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6855 NULL, xcalloc, xfree);
6856
6857 for (ix = 0;
f4dc4d17 6858 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
95554aad
TT
6859 ix, iter);
6860 ++ix)
6861 recursively_compute_inclusions (&result_children, all_children, iter);
6862
6863 /* Now we have a transitive closure of all the included CUs, so
6864 we can convert it to a list of symtabs. */
6865 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6866 symtab->includes
6867 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6868 (len + 1) * sizeof (struct symtab *));
6869 for (ix = 0;
6870 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6871 ++ix)
6872 symtab->includes[ix] = get_symtab (iter);
6873 symtab->includes[len] = NULL;
6874
6875 VEC_free (dwarf2_per_cu_ptr, result_children);
6876 htab_delete (all_children);
6877 }
6878}
6879
6880/* Compute the 'includes' field for the symtabs of all the CUs we just
6881 read. */
6882
6883static void
6884process_cu_includes (void)
6885{
6886 int ix;
6887 struct dwarf2_per_cu_data *iter;
6888
6889 for (ix = 0;
6890 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6891 ix, iter);
6892 ++ix)
f4dc4d17
DE
6893 {
6894 if (! iter->is_debug_types)
6895 compute_symtab_includes (iter);
6896 }
95554aad
TT
6897
6898 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6899}
6900
9cdd5dbd 6901/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
6902 already been loaded into memory. */
6903
6904static void
95554aad
TT
6905process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6906 enum language pretend_language)
10b3939b 6907{
10b3939b 6908 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 6909 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
6910 CORE_ADDR lowpc, highpc;
6911 struct symtab *symtab;
3da10d80 6912 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 6913 CORE_ADDR baseaddr;
4359dff1 6914 struct block *static_block;
10b3939b
DJ
6915
6916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6917
10b3939b
DJ
6918 buildsym_init ();
6919 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 6920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
6921
6922 cu->list_in_scope = &file_symbols;
c906108c 6923
95554aad
TT
6924 cu->language = pretend_language;
6925 cu->language_defn = language_def (cu->language);
6926
c906108c 6927 /* Do line number decoding in read_file_scope () */
10b3939b 6928 process_die (cu->dies, cu);
c906108c 6929
a766d390
DE
6930 /* For now fudge the Go package. */
6931 if (cu->language == language_go)
6932 fixup_go_packaging (cu);
6933
3da10d80
KS
6934 /* Now that we have processed all the DIEs in the CU, all the types
6935 should be complete, and it should now be safe to compute all of the
6936 physnames. */
6937 compute_delayed_physnames (cu);
6938 do_cleanups (delayed_list_cleanup);
6939
fae299cd
DC
6940 /* Some compilers don't define a DW_AT_high_pc attribute for the
6941 compilation unit. If the DW_AT_high_pc is missing, synthesize
6942 it, by scanning the DIE's below the compilation unit. */
10b3939b 6943 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 6944
36586728
TT
6945 static_block
6946 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6947 per_cu->s.imported_symtabs != NULL);
4359dff1
JK
6948
6949 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6950 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6951 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6952 addrmap to help ensure it has an accurate map of pc values belonging to
6953 this comp unit. */
6954 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6955
6956 symtab = end_symtab_from_static_block (static_block, objfile,
6957 SECT_OFF_TEXT (objfile), 0);
c906108c 6958
8be455d7 6959 if (symtab != NULL)
c906108c 6960 {
df15bd07 6961 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 6962
8be455d7
JK
6963 /* Set symtab language to language from DW_AT_language. If the
6964 compilation is from a C file generated by language preprocessors, do
6965 not set the language if it was already deduced by start_subfile. */
6966 if (!(cu->language == language_c && symtab->language != language_c))
6967 symtab->language = cu->language;
6968
6969 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6970 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
6971 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6972 there were bugs in prologue debug info, fixed later in GCC-4.5
6973 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
6974
6975 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6976 needed, it would be wrong due to missing DW_AT_producer there.
6977
6978 Still one can confuse GDB by using non-standard GCC compilation
6979 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6980 */
ab260dad 6981 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 6982 symtab->locations_valid = 1;
e0d00bc7
JK
6983
6984 if (gcc_4_minor >= 5)
6985 symtab->epilogue_unwind_valid = 1;
96408a79
SA
6986
6987 symtab->call_site_htab = cu->call_site_htab;
c906108c 6988 }
9291a0cd
TT
6989
6990 if (dwarf2_per_objfile->using_index)
6991 per_cu->v.quick->symtab = symtab;
6992 else
6993 {
6994 struct partial_symtab *pst = per_cu->v.psymtab;
6995 pst->symtab = symtab;
6996 pst->readin = 1;
6997 }
c906108c 6998
95554aad
TT
6999 /* Push it for inclusion processing later. */
7000 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7001
c906108c 7002 do_cleanups (back_to);
f4dc4d17 7003}
45cfd468 7004
f4dc4d17
DE
7005/* Generate full symbol information for type unit PER_CU, whose DIEs have
7006 already been loaded into memory. */
7007
7008static void
7009process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7010 enum language pretend_language)
7011{
7012 struct dwarf2_cu *cu = per_cu->cu;
7013 struct objfile *objfile = per_cu->objfile;
7014 struct symtab *symtab;
7015 struct cleanup *back_to, *delayed_list_cleanup;
7016
7017 buildsym_init ();
7018 back_to = make_cleanup (really_free_pendings, NULL);
7019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7020
7021 cu->list_in_scope = &file_symbols;
7022
7023 cu->language = pretend_language;
7024 cu->language_defn = language_def (cu->language);
7025
7026 /* The symbol tables are set up in read_type_unit_scope. */
7027 process_die (cu->dies, cu);
7028
7029 /* For now fudge the Go package. */
7030 if (cu->language == language_go)
7031 fixup_go_packaging (cu);
7032
7033 /* Now that we have processed all the DIEs in the CU, all the types
7034 should be complete, and it should now be safe to compute all of the
7035 physnames. */
7036 compute_delayed_physnames (cu);
7037 do_cleanups (delayed_list_cleanup);
7038
7039 /* TUs share symbol tables.
7040 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7041 of it with end_expandable_symtab. Otherwise, complete the addition of
7042 this TU's symbols to the existing symtab. */
f4dc4d17 7043 if (per_cu->s.type_unit_group->primary_symtab == NULL)
45cfd468 7044 {
f4dc4d17
DE
7045 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7046 per_cu->s.type_unit_group->primary_symtab = symtab;
7047
7048 if (symtab != NULL)
7049 {
7050 /* Set symtab language to language from DW_AT_language. If the
7051 compilation is from a C file generated by language preprocessors,
7052 do not set the language if it was already deduced by
7053 start_subfile. */
7054 if (!(cu->language == language_c && symtab->language != language_c))
7055 symtab->language = cu->language;
7056 }
7057 }
7058 else
7059 {
7060 augment_type_symtab (objfile,
7061 per_cu->s.type_unit_group->primary_symtab);
7062 symtab = per_cu->s.type_unit_group->primary_symtab;
7063 }
7064
7065 if (dwarf2_per_objfile->using_index)
7066 per_cu->v.quick->symtab = symtab;
7067 else
7068 {
7069 struct partial_symtab *pst = per_cu->v.psymtab;
7070 pst->symtab = symtab;
7071 pst->readin = 1;
45cfd468 7072 }
f4dc4d17
DE
7073
7074 do_cleanups (back_to);
c906108c
SS
7075}
7076
95554aad
TT
7077/* Process an imported unit DIE. */
7078
7079static void
7080process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7081{
7082 struct attribute *attr;
7083
f4dc4d17
DE
7084 /* For now we don't handle imported units in type units. */
7085 if (cu->per_cu->is_debug_types)
7086 {
7087 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7088 " supported in type units [in module %s]"),
7089 cu->objfile->name);
7090 }
7091
95554aad
TT
7092 attr = dwarf2_attr (die, DW_AT_import, cu);
7093 if (attr != NULL)
7094 {
7095 struct dwarf2_per_cu_data *per_cu;
7096 struct symtab *imported_symtab;
7097 sect_offset offset;
36586728 7098 int is_dwz;
95554aad
TT
7099
7100 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7101 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7102 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7103
7104 /* Queue the unit, if needed. */
7105 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7106 load_full_comp_unit (per_cu, cu->language);
7107
f4dc4d17 7108 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
95554aad
TT
7109 per_cu);
7110 }
7111}
7112
c906108c
SS
7113/* Process a die and its children. */
7114
7115static void
e7c27a73 7116process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7117{
7118 switch (die->tag)
7119 {
7120 case DW_TAG_padding:
7121 break;
7122 case DW_TAG_compile_unit:
95554aad 7123 case DW_TAG_partial_unit:
e7c27a73 7124 read_file_scope (die, cu);
c906108c 7125 break;
348e048f
DE
7126 case DW_TAG_type_unit:
7127 read_type_unit_scope (die, cu);
7128 break;
c906108c 7129 case DW_TAG_subprogram:
c906108c 7130 case DW_TAG_inlined_subroutine:
edb3359d 7131 read_func_scope (die, cu);
c906108c
SS
7132 break;
7133 case DW_TAG_lexical_block:
14898363
L
7134 case DW_TAG_try_block:
7135 case DW_TAG_catch_block:
e7c27a73 7136 read_lexical_block_scope (die, cu);
c906108c 7137 break;
96408a79
SA
7138 case DW_TAG_GNU_call_site:
7139 read_call_site_scope (die, cu);
7140 break;
c906108c 7141 case DW_TAG_class_type:
680b30c7 7142 case DW_TAG_interface_type:
c906108c
SS
7143 case DW_TAG_structure_type:
7144 case DW_TAG_union_type:
134d01f1 7145 process_structure_scope (die, cu);
c906108c
SS
7146 break;
7147 case DW_TAG_enumeration_type:
134d01f1 7148 process_enumeration_scope (die, cu);
c906108c 7149 break;
134d01f1 7150
f792889a
DJ
7151 /* These dies have a type, but processing them does not create
7152 a symbol or recurse to process the children. Therefore we can
7153 read them on-demand through read_type_die. */
c906108c 7154 case DW_TAG_subroutine_type:
72019c9c 7155 case DW_TAG_set_type:
c906108c 7156 case DW_TAG_array_type:
c906108c 7157 case DW_TAG_pointer_type:
c906108c 7158 case DW_TAG_ptr_to_member_type:
c906108c 7159 case DW_TAG_reference_type:
c906108c 7160 case DW_TAG_string_type:
c906108c 7161 break;
134d01f1 7162
c906108c 7163 case DW_TAG_base_type:
a02abb62 7164 case DW_TAG_subrange_type:
cb249c71 7165 case DW_TAG_typedef:
134d01f1
DJ
7166 /* Add a typedef symbol for the type definition, if it has a
7167 DW_AT_name. */
f792889a 7168 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7169 break;
c906108c 7170 case DW_TAG_common_block:
e7c27a73 7171 read_common_block (die, cu);
c906108c
SS
7172 break;
7173 case DW_TAG_common_inclusion:
7174 break;
d9fa45fe 7175 case DW_TAG_namespace:
63d06c5c 7176 processing_has_namespace_info = 1;
e7c27a73 7177 read_namespace (die, cu);
d9fa45fe 7178 break;
5d7cb8df 7179 case DW_TAG_module:
f55ee35c 7180 processing_has_namespace_info = 1;
5d7cb8df
JK
7181 read_module (die, cu);
7182 break;
d9fa45fe
DC
7183 case DW_TAG_imported_declaration:
7184 case DW_TAG_imported_module:
63d06c5c 7185 processing_has_namespace_info = 1;
27aa8d6a
SW
7186 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7187 || cu->language != language_fortran))
7188 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7189 dwarf_tag_name (die->tag));
7190 read_import_statement (die, cu);
d9fa45fe 7191 break;
95554aad
TT
7192
7193 case DW_TAG_imported_unit:
7194 process_imported_unit_die (die, cu);
7195 break;
7196
c906108c 7197 default:
e7c27a73 7198 new_symbol (die, NULL, cu);
c906108c
SS
7199 break;
7200 }
7201}
7202
94af9270
KS
7203/* A helper function for dwarf2_compute_name which determines whether DIE
7204 needs to have the name of the scope prepended to the name listed in the
7205 die. */
7206
7207static int
7208die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7209{
1c809c68
TT
7210 struct attribute *attr;
7211
94af9270
KS
7212 switch (die->tag)
7213 {
7214 case DW_TAG_namespace:
7215 case DW_TAG_typedef:
7216 case DW_TAG_class_type:
7217 case DW_TAG_interface_type:
7218 case DW_TAG_structure_type:
7219 case DW_TAG_union_type:
7220 case DW_TAG_enumeration_type:
7221 case DW_TAG_enumerator:
7222 case DW_TAG_subprogram:
7223 case DW_TAG_member:
7224 return 1;
7225
7226 case DW_TAG_variable:
c2b0a229 7227 case DW_TAG_constant:
94af9270
KS
7228 /* We only need to prefix "globally" visible variables. These include
7229 any variable marked with DW_AT_external or any variable that
7230 lives in a namespace. [Variables in anonymous namespaces
7231 require prefixing, but they are not DW_AT_external.] */
7232
7233 if (dwarf2_attr (die, DW_AT_specification, cu))
7234 {
7235 struct dwarf2_cu *spec_cu = cu;
9a619af0 7236
94af9270
KS
7237 return die_needs_namespace (die_specification (die, &spec_cu),
7238 spec_cu);
7239 }
7240
1c809c68 7241 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7242 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7243 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7244 return 0;
7245 /* A variable in a lexical block of some kind does not need a
7246 namespace, even though in C++ such variables may be external
7247 and have a mangled name. */
7248 if (die->parent->tag == DW_TAG_lexical_block
7249 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7250 || die->parent->tag == DW_TAG_catch_block
7251 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7252 return 0;
7253 return 1;
94af9270
KS
7254
7255 default:
7256 return 0;
7257 }
7258}
7259
98bfdba5
PA
7260/* Retrieve the last character from a mem_file. */
7261
7262static void
7263do_ui_file_peek_last (void *object, const char *buffer, long length)
7264{
7265 char *last_char_p = (char *) object;
7266
7267 if (length > 0)
7268 *last_char_p = buffer[length - 1];
7269}
7270
94af9270 7271/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7272 compute the physname for the object, which include a method's:
7273 - formal parameters (C++/Java),
7274 - receiver type (Go),
7275 - return type (Java).
7276
7277 The term "physname" is a bit confusing.
7278 For C++, for example, it is the demangled name.
7279 For Go, for example, it's the mangled name.
94af9270 7280
af6b7be1
JB
7281 For Ada, return the DIE's linkage name rather than the fully qualified
7282 name. PHYSNAME is ignored..
7283
94af9270
KS
7284 The result is allocated on the objfile_obstack and canonicalized. */
7285
7286static const char *
7287dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7288 int physname)
7289{
bb5ed363
DE
7290 struct objfile *objfile = cu->objfile;
7291
94af9270
KS
7292 if (name == NULL)
7293 name = dwarf2_name (die, cu);
7294
f55ee35c
JK
7295 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7296 compute it by typename_concat inside GDB. */
7297 if (cu->language == language_ada
7298 || (cu->language == language_fortran && physname))
7299 {
7300 /* For Ada unit, we prefer the linkage name over the name, as
7301 the former contains the exported name, which the user expects
7302 to be able to reference. Ideally, we want the user to be able
7303 to reference this entity using either natural or linkage name,
7304 but we haven't started looking at this enhancement yet. */
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7308 if (attr == NULL)
7309 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7310 if (attr && DW_STRING (attr))
7311 return DW_STRING (attr);
7312 }
7313
94af9270
KS
7314 /* These are the only languages we know how to qualify names in. */
7315 if (name != NULL
f55ee35c
JK
7316 && (cu->language == language_cplus || cu->language == language_java
7317 || cu->language == language_fortran))
94af9270
KS
7318 {
7319 if (die_needs_namespace (die, cu))
7320 {
7321 long length;
0d5cff50 7322 const char *prefix;
94af9270
KS
7323 struct ui_file *buf;
7324
7325 prefix = determine_prefix (die, cu);
7326 buf = mem_fileopen ();
7327 if (*prefix != '\0')
7328 {
f55ee35c
JK
7329 char *prefixed_name = typename_concat (NULL, prefix, name,
7330 physname, cu);
9a619af0 7331
94af9270
KS
7332 fputs_unfiltered (prefixed_name, buf);
7333 xfree (prefixed_name);
7334 }
7335 else
62d5b8da 7336 fputs_unfiltered (name, buf);
94af9270 7337
98bfdba5
PA
7338 /* Template parameters may be specified in the DIE's DW_AT_name, or
7339 as children with DW_TAG_template_type_param or
7340 DW_TAG_value_type_param. If the latter, add them to the name
7341 here. If the name already has template parameters, then
7342 skip this step; some versions of GCC emit both, and
7343 it is more efficient to use the pre-computed name.
7344
7345 Something to keep in mind about this process: it is very
7346 unlikely, or in some cases downright impossible, to produce
7347 something that will match the mangled name of a function.
7348 If the definition of the function has the same debug info,
7349 we should be able to match up with it anyway. But fallbacks
7350 using the minimal symbol, for instance to find a method
7351 implemented in a stripped copy of libstdc++, will not work.
7352 If we do not have debug info for the definition, we will have to
7353 match them up some other way.
7354
7355 When we do name matching there is a related problem with function
7356 templates; two instantiated function templates are allowed to
7357 differ only by their return types, which we do not add here. */
7358
7359 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7360 {
7361 struct attribute *attr;
7362 struct die_info *child;
7363 int first = 1;
7364
7365 die->building_fullname = 1;
7366
7367 for (child = die->child; child != NULL; child = child->sibling)
7368 {
7369 struct type *type;
12df843f 7370 LONGEST value;
98bfdba5
PA
7371 gdb_byte *bytes;
7372 struct dwarf2_locexpr_baton *baton;
7373 struct value *v;
7374
7375 if (child->tag != DW_TAG_template_type_param
7376 && child->tag != DW_TAG_template_value_param)
7377 continue;
7378
7379 if (first)
7380 {
7381 fputs_unfiltered ("<", buf);
7382 first = 0;
7383 }
7384 else
7385 fputs_unfiltered (", ", buf);
7386
7387 attr = dwarf2_attr (child, DW_AT_type, cu);
7388 if (attr == NULL)
7389 {
7390 complaint (&symfile_complaints,
7391 _("template parameter missing DW_AT_type"));
7392 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7393 continue;
7394 }
7395 type = die_type (child, cu);
7396
7397 if (child->tag == DW_TAG_template_type_param)
7398 {
79d43c61 7399 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
7400 continue;
7401 }
7402
7403 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7404 if (attr == NULL)
7405 {
7406 complaint (&symfile_complaints,
3e43a32a
MS
7407 _("template parameter missing "
7408 "DW_AT_const_value"));
98bfdba5
PA
7409 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7410 continue;
7411 }
7412
7413 dwarf2_const_value_attr (attr, type, name,
7414 &cu->comp_unit_obstack, cu,
7415 &value, &bytes, &baton);
7416
7417 if (TYPE_NOSIGN (type))
7418 /* GDB prints characters as NUMBER 'CHAR'. If that's
7419 changed, this can use value_print instead. */
7420 c_printchar (value, type, buf);
7421 else
7422 {
7423 struct value_print_options opts;
7424
7425 if (baton != NULL)
7426 v = dwarf2_evaluate_loc_desc (type, NULL,
7427 baton->data,
7428 baton->size,
7429 baton->per_cu);
7430 else if (bytes != NULL)
7431 {
7432 v = allocate_value (type);
7433 memcpy (value_contents_writeable (v), bytes,
7434 TYPE_LENGTH (type));
7435 }
7436 else
7437 v = value_from_longest (type, value);
7438
3e43a32a
MS
7439 /* Specify decimal so that we do not depend on
7440 the radix. */
98bfdba5
PA
7441 get_formatted_print_options (&opts, 'd');
7442 opts.raw = 1;
7443 value_print (v, buf, &opts);
7444 release_value (v);
7445 value_free (v);
7446 }
7447 }
7448
7449 die->building_fullname = 0;
7450
7451 if (!first)
7452 {
7453 /* Close the argument list, with a space if necessary
7454 (nested templates). */
7455 char last_char = '\0';
7456 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7457 if (last_char == '>')
7458 fputs_unfiltered (" >", buf);
7459 else
7460 fputs_unfiltered (">", buf);
7461 }
7462 }
7463
94af9270
KS
7464 /* For Java and C++ methods, append formal parameter type
7465 information, if PHYSNAME. */
6e70227d 7466
94af9270
KS
7467 if (physname && die->tag == DW_TAG_subprogram
7468 && (cu->language == language_cplus
7469 || cu->language == language_java))
7470 {
7471 struct type *type = read_type_die (die, cu);
7472
79d43c61
TT
7473 c_type_print_args (type, buf, 1, cu->language,
7474 &type_print_raw_options);
94af9270
KS
7475
7476 if (cu->language == language_java)
7477 {
7478 /* For java, we must append the return type to method
0963b4bd 7479 names. */
94af9270
KS
7480 if (die->tag == DW_TAG_subprogram)
7481 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 7482 0, 0, &type_print_raw_options);
94af9270
KS
7483 }
7484 else if (cu->language == language_cplus)
7485 {
60430eff
DJ
7486 /* Assume that an artificial first parameter is
7487 "this", but do not crash if it is not. RealView
7488 marks unnamed (and thus unused) parameters as
7489 artificial; there is no way to differentiate
7490 the two cases. */
94af9270
KS
7491 if (TYPE_NFIELDS (type) > 0
7492 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 7493 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
7494 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7495 0))))
94af9270
KS
7496 fputs_unfiltered (" const", buf);
7497 }
7498 }
7499
bb5ed363 7500 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
7501 &length);
7502 ui_file_delete (buf);
7503
7504 if (cu->language == language_cplus)
7505 {
7506 char *cname
7507 = dwarf2_canonicalize_name (name, cu,
bb5ed363 7508 &objfile->objfile_obstack);
9a619af0 7509
94af9270
KS
7510 if (cname != NULL)
7511 name = cname;
7512 }
7513 }
7514 }
7515
7516 return name;
7517}
7518
0114d602
DJ
7519/* Return the fully qualified name of DIE, based on its DW_AT_name.
7520 If scope qualifiers are appropriate they will be added. The result
7521 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
7522 not have a name. NAME may either be from a previous call to
7523 dwarf2_name or NULL.
7524
0963b4bd 7525 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
7526
7527static const char *
94af9270 7528dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 7529{
94af9270
KS
7530 return dwarf2_compute_name (name, die, cu, 0);
7531}
0114d602 7532
94af9270
KS
7533/* Construct a physname for the given DIE in CU. NAME may either be
7534 from a previous call to dwarf2_name or NULL. The result will be
7535 allocated on the objfile_objstack or NULL if the DIE does not have a
7536 name.
0114d602 7537
94af9270 7538 The output string will be canonicalized (if C++/Java). */
0114d602 7539
94af9270
KS
7540static const char *
7541dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7542{
bb5ed363 7543 struct objfile *objfile = cu->objfile;
900e11f9
JK
7544 struct attribute *attr;
7545 const char *retval, *mangled = NULL, *canon = NULL;
7546 struct cleanup *back_to;
7547 int need_copy = 1;
7548
7549 /* In this case dwarf2_compute_name is just a shortcut not building anything
7550 on its own. */
7551 if (!die_needs_namespace (die, cu))
7552 return dwarf2_compute_name (name, die, cu, 1);
7553
7554 back_to = make_cleanup (null_cleanup, NULL);
7555
7556 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7557 if (!attr)
7558 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7559
7560 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7561 has computed. */
7562 if (attr && DW_STRING (attr))
7563 {
7564 char *demangled;
7565
7566 mangled = DW_STRING (attr);
7567
7568 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7569 type. It is easier for GDB users to search for such functions as
7570 `name(params)' than `long name(params)'. In such case the minimal
7571 symbol names do not match the full symbol names but for template
7572 functions there is never a need to look up their definition from their
7573 declaration so the only disadvantage remains the minimal symbol
7574 variant `long name(params)' does not have the proper inferior type.
7575 */
7576
a766d390
DE
7577 if (cu->language == language_go)
7578 {
7579 /* This is a lie, but we already lie to the caller new_symbol_full.
7580 new_symbol_full assumes we return the mangled name.
7581 This just undoes that lie until things are cleaned up. */
7582 demangled = NULL;
7583 }
7584 else
7585 {
7586 demangled = cplus_demangle (mangled,
7587 (DMGL_PARAMS | DMGL_ANSI
7588 | (cu->language == language_java
7589 ? DMGL_JAVA | DMGL_RET_POSTFIX
7590 : DMGL_RET_DROP)));
7591 }
900e11f9
JK
7592 if (demangled)
7593 {
7594 make_cleanup (xfree, demangled);
7595 canon = demangled;
7596 }
7597 else
7598 {
7599 canon = mangled;
7600 need_copy = 0;
7601 }
7602 }
7603
7604 if (canon == NULL || check_physname)
7605 {
7606 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7607
7608 if (canon != NULL && strcmp (physname, canon) != 0)
7609 {
7610 /* It may not mean a bug in GDB. The compiler could also
7611 compute DW_AT_linkage_name incorrectly. But in such case
7612 GDB would need to be bug-to-bug compatible. */
7613
7614 complaint (&symfile_complaints,
7615 _("Computed physname <%s> does not match demangled <%s> "
7616 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 7617 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
7618
7619 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7620 is available here - over computed PHYSNAME. It is safer
7621 against both buggy GDB and buggy compilers. */
7622
7623 retval = canon;
7624 }
7625 else
7626 {
7627 retval = physname;
7628 need_copy = 0;
7629 }
7630 }
7631 else
7632 retval = canon;
7633
7634 if (need_copy)
7635 retval = obsavestring (retval, strlen (retval),
bb5ed363 7636 &objfile->objfile_obstack);
900e11f9
JK
7637
7638 do_cleanups (back_to);
7639 return retval;
0114d602
DJ
7640}
7641
27aa8d6a
SW
7642/* Read the import statement specified by the given die and record it. */
7643
7644static void
7645read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7646{
bb5ed363 7647 struct objfile *objfile = cu->objfile;
27aa8d6a 7648 struct attribute *import_attr;
32019081 7649 struct die_info *imported_die, *child_die;
de4affc9 7650 struct dwarf2_cu *imported_cu;
27aa8d6a 7651 const char *imported_name;
794684b6 7652 const char *imported_name_prefix;
13387711
SW
7653 const char *canonical_name;
7654 const char *import_alias;
7655 const char *imported_declaration = NULL;
794684b6 7656 const char *import_prefix;
32019081
JK
7657 VEC (const_char_ptr) *excludes = NULL;
7658 struct cleanup *cleanups;
13387711
SW
7659
7660 char *temp;
27aa8d6a
SW
7661
7662 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7663 if (import_attr == NULL)
7664 {
7665 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7666 dwarf_tag_name (die->tag));
7667 return;
7668 }
7669
de4affc9
CC
7670 imported_cu = cu;
7671 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7672 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
7673 if (imported_name == NULL)
7674 {
7675 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7676
7677 The import in the following code:
7678 namespace A
7679 {
7680 typedef int B;
7681 }
7682
7683 int main ()
7684 {
7685 using A::B;
7686 B b;
7687 return b;
7688 }
7689
7690 ...
7691 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7692 <52> DW_AT_decl_file : 1
7693 <53> DW_AT_decl_line : 6
7694 <54> DW_AT_import : <0x75>
7695 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7696 <59> DW_AT_name : B
7697 <5b> DW_AT_decl_file : 1
7698 <5c> DW_AT_decl_line : 2
7699 <5d> DW_AT_type : <0x6e>
7700 ...
7701 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7702 <76> DW_AT_byte_size : 4
7703 <77> DW_AT_encoding : 5 (signed)
7704
7705 imports the wrong die ( 0x75 instead of 0x58 ).
7706 This case will be ignored until the gcc bug is fixed. */
7707 return;
7708 }
7709
82856980
SW
7710 /* Figure out the local name after import. */
7711 import_alias = dwarf2_name (die, cu);
27aa8d6a 7712
794684b6
SW
7713 /* Figure out where the statement is being imported to. */
7714 import_prefix = determine_prefix (die, cu);
7715
7716 /* Figure out what the scope of the imported die is and prepend it
7717 to the name of the imported die. */
de4affc9 7718 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 7719
f55ee35c
JK
7720 if (imported_die->tag != DW_TAG_namespace
7721 && imported_die->tag != DW_TAG_module)
794684b6 7722 {
13387711
SW
7723 imported_declaration = imported_name;
7724 canonical_name = imported_name_prefix;
794684b6 7725 }
13387711 7726 else if (strlen (imported_name_prefix) > 0)
794684b6 7727 {
13387711
SW
7728 temp = alloca (strlen (imported_name_prefix)
7729 + 2 + strlen (imported_name) + 1);
7730 strcpy (temp, imported_name_prefix);
7731 strcat (temp, "::");
7732 strcat (temp, imported_name);
7733 canonical_name = temp;
794684b6 7734 }
13387711
SW
7735 else
7736 canonical_name = imported_name;
794684b6 7737
32019081
JK
7738 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7739
7740 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7741 for (child_die = die->child; child_die && child_die->tag;
7742 child_die = sibling_die (child_die))
7743 {
7744 /* DWARF-4: A Fortran use statement with a “rename list” may be
7745 represented by an imported module entry with an import attribute
7746 referring to the module and owned entries corresponding to those
7747 entities that are renamed as part of being imported. */
7748
7749 if (child_die->tag != DW_TAG_imported_declaration)
7750 {
7751 complaint (&symfile_complaints,
7752 _("child DW_TAG_imported_declaration expected "
7753 "- DIE at 0x%x [in module %s]"),
b64f50a1 7754 child_die->offset.sect_off, objfile->name);
32019081
JK
7755 continue;
7756 }
7757
7758 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7759 if (import_attr == NULL)
7760 {
7761 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7762 dwarf_tag_name (child_die->tag));
7763 continue;
7764 }
7765
7766 imported_cu = cu;
7767 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7768 &imported_cu);
7769 imported_name = dwarf2_name (imported_die, imported_cu);
7770 if (imported_name == NULL)
7771 {
7772 complaint (&symfile_complaints,
7773 _("child DW_TAG_imported_declaration has unknown "
7774 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 7775 child_die->offset.sect_off, objfile->name);
32019081
JK
7776 continue;
7777 }
7778
7779 VEC_safe_push (const_char_ptr, excludes, imported_name);
7780
7781 process_die (child_die, cu);
7782 }
7783
c0cc3a76
SW
7784 cp_add_using_directive (import_prefix,
7785 canonical_name,
7786 import_alias,
13387711 7787 imported_declaration,
32019081 7788 excludes,
bb5ed363 7789 &objfile->objfile_obstack);
32019081
JK
7790
7791 do_cleanups (cleanups);
27aa8d6a
SW
7792}
7793
f4dc4d17 7794/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 7795
cb1df416
DJ
7796static void
7797free_cu_line_header (void *arg)
7798{
7799 struct dwarf2_cu *cu = arg;
7800
7801 free_line_header (cu->line_header);
7802 cu->line_header = NULL;
7803}
7804
9291a0cd
TT
7805static void
7806find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7807 char **name, char **comp_dir)
7808{
7809 struct attribute *attr;
7810
7811 *name = NULL;
7812 *comp_dir = NULL;
7813
7814 /* Find the filename. Do not use dwarf2_name here, since the filename
7815 is not a source language identifier. */
7816 attr = dwarf2_attr (die, DW_AT_name, cu);
7817 if (attr)
7818 {
7819 *name = DW_STRING (attr);
7820 }
7821
7822 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7823 if (attr)
7824 *comp_dir = DW_STRING (attr);
7825 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7826 {
7827 *comp_dir = ldirname (*name);
7828 if (*comp_dir != NULL)
7829 make_cleanup (xfree, *comp_dir);
7830 }
7831 if (*comp_dir != NULL)
7832 {
7833 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7834 directory, get rid of it. */
7835 char *cp = strchr (*comp_dir, ':');
7836
7837 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7838 *comp_dir = cp + 1;
7839 }
7840
7841 if (*name == NULL)
7842 *name = "<unknown>";
7843}
7844
f4dc4d17
DE
7845/* Handle DW_AT_stmt_list for a compilation unit.
7846 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
7847 COMP_DIR is the compilation directory.
7848 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
7849
7850static void
7851handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
f4dc4d17 7852 const char *comp_dir)
2ab95328
TT
7853{
7854 struct attribute *attr;
2ab95328 7855
f4dc4d17
DE
7856 gdb_assert (! cu->per_cu->is_debug_types);
7857
2ab95328
TT
7858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7859 if (attr)
7860 {
7861 unsigned int line_offset = DW_UNSND (attr);
7862 struct line_header *line_header
3019eac3 7863 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
7864
7865 if (line_header)
dee91e82
DE
7866 {
7867 cu->line_header = line_header;
7868 make_cleanup (free_cu_line_header, cu);
f4dc4d17 7869 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 7870 }
2ab95328
TT
7871 }
7872}
7873
95554aad 7874/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 7875
c906108c 7876static void
e7c27a73 7877read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7878{
dee91e82 7879 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 7880 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 7881 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
7882 CORE_ADDR highpc = ((CORE_ADDR) 0);
7883 struct attribute *attr;
e1024ff1 7884 char *name = NULL;
c906108c
SS
7885 char *comp_dir = NULL;
7886 struct die_info *child_die;
7887 bfd *abfd = objfile->obfd;
e142c38c 7888 CORE_ADDR baseaddr;
6e70227d 7889
e142c38c 7890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7891
fae299cd 7892 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
7893
7894 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7895 from finish_block. */
2acceee2 7896 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
7897 lowpc = highpc;
7898 lowpc += baseaddr;
7899 highpc += baseaddr;
7900
9291a0cd 7901 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 7902
95554aad 7903 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 7904
f4b8a18d
KW
7905 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7906 standardised yet. As a workaround for the language detection we fall
7907 back to the DW_AT_producer string. */
7908 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7909 cu->language = language_opencl;
7910
3019eac3
DE
7911 /* Similar hack for Go. */
7912 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7913 set_cu_language (DW_LANG_Go, cu);
7914
f4dc4d17 7915 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
7916
7917 /* Decode line number information if present. We do this before
7918 processing child DIEs, so that the line header table is available
7919 for DW_AT_decl_file. */
f4dc4d17 7920 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
7921
7922 /* Process all dies in compilation unit. */
7923 if (die->child != NULL)
7924 {
7925 child_die = die->child;
7926 while (child_die && child_die->tag)
7927 {
7928 process_die (child_die, cu);
7929 child_die = sibling_die (child_die);
7930 }
7931 }
7932
7933 /* Decode macro information, if present. Dwarf 2 macro information
7934 refers to information in the line number info statement program
7935 header, so we can only read it if we've read the header
7936 successfully. */
7937 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7938 if (attr && cu->line_header)
7939 {
7940 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7941 complaint (&symfile_complaints,
7942 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7943
09262596 7944 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
7945 }
7946 else
7947 {
7948 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7949 if (attr && cu->line_header)
7950 {
7951 unsigned int macro_offset = DW_UNSND (attr);
7952
09262596 7953 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
7954 }
7955 }
7956
7957 do_cleanups (back_to);
7958}
7959
f4dc4d17
DE
7960/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7961 Create the set of symtabs used by this TU, or if this TU is sharing
7962 symtabs with another TU and the symtabs have already been created
7963 then restore those symtabs in the line header.
7964 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
7965
7966static void
f4dc4d17 7967setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 7968{
f4dc4d17
DE
7969 struct objfile *objfile = dwarf2_per_objfile->objfile;
7970 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7971 struct type_unit_group *tu_group;
7972 int first_time;
7973 struct line_header *lh;
3019eac3 7974 struct attribute *attr;
f4dc4d17 7975 unsigned int i, line_offset;
3019eac3 7976
f4dc4d17 7977 gdb_assert (per_cu->is_debug_types);
3019eac3 7978
f4dc4d17 7979 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 7980
f4dc4d17
DE
7981 /* If we're using .gdb_index (includes -readnow) then
7982 per_cu->s.type_unit_group may not have been set up yet. */
7983 if (per_cu->s.type_unit_group == NULL)
094b34ac 7984 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
f4dc4d17
DE
7985 tu_group = per_cu->s.type_unit_group;
7986
7987 /* If we've already processed this stmt_list there's no real need to
7988 do it again, we could fake it and just recreate the part we need
7989 (file name,index -> symtab mapping). If data shows this optimization
7990 is useful we can do it then. */
7991 first_time = tu_group->primary_symtab == NULL;
7992
7993 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7994 debug info. */
7995 lh = NULL;
7996 if (attr != NULL)
3019eac3 7997 {
f4dc4d17
DE
7998 line_offset = DW_UNSND (attr);
7999 lh = dwarf_decode_line_header (line_offset, cu);
8000 }
8001 if (lh == NULL)
8002 {
8003 if (first_time)
8004 dwarf2_start_symtab (cu, "", NULL, 0);
8005 else
8006 {
8007 gdb_assert (tu_group->symtabs == NULL);
8008 restart_symtab (0);
8009 }
8010 /* Note: The primary symtab will get allocated at the end. */
8011 return;
3019eac3
DE
8012 }
8013
f4dc4d17
DE
8014 cu->line_header = lh;
8015 make_cleanup (free_cu_line_header, cu);
3019eac3 8016
f4dc4d17
DE
8017 if (first_time)
8018 {
8019 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8020
f4dc4d17
DE
8021 tu_group->num_symtabs = lh->num_file_names;
8022 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8023
f4dc4d17
DE
8024 for (i = 0; i < lh->num_file_names; ++i)
8025 {
8026 char *dir = NULL;
8027 struct file_entry *fe = &lh->file_names[i];
3019eac3 8028
f4dc4d17
DE
8029 if (fe->dir_index)
8030 dir = lh->include_dirs[fe->dir_index - 1];
8031 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8032
f4dc4d17
DE
8033 /* Note: We don't have to watch for the main subfile here, type units
8034 don't have DW_AT_name. */
3019eac3 8035
f4dc4d17
DE
8036 if (current_subfile->symtab == NULL)
8037 {
8038 /* NOTE: start_subfile will recognize when it's been passed
8039 a file it has already seen. So we can't assume there's a
8040 simple mapping from lh->file_names to subfiles,
8041 lh->file_names may contain dups. */
8042 current_subfile->symtab = allocate_symtab (current_subfile->name,
8043 objfile);
8044 }
8045
8046 fe->symtab = current_subfile->symtab;
8047 tu_group->symtabs[i] = fe->symtab;
8048 }
8049 }
8050 else
3019eac3 8051 {
f4dc4d17
DE
8052 restart_symtab (0);
8053
8054 for (i = 0; i < lh->num_file_names; ++i)
8055 {
8056 struct file_entry *fe = &lh->file_names[i];
8057
8058 fe->symtab = tu_group->symtabs[i];
8059 }
3019eac3
DE
8060 }
8061
f4dc4d17
DE
8062 /* The main symtab is allocated last. Type units don't have DW_AT_name
8063 so they don't have a "real" (so to speak) symtab anyway.
8064 There is later code that will assign the main symtab to all symbols
8065 that don't have one. We need to handle the case of a symbol with a
8066 missing symtab (DW_AT_decl_file) anyway. */
8067}
3019eac3 8068
f4dc4d17
DE
8069/* Process DW_TAG_type_unit.
8070 For TUs we want to skip the first top level sibling if it's not the
8071 actual type being defined by this TU. In this case the first top
8072 level sibling is there to provide context only. */
3019eac3 8073
f4dc4d17
DE
8074static void
8075read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8076{
8077 struct die_info *child_die;
3019eac3 8078
f4dc4d17
DE
8079 prepare_one_comp_unit (cu, die, language_minimal);
8080
8081 /* Initialize (or reinitialize) the machinery for building symtabs.
8082 We do this before processing child DIEs, so that the line header table
8083 is available for DW_AT_decl_file. */
8084 setup_type_unit_groups (die, cu);
8085
8086 if (die->child != NULL)
8087 {
8088 child_die = die->child;
8089 while (child_die && child_die->tag)
8090 {
8091 process_die (child_die, cu);
8092 child_die = sibling_die (child_die);
8093 }
8094 }
3019eac3
DE
8095}
8096\f
80626a55
DE
8097/* DWO/DWP files.
8098
8099 http://gcc.gnu.org/wiki/DebugFission
8100 http://gcc.gnu.org/wiki/DebugFissionDWP
8101
8102 To simplify handling of both DWO files ("object" files with the DWARF info)
8103 and DWP files (a file with the DWOs packaged up into one file), we treat
8104 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8105
8106static hashval_t
8107hash_dwo_file (const void *item)
8108{
8109 const struct dwo_file *dwo_file = item;
8110
80626a55 8111 return htab_hash_string (dwo_file->name);
3019eac3
DE
8112}
8113
8114static int
8115eq_dwo_file (const void *item_lhs, const void *item_rhs)
8116{
8117 const struct dwo_file *lhs = item_lhs;
8118 const struct dwo_file *rhs = item_rhs;
8119
80626a55 8120 return strcmp (lhs->name, rhs->name) == 0;
3019eac3
DE
8121}
8122
8123/* Allocate a hash table for DWO files. */
8124
8125static htab_t
8126allocate_dwo_file_hash_table (void)
8127{
8128 struct objfile *objfile = dwarf2_per_objfile->objfile;
8129
8130 return htab_create_alloc_ex (41,
8131 hash_dwo_file,
8132 eq_dwo_file,
8133 NULL,
8134 &objfile->objfile_obstack,
8135 hashtab_obstack_allocate,
8136 dummy_obstack_deallocate);
8137}
8138
80626a55
DE
8139/* Lookup DWO file DWO_NAME. */
8140
8141static void **
8142lookup_dwo_file_slot (const char *dwo_name)
8143{
8144 struct dwo_file find_entry;
8145 void **slot;
8146
8147 if (dwarf2_per_objfile->dwo_files == NULL)
8148 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8149
8150 memset (&find_entry, 0, sizeof (find_entry));
8151 find_entry.name = dwo_name;
8152 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8153
8154 return slot;
8155}
8156
3019eac3
DE
8157static hashval_t
8158hash_dwo_unit (const void *item)
8159{
8160 const struct dwo_unit *dwo_unit = item;
8161
8162 /* This drops the top 32 bits of the id, but is ok for a hash. */
8163 return dwo_unit->signature;
8164}
8165
8166static int
8167eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8168{
8169 const struct dwo_unit *lhs = item_lhs;
8170 const struct dwo_unit *rhs = item_rhs;
8171
8172 /* The signature is assumed to be unique within the DWO file.
8173 So while object file CU dwo_id's always have the value zero,
8174 that's OK, assuming each object file DWO file has only one CU,
8175 and that's the rule for now. */
8176 return lhs->signature == rhs->signature;
8177}
8178
8179/* Allocate a hash table for DWO CUs,TUs.
8180 There is one of these tables for each of CUs,TUs for each DWO file. */
8181
8182static htab_t
8183allocate_dwo_unit_table (struct objfile *objfile)
8184{
8185 /* Start out with a pretty small number.
8186 Generally DWO files contain only one CU and maybe some TUs. */
8187 return htab_create_alloc_ex (3,
8188 hash_dwo_unit,
8189 eq_dwo_unit,
8190 NULL,
8191 &objfile->objfile_obstack,
8192 hashtab_obstack_allocate,
8193 dummy_obstack_deallocate);
8194}
8195
80626a55 8196/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3
DE
8197
8198struct create_dwo_info_table_data
8199{
8200 struct dwo_file *dwo_file;
8201 htab_t cu_htab;
8202};
8203
80626a55 8204/* die_reader_func for create_dwo_debug_info_hash_table. */
3019eac3
DE
8205
8206static void
80626a55
DE
8207create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8208 gdb_byte *info_ptr,
8209 struct die_info *comp_unit_die,
8210 int has_children,
8211 void *datap)
3019eac3
DE
8212{
8213 struct dwarf2_cu *cu = reader->cu;
8214 struct objfile *objfile = dwarf2_per_objfile->objfile;
8215 sect_offset offset = cu->per_cu->offset;
8216 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8217 struct create_dwo_info_table_data *data = datap;
8218 struct dwo_file *dwo_file = data->dwo_file;
8219 htab_t cu_htab = data->cu_htab;
8220 void **slot;
8221 struct attribute *attr;
8222 struct dwo_unit *dwo_unit;
8223
8224 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8225 if (attr == NULL)
8226 {
8227 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8228 " its dwo_id [in module %s]"),
80626a55 8229 offset.sect_off, dwo_file->name);
3019eac3
DE
8230 return;
8231 }
8232
8233 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8234 dwo_unit->dwo_file = dwo_file;
8235 dwo_unit->signature = DW_UNSND (attr);
8236 dwo_unit->info_or_types_section = section;
8237 dwo_unit->offset = offset;
8238 dwo_unit->length = cu->per_cu->length;
8239
8240 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8241 gdb_assert (slot != NULL);
8242 if (*slot != NULL)
8243 {
8244 const struct dwo_unit *dup_dwo_unit = *slot;
8245
8246 complaint (&symfile_complaints,
8247 _("debug entry at offset 0x%x is duplicate to the entry at"
8248 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8249 offset.sect_off, dup_dwo_unit->offset.sect_off,
8250 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
80626a55 8251 dwo_file->name);
3019eac3
DE
8252 }
8253 else
8254 *slot = dwo_unit;
8255
09406207 8256 if (dwarf2_read_debug)
3019eac3
DE
8257 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8258 offset.sect_off,
8259 phex (dwo_unit->signature,
8260 sizeof (dwo_unit->signature)));
8261}
8262
80626a55
DE
8263/* Create a hash table to map DWO IDs to their CU entry in
8264 .debug_info.dwo in DWO_FILE.
8265 Note: This function processes DWO files only, not DWP files. */
3019eac3
DE
8266
8267static htab_t
80626a55 8268create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
3019eac3
DE
8269{
8270 struct objfile *objfile = dwarf2_per_objfile->objfile;
8271 struct dwarf2_section_info *section = &dwo_file->sections.info;
8272 bfd *abfd;
8273 htab_t cu_htab;
8274 gdb_byte *info_ptr, *end_ptr;
8275 struct create_dwo_info_table_data create_dwo_info_table_data;
8276
8277 dwarf2_read_section (objfile, section);
8278 info_ptr = section->buffer;
8279
8280 if (info_ptr == NULL)
8281 return NULL;
8282
8283 /* We can't set abfd until now because the section may be empty or
8284 not present, in which case section->asection will be NULL. */
8285 abfd = section->asection->owner;
8286
09406207 8287 if (dwarf2_read_debug)
3019eac3
DE
8288 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8289 bfd_get_filename (abfd));
8290
8291 cu_htab = allocate_dwo_unit_table (objfile);
8292
8293 create_dwo_info_table_data.dwo_file = dwo_file;
8294 create_dwo_info_table_data.cu_htab = cu_htab;
8295
8296 end_ptr = info_ptr + section->size;
8297 while (info_ptr < end_ptr)
8298 {
8299 struct dwarf2_per_cu_data per_cu;
8300
8301 memset (&per_cu, 0, sizeof (per_cu));
8302 per_cu.objfile = objfile;
8303 per_cu.is_debug_types = 0;
8304 per_cu.offset.sect_off = info_ptr - section->buffer;
8305 per_cu.info_or_types_section = section;
8306
8307 init_cutu_and_read_dies_no_follow (&per_cu,
8308 &dwo_file->sections.abbrev,
8309 dwo_file,
80626a55 8310 create_dwo_debug_info_hash_table_reader,
3019eac3
DE
8311 &create_dwo_info_table_data);
8312
8313 info_ptr += per_cu.length;
8314 }
8315
8316 return cu_htab;
8317}
8318
80626a55
DE
8319/* DWP file .debug_{cu,tu}_index section format:
8320 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8321
8322 Both index sections have the same format, and serve to map a 64-bit
8323 signature to a set of section numbers. Each section begins with a header,
8324 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8325 indexes, and a pool of 32-bit section numbers. The index sections will be
8326 aligned at 8-byte boundaries in the file.
8327
8328 The index section header contains two unsigned 32-bit values (using the
8329 byte order of the application binary):
8330
8331 N, the number of compilation units or type units in the index
8332 M, the number of slots in the hash table
8333
8334 (We assume that N and M will not exceed 2^32 - 1.)
8335
8336 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8337
8338 The hash table begins at offset 8 in the section, and consists of an array
8339 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8340 order of the application binary). Unused slots in the hash table are 0.
8341 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8342
8343 The parallel table begins immediately after the hash table
8344 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8345 array of 32-bit indexes (using the byte order of the application binary),
8346 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8347 table contains a 32-bit index into the pool of section numbers. For unused
8348 hash table slots, the corresponding entry in the parallel table will be 0.
8349
8350 Given a 64-bit compilation unit signature or a type signature S, an entry
8351 in the hash table is located as follows:
8352
8353 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8354 the low-order k bits all set to 1.
8355
8356 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8357
8358 3) If the hash table entry at index H matches the signature, use that
8359 entry. If the hash table entry at index H is unused (all zeroes),
8360 terminate the search: the signature is not present in the table.
8361
8362 4) Let H = (H + H') modulo M. Repeat at Step 3.
8363
8364 Because M > N and H' and M are relatively prime, the search is guaranteed
8365 to stop at an unused slot or find the match.
8366
8367 The pool of section numbers begins immediately following the hash table
8368 (at offset 8 + 12 * M from the beginning of the section). The pool of
8369 section numbers consists of an array of 32-bit words (using the byte order
8370 of the application binary). Each item in the array is indexed starting
8371 from 0. The hash table entry provides the index of the first section
8372 number in the set. Additional section numbers in the set follow, and the
8373 set is terminated by a 0 entry (section number 0 is not used in ELF).
8374
8375 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8376 section must be the first entry in the set, and the .debug_abbrev.dwo must
8377 be the second entry. Other members of the set may follow in any order. */
8378
8379/* Create a hash table to map DWO IDs to their CU/TU entry in
8380 .debug_{info,types}.dwo in DWP_FILE.
8381 Returns NULL if there isn't one.
8382 Note: This function processes DWP files only, not DWO files. */
8383
8384static struct dwp_hash_table *
8385create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8386{
8387 struct objfile *objfile = dwarf2_per_objfile->objfile;
8388 bfd *dbfd = dwp_file->dbfd;
8389 char *index_ptr, *index_end;
8390 struct dwarf2_section_info *index;
8391 uint32_t version, nr_units, nr_slots;
8392 struct dwp_hash_table *htab;
8393
8394 if (is_debug_types)
8395 index = &dwp_file->sections.tu_index;
8396 else
8397 index = &dwp_file->sections.cu_index;
8398
8399 if (dwarf2_section_empty_p (index))
8400 return NULL;
8401 dwarf2_read_section (objfile, index);
8402
8403 index_ptr = index->buffer;
8404 index_end = index_ptr + index->size;
8405
8406 version = read_4_bytes (dbfd, index_ptr);
8407 index_ptr += 8; /* Skip the unused word. */
8408 nr_units = read_4_bytes (dbfd, index_ptr);
8409 index_ptr += 4;
8410 nr_slots = read_4_bytes (dbfd, index_ptr);
8411 index_ptr += 4;
8412
8413 if (version != 1)
8414 {
8415 error (_("Dwarf Error: unsupported DWP file version (%u)"
8416 " [in module %s]"),
8417 version, dwp_file->name);
8418 }
8419 if (nr_slots != (nr_slots & -nr_slots))
8420 {
8421 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8422 " is not power of 2 [in module %s]"),
8423 nr_slots, dwp_file->name);
8424 }
8425
8426 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8427 htab->nr_units = nr_units;
8428 htab->nr_slots = nr_slots;
8429 htab->hash_table = index_ptr;
8430 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8431 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8432
8433 return htab;
8434}
8435
8436/* Update SECTIONS with the data from SECTP.
8437
8438 This function is like the other "locate" section routines that are
8439 passed to bfd_map_over_sections, but in this context the sections to
8440 read comes from the DWP hash table, not the full ELF section table.
8441
8442 The result is non-zero for success, or zero if an error was found. */
8443
8444static int
8445locate_virtual_dwo_sections (asection *sectp,
8446 struct virtual_dwo_sections *sections)
8447{
8448 const struct dwop_section_names *names = &dwop_section_names;
8449
8450 if (section_is_p (sectp->name, &names->abbrev_dwo))
8451 {
8452 /* There can be only one. */
8453 if (sections->abbrev.asection != NULL)
8454 return 0;
8455 sections->abbrev.asection = sectp;
8456 sections->abbrev.size = bfd_get_section_size (sectp);
8457 }
8458 else if (section_is_p (sectp->name, &names->info_dwo)
8459 || section_is_p (sectp->name, &names->types_dwo))
8460 {
8461 /* There can be only one. */
8462 if (sections->info_or_types.asection != NULL)
8463 return 0;
8464 sections->info_or_types.asection = sectp;
8465 sections->info_or_types.size = bfd_get_section_size (sectp);
8466 }
8467 else if (section_is_p (sectp->name, &names->line_dwo))
8468 {
8469 /* There can be only one. */
8470 if (sections->line.asection != NULL)
8471 return 0;
8472 sections->line.asection = sectp;
8473 sections->line.size = bfd_get_section_size (sectp);
8474 }
8475 else if (section_is_p (sectp->name, &names->loc_dwo))
8476 {
8477 /* There can be only one. */
8478 if (sections->loc.asection != NULL)
8479 return 0;
8480 sections->loc.asection = sectp;
8481 sections->loc.size = bfd_get_section_size (sectp);
8482 }
8483 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8484 {
8485 /* There can be only one. */
8486 if (sections->macinfo.asection != NULL)
8487 return 0;
8488 sections->macinfo.asection = sectp;
8489 sections->macinfo.size = bfd_get_section_size (sectp);
8490 }
8491 else if (section_is_p (sectp->name, &names->macro_dwo))
8492 {
8493 /* There can be only one. */
8494 if (sections->macro.asection != NULL)
8495 return 0;
8496 sections->macro.asection = sectp;
8497 sections->macro.size = bfd_get_section_size (sectp);
8498 }
8499 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8500 {
8501 /* There can be only one. */
8502 if (sections->str_offsets.asection != NULL)
8503 return 0;
8504 sections->str_offsets.asection = sectp;
8505 sections->str_offsets.size = bfd_get_section_size (sectp);
8506 }
8507 else
8508 {
8509 /* No other kind of section is valid. */
8510 return 0;
8511 }
8512
8513 return 1;
8514}
8515
8516/* Create a dwo_unit object for the DWO with signature SIGNATURE.
8517 HTAB is the hash table from the DWP file.
8518 SECTION_INDEX is the index of the DWO in HTAB. */
8519
8520static struct dwo_unit *
8521create_dwo_in_dwp (struct dwp_file *dwp_file,
8522 const struct dwp_hash_table *htab,
8523 uint32_t section_index,
8524 ULONGEST signature, int is_debug_types)
8525{
8526 struct objfile *objfile = dwarf2_per_objfile->objfile;
8527 bfd *dbfd = dwp_file->dbfd;
8528 const char *kind = is_debug_types ? "TU" : "CU";
8529 struct dwo_file *dwo_file;
8530 struct dwo_unit *dwo_unit;
8531 struct virtual_dwo_sections sections;
8532 void **dwo_file_slot;
8533 char *virtual_dwo_name;
8534 struct dwarf2_section_info *cutu;
8535 struct cleanup *cleanups;
8536 int i;
8537
8538 if (dwarf2_read_debug)
8539 {
8540 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8541 kind,
8542 section_index, phex (signature, sizeof (signature)),
8543 dwp_file->name);
8544 }
8545
8546 /* Fetch the sections of this DWO.
8547 Put a limit on the number of sections we look for so that bad data
8548 doesn't cause us to loop forever. */
8549
8550#define MAX_NR_DWO_SECTIONS \
8551 (1 /* .debug_info or .debug_types */ \
8552 + 1 /* .debug_abbrev */ \
8553 + 1 /* .debug_line */ \
8554 + 1 /* .debug_loc */ \
8555 + 1 /* .debug_str_offsets */ \
8556 + 1 /* .debug_macro */ \
8557 + 1 /* .debug_macinfo */ \
8558 + 1 /* trailing zero */)
8559
8560 memset (&sections, 0, sizeof (sections));
8561 cleanups = make_cleanup (null_cleanup, 0);
8562
8563 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8564 {
8565 asection *sectp;
8566 uint32_t section_nr =
8567 read_4_bytes (dbfd,
8568 htab->section_pool
8569 + (section_index + i) * sizeof (uint32_t));
8570
8571 if (section_nr == 0)
8572 break;
8573 if (section_nr >= dwp_file->num_sections)
8574 {
8575 error (_("Dwarf Error: bad DWP hash table, section number too large"
8576 " [in module %s]"),
8577 dwp_file->name);
8578 }
8579
8580 sectp = dwp_file->elf_sections[section_nr];
8581 if (! locate_virtual_dwo_sections (sectp, &sections))
8582 {
8583 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8584 " [in module %s]"),
8585 dwp_file->name);
8586 }
8587 }
8588
8589 if (i < 2
8590 || sections.info_or_types.asection == NULL
8591 || sections.abbrev.asection == NULL)
8592 {
8593 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8594 " [in module %s]"),
8595 dwp_file->name);
8596 }
8597 if (i == MAX_NR_DWO_SECTIONS)
8598 {
8599 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8600 " [in module %s]"),
8601 dwp_file->name);
8602 }
8603
8604 /* It's easier for the rest of the code if we fake a struct dwo_file and
8605 have dwo_unit "live" in that. At least for now.
8606
8607 The DWP file can be made up of a random collection of CUs and TUs.
8608 However, for each CU + set of TUs that came from the same original
8609 DWO file, we want combine them back into a virtual DWO file to save space
8610 (fewer struct dwo_file objects to allocated). Remember that for really
8611 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8612
2792b94d
PM
8613 virtual_dwo_name =
8614 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8615 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8616 sections.line.asection ? sections.line.asection->id : 0,
8617 sections.loc.asection ? sections.loc.asection->id : 0,
8618 (sections.str_offsets.asection
8619 ? sections.str_offsets.asection->id
8620 : 0));
80626a55
DE
8621 make_cleanup (xfree, virtual_dwo_name);
8622 /* Can we use an existing virtual DWO file? */
8623 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8624 /* Create one if necessary. */
8625 if (*dwo_file_slot == NULL)
8626 {
8627 if (dwarf2_read_debug)
8628 {
8629 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8630 virtual_dwo_name);
8631 }
8632 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8633 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8634 virtual_dwo_name,
8635 strlen (virtual_dwo_name));
8636 dwo_file->sections.abbrev = sections.abbrev;
8637 dwo_file->sections.line = sections.line;
8638 dwo_file->sections.loc = sections.loc;
8639 dwo_file->sections.macinfo = sections.macinfo;
8640 dwo_file->sections.macro = sections.macro;
8641 dwo_file->sections.str_offsets = sections.str_offsets;
8642 /* The "str" section is global to the entire DWP file. */
8643 dwo_file->sections.str = dwp_file->sections.str;
8644 /* The info or types section is assigned later to dwo_unit,
8645 there's no need to record it in dwo_file.
8646 Also, we can't simply record type sections in dwo_file because
8647 we record a pointer into the vector in dwo_unit. As we collect more
8648 types we'll grow the vector and eventually have to reallocate space
8649 for it, invalidating all the pointers into the current copy. */
8650 *dwo_file_slot = dwo_file;
8651 }
8652 else
8653 {
8654 if (dwarf2_read_debug)
8655 {
8656 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8657 virtual_dwo_name);
8658 }
8659 dwo_file = *dwo_file_slot;
8660 }
8661 do_cleanups (cleanups);
8662
8663 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8664 dwo_unit->dwo_file = dwo_file;
8665 dwo_unit->signature = signature;
8666 dwo_unit->info_or_types_section =
8667 obstack_alloc (&objfile->objfile_obstack,
8668 sizeof (struct dwarf2_section_info));
8669 *dwo_unit->info_or_types_section = sections.info_or_types;
8670 /* offset, length, type_offset_in_tu are set later. */
8671
8672 return dwo_unit;
8673}
8674
8675/* Lookup the DWO with SIGNATURE in DWP_FILE. */
8676
8677static struct dwo_unit *
8678lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8679 const struct dwp_hash_table *htab,
8680 ULONGEST signature, int is_debug_types)
8681{
8682 bfd *dbfd = dwp_file->dbfd;
8683 uint32_t mask = htab->nr_slots - 1;
8684 uint32_t hash = signature & mask;
8685 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8686 unsigned int i;
8687 void **slot;
8688 struct dwo_unit find_dwo_cu, *dwo_cu;
8689
8690 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8691 find_dwo_cu.signature = signature;
8692 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8693
8694 if (*slot != NULL)
8695 return *slot;
8696
8697 /* Use a for loop so that we don't loop forever on bad debug info. */
8698 for (i = 0; i < htab->nr_slots; ++i)
8699 {
8700 ULONGEST signature_in_table;
8701
8702 signature_in_table =
8703 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8704 if (signature_in_table == signature)
8705 {
8706 uint32_t section_index =
8707 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8708
8709 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8710 signature, is_debug_types);
8711 return *slot;
8712 }
8713 if (signature_in_table == 0)
8714 return NULL;
8715 hash = (hash + hash2) & mask;
8716 }
8717
8718 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8719 " [in module %s]"),
8720 dwp_file->name);
8721}
8722
8723/* Subroutine of open_dwop_file to simplify it.
3019eac3
DE
8724 Open the file specified by FILE_NAME and hand it off to BFD for
8725 preliminary analysis. Return a newly initialized bfd *, which
8726 includes a canonicalized copy of FILE_NAME.
80626a55 8727 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
3019eac3
DE
8728 In case of trouble, return NULL.
8729 NOTE: This function is derived from symfile_bfd_open. */
8730
8731static bfd *
80626a55 8732try_open_dwop_file (const char *file_name, int is_dwp)
3019eac3
DE
8733{
8734 bfd *sym_bfd;
80626a55 8735 int desc, flags;
3019eac3 8736 char *absolute_name;
3019eac3 8737
80626a55
DE
8738 flags = OPF_TRY_CWD_FIRST;
8739 if (is_dwp)
8740 flags |= OPF_SEARCH_IN_PATH;
8741 desc = openp (debug_file_directory, flags, file_name,
3019eac3
DE
8742 O_RDONLY | O_BINARY, &absolute_name);
8743 if (desc < 0)
8744 return NULL;
8745
bb397797 8746 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
3019eac3
DE
8747 if (!sym_bfd)
8748 {
3019eac3
DE
8749 xfree (absolute_name);
8750 return NULL;
8751 }
a4453b7e 8752 xfree (absolute_name);
3019eac3
DE
8753 bfd_set_cacheable (sym_bfd, 1);
8754
8755 if (!bfd_check_format (sym_bfd, bfd_object))
8756 {
cbb099e8 8757 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
8758 return NULL;
8759 }
8760
3019eac3
DE
8761 return sym_bfd;
8762}
8763
80626a55 8764/* Try to open DWO/DWP file FILE_NAME.
3019eac3 8765 COMP_DIR is the DW_AT_comp_dir attribute.
80626a55 8766 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
3019eac3
DE
8767 The result is the bfd handle of the file.
8768 If there is a problem finding or opening the file, return NULL.
8769 Upon success, the canonicalized path of the file is stored in the bfd,
8770 same as symfile_bfd_open. */
8771
8772static bfd *
80626a55 8773open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
3019eac3
DE
8774{
8775 bfd *abfd;
3019eac3 8776
80626a55
DE
8777 if (IS_ABSOLUTE_PATH (file_name))
8778 return try_open_dwop_file (file_name, is_dwp);
3019eac3
DE
8779
8780 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8781
8782 if (comp_dir != NULL)
8783 {
80626a55 8784 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
8785
8786 /* NOTE: If comp_dir is a relative path, this will also try the
8787 search path, which seems useful. */
80626a55 8788 abfd = try_open_dwop_file (path_to_try, is_dwp);
3019eac3
DE
8789 xfree (path_to_try);
8790 if (abfd != NULL)
8791 return abfd;
8792 }
8793
8794 /* That didn't work, try debug-file-directory, which, despite its name,
8795 is a list of paths. */
8796
8797 if (*debug_file_directory == '\0')
8798 return NULL;
8799
80626a55 8800 return try_open_dwop_file (file_name, is_dwp);
3019eac3
DE
8801}
8802
80626a55
DE
8803/* This function is mapped across the sections and remembers the offset and
8804 size of each of the DWO debugging sections we are interested in. */
8805
8806static void
8807dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8808{
8809 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8810 const struct dwop_section_names *names = &dwop_section_names;
8811
8812 if (section_is_p (sectp->name, &names->abbrev_dwo))
8813 {
8814 dwo_sections->abbrev.asection = sectp;
8815 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8816 }
8817 else if (section_is_p (sectp->name, &names->info_dwo))
8818 {
8819 dwo_sections->info.asection = sectp;
8820 dwo_sections->info.size = bfd_get_section_size (sectp);
8821 }
8822 else if (section_is_p (sectp->name, &names->line_dwo))
8823 {
8824 dwo_sections->line.asection = sectp;
8825 dwo_sections->line.size = bfd_get_section_size (sectp);
8826 }
8827 else if (section_is_p (sectp->name, &names->loc_dwo))
8828 {
8829 dwo_sections->loc.asection = sectp;
8830 dwo_sections->loc.size = bfd_get_section_size (sectp);
8831 }
8832 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8833 {
8834 dwo_sections->macinfo.asection = sectp;
8835 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8836 }
8837 else if (section_is_p (sectp->name, &names->macro_dwo))
8838 {
8839 dwo_sections->macro.asection = sectp;
8840 dwo_sections->macro.size = bfd_get_section_size (sectp);
8841 }
8842 else if (section_is_p (sectp->name, &names->str_dwo))
8843 {
8844 dwo_sections->str.asection = sectp;
8845 dwo_sections->str.size = bfd_get_section_size (sectp);
8846 }
8847 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8848 {
8849 dwo_sections->str_offsets.asection = sectp;
8850 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8851 }
8852 else if (section_is_p (sectp->name, &names->types_dwo))
8853 {
8854 struct dwarf2_section_info type_section;
8855
8856 memset (&type_section, 0, sizeof (type_section));
8857 type_section.asection = sectp;
8858 type_section.size = bfd_get_section_size (sectp);
8859 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8860 &type_section);
8861 }
8862}
8863
8864/* Initialize the use of the DWO file specified by DWO_NAME.
8865 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
8866
8867static struct dwo_file *
80626a55 8868open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
3019eac3
DE
8869{
8870 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
8871 struct dwo_file *dwo_file;
8872 bfd *dbfd;
3019eac3
DE
8873 struct cleanup *cleanups;
8874
80626a55
DE
8875 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8876 if (dbfd == NULL)
8877 {
8878 if (dwarf2_read_debug)
8879 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8880 return NULL;
8881 }
8882 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8883 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8884 dwo_name, strlen (dwo_name));
8885 dwo_file->dbfd = dbfd;
3019eac3
DE
8886
8887 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8888
80626a55 8889 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 8890
80626a55 8891 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
3019eac3
DE
8892
8893 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8894 dwo_file->sections.types);
8895
8896 discard_cleanups (cleanups);
8897
80626a55
DE
8898 if (dwarf2_read_debug)
8899 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8900
3019eac3
DE
8901 return dwo_file;
8902}
8903
80626a55
DE
8904/* This function is mapped across the sections and remembers the offset and
8905 size of each of the DWP debugging sections we are interested in. */
3019eac3 8906
80626a55
DE
8907static void
8908dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 8909{
80626a55
DE
8910 struct dwp_file *dwp_file = dwp_file_ptr;
8911 const struct dwop_section_names *names = &dwop_section_names;
8912 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 8913
80626a55
DE
8914 /* Record the ELF section number for later lookup: this is what the
8915 .debug_cu_index,.debug_tu_index tables use. */
8916 gdb_assert (elf_section_nr < dwp_file->num_sections);
8917 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 8918
80626a55
DE
8919 /* Look for specific sections that we need. */
8920 if (section_is_p (sectp->name, &names->str_dwo))
8921 {
8922 dwp_file->sections.str.asection = sectp;
8923 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8924 }
8925 else if (section_is_p (sectp->name, &names->cu_index))
8926 {
8927 dwp_file->sections.cu_index.asection = sectp;
8928 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8929 }
8930 else if (section_is_p (sectp->name, &names->tu_index))
8931 {
8932 dwp_file->sections.tu_index.asection = sectp;
8933 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8934 }
8935}
3019eac3 8936
80626a55 8937/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 8938
80626a55
DE
8939static hashval_t
8940hash_dwp_loaded_cutus (const void *item)
8941{
8942 const struct dwo_unit *dwo_unit = item;
3019eac3 8943
80626a55
DE
8944 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8945 return dwo_unit->signature;
3019eac3
DE
8946}
8947
80626a55 8948/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 8949
80626a55
DE
8950static int
8951eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 8952{
80626a55
DE
8953 const struct dwo_unit *dua = a;
8954 const struct dwo_unit *dub = b;
3019eac3 8955
80626a55
DE
8956 return dua->signature == dub->signature;
8957}
3019eac3 8958
80626a55 8959/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 8960
80626a55
DE
8961static htab_t
8962allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8963{
8964 return htab_create_alloc_ex (3,
8965 hash_dwp_loaded_cutus,
8966 eq_dwp_loaded_cutus,
8967 NULL,
8968 &objfile->objfile_obstack,
8969 hashtab_obstack_allocate,
8970 dummy_obstack_deallocate);
8971}
3019eac3 8972
80626a55
DE
8973/* Initialize the use of the DWP file for the current objfile.
8974 By convention the name of the DWP file is ${objfile}.dwp.
8975 The result is NULL if it can't be found. */
a766d390 8976
80626a55
DE
8977static struct dwp_file *
8978open_and_init_dwp_file (const char *comp_dir)
8979{
8980 struct objfile *objfile = dwarf2_per_objfile->objfile;
8981 struct dwp_file *dwp_file;
8982 char *dwp_name;
8983 bfd *dbfd;
8984 struct cleanup *cleanups;
8985
2792b94d 8986 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
80626a55
DE
8987 cleanups = make_cleanup (xfree, dwp_name);
8988
8989 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8990 if (dbfd == NULL)
8991 {
8992 if (dwarf2_read_debug)
8993 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8994 do_cleanups (cleanups);
8995 return NULL;
3019eac3 8996 }
80626a55
DE
8997 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8998 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8999 dwp_name, strlen (dwp_name));
9000 dwp_file->dbfd = dbfd;
9001 do_cleanups (cleanups);
c906108c 9002
80626a55 9003 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
df8a16a1 9004
80626a55
DE
9005 /* +1: section 0 is unused */
9006 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9007 dwp_file->elf_sections =
9008 OBSTACK_CALLOC (&objfile->objfile_obstack,
9009 dwp_file->num_sections, asection *);
9010
9011 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9012
9013 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9014
9015 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9016
9017 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9018
9019 discard_cleanups (cleanups);
9020
9021 if (dwarf2_read_debug)
9022 {
9023 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9024 fprintf_unfiltered (gdb_stdlog,
9025 " %u CUs, %u TUs\n",
9026 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9027 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9028 }
9029
9030 return dwp_file;
3019eac3 9031}
c906108c 9032
80626a55
DE
9033/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9034 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9035 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9036 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9037 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9038
9039 This is called, for example, when wanting to read a variable with a
9040 complex location. Therefore we don't want to do file i/o for every call.
9041 Therefore we don't want to look for a DWO file on every call.
9042 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9043 then we check if we've already seen DWO_NAME, and only THEN do we check
9044 for a DWO file.
9045
1c658ad5 9046 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9047 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9048
3019eac3 9049static struct dwo_unit *
80626a55
DE
9050lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9051 const char *dwo_name, const char *comp_dir,
9052 ULONGEST signature, int is_debug_types)
3019eac3
DE
9053{
9054 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9055 const char *kind = is_debug_types ? "TU" : "CU";
9056 void **dwo_file_slot;
3019eac3 9057 struct dwo_file *dwo_file;
80626a55 9058 struct dwp_file *dwp_file;
cb1df416 9059
80626a55 9060 /* Have we already read SIGNATURE from a DWP file? */
cf2c3c16 9061
80626a55
DE
9062 if (! dwarf2_per_objfile->dwp_checked)
9063 {
9064 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9065 dwarf2_per_objfile->dwp_checked = 1;
9066 }
9067 dwp_file = dwarf2_per_objfile->dwp_file;
3019eac3 9068
80626a55 9069 if (dwp_file != NULL)
cf2c3c16 9070 {
80626a55
DE
9071 const struct dwp_hash_table *dwp_htab =
9072 is_debug_types ? dwp_file->tus : dwp_file->cus;
9073
9074 if (dwp_htab != NULL)
9075 {
9076 struct dwo_unit *dwo_cutu =
9077 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9078
9079 if (dwo_cutu != NULL)
9080 {
9081 if (dwarf2_read_debug)
9082 {
9083 fprintf_unfiltered (gdb_stdlog,
9084 "Virtual DWO %s %s found: @%s\n",
9085 kind, hex_string (signature),
9086 host_address_to_string (dwo_cutu));
9087 }
9088 return dwo_cutu;
9089 }
9090 }
9091 }
9092
9093 /* Have we already seen DWO_NAME? */
9094
9095 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9096 if (*dwo_file_slot == NULL)
9097 {
9098 /* Read in the file and build a table of the DWOs it contains. */
9099 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9100 }
9101 /* NOTE: This will be NULL if unable to open the file. */
9102 dwo_file = *dwo_file_slot;
9103
9104 if (dwo_file != NULL)
9105 {
9106 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9107
9108 if (htab != NULL)
9109 {
9110 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9a619af0 9111
80626a55
DE
9112 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9113 find_dwo_cutu.signature = signature;
9114 dwo_cutu = htab_find (htab, &find_dwo_cutu);
3019eac3 9115
80626a55
DE
9116 if (dwo_cutu != NULL)
9117 {
9118 if (dwarf2_read_debug)
9119 {
9120 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9121 kind, dwo_name, hex_string (signature),
9122 host_address_to_string (dwo_cutu));
9123 }
9124 return dwo_cutu;
9125 }
9126 }
2e276125 9127 }
9cdd5dbd 9128
80626a55
DE
9129 /* We didn't find it. This could mean a dwo_id mismatch, or
9130 someone deleted the DWO/DWP file, or the search path isn't set up
9131 correctly to find the file. */
9132
9133 if (dwarf2_read_debug)
9134 {
9135 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9136 kind, dwo_name, hex_string (signature));
9137 }
3019eac3
DE
9138
9139 complaint (&symfile_complaints,
80626a55 9140 _("Could not find DWO CU referenced by CU at offset 0x%x"
3019eac3 9141 " [in module %s]"),
80626a55 9142 this_unit->offset.sect_off, objfile->name);
3019eac3 9143 return NULL;
5fb290d7
DJ
9144}
9145
80626a55
DE
9146/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9147 See lookup_dwo_cutu_unit for details. */
9148
9149static struct dwo_unit *
9150lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9151 const char *dwo_name, const char *comp_dir,
9152 ULONGEST signature)
9153{
9154 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9155}
9156
9157/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9158 See lookup_dwo_cutu_unit for details. */
9159
9160static struct dwo_unit *
9161lookup_dwo_type_unit (struct signatured_type *this_tu,
9162 const char *dwo_name, const char *comp_dir)
9163{
9164 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9165}
9166
3019eac3
DE
9167/* Free all resources associated with DWO_FILE.
9168 Close the DWO file and munmap the sections.
9169 All memory should be on the objfile obstack. */
348e048f
DE
9170
9171static void
3019eac3 9172free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9173{
3019eac3
DE
9174 int ix;
9175 struct dwarf2_section_info *section;
348e048f 9176
80626a55
DE
9177 gdb_assert (dwo_file->dbfd != objfile->obfd);
9178 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9179
3019eac3
DE
9180 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9181}
348e048f 9182
3019eac3 9183/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9184
3019eac3
DE
9185static void
9186free_dwo_file_cleanup (void *arg)
9187{
9188 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9189 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9190
3019eac3
DE
9191 free_dwo_file (dwo_file, objfile);
9192}
348e048f 9193
3019eac3 9194/* Traversal function for free_dwo_files. */
2ab95328 9195
3019eac3
DE
9196static int
9197free_dwo_file_from_slot (void **slot, void *info)
9198{
9199 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9200 struct objfile *objfile = (struct objfile *) info;
348e048f 9201
3019eac3 9202 free_dwo_file (dwo_file, objfile);
348e048f 9203
3019eac3
DE
9204 return 1;
9205}
348e048f 9206
3019eac3 9207/* Free all resources associated with DWO_FILES. */
348e048f 9208
3019eac3
DE
9209static void
9210free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9211{
9212 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9213}
3019eac3
DE
9214\f
9215/* Read in various DIEs. */
348e048f 9216
d389af10
JK
9217/* qsort helper for inherit_abstract_dies. */
9218
9219static int
9220unsigned_int_compar (const void *ap, const void *bp)
9221{
9222 unsigned int a = *(unsigned int *) ap;
9223 unsigned int b = *(unsigned int *) bp;
9224
9225 return (a > b) - (b > a);
9226}
9227
9228/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9229 Inherit only the children of the DW_AT_abstract_origin DIE not being
9230 already referenced by DW_AT_abstract_origin from the children of the
9231 current DIE. */
d389af10
JK
9232
9233static void
9234inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9235{
9236 struct die_info *child_die;
9237 unsigned die_children_count;
9238 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9239 sect_offset *offsets;
9240 sect_offset *offsets_end, *offsetp;
d389af10
JK
9241 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9242 struct die_info *origin_die;
9243 /* Iterator of the ORIGIN_DIE children. */
9244 struct die_info *origin_child_die;
9245 struct cleanup *cleanups;
9246 struct attribute *attr;
cd02d79d
PA
9247 struct dwarf2_cu *origin_cu;
9248 struct pending **origin_previous_list_in_scope;
d389af10
JK
9249
9250 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9251 if (!attr)
9252 return;
9253
cd02d79d
PA
9254 /* Note that following die references may follow to a die in a
9255 different cu. */
9256
9257 origin_cu = cu;
9258 origin_die = follow_die_ref (die, attr, &origin_cu);
9259
9260 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9261 symbols in. */
9262 origin_previous_list_in_scope = origin_cu->list_in_scope;
9263 origin_cu->list_in_scope = cu->list_in_scope;
9264
edb3359d
DJ
9265 if (die->tag != origin_die->tag
9266 && !(die->tag == DW_TAG_inlined_subroutine
9267 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9268 complaint (&symfile_complaints,
9269 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9270 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9271
9272 child_die = die->child;
9273 die_children_count = 0;
9274 while (child_die && child_die->tag)
9275 {
9276 child_die = sibling_die (child_die);
9277 die_children_count++;
9278 }
9279 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9280 cleanups = make_cleanup (xfree, offsets);
9281
9282 offsets_end = offsets;
9283 child_die = die->child;
9284 while (child_die && child_die->tag)
9285 {
c38f313d
DJ
9286 /* For each CHILD_DIE, find the corresponding child of
9287 ORIGIN_DIE. If there is more than one layer of
9288 DW_AT_abstract_origin, follow them all; there shouldn't be,
9289 but GCC versions at least through 4.4 generate this (GCC PR
9290 40573). */
9291 struct die_info *child_origin_die = child_die;
cd02d79d 9292 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9293
c38f313d
DJ
9294 while (1)
9295 {
cd02d79d
PA
9296 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9297 child_origin_cu);
c38f313d
DJ
9298 if (attr == NULL)
9299 break;
cd02d79d
PA
9300 child_origin_die = follow_die_ref (child_origin_die, attr,
9301 &child_origin_cu);
c38f313d
DJ
9302 }
9303
d389af10
JK
9304 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9305 counterpart may exist. */
c38f313d 9306 if (child_origin_die != child_die)
d389af10 9307 {
edb3359d
DJ
9308 if (child_die->tag != child_origin_die->tag
9309 && !(child_die->tag == DW_TAG_inlined_subroutine
9310 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9311 complaint (&symfile_complaints,
9312 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9313 "different tags"), child_die->offset.sect_off,
9314 child_origin_die->offset.sect_off);
c38f313d
DJ
9315 if (child_origin_die->parent != origin_die)
9316 complaint (&symfile_complaints,
9317 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9318 "different parents"), child_die->offset.sect_off,
9319 child_origin_die->offset.sect_off);
c38f313d
DJ
9320 else
9321 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9322 }
9323 child_die = sibling_die (child_die);
9324 }
9325 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9326 unsigned_int_compar);
9327 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9328 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9329 complaint (&symfile_complaints,
9330 _("Multiple children of DIE 0x%x refer "
9331 "to DIE 0x%x as their abstract origin"),
b64f50a1 9332 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9333
9334 offsetp = offsets;
9335 origin_child_die = origin_die->child;
9336 while (origin_child_die && origin_child_die->tag)
9337 {
9338 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
9339 while (offsetp < offsets_end
9340 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 9341 offsetp++;
b64f50a1
JK
9342 if (offsetp >= offsets_end
9343 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
9344 {
9345 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 9346 process_die (origin_child_die, origin_cu);
d389af10
JK
9347 }
9348 origin_child_die = sibling_die (origin_child_die);
9349 }
cd02d79d 9350 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
9351
9352 do_cleanups (cleanups);
9353}
9354
c906108c 9355static void
e7c27a73 9356read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9357{
e7c27a73 9358 struct objfile *objfile = cu->objfile;
52f0bd74 9359 struct context_stack *new;
c906108c
SS
9360 CORE_ADDR lowpc;
9361 CORE_ADDR highpc;
9362 struct die_info *child_die;
edb3359d 9363 struct attribute *attr, *call_line, *call_file;
c906108c 9364 char *name;
e142c38c 9365 CORE_ADDR baseaddr;
801e3a5b 9366 struct block *block;
edb3359d 9367 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
9368 VEC (symbolp) *template_args = NULL;
9369 struct template_symbol *templ_func = NULL;
edb3359d
DJ
9370
9371 if (inlined_func)
9372 {
9373 /* If we do not have call site information, we can't show the
9374 caller of this inlined function. That's too confusing, so
9375 only use the scope for local variables. */
9376 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9377 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9378 if (call_line == NULL || call_file == NULL)
9379 {
9380 read_lexical_block_scope (die, cu);
9381 return;
9382 }
9383 }
c906108c 9384
e142c38c
DJ
9385 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9386
94af9270 9387 name = dwarf2_name (die, cu);
c906108c 9388
e8d05480
JB
9389 /* Ignore functions with missing or empty names. These are actually
9390 illegal according to the DWARF standard. */
9391 if (name == NULL)
9392 {
9393 complaint (&symfile_complaints,
b64f50a1
JK
9394 _("missing name for subprogram DIE at %d"),
9395 die->offset.sect_off);
e8d05480
JB
9396 return;
9397 }
9398
9399 /* Ignore functions with missing or invalid low and high pc attributes. */
9400 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9401 {
ae4d0c03
PM
9402 attr = dwarf2_attr (die, DW_AT_external, cu);
9403 if (!attr || !DW_UNSND (attr))
9404 complaint (&symfile_complaints,
3e43a32a
MS
9405 _("cannot get low and high bounds "
9406 "for subprogram DIE at %d"),
b64f50a1 9407 die->offset.sect_off);
e8d05480
JB
9408 return;
9409 }
c906108c
SS
9410
9411 lowpc += baseaddr;
9412 highpc += baseaddr;
9413
34eaf542
TT
9414 /* If we have any template arguments, then we must allocate a
9415 different sort of symbol. */
9416 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9417 {
9418 if (child_die->tag == DW_TAG_template_type_param
9419 || child_die->tag == DW_TAG_template_value_param)
9420 {
9421 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9422 struct template_symbol);
9423 templ_func->base.is_cplus_template_function = 1;
9424 break;
9425 }
9426 }
9427
c906108c 9428 new = push_context (0, lowpc);
34eaf542
TT
9429 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9430 (struct symbol *) templ_func);
4c2df51b 9431
4cecd739
DJ
9432 /* If there is a location expression for DW_AT_frame_base, record
9433 it. */
e142c38c 9434 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 9435 if (attr)
c034e007
AC
9436 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9437 expression is being recorded directly in the function's symbol
9438 and not in a separate frame-base object. I guess this hack is
9439 to avoid adding some sort of frame-base adjunct/annex to the
9440 function's symbol :-(. The problem with doing this is that it
9441 results in a function symbol with a location expression that
9442 has nothing to do with the location of the function, ouch! The
9443 relationship should be: a function's symbol has-a frame base; a
9444 frame-base has-a location expression. */
e7c27a73 9445 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 9446
e142c38c 9447 cu->list_in_scope = &local_symbols;
c906108c 9448
639d11d3 9449 if (die->child != NULL)
c906108c 9450 {
639d11d3 9451 child_die = die->child;
c906108c
SS
9452 while (child_die && child_die->tag)
9453 {
34eaf542
TT
9454 if (child_die->tag == DW_TAG_template_type_param
9455 || child_die->tag == DW_TAG_template_value_param)
9456 {
9457 struct symbol *arg = new_symbol (child_die, NULL, cu);
9458
f1078f66
DJ
9459 if (arg != NULL)
9460 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
9461 }
9462 else
9463 process_die (child_die, cu);
c906108c
SS
9464 child_die = sibling_die (child_die);
9465 }
9466 }
9467
d389af10
JK
9468 inherit_abstract_dies (die, cu);
9469
4a811a97
UW
9470 /* If we have a DW_AT_specification, we might need to import using
9471 directives from the context of the specification DIE. See the
9472 comment in determine_prefix. */
9473 if (cu->language == language_cplus
9474 && dwarf2_attr (die, DW_AT_specification, cu))
9475 {
9476 struct dwarf2_cu *spec_cu = cu;
9477 struct die_info *spec_die = die_specification (die, &spec_cu);
9478
9479 while (spec_die)
9480 {
9481 child_die = spec_die->child;
9482 while (child_die && child_die->tag)
9483 {
9484 if (child_die->tag == DW_TAG_imported_module)
9485 process_die (child_die, spec_cu);
9486 child_die = sibling_die (child_die);
9487 }
9488
9489 /* In some cases, GCC generates specification DIEs that
9490 themselves contain DW_AT_specification attributes. */
9491 spec_die = die_specification (spec_die, &spec_cu);
9492 }
9493 }
9494
c906108c
SS
9495 new = pop_context ();
9496 /* Make a block for the local symbols within. */
801e3a5b
JB
9497 block = finish_block (new->name, &local_symbols, new->old_blocks,
9498 lowpc, highpc, objfile);
9499
df8a16a1 9500 /* For C++, set the block's scope. */
f55ee35c 9501 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 9502 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 9503 determine_prefix (die, cu),
df8a16a1
DJ
9504 processing_has_namespace_info);
9505
801e3a5b
JB
9506 /* If we have address ranges, record them. */
9507 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 9508
34eaf542
TT
9509 /* Attach template arguments to function. */
9510 if (! VEC_empty (symbolp, template_args))
9511 {
9512 gdb_assert (templ_func != NULL);
9513
9514 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9515 templ_func->template_arguments
9516 = obstack_alloc (&objfile->objfile_obstack,
9517 (templ_func->n_template_arguments
9518 * sizeof (struct symbol *)));
9519 memcpy (templ_func->template_arguments,
9520 VEC_address (symbolp, template_args),
9521 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9522 VEC_free (symbolp, template_args);
9523 }
9524
208d8187
JB
9525 /* In C++, we can have functions nested inside functions (e.g., when
9526 a function declares a class that has methods). This means that
9527 when we finish processing a function scope, we may need to go
9528 back to building a containing block's symbol lists. */
9529 local_symbols = new->locals;
27aa8d6a 9530 using_directives = new->using_directives;
208d8187 9531
921e78cf
JB
9532 /* If we've finished processing a top-level function, subsequent
9533 symbols go in the file symbol list. */
9534 if (outermost_context_p ())
e142c38c 9535 cu->list_in_scope = &file_symbols;
c906108c
SS
9536}
9537
9538/* Process all the DIES contained within a lexical block scope. Start
9539 a new scope, process the dies, and then close the scope. */
9540
9541static void
e7c27a73 9542read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9543{
e7c27a73 9544 struct objfile *objfile = cu->objfile;
52f0bd74 9545 struct context_stack *new;
c906108c
SS
9546 CORE_ADDR lowpc, highpc;
9547 struct die_info *child_die;
e142c38c
DJ
9548 CORE_ADDR baseaddr;
9549
9550 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
9551
9552 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
9553 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9554 as multiple lexical blocks? Handling children in a sane way would
6e70227d 9555 be nasty. Might be easier to properly extend generic blocks to
af34e669 9556 describe ranges. */
d85a05f0 9557 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
9558 return;
9559 lowpc += baseaddr;
9560 highpc += baseaddr;
9561
9562 push_context (0, lowpc);
639d11d3 9563 if (die->child != NULL)
c906108c 9564 {
639d11d3 9565 child_die = die->child;
c906108c
SS
9566 while (child_die && child_die->tag)
9567 {
e7c27a73 9568 process_die (child_die, cu);
c906108c
SS
9569 child_die = sibling_die (child_die);
9570 }
9571 }
9572 new = pop_context ();
9573
8540c487 9574 if (local_symbols != NULL || using_directives != NULL)
c906108c 9575 {
801e3a5b
JB
9576 struct block *block
9577 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9578 highpc, objfile);
9579
9580 /* Note that recording ranges after traversing children, as we
9581 do here, means that recording a parent's ranges entails
9582 walking across all its children's ranges as they appear in
9583 the address map, which is quadratic behavior.
9584
9585 It would be nicer to record the parent's ranges before
9586 traversing its children, simply overriding whatever you find
9587 there. But since we don't even decide whether to create a
9588 block until after we've traversed its children, that's hard
9589 to do. */
9590 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
9591 }
9592 local_symbols = new->locals;
27aa8d6a 9593 using_directives = new->using_directives;
c906108c
SS
9594}
9595
96408a79
SA
9596/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9597
9598static void
9599read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9600{
9601 struct objfile *objfile = cu->objfile;
9602 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9603 CORE_ADDR pc, baseaddr;
9604 struct attribute *attr;
9605 struct call_site *call_site, call_site_local;
9606 void **slot;
9607 int nparams;
9608 struct die_info *child_die;
9609
9610 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9611
9612 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9613 if (!attr)
9614 {
9615 complaint (&symfile_complaints,
9616 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9617 "DIE 0x%x [in module %s]"),
b64f50a1 9618 die->offset.sect_off, objfile->name);
96408a79
SA
9619 return;
9620 }
9621 pc = DW_ADDR (attr) + baseaddr;
9622
9623 if (cu->call_site_htab == NULL)
9624 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9625 NULL, &objfile->objfile_obstack,
9626 hashtab_obstack_allocate, NULL);
9627 call_site_local.pc = pc;
9628 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9629 if (*slot != NULL)
9630 {
9631 complaint (&symfile_complaints,
9632 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9633 "DIE 0x%x [in module %s]"),
b64f50a1 9634 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
9635 return;
9636 }
9637
9638 /* Count parameters at the caller. */
9639
9640 nparams = 0;
9641 for (child_die = die->child; child_die && child_die->tag;
9642 child_die = sibling_die (child_die))
9643 {
9644 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9645 {
9646 complaint (&symfile_complaints,
9647 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9648 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9649 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
9650 continue;
9651 }
9652
9653 nparams++;
9654 }
9655
9656 call_site = obstack_alloc (&objfile->objfile_obstack,
9657 (sizeof (*call_site)
9658 + (sizeof (*call_site->parameter)
9659 * (nparams - 1))));
9660 *slot = call_site;
9661 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9662 call_site->pc = pc;
9663
9664 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9665 {
9666 struct die_info *func_die;
9667
9668 /* Skip also over DW_TAG_inlined_subroutine. */
9669 for (func_die = die->parent;
9670 func_die && func_die->tag != DW_TAG_subprogram
9671 && func_die->tag != DW_TAG_subroutine_type;
9672 func_die = func_die->parent);
9673
9674 /* DW_AT_GNU_all_call_sites is a superset
9675 of DW_AT_GNU_all_tail_call_sites. */
9676 if (func_die
9677 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9678 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9679 {
9680 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9681 not complete. But keep CALL_SITE for look ups via call_site_htab,
9682 both the initial caller containing the real return address PC and
9683 the final callee containing the current PC of a chain of tail
9684 calls do not need to have the tail call list complete. But any
9685 function candidate for a virtual tail call frame searched via
9686 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9687 determined unambiguously. */
9688 }
9689 else
9690 {
9691 struct type *func_type = NULL;
9692
9693 if (func_die)
9694 func_type = get_die_type (func_die, cu);
9695 if (func_type != NULL)
9696 {
9697 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9698
9699 /* Enlist this call site to the function. */
9700 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9701 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9702 }
9703 else
9704 complaint (&symfile_complaints,
9705 _("Cannot find function owning DW_TAG_GNU_call_site "
9706 "DIE 0x%x [in module %s]"),
b64f50a1 9707 die->offset.sect_off, objfile->name);
96408a79
SA
9708 }
9709 }
9710
9711 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9712 if (attr == NULL)
9713 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9714 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9715 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9716 /* Keep NULL DWARF_BLOCK. */;
9717 else if (attr_form_is_block (attr))
9718 {
9719 struct dwarf2_locexpr_baton *dlbaton;
9720
9721 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9722 dlbaton->data = DW_BLOCK (attr)->data;
9723 dlbaton->size = DW_BLOCK (attr)->size;
9724 dlbaton->per_cu = cu->per_cu;
9725
9726 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9727 }
9728 else if (is_ref_attr (attr))
9729 {
96408a79
SA
9730 struct dwarf2_cu *target_cu = cu;
9731 struct die_info *target_die;
9732
9733 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9734 gdb_assert (target_cu->objfile == objfile);
9735 if (die_is_declaration (target_die, target_cu))
9736 {
9737 const char *target_physname;
9738
9739 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9740 if (target_physname == NULL)
9741 complaint (&symfile_complaints,
9742 _("DW_AT_GNU_call_site_target target DIE has invalid "
9743 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 9744 die->offset.sect_off, objfile->name);
96408a79
SA
9745 else
9746 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9747 }
9748 else
9749 {
9750 CORE_ADDR lowpc;
9751
9752 /* DW_AT_entry_pc should be preferred. */
9753 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9754 complaint (&symfile_complaints,
9755 _("DW_AT_GNU_call_site_target target DIE has invalid "
9756 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 9757 die->offset.sect_off, objfile->name);
96408a79
SA
9758 else
9759 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9760 }
9761 }
9762 else
9763 complaint (&symfile_complaints,
9764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9765 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 9766 die->offset.sect_off, objfile->name);
96408a79
SA
9767
9768 call_site->per_cu = cu->per_cu;
9769
9770 for (child_die = die->child;
9771 child_die && child_die->tag;
9772 child_die = sibling_die (child_die))
9773 {
96408a79 9774 struct call_site_parameter *parameter;
1788b2d3 9775 struct attribute *loc, *origin;
96408a79
SA
9776
9777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9778 {
9779 /* Already printed the complaint above. */
9780 continue;
9781 }
9782
9783 gdb_assert (call_site->parameter_count < nparams);
9784 parameter = &call_site->parameter[call_site->parameter_count];
9785
1788b2d3
JK
9786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9788 register is contained in DW_AT_GNU_call_site_value. */
96408a79 9789
24c5c679 9790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3
JK
9791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9792 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9793 {
9794 sect_offset offset;
9795
9796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9797 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
9798 if (!offset_in_cu_p (&cu->header, offset))
9799 {
9800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9801 binding can be done only inside one CU. Such referenced DIE
9802 therefore cannot be even moved to DW_TAG_partial_unit. */
9803 complaint (&symfile_complaints,
9804 _("DW_AT_abstract_origin offset is not in CU for "
9805 "DW_TAG_GNU_call_site child DIE 0x%x "
9806 "[in module %s]"),
9807 child_die->offset.sect_off, objfile->name);
9808 continue;
9809 }
1788b2d3
JK
9810 parameter->u.param_offset.cu_off = (offset.sect_off
9811 - cu->header.offset.sect_off);
9812 }
9813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
9814 {
9815 complaint (&symfile_complaints,
9816 _("No DW_FORM_block* DW_AT_location for "
9817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9818 child_die->offset.sect_off, objfile->name);
96408a79
SA
9819 continue;
9820 }
24c5c679 9821 else
96408a79 9822 {
24c5c679
JK
9823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9825 if (parameter->u.dwarf_reg != -1)
9826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9829 &parameter->u.fb_offset))
9830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9831 else
9832 {
9833 complaint (&symfile_complaints,
9834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9835 "for DW_FORM_block* DW_AT_location is supported for "
9836 "DW_TAG_GNU_call_site child DIE 0x%x "
9837 "[in module %s]"),
9838 child_die->offset.sect_off, objfile->name);
9839 continue;
9840 }
96408a79
SA
9841 }
9842
9843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9844 if (!attr_form_is_block (attr))
9845 {
9846 complaint (&symfile_complaints,
9847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9849 child_die->offset.sect_off, objfile->name);
96408a79
SA
9850 continue;
9851 }
9852 parameter->value = DW_BLOCK (attr)->data;
9853 parameter->value_size = DW_BLOCK (attr)->size;
9854
9855 /* Parameters are not pre-cleared by memset above. */
9856 parameter->data_value = NULL;
9857 parameter->data_value_size = 0;
9858 call_site->parameter_count++;
9859
9860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9861 if (attr)
9862 {
9863 if (!attr_form_is_block (attr))
9864 complaint (&symfile_complaints,
9865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9867 child_die->offset.sect_off, objfile->name);
96408a79
SA
9868 else
9869 {
9870 parameter->data_value = DW_BLOCK (attr)->data;
9871 parameter->data_value_size = DW_BLOCK (attr)->size;
9872 }
9873 }
9874 }
9875}
9876
43039443 9877/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
9878 Return 1 if the attributes are present and valid, otherwise, return 0.
9879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
9880
9881static int
9882dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
9883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9884 struct partial_symtab *ranges_pst)
43039443
JK
9885{
9886 struct objfile *objfile = cu->objfile;
9887 struct comp_unit_head *cu_header = &cu->header;
9888 bfd *obfd = objfile->obfd;
9889 unsigned int addr_size = cu_header->addr_size;
9890 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9891 /* Base address selection entry. */
9892 CORE_ADDR base;
9893 int found_base;
9894 unsigned int dummy;
9895 gdb_byte *buffer;
9896 CORE_ADDR marker;
9897 int low_set;
9898 CORE_ADDR low = 0;
9899 CORE_ADDR high = 0;
ff013f42 9900 CORE_ADDR baseaddr;
43039443 9901
d00adf39
DE
9902 found_base = cu->base_known;
9903 base = cu->base_address;
43039443 9904
be391dca 9905 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 9906 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
9907 {
9908 complaint (&symfile_complaints,
9909 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9910 offset);
9911 return 0;
9912 }
dce234bc 9913 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
9914
9915 /* Read in the largest possible address. */
9916 marker = read_address (obfd, buffer, cu, &dummy);
9917 if ((marker & mask) == mask)
9918 {
9919 /* If we found the largest possible address, then
9920 read the base address. */
9921 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9922 buffer += 2 * addr_size;
9923 offset += 2 * addr_size;
9924 found_base = 1;
9925 }
9926
9927 low_set = 0;
9928
e7030f15 9929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 9930
43039443
JK
9931 while (1)
9932 {
9933 CORE_ADDR range_beginning, range_end;
9934
9935 range_beginning = read_address (obfd, buffer, cu, &dummy);
9936 buffer += addr_size;
9937 range_end = read_address (obfd, buffer, cu, &dummy);
9938 buffer += addr_size;
9939 offset += 2 * addr_size;
9940
9941 /* An end of list marker is a pair of zero addresses. */
9942 if (range_beginning == 0 && range_end == 0)
9943 /* Found the end of list entry. */
9944 break;
9945
9946 /* Each base address selection entry is a pair of 2 values.
9947 The first is the largest possible address, the second is
9948 the base address. Check for a base address here. */
9949 if ((range_beginning & mask) == mask)
9950 {
9951 /* If we found the largest possible address, then
9952 read the base address. */
9953 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9954 found_base = 1;
9955 continue;
9956 }
9957
9958 if (!found_base)
9959 {
9960 /* We have no valid base address for the ranges
9961 data. */
9962 complaint (&symfile_complaints,
9963 _("Invalid .debug_ranges data (no base address)"));
9964 return 0;
9965 }
9966
9277c30c
UW
9967 if (range_beginning > range_end)
9968 {
9969 /* Inverted range entries are invalid. */
9970 complaint (&symfile_complaints,
9971 _("Invalid .debug_ranges data (inverted range)"));
9972 return 0;
9973 }
9974
9975 /* Empty range entries have no effect. */
9976 if (range_beginning == range_end)
9977 continue;
9978
43039443
JK
9979 range_beginning += base;
9980 range_end += base;
9981
01093045
DE
9982 /* A not-uncommon case of bad debug info.
9983 Don't pollute the addrmap with bad data. */
9984 if (range_beginning + baseaddr == 0
9985 && !dwarf2_per_objfile->has_section_at_zero)
9986 {
9987 complaint (&symfile_complaints,
9988 _(".debug_ranges entry has start address of zero"
9989 " [in module %s]"), objfile->name);
9990 continue;
9991 }
9992
9277c30c 9993 if (ranges_pst != NULL)
ff013f42 9994 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
9995 range_beginning + baseaddr,
9996 range_end - 1 + baseaddr,
ff013f42
JK
9997 ranges_pst);
9998
43039443
JK
9999 /* FIXME: This is recording everything as a low-high
10000 segment of consecutive addresses. We should have a
10001 data structure for discontiguous block ranges
10002 instead. */
10003 if (! low_set)
10004 {
10005 low = range_beginning;
10006 high = range_end;
10007 low_set = 1;
10008 }
10009 else
10010 {
10011 if (range_beginning < low)
10012 low = range_beginning;
10013 if (range_end > high)
10014 high = range_end;
10015 }
10016 }
10017
10018 if (! low_set)
10019 /* If the first entry is an end-of-list marker, the range
10020 describes an empty scope, i.e. no instructions. */
10021 return 0;
10022
10023 if (low_return)
10024 *low_return = low;
10025 if (high_return)
10026 *high_return = high;
10027 return 1;
10028}
10029
af34e669
DJ
10030/* Get low and high pc attributes from a die. Return 1 if the attributes
10031 are present and valid, otherwise, return 0. Return -1 if the range is
10032 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10033
c906108c 10034static int
af34e669 10035dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10036 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10037 struct partial_symtab *pst)
c906108c
SS
10038{
10039 struct attribute *attr;
91da1414 10040 struct attribute *attr_high;
af34e669
DJ
10041 CORE_ADDR low = 0;
10042 CORE_ADDR high = 0;
10043 int ret = 0;
c906108c 10044
91da1414
MW
10045 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10046 if (attr_high)
af34e669 10047 {
e142c38c 10048 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10049 if (attr)
91da1414
MW
10050 {
10051 low = DW_ADDR (attr);
3019eac3
DE
10052 if (attr_high->form == DW_FORM_addr
10053 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10054 high = DW_ADDR (attr_high);
10055 else
10056 high = low + DW_UNSND (attr_high);
10057 }
af34e669
DJ
10058 else
10059 /* Found high w/o low attribute. */
10060 return 0;
10061
10062 /* Found consecutive range of addresses. */
10063 ret = 1;
10064 }
c906108c 10065 else
af34e669 10066 {
e142c38c 10067 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10068 if (attr != NULL)
10069 {
2e3cf129
DE
10070 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
10071
af34e669 10072 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10073 .debug_ranges section. */
2e3cf129 10074 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10075 return 0;
43039443 10076 /* Found discontinuous range of addresses. */
af34e669
DJ
10077 ret = -1;
10078 }
10079 }
c906108c 10080
9373cf26
JK
10081 /* read_partial_die has also the strict LOW < HIGH requirement. */
10082 if (high <= low)
c906108c
SS
10083 return 0;
10084
10085 /* When using the GNU linker, .gnu.linkonce. sections are used to
10086 eliminate duplicate copies of functions and vtables and such.
10087 The linker will arbitrarily choose one and discard the others.
10088 The AT_*_pc values for such functions refer to local labels in
10089 these sections. If the section from that file was discarded, the
10090 labels are not in the output, so the relocs get a value of 0.
10091 If this is a discarded function, mark the pc bounds as invalid,
10092 so that GDB will ignore it. */
72dca2f5 10093 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10094 return 0;
10095
10096 *lowpc = low;
96408a79
SA
10097 if (highpc)
10098 *highpc = high;
af34e669 10099 return ret;
c906108c
SS
10100}
10101
b084d499
JB
10102/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10103 its low and high PC addresses. Do nothing if these addresses could not
10104 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10105 and HIGHPC to the high address if greater than HIGHPC. */
10106
10107static void
10108dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10110 struct dwarf2_cu *cu)
10111{
10112 CORE_ADDR low, high;
10113 struct die_info *child = die->child;
10114
d85a05f0 10115 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10116 {
10117 *lowpc = min (*lowpc, low);
10118 *highpc = max (*highpc, high);
10119 }
10120
10121 /* If the language does not allow nested subprograms (either inside
10122 subprograms or lexical blocks), we're done. */
10123 if (cu->language != language_ada)
10124 return;
6e70227d 10125
b084d499
JB
10126 /* Check all the children of the given DIE. If it contains nested
10127 subprograms, then check their pc bounds. Likewise, we need to
10128 check lexical blocks as well, as they may also contain subprogram
10129 definitions. */
10130 while (child && child->tag)
10131 {
10132 if (child->tag == DW_TAG_subprogram
10133 || child->tag == DW_TAG_lexical_block)
10134 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10135 child = sibling_die (child);
10136 }
10137}
10138
fae299cd
DC
10139/* Get the low and high pc's represented by the scope DIE, and store
10140 them in *LOWPC and *HIGHPC. If the correct values can't be
10141 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10142
10143static void
10144get_scope_pc_bounds (struct die_info *die,
10145 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10146 struct dwarf2_cu *cu)
10147{
10148 CORE_ADDR best_low = (CORE_ADDR) -1;
10149 CORE_ADDR best_high = (CORE_ADDR) 0;
10150 CORE_ADDR current_low, current_high;
10151
d85a05f0 10152 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10153 {
10154 best_low = current_low;
10155 best_high = current_high;
10156 }
10157 else
10158 {
10159 struct die_info *child = die->child;
10160
10161 while (child && child->tag)
10162 {
10163 switch (child->tag) {
10164 case DW_TAG_subprogram:
b084d499 10165 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10166 break;
10167 case DW_TAG_namespace:
f55ee35c 10168 case DW_TAG_module:
fae299cd
DC
10169 /* FIXME: carlton/2004-01-16: Should we do this for
10170 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10171 that current GCC's always emit the DIEs corresponding
10172 to definitions of methods of classes as children of a
10173 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10174 the DIEs giving the declarations, which could be
10175 anywhere). But I don't see any reason why the
10176 standards says that they have to be there. */
10177 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10178
10179 if (current_low != ((CORE_ADDR) -1))
10180 {
10181 best_low = min (best_low, current_low);
10182 best_high = max (best_high, current_high);
10183 }
10184 break;
10185 default:
0963b4bd 10186 /* Ignore. */
fae299cd
DC
10187 break;
10188 }
10189
10190 child = sibling_die (child);
10191 }
10192 }
10193
10194 *lowpc = best_low;
10195 *highpc = best_high;
10196}
10197
801e3a5b
JB
10198/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10199 in DIE. */
380bca97 10200
801e3a5b
JB
10201static void
10202dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10203 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10204{
bb5ed363 10205 struct objfile *objfile = cu->objfile;
801e3a5b 10206 struct attribute *attr;
91da1414 10207 struct attribute *attr_high;
801e3a5b 10208
91da1414
MW
10209 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10210 if (attr_high)
801e3a5b 10211 {
801e3a5b
JB
10212 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10213 if (attr)
10214 {
10215 CORE_ADDR low = DW_ADDR (attr);
91da1414 10216 CORE_ADDR high;
3019eac3
DE
10217 if (attr_high->form == DW_FORM_addr
10218 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10219 high = DW_ADDR (attr_high);
10220 else
10221 high = low + DW_UNSND (attr_high);
9a619af0 10222
801e3a5b
JB
10223 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10224 }
10225 }
10226
10227 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10228 if (attr)
10229 {
bb5ed363 10230 bfd *obfd = objfile->obfd;
801e3a5b
JB
10231
10232 /* The value of the DW_AT_ranges attribute is the offset of the
10233 address range list in the .debug_ranges section. */
2e3cf129 10234 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
dce234bc 10235 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10236
10237 /* For some target architectures, but not others, the
10238 read_address function sign-extends the addresses it returns.
10239 To recognize base address selection entries, we need a
10240 mask. */
10241 unsigned int addr_size = cu->header.addr_size;
10242 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10243
10244 /* The base address, to which the next pair is relative. Note
10245 that this 'base' is a DWARF concept: most entries in a range
10246 list are relative, to reduce the number of relocs against the
10247 debugging information. This is separate from this function's
10248 'baseaddr' argument, which GDB uses to relocate debugging
10249 information from a shared library based on the address at
10250 which the library was loaded. */
d00adf39
DE
10251 CORE_ADDR base = cu->base_address;
10252 int base_known = cu->base_known;
801e3a5b 10253
be391dca 10254 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 10255 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10256 {
10257 complaint (&symfile_complaints,
10258 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10259 offset);
10260 return;
10261 }
10262
10263 for (;;)
10264 {
10265 unsigned int bytes_read;
10266 CORE_ADDR start, end;
10267
10268 start = read_address (obfd, buffer, cu, &bytes_read);
10269 buffer += bytes_read;
10270 end = read_address (obfd, buffer, cu, &bytes_read);
10271 buffer += bytes_read;
10272
10273 /* Did we find the end of the range list? */
10274 if (start == 0 && end == 0)
10275 break;
10276
10277 /* Did we find a base address selection entry? */
10278 else if ((start & base_select_mask) == base_select_mask)
10279 {
10280 base = end;
10281 base_known = 1;
10282 }
10283
10284 /* We found an ordinary address range. */
10285 else
10286 {
10287 if (!base_known)
10288 {
10289 complaint (&symfile_complaints,
3e43a32a
MS
10290 _("Invalid .debug_ranges data "
10291 "(no base address)"));
801e3a5b
JB
10292 return;
10293 }
10294
9277c30c
UW
10295 if (start > end)
10296 {
10297 /* Inverted range entries are invalid. */
10298 complaint (&symfile_complaints,
10299 _("Invalid .debug_ranges data "
10300 "(inverted range)"));
10301 return;
10302 }
10303
10304 /* Empty range entries have no effect. */
10305 if (start == end)
10306 continue;
10307
01093045
DE
10308 start += base + baseaddr;
10309 end += base + baseaddr;
10310
10311 /* A not-uncommon case of bad debug info.
10312 Don't pollute the addrmap with bad data. */
10313 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10314 {
10315 complaint (&symfile_complaints,
10316 _(".debug_ranges entry has start address of zero"
10317 " [in module %s]"), objfile->name);
10318 continue;
10319 }
10320
10321 record_block_range (block, start, end - 1);
801e3a5b
JB
10322 }
10323 }
10324 }
10325}
10326
685b1105
JK
10327/* Check whether the producer field indicates either of GCC < 4.6, or the
10328 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 10329
685b1105
JK
10330static void
10331check_producer (struct dwarf2_cu *cu)
60d5a603
JK
10332{
10333 const char *cs;
10334 int major, minor, release;
10335
10336 if (cu->producer == NULL)
10337 {
10338 /* For unknown compilers expect their behavior is DWARF version
10339 compliant.
10340
10341 GCC started to support .debug_types sections by -gdwarf-4 since
10342 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10343 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10344 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10345 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 10346 }
685b1105 10347 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 10348 {
685b1105
JK
10349 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10350
ba919b58
TT
10351 cs = &cu->producer[strlen ("GNU ")];
10352 while (*cs && !isdigit (*cs))
10353 cs++;
10354 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10355 {
10356 /* Not recognized as GCC. */
10357 }
10358 else
685b1105
JK
10359 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10360 }
10361 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10362 cu->producer_is_icc = 1;
10363 else
10364 {
10365 /* For other non-GCC compilers, expect their behavior is DWARF version
10366 compliant. */
60d5a603
JK
10367 }
10368
ba919b58 10369 cu->checked_producer = 1;
685b1105 10370}
ba919b58 10371
685b1105
JK
10372/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10373 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10374 during 4.6.0 experimental. */
10375
10376static int
10377producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10378{
10379 if (!cu->checked_producer)
10380 check_producer (cu);
10381
10382 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
10383}
10384
10385/* Return the default accessibility type if it is not overriden by
10386 DW_AT_accessibility. */
10387
10388static enum dwarf_access_attribute
10389dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10390{
10391 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10392 {
10393 /* The default DWARF 2 accessibility for members is public, the default
10394 accessibility for inheritance is private. */
10395
10396 if (die->tag != DW_TAG_inheritance)
10397 return DW_ACCESS_public;
10398 else
10399 return DW_ACCESS_private;
10400 }
10401 else
10402 {
10403 /* DWARF 3+ defines the default accessibility a different way. The same
10404 rules apply now for DW_TAG_inheritance as for the members and it only
10405 depends on the container kind. */
10406
10407 if (die->parent->tag == DW_TAG_class_type)
10408 return DW_ACCESS_private;
10409 else
10410 return DW_ACCESS_public;
10411 }
10412}
10413
74ac6d43
TT
10414/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10415 offset. If the attribute was not found return 0, otherwise return
10416 1. If it was found but could not properly be handled, set *OFFSET
10417 to 0. */
10418
10419static int
10420handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10421 LONGEST *offset)
10422{
10423 struct attribute *attr;
10424
10425 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10426 if (attr != NULL)
10427 {
10428 *offset = 0;
10429
10430 /* Note that we do not check for a section offset first here.
10431 This is because DW_AT_data_member_location is new in DWARF 4,
10432 so if we see it, we can assume that a constant form is really
10433 a constant and not a section offset. */
10434 if (attr_form_is_constant (attr))
10435 *offset = dwarf2_get_attr_constant_value (attr, 0);
10436 else if (attr_form_is_section_offset (attr))
10437 dwarf2_complex_location_expr_complaint ();
10438 else if (attr_form_is_block (attr))
10439 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10440 else
10441 dwarf2_complex_location_expr_complaint ();
10442
10443 return 1;
10444 }
10445
10446 return 0;
10447}
10448
c906108c
SS
10449/* Add an aggregate field to the field list. */
10450
10451static void
107d2387 10452dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 10453 struct dwarf2_cu *cu)
6e70227d 10454{
e7c27a73 10455 struct objfile *objfile = cu->objfile;
5e2b427d 10456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
10457 struct nextfield *new_field;
10458 struct attribute *attr;
10459 struct field *fp;
10460 char *fieldname = "";
10461
10462 /* Allocate a new field list entry and link it in. */
10463 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 10464 make_cleanup (xfree, new_field);
c906108c 10465 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
10466
10467 if (die->tag == DW_TAG_inheritance)
10468 {
10469 new_field->next = fip->baseclasses;
10470 fip->baseclasses = new_field;
10471 }
10472 else
10473 {
10474 new_field->next = fip->fields;
10475 fip->fields = new_field;
10476 }
c906108c
SS
10477 fip->nfields++;
10478
e142c38c 10479 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
10480 if (attr)
10481 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
10482 else
10483 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
10484 if (new_field->accessibility != DW_ACCESS_public)
10485 fip->non_public_fields = 1;
60d5a603 10486
e142c38c 10487 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
10488 if (attr)
10489 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
10490 else
10491 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
10492
10493 fp = &new_field->field;
a9a9bd0f 10494
e142c38c 10495 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 10496 {
74ac6d43
TT
10497 LONGEST offset;
10498
a9a9bd0f 10499 /* Data member other than a C++ static data member. */
6e70227d 10500
c906108c 10501 /* Get type of field. */
e7c27a73 10502 fp->type = die_type (die, cu);
c906108c 10503
d6a843b5 10504 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 10505
c906108c 10506 /* Get bit size of field (zero if none). */
e142c38c 10507 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
10508 if (attr)
10509 {
10510 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10511 }
10512 else
10513 {
10514 FIELD_BITSIZE (*fp) = 0;
10515 }
10516
10517 /* Get bit offset of field. */
74ac6d43
TT
10518 if (handle_data_member_location (die, cu, &offset))
10519 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 10520 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
10521 if (attr)
10522 {
5e2b427d 10523 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
10524 {
10525 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
10526 additional bit offset from the MSB of the containing
10527 anonymous object to the MSB of the field. We don't
10528 have to do anything special since we don't need to
10529 know the size of the anonymous object. */
f41f5e61 10530 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
10531 }
10532 else
10533 {
10534 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
10535 MSB of the anonymous object, subtract off the number of
10536 bits from the MSB of the field to the MSB of the
10537 object, and then subtract off the number of bits of
10538 the field itself. The result is the bit offset of
10539 the LSB of the field. */
c906108c
SS
10540 int anonymous_size;
10541 int bit_offset = DW_UNSND (attr);
10542
e142c38c 10543 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
10544 if (attr)
10545 {
10546 /* The size of the anonymous object containing
10547 the bit field is explicit, so use the
10548 indicated size (in bytes). */
10549 anonymous_size = DW_UNSND (attr);
10550 }
10551 else
10552 {
10553 /* The size of the anonymous object containing
10554 the bit field must be inferred from the type
10555 attribute of the data member containing the
10556 bit field. */
10557 anonymous_size = TYPE_LENGTH (fp->type);
10558 }
f41f5e61
PA
10559 SET_FIELD_BITPOS (*fp,
10560 (FIELD_BITPOS (*fp)
10561 + anonymous_size * bits_per_byte
10562 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
10563 }
10564 }
10565
10566 /* Get name of field. */
39cbfefa
DJ
10567 fieldname = dwarf2_name (die, cu);
10568 if (fieldname == NULL)
10569 fieldname = "";
d8151005
DJ
10570
10571 /* The name is already allocated along with this objfile, so we don't
10572 need to duplicate it for the type. */
10573 fp->name = fieldname;
c906108c
SS
10574
10575 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 10576 pointer or virtual base class pointer) to private. */
e142c38c 10577 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 10578 {
d48cc9dd 10579 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
10580 new_field->accessibility = DW_ACCESS_private;
10581 fip->non_public_fields = 1;
10582 }
10583 }
a9a9bd0f 10584 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 10585 {
a9a9bd0f
DC
10586 /* C++ static member. */
10587
10588 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10589 is a declaration, but all versions of G++ as of this writing
10590 (so through at least 3.2.1) incorrectly generate
10591 DW_TAG_variable tags. */
6e70227d 10592
ff355380 10593 const char *physname;
c906108c 10594
a9a9bd0f 10595 /* Get name of field. */
39cbfefa
DJ
10596 fieldname = dwarf2_name (die, cu);
10597 if (fieldname == NULL)
c906108c
SS
10598 return;
10599
254e6b9e 10600 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
10601 if (attr
10602 /* Only create a symbol if this is an external value.
10603 new_symbol checks this and puts the value in the global symbol
10604 table, which we want. If it is not external, new_symbol
10605 will try to put the value in cu->list_in_scope which is wrong. */
10606 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
10607 {
10608 /* A static const member, not much different than an enum as far as
10609 we're concerned, except that we can support more types. */
10610 new_symbol (die, NULL, cu);
10611 }
10612
2df3850c 10613 /* Get physical name. */
ff355380 10614 physname = dwarf2_physname (fieldname, die, cu);
c906108c 10615
d8151005
DJ
10616 /* The name is already allocated along with this objfile, so we don't
10617 need to duplicate it for the type. */
10618 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 10619 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 10620 FIELD_NAME (*fp) = fieldname;
c906108c
SS
10621 }
10622 else if (die->tag == DW_TAG_inheritance)
10623 {
74ac6d43 10624 LONGEST offset;
d4b96c9a 10625
74ac6d43
TT
10626 /* C++ base class field. */
10627 if (handle_data_member_location (die, cu, &offset))
10628 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 10629 FIELD_BITSIZE (*fp) = 0;
e7c27a73 10630 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
10631 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10632 fip->nbaseclasses++;
10633 }
10634}
10635
98751a41
JK
10636/* Add a typedef defined in the scope of the FIP's class. */
10637
10638static void
10639dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10640 struct dwarf2_cu *cu)
6e70227d 10641{
98751a41 10642 struct objfile *objfile = cu->objfile;
98751a41
JK
10643 struct typedef_field_list *new_field;
10644 struct attribute *attr;
10645 struct typedef_field *fp;
10646 char *fieldname = "";
10647
10648 /* Allocate a new field list entry and link it in. */
10649 new_field = xzalloc (sizeof (*new_field));
10650 make_cleanup (xfree, new_field);
10651
10652 gdb_assert (die->tag == DW_TAG_typedef);
10653
10654 fp = &new_field->field;
10655
10656 /* Get name of field. */
10657 fp->name = dwarf2_name (die, cu);
10658 if (fp->name == NULL)
10659 return;
10660
10661 fp->type = read_type_die (die, cu);
10662
10663 new_field->next = fip->typedef_field_list;
10664 fip->typedef_field_list = new_field;
10665 fip->typedef_field_list_count++;
10666}
10667
c906108c
SS
10668/* Create the vector of fields, and attach it to the type. */
10669
10670static void
fba45db2 10671dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 10672 struct dwarf2_cu *cu)
c906108c
SS
10673{
10674 int nfields = fip->nfields;
10675
10676 /* Record the field count, allocate space for the array of fields,
10677 and create blank accessibility bitfields if necessary. */
10678 TYPE_NFIELDS (type) = nfields;
10679 TYPE_FIELDS (type) = (struct field *)
10680 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10681 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10682
b4ba55a1 10683 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
10684 {
10685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10686
10687 TYPE_FIELD_PRIVATE_BITS (type) =
10688 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10689 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10690
10691 TYPE_FIELD_PROTECTED_BITS (type) =
10692 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10693 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10694
774b6a14
TT
10695 TYPE_FIELD_IGNORE_BITS (type) =
10696 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10697 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
10698 }
10699
10700 /* If the type has baseclasses, allocate and clear a bit vector for
10701 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 10702 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
10703 {
10704 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 10705 unsigned char *pointer;
c906108c
SS
10706
10707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
10708 pointer = TYPE_ALLOC (type, num_bytes);
10709 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
10710 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10711 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10712 }
10713
3e43a32a
MS
10714 /* Copy the saved-up fields into the field vector. Start from the head of
10715 the list, adding to the tail of the field array, so that they end up in
10716 the same order in the array in which they were added to the list. */
c906108c
SS
10717 while (nfields-- > 0)
10718 {
7d0ccb61
DJ
10719 struct nextfield *fieldp;
10720
10721 if (fip->fields)
10722 {
10723 fieldp = fip->fields;
10724 fip->fields = fieldp->next;
10725 }
10726 else
10727 {
10728 fieldp = fip->baseclasses;
10729 fip->baseclasses = fieldp->next;
10730 }
10731
10732 TYPE_FIELD (type, nfields) = fieldp->field;
10733 switch (fieldp->accessibility)
c906108c 10734 {
c5aa993b 10735 case DW_ACCESS_private:
b4ba55a1
JB
10736 if (cu->language != language_ada)
10737 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 10738 break;
c906108c 10739
c5aa993b 10740 case DW_ACCESS_protected:
b4ba55a1
JB
10741 if (cu->language != language_ada)
10742 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 10743 break;
c906108c 10744
c5aa993b
JM
10745 case DW_ACCESS_public:
10746 break;
c906108c 10747
c5aa993b
JM
10748 default:
10749 /* Unknown accessibility. Complain and treat it as public. */
10750 {
e2e0b3e5 10751 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 10752 fieldp->accessibility);
c5aa993b
JM
10753 }
10754 break;
c906108c
SS
10755 }
10756 if (nfields < fip->nbaseclasses)
10757 {
7d0ccb61 10758 switch (fieldp->virtuality)
c906108c 10759 {
c5aa993b
JM
10760 case DW_VIRTUALITY_virtual:
10761 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 10762 if (cu->language == language_ada)
a73c6dcd 10763 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
10764 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10765 break;
c906108c
SS
10766 }
10767 }
c906108c
SS
10768 }
10769}
10770
c906108c
SS
10771/* Add a member function to the proper fieldlist. */
10772
10773static void
107d2387 10774dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 10775 struct type *type, struct dwarf2_cu *cu)
c906108c 10776{
e7c27a73 10777 struct objfile *objfile = cu->objfile;
c906108c
SS
10778 struct attribute *attr;
10779 struct fnfieldlist *flp;
10780 int i;
10781 struct fn_field *fnp;
10782 char *fieldname;
c906108c 10783 struct nextfnfield *new_fnfield;
f792889a 10784 struct type *this_type;
60d5a603 10785 enum dwarf_access_attribute accessibility;
c906108c 10786
b4ba55a1 10787 if (cu->language == language_ada)
a73c6dcd 10788 error (_("unexpected member function in Ada type"));
b4ba55a1 10789
2df3850c 10790 /* Get name of member function. */
39cbfefa
DJ
10791 fieldname = dwarf2_name (die, cu);
10792 if (fieldname == NULL)
2df3850c 10793 return;
c906108c 10794
c906108c
SS
10795 /* Look up member function name in fieldlist. */
10796 for (i = 0; i < fip->nfnfields; i++)
10797 {
27bfe10e 10798 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
10799 break;
10800 }
10801
10802 /* Create new list element if necessary. */
10803 if (i < fip->nfnfields)
10804 flp = &fip->fnfieldlists[i];
10805 else
10806 {
10807 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10808 {
10809 fip->fnfieldlists = (struct fnfieldlist *)
10810 xrealloc (fip->fnfieldlists,
10811 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 10812 * sizeof (struct fnfieldlist));
c906108c 10813 if (fip->nfnfields == 0)
c13c43fd 10814 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
10815 }
10816 flp = &fip->fnfieldlists[fip->nfnfields];
10817 flp->name = fieldname;
10818 flp->length = 0;
10819 flp->head = NULL;
3da10d80 10820 i = fip->nfnfields++;
c906108c
SS
10821 }
10822
10823 /* Create a new member function field and chain it to the field list
0963b4bd 10824 entry. */
c906108c 10825 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 10826 make_cleanup (xfree, new_fnfield);
c906108c
SS
10827 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10828 new_fnfield->next = flp->head;
10829 flp->head = new_fnfield;
10830 flp->length++;
10831
10832 /* Fill in the member function field info. */
10833 fnp = &new_fnfield->fnfield;
3da10d80
KS
10834
10835 /* Delay processing of the physname until later. */
10836 if (cu->language == language_cplus || cu->language == language_java)
10837 {
10838 add_to_method_list (type, i, flp->length - 1, fieldname,
10839 die, cu);
10840 }
10841 else
10842 {
1d06ead6 10843 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
10844 fnp->physname = physname ? physname : "";
10845 }
10846
c906108c 10847 fnp->type = alloc_type (objfile);
f792889a
DJ
10848 this_type = read_type_die (die, cu);
10849 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 10850 {
f792889a 10851 int nparams = TYPE_NFIELDS (this_type);
c906108c 10852
f792889a 10853 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
10854 of the method itself (TYPE_CODE_METHOD). */
10855 smash_to_method_type (fnp->type, type,
f792889a
DJ
10856 TYPE_TARGET_TYPE (this_type),
10857 TYPE_FIELDS (this_type),
10858 TYPE_NFIELDS (this_type),
10859 TYPE_VARARGS (this_type));
c906108c
SS
10860
10861 /* Handle static member functions.
c5aa993b 10862 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
10863 member functions. G++ helps GDB by marking the first
10864 parameter for non-static member functions (which is the this
10865 pointer) as artificial. We obtain this information from
10866 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 10867 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
10868 fnp->voffset = VOFFSET_STATIC;
10869 }
10870 else
e2e0b3e5 10871 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 10872 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
10873
10874 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 10875 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 10876 fnp->fcontext = die_containing_type (die, cu);
c906108c 10877
3e43a32a
MS
10878 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10879 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
10880
10881 /* Get accessibility. */
e142c38c 10882 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 10883 if (attr)
60d5a603
JK
10884 accessibility = DW_UNSND (attr);
10885 else
10886 accessibility = dwarf2_default_access_attribute (die, cu);
10887 switch (accessibility)
c906108c 10888 {
60d5a603
JK
10889 case DW_ACCESS_private:
10890 fnp->is_private = 1;
10891 break;
10892 case DW_ACCESS_protected:
10893 fnp->is_protected = 1;
10894 break;
c906108c
SS
10895 }
10896
b02dede2 10897 /* Check for artificial methods. */
e142c38c 10898 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
10899 if (attr && DW_UNSND (attr) != 0)
10900 fnp->is_artificial = 1;
10901
0d564a31 10902 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
10903 function. For older versions of GCC, this is an offset in the
10904 appropriate virtual table, as specified by DW_AT_containing_type.
10905 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
10906 to the object address. */
10907
e142c38c 10908 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 10909 if (attr)
8e19ed76 10910 {
aec5aa8b 10911 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 10912 {
aec5aa8b
TT
10913 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10914 {
10915 /* Old-style GCC. */
10916 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10917 }
10918 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10919 || (DW_BLOCK (attr)->size > 1
10920 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10921 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10922 {
10923 struct dwarf_block blk;
10924 int offset;
10925
10926 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10927 ? 1 : 2);
10928 blk.size = DW_BLOCK (attr)->size - offset;
10929 blk.data = DW_BLOCK (attr)->data + offset;
10930 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10931 if ((fnp->voffset % cu->header.addr_size) != 0)
10932 dwarf2_complex_location_expr_complaint ();
10933 else
10934 fnp->voffset /= cu->header.addr_size;
10935 fnp->voffset += 2;
10936 }
10937 else
10938 dwarf2_complex_location_expr_complaint ();
10939
10940 if (!fnp->fcontext)
10941 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10942 }
3690dd37 10943 else if (attr_form_is_section_offset (attr))
8e19ed76 10944 {
4d3c2250 10945 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
10946 }
10947 else
10948 {
4d3c2250
KB
10949 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10950 fieldname);
8e19ed76 10951 }
0d564a31 10952 }
d48cc9dd
DJ
10953 else
10954 {
10955 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10956 if (attr && DW_UNSND (attr))
10957 {
10958 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10959 complaint (&symfile_complaints,
3e43a32a
MS
10960 _("Member function \"%s\" (offset %d) is virtual "
10961 "but the vtable offset is not specified"),
b64f50a1 10962 fieldname, die->offset.sect_off);
9655fd1a 10963 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
10964 TYPE_CPLUS_DYNAMIC (type) = 1;
10965 }
10966 }
c906108c
SS
10967}
10968
10969/* Create the vector of member function fields, and attach it to the type. */
10970
10971static void
fba45db2 10972dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 10973 struct dwarf2_cu *cu)
c906108c
SS
10974{
10975 struct fnfieldlist *flp;
c906108c
SS
10976 int i;
10977
b4ba55a1 10978 if (cu->language == language_ada)
a73c6dcd 10979 error (_("unexpected member functions in Ada type"));
b4ba55a1 10980
c906108c
SS
10981 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10982 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10983 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10984
10985 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10986 {
10987 struct nextfnfield *nfp = flp->head;
10988 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10989 int k;
10990
10991 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10992 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10993 fn_flp->fn_fields = (struct fn_field *)
10994 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10995 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 10996 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
10997 }
10998
10999 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
11000}
11001
1168df01
JB
11002/* Returns non-zero if NAME is the name of a vtable member in CU's
11003 language, zero otherwise. */
11004static int
11005is_vtable_name (const char *name, struct dwarf2_cu *cu)
11006{
11007 static const char vptr[] = "_vptr";
987504bb 11008 static const char vtable[] = "vtable";
1168df01 11009
987504bb
JJ
11010 /* Look for the C++ and Java forms of the vtable. */
11011 if ((cu->language == language_java
11012 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11013 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11014 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11015 return 1;
11016
11017 return 0;
11018}
11019
c0dd20ea 11020/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11021 functions, with the ABI-specified layout. If TYPE describes
11022 such a structure, smash it into a member function type.
61049d3b
DJ
11023
11024 GCC shouldn't do this; it should just output pointer to member DIEs.
11025 This is GCC PR debug/28767. */
c0dd20ea 11026
0b92b5bb
TT
11027static void
11028quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11029{
0b92b5bb 11030 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11031
11032 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11033 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11034 return;
c0dd20ea
DJ
11035
11036 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11037 if (TYPE_FIELD_NAME (type, 0) == NULL
11038 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11039 || TYPE_FIELD_NAME (type, 1) == NULL
11040 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11041 return;
c0dd20ea
DJ
11042
11043 /* Find the type of the method. */
0b92b5bb 11044 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11045 if (pfn_type == NULL
11046 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11047 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11048 return;
c0dd20ea
DJ
11049
11050 /* Look for the "this" argument. */
11051 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11052 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11053 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11054 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11055 return;
c0dd20ea
DJ
11056
11057 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11058 new_type = alloc_type (objfile);
11059 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11060 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11061 TYPE_VARARGS (pfn_type));
0b92b5bb 11062 smash_to_methodptr_type (type, new_type);
c0dd20ea 11063}
1168df01 11064
685b1105
JK
11065/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11066 (icc). */
11067
11068static int
11069producer_is_icc (struct dwarf2_cu *cu)
11070{
11071 if (!cu->checked_producer)
11072 check_producer (cu);
11073
11074 return cu->producer_is_icc;
11075}
11076
c906108c 11077/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11078 (definition) to create a type for the structure or union. Fill in
11079 the type's name and general properties; the members will not be
11080 processed until process_structure_type.
c906108c 11081
c767944b
DJ
11082 NOTE: we need to call these functions regardless of whether or not the
11083 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11084 structure or union. This gets the type entered into our set of
11085 user defined types.
11086
11087 However, if the structure is incomplete (an opaque struct/union)
11088 then suppress creating a symbol table entry for it since gdb only
11089 wants to find the one with the complete definition. Note that if
11090 it is complete, we just call new_symbol, which does it's own
11091 checking about whether the struct/union is anonymous or not (and
11092 suppresses creating a symbol table entry itself). */
11093
f792889a 11094static struct type *
134d01f1 11095read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11096{
e7c27a73 11097 struct objfile *objfile = cu->objfile;
c906108c
SS
11098 struct type *type;
11099 struct attribute *attr;
39cbfefa 11100 char *name;
c906108c 11101
348e048f
DE
11102 /* If the definition of this type lives in .debug_types, read that type.
11103 Don't follow DW_AT_specification though, that will take us back up
11104 the chain and we want to go down. */
45e58e77 11105 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11106 if (attr)
11107 {
11108 struct dwarf2_cu *type_cu = cu;
11109 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 11110
348e048f
DE
11111 /* We could just recurse on read_structure_type, but we need to call
11112 get_die_type to ensure only one type for this DIE is created.
11113 This is important, for example, because for c++ classes we need
11114 TYPE_NAME set which is only done by new_symbol. Blech. */
11115 type = read_type_die (type_die, type_cu);
9dc481d3
DE
11116
11117 /* TYPE_CU may not be the same as CU.
11118 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
11119 return set_die_type (die, type, cu);
11120 }
11121
c0dd20ea 11122 type = alloc_type (objfile);
c906108c 11123 INIT_CPLUS_SPECIFIC (type);
93311388 11124
39cbfefa
DJ
11125 name = dwarf2_name (die, cu);
11126 if (name != NULL)
c906108c 11127 {
987504bb
JJ
11128 if (cu->language == language_cplus
11129 || cu->language == language_java)
63d06c5c 11130 {
3da10d80
KS
11131 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11132
11133 /* dwarf2_full_name might have already finished building the DIE's
11134 type. If so, there is no need to continue. */
11135 if (get_die_type (die, cu) != NULL)
11136 return get_die_type (die, cu);
11137
11138 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11139 if (die->tag == DW_TAG_structure_type
11140 || die->tag == DW_TAG_class_type)
11141 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11142 }
11143 else
11144 {
d8151005
DJ
11145 /* The name is already allocated along with this objfile, so
11146 we don't need to duplicate it for the type. */
94af9270
KS
11147 TYPE_TAG_NAME (type) = (char *) name;
11148 if (die->tag == DW_TAG_class_type)
11149 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11150 }
c906108c
SS
11151 }
11152
11153 if (die->tag == DW_TAG_structure_type)
11154 {
11155 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11156 }
11157 else if (die->tag == DW_TAG_union_type)
11158 {
11159 TYPE_CODE (type) = TYPE_CODE_UNION;
11160 }
11161 else
11162 {
c906108c
SS
11163 TYPE_CODE (type) = TYPE_CODE_CLASS;
11164 }
11165
0cc2414c
TT
11166 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11167 TYPE_DECLARED_CLASS (type) = 1;
11168
e142c38c 11169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11170 if (attr)
11171 {
11172 TYPE_LENGTH (type) = DW_UNSND (attr);
11173 }
11174 else
11175 {
11176 TYPE_LENGTH (type) = 0;
11177 }
11178
685b1105
JK
11179 if (producer_is_icc (cu))
11180 {
11181 /* ICC does not output the required DW_AT_declaration
11182 on incomplete types, but gives them a size of zero. */
11183 }
11184 else
11185 TYPE_STUB_SUPPORTED (type) = 1;
11186
dc718098 11187 if (die_is_declaration (die, cu))
876cecd0 11188 TYPE_STUB (type) = 1;
a6c727b2
DJ
11189 else if (attr == NULL && die->child == NULL
11190 && producer_is_realview (cu->producer))
11191 /* RealView does not output the required DW_AT_declaration
11192 on incomplete types. */
11193 TYPE_STUB (type) = 1;
dc718098 11194
c906108c
SS
11195 /* We need to add the type field to the die immediately so we don't
11196 infinitely recurse when dealing with pointers to the structure
0963b4bd 11197 type within the structure itself. */
1c379e20 11198 set_die_type (die, type, cu);
c906108c 11199
7e314c57
JK
11200 /* set_die_type should be already done. */
11201 set_descriptive_type (type, die, cu);
11202
c767944b
DJ
11203 return type;
11204}
11205
11206/* Finish creating a structure or union type, including filling in
11207 its members and creating a symbol for it. */
11208
11209static void
11210process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11211{
11212 struct objfile *objfile = cu->objfile;
11213 struct die_info *child_die = die->child;
11214 struct type *type;
11215
11216 type = get_die_type (die, cu);
11217 if (type == NULL)
11218 type = read_structure_type (die, cu);
11219
e142c38c 11220 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11221 {
11222 struct field_info fi;
11223 struct die_info *child_die;
34eaf542 11224 VEC (symbolp) *template_args = NULL;
c767944b 11225 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11226
11227 memset (&fi, 0, sizeof (struct field_info));
11228
639d11d3 11229 child_die = die->child;
c906108c
SS
11230
11231 while (child_die && child_die->tag)
11232 {
a9a9bd0f
DC
11233 if (child_die->tag == DW_TAG_member
11234 || child_die->tag == DW_TAG_variable)
c906108c 11235 {
a9a9bd0f
DC
11236 /* NOTE: carlton/2002-11-05: A C++ static data member
11237 should be a DW_TAG_member that is a declaration, but
11238 all versions of G++ as of this writing (so through at
11239 least 3.2.1) incorrectly generate DW_TAG_variable
11240 tags for them instead. */
e7c27a73 11241 dwarf2_add_field (&fi, child_die, cu);
c906108c 11242 }
8713b1b1 11243 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11244 {
0963b4bd 11245 /* C++ member function. */
e7c27a73 11246 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11247 }
11248 else if (child_die->tag == DW_TAG_inheritance)
11249 {
11250 /* C++ base class field. */
e7c27a73 11251 dwarf2_add_field (&fi, child_die, cu);
c906108c 11252 }
98751a41
JK
11253 else if (child_die->tag == DW_TAG_typedef)
11254 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11255 else if (child_die->tag == DW_TAG_template_type_param
11256 || child_die->tag == DW_TAG_template_value_param)
11257 {
11258 struct symbol *arg = new_symbol (child_die, NULL, cu);
11259
f1078f66
DJ
11260 if (arg != NULL)
11261 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11262 }
11263
c906108c
SS
11264 child_die = sibling_die (child_die);
11265 }
11266
34eaf542
TT
11267 /* Attach template arguments to type. */
11268 if (! VEC_empty (symbolp, template_args))
11269 {
11270 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11271 TYPE_N_TEMPLATE_ARGUMENTS (type)
11272 = VEC_length (symbolp, template_args);
11273 TYPE_TEMPLATE_ARGUMENTS (type)
11274 = obstack_alloc (&objfile->objfile_obstack,
11275 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11276 * sizeof (struct symbol *)));
11277 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11278 VEC_address (symbolp, template_args),
11279 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11280 * sizeof (struct symbol *)));
11281 VEC_free (symbolp, template_args);
11282 }
11283
c906108c
SS
11284 /* Attach fields and member functions to the type. */
11285 if (fi.nfields)
e7c27a73 11286 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11287 if (fi.nfnfields)
11288 {
e7c27a73 11289 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11290
c5aa993b 11291 /* Get the type which refers to the base class (possibly this
c906108c 11292 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11293 class from the DW_AT_containing_type attribute. This use of
11294 DW_AT_containing_type is a GNU extension. */
c906108c 11295
e142c38c 11296 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11297 {
e7c27a73 11298 struct type *t = die_containing_type (die, cu);
c906108c
SS
11299
11300 TYPE_VPTR_BASETYPE (type) = t;
11301 if (type == t)
11302 {
c906108c
SS
11303 int i;
11304
11305 /* Our own class provides vtbl ptr. */
11306 for (i = TYPE_NFIELDS (t) - 1;
11307 i >= TYPE_N_BASECLASSES (t);
11308 --i)
11309 {
0d5cff50 11310 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 11311
1168df01 11312 if (is_vtable_name (fieldname, cu))
c906108c
SS
11313 {
11314 TYPE_VPTR_FIELDNO (type) = i;
11315 break;
11316 }
11317 }
11318
11319 /* Complain if virtual function table field not found. */
11320 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 11321 complaint (&symfile_complaints,
3e43a32a
MS
11322 _("virtual function table pointer "
11323 "not found when defining class '%s'"),
4d3c2250
KB
11324 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11325 "");
c906108c
SS
11326 }
11327 else
11328 {
11329 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11330 }
11331 }
f6235d4c
EZ
11332 else if (cu->producer
11333 && strncmp (cu->producer,
11334 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11335 {
11336 /* The IBM XLC compiler does not provide direct indication
11337 of the containing type, but the vtable pointer is
11338 always named __vfp. */
11339
11340 int i;
11341
11342 for (i = TYPE_NFIELDS (type) - 1;
11343 i >= TYPE_N_BASECLASSES (type);
11344 --i)
11345 {
11346 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11347 {
11348 TYPE_VPTR_FIELDNO (type) = i;
11349 TYPE_VPTR_BASETYPE (type) = type;
11350 break;
11351 }
11352 }
11353 }
c906108c 11354 }
98751a41
JK
11355
11356 /* Copy fi.typedef_field_list linked list elements content into the
11357 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11358 if (fi.typedef_field_list)
11359 {
11360 int i = fi.typedef_field_list_count;
11361
a0d7a4ff 11362 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
11363 TYPE_TYPEDEF_FIELD_ARRAY (type)
11364 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11365 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11366
11367 /* Reverse the list order to keep the debug info elements order. */
11368 while (--i >= 0)
11369 {
11370 struct typedef_field *dest, *src;
6e70227d 11371
98751a41
JK
11372 dest = &TYPE_TYPEDEF_FIELD (type, i);
11373 src = &fi.typedef_field_list->field;
11374 fi.typedef_field_list = fi.typedef_field_list->next;
11375 *dest = *src;
11376 }
11377 }
c767944b
DJ
11378
11379 do_cleanups (back_to);
eb2a6f42
TT
11380
11381 if (HAVE_CPLUS_STRUCT (type))
11382 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 11383 }
63d06c5c 11384
bb5ed363 11385 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 11386
90aeadfc
DC
11387 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11388 snapshots) has been known to create a die giving a declaration
11389 for a class that has, as a child, a die giving a definition for a
11390 nested class. So we have to process our children even if the
11391 current die is a declaration. Normally, of course, a declaration
11392 won't have any children at all. */
134d01f1 11393
90aeadfc
DC
11394 while (child_die != NULL && child_die->tag)
11395 {
11396 if (child_die->tag == DW_TAG_member
11397 || child_die->tag == DW_TAG_variable
34eaf542
TT
11398 || child_die->tag == DW_TAG_inheritance
11399 || child_die->tag == DW_TAG_template_value_param
11400 || child_die->tag == DW_TAG_template_type_param)
134d01f1 11401 {
90aeadfc 11402 /* Do nothing. */
134d01f1 11403 }
90aeadfc
DC
11404 else
11405 process_die (child_die, cu);
134d01f1 11406
90aeadfc 11407 child_die = sibling_die (child_die);
134d01f1
DJ
11408 }
11409
fa4028e9
JB
11410 /* Do not consider external references. According to the DWARF standard,
11411 these DIEs are identified by the fact that they have no byte_size
11412 attribute, and a declaration attribute. */
11413 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11414 || !die_is_declaration (die, cu))
c767944b 11415 new_symbol (die, type, cu);
134d01f1
DJ
11416}
11417
11418/* Given a DW_AT_enumeration_type die, set its type. We do not
11419 complete the type's fields yet, or create any symbols. */
c906108c 11420
f792889a 11421static struct type *
134d01f1 11422read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11423{
e7c27a73 11424 struct objfile *objfile = cu->objfile;
c906108c 11425 struct type *type;
c906108c 11426 struct attribute *attr;
0114d602 11427 const char *name;
134d01f1 11428
348e048f
DE
11429 /* If the definition of this type lives in .debug_types, read that type.
11430 Don't follow DW_AT_specification though, that will take us back up
11431 the chain and we want to go down. */
45e58e77 11432 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11433 if (attr)
11434 {
11435 struct dwarf2_cu *type_cu = cu;
11436 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 11437
348e048f 11438 type = read_type_die (type_die, type_cu);
9dc481d3
DE
11439
11440 /* TYPE_CU may not be the same as CU.
11441 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
11442 return set_die_type (die, type, cu);
11443 }
11444
c906108c
SS
11445 type = alloc_type (objfile);
11446
11447 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 11448 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 11449 if (name != NULL)
0114d602 11450 TYPE_TAG_NAME (type) = (char *) name;
c906108c 11451
e142c38c 11452 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11453 if (attr)
11454 {
11455 TYPE_LENGTH (type) = DW_UNSND (attr);
11456 }
11457 else
11458 {
11459 TYPE_LENGTH (type) = 0;
11460 }
11461
137033e9
JB
11462 /* The enumeration DIE can be incomplete. In Ada, any type can be
11463 declared as private in the package spec, and then defined only
11464 inside the package body. Such types are known as Taft Amendment
11465 Types. When another package uses such a type, an incomplete DIE
11466 may be generated by the compiler. */
02eb380e 11467 if (die_is_declaration (die, cu))
876cecd0 11468 TYPE_STUB (type) = 1;
02eb380e 11469
f792889a 11470 return set_die_type (die, type, cu);
134d01f1
DJ
11471}
11472
11473/* Given a pointer to a die which begins an enumeration, process all
11474 the dies that define the members of the enumeration, and create the
11475 symbol for the enumeration type.
11476
11477 NOTE: We reverse the order of the element list. */
11478
11479static void
11480process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11481{
f792889a 11482 struct type *this_type;
134d01f1 11483
f792889a
DJ
11484 this_type = get_die_type (die, cu);
11485 if (this_type == NULL)
11486 this_type = read_enumeration_type (die, cu);
9dc481d3 11487
639d11d3 11488 if (die->child != NULL)
c906108c 11489 {
9dc481d3
DE
11490 struct die_info *child_die;
11491 struct symbol *sym;
11492 struct field *fields = NULL;
11493 int num_fields = 0;
11494 int unsigned_enum = 1;
11495 char *name;
cafec441
TT
11496 int flag_enum = 1;
11497 ULONGEST mask = 0;
9dc481d3 11498
639d11d3 11499 child_die = die->child;
c906108c
SS
11500 while (child_die && child_die->tag)
11501 {
11502 if (child_die->tag != DW_TAG_enumerator)
11503 {
e7c27a73 11504 process_die (child_die, cu);
c906108c
SS
11505 }
11506 else
11507 {
39cbfefa
DJ
11508 name = dwarf2_name (child_die, cu);
11509 if (name)
c906108c 11510 {
f792889a 11511 sym = new_symbol (child_die, this_type, cu);
c906108c 11512 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
11513 {
11514 unsigned_enum = 0;
11515 flag_enum = 0;
11516 }
11517 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11518 flag_enum = 0;
11519 else
11520 mask |= SYMBOL_VALUE (sym);
c906108c
SS
11521
11522 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11523 {
11524 fields = (struct field *)
11525 xrealloc (fields,
11526 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11527 * sizeof (struct field));
c906108c
SS
11528 }
11529
3567439c 11530 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 11531 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 11532 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
11533 FIELD_BITSIZE (fields[num_fields]) = 0;
11534
11535 num_fields++;
11536 }
11537 }
11538
11539 child_die = sibling_die (child_die);
11540 }
11541
11542 if (num_fields)
11543 {
f792889a
DJ
11544 TYPE_NFIELDS (this_type) = num_fields;
11545 TYPE_FIELDS (this_type) = (struct field *)
11546 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11547 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 11548 sizeof (struct field) * num_fields);
b8c9b27d 11549 xfree (fields);
c906108c
SS
11550 }
11551 if (unsigned_enum)
876cecd0 11552 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
11553 if (flag_enum)
11554 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 11555 }
134d01f1 11556
6c83ed52
TT
11557 /* If we are reading an enum from a .debug_types unit, and the enum
11558 is a declaration, and the enum is not the signatured type in the
11559 unit, then we do not want to add a symbol for it. Adding a
11560 symbol would in some cases obscure the true definition of the
11561 enum, giving users an incomplete type when the definition is
11562 actually available. Note that we do not want to do this for all
11563 enums which are just declarations, because C++0x allows forward
11564 enum declarations. */
3019eac3 11565 if (cu->per_cu->is_debug_types
6c83ed52
TT
11566 && die_is_declaration (die, cu))
11567 {
52dc124a 11568 struct signatured_type *sig_type;
6c83ed52 11569
52dc124a 11570 sig_type
6c83ed52 11571 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
3019eac3 11572 cu->per_cu->info_or_types_section,
6c83ed52 11573 cu->per_cu->offset);
3019eac3
DE
11574 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11575 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
11576 return;
11577 }
11578
f792889a 11579 new_symbol (die, this_type, cu);
c906108c
SS
11580}
11581
11582/* Extract all information from a DW_TAG_array_type DIE and put it in
11583 the DIE's type field. For now, this only handles one dimensional
11584 arrays. */
11585
f792889a 11586static struct type *
e7c27a73 11587read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11588{
e7c27a73 11589 struct objfile *objfile = cu->objfile;
c906108c 11590 struct die_info *child_die;
7e314c57 11591 struct type *type;
c906108c
SS
11592 struct type *element_type, *range_type, *index_type;
11593 struct type **range_types = NULL;
11594 struct attribute *attr;
11595 int ndim = 0;
11596 struct cleanup *back_to;
39cbfefa 11597 char *name;
c906108c 11598
e7c27a73 11599 element_type = die_type (die, cu);
c906108c 11600
7e314c57
JK
11601 /* The die_type call above may have already set the type for this DIE. */
11602 type = get_die_type (die, cu);
11603 if (type)
11604 return type;
11605
c906108c
SS
11606 /* Irix 6.2 native cc creates array types without children for
11607 arrays with unspecified length. */
639d11d3 11608 if (die->child == NULL)
c906108c 11609 {
46bf5051 11610 index_type = objfile_type (objfile)->builtin_int;
c906108c 11611 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
11612 type = create_array_type (NULL, element_type, range_type);
11613 return set_die_type (die, type, cu);
c906108c
SS
11614 }
11615
11616 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 11617 child_die = die->child;
c906108c
SS
11618 while (child_die && child_die->tag)
11619 {
11620 if (child_die->tag == DW_TAG_subrange_type)
11621 {
f792889a 11622 struct type *child_type = read_type_die (child_die, cu);
9a619af0 11623
f792889a 11624 if (child_type != NULL)
a02abb62 11625 {
0963b4bd
MS
11626 /* The range type was succesfully read. Save it for the
11627 array type creation. */
a02abb62
JB
11628 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11629 {
11630 range_types = (struct type **)
11631 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11632 * sizeof (struct type *));
11633 if (ndim == 0)
11634 make_cleanup (free_current_contents, &range_types);
11635 }
f792889a 11636 range_types[ndim++] = child_type;
a02abb62 11637 }
c906108c
SS
11638 }
11639 child_die = sibling_die (child_die);
11640 }
11641
11642 /* Dwarf2 dimensions are output from left to right, create the
11643 necessary array types in backwards order. */
7ca2d3a3 11644
c906108c 11645 type = element_type;
7ca2d3a3
DL
11646
11647 if (read_array_order (die, cu) == DW_ORD_col_major)
11648 {
11649 int i = 0;
9a619af0 11650
7ca2d3a3
DL
11651 while (i < ndim)
11652 type = create_array_type (NULL, type, range_types[i++]);
11653 }
11654 else
11655 {
11656 while (ndim-- > 0)
11657 type = create_array_type (NULL, type, range_types[ndim]);
11658 }
c906108c 11659
f5f8a009
EZ
11660 /* Understand Dwarf2 support for vector types (like they occur on
11661 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11662 array type. This is not part of the Dwarf2/3 standard yet, but a
11663 custom vendor extension. The main difference between a regular
11664 array and the vector variant is that vectors are passed by value
11665 to functions. */
e142c38c 11666 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 11667 if (attr)
ea37ba09 11668 make_vector_type (type);
f5f8a009 11669
dbc98a8b
KW
11670 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11671 implementation may choose to implement triple vectors using this
11672 attribute. */
11673 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11674 if (attr)
11675 {
11676 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11677 TYPE_LENGTH (type) = DW_UNSND (attr);
11678 else
3e43a32a
MS
11679 complaint (&symfile_complaints,
11680 _("DW_AT_byte_size for array type smaller "
11681 "than the total size of elements"));
dbc98a8b
KW
11682 }
11683
39cbfefa
DJ
11684 name = dwarf2_name (die, cu);
11685 if (name)
11686 TYPE_NAME (type) = name;
6e70227d 11687
0963b4bd 11688 /* Install the type in the die. */
7e314c57
JK
11689 set_die_type (die, type, cu);
11690
11691 /* set_die_type should be already done. */
b4ba55a1
JB
11692 set_descriptive_type (type, die, cu);
11693
c906108c
SS
11694 do_cleanups (back_to);
11695
7e314c57 11696 return type;
c906108c
SS
11697}
11698
7ca2d3a3 11699static enum dwarf_array_dim_ordering
6e70227d 11700read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
11701{
11702 struct attribute *attr;
11703
11704 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11705
11706 if (attr) return DW_SND (attr);
11707
0963b4bd
MS
11708 /* GNU F77 is a special case, as at 08/2004 array type info is the
11709 opposite order to the dwarf2 specification, but data is still
11710 laid out as per normal fortran.
7ca2d3a3 11711
0963b4bd
MS
11712 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11713 version checking. */
7ca2d3a3 11714
905e0470
PM
11715 if (cu->language == language_fortran
11716 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
11717 {
11718 return DW_ORD_row_major;
11719 }
11720
6e70227d 11721 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
11722 {
11723 case array_column_major:
11724 return DW_ORD_col_major;
11725 case array_row_major:
11726 default:
11727 return DW_ORD_row_major;
11728 };
11729}
11730
72019c9c 11731/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 11732 the DIE's type field. */
72019c9c 11733
f792889a 11734static struct type *
72019c9c
GM
11735read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11736{
7e314c57
JK
11737 struct type *domain_type, *set_type;
11738 struct attribute *attr;
f792889a 11739
7e314c57
JK
11740 domain_type = die_type (die, cu);
11741
11742 /* The die_type call above may have already set the type for this DIE. */
11743 set_type = get_die_type (die, cu);
11744 if (set_type)
11745 return set_type;
11746
11747 set_type = create_set_type (NULL, domain_type);
11748
11749 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
11750 if (attr)
11751 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 11752
f792889a 11753 return set_die_type (die, set_type, cu);
72019c9c 11754}
7ca2d3a3 11755
0971de02
TT
11756/* A helper for read_common_block that creates a locexpr baton.
11757 SYM is the symbol which we are marking as computed.
11758 COMMON_DIE is the DIE for the common block.
11759 COMMON_LOC is the location expression attribute for the common
11760 block itself.
11761 MEMBER_LOC is the location expression attribute for the particular
11762 member of the common block that we are processing.
11763 CU is the CU from which the above come. */
11764
11765static void
11766mark_common_block_symbol_computed (struct symbol *sym,
11767 struct die_info *common_die,
11768 struct attribute *common_loc,
11769 struct attribute *member_loc,
11770 struct dwarf2_cu *cu)
11771{
11772 struct objfile *objfile = dwarf2_per_objfile->objfile;
11773 struct dwarf2_locexpr_baton *baton;
11774 gdb_byte *ptr;
11775 unsigned int cu_off;
11776 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11777 LONGEST offset = 0;
11778
11779 gdb_assert (common_loc && member_loc);
11780 gdb_assert (attr_form_is_block (common_loc));
11781 gdb_assert (attr_form_is_block (member_loc)
11782 || attr_form_is_constant (member_loc));
11783
11784 baton = obstack_alloc (&objfile->objfile_obstack,
11785 sizeof (struct dwarf2_locexpr_baton));
11786 baton->per_cu = cu->per_cu;
11787 gdb_assert (baton->per_cu);
11788
11789 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11790
11791 if (attr_form_is_constant (member_loc))
11792 {
11793 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11794 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11795 }
11796 else
11797 baton->size += DW_BLOCK (member_loc)->size;
11798
11799 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11800 baton->data = ptr;
11801
11802 *ptr++ = DW_OP_call4;
11803 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11804 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11805 ptr += 4;
11806
11807 if (attr_form_is_constant (member_loc))
11808 {
11809 *ptr++ = DW_OP_addr;
11810 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11811 ptr += cu->header.addr_size;
11812 }
11813 else
11814 {
11815 /* We have to copy the data here, because DW_OP_call4 will only
11816 use a DW_AT_location attribute. */
11817 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11818 ptr += DW_BLOCK (member_loc)->size;
11819 }
11820
11821 *ptr++ = DW_OP_plus;
11822 gdb_assert (ptr - baton->data == baton->size);
11823
11824 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11825 SYMBOL_LOCATION_BATON (sym) = baton;
11826 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11827}
11828
4357ac6c
TT
11829/* Create appropriate locally-scoped variables for all the
11830 DW_TAG_common_block entries. Also create a struct common_block
11831 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11832 is used to sepate the common blocks name namespace from regular
11833 variable names. */
c906108c
SS
11834
11835static void
e7c27a73 11836read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11837{
0971de02
TT
11838 struct attribute *attr;
11839
11840 attr = dwarf2_attr (die, DW_AT_location, cu);
11841 if (attr)
11842 {
11843 /* Support the .debug_loc offsets. */
11844 if (attr_form_is_block (attr))
11845 {
11846 /* Ok. */
11847 }
11848 else if (attr_form_is_section_offset (attr))
11849 {
11850 dwarf2_complex_location_expr_complaint ();
11851 attr = NULL;
11852 }
11853 else
11854 {
11855 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11856 "common block member");
11857 attr = NULL;
11858 }
11859 }
11860
639d11d3 11861 if (die->child != NULL)
c906108c 11862 {
4357ac6c
TT
11863 struct objfile *objfile = cu->objfile;
11864 struct die_info *child_die;
11865 size_t n_entries = 0, size;
11866 struct common_block *common_block;
11867 struct symbol *sym;
74ac6d43 11868
4357ac6c
TT
11869 for (child_die = die->child;
11870 child_die && child_die->tag;
11871 child_die = sibling_die (child_die))
11872 ++n_entries;
11873
11874 size = (sizeof (struct common_block)
11875 + (n_entries - 1) * sizeof (struct symbol *));
11876 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11877 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11878 common_block->n_entries = 0;
11879
11880 for (child_die = die->child;
11881 child_die && child_die->tag;
11882 child_die = sibling_die (child_die))
11883 {
11884 /* Create the symbol in the DW_TAG_common_block block in the current
11885 symbol scope. */
e7c27a73 11886 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
11887 if (sym != NULL)
11888 {
11889 struct attribute *member_loc;
11890
11891 common_block->contents[common_block->n_entries++] = sym;
11892
11893 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11894 cu);
11895 if (member_loc)
11896 {
11897 /* GDB has handled this for a long time, but it is
11898 not specified by DWARF. It seems to have been
11899 emitted by gfortran at least as recently as:
11900 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11901 complaint (&symfile_complaints,
11902 _("Variable in common block has "
11903 "DW_AT_data_member_location "
11904 "- DIE at 0x%x [in module %s]"),
11905 child_die->offset.sect_off, cu->objfile->name);
11906
11907 if (attr_form_is_section_offset (member_loc))
11908 dwarf2_complex_location_expr_complaint ();
11909 else if (attr_form_is_constant (member_loc)
11910 || attr_form_is_block (member_loc))
11911 {
11912 if (attr)
11913 mark_common_block_symbol_computed (sym, die, attr,
11914 member_loc, cu);
11915 }
11916 else
11917 dwarf2_complex_location_expr_complaint ();
11918 }
11919 }
c906108c 11920 }
4357ac6c
TT
11921
11922 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11923 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
11924 }
11925}
11926
0114d602 11927/* Create a type for a C++ namespace. */
d9fa45fe 11928
0114d602
DJ
11929static struct type *
11930read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 11931{
e7c27a73 11932 struct objfile *objfile = cu->objfile;
0114d602 11933 const char *previous_prefix, *name;
9219021c 11934 int is_anonymous;
0114d602
DJ
11935 struct type *type;
11936
11937 /* For extensions, reuse the type of the original namespace. */
11938 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11939 {
11940 struct die_info *ext_die;
11941 struct dwarf2_cu *ext_cu = cu;
9a619af0 11942
0114d602
DJ
11943 ext_die = dwarf2_extension (die, &ext_cu);
11944 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
11945
11946 /* EXT_CU may not be the same as CU.
11947 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
11948 return set_die_type (die, type, cu);
11949 }
9219021c 11950
e142c38c 11951 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
11952
11953 /* Now build the name of the current namespace. */
11954
0114d602
DJ
11955 previous_prefix = determine_prefix (die, cu);
11956 if (previous_prefix[0] != '\0')
11957 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 11958 previous_prefix, name, 0, cu);
0114d602
DJ
11959
11960 /* Create the type. */
11961 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11962 objfile);
11963 TYPE_NAME (type) = (char *) name;
11964 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11965
60531b24 11966 return set_die_type (die, type, cu);
0114d602
DJ
11967}
11968
11969/* Read a C++ namespace. */
11970
11971static void
11972read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11973{
11974 struct objfile *objfile = cu->objfile;
0114d602 11975 int is_anonymous;
9219021c 11976
5c4e30ca
DC
11977 /* Add a symbol associated to this if we haven't seen the namespace
11978 before. Also, add a using directive if it's an anonymous
11979 namespace. */
9219021c 11980
f2f0e013 11981 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
11982 {
11983 struct type *type;
11984
0114d602 11985 type = read_type_die (die, cu);
e7c27a73 11986 new_symbol (die, type, cu);
5c4e30ca 11987
e8e80198 11988 namespace_name (die, &is_anonymous, cu);
5c4e30ca 11989 if (is_anonymous)
0114d602
DJ
11990 {
11991 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 11992
c0cc3a76 11993 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
32019081 11994 NULL, NULL, &objfile->objfile_obstack);
0114d602 11995 }
5c4e30ca 11996 }
9219021c 11997
639d11d3 11998 if (die->child != NULL)
d9fa45fe 11999 {
639d11d3 12000 struct die_info *child_die = die->child;
6e70227d 12001
d9fa45fe
DC
12002 while (child_die && child_die->tag)
12003 {
e7c27a73 12004 process_die (child_die, cu);
d9fa45fe
DC
12005 child_die = sibling_die (child_die);
12006 }
12007 }
38d518c9
EZ
12008}
12009
f55ee35c
JK
12010/* Read a Fortran module as type. This DIE can be only a declaration used for
12011 imported module. Still we need that type as local Fortran "use ... only"
12012 declaration imports depend on the created type in determine_prefix. */
12013
12014static struct type *
12015read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12016{
12017 struct objfile *objfile = cu->objfile;
12018 char *module_name;
12019 struct type *type;
12020
12021 module_name = dwarf2_name (die, cu);
12022 if (!module_name)
3e43a32a
MS
12023 complaint (&symfile_complaints,
12024 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12025 die->offset.sect_off);
f55ee35c
JK
12026 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12027
12028 /* determine_prefix uses TYPE_TAG_NAME. */
12029 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12030
12031 return set_die_type (die, type, cu);
12032}
12033
5d7cb8df
JK
12034/* Read a Fortran module. */
12035
12036static void
12037read_module (struct die_info *die, struct dwarf2_cu *cu)
12038{
12039 struct die_info *child_die = die->child;
12040
5d7cb8df
JK
12041 while (child_die && child_die->tag)
12042 {
12043 process_die (child_die, cu);
12044 child_die = sibling_die (child_die);
12045 }
12046}
12047
38d518c9
EZ
12048/* Return the name of the namespace represented by DIE. Set
12049 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12050 namespace. */
12051
12052static const char *
e142c38c 12053namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12054{
12055 struct die_info *current_die;
12056 const char *name = NULL;
12057
12058 /* Loop through the extensions until we find a name. */
12059
12060 for (current_die = die;
12061 current_die != NULL;
f2f0e013 12062 current_die = dwarf2_extension (die, &cu))
38d518c9 12063 {
e142c38c 12064 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12065 if (name != NULL)
12066 break;
12067 }
12068
12069 /* Is it an anonymous namespace? */
12070
12071 *is_anonymous = (name == NULL);
12072 if (*is_anonymous)
2b1dbab0 12073 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12074
12075 return name;
d9fa45fe
DC
12076}
12077
c906108c
SS
12078/* Extract all information from a DW_TAG_pointer_type DIE and add to
12079 the user defined type vector. */
12080
f792889a 12081static struct type *
e7c27a73 12082read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12083{
5e2b427d 12084 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12085 struct comp_unit_head *cu_header = &cu->header;
c906108c 12086 struct type *type;
8b2dbe47
KB
12087 struct attribute *attr_byte_size;
12088 struct attribute *attr_address_class;
12089 int byte_size, addr_class;
7e314c57
JK
12090 struct type *target_type;
12091
12092 target_type = die_type (die, cu);
c906108c 12093
7e314c57
JK
12094 /* The die_type call above may have already set the type for this DIE. */
12095 type = get_die_type (die, cu);
12096 if (type)
12097 return type;
12098
12099 type = lookup_pointer_type (target_type);
8b2dbe47 12100
e142c38c 12101 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12102 if (attr_byte_size)
12103 byte_size = DW_UNSND (attr_byte_size);
c906108c 12104 else
8b2dbe47
KB
12105 byte_size = cu_header->addr_size;
12106
e142c38c 12107 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12108 if (attr_address_class)
12109 addr_class = DW_UNSND (attr_address_class);
12110 else
12111 addr_class = DW_ADDR_none;
12112
12113 /* If the pointer size or address class is different than the
12114 default, create a type variant marked as such and set the
12115 length accordingly. */
12116 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12117 {
5e2b427d 12118 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12119 {
12120 int type_flags;
12121
849957d9 12122 type_flags = gdbarch_address_class_type_flags
5e2b427d 12123 (gdbarch, byte_size, addr_class);
876cecd0
TT
12124 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12125 == 0);
8b2dbe47
KB
12126 type = make_type_with_address_space (type, type_flags);
12127 }
12128 else if (TYPE_LENGTH (type) != byte_size)
12129 {
3e43a32a
MS
12130 complaint (&symfile_complaints,
12131 _("invalid pointer size %d"), byte_size);
8b2dbe47 12132 }
6e70227d 12133 else
9a619af0
MS
12134 {
12135 /* Should we also complain about unhandled address classes? */
12136 }
c906108c 12137 }
8b2dbe47
KB
12138
12139 TYPE_LENGTH (type) = byte_size;
f792889a 12140 return set_die_type (die, type, cu);
c906108c
SS
12141}
12142
12143/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12144 the user defined type vector. */
12145
f792889a 12146static struct type *
e7c27a73 12147read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12148{
12149 struct type *type;
12150 struct type *to_type;
12151 struct type *domain;
12152
e7c27a73
DJ
12153 to_type = die_type (die, cu);
12154 domain = die_containing_type (die, cu);
0d5de010 12155
7e314c57
JK
12156 /* The calls above may have already set the type for this DIE. */
12157 type = get_die_type (die, cu);
12158 if (type)
12159 return type;
12160
0d5de010
DJ
12161 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12162 type = lookup_methodptr_type (to_type);
12163 else
12164 type = lookup_memberptr_type (to_type, domain);
c906108c 12165
f792889a 12166 return set_die_type (die, type, cu);
c906108c
SS
12167}
12168
12169/* Extract all information from a DW_TAG_reference_type DIE and add to
12170 the user defined type vector. */
12171
f792889a 12172static struct type *
e7c27a73 12173read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12174{
e7c27a73 12175 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12176 struct type *type, *target_type;
c906108c
SS
12177 struct attribute *attr;
12178
7e314c57
JK
12179 target_type = die_type (die, cu);
12180
12181 /* The die_type call above may have already set the type for this DIE. */
12182 type = get_die_type (die, cu);
12183 if (type)
12184 return type;
12185
12186 type = lookup_reference_type (target_type);
e142c38c 12187 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12188 if (attr)
12189 {
12190 TYPE_LENGTH (type) = DW_UNSND (attr);
12191 }
12192 else
12193 {
107d2387 12194 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12195 }
f792889a 12196 return set_die_type (die, type, cu);
c906108c
SS
12197}
12198
f792889a 12199static struct type *
e7c27a73 12200read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12201{
f792889a 12202 struct type *base_type, *cv_type;
c906108c 12203
e7c27a73 12204 base_type = die_type (die, cu);
7e314c57
JK
12205
12206 /* The die_type call above may have already set the type for this DIE. */
12207 cv_type = get_die_type (die, cu);
12208 if (cv_type)
12209 return cv_type;
12210
2f608a3a
KW
12211 /* In case the const qualifier is applied to an array type, the element type
12212 is so qualified, not the array type (section 6.7.3 of C99). */
12213 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12214 {
12215 struct type *el_type, *inner_array;
12216
12217 base_type = copy_type (base_type);
12218 inner_array = base_type;
12219
12220 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12221 {
12222 TYPE_TARGET_TYPE (inner_array) =
12223 copy_type (TYPE_TARGET_TYPE (inner_array));
12224 inner_array = TYPE_TARGET_TYPE (inner_array);
12225 }
12226
12227 el_type = TYPE_TARGET_TYPE (inner_array);
12228 TYPE_TARGET_TYPE (inner_array) =
12229 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12230
12231 return set_die_type (die, base_type, cu);
12232 }
12233
f792889a
DJ
12234 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12235 return set_die_type (die, cv_type, cu);
c906108c
SS
12236}
12237
f792889a 12238static struct type *
e7c27a73 12239read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12240{
f792889a 12241 struct type *base_type, *cv_type;
c906108c 12242
e7c27a73 12243 base_type = die_type (die, cu);
7e314c57
JK
12244
12245 /* The die_type call above may have already set the type for this DIE. */
12246 cv_type = get_die_type (die, cu);
12247 if (cv_type)
12248 return cv_type;
12249
f792889a
DJ
12250 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12251 return set_die_type (die, cv_type, cu);
c906108c
SS
12252}
12253
12254/* Extract all information from a DW_TAG_string_type DIE and add to
12255 the user defined type vector. It isn't really a user defined type,
12256 but it behaves like one, with other DIE's using an AT_user_def_type
12257 attribute to reference it. */
12258
f792889a 12259static struct type *
e7c27a73 12260read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12261{
e7c27a73 12262 struct objfile *objfile = cu->objfile;
3b7538c0 12263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12264 struct type *type, *range_type, *index_type, *char_type;
12265 struct attribute *attr;
12266 unsigned int length;
12267
e142c38c 12268 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12269 if (attr)
12270 {
12271 length = DW_UNSND (attr);
12272 }
12273 else
12274 {
0963b4bd 12275 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12276 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12277 if (attr)
12278 {
12279 length = DW_UNSND (attr);
12280 }
12281 else
12282 {
12283 length = 1;
12284 }
c906108c 12285 }
6ccb9162 12286
46bf5051 12287 index_type = objfile_type (objfile)->builtin_int;
c906108c 12288 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
12289 char_type = language_string_char_type (cu->language_defn, gdbarch);
12290 type = create_string_type (NULL, char_type, range_type);
6ccb9162 12291
f792889a 12292 return set_die_type (die, type, cu);
c906108c
SS
12293}
12294
12295/* Handle DIES due to C code like:
12296
12297 struct foo
c5aa993b
JM
12298 {
12299 int (*funcp)(int a, long l);
12300 int b;
12301 };
c906108c 12302
0963b4bd 12303 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 12304
f792889a 12305static struct type *
e7c27a73 12306read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12307{
bb5ed363 12308 struct objfile *objfile = cu->objfile;
0963b4bd
MS
12309 struct type *type; /* Type that this function returns. */
12310 struct type *ftype; /* Function that returns above type. */
c906108c
SS
12311 struct attribute *attr;
12312
e7c27a73 12313 type = die_type (die, cu);
7e314c57
JK
12314
12315 /* The die_type call above may have already set the type for this DIE. */
12316 ftype = get_die_type (die, cu);
12317 if (ftype)
12318 return ftype;
12319
0c8b41f1 12320 ftype = lookup_function_type (type);
c906108c 12321
5b8101ae 12322 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 12323 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 12324 if ((attr && (DW_UNSND (attr) != 0))
987504bb 12325 || cu->language == language_cplus
5b8101ae
PM
12326 || cu->language == language_java
12327 || cu->language == language_pascal)
876cecd0 12328 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
12329 else if (producer_is_realview (cu->producer))
12330 /* RealView does not emit DW_AT_prototyped. We can not
12331 distinguish prototyped and unprototyped functions; default to
12332 prototyped, since that is more common in modern code (and
12333 RealView warns about unprototyped functions). */
12334 TYPE_PROTOTYPED (ftype) = 1;
c906108c 12335
c055b101
CV
12336 /* Store the calling convention in the type if it's available in
12337 the subroutine die. Otherwise set the calling convention to
12338 the default value DW_CC_normal. */
12339 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
12340 if (attr)
12341 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12342 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12343 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12344 else
12345 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
12346
12347 /* We need to add the subroutine type to the die immediately so
12348 we don't infinitely recurse when dealing with parameters
0963b4bd 12349 declared as the same subroutine type. */
76c10ea2 12350 set_die_type (die, ftype, cu);
6e70227d 12351
639d11d3 12352 if (die->child != NULL)
c906108c 12353 {
bb5ed363 12354 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 12355 struct die_info *child_die;
8072405b 12356 int nparams, iparams;
c906108c
SS
12357
12358 /* Count the number of parameters.
12359 FIXME: GDB currently ignores vararg functions, but knows about
12360 vararg member functions. */
8072405b 12361 nparams = 0;
639d11d3 12362 child_die = die->child;
c906108c
SS
12363 while (child_die && child_die->tag)
12364 {
12365 if (child_die->tag == DW_TAG_formal_parameter)
12366 nparams++;
12367 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 12368 TYPE_VARARGS (ftype) = 1;
c906108c
SS
12369 child_die = sibling_die (child_die);
12370 }
12371
12372 /* Allocate storage for parameters and fill them in. */
12373 TYPE_NFIELDS (ftype) = nparams;
12374 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 12375 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 12376
8072405b
JK
12377 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12378 even if we error out during the parameters reading below. */
12379 for (iparams = 0; iparams < nparams; iparams++)
12380 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12381
12382 iparams = 0;
639d11d3 12383 child_die = die->child;
c906108c
SS
12384 while (child_die && child_die->tag)
12385 {
12386 if (child_die->tag == DW_TAG_formal_parameter)
12387 {
3ce3b1ba
PA
12388 struct type *arg_type;
12389
12390 /* DWARF version 2 has no clean way to discern C++
12391 static and non-static member functions. G++ helps
12392 GDB by marking the first parameter for non-static
12393 member functions (which is the this pointer) as
12394 artificial. We pass this information to
12395 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12396
12397 DWARF version 3 added DW_AT_object_pointer, which GCC
12398 4.5 does not yet generate. */
e142c38c 12399 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
12400 if (attr)
12401 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12402 else
418835cc
KS
12403 {
12404 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12405
12406 /* GCC/43521: In java, the formal parameter
12407 "this" is sometimes not marked with DW_AT_artificial. */
12408 if (cu->language == language_java)
12409 {
12410 const char *name = dwarf2_name (child_die, cu);
9a619af0 12411
418835cc
KS
12412 if (name && !strcmp (name, "this"))
12413 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12414 }
12415 }
3ce3b1ba
PA
12416 arg_type = die_type (child_die, cu);
12417
12418 /* RealView does not mark THIS as const, which the testsuite
12419 expects. GCC marks THIS as const in method definitions,
12420 but not in the class specifications (GCC PR 43053). */
12421 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12422 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12423 {
12424 int is_this = 0;
12425 struct dwarf2_cu *arg_cu = cu;
12426 const char *name = dwarf2_name (child_die, cu);
12427
12428 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12429 if (attr)
12430 {
12431 /* If the compiler emits this, use it. */
12432 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12433 is_this = 1;
12434 }
12435 else if (name && strcmp (name, "this") == 0)
12436 /* Function definitions will have the argument names. */
12437 is_this = 1;
12438 else if (name == NULL && iparams == 0)
12439 /* Declarations may not have the names, so like
12440 elsewhere in GDB, assume an artificial first
12441 argument is "this". */
12442 is_this = 1;
12443
12444 if (is_this)
12445 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12446 arg_type, 0);
12447 }
12448
12449 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
12450 iparams++;
12451 }
12452 child_die = sibling_die (child_die);
12453 }
12454 }
12455
76c10ea2 12456 return ftype;
c906108c
SS
12457}
12458
f792889a 12459static struct type *
e7c27a73 12460read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12461{
e7c27a73 12462 struct objfile *objfile = cu->objfile;
0114d602 12463 const char *name = NULL;
3c8e0968 12464 struct type *this_type, *target_type;
c906108c 12465
94af9270 12466 name = dwarf2_full_name (NULL, die, cu);
f792889a 12467 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
12468 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12469 TYPE_NAME (this_type) = (char *) name;
f792889a 12470 set_die_type (die, this_type, cu);
3c8e0968
DE
12471 target_type = die_type (die, cu);
12472 if (target_type != this_type)
12473 TYPE_TARGET_TYPE (this_type) = target_type;
12474 else
12475 {
12476 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12477 spec and cause infinite loops in GDB. */
12478 complaint (&symfile_complaints,
12479 _("Self-referential DW_TAG_typedef "
12480 "- DIE at 0x%x [in module %s]"),
b64f50a1 12481 die->offset.sect_off, objfile->name);
3c8e0968
DE
12482 TYPE_TARGET_TYPE (this_type) = NULL;
12483 }
f792889a 12484 return this_type;
c906108c
SS
12485}
12486
12487/* Find a representation of a given base type and install
12488 it in the TYPE field of the die. */
12489
f792889a 12490static struct type *
e7c27a73 12491read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12492{
e7c27a73 12493 struct objfile *objfile = cu->objfile;
c906108c
SS
12494 struct type *type;
12495 struct attribute *attr;
12496 int encoding = 0, size = 0;
39cbfefa 12497 char *name;
6ccb9162
UW
12498 enum type_code code = TYPE_CODE_INT;
12499 int type_flags = 0;
12500 struct type *target_type = NULL;
c906108c 12501
e142c38c 12502 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
12503 if (attr)
12504 {
12505 encoding = DW_UNSND (attr);
12506 }
e142c38c 12507 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12508 if (attr)
12509 {
12510 size = DW_UNSND (attr);
12511 }
39cbfefa 12512 name = dwarf2_name (die, cu);
6ccb9162 12513 if (!name)
c906108c 12514 {
6ccb9162
UW
12515 complaint (&symfile_complaints,
12516 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 12517 }
6ccb9162
UW
12518
12519 switch (encoding)
c906108c 12520 {
6ccb9162
UW
12521 case DW_ATE_address:
12522 /* Turn DW_ATE_address into a void * pointer. */
12523 code = TYPE_CODE_PTR;
12524 type_flags |= TYPE_FLAG_UNSIGNED;
12525 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12526 break;
12527 case DW_ATE_boolean:
12528 code = TYPE_CODE_BOOL;
12529 type_flags |= TYPE_FLAG_UNSIGNED;
12530 break;
12531 case DW_ATE_complex_float:
12532 code = TYPE_CODE_COMPLEX;
12533 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12534 break;
12535 case DW_ATE_decimal_float:
12536 code = TYPE_CODE_DECFLOAT;
12537 break;
12538 case DW_ATE_float:
12539 code = TYPE_CODE_FLT;
12540 break;
12541 case DW_ATE_signed:
12542 break;
12543 case DW_ATE_unsigned:
12544 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
12545 if (cu->language == language_fortran
12546 && name
12547 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12548 code = TYPE_CODE_CHAR;
6ccb9162
UW
12549 break;
12550 case DW_ATE_signed_char:
6e70227d 12551 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
12552 || cu->language == language_pascal
12553 || cu->language == language_fortran)
6ccb9162
UW
12554 code = TYPE_CODE_CHAR;
12555 break;
12556 case DW_ATE_unsigned_char:
868a0084 12557 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
12558 || cu->language == language_pascal
12559 || cu->language == language_fortran)
6ccb9162
UW
12560 code = TYPE_CODE_CHAR;
12561 type_flags |= TYPE_FLAG_UNSIGNED;
12562 break;
75079b2b
TT
12563 case DW_ATE_UTF:
12564 /* We just treat this as an integer and then recognize the
12565 type by name elsewhere. */
12566 break;
12567
6ccb9162
UW
12568 default:
12569 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12570 dwarf_type_encoding_name (encoding));
12571 break;
c906108c 12572 }
6ccb9162 12573
0114d602
DJ
12574 type = init_type (code, size, type_flags, NULL, objfile);
12575 TYPE_NAME (type) = name;
6ccb9162
UW
12576 TYPE_TARGET_TYPE (type) = target_type;
12577
0114d602 12578 if (name && strcmp (name, "char") == 0)
876cecd0 12579 TYPE_NOSIGN (type) = 1;
0114d602 12580
f792889a 12581 return set_die_type (die, type, cu);
c906108c
SS
12582}
12583
a02abb62
JB
12584/* Read the given DW_AT_subrange DIE. */
12585
f792889a 12586static struct type *
a02abb62
JB
12587read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12588{
12589 struct type *base_type;
12590 struct type *range_type;
12591 struct attribute *attr;
4fae6e18
JK
12592 LONGEST low, high;
12593 int low_default_is_valid;
39cbfefa 12594 char *name;
43bbcdc2 12595 LONGEST negative_mask;
e77813c8 12596
a02abb62 12597 base_type = die_type (die, cu);
953ac07e
JK
12598 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12599 check_typedef (base_type);
a02abb62 12600
7e314c57
JK
12601 /* The die_type call above may have already set the type for this DIE. */
12602 range_type = get_die_type (die, cu);
12603 if (range_type)
12604 return range_type;
12605
4fae6e18
JK
12606 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12607 omitting DW_AT_lower_bound. */
12608 switch (cu->language)
6e70227d 12609 {
4fae6e18
JK
12610 case language_c:
12611 case language_cplus:
12612 low = 0;
12613 low_default_is_valid = 1;
12614 break;
12615 case language_fortran:
12616 low = 1;
12617 low_default_is_valid = 1;
12618 break;
12619 case language_d:
12620 case language_java:
12621 case language_objc:
12622 low = 0;
12623 low_default_is_valid = (cu->header.version >= 4);
12624 break;
12625 case language_ada:
12626 case language_m2:
12627 case language_pascal:
a02abb62 12628 low = 1;
4fae6e18
JK
12629 low_default_is_valid = (cu->header.version >= 4);
12630 break;
12631 default:
12632 low = 0;
12633 low_default_is_valid = 0;
12634 break;
a02abb62
JB
12635 }
12636
dd5e6932
DJ
12637 /* FIXME: For variable sized arrays either of these could be
12638 a variable rather than a constant value. We'll allow it,
12639 but we don't know how to handle it. */
e142c38c 12640 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 12641 if (attr)
4fae6e18
JK
12642 low = dwarf2_get_attr_constant_value (attr, low);
12643 else if (!low_default_is_valid)
12644 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12645 "- DIE at 0x%x [in module %s]"),
12646 die->offset.sect_off, cu->objfile->name);
a02abb62 12647
e142c38c 12648 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 12649 if (attr)
6e70227d 12650 {
d48323d8 12651 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
12652 {
12653 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 12654 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
12655 FIXME: GDB does not yet know how to handle dynamic
12656 arrays properly, treat them as arrays with unspecified
12657 length for now.
12658
12659 FIXME: jimb/2003-09-22: GDB does not really know
12660 how to handle arrays of unspecified length
12661 either; we just represent them as zero-length
12662 arrays. Choose an appropriate upper bound given
12663 the lower bound we've computed above. */
12664 high = low - 1;
12665 }
12666 else
12667 high = dwarf2_get_attr_constant_value (attr, 1);
12668 }
e77813c8
PM
12669 else
12670 {
12671 attr = dwarf2_attr (die, DW_AT_count, cu);
12672 if (attr)
12673 {
12674 int count = dwarf2_get_attr_constant_value (attr, 1);
12675 high = low + count - 1;
12676 }
c2ff108b
JK
12677 else
12678 {
12679 /* Unspecified array length. */
12680 high = low - 1;
12681 }
e77813c8
PM
12682 }
12683
12684 /* Dwarf-2 specifications explicitly allows to create subrange types
12685 without specifying a base type.
12686 In that case, the base type must be set to the type of
12687 the lower bound, upper bound or count, in that order, if any of these
12688 three attributes references an object that has a type.
12689 If no base type is found, the Dwarf-2 specifications say that
12690 a signed integer type of size equal to the size of an address should
12691 be used.
12692 For the following C code: `extern char gdb_int [];'
12693 GCC produces an empty range DIE.
12694 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 12695 high bound or count are not yet handled by this code. */
e77813c8
PM
12696 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12697 {
12698 struct objfile *objfile = cu->objfile;
12699 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12700 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12701 struct type *int_type = objfile_type (objfile)->builtin_int;
12702
12703 /* Test "int", "long int", and "long long int" objfile types,
12704 and select the first one having a size above or equal to the
12705 architecture address size. */
12706 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12707 base_type = int_type;
12708 else
12709 {
12710 int_type = objfile_type (objfile)->builtin_long;
12711 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12712 base_type = int_type;
12713 else
12714 {
12715 int_type = objfile_type (objfile)->builtin_long_long;
12716 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12717 base_type = int_type;
12718 }
12719 }
12720 }
a02abb62 12721
6e70227d 12722 negative_mask =
43bbcdc2
PH
12723 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12724 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12725 low |= negative_mask;
12726 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12727 high |= negative_mask;
12728
a02abb62
JB
12729 range_type = create_range_type (NULL, base_type, low, high);
12730
bbb0eef6
JK
12731 /* Mark arrays with dynamic length at least as an array of unspecified
12732 length. GDB could check the boundary but before it gets implemented at
12733 least allow accessing the array elements. */
d48323d8 12734 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
12735 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12736
c2ff108b
JK
12737 /* Ada expects an empty array on no boundary attributes. */
12738 if (attr == NULL && cu->language != language_ada)
12739 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12740
39cbfefa
DJ
12741 name = dwarf2_name (die, cu);
12742 if (name)
12743 TYPE_NAME (range_type) = name;
6e70227d 12744
e142c38c 12745 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
12746 if (attr)
12747 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12748
7e314c57
JK
12749 set_die_type (die, range_type, cu);
12750
12751 /* set_die_type should be already done. */
b4ba55a1
JB
12752 set_descriptive_type (range_type, die, cu);
12753
7e314c57 12754 return range_type;
a02abb62 12755}
6e70227d 12756
f792889a 12757static struct type *
81a17f79
JB
12758read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12759{
12760 struct type *type;
81a17f79 12761
81a17f79
JB
12762 /* For now, we only support the C meaning of an unspecified type: void. */
12763
0114d602
DJ
12764 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12765 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 12766
f792889a 12767 return set_die_type (die, type, cu);
81a17f79 12768}
a02abb62 12769
639d11d3
DC
12770/* Read a single die and all its descendents. Set the die's sibling
12771 field to NULL; set other fields in the die correctly, and set all
12772 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12773 location of the info_ptr after reading all of those dies. PARENT
12774 is the parent of the die in question. */
12775
12776static struct die_info *
dee91e82
DE
12777read_die_and_children (const struct die_reader_specs *reader,
12778 gdb_byte *info_ptr,
12779 gdb_byte **new_info_ptr,
12780 struct die_info *parent)
639d11d3
DC
12781{
12782 struct die_info *die;
fe1b8b76 12783 gdb_byte *cur_ptr;
639d11d3
DC
12784 int has_children;
12785
93311388 12786 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
12787 if (die == NULL)
12788 {
12789 *new_info_ptr = cur_ptr;
12790 return NULL;
12791 }
93311388 12792 store_in_ref_table (die, reader->cu);
639d11d3
DC
12793
12794 if (has_children)
348e048f 12795 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
12796 else
12797 {
12798 die->child = NULL;
12799 *new_info_ptr = cur_ptr;
12800 }
12801
12802 die->sibling = NULL;
12803 die->parent = parent;
12804 return die;
12805}
12806
12807/* Read a die, all of its descendents, and all of its siblings; set
12808 all of the fields of all of the dies correctly. Arguments are as
12809 in read_die_and_children. */
12810
12811static struct die_info *
93311388
DE
12812read_die_and_siblings (const struct die_reader_specs *reader,
12813 gdb_byte *info_ptr,
fe1b8b76 12814 gdb_byte **new_info_ptr,
639d11d3
DC
12815 struct die_info *parent)
12816{
12817 struct die_info *first_die, *last_sibling;
fe1b8b76 12818 gdb_byte *cur_ptr;
639d11d3 12819
c906108c 12820 cur_ptr = info_ptr;
639d11d3
DC
12821 first_die = last_sibling = NULL;
12822
12823 while (1)
c906108c 12824 {
639d11d3 12825 struct die_info *die
dee91e82 12826 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 12827
1d325ec1 12828 if (die == NULL)
c906108c 12829 {
639d11d3
DC
12830 *new_info_ptr = cur_ptr;
12831 return first_die;
c906108c 12832 }
1d325ec1
DJ
12833
12834 if (!first_die)
12835 first_die = die;
c906108c 12836 else
1d325ec1
DJ
12837 last_sibling->sibling = die;
12838
12839 last_sibling = die;
c906108c 12840 }
c906108c
SS
12841}
12842
3019eac3
DE
12843/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12844 attributes.
12845 The caller is responsible for filling in the extra attributes
12846 and updating (*DIEP)->num_attrs.
12847 Set DIEP to point to a newly allocated die with its information,
12848 except for its child, sibling, and parent fields.
12849 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388
DE
12850
12851static gdb_byte *
3019eac3
DE
12852read_full_die_1 (const struct die_reader_specs *reader,
12853 struct die_info **diep, gdb_byte *info_ptr,
12854 int *has_children, int num_extra_attrs)
93311388 12855{
b64f50a1
JK
12856 unsigned int abbrev_number, bytes_read, i;
12857 sect_offset offset;
93311388
DE
12858 struct abbrev_info *abbrev;
12859 struct die_info *die;
12860 struct dwarf2_cu *cu = reader->cu;
12861 bfd *abfd = reader->abfd;
12862
b64f50a1 12863 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
12864 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12865 info_ptr += bytes_read;
12866 if (!abbrev_number)
12867 {
12868 *diep = NULL;
12869 *has_children = 0;
12870 return info_ptr;
12871 }
12872
433df2d4 12873 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 12874 if (!abbrev)
348e048f
DE
12875 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12876 abbrev_number,
12877 bfd_get_filename (abfd));
12878
3019eac3 12879 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
12880 die->offset = offset;
12881 die->tag = abbrev->tag;
12882 die->abbrev = abbrev_number;
12883
3019eac3
DE
12884 /* Make the result usable.
12885 The caller needs to update num_attrs after adding the extra
12886 attributes. */
93311388
DE
12887 die->num_attrs = abbrev->num_attrs;
12888
12889 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
12890 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12891 info_ptr);
93311388
DE
12892
12893 *diep = die;
12894 *has_children = abbrev->has_children;
12895 return info_ptr;
12896}
12897
3019eac3
DE
12898/* Read a die and all its attributes.
12899 Set DIEP to point to a newly allocated die with its information,
12900 except for its child, sibling, and parent fields.
12901 Set HAS_CHILDREN to tell whether the die has children or not. */
12902
12903static gdb_byte *
12904read_full_die (const struct die_reader_specs *reader,
12905 struct die_info **diep, gdb_byte *info_ptr,
12906 int *has_children)
12907{
12908 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12909}
433df2d4
DE
12910\f
12911/* Abbreviation tables.
3019eac3 12912
433df2d4 12913 In DWARF version 2, the description of the debugging information is
c906108c
SS
12914 stored in a separate .debug_abbrev section. Before we read any
12915 dies from a section we read in all abbreviations and install them
433df2d4
DE
12916 in a hash table. */
12917
12918/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12919
12920static struct abbrev_info *
12921abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12922{
12923 struct abbrev_info *abbrev;
12924
12925 abbrev = (struct abbrev_info *)
12926 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12927 memset (abbrev, 0, sizeof (struct abbrev_info));
12928 return abbrev;
12929}
12930
12931/* Add an abbreviation to the table. */
c906108c
SS
12932
12933static void
433df2d4
DE
12934abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12935 unsigned int abbrev_number,
12936 struct abbrev_info *abbrev)
12937{
12938 unsigned int hash_number;
12939
12940 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12941 abbrev->next = abbrev_table->abbrevs[hash_number];
12942 abbrev_table->abbrevs[hash_number] = abbrev;
12943}
dee91e82 12944
433df2d4
DE
12945/* Look up an abbrev in the table.
12946 Returns NULL if the abbrev is not found. */
12947
12948static struct abbrev_info *
12949abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12950 unsigned int abbrev_number)
c906108c 12951{
433df2d4
DE
12952 unsigned int hash_number;
12953 struct abbrev_info *abbrev;
12954
12955 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12956 abbrev = abbrev_table->abbrevs[hash_number];
12957
12958 while (abbrev)
12959 {
12960 if (abbrev->number == abbrev_number)
12961 return abbrev;
12962 abbrev = abbrev->next;
12963 }
12964 return NULL;
12965}
12966
12967/* Read in an abbrev table. */
12968
12969static struct abbrev_table *
12970abbrev_table_read_table (struct dwarf2_section_info *section,
12971 sect_offset offset)
12972{
12973 struct objfile *objfile = dwarf2_per_objfile->objfile;
12974 bfd *abfd = section->asection->owner;
12975 struct abbrev_table *abbrev_table;
fe1b8b76 12976 gdb_byte *abbrev_ptr;
c906108c
SS
12977 struct abbrev_info *cur_abbrev;
12978 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 12979 unsigned int abbrev_form;
f3dd6933
DJ
12980 struct attr_abbrev *cur_attrs;
12981 unsigned int allocated_attrs;
c906108c 12982
433df2d4 12983 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 12984 abbrev_table->offset = offset;
433df2d4
DE
12985 obstack_init (&abbrev_table->abbrev_obstack);
12986 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12987 (ABBREV_HASH_SIZE
12988 * sizeof (struct abbrev_info *)));
12989 memset (abbrev_table->abbrevs, 0,
12990 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 12991
433df2d4
DE
12992 dwarf2_read_section (objfile, section);
12993 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
12994 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12995 abbrev_ptr += bytes_read;
12996
f3dd6933
DJ
12997 allocated_attrs = ATTR_ALLOC_CHUNK;
12998 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 12999
0963b4bd 13000 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
13001 while (abbrev_number)
13002 {
433df2d4 13003 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13004
13005 /* read in abbrev header */
13006 cur_abbrev->number = abbrev_number;
13007 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13008 abbrev_ptr += bytes_read;
13009 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13010 abbrev_ptr += 1;
13011
13012 /* now read in declarations */
13013 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13014 abbrev_ptr += bytes_read;
13015 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13016 abbrev_ptr += bytes_read;
13017 while (abbrev_name)
13018 {
f3dd6933 13019 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13020 {
f3dd6933
DJ
13021 allocated_attrs += ATTR_ALLOC_CHUNK;
13022 cur_attrs
13023 = xrealloc (cur_attrs, (allocated_attrs
13024 * sizeof (struct attr_abbrev)));
c906108c 13025 }
ae038cb0 13026
f3dd6933
DJ
13027 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13028 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13029 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13030 abbrev_ptr += bytes_read;
13031 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13032 abbrev_ptr += bytes_read;
13033 }
13034
433df2d4 13035 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13036 (cur_abbrev->num_attrs
13037 * sizeof (struct attr_abbrev)));
13038 memcpy (cur_abbrev->attrs, cur_attrs,
13039 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13040
433df2d4 13041 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13042
13043 /* Get next abbreviation.
13044 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13045 always properly terminated with an abbrev number of 0.
13046 Exit loop if we encounter an abbreviation which we have
13047 already read (which means we are about to read the abbreviations
13048 for the next compile unit) or if the end of the abbreviation
13049 table is reached. */
433df2d4 13050 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13051 break;
13052 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13053 abbrev_ptr += bytes_read;
433df2d4 13054 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13055 break;
13056 }
f3dd6933
DJ
13057
13058 xfree (cur_attrs);
433df2d4 13059 return abbrev_table;
c906108c
SS
13060}
13061
433df2d4 13062/* Free the resources held by ABBREV_TABLE. */
c906108c 13063
c906108c 13064static void
433df2d4 13065abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13066{
433df2d4
DE
13067 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13068 xfree (abbrev_table);
c906108c
SS
13069}
13070
f4dc4d17
DE
13071/* Same as abbrev_table_free but as a cleanup.
13072 We pass in a pointer to the pointer to the table so that we can
13073 set the pointer to NULL when we're done. It also simplifies
13074 build_type_unit_groups. */
13075
13076static void
13077abbrev_table_free_cleanup (void *table_ptr)
13078{
13079 struct abbrev_table **abbrev_table_ptr = table_ptr;
13080
13081 if (*abbrev_table_ptr != NULL)
13082 abbrev_table_free (*abbrev_table_ptr);
13083 *abbrev_table_ptr = NULL;
13084}
13085
433df2d4
DE
13086/* Read the abbrev table for CU from ABBREV_SECTION. */
13087
13088static void
13089dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13090 struct dwarf2_section_info *abbrev_section)
c906108c 13091{
433df2d4
DE
13092 cu->abbrev_table =
13093 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13094}
c906108c 13095
433df2d4 13096/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13097
433df2d4
DE
13098static void
13099dwarf2_free_abbrev_table (void *ptr_to_cu)
13100{
13101 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13102
433df2d4
DE
13103 abbrev_table_free (cu->abbrev_table);
13104 /* Set this to NULL so that we SEGV if we try to read it later,
13105 and also because free_comp_unit verifies this is NULL. */
13106 cu->abbrev_table = NULL;
13107}
13108\f
72bf9492
DJ
13109/* Returns nonzero if TAG represents a type that we might generate a partial
13110 symbol for. */
13111
13112static int
13113is_type_tag_for_partial (int tag)
13114{
13115 switch (tag)
13116 {
13117#if 0
13118 /* Some types that would be reasonable to generate partial symbols for,
13119 that we don't at present. */
13120 case DW_TAG_array_type:
13121 case DW_TAG_file_type:
13122 case DW_TAG_ptr_to_member_type:
13123 case DW_TAG_set_type:
13124 case DW_TAG_string_type:
13125 case DW_TAG_subroutine_type:
13126#endif
13127 case DW_TAG_base_type:
13128 case DW_TAG_class_type:
680b30c7 13129 case DW_TAG_interface_type:
72bf9492
DJ
13130 case DW_TAG_enumeration_type:
13131 case DW_TAG_structure_type:
13132 case DW_TAG_subrange_type:
13133 case DW_TAG_typedef:
13134 case DW_TAG_union_type:
13135 return 1;
13136 default:
13137 return 0;
13138 }
13139}
13140
13141/* Load all DIEs that are interesting for partial symbols into memory. */
13142
13143static struct partial_die_info *
dee91e82
DE
13144load_partial_dies (const struct die_reader_specs *reader,
13145 gdb_byte *info_ptr, int building_psymtab)
72bf9492 13146{
dee91e82 13147 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13148 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13149 struct partial_die_info *part_die;
13150 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13151 struct abbrev_info *abbrev;
13152 unsigned int bytes_read;
5afb4e99 13153 unsigned int load_all = 0;
72bf9492
DJ
13154 int nesting_level = 1;
13155
13156 parent_die = NULL;
13157 last_die = NULL;
13158
7adf1e79
DE
13159 gdb_assert (cu->per_cu != NULL);
13160 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13161 load_all = 1;
13162
72bf9492
DJ
13163 cu->partial_dies
13164 = htab_create_alloc_ex (cu->header.length / 12,
13165 partial_die_hash,
13166 partial_die_eq,
13167 NULL,
13168 &cu->comp_unit_obstack,
13169 hashtab_obstack_allocate,
13170 dummy_obstack_deallocate);
13171
13172 part_die = obstack_alloc (&cu->comp_unit_obstack,
13173 sizeof (struct partial_die_info));
13174
13175 while (1)
13176 {
13177 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13178
13179 /* A NULL abbrev means the end of a series of children. */
13180 if (abbrev == NULL)
13181 {
13182 if (--nesting_level == 0)
13183 {
13184 /* PART_DIE was probably the last thing allocated on the
13185 comp_unit_obstack, so we could call obstack_free
13186 here. We don't do that because the waste is small,
13187 and will be cleaned up when we're done with this
13188 compilation unit. This way, we're also more robust
13189 against other users of the comp_unit_obstack. */
13190 return first_die;
13191 }
13192 info_ptr += bytes_read;
13193 last_die = parent_die;
13194 parent_die = parent_die->die_parent;
13195 continue;
13196 }
13197
98bfdba5
PA
13198 /* Check for template arguments. We never save these; if
13199 they're seen, we just mark the parent, and go on our way. */
13200 if (parent_die != NULL
13201 && cu->language == language_cplus
13202 && (abbrev->tag == DW_TAG_template_type_param
13203 || abbrev->tag == DW_TAG_template_value_param))
13204 {
13205 parent_die->has_template_arguments = 1;
13206
13207 if (!load_all)
13208 {
13209 /* We don't need a partial DIE for the template argument. */
dee91e82 13210 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13211 continue;
13212 }
13213 }
13214
0d99eb77 13215 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
13216 Skip their other children. */
13217 if (!load_all
13218 && cu->language == language_cplus
13219 && parent_die != NULL
13220 && parent_die->tag == DW_TAG_subprogram)
13221 {
dee91e82 13222 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13223 continue;
13224 }
13225
5afb4e99
DJ
13226 /* Check whether this DIE is interesting enough to save. Normally
13227 we would not be interested in members here, but there may be
13228 later variables referencing them via DW_AT_specification (for
13229 static members). */
13230 if (!load_all
13231 && !is_type_tag_for_partial (abbrev->tag)
72929c62 13232 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
13233 && abbrev->tag != DW_TAG_enumerator
13234 && abbrev->tag != DW_TAG_subprogram
bc30ff58 13235 && abbrev->tag != DW_TAG_lexical_block
72bf9492 13236 && abbrev->tag != DW_TAG_variable
5afb4e99 13237 && abbrev->tag != DW_TAG_namespace
f55ee35c 13238 && abbrev->tag != DW_TAG_module
95554aad
TT
13239 && abbrev->tag != DW_TAG_member
13240 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
13241 {
13242 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13243 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
13244 continue;
13245 }
13246
dee91e82
DE
13247 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13248 info_ptr);
72bf9492
DJ
13249
13250 /* This two-pass algorithm for processing partial symbols has a
13251 high cost in cache pressure. Thus, handle some simple cases
13252 here which cover the majority of C partial symbols. DIEs
13253 which neither have specification tags in them, nor could have
13254 specification tags elsewhere pointing at them, can simply be
13255 processed and discarded.
13256
13257 This segment is also optional; scan_partial_symbols and
13258 add_partial_symbol will handle these DIEs if we chain
13259 them in normally. When compilers which do not emit large
13260 quantities of duplicate debug information are more common,
13261 this code can probably be removed. */
13262
13263 /* Any complete simple types at the top level (pretty much all
13264 of them, for a language without namespaces), can be processed
13265 directly. */
13266 if (parent_die == NULL
13267 && part_die->has_specification == 0
13268 && part_die->is_declaration == 0
d8228535 13269 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
13270 || part_die->tag == DW_TAG_base_type
13271 || part_die->tag == DW_TAG_subrange_type))
13272 {
13273 if (building_psymtab && part_die->name != NULL)
04a679b8 13274 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13275 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
13276 &objfile->static_psymbols,
13277 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 13278 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13279 continue;
13280 }
13281
d8228535
JK
13282 /* The exception for DW_TAG_typedef with has_children above is
13283 a workaround of GCC PR debug/47510. In the case of this complaint
13284 type_name_no_tag_or_error will error on such types later.
13285
13286 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13287 it could not find the child DIEs referenced later, this is checked
13288 above. In correct DWARF DW_TAG_typedef should have no children. */
13289
13290 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13291 complaint (&symfile_complaints,
13292 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13293 "- DIE at 0x%x [in module %s]"),
b64f50a1 13294 part_die->offset.sect_off, objfile->name);
d8228535 13295
72bf9492
DJ
13296 /* If we're at the second level, and we're an enumerator, and
13297 our parent has no specification (meaning possibly lives in a
13298 namespace elsewhere), then we can add the partial symbol now
13299 instead of queueing it. */
13300 if (part_die->tag == DW_TAG_enumerator
13301 && parent_die != NULL
13302 && parent_die->die_parent == NULL
13303 && parent_die->tag == DW_TAG_enumeration_type
13304 && parent_die->has_specification == 0)
13305 {
13306 if (part_die->name == NULL)
3e43a32a
MS
13307 complaint (&symfile_complaints,
13308 _("malformed enumerator DIE ignored"));
72bf9492 13309 else if (building_psymtab)
04a679b8 13310 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13311 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
13312 (cu->language == language_cplus
13313 || cu->language == language_java)
bb5ed363
DE
13314 ? &objfile->global_psymbols
13315 : &objfile->static_psymbols,
13316 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 13317
dee91e82 13318 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13319 continue;
13320 }
13321
13322 /* We'll save this DIE so link it in. */
13323 part_die->die_parent = parent_die;
13324 part_die->die_sibling = NULL;
13325 part_die->die_child = NULL;
13326
13327 if (last_die && last_die == parent_die)
13328 last_die->die_child = part_die;
13329 else if (last_die)
13330 last_die->die_sibling = part_die;
13331
13332 last_die = part_die;
13333
13334 if (first_die == NULL)
13335 first_die = part_die;
13336
13337 /* Maybe add the DIE to the hash table. Not all DIEs that we
13338 find interesting need to be in the hash table, because we
13339 also have the parent/sibling/child chains; only those that we
13340 might refer to by offset later during partial symbol reading.
13341
13342 For now this means things that might have be the target of a
13343 DW_AT_specification, DW_AT_abstract_origin, or
13344 DW_AT_extension. DW_AT_extension will refer only to
13345 namespaces; DW_AT_abstract_origin refers to functions (and
13346 many things under the function DIE, but we do not recurse
13347 into function DIEs during partial symbol reading) and
13348 possibly variables as well; DW_AT_specification refers to
13349 declarations. Declarations ought to have the DW_AT_declaration
13350 flag. It happens that GCC forgets to put it in sometimes, but
13351 only for functions, not for types.
13352
13353 Adding more things than necessary to the hash table is harmless
13354 except for the performance cost. Adding too few will result in
5afb4e99
DJ
13355 wasted time in find_partial_die, when we reread the compilation
13356 unit with load_all_dies set. */
72bf9492 13357
5afb4e99 13358 if (load_all
72929c62 13359 || abbrev->tag == DW_TAG_constant
5afb4e99 13360 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
13361 || abbrev->tag == DW_TAG_variable
13362 || abbrev->tag == DW_TAG_namespace
13363 || part_die->is_declaration)
13364 {
13365 void **slot;
13366
13367 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 13368 part_die->offset.sect_off, INSERT);
72bf9492
DJ
13369 *slot = part_die;
13370 }
13371
13372 part_die = obstack_alloc (&cu->comp_unit_obstack,
13373 sizeof (struct partial_die_info));
13374
13375 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 13376 we have no reason to follow the children of structures; for other
98bfdba5
PA
13377 languages we have to, so that we can get at method physnames
13378 to infer fully qualified class names, for DW_AT_specification,
13379 and for C++ template arguments. For C++, we also look one level
13380 inside functions to find template arguments (if the name of the
13381 function does not already contain the template arguments).
bc30ff58
JB
13382
13383 For Ada, we need to scan the children of subprograms and lexical
13384 blocks as well because Ada allows the definition of nested
13385 entities that could be interesting for the debugger, such as
13386 nested subprograms for instance. */
72bf9492 13387 if (last_die->has_children
5afb4e99
DJ
13388 && (load_all
13389 || last_die->tag == DW_TAG_namespace
f55ee35c 13390 || last_die->tag == DW_TAG_module
72bf9492 13391 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
13392 || (cu->language == language_cplus
13393 && last_die->tag == DW_TAG_subprogram
13394 && (last_die->name == NULL
13395 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
13396 || (cu->language != language_c
13397 && (last_die->tag == DW_TAG_class_type
680b30c7 13398 || last_die->tag == DW_TAG_interface_type
72bf9492 13399 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
13400 || last_die->tag == DW_TAG_union_type))
13401 || (cu->language == language_ada
13402 && (last_die->tag == DW_TAG_subprogram
13403 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
13404 {
13405 nesting_level++;
13406 parent_die = last_die;
13407 continue;
13408 }
13409
13410 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13411 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
13412
13413 /* Back to the top, do it again. */
13414 }
13415}
13416
c906108c
SS
13417/* Read a minimal amount of information into the minimal die structure. */
13418
fe1b8b76 13419static gdb_byte *
dee91e82
DE
13420read_partial_die (const struct die_reader_specs *reader,
13421 struct partial_die_info *part_die,
13422 struct abbrev_info *abbrev, unsigned int abbrev_len,
13423 gdb_byte *info_ptr)
c906108c 13424{
dee91e82 13425 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13426 struct objfile *objfile = cu->objfile;
dee91e82 13427 gdb_byte *buffer = reader->buffer;
fa238c03 13428 unsigned int i;
c906108c 13429 struct attribute attr;
c5aa993b 13430 int has_low_pc_attr = 0;
c906108c 13431 int has_high_pc_attr = 0;
91da1414 13432 int high_pc_relative = 0;
c906108c 13433
72bf9492 13434 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 13435
b64f50a1 13436 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
13437
13438 info_ptr += abbrev_len;
13439
13440 if (abbrev == NULL)
13441 return info_ptr;
13442
c906108c
SS
13443 part_die->tag = abbrev->tag;
13444 part_die->has_children = abbrev->has_children;
c906108c
SS
13445
13446 for (i = 0; i < abbrev->num_attrs; ++i)
13447 {
dee91e82 13448 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
13449
13450 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 13451 partial symbol table. */
c906108c
SS
13452 switch (attr.name)
13453 {
13454 case DW_AT_name:
71c25dea
TT
13455 switch (part_die->tag)
13456 {
13457 case DW_TAG_compile_unit:
95554aad 13458 case DW_TAG_partial_unit:
348e048f 13459 case DW_TAG_type_unit:
71c25dea
TT
13460 /* Compilation units have a DW_AT_name that is a filename, not
13461 a source language identifier. */
13462 case DW_TAG_enumeration_type:
13463 case DW_TAG_enumerator:
13464 /* These tags always have simple identifiers already; no need
13465 to canonicalize them. */
13466 part_die->name = DW_STRING (&attr);
13467 break;
13468 default:
13469 part_die->name
13470 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 13471 &objfile->objfile_obstack);
71c25dea
TT
13472 break;
13473 }
c906108c 13474 break;
31ef98ae 13475 case DW_AT_linkage_name:
c906108c 13476 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
13477 /* Note that both forms of linkage name might appear. We
13478 assume they will be the same, and we only store the last
13479 one we see. */
94af9270
KS
13480 if (cu->language == language_ada)
13481 part_die->name = DW_STRING (&attr);
abc72ce4 13482 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
13483 break;
13484 case DW_AT_low_pc:
13485 has_low_pc_attr = 1;
13486 part_die->lowpc = DW_ADDR (&attr);
13487 break;
13488 case DW_AT_high_pc:
13489 has_high_pc_attr = 1;
3019eac3
DE
13490 if (attr.form == DW_FORM_addr
13491 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
13492 part_die->highpc = DW_ADDR (&attr);
13493 else
13494 {
13495 high_pc_relative = 1;
13496 part_die->highpc = DW_UNSND (&attr);
13497 }
c906108c
SS
13498 break;
13499 case DW_AT_location:
0963b4bd 13500 /* Support the .debug_loc offsets. */
8e19ed76
PS
13501 if (attr_form_is_block (&attr))
13502 {
95554aad 13503 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 13504 }
3690dd37 13505 else if (attr_form_is_section_offset (&attr))
8e19ed76 13506 {
4d3c2250 13507 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13508 }
13509 else
13510 {
4d3c2250
KB
13511 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13512 "partial symbol information");
8e19ed76 13513 }
c906108c 13514 break;
c906108c
SS
13515 case DW_AT_external:
13516 part_die->is_external = DW_UNSND (&attr);
13517 break;
13518 case DW_AT_declaration:
13519 part_die->is_declaration = DW_UNSND (&attr);
13520 break;
13521 case DW_AT_type:
13522 part_die->has_type = 1;
13523 break;
13524 case DW_AT_abstract_origin:
13525 case DW_AT_specification:
72bf9492
DJ
13526 case DW_AT_extension:
13527 part_die->has_specification = 1;
c764a876 13528 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
13529 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13530 || cu->per_cu->is_dwz);
c906108c
SS
13531 break;
13532 case DW_AT_sibling:
13533 /* Ignore absolute siblings, they might point outside of
13534 the current compile unit. */
13535 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
13536 complaint (&symfile_complaints,
13537 _("ignoring absolute DW_AT_sibling"));
c906108c 13538 else
b64f50a1 13539 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 13540 break;
fa4028e9
JB
13541 case DW_AT_byte_size:
13542 part_die->has_byte_size = 1;
13543 break;
68511cec
CES
13544 case DW_AT_calling_convention:
13545 /* DWARF doesn't provide a way to identify a program's source-level
13546 entry point. DW_AT_calling_convention attributes are only meant
13547 to describe functions' calling conventions.
13548
13549 However, because it's a necessary piece of information in
13550 Fortran, and because DW_CC_program is the only piece of debugging
13551 information whose definition refers to a 'main program' at all,
13552 several compilers have begun marking Fortran main programs with
13553 DW_CC_program --- even when those functions use the standard
13554 calling conventions.
13555
13556 So until DWARF specifies a way to provide this information and
13557 compilers pick up the new representation, we'll support this
13558 practice. */
13559 if (DW_UNSND (&attr) == DW_CC_program
13560 && cu->language == language_fortran)
01f8c46d
JK
13561 {
13562 set_main_name (part_die->name);
13563
13564 /* As this DIE has a static linkage the name would be difficult
13565 to look up later. */
13566 language_of_main = language_fortran;
13567 }
68511cec 13568 break;
481860b3
GB
13569 case DW_AT_inline:
13570 if (DW_UNSND (&attr) == DW_INL_inlined
13571 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13572 part_die->may_be_inlined = 1;
13573 break;
95554aad
TT
13574
13575 case DW_AT_import:
13576 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
13577 {
13578 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13579 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13580 || cu->per_cu->is_dwz);
13581 }
95554aad
TT
13582 break;
13583
c906108c
SS
13584 default:
13585 break;
13586 }
13587 }
13588
91da1414
MW
13589 if (high_pc_relative)
13590 part_die->highpc += part_die->lowpc;
13591
9373cf26
JK
13592 if (has_low_pc_attr && has_high_pc_attr)
13593 {
13594 /* When using the GNU linker, .gnu.linkonce. sections are used to
13595 eliminate duplicate copies of functions and vtables and such.
13596 The linker will arbitrarily choose one and discard the others.
13597 The AT_*_pc values for such functions refer to local labels in
13598 these sections. If the section from that file was discarded, the
13599 labels are not in the output, so the relocs get a value of 0.
13600 If this is a discarded function, mark the pc bounds as invalid,
13601 so that GDB will ignore it. */
13602 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13603 {
bb5ed363 13604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
13605
13606 complaint (&symfile_complaints,
13607 _("DW_AT_low_pc %s is zero "
13608 "for DIE at 0x%x [in module %s]"),
13609 paddress (gdbarch, part_die->lowpc),
b64f50a1 13610 part_die->offset.sect_off, objfile->name);
9373cf26
JK
13611 }
13612 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13613 else if (part_die->lowpc >= part_die->highpc)
13614 {
bb5ed363 13615 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
13616
13617 complaint (&symfile_complaints,
13618 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13619 "for DIE at 0x%x [in module %s]"),
13620 paddress (gdbarch, part_die->lowpc),
13621 paddress (gdbarch, part_die->highpc),
b64f50a1 13622 part_die->offset.sect_off, objfile->name);
9373cf26
JK
13623 }
13624 else
13625 part_die->has_pc_info = 1;
13626 }
85cbf3d3 13627
c906108c
SS
13628 return info_ptr;
13629}
13630
72bf9492
DJ
13631/* Find a cached partial DIE at OFFSET in CU. */
13632
13633static struct partial_die_info *
b64f50a1 13634find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
13635{
13636 struct partial_die_info *lookup_die = NULL;
13637 struct partial_die_info part_die;
13638
13639 part_die.offset = offset;
b64f50a1
JK
13640 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13641 offset.sect_off);
72bf9492 13642
72bf9492
DJ
13643 return lookup_die;
13644}
13645
348e048f
DE
13646/* Find a partial DIE at OFFSET, which may or may not be in CU,
13647 except in the case of .debug_types DIEs which do not reference
13648 outside their CU (they do however referencing other types via
55f1336d 13649 DW_FORM_ref_sig8). */
72bf9492
DJ
13650
13651static struct partial_die_info *
36586728 13652find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 13653{
bb5ed363 13654 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
13655 struct dwarf2_per_cu_data *per_cu = NULL;
13656 struct partial_die_info *pd = NULL;
72bf9492 13657
36586728
TT
13658 if (offset_in_dwz == cu->per_cu->is_dwz
13659 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
13660 {
13661 pd = find_partial_die_in_comp_unit (offset, cu);
13662 if (pd != NULL)
13663 return pd;
0d99eb77
DE
13664 /* We missed recording what we needed.
13665 Load all dies and try again. */
13666 per_cu = cu->per_cu;
5afb4e99 13667 }
0d99eb77
DE
13668 else
13669 {
13670 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 13671 if (cu->per_cu->is_debug_types)
0d99eb77
DE
13672 {
13673 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13674 " external reference to offset 0x%lx [in module %s].\n"),
13675 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13676 bfd_get_filename (objfile->obfd));
13677 }
36586728
TT
13678 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13679 objfile);
72bf9492 13680
0d99eb77
DE
13681 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13682 load_partial_comp_unit (per_cu);
ae038cb0 13683
0d99eb77
DE
13684 per_cu->cu->last_used = 0;
13685 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13686 }
5afb4e99 13687
dee91e82
DE
13688 /* If we didn't find it, and not all dies have been loaded,
13689 load them all and try again. */
13690
5afb4e99
DJ
13691 if (pd == NULL && per_cu->load_all_dies == 0)
13692 {
5afb4e99 13693 per_cu->load_all_dies = 1;
fd820528
DE
13694
13695 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13696 THIS_CU->cu may already be in use. So we can't just free it and
13697 replace its DIEs with the ones we read in. Instead, we leave those
13698 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13699 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13700 set. */
dee91e82 13701 load_partial_comp_unit (per_cu);
5afb4e99
DJ
13702
13703 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13704 }
13705
13706 if (pd == NULL)
13707 internal_error (__FILE__, __LINE__,
3e43a32a
MS
13708 _("could not find partial DIE 0x%x "
13709 "in cache [from module %s]\n"),
b64f50a1 13710 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 13711 return pd;
72bf9492
DJ
13712}
13713
abc72ce4
DE
13714/* See if we can figure out if the class lives in a namespace. We do
13715 this by looking for a member function; its demangled name will
13716 contain namespace info, if there is any. */
13717
13718static void
13719guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13720 struct dwarf2_cu *cu)
13721{
13722 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13723 what template types look like, because the demangler
13724 frequently doesn't give the same name as the debug info. We
13725 could fix this by only using the demangled name to get the
13726 prefix (but see comment in read_structure_type). */
13727
13728 struct partial_die_info *real_pdi;
13729 struct partial_die_info *child_pdi;
13730
13731 /* If this DIE (this DIE's specification, if any) has a parent, then
13732 we should not do this. We'll prepend the parent's fully qualified
13733 name when we create the partial symbol. */
13734
13735 real_pdi = struct_pdi;
13736 while (real_pdi->has_specification)
36586728
TT
13737 real_pdi = find_partial_die (real_pdi->spec_offset,
13738 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
13739
13740 if (real_pdi->die_parent != NULL)
13741 return;
13742
13743 for (child_pdi = struct_pdi->die_child;
13744 child_pdi != NULL;
13745 child_pdi = child_pdi->die_sibling)
13746 {
13747 if (child_pdi->tag == DW_TAG_subprogram
13748 && child_pdi->linkage_name != NULL)
13749 {
13750 char *actual_class_name
13751 = language_class_name_from_physname (cu->language_defn,
13752 child_pdi->linkage_name);
13753 if (actual_class_name != NULL)
13754 {
13755 struct_pdi->name
13756 = obsavestring (actual_class_name,
13757 strlen (actual_class_name),
13758 &cu->objfile->objfile_obstack);
13759 xfree (actual_class_name);
13760 }
13761 break;
13762 }
13763 }
13764}
13765
72bf9492
DJ
13766/* Adjust PART_DIE before generating a symbol for it. This function
13767 may set the is_external flag or change the DIE's name. */
13768
13769static void
13770fixup_partial_die (struct partial_die_info *part_die,
13771 struct dwarf2_cu *cu)
13772{
abc72ce4
DE
13773 /* Once we've fixed up a die, there's no point in doing so again.
13774 This also avoids a memory leak if we were to call
13775 guess_partial_die_structure_name multiple times. */
13776 if (part_die->fixup_called)
13777 return;
13778
72bf9492
DJ
13779 /* If we found a reference attribute and the DIE has no name, try
13780 to find a name in the referred to DIE. */
13781
13782 if (part_die->name == NULL && part_die->has_specification)
13783 {
13784 struct partial_die_info *spec_die;
72bf9492 13785
36586728
TT
13786 spec_die = find_partial_die (part_die->spec_offset,
13787 part_die->spec_is_dwz, cu);
72bf9492 13788
10b3939b 13789 fixup_partial_die (spec_die, cu);
72bf9492
DJ
13790
13791 if (spec_die->name)
13792 {
13793 part_die->name = spec_die->name;
13794
13795 /* Copy DW_AT_external attribute if it is set. */
13796 if (spec_die->is_external)
13797 part_die->is_external = spec_die->is_external;
13798 }
13799 }
13800
13801 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
13802
13803 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 13804 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 13805
abc72ce4
DE
13806 /* If there is no parent die to provide a namespace, and there are
13807 children, see if we can determine the namespace from their linkage
122d1940 13808 name. */
abc72ce4 13809 if (cu->language == language_cplus
8b70b953 13810 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
13811 && part_die->die_parent == NULL
13812 && part_die->has_children
13813 && (part_die->tag == DW_TAG_class_type
13814 || part_die->tag == DW_TAG_structure_type
13815 || part_die->tag == DW_TAG_union_type))
13816 guess_partial_die_structure_name (part_die, cu);
13817
53832f31
TT
13818 /* GCC might emit a nameless struct or union that has a linkage
13819 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13820 if (part_die->name == NULL
96408a79
SA
13821 && (part_die->tag == DW_TAG_class_type
13822 || part_die->tag == DW_TAG_interface_type
13823 || part_die->tag == DW_TAG_structure_type
13824 || part_die->tag == DW_TAG_union_type)
53832f31
TT
13825 && part_die->linkage_name != NULL)
13826 {
13827 char *demangled;
13828
13829 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13830 if (demangled)
13831 {
96408a79
SA
13832 const char *base;
13833
13834 /* Strip any leading namespaces/classes, keep only the base name.
13835 DW_AT_name for named DIEs does not contain the prefixes. */
13836 base = strrchr (demangled, ':');
13837 if (base && base > demangled && base[-1] == ':')
13838 base++;
13839 else
13840 base = demangled;
13841
13842 part_die->name = obsavestring (base, strlen (base),
53832f31
TT
13843 &cu->objfile->objfile_obstack);
13844 xfree (demangled);
13845 }
13846 }
13847
abc72ce4 13848 part_die->fixup_called = 1;
72bf9492
DJ
13849}
13850
a8329558 13851/* Read an attribute value described by an attribute form. */
c906108c 13852
fe1b8b76 13853static gdb_byte *
dee91e82
DE
13854read_attribute_value (const struct die_reader_specs *reader,
13855 struct attribute *attr, unsigned form,
13856 gdb_byte *info_ptr)
c906108c 13857{
dee91e82
DE
13858 struct dwarf2_cu *cu = reader->cu;
13859 bfd *abfd = reader->abfd;
e7c27a73 13860 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
13861 unsigned int bytes_read;
13862 struct dwarf_block *blk;
13863
a8329558
KW
13864 attr->form = form;
13865 switch (form)
c906108c 13866 {
c906108c 13867 case DW_FORM_ref_addr:
ae411497 13868 if (cu->header.version == 2)
4568ecf9 13869 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 13870 else
4568ecf9
DE
13871 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13872 &cu->header, &bytes_read);
ae411497
TT
13873 info_ptr += bytes_read;
13874 break;
36586728
TT
13875 case DW_FORM_GNU_ref_alt:
13876 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13877 info_ptr += bytes_read;
13878 break;
ae411497 13879 case DW_FORM_addr:
e7c27a73 13880 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 13881 info_ptr += bytes_read;
c906108c
SS
13882 break;
13883 case DW_FORM_block2:
7b5a2f43 13884 blk = dwarf_alloc_block (cu);
c906108c
SS
13885 blk->size = read_2_bytes (abfd, info_ptr);
13886 info_ptr += 2;
13887 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13888 info_ptr += blk->size;
13889 DW_BLOCK (attr) = blk;
13890 break;
13891 case DW_FORM_block4:
7b5a2f43 13892 blk = dwarf_alloc_block (cu);
c906108c
SS
13893 blk->size = read_4_bytes (abfd, info_ptr);
13894 info_ptr += 4;
13895 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13896 info_ptr += blk->size;
13897 DW_BLOCK (attr) = blk;
13898 break;
13899 case DW_FORM_data2:
13900 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13901 info_ptr += 2;
13902 break;
13903 case DW_FORM_data4:
13904 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13905 info_ptr += 4;
13906 break;
13907 case DW_FORM_data8:
13908 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13909 info_ptr += 8;
13910 break;
2dc7f7b3
TT
13911 case DW_FORM_sec_offset:
13912 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13913 info_ptr += bytes_read;
13914 break;
c906108c 13915 case DW_FORM_string:
9b1c24c8 13916 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 13917 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
13918 info_ptr += bytes_read;
13919 break;
4bdf3d34 13920 case DW_FORM_strp:
36586728
TT
13921 if (!cu->per_cu->is_dwz)
13922 {
13923 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13924 &bytes_read);
13925 DW_STRING_IS_CANONICAL (attr) = 0;
13926 info_ptr += bytes_read;
13927 break;
13928 }
13929 /* FALLTHROUGH */
13930 case DW_FORM_GNU_strp_alt:
13931 {
13932 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13933 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13934 &bytes_read);
13935
13936 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13937 DW_STRING_IS_CANONICAL (attr) = 0;
13938 info_ptr += bytes_read;
13939 }
4bdf3d34 13940 break;
2dc7f7b3 13941 case DW_FORM_exprloc:
c906108c 13942 case DW_FORM_block:
7b5a2f43 13943 blk = dwarf_alloc_block (cu);
c906108c
SS
13944 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13945 info_ptr += bytes_read;
13946 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13947 info_ptr += blk->size;
13948 DW_BLOCK (attr) = blk;
13949 break;
13950 case DW_FORM_block1:
7b5a2f43 13951 blk = dwarf_alloc_block (cu);
c906108c
SS
13952 blk->size = read_1_byte (abfd, info_ptr);
13953 info_ptr += 1;
13954 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13955 info_ptr += blk->size;
13956 DW_BLOCK (attr) = blk;
13957 break;
13958 case DW_FORM_data1:
13959 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13960 info_ptr += 1;
13961 break;
13962 case DW_FORM_flag:
13963 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13964 info_ptr += 1;
13965 break;
2dc7f7b3
TT
13966 case DW_FORM_flag_present:
13967 DW_UNSND (attr) = 1;
13968 break;
c906108c
SS
13969 case DW_FORM_sdata:
13970 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13971 info_ptr += bytes_read;
13972 break;
13973 case DW_FORM_udata:
13974 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13975 info_ptr += bytes_read;
13976 break;
13977 case DW_FORM_ref1:
4568ecf9
DE
13978 DW_UNSND (attr) = (cu->header.offset.sect_off
13979 + read_1_byte (abfd, info_ptr));
c906108c
SS
13980 info_ptr += 1;
13981 break;
13982 case DW_FORM_ref2:
4568ecf9
DE
13983 DW_UNSND (attr) = (cu->header.offset.sect_off
13984 + read_2_bytes (abfd, info_ptr));
c906108c
SS
13985 info_ptr += 2;
13986 break;
13987 case DW_FORM_ref4:
4568ecf9
DE
13988 DW_UNSND (attr) = (cu->header.offset.sect_off
13989 + read_4_bytes (abfd, info_ptr));
c906108c
SS
13990 info_ptr += 4;
13991 break;
613e1657 13992 case DW_FORM_ref8:
4568ecf9
DE
13993 DW_UNSND (attr) = (cu->header.offset.sect_off
13994 + read_8_bytes (abfd, info_ptr));
613e1657
KB
13995 info_ptr += 8;
13996 break;
55f1336d 13997 case DW_FORM_ref_sig8:
348e048f
DE
13998 /* Convert the signature to something we can record in DW_UNSND
13999 for later lookup.
14000 NOTE: This is NULL if the type wasn't found. */
14001 DW_SIGNATURED_TYPE (attr) =
e319fa28 14002 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
348e048f
DE
14003 info_ptr += 8;
14004 break;
c906108c 14005 case DW_FORM_ref_udata:
4568ecf9
DE
14006 DW_UNSND (attr) = (cu->header.offset.sect_off
14007 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14008 info_ptr += bytes_read;
14009 break;
c906108c 14010 case DW_FORM_indirect:
a8329558
KW
14011 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14012 info_ptr += bytes_read;
dee91e82 14013 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14014 break;
3019eac3
DE
14015 case DW_FORM_GNU_addr_index:
14016 if (reader->dwo_file == NULL)
14017 {
14018 /* For now flag a hard error.
14019 Later we can turn this into a complaint. */
14020 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14021 dwarf_form_name (form),
14022 bfd_get_filename (abfd));
14023 }
14024 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14025 info_ptr += bytes_read;
14026 break;
14027 case DW_FORM_GNU_str_index:
14028 if (reader->dwo_file == NULL)
14029 {
14030 /* For now flag a hard error.
14031 Later we can turn this into a complaint if warranted. */
14032 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14033 dwarf_form_name (form),
14034 bfd_get_filename (abfd));
14035 }
14036 {
14037 ULONGEST str_index =
14038 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14039
14040 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14041 DW_STRING_IS_CANONICAL (attr) = 0;
14042 info_ptr += bytes_read;
14043 }
14044 break;
c906108c 14045 default:
8a3fe4f8 14046 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14047 dwarf_form_name (form),
14048 bfd_get_filename (abfd));
c906108c 14049 }
28e94949 14050
36586728
TT
14051 /* Super hack. */
14052 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14053 attr->form = DW_FORM_GNU_ref_alt;
14054
28e94949
JB
14055 /* We have seen instances where the compiler tried to emit a byte
14056 size attribute of -1 which ended up being encoded as an unsigned
14057 0xffffffff. Although 0xffffffff is technically a valid size value,
14058 an object of this size seems pretty unlikely so we can relatively
14059 safely treat these cases as if the size attribute was invalid and
14060 treat them as zero by default. */
14061 if (attr->name == DW_AT_byte_size
14062 && form == DW_FORM_data4
14063 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14064 {
14065 complaint
14066 (&symfile_complaints,
43bbcdc2
PH
14067 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14068 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14069 DW_UNSND (attr) = 0;
14070 }
28e94949 14071
c906108c
SS
14072 return info_ptr;
14073}
14074
a8329558
KW
14075/* Read an attribute described by an abbreviated attribute. */
14076
fe1b8b76 14077static gdb_byte *
dee91e82
DE
14078read_attribute (const struct die_reader_specs *reader,
14079 struct attribute *attr, struct attr_abbrev *abbrev,
14080 gdb_byte *info_ptr)
a8329558
KW
14081{
14082 attr->name = abbrev->name;
dee91e82 14083 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14084}
14085
0963b4bd 14086/* Read dwarf information from a buffer. */
c906108c
SS
14087
14088static unsigned int
a1855c1d 14089read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14090{
fe1b8b76 14091 return bfd_get_8 (abfd, buf);
c906108c
SS
14092}
14093
14094static int
a1855c1d 14095read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14096{
fe1b8b76 14097 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14098}
14099
14100static unsigned int
a1855c1d 14101read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14102{
fe1b8b76 14103 return bfd_get_16 (abfd, buf);
c906108c
SS
14104}
14105
21ae7a4d 14106static int
a1855c1d 14107read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14108{
14109 return bfd_get_signed_16 (abfd, buf);
14110}
14111
c906108c 14112static unsigned int
a1855c1d 14113read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14114{
fe1b8b76 14115 return bfd_get_32 (abfd, buf);
c906108c
SS
14116}
14117
21ae7a4d 14118static int
a1855c1d 14119read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14120{
14121 return bfd_get_signed_32 (abfd, buf);
14122}
14123
93311388 14124static ULONGEST
a1855c1d 14125read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14126{
fe1b8b76 14127 return bfd_get_64 (abfd, buf);
c906108c
SS
14128}
14129
14130static CORE_ADDR
fe1b8b76 14131read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14132 unsigned int *bytes_read)
c906108c 14133{
e7c27a73 14134 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14135 CORE_ADDR retval = 0;
14136
107d2387 14137 if (cu_header->signed_addr_p)
c906108c 14138 {
107d2387
AC
14139 switch (cu_header->addr_size)
14140 {
14141 case 2:
fe1b8b76 14142 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14143 break;
14144 case 4:
fe1b8b76 14145 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14146 break;
14147 case 8:
fe1b8b76 14148 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14149 break;
14150 default:
8e65ff28 14151 internal_error (__FILE__, __LINE__,
e2e0b3e5 14152 _("read_address: bad switch, signed [in module %s]"),
659b0389 14153 bfd_get_filename (abfd));
107d2387
AC
14154 }
14155 }
14156 else
14157 {
14158 switch (cu_header->addr_size)
14159 {
14160 case 2:
fe1b8b76 14161 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14162 break;
14163 case 4:
fe1b8b76 14164 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14165 break;
14166 case 8:
fe1b8b76 14167 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14168 break;
14169 default:
8e65ff28 14170 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14171 _("read_address: bad switch, "
14172 "unsigned [in module %s]"),
659b0389 14173 bfd_get_filename (abfd));
107d2387 14174 }
c906108c 14175 }
64367e0a 14176
107d2387
AC
14177 *bytes_read = cu_header->addr_size;
14178 return retval;
c906108c
SS
14179}
14180
f7ef9339 14181/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14182 specification allows the initial length to take up either 4 bytes
14183 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14184 bytes describe the length and all offsets will be 8 bytes in length
14185 instead of 4.
14186
f7ef9339
KB
14187 An older, non-standard 64-bit format is also handled by this
14188 function. The older format in question stores the initial length
14189 as an 8-byte quantity without an escape value. Lengths greater
14190 than 2^32 aren't very common which means that the initial 4 bytes
14191 is almost always zero. Since a length value of zero doesn't make
14192 sense for the 32-bit format, this initial zero can be considered to
14193 be an escape value which indicates the presence of the older 64-bit
14194 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14195 greater than 4GB. If it becomes necessary to handle lengths
14196 somewhat larger than 4GB, we could allow other small values (such
14197 as the non-sensical values of 1, 2, and 3) to also be used as
14198 escape values indicating the presence of the old format.
f7ef9339 14199
917c78fc
MK
14200 The value returned via bytes_read should be used to increment the
14201 relevant pointer after calling read_initial_length().
c764a876 14202
613e1657
KB
14203 [ Note: read_initial_length() and read_offset() are based on the
14204 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14205 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14206 from:
14207
f7ef9339 14208 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14209
613e1657
KB
14210 This document is only a draft and is subject to change. (So beware.)
14211
f7ef9339 14212 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14213 determined empirically by examining 64-bit ELF files produced by
14214 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
14215
14216 - Kevin, July 16, 2002
613e1657
KB
14217 ] */
14218
14219static LONGEST
c764a876 14220read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 14221{
fe1b8b76 14222 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 14223
dd373385 14224 if (length == 0xffffffff)
613e1657 14225 {
fe1b8b76 14226 length = bfd_get_64 (abfd, buf + 4);
613e1657 14227 *bytes_read = 12;
613e1657 14228 }
dd373385 14229 else if (length == 0)
f7ef9339 14230 {
dd373385 14231 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 14232 length = bfd_get_64 (abfd, buf);
f7ef9339 14233 *bytes_read = 8;
f7ef9339 14234 }
613e1657
KB
14235 else
14236 {
14237 *bytes_read = 4;
613e1657
KB
14238 }
14239
c764a876
DE
14240 return length;
14241}
dd373385 14242
c764a876
DE
14243/* Cover function for read_initial_length.
14244 Returns the length of the object at BUF, and stores the size of the
14245 initial length in *BYTES_READ and stores the size that offsets will be in
14246 *OFFSET_SIZE.
14247 If the initial length size is not equivalent to that specified in
14248 CU_HEADER then issue a complaint.
14249 This is useful when reading non-comp-unit headers. */
dd373385 14250
c764a876
DE
14251static LONGEST
14252read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14253 const struct comp_unit_head *cu_header,
14254 unsigned int *bytes_read,
14255 unsigned int *offset_size)
14256{
14257 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14258
14259 gdb_assert (cu_header->initial_length_size == 4
14260 || cu_header->initial_length_size == 8
14261 || cu_header->initial_length_size == 12);
14262
14263 if (cu_header->initial_length_size != *bytes_read)
14264 complaint (&symfile_complaints,
14265 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 14266
c764a876 14267 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 14268 return length;
613e1657
KB
14269}
14270
14271/* Read an offset from the data stream. The size of the offset is
917c78fc 14272 given by cu_header->offset_size. */
613e1657
KB
14273
14274static LONGEST
fe1b8b76 14275read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 14276 unsigned int *bytes_read)
c764a876
DE
14277{
14278 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 14279
c764a876
DE
14280 *bytes_read = cu_header->offset_size;
14281 return offset;
14282}
14283
14284/* Read an offset from the data stream. */
14285
14286static LONGEST
14287read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
14288{
14289 LONGEST retval = 0;
14290
c764a876 14291 switch (offset_size)
613e1657
KB
14292 {
14293 case 4:
fe1b8b76 14294 retval = bfd_get_32 (abfd, buf);
613e1657
KB
14295 break;
14296 case 8:
fe1b8b76 14297 retval = bfd_get_64 (abfd, buf);
613e1657
KB
14298 break;
14299 default:
8e65ff28 14300 internal_error (__FILE__, __LINE__,
c764a876 14301 _("read_offset_1: bad switch [in module %s]"),
659b0389 14302 bfd_get_filename (abfd));
613e1657
KB
14303 }
14304
917c78fc 14305 return retval;
613e1657
KB
14306}
14307
fe1b8b76
JB
14308static gdb_byte *
14309read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
14310{
14311 /* If the size of a host char is 8 bits, we can return a pointer
14312 to the buffer, otherwise we have to copy the data to a buffer
14313 allocated on the temporary obstack. */
4bdf3d34 14314 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 14315 return buf;
c906108c
SS
14316}
14317
14318static char *
9b1c24c8 14319read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
14320{
14321 /* If the size of a host char is 8 bits, we can return a pointer
14322 to the string, otherwise we have to copy the string to a buffer
14323 allocated on the temporary obstack. */
4bdf3d34 14324 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
14325 if (*buf == '\0')
14326 {
14327 *bytes_read_ptr = 1;
14328 return NULL;
14329 }
fe1b8b76
JB
14330 *bytes_read_ptr = strlen ((char *) buf) + 1;
14331 return (char *) buf;
4bdf3d34
JJ
14332}
14333
14334static char *
cf2c3c16 14335read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 14336{
be391dca 14337 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 14338 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
14339 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14340 bfd_get_filename (abfd));
dce234bc 14341 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
14342 error (_("DW_FORM_strp pointing outside of "
14343 ".debug_str section [in module %s]"),
14344 bfd_get_filename (abfd));
4bdf3d34 14345 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 14346 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 14347 return NULL;
dce234bc 14348 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
14349}
14350
36586728
TT
14351/* Read a string at offset STR_OFFSET in the .debug_str section from
14352 the .dwz file DWZ. Throw an error if the offset is too large. If
14353 the string consists of a single NUL byte, return NULL; otherwise
14354 return a pointer to the string. */
14355
14356static char *
14357read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14358{
14359 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14360
14361 if (dwz->str.buffer == NULL)
14362 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14363 "section [in module %s]"),
14364 bfd_get_filename (dwz->dwz_bfd));
14365 if (str_offset >= dwz->str.size)
14366 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14367 ".debug_str section [in module %s]"),
14368 bfd_get_filename (dwz->dwz_bfd));
14369 gdb_assert (HOST_CHAR_BIT == 8);
14370 if (dwz->str.buffer[str_offset] == '\0')
14371 return NULL;
14372 return (char *) (dwz->str.buffer + str_offset);
14373}
14374
cf2c3c16
TT
14375static char *
14376read_indirect_string (bfd *abfd, gdb_byte *buf,
14377 const struct comp_unit_head *cu_header,
14378 unsigned int *bytes_read_ptr)
14379{
14380 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14381
14382 return read_indirect_string_at_offset (abfd, str_offset);
14383}
14384
12df843f 14385static ULONGEST
fe1b8b76 14386read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 14387{
12df843f 14388 ULONGEST result;
ce5d95e1 14389 unsigned int num_read;
c906108c
SS
14390 int i, shift;
14391 unsigned char byte;
14392
14393 result = 0;
14394 shift = 0;
14395 num_read = 0;
14396 i = 0;
14397 while (1)
14398 {
fe1b8b76 14399 byte = bfd_get_8 (abfd, buf);
c906108c
SS
14400 buf++;
14401 num_read++;
12df843f 14402 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
14403 if ((byte & 128) == 0)
14404 {
14405 break;
14406 }
14407 shift += 7;
14408 }
14409 *bytes_read_ptr = num_read;
14410 return result;
14411}
14412
12df843f 14413static LONGEST
fe1b8b76 14414read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 14415{
12df843f 14416 LONGEST result;
77e0b926 14417 int i, shift, num_read;
c906108c
SS
14418 unsigned char byte;
14419
14420 result = 0;
14421 shift = 0;
c906108c
SS
14422 num_read = 0;
14423 i = 0;
14424 while (1)
14425 {
fe1b8b76 14426 byte = bfd_get_8 (abfd, buf);
c906108c
SS
14427 buf++;
14428 num_read++;
12df843f 14429 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
14430 shift += 7;
14431 if ((byte & 128) == 0)
14432 {
14433 break;
14434 }
14435 }
77e0b926 14436 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 14437 result |= -(((LONGEST) 1) << shift);
c906108c
SS
14438 *bytes_read_ptr = num_read;
14439 return result;
14440}
14441
3019eac3
DE
14442/* Given index ADDR_INDEX in .debug_addr, fetch the value.
14443 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14444 ADDR_SIZE is the size of addresses from the CU header. */
14445
14446static CORE_ADDR
14447read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14448{
14449 struct objfile *objfile = dwarf2_per_objfile->objfile;
14450 bfd *abfd = objfile->obfd;
14451 const gdb_byte *info_ptr;
14452
14453 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14454 if (dwarf2_per_objfile->addr.buffer == NULL)
14455 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14456 objfile->name);
14457 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14458 error (_("DW_FORM_addr_index pointing outside of "
14459 ".debug_addr section [in module %s]"),
14460 objfile->name);
14461 info_ptr = (dwarf2_per_objfile->addr.buffer
14462 + addr_base + addr_index * addr_size);
14463 if (addr_size == 4)
14464 return bfd_get_32 (abfd, info_ptr);
14465 else
14466 return bfd_get_64 (abfd, info_ptr);
14467}
14468
14469/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14470
14471static CORE_ADDR
14472read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14473{
14474 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14475}
14476
14477/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14478
14479static CORE_ADDR
14480read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14481 unsigned int *bytes_read)
14482{
14483 bfd *abfd = cu->objfile->obfd;
14484 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14485
14486 return read_addr_index (cu, addr_index);
14487}
14488
14489/* Data structure to pass results from dwarf2_read_addr_index_reader
14490 back to dwarf2_read_addr_index. */
14491
14492struct dwarf2_read_addr_index_data
14493{
14494 ULONGEST addr_base;
14495 int addr_size;
14496};
14497
14498/* die_reader_func for dwarf2_read_addr_index. */
14499
14500static void
14501dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14502 gdb_byte *info_ptr,
14503 struct die_info *comp_unit_die,
14504 int has_children,
14505 void *data)
14506{
14507 struct dwarf2_cu *cu = reader->cu;
14508 struct dwarf2_read_addr_index_data *aidata =
14509 (struct dwarf2_read_addr_index_data *) data;
14510
14511 aidata->addr_base = cu->addr_base;
14512 aidata->addr_size = cu->header.addr_size;
14513}
14514
14515/* Given an index in .debug_addr, fetch the value.
14516 NOTE: This can be called during dwarf expression evaluation,
14517 long after the debug information has been read, and thus per_cu->cu
14518 may no longer exist. */
14519
14520CORE_ADDR
14521dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14522 unsigned int addr_index)
14523{
14524 struct objfile *objfile = per_cu->objfile;
14525 struct dwarf2_cu *cu = per_cu->cu;
14526 ULONGEST addr_base;
14527 int addr_size;
14528
14529 /* This is intended to be called from outside this file. */
14530 dw2_setup (objfile);
14531
14532 /* We need addr_base and addr_size.
14533 If we don't have PER_CU->cu, we have to get it.
14534 Nasty, but the alternative is storing the needed info in PER_CU,
14535 which at this point doesn't seem justified: it's not clear how frequently
14536 it would get used and it would increase the size of every PER_CU.
14537 Entry points like dwarf2_per_cu_addr_size do a similar thing
14538 so we're not in uncharted territory here.
14539 Alas we need to be a bit more complicated as addr_base is contained
14540 in the DIE.
14541
14542 We don't need to read the entire CU(/TU).
14543 We just need the header and top level die.
a1b64ce1 14544
3019eac3 14545 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 14546 For now we skip this optimization. */
3019eac3
DE
14547
14548 if (cu != NULL)
14549 {
14550 addr_base = cu->addr_base;
14551 addr_size = cu->header.addr_size;
14552 }
14553 else
14554 {
14555 struct dwarf2_read_addr_index_data aidata;
14556
a1b64ce1
DE
14557 /* Note: We can't use init_cutu_and_read_dies_simple here,
14558 we need addr_base. */
14559 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14560 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
14561 addr_base = aidata.addr_base;
14562 addr_size = aidata.addr_size;
14563 }
14564
14565 return read_addr_index_1 (addr_index, addr_base, addr_size);
14566}
14567
14568/* Given a DW_AT_str_index, fetch the string. */
14569
14570static char *
14571read_str_index (const struct die_reader_specs *reader,
14572 struct dwarf2_cu *cu, ULONGEST str_index)
14573{
14574 struct objfile *objfile = dwarf2_per_objfile->objfile;
14575 const char *dwo_name = objfile->name;
14576 bfd *abfd = objfile->obfd;
14577 struct dwo_sections *sections = &reader->dwo_file->sections;
14578 gdb_byte *info_ptr;
14579 ULONGEST str_offset;
14580
14581 dwarf2_read_section (objfile, &sections->str);
14582 dwarf2_read_section (objfile, &sections->str_offsets);
14583 if (sections->str.buffer == NULL)
14584 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14585 " in CU at offset 0x%lx [in module %s]"),
14586 (long) cu->header.offset.sect_off, dwo_name);
14587 if (sections->str_offsets.buffer == NULL)
14588 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14589 " in CU at offset 0x%lx [in module %s]"),
14590 (long) cu->header.offset.sect_off, dwo_name);
14591 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14592 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14593 " section in CU at offset 0x%lx [in module %s]"),
14594 (long) cu->header.offset.sect_off, dwo_name);
14595 info_ptr = (sections->str_offsets.buffer
14596 + str_index * cu->header.offset_size);
14597 if (cu->header.offset_size == 4)
14598 str_offset = bfd_get_32 (abfd, info_ptr);
14599 else
14600 str_offset = bfd_get_64 (abfd, info_ptr);
14601 if (str_offset >= sections->str.size)
14602 error (_("Offset from DW_FORM_str_index pointing outside of"
14603 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14604 (long) cu->header.offset.sect_off, dwo_name);
14605 return (char *) (sections->str.buffer + str_offset);
14606}
14607
3019eac3
DE
14608/* Return the length of an LEB128 number in BUF. */
14609
14610static int
14611leb128_size (const gdb_byte *buf)
14612{
14613 const gdb_byte *begin = buf;
14614 gdb_byte byte;
14615
14616 while (1)
14617 {
14618 byte = *buf++;
14619 if ((byte & 128) == 0)
14620 return buf - begin;
14621 }
14622}
14623
c906108c 14624static void
e142c38c 14625set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
14626{
14627 switch (lang)
14628 {
14629 case DW_LANG_C89:
76bee0cc 14630 case DW_LANG_C99:
c906108c 14631 case DW_LANG_C:
e142c38c 14632 cu->language = language_c;
c906108c
SS
14633 break;
14634 case DW_LANG_C_plus_plus:
e142c38c 14635 cu->language = language_cplus;
c906108c 14636 break;
6aecb9c2
JB
14637 case DW_LANG_D:
14638 cu->language = language_d;
14639 break;
c906108c
SS
14640 case DW_LANG_Fortran77:
14641 case DW_LANG_Fortran90:
b21b22e0 14642 case DW_LANG_Fortran95:
e142c38c 14643 cu->language = language_fortran;
c906108c 14644 break;
a766d390
DE
14645 case DW_LANG_Go:
14646 cu->language = language_go;
14647 break;
c906108c 14648 case DW_LANG_Mips_Assembler:
e142c38c 14649 cu->language = language_asm;
c906108c 14650 break;
bebd888e 14651 case DW_LANG_Java:
e142c38c 14652 cu->language = language_java;
bebd888e 14653 break;
c906108c 14654 case DW_LANG_Ada83:
8aaf0b47 14655 case DW_LANG_Ada95:
bc5f45f8
JB
14656 cu->language = language_ada;
14657 break;
72019c9c
GM
14658 case DW_LANG_Modula2:
14659 cu->language = language_m2;
14660 break;
fe8e67fd
PM
14661 case DW_LANG_Pascal83:
14662 cu->language = language_pascal;
14663 break;
22566fbd
DJ
14664 case DW_LANG_ObjC:
14665 cu->language = language_objc;
14666 break;
c906108c
SS
14667 case DW_LANG_Cobol74:
14668 case DW_LANG_Cobol85:
c906108c 14669 default:
e142c38c 14670 cu->language = language_minimal;
c906108c
SS
14671 break;
14672 }
e142c38c 14673 cu->language_defn = language_def (cu->language);
c906108c
SS
14674}
14675
14676/* Return the named attribute or NULL if not there. */
14677
14678static struct attribute *
e142c38c 14679dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 14680{
a48e046c 14681 for (;;)
c906108c 14682 {
a48e046c
TT
14683 unsigned int i;
14684 struct attribute *spec = NULL;
14685
14686 for (i = 0; i < die->num_attrs; ++i)
14687 {
14688 if (die->attrs[i].name == name)
14689 return &die->attrs[i];
14690 if (die->attrs[i].name == DW_AT_specification
14691 || die->attrs[i].name == DW_AT_abstract_origin)
14692 spec = &die->attrs[i];
14693 }
14694
14695 if (!spec)
14696 break;
c906108c 14697
f2f0e013 14698 die = follow_die_ref (die, spec, &cu);
f2f0e013 14699 }
c5aa993b 14700
c906108c
SS
14701 return NULL;
14702}
14703
348e048f
DE
14704/* Return the named attribute or NULL if not there,
14705 but do not follow DW_AT_specification, etc.
14706 This is for use in contexts where we're reading .debug_types dies.
14707 Following DW_AT_specification, DW_AT_abstract_origin will take us
14708 back up the chain, and we want to go down. */
14709
14710static struct attribute *
45e58e77 14711dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
14712{
14713 unsigned int i;
14714
14715 for (i = 0; i < die->num_attrs; ++i)
14716 if (die->attrs[i].name == name)
14717 return &die->attrs[i];
14718
14719 return NULL;
14720}
14721
05cf31d1
JB
14722/* Return non-zero iff the attribute NAME is defined for the given DIE,
14723 and holds a non-zero value. This function should only be used for
2dc7f7b3 14724 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
14725
14726static int
14727dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14728{
14729 struct attribute *attr = dwarf2_attr (die, name, cu);
14730
14731 return (attr && DW_UNSND (attr));
14732}
14733
3ca72b44 14734static int
e142c38c 14735die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 14736{
05cf31d1
JB
14737 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14738 which value is non-zero. However, we have to be careful with
14739 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14740 (via dwarf2_flag_true_p) follows this attribute. So we may
14741 end up accidently finding a declaration attribute that belongs
14742 to a different DIE referenced by the specification attribute,
14743 even though the given DIE does not have a declaration attribute. */
14744 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14745 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
14746}
14747
63d06c5c 14748/* Return the die giving the specification for DIE, if there is
f2f0e013 14749 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
14750 containing the return value on output. If there is no
14751 specification, but there is an abstract origin, that is
14752 returned. */
63d06c5c
DC
14753
14754static struct die_info *
f2f0e013 14755die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 14756{
f2f0e013
DJ
14757 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14758 *spec_cu);
63d06c5c 14759
edb3359d
DJ
14760 if (spec_attr == NULL)
14761 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14762
63d06c5c
DC
14763 if (spec_attr == NULL)
14764 return NULL;
14765 else
f2f0e013 14766 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 14767}
c906108c 14768
debd256d 14769/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
14770 refers to.
14771 NOTE: This is also used as a "cleanup" function. */
14772
debd256d
JB
14773static void
14774free_line_header (struct line_header *lh)
14775{
14776 if (lh->standard_opcode_lengths)
a8bc7b56 14777 xfree (lh->standard_opcode_lengths);
debd256d
JB
14778
14779 /* Remember that all the lh->file_names[i].name pointers are
14780 pointers into debug_line_buffer, and don't need to be freed. */
14781 if (lh->file_names)
a8bc7b56 14782 xfree (lh->file_names);
debd256d
JB
14783
14784 /* Similarly for the include directory names. */
14785 if (lh->include_dirs)
a8bc7b56 14786 xfree (lh->include_dirs);
debd256d 14787
a8bc7b56 14788 xfree (lh);
debd256d
JB
14789}
14790
debd256d 14791/* Add an entry to LH's include directory table. */
ae2de4f8 14792
debd256d
JB
14793static void
14794add_include_dir (struct line_header *lh, char *include_dir)
c906108c 14795{
debd256d
JB
14796 /* Grow the array if necessary. */
14797 if (lh->include_dirs_size == 0)
c5aa993b 14798 {
debd256d
JB
14799 lh->include_dirs_size = 1; /* for testing */
14800 lh->include_dirs = xmalloc (lh->include_dirs_size
14801 * sizeof (*lh->include_dirs));
14802 }
14803 else if (lh->num_include_dirs >= lh->include_dirs_size)
14804 {
14805 lh->include_dirs_size *= 2;
14806 lh->include_dirs = xrealloc (lh->include_dirs,
14807 (lh->include_dirs_size
14808 * sizeof (*lh->include_dirs)));
c5aa993b 14809 }
c906108c 14810
debd256d
JB
14811 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14812}
6e70227d 14813
debd256d 14814/* Add an entry to LH's file name table. */
ae2de4f8 14815
debd256d
JB
14816static void
14817add_file_name (struct line_header *lh,
14818 char *name,
14819 unsigned int dir_index,
14820 unsigned int mod_time,
14821 unsigned int length)
14822{
14823 struct file_entry *fe;
14824
14825 /* Grow the array if necessary. */
14826 if (lh->file_names_size == 0)
14827 {
14828 lh->file_names_size = 1; /* for testing */
14829 lh->file_names = xmalloc (lh->file_names_size
14830 * sizeof (*lh->file_names));
14831 }
14832 else if (lh->num_file_names >= lh->file_names_size)
14833 {
14834 lh->file_names_size *= 2;
14835 lh->file_names = xrealloc (lh->file_names,
14836 (lh->file_names_size
14837 * sizeof (*lh->file_names)));
14838 }
14839
14840 fe = &lh->file_names[lh->num_file_names++];
14841 fe->name = name;
14842 fe->dir_index = dir_index;
14843 fe->mod_time = mod_time;
14844 fe->length = length;
aaa75496 14845 fe->included_p = 0;
cb1df416 14846 fe->symtab = NULL;
debd256d 14847}
6e70227d 14848
36586728
TT
14849/* A convenience function to find the proper .debug_line section for a
14850 CU. */
14851
14852static struct dwarf2_section_info *
14853get_debug_line_section (struct dwarf2_cu *cu)
14854{
14855 struct dwarf2_section_info *section;
14856
14857 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14858 DWO file. */
14859 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14860 section = &cu->dwo_unit->dwo_file->sections.line;
14861 else if (cu->per_cu->is_dwz)
14862 {
14863 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14864
14865 section = &dwz->line;
14866 }
14867 else
14868 section = &dwarf2_per_objfile->line;
14869
14870 return section;
14871}
14872
debd256d 14873/* Read the statement program header starting at OFFSET in
3019eac3 14874 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 14875 to a struct line_header, allocated using xmalloc.
debd256d
JB
14876
14877 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
14878 the returned object point into the dwarf line section buffer,
14879 and must not be freed. */
ae2de4f8 14880
debd256d 14881static struct line_header *
3019eac3 14882dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
14883{
14884 struct cleanup *back_to;
14885 struct line_header *lh;
fe1b8b76 14886 gdb_byte *line_ptr;
c764a876 14887 unsigned int bytes_read, offset_size;
debd256d
JB
14888 int i;
14889 char *cur_dir, *cur_file;
3019eac3
DE
14890 struct dwarf2_section_info *section;
14891 bfd *abfd;
14892
36586728 14893 section = get_debug_line_section (cu);
3019eac3
DE
14894 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14895 if (section->buffer == NULL)
debd256d 14896 {
3019eac3
DE
14897 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14898 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14899 else
14900 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
14901 return 0;
14902 }
14903
fceca515
DE
14904 /* We can't do this until we know the section is non-empty.
14905 Only then do we know we have such a section. */
14906 abfd = section->asection->owner;
14907
a738430d
MK
14908 /* Make sure that at least there's room for the total_length field.
14909 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 14910 if (offset + 4 >= section->size)
debd256d 14911 {
4d3c2250 14912 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
14913 return 0;
14914 }
14915
14916 lh = xmalloc (sizeof (*lh));
14917 memset (lh, 0, sizeof (*lh));
14918 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14919 (void *) lh);
14920
3019eac3 14921 line_ptr = section->buffer + offset;
debd256d 14922
a738430d 14923 /* Read in the header. */
6e70227d 14924 lh->total_length =
c764a876
DE
14925 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14926 &bytes_read, &offset_size);
debd256d 14927 line_ptr += bytes_read;
3019eac3 14928 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 14929 {
4d3c2250 14930 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
14931 return 0;
14932 }
14933 lh->statement_program_end = line_ptr + lh->total_length;
14934 lh->version = read_2_bytes (abfd, line_ptr);
14935 line_ptr += 2;
c764a876
DE
14936 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14937 line_ptr += offset_size;
debd256d
JB
14938 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14939 line_ptr += 1;
2dc7f7b3
TT
14940 if (lh->version >= 4)
14941 {
14942 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14943 line_ptr += 1;
14944 }
14945 else
14946 lh->maximum_ops_per_instruction = 1;
14947
14948 if (lh->maximum_ops_per_instruction == 0)
14949 {
14950 lh->maximum_ops_per_instruction = 1;
14951 complaint (&symfile_complaints,
3e43a32a
MS
14952 _("invalid maximum_ops_per_instruction "
14953 "in `.debug_line' section"));
2dc7f7b3
TT
14954 }
14955
debd256d
JB
14956 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14957 line_ptr += 1;
14958 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14959 line_ptr += 1;
14960 lh->line_range = read_1_byte (abfd, line_ptr);
14961 line_ptr += 1;
14962 lh->opcode_base = read_1_byte (abfd, line_ptr);
14963 line_ptr += 1;
14964 lh->standard_opcode_lengths
fe1b8b76 14965 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
14966
14967 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14968 for (i = 1; i < lh->opcode_base; ++i)
14969 {
14970 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14971 line_ptr += 1;
14972 }
14973
a738430d 14974 /* Read directory table. */
9b1c24c8 14975 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
14976 {
14977 line_ptr += bytes_read;
14978 add_include_dir (lh, cur_dir);
14979 }
14980 line_ptr += bytes_read;
14981
a738430d 14982 /* Read file name table. */
9b1c24c8 14983 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
14984 {
14985 unsigned int dir_index, mod_time, length;
14986
14987 line_ptr += bytes_read;
14988 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14989 line_ptr += bytes_read;
14990 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14991 line_ptr += bytes_read;
14992 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14993 line_ptr += bytes_read;
14994
14995 add_file_name (lh, cur_file, dir_index, mod_time, length);
14996 }
14997 line_ptr += bytes_read;
6e70227d 14998 lh->statement_program_start = line_ptr;
debd256d 14999
3019eac3 15000 if (line_ptr > (section->buffer + section->size))
4d3c2250 15001 complaint (&symfile_complaints,
3e43a32a
MS
15002 _("line number info header doesn't "
15003 "fit in `.debug_line' section"));
debd256d
JB
15004
15005 discard_cleanups (back_to);
15006 return lh;
15007}
c906108c 15008
c6da4cef
DE
15009/* Subroutine of dwarf_decode_lines to simplify it.
15010 Return the file name of the psymtab for included file FILE_INDEX
15011 in line header LH of PST.
15012 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15013 If space for the result is malloc'd, it will be freed by a cleanup.
15014 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15015
15016static char *
15017psymtab_include_file_name (const struct line_header *lh, int file_index,
15018 const struct partial_symtab *pst,
15019 const char *comp_dir)
15020{
15021 const struct file_entry fe = lh->file_names [file_index];
15022 char *include_name = fe.name;
15023 char *include_name_to_compare = include_name;
15024 char *dir_name = NULL;
72b9f47f
TT
15025 const char *pst_filename;
15026 char *copied_name = NULL;
c6da4cef
DE
15027 int file_is_pst;
15028
15029 if (fe.dir_index)
15030 dir_name = lh->include_dirs[fe.dir_index - 1];
15031
15032 if (!IS_ABSOLUTE_PATH (include_name)
15033 && (dir_name != NULL || comp_dir != NULL))
15034 {
15035 /* Avoid creating a duplicate psymtab for PST.
15036 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15037 Before we do the comparison, however, we need to account
15038 for DIR_NAME and COMP_DIR.
15039 First prepend dir_name (if non-NULL). If we still don't
15040 have an absolute path prepend comp_dir (if non-NULL).
15041 However, the directory we record in the include-file's
15042 psymtab does not contain COMP_DIR (to match the
15043 corresponding symtab(s)).
15044
15045 Example:
15046
15047 bash$ cd /tmp
15048 bash$ gcc -g ./hello.c
15049 include_name = "hello.c"
15050 dir_name = "."
15051 DW_AT_comp_dir = comp_dir = "/tmp"
15052 DW_AT_name = "./hello.c" */
15053
15054 if (dir_name != NULL)
15055 {
15056 include_name = concat (dir_name, SLASH_STRING,
15057 include_name, (char *)NULL);
15058 include_name_to_compare = include_name;
15059 make_cleanup (xfree, include_name);
15060 }
15061 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15062 {
15063 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15064 include_name, (char *)NULL);
15065 }
15066 }
15067
15068 pst_filename = pst->filename;
15069 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15070 {
72b9f47f
TT
15071 copied_name = concat (pst->dirname, SLASH_STRING,
15072 pst_filename, (char *)NULL);
15073 pst_filename = copied_name;
c6da4cef
DE
15074 }
15075
1e3fad37 15076 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
15077
15078 if (include_name_to_compare != include_name)
15079 xfree (include_name_to_compare);
72b9f47f
TT
15080 if (copied_name != NULL)
15081 xfree (copied_name);
c6da4cef
DE
15082
15083 if (file_is_pst)
15084 return NULL;
15085 return include_name;
15086}
15087
c91513d8
PP
15088/* Ignore this record_line request. */
15089
15090static void
15091noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15092{
15093 return;
15094}
15095
f3f5162e
DE
15096/* Subroutine of dwarf_decode_lines to simplify it.
15097 Process the line number information in LH. */
debd256d 15098
c906108c 15099static void
f3f5162e
DE
15100dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15101 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15102{
a8c50c1f 15103 gdb_byte *line_ptr, *extended_end;
fe1b8b76 15104 gdb_byte *line_end;
a8c50c1f 15105 unsigned int bytes_read, extended_len;
c906108c 15106 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15107 CORE_ADDR baseaddr;
15108 struct objfile *objfile = cu->objfile;
f3f5162e 15109 bfd *abfd = objfile->obfd;
fbf65064 15110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15111 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15112 struct subfile *last_subfile = NULL;
c91513d8
PP
15113 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15114 = record_line;
e142c38c
DJ
15115
15116 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15117
debd256d
JB
15118 line_ptr = lh->statement_program_start;
15119 line_end = lh->statement_program_end;
c906108c
SS
15120
15121 /* Read the statement sequences until there's nothing left. */
15122 while (line_ptr < line_end)
15123 {
15124 /* state machine registers */
15125 CORE_ADDR address = 0;
15126 unsigned int file = 1;
15127 unsigned int line = 1;
15128 unsigned int column = 0;
debd256d 15129 int is_stmt = lh->default_is_stmt;
c906108c
SS
15130 int basic_block = 0;
15131 int end_sequence = 0;
fbf65064 15132 CORE_ADDR addr;
2dc7f7b3 15133 unsigned char op_index = 0;
c906108c 15134
aaa75496 15135 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15136 {
aaa75496 15137 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15138 /* lh->include_dirs and lh->file_names are 0-based, but the
15139 directory and file name numbers in the statement program
15140 are 1-based. */
15141 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 15142 char *dir = NULL;
a738430d 15143
debd256d
JB
15144 if (fe->dir_index)
15145 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15146
15147 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15148 }
15149
a738430d 15150 /* Decode the table. */
c5aa993b 15151 while (!end_sequence)
c906108c
SS
15152 {
15153 op_code = read_1_byte (abfd, line_ptr);
15154 line_ptr += 1;
59205f5a
JB
15155 if (line_ptr > line_end)
15156 {
15157 dwarf2_debug_line_missing_end_sequence_complaint ();
15158 break;
15159 }
9aa1fe7e 15160
debd256d 15161 if (op_code >= lh->opcode_base)
6e70227d 15162 {
a738430d 15163 /* Special operand. */
debd256d 15164 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15165 address += (((op_index + (adj_opcode / lh->line_range))
15166 / lh->maximum_ops_per_instruction)
15167 * lh->minimum_instruction_length);
15168 op_index = ((op_index + (adj_opcode / lh->line_range))
15169 % lh->maximum_ops_per_instruction);
debd256d 15170 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15171 if (lh->num_file_names < file || file == 0)
25e43795 15172 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15173 /* For now we ignore lines not starting on an
15174 instruction boundary. */
15175 else if (op_index == 0)
25e43795
DJ
15176 {
15177 lh->file_names[file - 1].included_p = 1;
ca5f395d 15178 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15179 {
15180 if (last_subfile != current_subfile)
15181 {
15182 addr = gdbarch_addr_bits_remove (gdbarch, address);
15183 if (last_subfile)
c91513d8 15184 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15185 last_subfile = current_subfile;
15186 }
25e43795 15187 /* Append row to matrix using current values. */
7019d805 15188 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15189 (*p_record_line) (current_subfile, line, addr);
366da635 15190 }
25e43795 15191 }
ca5f395d 15192 basic_block = 0;
9aa1fe7e
GK
15193 }
15194 else switch (op_code)
c906108c
SS
15195 {
15196 case DW_LNS_extended_op:
3e43a32a
MS
15197 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15198 &bytes_read);
473b7be6 15199 line_ptr += bytes_read;
a8c50c1f 15200 extended_end = line_ptr + extended_len;
c906108c
SS
15201 extended_op = read_1_byte (abfd, line_ptr);
15202 line_ptr += 1;
15203 switch (extended_op)
15204 {
15205 case DW_LNE_end_sequence:
c91513d8 15206 p_record_line = record_line;
c906108c 15207 end_sequence = 1;
c906108c
SS
15208 break;
15209 case DW_LNE_set_address:
e7c27a73 15210 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
15211
15212 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15213 {
15214 /* This line table is for a function which has been
15215 GCd by the linker. Ignore it. PR gdb/12528 */
15216
15217 long line_offset
36586728 15218 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
15219
15220 complaint (&symfile_complaints,
15221 _(".debug_line address at offset 0x%lx is 0 "
15222 "[in module %s]"),
bb5ed363 15223 line_offset, objfile->name);
c91513d8
PP
15224 p_record_line = noop_record_line;
15225 }
15226
2dc7f7b3 15227 op_index = 0;
107d2387
AC
15228 line_ptr += bytes_read;
15229 address += baseaddr;
c906108c
SS
15230 break;
15231 case DW_LNE_define_file:
debd256d
JB
15232 {
15233 char *cur_file;
15234 unsigned int dir_index, mod_time, length;
6e70227d 15235
3e43a32a
MS
15236 cur_file = read_direct_string (abfd, line_ptr,
15237 &bytes_read);
debd256d
JB
15238 line_ptr += bytes_read;
15239 dir_index =
15240 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15241 line_ptr += bytes_read;
15242 mod_time =
15243 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15244 line_ptr += bytes_read;
15245 length =
15246 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15247 line_ptr += bytes_read;
15248 add_file_name (lh, cur_file, dir_index, mod_time, length);
15249 }
c906108c 15250 break;
d0c6ba3d
CC
15251 case DW_LNE_set_discriminator:
15252 /* The discriminator is not interesting to the debugger;
15253 just ignore it. */
15254 line_ptr = extended_end;
15255 break;
c906108c 15256 default:
4d3c2250 15257 complaint (&symfile_complaints,
e2e0b3e5 15258 _("mangled .debug_line section"));
debd256d 15259 return;
c906108c 15260 }
a8c50c1f
DJ
15261 /* Make sure that we parsed the extended op correctly. If e.g.
15262 we expected a different address size than the producer used,
15263 we may have read the wrong number of bytes. */
15264 if (line_ptr != extended_end)
15265 {
15266 complaint (&symfile_complaints,
15267 _("mangled .debug_line section"));
15268 return;
15269 }
c906108c
SS
15270 break;
15271 case DW_LNS_copy:
59205f5a 15272 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15273 dwarf2_debug_line_missing_file_complaint ();
15274 else
366da635 15275 {
25e43795 15276 lh->file_names[file - 1].included_p = 1;
ca5f395d 15277 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15278 {
15279 if (last_subfile != current_subfile)
15280 {
15281 addr = gdbarch_addr_bits_remove (gdbarch, address);
15282 if (last_subfile)
c91513d8 15283 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15284 last_subfile = current_subfile;
15285 }
7019d805 15286 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15287 (*p_record_line) (current_subfile, line, addr);
fbf65064 15288 }
366da635 15289 }
c906108c
SS
15290 basic_block = 0;
15291 break;
15292 case DW_LNS_advance_pc:
2dc7f7b3
TT
15293 {
15294 CORE_ADDR adjust
15295 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15296
15297 address += (((op_index + adjust)
15298 / lh->maximum_ops_per_instruction)
15299 * lh->minimum_instruction_length);
15300 op_index = ((op_index + adjust)
15301 % lh->maximum_ops_per_instruction);
15302 line_ptr += bytes_read;
15303 }
c906108c
SS
15304 break;
15305 case DW_LNS_advance_line:
15306 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15307 line_ptr += bytes_read;
15308 break;
15309 case DW_LNS_set_file:
debd256d 15310 {
a738430d
MK
15311 /* The arrays lh->include_dirs and lh->file_names are
15312 0-based, but the directory and file name numbers in
15313 the statement program are 1-based. */
debd256d 15314 struct file_entry *fe;
4f1520fb 15315 char *dir = NULL;
a738430d 15316
debd256d
JB
15317 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15318 line_ptr += bytes_read;
59205f5a 15319 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15320 dwarf2_debug_line_missing_file_complaint ();
15321 else
15322 {
15323 fe = &lh->file_names[file - 1];
15324 if (fe->dir_index)
15325 dir = lh->include_dirs[fe->dir_index - 1];
15326 if (!decode_for_pst_p)
15327 {
15328 last_subfile = current_subfile;
15329 dwarf2_start_subfile (fe->name, dir, comp_dir);
15330 }
15331 }
debd256d 15332 }
c906108c
SS
15333 break;
15334 case DW_LNS_set_column:
15335 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15336 line_ptr += bytes_read;
15337 break;
15338 case DW_LNS_negate_stmt:
15339 is_stmt = (!is_stmt);
15340 break;
15341 case DW_LNS_set_basic_block:
15342 basic_block = 1;
15343 break;
c2c6d25f
JM
15344 /* Add to the address register of the state machine the
15345 address increment value corresponding to special opcode
a738430d
MK
15346 255. I.e., this value is scaled by the minimum
15347 instruction length since special opcode 255 would have
b021a221 15348 scaled the increment. */
c906108c 15349 case DW_LNS_const_add_pc:
2dc7f7b3
TT
15350 {
15351 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15352
15353 address += (((op_index + adjust)
15354 / lh->maximum_ops_per_instruction)
15355 * lh->minimum_instruction_length);
15356 op_index = ((op_index + adjust)
15357 % lh->maximum_ops_per_instruction);
15358 }
c906108c
SS
15359 break;
15360 case DW_LNS_fixed_advance_pc:
15361 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 15362 op_index = 0;
c906108c
SS
15363 line_ptr += 2;
15364 break;
9aa1fe7e 15365 default:
a738430d
MK
15366 {
15367 /* Unknown standard opcode, ignore it. */
9aa1fe7e 15368 int i;
a738430d 15369
debd256d 15370 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
15371 {
15372 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15373 line_ptr += bytes_read;
15374 }
15375 }
c906108c
SS
15376 }
15377 }
59205f5a
JB
15378 if (lh->num_file_names < file || file == 0)
15379 dwarf2_debug_line_missing_file_complaint ();
15380 else
15381 {
15382 lh->file_names[file - 1].included_p = 1;
15383 if (!decode_for_pst_p)
fbf65064
UW
15384 {
15385 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15386 (*p_record_line) (current_subfile, 0, addr);
fbf65064 15387 }
59205f5a 15388 }
c906108c 15389 }
f3f5162e
DE
15390}
15391
15392/* Decode the Line Number Program (LNP) for the given line_header
15393 structure and CU. The actual information extracted and the type
15394 of structures created from the LNP depends on the value of PST.
15395
15396 1. If PST is NULL, then this procedure uses the data from the program
15397 to create all necessary symbol tables, and their linetables.
15398
15399 2. If PST is not NULL, this procedure reads the program to determine
15400 the list of files included by the unit represented by PST, and
15401 builds all the associated partial symbol tables.
15402
15403 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15404 It is used for relative paths in the line table.
15405 NOTE: When processing partial symtabs (pst != NULL),
15406 comp_dir == pst->dirname.
15407
15408 NOTE: It is important that psymtabs have the same file name (via strcmp)
15409 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15410 symtab we don't use it in the name of the psymtabs we create.
15411 E.g. expand_line_sal requires this when finding psymtabs to expand.
15412 A good testcase for this is mb-inline.exp. */
15413
15414static void
15415dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15416 struct dwarf2_cu *cu, struct partial_symtab *pst,
15417 int want_line_info)
15418{
15419 struct objfile *objfile = cu->objfile;
15420 const int decode_for_pst_p = (pst != NULL);
15421 struct subfile *first_subfile = current_subfile;
15422
15423 if (want_line_info)
15424 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
15425
15426 if (decode_for_pst_p)
15427 {
15428 int file_index;
15429
15430 /* Now that we're done scanning the Line Header Program, we can
15431 create the psymtab of each included file. */
15432 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15433 if (lh->file_names[file_index].included_p == 1)
15434 {
c6da4cef
DE
15435 char *include_name =
15436 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15437 if (include_name != NULL)
aaa75496
JB
15438 dwarf2_create_include_psymtab (include_name, pst, objfile);
15439 }
15440 }
cb1df416
DJ
15441 else
15442 {
15443 /* Make sure a symtab is created for every file, even files
15444 which contain only variables (i.e. no code with associated
15445 line numbers). */
cb1df416 15446 int i;
cb1df416
DJ
15447
15448 for (i = 0; i < lh->num_file_names; i++)
15449 {
15450 char *dir = NULL;
f3f5162e 15451 struct file_entry *fe;
9a619af0 15452
cb1df416
DJ
15453 fe = &lh->file_names[i];
15454 if (fe->dir_index)
15455 dir = lh->include_dirs[fe->dir_index - 1];
15456 dwarf2_start_subfile (fe->name, dir, comp_dir);
15457
15458 /* Skip the main file; we don't need it, and it must be
15459 allocated last, so that it will show up before the
15460 non-primary symtabs in the objfile's symtab list. */
15461 if (current_subfile == first_subfile)
15462 continue;
15463
15464 if (current_subfile->symtab == NULL)
15465 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 15466 objfile);
cb1df416
DJ
15467 fe->symtab = current_subfile->symtab;
15468 }
15469 }
c906108c
SS
15470}
15471
15472/* Start a subfile for DWARF. FILENAME is the name of the file and
15473 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
15474 or NULL if not known. COMP_DIR is the compilation directory for the
15475 linetable's compilation unit or NULL if not known.
c906108c
SS
15476 This routine tries to keep line numbers from identical absolute and
15477 relative file names in a common subfile.
15478
15479 Using the `list' example from the GDB testsuite, which resides in
15480 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15481 of /srcdir/list0.c yields the following debugging information for list0.c:
15482
c5aa993b
JM
15483 DW_AT_name: /srcdir/list0.c
15484 DW_AT_comp_dir: /compdir
357e46e7 15485 files.files[0].name: list0.h
c5aa993b 15486 files.files[0].dir: /srcdir
357e46e7 15487 files.files[1].name: list0.c
c5aa993b 15488 files.files[1].dir: /srcdir
c906108c
SS
15489
15490 The line number information for list0.c has to end up in a single
4f1520fb
FR
15491 subfile, so that `break /srcdir/list0.c:1' works as expected.
15492 start_subfile will ensure that this happens provided that we pass the
15493 concatenation of files.files[1].dir and files.files[1].name as the
15494 subfile's name. */
c906108c
SS
15495
15496static void
3e43a32a
MS
15497dwarf2_start_subfile (char *filename, const char *dirname,
15498 const char *comp_dir)
c906108c 15499{
4f1520fb
FR
15500 char *fullname;
15501
15502 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15503 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15504 second argument to start_subfile. To be consistent, we do the
15505 same here. In order not to lose the line information directory,
15506 we concatenate it to the filename when it makes sense.
15507 Note that the Dwarf3 standard says (speaking of filenames in line
15508 information): ``The directory index is ignored for file names
15509 that represent full path names''. Thus ignoring dirname in the
15510 `else' branch below isn't an issue. */
c906108c 15511
d5166ae1 15512 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
15513 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15514 else
15515 fullname = filename;
c906108c 15516
4f1520fb
FR
15517 start_subfile (fullname, comp_dir);
15518
15519 if (fullname != filename)
15520 xfree (fullname);
c906108c
SS
15521}
15522
f4dc4d17
DE
15523/* Start a symtab for DWARF.
15524 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15525
15526static void
15527dwarf2_start_symtab (struct dwarf2_cu *cu,
15528 char *name, char *comp_dir, CORE_ADDR low_pc)
15529{
15530 start_symtab (name, comp_dir, low_pc);
15531 record_debugformat ("DWARF 2");
15532 record_producer (cu->producer);
15533
15534 /* We assume that we're processing GCC output. */
15535 processing_gcc_compilation = 2;
15536
15537 processing_has_namespace_info = 0;
15538}
15539
4c2df51b
DJ
15540static void
15541var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 15542 struct dwarf2_cu *cu)
4c2df51b 15543{
e7c27a73
DJ
15544 struct objfile *objfile = cu->objfile;
15545 struct comp_unit_head *cu_header = &cu->header;
15546
4c2df51b
DJ
15547 /* NOTE drow/2003-01-30: There used to be a comment and some special
15548 code here to turn a symbol with DW_AT_external and a
15549 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15550 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15551 with some versions of binutils) where shared libraries could have
15552 relocations against symbols in their debug information - the
15553 minimal symbol would have the right address, but the debug info
15554 would not. It's no longer necessary, because we will explicitly
15555 apply relocations when we read in the debug information now. */
15556
15557 /* A DW_AT_location attribute with no contents indicates that a
15558 variable has been optimized away. */
15559 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15560 {
15561 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15562 return;
15563 }
15564
15565 /* Handle one degenerate form of location expression specially, to
15566 preserve GDB's previous behavior when section offsets are
3019eac3
DE
15567 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15568 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
15569
15570 if (attr_form_is_block (attr)
3019eac3
DE
15571 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15572 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15573 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15574 && (DW_BLOCK (attr)->size
15575 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 15576 {
891d2f0b 15577 unsigned int dummy;
4c2df51b 15578
3019eac3
DE
15579 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15580 SYMBOL_VALUE_ADDRESS (sym) =
15581 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15582 else
15583 SYMBOL_VALUE_ADDRESS (sym) =
15584 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
907fc202 15585 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
15586 fixup_symbol_section (sym, objfile);
15587 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15588 SYMBOL_SECTION (sym));
4c2df51b
DJ
15589 return;
15590 }
15591
15592 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15593 expression evaluator, and use LOC_COMPUTED only when necessary
15594 (i.e. when the value of a register or memory location is
15595 referenced, or a thread-local block, etc.). Then again, it might
15596 not be worthwhile. I'm assuming that it isn't unless performance
15597 or memory numbers show me otherwise. */
15598
e7c27a73 15599 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b 15600 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8be455d7
JK
15601
15602 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15603 cu->has_loclist = 1;
4c2df51b
DJ
15604}
15605
c906108c
SS
15606/* Given a pointer to a DWARF information entry, figure out if we need
15607 to make a symbol table entry for it, and if so, create a new entry
15608 and return a pointer to it.
15609 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
15610 used the passed type.
15611 If SPACE is not NULL, use it to hold the new symbol. If it is
15612 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
15613
15614static struct symbol *
34eaf542
TT
15615new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15616 struct symbol *space)
c906108c 15617{
e7c27a73 15618 struct objfile *objfile = cu->objfile;
c906108c
SS
15619 struct symbol *sym = NULL;
15620 char *name;
15621 struct attribute *attr = NULL;
15622 struct attribute *attr2 = NULL;
e142c38c 15623 CORE_ADDR baseaddr;
e37fd15a
SW
15624 struct pending **list_to_add = NULL;
15625
edb3359d 15626 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
15627
15628 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15629
94af9270 15630 name = dwarf2_name (die, cu);
c906108c
SS
15631 if (name)
15632 {
94af9270 15633 const char *linkagename;
34eaf542 15634 int suppress_add = 0;
94af9270 15635
34eaf542
TT
15636 if (space)
15637 sym = space;
15638 else
15639 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 15640 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
15641
15642 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 15643 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
15644 linkagename = dwarf2_physname (name, die, cu);
15645 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 15646
f55ee35c
JK
15647 /* Fortran does not have mangling standard and the mangling does differ
15648 between gfortran, iFort etc. */
15649 if (cu->language == language_fortran
b250c185 15650 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
15651 symbol_set_demangled_name (&(sym->ginfo),
15652 (char *) dwarf2_full_name (name, die, cu),
15653 NULL);
f55ee35c 15654
c906108c 15655 /* Default assumptions.
c5aa993b 15656 Use the passed type or decode it from the die. */
176620f1 15657 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 15658 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
15659 if (type != NULL)
15660 SYMBOL_TYPE (sym) = type;
15661 else
e7c27a73 15662 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
15663 attr = dwarf2_attr (die,
15664 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15665 cu);
c906108c
SS
15666 if (attr)
15667 {
15668 SYMBOL_LINE (sym) = DW_UNSND (attr);
15669 }
cb1df416 15670
edb3359d
DJ
15671 attr = dwarf2_attr (die,
15672 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15673 cu);
cb1df416
DJ
15674 if (attr)
15675 {
15676 int file_index = DW_UNSND (attr);
9a619af0 15677
cb1df416
DJ
15678 if (cu->line_header == NULL
15679 || file_index > cu->line_header->num_file_names)
15680 complaint (&symfile_complaints,
15681 _("file index out of range"));
1c3d648d 15682 else if (file_index > 0)
cb1df416
DJ
15683 {
15684 struct file_entry *fe;
9a619af0 15685
cb1df416
DJ
15686 fe = &cu->line_header->file_names[file_index - 1];
15687 SYMBOL_SYMTAB (sym) = fe->symtab;
15688 }
15689 }
15690
c906108c
SS
15691 switch (die->tag)
15692 {
15693 case DW_TAG_label:
e142c38c 15694 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
15695 if (attr)
15696 {
15697 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15698 }
0f5238ed
TT
15699 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15700 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 15701 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 15702 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
15703 break;
15704 case DW_TAG_subprogram:
15705 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15706 finish_block. */
15707 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 15708 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
15709 if ((attr2 && (DW_UNSND (attr2) != 0))
15710 || cu->language == language_ada)
c906108c 15711 {
2cfa0c8d
JB
15712 /* Subprograms marked external are stored as a global symbol.
15713 Ada subprograms, whether marked external or not, are always
15714 stored as a global symbol, because we want to be able to
15715 access them globally. For instance, we want to be able
15716 to break on a nested subprogram without having to
15717 specify the context. */
e37fd15a 15718 list_to_add = &global_symbols;
c906108c
SS
15719 }
15720 else
15721 {
e37fd15a 15722 list_to_add = cu->list_in_scope;
c906108c
SS
15723 }
15724 break;
edb3359d
DJ
15725 case DW_TAG_inlined_subroutine:
15726 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15727 finish_block. */
15728 SYMBOL_CLASS (sym) = LOC_BLOCK;
15729 SYMBOL_INLINED (sym) = 1;
481860b3 15730 list_to_add = cu->list_in_scope;
edb3359d 15731 break;
34eaf542
TT
15732 case DW_TAG_template_value_param:
15733 suppress_add = 1;
15734 /* Fall through. */
72929c62 15735 case DW_TAG_constant:
c906108c 15736 case DW_TAG_variable:
254e6b9e 15737 case DW_TAG_member:
0963b4bd
MS
15738 /* Compilation with minimal debug info may result in
15739 variables with missing type entries. Change the
15740 misleading `void' type to something sensible. */
c906108c 15741 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 15742 SYMBOL_TYPE (sym)
46bf5051 15743 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 15744
e142c38c 15745 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
15746 /* In the case of DW_TAG_member, we should only be called for
15747 static const members. */
15748 if (die->tag == DW_TAG_member)
15749 {
3863f96c
DE
15750 /* dwarf2_add_field uses die_is_declaration,
15751 so we do the same. */
254e6b9e
DE
15752 gdb_assert (die_is_declaration (die, cu));
15753 gdb_assert (attr);
15754 }
c906108c
SS
15755 if (attr)
15756 {
e7c27a73 15757 dwarf2_const_value (attr, sym, cu);
e142c38c 15758 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 15759 if (!suppress_add)
34eaf542
TT
15760 {
15761 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 15762 list_to_add = &global_symbols;
34eaf542 15763 else
e37fd15a 15764 list_to_add = cu->list_in_scope;
34eaf542 15765 }
c906108c
SS
15766 break;
15767 }
e142c38c 15768 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
15769 if (attr)
15770 {
e7c27a73 15771 var_decode_location (attr, sym, cu);
e142c38c 15772 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
15773
15774 /* Fortran explicitly imports any global symbols to the local
15775 scope by DW_TAG_common_block. */
15776 if (cu->language == language_fortran && die->parent
15777 && die->parent->tag == DW_TAG_common_block)
15778 attr2 = NULL;
15779
caac4577
JG
15780 if (SYMBOL_CLASS (sym) == LOC_STATIC
15781 && SYMBOL_VALUE_ADDRESS (sym) == 0
15782 && !dwarf2_per_objfile->has_section_at_zero)
15783 {
15784 /* When a static variable is eliminated by the linker,
15785 the corresponding debug information is not stripped
15786 out, but the variable address is set to null;
15787 do not add such variables into symbol table. */
15788 }
15789 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 15790 {
f55ee35c
JK
15791 /* Workaround gfortran PR debug/40040 - it uses
15792 DW_AT_location for variables in -fPIC libraries which may
15793 get overriden by other libraries/executable and get
15794 a different address. Resolve it by the minimal symbol
15795 which may come from inferior's executable using copy
15796 relocation. Make this workaround only for gfortran as for
15797 other compilers GDB cannot guess the minimal symbol
15798 Fortran mangling kind. */
15799 if (cu->language == language_fortran && die->parent
15800 && die->parent->tag == DW_TAG_module
15801 && cu->producer
15802 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15803 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15804
1c809c68
TT
15805 /* A variable with DW_AT_external is never static,
15806 but it may be block-scoped. */
15807 list_to_add = (cu->list_in_scope == &file_symbols
15808 ? &global_symbols : cu->list_in_scope);
1c809c68 15809 }
c906108c 15810 else
e37fd15a 15811 list_to_add = cu->list_in_scope;
c906108c
SS
15812 }
15813 else
15814 {
15815 /* We do not know the address of this symbol.
c5aa993b
JM
15816 If it is an external symbol and we have type information
15817 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15818 The address of the variable will then be determined from
15819 the minimal symbol table whenever the variable is
15820 referenced. */
e142c38c 15821 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
15822
15823 /* Fortran explicitly imports any global symbols to the local
15824 scope by DW_TAG_common_block. */
15825 if (cu->language == language_fortran && die->parent
15826 && die->parent->tag == DW_TAG_common_block)
15827 {
15828 /* SYMBOL_CLASS doesn't matter here because
15829 read_common_block is going to reset it. */
15830 if (!suppress_add)
15831 list_to_add = cu->list_in_scope;
15832 }
15833 else if (attr2 && (DW_UNSND (attr2) != 0)
15834 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 15835 {
0fe7935b
DJ
15836 /* A variable with DW_AT_external is never static, but it
15837 may be block-scoped. */
15838 list_to_add = (cu->list_in_scope == &file_symbols
15839 ? &global_symbols : cu->list_in_scope);
15840
c906108c 15841 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 15842 }
442ddf59
JK
15843 else if (!die_is_declaration (die, cu))
15844 {
15845 /* Use the default LOC_OPTIMIZED_OUT class. */
15846 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
15847 if (!suppress_add)
15848 list_to_add = cu->list_in_scope;
442ddf59 15849 }
c906108c
SS
15850 }
15851 break;
15852 case DW_TAG_formal_parameter:
edb3359d
DJ
15853 /* If we are inside a function, mark this as an argument. If
15854 not, we might be looking at an argument to an inlined function
15855 when we do not have enough information to show inlined frames;
15856 pretend it's a local variable in that case so that the user can
15857 still see it. */
15858 if (context_stack_depth > 0
15859 && context_stack[context_stack_depth - 1].name != NULL)
15860 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 15861 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
15862 if (attr)
15863 {
e7c27a73 15864 var_decode_location (attr, sym, cu);
c906108c 15865 }
e142c38c 15866 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
15867 if (attr)
15868 {
e7c27a73 15869 dwarf2_const_value (attr, sym, cu);
c906108c 15870 }
f346a30d 15871
e37fd15a 15872 list_to_add = cu->list_in_scope;
c906108c
SS
15873 break;
15874 case DW_TAG_unspecified_parameters:
15875 /* From varargs functions; gdb doesn't seem to have any
15876 interest in this information, so just ignore it for now.
15877 (FIXME?) */
15878 break;
34eaf542
TT
15879 case DW_TAG_template_type_param:
15880 suppress_add = 1;
15881 /* Fall through. */
c906108c 15882 case DW_TAG_class_type:
680b30c7 15883 case DW_TAG_interface_type:
c906108c
SS
15884 case DW_TAG_structure_type:
15885 case DW_TAG_union_type:
72019c9c 15886 case DW_TAG_set_type:
c906108c
SS
15887 case DW_TAG_enumeration_type:
15888 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 15889 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 15890
63d06c5c 15891 {
987504bb 15892 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
15893 really ever be static objects: otherwise, if you try
15894 to, say, break of a class's method and you're in a file
15895 which doesn't mention that class, it won't work unless
15896 the check for all static symbols in lookup_symbol_aux
15897 saves you. See the OtherFileClass tests in
15898 gdb.c++/namespace.exp. */
15899
e37fd15a 15900 if (!suppress_add)
34eaf542 15901 {
34eaf542
TT
15902 list_to_add = (cu->list_in_scope == &file_symbols
15903 && (cu->language == language_cplus
15904 || cu->language == language_java)
15905 ? &global_symbols : cu->list_in_scope);
63d06c5c 15906
64382290
TT
15907 /* The semantics of C++ state that "struct foo {
15908 ... }" also defines a typedef for "foo". A Java
15909 class declaration also defines a typedef for the
15910 class. */
15911 if (cu->language == language_cplus
15912 || cu->language == language_java
15913 || cu->language == language_ada)
15914 {
15915 /* The symbol's name is already allocated along
15916 with this objfile, so we don't need to
15917 duplicate it for the type. */
15918 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15919 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15920 }
63d06c5c
DC
15921 }
15922 }
c906108c
SS
15923 break;
15924 case DW_TAG_typedef:
63d06c5c
DC
15925 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15926 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 15927 list_to_add = cu->list_in_scope;
63d06c5c 15928 break;
c906108c 15929 case DW_TAG_base_type:
a02abb62 15930 case DW_TAG_subrange_type:
c906108c 15931 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 15932 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 15933 list_to_add = cu->list_in_scope;
c906108c
SS
15934 break;
15935 case DW_TAG_enumerator:
e142c38c 15936 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
15937 if (attr)
15938 {
e7c27a73 15939 dwarf2_const_value (attr, sym, cu);
c906108c 15940 }
63d06c5c
DC
15941 {
15942 /* NOTE: carlton/2003-11-10: See comment above in the
15943 DW_TAG_class_type, etc. block. */
15944
e142c38c 15945 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
15946 && (cu->language == language_cplus
15947 || cu->language == language_java)
e142c38c 15948 ? &global_symbols : cu->list_in_scope);
63d06c5c 15949 }
c906108c 15950 break;
5c4e30ca
DC
15951 case DW_TAG_namespace:
15952 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 15953 list_to_add = &global_symbols;
5c4e30ca 15954 break;
4357ac6c
TT
15955 case DW_TAG_common_block:
15956 SYMBOL_CLASS (sym) = LOC_STATIC;
15957 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15958 add_symbol_to_list (sym, cu->list_in_scope);
15959 break;
c906108c
SS
15960 default:
15961 /* Not a tag we recognize. Hopefully we aren't processing
15962 trash data, but since we must specifically ignore things
15963 we don't recognize, there is nothing else we should do at
0963b4bd 15964 this point. */
e2e0b3e5 15965 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 15966 dwarf_tag_name (die->tag));
c906108c
SS
15967 break;
15968 }
df8a16a1 15969
e37fd15a
SW
15970 if (suppress_add)
15971 {
15972 sym->hash_next = objfile->template_symbols;
15973 objfile->template_symbols = sym;
15974 list_to_add = NULL;
15975 }
15976
15977 if (list_to_add != NULL)
15978 add_symbol_to_list (sym, list_to_add);
15979
df8a16a1
DJ
15980 /* For the benefit of old versions of GCC, check for anonymous
15981 namespaces based on the demangled name. */
15982 if (!processing_has_namespace_info
94af9270 15983 && cu->language == language_cplus)
a10964d1 15984 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
15985 }
15986 return (sym);
15987}
15988
34eaf542
TT
15989/* A wrapper for new_symbol_full that always allocates a new symbol. */
15990
15991static struct symbol *
15992new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15993{
15994 return new_symbol_full (die, type, cu, NULL);
15995}
15996
98bfdba5
PA
15997/* Given an attr with a DW_FORM_dataN value in host byte order,
15998 zero-extend it as appropriate for the symbol's type. The DWARF
15999 standard (v4) is not entirely clear about the meaning of using
16000 DW_FORM_dataN for a constant with a signed type, where the type is
16001 wider than the data. The conclusion of a discussion on the DWARF
16002 list was that this is unspecified. We choose to always zero-extend
16003 because that is the interpretation long in use by GCC. */
c906108c 16004
98bfdba5
PA
16005static gdb_byte *
16006dwarf2_const_value_data (struct attribute *attr, struct type *type,
16007 const char *name, struct obstack *obstack,
12df843f 16008 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16009{
e7c27a73 16010 struct objfile *objfile = cu->objfile;
e17a4113
UW
16011 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16012 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16013 LONGEST l = DW_UNSND (attr);
16014
16015 if (bits < sizeof (*value) * 8)
16016 {
16017 l &= ((LONGEST) 1 << bits) - 1;
16018 *value = l;
16019 }
16020 else if (bits == sizeof (*value) * 8)
16021 *value = l;
16022 else
16023 {
16024 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16025 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16026 return bytes;
16027 }
16028
16029 return NULL;
16030}
16031
16032/* Read a constant value from an attribute. Either set *VALUE, or if
16033 the value does not fit in *VALUE, set *BYTES - either already
16034 allocated on the objfile obstack, or newly allocated on OBSTACK,
16035 or, set *BATON, if we translated the constant to a location
16036 expression. */
16037
16038static void
16039dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16040 const char *name, struct obstack *obstack,
16041 struct dwarf2_cu *cu,
12df843f 16042 LONGEST *value, gdb_byte **bytes,
98bfdba5
PA
16043 struct dwarf2_locexpr_baton **baton)
16044{
16045 struct objfile *objfile = cu->objfile;
16046 struct comp_unit_head *cu_header = &cu->header;
c906108c 16047 struct dwarf_block *blk;
98bfdba5
PA
16048 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16049 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16050
16051 *value = 0;
16052 *bytes = NULL;
16053 *baton = NULL;
c906108c
SS
16054
16055 switch (attr->form)
16056 {
16057 case DW_FORM_addr:
3019eac3 16058 case DW_FORM_GNU_addr_index:
ac56253d 16059 {
ac56253d
TT
16060 gdb_byte *data;
16061
98bfdba5
PA
16062 if (TYPE_LENGTH (type) != cu_header->addr_size)
16063 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16064 cu_header->addr_size,
98bfdba5 16065 TYPE_LENGTH (type));
ac56253d
TT
16066 /* Symbols of this form are reasonably rare, so we just
16067 piggyback on the existing location code rather than writing
16068 a new implementation of symbol_computed_ops. */
98bfdba5
PA
16069 *baton = obstack_alloc (&objfile->objfile_obstack,
16070 sizeof (struct dwarf2_locexpr_baton));
16071 (*baton)->per_cu = cu->per_cu;
16072 gdb_assert ((*baton)->per_cu);
ac56253d 16073
98bfdba5
PA
16074 (*baton)->size = 2 + cu_header->addr_size;
16075 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16076 (*baton)->data = data;
ac56253d
TT
16077
16078 data[0] = DW_OP_addr;
16079 store_unsigned_integer (&data[1], cu_header->addr_size,
16080 byte_order, DW_ADDR (attr));
16081 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16082 }
c906108c 16083 break;
4ac36638 16084 case DW_FORM_string:
93b5768b 16085 case DW_FORM_strp:
3019eac3 16086 case DW_FORM_GNU_str_index:
36586728 16087 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16088 /* DW_STRING is already allocated on the objfile obstack, point
16089 directly to it. */
16090 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 16091 break;
c906108c
SS
16092 case DW_FORM_block1:
16093 case DW_FORM_block2:
16094 case DW_FORM_block4:
16095 case DW_FORM_block:
2dc7f7b3 16096 case DW_FORM_exprloc:
c906108c 16097 blk = DW_BLOCK (attr);
98bfdba5
PA
16098 if (TYPE_LENGTH (type) != blk->size)
16099 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16100 TYPE_LENGTH (type));
16101 *bytes = blk->data;
c906108c 16102 break;
2df3850c
JM
16103
16104 /* The DW_AT_const_value attributes are supposed to carry the
16105 symbol's value "represented as it would be on the target
16106 architecture." By the time we get here, it's already been
16107 converted to host endianness, so we just need to sign- or
16108 zero-extend it as appropriate. */
16109 case DW_FORM_data1:
3e43a32a
MS
16110 *bytes = dwarf2_const_value_data (attr, type, name,
16111 obstack, cu, value, 8);
2df3850c 16112 break;
c906108c 16113 case DW_FORM_data2:
3e43a32a
MS
16114 *bytes = dwarf2_const_value_data (attr, type, name,
16115 obstack, cu, value, 16);
2df3850c 16116 break;
c906108c 16117 case DW_FORM_data4:
3e43a32a
MS
16118 *bytes = dwarf2_const_value_data (attr, type, name,
16119 obstack, cu, value, 32);
2df3850c 16120 break;
c906108c 16121 case DW_FORM_data8:
3e43a32a
MS
16122 *bytes = dwarf2_const_value_data (attr, type, name,
16123 obstack, cu, value, 64);
2df3850c
JM
16124 break;
16125
c906108c 16126 case DW_FORM_sdata:
98bfdba5 16127 *value = DW_SND (attr);
2df3850c
JM
16128 break;
16129
c906108c 16130 case DW_FORM_udata:
98bfdba5 16131 *value = DW_UNSND (attr);
c906108c 16132 break;
2df3850c 16133
c906108c 16134 default:
4d3c2250 16135 complaint (&symfile_complaints,
e2e0b3e5 16136 _("unsupported const value attribute form: '%s'"),
4d3c2250 16137 dwarf_form_name (attr->form));
98bfdba5 16138 *value = 0;
c906108c
SS
16139 break;
16140 }
16141}
16142
2df3850c 16143
98bfdba5
PA
16144/* Copy constant value from an attribute to a symbol. */
16145
2df3850c 16146static void
98bfdba5
PA
16147dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16148 struct dwarf2_cu *cu)
2df3850c 16149{
98bfdba5
PA
16150 struct objfile *objfile = cu->objfile;
16151 struct comp_unit_head *cu_header = &cu->header;
12df843f 16152 LONGEST value;
98bfdba5
PA
16153 gdb_byte *bytes;
16154 struct dwarf2_locexpr_baton *baton;
2df3850c 16155
98bfdba5
PA
16156 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16157 SYMBOL_PRINT_NAME (sym),
16158 &objfile->objfile_obstack, cu,
16159 &value, &bytes, &baton);
2df3850c 16160
98bfdba5
PA
16161 if (baton != NULL)
16162 {
16163 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16164 SYMBOL_LOCATION_BATON (sym) = baton;
16165 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16166 }
16167 else if (bytes != NULL)
16168 {
16169 SYMBOL_VALUE_BYTES (sym) = bytes;
16170 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16171 }
16172 else
16173 {
16174 SYMBOL_VALUE (sym) = value;
16175 SYMBOL_CLASS (sym) = LOC_CONST;
16176 }
2df3850c
JM
16177}
16178
c906108c
SS
16179/* Return the type of the die in question using its DW_AT_type attribute. */
16180
16181static struct type *
e7c27a73 16182die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16183{
c906108c 16184 struct attribute *type_attr;
c906108c 16185
e142c38c 16186 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16187 if (!type_attr)
16188 {
16189 /* A missing DW_AT_type represents a void type. */
46bf5051 16190 return objfile_type (cu->objfile)->builtin_void;
c906108c 16191 }
348e048f 16192
673bfd45 16193 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16194}
16195
b4ba55a1
JB
16196/* True iff CU's producer generates GNAT Ada auxiliary information
16197 that allows to find parallel types through that information instead
16198 of having to do expensive parallel lookups by type name. */
16199
16200static int
16201need_gnat_info (struct dwarf2_cu *cu)
16202{
16203 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16204 of GNAT produces this auxiliary information, without any indication
16205 that it is produced. Part of enhancing the FSF version of GNAT
16206 to produce that information will be to put in place an indicator
16207 that we can use in order to determine whether the descriptive type
16208 info is available or not. One suggestion that has been made is
16209 to use a new attribute, attached to the CU die. For now, assume
16210 that the descriptive type info is not available. */
16211 return 0;
16212}
16213
b4ba55a1
JB
16214/* Return the auxiliary type of the die in question using its
16215 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16216 attribute is not present. */
16217
16218static struct type *
16219die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16220{
b4ba55a1 16221 struct attribute *type_attr;
b4ba55a1
JB
16222
16223 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16224 if (!type_attr)
16225 return NULL;
16226
673bfd45 16227 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
16228}
16229
16230/* If DIE has a descriptive_type attribute, then set the TYPE's
16231 descriptive type accordingly. */
16232
16233static void
16234set_descriptive_type (struct type *type, struct die_info *die,
16235 struct dwarf2_cu *cu)
16236{
16237 struct type *descriptive_type = die_descriptive_type (die, cu);
16238
16239 if (descriptive_type)
16240 {
16241 ALLOCATE_GNAT_AUX_TYPE (type);
16242 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16243 }
16244}
16245
c906108c
SS
16246/* Return the containing type of the die in question using its
16247 DW_AT_containing_type attribute. */
16248
16249static struct type *
e7c27a73 16250die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16251{
c906108c 16252 struct attribute *type_attr;
c906108c 16253
e142c38c 16254 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
16255 if (!type_attr)
16256 error (_("Dwarf Error: Problem turning containing type into gdb type "
16257 "[in module %s]"), cu->objfile->name);
16258
673bfd45 16259 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16260}
16261
673bfd45
DE
16262/* Look up the type of DIE in CU using its type attribute ATTR.
16263 If there is no type substitute an error marker. */
16264
c906108c 16265static struct type *
673bfd45
DE
16266lookup_die_type (struct die_info *die, struct attribute *attr,
16267 struct dwarf2_cu *cu)
c906108c 16268{
bb5ed363 16269 struct objfile *objfile = cu->objfile;
f792889a
DJ
16270 struct type *this_type;
16271
673bfd45
DE
16272 /* First see if we have it cached. */
16273
36586728
TT
16274 if (attr->form == DW_FORM_GNU_ref_alt)
16275 {
16276 struct dwarf2_per_cu_data *per_cu;
16277 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16278
16279 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16280 this_type = get_die_type_at_offset (offset, per_cu);
16281 }
16282 else if (is_ref_attr (attr))
673bfd45 16283 {
b64f50a1 16284 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
16285
16286 this_type = get_die_type_at_offset (offset, cu->per_cu);
16287 }
55f1336d 16288 else if (attr->form == DW_FORM_ref_sig8)
673bfd45
DE
16289 {
16290 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
673bfd45
DE
16291
16292 /* sig_type will be NULL if the signatured type is missing from
16293 the debug info. */
16294 if (sig_type == NULL)
16295 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16296 "at 0x%x [in module %s]"),
b64f50a1 16297 die->offset.sect_off, objfile->name);
673bfd45 16298
3019eac3
DE
16299 gdb_assert (sig_type->per_cu.is_debug_types);
16300 /* If we haven't filled in type_offset_in_section yet, then we
16301 haven't read the type in yet. */
16302 this_type = NULL;
16303 if (sig_type->type_offset_in_section.sect_off != 0)
16304 {
16305 this_type =
16306 get_die_type_at_offset (sig_type->type_offset_in_section,
16307 &sig_type->per_cu);
16308 }
673bfd45
DE
16309 }
16310 else
16311 {
16312 dump_die_for_error (die);
16313 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
bb5ed363 16314 dwarf_attr_name (attr->name), objfile->name);
673bfd45
DE
16315 }
16316
16317 /* If not cached we need to read it in. */
16318
16319 if (this_type == NULL)
16320 {
16321 struct die_info *type_die;
16322 struct dwarf2_cu *type_cu = cu;
16323
16324 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
3019eac3
DE
16325 /* If we found the type now, it's probably because the type came
16326 from an inter-CU reference and the type's CU got expanded before
16327 ours. */
16328 this_type = get_die_type (type_die, type_cu);
16329 if (this_type == NULL)
16330 this_type = read_type_die_1 (type_die, type_cu);
673bfd45
DE
16331 }
16332
16333 /* If we still don't have a type use an error marker. */
16334
16335 if (this_type == NULL)
c906108c 16336 {
b00fdb78
TT
16337 char *message, *saved;
16338
16339 /* read_type_die already issued a complaint. */
16340 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
bb5ed363 16341 objfile->name,
b64f50a1
JK
16342 cu->header.offset.sect_off,
16343 die->offset.sect_off);
bb5ed363 16344 saved = obstack_copy0 (&objfile->objfile_obstack,
b00fdb78
TT
16345 message, strlen (message));
16346 xfree (message);
16347
bb5ed363 16348 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
c906108c 16349 }
673bfd45 16350
f792889a 16351 return this_type;
c906108c
SS
16352}
16353
673bfd45
DE
16354/* Return the type in DIE, CU.
16355 Returns NULL for invalid types.
16356
16357 This first does a lookup in the appropriate type_hash table,
16358 and only reads the die in if necessary.
16359
16360 NOTE: This can be called when reading in partial or full symbols. */
16361
f792889a 16362static struct type *
e7c27a73 16363read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16364{
f792889a
DJ
16365 struct type *this_type;
16366
16367 this_type = get_die_type (die, cu);
16368 if (this_type)
16369 return this_type;
16370
673bfd45
DE
16371 return read_type_die_1 (die, cu);
16372}
16373
16374/* Read the type in DIE, CU.
16375 Returns NULL for invalid types. */
16376
16377static struct type *
16378read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16379{
16380 struct type *this_type = NULL;
16381
c906108c
SS
16382 switch (die->tag)
16383 {
16384 case DW_TAG_class_type:
680b30c7 16385 case DW_TAG_interface_type:
c906108c
SS
16386 case DW_TAG_structure_type:
16387 case DW_TAG_union_type:
f792889a 16388 this_type = read_structure_type (die, cu);
c906108c
SS
16389 break;
16390 case DW_TAG_enumeration_type:
f792889a 16391 this_type = read_enumeration_type (die, cu);
c906108c
SS
16392 break;
16393 case DW_TAG_subprogram:
16394 case DW_TAG_subroutine_type:
edb3359d 16395 case DW_TAG_inlined_subroutine:
f792889a 16396 this_type = read_subroutine_type (die, cu);
c906108c
SS
16397 break;
16398 case DW_TAG_array_type:
f792889a 16399 this_type = read_array_type (die, cu);
c906108c 16400 break;
72019c9c 16401 case DW_TAG_set_type:
f792889a 16402 this_type = read_set_type (die, cu);
72019c9c 16403 break;
c906108c 16404 case DW_TAG_pointer_type:
f792889a 16405 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
16406 break;
16407 case DW_TAG_ptr_to_member_type:
f792889a 16408 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
16409 break;
16410 case DW_TAG_reference_type:
f792889a 16411 this_type = read_tag_reference_type (die, cu);
c906108c
SS
16412 break;
16413 case DW_TAG_const_type:
f792889a 16414 this_type = read_tag_const_type (die, cu);
c906108c
SS
16415 break;
16416 case DW_TAG_volatile_type:
f792889a 16417 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
16418 break;
16419 case DW_TAG_string_type:
f792889a 16420 this_type = read_tag_string_type (die, cu);
c906108c
SS
16421 break;
16422 case DW_TAG_typedef:
f792889a 16423 this_type = read_typedef (die, cu);
c906108c 16424 break;
a02abb62 16425 case DW_TAG_subrange_type:
f792889a 16426 this_type = read_subrange_type (die, cu);
a02abb62 16427 break;
c906108c 16428 case DW_TAG_base_type:
f792889a 16429 this_type = read_base_type (die, cu);
c906108c 16430 break;
81a17f79 16431 case DW_TAG_unspecified_type:
f792889a 16432 this_type = read_unspecified_type (die, cu);
81a17f79 16433 break;
0114d602
DJ
16434 case DW_TAG_namespace:
16435 this_type = read_namespace_type (die, cu);
16436 break;
f55ee35c
JK
16437 case DW_TAG_module:
16438 this_type = read_module_type (die, cu);
16439 break;
c906108c 16440 default:
3e43a32a
MS
16441 complaint (&symfile_complaints,
16442 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 16443 dwarf_tag_name (die->tag));
c906108c
SS
16444 break;
16445 }
63d06c5c 16446
f792889a 16447 return this_type;
63d06c5c
DC
16448}
16449
abc72ce4
DE
16450/* See if we can figure out if the class lives in a namespace. We do
16451 this by looking for a member function; its demangled name will
16452 contain namespace info, if there is any.
16453 Return the computed name or NULL.
16454 Space for the result is allocated on the objfile's obstack.
16455 This is the full-die version of guess_partial_die_structure_name.
16456 In this case we know DIE has no useful parent. */
16457
16458static char *
16459guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16460{
16461 struct die_info *spec_die;
16462 struct dwarf2_cu *spec_cu;
16463 struct die_info *child;
16464
16465 spec_cu = cu;
16466 spec_die = die_specification (die, &spec_cu);
16467 if (spec_die != NULL)
16468 {
16469 die = spec_die;
16470 cu = spec_cu;
16471 }
16472
16473 for (child = die->child;
16474 child != NULL;
16475 child = child->sibling)
16476 {
16477 if (child->tag == DW_TAG_subprogram)
16478 {
16479 struct attribute *attr;
16480
16481 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16482 if (attr == NULL)
16483 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16484 if (attr != NULL)
16485 {
16486 char *actual_name
16487 = language_class_name_from_physname (cu->language_defn,
16488 DW_STRING (attr));
16489 char *name = NULL;
16490
16491 if (actual_name != NULL)
16492 {
16493 char *die_name = dwarf2_name (die, cu);
16494
16495 if (die_name != NULL
16496 && strcmp (die_name, actual_name) != 0)
16497 {
16498 /* Strip off the class name from the full name.
16499 We want the prefix. */
16500 int die_name_len = strlen (die_name);
16501 int actual_name_len = strlen (actual_name);
16502
16503 /* Test for '::' as a sanity check. */
16504 if (actual_name_len > die_name_len + 2
3e43a32a
MS
16505 && actual_name[actual_name_len
16506 - die_name_len - 1] == ':')
abc72ce4
DE
16507 name =
16508 obsavestring (actual_name,
16509 actual_name_len - die_name_len - 2,
16510 &cu->objfile->objfile_obstack);
16511 }
16512 }
16513 xfree (actual_name);
16514 return name;
16515 }
16516 }
16517 }
16518
16519 return NULL;
16520}
16521
96408a79
SA
16522/* GCC might emit a nameless typedef that has a linkage name. Determine the
16523 prefix part in such case. See
16524 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16525
16526static char *
16527anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16528{
16529 struct attribute *attr;
16530 char *base;
16531
16532 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16533 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16534 return NULL;
16535
16536 attr = dwarf2_attr (die, DW_AT_name, cu);
16537 if (attr != NULL && DW_STRING (attr) != NULL)
16538 return NULL;
16539
16540 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16541 if (attr == NULL)
16542 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16543 if (attr == NULL || DW_STRING (attr) == NULL)
16544 return NULL;
16545
16546 /* dwarf2_name had to be already called. */
16547 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16548
16549 /* Strip the base name, keep any leading namespaces/classes. */
16550 base = strrchr (DW_STRING (attr), ':');
16551 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16552 return "";
16553
16554 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16555 &cu->objfile->objfile_obstack);
16556}
16557
fdde2d81 16558/* Return the name of the namespace/class that DIE is defined within,
0114d602 16559 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 16560
0114d602
DJ
16561 For example, if we're within the method foo() in the following
16562 code:
16563
16564 namespace N {
16565 class C {
16566 void foo () {
16567 }
16568 };
16569 }
16570
16571 then determine_prefix on foo's die will return "N::C". */
fdde2d81 16572
0d5cff50 16573static const char *
e142c38c 16574determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 16575{
0114d602
DJ
16576 struct die_info *parent, *spec_die;
16577 struct dwarf2_cu *spec_cu;
16578 struct type *parent_type;
96408a79 16579 char *retval;
63d06c5c 16580
f55ee35c
JK
16581 if (cu->language != language_cplus && cu->language != language_java
16582 && cu->language != language_fortran)
0114d602
DJ
16583 return "";
16584
96408a79
SA
16585 retval = anonymous_struct_prefix (die, cu);
16586 if (retval)
16587 return retval;
16588
0114d602
DJ
16589 /* We have to be careful in the presence of DW_AT_specification.
16590 For example, with GCC 3.4, given the code
16591
16592 namespace N {
16593 void foo() {
16594 // Definition of N::foo.
16595 }
16596 }
16597
16598 then we'll have a tree of DIEs like this:
16599
16600 1: DW_TAG_compile_unit
16601 2: DW_TAG_namespace // N
16602 3: DW_TAG_subprogram // declaration of N::foo
16603 4: DW_TAG_subprogram // definition of N::foo
16604 DW_AT_specification // refers to die #3
16605
16606 Thus, when processing die #4, we have to pretend that we're in
16607 the context of its DW_AT_specification, namely the contex of die
16608 #3. */
16609 spec_cu = cu;
16610 spec_die = die_specification (die, &spec_cu);
16611 if (spec_die == NULL)
16612 parent = die->parent;
16613 else
63d06c5c 16614 {
0114d602
DJ
16615 parent = spec_die->parent;
16616 cu = spec_cu;
63d06c5c 16617 }
0114d602
DJ
16618
16619 if (parent == NULL)
16620 return "";
98bfdba5
PA
16621 else if (parent->building_fullname)
16622 {
16623 const char *name;
16624 const char *parent_name;
16625
16626 /* It has been seen on RealView 2.2 built binaries,
16627 DW_TAG_template_type_param types actually _defined_ as
16628 children of the parent class:
16629
16630 enum E {};
16631 template class <class Enum> Class{};
16632 Class<enum E> class_e;
16633
16634 1: DW_TAG_class_type (Class)
16635 2: DW_TAG_enumeration_type (E)
16636 3: DW_TAG_enumerator (enum1:0)
16637 3: DW_TAG_enumerator (enum2:1)
16638 ...
16639 2: DW_TAG_template_type_param
16640 DW_AT_type DW_FORM_ref_udata (E)
16641
16642 Besides being broken debug info, it can put GDB into an
16643 infinite loop. Consider:
16644
16645 When we're building the full name for Class<E>, we'll start
16646 at Class, and go look over its template type parameters,
16647 finding E. We'll then try to build the full name of E, and
16648 reach here. We're now trying to build the full name of E,
16649 and look over the parent DIE for containing scope. In the
16650 broken case, if we followed the parent DIE of E, we'd again
16651 find Class, and once again go look at its template type
16652 arguments, etc., etc. Simply don't consider such parent die
16653 as source-level parent of this die (it can't be, the language
16654 doesn't allow it), and break the loop here. */
16655 name = dwarf2_name (die, cu);
16656 parent_name = dwarf2_name (parent, cu);
16657 complaint (&symfile_complaints,
16658 _("template param type '%s' defined within parent '%s'"),
16659 name ? name : "<unknown>",
16660 parent_name ? parent_name : "<unknown>");
16661 return "";
16662 }
63d06c5c 16663 else
0114d602
DJ
16664 switch (parent->tag)
16665 {
63d06c5c 16666 case DW_TAG_namespace:
0114d602 16667 parent_type = read_type_die (parent, cu);
acebe513
UW
16668 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16669 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16670 Work around this problem here. */
16671 if (cu->language == language_cplus
16672 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16673 return "";
0114d602
DJ
16674 /* We give a name to even anonymous namespaces. */
16675 return TYPE_TAG_NAME (parent_type);
63d06c5c 16676 case DW_TAG_class_type:
680b30c7 16677 case DW_TAG_interface_type:
63d06c5c 16678 case DW_TAG_structure_type:
0114d602 16679 case DW_TAG_union_type:
f55ee35c 16680 case DW_TAG_module:
0114d602
DJ
16681 parent_type = read_type_die (parent, cu);
16682 if (TYPE_TAG_NAME (parent_type) != NULL)
16683 return TYPE_TAG_NAME (parent_type);
16684 else
16685 /* An anonymous structure is only allowed non-static data
16686 members; no typedefs, no member functions, et cetera.
16687 So it does not need a prefix. */
16688 return "";
abc72ce4 16689 case DW_TAG_compile_unit:
95554aad 16690 case DW_TAG_partial_unit:
abc72ce4
DE
16691 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16692 if (cu->language == language_cplus
8b70b953 16693 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16694 && die->child != NULL
16695 && (die->tag == DW_TAG_class_type
16696 || die->tag == DW_TAG_structure_type
16697 || die->tag == DW_TAG_union_type))
16698 {
16699 char *name = guess_full_die_structure_name (die, cu);
16700 if (name != NULL)
16701 return name;
16702 }
16703 return "";
63d06c5c 16704 default:
8176b9b8 16705 return determine_prefix (parent, cu);
63d06c5c 16706 }
63d06c5c
DC
16707}
16708
3e43a32a
MS
16709/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16710 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16711 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16712 an obconcat, otherwise allocate storage for the result. The CU argument is
16713 used to determine the language and hence, the appropriate separator. */
987504bb 16714
f55ee35c 16715#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
16716
16717static char *
f55ee35c
JK
16718typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16719 int physname, struct dwarf2_cu *cu)
63d06c5c 16720{
f55ee35c 16721 const char *lead = "";
5c315b68 16722 const char *sep;
63d06c5c 16723
3e43a32a
MS
16724 if (suffix == NULL || suffix[0] == '\0'
16725 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
16726 sep = "";
16727 else if (cu->language == language_java)
16728 sep = ".";
f55ee35c
JK
16729 else if (cu->language == language_fortran && physname)
16730 {
16731 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16732 DW_AT_MIPS_linkage_name is preferred and used instead. */
16733
16734 lead = "__";
16735 sep = "_MOD_";
16736 }
987504bb
JJ
16737 else
16738 sep = "::";
63d06c5c 16739
6dd47d34
DE
16740 if (prefix == NULL)
16741 prefix = "";
16742 if (suffix == NULL)
16743 suffix = "";
16744
987504bb
JJ
16745 if (obs == NULL)
16746 {
3e43a32a
MS
16747 char *retval
16748 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 16749
f55ee35c
JK
16750 strcpy (retval, lead);
16751 strcat (retval, prefix);
6dd47d34
DE
16752 strcat (retval, sep);
16753 strcat (retval, suffix);
63d06c5c
DC
16754 return retval;
16755 }
987504bb
JJ
16756 else
16757 {
16758 /* We have an obstack. */
f55ee35c 16759 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 16760 }
63d06c5c
DC
16761}
16762
c906108c
SS
16763/* Return sibling of die, NULL if no sibling. */
16764
f9aca02d 16765static struct die_info *
fba45db2 16766sibling_die (struct die_info *die)
c906108c 16767{
639d11d3 16768 return die->sibling;
c906108c
SS
16769}
16770
71c25dea
TT
16771/* Get name of a die, return NULL if not found. */
16772
16773static char *
16774dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16775 struct obstack *obstack)
16776{
16777 if (name && cu->language == language_cplus)
16778 {
16779 char *canon_name = cp_canonicalize_string (name);
16780
16781 if (canon_name != NULL)
16782 {
16783 if (strcmp (canon_name, name) != 0)
16784 name = obsavestring (canon_name, strlen (canon_name),
16785 obstack);
16786 xfree (canon_name);
16787 }
16788 }
16789
16790 return name;
c906108c
SS
16791}
16792
9219021c
DC
16793/* Get name of a die, return NULL if not found. */
16794
16795static char *
e142c38c 16796dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
16797{
16798 struct attribute *attr;
16799
e142c38c 16800 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
16801 if ((!attr || !DW_STRING (attr))
16802 && die->tag != DW_TAG_class_type
16803 && die->tag != DW_TAG_interface_type
16804 && die->tag != DW_TAG_structure_type
16805 && die->tag != DW_TAG_union_type)
71c25dea
TT
16806 return NULL;
16807
16808 switch (die->tag)
16809 {
16810 case DW_TAG_compile_unit:
95554aad 16811 case DW_TAG_partial_unit:
71c25dea
TT
16812 /* Compilation units have a DW_AT_name that is a filename, not
16813 a source language identifier. */
16814 case DW_TAG_enumeration_type:
16815 case DW_TAG_enumerator:
16816 /* These tags always have simple identifiers already; no need
16817 to canonicalize them. */
16818 return DW_STRING (attr);
907af001 16819
418835cc
KS
16820 case DW_TAG_subprogram:
16821 /* Java constructors will all be named "<init>", so return
16822 the class name when we see this special case. */
16823 if (cu->language == language_java
16824 && DW_STRING (attr) != NULL
16825 && strcmp (DW_STRING (attr), "<init>") == 0)
16826 {
16827 struct dwarf2_cu *spec_cu = cu;
16828 struct die_info *spec_die;
16829
16830 /* GCJ will output '<init>' for Java constructor names.
16831 For this special case, return the name of the parent class. */
16832
16833 /* GCJ may output suprogram DIEs with AT_specification set.
16834 If so, use the name of the specified DIE. */
16835 spec_die = die_specification (die, &spec_cu);
16836 if (spec_die != NULL)
16837 return dwarf2_name (spec_die, spec_cu);
16838
16839 do
16840 {
16841 die = die->parent;
16842 if (die->tag == DW_TAG_class_type)
16843 return dwarf2_name (die, cu);
16844 }
95554aad
TT
16845 while (die->tag != DW_TAG_compile_unit
16846 && die->tag != DW_TAG_partial_unit);
418835cc 16847 }
907af001
UW
16848 break;
16849
16850 case DW_TAG_class_type:
16851 case DW_TAG_interface_type:
16852 case DW_TAG_structure_type:
16853 case DW_TAG_union_type:
16854 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16855 structures or unions. These were of the form "._%d" in GCC 4.1,
16856 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16857 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
16858 if (attr && DW_STRING (attr)
16859 && (strncmp (DW_STRING (attr), "._", 2) == 0
16860 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 16861 return NULL;
53832f31
TT
16862
16863 /* GCC might emit a nameless typedef that has a linkage name. See
16864 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16865 if (!attr || DW_STRING (attr) == NULL)
16866 {
df5c6c50 16867 char *demangled = NULL;
53832f31
TT
16868
16869 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16870 if (attr == NULL)
16871 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16872
16873 if (attr == NULL || DW_STRING (attr) == NULL)
16874 return NULL;
16875
df5c6c50
JK
16876 /* Avoid demangling DW_STRING (attr) the second time on a second
16877 call for the same DIE. */
16878 if (!DW_STRING_IS_CANONICAL (attr))
16879 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
16880
16881 if (demangled)
16882 {
96408a79
SA
16883 char *base;
16884
53832f31 16885 /* FIXME: we already did this for the partial symbol... */
96408a79
SA
16886 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16887 &cu->objfile->objfile_obstack);
53832f31
TT
16888 DW_STRING_IS_CANONICAL (attr) = 1;
16889 xfree (demangled);
96408a79
SA
16890
16891 /* Strip any leading namespaces/classes, keep only the base name.
16892 DW_AT_name for named DIEs does not contain the prefixes. */
16893 base = strrchr (DW_STRING (attr), ':');
16894 if (base && base > DW_STRING (attr) && base[-1] == ':')
16895 return &base[1];
16896 else
16897 return DW_STRING (attr);
53832f31
TT
16898 }
16899 }
907af001
UW
16900 break;
16901
71c25dea 16902 default:
907af001
UW
16903 break;
16904 }
16905
16906 if (!DW_STRING_IS_CANONICAL (attr))
16907 {
16908 DW_STRING (attr)
16909 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16910 &cu->objfile->objfile_obstack);
16911 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 16912 }
907af001 16913 return DW_STRING (attr);
9219021c
DC
16914}
16915
16916/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
16917 is none. *EXT_CU is the CU containing DIE on input, and the CU
16918 containing the return value on output. */
9219021c
DC
16919
16920static struct die_info *
f2f0e013 16921dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
16922{
16923 struct attribute *attr;
9219021c 16924
f2f0e013 16925 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
16926 if (attr == NULL)
16927 return NULL;
16928
f2f0e013 16929 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
16930}
16931
c906108c
SS
16932/* Convert a DIE tag into its string name. */
16933
f39c6ffd 16934static const char *
aa1ee363 16935dwarf_tag_name (unsigned tag)
c906108c 16936{
f39c6ffd
TT
16937 const char *name = get_DW_TAG_name (tag);
16938
16939 if (name == NULL)
16940 return "DW_TAG_<unknown>";
16941
16942 return name;
c906108c
SS
16943}
16944
16945/* Convert a DWARF attribute code into its string name. */
16946
f39c6ffd 16947static const char *
aa1ee363 16948dwarf_attr_name (unsigned attr)
c906108c 16949{
f39c6ffd
TT
16950 const char *name;
16951
c764a876 16952#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
16953 if (attr == DW_AT_MIPS_fde)
16954 return "DW_AT_MIPS_fde";
16955#else
16956 if (attr == DW_AT_HP_block_index)
16957 return "DW_AT_HP_block_index";
c764a876 16958#endif
f39c6ffd
TT
16959
16960 name = get_DW_AT_name (attr);
16961
16962 if (name == NULL)
16963 return "DW_AT_<unknown>";
16964
16965 return name;
c906108c
SS
16966}
16967
16968/* Convert a DWARF value form code into its string name. */
16969
f39c6ffd 16970static const char *
aa1ee363 16971dwarf_form_name (unsigned form)
c906108c 16972{
f39c6ffd
TT
16973 const char *name = get_DW_FORM_name (form);
16974
16975 if (name == NULL)
16976 return "DW_FORM_<unknown>";
16977
16978 return name;
c906108c
SS
16979}
16980
16981static char *
fba45db2 16982dwarf_bool_name (unsigned mybool)
c906108c
SS
16983{
16984 if (mybool)
16985 return "TRUE";
16986 else
16987 return "FALSE";
16988}
16989
16990/* Convert a DWARF type code into its string name. */
16991
f39c6ffd 16992static const char *
aa1ee363 16993dwarf_type_encoding_name (unsigned enc)
c906108c 16994{
f39c6ffd 16995 const char *name = get_DW_ATE_name (enc);
c906108c 16996
f39c6ffd
TT
16997 if (name == NULL)
16998 return "DW_ATE_<unknown>";
c906108c 16999
f39c6ffd 17000 return name;
c906108c 17001}
c906108c 17002
f9aca02d 17003static void
d97bc12b 17004dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17005{
17006 unsigned int i;
17007
d97bc12b
DE
17008 print_spaces (indent, f);
17009 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17010 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17011
17012 if (die->parent != NULL)
17013 {
17014 print_spaces (indent, f);
17015 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17016 die->parent->offset.sect_off);
d97bc12b
DE
17017 }
17018
17019 print_spaces (indent, f);
17020 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17021 dwarf_bool_name (die->child != NULL));
c906108c 17022
d97bc12b
DE
17023 print_spaces (indent, f);
17024 fprintf_unfiltered (f, " attributes:\n");
17025
c906108c
SS
17026 for (i = 0; i < die->num_attrs; ++i)
17027 {
d97bc12b
DE
17028 print_spaces (indent, f);
17029 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17030 dwarf_attr_name (die->attrs[i].name),
17031 dwarf_form_name (die->attrs[i].form));
d97bc12b 17032
c906108c
SS
17033 switch (die->attrs[i].form)
17034 {
c906108c 17035 case DW_FORM_addr:
3019eac3 17036 case DW_FORM_GNU_addr_index:
d97bc12b 17037 fprintf_unfiltered (f, "address: ");
5af949e3 17038 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17039 break;
17040 case DW_FORM_block2:
17041 case DW_FORM_block4:
17042 case DW_FORM_block:
17043 case DW_FORM_block1:
56eb65bd
SP
17044 fprintf_unfiltered (f, "block: size %s",
17045 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17046 break;
2dc7f7b3 17047 case DW_FORM_exprloc:
56eb65bd
SP
17048 fprintf_unfiltered (f, "expression: size %s",
17049 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17050 break;
4568ecf9
DE
17051 case DW_FORM_ref_addr:
17052 fprintf_unfiltered (f, "ref address: ");
17053 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17054 break;
36586728
TT
17055 case DW_FORM_GNU_ref_alt:
17056 fprintf_unfiltered (f, "alt ref address: ");
17057 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17058 break;
10b3939b
DJ
17059 case DW_FORM_ref1:
17060 case DW_FORM_ref2:
17061 case DW_FORM_ref4:
4568ecf9
DE
17062 case DW_FORM_ref8:
17063 case DW_FORM_ref_udata:
d97bc12b 17064 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17065 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17066 break;
c906108c
SS
17067 case DW_FORM_data1:
17068 case DW_FORM_data2:
17069 case DW_FORM_data4:
ce5d95e1 17070 case DW_FORM_data8:
c906108c
SS
17071 case DW_FORM_udata:
17072 case DW_FORM_sdata:
43bbcdc2
PH
17073 fprintf_unfiltered (f, "constant: %s",
17074 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17075 break;
2dc7f7b3
TT
17076 case DW_FORM_sec_offset:
17077 fprintf_unfiltered (f, "section offset: %s",
17078 pulongest (DW_UNSND (&die->attrs[i])));
17079 break;
55f1336d 17080 case DW_FORM_ref_sig8:
348e048f
DE
17081 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17082 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
b64f50a1 17083 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
348e048f
DE
17084 else
17085 fprintf_unfiltered (f, "signatured type, offset: unknown");
17086 break;
c906108c 17087 case DW_FORM_string:
4bdf3d34 17088 case DW_FORM_strp:
3019eac3 17089 case DW_FORM_GNU_str_index:
36586728 17090 case DW_FORM_GNU_strp_alt:
8285870a 17091 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17092 DW_STRING (&die->attrs[i])
8285870a
JK
17093 ? DW_STRING (&die->attrs[i]) : "",
17094 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17095 break;
17096 case DW_FORM_flag:
17097 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17098 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17099 else
d97bc12b 17100 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17101 break;
2dc7f7b3
TT
17102 case DW_FORM_flag_present:
17103 fprintf_unfiltered (f, "flag: TRUE");
17104 break;
a8329558 17105 case DW_FORM_indirect:
0963b4bd
MS
17106 /* The reader will have reduced the indirect form to
17107 the "base form" so this form should not occur. */
3e43a32a
MS
17108 fprintf_unfiltered (f,
17109 "unexpected attribute form: DW_FORM_indirect");
a8329558 17110 break;
c906108c 17111 default:
d97bc12b 17112 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17113 die->attrs[i].form);
d97bc12b 17114 break;
c906108c 17115 }
d97bc12b 17116 fprintf_unfiltered (f, "\n");
c906108c
SS
17117 }
17118}
17119
f9aca02d 17120static void
d97bc12b 17121dump_die_for_error (struct die_info *die)
c906108c 17122{
d97bc12b
DE
17123 dump_die_shallow (gdb_stderr, 0, die);
17124}
17125
17126static void
17127dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17128{
17129 int indent = level * 4;
17130
17131 gdb_assert (die != NULL);
17132
17133 if (level >= max_level)
17134 return;
17135
17136 dump_die_shallow (f, indent, die);
17137
17138 if (die->child != NULL)
c906108c 17139 {
d97bc12b
DE
17140 print_spaces (indent, f);
17141 fprintf_unfiltered (f, " Children:");
17142 if (level + 1 < max_level)
17143 {
17144 fprintf_unfiltered (f, "\n");
17145 dump_die_1 (f, level + 1, max_level, die->child);
17146 }
17147 else
17148 {
3e43a32a
MS
17149 fprintf_unfiltered (f,
17150 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17151 }
17152 }
17153
17154 if (die->sibling != NULL && level > 0)
17155 {
17156 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17157 }
17158}
17159
d97bc12b
DE
17160/* This is called from the pdie macro in gdbinit.in.
17161 It's not static so gcc will keep a copy callable from gdb. */
17162
17163void
17164dump_die (struct die_info *die, int max_level)
17165{
17166 dump_die_1 (gdb_stdlog, 0, max_level, die);
17167}
17168
f9aca02d 17169static void
51545339 17170store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17171{
51545339 17172 void **slot;
c906108c 17173
b64f50a1
JK
17174 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17175 INSERT);
51545339
DJ
17176
17177 *slot = die;
c906108c
SS
17178}
17179
b64f50a1
JK
17180/* DW_ADDR is always stored already as sect_offset; despite for the forms
17181 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17182
93311388
DE
17183static int
17184is_ref_attr (struct attribute *attr)
c906108c 17185{
c906108c
SS
17186 switch (attr->form)
17187 {
17188 case DW_FORM_ref_addr:
c906108c
SS
17189 case DW_FORM_ref1:
17190 case DW_FORM_ref2:
17191 case DW_FORM_ref4:
613e1657 17192 case DW_FORM_ref8:
c906108c 17193 case DW_FORM_ref_udata:
36586728 17194 case DW_FORM_GNU_ref_alt:
93311388 17195 return 1;
c906108c 17196 default:
93311388 17197 return 0;
c906108c 17198 }
93311388
DE
17199}
17200
b64f50a1
JK
17201/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17202 required kind. */
17203
17204static sect_offset
93311388
DE
17205dwarf2_get_ref_die_offset (struct attribute *attr)
17206{
4568ecf9 17207 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17208
93311388 17209 if (is_ref_attr (attr))
b64f50a1 17210 return retval;
93311388 17211
b64f50a1 17212 retval.sect_off = 0;
93311388
DE
17213 complaint (&symfile_complaints,
17214 _("unsupported die ref attribute form: '%s'"),
17215 dwarf_form_name (attr->form));
b64f50a1 17216 return retval;
c906108c
SS
17217}
17218
43bbcdc2
PH
17219/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17220 * the value held by the attribute is not constant. */
a02abb62 17221
43bbcdc2 17222static LONGEST
a02abb62
JB
17223dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17224{
17225 if (attr->form == DW_FORM_sdata)
17226 return DW_SND (attr);
17227 else if (attr->form == DW_FORM_udata
17228 || attr->form == DW_FORM_data1
17229 || attr->form == DW_FORM_data2
17230 || attr->form == DW_FORM_data4
17231 || attr->form == DW_FORM_data8)
17232 return DW_UNSND (attr);
17233 else
17234 {
3e43a32a
MS
17235 complaint (&symfile_complaints,
17236 _("Attribute value is not a constant (%s)"),
a02abb62
JB
17237 dwarf_form_name (attr->form));
17238 return default_value;
17239 }
17240}
17241
348e048f
DE
17242/* Follow reference or signature attribute ATTR of SRC_DIE.
17243 On entry *REF_CU is the CU of SRC_DIE.
17244 On exit *REF_CU is the CU of the result. */
17245
17246static struct die_info *
17247follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17248 struct dwarf2_cu **ref_cu)
17249{
17250 struct die_info *die;
17251
17252 if (is_ref_attr (attr))
17253 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 17254 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
17255 die = follow_die_sig (src_die, attr, ref_cu);
17256 else
17257 {
17258 dump_die_for_error (src_die);
17259 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17260 (*ref_cu)->objfile->name);
17261 }
17262
17263 return die;
03dd20cc
DJ
17264}
17265
5c631832 17266/* Follow reference OFFSET.
673bfd45
DE
17267 On entry *REF_CU is the CU of the source die referencing OFFSET.
17268 On exit *REF_CU is the CU of the result.
17269 Returns NULL if OFFSET is invalid. */
f504f079 17270
f9aca02d 17271static struct die_info *
36586728
TT
17272follow_die_offset (sect_offset offset, int offset_in_dwz,
17273 struct dwarf2_cu **ref_cu)
c906108c 17274{
10b3939b 17275 struct die_info temp_die;
f2f0e013 17276 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 17277
348e048f
DE
17278 gdb_assert (cu->per_cu != NULL);
17279
98bfdba5
PA
17280 target_cu = cu;
17281
3019eac3 17282 if (cu->per_cu->is_debug_types)
348e048f
DE
17283 {
17284 /* .debug_types CUs cannot reference anything outside their CU.
17285 If they need to, they have to reference a signatured type via
55f1336d 17286 DW_FORM_ref_sig8. */
348e048f 17287 if (! offset_in_cu_p (&cu->header, offset))
5c631832 17288 return NULL;
348e048f 17289 }
36586728
TT
17290 else if (offset_in_dwz != cu->per_cu->is_dwz
17291 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
17292 {
17293 struct dwarf2_per_cu_data *per_cu;
9a619af0 17294
36586728
TT
17295 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17296 cu->objfile);
03dd20cc
DJ
17297
17298 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
17299 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17300 load_full_comp_unit (per_cu, cu->language);
03dd20cc 17301
10b3939b
DJ
17302 target_cu = per_cu->cu;
17303 }
98bfdba5
PA
17304 else if (cu->dies == NULL)
17305 {
17306 /* We're loading full DIEs during partial symbol reading. */
17307 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 17308 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 17309 }
c906108c 17310
f2f0e013 17311 *ref_cu = target_cu;
51545339 17312 temp_die.offset = offset;
b64f50a1 17313 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 17314}
10b3939b 17315
5c631832
JK
17316/* Follow reference attribute ATTR of SRC_DIE.
17317 On entry *REF_CU is the CU of SRC_DIE.
17318 On exit *REF_CU is the CU of the result. */
17319
17320static struct die_info *
17321follow_die_ref (struct die_info *src_die, struct attribute *attr,
17322 struct dwarf2_cu **ref_cu)
17323{
b64f50a1 17324 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
17325 struct dwarf2_cu *cu = *ref_cu;
17326 struct die_info *die;
17327
36586728
TT
17328 die = follow_die_offset (offset,
17329 (attr->form == DW_FORM_GNU_ref_alt
17330 || cu->per_cu->is_dwz),
17331 ref_cu);
5c631832
JK
17332 if (!die)
17333 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17334 "at 0x%x [in module %s]"),
b64f50a1 17335 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 17336
5c631832
JK
17337 return die;
17338}
17339
d83e736b
JK
17340/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17341 Returned value is intended for DW_OP_call*. Returned
17342 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
17343
17344struct dwarf2_locexpr_baton
b64f50a1 17345dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
8cf6f0b1
TT
17346 struct dwarf2_per_cu_data *per_cu,
17347 CORE_ADDR (*get_frame_pc) (void *baton),
17348 void *baton)
5c631832 17349{
b64f50a1 17350 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
918dd910 17351 struct dwarf2_cu *cu;
5c631832
JK
17352 struct die_info *die;
17353 struct attribute *attr;
17354 struct dwarf2_locexpr_baton retval;
17355
8cf6f0b1
TT
17356 dw2_setup (per_cu->objfile);
17357
918dd910
JK
17358 if (per_cu->cu == NULL)
17359 load_cu (per_cu);
17360 cu = per_cu->cu;
17361
36586728 17362 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
17363 if (!die)
17364 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 17365 offset.sect_off, per_cu->objfile->name);
5c631832
JK
17366
17367 attr = dwarf2_attr (die, DW_AT_location, cu);
17368 if (!attr)
17369 {
e103e986
JK
17370 /* DWARF: "If there is no such attribute, then there is no effect.".
17371 DATA is ignored if SIZE is 0. */
5c631832 17372
e103e986 17373 retval.data = NULL;
5c631832
JK
17374 retval.size = 0;
17375 }
8cf6f0b1
TT
17376 else if (attr_form_is_section_offset (attr))
17377 {
17378 struct dwarf2_loclist_baton loclist_baton;
17379 CORE_ADDR pc = (*get_frame_pc) (baton);
17380 size_t size;
17381
17382 fill_in_loclist_baton (cu, &loclist_baton, attr);
17383
17384 retval.data = dwarf2_find_location_expression (&loclist_baton,
17385 &size, pc);
17386 retval.size = size;
17387 }
5c631832
JK
17388 else
17389 {
17390 if (!attr_form_is_block (attr))
17391 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17392 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 17393 offset.sect_off, per_cu->objfile->name);
5c631832
JK
17394
17395 retval.data = DW_BLOCK (attr)->data;
17396 retval.size = DW_BLOCK (attr)->size;
17397 }
17398 retval.per_cu = cu->per_cu;
918dd910 17399
918dd910
JK
17400 age_cached_comp_units ();
17401
5c631832 17402 return retval;
348e048f
DE
17403}
17404
8a9b8146
TT
17405/* Return the type of the DIE at DIE_OFFSET in the CU named by
17406 PER_CU. */
17407
17408struct type *
b64f50a1 17409dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
17410 struct dwarf2_per_cu_data *per_cu)
17411{
b64f50a1
JK
17412 sect_offset die_offset_sect;
17413
8a9b8146 17414 dw2_setup (per_cu->objfile);
b64f50a1
JK
17415
17416 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17417 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
17418}
17419
348e048f
DE
17420/* Follow the signature attribute ATTR in SRC_DIE.
17421 On entry *REF_CU is the CU of SRC_DIE.
17422 On exit *REF_CU is the CU of the result. */
17423
17424static struct die_info *
17425follow_die_sig (struct die_info *src_die, struct attribute *attr,
17426 struct dwarf2_cu **ref_cu)
17427{
17428 struct objfile *objfile = (*ref_cu)->objfile;
17429 struct die_info temp_die;
17430 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17431 struct dwarf2_cu *sig_cu;
17432 struct die_info *die;
17433
17434 /* sig_type will be NULL if the signatured type is missing from
17435 the debug info. */
17436 if (sig_type == NULL)
17437 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17438 "at 0x%x [in module %s]"),
b64f50a1 17439 src_die->offset.sect_off, objfile->name);
348e048f
DE
17440
17441 /* If necessary, add it to the queue and load its DIEs. */
17442
95554aad 17443 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 17444 read_signatured_type (sig_type);
348e048f
DE
17445
17446 gdb_assert (sig_type->per_cu.cu != NULL);
17447
17448 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
17449 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17450 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
17451 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17452 temp_die.offset.sect_off);
348e048f
DE
17453 if (die)
17454 {
17455 *ref_cu = sig_cu;
17456 return die;
17457 }
17458
3e43a32a
MS
17459 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17460 "from DIE at 0x%x [in module %s]"),
b64f50a1 17461 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
348e048f
DE
17462}
17463
17464/* Given an offset of a signatured type, return its signatured_type. */
17465
17466static struct signatured_type *
8b70b953
TT
17467lookup_signatured_type_at_offset (struct objfile *objfile,
17468 struct dwarf2_section_info *section,
b64f50a1 17469 sect_offset offset)
348e048f 17470{
b64f50a1 17471 gdb_byte *info_ptr = section->buffer + offset.sect_off;
348e048f
DE
17472 unsigned int length, initial_length_size;
17473 unsigned int sig_offset;
52dc124a 17474 struct signatured_type find_entry, *sig_type;
348e048f
DE
17475
17476 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17477 sig_offset = (initial_length_size
17478 + 2 /*version*/
17479 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17480 + 1 /*address_size*/);
17481 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
52dc124a 17482 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
348e048f
DE
17483
17484 /* This is only used to lookup previously recorded types.
17485 If we didn't find it, it's our bug. */
52dc124a
DE
17486 gdb_assert (sig_type != NULL);
17487 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
348e048f 17488
52dc124a 17489 return sig_type;
348e048f
DE
17490}
17491
e5fe5e75 17492/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
17493
17494static void
e5fe5e75 17495load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 17496{
52dc124a 17497 struct signatured_type *sig_type;
348e048f 17498
f4dc4d17
DE
17499 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17500 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17501
6721b2ec
DE
17502 /* We have the per_cu, but we need the signatured_type.
17503 Fortunately this is an easy translation. */
17504 gdb_assert (per_cu->is_debug_types);
17505 sig_type = (struct signatured_type *) per_cu;
348e048f 17506
6721b2ec 17507 gdb_assert (per_cu->cu == NULL);
348e048f 17508
52dc124a 17509 read_signatured_type (sig_type);
348e048f 17510
6721b2ec 17511 gdb_assert (per_cu->cu != NULL);
348e048f
DE
17512}
17513
dee91e82
DE
17514/* die_reader_func for read_signatured_type.
17515 This is identical to load_full_comp_unit_reader,
17516 but is kept separate for now. */
348e048f
DE
17517
17518static void
dee91e82
DE
17519read_signatured_type_reader (const struct die_reader_specs *reader,
17520 gdb_byte *info_ptr,
17521 struct die_info *comp_unit_die,
17522 int has_children,
17523 void *data)
348e048f 17524{
dee91e82 17525 struct dwarf2_cu *cu = reader->cu;
348e048f 17526
dee91e82
DE
17527 gdb_assert (cu->die_hash == NULL);
17528 cu->die_hash =
17529 htab_create_alloc_ex (cu->header.length / 12,
17530 die_hash,
17531 die_eq,
17532 NULL,
17533 &cu->comp_unit_obstack,
17534 hashtab_obstack_allocate,
17535 dummy_obstack_deallocate);
348e048f 17536
dee91e82
DE
17537 if (has_children)
17538 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17539 &info_ptr, comp_unit_die);
17540 cu->dies = comp_unit_die;
17541 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
17542
17543 /* We try not to read any attributes in this function, because not
9cdd5dbd 17544 all CUs needed for references have been loaded yet, and symbol
348e048f 17545 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
17546 or we won't be able to build types correctly.
17547 Similarly, if we do not read the producer, we can not apply
17548 producer-specific interpretation. */
95554aad 17549 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 17550}
348e048f 17551
3019eac3
DE
17552/* Read in a signatured type and build its CU and DIEs.
17553 If the type is a stub for the real type in a DWO file,
17554 read in the real type from the DWO file as well. */
dee91e82
DE
17555
17556static void
17557read_signatured_type (struct signatured_type *sig_type)
17558{
17559 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 17560
3019eac3 17561 gdb_assert (per_cu->is_debug_types);
dee91e82 17562 gdb_assert (per_cu->cu == NULL);
348e048f 17563
f4dc4d17
DE
17564 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17565 read_signatured_type_reader, NULL);
c906108c
SS
17566}
17567
c906108c
SS
17568/* Decode simple location descriptions.
17569 Given a pointer to a dwarf block that defines a location, compute
17570 the location and return the value.
17571
4cecd739
DJ
17572 NOTE drow/2003-11-18: This function is called in two situations
17573 now: for the address of static or global variables (partial symbols
17574 only) and for offsets into structures which are expected to be
17575 (more or less) constant. The partial symbol case should go away,
17576 and only the constant case should remain. That will let this
17577 function complain more accurately. A few special modes are allowed
17578 without complaint for global variables (for instance, global
17579 register values and thread-local values).
c906108c
SS
17580
17581 A location description containing no operations indicates that the
4cecd739 17582 object is optimized out. The return value is 0 for that case.
6b992462
DJ
17583 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17584 callers will only want a very basic result and this can become a
21ae7a4d
JK
17585 complaint.
17586
17587 Note that stack[0] is unused except as a default error return. */
c906108c
SS
17588
17589static CORE_ADDR
e7c27a73 17590decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 17591{
e7c27a73 17592 struct objfile *objfile = cu->objfile;
56eb65bd
SP
17593 size_t i;
17594 size_t size = blk->size;
21ae7a4d
JK
17595 gdb_byte *data = blk->data;
17596 CORE_ADDR stack[64];
17597 int stacki;
17598 unsigned int bytes_read, unsnd;
17599 gdb_byte op;
c906108c 17600
21ae7a4d
JK
17601 i = 0;
17602 stacki = 0;
17603 stack[stacki] = 0;
17604 stack[++stacki] = 0;
17605
17606 while (i < size)
17607 {
17608 op = data[i++];
17609 switch (op)
17610 {
17611 case DW_OP_lit0:
17612 case DW_OP_lit1:
17613 case DW_OP_lit2:
17614 case DW_OP_lit3:
17615 case DW_OP_lit4:
17616 case DW_OP_lit5:
17617 case DW_OP_lit6:
17618 case DW_OP_lit7:
17619 case DW_OP_lit8:
17620 case DW_OP_lit9:
17621 case DW_OP_lit10:
17622 case DW_OP_lit11:
17623 case DW_OP_lit12:
17624 case DW_OP_lit13:
17625 case DW_OP_lit14:
17626 case DW_OP_lit15:
17627 case DW_OP_lit16:
17628 case DW_OP_lit17:
17629 case DW_OP_lit18:
17630 case DW_OP_lit19:
17631 case DW_OP_lit20:
17632 case DW_OP_lit21:
17633 case DW_OP_lit22:
17634 case DW_OP_lit23:
17635 case DW_OP_lit24:
17636 case DW_OP_lit25:
17637 case DW_OP_lit26:
17638 case DW_OP_lit27:
17639 case DW_OP_lit28:
17640 case DW_OP_lit29:
17641 case DW_OP_lit30:
17642 case DW_OP_lit31:
17643 stack[++stacki] = op - DW_OP_lit0;
17644 break;
f1bea926 17645
21ae7a4d
JK
17646 case DW_OP_reg0:
17647 case DW_OP_reg1:
17648 case DW_OP_reg2:
17649 case DW_OP_reg3:
17650 case DW_OP_reg4:
17651 case DW_OP_reg5:
17652 case DW_OP_reg6:
17653 case DW_OP_reg7:
17654 case DW_OP_reg8:
17655 case DW_OP_reg9:
17656 case DW_OP_reg10:
17657 case DW_OP_reg11:
17658 case DW_OP_reg12:
17659 case DW_OP_reg13:
17660 case DW_OP_reg14:
17661 case DW_OP_reg15:
17662 case DW_OP_reg16:
17663 case DW_OP_reg17:
17664 case DW_OP_reg18:
17665 case DW_OP_reg19:
17666 case DW_OP_reg20:
17667 case DW_OP_reg21:
17668 case DW_OP_reg22:
17669 case DW_OP_reg23:
17670 case DW_OP_reg24:
17671 case DW_OP_reg25:
17672 case DW_OP_reg26:
17673 case DW_OP_reg27:
17674 case DW_OP_reg28:
17675 case DW_OP_reg29:
17676 case DW_OP_reg30:
17677 case DW_OP_reg31:
17678 stack[++stacki] = op - DW_OP_reg0;
17679 if (i < size)
17680 dwarf2_complex_location_expr_complaint ();
17681 break;
c906108c 17682
21ae7a4d
JK
17683 case DW_OP_regx:
17684 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17685 i += bytes_read;
17686 stack[++stacki] = unsnd;
17687 if (i < size)
17688 dwarf2_complex_location_expr_complaint ();
17689 break;
c906108c 17690
21ae7a4d
JK
17691 case DW_OP_addr:
17692 stack[++stacki] = read_address (objfile->obfd, &data[i],
17693 cu, &bytes_read);
17694 i += bytes_read;
17695 break;
d53d4ac5 17696
21ae7a4d
JK
17697 case DW_OP_const1u:
17698 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17699 i += 1;
17700 break;
17701
17702 case DW_OP_const1s:
17703 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17704 i += 1;
17705 break;
17706
17707 case DW_OP_const2u:
17708 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17709 i += 2;
17710 break;
17711
17712 case DW_OP_const2s:
17713 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17714 i += 2;
17715 break;
d53d4ac5 17716
21ae7a4d
JK
17717 case DW_OP_const4u:
17718 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17719 i += 4;
17720 break;
17721
17722 case DW_OP_const4s:
17723 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17724 i += 4;
17725 break;
17726
585861ea
JK
17727 case DW_OP_const8u:
17728 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17729 i += 8;
17730 break;
17731
21ae7a4d
JK
17732 case DW_OP_constu:
17733 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17734 &bytes_read);
17735 i += bytes_read;
17736 break;
17737
17738 case DW_OP_consts:
17739 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17740 i += bytes_read;
17741 break;
17742
17743 case DW_OP_dup:
17744 stack[stacki + 1] = stack[stacki];
17745 stacki++;
17746 break;
17747
17748 case DW_OP_plus:
17749 stack[stacki - 1] += stack[stacki];
17750 stacki--;
17751 break;
17752
17753 case DW_OP_plus_uconst:
17754 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17755 &bytes_read);
17756 i += bytes_read;
17757 break;
17758
17759 case DW_OP_minus:
17760 stack[stacki - 1] -= stack[stacki];
17761 stacki--;
17762 break;
17763
17764 case DW_OP_deref:
17765 /* If we're not the last op, then we definitely can't encode
17766 this using GDB's address_class enum. This is valid for partial
17767 global symbols, although the variable's address will be bogus
17768 in the psymtab. */
17769 if (i < size)
17770 dwarf2_complex_location_expr_complaint ();
17771 break;
17772
17773 case DW_OP_GNU_push_tls_address:
17774 /* The top of the stack has the offset from the beginning
17775 of the thread control block at which the variable is located. */
17776 /* Nothing should follow this operator, so the top of stack would
17777 be returned. */
17778 /* This is valid for partial global symbols, but the variable's
585861ea
JK
17779 address will be bogus in the psymtab. Make it always at least
17780 non-zero to not look as a variable garbage collected by linker
17781 which have DW_OP_addr 0. */
21ae7a4d
JK
17782 if (i < size)
17783 dwarf2_complex_location_expr_complaint ();
585861ea 17784 stack[stacki]++;
21ae7a4d
JK
17785 break;
17786
17787 case DW_OP_GNU_uninit:
17788 break;
17789
3019eac3 17790 case DW_OP_GNU_addr_index:
49f6c839 17791 case DW_OP_GNU_const_index:
3019eac3
DE
17792 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17793 &bytes_read);
17794 i += bytes_read;
17795 break;
17796
21ae7a4d
JK
17797 default:
17798 {
f39c6ffd 17799 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
17800
17801 if (name)
17802 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17803 name);
17804 else
17805 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17806 op);
17807 }
17808
17809 return (stack[stacki]);
d53d4ac5 17810 }
3c6e0cb3 17811
21ae7a4d
JK
17812 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17813 outside of the allocated space. Also enforce minimum>0. */
17814 if (stacki >= ARRAY_SIZE (stack) - 1)
17815 {
17816 complaint (&symfile_complaints,
17817 _("location description stack overflow"));
17818 return 0;
17819 }
17820
17821 if (stacki <= 0)
17822 {
17823 complaint (&symfile_complaints,
17824 _("location description stack underflow"));
17825 return 0;
17826 }
17827 }
17828 return (stack[stacki]);
c906108c
SS
17829}
17830
17831/* memory allocation interface */
17832
c906108c 17833static struct dwarf_block *
7b5a2f43 17834dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
17835{
17836 struct dwarf_block *blk;
17837
17838 blk = (struct dwarf_block *)
7b5a2f43 17839 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
17840 return (blk);
17841}
17842
c906108c 17843static struct die_info *
b60c80d6 17844dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
17845{
17846 struct die_info *die;
b60c80d6
DJ
17847 size_t size = sizeof (struct die_info);
17848
17849 if (num_attrs > 1)
17850 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 17851
b60c80d6 17852 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
17853 memset (die, 0, sizeof (struct die_info));
17854 return (die);
17855}
2e276125
JB
17856
17857\f
17858/* Macro support. */
17859
2e276125
JB
17860/* Return the full name of file number I in *LH's file name table.
17861 Use COMP_DIR as the name of the current directory of the
17862 compilation. The result is allocated using xmalloc; the caller is
17863 responsible for freeing it. */
17864static char *
17865file_full_name (int file, struct line_header *lh, const char *comp_dir)
17866{
6a83a1e6
EZ
17867 /* Is the file number a valid index into the line header's file name
17868 table? Remember that file numbers start with one, not zero. */
17869 if (1 <= file && file <= lh->num_file_names)
17870 {
17871 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 17872
6a83a1e6
EZ
17873 if (IS_ABSOLUTE_PATH (fe->name))
17874 return xstrdup (fe->name);
17875 else
17876 {
17877 const char *dir;
17878 int dir_len;
17879 char *full_name;
17880
17881 if (fe->dir_index)
17882 dir = lh->include_dirs[fe->dir_index - 1];
17883 else
17884 dir = comp_dir;
17885
17886 if (dir)
17887 {
17888 dir_len = strlen (dir);
17889 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17890 strcpy (full_name, dir);
17891 full_name[dir_len] = '/';
17892 strcpy (full_name + dir_len + 1, fe->name);
17893 return full_name;
17894 }
17895 else
17896 return xstrdup (fe->name);
17897 }
17898 }
2e276125
JB
17899 else
17900 {
6a83a1e6
EZ
17901 /* The compiler produced a bogus file number. We can at least
17902 record the macro definitions made in the file, even if we
17903 won't be able to find the file by name. */
17904 char fake_name[80];
9a619af0 17905
6a83a1e6 17906 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 17907
6e70227d 17908 complaint (&symfile_complaints,
6a83a1e6
EZ
17909 _("bad file number in macro information (%d)"),
17910 file);
2e276125 17911
6a83a1e6 17912 return xstrdup (fake_name);
2e276125
JB
17913 }
17914}
17915
17916
17917static struct macro_source_file *
17918macro_start_file (int file, int line,
17919 struct macro_source_file *current_file,
17920 const char *comp_dir,
17921 struct line_header *lh, struct objfile *objfile)
17922{
17923 /* The full name of this source file. */
17924 char *full_name = file_full_name (file, lh, comp_dir);
17925
17926 /* We don't create a macro table for this compilation unit
17927 at all until we actually get a filename. */
17928 if (! pending_macros)
6532ff36
TT
17929 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17930 objfile->per_bfd->macro_cache);
2e276125
JB
17931
17932 if (! current_file)
abc9d0dc
TT
17933 {
17934 /* If we have no current file, then this must be the start_file
17935 directive for the compilation unit's main source file. */
17936 current_file = macro_set_main (pending_macros, full_name);
17937 macro_define_special (pending_macros);
17938 }
2e276125
JB
17939 else
17940 current_file = macro_include (current_file, line, full_name);
17941
17942 xfree (full_name);
6e70227d 17943
2e276125
JB
17944 return current_file;
17945}
17946
17947
17948/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17949 followed by a null byte. */
17950static char *
17951copy_string (const char *buf, int len)
17952{
17953 char *s = xmalloc (len + 1);
9a619af0 17954
2e276125
JB
17955 memcpy (s, buf, len);
17956 s[len] = '\0';
2e276125
JB
17957 return s;
17958}
17959
17960
17961static const char *
17962consume_improper_spaces (const char *p, const char *body)
17963{
17964 if (*p == ' ')
17965 {
4d3c2250 17966 complaint (&symfile_complaints,
3e43a32a
MS
17967 _("macro definition contains spaces "
17968 "in formal argument list:\n`%s'"),
4d3c2250 17969 body);
2e276125
JB
17970
17971 while (*p == ' ')
17972 p++;
17973 }
17974
17975 return p;
17976}
17977
17978
17979static void
17980parse_macro_definition (struct macro_source_file *file, int line,
17981 const char *body)
17982{
17983 const char *p;
17984
17985 /* The body string takes one of two forms. For object-like macro
17986 definitions, it should be:
17987
17988 <macro name> " " <definition>
17989
17990 For function-like macro definitions, it should be:
17991
17992 <macro name> "() " <definition>
17993 or
17994 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
17995
17996 Spaces may appear only where explicitly indicated, and in the
17997 <definition>.
17998
17999 The Dwarf 2 spec says that an object-like macro's name is always
18000 followed by a space, but versions of GCC around March 2002 omit
6e70227d 18001 the space when the macro's definition is the empty string.
2e276125
JB
18002
18003 The Dwarf 2 spec says that there should be no spaces between the
18004 formal arguments in a function-like macro's formal argument list,
18005 but versions of GCC around March 2002 include spaces after the
18006 commas. */
18007
18008
18009 /* Find the extent of the macro name. The macro name is terminated
18010 by either a space or null character (for an object-like macro) or
18011 an opening paren (for a function-like macro). */
18012 for (p = body; *p; p++)
18013 if (*p == ' ' || *p == '(')
18014 break;
18015
18016 if (*p == ' ' || *p == '\0')
18017 {
18018 /* It's an object-like macro. */
18019 int name_len = p - body;
18020 char *name = copy_string (body, name_len);
18021 const char *replacement;
18022
18023 if (*p == ' ')
18024 replacement = body + name_len + 1;
18025 else
18026 {
4d3c2250 18027 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18028 replacement = body + name_len;
18029 }
6e70227d 18030
2e276125
JB
18031 macro_define_object (file, line, name, replacement);
18032
18033 xfree (name);
18034 }
18035 else if (*p == '(')
18036 {
18037 /* It's a function-like macro. */
18038 char *name = copy_string (body, p - body);
18039 int argc = 0;
18040 int argv_size = 1;
18041 char **argv = xmalloc (argv_size * sizeof (*argv));
18042
18043 p++;
18044
18045 p = consume_improper_spaces (p, body);
18046
18047 /* Parse the formal argument list. */
18048 while (*p && *p != ')')
18049 {
18050 /* Find the extent of the current argument name. */
18051 const char *arg_start = p;
18052
18053 while (*p && *p != ',' && *p != ')' && *p != ' ')
18054 p++;
18055
18056 if (! *p || p == arg_start)
4d3c2250 18057 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18058 else
18059 {
18060 /* Make sure argv has room for the new argument. */
18061 if (argc >= argv_size)
18062 {
18063 argv_size *= 2;
18064 argv = xrealloc (argv, argv_size * sizeof (*argv));
18065 }
18066
18067 argv[argc++] = copy_string (arg_start, p - arg_start);
18068 }
18069
18070 p = consume_improper_spaces (p, body);
18071
18072 /* Consume the comma, if present. */
18073 if (*p == ',')
18074 {
18075 p++;
18076
18077 p = consume_improper_spaces (p, body);
18078 }
18079 }
18080
18081 if (*p == ')')
18082 {
18083 p++;
18084
18085 if (*p == ' ')
18086 /* Perfectly formed definition, no complaints. */
18087 macro_define_function (file, line, name,
6e70227d 18088 argc, (const char **) argv,
2e276125
JB
18089 p + 1);
18090 else if (*p == '\0')
18091 {
18092 /* Complain, but do define it. */
4d3c2250 18093 dwarf2_macro_malformed_definition_complaint (body);
2e276125 18094 macro_define_function (file, line, name,
6e70227d 18095 argc, (const char **) argv,
2e276125
JB
18096 p);
18097 }
18098 else
18099 /* Just complain. */
4d3c2250 18100 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18101 }
18102 else
18103 /* Just complain. */
4d3c2250 18104 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18105
18106 xfree (name);
18107 {
18108 int i;
18109
18110 for (i = 0; i < argc; i++)
18111 xfree (argv[i]);
18112 }
18113 xfree (argv);
18114 }
18115 else
4d3c2250 18116 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18117}
18118
cf2c3c16
TT
18119/* Skip some bytes from BYTES according to the form given in FORM.
18120 Returns the new pointer. */
2e276125 18121
cf2c3c16 18122static gdb_byte *
f664829e 18123skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
cf2c3c16
TT
18124 enum dwarf_form form,
18125 unsigned int offset_size,
18126 struct dwarf2_section_info *section)
2e276125 18127{
cf2c3c16 18128 unsigned int bytes_read;
2e276125 18129
cf2c3c16 18130 switch (form)
2e276125 18131 {
cf2c3c16
TT
18132 case DW_FORM_data1:
18133 case DW_FORM_flag:
18134 ++bytes;
18135 break;
18136
18137 case DW_FORM_data2:
18138 bytes += 2;
18139 break;
18140
18141 case DW_FORM_data4:
18142 bytes += 4;
18143 break;
18144
18145 case DW_FORM_data8:
18146 bytes += 8;
18147 break;
18148
18149 case DW_FORM_string:
18150 read_direct_string (abfd, bytes, &bytes_read);
18151 bytes += bytes_read;
18152 break;
18153
18154 case DW_FORM_sec_offset:
18155 case DW_FORM_strp:
36586728 18156 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
18157 bytes += offset_size;
18158 break;
18159
18160 case DW_FORM_block:
18161 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18162 bytes += bytes_read;
18163 break;
18164
18165 case DW_FORM_block1:
18166 bytes += 1 + read_1_byte (abfd, bytes);
18167 break;
18168 case DW_FORM_block2:
18169 bytes += 2 + read_2_bytes (abfd, bytes);
18170 break;
18171 case DW_FORM_block4:
18172 bytes += 4 + read_4_bytes (abfd, bytes);
18173 break;
18174
18175 case DW_FORM_sdata:
18176 case DW_FORM_udata:
3019eac3
DE
18177 case DW_FORM_GNU_addr_index:
18178 case DW_FORM_GNU_str_index:
f664829e
DE
18179 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18180 if (bytes == NULL)
18181 {
18182 dwarf2_section_buffer_overflow_complaint (section);
18183 return NULL;
18184 }
cf2c3c16
TT
18185 break;
18186
18187 default:
18188 {
18189 complain:
18190 complaint (&symfile_complaints,
18191 _("invalid form 0x%x in `%s'"),
18192 form,
18193 section->asection->name);
18194 return NULL;
18195 }
2e276125
JB
18196 }
18197
cf2c3c16
TT
18198 return bytes;
18199}
757a13d0 18200
cf2c3c16
TT
18201/* A helper for dwarf_decode_macros that handles skipping an unknown
18202 opcode. Returns an updated pointer to the macro data buffer; or,
18203 on error, issues a complaint and returns NULL. */
757a13d0 18204
cf2c3c16
TT
18205static gdb_byte *
18206skip_unknown_opcode (unsigned int opcode,
18207 gdb_byte **opcode_definitions,
f664829e 18208 gdb_byte *mac_ptr, gdb_byte *mac_end,
cf2c3c16
TT
18209 bfd *abfd,
18210 unsigned int offset_size,
18211 struct dwarf2_section_info *section)
18212{
18213 unsigned int bytes_read, i;
18214 unsigned long arg;
18215 gdb_byte *defn;
2e276125 18216
cf2c3c16 18217 if (opcode_definitions[opcode] == NULL)
2e276125 18218 {
cf2c3c16
TT
18219 complaint (&symfile_complaints,
18220 _("unrecognized DW_MACFINO opcode 0x%x"),
18221 opcode);
18222 return NULL;
18223 }
2e276125 18224
cf2c3c16
TT
18225 defn = opcode_definitions[opcode];
18226 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18227 defn += bytes_read;
2e276125 18228
cf2c3c16
TT
18229 for (i = 0; i < arg; ++i)
18230 {
f664829e
DE
18231 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18232 section);
cf2c3c16
TT
18233 if (mac_ptr == NULL)
18234 {
18235 /* skip_form_bytes already issued the complaint. */
18236 return NULL;
18237 }
18238 }
757a13d0 18239
cf2c3c16
TT
18240 return mac_ptr;
18241}
757a13d0 18242
cf2c3c16
TT
18243/* A helper function which parses the header of a macro section.
18244 If the macro section is the extended (for now called "GNU") type,
18245 then this updates *OFFSET_SIZE. Returns a pointer to just after
18246 the header, or issues a complaint and returns NULL on error. */
757a13d0 18247
cf2c3c16
TT
18248static gdb_byte *
18249dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18250 bfd *abfd,
18251 gdb_byte *mac_ptr,
18252 unsigned int *offset_size,
18253 int section_is_gnu)
18254{
18255 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 18256
cf2c3c16
TT
18257 if (section_is_gnu)
18258 {
18259 unsigned int version, flags;
757a13d0 18260
cf2c3c16
TT
18261 version = read_2_bytes (abfd, mac_ptr);
18262 if (version != 4)
18263 {
18264 complaint (&symfile_complaints,
18265 _("unrecognized version `%d' in .debug_macro section"),
18266 version);
18267 return NULL;
18268 }
18269 mac_ptr += 2;
757a13d0 18270
cf2c3c16
TT
18271 flags = read_1_byte (abfd, mac_ptr);
18272 ++mac_ptr;
18273 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 18274
cf2c3c16
TT
18275 if ((flags & 2) != 0)
18276 /* We don't need the line table offset. */
18277 mac_ptr += *offset_size;
757a13d0 18278
cf2c3c16
TT
18279 /* Vendor opcode descriptions. */
18280 if ((flags & 4) != 0)
18281 {
18282 unsigned int i, count;
757a13d0 18283
cf2c3c16
TT
18284 count = read_1_byte (abfd, mac_ptr);
18285 ++mac_ptr;
18286 for (i = 0; i < count; ++i)
18287 {
18288 unsigned int opcode, bytes_read;
18289 unsigned long arg;
18290
18291 opcode = read_1_byte (abfd, mac_ptr);
18292 ++mac_ptr;
18293 opcode_definitions[opcode] = mac_ptr;
18294 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18295 mac_ptr += bytes_read;
18296 mac_ptr += arg;
18297 }
757a13d0 18298 }
cf2c3c16 18299 }
757a13d0 18300
cf2c3c16
TT
18301 return mac_ptr;
18302}
757a13d0 18303
cf2c3c16 18304/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 18305 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
18306
18307static void
18308dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18309 struct macro_source_file *current_file,
18310 struct line_header *lh, char *comp_dir,
18311 struct dwarf2_section_info *section,
36586728 18312 int section_is_gnu, int section_is_dwz,
cf2c3c16 18313 unsigned int offset_size,
8fc3fc34
TT
18314 struct objfile *objfile,
18315 htab_t include_hash)
cf2c3c16
TT
18316{
18317 enum dwarf_macro_record_type macinfo_type;
18318 int at_commandline;
18319 gdb_byte *opcode_definitions[256];
757a13d0 18320
cf2c3c16
TT
18321 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18322 &offset_size, section_is_gnu);
18323 if (mac_ptr == NULL)
18324 {
18325 /* We already issued a complaint. */
18326 return;
18327 }
757a13d0
JK
18328
18329 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18330 GDB is still reading the definitions from command line. First
18331 DW_MACINFO_start_file will need to be ignored as it was already executed
18332 to create CURRENT_FILE for the main source holding also the command line
18333 definitions. On first met DW_MACINFO_start_file this flag is reset to
18334 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18335
18336 at_commandline = 1;
18337
18338 do
18339 {
18340 /* Do we at least have room for a macinfo type byte? */
18341 if (mac_ptr >= mac_end)
18342 {
f664829e 18343 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
18344 break;
18345 }
18346
18347 macinfo_type = read_1_byte (abfd, mac_ptr);
18348 mac_ptr++;
18349
cf2c3c16
TT
18350 /* Note that we rely on the fact that the corresponding GNU and
18351 DWARF constants are the same. */
757a13d0
JK
18352 switch (macinfo_type)
18353 {
18354 /* A zero macinfo type indicates the end of the macro
18355 information. */
18356 case 0:
18357 break;
2e276125 18358
cf2c3c16
TT
18359 case DW_MACRO_GNU_define:
18360 case DW_MACRO_GNU_undef:
18361 case DW_MACRO_GNU_define_indirect:
18362 case DW_MACRO_GNU_undef_indirect:
36586728
TT
18363 case DW_MACRO_GNU_define_indirect_alt:
18364 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 18365 {
891d2f0b 18366 unsigned int bytes_read;
2e276125
JB
18367 int line;
18368 char *body;
cf2c3c16 18369 int is_define;
2e276125 18370
cf2c3c16
TT
18371 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18372 mac_ptr += bytes_read;
18373
18374 if (macinfo_type == DW_MACRO_GNU_define
18375 || macinfo_type == DW_MACRO_GNU_undef)
18376 {
18377 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18378 mac_ptr += bytes_read;
18379 }
18380 else
18381 {
18382 LONGEST str_offset;
18383
18384 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18385 mac_ptr += offset_size;
2e276125 18386
36586728 18387 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
18388 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18389 || section_is_dwz)
36586728
TT
18390 {
18391 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18392
18393 body = read_indirect_string_from_dwz (dwz, str_offset);
18394 }
18395 else
18396 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
18397 }
18398
18399 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
18400 || macinfo_type == DW_MACRO_GNU_define_indirect
18401 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 18402 if (! current_file)
757a13d0
JK
18403 {
18404 /* DWARF violation as no main source is present. */
18405 complaint (&symfile_complaints,
18406 _("debug info with no main source gives macro %s "
18407 "on line %d: %s"),
cf2c3c16
TT
18408 is_define ? _("definition") : _("undefinition"),
18409 line, body);
757a13d0
JK
18410 break;
18411 }
3e43a32a
MS
18412 if ((line == 0 && !at_commandline)
18413 || (line != 0 && at_commandline))
4d3c2250 18414 complaint (&symfile_complaints,
757a13d0
JK
18415 _("debug info gives %s macro %s with %s line %d: %s"),
18416 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 18417 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
18418 line == 0 ? _("zero") : _("non-zero"), line, body);
18419
cf2c3c16 18420 if (is_define)
757a13d0 18421 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
18422 else
18423 {
18424 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
18425 || macinfo_type == DW_MACRO_GNU_undef_indirect
18426 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
18427 macro_undef (current_file, line, body);
18428 }
2e276125
JB
18429 }
18430 break;
18431
cf2c3c16 18432 case DW_MACRO_GNU_start_file:
2e276125 18433 {
891d2f0b 18434 unsigned int bytes_read;
2e276125
JB
18435 int line, file;
18436
18437 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18438 mac_ptr += bytes_read;
18439 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18440 mac_ptr += bytes_read;
18441
3e43a32a
MS
18442 if ((line == 0 && !at_commandline)
18443 || (line != 0 && at_commandline))
757a13d0
JK
18444 complaint (&symfile_complaints,
18445 _("debug info gives source %d included "
18446 "from %s at %s line %d"),
18447 file, at_commandline ? _("command-line") : _("file"),
18448 line == 0 ? _("zero") : _("non-zero"), line);
18449
18450 if (at_commandline)
18451 {
cf2c3c16
TT
18452 /* This DW_MACRO_GNU_start_file was executed in the
18453 pass one. */
757a13d0
JK
18454 at_commandline = 0;
18455 }
18456 else
18457 current_file = macro_start_file (file, line,
18458 current_file, comp_dir,
cf2c3c16 18459 lh, objfile);
2e276125
JB
18460 }
18461 break;
18462
cf2c3c16 18463 case DW_MACRO_GNU_end_file:
2e276125 18464 if (! current_file)
4d3c2250 18465 complaint (&symfile_complaints,
3e43a32a
MS
18466 _("macro debug info has an unmatched "
18467 "`close_file' directive"));
2e276125
JB
18468 else
18469 {
18470 current_file = current_file->included_by;
18471 if (! current_file)
18472 {
cf2c3c16 18473 enum dwarf_macro_record_type next_type;
2e276125
JB
18474
18475 /* GCC circa March 2002 doesn't produce the zero
18476 type byte marking the end of the compilation
18477 unit. Complain if it's not there, but exit no
18478 matter what. */
18479
18480 /* Do we at least have room for a macinfo type byte? */
18481 if (mac_ptr >= mac_end)
18482 {
f664829e 18483 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
18484 return;
18485 }
18486
18487 /* We don't increment mac_ptr here, so this is just
18488 a look-ahead. */
18489 next_type = read_1_byte (abfd, mac_ptr);
18490 if (next_type != 0)
4d3c2250 18491 complaint (&symfile_complaints,
3e43a32a
MS
18492 _("no terminating 0-type entry for "
18493 "macros in `.debug_macinfo' section"));
2e276125
JB
18494
18495 return;
18496 }
18497 }
18498 break;
18499
cf2c3c16 18500 case DW_MACRO_GNU_transparent_include:
36586728 18501 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
18502 {
18503 LONGEST offset;
8fc3fc34 18504 void **slot;
a036ba48
TT
18505 bfd *include_bfd = abfd;
18506 struct dwarf2_section_info *include_section = section;
18507 struct dwarf2_section_info alt_section;
18508 gdb_byte *include_mac_end = mac_end;
18509 int is_dwz = section_is_dwz;
18510 gdb_byte *new_mac_ptr;
cf2c3c16
TT
18511
18512 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18513 mac_ptr += offset_size;
18514
a036ba48
TT
18515 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18516 {
18517 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18518
18519 dwarf2_read_section (dwarf2_per_objfile->objfile,
18520 &dwz->macro);
18521
18522 include_bfd = dwz->macro.asection->owner;
18523 include_section = &dwz->macro;
18524 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18525 is_dwz = 1;
18526 }
18527
18528 new_mac_ptr = include_section->buffer + offset;
18529 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18530
8fc3fc34
TT
18531 if (*slot != NULL)
18532 {
18533 /* This has actually happened; see
18534 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18535 complaint (&symfile_complaints,
18536 _("recursive DW_MACRO_GNU_transparent_include in "
18537 ".debug_macro section"));
18538 }
18539 else
18540 {
a036ba48 18541 *slot = new_mac_ptr;
36586728 18542
a036ba48 18543 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 18544 include_mac_end, current_file,
8fc3fc34 18545 lh, comp_dir,
36586728 18546 section, section_is_gnu, is_dwz,
8fc3fc34
TT
18547 offset_size, objfile, include_hash);
18548
a036ba48 18549 htab_remove_elt (include_hash, new_mac_ptr);
8fc3fc34 18550 }
cf2c3c16
TT
18551 }
18552 break;
18553
2e276125 18554 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
18555 if (!section_is_gnu)
18556 {
18557 unsigned int bytes_read;
18558 int constant;
2e276125 18559
cf2c3c16
TT
18560 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18561 mac_ptr += bytes_read;
18562 read_direct_string (abfd, mac_ptr, &bytes_read);
18563 mac_ptr += bytes_read;
2e276125 18564
cf2c3c16
TT
18565 /* We don't recognize any vendor extensions. */
18566 break;
18567 }
18568 /* FALLTHROUGH */
18569
18570 default:
18571 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 18572 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
18573 section);
18574 if (mac_ptr == NULL)
18575 return;
18576 break;
2e276125 18577 }
757a13d0 18578 } while (macinfo_type != 0);
2e276125 18579}
8e19ed76 18580
cf2c3c16 18581static void
09262596
DE
18582dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18583 char *comp_dir, int section_is_gnu)
cf2c3c16 18584{
bb5ed363 18585 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
18586 struct line_header *lh = cu->line_header;
18587 bfd *abfd;
cf2c3c16
TT
18588 gdb_byte *mac_ptr, *mac_end;
18589 struct macro_source_file *current_file = 0;
18590 enum dwarf_macro_record_type macinfo_type;
18591 unsigned int offset_size = cu->header.offset_size;
18592 gdb_byte *opcode_definitions[256];
8fc3fc34
TT
18593 struct cleanup *cleanup;
18594 htab_t include_hash;
18595 void **slot;
09262596
DE
18596 struct dwarf2_section_info *section;
18597 const char *section_name;
18598
18599 if (cu->dwo_unit != NULL)
18600 {
18601 if (section_is_gnu)
18602 {
18603 section = &cu->dwo_unit->dwo_file->sections.macro;
18604 section_name = ".debug_macro.dwo";
18605 }
18606 else
18607 {
18608 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18609 section_name = ".debug_macinfo.dwo";
18610 }
18611 }
18612 else
18613 {
18614 if (section_is_gnu)
18615 {
18616 section = &dwarf2_per_objfile->macro;
18617 section_name = ".debug_macro";
18618 }
18619 else
18620 {
18621 section = &dwarf2_per_objfile->macinfo;
18622 section_name = ".debug_macinfo";
18623 }
18624 }
cf2c3c16 18625
bb5ed363 18626 dwarf2_read_section (objfile, section);
cf2c3c16
TT
18627 if (section->buffer == NULL)
18628 {
fceca515 18629 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
18630 return;
18631 }
09262596 18632 abfd = section->asection->owner;
cf2c3c16
TT
18633
18634 /* First pass: Find the name of the base filename.
18635 This filename is needed in order to process all macros whose definition
18636 (or undefinition) comes from the command line. These macros are defined
18637 before the first DW_MACINFO_start_file entry, and yet still need to be
18638 associated to the base file.
18639
18640 To determine the base file name, we scan the macro definitions until we
18641 reach the first DW_MACINFO_start_file entry. We then initialize
18642 CURRENT_FILE accordingly so that any macro definition found before the
18643 first DW_MACINFO_start_file can still be associated to the base file. */
18644
18645 mac_ptr = section->buffer + offset;
18646 mac_end = section->buffer + section->size;
18647
18648 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18649 &offset_size, section_is_gnu);
18650 if (mac_ptr == NULL)
18651 {
18652 /* We already issued a complaint. */
18653 return;
18654 }
18655
18656 do
18657 {
18658 /* Do we at least have room for a macinfo type byte? */
18659 if (mac_ptr >= mac_end)
18660 {
18661 /* Complaint is printed during the second pass as GDB will probably
18662 stop the first pass earlier upon finding
18663 DW_MACINFO_start_file. */
18664 break;
18665 }
18666
18667 macinfo_type = read_1_byte (abfd, mac_ptr);
18668 mac_ptr++;
18669
18670 /* Note that we rely on the fact that the corresponding GNU and
18671 DWARF constants are the same. */
18672 switch (macinfo_type)
18673 {
18674 /* A zero macinfo type indicates the end of the macro
18675 information. */
18676 case 0:
18677 break;
18678
18679 case DW_MACRO_GNU_define:
18680 case DW_MACRO_GNU_undef:
18681 /* Only skip the data by MAC_PTR. */
18682 {
18683 unsigned int bytes_read;
18684
18685 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18686 mac_ptr += bytes_read;
18687 read_direct_string (abfd, mac_ptr, &bytes_read);
18688 mac_ptr += bytes_read;
18689 }
18690 break;
18691
18692 case DW_MACRO_GNU_start_file:
18693 {
18694 unsigned int bytes_read;
18695 int line, file;
18696
18697 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18698 mac_ptr += bytes_read;
18699 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18700 mac_ptr += bytes_read;
18701
18702 current_file = macro_start_file (file, line, current_file,
bb5ed363 18703 comp_dir, lh, objfile);
cf2c3c16
TT
18704 }
18705 break;
18706
18707 case DW_MACRO_GNU_end_file:
18708 /* No data to skip by MAC_PTR. */
18709 break;
18710
18711 case DW_MACRO_GNU_define_indirect:
18712 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
18713 case DW_MACRO_GNU_define_indirect_alt:
18714 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
18715 {
18716 unsigned int bytes_read;
18717
18718 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18719 mac_ptr += bytes_read;
18720 mac_ptr += offset_size;
18721 }
18722 break;
18723
18724 case DW_MACRO_GNU_transparent_include:
f7a35f02 18725 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
18726 /* Note that, according to the spec, a transparent include
18727 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18728 skip this opcode. */
18729 mac_ptr += offset_size;
18730 break;
18731
18732 case DW_MACINFO_vendor_ext:
18733 /* Only skip the data by MAC_PTR. */
18734 if (!section_is_gnu)
18735 {
18736 unsigned int bytes_read;
18737
18738 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18739 mac_ptr += bytes_read;
18740 read_direct_string (abfd, mac_ptr, &bytes_read);
18741 mac_ptr += bytes_read;
18742 }
18743 /* FALLTHROUGH */
18744
18745 default:
18746 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 18747 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
18748 section);
18749 if (mac_ptr == NULL)
18750 return;
18751 break;
18752 }
18753 } while (macinfo_type != 0 && current_file == NULL);
18754
18755 /* Second pass: Process all entries.
18756
18757 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18758 command-line macro definitions/undefinitions. This flag is unset when we
18759 reach the first DW_MACINFO_start_file entry. */
18760
8fc3fc34
TT
18761 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18762 NULL, xcalloc, xfree);
18763 cleanup = make_cleanup_htab_delete (include_hash);
18764 mac_ptr = section->buffer + offset;
18765 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18766 *slot = mac_ptr;
18767 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
18768 current_file, lh, comp_dir, section,
18769 section_is_gnu, 0,
8fc3fc34
TT
18770 offset_size, objfile, include_hash);
18771 do_cleanups (cleanup);
cf2c3c16
TT
18772}
18773
8e19ed76 18774/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 18775 if so return true else false. */
380bca97 18776
8e19ed76
PS
18777static int
18778attr_form_is_block (struct attribute *attr)
18779{
18780 return (attr == NULL ? 0 :
18781 attr->form == DW_FORM_block1
18782 || attr->form == DW_FORM_block2
18783 || attr->form == DW_FORM_block4
2dc7f7b3
TT
18784 || attr->form == DW_FORM_block
18785 || attr->form == DW_FORM_exprloc);
8e19ed76 18786}
4c2df51b 18787
c6a0999f
JB
18788/* Return non-zero if ATTR's value is a section offset --- classes
18789 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18790 You may use DW_UNSND (attr) to retrieve such offsets.
18791
18792 Section 7.5.4, "Attribute Encodings", explains that no attribute
18793 may have a value that belongs to more than one of these classes; it
18794 would be ambiguous if we did, because we use the same forms for all
18795 of them. */
380bca97 18796
3690dd37
JB
18797static int
18798attr_form_is_section_offset (struct attribute *attr)
18799{
18800 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
18801 || attr->form == DW_FORM_data8
18802 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
18803}
18804
3690dd37
JB
18805/* Return non-zero if ATTR's value falls in the 'constant' class, or
18806 zero otherwise. When this function returns true, you can apply
18807 dwarf2_get_attr_constant_value to it.
18808
18809 However, note that for some attributes you must check
18810 attr_form_is_section_offset before using this test. DW_FORM_data4
18811 and DW_FORM_data8 are members of both the constant class, and of
18812 the classes that contain offsets into other debug sections
18813 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18814 that, if an attribute's can be either a constant or one of the
18815 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18816 taken as section offsets, not constants. */
380bca97 18817
3690dd37
JB
18818static int
18819attr_form_is_constant (struct attribute *attr)
18820{
18821 switch (attr->form)
18822 {
18823 case DW_FORM_sdata:
18824 case DW_FORM_udata:
18825 case DW_FORM_data1:
18826 case DW_FORM_data2:
18827 case DW_FORM_data4:
18828 case DW_FORM_data8:
18829 return 1;
18830 default:
18831 return 0;
18832 }
18833}
18834
3019eac3
DE
18835/* Return the .debug_loc section to use for CU.
18836 For DWO files use .debug_loc.dwo. */
18837
18838static struct dwarf2_section_info *
18839cu_debug_loc_section (struct dwarf2_cu *cu)
18840{
18841 if (cu->dwo_unit)
18842 return &cu->dwo_unit->dwo_file->sections.loc;
18843 return &dwarf2_per_objfile->loc;
18844}
18845
8cf6f0b1
TT
18846/* A helper function that fills in a dwarf2_loclist_baton. */
18847
18848static void
18849fill_in_loclist_baton (struct dwarf2_cu *cu,
18850 struct dwarf2_loclist_baton *baton,
18851 struct attribute *attr)
18852{
3019eac3
DE
18853 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18854
18855 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
18856
18857 baton->per_cu = cu->per_cu;
18858 gdb_assert (baton->per_cu);
18859 /* We don't know how long the location list is, but make sure we
18860 don't run off the edge of the section. */
3019eac3
DE
18861 baton->size = section->size - DW_UNSND (attr);
18862 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 18863 baton->base_address = cu->base_address;
f664829e 18864 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
18865}
18866
4c2df51b
DJ
18867static void
18868dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 18869 struct dwarf2_cu *cu)
4c2df51b 18870{
bb5ed363 18871 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 18872 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 18873
3690dd37 18874 if (attr_form_is_section_offset (attr)
3019eac3 18875 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
18876 the section. If so, fall through to the complaint in the
18877 other branch. */
3019eac3 18878 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 18879 {
0d53c4c4 18880 struct dwarf2_loclist_baton *baton;
4c2df51b 18881
bb5ed363 18882 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 18883 sizeof (struct dwarf2_loclist_baton));
4c2df51b 18884
8cf6f0b1 18885 fill_in_loclist_baton (cu, baton, attr);
be391dca 18886
d00adf39 18887 if (cu->base_known == 0)
0d53c4c4 18888 complaint (&symfile_complaints,
3e43a32a
MS
18889 _("Location list used without "
18890 "specifying the CU base address."));
4c2df51b 18891
768a979c 18892 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
18893 SYMBOL_LOCATION_BATON (sym) = baton;
18894 }
18895 else
18896 {
18897 struct dwarf2_locexpr_baton *baton;
18898
bb5ed363 18899 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 18900 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
18901 baton->per_cu = cu->per_cu;
18902 gdb_assert (baton->per_cu);
0d53c4c4
DJ
18903
18904 if (attr_form_is_block (attr))
18905 {
18906 /* Note that we're just copying the block's data pointer
18907 here, not the actual data. We're still pointing into the
6502dd73
DJ
18908 info_buffer for SYM's objfile; right now we never release
18909 that buffer, but when we do clean up properly this may
18910 need to change. */
0d53c4c4
DJ
18911 baton->size = DW_BLOCK (attr)->size;
18912 baton->data = DW_BLOCK (attr)->data;
18913 }
18914 else
18915 {
18916 dwarf2_invalid_attrib_class_complaint ("location description",
18917 SYMBOL_NATURAL_NAME (sym));
18918 baton->size = 0;
0d53c4c4 18919 }
6e70227d 18920
768a979c 18921 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
18922 SYMBOL_LOCATION_BATON (sym) = baton;
18923 }
4c2df51b 18924}
6502dd73 18925
9aa1f1e3
TT
18926/* Return the OBJFILE associated with the compilation unit CU. If CU
18927 came from a separate debuginfo file, then the master objfile is
18928 returned. */
ae0d2f24
UW
18929
18930struct objfile *
18931dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18932{
9291a0cd 18933 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
18934
18935 /* Return the master objfile, so that we can report and look up the
18936 correct file containing this variable. */
18937 if (objfile->separate_debug_objfile_backlink)
18938 objfile = objfile->separate_debug_objfile_backlink;
18939
18940 return objfile;
18941}
18942
96408a79
SA
18943/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18944 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18945 CU_HEADERP first. */
18946
18947static const struct comp_unit_head *
18948per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18949 struct dwarf2_per_cu_data *per_cu)
18950{
96408a79
SA
18951 gdb_byte *info_ptr;
18952
18953 if (per_cu->cu)
18954 return &per_cu->cu->header;
18955
0bc3a05c 18956 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
96408a79
SA
18957
18958 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 18959 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
18960
18961 return cu_headerp;
18962}
18963
ae0d2f24
UW
18964/* Return the address size given in the compilation unit header for CU. */
18965
98714339 18966int
ae0d2f24
UW
18967dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18968{
96408a79
SA
18969 struct comp_unit_head cu_header_local;
18970 const struct comp_unit_head *cu_headerp;
c471e790 18971
96408a79
SA
18972 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18973
18974 return cu_headerp->addr_size;
ae0d2f24
UW
18975}
18976
9eae7c52
TT
18977/* Return the offset size given in the compilation unit header for CU. */
18978
18979int
18980dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
18981{
96408a79
SA
18982 struct comp_unit_head cu_header_local;
18983 const struct comp_unit_head *cu_headerp;
9c6c53f7 18984
96408a79
SA
18985 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18986
18987 return cu_headerp->offset_size;
18988}
18989
18990/* See its dwarf2loc.h declaration. */
18991
18992int
18993dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
18994{
18995 struct comp_unit_head cu_header_local;
18996 const struct comp_unit_head *cu_headerp;
18997
18998 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18999
19000 if (cu_headerp->version == 2)
19001 return cu_headerp->addr_size;
19002 else
19003 return cu_headerp->offset_size;
181cebd4
JK
19004}
19005
9aa1f1e3
TT
19006/* Return the text offset of the CU. The returned offset comes from
19007 this CU's objfile. If this objfile came from a separate debuginfo
19008 file, then the offset may be different from the corresponding
19009 offset in the parent objfile. */
19010
19011CORE_ADDR
19012dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19013{
bb3fa9d0 19014 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
19015
19016 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19017}
19018
348e048f
DE
19019/* Locate the .debug_info compilation unit from CU's objfile which contains
19020 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
19021
19022static struct dwarf2_per_cu_data *
b64f50a1 19023dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 19024 unsigned int offset_in_dwz,
ae038cb0
DJ
19025 struct objfile *objfile)
19026{
19027 struct dwarf2_per_cu_data *this_cu;
19028 int low, high;
36586728 19029 const sect_offset *cu_off;
ae038cb0 19030
ae038cb0
DJ
19031 low = 0;
19032 high = dwarf2_per_objfile->n_comp_units - 1;
19033 while (high > low)
19034 {
36586728 19035 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 19036 int mid = low + (high - low) / 2;
9a619af0 19037
36586728
TT
19038 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19039 cu_off = &mid_cu->offset;
19040 if (mid_cu->is_dwz > offset_in_dwz
19041 || (mid_cu->is_dwz == offset_in_dwz
19042 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
19043 high = mid;
19044 else
19045 low = mid + 1;
19046 }
19047 gdb_assert (low == high);
36586728
TT
19048 this_cu = dwarf2_per_objfile->all_comp_units[low];
19049 cu_off = &this_cu->offset;
19050 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 19051 {
36586728 19052 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
19053 error (_("Dwarf Error: could not find partial DIE containing "
19054 "offset 0x%lx [in module %s]"),
b64f50a1 19055 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 19056
b64f50a1
JK
19057 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19058 <= offset.sect_off);
ae038cb0
DJ
19059 return dwarf2_per_objfile->all_comp_units[low-1];
19060 }
19061 else
19062 {
19063 this_cu = dwarf2_per_objfile->all_comp_units[low];
19064 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
19065 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19066 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19067 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
19068 return this_cu;
19069 }
19070}
19071
23745b47 19072/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 19073
9816fde3 19074static void
23745b47 19075init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 19076{
9816fde3 19077 memset (cu, 0, sizeof (*cu));
23745b47
DE
19078 per_cu->cu = cu;
19079 cu->per_cu = per_cu;
19080 cu->objfile = per_cu->objfile;
93311388 19081 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
19082}
19083
19084/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19085
19086static void
95554aad
TT
19087prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19088 enum language pretend_language)
9816fde3
JK
19089{
19090 struct attribute *attr;
19091
19092 /* Set the language we're debugging. */
19093 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19094 if (attr)
19095 set_cu_language (DW_UNSND (attr), cu);
19096 else
9cded63f 19097 {
95554aad 19098 cu->language = pretend_language;
9cded63f
TT
19099 cu->language_defn = language_def (cu->language);
19100 }
dee91e82
DE
19101
19102 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19103 if (attr)
19104 cu->producer = DW_STRING (attr);
93311388
DE
19105}
19106
ae038cb0
DJ
19107/* Release one cached compilation unit, CU. We unlink it from the tree
19108 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
19109 the caller is responsible for that.
19110 NOTE: DATA is a void * because this function is also used as a
19111 cleanup routine. */
ae038cb0
DJ
19112
19113static void
68dc6402 19114free_heap_comp_unit (void *data)
ae038cb0
DJ
19115{
19116 struct dwarf2_cu *cu = data;
19117
23745b47
DE
19118 gdb_assert (cu->per_cu != NULL);
19119 cu->per_cu->cu = NULL;
ae038cb0
DJ
19120 cu->per_cu = NULL;
19121
19122 obstack_free (&cu->comp_unit_obstack, NULL);
19123
19124 xfree (cu);
19125}
19126
72bf9492 19127/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 19128 when we're finished with it. We can't free the pointer itself, but be
dee91e82 19129 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
19130
19131static void
19132free_stack_comp_unit (void *data)
19133{
19134 struct dwarf2_cu *cu = data;
19135
23745b47
DE
19136 gdb_assert (cu->per_cu != NULL);
19137 cu->per_cu->cu = NULL;
19138 cu->per_cu = NULL;
19139
72bf9492
DJ
19140 obstack_free (&cu->comp_unit_obstack, NULL);
19141 cu->partial_dies = NULL;
ae038cb0
DJ
19142}
19143
19144/* Free all cached compilation units. */
19145
19146static void
19147free_cached_comp_units (void *data)
19148{
19149 struct dwarf2_per_cu_data *per_cu, **last_chain;
19150
19151 per_cu = dwarf2_per_objfile->read_in_chain;
19152 last_chain = &dwarf2_per_objfile->read_in_chain;
19153 while (per_cu != NULL)
19154 {
19155 struct dwarf2_per_cu_data *next_cu;
19156
19157 next_cu = per_cu->cu->read_in_chain;
19158
68dc6402 19159 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
19160 *last_chain = next_cu;
19161
19162 per_cu = next_cu;
19163 }
19164}
19165
19166/* Increase the age counter on each cached compilation unit, and free
19167 any that are too old. */
19168
19169static void
19170age_cached_comp_units (void)
19171{
19172 struct dwarf2_per_cu_data *per_cu, **last_chain;
19173
19174 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19175 per_cu = dwarf2_per_objfile->read_in_chain;
19176 while (per_cu != NULL)
19177 {
19178 per_cu->cu->last_used ++;
19179 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19180 dwarf2_mark (per_cu->cu);
19181 per_cu = per_cu->cu->read_in_chain;
19182 }
19183
19184 per_cu = dwarf2_per_objfile->read_in_chain;
19185 last_chain = &dwarf2_per_objfile->read_in_chain;
19186 while (per_cu != NULL)
19187 {
19188 struct dwarf2_per_cu_data *next_cu;
19189
19190 next_cu = per_cu->cu->read_in_chain;
19191
19192 if (!per_cu->cu->mark)
19193 {
68dc6402 19194 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
19195 *last_chain = next_cu;
19196 }
19197 else
19198 last_chain = &per_cu->cu->read_in_chain;
19199
19200 per_cu = next_cu;
19201 }
19202}
19203
19204/* Remove a single compilation unit from the cache. */
19205
19206static void
dee91e82 19207free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
19208{
19209 struct dwarf2_per_cu_data *per_cu, **last_chain;
19210
19211 per_cu = dwarf2_per_objfile->read_in_chain;
19212 last_chain = &dwarf2_per_objfile->read_in_chain;
19213 while (per_cu != NULL)
19214 {
19215 struct dwarf2_per_cu_data *next_cu;
19216
19217 next_cu = per_cu->cu->read_in_chain;
19218
dee91e82 19219 if (per_cu == target_per_cu)
ae038cb0 19220 {
68dc6402 19221 free_heap_comp_unit (per_cu->cu);
dee91e82 19222 per_cu->cu = NULL;
ae038cb0
DJ
19223 *last_chain = next_cu;
19224 break;
19225 }
19226 else
19227 last_chain = &per_cu->cu->read_in_chain;
19228
19229 per_cu = next_cu;
19230 }
19231}
19232
fe3e1990
DJ
19233/* Release all extra memory associated with OBJFILE. */
19234
19235void
19236dwarf2_free_objfile (struct objfile *objfile)
19237{
19238 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19239
19240 if (dwarf2_per_objfile == NULL)
19241 return;
19242
19243 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19244 free_cached_comp_units (NULL);
19245
7b9f3c50
DE
19246 if (dwarf2_per_objfile->quick_file_names_table)
19247 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 19248
fe3e1990
DJ
19249 /* Everything else should be on the objfile obstack. */
19250}
19251
dee91e82
DE
19252/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19253 We store these in a hash table separate from the DIEs, and preserve them
19254 when the DIEs are flushed out of cache.
19255
19256 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3
DE
19257 uniquely identify the type. A file may have multiple .debug_types sections,
19258 or the type may come from a DWO file. We have to use something in
19259 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19260 routine, get_die_type_at_offset, from outside this file, and thus won't
19261 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19262 of the objfile. */
1c379e20 19263
dee91e82 19264struct dwarf2_per_cu_offset_and_type
1c379e20 19265{
dee91e82 19266 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 19267 sect_offset offset;
1c379e20
DJ
19268 struct type *type;
19269};
19270
dee91e82 19271/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
19272
19273static hashval_t
dee91e82 19274per_cu_offset_and_type_hash (const void *item)
1c379e20 19275{
dee91e82 19276 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 19277
dee91e82 19278 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
19279}
19280
dee91e82 19281/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
19282
19283static int
dee91e82 19284per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 19285{
dee91e82
DE
19286 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19287 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 19288
dee91e82
DE
19289 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19290 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
19291}
19292
19293/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
19294 table if necessary. For convenience, return TYPE.
19295
19296 The DIEs reading must have careful ordering to:
19297 * Not cause infite loops trying to read in DIEs as a prerequisite for
19298 reading current DIE.
19299 * Not trying to dereference contents of still incompletely read in types
19300 while reading in other DIEs.
19301 * Enable referencing still incompletely read in types just by a pointer to
19302 the type without accessing its fields.
19303
19304 Therefore caller should follow these rules:
19305 * Try to fetch any prerequisite types we may need to build this DIE type
19306 before building the type and calling set_die_type.
e71ec853 19307 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
19308 possible before fetching more types to complete the current type.
19309 * Make the type as complete as possible before fetching more types. */
1c379e20 19310
f792889a 19311static struct type *
1c379e20
DJ
19312set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19313{
dee91e82 19314 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 19315 struct objfile *objfile = cu->objfile;
1c379e20 19316
b4ba55a1
JB
19317 /* For Ada types, make sure that the gnat-specific data is always
19318 initialized (if not already set). There are a few types where
19319 we should not be doing so, because the type-specific area is
19320 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19321 where the type-specific area is used to store the floatformat).
19322 But this is not a problem, because the gnat-specific information
19323 is actually not needed for these types. */
19324 if (need_gnat_info (cu)
19325 && TYPE_CODE (type) != TYPE_CODE_FUNC
19326 && TYPE_CODE (type) != TYPE_CODE_FLT
19327 && !HAVE_GNAT_AUX_INFO (type))
19328 INIT_GNAT_SPECIFIC (type);
19329
dee91e82 19330 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 19331 {
dee91e82
DE
19332 dwarf2_per_objfile->die_type_hash =
19333 htab_create_alloc_ex (127,
19334 per_cu_offset_and_type_hash,
19335 per_cu_offset_and_type_eq,
19336 NULL,
19337 &objfile->objfile_obstack,
19338 hashtab_obstack_allocate,
19339 dummy_obstack_deallocate);
f792889a 19340 }
1c379e20 19341
dee91e82 19342 ofs.per_cu = cu->per_cu;
1c379e20
DJ
19343 ofs.offset = die->offset;
19344 ofs.type = type;
dee91e82
DE
19345 slot = (struct dwarf2_per_cu_offset_and_type **)
19346 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
19347 if (*slot)
19348 complaint (&symfile_complaints,
19349 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 19350 die->offset.sect_off);
673bfd45 19351 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 19352 **slot = ofs;
f792889a 19353 return type;
1c379e20
DJ
19354}
19355
380bca97 19356/* Look up the type for the die at OFFSET in the appropriate type_hash
673bfd45 19357 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
19358
19359static struct type *
b64f50a1 19360get_die_type_at_offset (sect_offset offset,
673bfd45 19361 struct dwarf2_per_cu_data *per_cu)
1c379e20 19362{
dee91e82 19363 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 19364
dee91e82 19365 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 19366 return NULL;
1c379e20 19367
dee91e82 19368 ofs.per_cu = per_cu;
673bfd45 19369 ofs.offset = offset;
dee91e82 19370 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
19371 if (slot)
19372 return slot->type;
19373 else
19374 return NULL;
19375}
19376
673bfd45
DE
19377/* Look up the type for DIE in the appropriate type_hash table,
19378 or return NULL if DIE does not have a saved type. */
19379
19380static struct type *
19381get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19382{
19383 return get_die_type_at_offset (die->offset, cu->per_cu);
19384}
19385
10b3939b
DJ
19386/* Add a dependence relationship from CU to REF_PER_CU. */
19387
19388static void
19389dwarf2_add_dependence (struct dwarf2_cu *cu,
19390 struct dwarf2_per_cu_data *ref_per_cu)
19391{
19392 void **slot;
19393
19394 if (cu->dependencies == NULL)
19395 cu->dependencies
19396 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19397 NULL, &cu->comp_unit_obstack,
19398 hashtab_obstack_allocate,
19399 dummy_obstack_deallocate);
19400
19401 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19402 if (*slot == NULL)
19403 *slot = ref_per_cu;
19404}
1c379e20 19405
f504f079
DE
19406/* Subroutine of dwarf2_mark to pass to htab_traverse.
19407 Set the mark field in every compilation unit in the
ae038cb0
DJ
19408 cache that we must keep because we are keeping CU. */
19409
10b3939b
DJ
19410static int
19411dwarf2_mark_helper (void **slot, void *data)
19412{
19413 struct dwarf2_per_cu_data *per_cu;
19414
19415 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
19416
19417 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19418 reading of the chain. As such dependencies remain valid it is not much
19419 useful to track and undo them during QUIT cleanups. */
19420 if (per_cu->cu == NULL)
19421 return 1;
19422
10b3939b
DJ
19423 if (per_cu->cu->mark)
19424 return 1;
19425 per_cu->cu->mark = 1;
19426
19427 if (per_cu->cu->dependencies != NULL)
19428 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19429
19430 return 1;
19431}
19432
f504f079
DE
19433/* Set the mark field in CU and in every other compilation unit in the
19434 cache that we must keep because we are keeping CU. */
19435
ae038cb0
DJ
19436static void
19437dwarf2_mark (struct dwarf2_cu *cu)
19438{
19439 if (cu->mark)
19440 return;
19441 cu->mark = 1;
10b3939b
DJ
19442 if (cu->dependencies != NULL)
19443 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
19444}
19445
19446static void
19447dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19448{
19449 while (per_cu)
19450 {
19451 per_cu->cu->mark = 0;
19452 per_cu = per_cu->cu->read_in_chain;
19453 }
72bf9492
DJ
19454}
19455
72bf9492
DJ
19456/* Trivial hash function for partial_die_info: the hash value of a DIE
19457 is its offset in .debug_info for this objfile. */
19458
19459static hashval_t
19460partial_die_hash (const void *item)
19461{
19462 const struct partial_die_info *part_die = item;
9a619af0 19463
b64f50a1 19464 return part_die->offset.sect_off;
72bf9492
DJ
19465}
19466
19467/* Trivial comparison function for partial_die_info structures: two DIEs
19468 are equal if they have the same offset. */
19469
19470static int
19471partial_die_eq (const void *item_lhs, const void *item_rhs)
19472{
19473 const struct partial_die_info *part_die_lhs = item_lhs;
19474 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 19475
b64f50a1 19476 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
19477}
19478
ae038cb0
DJ
19479static struct cmd_list_element *set_dwarf2_cmdlist;
19480static struct cmd_list_element *show_dwarf2_cmdlist;
19481
19482static void
19483set_dwarf2_cmd (char *args, int from_tty)
19484{
19485 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19486}
19487
19488static void
19489show_dwarf2_cmd (char *args, int from_tty)
6e70227d 19490{
ae038cb0
DJ
19491 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19492}
19493
4bf44c1c 19494/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
19495
19496static void
c1bd65d0 19497dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
19498{
19499 struct dwarf2_per_objfile *data = d;
8b70b953 19500 int ix;
8b70b953 19501
95554aad
TT
19502 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19503 VEC_free (dwarf2_per_cu_ptr,
f4dc4d17 19504 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
95554aad 19505
8b70b953 19506 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
19507
19508 if (data->dwo_files)
19509 free_dwo_files (data->dwo_files, objfile);
36586728
TT
19510
19511 if (data->dwz_file && data->dwz_file->dwz_bfd)
19512 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
19513}
19514
19515\f
ae2de4f8 19516/* The "save gdb-index" command. */
9291a0cd
TT
19517
19518/* The contents of the hash table we create when building the string
19519 table. */
19520struct strtab_entry
19521{
19522 offset_type offset;
19523 const char *str;
19524};
19525
559a7a62
JK
19526/* Hash function for a strtab_entry.
19527
19528 Function is used only during write_hash_table so no index format backward
19529 compatibility is needed. */
b89be57b 19530
9291a0cd
TT
19531static hashval_t
19532hash_strtab_entry (const void *e)
19533{
19534 const struct strtab_entry *entry = e;
559a7a62 19535 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
19536}
19537
19538/* Equality function for a strtab_entry. */
b89be57b 19539
9291a0cd
TT
19540static int
19541eq_strtab_entry (const void *a, const void *b)
19542{
19543 const struct strtab_entry *ea = a;
19544 const struct strtab_entry *eb = b;
19545 return !strcmp (ea->str, eb->str);
19546}
19547
19548/* Create a strtab_entry hash table. */
b89be57b 19549
9291a0cd
TT
19550static htab_t
19551create_strtab (void)
19552{
19553 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19554 xfree, xcalloc, xfree);
19555}
19556
19557/* Add a string to the constant pool. Return the string's offset in
19558 host order. */
b89be57b 19559
9291a0cd
TT
19560static offset_type
19561add_string (htab_t table, struct obstack *cpool, const char *str)
19562{
19563 void **slot;
19564 struct strtab_entry entry;
19565 struct strtab_entry *result;
19566
19567 entry.str = str;
19568 slot = htab_find_slot (table, &entry, INSERT);
19569 if (*slot)
19570 result = *slot;
19571 else
19572 {
19573 result = XNEW (struct strtab_entry);
19574 result->offset = obstack_object_size (cpool);
19575 result->str = str;
19576 obstack_grow_str0 (cpool, str);
19577 *slot = result;
19578 }
19579 return result->offset;
19580}
19581
19582/* An entry in the symbol table. */
19583struct symtab_index_entry
19584{
19585 /* The name of the symbol. */
19586 const char *name;
19587 /* The offset of the name in the constant pool. */
19588 offset_type index_offset;
19589 /* A sorted vector of the indices of all the CUs that hold an object
19590 of this name. */
19591 VEC (offset_type) *cu_indices;
19592};
19593
19594/* The symbol table. This is a power-of-2-sized hash table. */
19595struct mapped_symtab
19596{
19597 offset_type n_elements;
19598 offset_type size;
19599 struct symtab_index_entry **data;
19600};
19601
19602/* Hash function for a symtab_index_entry. */
b89be57b 19603
9291a0cd
TT
19604static hashval_t
19605hash_symtab_entry (const void *e)
19606{
19607 const struct symtab_index_entry *entry = e;
19608 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19609 sizeof (offset_type) * VEC_length (offset_type,
19610 entry->cu_indices),
19611 0);
19612}
19613
19614/* Equality function for a symtab_index_entry. */
b89be57b 19615
9291a0cd
TT
19616static int
19617eq_symtab_entry (const void *a, const void *b)
19618{
19619 const struct symtab_index_entry *ea = a;
19620 const struct symtab_index_entry *eb = b;
19621 int len = VEC_length (offset_type, ea->cu_indices);
19622 if (len != VEC_length (offset_type, eb->cu_indices))
19623 return 0;
19624 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19625 VEC_address (offset_type, eb->cu_indices),
19626 sizeof (offset_type) * len);
19627}
19628
19629/* Destroy a symtab_index_entry. */
b89be57b 19630
9291a0cd
TT
19631static void
19632delete_symtab_entry (void *p)
19633{
19634 struct symtab_index_entry *entry = p;
19635 VEC_free (offset_type, entry->cu_indices);
19636 xfree (entry);
19637}
19638
19639/* Create a hash table holding symtab_index_entry objects. */
b89be57b 19640
9291a0cd 19641static htab_t
3876f04e 19642create_symbol_hash_table (void)
9291a0cd
TT
19643{
19644 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19645 delete_symtab_entry, xcalloc, xfree);
19646}
19647
19648/* Create a new mapped symtab object. */
b89be57b 19649
9291a0cd
TT
19650static struct mapped_symtab *
19651create_mapped_symtab (void)
19652{
19653 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19654 symtab->n_elements = 0;
19655 symtab->size = 1024;
19656 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19657 return symtab;
19658}
19659
19660/* Destroy a mapped_symtab. */
b89be57b 19661
9291a0cd
TT
19662static void
19663cleanup_mapped_symtab (void *p)
19664{
19665 struct mapped_symtab *symtab = p;
19666 /* The contents of the array are freed when the other hash table is
19667 destroyed. */
19668 xfree (symtab->data);
19669 xfree (symtab);
19670}
19671
19672/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
19673 the slot.
19674
19675 Function is used only during write_hash_table so no index format backward
19676 compatibility is needed. */
b89be57b 19677
9291a0cd
TT
19678static struct symtab_index_entry **
19679find_slot (struct mapped_symtab *symtab, const char *name)
19680{
559a7a62 19681 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
19682
19683 index = hash & (symtab->size - 1);
19684 step = ((hash * 17) & (symtab->size - 1)) | 1;
19685
19686 for (;;)
19687 {
19688 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19689 return &symtab->data[index];
19690 index = (index + step) & (symtab->size - 1);
19691 }
19692}
19693
19694/* Expand SYMTAB's hash table. */
b89be57b 19695
9291a0cd
TT
19696static void
19697hash_expand (struct mapped_symtab *symtab)
19698{
19699 offset_type old_size = symtab->size;
19700 offset_type i;
19701 struct symtab_index_entry **old_entries = symtab->data;
19702
19703 symtab->size *= 2;
19704 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19705
19706 for (i = 0; i < old_size; ++i)
19707 {
19708 if (old_entries[i])
19709 {
19710 struct symtab_index_entry **slot = find_slot (symtab,
19711 old_entries[i]->name);
19712 *slot = old_entries[i];
19713 }
19714 }
19715
19716 xfree (old_entries);
19717}
19718
156942c7
DE
19719/* Add an entry to SYMTAB. NAME is the name of the symbol.
19720 CU_INDEX is the index of the CU in which the symbol appears.
19721 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 19722
9291a0cd
TT
19723static void
19724add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 19725 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
19726 offset_type cu_index)
19727{
19728 struct symtab_index_entry **slot;
156942c7 19729 offset_type cu_index_and_attrs;
9291a0cd
TT
19730
19731 ++symtab->n_elements;
19732 if (4 * symtab->n_elements / 3 >= symtab->size)
19733 hash_expand (symtab);
19734
19735 slot = find_slot (symtab, name);
19736 if (!*slot)
19737 {
19738 *slot = XNEW (struct symtab_index_entry);
19739 (*slot)->name = name;
156942c7 19740 /* index_offset is set later. */
9291a0cd
TT
19741 (*slot)->cu_indices = NULL;
19742 }
156942c7
DE
19743
19744 cu_index_and_attrs = 0;
19745 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19746 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19747 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19748
19749 /* We don't want to record an index value twice as we want to avoid the
19750 duplication.
19751 We process all global symbols and then all static symbols
19752 (which would allow us to avoid the duplication by only having to check
19753 the last entry pushed), but a symbol could have multiple kinds in one CU.
19754 To keep things simple we don't worry about the duplication here and
19755 sort and uniqufy the list after we've processed all symbols. */
19756 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19757}
19758
19759/* qsort helper routine for uniquify_cu_indices. */
19760
19761static int
19762offset_type_compare (const void *ap, const void *bp)
19763{
19764 offset_type a = *(offset_type *) ap;
19765 offset_type b = *(offset_type *) bp;
19766
19767 return (a > b) - (b > a);
19768}
19769
19770/* Sort and remove duplicates of all symbols' cu_indices lists. */
19771
19772static void
19773uniquify_cu_indices (struct mapped_symtab *symtab)
19774{
19775 int i;
19776
19777 for (i = 0; i < symtab->size; ++i)
19778 {
19779 struct symtab_index_entry *entry = symtab->data[i];
19780
19781 if (entry
19782 && entry->cu_indices != NULL)
19783 {
19784 unsigned int next_to_insert, next_to_check;
19785 offset_type last_value;
19786
19787 qsort (VEC_address (offset_type, entry->cu_indices),
19788 VEC_length (offset_type, entry->cu_indices),
19789 sizeof (offset_type), offset_type_compare);
19790
19791 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19792 next_to_insert = 1;
19793 for (next_to_check = 1;
19794 next_to_check < VEC_length (offset_type, entry->cu_indices);
19795 ++next_to_check)
19796 {
19797 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19798 != last_value)
19799 {
19800 last_value = VEC_index (offset_type, entry->cu_indices,
19801 next_to_check);
19802 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19803 last_value);
19804 ++next_to_insert;
19805 }
19806 }
19807 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19808 }
19809 }
9291a0cd
TT
19810}
19811
19812/* Add a vector of indices to the constant pool. */
b89be57b 19813
9291a0cd 19814static offset_type
3876f04e 19815add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
19816 struct symtab_index_entry *entry)
19817{
19818 void **slot;
19819
3876f04e 19820 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
19821 if (!*slot)
19822 {
19823 offset_type len = VEC_length (offset_type, entry->cu_indices);
19824 offset_type val = MAYBE_SWAP (len);
19825 offset_type iter;
19826 int i;
19827
19828 *slot = entry;
19829 entry->index_offset = obstack_object_size (cpool);
19830
19831 obstack_grow (cpool, &val, sizeof (val));
19832 for (i = 0;
19833 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19834 ++i)
19835 {
19836 val = MAYBE_SWAP (iter);
19837 obstack_grow (cpool, &val, sizeof (val));
19838 }
19839 }
19840 else
19841 {
19842 struct symtab_index_entry *old_entry = *slot;
19843 entry->index_offset = old_entry->index_offset;
19844 entry = old_entry;
19845 }
19846 return entry->index_offset;
19847}
19848
19849/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19850 constant pool entries going into the obstack CPOOL. */
b89be57b 19851
9291a0cd
TT
19852static void
19853write_hash_table (struct mapped_symtab *symtab,
19854 struct obstack *output, struct obstack *cpool)
19855{
19856 offset_type i;
3876f04e 19857 htab_t symbol_hash_table;
9291a0cd
TT
19858 htab_t str_table;
19859
3876f04e 19860 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 19861 str_table = create_strtab ();
3876f04e 19862
9291a0cd
TT
19863 /* We add all the index vectors to the constant pool first, to
19864 ensure alignment is ok. */
19865 for (i = 0; i < symtab->size; ++i)
19866 {
19867 if (symtab->data[i])
3876f04e 19868 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
19869 }
19870
19871 /* Now write out the hash table. */
19872 for (i = 0; i < symtab->size; ++i)
19873 {
19874 offset_type str_off, vec_off;
19875
19876 if (symtab->data[i])
19877 {
19878 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19879 vec_off = symtab->data[i]->index_offset;
19880 }
19881 else
19882 {
19883 /* While 0 is a valid constant pool index, it is not valid
19884 to have 0 for both offsets. */
19885 str_off = 0;
19886 vec_off = 0;
19887 }
19888
19889 str_off = MAYBE_SWAP (str_off);
19890 vec_off = MAYBE_SWAP (vec_off);
19891
19892 obstack_grow (output, &str_off, sizeof (str_off));
19893 obstack_grow (output, &vec_off, sizeof (vec_off));
19894 }
19895
19896 htab_delete (str_table);
3876f04e 19897 htab_delete (symbol_hash_table);
9291a0cd
TT
19898}
19899
0a5429f6
DE
19900/* Struct to map psymtab to CU index in the index file. */
19901struct psymtab_cu_index_map
19902{
19903 struct partial_symtab *psymtab;
19904 unsigned int cu_index;
19905};
19906
19907static hashval_t
19908hash_psymtab_cu_index (const void *item)
19909{
19910 const struct psymtab_cu_index_map *map = item;
19911
19912 return htab_hash_pointer (map->psymtab);
19913}
19914
19915static int
19916eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19917{
19918 const struct psymtab_cu_index_map *lhs = item_lhs;
19919 const struct psymtab_cu_index_map *rhs = item_rhs;
19920
19921 return lhs->psymtab == rhs->psymtab;
19922}
19923
19924/* Helper struct for building the address table. */
19925struct addrmap_index_data
19926{
19927 struct objfile *objfile;
19928 struct obstack *addr_obstack;
19929 htab_t cu_index_htab;
19930
19931 /* Non-zero if the previous_* fields are valid.
19932 We can't write an entry until we see the next entry (since it is only then
19933 that we know the end of the entry). */
19934 int previous_valid;
19935 /* Index of the CU in the table of all CUs in the index file. */
19936 unsigned int previous_cu_index;
0963b4bd 19937 /* Start address of the CU. */
0a5429f6
DE
19938 CORE_ADDR previous_cu_start;
19939};
19940
19941/* Write an address entry to OBSTACK. */
b89be57b 19942
9291a0cd 19943static void
0a5429f6
DE
19944add_address_entry (struct objfile *objfile, struct obstack *obstack,
19945 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 19946{
0a5429f6 19947 offset_type cu_index_to_write;
9291a0cd
TT
19948 char addr[8];
19949 CORE_ADDR baseaddr;
19950
19951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19952
0a5429f6
DE
19953 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19954 obstack_grow (obstack, addr, 8);
19955 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19956 obstack_grow (obstack, addr, 8);
19957 cu_index_to_write = MAYBE_SWAP (cu_index);
19958 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19959}
19960
19961/* Worker function for traversing an addrmap to build the address table. */
19962
19963static int
19964add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19965{
19966 struct addrmap_index_data *data = datap;
19967 struct partial_symtab *pst = obj;
0a5429f6
DE
19968
19969 if (data->previous_valid)
19970 add_address_entry (data->objfile, data->addr_obstack,
19971 data->previous_cu_start, start_addr,
19972 data->previous_cu_index);
19973
19974 data->previous_cu_start = start_addr;
19975 if (pst != NULL)
19976 {
19977 struct psymtab_cu_index_map find_map, *map;
19978 find_map.psymtab = pst;
19979 map = htab_find (data->cu_index_htab, &find_map);
19980 gdb_assert (map != NULL);
19981 data->previous_cu_index = map->cu_index;
19982 data->previous_valid = 1;
19983 }
19984 else
19985 data->previous_valid = 0;
19986
19987 return 0;
19988}
19989
19990/* Write OBJFILE's address map to OBSTACK.
19991 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
19992 in the index file. */
19993
19994static void
19995write_address_map (struct objfile *objfile, struct obstack *obstack,
19996 htab_t cu_index_htab)
19997{
19998 struct addrmap_index_data addrmap_index_data;
19999
20000 /* When writing the address table, we have to cope with the fact that
20001 the addrmap iterator only provides the start of a region; we have to
20002 wait until the next invocation to get the start of the next region. */
20003
20004 addrmap_index_data.objfile = objfile;
20005 addrmap_index_data.addr_obstack = obstack;
20006 addrmap_index_data.cu_index_htab = cu_index_htab;
20007 addrmap_index_data.previous_valid = 0;
20008
20009 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20010 &addrmap_index_data);
20011
20012 /* It's highly unlikely the last entry (end address = 0xff...ff)
20013 is valid, but we should still handle it.
20014 The end address is recorded as the start of the next region, but that
20015 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20016 anyway. */
20017 if (addrmap_index_data.previous_valid)
20018 add_address_entry (objfile, obstack,
20019 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20020 addrmap_index_data.previous_cu_index);
9291a0cd
TT
20021}
20022
156942c7
DE
20023/* Return the symbol kind of PSYM. */
20024
20025static gdb_index_symbol_kind
20026symbol_kind (struct partial_symbol *psym)
20027{
20028 domain_enum domain = PSYMBOL_DOMAIN (psym);
20029 enum address_class aclass = PSYMBOL_CLASS (psym);
20030
20031 switch (domain)
20032 {
20033 case VAR_DOMAIN:
20034 switch (aclass)
20035 {
20036 case LOC_BLOCK:
20037 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20038 case LOC_TYPEDEF:
20039 return GDB_INDEX_SYMBOL_KIND_TYPE;
20040 case LOC_COMPUTED:
20041 case LOC_CONST_BYTES:
20042 case LOC_OPTIMIZED_OUT:
20043 case LOC_STATIC:
20044 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20045 case LOC_CONST:
20046 /* Note: It's currently impossible to recognize psyms as enum values
20047 short of reading the type info. For now punt. */
20048 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20049 default:
20050 /* There are other LOC_FOO values that one might want to classify
20051 as variables, but dwarf2read.c doesn't currently use them. */
20052 return GDB_INDEX_SYMBOL_KIND_OTHER;
20053 }
20054 case STRUCT_DOMAIN:
20055 return GDB_INDEX_SYMBOL_KIND_TYPE;
20056 default:
20057 return GDB_INDEX_SYMBOL_KIND_OTHER;
20058 }
20059}
20060
9291a0cd 20061/* Add a list of partial symbols to SYMTAB. */
b89be57b 20062
9291a0cd
TT
20063static void
20064write_psymbols (struct mapped_symtab *symtab,
987d643c 20065 htab_t psyms_seen,
9291a0cd
TT
20066 struct partial_symbol **psymp,
20067 int count,
987d643c
TT
20068 offset_type cu_index,
20069 int is_static)
9291a0cd
TT
20070{
20071 for (; count-- > 0; ++psymp)
20072 {
156942c7
DE
20073 struct partial_symbol *psym = *psymp;
20074 void **slot;
987d643c 20075
156942c7 20076 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 20077 error (_("Ada is not currently supported by the index"));
987d643c 20078
987d643c 20079 /* Only add a given psymbol once. */
156942c7 20080 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
20081 if (!*slot)
20082 {
156942c7
DE
20083 gdb_index_symbol_kind kind = symbol_kind (psym);
20084
20085 *slot = psym;
20086 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20087 is_static, kind, cu_index);
987d643c 20088 }
9291a0cd
TT
20089 }
20090}
20091
20092/* Write the contents of an ("unfinished") obstack to FILE. Throw an
20093 exception if there is an error. */
b89be57b 20094
9291a0cd
TT
20095static void
20096write_obstack (FILE *file, struct obstack *obstack)
20097{
20098 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20099 file)
20100 != obstack_object_size (obstack))
20101 error (_("couldn't data write to file"));
20102}
20103
20104/* Unlink a file if the argument is not NULL. */
b89be57b 20105
9291a0cd
TT
20106static void
20107unlink_if_set (void *p)
20108{
20109 char **filename = p;
20110 if (*filename)
20111 unlink (*filename);
20112}
20113
1fd400ff
TT
20114/* A helper struct used when iterating over debug_types. */
20115struct signatured_type_index_data
20116{
20117 struct objfile *objfile;
20118 struct mapped_symtab *symtab;
20119 struct obstack *types_list;
987d643c 20120 htab_t psyms_seen;
1fd400ff
TT
20121 int cu_index;
20122};
20123
20124/* A helper function that writes a single signatured_type to an
20125 obstack. */
b89be57b 20126
1fd400ff
TT
20127static int
20128write_one_signatured_type (void **slot, void *d)
20129{
20130 struct signatured_type_index_data *info = d;
20131 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
20132 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20133 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
20134 gdb_byte val[8];
20135
20136 write_psymbols (info->symtab,
987d643c 20137 info->psyms_seen,
3e43a32a
MS
20138 info->objfile->global_psymbols.list
20139 + psymtab->globals_offset,
987d643c
TT
20140 psymtab->n_global_syms, info->cu_index,
20141 0);
1fd400ff 20142 write_psymbols (info->symtab,
987d643c 20143 info->psyms_seen,
3e43a32a
MS
20144 info->objfile->static_psymbols.list
20145 + psymtab->statics_offset,
987d643c
TT
20146 psymtab->n_static_syms, info->cu_index,
20147 1);
1fd400ff 20148
b64f50a1
JK
20149 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20150 entry->per_cu.offset.sect_off);
1fd400ff 20151 obstack_grow (info->types_list, val, 8);
3019eac3
DE
20152 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20153 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
20154 obstack_grow (info->types_list, val, 8);
20155 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20156 obstack_grow (info->types_list, val, 8);
20157
20158 ++info->cu_index;
20159
20160 return 1;
20161}
20162
95554aad
TT
20163/* Recurse into all "included" dependencies and write their symbols as
20164 if they appeared in this psymtab. */
20165
20166static void
20167recursively_write_psymbols (struct objfile *objfile,
20168 struct partial_symtab *psymtab,
20169 struct mapped_symtab *symtab,
20170 htab_t psyms_seen,
20171 offset_type cu_index)
20172{
20173 int i;
20174
20175 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20176 if (psymtab->dependencies[i]->user != NULL)
20177 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20178 symtab, psyms_seen, cu_index);
20179
20180 write_psymbols (symtab,
20181 psyms_seen,
20182 objfile->global_psymbols.list + psymtab->globals_offset,
20183 psymtab->n_global_syms, cu_index,
20184 0);
20185 write_psymbols (symtab,
20186 psyms_seen,
20187 objfile->static_psymbols.list + psymtab->statics_offset,
20188 psymtab->n_static_syms, cu_index,
20189 1);
20190}
20191
9291a0cd 20192/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 20193
9291a0cd
TT
20194static void
20195write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20196{
20197 struct cleanup *cleanup;
20198 char *filename, *cleanup_filename;
1fd400ff
TT
20199 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20200 struct obstack cu_list, types_cu_list;
9291a0cd
TT
20201 int i;
20202 FILE *out_file;
20203 struct mapped_symtab *symtab;
20204 offset_type val, size_of_contents, total_len;
20205 struct stat st;
987d643c 20206 htab_t psyms_seen;
0a5429f6
DE
20207 htab_t cu_index_htab;
20208 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 20209
b4f2f049 20210 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 20211 return;
b4f2f049 20212
9291a0cd
TT
20213 if (dwarf2_per_objfile->using_index)
20214 error (_("Cannot use an index to create the index"));
20215
8b70b953
TT
20216 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20217 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20218
9291a0cd 20219 if (stat (objfile->name, &st) < 0)
7e17e088 20220 perror_with_name (objfile->name);
9291a0cd
TT
20221
20222 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20223 INDEX_SUFFIX, (char *) NULL);
20224 cleanup = make_cleanup (xfree, filename);
20225
20226 out_file = fopen (filename, "wb");
20227 if (!out_file)
20228 error (_("Can't open `%s' for writing"), filename);
20229
20230 cleanup_filename = filename;
20231 make_cleanup (unlink_if_set, &cleanup_filename);
20232
20233 symtab = create_mapped_symtab ();
20234 make_cleanup (cleanup_mapped_symtab, symtab);
20235
20236 obstack_init (&addr_obstack);
20237 make_cleanup_obstack_free (&addr_obstack);
20238
20239 obstack_init (&cu_list);
20240 make_cleanup_obstack_free (&cu_list);
20241
1fd400ff
TT
20242 obstack_init (&types_cu_list);
20243 make_cleanup_obstack_free (&types_cu_list);
20244
987d643c
TT
20245 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20246 NULL, xcalloc, xfree);
96408a79 20247 make_cleanup_htab_delete (psyms_seen);
987d643c 20248
0a5429f6
DE
20249 /* While we're scanning CU's create a table that maps a psymtab pointer
20250 (which is what addrmap records) to its index (which is what is recorded
20251 in the index file). This will later be needed to write the address
20252 table. */
20253 cu_index_htab = htab_create_alloc (100,
20254 hash_psymtab_cu_index,
20255 eq_psymtab_cu_index,
20256 NULL, xcalloc, xfree);
96408a79 20257 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
20258 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20259 xmalloc (sizeof (struct psymtab_cu_index_map)
20260 * dwarf2_per_objfile->n_comp_units);
20261 make_cleanup (xfree, psymtab_cu_index_map);
20262
20263 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
20264 work here. Also, the debug_types entries do not appear in
20265 all_comp_units, but only in their own hash table. */
9291a0cd
TT
20266 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20267 {
3e43a32a
MS
20268 struct dwarf2_per_cu_data *per_cu
20269 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 20270 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 20271 gdb_byte val[8];
0a5429f6
DE
20272 struct psymtab_cu_index_map *map;
20273 void **slot;
9291a0cd 20274
95554aad
TT
20275 if (psymtab->user == NULL)
20276 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 20277
0a5429f6
DE
20278 map = &psymtab_cu_index_map[i];
20279 map->psymtab = psymtab;
20280 map->cu_index = i;
20281 slot = htab_find_slot (cu_index_htab, map, INSERT);
20282 gdb_assert (slot != NULL);
20283 gdb_assert (*slot == NULL);
20284 *slot = map;
9291a0cd 20285
b64f50a1
JK
20286 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20287 per_cu->offset.sect_off);
9291a0cd 20288 obstack_grow (&cu_list, val, 8);
e254ef6a 20289 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
20290 obstack_grow (&cu_list, val, 8);
20291 }
20292
0a5429f6
DE
20293 /* Dump the address map. */
20294 write_address_map (objfile, &addr_obstack, cu_index_htab);
20295
1fd400ff
TT
20296 /* Write out the .debug_type entries, if any. */
20297 if (dwarf2_per_objfile->signatured_types)
20298 {
20299 struct signatured_type_index_data sig_data;
20300
20301 sig_data.objfile = objfile;
20302 sig_data.symtab = symtab;
20303 sig_data.types_list = &types_cu_list;
987d643c 20304 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
20305 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20306 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20307 write_one_signatured_type, &sig_data);
20308 }
20309
156942c7
DE
20310 /* Now that we've processed all symbols we can shrink their cu_indices
20311 lists. */
20312 uniquify_cu_indices (symtab);
20313
9291a0cd
TT
20314 obstack_init (&constant_pool);
20315 make_cleanup_obstack_free (&constant_pool);
20316 obstack_init (&symtab_obstack);
20317 make_cleanup_obstack_free (&symtab_obstack);
20318 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20319
20320 obstack_init (&contents);
20321 make_cleanup_obstack_free (&contents);
1fd400ff 20322 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
20323 total_len = size_of_contents;
20324
20325 /* The version number. */
156942c7 20326 val = MAYBE_SWAP (7);
9291a0cd
TT
20327 obstack_grow (&contents, &val, sizeof (val));
20328
20329 /* The offset of the CU list from the start of the file. */
20330 val = MAYBE_SWAP (total_len);
20331 obstack_grow (&contents, &val, sizeof (val));
20332 total_len += obstack_object_size (&cu_list);
20333
1fd400ff
TT
20334 /* The offset of the types CU list from the start of the file. */
20335 val = MAYBE_SWAP (total_len);
20336 obstack_grow (&contents, &val, sizeof (val));
20337 total_len += obstack_object_size (&types_cu_list);
20338
9291a0cd
TT
20339 /* The offset of the address table from the start of the file. */
20340 val = MAYBE_SWAP (total_len);
20341 obstack_grow (&contents, &val, sizeof (val));
20342 total_len += obstack_object_size (&addr_obstack);
20343
20344 /* The offset of the symbol table from the start of the file. */
20345 val = MAYBE_SWAP (total_len);
20346 obstack_grow (&contents, &val, sizeof (val));
20347 total_len += obstack_object_size (&symtab_obstack);
20348
20349 /* The offset of the constant pool from the start of the file. */
20350 val = MAYBE_SWAP (total_len);
20351 obstack_grow (&contents, &val, sizeof (val));
20352 total_len += obstack_object_size (&constant_pool);
20353
20354 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20355
20356 write_obstack (out_file, &contents);
20357 write_obstack (out_file, &cu_list);
1fd400ff 20358 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
20359 write_obstack (out_file, &addr_obstack);
20360 write_obstack (out_file, &symtab_obstack);
20361 write_obstack (out_file, &constant_pool);
20362
20363 fclose (out_file);
20364
20365 /* We want to keep the file, so we set cleanup_filename to NULL
20366 here. See unlink_if_set. */
20367 cleanup_filename = NULL;
20368
20369 do_cleanups (cleanup);
20370}
20371
90476074
TT
20372/* Implementation of the `save gdb-index' command.
20373
20374 Note that the file format used by this command is documented in the
20375 GDB manual. Any changes here must be documented there. */
11570e71 20376
9291a0cd
TT
20377static void
20378save_gdb_index_command (char *arg, int from_tty)
20379{
20380 struct objfile *objfile;
20381
20382 if (!arg || !*arg)
96d19272 20383 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
20384
20385 ALL_OBJFILES (objfile)
20386 {
20387 struct stat st;
20388
20389 /* If the objfile does not correspond to an actual file, skip it. */
20390 if (stat (objfile->name, &st) < 0)
20391 continue;
20392
20393 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20394 if (dwarf2_per_objfile)
20395 {
20396 volatile struct gdb_exception except;
20397
20398 TRY_CATCH (except, RETURN_MASK_ERROR)
20399 {
20400 write_psymtabs_to_index (objfile, arg);
20401 }
20402 if (except.reason < 0)
20403 exception_fprintf (gdb_stderr, except,
20404 _("Error while writing index for `%s': "),
20405 objfile->name);
20406 }
20407 }
dce234bc
PP
20408}
20409
9291a0cd
TT
20410\f
20411
9eae7c52
TT
20412int dwarf2_always_disassemble;
20413
20414static void
20415show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20416 struct cmd_list_element *c, const char *value)
20417{
3e43a32a
MS
20418 fprintf_filtered (file,
20419 _("Whether to always disassemble "
20420 "DWARF expressions is %s.\n"),
9eae7c52
TT
20421 value);
20422}
20423
900e11f9
JK
20424static void
20425show_check_physname (struct ui_file *file, int from_tty,
20426 struct cmd_list_element *c, const char *value)
20427{
20428 fprintf_filtered (file,
20429 _("Whether to check \"physname\" is %s.\n"),
20430 value);
20431}
20432
6502dd73
DJ
20433void _initialize_dwarf2_read (void);
20434
20435void
20436_initialize_dwarf2_read (void)
20437{
96d19272
JK
20438 struct cmd_list_element *c;
20439
dce234bc 20440 dwarf2_objfile_data_key
c1bd65d0 20441 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 20442
1bedd215
AC
20443 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20444Set DWARF 2 specific variables.\n\
20445Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
20446 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20447 0/*allow-unknown*/, &maintenance_set_cmdlist);
20448
1bedd215
AC
20449 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20450Show DWARF 2 specific variables\n\
20451Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
20452 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20453 0/*allow-unknown*/, &maintenance_show_cmdlist);
20454
20455 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
20456 &dwarf2_max_cache_age, _("\
20457Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20458Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20459A higher limit means that cached compilation units will be stored\n\
20460in memory longer, and more total memory will be used. Zero disables\n\
20461caching, which can slow down startup."),
2c5b56ce 20462 NULL,
920d2a44 20463 show_dwarf2_max_cache_age,
2c5b56ce 20464 &set_dwarf2_cmdlist,
ae038cb0 20465 &show_dwarf2_cmdlist);
d97bc12b 20466
9eae7c52
TT
20467 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20468 &dwarf2_always_disassemble, _("\
20469Set whether `info address' always disassembles DWARF expressions."), _("\
20470Show whether `info address' always disassembles DWARF expressions."), _("\
20471When enabled, DWARF expressions are always printed in an assembly-like\n\
20472syntax. When disabled, expressions will be printed in a more\n\
20473conversational style, when possible."),
20474 NULL,
20475 show_dwarf2_always_disassemble,
20476 &set_dwarf2_cmdlist,
20477 &show_dwarf2_cmdlist);
20478
45cfd468
DE
20479 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20480Set debugging of the dwarf2 reader."), _("\
20481Show debugging of the dwarf2 reader."), _("\
20482When enabled, debugging messages are printed during dwarf2 reading\n\
20483and symtab expansion."),
20484 NULL,
20485 NULL,
20486 &setdebuglist, &showdebuglist);
20487
ccce17b0 20488 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
20489Set debugging of the dwarf2 DIE reader."), _("\
20490Show debugging of the dwarf2 DIE reader."), _("\
20491When enabled (non-zero), DIEs are dumped after they are read in.\n\
20492The value is the maximum depth to print."),
ccce17b0
YQ
20493 NULL,
20494 NULL,
20495 &setdebuglist, &showdebuglist);
9291a0cd 20496
900e11f9
JK
20497 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20498Set cross-checking of \"physname\" code against demangler."), _("\
20499Show cross-checking of \"physname\" code against demangler."), _("\
20500When enabled, GDB's internal \"physname\" code is checked against\n\
20501the demangler."),
20502 NULL, show_check_physname,
20503 &setdebuglist, &showdebuglist);
20504
e615022a
DE
20505 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20506 no_class, &use_deprecated_index_sections, _("\
20507Set whether to use deprecated gdb_index sections."), _("\
20508Show whether to use deprecated gdb_index sections."), _("\
20509When enabled, deprecated .gdb_index sections are used anyway.\n\
20510Normally they are ignored either because of a missing feature or\n\
20511performance issue.\n\
20512Warning: This option must be enabled before gdb reads the file."),
20513 NULL,
20514 NULL,
20515 &setlist, &showlist);
20516
96d19272 20517 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 20518 _("\
fc1a9d6e 20519Save a gdb-index file.\n\
11570e71 20520Usage: save gdb-index DIRECTORY"),
96d19272
JK
20521 &save_cmdlist);
20522 set_cmd_completer (c, filename_completer);
6502dd73 20523}
This page took 2.609146 seconds and 4 git commands to generate.