opcodes/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
4c2df51b 72
c906108c
SS
73#include <fcntl.h>
74#include "gdb_string.h"
4bdf3d34 75#include "gdb_assert.h"
c906108c 76#include <sys/types.h>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
45cfd468
DE
81/* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83static int dwarf2_read_debug = 0;
84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
dce234bc
PP
103struct dwarf2_section_info
104{
105 asection *asection;
d521ce57 106 const gdb_byte *buffer;
dce234bc 107 bfd_size_type size;
be391dca
TT
108 /* True if we have tried to read this section. */
109 int readin;
dce234bc
PP
110};
111
8b70b953
TT
112typedef struct dwarf2_section_info dwarf2_section_info_def;
113DEF_VEC_O (dwarf2_section_info_def);
114
9291a0cd
TT
115/* All offsets in the index are of this type. It must be
116 architecture-independent. */
117typedef uint32_t offset_type;
118
119DEF_VEC_I (offset_type);
120
156942c7
DE
121/* Ensure only legit values are used. */
122#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128/* Ensure only legit values are used. */
129#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136/* Ensure we don't use more than the alloted nuber of bits for the CU. */
137#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
9291a0cd
TT
143/* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145struct mapped_index
146{
559a7a62
JK
147 /* Index data format version. */
148 int version;
149
9291a0cd
TT
150 /* The total length of the buffer. */
151 off_t total_size;
b11b1f88 152
9291a0cd
TT
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
b11b1f88 155
9291a0cd
TT
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
b11b1f88 158
3876f04e
DE
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
b11b1f88 161
9291a0cd 162 /* Size in slots, each slot is 2 offset_types. */
3876f04e 163 offset_type symbol_table_slots;
b11b1f88 164
9291a0cd
TT
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167};
168
95554aad
TT
169typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170DEF_VEC_P (dwarf2_per_cu_ptr);
171
9cdd5dbd
DE
172/* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
6502dd73
DJ
175struct dwarf2_per_objfile
176{
dce234bc
PP
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
dce234bc
PP
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
cf2c3c16 182 struct dwarf2_section_info macro;
dce234bc
PP
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
3019eac3 185 struct dwarf2_section_info addr;
dce234bc
PP
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
9291a0cd 188 struct dwarf2_section_info gdb_index;
ae038cb0 189
8b70b953
TT
190 VEC (dwarf2_section_info_def) *types;
191
be391dca
TT
192 /* Back link. */
193 struct objfile *objfile;
194
d467dd73 195 /* Table of all the compilation units. This is used to locate
10b3939b 196 the target compilation unit of a particular reference. */
ae038cb0
DJ
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
1fd400ff 202 /* The number of .debug_types-related CUs. */
d467dd73 203 int n_type_units;
1fd400ff 204
a2ce51a0
DE
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
b4dd5633 207 struct signatured_type **all_type_units;
1fd400ff 208
f4dc4d17
DE
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
72dca2f5 219
348e048f
DE
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
f4dc4d17
DE
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
3019eac3
DE
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
80626a55
DE
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
36586728
TT
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
72dca2f5
FR
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
9291a0cd 255
ae2de4f8
DE
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
258 unsigned char using_index;
259
ae2de4f8 260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 261 struct mapped_index *index_table;
98bfdba5 262
7b9f3c50 263 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
7b9f3c50
DE
270 htab_t quick_file_names_table;
271
98bfdba5
PA
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
673bfd45 275
dee91e82 276 /* Table mapping type DIEs to their struct type *.
673bfd45 277 This is NULL if not allocated yet.
02142a6c 278 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 279 htab_t die_type_hash;
95554aad
TT
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
283};
284
285static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 286
251d32d9 287/* Default names of the debugging sections. */
c906108c 288
233a11ab
CS
289/* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
9cdd5dbd
DE
292static const struct dwarf2_debug_sections dwarf2_elf_names =
293{
251d32d9
TG
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 299 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
3019eac3 303 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
24d3216f
TT
306 { ".gdb_index", ".zgdb_index" },
307 23
251d32d9 308};
c906108c 309
80626a55 310/* List of DWO/DWP sections. */
3019eac3 311
80626a55 312static const struct dwop_section_names
3019eac3
DE
313{
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
09262596
DE
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
3019eac3
DE
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
80626a55
DE
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
3019eac3 325}
80626a55 326dwop_section_names =
3019eac3
DE
327{
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
339};
340
c906108c
SS
341/* local data types */
342
107d2387
AC
343/* The data in a compilation unit header, after target2host
344 translation, looks like this. */
c906108c 345struct comp_unit_head
a738430d 346{
c764a876 347 unsigned int length;
a738430d 348 short version;
a738430d
MK
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
b64f50a1 351 sect_offset abbrev_offset;
57349743 352
a738430d
MK
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
57349743 355
a738430d
MK
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
57349743 358
a738430d
MK
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
b64f50a1 361 sect_offset offset;
57349743 362
d00adf39
DE
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
b64f50a1 365 cu_offset first_die_offset;
a738430d 366};
c906108c 367
3da10d80
KS
368/* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370struct delayed_method_info
371{
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386};
387
388typedef struct delayed_method_info delayed_method_info;
389DEF_VEC_O (delayed_method_info);
390
e7c27a73
DJ
391/* Internal state when decoding a particular compilation unit. */
392struct dwarf2_cu
393{
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
d00adf39 397 /* The header of the compilation unit. */
e7c27a73 398 struct comp_unit_head header;
e142c38c 399
d00adf39
DE
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
e142c38c
DJ
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
b0f35d58
DL
410 const char *producer;
411
e142c38c
DJ
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
433df2d4
DE
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
72bf9492 427
b64f50a1
JK
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
ae038cb0
DJ
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
b64f50a1
JK
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
51545339 450 htab_t die_hash;
10b3939b
DJ
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
cb1df416
DJ
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
3da10d80
KS
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
96408a79
SA
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
034e5797
DE
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
3019eac3
DE
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
2e3cf129
DE
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
496 ULONGEST ranges_base;
497
ae038cb0
DJ
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
8be455d7
JK
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 505 unsigned int has_loclist : 1;
ba919b58 506
1b80a9fa
JK
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
ba919b58
TT
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 513 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 514 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
521};
522
10b3939b
DJ
523/* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
28dee7f5 525 read_symtab_private field of the psymtab. */
10b3939b 526
ae038cb0
DJ
527struct dwarf2_per_cu_data
528{
36586728 529 /* The start offset and length of this compilation unit.
45452591 530 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
b64f50a1 534 sect_offset offset;
36586728 535 unsigned int length;
ae038cb0
DJ
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
c764a876 539 unsigned int queued : 1;
ae038cb0 540
0d99eb77
DE
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
0186c6a7
DE
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
3019eac3
DE
550 unsigned int is_debug_types : 1;
551
36586728
TT
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
a2ce51a0
DE
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
3019eac3
DE
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
8a0459fd 564 struct dwarf2_section_info *section;
348e048f 565
17ea53c3
JK
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
ae038cb0 568 struct dwarf2_cu *cu;
1c379e20 569
9cdd5dbd
DE
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
95554aad 580 or NULL for unread partial units. */
9291a0cd
TT
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
95554aad 586
796a7ff8
DE
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
605};
606
348e048f
DE
607/* Entry in the signatured_types hash table. */
608
609struct signatured_type
610{
42e7ad6c 611 /* The "per_cu" object of this type.
ac9ec31b 612 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
3019eac3 617 /* The type's signature. */
348e048f
DE
618 ULONGEST signature;
619
3019eac3 620 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
0186c6a7
DE
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
ac9ec31b
DE
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
a2ce51a0
DE
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
348e048f
DE
644};
645
0186c6a7
DE
646typedef struct signatured_type *sig_type_ptr;
647DEF_VEC_P (sig_type_ptr);
648
094b34ac
DE
649/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652struct stmt_list_hash
653{
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659};
660
f4dc4d17
DE
661/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664struct type_unit_group
665{
0186c6a7 666 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
8a0459fd 671#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
672 struct dwarf2_per_cu_data per_cu;
673
0186c6a7
DE
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
678
679 /* The primary symtab.
094b34ac
DE
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
682 struct symtab *primary_symtab;
683
094b34ac
DE
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
f4dc4d17
DE
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700};
701
80626a55 702/* These sections are what may appear in a DWO file. */
3019eac3
DE
703
704struct dwo_sections
705{
706 struct dwarf2_section_info abbrev;
3019eac3
DE
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
09262596
DE
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
3019eac3
DE
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
80626a55
DE
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
3019eac3
DE
715 VEC (dwarf2_section_info_def) *types;
716};
717
c88ee1f0 718/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
719
720struct dwo_unit
721{
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 731 struct dwarf2_section_info *section;
3019eac3
DE
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739};
740
80626a55
DE
741/* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
3019eac3
DE
744
745struct dwo_file
746{
0ac5b59e 747 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
0ac5b59e
DE
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
3019eac3 755
80626a55
DE
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
3019eac3
DE
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
19c3d4c9
DE
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
3019eac3
DE
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773};
774
80626a55
DE
775/* These sections are what may appear in a DWP file. */
776
777struct dwp_sections
778{
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784};
785
786/* These sections are what may appear in a virtual DWO file. */
787
788struct virtual_dwo_sections
789{
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 797 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
798 struct dwarf2_section_info info_or_types;
799};
800
801/* Contents of DWP hash tables. */
802
803struct dwp_hash_table
804{
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807};
808
809/* Data for one DWP file. */
810
811struct dwp_file
812{
813 /* Name of the file. */
814 const char *name;
815
93417882 816 /* The bfd. */
80626a55
DE
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834};
835
36586728
TT
836/* This represents a '.dwz' file. */
837
838struct dwz_file
839{
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
2ec9a5e0 846 struct dwarf2_section_info gdb_index;
36586728
TT
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850};
851
0963b4bd
MS
852/* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
dee91e82 855 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
856
857struct die_reader_specs
858{
dee91e82 859 /* die_section->asection->owner. */
93311388
DE
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
80626a55 865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
866 struct dwo_file *dwo_file;
867
dee91e82 868 /* The section the die comes from.
3019eac3 869 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
d521ce57 873 const gdb_byte *buffer;
f664829e
DE
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
a2ce51a0
DE
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
93311388
DE
880};
881
fd820528 882/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 883typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 884 const gdb_byte *info_ptr,
dee91e82
DE
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
debd256d
JB
889/* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892struct line_header
893{
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
2dc7f7b3 898 unsigned char maximum_ops_per_instruction;
debd256d
JB
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
d521ce57 915 const char **include_dirs;
debd256d
JB
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
c906108c 922 {
d521ce57 923 const char *name;
debd256d
JB
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
aaa75496 927 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 928 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
929 } *file_names;
930
931 /* The start and end of the statement program following this
6502dd73 932 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 933 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 934};
c906108c
SS
935
936/* When we construct a partial symbol table entry we only
0963b4bd 937 need this much information. */
c906108c
SS
938struct partial_die_info
939 {
72bf9492 940 /* Offset of this DIE. */
b64f50a1 941 sect_offset offset;
72bf9492
DJ
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
72bf9492
DJ
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
481860b3 953 unsigned int may_be_inlined : 1;
72bf9492
DJ
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
fa4028e9
JB
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
98bfdba5
PA
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
abc72ce4
DE
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
36586728
TT
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
72bf9492 974 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 975 sometimes a default name for unnamed DIEs. */
15d034d0 976 const char *name;
72bf9492 977
abc72ce4
DE
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
72bf9492
DJ
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
15d034d0 984 const char *scope;
72bf9492 985
95554aad
TT
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
72bf9492
DJ
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
72bf9492 999
93311388 1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1001 DW_AT_sibling, if any. */
abc72ce4
DE
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1004 const gdb_byte *sibling;
72bf9492
DJ
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
b64f50a1 1009 sect_offset spec_offset;
72bf9492
DJ
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1014 };
1015
0963b4bd 1016/* This data structure holds the information of an abbrev. */
c906108c
SS
1017struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027struct attr_abbrev
1028 {
9d25dd43
DE
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1031 };
1032
433df2d4
DE
1033/* Size of abbrev_table.abbrev_hash_table. */
1034#define ABBREV_HASH_SIZE 121
1035
1036/* Top level data structure to contain an abbreviation table. */
1037
1038struct abbrev_table
1039{
f4dc4d17
DE
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
433df2d4
DE
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052};
1053
0963b4bd 1054/* Attributes have a name and a value. */
b60c80d6
DJ
1055struct attribute
1056 {
9d25dd43 1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
b60c80d6
DJ
1065 union
1066 {
15d034d0 1067 const char *str;
b60c80d6 1068 struct dwarf_block *blk;
43bbcdc2
PH
1069 ULONGEST unsnd;
1070 LONGEST snd;
b60c80d6 1071 CORE_ADDR addr;
ac9ec31b 1072 ULONGEST signature;
b60c80d6
DJ
1073 }
1074 u;
1075 };
1076
0963b4bd 1077/* This data structure holds a complete die structure. */
c906108c
SS
1078struct die_info
1079 {
76815b17
DE
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
98bfdba5
PA
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
76815b17
DE
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
93311388 1093 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1094 sect_offset offset;
78ba4af6
JB
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
4950bc1c 1099 together via their SIBLING fields. */
639d11d3
DC
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
c906108c 1103
b60c80d6
DJ
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
c906108c
SS
1108 };
1109
0963b4bd 1110/* Get at parts of an attribute structure. */
c906108c
SS
1111
1112#define DW_STRING(attr) ((attr)->u.str)
8285870a 1113#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1114#define DW_UNSND(attr) ((attr)->u.unsnd)
1115#define DW_BLOCK(attr) ((attr)->u.blk)
1116#define DW_SND(attr) ((attr)->u.snd)
1117#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1118#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1119
0963b4bd 1120/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1121struct dwarf_block
1122 {
56eb65bd 1123 size_t size;
1d6edc3c
JK
1124
1125 /* Valid only if SIZE is not zero. */
d521ce57 1126 const gdb_byte *data;
c906108c
SS
1127 };
1128
c906108c
SS
1129#ifndef ATTR_ALLOC_CHUNK
1130#define ATTR_ALLOC_CHUNK 4
1131#endif
1132
c906108c
SS
1133/* Allocate fields for structs, unions and enums in this size. */
1134#ifndef DW_FIELD_ALLOC_CHUNK
1135#define DW_FIELD_ALLOC_CHUNK 4
1136#endif
1137
c906108c
SS
1138/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141static int bits_per_byte = 8;
1142
1143/* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146struct field_info
c5aa993b 1147 {
0963b4bd 1148 /* List of data member and baseclasses fields. */
c5aa993b
JM
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
7d0ccb61 1156 *fields, *baseclasses;
c906108c 1157
7d0ccb61 1158 /* Number of fields (including baseclasses). */
c5aa993b 1159 int nfields;
c906108c 1160
c5aa993b
JM
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
c906108c 1163
c5aa993b
JM
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
c906108c 1166
c5aa993b
JM
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
c906108c 1175
c5aa993b
JM
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
15d034d0 1181 const char *name;
c5aa993b
JM
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
c906108c 1186
c5aa993b
JM
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
98751a41
JK
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
c5aa993b 1199 };
c906108c 1200
10b3939b
DJ
1201/* One item on the queue of compilation units to read in full symbols
1202 for. */
1203struct dwarf2_queue_item
1204{
1205 struct dwarf2_per_cu_data *per_cu;
95554aad 1206 enum language pretend_language;
10b3939b
DJ
1207 struct dwarf2_queue_item *next;
1208};
1209
1210/* The current queue. */
1211static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
ae038cb0
DJ
1213/* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218static int dwarf2_max_cache_age = 5;
920d2a44
AC
1219static void
1220show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222{
3e43a32a
MS
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1225 value);
1226}
1227
ae038cb0 1228
0963b4bd 1229/* Various complaints about symbol reading that don't abort the process. */
c906108c 1230
4d3c2250
KB
1231static void
1232dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1233{
4d3c2250 1234 complaint (&symfile_complaints,
e2e0b3e5 1235 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1236}
1237
25e43795
DJ
1238static void
1239dwarf2_debug_line_missing_file_complaint (void)
1240{
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243}
1244
59205f5a
JB
1245static void
1246dwarf2_debug_line_missing_end_sequence_complaint (void)
1247{
1248 complaint (&symfile_complaints,
3e43a32a
MS
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
59205f5a
JB
1251}
1252
4d3c2250
KB
1253static void
1254dwarf2_complex_location_expr_complaint (void)
2e276125 1255{
e2e0b3e5 1256 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1257}
1258
4d3c2250
KB
1259static void
1260dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
2e276125 1262{
4d3c2250 1263 complaint (&symfile_complaints,
3e43a32a
MS
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
4d3c2250
KB
1266}
1267
1268static void
f664829e 1269dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1270{
4d3c2250 1271 complaint (&symfile_complaints,
f664829e
DE
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1276}
1277
1278static void
1279dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1280{
4d3c2250 1281 complaint (&symfile_complaints,
3e43a32a
MS
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1284 arg1);
1285}
1286
1287static void
1288dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1289{
4d3c2250 1290 complaint (&symfile_complaints,
3e43a32a
MS
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
4d3c2250 1293}
c906108c 1294
c906108c
SS
1295/* local function prototypes */
1296
4efb68b1 1297static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1298
918dd910
JK
1299static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
0018ea6f
DE
1302static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
c67a9c90 1305static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1306
72bf9492
DJ
1307static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1309 int, struct dwarf2_cu *);
c906108c 1310
72bf9492
DJ
1311static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
63d06c5c 1313
72bf9492
DJ
1314static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1316 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1317
5d7cb8df
JK
1318static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
72bf9492
DJ
1322static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
91c24f0a 1324
bc30ff58
JB
1325static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1327 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1328
257e7a09
YQ
1329static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
c906108c 1331
a14ed312 1332static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1333
433df2d4
DE
1334static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340static void abbrev_table_free (struct abbrev_table *);
1341
f4dc4d17
DE
1342static void abbrev_table_free_cleanup (void *);
1343
dee91e82
DE
1344static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
c906108c 1346
f3dd6933 1347static void dwarf2_free_abbrev_table (void *);
c906108c 1348
d521ce57 1349static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1350
dee91e82 1351static struct partial_die_info *load_partial_dies
d521ce57 1352 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1353
d521ce57
TT
1354static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
c906108c 1359
36586728 1360static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1361 struct dwarf2_cu *);
72bf9492
DJ
1362
1363static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
d521ce57
TT
1366static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
a8329558 1369
a1855c1d 1370static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1371
a1855c1d 1372static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1373
a1855c1d 1374static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1375
a1855c1d 1376static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1377
a1855c1d 1378static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1379
d521ce57 1380static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1381 unsigned int *);
c906108c 1382
d521ce57 1383static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1384
1385static LONGEST read_checked_initial_length_and_offset
d521ce57 1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1387 unsigned int *, unsigned int *);
613e1657 1388
d521ce57
TT
1389static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
c764a876
DE
1391 unsigned int *);
1392
d521ce57 1393static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1394
f4dc4d17
DE
1395static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
d521ce57 1398static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1399
d521ce57 1400static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1401
d521ce57
TT
1402static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
4bdf3d34 1405
d521ce57 1406static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1407
d521ce57 1408static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1409
d521ce57 1410static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1411
d521ce57
TT
1412static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
3019eac3
DE
1414 unsigned int *);
1415
d521ce57
TT
1416static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1418
e142c38c 1419static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1420
e142c38c
DJ
1421static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
c906108c 1423
348e048f 1424static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1425 unsigned int);
348e048f 1426
05cf31d1
JB
1427static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
e142c38c 1430static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1431
e142c38c 1432static struct die_info *die_specification (struct die_info *die,
f2f0e013 1433 struct dwarf2_cu **);
63d06c5c 1434
debd256d
JB
1435static void free_line_header (struct line_header *lh);
1436
3019eac3
DE
1437static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
debd256d 1439
f3f5162e
DE
1440static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
c906108c 1443
d521ce57 1444static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1445
f4dc4d17 1446static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1447 const char *, const char *, CORE_ADDR);
f4dc4d17 1448
a14ed312 1449static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1450 struct dwarf2_cu *);
c906108c 1451
34eaf542
TT
1452static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
ff39bb5e 1455static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1456 struct dwarf2_cu *);
c906108c 1457
ff39bb5e 1458static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
12df843f 1462 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1463 const gdb_byte **bytes,
98bfdba5 1464 struct dwarf2_locexpr_baton **baton);
2df3850c 1465
e7c27a73 1466static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1467
b4ba55a1
JB
1468static int need_gnat_info (struct dwarf2_cu *);
1469
3e43a32a
MS
1470static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
b4ba55a1
JB
1472
1473static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
e7c27a73
DJ
1476static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
c906108c 1478
ff39bb5e 1479static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1480 struct dwarf2_cu *);
c906108c 1481
f792889a 1482static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1483
673bfd45
DE
1484static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
0d5cff50 1486static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1487
6e70227d 1488static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
63d06c5c 1491
e7c27a73 1492static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1493
348e048f
DE
1494static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
e7c27a73 1496static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1497
e7c27a73 1498static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1499
96408a79
SA
1500static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
ff013f42
JK
1502static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
a14ed312 1505static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
c906108c 1508
fae299cd
DC
1509static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
801e3a5b
JB
1513static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
a14ed312 1516static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1517 struct dwarf2_cu *);
c906108c 1518
a14ed312 1519static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1520 struct type *, struct dwarf2_cu *);
c906108c 1521
a14ed312 1522static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1523 struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
a14ed312 1526static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1527 struct type *,
1528 struct dwarf2_cu *);
c906108c 1529
134d01f1 1530static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1531
e7c27a73 1532static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1533
e7c27a73 1534static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1535
5d7cb8df
JK
1536static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
27aa8d6a
SW
1538static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
f55ee35c
JK
1540static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
38d518c9 1543static const char *namespace_name (struct die_info *die,
e142c38c 1544 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1545
134d01f1 1546static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1547
e7c27a73 1548static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1549
6e70227d 1550static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1551 struct dwarf2_cu *);
1552
bf6af496 1553static struct die_info *read_die_and_siblings_1
d521ce57 1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1555 struct die_info *);
639d11d3 1556
dee91e82 1557static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
639d11d3
DC
1560 struct die_info *parent);
1561
d521ce57
TT
1562static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
3019eac3 1565
d521ce57
TT
1566static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
93311388 1569
e7c27a73 1570static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1571
15d034d0
TT
1572static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
71c25dea 1574
15d034d0 1575static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1576
15d034d0 1577static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
ca69b9e6
DE
1581static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
e142c38c 1584static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1585 struct dwarf2_cu **);
9219021c 1586
f39c6ffd 1587static const char *dwarf_tag_name (unsigned int);
c906108c 1588
f39c6ffd 1589static const char *dwarf_attr_name (unsigned int);
c906108c 1590
f39c6ffd 1591static const char *dwarf_form_name (unsigned int);
c906108c 1592
a14ed312 1593static char *dwarf_bool_name (unsigned int);
c906108c 1594
f39c6ffd 1595static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1596
f9aca02d 1597static struct die_info *sibling_die (struct die_info *);
c906108c 1598
d97bc12b
DE
1599static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601static void dump_die_for_error (struct die_info *);
1602
1603static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
c906108c 1605
d97bc12b 1606/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1607
51545339 1608static void store_in_ref_table (struct die_info *,
10b3939b 1609 struct dwarf2_cu *);
c906108c 1610
ff39bb5e 1611static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1612
ff39bb5e 1613static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1614
348e048f 1615static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1616 const struct attribute *,
348e048f
DE
1617 struct dwarf2_cu **);
1618
10b3939b 1619static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1620 const struct attribute *,
f2f0e013 1621 struct dwarf2_cu **);
c906108c 1622
348e048f 1623static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1624 const struct attribute *,
348e048f
DE
1625 struct dwarf2_cu **);
1626
ac9ec31b
DE
1627static struct type *get_signatured_type (struct die_info *, ULONGEST,
1628 struct dwarf2_cu *);
1629
1630static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1631 const struct attribute *,
ac9ec31b
DE
1632 struct dwarf2_cu *);
1633
e5fe5e75 1634static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1635
52dc124a 1636static void read_signatured_type (struct signatured_type *);
348e048f 1637
f4dc4d17 1638static struct type_unit_group *get_type_unit_group
ff39bb5e 1639 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1640
1641static void build_type_unit_groups (die_reader_func_ftype *, void *);
1642
c906108c
SS
1643/* memory allocation interface */
1644
7b5a2f43 1645static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1646
b60c80d6 1647static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1648
09262596 1649static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1650 const char *, int);
2e276125 1651
6e5a29e1 1652static int attr_form_is_block (const struct attribute *);
8e19ed76 1653
6e5a29e1 1654static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1655
6e5a29e1 1656static int attr_form_is_constant (const struct attribute *);
3690dd37 1657
6e5a29e1 1658static int attr_form_is_ref (const struct attribute *);
7771576e 1659
8cf6f0b1
TT
1660static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
ff39bb5e 1662 const struct attribute *attr);
8cf6f0b1 1663
ff39bb5e 1664static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1665 struct symbol *sym,
f1e6e072
TT
1666 struct dwarf2_cu *cu,
1667 int is_block);
4c2df51b 1668
d521ce57
TT
1669static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
4bb7a0a7 1672
72bf9492
DJ
1673static void free_stack_comp_unit (void *);
1674
72bf9492
DJ
1675static hashval_t partial_die_hash (const void *item);
1676
1677static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
ae038cb0 1679static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1681
9816fde3 1682static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1683 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1684
1685static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
93311388 1688
68dc6402 1689static void free_heap_comp_unit (void *);
ae038cb0
DJ
1690
1691static void free_cached_comp_units (void *);
1692
1693static void age_cached_comp_units (void);
1694
dee91e82 1695static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1696
f792889a
DJ
1697static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1c379e20 1699
ae038cb0
DJ
1700static void create_all_comp_units (struct objfile *);
1701
0e50663e 1702static int create_all_type_units (struct objfile *);
1fd400ff 1703
95554aad
TT
1704static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
10b3939b 1706
95554aad
TT
1707static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
10b3939b 1709
f4dc4d17
DE
1710static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
10b3939b
DJ
1713static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
ae038cb0
DJ
1716static void dwarf2_mark (struct dwarf2_cu *);
1717
1718static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
b64f50a1 1720static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1721 struct dwarf2_per_cu_data *);
673bfd45 1722
f792889a 1723static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1724
9291a0cd
TT
1725static void dwarf2_release_queue (void *dummy);
1726
95554aad
TT
1727static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
9291a0cd 1733
a0f42c21 1734static void process_queue (void);
9291a0cd
TT
1735
1736static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
15d034d0 1738 const char **name, const char **comp_dir);
9291a0cd
TT
1739
1740static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
d521ce57 1743static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
d521ce57 1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1747 int is_debug_types_section);
1748
fd820528 1749static void init_cutu_and_read_dies
f4dc4d17
DE
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
3019eac3
DE
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
dee91e82
DE
1754static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1757
673bfd45 1758static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1759
3019eac3
DE
1760static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
a2ce51a0
DE
1762static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766static struct dwp_file *get_dwp_file (void);
1767
3019eac3 1768static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1770
1771static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1772 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1773
1774static void free_dwo_file_cleanup (void *);
1775
95554aad
TT
1776static void process_cu_includes (void);
1777
1b80a9fa
JK
1778static void check_producer (struct dwarf2_cu *cu);
1779
9291a0cd
TT
1780#if WORDS_BIGENDIAN
1781
1782/* Convert VALUE between big- and little-endian. */
1783static offset_type
1784byte_swap (offset_type value)
1785{
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793}
1794
1795#define MAYBE_SWAP(V) byte_swap (V)
1796
1797#else
1798#define MAYBE_SWAP(V) (V)
1799#endif /* WORDS_BIGENDIAN */
1800
1801/* The suffix for an index file. */
1802#define INDEX_SUFFIX ".gdb-index"
1803
c906108c 1804/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
c906108c
SS
1808
1809int
251d32d9
TG
1810dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
c906108c 1812{
be391dca
TT
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1819
be391dca
TT
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
6502dd73 1823
251d32d9
TG
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
be391dca
TT
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1830}
1831
251d32d9
TG
1832/* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
233a11ab
CS
1834
1835static int
251d32d9
TG
1836section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
233a11ab 1838{
251d32d9
TG
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
233a11ab
CS
1846}
1847
c906108c
SS
1848/* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852static void
251d32d9 1853dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1854{
251d32d9 1855 const struct dwarf2_debug_sections *names;
dc7650b8 1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
dc7650b8
JK
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
c906108c 1867 {
dce234bc
PP
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1870 }
251d32d9 1871 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1872 {
dce234bc
PP
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1875 }
251d32d9 1876 else if (section_is_p (sectp->name, &names->line))
c906108c 1877 {
dce234bc
PP
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1880 }
251d32d9 1881 else if (section_is_p (sectp->name, &names->loc))
c906108c 1882 {
dce234bc
PP
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1885 }
251d32d9 1886 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1887 {
dce234bc
PP
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1890 }
cf2c3c16
TT
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
251d32d9 1896 else if (section_is_p (sectp->name, &names->str))
c906108c 1897 {
dce234bc
PP
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1900 }
3019eac3
DE
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
251d32d9 1906 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1907 {
dce234bc
PP
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1910 }
251d32d9 1911 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1912 {
dc7650b8
JK
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1915 }
251d32d9 1916 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1917 {
dce234bc
PP
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1920 }
251d32d9 1921 else if (section_is_p (sectp->name, &names->types))
348e048f 1922 {
8b70b953
TT
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
348e048f 1931 }
251d32d9 1932 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
dce234bc 1937
72dca2f5
FR
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1941}
1942
fceca515
DE
1943/* A helper function that decides whether a section is empty,
1944 or not present. */
9e0ac564
TT
1945
1946static int
1947dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948{
1949 return info->asection == NULL || info->size == 0;
1950}
1951
3019eac3
DE
1952/* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
dce234bc 1956 If the section is compressed, uncompress it before returning. */
c906108c 1957
dce234bc
PP
1958static void
1959dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1960{
dce234bc 1961 asection *sectp = info->asection;
3019eac3 1962 bfd *abfd;
dce234bc
PP
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
c906108c 1965
be391dca
TT
1966 if (info->readin)
1967 return;
dce234bc 1968 info->buffer = NULL;
be391dca 1969 info->readin = 1;
188dd5d6 1970
9e0ac564 1971 if (dwarf2_section_empty_p (info))
dce234bc 1972 return;
c906108c 1973
3019eac3
DE
1974 abfd = sectp->owner;
1975
4bf44c1c
TT
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1979 {
d521ce57 1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 1981 return;
dce234bc 1982 }
dce234bc 1983
4bf44c1c
TT
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
dce234bc
PP
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
ac8035ab 1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002}
2003
9e0ac564
TT
2004/* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011static bfd_size_type
2012dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014{
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018}
2019
dce234bc 2020/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2021 SECTION_NAME. */
af34e669 2022
dce234bc 2023void
3017a003
TG
2024dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
d521ce57 2026 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2027 bfd_size_type *sizep)
2028{
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
a3b2a86b
TT
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
3017a003
TG
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
dce234bc 2053
9e0ac564 2054 dwarf2_read_section (objfile, info);
dce234bc
PP
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059}
2060
36586728
TT
2061/* A helper function to find the sections for a .dwz file. */
2062
2063static void
2064locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065{
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2ec9a5e0
TT
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
36586728
TT
2100}
2101
4db1a1dc
TT
2102/* Open the separate '.dwz' debug file, if needed. Return NULL if
2103 there is no .gnu_debugaltlink section in the file. Error if there
2104 is such a section but the file cannot be found. */
36586728
TT
2105
2106static struct dwz_file *
2107dwarf2_get_dwz_file (void)
2108{
4db1a1dc
TT
2109 bfd *dwz_bfd;
2110 char *data;
36586728
TT
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
4db1a1dc 2114 unsigned long buildid;
36586728
TT
2115
2116 if (dwarf2_per_objfile->dwz_file != NULL)
2117 return dwarf2_per_objfile->dwz_file;
2118
4db1a1dc
TT
2119 bfd_set_error (bfd_error_no_error);
2120 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2121 &buildid);
2122 if (data == NULL)
2123 {
2124 if (bfd_get_error () == bfd_error_no_error)
2125 return NULL;
2126 error (_("could not read '.gnu_debugaltlink' section: %s"),
2127 bfd_errmsg (bfd_get_error ()));
2128 }
36586728
TT
2129 cleanup = make_cleanup (xfree, data);
2130
f9d83a0b 2131 filename = (const char *) data;
36586728
TT
2132 if (!IS_ABSOLUTE_PATH (filename))
2133 {
2134 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2135 char *rel;
2136
2137 make_cleanup (xfree, abs);
2138 abs = ldirname (abs);
2139 make_cleanup (xfree, abs);
2140
2141 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2142 make_cleanup (xfree, rel);
2143 filename = rel;
2144 }
2145
2146 /* The format is just a NUL-terminated file name, followed by the
2147 build-id. For now, though, we ignore the build-id. */
2148 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2149 if (dwz_bfd == NULL)
2150 error (_("could not read '%s': %s"), filename,
2151 bfd_errmsg (bfd_get_error ()));
2152
2153 if (!bfd_check_format (dwz_bfd, bfd_object))
2154 {
2155 gdb_bfd_unref (dwz_bfd);
2156 error (_("file '%s' was not usable: %s"), filename,
2157 bfd_errmsg (bfd_get_error ()));
2158 }
2159
2160 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2161 struct dwz_file);
2162 result->dwz_bfd = dwz_bfd;
2163
2164 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2165
2166 do_cleanups (cleanup);
2167
8d2cc612 2168 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2169 return result;
2170}
9291a0cd 2171\f
7b9f3c50
DE
2172/* DWARF quick_symbols_functions support. */
2173
2174/* TUs can share .debug_line entries, and there can be a lot more TUs than
2175 unique line tables, so we maintain a separate table of all .debug_line
2176 derived entries to support the sharing.
2177 All the quick functions need is the list of file names. We discard the
2178 line_header when we're done and don't need to record it here. */
2179struct quick_file_names
2180{
094b34ac
DE
2181 /* The data used to construct the hash key. */
2182 struct stmt_list_hash hash;
7b9f3c50
DE
2183
2184 /* The number of entries in file_names, real_names. */
2185 unsigned int num_file_names;
2186
2187 /* The file names from the line table, after being run through
2188 file_full_name. */
2189 const char **file_names;
2190
2191 /* The file names from the line table after being run through
2192 gdb_realpath. These are computed lazily. */
2193 const char **real_names;
2194};
2195
2196/* When using the index (and thus not using psymtabs), each CU has an
2197 object of this type. This is used to hold information needed by
2198 the various "quick" methods. */
2199struct dwarf2_per_cu_quick_data
2200{
2201 /* The file table. This can be NULL if there was no file table
2202 or it's currently not read in.
2203 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2204 struct quick_file_names *file_names;
2205
2206 /* The corresponding symbol table. This is NULL if symbols for this
2207 CU have not yet been read. */
2208 struct symtab *symtab;
2209
2210 /* A temporary mark bit used when iterating over all CUs in
2211 expand_symtabs_matching. */
2212 unsigned int mark : 1;
2213
2214 /* True if we've tried to read the file table and found there isn't one.
2215 There will be no point in trying to read it again next time. */
2216 unsigned int no_file_data : 1;
2217};
2218
094b34ac
DE
2219/* Utility hash function for a stmt_list_hash. */
2220
2221static hashval_t
2222hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2223{
2224 hashval_t v = 0;
2225
2226 if (stmt_list_hash->dwo_unit != NULL)
2227 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2228 v += stmt_list_hash->line_offset.sect_off;
2229 return v;
2230}
2231
2232/* Utility equality function for a stmt_list_hash. */
2233
2234static int
2235eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2236 const struct stmt_list_hash *rhs)
2237{
2238 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2239 return 0;
2240 if (lhs->dwo_unit != NULL
2241 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2242 return 0;
2243
2244 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2245}
2246
7b9f3c50
DE
2247/* Hash function for a quick_file_names. */
2248
2249static hashval_t
2250hash_file_name_entry (const void *e)
2251{
2252 const struct quick_file_names *file_data = e;
2253
094b34ac 2254 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2255}
2256
2257/* Equality function for a quick_file_names. */
2258
2259static int
2260eq_file_name_entry (const void *a, const void *b)
2261{
2262 const struct quick_file_names *ea = a;
2263 const struct quick_file_names *eb = b;
2264
094b34ac 2265 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2266}
2267
2268/* Delete function for a quick_file_names. */
2269
2270static void
2271delete_file_name_entry (void *e)
2272{
2273 struct quick_file_names *file_data = e;
2274 int i;
2275
2276 for (i = 0; i < file_data->num_file_names; ++i)
2277 {
2278 xfree ((void*) file_data->file_names[i]);
2279 if (file_data->real_names)
2280 xfree ((void*) file_data->real_names[i]);
2281 }
2282
2283 /* The space for the struct itself lives on objfile_obstack,
2284 so we don't free it here. */
2285}
2286
2287/* Create a quick_file_names hash table. */
2288
2289static htab_t
2290create_quick_file_names_table (unsigned int nr_initial_entries)
2291{
2292 return htab_create_alloc (nr_initial_entries,
2293 hash_file_name_entry, eq_file_name_entry,
2294 delete_file_name_entry, xcalloc, xfree);
2295}
9291a0cd 2296
918dd910
JK
2297/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2298 have to be created afterwards. You should call age_cached_comp_units after
2299 processing PER_CU->CU. dw2_setup must have been already called. */
2300
2301static void
2302load_cu (struct dwarf2_per_cu_data *per_cu)
2303{
3019eac3 2304 if (per_cu->is_debug_types)
e5fe5e75 2305 load_full_type_unit (per_cu);
918dd910 2306 else
95554aad 2307 load_full_comp_unit (per_cu, language_minimal);
918dd910 2308
918dd910 2309 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2310
2311 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2312}
2313
a0f42c21 2314/* Read in the symbols for PER_CU. */
2fdf6df6 2315
9291a0cd 2316static void
a0f42c21 2317dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2318{
2319 struct cleanup *back_to;
2320
f4dc4d17
DE
2321 /* Skip type_unit_groups, reading the type units they contain
2322 is handled elsewhere. */
2323 if (IS_TYPE_UNIT_GROUP (per_cu))
2324 return;
2325
9291a0cd
TT
2326 back_to = make_cleanup (dwarf2_release_queue, NULL);
2327
95554aad
TT
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu);
2334 }
9291a0cd 2335
a0f42c21 2336 process_queue ();
9291a0cd
TT
2337
2338 /* Age the cache, releasing compilation units that have not
2339 been used recently. */
2340 age_cached_comp_units ();
2341
2342 do_cleanups (back_to);
2343}
2344
2345/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2346 the objfile from which this CU came. Returns the resulting symbol
2347 table. */
2fdf6df6 2348
9291a0cd 2349static struct symtab *
a0f42c21 2350dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2351{
95554aad 2352 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2353 if (!per_cu->v.quick->symtab)
2354 {
2355 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2356 increment_reading_symtab ();
a0f42c21 2357 dw2_do_instantiate_symtab (per_cu);
95554aad 2358 process_cu_includes ();
9291a0cd
TT
2359 do_cleanups (back_to);
2360 }
2361 return per_cu->v.quick->symtab;
2362}
2363
f4dc4d17
DE
2364/* Return the CU given its index.
2365
2366 This is intended for loops like:
2367
2368 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2369 + dwarf2_per_objfile->n_type_units); ++i)
2370 {
2371 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2372
2373 ...;
2374 }
2375*/
2fdf6df6 2376
1fd400ff
TT
2377static struct dwarf2_per_cu_data *
2378dw2_get_cu (int index)
2379{
2380 if (index >= dwarf2_per_objfile->n_comp_units)
2381 {
f4dc4d17 2382 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2383 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2384 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2385 }
2386
2387 return dwarf2_per_objfile->all_comp_units[index];
2388}
2389
2390/* Return the primary CU given its index.
2391 The difference between this function and dw2_get_cu is in the handling
2392 of type units (TUs). Here we return the type_unit_group object.
2393
2394 This is intended for loops like:
2395
2396 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2397 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2398 {
2399 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2400
2401 ...;
2402 }
2403*/
2404
2405static struct dwarf2_per_cu_data *
2406dw2_get_primary_cu (int index)
2407{
2408 if (index >= dwarf2_per_objfile->n_comp_units)
2409 {
1fd400ff 2410 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2411 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2412 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2413 }
f4dc4d17 2414
1fd400ff
TT
2415 return dwarf2_per_objfile->all_comp_units[index];
2416}
2417
2ec9a5e0
TT
2418/* A helper for create_cus_from_index that handles a given list of
2419 CUs. */
2fdf6df6 2420
74a0d9f6 2421static void
2ec9a5e0
TT
2422create_cus_from_index_list (struct objfile *objfile,
2423 const gdb_byte *cu_list, offset_type n_elements,
2424 struct dwarf2_section_info *section,
2425 int is_dwz,
2426 int base_offset)
9291a0cd
TT
2427{
2428 offset_type i;
9291a0cd 2429
2ec9a5e0 2430 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2431 {
2432 struct dwarf2_per_cu_data *the_cu;
2433 ULONGEST offset, length;
2434
74a0d9f6
JK
2435 gdb_static_assert (sizeof (ULONGEST) >= 8);
2436 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2437 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2438 cu_list += 2 * 8;
2439
2440 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2441 struct dwarf2_per_cu_data);
b64f50a1 2442 the_cu->offset.sect_off = offset;
9291a0cd
TT
2443 the_cu->length = length;
2444 the_cu->objfile = objfile;
8a0459fd 2445 the_cu->section = section;
9291a0cd
TT
2446 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2447 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2448 the_cu->is_dwz = is_dwz;
2449 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2450 }
9291a0cd
TT
2451}
2452
2ec9a5e0 2453/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2454 the CU objects for this objfile. */
2ec9a5e0 2455
74a0d9f6 2456static void
2ec9a5e0
TT
2457create_cus_from_index (struct objfile *objfile,
2458 const gdb_byte *cu_list, offset_type cu_list_elements,
2459 const gdb_byte *dwz_list, offset_type dwz_elements)
2460{
2461 struct dwz_file *dwz;
2462
2463 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2464 dwarf2_per_objfile->all_comp_units
2465 = obstack_alloc (&objfile->objfile_obstack,
2466 dwarf2_per_objfile->n_comp_units
2467 * sizeof (struct dwarf2_per_cu_data *));
2468
74a0d9f6
JK
2469 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2470 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2471
2472 if (dwz_elements == 0)
74a0d9f6 2473 return;
2ec9a5e0
TT
2474
2475 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2476 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2477 cu_list_elements / 2);
2ec9a5e0
TT
2478}
2479
1fd400ff 2480/* Create the signatured type hash table from the index. */
673bfd45 2481
74a0d9f6 2482static void
673bfd45 2483create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2484 struct dwarf2_section_info *section,
673bfd45
DE
2485 const gdb_byte *bytes,
2486 offset_type elements)
1fd400ff
TT
2487{
2488 offset_type i;
673bfd45 2489 htab_t sig_types_hash;
1fd400ff 2490
d467dd73
DE
2491 dwarf2_per_objfile->n_type_units = elements / 3;
2492 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2493 = xmalloc (dwarf2_per_objfile->n_type_units
2494 * sizeof (struct signatured_type *));
1fd400ff 2495
673bfd45 2496 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2497
2498 for (i = 0; i < elements; i += 3)
2499 {
52dc124a
DE
2500 struct signatured_type *sig_type;
2501 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2502 void **slot;
2503
74a0d9f6
JK
2504 gdb_static_assert (sizeof (ULONGEST) >= 8);
2505 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2506 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2507 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2508 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2509 bytes += 3 * 8;
2510
52dc124a 2511 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2512 struct signatured_type);
52dc124a 2513 sig_type->signature = signature;
3019eac3
DE
2514 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2515 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2516 sig_type->per_cu.section = section;
52dc124a
DE
2517 sig_type->per_cu.offset.sect_off = offset;
2518 sig_type->per_cu.objfile = objfile;
2519 sig_type->per_cu.v.quick
1fd400ff
TT
2520 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2521 struct dwarf2_per_cu_quick_data);
2522
52dc124a
DE
2523 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2524 *slot = sig_type;
1fd400ff 2525
b4dd5633 2526 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2527 }
2528
673bfd45 2529 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2530}
2531
9291a0cd
TT
2532/* Read the address map data from the mapped index, and use it to
2533 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2534
9291a0cd
TT
2535static void
2536create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2537{
2538 const gdb_byte *iter, *end;
2539 struct obstack temp_obstack;
2540 struct addrmap *mutable_map;
2541 struct cleanup *cleanup;
2542 CORE_ADDR baseaddr;
2543
2544 obstack_init (&temp_obstack);
2545 cleanup = make_cleanup_obstack_free (&temp_obstack);
2546 mutable_map = addrmap_create_mutable (&temp_obstack);
2547
2548 iter = index->address_table;
2549 end = iter + index->address_table_size;
2550
2551 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2552
2553 while (iter < end)
2554 {
2555 ULONGEST hi, lo, cu_index;
2556 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2557 iter += 8;
2558 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2559 iter += 8;
2560 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2561 iter += 4;
f652bce2
DE
2562
2563 if (cu_index < dwarf2_per_objfile->n_comp_units)
2564 {
2565 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2566 dw2_get_cu (cu_index));
2567 }
2568 else
2569 {
2570 complaint (&symfile_complaints,
2571 _(".gdb_index address table has invalid CU number %u"),
2572 (unsigned) cu_index);
2573 }
9291a0cd
TT
2574 }
2575
2576 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2577 &objfile->objfile_obstack);
2578 do_cleanups (cleanup);
2579}
2580
59d7bcaf
JK
2581/* The hash function for strings in the mapped index. This is the same as
2582 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2583 implementation. This is necessary because the hash function is tied to the
2584 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2585 SYMBOL_HASH_NEXT.
2586
2587 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2588
9291a0cd 2589static hashval_t
559a7a62 2590mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2591{
2592 const unsigned char *str = (const unsigned char *) p;
2593 hashval_t r = 0;
2594 unsigned char c;
2595
2596 while ((c = *str++) != 0)
559a7a62
JK
2597 {
2598 if (index_version >= 5)
2599 c = tolower (c);
2600 r = r * 67 + c - 113;
2601 }
9291a0cd
TT
2602
2603 return r;
2604}
2605
2606/* Find a slot in the mapped index INDEX for the object named NAME.
2607 If NAME is found, set *VEC_OUT to point to the CU vector in the
2608 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2609
9291a0cd
TT
2610static int
2611find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2612 offset_type **vec_out)
2613{
0cf03b49
JK
2614 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2615 offset_type hash;
9291a0cd 2616 offset_type slot, step;
559a7a62 2617 int (*cmp) (const char *, const char *);
9291a0cd 2618
0cf03b49
JK
2619 if (current_language->la_language == language_cplus
2620 || current_language->la_language == language_java
2621 || current_language->la_language == language_fortran)
2622 {
2623 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2624 not contain any. */
2625 const char *paren = strchr (name, '(');
2626
2627 if (paren)
2628 {
2629 char *dup;
2630
2631 dup = xmalloc (paren - name + 1);
2632 memcpy (dup, name, paren - name);
2633 dup[paren - name] = 0;
2634
2635 make_cleanup (xfree, dup);
2636 name = dup;
2637 }
2638 }
2639
559a7a62 2640 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2641 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2642 simulate our NAME being searched is also lowercased. */
2643 hash = mapped_index_string_hash ((index->version == 4
2644 && case_sensitivity == case_sensitive_off
2645 ? 5 : index->version),
2646 name);
2647
3876f04e
DE
2648 slot = hash & (index->symbol_table_slots - 1);
2649 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2650 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2651
2652 for (;;)
2653 {
2654 /* Convert a slot number to an offset into the table. */
2655 offset_type i = 2 * slot;
2656 const char *str;
3876f04e 2657 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2658 {
2659 do_cleanups (back_to);
2660 return 0;
2661 }
9291a0cd 2662
3876f04e 2663 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2664 if (!cmp (name, str))
9291a0cd
TT
2665 {
2666 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2667 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2668 do_cleanups (back_to);
9291a0cd
TT
2669 return 1;
2670 }
2671
3876f04e 2672 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2673 }
2674}
2675
2ec9a5e0
TT
2676/* A helper function that reads the .gdb_index from SECTION and fills
2677 in MAP. FILENAME is the name of the file containing the section;
2678 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2679 ok to use deprecated sections.
2680
2681 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2682 out parameters that are filled in with information about the CU and
2683 TU lists in the section.
2684
2685 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2686
9291a0cd 2687static int
2ec9a5e0
TT
2688read_index_from_section (struct objfile *objfile,
2689 const char *filename,
2690 int deprecated_ok,
2691 struct dwarf2_section_info *section,
2692 struct mapped_index *map,
2693 const gdb_byte **cu_list,
2694 offset_type *cu_list_elements,
2695 const gdb_byte **types_list,
2696 offset_type *types_list_elements)
9291a0cd 2697{
948f8e3d 2698 const gdb_byte *addr;
2ec9a5e0 2699 offset_type version;
b3b272e1 2700 offset_type *metadata;
1fd400ff 2701 int i;
9291a0cd 2702
2ec9a5e0 2703 if (dwarf2_section_empty_p (section))
9291a0cd 2704 return 0;
82430852
JK
2705
2706 /* Older elfutils strip versions could keep the section in the main
2707 executable while splitting it for the separate debug info file. */
2ec9a5e0 2708 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2709 return 0;
2710
2ec9a5e0 2711 dwarf2_read_section (objfile, section);
9291a0cd 2712
2ec9a5e0 2713 addr = section->buffer;
9291a0cd 2714 /* Version check. */
1fd400ff 2715 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2716 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2717 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2718 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2719 indices. */
831adc1f 2720 if (version < 4)
481860b3
GB
2721 {
2722 static int warning_printed = 0;
2723 if (!warning_printed)
2724 {
2725 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2726 filename);
481860b3
GB
2727 warning_printed = 1;
2728 }
2729 return 0;
2730 }
2731 /* Index version 4 uses a different hash function than index version
2732 5 and later.
2733
2734 Versions earlier than 6 did not emit psymbols for inlined
2735 functions. Using these files will cause GDB not to be able to
2736 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2737 indices unless the user has done
2738 "set use-deprecated-index-sections on". */
2ec9a5e0 2739 if (version < 6 && !deprecated_ok)
481860b3
GB
2740 {
2741 static int warning_printed = 0;
2742 if (!warning_printed)
2743 {
e615022a
DE
2744 warning (_("\
2745Skipping deprecated .gdb_index section in %s.\n\
2746Do \"set use-deprecated-index-sections on\" before the file is read\n\
2747to use the section anyway."),
2ec9a5e0 2748 filename);
481860b3
GB
2749 warning_printed = 1;
2750 }
2751 return 0;
2752 }
796a7ff8
DE
2753 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2754 of the TU (for symbols coming from TUs). It's just a performance bug, and
2755 we can't distinguish gdb-generated indices from gold-generated ones, so
2756 nothing to do here. */
2757
481860b3 2758 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2759 longer backward compatible. */
796a7ff8 2760 if (version > 8)
594e8718 2761 return 0;
9291a0cd 2762
559a7a62 2763 map->version = version;
2ec9a5e0 2764 map->total_size = section->size;
9291a0cd
TT
2765
2766 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2767
2768 i = 0;
2ec9a5e0
TT
2769 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2770 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2771 / 8);
1fd400ff
TT
2772 ++i;
2773
2ec9a5e0
TT
2774 *types_list = addr + MAYBE_SWAP (metadata[i]);
2775 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2776 - MAYBE_SWAP (metadata[i]))
2777 / 8);
987d643c 2778 ++i;
1fd400ff
TT
2779
2780 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2781 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2782 - MAYBE_SWAP (metadata[i]));
2783 ++i;
2784
3876f04e
DE
2785 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2786 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2787 - MAYBE_SWAP (metadata[i]))
2788 / (2 * sizeof (offset_type)));
1fd400ff 2789 ++i;
9291a0cd 2790
f9d83a0b 2791 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 2792
2ec9a5e0
TT
2793 return 1;
2794}
2795
2796
2797/* Read the index file. If everything went ok, initialize the "quick"
2798 elements of all the CUs and return 1. Otherwise, return 0. */
2799
2800static int
2801dwarf2_read_index (struct objfile *objfile)
2802{
2803 struct mapped_index local_map, *map;
2804 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2805 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 2806 struct dwz_file *dwz;
2ec9a5e0
TT
2807
2808 if (!read_index_from_section (objfile, objfile->name,
2809 use_deprecated_index_sections,
2810 &dwarf2_per_objfile->gdb_index, &local_map,
2811 &cu_list, &cu_list_elements,
2812 &types_list, &types_list_elements))
2813 return 0;
2814
0fefef59 2815 /* Don't use the index if it's empty. */
2ec9a5e0 2816 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2817 return 0;
2818
2ec9a5e0
TT
2819 /* If there is a .dwz file, read it so we can get its CU list as
2820 well. */
4db1a1dc
TT
2821 dwz = dwarf2_get_dwz_file ();
2822 if (dwz != NULL)
2ec9a5e0 2823 {
2ec9a5e0
TT
2824 struct mapped_index dwz_map;
2825 const gdb_byte *dwz_types_ignore;
2826 offset_type dwz_types_elements_ignore;
2827
2828 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2829 1,
2830 &dwz->gdb_index, &dwz_map,
2831 &dwz_list, &dwz_list_elements,
2832 &dwz_types_ignore,
2833 &dwz_types_elements_ignore))
2834 {
2835 warning (_("could not read '.gdb_index' section from %s; skipping"),
2836 bfd_get_filename (dwz->dwz_bfd));
2837 return 0;
2838 }
2839 }
2840
74a0d9f6
JK
2841 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2842 dwz_list_elements);
1fd400ff 2843
8b70b953
TT
2844 if (types_list_elements)
2845 {
2846 struct dwarf2_section_info *section;
2847
2848 /* We can only handle a single .debug_types when we have an
2849 index. */
2850 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2851 return 0;
2852
2853 section = VEC_index (dwarf2_section_info_def,
2854 dwarf2_per_objfile->types, 0);
2855
74a0d9f6
JK
2856 create_signatured_type_table_from_index (objfile, section, types_list,
2857 types_list_elements);
8b70b953 2858 }
9291a0cd 2859
2ec9a5e0
TT
2860 create_addrmap_from_index (objfile, &local_map);
2861
2862 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2863 *map = local_map;
9291a0cd
TT
2864
2865 dwarf2_per_objfile->index_table = map;
2866 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2867 dwarf2_per_objfile->quick_file_names_table =
2868 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2869
2870 return 1;
2871}
2872
2873/* A helper for the "quick" functions which sets the global
2874 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2875
9291a0cd
TT
2876static void
2877dw2_setup (struct objfile *objfile)
2878{
2879 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2880 gdb_assert (dwarf2_per_objfile);
2881}
2882
dee91e82 2883/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2884
dee91e82
DE
2885static void
2886dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 2887 const gdb_byte *info_ptr,
dee91e82
DE
2888 struct die_info *comp_unit_die,
2889 int has_children,
2890 void *data)
9291a0cd 2891{
dee91e82
DE
2892 struct dwarf2_cu *cu = reader->cu;
2893 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2894 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2895 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2896 struct line_header *lh;
9291a0cd 2897 struct attribute *attr;
dee91e82 2898 int i;
15d034d0 2899 const char *name, *comp_dir;
7b9f3c50
DE
2900 void **slot;
2901 struct quick_file_names *qfn;
2902 unsigned int line_offset;
9291a0cd 2903
0186c6a7
DE
2904 gdb_assert (! this_cu->is_debug_types);
2905
07261596
TT
2906 /* Our callers never want to match partial units -- instead they
2907 will match the enclosing full CU. */
2908 if (comp_unit_die->tag == DW_TAG_partial_unit)
2909 {
2910 this_cu->v.quick->no_file_data = 1;
2911 return;
2912 }
2913
0186c6a7 2914 lh_cu = this_cu;
7b9f3c50
DE
2915 lh = NULL;
2916 slot = NULL;
2917 line_offset = 0;
dee91e82
DE
2918
2919 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2920 if (attr)
2921 {
7b9f3c50
DE
2922 struct quick_file_names find_entry;
2923
2924 line_offset = DW_UNSND (attr);
2925
2926 /* We may have already read in this line header (TU line header sharing).
2927 If we have we're done. */
094b34ac
DE
2928 find_entry.hash.dwo_unit = cu->dwo_unit;
2929 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2930 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2931 &find_entry, INSERT);
2932 if (*slot != NULL)
2933 {
094b34ac 2934 lh_cu->v.quick->file_names = *slot;
dee91e82 2935 return;
7b9f3c50
DE
2936 }
2937
3019eac3 2938 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2939 }
2940 if (lh == NULL)
2941 {
094b34ac 2942 lh_cu->v.quick->no_file_data = 1;
dee91e82 2943 return;
9291a0cd
TT
2944 }
2945
7b9f3c50 2946 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2947 qfn->hash.dwo_unit = cu->dwo_unit;
2948 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2949 gdb_assert (slot != NULL);
2950 *slot = qfn;
9291a0cd 2951
dee91e82 2952 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2953
7b9f3c50
DE
2954 qfn->num_file_names = lh->num_file_names;
2955 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2956 lh->num_file_names * sizeof (char *));
9291a0cd 2957 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2958 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2959 qfn->real_names = NULL;
9291a0cd 2960
7b9f3c50 2961 free_line_header (lh);
7b9f3c50 2962
094b34ac 2963 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2964}
2965
2966/* A helper for the "quick" functions which attempts to read the line
2967 table for THIS_CU. */
2968
2969static struct quick_file_names *
e4a48d9d 2970dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 2971{
0186c6a7
DE
2972 /* This should never be called for TUs. */
2973 gdb_assert (! this_cu->is_debug_types);
2974 /* Nor type unit groups. */
2975 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 2976
dee91e82
DE
2977 if (this_cu->v.quick->file_names != NULL)
2978 return this_cu->v.quick->file_names;
2979 /* If we know there is no line data, no point in looking again. */
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982
0186c6a7 2983 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2984
2985 if (this_cu->v.quick->no_file_data)
2986 return NULL;
2987 return this_cu->v.quick->file_names;
9291a0cd
TT
2988}
2989
2990/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2991 real path for a given file name from the line table. */
2fdf6df6 2992
9291a0cd 2993static const char *
7b9f3c50
DE
2994dw2_get_real_path (struct objfile *objfile,
2995 struct quick_file_names *qfn, int index)
9291a0cd 2996{
7b9f3c50
DE
2997 if (qfn->real_names == NULL)
2998 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2999 qfn->num_file_names, sizeof (char *));
9291a0cd 3000
7b9f3c50
DE
3001 if (qfn->real_names[index] == NULL)
3002 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3003
7b9f3c50 3004 return qfn->real_names[index];
9291a0cd
TT
3005}
3006
3007static struct symtab *
3008dw2_find_last_source_symtab (struct objfile *objfile)
3009{
3010 int index;
ae2de4f8 3011
9291a0cd
TT
3012 dw2_setup (objfile);
3013 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3014 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3015}
3016
7b9f3c50
DE
3017/* Traversal function for dw2_forget_cached_source_info. */
3018
3019static int
3020dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3021{
7b9f3c50 3022 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3023
7b9f3c50 3024 if (file_data->real_names)
9291a0cd 3025 {
7b9f3c50 3026 int i;
9291a0cd 3027
7b9f3c50 3028 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3029 {
7b9f3c50
DE
3030 xfree ((void*) file_data->real_names[i]);
3031 file_data->real_names[i] = NULL;
9291a0cd
TT
3032 }
3033 }
7b9f3c50
DE
3034
3035 return 1;
3036}
3037
3038static void
3039dw2_forget_cached_source_info (struct objfile *objfile)
3040{
3041 dw2_setup (objfile);
3042
3043 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3044 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3045}
3046
f8eba3c6
TT
3047/* Helper function for dw2_map_symtabs_matching_filename that expands
3048 the symtabs and calls the iterator. */
3049
3050static int
3051dw2_map_expand_apply (struct objfile *objfile,
3052 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3053 const char *name, const char *real_path,
f8eba3c6
TT
3054 int (*callback) (struct symtab *, void *),
3055 void *data)
3056{
3057 struct symtab *last_made = objfile->symtabs;
3058
3059 /* Don't visit already-expanded CUs. */
3060 if (per_cu->v.quick->symtab)
3061 return 0;
3062
3063 /* This may expand more than one symtab, and we want to iterate over
3064 all of them. */
a0f42c21 3065 dw2_instantiate_symtab (per_cu);
f8eba3c6 3066
f5b95b50 3067 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3068 objfile->symtabs, last_made);
3069}
3070
3071/* Implementation of the map_symtabs_matching_filename method. */
3072
9291a0cd 3073static int
f8eba3c6 3074dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3075 const char *real_path,
f8eba3c6
TT
3076 int (*callback) (struct symtab *, void *),
3077 void *data)
9291a0cd
TT
3078{
3079 int i;
c011a4f4 3080 const char *name_basename = lbasename (name);
9291a0cd
TT
3081
3082 dw2_setup (objfile);
ae2de4f8 3083
848e3e78
DE
3084 /* The rule is CUs specify all the files, including those used by
3085 any TU, so there's no need to scan TUs here. */
f4dc4d17 3086
848e3e78 3087 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3088 {
3089 int j;
f4dc4d17 3090 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3091 struct quick_file_names *file_data;
9291a0cd 3092
3d7bb9d9 3093 /* We only need to look at symtabs not already expanded. */
e254ef6a 3094 if (per_cu->v.quick->symtab)
9291a0cd
TT
3095 continue;
3096
e4a48d9d 3097 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3098 if (file_data == NULL)
9291a0cd
TT
3099 continue;
3100
7b9f3c50 3101 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3102 {
7b9f3c50 3103 const char *this_name = file_data->file_names[j];
da235a7c 3104 const char *this_real_name;
9291a0cd 3105
af529f8f 3106 if (compare_filenames_for_search (this_name, name))
9291a0cd 3107 {
f5b95b50 3108 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3109 callback, data))
3110 return 1;
288e77a7 3111 continue;
4aac40c8 3112 }
9291a0cd 3113
c011a4f4
DE
3114 /* Before we invoke realpath, which can get expensive when many
3115 files are involved, do a quick comparison of the basenames. */
3116 if (! basenames_may_differ
3117 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3118 continue;
3119
da235a7c
JK
3120 this_real_name = dw2_get_real_path (objfile, file_data, j);
3121 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3122 {
da235a7c
JK
3123 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3124 callback, data))
3125 return 1;
288e77a7 3126 continue;
da235a7c 3127 }
9291a0cd 3128
da235a7c
JK
3129 if (real_path != NULL)
3130 {
af529f8f
JK
3131 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3132 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3133 if (this_real_name != NULL
af529f8f 3134 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3135 {
f5b95b50 3136 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3137 callback, data))
3138 return 1;
288e77a7 3139 continue;
9291a0cd
TT
3140 }
3141 }
3142 }
3143 }
3144
9291a0cd
TT
3145 return 0;
3146}
3147
da51c347
DE
3148/* Struct used to manage iterating over all CUs looking for a symbol. */
3149
3150struct dw2_symtab_iterator
9291a0cd 3151{
da51c347
DE
3152 /* The internalized form of .gdb_index. */
3153 struct mapped_index *index;
3154 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3155 int want_specific_block;
3156 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3157 Unused if !WANT_SPECIFIC_BLOCK. */
3158 int block_index;
3159 /* The kind of symbol we're looking for. */
3160 domain_enum domain;
3161 /* The list of CUs from the index entry of the symbol,
3162 or NULL if not found. */
3163 offset_type *vec;
3164 /* The next element in VEC to look at. */
3165 int next;
3166 /* The number of elements in VEC, or zero if there is no match. */
3167 int length;
3168};
9291a0cd 3169
da51c347
DE
3170/* Initialize the index symtab iterator ITER.
3171 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3172 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3173
9291a0cd 3174static void
da51c347
DE
3175dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3176 struct mapped_index *index,
3177 int want_specific_block,
3178 int block_index,
3179 domain_enum domain,
3180 const char *name)
3181{
3182 iter->index = index;
3183 iter->want_specific_block = want_specific_block;
3184 iter->block_index = block_index;
3185 iter->domain = domain;
3186 iter->next = 0;
3187
3188 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3189 iter->length = MAYBE_SWAP (*iter->vec);
3190 else
3191 {
3192 iter->vec = NULL;
3193 iter->length = 0;
3194 }
3195}
3196
3197/* Return the next matching CU or NULL if there are no more. */
3198
3199static struct dwarf2_per_cu_data *
3200dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3201{
3202 for ( ; iter->next < iter->length; ++iter->next)
3203 {
3204 offset_type cu_index_and_attrs =
3205 MAYBE_SWAP (iter->vec[iter->next + 1]);
3206 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3207 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3208 int want_static = iter->block_index != GLOBAL_BLOCK;
3209 /* This value is only valid for index versions >= 7. */
3210 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3211 gdb_index_symbol_kind symbol_kind =
3212 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3213 /* Only check the symbol attributes if they're present.
3214 Indices prior to version 7 don't record them,
3215 and indices >= 7 may elide them for certain symbols
3216 (gold does this). */
3217 int attrs_valid =
3218 (iter->index->version >= 7
3219 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3220
3190f0c6
DE
3221 /* Don't crash on bad data. */
3222 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3223 + dwarf2_per_objfile->n_type_units))
3224 {
3225 complaint (&symfile_complaints,
3226 _(".gdb_index entry has bad CU index"
3227 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3228 continue;
3229 }
3230
3231 per_cu = dw2_get_cu (cu_index);
3232
da51c347
DE
3233 /* Skip if already read in. */
3234 if (per_cu->v.quick->symtab)
3235 continue;
3236
3237 if (attrs_valid
3238 && iter->want_specific_block
3239 && want_static != is_static)
3240 continue;
3241
3242 /* Only check the symbol's kind if it has one. */
3243 if (attrs_valid)
3244 {
3245 switch (iter->domain)
3246 {
3247 case VAR_DOMAIN:
3248 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3249 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3250 /* Some types are also in VAR_DOMAIN. */
3251 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3252 continue;
3253 break;
3254 case STRUCT_DOMAIN:
3255 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3256 continue;
3257 break;
3258 case LABEL_DOMAIN:
3259 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3260 continue;
3261 break;
3262 default:
3263 break;
3264 }
3265 }
3266
3267 ++iter->next;
3268 return per_cu;
3269 }
3270
3271 return NULL;
3272}
3273
3274static struct symtab *
3275dw2_lookup_symbol (struct objfile *objfile, int block_index,
3276 const char *name, domain_enum domain)
9291a0cd 3277{
da51c347 3278 struct symtab *stab_best = NULL;
156942c7
DE
3279 struct mapped_index *index;
3280
9291a0cd
TT
3281 dw2_setup (objfile);
3282
156942c7
DE
3283 index = dwarf2_per_objfile->index_table;
3284
da51c347 3285 /* index is NULL if OBJF_READNOW. */
156942c7 3286 if (index)
9291a0cd 3287 {
da51c347
DE
3288 struct dw2_symtab_iterator iter;
3289 struct dwarf2_per_cu_data *per_cu;
3290
3291 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3292
da51c347 3293 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3294 {
da51c347
DE
3295 struct symbol *sym = NULL;
3296 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3297
3298 /* Some caution must be observed with overloaded functions
3299 and methods, since the index will not contain any overload
3300 information (but NAME might contain it). */
3301 if (stab->primary)
9291a0cd 3302 {
da51c347
DE
3303 struct blockvector *bv = BLOCKVECTOR (stab);
3304 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3305
da51c347
DE
3306 sym = lookup_block_symbol (block, name, domain);
3307 }
1fd400ff 3308
da51c347
DE
3309 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3310 {
3311 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3312 return stab;
3313
3314 stab_best = stab;
9291a0cd 3315 }
da51c347
DE
3316
3317 /* Keep looking through other CUs. */
9291a0cd
TT
3318 }
3319 }
9291a0cd 3320
da51c347 3321 return stab_best;
9291a0cd
TT
3322}
3323
3324static void
3325dw2_print_stats (struct objfile *objfile)
3326{
e4a48d9d 3327 int i, total, count;
9291a0cd
TT
3328
3329 dw2_setup (objfile);
e4a48d9d 3330 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3331 count = 0;
e4a48d9d 3332 for (i = 0; i < total; ++i)
9291a0cd 3333 {
e254ef6a 3334 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3335
e254ef6a 3336 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3337 ++count;
3338 }
e4a48d9d 3339 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3340 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3341}
3342
3343static void
3344dw2_dump (struct objfile *objfile)
3345{
3346 /* Nothing worth printing. */
3347}
3348
3349static void
3189cb12
DE
3350dw2_relocate (struct objfile *objfile,
3351 const struct section_offsets *new_offsets,
3352 const struct section_offsets *delta)
9291a0cd
TT
3353{
3354 /* There's nothing to relocate here. */
3355}
3356
3357static void
3358dw2_expand_symtabs_for_function (struct objfile *objfile,
3359 const char *func_name)
3360{
da51c347
DE
3361 struct mapped_index *index;
3362
3363 dw2_setup (objfile);
3364
3365 index = dwarf2_per_objfile->index_table;
3366
3367 /* index is NULL if OBJF_READNOW. */
3368 if (index)
3369 {
3370 struct dw2_symtab_iterator iter;
3371 struct dwarf2_per_cu_data *per_cu;
3372
3373 /* Note: It doesn't matter what we pass for block_index here. */
3374 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3375 func_name);
3376
3377 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3378 dw2_instantiate_symtab (per_cu);
3379 }
9291a0cd
TT
3380}
3381
3382static void
3383dw2_expand_all_symtabs (struct objfile *objfile)
3384{
3385 int i;
3386
3387 dw2_setup (objfile);
1fd400ff
TT
3388
3389 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3390 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3391 {
e254ef6a 3392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3393
a0f42c21 3394 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3395 }
3396}
3397
3398static void
652a8996
JK
3399dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3400 const char *fullname)
9291a0cd
TT
3401{
3402 int i;
3403
3404 dw2_setup (objfile);
d4637a04
DE
3405
3406 /* We don't need to consider type units here.
3407 This is only called for examining code, e.g. expand_line_sal.
3408 There can be an order of magnitude (or more) more type units
3409 than comp units, and we avoid them if we can. */
3410
3411 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3412 {
3413 int j;
e254ef6a 3414 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3415 struct quick_file_names *file_data;
9291a0cd 3416
3d7bb9d9 3417 /* We only need to look at symtabs not already expanded. */
e254ef6a 3418 if (per_cu->v.quick->symtab)
9291a0cd
TT
3419 continue;
3420
e4a48d9d 3421 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3422 if (file_data == NULL)
9291a0cd
TT
3423 continue;
3424
7b9f3c50 3425 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3426 {
652a8996
JK
3427 const char *this_fullname = file_data->file_names[j];
3428
3429 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3430 {
a0f42c21 3431 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3432 break;
3433 }
3434 }
3435 }
3436}
3437
356d9f9d
TT
3438/* A helper function for dw2_find_symbol_file that finds the primary
3439 file name for a given CU. This is a die_reader_func. */
3440
3441static void
3442dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
d521ce57 3443 const gdb_byte *info_ptr,
356d9f9d
TT
3444 struct die_info *comp_unit_die,
3445 int has_children,
3446 void *data)
3447{
3448 const char **result_ptr = data;
3449 struct dwarf2_cu *cu = reader->cu;
3450 struct attribute *attr;
3451
3452 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3453 if (attr == NULL)
3454 *result_ptr = NULL;
3455 else
3456 *result_ptr = DW_STRING (attr);
3457}
3458
dd786858 3459static const char *
9291a0cd
TT
3460dw2_find_symbol_file (struct objfile *objfile, const char *name)
3461{
e254ef6a 3462 struct dwarf2_per_cu_data *per_cu;
9291a0cd 3463 offset_type *vec;
356d9f9d 3464 const char *filename;
9291a0cd
TT
3465
3466 dw2_setup (objfile);
3467
ae2de4f8 3468 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 3469 if (!dwarf2_per_objfile->index_table)
96408a79
SA
3470 {
3471 struct symtab *s;
3472
d790cf0a
DE
3473 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3474 {
3475 struct blockvector *bv = BLOCKVECTOR (s);
3476 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3477 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3478
3479 if (sym)
652a8996
JK
3480 {
3481 /* Only file extension of returned filename is recognized. */
3482 return SYMBOL_SYMTAB (sym)->filename;
3483 }
d790cf0a 3484 }
96408a79
SA
3485 return NULL;
3486 }
9291a0cd
TT
3487
3488 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3489 name, &vec))
3490 return NULL;
3491
3492 /* Note that this just looks at the very first one named NAME -- but
3493 actually we are looking for a function. find_main_filename
3494 should be rewritten so that it doesn't require a custom hook. It
3495 could just use the ordinary symbol tables. */
3496 /* vec[0] is the length, which must always be >0. */
156942c7 3497 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
9291a0cd 3498
356d9f9d 3499 if (per_cu->v.quick->symtab != NULL)
652a8996
JK
3500 {
3501 /* Only file extension of returned filename is recognized. */
3502 return per_cu->v.quick->symtab->filename;
3503 }
356d9f9d 3504
a98c29a0
DE
3505 /* Initialize filename in case there's a problem reading the DWARF,
3506 dw2_get_primary_filename_reader may not get called. */
3507 filename = NULL;
f4dc4d17
DE
3508 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3509 dw2_get_primary_filename_reader, &filename);
9291a0cd 3510
652a8996 3511 /* Only file extension of returned filename is recognized. */
356d9f9d 3512 return filename;
9291a0cd
TT
3513}
3514
3515static void
40658b94
PH
3516dw2_map_matching_symbols (const char * name, domain_enum namespace,
3517 struct objfile *objfile, int global,
3518 int (*callback) (struct block *,
3519 struct symbol *, void *),
2edb89d3
JK
3520 void *data, symbol_compare_ftype *match,
3521 symbol_compare_ftype *ordered_compare)
9291a0cd 3522{
40658b94 3523 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3524 current language is Ada for a non-Ada objfile using GNU index. As Ada
3525 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3526}
3527
3528static void
f8eba3c6
TT
3529dw2_expand_symtabs_matching
3530 (struct objfile *objfile,
fbd9ab74 3531 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3532 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3533 enum search_domain kind,
3534 void *data)
9291a0cd
TT
3535{
3536 int i;
3537 offset_type iter;
4b5246aa 3538 struct mapped_index *index;
9291a0cd
TT
3539
3540 dw2_setup (objfile);
ae2de4f8
DE
3541
3542 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3543 if (!dwarf2_per_objfile->index_table)
3544 return;
4b5246aa 3545 index = dwarf2_per_objfile->index_table;
9291a0cd 3546
7b08b9eb 3547 if (file_matcher != NULL)
24c79950
TT
3548 {
3549 struct cleanup *cleanup;
3550 htab_t visited_found, visited_not_found;
3551
3552 visited_found = htab_create_alloc (10,
3553 htab_hash_pointer, htab_eq_pointer,
3554 NULL, xcalloc, xfree);
3555 cleanup = make_cleanup_htab_delete (visited_found);
3556 visited_not_found = htab_create_alloc (10,
3557 htab_hash_pointer, htab_eq_pointer,
3558 NULL, xcalloc, xfree);
3559 make_cleanup_htab_delete (visited_not_found);
3560
848e3e78
DE
3561 /* The rule is CUs specify all the files, including those used by
3562 any TU, so there's no need to scan TUs here. */
3563
3564 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3565 {
3566 int j;
f4dc4d17 3567 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3568 struct quick_file_names *file_data;
3569 void **slot;
7b08b9eb 3570
24c79950 3571 per_cu->v.quick->mark = 0;
3d7bb9d9 3572
24c79950
TT
3573 /* We only need to look at symtabs not already expanded. */
3574 if (per_cu->v.quick->symtab)
3575 continue;
7b08b9eb 3576
e4a48d9d 3577 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3578 if (file_data == NULL)
3579 continue;
7b08b9eb 3580
24c79950
TT
3581 if (htab_find (visited_not_found, file_data) != NULL)
3582 continue;
3583 else if (htab_find (visited_found, file_data) != NULL)
3584 {
3585 per_cu->v.quick->mark = 1;
3586 continue;
3587 }
3588
3589 for (j = 0; j < file_data->num_file_names; ++j)
3590 {
da235a7c
JK
3591 const char *this_real_name;
3592
fbd9ab74 3593 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3594 {
3595 per_cu->v.quick->mark = 1;
3596 break;
3597 }
da235a7c
JK
3598
3599 /* Before we invoke realpath, which can get expensive when many
3600 files are involved, do a quick comparison of the basenames. */
3601 if (!basenames_may_differ
3602 && !file_matcher (lbasename (file_data->file_names[j]),
3603 data, 1))
3604 continue;
3605
3606 this_real_name = dw2_get_real_path (objfile, file_data, j);
3607 if (file_matcher (this_real_name, data, 0))
3608 {
3609 per_cu->v.quick->mark = 1;
3610 break;
3611 }
24c79950
TT
3612 }
3613
3614 slot = htab_find_slot (per_cu->v.quick->mark
3615 ? visited_found
3616 : visited_not_found,
3617 file_data, INSERT);
3618 *slot = file_data;
3619 }
3620
3621 do_cleanups (cleanup);
3622 }
9291a0cd 3623
3876f04e 3624 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3625 {
3626 offset_type idx = 2 * iter;
3627 const char *name;
3628 offset_type *vec, vec_len, vec_idx;
3629
3876f04e 3630 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3631 continue;
3632
3876f04e 3633 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3634
e078317b 3635 if (! (*name_matcher) (name, data))
9291a0cd
TT
3636 continue;
3637
3638 /* The name was matched, now expand corresponding CUs that were
3639 marked. */
4b5246aa 3640 vec = (offset_type *) (index->constant_pool
3876f04e 3641 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3642 vec_len = MAYBE_SWAP (vec[0]);
3643 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3644 {
e254ef6a 3645 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3646 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3647 gdb_index_symbol_kind symbol_kind =
3648 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3649 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3650 /* Only check the symbol attributes if they're present.
3651 Indices prior to version 7 don't record them,
3652 and indices >= 7 may elide them for certain symbols
3653 (gold does this). */
3654 int attrs_valid =
3655 (index->version >= 7
3656 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3657
3658 /* Only check the symbol's kind if it has one. */
3659 if (attrs_valid)
156942c7
DE
3660 {
3661 switch (kind)
3662 {
3663 case VARIABLES_DOMAIN:
3664 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3665 continue;
3666 break;
3667 case FUNCTIONS_DOMAIN:
3668 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3669 continue;
3670 break;
3671 case TYPES_DOMAIN:
3672 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3673 continue;
3674 break;
3675 default:
3676 break;
3677 }
3678 }
3679
3190f0c6
DE
3680 /* Don't crash on bad data. */
3681 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3682 + dwarf2_per_objfile->n_type_units))
3683 {
3684 complaint (&symfile_complaints,
3685 _(".gdb_index entry has bad CU index"
3686 " [in module %s]"), objfile->name);
3687 continue;
3688 }
3689
156942c7 3690 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3691 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3692 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3693 }
3694 }
3695}
3696
9703b513
TT
3697/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3698 symtab. */
3699
3700static struct symtab *
3701recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3702{
3703 int i;
3704
3705 if (BLOCKVECTOR (symtab) != NULL
3706 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3707 return symtab;
3708
a3ec0bb1
DE
3709 if (symtab->includes == NULL)
3710 return NULL;
3711
9703b513
TT
3712 for (i = 0; symtab->includes[i]; ++i)
3713 {
a3ec0bb1 3714 struct symtab *s = symtab->includes[i];
9703b513
TT
3715
3716 s = recursively_find_pc_sect_symtab (s, pc);
3717 if (s != NULL)
3718 return s;
3719 }
3720
3721 return NULL;
3722}
3723
9291a0cd
TT
3724static struct symtab *
3725dw2_find_pc_sect_symtab (struct objfile *objfile,
3726 struct minimal_symbol *msymbol,
3727 CORE_ADDR pc,
3728 struct obj_section *section,
3729 int warn_if_readin)
3730{
3731 struct dwarf2_per_cu_data *data;
9703b513 3732 struct symtab *result;
9291a0cd
TT
3733
3734 dw2_setup (objfile);
3735
3736 if (!objfile->psymtabs_addrmap)
3737 return NULL;
3738
3739 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3740 if (!data)
3741 return NULL;
3742
3743 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3744 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3745 paddress (get_objfile_arch (objfile), pc));
3746
9703b513
TT
3747 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3748 gdb_assert (result != NULL);
3749 return result;
9291a0cd
TT
3750}
3751
9291a0cd 3752static void
44b13c5a 3753dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3754 void *data, int need_fullname)
9291a0cd
TT
3755{
3756 int i;
24c79950
TT
3757 struct cleanup *cleanup;
3758 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3759 NULL, xcalloc, xfree);
9291a0cd 3760
24c79950 3761 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3762 dw2_setup (objfile);
ae2de4f8 3763
848e3e78
DE
3764 /* The rule is CUs specify all the files, including those used by
3765 any TU, so there's no need to scan TUs here.
3766 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 3767
848e3e78 3768 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3769 {
3770 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3771
3772 if (per_cu->v.quick->symtab)
3773 {
3774 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3775 INSERT);
3776
3777 *slot = per_cu->v.quick->file_names;
3778 }
3779 }
3780
848e3e78 3781 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3782 {
3783 int j;
f4dc4d17 3784 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3785 struct quick_file_names *file_data;
24c79950 3786 void **slot;
9291a0cd 3787
3d7bb9d9 3788 /* We only need to look at symtabs not already expanded. */
e254ef6a 3789 if (per_cu->v.quick->symtab)
9291a0cd
TT
3790 continue;
3791
e4a48d9d 3792 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3793 if (file_data == NULL)
9291a0cd
TT
3794 continue;
3795
24c79950
TT
3796 slot = htab_find_slot (visited, file_data, INSERT);
3797 if (*slot)
3798 {
3799 /* Already visited. */
3800 continue;
3801 }
3802 *slot = file_data;
3803
7b9f3c50 3804 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3805 {
74e2f255
DE
3806 const char *this_real_name;
3807
3808 if (need_fullname)
3809 this_real_name = dw2_get_real_path (objfile, file_data, j);
3810 else
3811 this_real_name = NULL;
7b9f3c50 3812 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3813 }
3814 }
24c79950
TT
3815
3816 do_cleanups (cleanup);
9291a0cd
TT
3817}
3818
3819static int
3820dw2_has_symbols (struct objfile *objfile)
3821{
3822 return 1;
3823}
3824
3825const struct quick_symbol_functions dwarf2_gdb_index_functions =
3826{
3827 dw2_has_symbols,
3828 dw2_find_last_source_symtab,
3829 dw2_forget_cached_source_info,
f8eba3c6 3830 dw2_map_symtabs_matching_filename,
9291a0cd 3831 dw2_lookup_symbol,
9291a0cd
TT
3832 dw2_print_stats,
3833 dw2_dump,
3834 dw2_relocate,
3835 dw2_expand_symtabs_for_function,
3836 dw2_expand_all_symtabs,
652a8996 3837 dw2_expand_symtabs_with_fullname,
9291a0cd 3838 dw2_find_symbol_file,
40658b94 3839 dw2_map_matching_symbols,
9291a0cd
TT
3840 dw2_expand_symtabs_matching,
3841 dw2_find_pc_sect_symtab,
9291a0cd
TT
3842 dw2_map_symbol_filenames
3843};
3844
3845/* Initialize for reading DWARF for this objfile. Return 0 if this
3846 file will use psymtabs, or 1 if using the GNU index. */
3847
3848int
3849dwarf2_initialize_objfile (struct objfile *objfile)
3850{
3851 /* If we're about to read full symbols, don't bother with the
3852 indices. In this case we also don't care if some other debug
3853 format is making psymtabs, because they are all about to be
3854 expanded anyway. */
3855 if ((objfile->flags & OBJF_READNOW))
3856 {
3857 int i;
3858
3859 dwarf2_per_objfile->using_index = 1;
3860 create_all_comp_units (objfile);
0e50663e 3861 create_all_type_units (objfile);
7b9f3c50
DE
3862 dwarf2_per_objfile->quick_file_names_table =
3863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3864
1fd400ff 3865 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3866 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3867 {
e254ef6a 3868 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3869
e254ef6a
DE
3870 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3871 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3872 }
3873
3874 /* Return 1 so that gdb sees the "quick" functions. However,
3875 these functions will be no-ops because we will have expanded
3876 all symtabs. */
3877 return 1;
3878 }
3879
3880 if (dwarf2_read_index (objfile))
3881 return 1;
3882
9291a0cd
TT
3883 return 0;
3884}
3885
3886\f
3887
dce234bc
PP
3888/* Build a partial symbol table. */
3889
3890void
f29dff0a 3891dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3892{
c9bf0622
TT
3893 volatile struct gdb_exception except;
3894
f29dff0a 3895 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3896 {
3897 init_psymbol_list (objfile, 1024);
3898 }
3899
c9bf0622
TT
3900 TRY_CATCH (except, RETURN_MASK_ERROR)
3901 {
3902 /* This isn't really ideal: all the data we allocate on the
3903 objfile's obstack is still uselessly kept around. However,
3904 freeing it seems unsafe. */
3905 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3906
3907 dwarf2_build_psymtabs_hard (objfile);
3908 discard_cleanups (cleanups);
3909 }
3910 if (except.reason < 0)
3911 exception_print (gdb_stderr, except);
c906108c 3912}
c906108c 3913
1ce1cefd
DE
3914/* Return the total length of the CU described by HEADER. */
3915
3916static unsigned int
3917get_cu_length (const struct comp_unit_head *header)
3918{
3919 return header->initial_length_size + header->length;
3920}
3921
45452591
DE
3922/* Return TRUE if OFFSET is within CU_HEADER. */
3923
3924static inline int
b64f50a1 3925offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3926{
b64f50a1 3927 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3928 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3929
b64f50a1 3930 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3931}
3932
3b80fe9b
DE
3933/* Find the base address of the compilation unit for range lists and
3934 location lists. It will normally be specified by DW_AT_low_pc.
3935 In DWARF-3 draft 4, the base address could be overridden by
3936 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3937 compilation units with discontinuous ranges. */
3938
3939static void
3940dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3941{
3942 struct attribute *attr;
3943
3944 cu->base_known = 0;
3945 cu->base_address = 0;
3946
3947 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3948 if (attr)
3949 {
3950 cu->base_address = DW_ADDR (attr);
3951 cu->base_known = 1;
3952 }
3953 else
3954 {
3955 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3956 if (attr)
3957 {
3958 cu->base_address = DW_ADDR (attr);
3959 cu->base_known = 1;
3960 }
3961 }
3962}
3963
93311388
DE
3964/* Read in the comp unit header information from the debug_info at info_ptr.
3965 NOTE: This leaves members offset, first_die_offset to be filled in
3966 by the caller. */
107d2387 3967
d521ce57 3968static const gdb_byte *
107d2387 3969read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 3970 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3971{
3972 int signed_addr;
891d2f0b 3973 unsigned int bytes_read;
c764a876
DE
3974
3975 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3976 cu_header->initial_length_size = bytes_read;
3977 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3978 info_ptr += bytes_read;
107d2387
AC
3979 cu_header->version = read_2_bytes (abfd, info_ptr);
3980 info_ptr += 2;
b64f50a1
JK
3981 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3982 &bytes_read);
613e1657 3983 info_ptr += bytes_read;
107d2387
AC
3984 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3985 info_ptr += 1;
3986 signed_addr = bfd_get_sign_extend_vma (abfd);
3987 if (signed_addr < 0)
8e65ff28 3988 internal_error (__FILE__, __LINE__,
e2e0b3e5 3989 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3990 cu_header->signed_addr_p = signed_addr;
c764a876 3991
107d2387
AC
3992 return info_ptr;
3993}
3994
36586728
TT
3995/* Helper function that returns the proper abbrev section for
3996 THIS_CU. */
3997
3998static struct dwarf2_section_info *
3999get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4000{
4001 struct dwarf2_section_info *abbrev;
4002
4003 if (this_cu->is_dwz)
4004 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4005 else
4006 abbrev = &dwarf2_per_objfile->abbrev;
4007
4008 return abbrev;
4009}
4010
9ff913ba
DE
4011/* Subroutine of read_and_check_comp_unit_head and
4012 read_and_check_type_unit_head to simplify them.
4013 Perform various error checking on the header. */
4014
4015static void
4016error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4017 struct dwarf2_section_info *section,
4018 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
4019{
4020 bfd *abfd = section->asection->owner;
4021 const char *filename = bfd_get_filename (abfd);
4022
4023 if (header->version != 2 && header->version != 3 && header->version != 4)
4024 error (_("Dwarf Error: wrong version in compilation unit header "
4025 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4026 filename);
4027
b64f50a1 4028 if (header->abbrev_offset.sect_off
36586728 4029 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4030 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4031 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4032 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4033 filename);
4034
4035 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4036 avoid potential 32-bit overflow. */
1ce1cefd 4037 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4038 > section->size)
4039 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4040 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4041 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4042 filename);
4043}
4044
4045/* Read in a CU/TU header and perform some basic error checking.
4046 The contents of the header are stored in HEADER.
4047 The result is a pointer to the start of the first DIE. */
adabb602 4048
d521ce57 4049static const gdb_byte *
9ff913ba
DE
4050read_and_check_comp_unit_head (struct comp_unit_head *header,
4051 struct dwarf2_section_info *section,
4bdcc0c1 4052 struct dwarf2_section_info *abbrev_section,
d521ce57 4053 const gdb_byte *info_ptr,
9ff913ba 4054 int is_debug_types_section)
72bf9492 4055{
d521ce57 4056 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4057 bfd *abfd = section->asection->owner;
72bf9492 4058
b64f50a1 4059 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4060
72bf9492
DJ
4061 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4062
460c1c54
CC
4063 /* If we're reading a type unit, skip over the signature and
4064 type_offset fields. */
b0df02fd 4065 if (is_debug_types_section)
460c1c54
CC
4066 info_ptr += 8 /*signature*/ + header->offset_size;
4067
b64f50a1 4068 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4069
4bdcc0c1 4070 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4071
4072 return info_ptr;
4073}
4074
348e048f
DE
4075/* Read in the types comp unit header information from .debug_types entry at
4076 types_ptr. The result is a pointer to one past the end of the header. */
4077
d521ce57 4078static const gdb_byte *
9ff913ba
DE
4079read_and_check_type_unit_head (struct comp_unit_head *header,
4080 struct dwarf2_section_info *section,
4bdcc0c1 4081 struct dwarf2_section_info *abbrev_section,
d521ce57 4082 const gdb_byte *info_ptr,
dee91e82
DE
4083 ULONGEST *signature,
4084 cu_offset *type_offset_in_tu)
348e048f 4085{
d521ce57 4086 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4087 bfd *abfd = section->asection->owner;
348e048f 4088
b64f50a1 4089 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4090
9ff913ba 4091 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4092
9ff913ba
DE
4093 /* If we're reading a type unit, skip over the signature and
4094 type_offset fields. */
4095 if (signature != NULL)
4096 *signature = read_8_bytes (abfd, info_ptr);
4097 info_ptr += 8;
dee91e82
DE
4098 if (type_offset_in_tu != NULL)
4099 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4100 header->offset_size);
9ff913ba
DE
4101 info_ptr += header->offset_size;
4102
b64f50a1 4103 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4104
4bdcc0c1 4105 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4106
4107 return info_ptr;
348e048f
DE
4108}
4109
f4dc4d17
DE
4110/* Fetch the abbreviation table offset from a comp or type unit header. */
4111
4112static sect_offset
4113read_abbrev_offset (struct dwarf2_section_info *section,
4114 sect_offset offset)
4115{
4116 bfd *abfd = section->asection->owner;
d521ce57 4117 const gdb_byte *info_ptr;
f4dc4d17
DE
4118 unsigned int length, initial_length_size, offset_size;
4119 sect_offset abbrev_offset;
4120
4121 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4122 info_ptr = section->buffer + offset.sect_off;
4123 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4124 offset_size = initial_length_size == 4 ? 4 : 8;
4125 info_ptr += initial_length_size + 2 /*version*/;
4126 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4127 return abbrev_offset;
4128}
4129
aaa75496
JB
4130/* Allocate a new partial symtab for file named NAME and mark this new
4131 partial symtab as being an include of PST. */
4132
4133static void
d521ce57 4134dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4135 struct objfile *objfile)
4136{
4137 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4138
fbd9ab74
JK
4139 if (!IS_ABSOLUTE_PATH (subpst->filename))
4140 {
4141 /* It shares objfile->objfile_obstack. */
4142 subpst->dirname = pst->dirname;
4143 }
4144
aaa75496
JB
4145 subpst->section_offsets = pst->section_offsets;
4146 subpst->textlow = 0;
4147 subpst->texthigh = 0;
4148
4149 subpst->dependencies = (struct partial_symtab **)
4150 obstack_alloc (&objfile->objfile_obstack,
4151 sizeof (struct partial_symtab *));
4152 subpst->dependencies[0] = pst;
4153 subpst->number_of_dependencies = 1;
4154
4155 subpst->globals_offset = 0;
4156 subpst->n_global_syms = 0;
4157 subpst->statics_offset = 0;
4158 subpst->n_static_syms = 0;
4159 subpst->symtab = NULL;
4160 subpst->read_symtab = pst->read_symtab;
4161 subpst->readin = 0;
4162
4163 /* No private part is necessary for include psymtabs. This property
4164 can be used to differentiate between such include psymtabs and
10b3939b 4165 the regular ones. */
58a9656e 4166 subpst->read_symtab_private = NULL;
aaa75496
JB
4167}
4168
4169/* Read the Line Number Program data and extract the list of files
4170 included by the source file represented by PST. Build an include
d85a05f0 4171 partial symtab for each of these included files. */
aaa75496
JB
4172
4173static void
4174dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4175 struct die_info *die,
4176 struct partial_symtab *pst)
aaa75496 4177{
d85a05f0
DJ
4178 struct line_header *lh = NULL;
4179 struct attribute *attr;
aaa75496 4180
d85a05f0
DJ
4181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4182 if (attr)
3019eac3 4183 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4184 if (lh == NULL)
4185 return; /* No linetable, so no includes. */
4186
c6da4cef 4187 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4188 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4189
4190 free_line_header (lh);
4191}
4192
348e048f 4193static hashval_t
52dc124a 4194hash_signatured_type (const void *item)
348e048f 4195{
52dc124a 4196 const struct signatured_type *sig_type = item;
9a619af0 4197
348e048f 4198 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4199 return sig_type->signature;
348e048f
DE
4200}
4201
4202static int
52dc124a 4203eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4204{
4205 const struct signatured_type *lhs = item_lhs;
4206 const struct signatured_type *rhs = item_rhs;
9a619af0 4207
348e048f
DE
4208 return lhs->signature == rhs->signature;
4209}
4210
1fd400ff
TT
4211/* Allocate a hash table for signatured types. */
4212
4213static htab_t
673bfd45 4214allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4215{
4216 return htab_create_alloc_ex (41,
52dc124a
DE
4217 hash_signatured_type,
4218 eq_signatured_type,
1fd400ff
TT
4219 NULL,
4220 &objfile->objfile_obstack,
4221 hashtab_obstack_allocate,
4222 dummy_obstack_deallocate);
4223}
4224
d467dd73 4225/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4226
4227static int
d467dd73 4228add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4229{
4230 struct signatured_type *sigt = *slot;
b4dd5633 4231 struct signatured_type ***datap = datum;
1fd400ff 4232
b4dd5633 4233 **datap = sigt;
1fd400ff
TT
4234 ++*datap;
4235
4236 return 1;
4237}
4238
c88ee1f0
DE
4239/* Create the hash table of all entries in the .debug_types
4240 (or .debug_types.dwo) section(s).
4241 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4242 otherwise it is NULL.
4243
4244 The result is a pointer to the hash table or NULL if there are no types.
4245
4246 Note: This function processes DWO files only, not DWP files. */
348e048f 4247
3019eac3
DE
4248static htab_t
4249create_debug_types_hash_table (struct dwo_file *dwo_file,
4250 VEC (dwarf2_section_info_def) *types)
348e048f 4251{
3019eac3 4252 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4253 htab_t types_htab = NULL;
8b70b953
TT
4254 int ix;
4255 struct dwarf2_section_info *section;
4bdcc0c1 4256 struct dwarf2_section_info *abbrev_section;
348e048f 4257
3019eac3
DE
4258 if (VEC_empty (dwarf2_section_info_def, types))
4259 return NULL;
348e048f 4260
4bdcc0c1
DE
4261 abbrev_section = (dwo_file != NULL
4262 ? &dwo_file->sections.abbrev
4263 : &dwarf2_per_objfile->abbrev);
4264
09406207
DE
4265 if (dwarf2_read_debug)
4266 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4267 dwo_file ? ".dwo" : "",
4268 bfd_get_filename (abbrev_section->asection->owner));
4269
8b70b953 4270 for (ix = 0;
3019eac3 4271 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4272 ++ix)
4273 {
3019eac3 4274 bfd *abfd;
d521ce57 4275 const gdb_byte *info_ptr, *end_ptr;
36586728 4276 struct dwarf2_section_info *abbrev_section;
348e048f 4277
8b70b953
TT
4278 dwarf2_read_section (objfile, section);
4279 info_ptr = section->buffer;
348e048f 4280
8b70b953
TT
4281 if (info_ptr == NULL)
4282 continue;
348e048f 4283
3019eac3
DE
4284 /* We can't set abfd until now because the section may be empty or
4285 not present, in which case section->asection will be NULL. */
4286 abfd = section->asection->owner;
4287
36586728
TT
4288 if (dwo_file)
4289 abbrev_section = &dwo_file->sections.abbrev;
4290 else
4291 abbrev_section = &dwarf2_per_objfile->abbrev;
4292
dee91e82
DE
4293 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4294 because we don't need to read any dies: the signature is in the
4295 header. */
8b70b953
TT
4296
4297 end_ptr = info_ptr + section->size;
4298 while (info_ptr < end_ptr)
4299 {
b64f50a1 4300 sect_offset offset;
3019eac3 4301 cu_offset type_offset_in_tu;
8b70b953 4302 ULONGEST signature;
52dc124a 4303 struct signatured_type *sig_type;
3019eac3 4304 struct dwo_unit *dwo_tu;
8b70b953 4305 void **slot;
d521ce57 4306 const gdb_byte *ptr = info_ptr;
9ff913ba 4307 struct comp_unit_head header;
dee91e82 4308 unsigned int length;
348e048f 4309
b64f50a1 4310 offset.sect_off = ptr - section->buffer;
348e048f 4311
8b70b953 4312 /* We need to read the type's signature in order to build the hash
9ff913ba 4313 table, but we don't need anything else just yet. */
348e048f 4314
4bdcc0c1
DE
4315 ptr = read_and_check_type_unit_head (&header, section,
4316 abbrev_section, ptr,
3019eac3 4317 &signature, &type_offset_in_tu);
6caca83c 4318
1ce1cefd 4319 length = get_cu_length (&header);
dee91e82 4320
6caca83c 4321 /* Skip dummy type units. */
dee91e82
DE
4322 if (ptr >= info_ptr + length
4323 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4324 {
1ce1cefd 4325 info_ptr += length;
6caca83c
CC
4326 continue;
4327 }
8b70b953 4328
0349ea22
DE
4329 if (types_htab == NULL)
4330 {
4331 if (dwo_file)
4332 types_htab = allocate_dwo_unit_table (objfile);
4333 else
4334 types_htab = allocate_signatured_type_table (objfile);
4335 }
4336
3019eac3
DE
4337 if (dwo_file)
4338 {
4339 sig_type = NULL;
4340 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4341 struct dwo_unit);
4342 dwo_tu->dwo_file = dwo_file;
4343 dwo_tu->signature = signature;
4344 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4345 dwo_tu->section = section;
3019eac3
DE
4346 dwo_tu->offset = offset;
4347 dwo_tu->length = length;
4348 }
4349 else
4350 {
4351 /* N.B.: type_offset is not usable if this type uses a DWO file.
4352 The real type_offset is in the DWO file. */
4353 dwo_tu = NULL;
4354 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4355 struct signatured_type);
4356 sig_type->signature = signature;
4357 sig_type->type_offset_in_tu = type_offset_in_tu;
4358 sig_type->per_cu.objfile = objfile;
4359 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4360 sig_type->per_cu.section = section;
3019eac3
DE
4361 sig_type->per_cu.offset = offset;
4362 sig_type->per_cu.length = length;
4363 }
8b70b953 4364
3019eac3
DE
4365 slot = htab_find_slot (types_htab,
4366 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4367 INSERT);
8b70b953
TT
4368 gdb_assert (slot != NULL);
4369 if (*slot != NULL)
4370 {
3019eac3
DE
4371 sect_offset dup_offset;
4372
4373 if (dwo_file)
4374 {
4375 const struct dwo_unit *dup_tu = *slot;
4376
4377 dup_offset = dup_tu->offset;
4378 }
4379 else
4380 {
4381 const struct signatured_type *dup_tu = *slot;
4382
4383 dup_offset = dup_tu->per_cu.offset;
4384 }
b3c8eb43 4385
8b70b953 4386 complaint (&symfile_complaints,
c88ee1f0 4387 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4388 " the entry at offset 0x%x, signature %s"),
3019eac3 4389 offset.sect_off, dup_offset.sect_off,
4031ecc5 4390 hex_string (signature));
8b70b953 4391 }
3019eac3 4392 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4393
09406207 4394 if (dwarf2_read_debug)
4031ecc5 4395 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4396 offset.sect_off,
4031ecc5 4397 hex_string (signature));
348e048f 4398
dee91e82 4399 info_ptr += length;
8b70b953 4400 }
348e048f
DE
4401 }
4402
3019eac3
DE
4403 return types_htab;
4404}
4405
4406/* Create the hash table of all entries in the .debug_types section,
4407 and initialize all_type_units.
4408 The result is zero if there is an error (e.g. missing .debug_types section),
4409 otherwise non-zero. */
4410
4411static int
4412create_all_type_units (struct objfile *objfile)
4413{
4414 htab_t types_htab;
b4dd5633 4415 struct signatured_type **iter;
3019eac3
DE
4416
4417 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4418 if (types_htab == NULL)
4419 {
4420 dwarf2_per_objfile->signatured_types = NULL;
4421 return 0;
4422 }
4423
348e048f
DE
4424 dwarf2_per_objfile->signatured_types = types_htab;
4425
d467dd73
DE
4426 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4427 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4428 = xmalloc (dwarf2_per_objfile->n_type_units
4429 * sizeof (struct signatured_type *));
d467dd73
DE
4430 iter = &dwarf2_per_objfile->all_type_units[0];
4431 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4432 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4433 == dwarf2_per_objfile->n_type_units);
1fd400ff 4434
348e048f
DE
4435 return 1;
4436}
4437
a2ce51a0
DE
4438/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4439 Fill in SIG_ENTRY with DWO_ENTRY. */
4440
4441static void
4442fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4443 struct signatured_type *sig_entry,
4444 struct dwo_unit *dwo_entry)
4445{
4446 sig_entry->per_cu.section = dwo_entry->section;
4447 sig_entry->per_cu.offset = dwo_entry->offset;
4448 sig_entry->per_cu.length = dwo_entry->length;
4449 sig_entry->per_cu.reading_dwo_directly = 1;
4450 sig_entry->per_cu.objfile = objfile;
4451 gdb_assert (! sig_entry->per_cu.queued);
4452 gdb_assert (sig_entry->per_cu.cu == NULL);
4453 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4454 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4455 gdb_assert (sig_entry->signature == dwo_entry->signature);
4456 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4457 gdb_assert (sig_entry->type_unit_group == NULL);
4458 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4459 sig_entry->dwo_unit = dwo_entry;
4460}
4461
4462/* Subroutine of lookup_signatured_type.
4463 Create the signatured_type data structure for a TU to be read in
4464 directly from a DWO file, bypassing the stub.
4465 We do this for the case where there is no DWP file and we're using
4466 .gdb_index: When reading a CU we want to stay in the DWO file containing
4467 that CU. Otherwise we could end up reading several other DWO files (due
4468 to comdat folding) to process the transitive closure of all the mentioned
4469 TUs, and that can be slow. The current DWO file will have every type
4470 signature that it needs.
4471 We only do this for .gdb_index because in the psymtab case we already have
4472 to read all the DWOs to build the type unit groups. */
4473
4474static struct signatured_type *
4475lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4476{
4477 struct objfile *objfile = dwarf2_per_objfile->objfile;
4478 struct dwo_file *dwo_file;
4479 struct dwo_unit find_dwo_entry, *dwo_entry;
4480 struct signatured_type find_sig_entry, *sig_entry;
4481
4482 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4483
4484 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4485 dwo_unit of the TU itself. */
4486 dwo_file = cu->dwo_unit->dwo_file;
4487
4488 /* We only ever need to read in one copy of a signatured type.
4489 Just use the global signatured_types array. If this is the first time
4490 we're reading this type, replace the recorded data from .gdb_index with
4491 this TU. */
4492
4493 if (dwarf2_per_objfile->signatured_types == NULL)
4494 return NULL;
4495 find_sig_entry.signature = sig;
4496 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4497 if (sig_entry == NULL)
4498 return NULL;
4499 /* Have we already tried to read this TU? */
4500 if (sig_entry->dwo_unit != NULL)
4501 return sig_entry;
4502
4503 /* Ok, this is the first time we're reading this TU. */
4504 if (dwo_file->tus == NULL)
4505 return NULL;
4506 find_dwo_entry.signature = sig;
4507 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4508 if (dwo_entry == NULL)
4509 return NULL;
4510
4511 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4512 return sig_entry;
4513}
4514
4515/* Subroutine of lookup_dwp_signatured_type.
4516 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4517
4518static struct signatured_type *
4519add_type_unit (ULONGEST sig)
4520{
4521 struct objfile *objfile = dwarf2_per_objfile->objfile;
4522 int n_type_units = dwarf2_per_objfile->n_type_units;
4523 struct signatured_type *sig_type;
4524 void **slot;
4525
4526 ++n_type_units;
4527 dwarf2_per_objfile->all_type_units =
4528 xrealloc (dwarf2_per_objfile->all_type_units,
4529 n_type_units * sizeof (struct signatured_type *));
4530 dwarf2_per_objfile->n_type_units = n_type_units;
4531 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4532 struct signatured_type);
4533 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4534 sig_type->signature = sig;
4535 sig_type->per_cu.is_debug_types = 1;
4536 sig_type->per_cu.v.quick =
4537 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4538 struct dwarf2_per_cu_quick_data);
4539 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4540 sig_type, INSERT);
4541 gdb_assert (*slot == NULL);
4542 *slot = sig_type;
4543 /* The rest of sig_type must be filled in by the caller. */
4544 return sig_type;
4545}
4546
4547/* Subroutine of lookup_signatured_type.
4548 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4549 then try the DWP file.
4550 Normally this "can't happen", but if there's a bug in signature
4551 generation and/or the DWP file is built incorrectly, it can happen.
4552 Using the type directly from the DWP file means we don't have the stub
4553 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4554 not critical. [Eventually the stub may go away for type units anyway.] */
4555
4556static struct signatured_type *
4557lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4558{
4559 struct objfile *objfile = dwarf2_per_objfile->objfile;
4560 struct dwp_file *dwp_file = get_dwp_file ();
4561 struct dwo_unit *dwo_entry;
4562 struct signatured_type find_sig_entry, *sig_entry;
4563
4564 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4565 gdb_assert (dwp_file != NULL);
4566
4567 if (dwarf2_per_objfile->signatured_types != NULL)
4568 {
4569 find_sig_entry.signature = sig;
4570 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4571 &find_sig_entry);
4572 if (sig_entry != NULL)
4573 return sig_entry;
4574 }
4575
4576 /* This is the "shouldn't happen" case.
4577 Try the DWP file and hope for the best. */
4578 if (dwp_file->tus == NULL)
4579 return NULL;
4580 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4581 sig, 1 /* is_debug_types */);
4582 if (dwo_entry == NULL)
4583 return NULL;
4584
4585 sig_entry = add_type_unit (sig);
4586 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4587
4588 /* The caller will signal a complaint if we return NULL.
4589 Here we don't return NULL but we still want to complain. */
4590 complaint (&symfile_complaints,
4591 _("Bad type signature %s referenced by %s at 0x%x,"
4592 " coping by using copy in DWP [in module %s]"),
4593 hex_string (sig),
4594 cu->per_cu->is_debug_types ? "TU" : "CU",
4595 cu->per_cu->offset.sect_off,
4596 objfile->name);
4597
4598 return sig_entry;
4599}
4600
380bca97 4601/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4602 Returns NULL if signature SIG is not present in the table.
4603 It is up to the caller to complain about this. */
348e048f
DE
4604
4605static struct signatured_type *
a2ce51a0 4606lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4607{
a2ce51a0
DE
4608 if (cu->dwo_unit
4609 && dwarf2_per_objfile->using_index)
4610 {
4611 /* We're in a DWO/DWP file, and we're using .gdb_index.
4612 These cases require special processing. */
4613 if (get_dwp_file () == NULL)
4614 return lookup_dwo_signatured_type (cu, sig);
4615 else
4616 return lookup_dwp_signatured_type (cu, sig);
4617 }
4618 else
4619 {
4620 struct signatured_type find_entry, *entry;
348e048f 4621
a2ce51a0
DE
4622 if (dwarf2_per_objfile->signatured_types == NULL)
4623 return NULL;
4624 find_entry.signature = sig;
4625 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4626 return entry;
4627 }
348e048f 4628}
42e7ad6c
DE
4629\f
4630/* Low level DIE reading support. */
348e048f 4631
d85a05f0
DJ
4632/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4633
4634static void
4635init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4636 struct dwarf2_cu *cu,
3019eac3
DE
4637 struct dwarf2_section_info *section,
4638 struct dwo_file *dwo_file)
d85a05f0 4639{
fceca515 4640 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4641 reader->abfd = section->asection->owner;
d85a05f0 4642 reader->cu = cu;
3019eac3 4643 reader->dwo_file = dwo_file;
dee91e82
DE
4644 reader->die_section = section;
4645 reader->buffer = section->buffer;
f664829e 4646 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4647 reader->comp_dir = NULL;
d85a05f0
DJ
4648}
4649
b0c7bfa9
DE
4650/* Subroutine of init_cutu_and_read_dies to simplify it.
4651 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4652 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4653 already.
4654
4655 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4656 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4657 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4658 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4659 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4660 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4661 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4662 are filled in with the info of the DIE from the DWO file.
4663 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4664 provided an abbrev table to use.
4665 The result is non-zero if a valid (non-dummy) DIE was found. */
4666
4667static int
4668read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4669 struct dwo_unit *dwo_unit,
4670 int abbrev_table_provided,
4671 struct die_info *stub_comp_unit_die,
a2ce51a0 4672 const char *stub_comp_dir,
b0c7bfa9 4673 struct die_reader_specs *result_reader,
d521ce57 4674 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4675 struct die_info **result_comp_unit_die,
4676 int *result_has_children)
4677{
4678 struct objfile *objfile = dwarf2_per_objfile->objfile;
4679 struct dwarf2_cu *cu = this_cu->cu;
4680 struct dwarf2_section_info *section;
4681 bfd *abfd;
d521ce57 4682 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4683 const char *comp_dir_string;
4684 ULONGEST signature; /* Or dwo_id. */
4685 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4686 int i,num_extra_attrs;
4687 struct dwarf2_section_info *dwo_abbrev_section;
4688 struct attribute *attr;
a2ce51a0 4689 struct attribute comp_dir_attr;
b0c7bfa9
DE
4690 struct die_info *comp_unit_die;
4691
a2ce51a0
DE
4692 /* Both can't be provided. */
4693 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4694
b0c7bfa9
DE
4695 /* These attributes aren't processed until later:
4696 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4697 However, the attribute is found in the stub which we won't have later.
4698 In order to not impose this complication on the rest of the code,
4699 we read them here and copy them to the DWO CU/TU die. */
4700
4701 stmt_list = NULL;
4702 low_pc = NULL;
4703 high_pc = NULL;
4704 ranges = NULL;
4705 comp_dir = NULL;
4706
4707 if (stub_comp_unit_die != NULL)
4708 {
4709 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4710 DWO file. */
4711 if (! this_cu->is_debug_types)
4712 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4713 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4714 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4715 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4716 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4717
4718 /* There should be a DW_AT_addr_base attribute here (if needed).
4719 We need the value before we can process DW_FORM_GNU_addr_index. */
4720 cu->addr_base = 0;
4721 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4722 if (attr)
4723 cu->addr_base = DW_UNSND (attr);
4724
4725 /* There should be a DW_AT_ranges_base attribute here (if needed).
4726 We need the value before we can process DW_AT_ranges. */
4727 cu->ranges_base = 0;
4728 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4729 if (attr)
4730 cu->ranges_base = DW_UNSND (attr);
4731 }
a2ce51a0
DE
4732 else if (stub_comp_dir != NULL)
4733 {
4734 /* Reconstruct the comp_dir attribute to simplify the code below. */
4735 comp_dir = (struct attribute *)
4736 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4737 comp_dir->name = DW_AT_comp_dir;
4738 comp_dir->form = DW_FORM_string;
4739 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4740 DW_STRING (comp_dir) = stub_comp_dir;
4741 }
b0c7bfa9
DE
4742
4743 /* Set up for reading the DWO CU/TU. */
4744 cu->dwo_unit = dwo_unit;
4745 section = dwo_unit->section;
4746 dwarf2_read_section (objfile, section);
4747 abfd = section->asection->owner;
4748 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4749 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4750 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4751
4752 if (this_cu->is_debug_types)
4753 {
4754 ULONGEST header_signature;
4755 cu_offset type_offset_in_tu;
4756 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4757
4758 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr,
4761 &header_signature,
4762 &type_offset_in_tu);
a2ce51a0
DE
4763 /* This is not an assert because it can be caused by bad debug info. */
4764 if (sig_type->signature != header_signature)
4765 {
4766 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4767 " TU at offset 0x%x [in module %s]"),
4768 hex_string (sig_type->signature),
4769 hex_string (header_signature),
4770 dwo_unit->offset.sect_off,
4771 bfd_get_filename (abfd));
4772 }
b0c7bfa9
DE
4773 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4774 /* For DWOs coming from DWP files, we don't know the CU length
4775 nor the type's offset in the TU until now. */
4776 dwo_unit->length = get_cu_length (&cu->header);
4777 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4778
4779 /* Establish the type offset that can be used to lookup the type.
4780 For DWO files, we don't know it until now. */
4781 sig_type->type_offset_in_section.sect_off =
4782 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4783 }
4784 else
4785 {
4786 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4787 dwo_abbrev_section,
4788 info_ptr, 0);
4789 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4790 /* For DWOs coming from DWP files, we don't know the CU length
4791 until now. */
4792 dwo_unit->length = get_cu_length (&cu->header);
4793 }
4794
02142a6c
DE
4795 /* Replace the CU's original abbrev table with the DWO's.
4796 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
4797 if (abbrev_table_provided)
4798 {
4799 /* Don't free the provided abbrev table, the caller of
4800 init_cutu_and_read_dies owns it. */
4801 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4802 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
4803 make_cleanup (dwarf2_free_abbrev_table, cu);
4804 }
4805 else
4806 {
4807 dwarf2_free_abbrev_table (cu);
4808 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4809 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
4810 }
4811
4812 /* Read in the die, but leave space to copy over the attributes
4813 from the stub. This has the benefit of simplifying the rest of
4814 the code - all the work to maintain the illusion of a single
4815 DW_TAG_{compile,type}_unit DIE is done here. */
4816 num_extra_attrs = ((stmt_list != NULL)
4817 + (low_pc != NULL)
4818 + (high_pc != NULL)
4819 + (ranges != NULL)
4820 + (comp_dir != NULL));
4821 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4822 result_has_children, num_extra_attrs);
4823
4824 /* Copy over the attributes from the stub to the DIE we just read in. */
4825 comp_unit_die = *result_comp_unit_die;
4826 i = comp_unit_die->num_attrs;
4827 if (stmt_list != NULL)
4828 comp_unit_die->attrs[i++] = *stmt_list;
4829 if (low_pc != NULL)
4830 comp_unit_die->attrs[i++] = *low_pc;
4831 if (high_pc != NULL)
4832 comp_unit_die->attrs[i++] = *high_pc;
4833 if (ranges != NULL)
4834 comp_unit_die->attrs[i++] = *ranges;
4835 if (comp_dir != NULL)
4836 comp_unit_die->attrs[i++] = *comp_dir;
4837 comp_unit_die->num_attrs += num_extra_attrs;
4838
bf6af496
DE
4839 if (dwarf2_die_debug)
4840 {
4841 fprintf_unfiltered (gdb_stdlog,
4842 "Read die from %s@0x%x of %s:\n",
4843 bfd_section_name (abfd, section->asection),
4844 (unsigned) (begin_info_ptr - section->buffer),
4845 bfd_get_filename (abfd));
4846 dump_die (comp_unit_die, dwarf2_die_debug);
4847 }
4848
a2ce51a0
DE
4849 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4850 TUs by skipping the stub and going directly to the entry in the DWO file.
4851 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4852 to get it via circuitous means. Blech. */
4853 if (comp_dir != NULL)
4854 result_reader->comp_dir = DW_STRING (comp_dir);
4855
b0c7bfa9
DE
4856 /* Skip dummy compilation units. */
4857 if (info_ptr >= begin_info_ptr + dwo_unit->length
4858 || peek_abbrev_code (abfd, info_ptr) == 0)
4859 return 0;
4860
4861 *result_info_ptr = info_ptr;
4862 return 1;
4863}
4864
4865/* Subroutine of init_cutu_and_read_dies to simplify it.
4866 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 4867 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
4868
4869static struct dwo_unit *
4870lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4871 struct die_info *comp_unit_die)
4872{
4873 struct dwarf2_cu *cu = this_cu->cu;
4874 struct attribute *attr;
4875 ULONGEST signature;
4876 struct dwo_unit *dwo_unit;
4877 const char *comp_dir, *dwo_name;
4878
a2ce51a0
DE
4879 gdb_assert (cu != NULL);
4880
b0c7bfa9
DE
4881 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4882 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4883 gdb_assert (attr != NULL);
4884 dwo_name = DW_STRING (attr);
4885 comp_dir = NULL;
4886 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4887 if (attr)
4888 comp_dir = DW_STRING (attr);
4889
4890 if (this_cu->is_debug_types)
4891 {
4892 struct signatured_type *sig_type;
4893
4894 /* Since this_cu is the first member of struct signatured_type,
4895 we can go from a pointer to one to a pointer to the other. */
4896 sig_type = (struct signatured_type *) this_cu;
4897 signature = sig_type->signature;
4898 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4899 }
4900 else
4901 {
4902 struct attribute *attr;
4903
4904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4905 if (! attr)
4906 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4907 " [in module %s]"),
4908 dwo_name, this_cu->objfile->name);
4909 signature = DW_UNSND (attr);
4910 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4911 signature);
4912 }
4913
b0c7bfa9
DE
4914 return dwo_unit;
4915}
4916
a2ce51a0
DE
4917/* Subroutine of init_cutu_and_read_dies to simplify it.
4918 Read a TU directly from a DWO file, bypassing the stub. */
4919
4920static void
4921init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4922 die_reader_func_ftype *die_reader_func,
4923 void *data)
4924{
4925 struct dwarf2_cu *cu;
4926 struct signatured_type *sig_type;
4927 struct cleanup *cleanups, *free_cu_cleanup;
4928 struct die_reader_specs reader;
4929 const gdb_byte *info_ptr;
4930 struct die_info *comp_unit_die;
4931 int has_children;
4932
4933 /* Verify we can do the following downcast, and that we have the
4934 data we need. */
4935 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4936 sig_type = (struct signatured_type *) this_cu;
4937 gdb_assert (sig_type->dwo_unit != NULL);
4938
4939 cleanups = make_cleanup (null_cleanup, NULL);
4940
4941 gdb_assert (this_cu->cu == NULL);
4942 cu = xmalloc (sizeof (*cu));
4943 init_one_comp_unit (cu, this_cu);
4944 /* If an error occurs while loading, release our storage. */
4945 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4946
4947 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4948 0 /* abbrev_table_provided */,
4949 NULL /* stub_comp_unit_die */,
4950 sig_type->dwo_unit->dwo_file->comp_dir,
4951 &reader, &info_ptr,
4952 &comp_unit_die, &has_children) == 0)
4953 {
4954 /* Dummy die. */
4955 do_cleanups (cleanups);
4956 return;
4957 }
4958
4959 /* All the "real" work is done here. */
4960 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4961
4962 /* This duplicates some code in init_cutu_and_read_dies,
4963 but the alternative is making the latter more complex.
4964 This function is only for the special case of using DWO files directly:
4965 no point in overly complicating the general case just to handle this. */
4966 if (keep)
4967 {
4968 /* We've successfully allocated this compilation unit. Let our
4969 caller clean it up when finished with it. */
4970 discard_cleanups (free_cu_cleanup);
4971
4972 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4973 So we have to manually free the abbrev table. */
4974 dwarf2_free_abbrev_table (cu);
4975
4976 /* Link this CU into read_in_chain. */
4977 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4978 dwarf2_per_objfile->read_in_chain = this_cu;
4979 }
4980 else
4981 do_cleanups (free_cu_cleanup);
4982
4983 do_cleanups (cleanups);
4984}
4985
fd820528 4986/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4987 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4988
f4dc4d17
DE
4989 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4990 Otherwise the table specified in the comp unit header is read in and used.
4991 This is an optimization for when we already have the abbrev table.
4992
dee91e82
DE
4993 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4994 Otherwise, a new CU is allocated with xmalloc.
4995
4996 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4997 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4998
4999 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5000 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5001
70221824 5002static void
fd820528 5003init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5004 struct abbrev_table *abbrev_table,
fd820528
DE
5005 int use_existing_cu, int keep,
5006 die_reader_func_ftype *die_reader_func,
5007 void *data)
c906108c 5008{
dee91e82 5009 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5010 struct dwarf2_section_info *section = this_cu->section;
3019eac3 5011 bfd *abfd = section->asection->owner;
dee91e82 5012 struct dwarf2_cu *cu;
d521ce57 5013 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5014 struct die_reader_specs reader;
d85a05f0 5015 struct die_info *comp_unit_die;
dee91e82 5016 int has_children;
d85a05f0 5017 struct attribute *attr;
365156ad 5018 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5019 struct signatured_type *sig_type = NULL;
4bdcc0c1 5020 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5021 /* Non-zero if CU currently points to a DWO file and we need to
5022 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5023 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5024 int rereading_dwo_cu = 0;
c906108c 5025
09406207
DE
5026 if (dwarf2_die_debug)
5027 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5028 this_cu->is_debug_types ? "type" : "comp",
5029 this_cu->offset.sect_off);
5030
dee91e82
DE
5031 if (use_existing_cu)
5032 gdb_assert (keep);
23745b47 5033
a2ce51a0
DE
5034 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5035 file (instead of going through the stub), short-circuit all of this. */
5036 if (this_cu->reading_dwo_directly)
5037 {
5038 /* Narrow down the scope of possibilities to have to understand. */
5039 gdb_assert (this_cu->is_debug_types);
5040 gdb_assert (abbrev_table == NULL);
5041 gdb_assert (!use_existing_cu);
5042 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5043 return;
5044 }
5045
dee91e82
DE
5046 cleanups = make_cleanup (null_cleanup, NULL);
5047
5048 /* This is cheap if the section is already read in. */
5049 dwarf2_read_section (objfile, section);
5050
5051 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5052
5053 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5054
5055 if (use_existing_cu && this_cu->cu != NULL)
5056 {
5057 cu = this_cu->cu;
42e7ad6c
DE
5058
5059 /* If this CU is from a DWO file we need to start over, we need to
5060 refetch the attributes from the skeleton CU.
5061 This could be optimized by retrieving those attributes from when we
5062 were here the first time: the previous comp_unit_die was stored in
5063 comp_unit_obstack. But there's no data yet that we need this
5064 optimization. */
5065 if (cu->dwo_unit != NULL)
5066 rereading_dwo_cu = 1;
dee91e82
DE
5067 }
5068 else
5069 {
5070 /* If !use_existing_cu, this_cu->cu must be NULL. */
5071 gdb_assert (this_cu->cu == NULL);
5072
5073 cu = xmalloc (sizeof (*cu));
5074 init_one_comp_unit (cu, this_cu);
5075
5076 /* If an error occurs while loading, release our storage. */
365156ad 5077 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5078 }
dee91e82 5079
b0c7bfa9 5080 /* Get the header. */
42e7ad6c
DE
5081 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5082 {
5083 /* We already have the header, there's no need to read it in again. */
5084 info_ptr += cu->header.first_die_offset.cu_off;
5085 }
5086 else
5087 {
3019eac3 5088 if (this_cu->is_debug_types)
dee91e82
DE
5089 {
5090 ULONGEST signature;
42e7ad6c 5091 cu_offset type_offset_in_tu;
dee91e82 5092
4bdcc0c1
DE
5093 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5094 abbrev_section, info_ptr,
42e7ad6c
DE
5095 &signature,
5096 &type_offset_in_tu);
dee91e82 5097
42e7ad6c
DE
5098 /* Since per_cu is the first member of struct signatured_type,
5099 we can go from a pointer to one to a pointer to the other. */
5100 sig_type = (struct signatured_type *) this_cu;
5101 gdb_assert (sig_type->signature == signature);
5102 gdb_assert (sig_type->type_offset_in_tu.cu_off
5103 == type_offset_in_tu.cu_off);
dee91e82
DE
5104 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5105
42e7ad6c
DE
5106 /* LENGTH has not been set yet for type units if we're
5107 using .gdb_index. */
1ce1cefd 5108 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5109
5110 /* Establish the type offset that can be used to lookup the type. */
5111 sig_type->type_offset_in_section.sect_off =
5112 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5113 }
5114 else
5115 {
4bdcc0c1
DE
5116 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5117 abbrev_section,
5118 info_ptr, 0);
dee91e82
DE
5119
5120 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5121 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5122 }
5123 }
10b3939b 5124
6caca83c 5125 /* Skip dummy compilation units. */
dee91e82 5126 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5127 || peek_abbrev_code (abfd, info_ptr) == 0)
5128 {
dee91e82 5129 do_cleanups (cleanups);
21b2bd31 5130 return;
6caca83c
CC
5131 }
5132
433df2d4
DE
5133 /* If we don't have them yet, read the abbrevs for this compilation unit.
5134 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5135 done. Note that it's important that if the CU had an abbrev table
5136 on entry we don't free it when we're done: Somewhere up the call stack
5137 it may be in use. */
f4dc4d17
DE
5138 if (abbrev_table != NULL)
5139 {
5140 gdb_assert (cu->abbrev_table == NULL);
5141 gdb_assert (cu->header.abbrev_offset.sect_off
5142 == abbrev_table->offset.sect_off);
5143 cu->abbrev_table = abbrev_table;
5144 }
5145 else if (cu->abbrev_table == NULL)
dee91e82 5146 {
4bdcc0c1 5147 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5148 make_cleanup (dwarf2_free_abbrev_table, cu);
5149 }
42e7ad6c
DE
5150 else if (rereading_dwo_cu)
5151 {
5152 dwarf2_free_abbrev_table (cu);
5153 dwarf2_read_abbrevs (cu, abbrev_section);
5154 }
af703f96 5155
dee91e82 5156 /* Read the top level CU/TU die. */
3019eac3 5157 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5158 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5159
b0c7bfa9
DE
5160 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5161 from the DWO file.
5162 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5163 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5165 if (attr)
5166 {
3019eac3 5167 struct dwo_unit *dwo_unit;
b0c7bfa9 5168 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5169
5170 if (has_children)
6a506a2d
DE
5171 {
5172 complaint (&symfile_complaints,
5173 _("compilation unit with DW_AT_GNU_dwo_name"
5174 " has children (offset 0x%x) [in module %s]"),
5175 this_cu->offset.sect_off, bfd_get_filename (abfd));
5176 }
b0c7bfa9 5177 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5178 if (dwo_unit != NULL)
3019eac3 5179 {
6a506a2d
DE
5180 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5181 abbrev_table != NULL,
a2ce51a0 5182 comp_unit_die, NULL,
6a506a2d
DE
5183 &reader, &info_ptr,
5184 &dwo_comp_unit_die, &has_children) == 0)
5185 {
5186 /* Dummy die. */
5187 do_cleanups (cleanups);
5188 return;
5189 }
5190 comp_unit_die = dwo_comp_unit_die;
5191 }
5192 else
5193 {
5194 /* Yikes, we couldn't find the rest of the DIE, we only have
5195 the stub. A complaint has already been logged. There's
5196 not much more we can do except pass on the stub DIE to
5197 die_reader_func. We don't want to throw an error on bad
5198 debug info. */
3019eac3
DE
5199 }
5200 }
5201
b0c7bfa9 5202 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5203 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5204
b0c7bfa9 5205 /* Done, clean up. */
365156ad 5206 if (free_cu_cleanup != NULL)
348e048f 5207 {
365156ad
TT
5208 if (keep)
5209 {
5210 /* We've successfully allocated this compilation unit. Let our
5211 caller clean it up when finished with it. */
5212 discard_cleanups (free_cu_cleanup);
dee91e82 5213
365156ad
TT
5214 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5215 So we have to manually free the abbrev table. */
5216 dwarf2_free_abbrev_table (cu);
dee91e82 5217
365156ad
TT
5218 /* Link this CU into read_in_chain. */
5219 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5220 dwarf2_per_objfile->read_in_chain = this_cu;
5221 }
5222 else
5223 do_cleanups (free_cu_cleanup);
348e048f 5224 }
365156ad
TT
5225
5226 do_cleanups (cleanups);
dee91e82
DE
5227}
5228
3019eac3
DE
5229/* Read CU/TU THIS_CU in section SECTION,
5230 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5231 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5232 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5233
5234 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5235 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5236
5237 We fill in THIS_CU->length.
5238
5239 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5240 linker) then DIE_READER_FUNC will not get called.
5241
5242 THIS_CU->cu is always freed when done.
3019eac3
DE
5243 This is done in order to not leave THIS_CU->cu in a state where we have
5244 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5245
5246static void
5247init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5248 struct dwarf2_section_info *abbrev_section,
3019eac3 5249 struct dwo_file *dwo_file,
dee91e82
DE
5250 die_reader_func_ftype *die_reader_func,
5251 void *data)
5252{
5253 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5254 struct dwarf2_section_info *section = this_cu->section;
3019eac3 5255 bfd *abfd = section->asection->owner;
dee91e82 5256 struct dwarf2_cu cu;
d521ce57 5257 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5258 struct die_reader_specs reader;
5259 struct cleanup *cleanups;
5260 struct die_info *comp_unit_die;
5261 int has_children;
5262
09406207
DE
5263 if (dwarf2_die_debug)
5264 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5265 this_cu->is_debug_types ? "type" : "comp",
5266 this_cu->offset.sect_off);
5267
dee91e82
DE
5268 gdb_assert (this_cu->cu == NULL);
5269
dee91e82
DE
5270 /* This is cheap if the section is already read in. */
5271 dwarf2_read_section (objfile, section);
5272
5273 init_one_comp_unit (&cu, this_cu);
5274
5275 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5276
5277 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5278 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5279 abbrev_section, info_ptr,
3019eac3 5280 this_cu->is_debug_types);
dee91e82 5281
1ce1cefd 5282 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5283
5284 /* Skip dummy compilation units. */
5285 if (info_ptr >= begin_info_ptr + this_cu->length
5286 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5287 {
dee91e82 5288 do_cleanups (cleanups);
21b2bd31 5289 return;
93311388 5290 }
72bf9492 5291
dee91e82
DE
5292 dwarf2_read_abbrevs (&cu, abbrev_section);
5293 make_cleanup (dwarf2_free_abbrev_table, &cu);
5294
3019eac3 5295 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5296 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5297
5298 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5299
5300 do_cleanups (cleanups);
5301}
5302
3019eac3
DE
5303/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5304 does not lookup the specified DWO file.
5305 This cannot be used to read DWO files.
dee91e82
DE
5306
5307 THIS_CU->cu is always freed when done.
3019eac3
DE
5308 This is done in order to not leave THIS_CU->cu in a state where we have
5309 to care whether it refers to the "main" CU or the DWO CU.
5310 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5311
5312static void
5313init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5314 die_reader_func_ftype *die_reader_func,
5315 void *data)
5316{
5317 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5318 get_abbrev_section_for_cu (this_cu),
3019eac3 5319 NULL,
dee91e82
DE
5320 die_reader_func, data);
5321}
0018ea6f
DE
5322\f
5323/* Type Unit Groups.
dee91e82 5324
0018ea6f
DE
5325 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5326 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5327 so that all types coming from the same compilation (.o file) are grouped
5328 together. A future step could be to put the types in the same symtab as
5329 the CU the types ultimately came from. */
ff013f42 5330
f4dc4d17
DE
5331static hashval_t
5332hash_type_unit_group (const void *item)
5333{
094b34ac 5334 const struct type_unit_group *tu_group = item;
f4dc4d17 5335
094b34ac 5336 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5337}
348e048f
DE
5338
5339static int
f4dc4d17 5340eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5341{
f4dc4d17
DE
5342 const struct type_unit_group *lhs = item_lhs;
5343 const struct type_unit_group *rhs = item_rhs;
348e048f 5344
094b34ac 5345 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5346}
348e048f 5347
f4dc4d17
DE
5348/* Allocate a hash table for type unit groups. */
5349
5350static htab_t
5351allocate_type_unit_groups_table (void)
5352{
5353 return htab_create_alloc_ex (3,
5354 hash_type_unit_group,
5355 eq_type_unit_group,
5356 NULL,
5357 &dwarf2_per_objfile->objfile->objfile_obstack,
5358 hashtab_obstack_allocate,
5359 dummy_obstack_deallocate);
5360}
dee91e82 5361
f4dc4d17
DE
5362/* Type units that don't have DW_AT_stmt_list are grouped into their own
5363 partial symtabs. We combine several TUs per psymtab to not let the size
5364 of any one psymtab grow too big. */
5365#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5366#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5367
094b34ac 5368/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5369 Create the type_unit_group object used to hold one or more TUs. */
5370
5371static struct type_unit_group *
094b34ac 5372create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5373{
5374 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5375 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5376 struct type_unit_group *tu_group;
f4dc4d17
DE
5377
5378 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5379 struct type_unit_group);
094b34ac 5380 per_cu = &tu_group->per_cu;
f4dc4d17 5381 per_cu->objfile = objfile;
f4dc4d17 5382
094b34ac
DE
5383 if (dwarf2_per_objfile->using_index)
5384 {
5385 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5386 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5387 }
5388 else
5389 {
5390 unsigned int line_offset = line_offset_struct.sect_off;
5391 struct partial_symtab *pst;
5392 char *name;
5393
5394 /* Give the symtab a useful name for debug purposes. */
5395 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5396 name = xstrprintf ("<type_units_%d>",
5397 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5398 else
5399 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5400
5401 pst = create_partial_symtab (per_cu, name);
5402 pst->anonymous = 1;
f4dc4d17 5403
094b34ac
DE
5404 xfree (name);
5405 }
f4dc4d17 5406
094b34ac
DE
5407 tu_group->hash.dwo_unit = cu->dwo_unit;
5408 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5409
5410 return tu_group;
5411}
5412
094b34ac
DE
5413/* Look up the type_unit_group for type unit CU, and create it if necessary.
5414 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5415
5416static struct type_unit_group *
ff39bb5e 5417get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5418{
5419 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5420 struct type_unit_group *tu_group;
5421 void **slot;
5422 unsigned int line_offset;
5423 struct type_unit_group type_unit_group_for_lookup;
5424
5425 if (dwarf2_per_objfile->type_unit_groups == NULL)
5426 {
5427 dwarf2_per_objfile->type_unit_groups =
5428 allocate_type_unit_groups_table ();
5429 }
5430
5431 /* Do we need to create a new group, or can we use an existing one? */
5432
5433 if (stmt_list)
5434 {
5435 line_offset = DW_UNSND (stmt_list);
5436 ++tu_stats->nr_symtab_sharers;
5437 }
5438 else
5439 {
5440 /* Ugh, no stmt_list. Rare, but we have to handle it.
5441 We can do various things here like create one group per TU or
5442 spread them over multiple groups to split up the expansion work.
5443 To avoid worst case scenarios (too many groups or too large groups)
5444 we, umm, group them in bunches. */
5445 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5446 | (tu_stats->nr_stmt_less_type_units
5447 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5448 ++tu_stats->nr_stmt_less_type_units;
5449 }
5450
094b34ac
DE
5451 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5452 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5453 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5454 &type_unit_group_for_lookup, INSERT);
5455 if (*slot != NULL)
5456 {
5457 tu_group = *slot;
5458 gdb_assert (tu_group != NULL);
5459 }
5460 else
5461 {
5462 sect_offset line_offset_struct;
5463
5464 line_offset_struct.sect_off = line_offset;
094b34ac 5465 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5466 *slot = tu_group;
5467 ++tu_stats->nr_symtabs;
5468 }
5469
5470 return tu_group;
5471}
5472
5473/* Struct used to sort TUs by their abbreviation table offset. */
5474
5475struct tu_abbrev_offset
5476{
5477 struct signatured_type *sig_type;
5478 sect_offset abbrev_offset;
5479};
5480
5481/* Helper routine for build_type_unit_groups, passed to qsort. */
5482
5483static int
5484sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5485{
5486 const struct tu_abbrev_offset * const *a = ap;
5487 const struct tu_abbrev_offset * const *b = bp;
5488 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5489 unsigned int boff = (*b)->abbrev_offset.sect_off;
5490
5491 return (aoff > boff) - (aoff < boff);
5492}
5493
5494/* A helper function to add a type_unit_group to a table. */
5495
5496static int
5497add_type_unit_group_to_table (void **slot, void *datum)
5498{
5499 struct type_unit_group *tu_group = *slot;
5500 struct type_unit_group ***datap = datum;
5501
5502 **datap = tu_group;
5503 ++*datap;
5504
5505 return 1;
5506}
5507
5508/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5509 each one passing FUNC,DATA.
5510
5511 The efficiency is because we sort TUs by the abbrev table they use and
5512 only read each abbrev table once. In one program there are 200K TUs
5513 sharing 8K abbrev tables.
5514
5515 The main purpose of this function is to support building the
5516 dwarf2_per_objfile->type_unit_groups table.
5517 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5518 can collapse the search space by grouping them by stmt_list.
5519 The savings can be significant, in the same program from above the 200K TUs
5520 share 8K stmt_list tables.
5521
5522 FUNC is expected to call get_type_unit_group, which will create the
5523 struct type_unit_group if necessary and add it to
5524 dwarf2_per_objfile->type_unit_groups. */
5525
5526static void
5527build_type_unit_groups (die_reader_func_ftype *func, void *data)
5528{
5529 struct objfile *objfile = dwarf2_per_objfile->objfile;
5530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5531 struct cleanup *cleanups;
5532 struct abbrev_table *abbrev_table;
5533 sect_offset abbrev_offset;
5534 struct tu_abbrev_offset *sorted_by_abbrev;
5535 struct type_unit_group **iter;
5536 int i;
5537
5538 /* It's up to the caller to not call us multiple times. */
5539 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5540
5541 if (dwarf2_per_objfile->n_type_units == 0)
5542 return;
5543
5544 /* TUs typically share abbrev tables, and there can be way more TUs than
5545 abbrev tables. Sort by abbrev table to reduce the number of times we
5546 read each abbrev table in.
5547 Alternatives are to punt or to maintain a cache of abbrev tables.
5548 This is simpler and efficient enough for now.
5549
5550 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5551 symtab to use). Typically TUs with the same abbrev offset have the same
5552 stmt_list value too so in practice this should work well.
5553
5554 The basic algorithm here is:
5555
5556 sort TUs by abbrev table
5557 for each TU with same abbrev table:
5558 read abbrev table if first user
5559 read TU top level DIE
5560 [IWBN if DWO skeletons had DW_AT_stmt_list]
5561 call FUNC */
5562
5563 if (dwarf2_read_debug)
5564 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5565
5566 /* Sort in a separate table to maintain the order of all_type_units
5567 for .gdb_index: TU indices directly index all_type_units. */
5568 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5569 dwarf2_per_objfile->n_type_units);
5570 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5571 {
5572 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5573
5574 sorted_by_abbrev[i].sig_type = sig_type;
5575 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5576 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5577 sig_type->per_cu.offset);
5578 }
5579 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5580 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5581 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5582
094b34ac
DE
5583 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5584 called any number of times, so we don't reset tu_stats here. */
5585
f4dc4d17
DE
5586 abbrev_offset.sect_off = ~(unsigned) 0;
5587 abbrev_table = NULL;
5588 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5589
5590 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5591 {
5592 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5593
5594 /* Switch to the next abbrev table if necessary. */
5595 if (abbrev_table == NULL
5596 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5597 {
5598 if (abbrev_table != NULL)
5599 {
5600 abbrev_table_free (abbrev_table);
5601 /* Reset to NULL in case abbrev_table_read_table throws
5602 an error: abbrev_table_free_cleanup will get called. */
5603 abbrev_table = NULL;
5604 }
5605 abbrev_offset = tu->abbrev_offset;
5606 abbrev_table =
5607 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5608 abbrev_offset);
5609 ++tu_stats->nr_uniq_abbrev_tables;
5610 }
5611
5612 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5613 func, data);
5614 }
5615
a2ce51a0
DE
5616 /* type_unit_groups can be NULL if there is an error in the debug info.
5617 Just create an empty table so the rest of gdb doesn't have to watch
5618 for this error case. */
5619 if (dwarf2_per_objfile->type_unit_groups == NULL)
5620 {
5621 dwarf2_per_objfile->type_unit_groups =
5622 allocate_type_unit_groups_table ();
5623 dwarf2_per_objfile->n_type_unit_groups = 0;
5624 }
5625
f4dc4d17
DE
5626 /* Create a vector of pointers to primary type units to make it easy to
5627 iterate over them and CUs. See dw2_get_primary_cu. */
5628 dwarf2_per_objfile->n_type_unit_groups =
5629 htab_elements (dwarf2_per_objfile->type_unit_groups);
5630 dwarf2_per_objfile->all_type_unit_groups =
5631 obstack_alloc (&objfile->objfile_obstack,
5632 dwarf2_per_objfile->n_type_unit_groups
5633 * sizeof (struct type_unit_group *));
5634 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5635 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5636 add_type_unit_group_to_table, &iter);
5637 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5638 == dwarf2_per_objfile->n_type_unit_groups);
5639
5640 do_cleanups (cleanups);
5641
5642 if (dwarf2_read_debug)
5643 {
5644 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5645 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5646 dwarf2_per_objfile->n_type_units);
5647 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5648 tu_stats->nr_uniq_abbrev_tables);
5649 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5650 tu_stats->nr_symtabs);
5651 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5652 tu_stats->nr_symtab_sharers);
5653 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5654 tu_stats->nr_stmt_less_type_units);
5655 }
5656}
0018ea6f
DE
5657\f
5658/* Partial symbol tables. */
5659
5660/* Create a psymtab named NAME and assign it to PER_CU.
5661
5662 The caller must fill in the following details:
5663 dirname, textlow, texthigh. */
5664
5665static struct partial_symtab *
5666create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5667{
5668 struct objfile *objfile = per_cu->objfile;
5669 struct partial_symtab *pst;
5670
5671 pst = start_psymtab_common (objfile, objfile->section_offsets,
5672 name, 0,
5673 objfile->global_psymbols.next,
5674 objfile->static_psymbols.next);
5675
5676 pst->psymtabs_addrmap_supported = 1;
5677
5678 /* This is the glue that links PST into GDB's symbol API. */
5679 pst->read_symtab_private = per_cu;
5680 pst->read_symtab = dwarf2_read_symtab;
5681 per_cu->v.psymtab = pst;
5682
5683 return pst;
5684}
5685
5686/* die_reader_func for process_psymtab_comp_unit. */
5687
5688static void
5689process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5690 const gdb_byte *info_ptr,
0018ea6f
DE
5691 struct die_info *comp_unit_die,
5692 int has_children,
5693 void *data)
5694{
5695 struct dwarf2_cu *cu = reader->cu;
5696 struct objfile *objfile = cu->objfile;
5697 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5698 struct attribute *attr;
5699 CORE_ADDR baseaddr;
5700 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5701 struct partial_symtab *pst;
5702 int has_pc_info;
5703 const char *filename;
5704 int *want_partial_unit_ptr = data;
5705
5706 if (comp_unit_die->tag == DW_TAG_partial_unit
5707 && (want_partial_unit_ptr == NULL
5708 || !*want_partial_unit_ptr))
5709 return;
5710
5711 gdb_assert (! per_cu->is_debug_types);
5712
5713 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5714
5715 cu->list_in_scope = &file_symbols;
5716
5717 /* Allocate a new partial symbol table structure. */
5718 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5719 if (attr == NULL || !DW_STRING (attr))
5720 filename = "";
5721 else
5722 filename = DW_STRING (attr);
5723
5724 pst = create_partial_symtab (per_cu, filename);
5725
5726 /* This must be done before calling dwarf2_build_include_psymtabs. */
5727 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5728 if (attr != NULL)
5729 pst->dirname = DW_STRING (attr);
5730
5731 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5732
5733 dwarf2_find_base_address (comp_unit_die, cu);
5734
5735 /* Possibly set the default values of LOWPC and HIGHPC from
5736 `DW_AT_ranges'. */
5737 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5738 &best_highpc, cu, pst);
5739 if (has_pc_info == 1 && best_lowpc < best_highpc)
5740 /* Store the contiguous range if it is not empty; it can be empty for
5741 CUs with no code. */
5742 addrmap_set_empty (objfile->psymtabs_addrmap,
5743 best_lowpc + baseaddr,
5744 best_highpc + baseaddr - 1, pst);
5745
5746 /* Check if comp unit has_children.
5747 If so, read the rest of the partial symbols from this comp unit.
5748 If not, there's no more debug_info for this comp unit. */
5749 if (has_children)
5750 {
5751 struct partial_die_info *first_die;
5752 CORE_ADDR lowpc, highpc;
5753
5754 lowpc = ((CORE_ADDR) -1);
5755 highpc = ((CORE_ADDR) 0);
5756
5757 first_die = load_partial_dies (reader, info_ptr, 1);
5758
5759 scan_partial_symbols (first_die, &lowpc, &highpc,
5760 ! has_pc_info, cu);
5761
5762 /* If we didn't find a lowpc, set it to highpc to avoid
5763 complaints from `maint check'. */
5764 if (lowpc == ((CORE_ADDR) -1))
5765 lowpc = highpc;
5766
5767 /* If the compilation unit didn't have an explicit address range,
5768 then use the information extracted from its child dies. */
5769 if (! has_pc_info)
5770 {
5771 best_lowpc = lowpc;
5772 best_highpc = highpc;
5773 }
5774 }
5775 pst->textlow = best_lowpc + baseaddr;
5776 pst->texthigh = best_highpc + baseaddr;
5777
5778 pst->n_global_syms = objfile->global_psymbols.next -
5779 (objfile->global_psymbols.list + pst->globals_offset);
5780 pst->n_static_syms = objfile->static_psymbols.next -
5781 (objfile->static_psymbols.list + pst->statics_offset);
5782 sort_pst_symbols (objfile, pst);
5783
5784 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5785 {
5786 int i;
5787 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5788 struct dwarf2_per_cu_data *iter;
5789
5790 /* Fill in 'dependencies' here; we fill in 'users' in a
5791 post-pass. */
5792 pst->number_of_dependencies = len;
5793 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5794 len * sizeof (struct symtab *));
5795 for (i = 0;
5796 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5797 i, iter);
5798 ++i)
5799 pst->dependencies[i] = iter->v.psymtab;
5800
5801 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5802 }
5803
5804 /* Get the list of files included in the current compilation unit,
5805 and build a psymtab for each of them. */
5806 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5807
5808 if (dwarf2_read_debug)
5809 {
5810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5811
5812 fprintf_unfiltered (gdb_stdlog,
5813 "Psymtab for %s unit @0x%x: %s - %s"
5814 ", %d global, %d static syms\n",
5815 per_cu->is_debug_types ? "type" : "comp",
5816 per_cu->offset.sect_off,
5817 paddress (gdbarch, pst->textlow),
5818 paddress (gdbarch, pst->texthigh),
5819 pst->n_global_syms, pst->n_static_syms);
5820 }
5821}
5822
5823/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5824 Process compilation unit THIS_CU for a psymtab. */
5825
5826static void
5827process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5828 int want_partial_unit)
5829{
5830 /* If this compilation unit was already read in, free the
5831 cached copy in order to read it in again. This is
5832 necessary because we skipped some symbols when we first
5833 read in the compilation unit (see load_partial_dies).
5834 This problem could be avoided, but the benefit is unclear. */
5835 if (this_cu->cu != NULL)
5836 free_one_cached_comp_unit (this_cu);
5837
5838 gdb_assert (! this_cu->is_debug_types);
5839 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5840 process_psymtab_comp_unit_reader,
5841 &want_partial_unit);
5842
5843 /* Age out any secondary CUs. */
5844 age_cached_comp_units ();
5845}
f4dc4d17
DE
5846
5847/* Reader function for build_type_psymtabs. */
5848
5849static void
5850build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 5851 const gdb_byte *info_ptr,
f4dc4d17
DE
5852 struct die_info *type_unit_die,
5853 int has_children,
5854 void *data)
5855{
5856 struct objfile *objfile = dwarf2_per_objfile->objfile;
5857 struct dwarf2_cu *cu = reader->cu;
5858 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 5859 struct signatured_type *sig_type;
f4dc4d17
DE
5860 struct type_unit_group *tu_group;
5861 struct attribute *attr;
5862 struct partial_die_info *first_die;
5863 CORE_ADDR lowpc, highpc;
5864 struct partial_symtab *pst;
5865
5866 gdb_assert (data == NULL);
0186c6a7
DE
5867 gdb_assert (per_cu->is_debug_types);
5868 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
5869
5870 if (! has_children)
5871 return;
5872
5873 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5874 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5875
0186c6a7 5876 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
5877
5878 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5879 cu->list_in_scope = &file_symbols;
5880 pst = create_partial_symtab (per_cu, "");
5881 pst->anonymous = 1;
5882
5883 first_die = load_partial_dies (reader, info_ptr, 1);
5884
5885 lowpc = (CORE_ADDR) -1;
5886 highpc = (CORE_ADDR) 0;
5887 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5888
5889 pst->n_global_syms = objfile->global_psymbols.next -
5890 (objfile->global_psymbols.list + pst->globals_offset);
5891 pst->n_static_syms = objfile->static_psymbols.next -
5892 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 5893 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
5894}
5895
5896/* Traversal function for build_type_psymtabs. */
5897
5898static int
5899build_type_psymtab_dependencies (void **slot, void *info)
5900{
5901 struct objfile *objfile = dwarf2_per_objfile->objfile;
5902 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5903 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5904 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
5905 int len = VEC_length (sig_type_ptr, tu_group->tus);
5906 struct signatured_type *iter;
f4dc4d17
DE
5907 int i;
5908
5909 gdb_assert (len > 0);
0186c6a7 5910 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
5911
5912 pst->number_of_dependencies = len;
5913 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5914 len * sizeof (struct psymtab *));
5915 for (i = 0;
0186c6a7 5916 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
5917 ++i)
5918 {
0186c6a7
DE
5919 gdb_assert (iter->per_cu.is_debug_types);
5920 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 5921 iter->type_unit_group = tu_group;
f4dc4d17
DE
5922 }
5923
0186c6a7 5924 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
5925
5926 return 1;
5927}
5928
5929/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5930 Build partial symbol tables for the .debug_types comp-units. */
5931
5932static void
5933build_type_psymtabs (struct objfile *objfile)
5934{
0e50663e 5935 if (! create_all_type_units (objfile))
348e048f
DE
5936 return;
5937
f4dc4d17
DE
5938 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5939
5940 /* Now that all TUs have been processed we can fill in the dependencies. */
5941 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5942 build_type_psymtab_dependencies, NULL);
348e048f
DE
5943}
5944
60606b2c
TT
5945/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5946
5947static void
5948psymtabs_addrmap_cleanup (void *o)
5949{
5950 struct objfile *objfile = o;
ec61707d 5951
60606b2c
TT
5952 objfile->psymtabs_addrmap = NULL;
5953}
5954
95554aad
TT
5955/* Compute the 'user' field for each psymtab in OBJFILE. */
5956
5957static void
5958set_partial_user (struct objfile *objfile)
5959{
5960 int i;
5961
5962 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5963 {
5964 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5965 struct partial_symtab *pst = per_cu->v.psymtab;
5966 int j;
5967
36586728
TT
5968 if (pst == NULL)
5969 continue;
5970
95554aad
TT
5971 for (j = 0; j < pst->number_of_dependencies; ++j)
5972 {
5973 /* Set the 'user' field only if it is not already set. */
5974 if (pst->dependencies[j]->user == NULL)
5975 pst->dependencies[j]->user = pst;
5976 }
5977 }
5978}
5979
93311388
DE
5980/* Build the partial symbol table by doing a quick pass through the
5981 .debug_info and .debug_abbrev sections. */
72bf9492 5982
93311388 5983static void
c67a9c90 5984dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5985{
60606b2c
TT
5986 struct cleanup *back_to, *addrmap_cleanup;
5987 struct obstack temp_obstack;
21b2bd31 5988 int i;
93311388 5989
45cfd468
DE
5990 if (dwarf2_read_debug)
5991 {
5992 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5993 objfile->name);
5994 }
5995
98bfdba5
PA
5996 dwarf2_per_objfile->reading_partial_symbols = 1;
5997
be391dca 5998 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5999
93311388
DE
6000 /* Any cached compilation units will be linked by the per-objfile
6001 read_in_chain. Make sure to free them when we're done. */
6002 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6003
348e048f
DE
6004 build_type_psymtabs (objfile);
6005
93311388 6006 create_all_comp_units (objfile);
c906108c 6007
60606b2c
TT
6008 /* Create a temporary address map on a temporary obstack. We later
6009 copy this to the final obstack. */
6010 obstack_init (&temp_obstack);
6011 make_cleanup_obstack_free (&temp_obstack);
6012 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6013 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6014
21b2bd31 6015 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6016 {
21b2bd31 6017 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6018
95554aad 6019 process_psymtab_comp_unit (per_cu, 0);
c906108c 6020 }
ff013f42 6021
95554aad
TT
6022 set_partial_user (objfile);
6023
ff013f42
JK
6024 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6025 &objfile->objfile_obstack);
60606b2c 6026 discard_cleanups (addrmap_cleanup);
ff013f42 6027
ae038cb0 6028 do_cleanups (back_to);
45cfd468
DE
6029
6030 if (dwarf2_read_debug)
6031 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6032 objfile->name);
ae038cb0
DJ
6033}
6034
3019eac3 6035/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6036
6037static void
dee91e82 6038load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6039 const gdb_byte *info_ptr,
dee91e82
DE
6040 struct die_info *comp_unit_die,
6041 int has_children,
6042 void *data)
ae038cb0 6043{
dee91e82 6044 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6045
95554aad 6046 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6047
ae038cb0
DJ
6048 /* Check if comp unit has_children.
6049 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6050 If not, there's no more debug_info for this comp unit. */
d85a05f0 6051 if (has_children)
dee91e82
DE
6052 load_partial_dies (reader, info_ptr, 0);
6053}
98bfdba5 6054
dee91e82
DE
6055/* Load the partial DIEs for a secondary CU into memory.
6056 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6057
dee91e82
DE
6058static void
6059load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6060{
f4dc4d17
DE
6061 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6062 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6063}
6064
ae038cb0 6065static void
36586728
TT
6066read_comp_units_from_section (struct objfile *objfile,
6067 struct dwarf2_section_info *section,
6068 unsigned int is_dwz,
6069 int *n_allocated,
6070 int *n_comp_units,
6071 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6072{
d521ce57 6073 const gdb_byte *info_ptr;
36586728 6074 bfd *abfd = section->asection->owner;
be391dca 6075
bf6af496
DE
6076 if (dwarf2_read_debug)
6077 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6078 section->asection->name, bfd_get_filename (abfd));
6079
36586728 6080 dwarf2_read_section (objfile, section);
ae038cb0 6081
36586728 6082 info_ptr = section->buffer;
6e70227d 6083
36586728 6084 while (info_ptr < section->buffer + section->size)
ae038cb0 6085 {
c764a876 6086 unsigned int length, initial_length_size;
ae038cb0 6087 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6088 sect_offset offset;
ae038cb0 6089
36586728 6090 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6091
6092 /* Read just enough information to find out where the next
6093 compilation unit is. */
36586728 6094 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6095
6096 /* Save the compilation unit for later lookup. */
6097 this_cu = obstack_alloc (&objfile->objfile_obstack,
6098 sizeof (struct dwarf2_per_cu_data));
6099 memset (this_cu, 0, sizeof (*this_cu));
6100 this_cu->offset = offset;
c764a876 6101 this_cu->length = length + initial_length_size;
36586728 6102 this_cu->is_dwz = is_dwz;
9291a0cd 6103 this_cu->objfile = objfile;
8a0459fd 6104 this_cu->section = section;
ae038cb0 6105
36586728 6106 if (*n_comp_units == *n_allocated)
ae038cb0 6107 {
36586728
TT
6108 *n_allocated *= 2;
6109 *all_comp_units = xrealloc (*all_comp_units,
6110 *n_allocated
6111 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6112 }
36586728
TT
6113 (*all_comp_units)[*n_comp_units] = this_cu;
6114 ++*n_comp_units;
ae038cb0
DJ
6115
6116 info_ptr = info_ptr + this_cu->length;
6117 }
36586728
TT
6118}
6119
6120/* Create a list of all compilation units in OBJFILE.
6121 This is only done for -readnow and building partial symtabs. */
6122
6123static void
6124create_all_comp_units (struct objfile *objfile)
6125{
6126 int n_allocated;
6127 int n_comp_units;
6128 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6129 struct dwz_file *dwz;
36586728
TT
6130
6131 n_comp_units = 0;
6132 n_allocated = 10;
6133 all_comp_units = xmalloc (n_allocated
6134 * sizeof (struct dwarf2_per_cu_data *));
6135
6136 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6137 &n_allocated, &n_comp_units, &all_comp_units);
6138
4db1a1dc
TT
6139 dwz = dwarf2_get_dwz_file ();
6140 if (dwz != NULL)
6141 read_comp_units_from_section (objfile, &dwz->info, 1,
6142 &n_allocated, &n_comp_units,
6143 &all_comp_units);
ae038cb0
DJ
6144
6145 dwarf2_per_objfile->all_comp_units
6146 = obstack_alloc (&objfile->objfile_obstack,
6147 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6148 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6149 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6150 xfree (all_comp_units);
6151 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6152}
6153
5734ee8b
DJ
6154/* Process all loaded DIEs for compilation unit CU, starting at
6155 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6156 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6157 DW_AT_ranges). If NEED_PC is set, then this function will set
6158 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6159 and record the covered ranges in the addrmap. */
c906108c 6160
72bf9492
DJ
6161static void
6162scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6163 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6164{
72bf9492 6165 struct partial_die_info *pdi;
c906108c 6166
91c24f0a
DC
6167 /* Now, march along the PDI's, descending into ones which have
6168 interesting children but skipping the children of the other ones,
6169 until we reach the end of the compilation unit. */
c906108c 6170
72bf9492 6171 pdi = first_die;
91c24f0a 6172
72bf9492
DJ
6173 while (pdi != NULL)
6174 {
6175 fixup_partial_die (pdi, cu);
c906108c 6176
f55ee35c 6177 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6178 children, so we need to look at them. Ditto for anonymous
6179 enums. */
933c6fe4 6180
72bf9492 6181 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6182 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6183 || pdi->tag == DW_TAG_imported_unit)
c906108c 6184 {
72bf9492 6185 switch (pdi->tag)
c906108c
SS
6186 {
6187 case DW_TAG_subprogram:
5734ee8b 6188 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6189 break;
72929c62 6190 case DW_TAG_constant:
c906108c
SS
6191 case DW_TAG_variable:
6192 case DW_TAG_typedef:
91c24f0a 6193 case DW_TAG_union_type:
72bf9492 6194 if (!pdi->is_declaration)
63d06c5c 6195 {
72bf9492 6196 add_partial_symbol (pdi, cu);
63d06c5c
DC
6197 }
6198 break;
c906108c 6199 case DW_TAG_class_type:
680b30c7 6200 case DW_TAG_interface_type:
c906108c 6201 case DW_TAG_structure_type:
72bf9492 6202 if (!pdi->is_declaration)
c906108c 6203 {
72bf9492 6204 add_partial_symbol (pdi, cu);
c906108c
SS
6205 }
6206 break;
91c24f0a 6207 case DW_TAG_enumeration_type:
72bf9492
DJ
6208 if (!pdi->is_declaration)
6209 add_partial_enumeration (pdi, cu);
c906108c
SS
6210 break;
6211 case DW_TAG_base_type:
a02abb62 6212 case DW_TAG_subrange_type:
c906108c 6213 /* File scope base type definitions are added to the partial
c5aa993b 6214 symbol table. */
72bf9492 6215 add_partial_symbol (pdi, cu);
c906108c 6216 break;
d9fa45fe 6217 case DW_TAG_namespace:
5734ee8b 6218 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6219 break;
5d7cb8df
JK
6220 case DW_TAG_module:
6221 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6222 break;
95554aad
TT
6223 case DW_TAG_imported_unit:
6224 {
6225 struct dwarf2_per_cu_data *per_cu;
6226
f4dc4d17
DE
6227 /* For now we don't handle imported units in type units. */
6228 if (cu->per_cu->is_debug_types)
6229 {
6230 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6231 " supported in type units [in module %s]"),
6232 cu->objfile->name);
6233 }
6234
95554aad 6235 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6236 pdi->is_dwz,
95554aad
TT
6237 cu->objfile);
6238
6239 /* Go read the partial unit, if needed. */
6240 if (per_cu->v.psymtab == NULL)
6241 process_psymtab_comp_unit (per_cu, 1);
6242
f4dc4d17 6243 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6244 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6245 }
6246 break;
c906108c
SS
6247 default:
6248 break;
6249 }
6250 }
6251
72bf9492
DJ
6252 /* If the die has a sibling, skip to the sibling. */
6253
6254 pdi = pdi->die_sibling;
6255 }
6256}
6257
6258/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6259
72bf9492 6260 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6261 name is concatenated with "::" and the partial DIE's name. For
6262 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6263 Enumerators are an exception; they use the scope of their parent
6264 enumeration type, i.e. the name of the enumeration type is not
6265 prepended to the enumerator.
91c24f0a 6266
72bf9492
DJ
6267 There are two complexities. One is DW_AT_specification; in this
6268 case "parent" means the parent of the target of the specification,
6269 instead of the direct parent of the DIE. The other is compilers
6270 which do not emit DW_TAG_namespace; in this case we try to guess
6271 the fully qualified name of structure types from their members'
6272 linkage names. This must be done using the DIE's children rather
6273 than the children of any DW_AT_specification target. We only need
6274 to do this for structures at the top level, i.e. if the target of
6275 any DW_AT_specification (if any; otherwise the DIE itself) does not
6276 have a parent. */
6277
6278/* Compute the scope prefix associated with PDI's parent, in
6279 compilation unit CU. The result will be allocated on CU's
6280 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6281 field. NULL is returned if no prefix is necessary. */
15d034d0 6282static const char *
72bf9492
DJ
6283partial_die_parent_scope (struct partial_die_info *pdi,
6284 struct dwarf2_cu *cu)
6285{
15d034d0 6286 const char *grandparent_scope;
72bf9492 6287 struct partial_die_info *parent, *real_pdi;
91c24f0a 6288
72bf9492
DJ
6289 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6290 then this means the parent of the specification DIE. */
6291
6292 real_pdi = pdi;
72bf9492 6293 while (real_pdi->has_specification)
36586728
TT
6294 real_pdi = find_partial_die (real_pdi->spec_offset,
6295 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6296
6297 parent = real_pdi->die_parent;
6298 if (parent == NULL)
6299 return NULL;
6300
6301 if (parent->scope_set)
6302 return parent->scope;
6303
6304 fixup_partial_die (parent, cu);
6305
10b3939b 6306 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6307
acebe513
UW
6308 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6309 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6310 Work around this problem here. */
6311 if (cu->language == language_cplus
6e70227d 6312 && parent->tag == DW_TAG_namespace
acebe513
UW
6313 && strcmp (parent->name, "::") == 0
6314 && grandparent_scope == NULL)
6315 {
6316 parent->scope = NULL;
6317 parent->scope_set = 1;
6318 return NULL;
6319 }
6320
9c6c53f7
SA
6321 if (pdi->tag == DW_TAG_enumerator)
6322 /* Enumerators should not get the name of the enumeration as a prefix. */
6323 parent->scope = grandparent_scope;
6324 else if (parent->tag == DW_TAG_namespace
f55ee35c 6325 || parent->tag == DW_TAG_module
72bf9492
DJ
6326 || parent->tag == DW_TAG_structure_type
6327 || parent->tag == DW_TAG_class_type
680b30c7 6328 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6329 || parent->tag == DW_TAG_union_type
6330 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6331 {
6332 if (grandparent_scope == NULL)
6333 parent->scope = parent->name;
6334 else
3e43a32a
MS
6335 parent->scope = typename_concat (&cu->comp_unit_obstack,
6336 grandparent_scope,
f55ee35c 6337 parent->name, 0, cu);
72bf9492 6338 }
72bf9492
DJ
6339 else
6340 {
6341 /* FIXME drow/2004-04-01: What should we be doing with
6342 function-local names? For partial symbols, we should probably be
6343 ignoring them. */
6344 complaint (&symfile_complaints,
e2e0b3e5 6345 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6346 parent->tag, pdi->offset.sect_off);
72bf9492 6347 parent->scope = grandparent_scope;
c906108c
SS
6348 }
6349
72bf9492
DJ
6350 parent->scope_set = 1;
6351 return parent->scope;
6352}
6353
6354/* Return the fully scoped name associated with PDI, from compilation unit
6355 CU. The result will be allocated with malloc. */
4568ecf9 6356
72bf9492
DJ
6357static char *
6358partial_die_full_name (struct partial_die_info *pdi,
6359 struct dwarf2_cu *cu)
6360{
15d034d0 6361 const char *parent_scope;
72bf9492 6362
98bfdba5
PA
6363 /* If this is a template instantiation, we can not work out the
6364 template arguments from partial DIEs. So, unfortunately, we have
6365 to go through the full DIEs. At least any work we do building
6366 types here will be reused if full symbols are loaded later. */
6367 if (pdi->has_template_arguments)
6368 {
6369 fixup_partial_die (pdi, cu);
6370
6371 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6372 {
6373 struct die_info *die;
6374 struct attribute attr;
6375 struct dwarf2_cu *ref_cu = cu;
6376
b64f50a1 6377 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6378 attr.name = 0;
6379 attr.form = DW_FORM_ref_addr;
4568ecf9 6380 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6381 die = follow_die_ref (NULL, &attr, &ref_cu);
6382
6383 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6384 }
6385 }
6386
72bf9492
DJ
6387 parent_scope = partial_die_parent_scope (pdi, cu);
6388 if (parent_scope == NULL)
6389 return NULL;
6390 else
f55ee35c 6391 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6392}
6393
6394static void
72bf9492 6395add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6396{
e7c27a73 6397 struct objfile *objfile = cu->objfile;
c906108c 6398 CORE_ADDR addr = 0;
15d034d0 6399 const char *actual_name = NULL;
e142c38c 6400 CORE_ADDR baseaddr;
15d034d0 6401 char *built_actual_name;
e142c38c
DJ
6402
6403 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6404
15d034d0
TT
6405 built_actual_name = partial_die_full_name (pdi, cu);
6406 if (built_actual_name != NULL)
6407 actual_name = built_actual_name;
63d06c5c 6408
72bf9492
DJ
6409 if (actual_name == NULL)
6410 actual_name = pdi->name;
6411
c906108c
SS
6412 switch (pdi->tag)
6413 {
6414 case DW_TAG_subprogram:
2cfa0c8d 6415 if (pdi->is_external || cu->language == language_ada)
c906108c 6416 {
2cfa0c8d
JB
6417 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6418 of the global scope. But in Ada, we want to be able to access
6419 nested procedures globally. So all Ada subprograms are stored
6420 in the global scope. */
f47fb265 6421 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6422 mst_text, objfile); */
f47fb265 6423 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6424 built_actual_name != NULL,
f47fb265
MS
6425 VAR_DOMAIN, LOC_BLOCK,
6426 &objfile->global_psymbols,
6427 0, pdi->lowpc + baseaddr,
6428 cu->language, objfile);
c906108c
SS
6429 }
6430 else
6431 {
f47fb265 6432 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6433 mst_file_text, objfile); */
f47fb265 6434 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6435 built_actual_name != NULL,
f47fb265
MS
6436 VAR_DOMAIN, LOC_BLOCK,
6437 &objfile->static_psymbols,
6438 0, pdi->lowpc + baseaddr,
6439 cu->language, objfile);
c906108c
SS
6440 }
6441 break;
72929c62
JB
6442 case DW_TAG_constant:
6443 {
6444 struct psymbol_allocation_list *list;
6445
6446 if (pdi->is_external)
6447 list = &objfile->global_psymbols;
6448 else
6449 list = &objfile->static_psymbols;
f47fb265 6450 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6451 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6452 list, 0, 0, cu->language, objfile);
72929c62
JB
6453 }
6454 break;
c906108c 6455 case DW_TAG_variable:
95554aad
TT
6456 if (pdi->d.locdesc)
6457 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6458
95554aad 6459 if (pdi->d.locdesc
caac4577
JG
6460 && addr == 0
6461 && !dwarf2_per_objfile->has_section_at_zero)
6462 {
6463 /* A global or static variable may also have been stripped
6464 out by the linker if unused, in which case its address
6465 will be nullified; do not add such variables into partial
6466 symbol table then. */
6467 }
6468 else if (pdi->is_external)
c906108c
SS
6469 {
6470 /* Global Variable.
6471 Don't enter into the minimal symbol tables as there is
6472 a minimal symbol table entry from the ELF symbols already.
6473 Enter into partial symbol table if it has a location
6474 descriptor or a type.
6475 If the location descriptor is missing, new_symbol will create
6476 a LOC_UNRESOLVED symbol, the address of the variable will then
6477 be determined from the minimal symbol table whenever the variable
6478 is referenced.
6479 The address for the partial symbol table entry is not
6480 used by GDB, but it comes in handy for debugging partial symbol
6481 table building. */
6482
95554aad 6483 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6484 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6485 built_actual_name != NULL,
f47fb265
MS
6486 VAR_DOMAIN, LOC_STATIC,
6487 &objfile->global_psymbols,
6488 0, addr + baseaddr,
6489 cu->language, objfile);
c906108c
SS
6490 }
6491 else
6492 {
0963b4bd 6493 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6494 if (pdi->d.locdesc == NULL)
decbce07 6495 {
15d034d0 6496 xfree (built_actual_name);
decbce07
MS
6497 return;
6498 }
f47fb265 6499 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6500 mst_file_data, objfile); */
f47fb265 6501 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6502 built_actual_name != NULL,
f47fb265
MS
6503 VAR_DOMAIN, LOC_STATIC,
6504 &objfile->static_psymbols,
6505 0, addr + baseaddr,
6506 cu->language, objfile);
c906108c
SS
6507 }
6508 break;
6509 case DW_TAG_typedef:
6510 case DW_TAG_base_type:
a02abb62 6511 case DW_TAG_subrange_type:
38d518c9 6512 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6513 built_actual_name != NULL,
176620f1 6514 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6515 &objfile->static_psymbols,
e142c38c 6516 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6517 break;
72bf9492
DJ
6518 case DW_TAG_namespace:
6519 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6520 built_actual_name != NULL,
72bf9492
DJ
6521 VAR_DOMAIN, LOC_TYPEDEF,
6522 &objfile->global_psymbols,
6523 0, (CORE_ADDR) 0, cu->language, objfile);
6524 break;
c906108c 6525 case DW_TAG_class_type:
680b30c7 6526 case DW_TAG_interface_type:
c906108c
SS
6527 case DW_TAG_structure_type:
6528 case DW_TAG_union_type:
6529 case DW_TAG_enumeration_type:
fa4028e9
JB
6530 /* Skip external references. The DWARF standard says in the section
6531 about "Structure, Union, and Class Type Entries": "An incomplete
6532 structure, union or class type is represented by a structure,
6533 union or class entry that does not have a byte size attribute
6534 and that has a DW_AT_declaration attribute." */
6535 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6536 {
15d034d0 6537 xfree (built_actual_name);
decbce07
MS
6538 return;
6539 }
fa4028e9 6540
63d06c5c
DC
6541 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6542 static vs. global. */
38d518c9 6543 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6544 built_actual_name != NULL,
176620f1 6545 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6546 (cu->language == language_cplus
6547 || cu->language == language_java)
63d06c5c
DC
6548 ? &objfile->global_psymbols
6549 : &objfile->static_psymbols,
e142c38c 6550 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6551
c906108c
SS
6552 break;
6553 case DW_TAG_enumerator:
38d518c9 6554 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6555 built_actual_name != NULL,
176620f1 6556 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6557 (cu->language == language_cplus
6558 || cu->language == language_java)
f6fe98ef
DJ
6559 ? &objfile->global_psymbols
6560 : &objfile->static_psymbols,
e142c38c 6561 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6562 break;
6563 default:
6564 break;
6565 }
5c4e30ca 6566
15d034d0 6567 xfree (built_actual_name);
c906108c
SS
6568}
6569
5c4e30ca
DC
6570/* Read a partial die corresponding to a namespace; also, add a symbol
6571 corresponding to that namespace to the symbol table. NAMESPACE is
6572 the name of the enclosing namespace. */
91c24f0a 6573
72bf9492
DJ
6574static void
6575add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6576 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6577 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6578{
72bf9492 6579 /* Add a symbol for the namespace. */
e7c27a73 6580
72bf9492 6581 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6582
6583 /* Now scan partial symbols in that namespace. */
6584
91c24f0a 6585 if (pdi->has_children)
5734ee8b 6586 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6587}
6588
5d7cb8df
JK
6589/* Read a partial die corresponding to a Fortran module. */
6590
6591static void
6592add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6593 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6594{
f55ee35c 6595 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6596
6597 if (pdi->has_children)
6598 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6599}
6600
bc30ff58
JB
6601/* Read a partial die corresponding to a subprogram and create a partial
6602 symbol for that subprogram. When the CU language allows it, this
6603 routine also defines a partial symbol for each nested subprogram
6604 that this subprogram contains.
6e70227d 6605
bc30ff58
JB
6606 DIE my also be a lexical block, in which case we simply search
6607 recursively for suprograms defined inside that lexical block.
6608 Again, this is only performed when the CU language allows this
6609 type of definitions. */
6610
6611static void
6612add_partial_subprogram (struct partial_die_info *pdi,
6613 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6614 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6615{
6616 if (pdi->tag == DW_TAG_subprogram)
6617 {
6618 if (pdi->has_pc_info)
6619 {
6620 if (pdi->lowpc < *lowpc)
6621 *lowpc = pdi->lowpc;
6622 if (pdi->highpc > *highpc)
6623 *highpc = pdi->highpc;
5734ee8b
DJ
6624 if (need_pc)
6625 {
6626 CORE_ADDR baseaddr;
6627 struct objfile *objfile = cu->objfile;
6628
6629 baseaddr = ANOFFSET (objfile->section_offsets,
6630 SECT_OFF_TEXT (objfile));
6631 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6632 pdi->lowpc + baseaddr,
6633 pdi->highpc - 1 + baseaddr,
9291a0cd 6634 cu->per_cu->v.psymtab);
5734ee8b 6635 }
481860b3
GB
6636 }
6637
6638 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6639 {
bc30ff58 6640 if (!pdi->is_declaration)
e8d05480
JB
6641 /* Ignore subprogram DIEs that do not have a name, they are
6642 illegal. Do not emit a complaint at this point, we will
6643 do so when we convert this psymtab into a symtab. */
6644 if (pdi->name)
6645 add_partial_symbol (pdi, cu);
bc30ff58
JB
6646 }
6647 }
6e70227d 6648
bc30ff58
JB
6649 if (! pdi->has_children)
6650 return;
6651
6652 if (cu->language == language_ada)
6653 {
6654 pdi = pdi->die_child;
6655 while (pdi != NULL)
6656 {
6657 fixup_partial_die (pdi, cu);
6658 if (pdi->tag == DW_TAG_subprogram
6659 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6660 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6661 pdi = pdi->die_sibling;
6662 }
6663 }
6664}
6665
91c24f0a
DC
6666/* Read a partial die corresponding to an enumeration type. */
6667
72bf9492
DJ
6668static void
6669add_partial_enumeration (struct partial_die_info *enum_pdi,
6670 struct dwarf2_cu *cu)
91c24f0a 6671{
72bf9492 6672 struct partial_die_info *pdi;
91c24f0a
DC
6673
6674 if (enum_pdi->name != NULL)
72bf9492
DJ
6675 add_partial_symbol (enum_pdi, cu);
6676
6677 pdi = enum_pdi->die_child;
6678 while (pdi)
91c24f0a 6679 {
72bf9492 6680 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6681 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6682 else
72bf9492
DJ
6683 add_partial_symbol (pdi, cu);
6684 pdi = pdi->die_sibling;
91c24f0a 6685 }
91c24f0a
DC
6686}
6687
6caca83c
CC
6688/* Return the initial uleb128 in the die at INFO_PTR. */
6689
6690static unsigned int
d521ce57 6691peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6692{
6693 unsigned int bytes_read;
6694
6695 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6696}
6697
4bb7a0a7
DJ
6698/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6699 Return the corresponding abbrev, or NULL if the number is zero (indicating
6700 an empty DIE). In either case *BYTES_READ will be set to the length of
6701 the initial number. */
6702
6703static struct abbrev_info *
d521ce57 6704peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6705 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6706{
6707 bfd *abfd = cu->objfile->obfd;
6708 unsigned int abbrev_number;
6709 struct abbrev_info *abbrev;
6710
6711 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6712
6713 if (abbrev_number == 0)
6714 return NULL;
6715
433df2d4 6716 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6717 if (!abbrev)
6718 {
3e43a32a
MS
6719 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6720 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6721 }
6722
6723 return abbrev;
6724}
6725
93311388
DE
6726/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6727 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6728 DIE. Any children of the skipped DIEs will also be skipped. */
6729
d521ce57
TT
6730static const gdb_byte *
6731skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 6732{
dee91e82 6733 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6734 struct abbrev_info *abbrev;
6735 unsigned int bytes_read;
6736
6737 while (1)
6738 {
6739 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6740 if (abbrev == NULL)
6741 return info_ptr + bytes_read;
6742 else
dee91e82 6743 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6744 }
6745}
6746
93311388
DE
6747/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6748 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6749 abbrev corresponding to that skipped uleb128 should be passed in
6750 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6751 children. */
6752
d521ce57
TT
6753static const gdb_byte *
6754skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 6755 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6756{
6757 unsigned int bytes_read;
6758 struct attribute attr;
dee91e82
DE
6759 bfd *abfd = reader->abfd;
6760 struct dwarf2_cu *cu = reader->cu;
d521ce57 6761 const gdb_byte *buffer = reader->buffer;
f664829e 6762 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 6763 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6764 unsigned int form, i;
6765
6766 for (i = 0; i < abbrev->num_attrs; i++)
6767 {
6768 /* The only abbrev we care about is DW_AT_sibling. */
6769 if (abbrev->attrs[i].name == DW_AT_sibling)
6770 {
dee91e82 6771 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6772 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6773 complaint (&symfile_complaints,
6774 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6775 else
b64f50a1 6776 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6777 }
6778
6779 /* If it isn't DW_AT_sibling, skip this attribute. */
6780 form = abbrev->attrs[i].form;
6781 skip_attribute:
6782 switch (form)
6783 {
4bb7a0a7 6784 case DW_FORM_ref_addr:
ae411497
TT
6785 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6786 and later it is offset sized. */
6787 if (cu->header.version == 2)
6788 info_ptr += cu->header.addr_size;
6789 else
6790 info_ptr += cu->header.offset_size;
6791 break;
36586728
TT
6792 case DW_FORM_GNU_ref_alt:
6793 info_ptr += cu->header.offset_size;
6794 break;
ae411497 6795 case DW_FORM_addr:
4bb7a0a7
DJ
6796 info_ptr += cu->header.addr_size;
6797 break;
6798 case DW_FORM_data1:
6799 case DW_FORM_ref1:
6800 case DW_FORM_flag:
6801 info_ptr += 1;
6802 break;
2dc7f7b3
TT
6803 case DW_FORM_flag_present:
6804 break;
4bb7a0a7
DJ
6805 case DW_FORM_data2:
6806 case DW_FORM_ref2:
6807 info_ptr += 2;
6808 break;
6809 case DW_FORM_data4:
6810 case DW_FORM_ref4:
6811 info_ptr += 4;
6812 break;
6813 case DW_FORM_data8:
6814 case DW_FORM_ref8:
55f1336d 6815 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6816 info_ptr += 8;
6817 break;
6818 case DW_FORM_string:
9b1c24c8 6819 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6820 info_ptr += bytes_read;
6821 break;
2dc7f7b3 6822 case DW_FORM_sec_offset:
4bb7a0a7 6823 case DW_FORM_strp:
36586728 6824 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6825 info_ptr += cu->header.offset_size;
6826 break;
2dc7f7b3 6827 case DW_FORM_exprloc:
4bb7a0a7
DJ
6828 case DW_FORM_block:
6829 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6830 info_ptr += bytes_read;
6831 break;
6832 case DW_FORM_block1:
6833 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6834 break;
6835 case DW_FORM_block2:
6836 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6837 break;
6838 case DW_FORM_block4:
6839 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6840 break;
6841 case DW_FORM_sdata:
6842 case DW_FORM_udata:
6843 case DW_FORM_ref_udata:
3019eac3
DE
6844 case DW_FORM_GNU_addr_index:
6845 case DW_FORM_GNU_str_index:
d521ce57 6846 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6847 break;
6848 case DW_FORM_indirect:
6849 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6850 info_ptr += bytes_read;
6851 /* We need to continue parsing from here, so just go back to
6852 the top. */
6853 goto skip_attribute;
6854
6855 default:
3e43a32a
MS
6856 error (_("Dwarf Error: Cannot handle %s "
6857 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6858 dwarf_form_name (form),
6859 bfd_get_filename (abfd));
6860 }
6861 }
6862
6863 if (abbrev->has_children)
dee91e82 6864 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6865 else
6866 return info_ptr;
6867}
6868
93311388 6869/* Locate ORIG_PDI's sibling.
dee91e82 6870 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6871
d521ce57 6872static const gdb_byte *
dee91e82
DE
6873locate_pdi_sibling (const struct die_reader_specs *reader,
6874 struct partial_die_info *orig_pdi,
d521ce57 6875 const gdb_byte *info_ptr)
91c24f0a
DC
6876{
6877 /* Do we know the sibling already? */
72bf9492 6878
91c24f0a
DC
6879 if (orig_pdi->sibling)
6880 return orig_pdi->sibling;
6881
6882 /* Are there any children to deal with? */
6883
6884 if (!orig_pdi->has_children)
6885 return info_ptr;
6886
4bb7a0a7 6887 /* Skip the children the long way. */
91c24f0a 6888
dee91e82 6889 return skip_children (reader, info_ptr);
91c24f0a
DC
6890}
6891
257e7a09 6892/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 6893 not NULL. */
c906108c
SS
6894
6895static void
257e7a09
YQ
6896dwarf2_read_symtab (struct partial_symtab *self,
6897 struct objfile *objfile)
c906108c 6898{
257e7a09 6899 if (self->readin)
c906108c 6900 {
442e4d9c 6901 warning (_("bug: psymtab for %s is already read in."),
257e7a09 6902 self->filename);
442e4d9c
YQ
6903 }
6904 else
6905 {
6906 if (info_verbose)
c906108c 6907 {
442e4d9c 6908 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 6909 self->filename);
442e4d9c 6910 gdb_flush (gdb_stdout);
c906108c 6911 }
c906108c 6912
442e4d9c
YQ
6913 /* Restore our global data. */
6914 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 6915
442e4d9c
YQ
6916 /* If this psymtab is constructed from a debug-only objfile, the
6917 has_section_at_zero flag will not necessarily be correct. We
6918 can get the correct value for this flag by looking at the data
6919 associated with the (presumably stripped) associated objfile. */
6920 if (objfile->separate_debug_objfile_backlink)
6921 {
6922 struct dwarf2_per_objfile *dpo_backlink
6923 = objfile_data (objfile->separate_debug_objfile_backlink,
6924 dwarf2_objfile_data_key);
9a619af0 6925
442e4d9c
YQ
6926 dwarf2_per_objfile->has_section_at_zero
6927 = dpo_backlink->has_section_at_zero;
6928 }
b2ab525c 6929
442e4d9c 6930 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 6931
257e7a09 6932 psymtab_to_symtab_1 (self);
c906108c 6933
442e4d9c
YQ
6934 /* Finish up the debug error message. */
6935 if (info_verbose)
6936 printf_filtered (_("done.\n"));
c906108c 6937 }
95554aad
TT
6938
6939 process_cu_includes ();
c906108c 6940}
9cdd5dbd
DE
6941\f
6942/* Reading in full CUs. */
c906108c 6943
10b3939b
DJ
6944/* Add PER_CU to the queue. */
6945
6946static void
95554aad
TT
6947queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6948 enum language pretend_language)
10b3939b
DJ
6949{
6950 struct dwarf2_queue_item *item;
6951
6952 per_cu->queued = 1;
6953 item = xmalloc (sizeof (*item));
6954 item->per_cu = per_cu;
95554aad 6955 item->pretend_language = pretend_language;
10b3939b
DJ
6956 item->next = NULL;
6957
6958 if (dwarf2_queue == NULL)
6959 dwarf2_queue = item;
6960 else
6961 dwarf2_queue_tail->next = item;
6962
6963 dwarf2_queue_tail = item;
6964}
6965
0907af0c
DE
6966/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6967 unit and add it to our queue.
6968 The result is non-zero if PER_CU was queued, otherwise the result is zero
6969 meaning either PER_CU is already queued or it is already loaded. */
6970
6971static int
6972maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6973 struct dwarf2_per_cu_data *per_cu,
6974 enum language pretend_language)
6975{
6976 /* We may arrive here during partial symbol reading, if we need full
6977 DIEs to process an unusual case (e.g. template arguments). Do
6978 not queue PER_CU, just tell our caller to load its DIEs. */
6979 if (dwarf2_per_objfile->reading_partial_symbols)
6980 {
6981 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6982 return 1;
6983 return 0;
6984 }
6985
6986 /* Mark the dependence relation so that we don't flush PER_CU
6987 too early. */
6988 dwarf2_add_dependence (this_cu, per_cu);
6989
6990 /* If it's already on the queue, we have nothing to do. */
6991 if (per_cu->queued)
6992 return 0;
6993
6994 /* If the compilation unit is already loaded, just mark it as
6995 used. */
6996 if (per_cu->cu != NULL)
6997 {
6998 per_cu->cu->last_used = 0;
6999 return 0;
7000 }
7001
7002 /* Add it to the queue. */
7003 queue_comp_unit (per_cu, pretend_language);
7004
7005 return 1;
7006}
7007
10b3939b
DJ
7008/* Process the queue. */
7009
7010static void
a0f42c21 7011process_queue (void)
10b3939b
DJ
7012{
7013 struct dwarf2_queue_item *item, *next_item;
7014
45cfd468
DE
7015 if (dwarf2_read_debug)
7016 {
7017 fprintf_unfiltered (gdb_stdlog,
7018 "Expanding one or more symtabs of objfile %s ...\n",
7019 dwarf2_per_objfile->objfile->name);
7020 }
7021
03dd20cc
DJ
7022 /* The queue starts out with one item, but following a DIE reference
7023 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7024 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7025 {
9291a0cd
TT
7026 if (dwarf2_per_objfile->using_index
7027 ? !item->per_cu->v.quick->symtab
7028 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7029 {
7030 struct dwarf2_per_cu_data *per_cu = item->per_cu;
247f5c4f 7031 char buf[100];
f4dc4d17 7032
247f5c4f 7033 if (per_cu->is_debug_types)
f4dc4d17 7034 {
247f5c4f
DE
7035 struct signatured_type *sig_type =
7036 (struct signatured_type *) per_cu;
7037
7038 sprintf (buf, "TU %s at offset 0x%x",
7039 hex_string (sig_type->signature), per_cu->offset.sect_off);
f4dc4d17 7040 }
247f5c4f
DE
7041 else
7042 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7043
7044 if (dwarf2_read_debug)
7045 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7046
7047 if (per_cu->is_debug_types)
7048 process_full_type_unit (per_cu, item->pretend_language);
7049 else
7050 process_full_comp_unit (per_cu, item->pretend_language);
7051
7052 if (dwarf2_read_debug)
247f5c4f 7053 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7054 }
10b3939b
DJ
7055
7056 item->per_cu->queued = 0;
7057 next_item = item->next;
7058 xfree (item);
7059 }
7060
7061 dwarf2_queue_tail = NULL;
45cfd468
DE
7062
7063 if (dwarf2_read_debug)
7064 {
7065 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7066 dwarf2_per_objfile->objfile->name);
7067 }
10b3939b
DJ
7068}
7069
7070/* Free all allocated queue entries. This function only releases anything if
7071 an error was thrown; if the queue was processed then it would have been
7072 freed as we went along. */
7073
7074static void
7075dwarf2_release_queue (void *dummy)
7076{
7077 struct dwarf2_queue_item *item, *last;
7078
7079 item = dwarf2_queue;
7080 while (item)
7081 {
7082 /* Anything still marked queued is likely to be in an
7083 inconsistent state, so discard it. */
7084 if (item->per_cu->queued)
7085 {
7086 if (item->per_cu->cu != NULL)
dee91e82 7087 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7088 item->per_cu->queued = 0;
7089 }
7090
7091 last = item;
7092 item = item->next;
7093 xfree (last);
7094 }
7095
7096 dwarf2_queue = dwarf2_queue_tail = NULL;
7097}
7098
7099/* Read in full symbols for PST, and anything it depends on. */
7100
c906108c 7101static void
fba45db2 7102psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7103{
10b3939b 7104 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7105 int i;
7106
95554aad
TT
7107 if (pst->readin)
7108 return;
7109
aaa75496 7110 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7111 if (!pst->dependencies[i]->readin
7112 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7113 {
7114 /* Inform about additional files that need to be read in. */
7115 if (info_verbose)
7116 {
a3f17187 7117 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7118 fputs_filtered (" ", gdb_stdout);
7119 wrap_here ("");
7120 fputs_filtered ("and ", gdb_stdout);
7121 wrap_here ("");
7122 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7123 wrap_here (""); /* Flush output. */
aaa75496
JB
7124 gdb_flush (gdb_stdout);
7125 }
7126 psymtab_to_symtab_1 (pst->dependencies[i]);
7127 }
7128
e38df1d0 7129 per_cu = pst->read_symtab_private;
10b3939b
DJ
7130
7131 if (per_cu == NULL)
aaa75496
JB
7132 {
7133 /* It's an include file, no symbols to read for it.
7134 Everything is in the parent symtab. */
7135 pst->readin = 1;
7136 return;
7137 }
c906108c 7138
a0f42c21 7139 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7140}
7141
dee91e82
DE
7142/* Trivial hash function for die_info: the hash value of a DIE
7143 is its offset in .debug_info for this objfile. */
10b3939b 7144
dee91e82
DE
7145static hashval_t
7146die_hash (const void *item)
10b3939b 7147{
dee91e82 7148 const struct die_info *die = item;
6502dd73 7149
dee91e82
DE
7150 return die->offset.sect_off;
7151}
63d06c5c 7152
dee91e82
DE
7153/* Trivial comparison function for die_info structures: two DIEs
7154 are equal if they have the same offset. */
98bfdba5 7155
dee91e82
DE
7156static int
7157die_eq (const void *item_lhs, const void *item_rhs)
7158{
7159 const struct die_info *die_lhs = item_lhs;
7160 const struct die_info *die_rhs = item_rhs;
c906108c 7161
dee91e82
DE
7162 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7163}
c906108c 7164
dee91e82
DE
7165/* die_reader_func for load_full_comp_unit.
7166 This is identical to read_signatured_type_reader,
7167 but is kept separate for now. */
c906108c 7168
dee91e82
DE
7169static void
7170load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7171 const gdb_byte *info_ptr,
dee91e82
DE
7172 struct die_info *comp_unit_die,
7173 int has_children,
7174 void *data)
7175{
7176 struct dwarf2_cu *cu = reader->cu;
95554aad 7177 enum language *language_ptr = data;
6caca83c 7178
dee91e82
DE
7179 gdb_assert (cu->die_hash == NULL);
7180 cu->die_hash =
7181 htab_create_alloc_ex (cu->header.length / 12,
7182 die_hash,
7183 die_eq,
7184 NULL,
7185 &cu->comp_unit_obstack,
7186 hashtab_obstack_allocate,
7187 dummy_obstack_deallocate);
e142c38c 7188
dee91e82
DE
7189 if (has_children)
7190 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7191 &info_ptr, comp_unit_die);
7192 cu->dies = comp_unit_die;
7193 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7194
7195 /* We try not to read any attributes in this function, because not
9cdd5dbd 7196 all CUs needed for references have been loaded yet, and symbol
10b3939b 7197 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7198 or we won't be able to build types correctly.
7199 Similarly, if we do not read the producer, we can not apply
7200 producer-specific interpretation. */
95554aad 7201 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7202}
10b3939b 7203
dee91e82 7204/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7205
dee91e82 7206static void
95554aad
TT
7207load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7208 enum language pretend_language)
dee91e82 7209{
3019eac3 7210 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7211
f4dc4d17
DE
7212 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7213 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7214}
7215
3da10d80
KS
7216/* Add a DIE to the delayed physname list. */
7217
7218static void
7219add_to_method_list (struct type *type, int fnfield_index, int index,
7220 const char *name, struct die_info *die,
7221 struct dwarf2_cu *cu)
7222{
7223 struct delayed_method_info mi;
7224 mi.type = type;
7225 mi.fnfield_index = fnfield_index;
7226 mi.index = index;
7227 mi.name = name;
7228 mi.die = die;
7229 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7230}
7231
7232/* A cleanup for freeing the delayed method list. */
7233
7234static void
7235free_delayed_list (void *ptr)
7236{
7237 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7238 if (cu->method_list != NULL)
7239 {
7240 VEC_free (delayed_method_info, cu->method_list);
7241 cu->method_list = NULL;
7242 }
7243}
7244
7245/* Compute the physnames of any methods on the CU's method list.
7246
7247 The computation of method physnames is delayed in order to avoid the
7248 (bad) condition that one of the method's formal parameters is of an as yet
7249 incomplete type. */
7250
7251static void
7252compute_delayed_physnames (struct dwarf2_cu *cu)
7253{
7254 int i;
7255 struct delayed_method_info *mi;
7256 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7257 {
1d06ead6 7258 const char *physname;
3da10d80
KS
7259 struct fn_fieldlist *fn_flp
7260 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7261 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7262 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7263 }
7264}
7265
a766d390
DE
7266/* Go objects should be embedded in a DW_TAG_module DIE,
7267 and it's not clear if/how imported objects will appear.
7268 To keep Go support simple until that's worked out,
7269 go back through what we've read and create something usable.
7270 We could do this while processing each DIE, and feels kinda cleaner,
7271 but that way is more invasive.
7272 This is to, for example, allow the user to type "p var" or "b main"
7273 without having to specify the package name, and allow lookups
7274 of module.object to work in contexts that use the expression
7275 parser. */
7276
7277static void
7278fixup_go_packaging (struct dwarf2_cu *cu)
7279{
7280 char *package_name = NULL;
7281 struct pending *list;
7282 int i;
7283
7284 for (list = global_symbols; list != NULL; list = list->next)
7285 {
7286 for (i = 0; i < list->nsyms; ++i)
7287 {
7288 struct symbol *sym = list->symbol[i];
7289
7290 if (SYMBOL_LANGUAGE (sym) == language_go
7291 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7292 {
7293 char *this_package_name = go_symbol_package_name (sym);
7294
7295 if (this_package_name == NULL)
7296 continue;
7297 if (package_name == NULL)
7298 package_name = this_package_name;
7299 else
7300 {
7301 if (strcmp (package_name, this_package_name) != 0)
7302 complaint (&symfile_complaints,
7303 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7304 (SYMBOL_SYMTAB (sym)
05cba821 7305 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
a766d390
DE
7306 : cu->objfile->name),
7307 this_package_name, package_name);
7308 xfree (this_package_name);
7309 }
7310 }
7311 }
7312 }
7313
7314 if (package_name != NULL)
7315 {
7316 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7317 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7318 package_name,
7319 strlen (package_name));
a766d390 7320 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7321 saved_package_name, objfile);
a766d390
DE
7322 struct symbol *sym;
7323
7324 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7325
e623cf5d 7326 sym = allocate_symbol (objfile);
f85f34ed 7327 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7328 SYMBOL_SET_NAMES (sym, saved_package_name,
7329 strlen (saved_package_name), 0, objfile);
a766d390
DE
7330 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7331 e.g., "main" finds the "main" module and not C's main(). */
7332 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7333 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7334 SYMBOL_TYPE (sym) = type;
7335
7336 add_symbol_to_list (sym, &global_symbols);
7337
7338 xfree (package_name);
7339 }
7340}
7341
95554aad
TT
7342/* Return the symtab for PER_CU. This works properly regardless of
7343 whether we're using the index or psymtabs. */
7344
7345static struct symtab *
7346get_symtab (struct dwarf2_per_cu_data *per_cu)
7347{
7348 return (dwarf2_per_objfile->using_index
7349 ? per_cu->v.quick->symtab
7350 : per_cu->v.psymtab->symtab);
7351}
7352
7353/* A helper function for computing the list of all symbol tables
7354 included by PER_CU. */
7355
7356static void
7357recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7358 htab_t all_children,
7359 struct dwarf2_per_cu_data *per_cu)
7360{
7361 void **slot;
7362 int ix;
7363 struct dwarf2_per_cu_data *iter;
7364
7365 slot = htab_find_slot (all_children, per_cu, INSERT);
7366 if (*slot != NULL)
7367 {
7368 /* This inclusion and its children have been processed. */
7369 return;
7370 }
7371
7372 *slot = per_cu;
7373 /* Only add a CU if it has a symbol table. */
7374 if (get_symtab (per_cu) != NULL)
7375 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7376
7377 for (ix = 0;
796a7ff8 7378 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad
TT
7379 ++ix)
7380 recursively_compute_inclusions (result, all_children, iter);
7381}
7382
7383/* Compute the symtab 'includes' fields for the symtab related to
7384 PER_CU. */
7385
7386static void
7387compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7388{
f4dc4d17
DE
7389 gdb_assert (! per_cu->is_debug_types);
7390
796a7ff8 7391 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7392 {
7393 int ix, len;
7394 struct dwarf2_per_cu_data *iter;
7395 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7396 htab_t all_children;
7397 struct symtab *symtab = get_symtab (per_cu);
7398
7399 /* If we don't have a symtab, we can just skip this case. */
7400 if (symtab == NULL)
7401 return;
7402
7403 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7404 NULL, xcalloc, xfree);
7405
7406 for (ix = 0;
796a7ff8 7407 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
95554aad
TT
7408 ix, iter);
7409 ++ix)
7410 recursively_compute_inclusions (&result_children, all_children, iter);
7411
796a7ff8
DE
7412 /* Now we have a transitive closure of all the included CUs, and
7413 for .gdb_index version 7 the included TUs, so we can convert it
7414 to a list of symtabs. */
95554aad
TT
7415 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7416 symtab->includes
7417 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7418 (len + 1) * sizeof (struct symtab *));
7419 for (ix = 0;
7420 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7421 ++ix)
7422 symtab->includes[ix] = get_symtab (iter);
7423 symtab->includes[len] = NULL;
7424
7425 VEC_free (dwarf2_per_cu_ptr, result_children);
7426 htab_delete (all_children);
7427 }
7428}
7429
7430/* Compute the 'includes' field for the symtabs of all the CUs we just
7431 read. */
7432
7433static void
7434process_cu_includes (void)
7435{
7436 int ix;
7437 struct dwarf2_per_cu_data *iter;
7438
7439 for (ix = 0;
7440 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7441 ix, iter);
7442 ++ix)
f4dc4d17
DE
7443 {
7444 if (! iter->is_debug_types)
7445 compute_symtab_includes (iter);
7446 }
95554aad
TT
7447
7448 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7449}
7450
9cdd5dbd 7451/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7452 already been loaded into memory. */
7453
7454static void
95554aad
TT
7455process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7456 enum language pretend_language)
10b3939b 7457{
10b3939b 7458 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7459 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7460 CORE_ADDR lowpc, highpc;
7461 struct symtab *symtab;
3da10d80 7462 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7463 CORE_ADDR baseaddr;
4359dff1 7464 struct block *static_block;
10b3939b
DJ
7465
7466 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7467
10b3939b
DJ
7468 buildsym_init ();
7469 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7470 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7471
7472 cu->list_in_scope = &file_symbols;
c906108c 7473
95554aad
TT
7474 cu->language = pretend_language;
7475 cu->language_defn = language_def (cu->language);
7476
c906108c 7477 /* Do line number decoding in read_file_scope () */
10b3939b 7478 process_die (cu->dies, cu);
c906108c 7479
a766d390
DE
7480 /* For now fudge the Go package. */
7481 if (cu->language == language_go)
7482 fixup_go_packaging (cu);
7483
3da10d80
KS
7484 /* Now that we have processed all the DIEs in the CU, all the types
7485 should be complete, and it should now be safe to compute all of the
7486 physnames. */
7487 compute_delayed_physnames (cu);
7488 do_cleanups (delayed_list_cleanup);
7489
fae299cd
DC
7490 /* Some compilers don't define a DW_AT_high_pc attribute for the
7491 compilation unit. If the DW_AT_high_pc is missing, synthesize
7492 it, by scanning the DIE's below the compilation unit. */
10b3939b 7493 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7494
36586728 7495 static_block
ff546935 7496 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7497
7498 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7499 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7500 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7501 addrmap to help ensure it has an accurate map of pc values belonging to
7502 this comp unit. */
7503 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7504
7505 symtab = end_symtab_from_static_block (static_block, objfile,
7506 SECT_OFF_TEXT (objfile), 0);
c906108c 7507
8be455d7 7508 if (symtab != NULL)
c906108c 7509 {
df15bd07 7510 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7511
8be455d7
JK
7512 /* Set symtab language to language from DW_AT_language. If the
7513 compilation is from a C file generated by language preprocessors, do
7514 not set the language if it was already deduced by start_subfile. */
7515 if (!(cu->language == language_c && symtab->language != language_c))
7516 symtab->language = cu->language;
7517
7518 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7519 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7520 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7521 there were bugs in prologue debug info, fixed later in GCC-4.5
7522 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7523
7524 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7525 needed, it would be wrong due to missing DW_AT_producer there.
7526
7527 Still one can confuse GDB by using non-standard GCC compilation
7528 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7529 */
ab260dad 7530 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7531 symtab->locations_valid = 1;
e0d00bc7
JK
7532
7533 if (gcc_4_minor >= 5)
7534 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7535
7536 symtab->call_site_htab = cu->call_site_htab;
c906108c 7537 }
9291a0cd
TT
7538
7539 if (dwarf2_per_objfile->using_index)
7540 per_cu->v.quick->symtab = symtab;
7541 else
7542 {
7543 struct partial_symtab *pst = per_cu->v.psymtab;
7544 pst->symtab = symtab;
7545 pst->readin = 1;
7546 }
c906108c 7547
95554aad
TT
7548 /* Push it for inclusion processing later. */
7549 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7550
c906108c 7551 do_cleanups (back_to);
f4dc4d17 7552}
45cfd468 7553
f4dc4d17
DE
7554/* Generate full symbol information for type unit PER_CU, whose DIEs have
7555 already been loaded into memory. */
7556
7557static void
7558process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7559 enum language pretend_language)
7560{
7561 struct dwarf2_cu *cu = per_cu->cu;
7562 struct objfile *objfile = per_cu->objfile;
7563 struct symtab *symtab;
7564 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7565 struct signatured_type *sig_type;
7566
7567 gdb_assert (per_cu->is_debug_types);
7568 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7569
7570 buildsym_init ();
7571 back_to = make_cleanup (really_free_pendings, NULL);
7572 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7573
7574 cu->list_in_scope = &file_symbols;
7575
7576 cu->language = pretend_language;
7577 cu->language_defn = language_def (cu->language);
7578
7579 /* The symbol tables are set up in read_type_unit_scope. */
7580 process_die (cu->dies, cu);
7581
7582 /* For now fudge the Go package. */
7583 if (cu->language == language_go)
7584 fixup_go_packaging (cu);
7585
7586 /* Now that we have processed all the DIEs in the CU, all the types
7587 should be complete, and it should now be safe to compute all of the
7588 physnames. */
7589 compute_delayed_physnames (cu);
7590 do_cleanups (delayed_list_cleanup);
7591
7592 /* TUs share symbol tables.
7593 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7594 of it with end_expandable_symtab. Otherwise, complete the addition of
7595 this TU's symbols to the existing symtab. */
0186c6a7 7596 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7597 {
f4dc4d17 7598 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7599 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7600
7601 if (symtab != NULL)
7602 {
7603 /* Set symtab language to language from DW_AT_language. If the
7604 compilation is from a C file generated by language preprocessors,
7605 do not set the language if it was already deduced by
7606 start_subfile. */
7607 if (!(cu->language == language_c && symtab->language != language_c))
7608 symtab->language = cu->language;
7609 }
7610 }
7611 else
7612 {
7613 augment_type_symtab (objfile,
0186c6a7
DE
7614 sig_type->type_unit_group->primary_symtab);
7615 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7616 }
7617
7618 if (dwarf2_per_objfile->using_index)
7619 per_cu->v.quick->symtab = symtab;
7620 else
7621 {
7622 struct partial_symtab *pst = per_cu->v.psymtab;
7623 pst->symtab = symtab;
7624 pst->readin = 1;
45cfd468 7625 }
f4dc4d17
DE
7626
7627 do_cleanups (back_to);
c906108c
SS
7628}
7629
95554aad
TT
7630/* Process an imported unit DIE. */
7631
7632static void
7633process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7634{
7635 struct attribute *attr;
7636
f4dc4d17
DE
7637 /* For now we don't handle imported units in type units. */
7638 if (cu->per_cu->is_debug_types)
7639 {
7640 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7641 " supported in type units [in module %s]"),
7642 cu->objfile->name);
7643 }
7644
95554aad
TT
7645 attr = dwarf2_attr (die, DW_AT_import, cu);
7646 if (attr != NULL)
7647 {
7648 struct dwarf2_per_cu_data *per_cu;
7649 struct symtab *imported_symtab;
7650 sect_offset offset;
36586728 7651 int is_dwz;
95554aad
TT
7652
7653 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7654 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7655 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7656
7657 /* Queue the unit, if needed. */
7658 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7659 load_full_comp_unit (per_cu, cu->language);
7660
796a7ff8 7661 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7662 per_cu);
7663 }
7664}
7665
c906108c
SS
7666/* Process a die and its children. */
7667
7668static void
e7c27a73 7669process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7670{
7671 switch (die->tag)
7672 {
7673 case DW_TAG_padding:
7674 break;
7675 case DW_TAG_compile_unit:
95554aad 7676 case DW_TAG_partial_unit:
e7c27a73 7677 read_file_scope (die, cu);
c906108c 7678 break;
348e048f
DE
7679 case DW_TAG_type_unit:
7680 read_type_unit_scope (die, cu);
7681 break;
c906108c 7682 case DW_TAG_subprogram:
c906108c 7683 case DW_TAG_inlined_subroutine:
edb3359d 7684 read_func_scope (die, cu);
c906108c
SS
7685 break;
7686 case DW_TAG_lexical_block:
14898363
L
7687 case DW_TAG_try_block:
7688 case DW_TAG_catch_block:
e7c27a73 7689 read_lexical_block_scope (die, cu);
c906108c 7690 break;
96408a79
SA
7691 case DW_TAG_GNU_call_site:
7692 read_call_site_scope (die, cu);
7693 break;
c906108c 7694 case DW_TAG_class_type:
680b30c7 7695 case DW_TAG_interface_type:
c906108c
SS
7696 case DW_TAG_structure_type:
7697 case DW_TAG_union_type:
134d01f1 7698 process_structure_scope (die, cu);
c906108c
SS
7699 break;
7700 case DW_TAG_enumeration_type:
134d01f1 7701 process_enumeration_scope (die, cu);
c906108c 7702 break;
134d01f1 7703
f792889a
DJ
7704 /* These dies have a type, but processing them does not create
7705 a symbol or recurse to process the children. Therefore we can
7706 read them on-demand through read_type_die. */
c906108c 7707 case DW_TAG_subroutine_type:
72019c9c 7708 case DW_TAG_set_type:
c906108c 7709 case DW_TAG_array_type:
c906108c 7710 case DW_TAG_pointer_type:
c906108c 7711 case DW_TAG_ptr_to_member_type:
c906108c 7712 case DW_TAG_reference_type:
c906108c 7713 case DW_TAG_string_type:
c906108c 7714 break;
134d01f1 7715
c906108c 7716 case DW_TAG_base_type:
a02abb62 7717 case DW_TAG_subrange_type:
cb249c71 7718 case DW_TAG_typedef:
134d01f1
DJ
7719 /* Add a typedef symbol for the type definition, if it has a
7720 DW_AT_name. */
f792889a 7721 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7722 break;
c906108c 7723 case DW_TAG_common_block:
e7c27a73 7724 read_common_block (die, cu);
c906108c
SS
7725 break;
7726 case DW_TAG_common_inclusion:
7727 break;
d9fa45fe 7728 case DW_TAG_namespace:
4d4ec4e5 7729 cu->processing_has_namespace_info = 1;
e7c27a73 7730 read_namespace (die, cu);
d9fa45fe 7731 break;
5d7cb8df 7732 case DW_TAG_module:
4d4ec4e5 7733 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
7734 read_module (die, cu);
7735 break;
d9fa45fe
DC
7736 case DW_TAG_imported_declaration:
7737 case DW_TAG_imported_module:
4d4ec4e5 7738 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
7739 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7740 || cu->language != language_fortran))
7741 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7742 dwarf_tag_name (die->tag));
7743 read_import_statement (die, cu);
d9fa45fe 7744 break;
95554aad
TT
7745
7746 case DW_TAG_imported_unit:
7747 process_imported_unit_die (die, cu);
7748 break;
7749
c906108c 7750 default:
e7c27a73 7751 new_symbol (die, NULL, cu);
c906108c
SS
7752 break;
7753 }
7754}
ca69b9e6
DE
7755\f
7756/* DWARF name computation. */
c906108c 7757
94af9270
KS
7758/* A helper function for dwarf2_compute_name which determines whether DIE
7759 needs to have the name of the scope prepended to the name listed in the
7760 die. */
7761
7762static int
7763die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7764{
1c809c68
TT
7765 struct attribute *attr;
7766
94af9270
KS
7767 switch (die->tag)
7768 {
7769 case DW_TAG_namespace:
7770 case DW_TAG_typedef:
7771 case DW_TAG_class_type:
7772 case DW_TAG_interface_type:
7773 case DW_TAG_structure_type:
7774 case DW_TAG_union_type:
7775 case DW_TAG_enumeration_type:
7776 case DW_TAG_enumerator:
7777 case DW_TAG_subprogram:
7778 case DW_TAG_member:
7779 return 1;
7780
7781 case DW_TAG_variable:
c2b0a229 7782 case DW_TAG_constant:
94af9270
KS
7783 /* We only need to prefix "globally" visible variables. These include
7784 any variable marked with DW_AT_external or any variable that
7785 lives in a namespace. [Variables in anonymous namespaces
7786 require prefixing, but they are not DW_AT_external.] */
7787
7788 if (dwarf2_attr (die, DW_AT_specification, cu))
7789 {
7790 struct dwarf2_cu *spec_cu = cu;
9a619af0 7791
94af9270
KS
7792 return die_needs_namespace (die_specification (die, &spec_cu),
7793 spec_cu);
7794 }
7795
1c809c68 7796 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7797 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7798 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7799 return 0;
7800 /* A variable in a lexical block of some kind does not need a
7801 namespace, even though in C++ such variables may be external
7802 and have a mangled name. */
7803 if (die->parent->tag == DW_TAG_lexical_block
7804 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7805 || die->parent->tag == DW_TAG_catch_block
7806 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7807 return 0;
7808 return 1;
94af9270
KS
7809
7810 default:
7811 return 0;
7812 }
7813}
7814
98bfdba5
PA
7815/* Retrieve the last character from a mem_file. */
7816
7817static void
7818do_ui_file_peek_last (void *object, const char *buffer, long length)
7819{
7820 char *last_char_p = (char *) object;
7821
7822 if (length > 0)
7823 *last_char_p = buffer[length - 1];
7824}
7825
94af9270 7826/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7827 compute the physname for the object, which include a method's:
7828 - formal parameters (C++/Java),
7829 - receiver type (Go),
7830 - return type (Java).
7831
7832 The term "physname" is a bit confusing.
7833 For C++, for example, it is the demangled name.
7834 For Go, for example, it's the mangled name.
94af9270 7835
af6b7be1
JB
7836 For Ada, return the DIE's linkage name rather than the fully qualified
7837 name. PHYSNAME is ignored..
7838
94af9270
KS
7839 The result is allocated on the objfile_obstack and canonicalized. */
7840
7841static const char *
15d034d0
TT
7842dwarf2_compute_name (const char *name,
7843 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
7844 int physname)
7845{
bb5ed363
DE
7846 struct objfile *objfile = cu->objfile;
7847
94af9270
KS
7848 if (name == NULL)
7849 name = dwarf2_name (die, cu);
7850
f55ee35c
JK
7851 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7852 compute it by typename_concat inside GDB. */
7853 if (cu->language == language_ada
7854 || (cu->language == language_fortran && physname))
7855 {
7856 /* For Ada unit, we prefer the linkage name over the name, as
7857 the former contains the exported name, which the user expects
7858 to be able to reference. Ideally, we want the user to be able
7859 to reference this entity using either natural or linkage name,
7860 but we haven't started looking at this enhancement yet. */
7861 struct attribute *attr;
7862
7863 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7864 if (attr == NULL)
7865 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7866 if (attr && DW_STRING (attr))
7867 return DW_STRING (attr);
7868 }
7869
94af9270
KS
7870 /* These are the only languages we know how to qualify names in. */
7871 if (name != NULL
f55ee35c
JK
7872 && (cu->language == language_cplus || cu->language == language_java
7873 || cu->language == language_fortran))
94af9270
KS
7874 {
7875 if (die_needs_namespace (die, cu))
7876 {
7877 long length;
0d5cff50 7878 const char *prefix;
94af9270
KS
7879 struct ui_file *buf;
7880
7881 prefix = determine_prefix (die, cu);
7882 buf = mem_fileopen ();
7883 if (*prefix != '\0')
7884 {
f55ee35c
JK
7885 char *prefixed_name = typename_concat (NULL, prefix, name,
7886 physname, cu);
9a619af0 7887
94af9270
KS
7888 fputs_unfiltered (prefixed_name, buf);
7889 xfree (prefixed_name);
7890 }
7891 else
62d5b8da 7892 fputs_unfiltered (name, buf);
94af9270 7893
98bfdba5
PA
7894 /* Template parameters may be specified in the DIE's DW_AT_name, or
7895 as children with DW_TAG_template_type_param or
7896 DW_TAG_value_type_param. If the latter, add them to the name
7897 here. If the name already has template parameters, then
7898 skip this step; some versions of GCC emit both, and
7899 it is more efficient to use the pre-computed name.
7900
7901 Something to keep in mind about this process: it is very
7902 unlikely, or in some cases downright impossible, to produce
7903 something that will match the mangled name of a function.
7904 If the definition of the function has the same debug info,
7905 we should be able to match up with it anyway. But fallbacks
7906 using the minimal symbol, for instance to find a method
7907 implemented in a stripped copy of libstdc++, will not work.
7908 If we do not have debug info for the definition, we will have to
7909 match them up some other way.
7910
7911 When we do name matching there is a related problem with function
7912 templates; two instantiated function templates are allowed to
7913 differ only by their return types, which we do not add here. */
7914
7915 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7916 {
7917 struct attribute *attr;
7918 struct die_info *child;
7919 int first = 1;
7920
7921 die->building_fullname = 1;
7922
7923 for (child = die->child; child != NULL; child = child->sibling)
7924 {
7925 struct type *type;
12df843f 7926 LONGEST value;
d521ce57 7927 const gdb_byte *bytes;
98bfdba5
PA
7928 struct dwarf2_locexpr_baton *baton;
7929 struct value *v;
7930
7931 if (child->tag != DW_TAG_template_type_param
7932 && child->tag != DW_TAG_template_value_param)
7933 continue;
7934
7935 if (first)
7936 {
7937 fputs_unfiltered ("<", buf);
7938 first = 0;
7939 }
7940 else
7941 fputs_unfiltered (", ", buf);
7942
7943 attr = dwarf2_attr (child, DW_AT_type, cu);
7944 if (attr == NULL)
7945 {
7946 complaint (&symfile_complaints,
7947 _("template parameter missing DW_AT_type"));
7948 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7949 continue;
7950 }
7951 type = die_type (child, cu);
7952
7953 if (child->tag == DW_TAG_template_type_param)
7954 {
79d43c61 7955 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
7956 continue;
7957 }
7958
7959 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7960 if (attr == NULL)
7961 {
7962 complaint (&symfile_complaints,
3e43a32a
MS
7963 _("template parameter missing "
7964 "DW_AT_const_value"));
98bfdba5
PA
7965 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7966 continue;
7967 }
7968
7969 dwarf2_const_value_attr (attr, type, name,
7970 &cu->comp_unit_obstack, cu,
7971 &value, &bytes, &baton);
7972
7973 if (TYPE_NOSIGN (type))
7974 /* GDB prints characters as NUMBER 'CHAR'. If that's
7975 changed, this can use value_print instead. */
7976 c_printchar (value, type, buf);
7977 else
7978 {
7979 struct value_print_options opts;
7980
7981 if (baton != NULL)
7982 v = dwarf2_evaluate_loc_desc (type, NULL,
7983 baton->data,
7984 baton->size,
7985 baton->per_cu);
7986 else if (bytes != NULL)
7987 {
7988 v = allocate_value (type);
7989 memcpy (value_contents_writeable (v), bytes,
7990 TYPE_LENGTH (type));
7991 }
7992 else
7993 v = value_from_longest (type, value);
7994
3e43a32a
MS
7995 /* Specify decimal so that we do not depend on
7996 the radix. */
98bfdba5
PA
7997 get_formatted_print_options (&opts, 'd');
7998 opts.raw = 1;
7999 value_print (v, buf, &opts);
8000 release_value (v);
8001 value_free (v);
8002 }
8003 }
8004
8005 die->building_fullname = 0;
8006
8007 if (!first)
8008 {
8009 /* Close the argument list, with a space if necessary
8010 (nested templates). */
8011 char last_char = '\0';
8012 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8013 if (last_char == '>')
8014 fputs_unfiltered (" >", buf);
8015 else
8016 fputs_unfiltered (">", buf);
8017 }
8018 }
8019
94af9270
KS
8020 /* For Java and C++ methods, append formal parameter type
8021 information, if PHYSNAME. */
6e70227d 8022
94af9270
KS
8023 if (physname && die->tag == DW_TAG_subprogram
8024 && (cu->language == language_cplus
8025 || cu->language == language_java))
8026 {
8027 struct type *type = read_type_die (die, cu);
8028
79d43c61
TT
8029 c_type_print_args (type, buf, 1, cu->language,
8030 &type_print_raw_options);
94af9270
KS
8031
8032 if (cu->language == language_java)
8033 {
8034 /* For java, we must append the return type to method
0963b4bd 8035 names. */
94af9270
KS
8036 if (die->tag == DW_TAG_subprogram)
8037 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8038 0, 0, &type_print_raw_options);
94af9270
KS
8039 }
8040 else if (cu->language == language_cplus)
8041 {
60430eff
DJ
8042 /* Assume that an artificial first parameter is
8043 "this", but do not crash if it is not. RealView
8044 marks unnamed (and thus unused) parameters as
8045 artificial; there is no way to differentiate
8046 the two cases. */
94af9270
KS
8047 if (TYPE_NFIELDS (type) > 0
8048 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8049 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8050 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8051 0))))
94af9270
KS
8052 fputs_unfiltered (" const", buf);
8053 }
8054 }
8055
bb5ed363 8056 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8057 &length);
8058 ui_file_delete (buf);
8059
8060 if (cu->language == language_cplus)
8061 {
15d034d0 8062 const char *cname
94af9270 8063 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8064 &objfile->objfile_obstack);
9a619af0 8065
94af9270
KS
8066 if (cname != NULL)
8067 name = cname;
8068 }
8069 }
8070 }
8071
8072 return name;
8073}
8074
0114d602
DJ
8075/* Return the fully qualified name of DIE, based on its DW_AT_name.
8076 If scope qualifiers are appropriate they will be added. The result
8077 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8078 not have a name. NAME may either be from a previous call to
8079 dwarf2_name or NULL.
8080
0963b4bd 8081 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8082
8083static const char *
15d034d0 8084dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8085{
94af9270
KS
8086 return dwarf2_compute_name (name, die, cu, 0);
8087}
0114d602 8088
94af9270
KS
8089/* Construct a physname for the given DIE in CU. NAME may either be
8090 from a previous call to dwarf2_name or NULL. The result will be
8091 allocated on the objfile_objstack or NULL if the DIE does not have a
8092 name.
0114d602 8093
94af9270 8094 The output string will be canonicalized (if C++/Java). */
0114d602 8095
94af9270 8096static const char *
15d034d0 8097dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8098{
bb5ed363 8099 struct objfile *objfile = cu->objfile;
900e11f9
JK
8100 struct attribute *attr;
8101 const char *retval, *mangled = NULL, *canon = NULL;
8102 struct cleanup *back_to;
8103 int need_copy = 1;
8104
8105 /* In this case dwarf2_compute_name is just a shortcut not building anything
8106 on its own. */
8107 if (!die_needs_namespace (die, cu))
8108 return dwarf2_compute_name (name, die, cu, 1);
8109
8110 back_to = make_cleanup (null_cleanup, NULL);
8111
8112 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8113 if (!attr)
8114 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8115
8116 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8117 has computed. */
8118 if (attr && DW_STRING (attr))
8119 {
8120 char *demangled;
8121
8122 mangled = DW_STRING (attr);
8123
8124 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8125 type. It is easier for GDB users to search for such functions as
8126 `name(params)' than `long name(params)'. In such case the minimal
8127 symbol names do not match the full symbol names but for template
8128 functions there is never a need to look up their definition from their
8129 declaration so the only disadvantage remains the minimal symbol
8130 variant `long name(params)' does not have the proper inferior type.
8131 */
8132
a766d390
DE
8133 if (cu->language == language_go)
8134 {
8135 /* This is a lie, but we already lie to the caller new_symbol_full.
8136 new_symbol_full assumes we return the mangled name.
8137 This just undoes that lie until things are cleaned up. */
8138 demangled = NULL;
8139 }
8140 else
8141 {
8de20a37
TT
8142 demangled = gdb_demangle (mangled,
8143 (DMGL_PARAMS | DMGL_ANSI
8144 | (cu->language == language_java
8145 ? DMGL_JAVA | DMGL_RET_POSTFIX
8146 : DMGL_RET_DROP)));
a766d390 8147 }
900e11f9
JK
8148 if (demangled)
8149 {
8150 make_cleanup (xfree, demangled);
8151 canon = demangled;
8152 }
8153 else
8154 {
8155 canon = mangled;
8156 need_copy = 0;
8157 }
8158 }
8159
8160 if (canon == NULL || check_physname)
8161 {
8162 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8163
8164 if (canon != NULL && strcmp (physname, canon) != 0)
8165 {
8166 /* It may not mean a bug in GDB. The compiler could also
8167 compute DW_AT_linkage_name incorrectly. But in such case
8168 GDB would need to be bug-to-bug compatible. */
8169
8170 complaint (&symfile_complaints,
8171 _("Computed physname <%s> does not match demangled <%s> "
8172 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 8173 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
8174
8175 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8176 is available here - over computed PHYSNAME. It is safer
8177 against both buggy GDB and buggy compilers. */
8178
8179 retval = canon;
8180 }
8181 else
8182 {
8183 retval = physname;
8184 need_copy = 0;
8185 }
8186 }
8187 else
8188 retval = canon;
8189
8190 if (need_copy)
10f0c4bb 8191 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8192
8193 do_cleanups (back_to);
8194 return retval;
0114d602
DJ
8195}
8196
27aa8d6a
SW
8197/* Read the import statement specified by the given die and record it. */
8198
8199static void
8200read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8201{
bb5ed363 8202 struct objfile *objfile = cu->objfile;
27aa8d6a 8203 struct attribute *import_attr;
32019081 8204 struct die_info *imported_die, *child_die;
de4affc9 8205 struct dwarf2_cu *imported_cu;
27aa8d6a 8206 const char *imported_name;
794684b6 8207 const char *imported_name_prefix;
13387711
SW
8208 const char *canonical_name;
8209 const char *import_alias;
8210 const char *imported_declaration = NULL;
794684b6 8211 const char *import_prefix;
32019081
JK
8212 VEC (const_char_ptr) *excludes = NULL;
8213 struct cleanup *cleanups;
13387711 8214
27aa8d6a
SW
8215 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8216 if (import_attr == NULL)
8217 {
8218 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8219 dwarf_tag_name (die->tag));
8220 return;
8221 }
8222
de4affc9
CC
8223 imported_cu = cu;
8224 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8225 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8226 if (imported_name == NULL)
8227 {
8228 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8229
8230 The import in the following code:
8231 namespace A
8232 {
8233 typedef int B;
8234 }
8235
8236 int main ()
8237 {
8238 using A::B;
8239 B b;
8240 return b;
8241 }
8242
8243 ...
8244 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8245 <52> DW_AT_decl_file : 1
8246 <53> DW_AT_decl_line : 6
8247 <54> DW_AT_import : <0x75>
8248 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8249 <59> DW_AT_name : B
8250 <5b> DW_AT_decl_file : 1
8251 <5c> DW_AT_decl_line : 2
8252 <5d> DW_AT_type : <0x6e>
8253 ...
8254 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8255 <76> DW_AT_byte_size : 4
8256 <77> DW_AT_encoding : 5 (signed)
8257
8258 imports the wrong die ( 0x75 instead of 0x58 ).
8259 This case will be ignored until the gcc bug is fixed. */
8260 return;
8261 }
8262
82856980
SW
8263 /* Figure out the local name after import. */
8264 import_alias = dwarf2_name (die, cu);
27aa8d6a 8265
794684b6
SW
8266 /* Figure out where the statement is being imported to. */
8267 import_prefix = determine_prefix (die, cu);
8268
8269 /* Figure out what the scope of the imported die is and prepend it
8270 to the name of the imported die. */
de4affc9 8271 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8272
f55ee35c
JK
8273 if (imported_die->tag != DW_TAG_namespace
8274 && imported_die->tag != DW_TAG_module)
794684b6 8275 {
13387711
SW
8276 imported_declaration = imported_name;
8277 canonical_name = imported_name_prefix;
794684b6 8278 }
13387711 8279 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8280 canonical_name = obconcat (&objfile->objfile_obstack,
8281 imported_name_prefix, "::", imported_name,
8282 (char *) NULL);
13387711
SW
8283 else
8284 canonical_name = imported_name;
794684b6 8285
32019081
JK
8286 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8287
8288 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8289 for (child_die = die->child; child_die && child_die->tag;
8290 child_die = sibling_die (child_die))
8291 {
8292 /* DWARF-4: A Fortran use statement with a “rename list” may be
8293 represented by an imported module entry with an import attribute
8294 referring to the module and owned entries corresponding to those
8295 entities that are renamed as part of being imported. */
8296
8297 if (child_die->tag != DW_TAG_imported_declaration)
8298 {
8299 complaint (&symfile_complaints,
8300 _("child DW_TAG_imported_declaration expected "
8301 "- DIE at 0x%x [in module %s]"),
b64f50a1 8302 child_die->offset.sect_off, objfile->name);
32019081
JK
8303 continue;
8304 }
8305
8306 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8307 if (import_attr == NULL)
8308 {
8309 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8310 dwarf_tag_name (child_die->tag));
8311 continue;
8312 }
8313
8314 imported_cu = cu;
8315 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8316 &imported_cu);
8317 imported_name = dwarf2_name (imported_die, imported_cu);
8318 if (imported_name == NULL)
8319 {
8320 complaint (&symfile_complaints,
8321 _("child DW_TAG_imported_declaration has unknown "
8322 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 8323 child_die->offset.sect_off, objfile->name);
32019081
JK
8324 continue;
8325 }
8326
8327 VEC_safe_push (const_char_ptr, excludes, imported_name);
8328
8329 process_die (child_die, cu);
8330 }
8331
c0cc3a76
SW
8332 cp_add_using_directive (import_prefix,
8333 canonical_name,
8334 import_alias,
13387711 8335 imported_declaration,
32019081 8336 excludes,
12aaed36 8337 0,
bb5ed363 8338 &objfile->objfile_obstack);
32019081
JK
8339
8340 do_cleanups (cleanups);
27aa8d6a
SW
8341}
8342
f4dc4d17 8343/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8344
cb1df416
DJ
8345static void
8346free_cu_line_header (void *arg)
8347{
8348 struct dwarf2_cu *cu = arg;
8349
8350 free_line_header (cu->line_header);
8351 cu->line_header = NULL;
8352}
8353
1b80a9fa
JK
8354/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8355 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8356 this, it was first present in GCC release 4.3.0. */
8357
8358static int
8359producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8360{
8361 if (!cu->checked_producer)
8362 check_producer (cu);
8363
8364 return cu->producer_is_gcc_lt_4_3;
8365}
8366
9291a0cd
TT
8367static void
8368find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8369 const char **name, const char **comp_dir)
9291a0cd
TT
8370{
8371 struct attribute *attr;
8372
8373 *name = NULL;
8374 *comp_dir = NULL;
8375
8376 /* Find the filename. Do not use dwarf2_name here, since the filename
8377 is not a source language identifier. */
8378 attr = dwarf2_attr (die, DW_AT_name, cu);
8379 if (attr)
8380 {
8381 *name = DW_STRING (attr);
8382 }
8383
8384 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8385 if (attr)
8386 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8387 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8388 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8389 {
15d034d0
TT
8390 char *d = ldirname (*name);
8391
8392 *comp_dir = d;
8393 if (d != NULL)
8394 make_cleanup (xfree, d);
9291a0cd
TT
8395 }
8396 if (*comp_dir != NULL)
8397 {
8398 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8399 directory, get rid of it. */
8400 char *cp = strchr (*comp_dir, ':');
8401
8402 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8403 *comp_dir = cp + 1;
8404 }
8405
8406 if (*name == NULL)
8407 *name = "<unknown>";
8408}
8409
f4dc4d17
DE
8410/* Handle DW_AT_stmt_list for a compilation unit.
8411 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8412 COMP_DIR is the compilation directory.
8413 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8414
8415static void
8416handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8417 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8418{
8419 struct attribute *attr;
2ab95328 8420
f4dc4d17
DE
8421 gdb_assert (! cu->per_cu->is_debug_types);
8422
2ab95328
TT
8423 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8424 if (attr)
8425 {
8426 unsigned int line_offset = DW_UNSND (attr);
8427 struct line_header *line_header
3019eac3 8428 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8429
8430 if (line_header)
dee91e82
DE
8431 {
8432 cu->line_header = line_header;
8433 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8434 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8435 }
2ab95328
TT
8436 }
8437}
8438
95554aad 8439/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8440
c906108c 8441static void
e7c27a73 8442read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8443{
dee91e82 8444 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8445 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8446 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8447 CORE_ADDR highpc = ((CORE_ADDR) 0);
8448 struct attribute *attr;
15d034d0
TT
8449 const char *name = NULL;
8450 const char *comp_dir = NULL;
c906108c
SS
8451 struct die_info *child_die;
8452 bfd *abfd = objfile->obfd;
e142c38c 8453 CORE_ADDR baseaddr;
6e70227d 8454
e142c38c 8455 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8456
fae299cd 8457 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8458
8459 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8460 from finish_block. */
2acceee2 8461 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8462 lowpc = highpc;
8463 lowpc += baseaddr;
8464 highpc += baseaddr;
8465
9291a0cd 8466 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8467
95554aad 8468 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8469
f4b8a18d
KW
8470 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8471 standardised yet. As a workaround for the language detection we fall
8472 back to the DW_AT_producer string. */
8473 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8474 cu->language = language_opencl;
8475
3019eac3
DE
8476 /* Similar hack for Go. */
8477 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8478 set_cu_language (DW_LANG_Go, cu);
8479
f4dc4d17 8480 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8481
8482 /* Decode line number information if present. We do this before
8483 processing child DIEs, so that the line header table is available
8484 for DW_AT_decl_file. */
f4dc4d17 8485 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8486
8487 /* Process all dies in compilation unit. */
8488 if (die->child != NULL)
8489 {
8490 child_die = die->child;
8491 while (child_die && child_die->tag)
8492 {
8493 process_die (child_die, cu);
8494 child_die = sibling_die (child_die);
8495 }
8496 }
8497
8498 /* Decode macro information, if present. Dwarf 2 macro information
8499 refers to information in the line number info statement program
8500 header, so we can only read it if we've read the header
8501 successfully. */
8502 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8503 if (attr && cu->line_header)
8504 {
8505 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8506 complaint (&symfile_complaints,
8507 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8508
09262596 8509 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8510 }
8511 else
8512 {
8513 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8514 if (attr && cu->line_header)
8515 {
8516 unsigned int macro_offset = DW_UNSND (attr);
8517
09262596 8518 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8519 }
8520 }
8521
8522 do_cleanups (back_to);
8523}
8524
f4dc4d17
DE
8525/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8526 Create the set of symtabs used by this TU, or if this TU is sharing
8527 symtabs with another TU and the symtabs have already been created
8528 then restore those symtabs in the line header.
8529 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8530
8531static void
f4dc4d17 8532setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8533{
f4dc4d17
DE
8534 struct objfile *objfile = dwarf2_per_objfile->objfile;
8535 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8536 struct type_unit_group *tu_group;
8537 int first_time;
8538 struct line_header *lh;
3019eac3 8539 struct attribute *attr;
f4dc4d17 8540 unsigned int i, line_offset;
0186c6a7 8541 struct signatured_type *sig_type;
3019eac3 8542
f4dc4d17 8543 gdb_assert (per_cu->is_debug_types);
0186c6a7 8544 sig_type = (struct signatured_type *) per_cu;
3019eac3 8545
f4dc4d17 8546 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8547
f4dc4d17 8548 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8549 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8550 if (sig_type->type_unit_group == NULL)
8551 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8552 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8553
8554 /* If we've already processed this stmt_list there's no real need to
8555 do it again, we could fake it and just recreate the part we need
8556 (file name,index -> symtab mapping). If data shows this optimization
8557 is useful we can do it then. */
8558 first_time = tu_group->primary_symtab == NULL;
8559
8560 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8561 debug info. */
8562 lh = NULL;
8563 if (attr != NULL)
3019eac3 8564 {
f4dc4d17
DE
8565 line_offset = DW_UNSND (attr);
8566 lh = dwarf_decode_line_header (line_offset, cu);
8567 }
8568 if (lh == NULL)
8569 {
8570 if (first_time)
8571 dwarf2_start_symtab (cu, "", NULL, 0);
8572 else
8573 {
8574 gdb_assert (tu_group->symtabs == NULL);
8575 restart_symtab (0);
8576 }
8577 /* Note: The primary symtab will get allocated at the end. */
8578 return;
3019eac3
DE
8579 }
8580
f4dc4d17
DE
8581 cu->line_header = lh;
8582 make_cleanup (free_cu_line_header, cu);
3019eac3 8583
f4dc4d17
DE
8584 if (first_time)
8585 {
8586 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8587
f4dc4d17
DE
8588 tu_group->num_symtabs = lh->num_file_names;
8589 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8590
f4dc4d17
DE
8591 for (i = 0; i < lh->num_file_names; ++i)
8592 {
d521ce57 8593 const char *dir = NULL;
f4dc4d17 8594 struct file_entry *fe = &lh->file_names[i];
3019eac3 8595
f4dc4d17
DE
8596 if (fe->dir_index)
8597 dir = lh->include_dirs[fe->dir_index - 1];
8598 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8599
f4dc4d17
DE
8600 /* Note: We don't have to watch for the main subfile here, type units
8601 don't have DW_AT_name. */
3019eac3 8602
f4dc4d17
DE
8603 if (current_subfile->symtab == NULL)
8604 {
8605 /* NOTE: start_subfile will recognize when it's been passed
8606 a file it has already seen. So we can't assume there's a
8607 simple mapping from lh->file_names to subfiles,
8608 lh->file_names may contain dups. */
8609 current_subfile->symtab = allocate_symtab (current_subfile->name,
8610 objfile);
8611 }
8612
8613 fe->symtab = current_subfile->symtab;
8614 tu_group->symtabs[i] = fe->symtab;
8615 }
8616 }
8617 else
3019eac3 8618 {
f4dc4d17
DE
8619 restart_symtab (0);
8620
8621 for (i = 0; i < lh->num_file_names; ++i)
8622 {
8623 struct file_entry *fe = &lh->file_names[i];
8624
8625 fe->symtab = tu_group->symtabs[i];
8626 }
3019eac3
DE
8627 }
8628
f4dc4d17
DE
8629 /* The main symtab is allocated last. Type units don't have DW_AT_name
8630 so they don't have a "real" (so to speak) symtab anyway.
8631 There is later code that will assign the main symtab to all symbols
8632 that don't have one. We need to handle the case of a symbol with a
8633 missing symtab (DW_AT_decl_file) anyway. */
8634}
3019eac3 8635
f4dc4d17
DE
8636/* Process DW_TAG_type_unit.
8637 For TUs we want to skip the first top level sibling if it's not the
8638 actual type being defined by this TU. In this case the first top
8639 level sibling is there to provide context only. */
3019eac3 8640
f4dc4d17
DE
8641static void
8642read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8643{
8644 struct die_info *child_die;
3019eac3 8645
f4dc4d17
DE
8646 prepare_one_comp_unit (cu, die, language_minimal);
8647
8648 /* Initialize (or reinitialize) the machinery for building symtabs.
8649 We do this before processing child DIEs, so that the line header table
8650 is available for DW_AT_decl_file. */
8651 setup_type_unit_groups (die, cu);
8652
8653 if (die->child != NULL)
8654 {
8655 child_die = die->child;
8656 while (child_die && child_die->tag)
8657 {
8658 process_die (child_die, cu);
8659 child_die = sibling_die (child_die);
8660 }
8661 }
3019eac3
DE
8662}
8663\f
80626a55
DE
8664/* DWO/DWP files.
8665
8666 http://gcc.gnu.org/wiki/DebugFission
8667 http://gcc.gnu.org/wiki/DebugFissionDWP
8668
8669 To simplify handling of both DWO files ("object" files with the DWARF info)
8670 and DWP files (a file with the DWOs packaged up into one file), we treat
8671 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8672
8673static hashval_t
8674hash_dwo_file (const void *item)
8675{
8676 const struct dwo_file *dwo_file = item;
a2ce51a0 8677 hashval_t hash;
3019eac3 8678
a2ce51a0
DE
8679 hash = htab_hash_string (dwo_file->dwo_name);
8680 if (dwo_file->comp_dir != NULL)
8681 hash += htab_hash_string (dwo_file->comp_dir);
8682 return hash;
3019eac3
DE
8683}
8684
8685static int
8686eq_dwo_file (const void *item_lhs, const void *item_rhs)
8687{
8688 const struct dwo_file *lhs = item_lhs;
8689 const struct dwo_file *rhs = item_rhs;
8690
a2ce51a0
DE
8691 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8692 return 0;
8693 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8694 return lhs->comp_dir == rhs->comp_dir;
8695 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
8696}
8697
8698/* Allocate a hash table for DWO files. */
8699
8700static htab_t
8701allocate_dwo_file_hash_table (void)
8702{
8703 struct objfile *objfile = dwarf2_per_objfile->objfile;
8704
8705 return htab_create_alloc_ex (41,
8706 hash_dwo_file,
8707 eq_dwo_file,
8708 NULL,
8709 &objfile->objfile_obstack,
8710 hashtab_obstack_allocate,
8711 dummy_obstack_deallocate);
8712}
8713
80626a55
DE
8714/* Lookup DWO file DWO_NAME. */
8715
8716static void **
0ac5b59e 8717lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
8718{
8719 struct dwo_file find_entry;
8720 void **slot;
8721
8722 if (dwarf2_per_objfile->dwo_files == NULL)
8723 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8724
8725 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
8726 find_entry.dwo_name = dwo_name;
8727 find_entry.comp_dir = comp_dir;
80626a55
DE
8728 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8729
8730 return slot;
8731}
8732
3019eac3
DE
8733static hashval_t
8734hash_dwo_unit (const void *item)
8735{
8736 const struct dwo_unit *dwo_unit = item;
8737
8738 /* This drops the top 32 bits of the id, but is ok for a hash. */
8739 return dwo_unit->signature;
8740}
8741
8742static int
8743eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8744{
8745 const struct dwo_unit *lhs = item_lhs;
8746 const struct dwo_unit *rhs = item_rhs;
8747
8748 /* The signature is assumed to be unique within the DWO file.
8749 So while object file CU dwo_id's always have the value zero,
8750 that's OK, assuming each object file DWO file has only one CU,
8751 and that's the rule for now. */
8752 return lhs->signature == rhs->signature;
8753}
8754
8755/* Allocate a hash table for DWO CUs,TUs.
8756 There is one of these tables for each of CUs,TUs for each DWO file. */
8757
8758static htab_t
8759allocate_dwo_unit_table (struct objfile *objfile)
8760{
8761 /* Start out with a pretty small number.
8762 Generally DWO files contain only one CU and maybe some TUs. */
8763 return htab_create_alloc_ex (3,
8764 hash_dwo_unit,
8765 eq_dwo_unit,
8766 NULL,
8767 &objfile->objfile_obstack,
8768 hashtab_obstack_allocate,
8769 dummy_obstack_deallocate);
8770}
8771
80626a55 8772/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 8773
19c3d4c9 8774struct create_dwo_cu_data
3019eac3
DE
8775{
8776 struct dwo_file *dwo_file;
19c3d4c9 8777 struct dwo_unit dwo_unit;
3019eac3
DE
8778};
8779
19c3d4c9 8780/* die_reader_func for create_dwo_cu. */
3019eac3
DE
8781
8782static void
19c3d4c9
DE
8783create_dwo_cu_reader (const struct die_reader_specs *reader,
8784 const gdb_byte *info_ptr,
8785 struct die_info *comp_unit_die,
8786 int has_children,
8787 void *datap)
3019eac3
DE
8788{
8789 struct dwarf2_cu *cu = reader->cu;
8790 struct objfile *objfile = dwarf2_per_objfile->objfile;
8791 sect_offset offset = cu->per_cu->offset;
8a0459fd 8792 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 8793 struct create_dwo_cu_data *data = datap;
3019eac3 8794 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 8795 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 8796 struct attribute *attr;
3019eac3
DE
8797
8798 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8799 if (attr == NULL)
8800 {
19c3d4c9
DE
8801 complaint (&symfile_complaints,
8802 _("Dwarf Error: debug entry at offset 0x%x is missing"
8803 " its dwo_id [in module %s]"),
8804 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
8805 return;
8806 }
8807
3019eac3
DE
8808 dwo_unit->dwo_file = dwo_file;
8809 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 8810 dwo_unit->section = section;
3019eac3
DE
8811 dwo_unit->offset = offset;
8812 dwo_unit->length = cu->per_cu->length;
8813
09406207 8814 if (dwarf2_read_debug)
4031ecc5
DE
8815 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8816 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
8817}
8818
19c3d4c9
DE
8819/* Create the dwo_unit for the lone CU in DWO_FILE.
8820 Note: This function processes DWO files only, not DWP files. */
3019eac3 8821
19c3d4c9
DE
8822static struct dwo_unit *
8823create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
8824{
8825 struct objfile *objfile = dwarf2_per_objfile->objfile;
8826 struct dwarf2_section_info *section = &dwo_file->sections.info;
8827 bfd *abfd;
8828 htab_t cu_htab;
d521ce57 8829 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
8830 struct create_dwo_cu_data create_dwo_cu_data;
8831 struct dwo_unit *dwo_unit;
3019eac3
DE
8832
8833 dwarf2_read_section (objfile, section);
8834 info_ptr = section->buffer;
8835
8836 if (info_ptr == NULL)
8837 return NULL;
8838
8839 /* We can't set abfd until now because the section may be empty or
8840 not present, in which case section->asection will be NULL. */
8841 abfd = section->asection->owner;
8842
09406207 8843 if (dwarf2_read_debug)
19c3d4c9
DE
8844 {
8845 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8846 bfd_section_name (abfd, section->asection),
8847 bfd_get_filename (abfd));
8848 }
3019eac3 8849
19c3d4c9
DE
8850 create_dwo_cu_data.dwo_file = dwo_file;
8851 dwo_unit = NULL;
3019eac3
DE
8852
8853 end_ptr = info_ptr + section->size;
8854 while (info_ptr < end_ptr)
8855 {
8856 struct dwarf2_per_cu_data per_cu;
8857
19c3d4c9
DE
8858 memset (&create_dwo_cu_data.dwo_unit, 0,
8859 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
8860 memset (&per_cu, 0, sizeof (per_cu));
8861 per_cu.objfile = objfile;
8862 per_cu.is_debug_types = 0;
8863 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 8864 per_cu.section = section;
3019eac3
DE
8865
8866 init_cutu_and_read_dies_no_follow (&per_cu,
8867 &dwo_file->sections.abbrev,
8868 dwo_file,
19c3d4c9
DE
8869 create_dwo_cu_reader,
8870 &create_dwo_cu_data);
8871
8872 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8873 {
8874 /* If we've already found one, complain. We only support one
8875 because having more than one requires hacking the dwo_name of
8876 each to match, which is highly unlikely to happen. */
8877 if (dwo_unit != NULL)
8878 {
8879 complaint (&symfile_complaints,
8880 _("Multiple CUs in DWO file %s [in module %s]"),
8881 dwo_file->dwo_name, objfile->name);
8882 break;
8883 }
8884
8885 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8886 *dwo_unit = create_dwo_cu_data.dwo_unit;
8887 }
3019eac3
DE
8888
8889 info_ptr += per_cu.length;
8890 }
8891
19c3d4c9 8892 return dwo_unit;
3019eac3
DE
8893}
8894
80626a55
DE
8895/* DWP file .debug_{cu,tu}_index section format:
8896 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8897
d2415c6c
DE
8898 DWP Version 1:
8899
80626a55
DE
8900 Both index sections have the same format, and serve to map a 64-bit
8901 signature to a set of section numbers. Each section begins with a header,
8902 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8903 indexes, and a pool of 32-bit section numbers. The index sections will be
8904 aligned at 8-byte boundaries in the file.
8905
d2415c6c
DE
8906 The index section header consists of:
8907
8908 V, 32 bit version number
8909 -, 32 bits unused
8910 N, 32 bit number of compilation units or type units in the index
8911 M, 32 bit number of slots in the hash table
80626a55 8912
d2415c6c 8913 Numbers are recorded using the byte order of the application binary.
80626a55 8914
d2415c6c 8915 We assume that N and M will not exceed 2^32 - 1.
80626a55 8916
d2415c6c 8917 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
80626a55 8918
d2415c6c
DE
8919 The hash table begins at offset 16 in the section, and consists of an array
8920 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8921 order of the application binary). Unused slots in the hash table are 0.
8922 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 8923
d2415c6c
DE
8924 The parallel table begins immediately after the hash table
8925 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8926 array of 32-bit indexes (using the byte order of the application binary),
8927 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8928 table contains a 32-bit index into the pool of section numbers. For unused
8929 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 8930
d2415c6c
DE
8931 Given a 64-bit compilation unit signature or a type signature S, an entry
8932 in the hash table is located as follows:
80626a55 8933
d2415c6c
DE
8934 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8935 the low-order k bits all set to 1.
80626a55 8936
d2415c6c 8937 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 8938
d2415c6c
DE
8939 3) If the hash table entry at index H matches the signature, use that
8940 entry. If the hash table entry at index H is unused (all zeroes),
8941 terminate the search: the signature is not present in the table.
80626a55 8942
d2415c6c 8943 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 8944
d2415c6c
DE
8945 Because M > N and H' and M are relatively prime, the search is guaranteed
8946 to stop at an unused slot or find the match.
80626a55 8947
d2415c6c
DE
8948 The pool of section numbers begins immediately following the hash table
8949 (at offset 16 + 12 * M from the beginning of the section). The pool of
8950 section numbers consists of an array of 32-bit words (using the byte order
8951 of the application binary). Each item in the array is indexed starting
8952 from 0. The hash table entry provides the index of the first section
8953 number in the set. Additional section numbers in the set follow, and the
8954 set is terminated by a 0 entry (section number 0 is not used in ELF).
80626a55 8955
d2415c6c
DE
8956 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8957 section must be the first entry in the set, and the .debug_abbrev.dwo must
8958 be the second entry. Other members of the set may follow in any order. */
80626a55
DE
8959
8960/* Create a hash table to map DWO IDs to their CU/TU entry in
8961 .debug_{info,types}.dwo in DWP_FILE.
8962 Returns NULL if there isn't one.
8963 Note: This function processes DWP files only, not DWO files. */
8964
8965static struct dwp_hash_table *
8966create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8967{
8968 struct objfile *objfile = dwarf2_per_objfile->objfile;
8969 bfd *dbfd = dwp_file->dbfd;
948f8e3d 8970 const gdb_byte *index_ptr, *index_end;
80626a55
DE
8971 struct dwarf2_section_info *index;
8972 uint32_t version, nr_units, nr_slots;
8973 struct dwp_hash_table *htab;
8974
8975 if (is_debug_types)
8976 index = &dwp_file->sections.tu_index;
8977 else
8978 index = &dwp_file->sections.cu_index;
8979
8980 if (dwarf2_section_empty_p (index))
8981 return NULL;
8982 dwarf2_read_section (objfile, index);
8983
8984 index_ptr = index->buffer;
8985 index_end = index_ptr + index->size;
8986
8987 version = read_4_bytes (dbfd, index_ptr);
8988 index_ptr += 8; /* Skip the unused word. */
8989 nr_units = read_4_bytes (dbfd, index_ptr);
8990 index_ptr += 4;
8991 nr_slots = read_4_bytes (dbfd, index_ptr);
8992 index_ptr += 4;
8993
8994 if (version != 1)
8995 {
21aa081e 8996 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 8997 " [in module %s]"),
21aa081e 8998 pulongest (version), dwp_file->name);
80626a55
DE
8999 }
9000 if (nr_slots != (nr_slots & -nr_slots))
9001 {
21aa081e 9002 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9003 " is not power of 2 [in module %s]"),
21aa081e 9004 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9005 }
9006
9007 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9008 htab->nr_units = nr_units;
9009 htab->nr_slots = nr_slots;
9010 htab->hash_table = index_ptr;
9011 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9012 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9013
9014 return htab;
9015}
9016
9017/* Update SECTIONS with the data from SECTP.
9018
9019 This function is like the other "locate" section routines that are
9020 passed to bfd_map_over_sections, but in this context the sections to
9021 read comes from the DWP hash table, not the full ELF section table.
9022
9023 The result is non-zero for success, or zero if an error was found. */
9024
9025static int
9026locate_virtual_dwo_sections (asection *sectp,
9027 struct virtual_dwo_sections *sections)
9028{
9029 const struct dwop_section_names *names = &dwop_section_names;
9030
9031 if (section_is_p (sectp->name, &names->abbrev_dwo))
9032 {
9033 /* There can be only one. */
9034 if (sections->abbrev.asection != NULL)
9035 return 0;
9036 sections->abbrev.asection = sectp;
9037 sections->abbrev.size = bfd_get_section_size (sectp);
9038 }
9039 else if (section_is_p (sectp->name, &names->info_dwo)
9040 || section_is_p (sectp->name, &names->types_dwo))
9041 {
9042 /* There can be only one. */
9043 if (sections->info_or_types.asection != NULL)
9044 return 0;
9045 sections->info_or_types.asection = sectp;
9046 sections->info_or_types.size = bfd_get_section_size (sectp);
9047 }
9048 else if (section_is_p (sectp->name, &names->line_dwo))
9049 {
9050 /* There can be only one. */
9051 if (sections->line.asection != NULL)
9052 return 0;
9053 sections->line.asection = sectp;
9054 sections->line.size = bfd_get_section_size (sectp);
9055 }
9056 else if (section_is_p (sectp->name, &names->loc_dwo))
9057 {
9058 /* There can be only one. */
9059 if (sections->loc.asection != NULL)
9060 return 0;
9061 sections->loc.asection = sectp;
9062 sections->loc.size = bfd_get_section_size (sectp);
9063 }
9064 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9065 {
9066 /* There can be only one. */
9067 if (sections->macinfo.asection != NULL)
9068 return 0;
9069 sections->macinfo.asection = sectp;
9070 sections->macinfo.size = bfd_get_section_size (sectp);
9071 }
9072 else if (section_is_p (sectp->name, &names->macro_dwo))
9073 {
9074 /* There can be only one. */
9075 if (sections->macro.asection != NULL)
9076 return 0;
9077 sections->macro.asection = sectp;
9078 sections->macro.size = bfd_get_section_size (sectp);
9079 }
9080 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9081 {
9082 /* There can be only one. */
9083 if (sections->str_offsets.asection != NULL)
9084 return 0;
9085 sections->str_offsets.asection = sectp;
9086 sections->str_offsets.size = bfd_get_section_size (sectp);
9087 }
9088 else
9089 {
9090 /* No other kind of section is valid. */
9091 return 0;
9092 }
9093
9094 return 1;
9095}
9096
9097/* Create a dwo_unit object for the DWO with signature SIGNATURE.
9098 HTAB is the hash table from the DWP file.
0ac5b59e
DE
9099 SECTION_INDEX is the index of the DWO in HTAB.
9100 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
80626a55
DE
9101
9102static struct dwo_unit *
9103create_dwo_in_dwp (struct dwp_file *dwp_file,
9104 const struct dwp_hash_table *htab,
9105 uint32_t section_index,
0ac5b59e 9106 const char *comp_dir,
80626a55
DE
9107 ULONGEST signature, int is_debug_types)
9108{
9109 struct objfile *objfile = dwarf2_per_objfile->objfile;
9110 bfd *dbfd = dwp_file->dbfd;
9111 const char *kind = is_debug_types ? "TU" : "CU";
9112 struct dwo_file *dwo_file;
9113 struct dwo_unit *dwo_unit;
9114 struct virtual_dwo_sections sections;
9115 void **dwo_file_slot;
9116 char *virtual_dwo_name;
9117 struct dwarf2_section_info *cutu;
9118 struct cleanup *cleanups;
9119 int i;
9120
9121 if (dwarf2_read_debug)
9122 {
21aa081e 9123 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
80626a55 9124 kind,
21aa081e 9125 pulongest (section_index), hex_string (signature),
80626a55
DE
9126 dwp_file->name);
9127 }
9128
9129 /* Fetch the sections of this DWO.
9130 Put a limit on the number of sections we look for so that bad data
9131 doesn't cause us to loop forever. */
9132
9133#define MAX_NR_DWO_SECTIONS \
9134 (1 /* .debug_info or .debug_types */ \
9135 + 1 /* .debug_abbrev */ \
9136 + 1 /* .debug_line */ \
9137 + 1 /* .debug_loc */ \
9138 + 1 /* .debug_str_offsets */ \
9139 + 1 /* .debug_macro */ \
9140 + 1 /* .debug_macinfo */ \
9141 + 1 /* trailing zero */)
9142
9143 memset (&sections, 0, sizeof (sections));
9144 cleanups = make_cleanup (null_cleanup, 0);
9145
9146 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9147 {
9148 asection *sectp;
9149 uint32_t section_nr =
9150 read_4_bytes (dbfd,
9151 htab->section_pool
9152 + (section_index + i) * sizeof (uint32_t));
9153
9154 if (section_nr == 0)
9155 break;
9156 if (section_nr >= dwp_file->num_sections)
9157 {
9158 error (_("Dwarf Error: bad DWP hash table, section number too large"
9159 " [in module %s]"),
9160 dwp_file->name);
9161 }
9162
9163 sectp = dwp_file->elf_sections[section_nr];
9164 if (! locate_virtual_dwo_sections (sectp, &sections))
9165 {
9166 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9167 " [in module %s]"),
9168 dwp_file->name);
9169 }
9170 }
9171
9172 if (i < 2
9173 || sections.info_or_types.asection == NULL
9174 || sections.abbrev.asection == NULL)
9175 {
9176 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9177 " [in module %s]"),
9178 dwp_file->name);
9179 }
9180 if (i == MAX_NR_DWO_SECTIONS)
9181 {
9182 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9183 " [in module %s]"),
9184 dwp_file->name);
9185 }
9186
9187 /* It's easier for the rest of the code if we fake a struct dwo_file and
9188 have dwo_unit "live" in that. At least for now.
9189
9190 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec
DE
9191 However, for each CU + set of TUs that came from the same original DWO
9192 file, we want to combine them back into a virtual DWO file to save space
80626a55
DE
9193 (fewer struct dwo_file objects to allocated). Remember that for really
9194 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9195
2792b94d
PM
9196 virtual_dwo_name =
9197 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9198 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9199 sections.line.asection ? sections.line.asection->id : 0,
9200 sections.loc.asection ? sections.loc.asection->id : 0,
9201 (sections.str_offsets.asection
9202 ? sections.str_offsets.asection->id
9203 : 0));
80626a55
DE
9204 make_cleanup (xfree, virtual_dwo_name);
9205 /* Can we use an existing virtual DWO file? */
0ac5b59e 9206 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9207 /* Create one if necessary. */
9208 if (*dwo_file_slot == NULL)
9209 {
9210 if (dwarf2_read_debug)
9211 {
9212 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9213 virtual_dwo_name);
9214 }
9215 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9216 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9217 virtual_dwo_name,
9218 strlen (virtual_dwo_name));
9219 dwo_file->comp_dir = comp_dir;
80626a55
DE
9220 dwo_file->sections.abbrev = sections.abbrev;
9221 dwo_file->sections.line = sections.line;
9222 dwo_file->sections.loc = sections.loc;
9223 dwo_file->sections.macinfo = sections.macinfo;
9224 dwo_file->sections.macro = sections.macro;
9225 dwo_file->sections.str_offsets = sections.str_offsets;
9226 /* The "str" section is global to the entire DWP file. */
9227 dwo_file->sections.str = dwp_file->sections.str;
9228 /* The info or types section is assigned later to dwo_unit,
9229 there's no need to record it in dwo_file.
9230 Also, we can't simply record type sections in dwo_file because
9231 we record a pointer into the vector in dwo_unit. As we collect more
9232 types we'll grow the vector and eventually have to reallocate space
9233 for it, invalidating all the pointers into the current copy. */
9234 *dwo_file_slot = dwo_file;
9235 }
9236 else
9237 {
9238 if (dwarf2_read_debug)
9239 {
9240 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9241 virtual_dwo_name);
9242 }
9243 dwo_file = *dwo_file_slot;
9244 }
9245 do_cleanups (cleanups);
9246
9247 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9248 dwo_unit->dwo_file = dwo_file;
9249 dwo_unit->signature = signature;
8a0459fd
DE
9250 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9251 sizeof (struct dwarf2_section_info));
9252 *dwo_unit->section = sections.info_or_types;
80626a55
DE
9253 /* offset, length, type_offset_in_tu are set later. */
9254
9255 return dwo_unit;
9256}
9257
9258/* Lookup the DWO with SIGNATURE in DWP_FILE. */
9259
9260static struct dwo_unit *
9261lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9262 const struct dwp_hash_table *htab,
0ac5b59e 9263 const char *comp_dir,
80626a55
DE
9264 ULONGEST signature, int is_debug_types)
9265{
9266 bfd *dbfd = dwp_file->dbfd;
9267 uint32_t mask = htab->nr_slots - 1;
9268 uint32_t hash = signature & mask;
9269 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9270 unsigned int i;
9271 void **slot;
9272 struct dwo_unit find_dwo_cu, *dwo_cu;
9273
9274 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9275 find_dwo_cu.signature = signature;
9276 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9277
9278 if (*slot != NULL)
9279 return *slot;
9280
9281 /* Use a for loop so that we don't loop forever on bad debug info. */
9282 for (i = 0; i < htab->nr_slots; ++i)
9283 {
9284 ULONGEST signature_in_table;
9285
9286 signature_in_table =
9287 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9288 if (signature_in_table == signature)
9289 {
9290 uint32_t section_index =
9291 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9292
9293 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
0ac5b59e 9294 comp_dir, signature, is_debug_types);
80626a55
DE
9295 return *slot;
9296 }
9297 if (signature_in_table == 0)
9298 return NULL;
9299 hash = (hash + hash2) & mask;
9300 }
9301
9302 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9303 " [in module %s]"),
9304 dwp_file->name);
9305}
9306
ab5088bf 9307/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
9308 Open the file specified by FILE_NAME and hand it off to BFD for
9309 preliminary analysis. Return a newly initialized bfd *, which
9310 includes a canonicalized copy of FILE_NAME.
80626a55 9311 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
9312 SEARCH_CWD is true if the current directory is to be searched.
9313 It will be searched before debug-file-directory.
9314 If unable to find/open the file, return NULL.
3019eac3
DE
9315 NOTE: This function is derived from symfile_bfd_open. */
9316
9317static bfd *
6ac97d4c 9318try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
9319{
9320 bfd *sym_bfd;
80626a55 9321 int desc, flags;
3019eac3 9322 char *absolute_name;
9c02c129
DE
9323 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9324 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9325 to debug_file_directory. */
9326 char *search_path;
9327 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9328
6ac97d4c
DE
9329 if (search_cwd)
9330 {
9331 if (*debug_file_directory != '\0')
9332 search_path = concat (".", dirname_separator_string,
9333 debug_file_directory, NULL);
9334 else
9335 search_path = xstrdup (".");
9336 }
9c02c129 9337 else
6ac97d4c 9338 search_path = xstrdup (debug_file_directory);
3019eac3 9339
9c02c129 9340 flags = 0;
80626a55
DE
9341 if (is_dwp)
9342 flags |= OPF_SEARCH_IN_PATH;
9c02c129 9343 desc = openp (search_path, flags, file_name,
3019eac3 9344 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 9345 xfree (search_path);
3019eac3
DE
9346 if (desc < 0)
9347 return NULL;
9348
bb397797 9349 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 9350 xfree (absolute_name);
9c02c129
DE
9351 if (sym_bfd == NULL)
9352 return NULL;
3019eac3
DE
9353 bfd_set_cacheable (sym_bfd, 1);
9354
9355 if (!bfd_check_format (sym_bfd, bfd_object))
9356 {
cbb099e8 9357 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
9358 return NULL;
9359 }
9360
3019eac3
DE
9361 return sym_bfd;
9362}
9363
ab5088bf 9364/* Try to open DWO file FILE_NAME.
3019eac3
DE
9365 COMP_DIR is the DW_AT_comp_dir attribute.
9366 The result is the bfd handle of the file.
9367 If there is a problem finding or opening the file, return NULL.
9368 Upon success, the canonicalized path of the file is stored in the bfd,
9369 same as symfile_bfd_open. */
9370
9371static bfd *
ab5088bf 9372open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
9373{
9374 bfd *abfd;
3019eac3 9375
80626a55 9376 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 9377 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
9378
9379 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9380
9381 if (comp_dir != NULL)
9382 {
80626a55 9383 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
9384
9385 /* NOTE: If comp_dir is a relative path, this will also try the
9386 search path, which seems useful. */
6ac97d4c 9387 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
9388 xfree (path_to_try);
9389 if (abfd != NULL)
9390 return abfd;
9391 }
9392
9393 /* That didn't work, try debug-file-directory, which, despite its name,
9394 is a list of paths. */
9395
9396 if (*debug_file_directory == '\0')
9397 return NULL;
9398
6ac97d4c 9399 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
9400}
9401
80626a55
DE
9402/* This function is mapped across the sections and remembers the offset and
9403 size of each of the DWO debugging sections we are interested in. */
9404
9405static void
9406dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9407{
9408 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9409 const struct dwop_section_names *names = &dwop_section_names;
9410
9411 if (section_is_p (sectp->name, &names->abbrev_dwo))
9412 {
9413 dwo_sections->abbrev.asection = sectp;
9414 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9415 }
9416 else if (section_is_p (sectp->name, &names->info_dwo))
9417 {
9418 dwo_sections->info.asection = sectp;
9419 dwo_sections->info.size = bfd_get_section_size (sectp);
9420 }
9421 else if (section_is_p (sectp->name, &names->line_dwo))
9422 {
9423 dwo_sections->line.asection = sectp;
9424 dwo_sections->line.size = bfd_get_section_size (sectp);
9425 }
9426 else if (section_is_p (sectp->name, &names->loc_dwo))
9427 {
9428 dwo_sections->loc.asection = sectp;
9429 dwo_sections->loc.size = bfd_get_section_size (sectp);
9430 }
9431 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9432 {
9433 dwo_sections->macinfo.asection = sectp;
9434 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9435 }
9436 else if (section_is_p (sectp->name, &names->macro_dwo))
9437 {
9438 dwo_sections->macro.asection = sectp;
9439 dwo_sections->macro.size = bfd_get_section_size (sectp);
9440 }
9441 else if (section_is_p (sectp->name, &names->str_dwo))
9442 {
9443 dwo_sections->str.asection = sectp;
9444 dwo_sections->str.size = bfd_get_section_size (sectp);
9445 }
9446 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9447 {
9448 dwo_sections->str_offsets.asection = sectp;
9449 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9450 }
9451 else if (section_is_p (sectp->name, &names->types_dwo))
9452 {
9453 struct dwarf2_section_info type_section;
9454
9455 memset (&type_section, 0, sizeof (type_section));
9456 type_section.asection = sectp;
9457 type_section.size = bfd_get_section_size (sectp);
9458 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9459 &type_section);
9460 }
9461}
9462
ab5088bf 9463/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 9464 by PER_CU. This is for the non-DWP case.
80626a55 9465 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
9466
9467static struct dwo_file *
0ac5b59e
DE
9468open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9469 const char *dwo_name, const char *comp_dir)
3019eac3
DE
9470{
9471 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9472 struct dwo_file *dwo_file;
9473 bfd *dbfd;
3019eac3
DE
9474 struct cleanup *cleanups;
9475
ab5088bf 9476 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
9477 if (dbfd == NULL)
9478 {
9479 if (dwarf2_read_debug)
9480 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9481 return NULL;
9482 }
9483 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9484 dwo_file->dwo_name = dwo_name;
9485 dwo_file->comp_dir = comp_dir;
80626a55 9486 dwo_file->dbfd = dbfd;
3019eac3
DE
9487
9488 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9489
80626a55 9490 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 9491
19c3d4c9 9492 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
9493
9494 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9495 dwo_file->sections.types);
9496
9497 discard_cleanups (cleanups);
9498
80626a55
DE
9499 if (dwarf2_read_debug)
9500 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9501
3019eac3
DE
9502 return dwo_file;
9503}
9504
80626a55
DE
9505/* This function is mapped across the sections and remembers the offset and
9506 size of each of the DWP debugging sections we are interested in. */
3019eac3 9507
80626a55
DE
9508static void
9509dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 9510{
80626a55
DE
9511 struct dwp_file *dwp_file = dwp_file_ptr;
9512 const struct dwop_section_names *names = &dwop_section_names;
9513 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 9514
80626a55
DE
9515 /* Record the ELF section number for later lookup: this is what the
9516 .debug_cu_index,.debug_tu_index tables use. */
9517 gdb_assert (elf_section_nr < dwp_file->num_sections);
9518 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 9519
80626a55
DE
9520 /* Look for specific sections that we need. */
9521 if (section_is_p (sectp->name, &names->str_dwo))
9522 {
9523 dwp_file->sections.str.asection = sectp;
9524 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9525 }
9526 else if (section_is_p (sectp->name, &names->cu_index))
9527 {
9528 dwp_file->sections.cu_index.asection = sectp;
9529 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9530 }
9531 else if (section_is_p (sectp->name, &names->tu_index))
9532 {
9533 dwp_file->sections.tu_index.asection = sectp;
9534 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9535 }
9536}
3019eac3 9537
80626a55 9538/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 9539
80626a55
DE
9540static hashval_t
9541hash_dwp_loaded_cutus (const void *item)
9542{
9543 const struct dwo_unit *dwo_unit = item;
3019eac3 9544
80626a55
DE
9545 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9546 return dwo_unit->signature;
3019eac3
DE
9547}
9548
80626a55 9549/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 9550
80626a55
DE
9551static int
9552eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 9553{
80626a55
DE
9554 const struct dwo_unit *dua = a;
9555 const struct dwo_unit *dub = b;
3019eac3 9556
80626a55
DE
9557 return dua->signature == dub->signature;
9558}
3019eac3 9559
80626a55 9560/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 9561
80626a55
DE
9562static htab_t
9563allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9564{
9565 return htab_create_alloc_ex (3,
9566 hash_dwp_loaded_cutus,
9567 eq_dwp_loaded_cutus,
9568 NULL,
9569 &objfile->objfile_obstack,
9570 hashtab_obstack_allocate,
9571 dummy_obstack_deallocate);
9572}
3019eac3 9573
ab5088bf
DE
9574/* Try to open DWP file FILE_NAME.
9575 The result is the bfd handle of the file.
9576 If there is a problem finding or opening the file, return NULL.
9577 Upon success, the canonicalized path of the file is stored in the bfd,
9578 same as symfile_bfd_open. */
9579
9580static bfd *
9581open_dwp_file (const char *file_name)
9582{
6ac97d4c
DE
9583 bfd *abfd;
9584
9585 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9586 if (abfd != NULL)
9587 return abfd;
9588
9589 /* Work around upstream bug 15652.
9590 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9591 [Whether that's a "bug" is debatable, but it is getting in our way.]
9592 We have no real idea where the dwp file is, because gdb's realpath-ing
9593 of the executable's path may have discarded the needed info.
9594 [IWBN if the dwp file name was recorded in the executable, akin to
9595 .gnu_debuglink, but that doesn't exist yet.]
9596 Strip the directory from FILE_NAME and search again. */
9597 if (*debug_file_directory != '\0')
9598 {
9599 /* Don't implicitly search the current directory here.
9600 If the user wants to search "." to handle this case,
9601 it must be added to debug-file-directory. */
9602 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9603 0 /*search_cwd*/);
9604 }
9605
9606 return NULL;
ab5088bf
DE
9607}
9608
80626a55
DE
9609/* Initialize the use of the DWP file for the current objfile.
9610 By convention the name of the DWP file is ${objfile}.dwp.
9611 The result is NULL if it can't be found. */
a766d390 9612
80626a55 9613static struct dwp_file *
ab5088bf 9614open_and_init_dwp_file (void)
80626a55
DE
9615{
9616 struct objfile *objfile = dwarf2_per_objfile->objfile;
9617 struct dwp_file *dwp_file;
9618 char *dwp_name;
9619 bfd *dbfd;
9620 struct cleanup *cleanups;
9621
2792b94d 9622 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
80626a55
DE
9623 cleanups = make_cleanup (xfree, dwp_name);
9624
ab5088bf 9625 dbfd = open_dwp_file (dwp_name);
80626a55
DE
9626 if (dbfd == NULL)
9627 {
9628 if (dwarf2_read_debug)
9629 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9630 do_cleanups (cleanups);
9631 return NULL;
3019eac3 9632 }
80626a55 9633 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 9634 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
9635 dwp_file->dbfd = dbfd;
9636 do_cleanups (cleanups);
c906108c 9637
80626a55
DE
9638 /* +1: section 0 is unused */
9639 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9640 dwp_file->elf_sections =
9641 OBSTACK_CALLOC (&objfile->objfile_obstack,
9642 dwp_file->num_sections, asection *);
9643
9644 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9645
9646 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9647
9648 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9649
9650 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9651
80626a55
DE
9652 if (dwarf2_read_debug)
9653 {
9654 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9655 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
9656 " %s CUs, %s TUs\n",
9657 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9658 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
9659 }
9660
9661 return dwp_file;
3019eac3 9662}
c906108c 9663
ab5088bf
DE
9664/* Wrapper around open_and_init_dwp_file, only open it once. */
9665
9666static struct dwp_file *
9667get_dwp_file (void)
9668{
9669 if (! dwarf2_per_objfile->dwp_checked)
9670 {
9671 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9672 dwarf2_per_objfile->dwp_checked = 1;
9673 }
9674 return dwarf2_per_objfile->dwp_file;
9675}
9676
80626a55
DE
9677/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9678 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9679 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9680 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9681 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9682
9683 This is called, for example, when wanting to read a variable with a
9684 complex location. Therefore we don't want to do file i/o for every call.
9685 Therefore we don't want to look for a DWO file on every call.
9686 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9687 then we check if we've already seen DWO_NAME, and only THEN do we check
9688 for a DWO file.
9689
1c658ad5 9690 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9691 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9692
3019eac3 9693static struct dwo_unit *
80626a55
DE
9694lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9695 const char *dwo_name, const char *comp_dir,
9696 ULONGEST signature, int is_debug_types)
3019eac3
DE
9697{
9698 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9699 const char *kind = is_debug_types ? "TU" : "CU";
9700 void **dwo_file_slot;
3019eac3 9701 struct dwo_file *dwo_file;
80626a55 9702 struct dwp_file *dwp_file;
cb1df416 9703
6a506a2d
DE
9704 /* First see if there's a DWP file.
9705 If we have a DWP file but didn't find the DWO inside it, don't
9706 look for the original DWO file. It makes gdb behave differently
9707 depending on whether one is debugging in the build tree. */
cf2c3c16 9708
ab5088bf 9709 dwp_file = get_dwp_file ();
80626a55 9710 if (dwp_file != NULL)
cf2c3c16 9711 {
80626a55
DE
9712 const struct dwp_hash_table *dwp_htab =
9713 is_debug_types ? dwp_file->tus : dwp_file->cus;
9714
9715 if (dwp_htab != NULL)
9716 {
9717 struct dwo_unit *dwo_cutu =
0ac5b59e
DE
9718 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9719 signature, is_debug_types);
80626a55
DE
9720
9721 if (dwo_cutu != NULL)
9722 {
9723 if (dwarf2_read_debug)
9724 {
9725 fprintf_unfiltered (gdb_stdlog,
9726 "Virtual DWO %s %s found: @%s\n",
9727 kind, hex_string (signature),
9728 host_address_to_string (dwo_cutu));
9729 }
9730 return dwo_cutu;
9731 }
9732 }
9733 }
6a506a2d 9734 else
80626a55 9735 {
6a506a2d 9736 /* No DWP file, look for the DWO file. */
80626a55 9737
6a506a2d
DE
9738 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9739 if (*dwo_file_slot == NULL)
80626a55 9740 {
6a506a2d
DE
9741 /* Read in the file and build a table of the CUs/TUs it contains. */
9742 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 9743 }
6a506a2d
DE
9744 /* NOTE: This will be NULL if unable to open the file. */
9745 dwo_file = *dwo_file_slot;
3019eac3 9746
6a506a2d 9747 if (dwo_file != NULL)
19c3d4c9 9748 {
6a506a2d
DE
9749 struct dwo_unit *dwo_cutu = NULL;
9750
9751 if (is_debug_types && dwo_file->tus)
9752 {
9753 struct dwo_unit find_dwo_cutu;
9754
9755 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9756 find_dwo_cutu.signature = signature;
9757 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9758 }
9759 else if (!is_debug_types && dwo_file->cu)
80626a55 9760 {
6a506a2d
DE
9761 if (signature == dwo_file->cu->signature)
9762 dwo_cutu = dwo_file->cu;
9763 }
9764
9765 if (dwo_cutu != NULL)
9766 {
9767 if (dwarf2_read_debug)
9768 {
9769 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9770 kind, dwo_name, hex_string (signature),
9771 host_address_to_string (dwo_cutu));
9772 }
9773 return dwo_cutu;
80626a55
DE
9774 }
9775 }
2e276125 9776 }
9cdd5dbd 9777
80626a55
DE
9778 /* We didn't find it. This could mean a dwo_id mismatch, or
9779 someone deleted the DWO/DWP file, or the search path isn't set up
9780 correctly to find the file. */
9781
9782 if (dwarf2_read_debug)
9783 {
9784 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9785 kind, dwo_name, hex_string (signature));
9786 }
3019eac3 9787
6656a72d
DE
9788 /* This is a warning and not a complaint because it can be caused by
9789 pilot error (e.g., user accidentally deleting the DWO). */
9790 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9791 " [in module %s]"),
9792 kind, dwo_name, hex_string (signature),
9793 this_unit->is_debug_types ? "TU" : "CU",
9794 this_unit->offset.sect_off, objfile->name);
3019eac3 9795 return NULL;
5fb290d7
DJ
9796}
9797
80626a55
DE
9798/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9799 See lookup_dwo_cutu_unit for details. */
9800
9801static struct dwo_unit *
9802lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9803 const char *dwo_name, const char *comp_dir,
9804 ULONGEST signature)
9805{
9806 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9807}
9808
9809/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9810 See lookup_dwo_cutu_unit for details. */
9811
9812static struct dwo_unit *
9813lookup_dwo_type_unit (struct signatured_type *this_tu,
9814 const char *dwo_name, const char *comp_dir)
9815{
9816 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9817}
9818
3019eac3
DE
9819/* Free all resources associated with DWO_FILE.
9820 Close the DWO file and munmap the sections.
9821 All memory should be on the objfile obstack. */
348e048f
DE
9822
9823static void
3019eac3 9824free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9825{
3019eac3
DE
9826 int ix;
9827 struct dwarf2_section_info *section;
348e048f 9828
5c6fa7ab 9829 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 9830 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9831
3019eac3
DE
9832 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9833}
348e048f 9834
3019eac3 9835/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9836
3019eac3
DE
9837static void
9838free_dwo_file_cleanup (void *arg)
9839{
9840 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9841 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9842
3019eac3
DE
9843 free_dwo_file (dwo_file, objfile);
9844}
348e048f 9845
3019eac3 9846/* Traversal function for free_dwo_files. */
2ab95328 9847
3019eac3
DE
9848static int
9849free_dwo_file_from_slot (void **slot, void *info)
9850{
9851 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9852 struct objfile *objfile = (struct objfile *) info;
348e048f 9853
3019eac3 9854 free_dwo_file (dwo_file, objfile);
348e048f 9855
3019eac3
DE
9856 return 1;
9857}
348e048f 9858
3019eac3 9859/* Free all resources associated with DWO_FILES. */
348e048f 9860
3019eac3
DE
9861static void
9862free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9863{
9864 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9865}
3019eac3
DE
9866\f
9867/* Read in various DIEs. */
348e048f 9868
d389af10
JK
9869/* qsort helper for inherit_abstract_dies. */
9870
9871static int
9872unsigned_int_compar (const void *ap, const void *bp)
9873{
9874 unsigned int a = *(unsigned int *) ap;
9875 unsigned int b = *(unsigned int *) bp;
9876
9877 return (a > b) - (b > a);
9878}
9879
9880/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9881 Inherit only the children of the DW_AT_abstract_origin DIE not being
9882 already referenced by DW_AT_abstract_origin from the children of the
9883 current DIE. */
d389af10
JK
9884
9885static void
9886inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9887{
9888 struct die_info *child_die;
9889 unsigned die_children_count;
9890 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9891 sect_offset *offsets;
9892 sect_offset *offsets_end, *offsetp;
d389af10
JK
9893 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9894 struct die_info *origin_die;
9895 /* Iterator of the ORIGIN_DIE children. */
9896 struct die_info *origin_child_die;
9897 struct cleanup *cleanups;
9898 struct attribute *attr;
cd02d79d
PA
9899 struct dwarf2_cu *origin_cu;
9900 struct pending **origin_previous_list_in_scope;
d389af10
JK
9901
9902 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9903 if (!attr)
9904 return;
9905
cd02d79d
PA
9906 /* Note that following die references may follow to a die in a
9907 different cu. */
9908
9909 origin_cu = cu;
9910 origin_die = follow_die_ref (die, attr, &origin_cu);
9911
9912 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9913 symbols in. */
9914 origin_previous_list_in_scope = origin_cu->list_in_scope;
9915 origin_cu->list_in_scope = cu->list_in_scope;
9916
edb3359d
DJ
9917 if (die->tag != origin_die->tag
9918 && !(die->tag == DW_TAG_inlined_subroutine
9919 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9920 complaint (&symfile_complaints,
9921 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9922 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9923
9924 child_die = die->child;
9925 die_children_count = 0;
9926 while (child_die && child_die->tag)
9927 {
9928 child_die = sibling_die (child_die);
9929 die_children_count++;
9930 }
9931 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9932 cleanups = make_cleanup (xfree, offsets);
9933
9934 offsets_end = offsets;
9935 child_die = die->child;
9936 while (child_die && child_die->tag)
9937 {
c38f313d
DJ
9938 /* For each CHILD_DIE, find the corresponding child of
9939 ORIGIN_DIE. If there is more than one layer of
9940 DW_AT_abstract_origin, follow them all; there shouldn't be,
9941 but GCC versions at least through 4.4 generate this (GCC PR
9942 40573). */
9943 struct die_info *child_origin_die = child_die;
cd02d79d 9944 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9945
c38f313d
DJ
9946 while (1)
9947 {
cd02d79d
PA
9948 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9949 child_origin_cu);
c38f313d
DJ
9950 if (attr == NULL)
9951 break;
cd02d79d
PA
9952 child_origin_die = follow_die_ref (child_origin_die, attr,
9953 &child_origin_cu);
c38f313d
DJ
9954 }
9955
d389af10
JK
9956 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9957 counterpart may exist. */
c38f313d 9958 if (child_origin_die != child_die)
d389af10 9959 {
edb3359d
DJ
9960 if (child_die->tag != child_origin_die->tag
9961 && !(child_die->tag == DW_TAG_inlined_subroutine
9962 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9963 complaint (&symfile_complaints,
9964 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9965 "different tags"), child_die->offset.sect_off,
9966 child_origin_die->offset.sect_off);
c38f313d
DJ
9967 if (child_origin_die->parent != origin_die)
9968 complaint (&symfile_complaints,
9969 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9970 "different parents"), child_die->offset.sect_off,
9971 child_origin_die->offset.sect_off);
c38f313d
DJ
9972 else
9973 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9974 }
9975 child_die = sibling_die (child_die);
9976 }
9977 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9978 unsigned_int_compar);
9979 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9980 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9981 complaint (&symfile_complaints,
9982 _("Multiple children of DIE 0x%x refer "
9983 "to DIE 0x%x as their abstract origin"),
b64f50a1 9984 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9985
9986 offsetp = offsets;
9987 origin_child_die = origin_die->child;
9988 while (origin_child_die && origin_child_die->tag)
9989 {
9990 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
9991 while (offsetp < offsets_end
9992 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 9993 offsetp++;
b64f50a1
JK
9994 if (offsetp >= offsets_end
9995 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
9996 {
9997 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 9998 process_die (origin_child_die, origin_cu);
d389af10
JK
9999 }
10000 origin_child_die = sibling_die (origin_child_die);
10001 }
cd02d79d 10002 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
10003
10004 do_cleanups (cleanups);
10005}
10006
c906108c 10007static void
e7c27a73 10008read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10009{
e7c27a73 10010 struct objfile *objfile = cu->objfile;
52f0bd74 10011 struct context_stack *new;
c906108c
SS
10012 CORE_ADDR lowpc;
10013 CORE_ADDR highpc;
10014 struct die_info *child_die;
edb3359d 10015 struct attribute *attr, *call_line, *call_file;
15d034d0 10016 const char *name;
e142c38c 10017 CORE_ADDR baseaddr;
801e3a5b 10018 struct block *block;
edb3359d 10019 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
10020 VEC (symbolp) *template_args = NULL;
10021 struct template_symbol *templ_func = NULL;
edb3359d
DJ
10022
10023 if (inlined_func)
10024 {
10025 /* If we do not have call site information, we can't show the
10026 caller of this inlined function. That's too confusing, so
10027 only use the scope for local variables. */
10028 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10029 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10030 if (call_line == NULL || call_file == NULL)
10031 {
10032 read_lexical_block_scope (die, cu);
10033 return;
10034 }
10035 }
c906108c 10036
e142c38c
DJ
10037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10038
94af9270 10039 name = dwarf2_name (die, cu);
c906108c 10040
e8d05480
JB
10041 /* Ignore functions with missing or empty names. These are actually
10042 illegal according to the DWARF standard. */
10043 if (name == NULL)
10044 {
10045 complaint (&symfile_complaints,
b64f50a1
JK
10046 _("missing name for subprogram DIE at %d"),
10047 die->offset.sect_off);
e8d05480
JB
10048 return;
10049 }
10050
10051 /* Ignore functions with missing or invalid low and high pc attributes. */
10052 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10053 {
ae4d0c03
PM
10054 attr = dwarf2_attr (die, DW_AT_external, cu);
10055 if (!attr || !DW_UNSND (attr))
10056 complaint (&symfile_complaints,
3e43a32a
MS
10057 _("cannot get low and high bounds "
10058 "for subprogram DIE at %d"),
b64f50a1 10059 die->offset.sect_off);
e8d05480
JB
10060 return;
10061 }
c906108c
SS
10062
10063 lowpc += baseaddr;
10064 highpc += baseaddr;
10065
34eaf542
TT
10066 /* If we have any template arguments, then we must allocate a
10067 different sort of symbol. */
10068 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10069 {
10070 if (child_die->tag == DW_TAG_template_type_param
10071 || child_die->tag == DW_TAG_template_value_param)
10072 {
e623cf5d 10073 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
10074 templ_func->base.is_cplus_template_function = 1;
10075 break;
10076 }
10077 }
10078
c906108c 10079 new = push_context (0, lowpc);
34eaf542
TT
10080 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10081 (struct symbol *) templ_func);
4c2df51b 10082
4cecd739
DJ
10083 /* If there is a location expression for DW_AT_frame_base, record
10084 it. */
e142c38c 10085 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 10086 if (attr)
f1e6e072 10087 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 10088
e142c38c 10089 cu->list_in_scope = &local_symbols;
c906108c 10090
639d11d3 10091 if (die->child != NULL)
c906108c 10092 {
639d11d3 10093 child_die = die->child;
c906108c
SS
10094 while (child_die && child_die->tag)
10095 {
34eaf542
TT
10096 if (child_die->tag == DW_TAG_template_type_param
10097 || child_die->tag == DW_TAG_template_value_param)
10098 {
10099 struct symbol *arg = new_symbol (child_die, NULL, cu);
10100
f1078f66
DJ
10101 if (arg != NULL)
10102 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
10103 }
10104 else
10105 process_die (child_die, cu);
c906108c
SS
10106 child_die = sibling_die (child_die);
10107 }
10108 }
10109
d389af10
JK
10110 inherit_abstract_dies (die, cu);
10111
4a811a97
UW
10112 /* If we have a DW_AT_specification, we might need to import using
10113 directives from the context of the specification DIE. See the
10114 comment in determine_prefix. */
10115 if (cu->language == language_cplus
10116 && dwarf2_attr (die, DW_AT_specification, cu))
10117 {
10118 struct dwarf2_cu *spec_cu = cu;
10119 struct die_info *spec_die = die_specification (die, &spec_cu);
10120
10121 while (spec_die)
10122 {
10123 child_die = spec_die->child;
10124 while (child_die && child_die->tag)
10125 {
10126 if (child_die->tag == DW_TAG_imported_module)
10127 process_die (child_die, spec_cu);
10128 child_die = sibling_die (child_die);
10129 }
10130
10131 /* In some cases, GCC generates specification DIEs that
10132 themselves contain DW_AT_specification attributes. */
10133 spec_die = die_specification (spec_die, &spec_cu);
10134 }
10135 }
10136
c906108c
SS
10137 new = pop_context ();
10138 /* Make a block for the local symbols within. */
801e3a5b
JB
10139 block = finish_block (new->name, &local_symbols, new->old_blocks,
10140 lowpc, highpc, objfile);
10141
df8a16a1 10142 /* For C++, set the block's scope. */
195a3f6c 10143 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 10144 && cu->processing_has_namespace_info)
195a3f6c
TT
10145 block_set_scope (block, determine_prefix (die, cu),
10146 &objfile->objfile_obstack);
df8a16a1 10147
801e3a5b
JB
10148 /* If we have address ranges, record them. */
10149 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 10150
34eaf542
TT
10151 /* Attach template arguments to function. */
10152 if (! VEC_empty (symbolp, template_args))
10153 {
10154 gdb_assert (templ_func != NULL);
10155
10156 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10157 templ_func->template_arguments
10158 = obstack_alloc (&objfile->objfile_obstack,
10159 (templ_func->n_template_arguments
10160 * sizeof (struct symbol *)));
10161 memcpy (templ_func->template_arguments,
10162 VEC_address (symbolp, template_args),
10163 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10164 VEC_free (symbolp, template_args);
10165 }
10166
208d8187
JB
10167 /* In C++, we can have functions nested inside functions (e.g., when
10168 a function declares a class that has methods). This means that
10169 when we finish processing a function scope, we may need to go
10170 back to building a containing block's symbol lists. */
10171 local_symbols = new->locals;
27aa8d6a 10172 using_directives = new->using_directives;
208d8187 10173
921e78cf
JB
10174 /* If we've finished processing a top-level function, subsequent
10175 symbols go in the file symbol list. */
10176 if (outermost_context_p ())
e142c38c 10177 cu->list_in_scope = &file_symbols;
c906108c
SS
10178}
10179
10180/* Process all the DIES contained within a lexical block scope. Start
10181 a new scope, process the dies, and then close the scope. */
10182
10183static void
e7c27a73 10184read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10185{
e7c27a73 10186 struct objfile *objfile = cu->objfile;
52f0bd74 10187 struct context_stack *new;
c906108c
SS
10188 CORE_ADDR lowpc, highpc;
10189 struct die_info *child_die;
e142c38c
DJ
10190 CORE_ADDR baseaddr;
10191
10192 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
10193
10194 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
10195 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10196 as multiple lexical blocks? Handling children in a sane way would
6e70227d 10197 be nasty. Might be easier to properly extend generic blocks to
af34e669 10198 describe ranges. */
d85a05f0 10199 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
10200 return;
10201 lowpc += baseaddr;
10202 highpc += baseaddr;
10203
10204 push_context (0, lowpc);
639d11d3 10205 if (die->child != NULL)
c906108c 10206 {
639d11d3 10207 child_die = die->child;
c906108c
SS
10208 while (child_die && child_die->tag)
10209 {
e7c27a73 10210 process_die (child_die, cu);
c906108c
SS
10211 child_die = sibling_die (child_die);
10212 }
10213 }
10214 new = pop_context ();
10215
8540c487 10216 if (local_symbols != NULL || using_directives != NULL)
c906108c 10217 {
801e3a5b
JB
10218 struct block *block
10219 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10220 highpc, objfile);
10221
10222 /* Note that recording ranges after traversing children, as we
10223 do here, means that recording a parent's ranges entails
10224 walking across all its children's ranges as they appear in
10225 the address map, which is quadratic behavior.
10226
10227 It would be nicer to record the parent's ranges before
10228 traversing its children, simply overriding whatever you find
10229 there. But since we don't even decide whether to create a
10230 block until after we've traversed its children, that's hard
10231 to do. */
10232 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
10233 }
10234 local_symbols = new->locals;
27aa8d6a 10235 using_directives = new->using_directives;
c906108c
SS
10236}
10237
96408a79
SA
10238/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10239
10240static void
10241read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10242{
10243 struct objfile *objfile = cu->objfile;
10244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10245 CORE_ADDR pc, baseaddr;
10246 struct attribute *attr;
10247 struct call_site *call_site, call_site_local;
10248 void **slot;
10249 int nparams;
10250 struct die_info *child_die;
10251
10252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10253
10254 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10255 if (!attr)
10256 {
10257 complaint (&symfile_complaints,
10258 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10259 "DIE 0x%x [in module %s]"),
b64f50a1 10260 die->offset.sect_off, objfile->name);
96408a79
SA
10261 return;
10262 }
10263 pc = DW_ADDR (attr) + baseaddr;
10264
10265 if (cu->call_site_htab == NULL)
10266 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10267 NULL, &objfile->objfile_obstack,
10268 hashtab_obstack_allocate, NULL);
10269 call_site_local.pc = pc;
10270 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10271 if (*slot != NULL)
10272 {
10273 complaint (&symfile_complaints,
10274 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10275 "DIE 0x%x [in module %s]"),
b64f50a1 10276 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
10277 return;
10278 }
10279
10280 /* Count parameters at the caller. */
10281
10282 nparams = 0;
10283 for (child_die = die->child; child_die && child_die->tag;
10284 child_die = sibling_die (child_die))
10285 {
10286 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10287 {
10288 complaint (&symfile_complaints,
10289 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10290 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10291 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
10292 continue;
10293 }
10294
10295 nparams++;
10296 }
10297
10298 call_site = obstack_alloc (&objfile->objfile_obstack,
10299 (sizeof (*call_site)
10300 + (sizeof (*call_site->parameter)
10301 * (nparams - 1))));
10302 *slot = call_site;
10303 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10304 call_site->pc = pc;
10305
10306 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10307 {
10308 struct die_info *func_die;
10309
10310 /* Skip also over DW_TAG_inlined_subroutine. */
10311 for (func_die = die->parent;
10312 func_die && func_die->tag != DW_TAG_subprogram
10313 && func_die->tag != DW_TAG_subroutine_type;
10314 func_die = func_die->parent);
10315
10316 /* DW_AT_GNU_all_call_sites is a superset
10317 of DW_AT_GNU_all_tail_call_sites. */
10318 if (func_die
10319 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10320 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10321 {
10322 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10323 not complete. But keep CALL_SITE for look ups via call_site_htab,
10324 both the initial caller containing the real return address PC and
10325 the final callee containing the current PC of a chain of tail
10326 calls do not need to have the tail call list complete. But any
10327 function candidate for a virtual tail call frame searched via
10328 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10329 determined unambiguously. */
10330 }
10331 else
10332 {
10333 struct type *func_type = NULL;
10334
10335 if (func_die)
10336 func_type = get_die_type (func_die, cu);
10337 if (func_type != NULL)
10338 {
10339 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10340
10341 /* Enlist this call site to the function. */
10342 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10343 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10344 }
10345 else
10346 complaint (&symfile_complaints,
10347 _("Cannot find function owning DW_TAG_GNU_call_site "
10348 "DIE 0x%x [in module %s]"),
b64f50a1 10349 die->offset.sect_off, objfile->name);
96408a79
SA
10350 }
10351 }
10352
10353 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10354 if (attr == NULL)
10355 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10356 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10357 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10358 /* Keep NULL DWARF_BLOCK. */;
10359 else if (attr_form_is_block (attr))
10360 {
10361 struct dwarf2_locexpr_baton *dlbaton;
10362
10363 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10364 dlbaton->data = DW_BLOCK (attr)->data;
10365 dlbaton->size = DW_BLOCK (attr)->size;
10366 dlbaton->per_cu = cu->per_cu;
10367
10368 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10369 }
7771576e 10370 else if (attr_form_is_ref (attr))
96408a79 10371 {
96408a79
SA
10372 struct dwarf2_cu *target_cu = cu;
10373 struct die_info *target_die;
10374
ac9ec31b 10375 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
10376 gdb_assert (target_cu->objfile == objfile);
10377 if (die_is_declaration (target_die, target_cu))
10378 {
9112db09
JK
10379 const char *target_physname = NULL;
10380 struct attribute *target_attr;
10381
10382 /* Prefer the mangled name; otherwise compute the demangled one. */
10383 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10384 if (target_attr == NULL)
10385 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10386 target_cu);
10387 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10388 target_physname = DW_STRING (target_attr);
10389 else
10390 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
10391 if (target_physname == NULL)
10392 complaint (&symfile_complaints,
10393 _("DW_AT_GNU_call_site_target target DIE has invalid "
10394 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10395 die->offset.sect_off, objfile->name);
96408a79 10396 else
7d455152 10397 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
10398 }
10399 else
10400 {
10401 CORE_ADDR lowpc;
10402
10403 /* DW_AT_entry_pc should be preferred. */
10404 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10405 complaint (&symfile_complaints,
10406 _("DW_AT_GNU_call_site_target target DIE has invalid "
10407 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10408 die->offset.sect_off, objfile->name);
96408a79
SA
10409 else
10410 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10411 }
10412 }
10413 else
10414 complaint (&symfile_complaints,
10415 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10416 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 10417 die->offset.sect_off, objfile->name);
96408a79
SA
10418
10419 call_site->per_cu = cu->per_cu;
10420
10421 for (child_die = die->child;
10422 child_die && child_die->tag;
10423 child_die = sibling_die (child_die))
10424 {
96408a79 10425 struct call_site_parameter *parameter;
1788b2d3 10426 struct attribute *loc, *origin;
96408a79
SA
10427
10428 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10429 {
10430 /* Already printed the complaint above. */
10431 continue;
10432 }
10433
10434 gdb_assert (call_site->parameter_count < nparams);
10435 parameter = &call_site->parameter[call_site->parameter_count];
10436
1788b2d3
JK
10437 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10438 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10439 register is contained in DW_AT_GNU_call_site_value. */
96408a79 10440
24c5c679 10441 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 10442 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 10443 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
10444 {
10445 sect_offset offset;
10446
10447 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10448 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
10449 if (!offset_in_cu_p (&cu->header, offset))
10450 {
10451 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10452 binding can be done only inside one CU. Such referenced DIE
10453 therefore cannot be even moved to DW_TAG_partial_unit. */
10454 complaint (&symfile_complaints,
10455 _("DW_AT_abstract_origin offset is not in CU for "
10456 "DW_TAG_GNU_call_site child DIE 0x%x "
10457 "[in module %s]"),
10458 child_die->offset.sect_off, objfile->name);
10459 continue;
10460 }
1788b2d3
JK
10461 parameter->u.param_offset.cu_off = (offset.sect_off
10462 - cu->header.offset.sect_off);
10463 }
10464 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
10465 {
10466 complaint (&symfile_complaints,
10467 _("No DW_FORM_block* DW_AT_location for "
10468 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10469 child_die->offset.sect_off, objfile->name);
96408a79
SA
10470 continue;
10471 }
24c5c679 10472 else
96408a79 10473 {
24c5c679
JK
10474 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10475 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10476 if (parameter->u.dwarf_reg != -1)
10477 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10478 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10479 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10480 &parameter->u.fb_offset))
10481 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10482 else
10483 {
10484 complaint (&symfile_complaints,
10485 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10486 "for DW_FORM_block* DW_AT_location is supported for "
10487 "DW_TAG_GNU_call_site child DIE 0x%x "
10488 "[in module %s]"),
10489 child_die->offset.sect_off, objfile->name);
10490 continue;
10491 }
96408a79
SA
10492 }
10493
10494 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10495 if (!attr_form_is_block (attr))
10496 {
10497 complaint (&symfile_complaints,
10498 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10499 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10500 child_die->offset.sect_off, objfile->name);
96408a79
SA
10501 continue;
10502 }
10503 parameter->value = DW_BLOCK (attr)->data;
10504 parameter->value_size = DW_BLOCK (attr)->size;
10505
10506 /* Parameters are not pre-cleared by memset above. */
10507 parameter->data_value = NULL;
10508 parameter->data_value_size = 0;
10509 call_site->parameter_count++;
10510
10511 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10512 if (attr)
10513 {
10514 if (!attr_form_is_block (attr))
10515 complaint (&symfile_complaints,
10516 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10517 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10518 child_die->offset.sect_off, objfile->name);
96408a79
SA
10519 else
10520 {
10521 parameter->data_value = DW_BLOCK (attr)->data;
10522 parameter->data_value_size = DW_BLOCK (attr)->size;
10523 }
10524 }
10525 }
10526}
10527
43039443 10528/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
10529 Return 1 if the attributes are present and valid, otherwise, return 0.
10530 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
10531
10532static int
10533dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
10534 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10535 struct partial_symtab *ranges_pst)
43039443
JK
10536{
10537 struct objfile *objfile = cu->objfile;
10538 struct comp_unit_head *cu_header = &cu->header;
10539 bfd *obfd = objfile->obfd;
10540 unsigned int addr_size = cu_header->addr_size;
10541 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10542 /* Base address selection entry. */
10543 CORE_ADDR base;
10544 int found_base;
10545 unsigned int dummy;
d521ce57 10546 const gdb_byte *buffer;
43039443
JK
10547 CORE_ADDR marker;
10548 int low_set;
10549 CORE_ADDR low = 0;
10550 CORE_ADDR high = 0;
ff013f42 10551 CORE_ADDR baseaddr;
43039443 10552
d00adf39
DE
10553 found_base = cu->base_known;
10554 base = cu->base_address;
43039443 10555
be391dca 10556 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10557 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
10558 {
10559 complaint (&symfile_complaints,
10560 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10561 offset);
10562 return 0;
10563 }
dce234bc 10564 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
10565
10566 /* Read in the largest possible address. */
10567 marker = read_address (obfd, buffer, cu, &dummy);
10568 if ((marker & mask) == mask)
10569 {
10570 /* If we found the largest possible address, then
10571 read the base address. */
10572 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10573 buffer += 2 * addr_size;
10574 offset += 2 * addr_size;
10575 found_base = 1;
10576 }
10577
10578 low_set = 0;
10579
e7030f15 10580 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 10581
43039443
JK
10582 while (1)
10583 {
10584 CORE_ADDR range_beginning, range_end;
10585
10586 range_beginning = read_address (obfd, buffer, cu, &dummy);
10587 buffer += addr_size;
10588 range_end = read_address (obfd, buffer, cu, &dummy);
10589 buffer += addr_size;
10590 offset += 2 * addr_size;
10591
10592 /* An end of list marker is a pair of zero addresses. */
10593 if (range_beginning == 0 && range_end == 0)
10594 /* Found the end of list entry. */
10595 break;
10596
10597 /* Each base address selection entry is a pair of 2 values.
10598 The first is the largest possible address, the second is
10599 the base address. Check for a base address here. */
10600 if ((range_beginning & mask) == mask)
10601 {
10602 /* If we found the largest possible address, then
10603 read the base address. */
10604 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10605 found_base = 1;
10606 continue;
10607 }
10608
10609 if (!found_base)
10610 {
10611 /* We have no valid base address for the ranges
10612 data. */
10613 complaint (&symfile_complaints,
10614 _("Invalid .debug_ranges data (no base address)"));
10615 return 0;
10616 }
10617
9277c30c
UW
10618 if (range_beginning > range_end)
10619 {
10620 /* Inverted range entries are invalid. */
10621 complaint (&symfile_complaints,
10622 _("Invalid .debug_ranges data (inverted range)"));
10623 return 0;
10624 }
10625
10626 /* Empty range entries have no effect. */
10627 if (range_beginning == range_end)
10628 continue;
10629
43039443
JK
10630 range_beginning += base;
10631 range_end += base;
10632
01093045
DE
10633 /* A not-uncommon case of bad debug info.
10634 Don't pollute the addrmap with bad data. */
10635 if (range_beginning + baseaddr == 0
10636 && !dwarf2_per_objfile->has_section_at_zero)
10637 {
10638 complaint (&symfile_complaints,
10639 _(".debug_ranges entry has start address of zero"
10640 " [in module %s]"), objfile->name);
10641 continue;
10642 }
10643
9277c30c 10644 if (ranges_pst != NULL)
ff013f42 10645 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
10646 range_beginning + baseaddr,
10647 range_end - 1 + baseaddr,
ff013f42
JK
10648 ranges_pst);
10649
43039443
JK
10650 /* FIXME: This is recording everything as a low-high
10651 segment of consecutive addresses. We should have a
10652 data structure for discontiguous block ranges
10653 instead. */
10654 if (! low_set)
10655 {
10656 low = range_beginning;
10657 high = range_end;
10658 low_set = 1;
10659 }
10660 else
10661 {
10662 if (range_beginning < low)
10663 low = range_beginning;
10664 if (range_end > high)
10665 high = range_end;
10666 }
10667 }
10668
10669 if (! low_set)
10670 /* If the first entry is an end-of-list marker, the range
10671 describes an empty scope, i.e. no instructions. */
10672 return 0;
10673
10674 if (low_return)
10675 *low_return = low;
10676 if (high_return)
10677 *high_return = high;
10678 return 1;
10679}
10680
af34e669
DJ
10681/* Get low and high pc attributes from a die. Return 1 if the attributes
10682 are present and valid, otherwise, return 0. Return -1 if the range is
10683 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10684
c906108c 10685static int
af34e669 10686dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10687 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10688 struct partial_symtab *pst)
c906108c
SS
10689{
10690 struct attribute *attr;
91da1414 10691 struct attribute *attr_high;
af34e669
DJ
10692 CORE_ADDR low = 0;
10693 CORE_ADDR high = 0;
10694 int ret = 0;
c906108c 10695
91da1414
MW
10696 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10697 if (attr_high)
af34e669 10698 {
e142c38c 10699 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10700 if (attr)
91da1414
MW
10701 {
10702 low = DW_ADDR (attr);
3019eac3
DE
10703 if (attr_high->form == DW_FORM_addr
10704 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10705 high = DW_ADDR (attr_high);
10706 else
10707 high = low + DW_UNSND (attr_high);
10708 }
af34e669
DJ
10709 else
10710 /* Found high w/o low attribute. */
10711 return 0;
10712
10713 /* Found consecutive range of addresses. */
10714 ret = 1;
10715 }
c906108c 10716 else
af34e669 10717 {
e142c38c 10718 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10719 if (attr != NULL)
10720 {
ab435259
DE
10721 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10722 We take advantage of the fact that DW_AT_ranges does not appear
10723 in DW_TAG_compile_unit of DWO files. */
10724 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10725 unsigned int ranges_offset = (DW_UNSND (attr)
10726 + (need_ranges_base
10727 ? cu->ranges_base
10728 : 0));
2e3cf129 10729
af34e669 10730 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10731 .debug_ranges section. */
2e3cf129 10732 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10733 return 0;
43039443 10734 /* Found discontinuous range of addresses. */
af34e669
DJ
10735 ret = -1;
10736 }
10737 }
c906108c 10738
9373cf26
JK
10739 /* read_partial_die has also the strict LOW < HIGH requirement. */
10740 if (high <= low)
c906108c
SS
10741 return 0;
10742
10743 /* When using the GNU linker, .gnu.linkonce. sections are used to
10744 eliminate duplicate copies of functions and vtables and such.
10745 The linker will arbitrarily choose one and discard the others.
10746 The AT_*_pc values for such functions refer to local labels in
10747 these sections. If the section from that file was discarded, the
10748 labels are not in the output, so the relocs get a value of 0.
10749 If this is a discarded function, mark the pc bounds as invalid,
10750 so that GDB will ignore it. */
72dca2f5 10751 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10752 return 0;
10753
10754 *lowpc = low;
96408a79
SA
10755 if (highpc)
10756 *highpc = high;
af34e669 10757 return ret;
c906108c
SS
10758}
10759
b084d499
JB
10760/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10761 its low and high PC addresses. Do nothing if these addresses could not
10762 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10763 and HIGHPC to the high address if greater than HIGHPC. */
10764
10765static void
10766dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10768 struct dwarf2_cu *cu)
10769{
10770 CORE_ADDR low, high;
10771 struct die_info *child = die->child;
10772
d85a05f0 10773 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10774 {
10775 *lowpc = min (*lowpc, low);
10776 *highpc = max (*highpc, high);
10777 }
10778
10779 /* If the language does not allow nested subprograms (either inside
10780 subprograms or lexical blocks), we're done. */
10781 if (cu->language != language_ada)
10782 return;
6e70227d 10783
b084d499
JB
10784 /* Check all the children of the given DIE. If it contains nested
10785 subprograms, then check their pc bounds. Likewise, we need to
10786 check lexical blocks as well, as they may also contain subprogram
10787 definitions. */
10788 while (child && child->tag)
10789 {
10790 if (child->tag == DW_TAG_subprogram
10791 || child->tag == DW_TAG_lexical_block)
10792 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10793 child = sibling_die (child);
10794 }
10795}
10796
fae299cd
DC
10797/* Get the low and high pc's represented by the scope DIE, and store
10798 them in *LOWPC and *HIGHPC. If the correct values can't be
10799 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10800
10801static void
10802get_scope_pc_bounds (struct die_info *die,
10803 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10804 struct dwarf2_cu *cu)
10805{
10806 CORE_ADDR best_low = (CORE_ADDR) -1;
10807 CORE_ADDR best_high = (CORE_ADDR) 0;
10808 CORE_ADDR current_low, current_high;
10809
d85a05f0 10810 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10811 {
10812 best_low = current_low;
10813 best_high = current_high;
10814 }
10815 else
10816 {
10817 struct die_info *child = die->child;
10818
10819 while (child && child->tag)
10820 {
10821 switch (child->tag) {
10822 case DW_TAG_subprogram:
b084d499 10823 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10824 break;
10825 case DW_TAG_namespace:
f55ee35c 10826 case DW_TAG_module:
fae299cd
DC
10827 /* FIXME: carlton/2004-01-16: Should we do this for
10828 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10829 that current GCC's always emit the DIEs corresponding
10830 to definitions of methods of classes as children of a
10831 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10832 the DIEs giving the declarations, which could be
10833 anywhere). But I don't see any reason why the
10834 standards says that they have to be there. */
10835 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10836
10837 if (current_low != ((CORE_ADDR) -1))
10838 {
10839 best_low = min (best_low, current_low);
10840 best_high = max (best_high, current_high);
10841 }
10842 break;
10843 default:
0963b4bd 10844 /* Ignore. */
fae299cd
DC
10845 break;
10846 }
10847
10848 child = sibling_die (child);
10849 }
10850 }
10851
10852 *lowpc = best_low;
10853 *highpc = best_high;
10854}
10855
801e3a5b
JB
10856/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10857 in DIE. */
380bca97 10858
801e3a5b
JB
10859static void
10860dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10861 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10862{
bb5ed363 10863 struct objfile *objfile = cu->objfile;
801e3a5b 10864 struct attribute *attr;
91da1414 10865 struct attribute *attr_high;
801e3a5b 10866
91da1414
MW
10867 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10868 if (attr_high)
801e3a5b 10869 {
801e3a5b
JB
10870 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10871 if (attr)
10872 {
10873 CORE_ADDR low = DW_ADDR (attr);
91da1414 10874 CORE_ADDR high;
3019eac3
DE
10875 if (attr_high->form == DW_FORM_addr
10876 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10877 high = DW_ADDR (attr_high);
10878 else
10879 high = low + DW_UNSND (attr_high);
9a619af0 10880
801e3a5b
JB
10881 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10882 }
10883 }
10884
10885 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10886 if (attr)
10887 {
bb5ed363 10888 bfd *obfd = objfile->obfd;
ab435259
DE
10889 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10890 We take advantage of the fact that DW_AT_ranges does not appear
10891 in DW_TAG_compile_unit of DWO files. */
10892 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
10893
10894 /* The value of the DW_AT_ranges attribute is the offset of the
10895 address range list in the .debug_ranges section. */
ab435259
DE
10896 unsigned long offset = (DW_UNSND (attr)
10897 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 10898 const gdb_byte *buffer;
801e3a5b
JB
10899
10900 /* For some target architectures, but not others, the
10901 read_address function sign-extends the addresses it returns.
10902 To recognize base address selection entries, we need a
10903 mask. */
10904 unsigned int addr_size = cu->header.addr_size;
10905 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10906
10907 /* The base address, to which the next pair is relative. Note
10908 that this 'base' is a DWARF concept: most entries in a range
10909 list are relative, to reduce the number of relocs against the
10910 debugging information. This is separate from this function's
10911 'baseaddr' argument, which GDB uses to relocate debugging
10912 information from a shared library based on the address at
10913 which the library was loaded. */
d00adf39
DE
10914 CORE_ADDR base = cu->base_address;
10915 int base_known = cu->base_known;
801e3a5b 10916
d62bfeaf 10917 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10918 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10919 {
10920 complaint (&symfile_complaints,
10921 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10922 offset);
10923 return;
10924 }
d62bfeaf 10925 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10926
10927 for (;;)
10928 {
10929 unsigned int bytes_read;
10930 CORE_ADDR start, end;
10931
10932 start = read_address (obfd, buffer, cu, &bytes_read);
10933 buffer += bytes_read;
10934 end = read_address (obfd, buffer, cu, &bytes_read);
10935 buffer += bytes_read;
10936
10937 /* Did we find the end of the range list? */
10938 if (start == 0 && end == 0)
10939 break;
10940
10941 /* Did we find a base address selection entry? */
10942 else if ((start & base_select_mask) == base_select_mask)
10943 {
10944 base = end;
10945 base_known = 1;
10946 }
10947
10948 /* We found an ordinary address range. */
10949 else
10950 {
10951 if (!base_known)
10952 {
10953 complaint (&symfile_complaints,
3e43a32a
MS
10954 _("Invalid .debug_ranges data "
10955 "(no base address)"));
801e3a5b
JB
10956 return;
10957 }
10958
9277c30c
UW
10959 if (start > end)
10960 {
10961 /* Inverted range entries are invalid. */
10962 complaint (&symfile_complaints,
10963 _("Invalid .debug_ranges data "
10964 "(inverted range)"));
10965 return;
10966 }
10967
10968 /* Empty range entries have no effect. */
10969 if (start == end)
10970 continue;
10971
01093045
DE
10972 start += base + baseaddr;
10973 end += base + baseaddr;
10974
10975 /* A not-uncommon case of bad debug info.
10976 Don't pollute the addrmap with bad data. */
10977 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10978 {
10979 complaint (&symfile_complaints,
10980 _(".debug_ranges entry has start address of zero"
10981 " [in module %s]"), objfile->name);
10982 continue;
10983 }
10984
10985 record_block_range (block, start, end - 1);
801e3a5b
JB
10986 }
10987 }
10988 }
10989}
10990
685b1105
JK
10991/* Check whether the producer field indicates either of GCC < 4.6, or the
10992 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 10993
685b1105
JK
10994static void
10995check_producer (struct dwarf2_cu *cu)
60d5a603
JK
10996{
10997 const char *cs;
10998 int major, minor, release;
10999
11000 if (cu->producer == NULL)
11001 {
11002 /* For unknown compilers expect their behavior is DWARF version
11003 compliant.
11004
11005 GCC started to support .debug_types sections by -gdwarf-4 since
11006 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11007 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11008 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11009 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 11010 }
685b1105 11011 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 11012 {
685b1105
JK
11013 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11014
ba919b58
TT
11015 cs = &cu->producer[strlen ("GNU ")];
11016 while (*cs && !isdigit (*cs))
11017 cs++;
11018 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11019 {
11020 /* Not recognized as GCC. */
11021 }
11022 else
1b80a9fa
JK
11023 {
11024 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11025 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11026 }
685b1105
JK
11027 }
11028 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11029 cu->producer_is_icc = 1;
11030 else
11031 {
11032 /* For other non-GCC compilers, expect their behavior is DWARF version
11033 compliant. */
60d5a603
JK
11034 }
11035
ba919b58 11036 cu->checked_producer = 1;
685b1105 11037}
ba919b58 11038
685b1105
JK
11039/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11040 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11041 during 4.6.0 experimental. */
11042
11043static int
11044producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11045{
11046 if (!cu->checked_producer)
11047 check_producer (cu);
11048
11049 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
11050}
11051
11052/* Return the default accessibility type if it is not overriden by
11053 DW_AT_accessibility. */
11054
11055static enum dwarf_access_attribute
11056dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11057{
11058 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11059 {
11060 /* The default DWARF 2 accessibility for members is public, the default
11061 accessibility for inheritance is private. */
11062
11063 if (die->tag != DW_TAG_inheritance)
11064 return DW_ACCESS_public;
11065 else
11066 return DW_ACCESS_private;
11067 }
11068 else
11069 {
11070 /* DWARF 3+ defines the default accessibility a different way. The same
11071 rules apply now for DW_TAG_inheritance as for the members and it only
11072 depends on the container kind. */
11073
11074 if (die->parent->tag == DW_TAG_class_type)
11075 return DW_ACCESS_private;
11076 else
11077 return DW_ACCESS_public;
11078 }
11079}
11080
74ac6d43
TT
11081/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11082 offset. If the attribute was not found return 0, otherwise return
11083 1. If it was found but could not properly be handled, set *OFFSET
11084 to 0. */
11085
11086static int
11087handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11088 LONGEST *offset)
11089{
11090 struct attribute *attr;
11091
11092 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11093 if (attr != NULL)
11094 {
11095 *offset = 0;
11096
11097 /* Note that we do not check for a section offset first here.
11098 This is because DW_AT_data_member_location is new in DWARF 4,
11099 so if we see it, we can assume that a constant form is really
11100 a constant and not a section offset. */
11101 if (attr_form_is_constant (attr))
11102 *offset = dwarf2_get_attr_constant_value (attr, 0);
11103 else if (attr_form_is_section_offset (attr))
11104 dwarf2_complex_location_expr_complaint ();
11105 else if (attr_form_is_block (attr))
11106 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11107 else
11108 dwarf2_complex_location_expr_complaint ();
11109
11110 return 1;
11111 }
11112
11113 return 0;
11114}
11115
c906108c
SS
11116/* Add an aggregate field to the field list. */
11117
11118static void
107d2387 11119dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 11120 struct dwarf2_cu *cu)
6e70227d 11121{
e7c27a73 11122 struct objfile *objfile = cu->objfile;
5e2b427d 11123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
11124 struct nextfield *new_field;
11125 struct attribute *attr;
11126 struct field *fp;
15d034d0 11127 const char *fieldname = "";
c906108c
SS
11128
11129 /* Allocate a new field list entry and link it in. */
11130 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 11131 make_cleanup (xfree, new_field);
c906108c 11132 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
11133
11134 if (die->tag == DW_TAG_inheritance)
11135 {
11136 new_field->next = fip->baseclasses;
11137 fip->baseclasses = new_field;
11138 }
11139 else
11140 {
11141 new_field->next = fip->fields;
11142 fip->fields = new_field;
11143 }
c906108c
SS
11144 fip->nfields++;
11145
e142c38c 11146 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
11147 if (attr)
11148 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
11149 else
11150 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
11151 if (new_field->accessibility != DW_ACCESS_public)
11152 fip->non_public_fields = 1;
60d5a603 11153
e142c38c 11154 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
11155 if (attr)
11156 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
11157 else
11158 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
11159
11160 fp = &new_field->field;
a9a9bd0f 11161
e142c38c 11162 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 11163 {
74ac6d43
TT
11164 LONGEST offset;
11165
a9a9bd0f 11166 /* Data member other than a C++ static data member. */
6e70227d 11167
c906108c 11168 /* Get type of field. */
e7c27a73 11169 fp->type = die_type (die, cu);
c906108c 11170
d6a843b5 11171 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 11172
c906108c 11173 /* Get bit size of field (zero if none). */
e142c38c 11174 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
11175 if (attr)
11176 {
11177 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11178 }
11179 else
11180 {
11181 FIELD_BITSIZE (*fp) = 0;
11182 }
11183
11184 /* Get bit offset of field. */
74ac6d43
TT
11185 if (handle_data_member_location (die, cu, &offset))
11186 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 11187 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
11188 if (attr)
11189 {
5e2b427d 11190 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
11191 {
11192 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
11193 additional bit offset from the MSB of the containing
11194 anonymous object to the MSB of the field. We don't
11195 have to do anything special since we don't need to
11196 know the size of the anonymous object. */
f41f5e61 11197 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
11198 }
11199 else
11200 {
11201 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
11202 MSB of the anonymous object, subtract off the number of
11203 bits from the MSB of the field to the MSB of the
11204 object, and then subtract off the number of bits of
11205 the field itself. The result is the bit offset of
11206 the LSB of the field. */
c906108c
SS
11207 int anonymous_size;
11208 int bit_offset = DW_UNSND (attr);
11209
e142c38c 11210 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11211 if (attr)
11212 {
11213 /* The size of the anonymous object containing
11214 the bit field is explicit, so use the
11215 indicated size (in bytes). */
11216 anonymous_size = DW_UNSND (attr);
11217 }
11218 else
11219 {
11220 /* The size of the anonymous object containing
11221 the bit field must be inferred from the type
11222 attribute of the data member containing the
11223 bit field. */
11224 anonymous_size = TYPE_LENGTH (fp->type);
11225 }
f41f5e61
PA
11226 SET_FIELD_BITPOS (*fp,
11227 (FIELD_BITPOS (*fp)
11228 + anonymous_size * bits_per_byte
11229 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
11230 }
11231 }
11232
11233 /* Get name of field. */
39cbfefa
DJ
11234 fieldname = dwarf2_name (die, cu);
11235 if (fieldname == NULL)
11236 fieldname = "";
d8151005
DJ
11237
11238 /* The name is already allocated along with this objfile, so we don't
11239 need to duplicate it for the type. */
11240 fp->name = fieldname;
c906108c
SS
11241
11242 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 11243 pointer or virtual base class pointer) to private. */
e142c38c 11244 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 11245 {
d48cc9dd 11246 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
11247 new_field->accessibility = DW_ACCESS_private;
11248 fip->non_public_fields = 1;
11249 }
11250 }
a9a9bd0f 11251 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 11252 {
a9a9bd0f
DC
11253 /* C++ static member. */
11254
11255 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11256 is a declaration, but all versions of G++ as of this writing
11257 (so through at least 3.2.1) incorrectly generate
11258 DW_TAG_variable tags. */
6e70227d 11259
ff355380 11260 const char *physname;
c906108c 11261
a9a9bd0f 11262 /* Get name of field. */
39cbfefa
DJ
11263 fieldname = dwarf2_name (die, cu);
11264 if (fieldname == NULL)
c906108c
SS
11265 return;
11266
254e6b9e 11267 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
11268 if (attr
11269 /* Only create a symbol if this is an external value.
11270 new_symbol checks this and puts the value in the global symbol
11271 table, which we want. If it is not external, new_symbol
11272 will try to put the value in cu->list_in_scope which is wrong. */
11273 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
11274 {
11275 /* A static const member, not much different than an enum as far as
11276 we're concerned, except that we can support more types. */
11277 new_symbol (die, NULL, cu);
11278 }
11279
2df3850c 11280 /* Get physical name. */
ff355380 11281 physname = dwarf2_physname (fieldname, die, cu);
c906108c 11282
d8151005
DJ
11283 /* The name is already allocated along with this objfile, so we don't
11284 need to duplicate it for the type. */
11285 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 11286 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 11287 FIELD_NAME (*fp) = fieldname;
c906108c
SS
11288 }
11289 else if (die->tag == DW_TAG_inheritance)
11290 {
74ac6d43 11291 LONGEST offset;
d4b96c9a 11292
74ac6d43
TT
11293 /* C++ base class field. */
11294 if (handle_data_member_location (die, cu, &offset))
11295 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 11296 FIELD_BITSIZE (*fp) = 0;
e7c27a73 11297 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
11298 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11299 fip->nbaseclasses++;
11300 }
11301}
11302
98751a41
JK
11303/* Add a typedef defined in the scope of the FIP's class. */
11304
11305static void
11306dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11307 struct dwarf2_cu *cu)
6e70227d 11308{
98751a41 11309 struct objfile *objfile = cu->objfile;
98751a41
JK
11310 struct typedef_field_list *new_field;
11311 struct attribute *attr;
11312 struct typedef_field *fp;
11313 char *fieldname = "";
11314
11315 /* Allocate a new field list entry and link it in. */
11316 new_field = xzalloc (sizeof (*new_field));
11317 make_cleanup (xfree, new_field);
11318
11319 gdb_assert (die->tag == DW_TAG_typedef);
11320
11321 fp = &new_field->field;
11322
11323 /* Get name of field. */
11324 fp->name = dwarf2_name (die, cu);
11325 if (fp->name == NULL)
11326 return;
11327
11328 fp->type = read_type_die (die, cu);
11329
11330 new_field->next = fip->typedef_field_list;
11331 fip->typedef_field_list = new_field;
11332 fip->typedef_field_list_count++;
11333}
11334
c906108c
SS
11335/* Create the vector of fields, and attach it to the type. */
11336
11337static void
fba45db2 11338dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11339 struct dwarf2_cu *cu)
c906108c
SS
11340{
11341 int nfields = fip->nfields;
11342
11343 /* Record the field count, allocate space for the array of fields,
11344 and create blank accessibility bitfields if necessary. */
11345 TYPE_NFIELDS (type) = nfields;
11346 TYPE_FIELDS (type) = (struct field *)
11347 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11348 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11349
b4ba55a1 11350 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
11351 {
11352 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11353
11354 TYPE_FIELD_PRIVATE_BITS (type) =
11355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11356 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11357
11358 TYPE_FIELD_PROTECTED_BITS (type) =
11359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11360 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11361
774b6a14
TT
11362 TYPE_FIELD_IGNORE_BITS (type) =
11363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11364 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
11365 }
11366
11367 /* If the type has baseclasses, allocate and clear a bit vector for
11368 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 11369 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
11370 {
11371 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 11372 unsigned char *pointer;
c906108c
SS
11373
11374 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
11375 pointer = TYPE_ALLOC (type, num_bytes);
11376 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
11377 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11378 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11379 }
11380
3e43a32a
MS
11381 /* Copy the saved-up fields into the field vector. Start from the head of
11382 the list, adding to the tail of the field array, so that they end up in
11383 the same order in the array in which they were added to the list. */
c906108c
SS
11384 while (nfields-- > 0)
11385 {
7d0ccb61
DJ
11386 struct nextfield *fieldp;
11387
11388 if (fip->fields)
11389 {
11390 fieldp = fip->fields;
11391 fip->fields = fieldp->next;
11392 }
11393 else
11394 {
11395 fieldp = fip->baseclasses;
11396 fip->baseclasses = fieldp->next;
11397 }
11398
11399 TYPE_FIELD (type, nfields) = fieldp->field;
11400 switch (fieldp->accessibility)
c906108c 11401 {
c5aa993b 11402 case DW_ACCESS_private:
b4ba55a1
JB
11403 if (cu->language != language_ada)
11404 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 11405 break;
c906108c 11406
c5aa993b 11407 case DW_ACCESS_protected:
b4ba55a1
JB
11408 if (cu->language != language_ada)
11409 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 11410 break;
c906108c 11411
c5aa993b
JM
11412 case DW_ACCESS_public:
11413 break;
c906108c 11414
c5aa993b
JM
11415 default:
11416 /* Unknown accessibility. Complain and treat it as public. */
11417 {
e2e0b3e5 11418 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 11419 fieldp->accessibility);
c5aa993b
JM
11420 }
11421 break;
c906108c
SS
11422 }
11423 if (nfields < fip->nbaseclasses)
11424 {
7d0ccb61 11425 switch (fieldp->virtuality)
c906108c 11426 {
c5aa993b
JM
11427 case DW_VIRTUALITY_virtual:
11428 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 11429 if (cu->language == language_ada)
a73c6dcd 11430 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
11431 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11432 break;
c906108c
SS
11433 }
11434 }
c906108c
SS
11435 }
11436}
11437
7d27a96d
TT
11438/* Return true if this member function is a constructor, false
11439 otherwise. */
11440
11441static int
11442dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11443{
11444 const char *fieldname;
11445 const char *typename;
11446 int len;
11447
11448 if (die->parent == NULL)
11449 return 0;
11450
11451 if (die->parent->tag != DW_TAG_structure_type
11452 && die->parent->tag != DW_TAG_union_type
11453 && die->parent->tag != DW_TAG_class_type)
11454 return 0;
11455
11456 fieldname = dwarf2_name (die, cu);
11457 typename = dwarf2_name (die->parent, cu);
11458 if (fieldname == NULL || typename == NULL)
11459 return 0;
11460
11461 len = strlen (fieldname);
11462 return (strncmp (fieldname, typename, len) == 0
11463 && (typename[len] == '\0' || typename[len] == '<'));
11464}
11465
c906108c
SS
11466/* Add a member function to the proper fieldlist. */
11467
11468static void
107d2387 11469dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 11470 struct type *type, struct dwarf2_cu *cu)
c906108c 11471{
e7c27a73 11472 struct objfile *objfile = cu->objfile;
c906108c
SS
11473 struct attribute *attr;
11474 struct fnfieldlist *flp;
11475 int i;
11476 struct fn_field *fnp;
15d034d0 11477 const char *fieldname;
c906108c 11478 struct nextfnfield *new_fnfield;
f792889a 11479 struct type *this_type;
60d5a603 11480 enum dwarf_access_attribute accessibility;
c906108c 11481
b4ba55a1 11482 if (cu->language == language_ada)
a73c6dcd 11483 error (_("unexpected member function in Ada type"));
b4ba55a1 11484
2df3850c 11485 /* Get name of member function. */
39cbfefa
DJ
11486 fieldname = dwarf2_name (die, cu);
11487 if (fieldname == NULL)
2df3850c 11488 return;
c906108c 11489
c906108c
SS
11490 /* Look up member function name in fieldlist. */
11491 for (i = 0; i < fip->nfnfields; i++)
11492 {
27bfe10e 11493 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
11494 break;
11495 }
11496
11497 /* Create new list element if necessary. */
11498 if (i < fip->nfnfields)
11499 flp = &fip->fnfieldlists[i];
11500 else
11501 {
11502 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11503 {
11504 fip->fnfieldlists = (struct fnfieldlist *)
11505 xrealloc (fip->fnfieldlists,
11506 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11507 * sizeof (struct fnfieldlist));
c906108c 11508 if (fip->nfnfields == 0)
c13c43fd 11509 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
11510 }
11511 flp = &fip->fnfieldlists[fip->nfnfields];
11512 flp->name = fieldname;
11513 flp->length = 0;
11514 flp->head = NULL;
3da10d80 11515 i = fip->nfnfields++;
c906108c
SS
11516 }
11517
11518 /* Create a new member function field and chain it to the field list
0963b4bd 11519 entry. */
c906108c 11520 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 11521 make_cleanup (xfree, new_fnfield);
c906108c
SS
11522 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11523 new_fnfield->next = flp->head;
11524 flp->head = new_fnfield;
11525 flp->length++;
11526
11527 /* Fill in the member function field info. */
11528 fnp = &new_fnfield->fnfield;
3da10d80
KS
11529
11530 /* Delay processing of the physname until later. */
11531 if (cu->language == language_cplus || cu->language == language_java)
11532 {
11533 add_to_method_list (type, i, flp->length - 1, fieldname,
11534 die, cu);
11535 }
11536 else
11537 {
1d06ead6 11538 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
11539 fnp->physname = physname ? physname : "";
11540 }
11541
c906108c 11542 fnp->type = alloc_type (objfile);
f792889a
DJ
11543 this_type = read_type_die (die, cu);
11544 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 11545 {
f792889a 11546 int nparams = TYPE_NFIELDS (this_type);
c906108c 11547
f792889a 11548 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
11549 of the method itself (TYPE_CODE_METHOD). */
11550 smash_to_method_type (fnp->type, type,
f792889a
DJ
11551 TYPE_TARGET_TYPE (this_type),
11552 TYPE_FIELDS (this_type),
11553 TYPE_NFIELDS (this_type),
11554 TYPE_VARARGS (this_type));
c906108c
SS
11555
11556 /* Handle static member functions.
c5aa993b 11557 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
11558 member functions. G++ helps GDB by marking the first
11559 parameter for non-static member functions (which is the this
11560 pointer) as artificial. We obtain this information from
11561 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 11562 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
11563 fnp->voffset = VOFFSET_STATIC;
11564 }
11565 else
e2e0b3e5 11566 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 11567 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
11568
11569 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 11570 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 11571 fnp->fcontext = die_containing_type (die, cu);
c906108c 11572
3e43a32a
MS
11573 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11574 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
11575
11576 /* Get accessibility. */
e142c38c 11577 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 11578 if (attr)
60d5a603
JK
11579 accessibility = DW_UNSND (attr);
11580 else
11581 accessibility = dwarf2_default_access_attribute (die, cu);
11582 switch (accessibility)
c906108c 11583 {
60d5a603
JK
11584 case DW_ACCESS_private:
11585 fnp->is_private = 1;
11586 break;
11587 case DW_ACCESS_protected:
11588 fnp->is_protected = 1;
11589 break;
c906108c
SS
11590 }
11591
b02dede2 11592 /* Check for artificial methods. */
e142c38c 11593 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
11594 if (attr && DW_UNSND (attr) != 0)
11595 fnp->is_artificial = 1;
11596
7d27a96d
TT
11597 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11598
0d564a31 11599 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
11600 function. For older versions of GCC, this is an offset in the
11601 appropriate virtual table, as specified by DW_AT_containing_type.
11602 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
11603 to the object address. */
11604
e142c38c 11605 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 11606 if (attr)
8e19ed76 11607 {
aec5aa8b 11608 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 11609 {
aec5aa8b
TT
11610 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11611 {
11612 /* Old-style GCC. */
11613 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11614 }
11615 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11616 || (DW_BLOCK (attr)->size > 1
11617 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11618 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11619 {
11620 struct dwarf_block blk;
11621 int offset;
11622
11623 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11624 ? 1 : 2);
11625 blk.size = DW_BLOCK (attr)->size - offset;
11626 blk.data = DW_BLOCK (attr)->data + offset;
11627 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11628 if ((fnp->voffset % cu->header.addr_size) != 0)
11629 dwarf2_complex_location_expr_complaint ();
11630 else
11631 fnp->voffset /= cu->header.addr_size;
11632 fnp->voffset += 2;
11633 }
11634 else
11635 dwarf2_complex_location_expr_complaint ();
11636
11637 if (!fnp->fcontext)
11638 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11639 }
3690dd37 11640 else if (attr_form_is_section_offset (attr))
8e19ed76 11641 {
4d3c2250 11642 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
11643 }
11644 else
11645 {
4d3c2250
KB
11646 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11647 fieldname);
8e19ed76 11648 }
0d564a31 11649 }
d48cc9dd
DJ
11650 else
11651 {
11652 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11653 if (attr && DW_UNSND (attr))
11654 {
11655 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11656 complaint (&symfile_complaints,
3e43a32a
MS
11657 _("Member function \"%s\" (offset %d) is virtual "
11658 "but the vtable offset is not specified"),
b64f50a1 11659 fieldname, die->offset.sect_off);
9655fd1a 11660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
11661 TYPE_CPLUS_DYNAMIC (type) = 1;
11662 }
11663 }
c906108c
SS
11664}
11665
11666/* Create the vector of member function fields, and attach it to the type. */
11667
11668static void
fba45db2 11669dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11670 struct dwarf2_cu *cu)
c906108c
SS
11671{
11672 struct fnfieldlist *flp;
c906108c
SS
11673 int i;
11674
b4ba55a1 11675 if (cu->language == language_ada)
a73c6dcd 11676 error (_("unexpected member functions in Ada type"));
b4ba55a1 11677
c906108c
SS
11678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11679 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11680 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11681
11682 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11683 {
11684 struct nextfnfield *nfp = flp->head;
11685 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11686 int k;
11687
11688 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11689 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11690 fn_flp->fn_fields = (struct fn_field *)
11691 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11692 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 11693 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
11694 }
11695
11696 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
11697}
11698
1168df01
JB
11699/* Returns non-zero if NAME is the name of a vtable member in CU's
11700 language, zero otherwise. */
11701static int
11702is_vtable_name (const char *name, struct dwarf2_cu *cu)
11703{
11704 static const char vptr[] = "_vptr";
987504bb 11705 static const char vtable[] = "vtable";
1168df01 11706
987504bb
JJ
11707 /* Look for the C++ and Java forms of the vtable. */
11708 if ((cu->language == language_java
11709 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11710 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11711 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11712 return 1;
11713
11714 return 0;
11715}
11716
c0dd20ea 11717/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11718 functions, with the ABI-specified layout. If TYPE describes
11719 such a structure, smash it into a member function type.
61049d3b
DJ
11720
11721 GCC shouldn't do this; it should just output pointer to member DIEs.
11722 This is GCC PR debug/28767. */
c0dd20ea 11723
0b92b5bb
TT
11724static void
11725quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11726{
0b92b5bb 11727 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11728
11729 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11730 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11731 return;
c0dd20ea
DJ
11732
11733 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11734 if (TYPE_FIELD_NAME (type, 0) == NULL
11735 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11736 || TYPE_FIELD_NAME (type, 1) == NULL
11737 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11738 return;
c0dd20ea
DJ
11739
11740 /* Find the type of the method. */
0b92b5bb 11741 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11742 if (pfn_type == NULL
11743 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11744 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11745 return;
c0dd20ea
DJ
11746
11747 /* Look for the "this" argument. */
11748 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11749 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11750 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11751 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11752 return;
c0dd20ea
DJ
11753
11754 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11755 new_type = alloc_type (objfile);
11756 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11757 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11758 TYPE_VARARGS (pfn_type));
0b92b5bb 11759 smash_to_methodptr_type (type, new_type);
c0dd20ea 11760}
1168df01 11761
685b1105
JK
11762/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11763 (icc). */
11764
11765static int
11766producer_is_icc (struct dwarf2_cu *cu)
11767{
11768 if (!cu->checked_producer)
11769 check_producer (cu);
11770
11771 return cu->producer_is_icc;
11772}
11773
c906108c 11774/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11775 (definition) to create a type for the structure or union. Fill in
11776 the type's name and general properties; the members will not be
3d1d5ea3 11777 processed until process_structure_scope.
c906108c 11778
c767944b
DJ
11779 NOTE: we need to call these functions regardless of whether or not the
11780 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11781 structure or union. This gets the type entered into our set of
11782 user defined types.
11783
11784 However, if the structure is incomplete (an opaque struct/union)
11785 then suppress creating a symbol table entry for it since gdb only
11786 wants to find the one with the complete definition. Note that if
11787 it is complete, we just call new_symbol, which does it's own
11788 checking about whether the struct/union is anonymous or not (and
11789 suppresses creating a symbol table entry itself). */
11790
f792889a 11791static struct type *
134d01f1 11792read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11793{
e7c27a73 11794 struct objfile *objfile = cu->objfile;
c906108c
SS
11795 struct type *type;
11796 struct attribute *attr;
15d034d0 11797 const char *name;
c906108c 11798
348e048f
DE
11799 /* If the definition of this type lives in .debug_types, read that type.
11800 Don't follow DW_AT_specification though, that will take us back up
11801 the chain and we want to go down. */
45e58e77 11802 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11803 if (attr)
11804 {
ac9ec31b 11805 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 11806
ac9ec31b 11807 /* The type's CU may not be the same as CU.
02142a6c 11808 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
11809 return set_die_type (die, type, cu);
11810 }
11811
c0dd20ea 11812 type = alloc_type (objfile);
c906108c 11813 INIT_CPLUS_SPECIFIC (type);
93311388 11814
39cbfefa
DJ
11815 name = dwarf2_name (die, cu);
11816 if (name != NULL)
c906108c 11817 {
987504bb
JJ
11818 if (cu->language == language_cplus
11819 || cu->language == language_java)
63d06c5c 11820 {
15d034d0 11821 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
11822
11823 /* dwarf2_full_name might have already finished building the DIE's
11824 type. If so, there is no need to continue. */
11825 if (get_die_type (die, cu) != NULL)
11826 return get_die_type (die, cu);
11827
11828 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11829 if (die->tag == DW_TAG_structure_type
11830 || die->tag == DW_TAG_class_type)
11831 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11832 }
11833 else
11834 {
d8151005
DJ
11835 /* The name is already allocated along with this objfile, so
11836 we don't need to duplicate it for the type. */
7d455152 11837 TYPE_TAG_NAME (type) = name;
94af9270
KS
11838 if (die->tag == DW_TAG_class_type)
11839 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11840 }
c906108c
SS
11841 }
11842
11843 if (die->tag == DW_TAG_structure_type)
11844 {
11845 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11846 }
11847 else if (die->tag == DW_TAG_union_type)
11848 {
11849 TYPE_CODE (type) = TYPE_CODE_UNION;
11850 }
11851 else
11852 {
c906108c
SS
11853 TYPE_CODE (type) = TYPE_CODE_CLASS;
11854 }
11855
0cc2414c
TT
11856 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11857 TYPE_DECLARED_CLASS (type) = 1;
11858
e142c38c 11859 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11860 if (attr)
11861 {
11862 TYPE_LENGTH (type) = DW_UNSND (attr);
11863 }
11864 else
11865 {
11866 TYPE_LENGTH (type) = 0;
11867 }
11868
685b1105
JK
11869 if (producer_is_icc (cu))
11870 {
11871 /* ICC does not output the required DW_AT_declaration
11872 on incomplete types, but gives them a size of zero. */
11873 }
11874 else
11875 TYPE_STUB_SUPPORTED (type) = 1;
11876
dc718098 11877 if (die_is_declaration (die, cu))
876cecd0 11878 TYPE_STUB (type) = 1;
a6c727b2
DJ
11879 else if (attr == NULL && die->child == NULL
11880 && producer_is_realview (cu->producer))
11881 /* RealView does not output the required DW_AT_declaration
11882 on incomplete types. */
11883 TYPE_STUB (type) = 1;
dc718098 11884
c906108c
SS
11885 /* We need to add the type field to the die immediately so we don't
11886 infinitely recurse when dealing with pointers to the structure
0963b4bd 11887 type within the structure itself. */
1c379e20 11888 set_die_type (die, type, cu);
c906108c 11889
7e314c57
JK
11890 /* set_die_type should be already done. */
11891 set_descriptive_type (type, die, cu);
11892
c767944b
DJ
11893 return type;
11894}
11895
11896/* Finish creating a structure or union type, including filling in
11897 its members and creating a symbol for it. */
11898
11899static void
11900process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11901{
11902 struct objfile *objfile = cu->objfile;
11903 struct die_info *child_die = die->child;
11904 struct type *type;
11905
11906 type = get_die_type (die, cu);
11907 if (type == NULL)
11908 type = read_structure_type (die, cu);
11909
e142c38c 11910 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11911 {
11912 struct field_info fi;
11913 struct die_info *child_die;
34eaf542 11914 VEC (symbolp) *template_args = NULL;
c767944b 11915 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11916
11917 memset (&fi, 0, sizeof (struct field_info));
11918
639d11d3 11919 child_die = die->child;
c906108c
SS
11920
11921 while (child_die && child_die->tag)
11922 {
a9a9bd0f
DC
11923 if (child_die->tag == DW_TAG_member
11924 || child_die->tag == DW_TAG_variable)
c906108c 11925 {
a9a9bd0f
DC
11926 /* NOTE: carlton/2002-11-05: A C++ static data member
11927 should be a DW_TAG_member that is a declaration, but
11928 all versions of G++ as of this writing (so through at
11929 least 3.2.1) incorrectly generate DW_TAG_variable
11930 tags for them instead. */
e7c27a73 11931 dwarf2_add_field (&fi, child_die, cu);
c906108c 11932 }
8713b1b1 11933 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11934 {
0963b4bd 11935 /* C++ member function. */
e7c27a73 11936 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11937 }
11938 else if (child_die->tag == DW_TAG_inheritance)
11939 {
11940 /* C++ base class field. */
e7c27a73 11941 dwarf2_add_field (&fi, child_die, cu);
c906108c 11942 }
98751a41
JK
11943 else if (child_die->tag == DW_TAG_typedef)
11944 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11945 else if (child_die->tag == DW_TAG_template_type_param
11946 || child_die->tag == DW_TAG_template_value_param)
11947 {
11948 struct symbol *arg = new_symbol (child_die, NULL, cu);
11949
f1078f66
DJ
11950 if (arg != NULL)
11951 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11952 }
11953
c906108c
SS
11954 child_die = sibling_die (child_die);
11955 }
11956
34eaf542
TT
11957 /* Attach template arguments to type. */
11958 if (! VEC_empty (symbolp, template_args))
11959 {
11960 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11961 TYPE_N_TEMPLATE_ARGUMENTS (type)
11962 = VEC_length (symbolp, template_args);
11963 TYPE_TEMPLATE_ARGUMENTS (type)
11964 = obstack_alloc (&objfile->objfile_obstack,
11965 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11966 * sizeof (struct symbol *)));
11967 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11968 VEC_address (symbolp, template_args),
11969 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11970 * sizeof (struct symbol *)));
11971 VEC_free (symbolp, template_args);
11972 }
11973
c906108c
SS
11974 /* Attach fields and member functions to the type. */
11975 if (fi.nfields)
e7c27a73 11976 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11977 if (fi.nfnfields)
11978 {
e7c27a73 11979 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11980
c5aa993b 11981 /* Get the type which refers to the base class (possibly this
c906108c 11982 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11983 class from the DW_AT_containing_type attribute. This use of
11984 DW_AT_containing_type is a GNU extension. */
c906108c 11985
e142c38c 11986 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11987 {
e7c27a73 11988 struct type *t = die_containing_type (die, cu);
c906108c
SS
11989
11990 TYPE_VPTR_BASETYPE (type) = t;
11991 if (type == t)
11992 {
c906108c
SS
11993 int i;
11994
11995 /* Our own class provides vtbl ptr. */
11996 for (i = TYPE_NFIELDS (t) - 1;
11997 i >= TYPE_N_BASECLASSES (t);
11998 --i)
11999 {
0d5cff50 12000 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 12001
1168df01 12002 if (is_vtable_name (fieldname, cu))
c906108c
SS
12003 {
12004 TYPE_VPTR_FIELDNO (type) = i;
12005 break;
12006 }
12007 }
12008
12009 /* Complain if virtual function table field not found. */
12010 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 12011 complaint (&symfile_complaints,
3e43a32a
MS
12012 _("virtual function table pointer "
12013 "not found when defining class '%s'"),
4d3c2250
KB
12014 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12015 "");
c906108c
SS
12016 }
12017 else
12018 {
12019 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12020 }
12021 }
f6235d4c
EZ
12022 else if (cu->producer
12023 && strncmp (cu->producer,
12024 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12025 {
12026 /* The IBM XLC compiler does not provide direct indication
12027 of the containing type, but the vtable pointer is
12028 always named __vfp. */
12029
12030 int i;
12031
12032 for (i = TYPE_NFIELDS (type) - 1;
12033 i >= TYPE_N_BASECLASSES (type);
12034 --i)
12035 {
12036 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12037 {
12038 TYPE_VPTR_FIELDNO (type) = i;
12039 TYPE_VPTR_BASETYPE (type) = type;
12040 break;
12041 }
12042 }
12043 }
c906108c 12044 }
98751a41
JK
12045
12046 /* Copy fi.typedef_field_list linked list elements content into the
12047 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12048 if (fi.typedef_field_list)
12049 {
12050 int i = fi.typedef_field_list_count;
12051
a0d7a4ff 12052 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
12053 TYPE_TYPEDEF_FIELD_ARRAY (type)
12054 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12055 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12056
12057 /* Reverse the list order to keep the debug info elements order. */
12058 while (--i >= 0)
12059 {
12060 struct typedef_field *dest, *src;
6e70227d 12061
98751a41
JK
12062 dest = &TYPE_TYPEDEF_FIELD (type, i);
12063 src = &fi.typedef_field_list->field;
12064 fi.typedef_field_list = fi.typedef_field_list->next;
12065 *dest = *src;
12066 }
12067 }
c767944b
DJ
12068
12069 do_cleanups (back_to);
eb2a6f42
TT
12070
12071 if (HAVE_CPLUS_STRUCT (type))
12072 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 12073 }
63d06c5c 12074
bb5ed363 12075 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 12076
90aeadfc
DC
12077 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12078 snapshots) has been known to create a die giving a declaration
12079 for a class that has, as a child, a die giving a definition for a
12080 nested class. So we have to process our children even if the
12081 current die is a declaration. Normally, of course, a declaration
12082 won't have any children at all. */
134d01f1 12083
90aeadfc
DC
12084 while (child_die != NULL && child_die->tag)
12085 {
12086 if (child_die->tag == DW_TAG_member
12087 || child_die->tag == DW_TAG_variable
34eaf542
TT
12088 || child_die->tag == DW_TAG_inheritance
12089 || child_die->tag == DW_TAG_template_value_param
12090 || child_die->tag == DW_TAG_template_type_param)
134d01f1 12091 {
90aeadfc 12092 /* Do nothing. */
134d01f1 12093 }
90aeadfc
DC
12094 else
12095 process_die (child_die, cu);
134d01f1 12096
90aeadfc 12097 child_die = sibling_die (child_die);
134d01f1
DJ
12098 }
12099
fa4028e9
JB
12100 /* Do not consider external references. According to the DWARF standard,
12101 these DIEs are identified by the fact that they have no byte_size
12102 attribute, and a declaration attribute. */
12103 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12104 || !die_is_declaration (die, cu))
c767944b 12105 new_symbol (die, type, cu);
134d01f1
DJ
12106}
12107
12108/* Given a DW_AT_enumeration_type die, set its type. We do not
12109 complete the type's fields yet, or create any symbols. */
c906108c 12110
f792889a 12111static struct type *
134d01f1 12112read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12113{
e7c27a73 12114 struct objfile *objfile = cu->objfile;
c906108c 12115 struct type *type;
c906108c 12116 struct attribute *attr;
0114d602 12117 const char *name;
134d01f1 12118
348e048f
DE
12119 /* If the definition of this type lives in .debug_types, read that type.
12120 Don't follow DW_AT_specification though, that will take us back up
12121 the chain and we want to go down. */
45e58e77 12122 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12123 if (attr)
12124 {
ac9ec31b 12125 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12126
ac9ec31b 12127 /* The type's CU may not be the same as CU.
02142a6c 12128 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12129 return set_die_type (die, type, cu);
12130 }
12131
c906108c
SS
12132 type = alloc_type (objfile);
12133
12134 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 12135 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 12136 if (name != NULL)
7d455152 12137 TYPE_TAG_NAME (type) = name;
c906108c 12138
e142c38c 12139 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12140 if (attr)
12141 {
12142 TYPE_LENGTH (type) = DW_UNSND (attr);
12143 }
12144 else
12145 {
12146 TYPE_LENGTH (type) = 0;
12147 }
12148
137033e9
JB
12149 /* The enumeration DIE can be incomplete. In Ada, any type can be
12150 declared as private in the package spec, and then defined only
12151 inside the package body. Such types are known as Taft Amendment
12152 Types. When another package uses such a type, an incomplete DIE
12153 may be generated by the compiler. */
02eb380e 12154 if (die_is_declaration (die, cu))
876cecd0 12155 TYPE_STUB (type) = 1;
02eb380e 12156
f792889a 12157 return set_die_type (die, type, cu);
134d01f1
DJ
12158}
12159
12160/* Given a pointer to a die which begins an enumeration, process all
12161 the dies that define the members of the enumeration, and create the
12162 symbol for the enumeration type.
12163
12164 NOTE: We reverse the order of the element list. */
12165
12166static void
12167process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12168{
f792889a 12169 struct type *this_type;
134d01f1 12170
f792889a
DJ
12171 this_type = get_die_type (die, cu);
12172 if (this_type == NULL)
12173 this_type = read_enumeration_type (die, cu);
9dc481d3 12174
639d11d3 12175 if (die->child != NULL)
c906108c 12176 {
9dc481d3
DE
12177 struct die_info *child_die;
12178 struct symbol *sym;
12179 struct field *fields = NULL;
12180 int num_fields = 0;
12181 int unsigned_enum = 1;
15d034d0 12182 const char *name;
cafec441
TT
12183 int flag_enum = 1;
12184 ULONGEST mask = 0;
9dc481d3 12185
639d11d3 12186 child_die = die->child;
c906108c
SS
12187 while (child_die && child_die->tag)
12188 {
12189 if (child_die->tag != DW_TAG_enumerator)
12190 {
e7c27a73 12191 process_die (child_die, cu);
c906108c
SS
12192 }
12193 else
12194 {
39cbfefa
DJ
12195 name = dwarf2_name (child_die, cu);
12196 if (name)
c906108c 12197 {
f792889a 12198 sym = new_symbol (child_die, this_type, cu);
c906108c 12199 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
12200 {
12201 unsigned_enum = 0;
12202 flag_enum = 0;
12203 }
12204 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12205 flag_enum = 0;
12206 else
12207 mask |= SYMBOL_VALUE (sym);
c906108c
SS
12208
12209 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12210 {
12211 fields = (struct field *)
12212 xrealloc (fields,
12213 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12214 * sizeof (struct field));
c906108c
SS
12215 }
12216
3567439c 12217 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 12218 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 12219 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
12220 FIELD_BITSIZE (fields[num_fields]) = 0;
12221
12222 num_fields++;
12223 }
12224 }
12225
12226 child_die = sibling_die (child_die);
12227 }
12228
12229 if (num_fields)
12230 {
f792889a
DJ
12231 TYPE_NFIELDS (this_type) = num_fields;
12232 TYPE_FIELDS (this_type) = (struct field *)
12233 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12234 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 12235 sizeof (struct field) * num_fields);
b8c9b27d 12236 xfree (fields);
c906108c
SS
12237 }
12238 if (unsigned_enum)
876cecd0 12239 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
12240 if (flag_enum)
12241 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 12242 }
134d01f1 12243
6c83ed52
TT
12244 /* If we are reading an enum from a .debug_types unit, and the enum
12245 is a declaration, and the enum is not the signatured type in the
12246 unit, then we do not want to add a symbol for it. Adding a
12247 symbol would in some cases obscure the true definition of the
12248 enum, giving users an incomplete type when the definition is
12249 actually available. Note that we do not want to do this for all
12250 enums which are just declarations, because C++0x allows forward
12251 enum declarations. */
3019eac3 12252 if (cu->per_cu->is_debug_types
6c83ed52
TT
12253 && die_is_declaration (die, cu))
12254 {
52dc124a 12255 struct signatured_type *sig_type;
6c83ed52 12256
c0f78cd4 12257 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
12258 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12259 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
12260 return;
12261 }
12262
f792889a 12263 new_symbol (die, this_type, cu);
c906108c
SS
12264}
12265
12266/* Extract all information from a DW_TAG_array_type DIE and put it in
12267 the DIE's type field. For now, this only handles one dimensional
12268 arrays. */
12269
f792889a 12270static struct type *
e7c27a73 12271read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12272{
e7c27a73 12273 struct objfile *objfile = cu->objfile;
c906108c 12274 struct die_info *child_die;
7e314c57 12275 struct type *type;
c906108c
SS
12276 struct type *element_type, *range_type, *index_type;
12277 struct type **range_types = NULL;
12278 struct attribute *attr;
12279 int ndim = 0;
12280 struct cleanup *back_to;
15d034d0 12281 const char *name;
c906108c 12282
e7c27a73 12283 element_type = die_type (die, cu);
c906108c 12284
7e314c57
JK
12285 /* The die_type call above may have already set the type for this DIE. */
12286 type = get_die_type (die, cu);
12287 if (type)
12288 return type;
12289
c906108c
SS
12290 /* Irix 6.2 native cc creates array types without children for
12291 arrays with unspecified length. */
639d11d3 12292 if (die->child == NULL)
c906108c 12293 {
46bf5051 12294 index_type = objfile_type (objfile)->builtin_int;
c906108c 12295 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
12296 type = create_array_type (NULL, element_type, range_type);
12297 return set_die_type (die, type, cu);
c906108c
SS
12298 }
12299
12300 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 12301 child_die = die->child;
c906108c
SS
12302 while (child_die && child_die->tag)
12303 {
12304 if (child_die->tag == DW_TAG_subrange_type)
12305 {
f792889a 12306 struct type *child_type = read_type_die (child_die, cu);
9a619af0 12307
f792889a 12308 if (child_type != NULL)
a02abb62 12309 {
0963b4bd
MS
12310 /* The range type was succesfully read. Save it for the
12311 array type creation. */
a02abb62
JB
12312 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12313 {
12314 range_types = (struct type **)
12315 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12316 * sizeof (struct type *));
12317 if (ndim == 0)
12318 make_cleanup (free_current_contents, &range_types);
12319 }
f792889a 12320 range_types[ndim++] = child_type;
a02abb62 12321 }
c906108c
SS
12322 }
12323 child_die = sibling_die (child_die);
12324 }
12325
12326 /* Dwarf2 dimensions are output from left to right, create the
12327 necessary array types in backwards order. */
7ca2d3a3 12328
c906108c 12329 type = element_type;
7ca2d3a3
DL
12330
12331 if (read_array_order (die, cu) == DW_ORD_col_major)
12332 {
12333 int i = 0;
9a619af0 12334
7ca2d3a3
DL
12335 while (i < ndim)
12336 type = create_array_type (NULL, type, range_types[i++]);
12337 }
12338 else
12339 {
12340 while (ndim-- > 0)
12341 type = create_array_type (NULL, type, range_types[ndim]);
12342 }
c906108c 12343
f5f8a009
EZ
12344 /* Understand Dwarf2 support for vector types (like they occur on
12345 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12346 array type. This is not part of the Dwarf2/3 standard yet, but a
12347 custom vendor extension. The main difference between a regular
12348 array and the vector variant is that vectors are passed by value
12349 to functions. */
e142c38c 12350 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 12351 if (attr)
ea37ba09 12352 make_vector_type (type);
f5f8a009 12353
dbc98a8b
KW
12354 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12355 implementation may choose to implement triple vectors using this
12356 attribute. */
12357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12358 if (attr)
12359 {
12360 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12361 TYPE_LENGTH (type) = DW_UNSND (attr);
12362 else
3e43a32a
MS
12363 complaint (&symfile_complaints,
12364 _("DW_AT_byte_size for array type smaller "
12365 "than the total size of elements"));
dbc98a8b
KW
12366 }
12367
39cbfefa
DJ
12368 name = dwarf2_name (die, cu);
12369 if (name)
12370 TYPE_NAME (type) = name;
6e70227d 12371
0963b4bd 12372 /* Install the type in the die. */
7e314c57
JK
12373 set_die_type (die, type, cu);
12374
12375 /* set_die_type should be already done. */
b4ba55a1
JB
12376 set_descriptive_type (type, die, cu);
12377
c906108c
SS
12378 do_cleanups (back_to);
12379
7e314c57 12380 return type;
c906108c
SS
12381}
12382
7ca2d3a3 12383static enum dwarf_array_dim_ordering
6e70227d 12384read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
12385{
12386 struct attribute *attr;
12387
12388 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12389
12390 if (attr) return DW_SND (attr);
12391
0963b4bd
MS
12392 /* GNU F77 is a special case, as at 08/2004 array type info is the
12393 opposite order to the dwarf2 specification, but data is still
12394 laid out as per normal fortran.
7ca2d3a3 12395
0963b4bd
MS
12396 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12397 version checking. */
7ca2d3a3 12398
905e0470
PM
12399 if (cu->language == language_fortran
12400 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
12401 {
12402 return DW_ORD_row_major;
12403 }
12404
6e70227d 12405 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
12406 {
12407 case array_column_major:
12408 return DW_ORD_col_major;
12409 case array_row_major:
12410 default:
12411 return DW_ORD_row_major;
12412 };
12413}
12414
72019c9c 12415/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 12416 the DIE's type field. */
72019c9c 12417
f792889a 12418static struct type *
72019c9c
GM
12419read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12420{
7e314c57
JK
12421 struct type *domain_type, *set_type;
12422 struct attribute *attr;
f792889a 12423
7e314c57
JK
12424 domain_type = die_type (die, cu);
12425
12426 /* The die_type call above may have already set the type for this DIE. */
12427 set_type = get_die_type (die, cu);
12428 if (set_type)
12429 return set_type;
12430
12431 set_type = create_set_type (NULL, domain_type);
12432
12433 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
12434 if (attr)
12435 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 12436
f792889a 12437 return set_die_type (die, set_type, cu);
72019c9c 12438}
7ca2d3a3 12439
0971de02
TT
12440/* A helper for read_common_block that creates a locexpr baton.
12441 SYM is the symbol which we are marking as computed.
12442 COMMON_DIE is the DIE for the common block.
12443 COMMON_LOC is the location expression attribute for the common
12444 block itself.
12445 MEMBER_LOC is the location expression attribute for the particular
12446 member of the common block that we are processing.
12447 CU is the CU from which the above come. */
12448
12449static void
12450mark_common_block_symbol_computed (struct symbol *sym,
12451 struct die_info *common_die,
12452 struct attribute *common_loc,
12453 struct attribute *member_loc,
12454 struct dwarf2_cu *cu)
12455{
12456 struct objfile *objfile = dwarf2_per_objfile->objfile;
12457 struct dwarf2_locexpr_baton *baton;
12458 gdb_byte *ptr;
12459 unsigned int cu_off;
12460 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12461 LONGEST offset = 0;
12462
12463 gdb_assert (common_loc && member_loc);
12464 gdb_assert (attr_form_is_block (common_loc));
12465 gdb_assert (attr_form_is_block (member_loc)
12466 || attr_form_is_constant (member_loc));
12467
12468 baton = obstack_alloc (&objfile->objfile_obstack,
12469 sizeof (struct dwarf2_locexpr_baton));
12470 baton->per_cu = cu->per_cu;
12471 gdb_assert (baton->per_cu);
12472
12473 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12474
12475 if (attr_form_is_constant (member_loc))
12476 {
12477 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12478 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12479 }
12480 else
12481 baton->size += DW_BLOCK (member_loc)->size;
12482
12483 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12484 baton->data = ptr;
12485
12486 *ptr++ = DW_OP_call4;
12487 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12488 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12489 ptr += 4;
12490
12491 if (attr_form_is_constant (member_loc))
12492 {
12493 *ptr++ = DW_OP_addr;
12494 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12495 ptr += cu->header.addr_size;
12496 }
12497 else
12498 {
12499 /* We have to copy the data here, because DW_OP_call4 will only
12500 use a DW_AT_location attribute. */
12501 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12502 ptr += DW_BLOCK (member_loc)->size;
12503 }
12504
12505 *ptr++ = DW_OP_plus;
12506 gdb_assert (ptr - baton->data == baton->size);
12507
0971de02 12508 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 12509 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
12510}
12511
4357ac6c
TT
12512/* Create appropriate locally-scoped variables for all the
12513 DW_TAG_common_block entries. Also create a struct common_block
12514 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12515 is used to sepate the common blocks name namespace from regular
12516 variable names. */
c906108c
SS
12517
12518static void
e7c27a73 12519read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12520{
0971de02
TT
12521 struct attribute *attr;
12522
12523 attr = dwarf2_attr (die, DW_AT_location, cu);
12524 if (attr)
12525 {
12526 /* Support the .debug_loc offsets. */
12527 if (attr_form_is_block (attr))
12528 {
12529 /* Ok. */
12530 }
12531 else if (attr_form_is_section_offset (attr))
12532 {
12533 dwarf2_complex_location_expr_complaint ();
12534 attr = NULL;
12535 }
12536 else
12537 {
12538 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12539 "common block member");
12540 attr = NULL;
12541 }
12542 }
12543
639d11d3 12544 if (die->child != NULL)
c906108c 12545 {
4357ac6c
TT
12546 struct objfile *objfile = cu->objfile;
12547 struct die_info *child_die;
12548 size_t n_entries = 0, size;
12549 struct common_block *common_block;
12550 struct symbol *sym;
74ac6d43 12551
4357ac6c
TT
12552 for (child_die = die->child;
12553 child_die && child_die->tag;
12554 child_die = sibling_die (child_die))
12555 ++n_entries;
12556
12557 size = (sizeof (struct common_block)
12558 + (n_entries - 1) * sizeof (struct symbol *));
12559 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12560 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12561 common_block->n_entries = 0;
12562
12563 for (child_die = die->child;
12564 child_die && child_die->tag;
12565 child_die = sibling_die (child_die))
12566 {
12567 /* Create the symbol in the DW_TAG_common_block block in the current
12568 symbol scope. */
e7c27a73 12569 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
12570 if (sym != NULL)
12571 {
12572 struct attribute *member_loc;
12573
12574 common_block->contents[common_block->n_entries++] = sym;
12575
12576 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12577 cu);
12578 if (member_loc)
12579 {
12580 /* GDB has handled this for a long time, but it is
12581 not specified by DWARF. It seems to have been
12582 emitted by gfortran at least as recently as:
12583 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12584 complaint (&symfile_complaints,
12585 _("Variable in common block has "
12586 "DW_AT_data_member_location "
12587 "- DIE at 0x%x [in module %s]"),
12588 child_die->offset.sect_off, cu->objfile->name);
12589
12590 if (attr_form_is_section_offset (member_loc))
12591 dwarf2_complex_location_expr_complaint ();
12592 else if (attr_form_is_constant (member_loc)
12593 || attr_form_is_block (member_loc))
12594 {
12595 if (attr)
12596 mark_common_block_symbol_computed (sym, die, attr,
12597 member_loc, cu);
12598 }
12599 else
12600 dwarf2_complex_location_expr_complaint ();
12601 }
12602 }
c906108c 12603 }
4357ac6c
TT
12604
12605 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12606 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
12607 }
12608}
12609
0114d602 12610/* Create a type for a C++ namespace. */
d9fa45fe 12611
0114d602
DJ
12612static struct type *
12613read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 12614{
e7c27a73 12615 struct objfile *objfile = cu->objfile;
0114d602 12616 const char *previous_prefix, *name;
9219021c 12617 int is_anonymous;
0114d602
DJ
12618 struct type *type;
12619
12620 /* For extensions, reuse the type of the original namespace. */
12621 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12622 {
12623 struct die_info *ext_die;
12624 struct dwarf2_cu *ext_cu = cu;
9a619af0 12625
0114d602
DJ
12626 ext_die = dwarf2_extension (die, &ext_cu);
12627 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
12628
12629 /* EXT_CU may not be the same as CU.
02142a6c 12630 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
12631 return set_die_type (die, type, cu);
12632 }
9219021c 12633
e142c38c 12634 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
12635
12636 /* Now build the name of the current namespace. */
12637
0114d602
DJ
12638 previous_prefix = determine_prefix (die, cu);
12639 if (previous_prefix[0] != '\0')
12640 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 12641 previous_prefix, name, 0, cu);
0114d602
DJ
12642
12643 /* Create the type. */
12644 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12645 objfile);
abee88f2 12646 TYPE_NAME (type) = name;
0114d602
DJ
12647 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12648
60531b24 12649 return set_die_type (die, type, cu);
0114d602
DJ
12650}
12651
12652/* Read a C++ namespace. */
12653
12654static void
12655read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12656{
12657 struct objfile *objfile = cu->objfile;
0114d602 12658 int is_anonymous;
9219021c 12659
5c4e30ca
DC
12660 /* Add a symbol associated to this if we haven't seen the namespace
12661 before. Also, add a using directive if it's an anonymous
12662 namespace. */
9219021c 12663
f2f0e013 12664 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
12665 {
12666 struct type *type;
12667
0114d602 12668 type = read_type_die (die, cu);
e7c27a73 12669 new_symbol (die, type, cu);
5c4e30ca 12670
e8e80198 12671 namespace_name (die, &is_anonymous, cu);
5c4e30ca 12672 if (is_anonymous)
0114d602
DJ
12673 {
12674 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 12675
c0cc3a76 12676 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 12677 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 12678 }
5c4e30ca 12679 }
9219021c 12680
639d11d3 12681 if (die->child != NULL)
d9fa45fe 12682 {
639d11d3 12683 struct die_info *child_die = die->child;
6e70227d 12684
d9fa45fe
DC
12685 while (child_die && child_die->tag)
12686 {
e7c27a73 12687 process_die (child_die, cu);
d9fa45fe
DC
12688 child_die = sibling_die (child_die);
12689 }
12690 }
38d518c9
EZ
12691}
12692
f55ee35c
JK
12693/* Read a Fortran module as type. This DIE can be only a declaration used for
12694 imported module. Still we need that type as local Fortran "use ... only"
12695 declaration imports depend on the created type in determine_prefix. */
12696
12697static struct type *
12698read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12699{
12700 struct objfile *objfile = cu->objfile;
15d034d0 12701 const char *module_name;
f55ee35c
JK
12702 struct type *type;
12703
12704 module_name = dwarf2_name (die, cu);
12705 if (!module_name)
3e43a32a
MS
12706 complaint (&symfile_complaints,
12707 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12708 die->offset.sect_off);
f55ee35c
JK
12709 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12710
12711 /* determine_prefix uses TYPE_TAG_NAME. */
12712 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12713
12714 return set_die_type (die, type, cu);
12715}
12716
5d7cb8df
JK
12717/* Read a Fortran module. */
12718
12719static void
12720read_module (struct die_info *die, struct dwarf2_cu *cu)
12721{
12722 struct die_info *child_die = die->child;
12723
5d7cb8df
JK
12724 while (child_die && child_die->tag)
12725 {
12726 process_die (child_die, cu);
12727 child_die = sibling_die (child_die);
12728 }
12729}
12730
38d518c9
EZ
12731/* Return the name of the namespace represented by DIE. Set
12732 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12733 namespace. */
12734
12735static const char *
e142c38c 12736namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12737{
12738 struct die_info *current_die;
12739 const char *name = NULL;
12740
12741 /* Loop through the extensions until we find a name. */
12742
12743 for (current_die = die;
12744 current_die != NULL;
f2f0e013 12745 current_die = dwarf2_extension (die, &cu))
38d518c9 12746 {
e142c38c 12747 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12748 if (name != NULL)
12749 break;
12750 }
12751
12752 /* Is it an anonymous namespace? */
12753
12754 *is_anonymous = (name == NULL);
12755 if (*is_anonymous)
2b1dbab0 12756 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12757
12758 return name;
d9fa45fe
DC
12759}
12760
c906108c
SS
12761/* Extract all information from a DW_TAG_pointer_type DIE and add to
12762 the user defined type vector. */
12763
f792889a 12764static struct type *
e7c27a73 12765read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12766{
5e2b427d 12767 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12768 struct comp_unit_head *cu_header = &cu->header;
c906108c 12769 struct type *type;
8b2dbe47
KB
12770 struct attribute *attr_byte_size;
12771 struct attribute *attr_address_class;
12772 int byte_size, addr_class;
7e314c57
JK
12773 struct type *target_type;
12774
12775 target_type = die_type (die, cu);
c906108c 12776
7e314c57
JK
12777 /* The die_type call above may have already set the type for this DIE. */
12778 type = get_die_type (die, cu);
12779 if (type)
12780 return type;
12781
12782 type = lookup_pointer_type (target_type);
8b2dbe47 12783
e142c38c 12784 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12785 if (attr_byte_size)
12786 byte_size = DW_UNSND (attr_byte_size);
c906108c 12787 else
8b2dbe47
KB
12788 byte_size = cu_header->addr_size;
12789
e142c38c 12790 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12791 if (attr_address_class)
12792 addr_class = DW_UNSND (attr_address_class);
12793 else
12794 addr_class = DW_ADDR_none;
12795
12796 /* If the pointer size or address class is different than the
12797 default, create a type variant marked as such and set the
12798 length accordingly. */
12799 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12800 {
5e2b427d 12801 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12802 {
12803 int type_flags;
12804
849957d9 12805 type_flags = gdbarch_address_class_type_flags
5e2b427d 12806 (gdbarch, byte_size, addr_class);
876cecd0
TT
12807 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12808 == 0);
8b2dbe47
KB
12809 type = make_type_with_address_space (type, type_flags);
12810 }
12811 else if (TYPE_LENGTH (type) != byte_size)
12812 {
3e43a32a
MS
12813 complaint (&symfile_complaints,
12814 _("invalid pointer size %d"), byte_size);
8b2dbe47 12815 }
6e70227d 12816 else
9a619af0
MS
12817 {
12818 /* Should we also complain about unhandled address classes? */
12819 }
c906108c 12820 }
8b2dbe47
KB
12821
12822 TYPE_LENGTH (type) = byte_size;
f792889a 12823 return set_die_type (die, type, cu);
c906108c
SS
12824}
12825
12826/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12827 the user defined type vector. */
12828
f792889a 12829static struct type *
e7c27a73 12830read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12831{
12832 struct type *type;
12833 struct type *to_type;
12834 struct type *domain;
12835
e7c27a73
DJ
12836 to_type = die_type (die, cu);
12837 domain = die_containing_type (die, cu);
0d5de010 12838
7e314c57
JK
12839 /* The calls above may have already set the type for this DIE. */
12840 type = get_die_type (die, cu);
12841 if (type)
12842 return type;
12843
0d5de010
DJ
12844 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12845 type = lookup_methodptr_type (to_type);
7078baeb
TT
12846 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12847 {
12848 struct type *new_type = alloc_type (cu->objfile);
12849
12850 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12851 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12852 TYPE_VARARGS (to_type));
12853 type = lookup_methodptr_type (new_type);
12854 }
0d5de010
DJ
12855 else
12856 type = lookup_memberptr_type (to_type, domain);
c906108c 12857
f792889a 12858 return set_die_type (die, type, cu);
c906108c
SS
12859}
12860
12861/* Extract all information from a DW_TAG_reference_type DIE and add to
12862 the user defined type vector. */
12863
f792889a 12864static struct type *
e7c27a73 12865read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12866{
e7c27a73 12867 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12868 struct type *type, *target_type;
c906108c
SS
12869 struct attribute *attr;
12870
7e314c57
JK
12871 target_type = die_type (die, cu);
12872
12873 /* The die_type call above may have already set the type for this DIE. */
12874 type = get_die_type (die, cu);
12875 if (type)
12876 return type;
12877
12878 type = lookup_reference_type (target_type);
e142c38c 12879 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12880 if (attr)
12881 {
12882 TYPE_LENGTH (type) = DW_UNSND (attr);
12883 }
12884 else
12885 {
107d2387 12886 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12887 }
f792889a 12888 return set_die_type (die, type, cu);
c906108c
SS
12889}
12890
f792889a 12891static struct type *
e7c27a73 12892read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12893{
f792889a 12894 struct type *base_type, *cv_type;
c906108c 12895
e7c27a73 12896 base_type = die_type (die, cu);
7e314c57
JK
12897
12898 /* The die_type call above may have already set the type for this DIE. */
12899 cv_type = get_die_type (die, cu);
12900 if (cv_type)
12901 return cv_type;
12902
2f608a3a
KW
12903 /* In case the const qualifier is applied to an array type, the element type
12904 is so qualified, not the array type (section 6.7.3 of C99). */
12905 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12906 {
12907 struct type *el_type, *inner_array;
12908
12909 base_type = copy_type (base_type);
12910 inner_array = base_type;
12911
12912 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12913 {
12914 TYPE_TARGET_TYPE (inner_array) =
12915 copy_type (TYPE_TARGET_TYPE (inner_array));
12916 inner_array = TYPE_TARGET_TYPE (inner_array);
12917 }
12918
12919 el_type = TYPE_TARGET_TYPE (inner_array);
12920 TYPE_TARGET_TYPE (inner_array) =
12921 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12922
12923 return set_die_type (die, base_type, cu);
12924 }
12925
f792889a
DJ
12926 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12927 return set_die_type (die, cv_type, cu);
c906108c
SS
12928}
12929
f792889a 12930static struct type *
e7c27a73 12931read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12932{
f792889a 12933 struct type *base_type, *cv_type;
c906108c 12934
e7c27a73 12935 base_type = die_type (die, cu);
7e314c57
JK
12936
12937 /* The die_type call above may have already set the type for this DIE. */
12938 cv_type = get_die_type (die, cu);
12939 if (cv_type)
12940 return cv_type;
12941
f792889a
DJ
12942 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12943 return set_die_type (die, cv_type, cu);
c906108c
SS
12944}
12945
06d66ee9
TT
12946/* Handle DW_TAG_restrict_type. */
12947
12948static struct type *
12949read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12950{
12951 struct type *base_type, *cv_type;
12952
12953 base_type = die_type (die, cu);
12954
12955 /* The die_type call above may have already set the type for this DIE. */
12956 cv_type = get_die_type (die, cu);
12957 if (cv_type)
12958 return cv_type;
12959
12960 cv_type = make_restrict_type (base_type);
12961 return set_die_type (die, cv_type, cu);
12962}
12963
c906108c
SS
12964/* Extract all information from a DW_TAG_string_type DIE and add to
12965 the user defined type vector. It isn't really a user defined type,
12966 but it behaves like one, with other DIE's using an AT_user_def_type
12967 attribute to reference it. */
12968
f792889a 12969static struct type *
e7c27a73 12970read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12971{
e7c27a73 12972 struct objfile *objfile = cu->objfile;
3b7538c0 12973 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12974 struct type *type, *range_type, *index_type, *char_type;
12975 struct attribute *attr;
12976 unsigned int length;
12977
e142c38c 12978 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12979 if (attr)
12980 {
12981 length = DW_UNSND (attr);
12982 }
12983 else
12984 {
0963b4bd 12985 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12986 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12987 if (attr)
12988 {
12989 length = DW_UNSND (attr);
12990 }
12991 else
12992 {
12993 length = 1;
12994 }
c906108c 12995 }
6ccb9162 12996
46bf5051 12997 index_type = objfile_type (objfile)->builtin_int;
c906108c 12998 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
12999 char_type = language_string_char_type (cu->language_defn, gdbarch);
13000 type = create_string_type (NULL, char_type, range_type);
6ccb9162 13001
f792889a 13002 return set_die_type (die, type, cu);
c906108c
SS
13003}
13004
4d804846
JB
13005/* Assuming that DIE corresponds to a function, returns nonzero
13006 if the function is prototyped. */
13007
13008static int
13009prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13010{
13011 struct attribute *attr;
13012
13013 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13014 if (attr && (DW_UNSND (attr) != 0))
13015 return 1;
13016
13017 /* The DWARF standard implies that the DW_AT_prototyped attribute
13018 is only meaninful for C, but the concept also extends to other
13019 languages that allow unprototyped functions (Eg: Objective C).
13020 For all other languages, assume that functions are always
13021 prototyped. */
13022 if (cu->language != language_c
13023 && cu->language != language_objc
13024 && cu->language != language_opencl)
13025 return 1;
13026
13027 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13028 prototyped and unprototyped functions; default to prototyped,
13029 since that is more common in modern code (and RealView warns
13030 about unprototyped functions). */
13031 if (producer_is_realview (cu->producer))
13032 return 1;
13033
13034 return 0;
13035}
13036
c906108c
SS
13037/* Handle DIES due to C code like:
13038
13039 struct foo
c5aa993b
JM
13040 {
13041 int (*funcp)(int a, long l);
13042 int b;
13043 };
c906108c 13044
0963b4bd 13045 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 13046
f792889a 13047static struct type *
e7c27a73 13048read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13049{
bb5ed363 13050 struct objfile *objfile = cu->objfile;
0963b4bd
MS
13051 struct type *type; /* Type that this function returns. */
13052 struct type *ftype; /* Function that returns above type. */
c906108c
SS
13053 struct attribute *attr;
13054
e7c27a73 13055 type = die_type (die, cu);
7e314c57
JK
13056
13057 /* The die_type call above may have already set the type for this DIE. */
13058 ftype = get_die_type (die, cu);
13059 if (ftype)
13060 return ftype;
13061
0c8b41f1 13062 ftype = lookup_function_type (type);
c906108c 13063
4d804846 13064 if (prototyped_function_p (die, cu))
a6c727b2 13065 TYPE_PROTOTYPED (ftype) = 1;
c906108c 13066
c055b101
CV
13067 /* Store the calling convention in the type if it's available in
13068 the subroutine die. Otherwise set the calling convention to
13069 the default value DW_CC_normal. */
13070 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
13071 if (attr)
13072 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13073 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13074 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13075 else
13076 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
13077
13078 /* We need to add the subroutine type to the die immediately so
13079 we don't infinitely recurse when dealing with parameters
0963b4bd 13080 declared as the same subroutine type. */
76c10ea2 13081 set_die_type (die, ftype, cu);
6e70227d 13082
639d11d3 13083 if (die->child != NULL)
c906108c 13084 {
bb5ed363 13085 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 13086 struct die_info *child_die;
8072405b 13087 int nparams, iparams;
c906108c
SS
13088
13089 /* Count the number of parameters.
13090 FIXME: GDB currently ignores vararg functions, but knows about
13091 vararg member functions. */
8072405b 13092 nparams = 0;
639d11d3 13093 child_die = die->child;
c906108c
SS
13094 while (child_die && child_die->tag)
13095 {
13096 if (child_die->tag == DW_TAG_formal_parameter)
13097 nparams++;
13098 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 13099 TYPE_VARARGS (ftype) = 1;
c906108c
SS
13100 child_die = sibling_die (child_die);
13101 }
13102
13103 /* Allocate storage for parameters and fill them in. */
13104 TYPE_NFIELDS (ftype) = nparams;
13105 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 13106 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 13107
8072405b
JK
13108 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13109 even if we error out during the parameters reading below. */
13110 for (iparams = 0; iparams < nparams; iparams++)
13111 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13112
13113 iparams = 0;
639d11d3 13114 child_die = die->child;
c906108c
SS
13115 while (child_die && child_die->tag)
13116 {
13117 if (child_die->tag == DW_TAG_formal_parameter)
13118 {
3ce3b1ba
PA
13119 struct type *arg_type;
13120
13121 /* DWARF version 2 has no clean way to discern C++
13122 static and non-static member functions. G++ helps
13123 GDB by marking the first parameter for non-static
13124 member functions (which is the this pointer) as
13125 artificial. We pass this information to
13126 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13127
13128 DWARF version 3 added DW_AT_object_pointer, which GCC
13129 4.5 does not yet generate. */
e142c38c 13130 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
13131 if (attr)
13132 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13133 else
418835cc
KS
13134 {
13135 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13136
13137 /* GCC/43521: In java, the formal parameter
13138 "this" is sometimes not marked with DW_AT_artificial. */
13139 if (cu->language == language_java)
13140 {
13141 const char *name = dwarf2_name (child_die, cu);
9a619af0 13142
418835cc
KS
13143 if (name && !strcmp (name, "this"))
13144 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13145 }
13146 }
3ce3b1ba
PA
13147 arg_type = die_type (child_die, cu);
13148
13149 /* RealView does not mark THIS as const, which the testsuite
13150 expects. GCC marks THIS as const in method definitions,
13151 but not in the class specifications (GCC PR 43053). */
13152 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13153 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13154 {
13155 int is_this = 0;
13156 struct dwarf2_cu *arg_cu = cu;
13157 const char *name = dwarf2_name (child_die, cu);
13158
13159 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13160 if (attr)
13161 {
13162 /* If the compiler emits this, use it. */
13163 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13164 is_this = 1;
13165 }
13166 else if (name && strcmp (name, "this") == 0)
13167 /* Function definitions will have the argument names. */
13168 is_this = 1;
13169 else if (name == NULL && iparams == 0)
13170 /* Declarations may not have the names, so like
13171 elsewhere in GDB, assume an artificial first
13172 argument is "this". */
13173 is_this = 1;
13174
13175 if (is_this)
13176 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13177 arg_type, 0);
13178 }
13179
13180 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
13181 iparams++;
13182 }
13183 child_die = sibling_die (child_die);
13184 }
13185 }
13186
76c10ea2 13187 return ftype;
c906108c
SS
13188}
13189
f792889a 13190static struct type *
e7c27a73 13191read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13192{
e7c27a73 13193 struct objfile *objfile = cu->objfile;
0114d602 13194 const char *name = NULL;
3c8e0968 13195 struct type *this_type, *target_type;
c906108c 13196
94af9270 13197 name = dwarf2_full_name (NULL, die, cu);
f792889a 13198 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 13199 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 13200 TYPE_NAME (this_type) = name;
f792889a 13201 set_die_type (die, this_type, cu);
3c8e0968
DE
13202 target_type = die_type (die, cu);
13203 if (target_type != this_type)
13204 TYPE_TARGET_TYPE (this_type) = target_type;
13205 else
13206 {
13207 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13208 spec and cause infinite loops in GDB. */
13209 complaint (&symfile_complaints,
13210 _("Self-referential DW_TAG_typedef "
13211 "- DIE at 0x%x [in module %s]"),
b64f50a1 13212 die->offset.sect_off, objfile->name);
3c8e0968
DE
13213 TYPE_TARGET_TYPE (this_type) = NULL;
13214 }
f792889a 13215 return this_type;
c906108c
SS
13216}
13217
13218/* Find a representation of a given base type and install
13219 it in the TYPE field of the die. */
13220
f792889a 13221static struct type *
e7c27a73 13222read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13223{
e7c27a73 13224 struct objfile *objfile = cu->objfile;
c906108c
SS
13225 struct type *type;
13226 struct attribute *attr;
13227 int encoding = 0, size = 0;
15d034d0 13228 const char *name;
6ccb9162
UW
13229 enum type_code code = TYPE_CODE_INT;
13230 int type_flags = 0;
13231 struct type *target_type = NULL;
c906108c 13232
e142c38c 13233 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
13234 if (attr)
13235 {
13236 encoding = DW_UNSND (attr);
13237 }
e142c38c 13238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13239 if (attr)
13240 {
13241 size = DW_UNSND (attr);
13242 }
39cbfefa 13243 name = dwarf2_name (die, cu);
6ccb9162 13244 if (!name)
c906108c 13245 {
6ccb9162
UW
13246 complaint (&symfile_complaints,
13247 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 13248 }
6ccb9162
UW
13249
13250 switch (encoding)
c906108c 13251 {
6ccb9162
UW
13252 case DW_ATE_address:
13253 /* Turn DW_ATE_address into a void * pointer. */
13254 code = TYPE_CODE_PTR;
13255 type_flags |= TYPE_FLAG_UNSIGNED;
13256 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13257 break;
13258 case DW_ATE_boolean:
13259 code = TYPE_CODE_BOOL;
13260 type_flags |= TYPE_FLAG_UNSIGNED;
13261 break;
13262 case DW_ATE_complex_float:
13263 code = TYPE_CODE_COMPLEX;
13264 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13265 break;
13266 case DW_ATE_decimal_float:
13267 code = TYPE_CODE_DECFLOAT;
13268 break;
13269 case DW_ATE_float:
13270 code = TYPE_CODE_FLT;
13271 break;
13272 case DW_ATE_signed:
13273 break;
13274 case DW_ATE_unsigned:
13275 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
13276 if (cu->language == language_fortran
13277 && name
13278 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13279 code = TYPE_CODE_CHAR;
6ccb9162
UW
13280 break;
13281 case DW_ATE_signed_char:
6e70227d 13282 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13283 || cu->language == language_pascal
13284 || cu->language == language_fortran)
6ccb9162
UW
13285 code = TYPE_CODE_CHAR;
13286 break;
13287 case DW_ATE_unsigned_char:
868a0084 13288 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13289 || cu->language == language_pascal
13290 || cu->language == language_fortran)
6ccb9162
UW
13291 code = TYPE_CODE_CHAR;
13292 type_flags |= TYPE_FLAG_UNSIGNED;
13293 break;
75079b2b
TT
13294 case DW_ATE_UTF:
13295 /* We just treat this as an integer and then recognize the
13296 type by name elsewhere. */
13297 break;
13298
6ccb9162
UW
13299 default:
13300 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13301 dwarf_type_encoding_name (encoding));
13302 break;
c906108c 13303 }
6ccb9162 13304
0114d602
DJ
13305 type = init_type (code, size, type_flags, NULL, objfile);
13306 TYPE_NAME (type) = name;
6ccb9162
UW
13307 TYPE_TARGET_TYPE (type) = target_type;
13308
0114d602 13309 if (name && strcmp (name, "char") == 0)
876cecd0 13310 TYPE_NOSIGN (type) = 1;
0114d602 13311
f792889a 13312 return set_die_type (die, type, cu);
c906108c
SS
13313}
13314
a02abb62
JB
13315/* Read the given DW_AT_subrange DIE. */
13316
f792889a 13317static struct type *
a02abb62
JB
13318read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13319{
4c9ad8c2 13320 struct type *base_type, *orig_base_type;
a02abb62
JB
13321 struct type *range_type;
13322 struct attribute *attr;
4fae6e18
JK
13323 LONGEST low, high;
13324 int low_default_is_valid;
15d034d0 13325 const char *name;
43bbcdc2 13326 LONGEST negative_mask;
e77813c8 13327
4c9ad8c2
TT
13328 orig_base_type = die_type (die, cu);
13329 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13330 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13331 creating the range type, but we use the result of check_typedef
13332 when examining properties of the type. */
13333 base_type = check_typedef (orig_base_type);
a02abb62 13334
7e314c57
JK
13335 /* The die_type call above may have already set the type for this DIE. */
13336 range_type = get_die_type (die, cu);
13337 if (range_type)
13338 return range_type;
13339
4fae6e18
JK
13340 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13341 omitting DW_AT_lower_bound. */
13342 switch (cu->language)
6e70227d 13343 {
4fae6e18
JK
13344 case language_c:
13345 case language_cplus:
13346 low = 0;
13347 low_default_is_valid = 1;
13348 break;
13349 case language_fortran:
13350 low = 1;
13351 low_default_is_valid = 1;
13352 break;
13353 case language_d:
13354 case language_java:
13355 case language_objc:
13356 low = 0;
13357 low_default_is_valid = (cu->header.version >= 4);
13358 break;
13359 case language_ada:
13360 case language_m2:
13361 case language_pascal:
a02abb62 13362 low = 1;
4fae6e18
JK
13363 low_default_is_valid = (cu->header.version >= 4);
13364 break;
13365 default:
13366 low = 0;
13367 low_default_is_valid = 0;
13368 break;
a02abb62
JB
13369 }
13370
dd5e6932
DJ
13371 /* FIXME: For variable sized arrays either of these could be
13372 a variable rather than a constant value. We'll allow it,
13373 but we don't know how to handle it. */
e142c38c 13374 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 13375 if (attr)
4fae6e18
JK
13376 low = dwarf2_get_attr_constant_value (attr, low);
13377 else if (!low_default_is_valid)
13378 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13379 "- DIE at 0x%x [in module %s]"),
13380 die->offset.sect_off, cu->objfile->name);
a02abb62 13381
e142c38c 13382 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 13383 if (attr)
6e70227d 13384 {
7771576e 13385 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
13386 {
13387 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 13388 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
13389 FIXME: GDB does not yet know how to handle dynamic
13390 arrays properly, treat them as arrays with unspecified
13391 length for now.
13392
13393 FIXME: jimb/2003-09-22: GDB does not really know
13394 how to handle arrays of unspecified length
13395 either; we just represent them as zero-length
13396 arrays. Choose an appropriate upper bound given
13397 the lower bound we've computed above. */
13398 high = low - 1;
13399 }
13400 else
13401 high = dwarf2_get_attr_constant_value (attr, 1);
13402 }
e77813c8
PM
13403 else
13404 {
13405 attr = dwarf2_attr (die, DW_AT_count, cu);
13406 if (attr)
13407 {
13408 int count = dwarf2_get_attr_constant_value (attr, 1);
13409 high = low + count - 1;
13410 }
c2ff108b
JK
13411 else
13412 {
13413 /* Unspecified array length. */
13414 high = low - 1;
13415 }
e77813c8
PM
13416 }
13417
13418 /* Dwarf-2 specifications explicitly allows to create subrange types
13419 without specifying a base type.
13420 In that case, the base type must be set to the type of
13421 the lower bound, upper bound or count, in that order, if any of these
13422 three attributes references an object that has a type.
13423 If no base type is found, the Dwarf-2 specifications say that
13424 a signed integer type of size equal to the size of an address should
13425 be used.
13426 For the following C code: `extern char gdb_int [];'
13427 GCC produces an empty range DIE.
13428 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 13429 high bound or count are not yet handled by this code. */
e77813c8
PM
13430 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13431 {
13432 struct objfile *objfile = cu->objfile;
13433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13434 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13435 struct type *int_type = objfile_type (objfile)->builtin_int;
13436
13437 /* Test "int", "long int", and "long long int" objfile types,
13438 and select the first one having a size above or equal to the
13439 architecture address size. */
13440 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13441 base_type = int_type;
13442 else
13443 {
13444 int_type = objfile_type (objfile)->builtin_long;
13445 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13446 base_type = int_type;
13447 else
13448 {
13449 int_type = objfile_type (objfile)->builtin_long_long;
13450 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13451 base_type = int_type;
13452 }
13453 }
13454 }
a02abb62 13455
6e70227d 13456 negative_mask =
43bbcdc2
PH
13457 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13458 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13459 low |= negative_mask;
13460 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13461 high |= negative_mask;
13462
4c9ad8c2 13463 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 13464
bbb0eef6
JK
13465 /* Mark arrays with dynamic length at least as an array of unspecified
13466 length. GDB could check the boundary but before it gets implemented at
13467 least allow accessing the array elements. */
d48323d8 13468 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
13469 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13470
c2ff108b
JK
13471 /* Ada expects an empty array on no boundary attributes. */
13472 if (attr == NULL && cu->language != language_ada)
13473 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13474
39cbfefa
DJ
13475 name = dwarf2_name (die, cu);
13476 if (name)
13477 TYPE_NAME (range_type) = name;
6e70227d 13478
e142c38c 13479 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
13480 if (attr)
13481 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13482
7e314c57
JK
13483 set_die_type (die, range_type, cu);
13484
13485 /* set_die_type should be already done. */
b4ba55a1
JB
13486 set_descriptive_type (range_type, die, cu);
13487
7e314c57 13488 return range_type;
a02abb62 13489}
6e70227d 13490
f792889a 13491static struct type *
81a17f79
JB
13492read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13493{
13494 struct type *type;
81a17f79 13495
81a17f79
JB
13496 /* For now, we only support the C meaning of an unspecified type: void. */
13497
0114d602
DJ
13498 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13499 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 13500
f792889a 13501 return set_die_type (die, type, cu);
81a17f79 13502}
a02abb62 13503
639d11d3
DC
13504/* Read a single die and all its descendents. Set the die's sibling
13505 field to NULL; set other fields in the die correctly, and set all
13506 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13507 location of the info_ptr after reading all of those dies. PARENT
13508 is the parent of the die in question. */
13509
13510static struct die_info *
dee91e82 13511read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
13512 const gdb_byte *info_ptr,
13513 const gdb_byte **new_info_ptr,
dee91e82 13514 struct die_info *parent)
639d11d3
DC
13515{
13516 struct die_info *die;
d521ce57 13517 const gdb_byte *cur_ptr;
639d11d3
DC
13518 int has_children;
13519
bf6af496 13520 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
13521 if (die == NULL)
13522 {
13523 *new_info_ptr = cur_ptr;
13524 return NULL;
13525 }
93311388 13526 store_in_ref_table (die, reader->cu);
639d11d3
DC
13527
13528 if (has_children)
bf6af496 13529 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
13530 else
13531 {
13532 die->child = NULL;
13533 *new_info_ptr = cur_ptr;
13534 }
13535
13536 die->sibling = NULL;
13537 die->parent = parent;
13538 return die;
13539}
13540
13541/* Read a die, all of its descendents, and all of its siblings; set
13542 all of the fields of all of the dies correctly. Arguments are as
13543 in read_die_and_children. */
13544
13545static struct die_info *
bf6af496 13546read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
13547 const gdb_byte *info_ptr,
13548 const gdb_byte **new_info_ptr,
bf6af496 13549 struct die_info *parent)
639d11d3
DC
13550{
13551 struct die_info *first_die, *last_sibling;
d521ce57 13552 const gdb_byte *cur_ptr;
639d11d3 13553
c906108c 13554 cur_ptr = info_ptr;
639d11d3
DC
13555 first_die = last_sibling = NULL;
13556
13557 while (1)
c906108c 13558 {
639d11d3 13559 struct die_info *die
dee91e82 13560 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 13561
1d325ec1 13562 if (die == NULL)
c906108c 13563 {
639d11d3
DC
13564 *new_info_ptr = cur_ptr;
13565 return first_die;
c906108c 13566 }
1d325ec1
DJ
13567
13568 if (!first_die)
13569 first_die = die;
c906108c 13570 else
1d325ec1
DJ
13571 last_sibling->sibling = die;
13572
13573 last_sibling = die;
c906108c 13574 }
c906108c
SS
13575}
13576
bf6af496
DE
13577/* Read a die, all of its descendents, and all of its siblings; set
13578 all of the fields of all of the dies correctly. Arguments are as
13579 in read_die_and_children.
13580 This the main entry point for reading a DIE and all its children. */
13581
13582static struct die_info *
13583read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
13584 const gdb_byte *info_ptr,
13585 const gdb_byte **new_info_ptr,
bf6af496
DE
13586 struct die_info *parent)
13587{
13588 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13589 new_info_ptr, parent);
13590
13591 if (dwarf2_die_debug)
13592 {
13593 fprintf_unfiltered (gdb_stdlog,
13594 "Read die from %s@0x%x of %s:\n",
13595 bfd_section_name (reader->abfd,
13596 reader->die_section->asection),
13597 (unsigned) (info_ptr - reader->die_section->buffer),
13598 bfd_get_filename (reader->abfd));
13599 dump_die (die, dwarf2_die_debug);
13600 }
13601
13602 return die;
13603}
13604
3019eac3
DE
13605/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13606 attributes.
13607 The caller is responsible for filling in the extra attributes
13608 and updating (*DIEP)->num_attrs.
13609 Set DIEP to point to a newly allocated die with its information,
13610 except for its child, sibling, and parent fields.
13611 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 13612
d521ce57 13613static const gdb_byte *
3019eac3 13614read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 13615 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 13616 int *has_children, int num_extra_attrs)
93311388 13617{
b64f50a1
JK
13618 unsigned int abbrev_number, bytes_read, i;
13619 sect_offset offset;
93311388
DE
13620 struct abbrev_info *abbrev;
13621 struct die_info *die;
13622 struct dwarf2_cu *cu = reader->cu;
13623 bfd *abfd = reader->abfd;
13624
b64f50a1 13625 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
13626 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13627 info_ptr += bytes_read;
13628 if (!abbrev_number)
13629 {
13630 *diep = NULL;
13631 *has_children = 0;
13632 return info_ptr;
13633 }
13634
433df2d4 13635 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 13636 if (!abbrev)
348e048f
DE
13637 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13638 abbrev_number,
13639 bfd_get_filename (abfd));
13640
3019eac3 13641 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
13642 die->offset = offset;
13643 die->tag = abbrev->tag;
13644 die->abbrev = abbrev_number;
13645
3019eac3
DE
13646 /* Make the result usable.
13647 The caller needs to update num_attrs after adding the extra
13648 attributes. */
93311388
DE
13649 die->num_attrs = abbrev->num_attrs;
13650
13651 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
13652 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13653 info_ptr);
93311388
DE
13654
13655 *diep = die;
13656 *has_children = abbrev->has_children;
13657 return info_ptr;
13658}
13659
3019eac3
DE
13660/* Read a die and all its attributes.
13661 Set DIEP to point to a newly allocated die with its information,
13662 except for its child, sibling, and parent fields.
13663 Set HAS_CHILDREN to tell whether the die has children or not. */
13664
d521ce57 13665static const gdb_byte *
3019eac3 13666read_full_die (const struct die_reader_specs *reader,
d521ce57 13667 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
13668 int *has_children)
13669{
d521ce57 13670 const gdb_byte *result;
bf6af496
DE
13671
13672 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13673
13674 if (dwarf2_die_debug)
13675 {
13676 fprintf_unfiltered (gdb_stdlog,
13677 "Read die from %s@0x%x of %s:\n",
13678 bfd_section_name (reader->abfd,
13679 reader->die_section->asection),
13680 (unsigned) (info_ptr - reader->die_section->buffer),
13681 bfd_get_filename (reader->abfd));
13682 dump_die (*diep, dwarf2_die_debug);
13683 }
13684
13685 return result;
3019eac3 13686}
433df2d4
DE
13687\f
13688/* Abbreviation tables.
3019eac3 13689
433df2d4 13690 In DWARF version 2, the description of the debugging information is
c906108c
SS
13691 stored in a separate .debug_abbrev section. Before we read any
13692 dies from a section we read in all abbreviations and install them
433df2d4
DE
13693 in a hash table. */
13694
13695/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13696
13697static struct abbrev_info *
13698abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13699{
13700 struct abbrev_info *abbrev;
13701
13702 abbrev = (struct abbrev_info *)
13703 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13704 memset (abbrev, 0, sizeof (struct abbrev_info));
13705 return abbrev;
13706}
13707
13708/* Add an abbreviation to the table. */
c906108c
SS
13709
13710static void
433df2d4
DE
13711abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13712 unsigned int abbrev_number,
13713 struct abbrev_info *abbrev)
13714{
13715 unsigned int hash_number;
13716
13717 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13718 abbrev->next = abbrev_table->abbrevs[hash_number];
13719 abbrev_table->abbrevs[hash_number] = abbrev;
13720}
dee91e82 13721
433df2d4
DE
13722/* Look up an abbrev in the table.
13723 Returns NULL if the abbrev is not found. */
13724
13725static struct abbrev_info *
13726abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13727 unsigned int abbrev_number)
c906108c 13728{
433df2d4
DE
13729 unsigned int hash_number;
13730 struct abbrev_info *abbrev;
13731
13732 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13733 abbrev = abbrev_table->abbrevs[hash_number];
13734
13735 while (abbrev)
13736 {
13737 if (abbrev->number == abbrev_number)
13738 return abbrev;
13739 abbrev = abbrev->next;
13740 }
13741 return NULL;
13742}
13743
13744/* Read in an abbrev table. */
13745
13746static struct abbrev_table *
13747abbrev_table_read_table (struct dwarf2_section_info *section,
13748 sect_offset offset)
13749{
13750 struct objfile *objfile = dwarf2_per_objfile->objfile;
13751 bfd *abfd = section->asection->owner;
13752 struct abbrev_table *abbrev_table;
d521ce57 13753 const gdb_byte *abbrev_ptr;
c906108c
SS
13754 struct abbrev_info *cur_abbrev;
13755 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 13756 unsigned int abbrev_form;
f3dd6933
DJ
13757 struct attr_abbrev *cur_attrs;
13758 unsigned int allocated_attrs;
c906108c 13759
433df2d4 13760 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 13761 abbrev_table->offset = offset;
433df2d4
DE
13762 obstack_init (&abbrev_table->abbrev_obstack);
13763 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13764 (ABBREV_HASH_SIZE
13765 * sizeof (struct abbrev_info *)));
13766 memset (abbrev_table->abbrevs, 0,
13767 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 13768
433df2d4
DE
13769 dwarf2_read_section (objfile, section);
13770 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
13771 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13772 abbrev_ptr += bytes_read;
13773
f3dd6933
DJ
13774 allocated_attrs = ATTR_ALLOC_CHUNK;
13775 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 13776
0963b4bd 13777 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
13778 while (abbrev_number)
13779 {
433df2d4 13780 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13781
13782 /* read in abbrev header */
13783 cur_abbrev->number = abbrev_number;
13784 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13785 abbrev_ptr += bytes_read;
13786 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13787 abbrev_ptr += 1;
13788
13789 /* now read in declarations */
13790 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13791 abbrev_ptr += bytes_read;
13792 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13793 abbrev_ptr += bytes_read;
13794 while (abbrev_name)
13795 {
f3dd6933 13796 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13797 {
f3dd6933
DJ
13798 allocated_attrs += ATTR_ALLOC_CHUNK;
13799 cur_attrs
13800 = xrealloc (cur_attrs, (allocated_attrs
13801 * sizeof (struct attr_abbrev)));
c906108c 13802 }
ae038cb0 13803
f3dd6933
DJ
13804 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13805 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13806 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13807 abbrev_ptr += bytes_read;
13808 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13809 abbrev_ptr += bytes_read;
13810 }
13811
433df2d4 13812 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13813 (cur_abbrev->num_attrs
13814 * sizeof (struct attr_abbrev)));
13815 memcpy (cur_abbrev->attrs, cur_attrs,
13816 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13817
433df2d4 13818 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13819
13820 /* Get next abbreviation.
13821 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13822 always properly terminated with an abbrev number of 0.
13823 Exit loop if we encounter an abbreviation which we have
13824 already read (which means we are about to read the abbreviations
13825 for the next compile unit) or if the end of the abbreviation
13826 table is reached. */
433df2d4 13827 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13828 break;
13829 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13830 abbrev_ptr += bytes_read;
433df2d4 13831 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13832 break;
13833 }
f3dd6933
DJ
13834
13835 xfree (cur_attrs);
433df2d4 13836 return abbrev_table;
c906108c
SS
13837}
13838
433df2d4 13839/* Free the resources held by ABBREV_TABLE. */
c906108c 13840
c906108c 13841static void
433df2d4 13842abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13843{
433df2d4
DE
13844 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13845 xfree (abbrev_table);
c906108c
SS
13846}
13847
f4dc4d17
DE
13848/* Same as abbrev_table_free but as a cleanup.
13849 We pass in a pointer to the pointer to the table so that we can
13850 set the pointer to NULL when we're done. It also simplifies
13851 build_type_unit_groups. */
13852
13853static void
13854abbrev_table_free_cleanup (void *table_ptr)
13855{
13856 struct abbrev_table **abbrev_table_ptr = table_ptr;
13857
13858 if (*abbrev_table_ptr != NULL)
13859 abbrev_table_free (*abbrev_table_ptr);
13860 *abbrev_table_ptr = NULL;
13861}
13862
433df2d4
DE
13863/* Read the abbrev table for CU from ABBREV_SECTION. */
13864
13865static void
13866dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13867 struct dwarf2_section_info *abbrev_section)
c906108c 13868{
433df2d4
DE
13869 cu->abbrev_table =
13870 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13871}
c906108c 13872
433df2d4 13873/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13874
433df2d4
DE
13875static void
13876dwarf2_free_abbrev_table (void *ptr_to_cu)
13877{
13878 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13879
a2ce51a0
DE
13880 if (cu->abbrev_table != NULL)
13881 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
13882 /* Set this to NULL so that we SEGV if we try to read it later,
13883 and also because free_comp_unit verifies this is NULL. */
13884 cu->abbrev_table = NULL;
13885}
13886\f
72bf9492
DJ
13887/* Returns nonzero if TAG represents a type that we might generate a partial
13888 symbol for. */
13889
13890static int
13891is_type_tag_for_partial (int tag)
13892{
13893 switch (tag)
13894 {
13895#if 0
13896 /* Some types that would be reasonable to generate partial symbols for,
13897 that we don't at present. */
13898 case DW_TAG_array_type:
13899 case DW_TAG_file_type:
13900 case DW_TAG_ptr_to_member_type:
13901 case DW_TAG_set_type:
13902 case DW_TAG_string_type:
13903 case DW_TAG_subroutine_type:
13904#endif
13905 case DW_TAG_base_type:
13906 case DW_TAG_class_type:
680b30c7 13907 case DW_TAG_interface_type:
72bf9492
DJ
13908 case DW_TAG_enumeration_type:
13909 case DW_TAG_structure_type:
13910 case DW_TAG_subrange_type:
13911 case DW_TAG_typedef:
13912 case DW_TAG_union_type:
13913 return 1;
13914 default:
13915 return 0;
13916 }
13917}
13918
13919/* Load all DIEs that are interesting for partial symbols into memory. */
13920
13921static struct partial_die_info *
dee91e82 13922load_partial_dies (const struct die_reader_specs *reader,
d521ce57 13923 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 13924{
dee91e82 13925 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13926 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13927 struct partial_die_info *part_die;
13928 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13929 struct abbrev_info *abbrev;
13930 unsigned int bytes_read;
5afb4e99 13931 unsigned int load_all = 0;
72bf9492
DJ
13932 int nesting_level = 1;
13933
13934 parent_die = NULL;
13935 last_die = NULL;
13936
7adf1e79
DE
13937 gdb_assert (cu->per_cu != NULL);
13938 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13939 load_all = 1;
13940
72bf9492
DJ
13941 cu->partial_dies
13942 = htab_create_alloc_ex (cu->header.length / 12,
13943 partial_die_hash,
13944 partial_die_eq,
13945 NULL,
13946 &cu->comp_unit_obstack,
13947 hashtab_obstack_allocate,
13948 dummy_obstack_deallocate);
13949
13950 part_die = obstack_alloc (&cu->comp_unit_obstack,
13951 sizeof (struct partial_die_info));
13952
13953 while (1)
13954 {
13955 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13956
13957 /* A NULL abbrev means the end of a series of children. */
13958 if (abbrev == NULL)
13959 {
13960 if (--nesting_level == 0)
13961 {
13962 /* PART_DIE was probably the last thing allocated on the
13963 comp_unit_obstack, so we could call obstack_free
13964 here. We don't do that because the waste is small,
13965 and will be cleaned up when we're done with this
13966 compilation unit. This way, we're also more robust
13967 against other users of the comp_unit_obstack. */
13968 return first_die;
13969 }
13970 info_ptr += bytes_read;
13971 last_die = parent_die;
13972 parent_die = parent_die->die_parent;
13973 continue;
13974 }
13975
98bfdba5
PA
13976 /* Check for template arguments. We never save these; if
13977 they're seen, we just mark the parent, and go on our way. */
13978 if (parent_die != NULL
13979 && cu->language == language_cplus
13980 && (abbrev->tag == DW_TAG_template_type_param
13981 || abbrev->tag == DW_TAG_template_value_param))
13982 {
13983 parent_die->has_template_arguments = 1;
13984
13985 if (!load_all)
13986 {
13987 /* We don't need a partial DIE for the template argument. */
dee91e82 13988 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13989 continue;
13990 }
13991 }
13992
0d99eb77 13993 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
13994 Skip their other children. */
13995 if (!load_all
13996 && cu->language == language_cplus
13997 && parent_die != NULL
13998 && parent_die->tag == DW_TAG_subprogram)
13999 {
dee91e82 14000 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14001 continue;
14002 }
14003
5afb4e99
DJ
14004 /* Check whether this DIE is interesting enough to save. Normally
14005 we would not be interested in members here, but there may be
14006 later variables referencing them via DW_AT_specification (for
14007 static members). */
14008 if (!load_all
14009 && !is_type_tag_for_partial (abbrev->tag)
72929c62 14010 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
14011 && abbrev->tag != DW_TAG_enumerator
14012 && abbrev->tag != DW_TAG_subprogram
bc30ff58 14013 && abbrev->tag != DW_TAG_lexical_block
72bf9492 14014 && abbrev->tag != DW_TAG_variable
5afb4e99 14015 && abbrev->tag != DW_TAG_namespace
f55ee35c 14016 && abbrev->tag != DW_TAG_module
95554aad
TT
14017 && abbrev->tag != DW_TAG_member
14018 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
14019 {
14020 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14021 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
14022 continue;
14023 }
14024
dee91e82
DE
14025 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14026 info_ptr);
72bf9492
DJ
14027
14028 /* This two-pass algorithm for processing partial symbols has a
14029 high cost in cache pressure. Thus, handle some simple cases
14030 here which cover the majority of C partial symbols. DIEs
14031 which neither have specification tags in them, nor could have
14032 specification tags elsewhere pointing at them, can simply be
14033 processed and discarded.
14034
14035 This segment is also optional; scan_partial_symbols and
14036 add_partial_symbol will handle these DIEs if we chain
14037 them in normally. When compilers which do not emit large
14038 quantities of duplicate debug information are more common,
14039 this code can probably be removed. */
14040
14041 /* Any complete simple types at the top level (pretty much all
14042 of them, for a language without namespaces), can be processed
14043 directly. */
14044 if (parent_die == NULL
14045 && part_die->has_specification == 0
14046 && part_die->is_declaration == 0
d8228535 14047 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
14048 || part_die->tag == DW_TAG_base_type
14049 || part_die->tag == DW_TAG_subrange_type))
14050 {
14051 if (building_psymtab && part_die->name != NULL)
04a679b8 14052 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14053 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
14054 &objfile->static_psymbols,
14055 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 14056 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14057 continue;
14058 }
14059
d8228535
JK
14060 /* The exception for DW_TAG_typedef with has_children above is
14061 a workaround of GCC PR debug/47510. In the case of this complaint
14062 type_name_no_tag_or_error will error on such types later.
14063
14064 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14065 it could not find the child DIEs referenced later, this is checked
14066 above. In correct DWARF DW_TAG_typedef should have no children. */
14067
14068 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14069 complaint (&symfile_complaints,
14070 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14071 "- DIE at 0x%x [in module %s]"),
b64f50a1 14072 part_die->offset.sect_off, objfile->name);
d8228535 14073
72bf9492
DJ
14074 /* If we're at the second level, and we're an enumerator, and
14075 our parent has no specification (meaning possibly lives in a
14076 namespace elsewhere), then we can add the partial symbol now
14077 instead of queueing it. */
14078 if (part_die->tag == DW_TAG_enumerator
14079 && parent_die != NULL
14080 && parent_die->die_parent == NULL
14081 && parent_die->tag == DW_TAG_enumeration_type
14082 && parent_die->has_specification == 0)
14083 {
14084 if (part_die->name == NULL)
3e43a32a
MS
14085 complaint (&symfile_complaints,
14086 _("malformed enumerator DIE ignored"));
72bf9492 14087 else if (building_psymtab)
04a679b8 14088 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14089 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
14090 (cu->language == language_cplus
14091 || cu->language == language_java)
bb5ed363
DE
14092 ? &objfile->global_psymbols
14093 : &objfile->static_psymbols,
14094 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 14095
dee91e82 14096 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14097 continue;
14098 }
14099
14100 /* We'll save this DIE so link it in. */
14101 part_die->die_parent = parent_die;
14102 part_die->die_sibling = NULL;
14103 part_die->die_child = NULL;
14104
14105 if (last_die && last_die == parent_die)
14106 last_die->die_child = part_die;
14107 else if (last_die)
14108 last_die->die_sibling = part_die;
14109
14110 last_die = part_die;
14111
14112 if (first_die == NULL)
14113 first_die = part_die;
14114
14115 /* Maybe add the DIE to the hash table. Not all DIEs that we
14116 find interesting need to be in the hash table, because we
14117 also have the parent/sibling/child chains; only those that we
14118 might refer to by offset later during partial symbol reading.
14119
14120 For now this means things that might have be the target of a
14121 DW_AT_specification, DW_AT_abstract_origin, or
14122 DW_AT_extension. DW_AT_extension will refer only to
14123 namespaces; DW_AT_abstract_origin refers to functions (and
14124 many things under the function DIE, but we do not recurse
14125 into function DIEs during partial symbol reading) and
14126 possibly variables as well; DW_AT_specification refers to
14127 declarations. Declarations ought to have the DW_AT_declaration
14128 flag. It happens that GCC forgets to put it in sometimes, but
14129 only for functions, not for types.
14130
14131 Adding more things than necessary to the hash table is harmless
14132 except for the performance cost. Adding too few will result in
5afb4e99
DJ
14133 wasted time in find_partial_die, when we reread the compilation
14134 unit with load_all_dies set. */
72bf9492 14135
5afb4e99 14136 if (load_all
72929c62 14137 || abbrev->tag == DW_TAG_constant
5afb4e99 14138 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
14139 || abbrev->tag == DW_TAG_variable
14140 || abbrev->tag == DW_TAG_namespace
14141 || part_die->is_declaration)
14142 {
14143 void **slot;
14144
14145 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 14146 part_die->offset.sect_off, INSERT);
72bf9492
DJ
14147 *slot = part_die;
14148 }
14149
14150 part_die = obstack_alloc (&cu->comp_unit_obstack,
14151 sizeof (struct partial_die_info));
14152
14153 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 14154 we have no reason to follow the children of structures; for other
98bfdba5
PA
14155 languages we have to, so that we can get at method physnames
14156 to infer fully qualified class names, for DW_AT_specification,
14157 and for C++ template arguments. For C++, we also look one level
14158 inside functions to find template arguments (if the name of the
14159 function does not already contain the template arguments).
bc30ff58
JB
14160
14161 For Ada, we need to scan the children of subprograms and lexical
14162 blocks as well because Ada allows the definition of nested
14163 entities that could be interesting for the debugger, such as
14164 nested subprograms for instance. */
72bf9492 14165 if (last_die->has_children
5afb4e99
DJ
14166 && (load_all
14167 || last_die->tag == DW_TAG_namespace
f55ee35c 14168 || last_die->tag == DW_TAG_module
72bf9492 14169 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
14170 || (cu->language == language_cplus
14171 && last_die->tag == DW_TAG_subprogram
14172 && (last_die->name == NULL
14173 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
14174 || (cu->language != language_c
14175 && (last_die->tag == DW_TAG_class_type
680b30c7 14176 || last_die->tag == DW_TAG_interface_type
72bf9492 14177 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
14178 || last_die->tag == DW_TAG_union_type))
14179 || (cu->language == language_ada
14180 && (last_die->tag == DW_TAG_subprogram
14181 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
14182 {
14183 nesting_level++;
14184 parent_die = last_die;
14185 continue;
14186 }
14187
14188 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14189 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
14190
14191 /* Back to the top, do it again. */
14192 }
14193}
14194
c906108c
SS
14195/* Read a minimal amount of information into the minimal die structure. */
14196
d521ce57 14197static const gdb_byte *
dee91e82
DE
14198read_partial_die (const struct die_reader_specs *reader,
14199 struct partial_die_info *part_die,
14200 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 14201 const gdb_byte *info_ptr)
c906108c 14202{
dee91e82 14203 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14204 struct objfile *objfile = cu->objfile;
d521ce57 14205 const gdb_byte *buffer = reader->buffer;
fa238c03 14206 unsigned int i;
c906108c 14207 struct attribute attr;
c5aa993b 14208 int has_low_pc_attr = 0;
c906108c 14209 int has_high_pc_attr = 0;
91da1414 14210 int high_pc_relative = 0;
c906108c 14211
72bf9492 14212 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 14213
b64f50a1 14214 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
14215
14216 info_ptr += abbrev_len;
14217
14218 if (abbrev == NULL)
14219 return info_ptr;
14220
c906108c
SS
14221 part_die->tag = abbrev->tag;
14222 part_die->has_children = abbrev->has_children;
c906108c
SS
14223
14224 for (i = 0; i < abbrev->num_attrs; ++i)
14225 {
dee91e82 14226 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
14227
14228 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 14229 partial symbol table. */
c906108c
SS
14230 switch (attr.name)
14231 {
14232 case DW_AT_name:
71c25dea
TT
14233 switch (part_die->tag)
14234 {
14235 case DW_TAG_compile_unit:
95554aad 14236 case DW_TAG_partial_unit:
348e048f 14237 case DW_TAG_type_unit:
71c25dea
TT
14238 /* Compilation units have a DW_AT_name that is a filename, not
14239 a source language identifier. */
14240 case DW_TAG_enumeration_type:
14241 case DW_TAG_enumerator:
14242 /* These tags always have simple identifiers already; no need
14243 to canonicalize them. */
14244 part_die->name = DW_STRING (&attr);
14245 break;
14246 default:
14247 part_die->name
14248 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 14249 &objfile->objfile_obstack);
71c25dea
TT
14250 break;
14251 }
c906108c 14252 break;
31ef98ae 14253 case DW_AT_linkage_name:
c906108c 14254 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
14255 /* Note that both forms of linkage name might appear. We
14256 assume they will be the same, and we only store the last
14257 one we see. */
94af9270
KS
14258 if (cu->language == language_ada)
14259 part_die->name = DW_STRING (&attr);
abc72ce4 14260 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
14261 break;
14262 case DW_AT_low_pc:
14263 has_low_pc_attr = 1;
14264 part_die->lowpc = DW_ADDR (&attr);
14265 break;
14266 case DW_AT_high_pc:
14267 has_high_pc_attr = 1;
3019eac3
DE
14268 if (attr.form == DW_FORM_addr
14269 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
14270 part_die->highpc = DW_ADDR (&attr);
14271 else
14272 {
14273 high_pc_relative = 1;
14274 part_die->highpc = DW_UNSND (&attr);
14275 }
c906108c
SS
14276 break;
14277 case DW_AT_location:
0963b4bd 14278 /* Support the .debug_loc offsets. */
8e19ed76
PS
14279 if (attr_form_is_block (&attr))
14280 {
95554aad 14281 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 14282 }
3690dd37 14283 else if (attr_form_is_section_offset (&attr))
8e19ed76 14284 {
4d3c2250 14285 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
14286 }
14287 else
14288 {
4d3c2250
KB
14289 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14290 "partial symbol information");
8e19ed76 14291 }
c906108c 14292 break;
c906108c
SS
14293 case DW_AT_external:
14294 part_die->is_external = DW_UNSND (&attr);
14295 break;
14296 case DW_AT_declaration:
14297 part_die->is_declaration = DW_UNSND (&attr);
14298 break;
14299 case DW_AT_type:
14300 part_die->has_type = 1;
14301 break;
14302 case DW_AT_abstract_origin:
14303 case DW_AT_specification:
72bf9492
DJ
14304 case DW_AT_extension:
14305 part_die->has_specification = 1;
c764a876 14306 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
14307 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14308 || cu->per_cu->is_dwz);
c906108c
SS
14309 break;
14310 case DW_AT_sibling:
14311 /* Ignore absolute siblings, they might point outside of
14312 the current compile unit. */
14313 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
14314 complaint (&symfile_complaints,
14315 _("ignoring absolute DW_AT_sibling"));
c906108c 14316 else
b64f50a1 14317 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 14318 break;
fa4028e9
JB
14319 case DW_AT_byte_size:
14320 part_die->has_byte_size = 1;
14321 break;
68511cec
CES
14322 case DW_AT_calling_convention:
14323 /* DWARF doesn't provide a way to identify a program's source-level
14324 entry point. DW_AT_calling_convention attributes are only meant
14325 to describe functions' calling conventions.
14326
14327 However, because it's a necessary piece of information in
14328 Fortran, and because DW_CC_program is the only piece of debugging
14329 information whose definition refers to a 'main program' at all,
14330 several compilers have begun marking Fortran main programs with
14331 DW_CC_program --- even when those functions use the standard
14332 calling conventions.
14333
14334 So until DWARF specifies a way to provide this information and
14335 compilers pick up the new representation, we'll support this
14336 practice. */
14337 if (DW_UNSND (&attr) == DW_CC_program
14338 && cu->language == language_fortran)
01f8c46d
JK
14339 {
14340 set_main_name (part_die->name);
14341
14342 /* As this DIE has a static linkage the name would be difficult
14343 to look up later. */
14344 language_of_main = language_fortran;
14345 }
68511cec 14346 break;
481860b3
GB
14347 case DW_AT_inline:
14348 if (DW_UNSND (&attr) == DW_INL_inlined
14349 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14350 part_die->may_be_inlined = 1;
14351 break;
95554aad
TT
14352
14353 case DW_AT_import:
14354 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
14355 {
14356 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14357 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14358 || cu->per_cu->is_dwz);
14359 }
95554aad
TT
14360 break;
14361
c906108c
SS
14362 default:
14363 break;
14364 }
14365 }
14366
91da1414
MW
14367 if (high_pc_relative)
14368 part_die->highpc += part_die->lowpc;
14369
9373cf26
JK
14370 if (has_low_pc_attr && has_high_pc_attr)
14371 {
14372 /* When using the GNU linker, .gnu.linkonce. sections are used to
14373 eliminate duplicate copies of functions and vtables and such.
14374 The linker will arbitrarily choose one and discard the others.
14375 The AT_*_pc values for such functions refer to local labels in
14376 these sections. If the section from that file was discarded, the
14377 labels are not in the output, so the relocs get a value of 0.
14378 If this is a discarded function, mark the pc bounds as invalid,
14379 so that GDB will ignore it. */
14380 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14381 {
bb5ed363 14382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14383
14384 complaint (&symfile_complaints,
14385 _("DW_AT_low_pc %s is zero "
14386 "for DIE at 0x%x [in module %s]"),
14387 paddress (gdbarch, part_die->lowpc),
b64f50a1 14388 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14389 }
14390 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14391 else if (part_die->lowpc >= part_die->highpc)
14392 {
bb5ed363 14393 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14394
14395 complaint (&symfile_complaints,
14396 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14397 "for DIE at 0x%x [in module %s]"),
14398 paddress (gdbarch, part_die->lowpc),
14399 paddress (gdbarch, part_die->highpc),
b64f50a1 14400 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14401 }
14402 else
14403 part_die->has_pc_info = 1;
14404 }
85cbf3d3 14405
c906108c
SS
14406 return info_ptr;
14407}
14408
72bf9492
DJ
14409/* Find a cached partial DIE at OFFSET in CU. */
14410
14411static struct partial_die_info *
b64f50a1 14412find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
14413{
14414 struct partial_die_info *lookup_die = NULL;
14415 struct partial_die_info part_die;
14416
14417 part_die.offset = offset;
b64f50a1
JK
14418 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14419 offset.sect_off);
72bf9492 14420
72bf9492
DJ
14421 return lookup_die;
14422}
14423
348e048f
DE
14424/* Find a partial DIE at OFFSET, which may or may not be in CU,
14425 except in the case of .debug_types DIEs which do not reference
14426 outside their CU (they do however referencing other types via
55f1336d 14427 DW_FORM_ref_sig8). */
72bf9492
DJ
14428
14429static struct partial_die_info *
36586728 14430find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 14431{
bb5ed363 14432 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
14433 struct dwarf2_per_cu_data *per_cu = NULL;
14434 struct partial_die_info *pd = NULL;
72bf9492 14435
36586728
TT
14436 if (offset_in_dwz == cu->per_cu->is_dwz
14437 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
14438 {
14439 pd = find_partial_die_in_comp_unit (offset, cu);
14440 if (pd != NULL)
14441 return pd;
0d99eb77
DE
14442 /* We missed recording what we needed.
14443 Load all dies and try again. */
14444 per_cu = cu->per_cu;
5afb4e99 14445 }
0d99eb77
DE
14446 else
14447 {
14448 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 14449 if (cu->per_cu->is_debug_types)
0d99eb77
DE
14450 {
14451 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14452 " external reference to offset 0x%lx [in module %s].\n"),
14453 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14454 bfd_get_filename (objfile->obfd));
14455 }
36586728
TT
14456 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14457 objfile);
72bf9492 14458
0d99eb77
DE
14459 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14460 load_partial_comp_unit (per_cu);
ae038cb0 14461
0d99eb77
DE
14462 per_cu->cu->last_used = 0;
14463 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14464 }
5afb4e99 14465
dee91e82
DE
14466 /* If we didn't find it, and not all dies have been loaded,
14467 load them all and try again. */
14468
5afb4e99
DJ
14469 if (pd == NULL && per_cu->load_all_dies == 0)
14470 {
5afb4e99 14471 per_cu->load_all_dies = 1;
fd820528
DE
14472
14473 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14474 THIS_CU->cu may already be in use. So we can't just free it and
14475 replace its DIEs with the ones we read in. Instead, we leave those
14476 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14477 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14478 set. */
dee91e82 14479 load_partial_comp_unit (per_cu);
5afb4e99
DJ
14480
14481 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14482 }
14483
14484 if (pd == NULL)
14485 internal_error (__FILE__, __LINE__,
3e43a32a
MS
14486 _("could not find partial DIE 0x%x "
14487 "in cache [from module %s]\n"),
b64f50a1 14488 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 14489 return pd;
72bf9492
DJ
14490}
14491
abc72ce4
DE
14492/* See if we can figure out if the class lives in a namespace. We do
14493 this by looking for a member function; its demangled name will
14494 contain namespace info, if there is any. */
14495
14496static void
14497guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14498 struct dwarf2_cu *cu)
14499{
14500 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14501 what template types look like, because the demangler
14502 frequently doesn't give the same name as the debug info. We
14503 could fix this by only using the demangled name to get the
14504 prefix (but see comment in read_structure_type). */
14505
14506 struct partial_die_info *real_pdi;
14507 struct partial_die_info *child_pdi;
14508
14509 /* If this DIE (this DIE's specification, if any) has a parent, then
14510 we should not do this. We'll prepend the parent's fully qualified
14511 name when we create the partial symbol. */
14512
14513 real_pdi = struct_pdi;
14514 while (real_pdi->has_specification)
36586728
TT
14515 real_pdi = find_partial_die (real_pdi->spec_offset,
14516 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
14517
14518 if (real_pdi->die_parent != NULL)
14519 return;
14520
14521 for (child_pdi = struct_pdi->die_child;
14522 child_pdi != NULL;
14523 child_pdi = child_pdi->die_sibling)
14524 {
14525 if (child_pdi->tag == DW_TAG_subprogram
14526 && child_pdi->linkage_name != NULL)
14527 {
14528 char *actual_class_name
14529 = language_class_name_from_physname (cu->language_defn,
14530 child_pdi->linkage_name);
14531 if (actual_class_name != NULL)
14532 {
14533 struct_pdi->name
10f0c4bb
TT
14534 = obstack_copy0 (&cu->objfile->objfile_obstack,
14535 actual_class_name,
14536 strlen (actual_class_name));
abc72ce4
DE
14537 xfree (actual_class_name);
14538 }
14539 break;
14540 }
14541 }
14542}
14543
72bf9492
DJ
14544/* Adjust PART_DIE before generating a symbol for it. This function
14545 may set the is_external flag or change the DIE's name. */
14546
14547static void
14548fixup_partial_die (struct partial_die_info *part_die,
14549 struct dwarf2_cu *cu)
14550{
abc72ce4
DE
14551 /* Once we've fixed up a die, there's no point in doing so again.
14552 This also avoids a memory leak if we were to call
14553 guess_partial_die_structure_name multiple times. */
14554 if (part_die->fixup_called)
14555 return;
14556
72bf9492
DJ
14557 /* If we found a reference attribute and the DIE has no name, try
14558 to find a name in the referred to DIE. */
14559
14560 if (part_die->name == NULL && part_die->has_specification)
14561 {
14562 struct partial_die_info *spec_die;
72bf9492 14563
36586728
TT
14564 spec_die = find_partial_die (part_die->spec_offset,
14565 part_die->spec_is_dwz, cu);
72bf9492 14566
10b3939b 14567 fixup_partial_die (spec_die, cu);
72bf9492
DJ
14568
14569 if (spec_die->name)
14570 {
14571 part_die->name = spec_die->name;
14572
14573 /* Copy DW_AT_external attribute if it is set. */
14574 if (spec_die->is_external)
14575 part_die->is_external = spec_die->is_external;
14576 }
14577 }
14578
14579 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
14580
14581 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 14582 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 14583
abc72ce4
DE
14584 /* If there is no parent die to provide a namespace, and there are
14585 children, see if we can determine the namespace from their linkage
122d1940 14586 name. */
abc72ce4 14587 if (cu->language == language_cplus
8b70b953 14588 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
14589 && part_die->die_parent == NULL
14590 && part_die->has_children
14591 && (part_die->tag == DW_TAG_class_type
14592 || part_die->tag == DW_TAG_structure_type
14593 || part_die->tag == DW_TAG_union_type))
14594 guess_partial_die_structure_name (part_die, cu);
14595
53832f31
TT
14596 /* GCC might emit a nameless struct or union that has a linkage
14597 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14598 if (part_die->name == NULL
96408a79
SA
14599 && (part_die->tag == DW_TAG_class_type
14600 || part_die->tag == DW_TAG_interface_type
14601 || part_die->tag == DW_TAG_structure_type
14602 || part_die->tag == DW_TAG_union_type)
53832f31
TT
14603 && part_die->linkage_name != NULL)
14604 {
14605 char *demangled;
14606
8de20a37 14607 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
14608 if (demangled)
14609 {
96408a79
SA
14610 const char *base;
14611
14612 /* Strip any leading namespaces/classes, keep only the base name.
14613 DW_AT_name for named DIEs does not contain the prefixes. */
14614 base = strrchr (demangled, ':');
14615 if (base && base > demangled && base[-1] == ':')
14616 base++;
14617 else
14618 base = demangled;
14619
10f0c4bb
TT
14620 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14621 base, strlen (base));
53832f31
TT
14622 xfree (demangled);
14623 }
14624 }
14625
abc72ce4 14626 part_die->fixup_called = 1;
72bf9492
DJ
14627}
14628
a8329558 14629/* Read an attribute value described by an attribute form. */
c906108c 14630
d521ce57 14631static const gdb_byte *
dee91e82
DE
14632read_attribute_value (const struct die_reader_specs *reader,
14633 struct attribute *attr, unsigned form,
d521ce57 14634 const gdb_byte *info_ptr)
c906108c 14635{
dee91e82
DE
14636 struct dwarf2_cu *cu = reader->cu;
14637 bfd *abfd = reader->abfd;
e7c27a73 14638 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14639 unsigned int bytes_read;
14640 struct dwarf_block *blk;
14641
a8329558
KW
14642 attr->form = form;
14643 switch (form)
c906108c 14644 {
c906108c 14645 case DW_FORM_ref_addr:
ae411497 14646 if (cu->header.version == 2)
4568ecf9 14647 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 14648 else
4568ecf9
DE
14649 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14650 &cu->header, &bytes_read);
ae411497
TT
14651 info_ptr += bytes_read;
14652 break;
36586728
TT
14653 case DW_FORM_GNU_ref_alt:
14654 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14655 info_ptr += bytes_read;
14656 break;
ae411497 14657 case DW_FORM_addr:
e7c27a73 14658 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 14659 info_ptr += bytes_read;
c906108c
SS
14660 break;
14661 case DW_FORM_block2:
7b5a2f43 14662 blk = dwarf_alloc_block (cu);
c906108c
SS
14663 blk->size = read_2_bytes (abfd, info_ptr);
14664 info_ptr += 2;
14665 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14666 info_ptr += blk->size;
14667 DW_BLOCK (attr) = blk;
14668 break;
14669 case DW_FORM_block4:
7b5a2f43 14670 blk = dwarf_alloc_block (cu);
c906108c
SS
14671 blk->size = read_4_bytes (abfd, info_ptr);
14672 info_ptr += 4;
14673 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14674 info_ptr += blk->size;
14675 DW_BLOCK (attr) = blk;
14676 break;
14677 case DW_FORM_data2:
14678 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14679 info_ptr += 2;
14680 break;
14681 case DW_FORM_data4:
14682 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14683 info_ptr += 4;
14684 break;
14685 case DW_FORM_data8:
14686 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14687 info_ptr += 8;
14688 break;
2dc7f7b3
TT
14689 case DW_FORM_sec_offset:
14690 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14691 info_ptr += bytes_read;
14692 break;
c906108c 14693 case DW_FORM_string:
9b1c24c8 14694 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 14695 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
14696 info_ptr += bytes_read;
14697 break;
4bdf3d34 14698 case DW_FORM_strp:
36586728
TT
14699 if (!cu->per_cu->is_dwz)
14700 {
14701 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14702 &bytes_read);
14703 DW_STRING_IS_CANONICAL (attr) = 0;
14704 info_ptr += bytes_read;
14705 break;
14706 }
14707 /* FALLTHROUGH */
14708 case DW_FORM_GNU_strp_alt:
14709 {
14710 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14711 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14712 &bytes_read);
14713
14714 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14715 DW_STRING_IS_CANONICAL (attr) = 0;
14716 info_ptr += bytes_read;
14717 }
4bdf3d34 14718 break;
2dc7f7b3 14719 case DW_FORM_exprloc:
c906108c 14720 case DW_FORM_block:
7b5a2f43 14721 blk = dwarf_alloc_block (cu);
c906108c
SS
14722 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14723 info_ptr += bytes_read;
14724 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14725 info_ptr += blk->size;
14726 DW_BLOCK (attr) = blk;
14727 break;
14728 case DW_FORM_block1:
7b5a2f43 14729 blk = dwarf_alloc_block (cu);
c906108c
SS
14730 blk->size = read_1_byte (abfd, info_ptr);
14731 info_ptr += 1;
14732 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14733 info_ptr += blk->size;
14734 DW_BLOCK (attr) = blk;
14735 break;
14736 case DW_FORM_data1:
14737 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14738 info_ptr += 1;
14739 break;
14740 case DW_FORM_flag:
14741 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14742 info_ptr += 1;
14743 break;
2dc7f7b3
TT
14744 case DW_FORM_flag_present:
14745 DW_UNSND (attr) = 1;
14746 break;
c906108c
SS
14747 case DW_FORM_sdata:
14748 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14749 info_ptr += bytes_read;
14750 break;
14751 case DW_FORM_udata:
14752 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14753 info_ptr += bytes_read;
14754 break;
14755 case DW_FORM_ref1:
4568ecf9
DE
14756 DW_UNSND (attr) = (cu->header.offset.sect_off
14757 + read_1_byte (abfd, info_ptr));
c906108c
SS
14758 info_ptr += 1;
14759 break;
14760 case DW_FORM_ref2:
4568ecf9
DE
14761 DW_UNSND (attr) = (cu->header.offset.sect_off
14762 + read_2_bytes (abfd, info_ptr));
c906108c
SS
14763 info_ptr += 2;
14764 break;
14765 case DW_FORM_ref4:
4568ecf9
DE
14766 DW_UNSND (attr) = (cu->header.offset.sect_off
14767 + read_4_bytes (abfd, info_ptr));
c906108c
SS
14768 info_ptr += 4;
14769 break;
613e1657 14770 case DW_FORM_ref8:
4568ecf9
DE
14771 DW_UNSND (attr) = (cu->header.offset.sect_off
14772 + read_8_bytes (abfd, info_ptr));
613e1657
KB
14773 info_ptr += 8;
14774 break;
55f1336d 14775 case DW_FORM_ref_sig8:
ac9ec31b 14776 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
14777 info_ptr += 8;
14778 break;
c906108c 14779 case DW_FORM_ref_udata:
4568ecf9
DE
14780 DW_UNSND (attr) = (cu->header.offset.sect_off
14781 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14782 info_ptr += bytes_read;
14783 break;
c906108c 14784 case DW_FORM_indirect:
a8329558
KW
14785 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14786 info_ptr += bytes_read;
dee91e82 14787 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14788 break;
3019eac3
DE
14789 case DW_FORM_GNU_addr_index:
14790 if (reader->dwo_file == NULL)
14791 {
14792 /* For now flag a hard error.
14793 Later we can turn this into a complaint. */
14794 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14795 dwarf_form_name (form),
14796 bfd_get_filename (abfd));
14797 }
14798 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14799 info_ptr += bytes_read;
14800 break;
14801 case DW_FORM_GNU_str_index:
14802 if (reader->dwo_file == NULL)
14803 {
14804 /* For now flag a hard error.
14805 Later we can turn this into a complaint if warranted. */
14806 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14807 dwarf_form_name (form),
14808 bfd_get_filename (abfd));
14809 }
14810 {
14811 ULONGEST str_index =
14812 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14813
14814 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14815 DW_STRING_IS_CANONICAL (attr) = 0;
14816 info_ptr += bytes_read;
14817 }
14818 break;
c906108c 14819 default:
8a3fe4f8 14820 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14821 dwarf_form_name (form),
14822 bfd_get_filename (abfd));
c906108c 14823 }
28e94949 14824
36586728 14825 /* Super hack. */
7771576e 14826 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
14827 attr->form = DW_FORM_GNU_ref_alt;
14828
28e94949
JB
14829 /* We have seen instances where the compiler tried to emit a byte
14830 size attribute of -1 which ended up being encoded as an unsigned
14831 0xffffffff. Although 0xffffffff is technically a valid size value,
14832 an object of this size seems pretty unlikely so we can relatively
14833 safely treat these cases as if the size attribute was invalid and
14834 treat them as zero by default. */
14835 if (attr->name == DW_AT_byte_size
14836 && form == DW_FORM_data4
14837 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14838 {
14839 complaint
14840 (&symfile_complaints,
43bbcdc2
PH
14841 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14842 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14843 DW_UNSND (attr) = 0;
14844 }
28e94949 14845
c906108c
SS
14846 return info_ptr;
14847}
14848
a8329558
KW
14849/* Read an attribute described by an abbreviated attribute. */
14850
d521ce57 14851static const gdb_byte *
dee91e82
DE
14852read_attribute (const struct die_reader_specs *reader,
14853 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 14854 const gdb_byte *info_ptr)
a8329558
KW
14855{
14856 attr->name = abbrev->name;
dee91e82 14857 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14858}
14859
0963b4bd 14860/* Read dwarf information from a buffer. */
c906108c
SS
14861
14862static unsigned int
a1855c1d 14863read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14864{
fe1b8b76 14865 return bfd_get_8 (abfd, buf);
c906108c
SS
14866}
14867
14868static int
a1855c1d 14869read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14870{
fe1b8b76 14871 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14872}
14873
14874static unsigned int
a1855c1d 14875read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14876{
fe1b8b76 14877 return bfd_get_16 (abfd, buf);
c906108c
SS
14878}
14879
21ae7a4d 14880static int
a1855c1d 14881read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14882{
14883 return bfd_get_signed_16 (abfd, buf);
14884}
14885
c906108c 14886static unsigned int
a1855c1d 14887read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14888{
fe1b8b76 14889 return bfd_get_32 (abfd, buf);
c906108c
SS
14890}
14891
21ae7a4d 14892static int
a1855c1d 14893read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14894{
14895 return bfd_get_signed_32 (abfd, buf);
14896}
14897
93311388 14898static ULONGEST
a1855c1d 14899read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14900{
fe1b8b76 14901 return bfd_get_64 (abfd, buf);
c906108c
SS
14902}
14903
14904static CORE_ADDR
d521ce57 14905read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14906 unsigned int *bytes_read)
c906108c 14907{
e7c27a73 14908 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14909 CORE_ADDR retval = 0;
14910
107d2387 14911 if (cu_header->signed_addr_p)
c906108c 14912 {
107d2387
AC
14913 switch (cu_header->addr_size)
14914 {
14915 case 2:
fe1b8b76 14916 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14917 break;
14918 case 4:
fe1b8b76 14919 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14920 break;
14921 case 8:
fe1b8b76 14922 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14923 break;
14924 default:
8e65ff28 14925 internal_error (__FILE__, __LINE__,
e2e0b3e5 14926 _("read_address: bad switch, signed [in module %s]"),
659b0389 14927 bfd_get_filename (abfd));
107d2387
AC
14928 }
14929 }
14930 else
14931 {
14932 switch (cu_header->addr_size)
14933 {
14934 case 2:
fe1b8b76 14935 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14936 break;
14937 case 4:
fe1b8b76 14938 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14939 break;
14940 case 8:
fe1b8b76 14941 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14942 break;
14943 default:
8e65ff28 14944 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14945 _("read_address: bad switch, "
14946 "unsigned [in module %s]"),
659b0389 14947 bfd_get_filename (abfd));
107d2387 14948 }
c906108c 14949 }
64367e0a 14950
107d2387
AC
14951 *bytes_read = cu_header->addr_size;
14952 return retval;
c906108c
SS
14953}
14954
f7ef9339 14955/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14956 specification allows the initial length to take up either 4 bytes
14957 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14958 bytes describe the length and all offsets will be 8 bytes in length
14959 instead of 4.
14960
f7ef9339
KB
14961 An older, non-standard 64-bit format is also handled by this
14962 function. The older format in question stores the initial length
14963 as an 8-byte quantity without an escape value. Lengths greater
14964 than 2^32 aren't very common which means that the initial 4 bytes
14965 is almost always zero. Since a length value of zero doesn't make
14966 sense for the 32-bit format, this initial zero can be considered to
14967 be an escape value which indicates the presence of the older 64-bit
14968 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14969 greater than 4GB. If it becomes necessary to handle lengths
14970 somewhat larger than 4GB, we could allow other small values (such
14971 as the non-sensical values of 1, 2, and 3) to also be used as
14972 escape values indicating the presence of the old format.
f7ef9339 14973
917c78fc
MK
14974 The value returned via bytes_read should be used to increment the
14975 relevant pointer after calling read_initial_length().
c764a876 14976
613e1657
KB
14977 [ Note: read_initial_length() and read_offset() are based on the
14978 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14979 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14980 from:
14981
f7ef9339 14982 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14983
613e1657
KB
14984 This document is only a draft and is subject to change. (So beware.)
14985
f7ef9339 14986 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14987 determined empirically by examining 64-bit ELF files produced by
14988 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
14989
14990 - Kevin, July 16, 2002
613e1657
KB
14991 ] */
14992
14993static LONGEST
d521ce57 14994read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 14995{
fe1b8b76 14996 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 14997
dd373385 14998 if (length == 0xffffffff)
613e1657 14999 {
fe1b8b76 15000 length = bfd_get_64 (abfd, buf + 4);
613e1657 15001 *bytes_read = 12;
613e1657 15002 }
dd373385 15003 else if (length == 0)
f7ef9339 15004 {
dd373385 15005 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 15006 length = bfd_get_64 (abfd, buf);
f7ef9339 15007 *bytes_read = 8;
f7ef9339 15008 }
613e1657
KB
15009 else
15010 {
15011 *bytes_read = 4;
613e1657
KB
15012 }
15013
c764a876
DE
15014 return length;
15015}
dd373385 15016
c764a876
DE
15017/* Cover function for read_initial_length.
15018 Returns the length of the object at BUF, and stores the size of the
15019 initial length in *BYTES_READ and stores the size that offsets will be in
15020 *OFFSET_SIZE.
15021 If the initial length size is not equivalent to that specified in
15022 CU_HEADER then issue a complaint.
15023 This is useful when reading non-comp-unit headers. */
dd373385 15024
c764a876 15025static LONGEST
d521ce57 15026read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
15027 const struct comp_unit_head *cu_header,
15028 unsigned int *bytes_read,
15029 unsigned int *offset_size)
15030{
15031 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15032
15033 gdb_assert (cu_header->initial_length_size == 4
15034 || cu_header->initial_length_size == 8
15035 || cu_header->initial_length_size == 12);
15036
15037 if (cu_header->initial_length_size != *bytes_read)
15038 complaint (&symfile_complaints,
15039 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 15040
c764a876 15041 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 15042 return length;
613e1657
KB
15043}
15044
15045/* Read an offset from the data stream. The size of the offset is
917c78fc 15046 given by cu_header->offset_size. */
613e1657
KB
15047
15048static LONGEST
d521ce57
TT
15049read_offset (bfd *abfd, const gdb_byte *buf,
15050 const struct comp_unit_head *cu_header,
891d2f0b 15051 unsigned int *bytes_read)
c764a876
DE
15052{
15053 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 15054
c764a876
DE
15055 *bytes_read = cu_header->offset_size;
15056 return offset;
15057}
15058
15059/* Read an offset from the data stream. */
15060
15061static LONGEST
d521ce57 15062read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
15063{
15064 LONGEST retval = 0;
15065
c764a876 15066 switch (offset_size)
613e1657
KB
15067 {
15068 case 4:
fe1b8b76 15069 retval = bfd_get_32 (abfd, buf);
613e1657
KB
15070 break;
15071 case 8:
fe1b8b76 15072 retval = bfd_get_64 (abfd, buf);
613e1657
KB
15073 break;
15074 default:
8e65ff28 15075 internal_error (__FILE__, __LINE__,
c764a876 15076 _("read_offset_1: bad switch [in module %s]"),
659b0389 15077 bfd_get_filename (abfd));
613e1657
KB
15078 }
15079
917c78fc 15080 return retval;
613e1657
KB
15081}
15082
d521ce57
TT
15083static const gdb_byte *
15084read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
15085{
15086 /* If the size of a host char is 8 bits, we can return a pointer
15087 to the buffer, otherwise we have to copy the data to a buffer
15088 allocated on the temporary obstack. */
4bdf3d34 15089 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 15090 return buf;
c906108c
SS
15091}
15092
d521ce57
TT
15093static const char *
15094read_direct_string (bfd *abfd, const gdb_byte *buf,
15095 unsigned int *bytes_read_ptr)
c906108c
SS
15096{
15097 /* If the size of a host char is 8 bits, we can return a pointer
15098 to the string, otherwise we have to copy the string to a buffer
15099 allocated on the temporary obstack. */
4bdf3d34 15100 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
15101 if (*buf == '\0')
15102 {
15103 *bytes_read_ptr = 1;
15104 return NULL;
15105 }
d521ce57
TT
15106 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15107 return (const char *) buf;
4bdf3d34
JJ
15108}
15109
d521ce57 15110static const char *
cf2c3c16 15111read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 15112{
be391dca 15113 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 15114 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
15115 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15116 bfd_get_filename (abfd));
dce234bc 15117 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
15118 error (_("DW_FORM_strp pointing outside of "
15119 ".debug_str section [in module %s]"),
15120 bfd_get_filename (abfd));
4bdf3d34 15121 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 15122 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 15123 return NULL;
d521ce57 15124 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
15125}
15126
36586728
TT
15127/* Read a string at offset STR_OFFSET in the .debug_str section from
15128 the .dwz file DWZ. Throw an error if the offset is too large. If
15129 the string consists of a single NUL byte, return NULL; otherwise
15130 return a pointer to the string. */
15131
d521ce57 15132static const char *
36586728
TT
15133read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15134{
15135 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15136
15137 if (dwz->str.buffer == NULL)
15138 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15139 "section [in module %s]"),
15140 bfd_get_filename (dwz->dwz_bfd));
15141 if (str_offset >= dwz->str.size)
15142 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15143 ".debug_str section [in module %s]"),
15144 bfd_get_filename (dwz->dwz_bfd));
15145 gdb_assert (HOST_CHAR_BIT == 8);
15146 if (dwz->str.buffer[str_offset] == '\0')
15147 return NULL;
d521ce57 15148 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
15149}
15150
d521ce57
TT
15151static const char *
15152read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
15153 const struct comp_unit_head *cu_header,
15154 unsigned int *bytes_read_ptr)
15155{
15156 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15157
15158 return read_indirect_string_at_offset (abfd, str_offset);
15159}
15160
12df843f 15161static ULONGEST
d521ce57
TT
15162read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15163 unsigned int *bytes_read_ptr)
c906108c 15164{
12df843f 15165 ULONGEST result;
ce5d95e1 15166 unsigned int num_read;
c906108c
SS
15167 int i, shift;
15168 unsigned char byte;
15169
15170 result = 0;
15171 shift = 0;
15172 num_read = 0;
15173 i = 0;
15174 while (1)
15175 {
fe1b8b76 15176 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15177 buf++;
15178 num_read++;
12df843f 15179 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
15180 if ((byte & 128) == 0)
15181 {
15182 break;
15183 }
15184 shift += 7;
15185 }
15186 *bytes_read_ptr = num_read;
15187 return result;
15188}
15189
12df843f 15190static LONGEST
d521ce57
TT
15191read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15192 unsigned int *bytes_read_ptr)
c906108c 15193{
12df843f 15194 LONGEST result;
77e0b926 15195 int i, shift, num_read;
c906108c
SS
15196 unsigned char byte;
15197
15198 result = 0;
15199 shift = 0;
c906108c
SS
15200 num_read = 0;
15201 i = 0;
15202 while (1)
15203 {
fe1b8b76 15204 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15205 buf++;
15206 num_read++;
12df843f 15207 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
15208 shift += 7;
15209 if ((byte & 128) == 0)
15210 {
15211 break;
15212 }
15213 }
77e0b926 15214 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 15215 result |= -(((LONGEST) 1) << shift);
c906108c
SS
15216 *bytes_read_ptr = num_read;
15217 return result;
15218}
15219
3019eac3
DE
15220/* Given index ADDR_INDEX in .debug_addr, fetch the value.
15221 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15222 ADDR_SIZE is the size of addresses from the CU header. */
15223
15224static CORE_ADDR
15225read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15226{
15227 struct objfile *objfile = dwarf2_per_objfile->objfile;
15228 bfd *abfd = objfile->obfd;
15229 const gdb_byte *info_ptr;
15230
15231 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15232 if (dwarf2_per_objfile->addr.buffer == NULL)
15233 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15234 objfile->name);
15235 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15236 error (_("DW_FORM_addr_index pointing outside of "
15237 ".debug_addr section [in module %s]"),
15238 objfile->name);
15239 info_ptr = (dwarf2_per_objfile->addr.buffer
15240 + addr_base + addr_index * addr_size);
15241 if (addr_size == 4)
15242 return bfd_get_32 (abfd, info_ptr);
15243 else
15244 return bfd_get_64 (abfd, info_ptr);
15245}
15246
15247/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15248
15249static CORE_ADDR
15250read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15251{
15252 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15253}
15254
15255/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15256
15257static CORE_ADDR
d521ce57 15258read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
15259 unsigned int *bytes_read)
15260{
15261 bfd *abfd = cu->objfile->obfd;
15262 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15263
15264 return read_addr_index (cu, addr_index);
15265}
15266
15267/* Data structure to pass results from dwarf2_read_addr_index_reader
15268 back to dwarf2_read_addr_index. */
15269
15270struct dwarf2_read_addr_index_data
15271{
15272 ULONGEST addr_base;
15273 int addr_size;
15274};
15275
15276/* die_reader_func for dwarf2_read_addr_index. */
15277
15278static void
15279dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 15280 const gdb_byte *info_ptr,
3019eac3
DE
15281 struct die_info *comp_unit_die,
15282 int has_children,
15283 void *data)
15284{
15285 struct dwarf2_cu *cu = reader->cu;
15286 struct dwarf2_read_addr_index_data *aidata =
15287 (struct dwarf2_read_addr_index_data *) data;
15288
15289 aidata->addr_base = cu->addr_base;
15290 aidata->addr_size = cu->header.addr_size;
15291}
15292
15293/* Given an index in .debug_addr, fetch the value.
15294 NOTE: This can be called during dwarf expression evaluation,
15295 long after the debug information has been read, and thus per_cu->cu
15296 may no longer exist. */
15297
15298CORE_ADDR
15299dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15300 unsigned int addr_index)
15301{
15302 struct objfile *objfile = per_cu->objfile;
15303 struct dwarf2_cu *cu = per_cu->cu;
15304 ULONGEST addr_base;
15305 int addr_size;
15306
15307 /* This is intended to be called from outside this file. */
15308 dw2_setup (objfile);
15309
15310 /* We need addr_base and addr_size.
15311 If we don't have PER_CU->cu, we have to get it.
15312 Nasty, but the alternative is storing the needed info in PER_CU,
15313 which at this point doesn't seem justified: it's not clear how frequently
15314 it would get used and it would increase the size of every PER_CU.
15315 Entry points like dwarf2_per_cu_addr_size do a similar thing
15316 so we're not in uncharted territory here.
15317 Alas we need to be a bit more complicated as addr_base is contained
15318 in the DIE.
15319
15320 We don't need to read the entire CU(/TU).
15321 We just need the header and top level die.
a1b64ce1 15322
3019eac3 15323 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 15324 For now we skip this optimization. */
3019eac3
DE
15325
15326 if (cu != NULL)
15327 {
15328 addr_base = cu->addr_base;
15329 addr_size = cu->header.addr_size;
15330 }
15331 else
15332 {
15333 struct dwarf2_read_addr_index_data aidata;
15334
a1b64ce1
DE
15335 /* Note: We can't use init_cutu_and_read_dies_simple here,
15336 we need addr_base. */
15337 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15338 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
15339 addr_base = aidata.addr_base;
15340 addr_size = aidata.addr_size;
15341 }
15342
15343 return read_addr_index_1 (addr_index, addr_base, addr_size);
15344}
15345
15346/* Given a DW_AT_str_index, fetch the string. */
15347
d521ce57 15348static const char *
3019eac3
DE
15349read_str_index (const struct die_reader_specs *reader,
15350 struct dwarf2_cu *cu, ULONGEST str_index)
15351{
15352 struct objfile *objfile = dwarf2_per_objfile->objfile;
15353 const char *dwo_name = objfile->name;
15354 bfd *abfd = objfile->obfd;
15355 struct dwo_sections *sections = &reader->dwo_file->sections;
d521ce57 15356 const gdb_byte *info_ptr;
3019eac3
DE
15357 ULONGEST str_offset;
15358
15359 dwarf2_read_section (objfile, &sections->str);
15360 dwarf2_read_section (objfile, &sections->str_offsets);
15361 if (sections->str.buffer == NULL)
15362 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15363 " in CU at offset 0x%lx [in module %s]"),
15364 (long) cu->header.offset.sect_off, dwo_name);
15365 if (sections->str_offsets.buffer == NULL)
15366 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15367 " in CU at offset 0x%lx [in module %s]"),
15368 (long) cu->header.offset.sect_off, dwo_name);
15369 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15370 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15371 " section in CU at offset 0x%lx [in module %s]"),
15372 (long) cu->header.offset.sect_off, dwo_name);
15373 info_ptr = (sections->str_offsets.buffer
15374 + str_index * cu->header.offset_size);
15375 if (cu->header.offset_size == 4)
15376 str_offset = bfd_get_32 (abfd, info_ptr);
15377 else
15378 str_offset = bfd_get_64 (abfd, info_ptr);
15379 if (str_offset >= sections->str.size)
15380 error (_("Offset from DW_FORM_str_index pointing outside of"
15381 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15382 (long) cu->header.offset.sect_off, dwo_name);
d521ce57 15383 return (const char *) (sections->str.buffer + str_offset);
3019eac3
DE
15384}
15385
3019eac3
DE
15386/* Return the length of an LEB128 number in BUF. */
15387
15388static int
15389leb128_size (const gdb_byte *buf)
15390{
15391 const gdb_byte *begin = buf;
15392 gdb_byte byte;
15393
15394 while (1)
15395 {
15396 byte = *buf++;
15397 if ((byte & 128) == 0)
15398 return buf - begin;
15399 }
15400}
15401
c906108c 15402static void
e142c38c 15403set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
15404{
15405 switch (lang)
15406 {
15407 case DW_LANG_C89:
76bee0cc 15408 case DW_LANG_C99:
c906108c 15409 case DW_LANG_C:
d1be3247 15410 case DW_LANG_UPC:
e142c38c 15411 cu->language = language_c;
c906108c
SS
15412 break;
15413 case DW_LANG_C_plus_plus:
e142c38c 15414 cu->language = language_cplus;
c906108c 15415 break;
6aecb9c2
JB
15416 case DW_LANG_D:
15417 cu->language = language_d;
15418 break;
c906108c
SS
15419 case DW_LANG_Fortran77:
15420 case DW_LANG_Fortran90:
b21b22e0 15421 case DW_LANG_Fortran95:
e142c38c 15422 cu->language = language_fortran;
c906108c 15423 break;
a766d390
DE
15424 case DW_LANG_Go:
15425 cu->language = language_go;
15426 break;
c906108c 15427 case DW_LANG_Mips_Assembler:
e142c38c 15428 cu->language = language_asm;
c906108c 15429 break;
bebd888e 15430 case DW_LANG_Java:
e142c38c 15431 cu->language = language_java;
bebd888e 15432 break;
c906108c 15433 case DW_LANG_Ada83:
8aaf0b47 15434 case DW_LANG_Ada95:
bc5f45f8
JB
15435 cu->language = language_ada;
15436 break;
72019c9c
GM
15437 case DW_LANG_Modula2:
15438 cu->language = language_m2;
15439 break;
fe8e67fd
PM
15440 case DW_LANG_Pascal83:
15441 cu->language = language_pascal;
15442 break;
22566fbd
DJ
15443 case DW_LANG_ObjC:
15444 cu->language = language_objc;
15445 break;
c906108c
SS
15446 case DW_LANG_Cobol74:
15447 case DW_LANG_Cobol85:
c906108c 15448 default:
e142c38c 15449 cu->language = language_minimal;
c906108c
SS
15450 break;
15451 }
e142c38c 15452 cu->language_defn = language_def (cu->language);
c906108c
SS
15453}
15454
15455/* Return the named attribute or NULL if not there. */
15456
15457static struct attribute *
e142c38c 15458dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 15459{
a48e046c 15460 for (;;)
c906108c 15461 {
a48e046c
TT
15462 unsigned int i;
15463 struct attribute *spec = NULL;
15464
15465 for (i = 0; i < die->num_attrs; ++i)
15466 {
15467 if (die->attrs[i].name == name)
15468 return &die->attrs[i];
15469 if (die->attrs[i].name == DW_AT_specification
15470 || die->attrs[i].name == DW_AT_abstract_origin)
15471 spec = &die->attrs[i];
15472 }
15473
15474 if (!spec)
15475 break;
c906108c 15476
f2f0e013 15477 die = follow_die_ref (die, spec, &cu);
f2f0e013 15478 }
c5aa993b 15479
c906108c
SS
15480 return NULL;
15481}
15482
348e048f
DE
15483/* Return the named attribute or NULL if not there,
15484 but do not follow DW_AT_specification, etc.
15485 This is for use in contexts where we're reading .debug_types dies.
15486 Following DW_AT_specification, DW_AT_abstract_origin will take us
15487 back up the chain, and we want to go down. */
15488
15489static struct attribute *
45e58e77 15490dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
15491{
15492 unsigned int i;
15493
15494 for (i = 0; i < die->num_attrs; ++i)
15495 if (die->attrs[i].name == name)
15496 return &die->attrs[i];
15497
15498 return NULL;
15499}
15500
05cf31d1
JB
15501/* Return non-zero iff the attribute NAME is defined for the given DIE,
15502 and holds a non-zero value. This function should only be used for
2dc7f7b3 15503 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
15504
15505static int
15506dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15507{
15508 struct attribute *attr = dwarf2_attr (die, name, cu);
15509
15510 return (attr && DW_UNSND (attr));
15511}
15512
3ca72b44 15513static int
e142c38c 15514die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 15515{
05cf31d1
JB
15516 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15517 which value is non-zero. However, we have to be careful with
15518 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15519 (via dwarf2_flag_true_p) follows this attribute. So we may
15520 end up accidently finding a declaration attribute that belongs
15521 to a different DIE referenced by the specification attribute,
15522 even though the given DIE does not have a declaration attribute. */
15523 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15524 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
15525}
15526
63d06c5c 15527/* Return the die giving the specification for DIE, if there is
f2f0e013 15528 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
15529 containing the return value on output. If there is no
15530 specification, but there is an abstract origin, that is
15531 returned. */
63d06c5c
DC
15532
15533static struct die_info *
f2f0e013 15534die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 15535{
f2f0e013
DJ
15536 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15537 *spec_cu);
63d06c5c 15538
edb3359d
DJ
15539 if (spec_attr == NULL)
15540 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15541
63d06c5c
DC
15542 if (spec_attr == NULL)
15543 return NULL;
15544 else
f2f0e013 15545 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 15546}
c906108c 15547
debd256d 15548/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
15549 refers to.
15550 NOTE: This is also used as a "cleanup" function. */
15551
debd256d
JB
15552static void
15553free_line_header (struct line_header *lh)
15554{
15555 if (lh->standard_opcode_lengths)
a8bc7b56 15556 xfree (lh->standard_opcode_lengths);
debd256d
JB
15557
15558 /* Remember that all the lh->file_names[i].name pointers are
15559 pointers into debug_line_buffer, and don't need to be freed. */
15560 if (lh->file_names)
a8bc7b56 15561 xfree (lh->file_names);
debd256d
JB
15562
15563 /* Similarly for the include directory names. */
15564 if (lh->include_dirs)
a8bc7b56 15565 xfree (lh->include_dirs);
debd256d 15566
a8bc7b56 15567 xfree (lh);
debd256d
JB
15568}
15569
debd256d 15570/* Add an entry to LH's include directory table. */
ae2de4f8 15571
debd256d 15572static void
d521ce57 15573add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 15574{
debd256d
JB
15575 /* Grow the array if necessary. */
15576 if (lh->include_dirs_size == 0)
c5aa993b 15577 {
debd256d
JB
15578 lh->include_dirs_size = 1; /* for testing */
15579 lh->include_dirs = xmalloc (lh->include_dirs_size
15580 * sizeof (*lh->include_dirs));
15581 }
15582 else if (lh->num_include_dirs >= lh->include_dirs_size)
15583 {
15584 lh->include_dirs_size *= 2;
15585 lh->include_dirs = xrealloc (lh->include_dirs,
15586 (lh->include_dirs_size
15587 * sizeof (*lh->include_dirs)));
c5aa993b 15588 }
c906108c 15589
debd256d
JB
15590 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15591}
6e70227d 15592
debd256d 15593/* Add an entry to LH's file name table. */
ae2de4f8 15594
debd256d
JB
15595static void
15596add_file_name (struct line_header *lh,
d521ce57 15597 const char *name,
debd256d
JB
15598 unsigned int dir_index,
15599 unsigned int mod_time,
15600 unsigned int length)
15601{
15602 struct file_entry *fe;
15603
15604 /* Grow the array if necessary. */
15605 if (lh->file_names_size == 0)
15606 {
15607 lh->file_names_size = 1; /* for testing */
15608 lh->file_names = xmalloc (lh->file_names_size
15609 * sizeof (*lh->file_names));
15610 }
15611 else if (lh->num_file_names >= lh->file_names_size)
15612 {
15613 lh->file_names_size *= 2;
15614 lh->file_names = xrealloc (lh->file_names,
15615 (lh->file_names_size
15616 * sizeof (*lh->file_names)));
15617 }
15618
15619 fe = &lh->file_names[lh->num_file_names++];
15620 fe->name = name;
15621 fe->dir_index = dir_index;
15622 fe->mod_time = mod_time;
15623 fe->length = length;
aaa75496 15624 fe->included_p = 0;
cb1df416 15625 fe->symtab = NULL;
debd256d 15626}
6e70227d 15627
36586728
TT
15628/* A convenience function to find the proper .debug_line section for a
15629 CU. */
15630
15631static struct dwarf2_section_info *
15632get_debug_line_section (struct dwarf2_cu *cu)
15633{
15634 struct dwarf2_section_info *section;
15635
15636 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15637 DWO file. */
15638 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15639 section = &cu->dwo_unit->dwo_file->sections.line;
15640 else if (cu->per_cu->is_dwz)
15641 {
15642 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15643
15644 section = &dwz->line;
15645 }
15646 else
15647 section = &dwarf2_per_objfile->line;
15648
15649 return section;
15650}
15651
debd256d 15652/* Read the statement program header starting at OFFSET in
3019eac3 15653 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 15654 to a struct line_header, allocated using xmalloc.
debd256d
JB
15655
15656 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
15657 the returned object point into the dwarf line section buffer,
15658 and must not be freed. */
ae2de4f8 15659
debd256d 15660static struct line_header *
3019eac3 15661dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
15662{
15663 struct cleanup *back_to;
15664 struct line_header *lh;
d521ce57 15665 const gdb_byte *line_ptr;
c764a876 15666 unsigned int bytes_read, offset_size;
debd256d 15667 int i;
d521ce57 15668 const char *cur_dir, *cur_file;
3019eac3
DE
15669 struct dwarf2_section_info *section;
15670 bfd *abfd;
15671
36586728 15672 section = get_debug_line_section (cu);
3019eac3
DE
15673 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15674 if (section->buffer == NULL)
debd256d 15675 {
3019eac3
DE
15676 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15677 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15678 else
15679 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
15680 return 0;
15681 }
15682
fceca515
DE
15683 /* We can't do this until we know the section is non-empty.
15684 Only then do we know we have such a section. */
15685 abfd = section->asection->owner;
15686
a738430d
MK
15687 /* Make sure that at least there's room for the total_length field.
15688 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 15689 if (offset + 4 >= section->size)
debd256d 15690 {
4d3c2250 15691 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15692 return 0;
15693 }
15694
15695 lh = xmalloc (sizeof (*lh));
15696 memset (lh, 0, sizeof (*lh));
15697 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15698 (void *) lh);
15699
3019eac3 15700 line_ptr = section->buffer + offset;
debd256d 15701
a738430d 15702 /* Read in the header. */
6e70227d 15703 lh->total_length =
c764a876
DE
15704 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15705 &bytes_read, &offset_size);
debd256d 15706 line_ptr += bytes_read;
3019eac3 15707 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 15708 {
4d3c2250 15709 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 15710 do_cleanups (back_to);
debd256d
JB
15711 return 0;
15712 }
15713 lh->statement_program_end = line_ptr + lh->total_length;
15714 lh->version = read_2_bytes (abfd, line_ptr);
15715 line_ptr += 2;
c764a876
DE
15716 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15717 line_ptr += offset_size;
debd256d
JB
15718 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15719 line_ptr += 1;
2dc7f7b3
TT
15720 if (lh->version >= 4)
15721 {
15722 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15723 line_ptr += 1;
15724 }
15725 else
15726 lh->maximum_ops_per_instruction = 1;
15727
15728 if (lh->maximum_ops_per_instruction == 0)
15729 {
15730 lh->maximum_ops_per_instruction = 1;
15731 complaint (&symfile_complaints,
3e43a32a
MS
15732 _("invalid maximum_ops_per_instruction "
15733 "in `.debug_line' section"));
2dc7f7b3
TT
15734 }
15735
debd256d
JB
15736 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15737 line_ptr += 1;
15738 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15739 line_ptr += 1;
15740 lh->line_range = read_1_byte (abfd, line_ptr);
15741 line_ptr += 1;
15742 lh->opcode_base = read_1_byte (abfd, line_ptr);
15743 line_ptr += 1;
15744 lh->standard_opcode_lengths
fe1b8b76 15745 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
15746
15747 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15748 for (i = 1; i < lh->opcode_base; ++i)
15749 {
15750 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15751 line_ptr += 1;
15752 }
15753
a738430d 15754 /* Read directory table. */
9b1c24c8 15755 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15756 {
15757 line_ptr += bytes_read;
15758 add_include_dir (lh, cur_dir);
15759 }
15760 line_ptr += bytes_read;
15761
a738430d 15762 /* Read file name table. */
9b1c24c8 15763 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15764 {
15765 unsigned int dir_index, mod_time, length;
15766
15767 line_ptr += bytes_read;
15768 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15769 line_ptr += bytes_read;
15770 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15771 line_ptr += bytes_read;
15772 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15773 line_ptr += bytes_read;
15774
15775 add_file_name (lh, cur_file, dir_index, mod_time, length);
15776 }
15777 line_ptr += bytes_read;
6e70227d 15778 lh->statement_program_start = line_ptr;
debd256d 15779
3019eac3 15780 if (line_ptr > (section->buffer + section->size))
4d3c2250 15781 complaint (&symfile_complaints,
3e43a32a
MS
15782 _("line number info header doesn't "
15783 "fit in `.debug_line' section"));
debd256d
JB
15784
15785 discard_cleanups (back_to);
15786 return lh;
15787}
c906108c 15788
c6da4cef
DE
15789/* Subroutine of dwarf_decode_lines to simplify it.
15790 Return the file name of the psymtab for included file FILE_INDEX
15791 in line header LH of PST.
15792 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15793 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
15794 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15795
15796 The function creates dangling cleanup registration. */
c6da4cef 15797
d521ce57 15798static const char *
c6da4cef
DE
15799psymtab_include_file_name (const struct line_header *lh, int file_index,
15800 const struct partial_symtab *pst,
15801 const char *comp_dir)
15802{
15803 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
15804 const char *include_name = fe.name;
15805 const char *include_name_to_compare = include_name;
15806 const char *dir_name = NULL;
72b9f47f
TT
15807 const char *pst_filename;
15808 char *copied_name = NULL;
c6da4cef
DE
15809 int file_is_pst;
15810
15811 if (fe.dir_index)
15812 dir_name = lh->include_dirs[fe.dir_index - 1];
15813
15814 if (!IS_ABSOLUTE_PATH (include_name)
15815 && (dir_name != NULL || comp_dir != NULL))
15816 {
15817 /* Avoid creating a duplicate psymtab for PST.
15818 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15819 Before we do the comparison, however, we need to account
15820 for DIR_NAME and COMP_DIR.
15821 First prepend dir_name (if non-NULL). If we still don't
15822 have an absolute path prepend comp_dir (if non-NULL).
15823 However, the directory we record in the include-file's
15824 psymtab does not contain COMP_DIR (to match the
15825 corresponding symtab(s)).
15826
15827 Example:
15828
15829 bash$ cd /tmp
15830 bash$ gcc -g ./hello.c
15831 include_name = "hello.c"
15832 dir_name = "."
15833 DW_AT_comp_dir = comp_dir = "/tmp"
15834 DW_AT_name = "./hello.c" */
15835
15836 if (dir_name != NULL)
15837 {
d521ce57
TT
15838 char *tem = concat (dir_name, SLASH_STRING,
15839 include_name, (char *)NULL);
15840
15841 make_cleanup (xfree, tem);
15842 include_name = tem;
c6da4cef 15843 include_name_to_compare = include_name;
c6da4cef
DE
15844 }
15845 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15846 {
d521ce57
TT
15847 char *tem = concat (comp_dir, SLASH_STRING,
15848 include_name, (char *)NULL);
15849
15850 make_cleanup (xfree, tem);
15851 include_name_to_compare = tem;
c6da4cef
DE
15852 }
15853 }
15854
15855 pst_filename = pst->filename;
15856 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15857 {
72b9f47f
TT
15858 copied_name = concat (pst->dirname, SLASH_STRING,
15859 pst_filename, (char *)NULL);
15860 pst_filename = copied_name;
c6da4cef
DE
15861 }
15862
1e3fad37 15863 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 15864
72b9f47f
TT
15865 if (copied_name != NULL)
15866 xfree (copied_name);
c6da4cef
DE
15867
15868 if (file_is_pst)
15869 return NULL;
15870 return include_name;
15871}
15872
c91513d8
PP
15873/* Ignore this record_line request. */
15874
15875static void
15876noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15877{
15878 return;
15879}
15880
f3f5162e
DE
15881/* Subroutine of dwarf_decode_lines to simplify it.
15882 Process the line number information in LH. */
debd256d 15883
c906108c 15884static void
f3f5162e
DE
15885dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15886 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15887{
d521ce57
TT
15888 const gdb_byte *line_ptr, *extended_end;
15889 const gdb_byte *line_end;
a8c50c1f 15890 unsigned int bytes_read, extended_len;
c906108c 15891 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15892 CORE_ADDR baseaddr;
15893 struct objfile *objfile = cu->objfile;
f3f5162e 15894 bfd *abfd = objfile->obfd;
fbf65064 15895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15896 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15897 struct subfile *last_subfile = NULL;
c91513d8
PP
15898 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15899 = record_line;
e142c38c
DJ
15900
15901 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15902
debd256d
JB
15903 line_ptr = lh->statement_program_start;
15904 line_end = lh->statement_program_end;
c906108c
SS
15905
15906 /* Read the statement sequences until there's nothing left. */
15907 while (line_ptr < line_end)
15908 {
15909 /* state machine registers */
15910 CORE_ADDR address = 0;
15911 unsigned int file = 1;
15912 unsigned int line = 1;
15913 unsigned int column = 0;
debd256d 15914 int is_stmt = lh->default_is_stmt;
c906108c
SS
15915 int basic_block = 0;
15916 int end_sequence = 0;
fbf65064 15917 CORE_ADDR addr;
2dc7f7b3 15918 unsigned char op_index = 0;
c906108c 15919
aaa75496 15920 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15921 {
aaa75496 15922 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15923 /* lh->include_dirs and lh->file_names are 0-based, but the
15924 directory and file name numbers in the statement program
15925 are 1-based. */
15926 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 15927 const char *dir = NULL;
a738430d 15928
debd256d
JB
15929 if (fe->dir_index)
15930 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15931
15932 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15933 }
15934
a738430d 15935 /* Decode the table. */
c5aa993b 15936 while (!end_sequence)
c906108c
SS
15937 {
15938 op_code = read_1_byte (abfd, line_ptr);
15939 line_ptr += 1;
59205f5a
JB
15940 if (line_ptr > line_end)
15941 {
15942 dwarf2_debug_line_missing_end_sequence_complaint ();
15943 break;
15944 }
9aa1fe7e 15945
debd256d 15946 if (op_code >= lh->opcode_base)
6e70227d 15947 {
a738430d 15948 /* Special operand. */
debd256d 15949 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15950 address += (((op_index + (adj_opcode / lh->line_range))
15951 / lh->maximum_ops_per_instruction)
15952 * lh->minimum_instruction_length);
15953 op_index = ((op_index + (adj_opcode / lh->line_range))
15954 % lh->maximum_ops_per_instruction);
debd256d 15955 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15956 if (lh->num_file_names < file || file == 0)
25e43795 15957 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15958 /* For now we ignore lines not starting on an
15959 instruction boundary. */
15960 else if (op_index == 0)
25e43795
DJ
15961 {
15962 lh->file_names[file - 1].included_p = 1;
ca5f395d 15963 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15964 {
15965 if (last_subfile != current_subfile)
15966 {
15967 addr = gdbarch_addr_bits_remove (gdbarch, address);
15968 if (last_subfile)
c91513d8 15969 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15970 last_subfile = current_subfile;
15971 }
25e43795 15972 /* Append row to matrix using current values. */
7019d805 15973 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15974 (*p_record_line) (current_subfile, line, addr);
366da635 15975 }
25e43795 15976 }
ca5f395d 15977 basic_block = 0;
9aa1fe7e
GK
15978 }
15979 else switch (op_code)
c906108c
SS
15980 {
15981 case DW_LNS_extended_op:
3e43a32a
MS
15982 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15983 &bytes_read);
473b7be6 15984 line_ptr += bytes_read;
a8c50c1f 15985 extended_end = line_ptr + extended_len;
c906108c
SS
15986 extended_op = read_1_byte (abfd, line_ptr);
15987 line_ptr += 1;
15988 switch (extended_op)
15989 {
15990 case DW_LNE_end_sequence:
c91513d8 15991 p_record_line = record_line;
c906108c 15992 end_sequence = 1;
c906108c
SS
15993 break;
15994 case DW_LNE_set_address:
e7c27a73 15995 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
15996
15997 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15998 {
15999 /* This line table is for a function which has been
16000 GCd by the linker. Ignore it. PR gdb/12528 */
16001
16002 long line_offset
36586728 16003 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
16004
16005 complaint (&symfile_complaints,
16006 _(".debug_line address at offset 0x%lx is 0 "
16007 "[in module %s]"),
bb5ed363 16008 line_offset, objfile->name);
c91513d8
PP
16009 p_record_line = noop_record_line;
16010 }
16011
2dc7f7b3 16012 op_index = 0;
107d2387
AC
16013 line_ptr += bytes_read;
16014 address += baseaddr;
c906108c
SS
16015 break;
16016 case DW_LNE_define_file:
debd256d 16017 {
d521ce57 16018 const char *cur_file;
debd256d 16019 unsigned int dir_index, mod_time, length;
6e70227d 16020
3e43a32a
MS
16021 cur_file = read_direct_string (abfd, line_ptr,
16022 &bytes_read);
debd256d
JB
16023 line_ptr += bytes_read;
16024 dir_index =
16025 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16026 line_ptr += bytes_read;
16027 mod_time =
16028 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16029 line_ptr += bytes_read;
16030 length =
16031 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16032 line_ptr += bytes_read;
16033 add_file_name (lh, cur_file, dir_index, mod_time, length);
16034 }
c906108c 16035 break;
d0c6ba3d
CC
16036 case DW_LNE_set_discriminator:
16037 /* The discriminator is not interesting to the debugger;
16038 just ignore it. */
16039 line_ptr = extended_end;
16040 break;
c906108c 16041 default:
4d3c2250 16042 complaint (&symfile_complaints,
e2e0b3e5 16043 _("mangled .debug_line section"));
debd256d 16044 return;
c906108c 16045 }
a8c50c1f
DJ
16046 /* Make sure that we parsed the extended op correctly. If e.g.
16047 we expected a different address size than the producer used,
16048 we may have read the wrong number of bytes. */
16049 if (line_ptr != extended_end)
16050 {
16051 complaint (&symfile_complaints,
16052 _("mangled .debug_line section"));
16053 return;
16054 }
c906108c
SS
16055 break;
16056 case DW_LNS_copy:
59205f5a 16057 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16058 dwarf2_debug_line_missing_file_complaint ();
16059 else
366da635 16060 {
25e43795 16061 lh->file_names[file - 1].included_p = 1;
ca5f395d 16062 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16063 {
16064 if (last_subfile != current_subfile)
16065 {
16066 addr = gdbarch_addr_bits_remove (gdbarch, address);
16067 if (last_subfile)
c91513d8 16068 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16069 last_subfile = current_subfile;
16070 }
7019d805 16071 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16072 (*p_record_line) (current_subfile, line, addr);
fbf65064 16073 }
366da635 16074 }
c906108c
SS
16075 basic_block = 0;
16076 break;
16077 case DW_LNS_advance_pc:
2dc7f7b3
TT
16078 {
16079 CORE_ADDR adjust
16080 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16081
16082 address += (((op_index + adjust)
16083 / lh->maximum_ops_per_instruction)
16084 * lh->minimum_instruction_length);
16085 op_index = ((op_index + adjust)
16086 % lh->maximum_ops_per_instruction);
16087 line_ptr += bytes_read;
16088 }
c906108c
SS
16089 break;
16090 case DW_LNS_advance_line:
16091 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16092 line_ptr += bytes_read;
16093 break;
16094 case DW_LNS_set_file:
debd256d 16095 {
a738430d
MK
16096 /* The arrays lh->include_dirs and lh->file_names are
16097 0-based, but the directory and file name numbers in
16098 the statement program are 1-based. */
debd256d 16099 struct file_entry *fe;
d521ce57 16100 const char *dir = NULL;
a738430d 16101
debd256d
JB
16102 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16103 line_ptr += bytes_read;
59205f5a 16104 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16105 dwarf2_debug_line_missing_file_complaint ();
16106 else
16107 {
16108 fe = &lh->file_names[file - 1];
16109 if (fe->dir_index)
16110 dir = lh->include_dirs[fe->dir_index - 1];
16111 if (!decode_for_pst_p)
16112 {
16113 last_subfile = current_subfile;
16114 dwarf2_start_subfile (fe->name, dir, comp_dir);
16115 }
16116 }
debd256d 16117 }
c906108c
SS
16118 break;
16119 case DW_LNS_set_column:
16120 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16121 line_ptr += bytes_read;
16122 break;
16123 case DW_LNS_negate_stmt:
16124 is_stmt = (!is_stmt);
16125 break;
16126 case DW_LNS_set_basic_block:
16127 basic_block = 1;
16128 break;
c2c6d25f
JM
16129 /* Add to the address register of the state machine the
16130 address increment value corresponding to special opcode
a738430d
MK
16131 255. I.e., this value is scaled by the minimum
16132 instruction length since special opcode 255 would have
b021a221 16133 scaled the increment. */
c906108c 16134 case DW_LNS_const_add_pc:
2dc7f7b3
TT
16135 {
16136 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16137
16138 address += (((op_index + adjust)
16139 / lh->maximum_ops_per_instruction)
16140 * lh->minimum_instruction_length);
16141 op_index = ((op_index + adjust)
16142 % lh->maximum_ops_per_instruction);
16143 }
c906108c
SS
16144 break;
16145 case DW_LNS_fixed_advance_pc:
16146 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 16147 op_index = 0;
c906108c
SS
16148 line_ptr += 2;
16149 break;
9aa1fe7e 16150 default:
a738430d
MK
16151 {
16152 /* Unknown standard opcode, ignore it. */
9aa1fe7e 16153 int i;
a738430d 16154
debd256d 16155 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
16156 {
16157 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16158 line_ptr += bytes_read;
16159 }
16160 }
c906108c
SS
16161 }
16162 }
59205f5a
JB
16163 if (lh->num_file_names < file || file == 0)
16164 dwarf2_debug_line_missing_file_complaint ();
16165 else
16166 {
16167 lh->file_names[file - 1].included_p = 1;
16168 if (!decode_for_pst_p)
fbf65064
UW
16169 {
16170 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16171 (*p_record_line) (current_subfile, 0, addr);
fbf65064 16172 }
59205f5a 16173 }
c906108c 16174 }
f3f5162e
DE
16175}
16176
16177/* Decode the Line Number Program (LNP) for the given line_header
16178 structure and CU. The actual information extracted and the type
16179 of structures created from the LNP depends on the value of PST.
16180
16181 1. If PST is NULL, then this procedure uses the data from the program
16182 to create all necessary symbol tables, and their linetables.
16183
16184 2. If PST is not NULL, this procedure reads the program to determine
16185 the list of files included by the unit represented by PST, and
16186 builds all the associated partial symbol tables.
16187
16188 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16189 It is used for relative paths in the line table.
16190 NOTE: When processing partial symtabs (pst != NULL),
16191 comp_dir == pst->dirname.
16192
16193 NOTE: It is important that psymtabs have the same file name (via strcmp)
16194 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16195 symtab we don't use it in the name of the psymtabs we create.
16196 E.g. expand_line_sal requires this when finding psymtabs to expand.
16197 A good testcase for this is mb-inline.exp. */
16198
16199static void
16200dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16201 struct dwarf2_cu *cu, struct partial_symtab *pst,
16202 int want_line_info)
16203{
16204 struct objfile *objfile = cu->objfile;
16205 const int decode_for_pst_p = (pst != NULL);
16206 struct subfile *first_subfile = current_subfile;
16207
16208 if (want_line_info)
16209 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
16210
16211 if (decode_for_pst_p)
16212 {
16213 int file_index;
16214
16215 /* Now that we're done scanning the Line Header Program, we can
16216 create the psymtab of each included file. */
16217 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16218 if (lh->file_names[file_index].included_p == 1)
16219 {
d521ce57 16220 const char *include_name =
c6da4cef
DE
16221 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16222 if (include_name != NULL)
aaa75496
JB
16223 dwarf2_create_include_psymtab (include_name, pst, objfile);
16224 }
16225 }
cb1df416
DJ
16226 else
16227 {
16228 /* Make sure a symtab is created for every file, even files
16229 which contain only variables (i.e. no code with associated
16230 line numbers). */
cb1df416 16231 int i;
cb1df416
DJ
16232
16233 for (i = 0; i < lh->num_file_names; i++)
16234 {
d521ce57 16235 const char *dir = NULL;
f3f5162e 16236 struct file_entry *fe;
9a619af0 16237
cb1df416
DJ
16238 fe = &lh->file_names[i];
16239 if (fe->dir_index)
16240 dir = lh->include_dirs[fe->dir_index - 1];
16241 dwarf2_start_subfile (fe->name, dir, comp_dir);
16242
16243 /* Skip the main file; we don't need it, and it must be
16244 allocated last, so that it will show up before the
16245 non-primary symtabs in the objfile's symtab list. */
16246 if (current_subfile == first_subfile)
16247 continue;
16248
16249 if (current_subfile->symtab == NULL)
16250 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 16251 objfile);
cb1df416
DJ
16252 fe->symtab = current_subfile->symtab;
16253 }
16254 }
c906108c
SS
16255}
16256
16257/* Start a subfile for DWARF. FILENAME is the name of the file and
16258 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
16259 or NULL if not known. COMP_DIR is the compilation directory for the
16260 linetable's compilation unit or NULL if not known.
c906108c
SS
16261 This routine tries to keep line numbers from identical absolute and
16262 relative file names in a common subfile.
16263
16264 Using the `list' example from the GDB testsuite, which resides in
16265 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16266 of /srcdir/list0.c yields the following debugging information for list0.c:
16267
c5aa993b
JM
16268 DW_AT_name: /srcdir/list0.c
16269 DW_AT_comp_dir: /compdir
357e46e7 16270 files.files[0].name: list0.h
c5aa993b 16271 files.files[0].dir: /srcdir
357e46e7 16272 files.files[1].name: list0.c
c5aa993b 16273 files.files[1].dir: /srcdir
c906108c
SS
16274
16275 The line number information for list0.c has to end up in a single
4f1520fb
FR
16276 subfile, so that `break /srcdir/list0.c:1' works as expected.
16277 start_subfile will ensure that this happens provided that we pass the
16278 concatenation of files.files[1].dir and files.files[1].name as the
16279 subfile's name. */
c906108c
SS
16280
16281static void
d521ce57 16282dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 16283 const char *comp_dir)
c906108c 16284{
d521ce57 16285 char *copy = NULL;
4f1520fb
FR
16286
16287 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16288 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16289 second argument to start_subfile. To be consistent, we do the
16290 same here. In order not to lose the line information directory,
16291 we concatenate it to the filename when it makes sense.
16292 Note that the Dwarf3 standard says (speaking of filenames in line
16293 information): ``The directory index is ignored for file names
16294 that represent full path names''. Thus ignoring dirname in the
16295 `else' branch below isn't an issue. */
c906108c 16296
d5166ae1 16297 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
16298 {
16299 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16300 filename = copy;
16301 }
c906108c 16302
d521ce57 16303 start_subfile (filename, comp_dir);
4f1520fb 16304
d521ce57
TT
16305 if (copy != NULL)
16306 xfree (copy);
c906108c
SS
16307}
16308
f4dc4d17
DE
16309/* Start a symtab for DWARF.
16310 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16311
16312static void
16313dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 16314 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
16315{
16316 start_symtab (name, comp_dir, low_pc);
16317 record_debugformat ("DWARF 2");
16318 record_producer (cu->producer);
16319
16320 /* We assume that we're processing GCC output. */
16321 processing_gcc_compilation = 2;
16322
4d4ec4e5 16323 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
16324}
16325
4c2df51b
DJ
16326static void
16327var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 16328 struct dwarf2_cu *cu)
4c2df51b 16329{
e7c27a73
DJ
16330 struct objfile *objfile = cu->objfile;
16331 struct comp_unit_head *cu_header = &cu->header;
16332
4c2df51b
DJ
16333 /* NOTE drow/2003-01-30: There used to be a comment and some special
16334 code here to turn a symbol with DW_AT_external and a
16335 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16336 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16337 with some versions of binutils) where shared libraries could have
16338 relocations against symbols in their debug information - the
16339 minimal symbol would have the right address, but the debug info
16340 would not. It's no longer necessary, because we will explicitly
16341 apply relocations when we read in the debug information now. */
16342
16343 /* A DW_AT_location attribute with no contents indicates that a
16344 variable has been optimized away. */
16345 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16346 {
f1e6e072 16347 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
16348 return;
16349 }
16350
16351 /* Handle one degenerate form of location expression specially, to
16352 preserve GDB's previous behavior when section offsets are
3019eac3
DE
16353 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16354 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
16355
16356 if (attr_form_is_block (attr)
3019eac3
DE
16357 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16358 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16359 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16360 && (DW_BLOCK (attr)->size
16361 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 16362 {
891d2f0b 16363 unsigned int dummy;
4c2df51b 16364
3019eac3
DE
16365 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16366 SYMBOL_VALUE_ADDRESS (sym) =
16367 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16368 else
16369 SYMBOL_VALUE_ADDRESS (sym) =
16370 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 16371 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
16372 fixup_symbol_section (sym, objfile);
16373 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16374 SYMBOL_SECTION (sym));
4c2df51b
DJ
16375 return;
16376 }
16377
16378 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16379 expression evaluator, and use LOC_COMPUTED only when necessary
16380 (i.e. when the value of a register or memory location is
16381 referenced, or a thread-local block, etc.). Then again, it might
16382 not be worthwhile. I'm assuming that it isn't unless performance
16383 or memory numbers show me otherwise. */
16384
f1e6e072 16385 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 16386
f1e6e072 16387 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 16388 cu->has_loclist = 1;
4c2df51b
DJ
16389}
16390
c906108c
SS
16391/* Given a pointer to a DWARF information entry, figure out if we need
16392 to make a symbol table entry for it, and if so, create a new entry
16393 and return a pointer to it.
16394 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
16395 used the passed type.
16396 If SPACE is not NULL, use it to hold the new symbol. If it is
16397 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
16398
16399static struct symbol *
34eaf542
TT
16400new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16401 struct symbol *space)
c906108c 16402{
e7c27a73 16403 struct objfile *objfile = cu->objfile;
c906108c 16404 struct symbol *sym = NULL;
15d034d0 16405 const char *name;
c906108c
SS
16406 struct attribute *attr = NULL;
16407 struct attribute *attr2 = NULL;
e142c38c 16408 CORE_ADDR baseaddr;
e37fd15a
SW
16409 struct pending **list_to_add = NULL;
16410
edb3359d 16411 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
16412
16413 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16414
94af9270 16415 name = dwarf2_name (die, cu);
c906108c
SS
16416 if (name)
16417 {
94af9270 16418 const char *linkagename;
34eaf542 16419 int suppress_add = 0;
94af9270 16420
34eaf542
TT
16421 if (space)
16422 sym = space;
16423 else
e623cf5d 16424 sym = allocate_symbol (objfile);
c906108c 16425 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
16426
16427 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 16428 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
16429 linkagename = dwarf2_physname (name, die, cu);
16430 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 16431
f55ee35c
JK
16432 /* Fortran does not have mangling standard and the mangling does differ
16433 between gfortran, iFort etc. */
16434 if (cu->language == language_fortran
b250c185 16435 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 16436 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 16437 dwarf2_full_name (name, die, cu),
29df156d 16438 NULL);
f55ee35c 16439
c906108c 16440 /* Default assumptions.
c5aa993b 16441 Use the passed type or decode it from the die. */
176620f1 16442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 16443 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
16444 if (type != NULL)
16445 SYMBOL_TYPE (sym) = type;
16446 else
e7c27a73 16447 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
16448 attr = dwarf2_attr (die,
16449 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16450 cu);
c906108c
SS
16451 if (attr)
16452 {
16453 SYMBOL_LINE (sym) = DW_UNSND (attr);
16454 }
cb1df416 16455
edb3359d
DJ
16456 attr = dwarf2_attr (die,
16457 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16458 cu);
cb1df416
DJ
16459 if (attr)
16460 {
16461 int file_index = DW_UNSND (attr);
9a619af0 16462
cb1df416
DJ
16463 if (cu->line_header == NULL
16464 || file_index > cu->line_header->num_file_names)
16465 complaint (&symfile_complaints,
16466 _("file index out of range"));
1c3d648d 16467 else if (file_index > 0)
cb1df416
DJ
16468 {
16469 struct file_entry *fe;
9a619af0 16470
cb1df416
DJ
16471 fe = &cu->line_header->file_names[file_index - 1];
16472 SYMBOL_SYMTAB (sym) = fe->symtab;
16473 }
16474 }
16475
c906108c
SS
16476 switch (die->tag)
16477 {
16478 case DW_TAG_label:
e142c38c 16479 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
16480 if (attr)
16481 {
16482 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16483 }
0f5238ed
TT
16484 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16485 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 16486 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 16487 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
16488 break;
16489 case DW_TAG_subprogram:
16490 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16491 finish_block. */
f1e6e072 16492 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 16493 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
16494 if ((attr2 && (DW_UNSND (attr2) != 0))
16495 || cu->language == language_ada)
c906108c 16496 {
2cfa0c8d
JB
16497 /* Subprograms marked external are stored as a global symbol.
16498 Ada subprograms, whether marked external or not, are always
16499 stored as a global symbol, because we want to be able to
16500 access them globally. For instance, we want to be able
16501 to break on a nested subprogram without having to
16502 specify the context. */
e37fd15a 16503 list_to_add = &global_symbols;
c906108c
SS
16504 }
16505 else
16506 {
e37fd15a 16507 list_to_add = cu->list_in_scope;
c906108c
SS
16508 }
16509 break;
edb3359d
DJ
16510 case DW_TAG_inlined_subroutine:
16511 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16512 finish_block. */
f1e6e072 16513 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 16514 SYMBOL_INLINED (sym) = 1;
481860b3 16515 list_to_add = cu->list_in_scope;
edb3359d 16516 break;
34eaf542
TT
16517 case DW_TAG_template_value_param:
16518 suppress_add = 1;
16519 /* Fall through. */
72929c62 16520 case DW_TAG_constant:
c906108c 16521 case DW_TAG_variable:
254e6b9e 16522 case DW_TAG_member:
0963b4bd
MS
16523 /* Compilation with minimal debug info may result in
16524 variables with missing type entries. Change the
16525 misleading `void' type to something sensible. */
c906108c 16526 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 16527 SYMBOL_TYPE (sym)
46bf5051 16528 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 16529
e142c38c 16530 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
16531 /* In the case of DW_TAG_member, we should only be called for
16532 static const members. */
16533 if (die->tag == DW_TAG_member)
16534 {
3863f96c
DE
16535 /* dwarf2_add_field uses die_is_declaration,
16536 so we do the same. */
254e6b9e
DE
16537 gdb_assert (die_is_declaration (die, cu));
16538 gdb_assert (attr);
16539 }
c906108c
SS
16540 if (attr)
16541 {
e7c27a73 16542 dwarf2_const_value (attr, sym, cu);
e142c38c 16543 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 16544 if (!suppress_add)
34eaf542
TT
16545 {
16546 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 16547 list_to_add = &global_symbols;
34eaf542 16548 else
e37fd15a 16549 list_to_add = cu->list_in_scope;
34eaf542 16550 }
c906108c
SS
16551 break;
16552 }
e142c38c 16553 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16554 if (attr)
16555 {
e7c27a73 16556 var_decode_location (attr, sym, cu);
e142c38c 16557 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
16558
16559 /* Fortran explicitly imports any global symbols to the local
16560 scope by DW_TAG_common_block. */
16561 if (cu->language == language_fortran && die->parent
16562 && die->parent->tag == DW_TAG_common_block)
16563 attr2 = NULL;
16564
caac4577
JG
16565 if (SYMBOL_CLASS (sym) == LOC_STATIC
16566 && SYMBOL_VALUE_ADDRESS (sym) == 0
16567 && !dwarf2_per_objfile->has_section_at_zero)
16568 {
16569 /* When a static variable is eliminated by the linker,
16570 the corresponding debug information is not stripped
16571 out, but the variable address is set to null;
16572 do not add such variables into symbol table. */
16573 }
16574 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 16575 {
f55ee35c
JK
16576 /* Workaround gfortran PR debug/40040 - it uses
16577 DW_AT_location for variables in -fPIC libraries which may
16578 get overriden by other libraries/executable and get
16579 a different address. Resolve it by the minimal symbol
16580 which may come from inferior's executable using copy
16581 relocation. Make this workaround only for gfortran as for
16582 other compilers GDB cannot guess the minimal symbol
16583 Fortran mangling kind. */
16584 if (cu->language == language_fortran && die->parent
16585 && die->parent->tag == DW_TAG_module
16586 && cu->producer
16587 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 16588 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 16589
1c809c68
TT
16590 /* A variable with DW_AT_external is never static,
16591 but it may be block-scoped. */
16592 list_to_add = (cu->list_in_scope == &file_symbols
16593 ? &global_symbols : cu->list_in_scope);
1c809c68 16594 }
c906108c 16595 else
e37fd15a 16596 list_to_add = cu->list_in_scope;
c906108c
SS
16597 }
16598 else
16599 {
16600 /* We do not know the address of this symbol.
c5aa993b
JM
16601 If it is an external symbol and we have type information
16602 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16603 The address of the variable will then be determined from
16604 the minimal symbol table whenever the variable is
16605 referenced. */
e142c38c 16606 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
16607
16608 /* Fortran explicitly imports any global symbols to the local
16609 scope by DW_TAG_common_block. */
16610 if (cu->language == language_fortran && die->parent
16611 && die->parent->tag == DW_TAG_common_block)
16612 {
16613 /* SYMBOL_CLASS doesn't matter here because
16614 read_common_block is going to reset it. */
16615 if (!suppress_add)
16616 list_to_add = cu->list_in_scope;
16617 }
16618 else if (attr2 && (DW_UNSND (attr2) != 0)
16619 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 16620 {
0fe7935b
DJ
16621 /* A variable with DW_AT_external is never static, but it
16622 may be block-scoped. */
16623 list_to_add = (cu->list_in_scope == &file_symbols
16624 ? &global_symbols : cu->list_in_scope);
16625
f1e6e072 16626 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 16627 }
442ddf59
JK
16628 else if (!die_is_declaration (die, cu))
16629 {
16630 /* Use the default LOC_OPTIMIZED_OUT class. */
16631 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
16632 if (!suppress_add)
16633 list_to_add = cu->list_in_scope;
442ddf59 16634 }
c906108c
SS
16635 }
16636 break;
16637 case DW_TAG_formal_parameter:
edb3359d
DJ
16638 /* If we are inside a function, mark this as an argument. If
16639 not, we might be looking at an argument to an inlined function
16640 when we do not have enough information to show inlined frames;
16641 pretend it's a local variable in that case so that the user can
16642 still see it. */
16643 if (context_stack_depth > 0
16644 && context_stack[context_stack_depth - 1].name != NULL)
16645 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 16646 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16647 if (attr)
16648 {
e7c27a73 16649 var_decode_location (attr, sym, cu);
c906108c 16650 }
e142c38c 16651 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16652 if (attr)
16653 {
e7c27a73 16654 dwarf2_const_value (attr, sym, cu);
c906108c 16655 }
f346a30d 16656
e37fd15a 16657 list_to_add = cu->list_in_scope;
c906108c
SS
16658 break;
16659 case DW_TAG_unspecified_parameters:
16660 /* From varargs functions; gdb doesn't seem to have any
16661 interest in this information, so just ignore it for now.
16662 (FIXME?) */
16663 break;
34eaf542
TT
16664 case DW_TAG_template_type_param:
16665 suppress_add = 1;
16666 /* Fall through. */
c906108c 16667 case DW_TAG_class_type:
680b30c7 16668 case DW_TAG_interface_type:
c906108c
SS
16669 case DW_TAG_structure_type:
16670 case DW_TAG_union_type:
72019c9c 16671 case DW_TAG_set_type:
c906108c 16672 case DW_TAG_enumeration_type:
f1e6e072 16673 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16674 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 16675
63d06c5c 16676 {
987504bb 16677 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
16678 really ever be static objects: otherwise, if you try
16679 to, say, break of a class's method and you're in a file
16680 which doesn't mention that class, it won't work unless
16681 the check for all static symbols in lookup_symbol_aux
16682 saves you. See the OtherFileClass tests in
16683 gdb.c++/namespace.exp. */
16684
e37fd15a 16685 if (!suppress_add)
34eaf542 16686 {
34eaf542
TT
16687 list_to_add = (cu->list_in_scope == &file_symbols
16688 && (cu->language == language_cplus
16689 || cu->language == language_java)
16690 ? &global_symbols : cu->list_in_scope);
63d06c5c 16691
64382290
TT
16692 /* The semantics of C++ state that "struct foo {
16693 ... }" also defines a typedef for "foo". A Java
16694 class declaration also defines a typedef for the
16695 class. */
16696 if (cu->language == language_cplus
16697 || cu->language == language_java
16698 || cu->language == language_ada)
16699 {
16700 /* The symbol's name is already allocated along
16701 with this objfile, so we don't need to
16702 duplicate it for the type. */
16703 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16704 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16705 }
63d06c5c
DC
16706 }
16707 }
c906108c
SS
16708 break;
16709 case DW_TAG_typedef:
f1e6e072 16710 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 16711 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16712 list_to_add = cu->list_in_scope;
63d06c5c 16713 break;
c906108c 16714 case DW_TAG_base_type:
a02abb62 16715 case DW_TAG_subrange_type:
f1e6e072 16716 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16717 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16718 list_to_add = cu->list_in_scope;
c906108c
SS
16719 break;
16720 case DW_TAG_enumerator:
e142c38c 16721 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16722 if (attr)
16723 {
e7c27a73 16724 dwarf2_const_value (attr, sym, cu);
c906108c 16725 }
63d06c5c
DC
16726 {
16727 /* NOTE: carlton/2003-11-10: See comment above in the
16728 DW_TAG_class_type, etc. block. */
16729
e142c38c 16730 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
16731 && (cu->language == language_cplus
16732 || cu->language == language_java)
e142c38c 16733 ? &global_symbols : cu->list_in_scope);
63d06c5c 16734 }
c906108c 16735 break;
5c4e30ca 16736 case DW_TAG_namespace:
f1e6e072 16737 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 16738 list_to_add = &global_symbols;
5c4e30ca 16739 break;
4357ac6c 16740 case DW_TAG_common_block:
f1e6e072 16741 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
16742 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16743 add_symbol_to_list (sym, cu->list_in_scope);
16744 break;
c906108c
SS
16745 default:
16746 /* Not a tag we recognize. Hopefully we aren't processing
16747 trash data, but since we must specifically ignore things
16748 we don't recognize, there is nothing else we should do at
0963b4bd 16749 this point. */
e2e0b3e5 16750 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 16751 dwarf_tag_name (die->tag));
c906108c
SS
16752 break;
16753 }
df8a16a1 16754
e37fd15a
SW
16755 if (suppress_add)
16756 {
16757 sym->hash_next = objfile->template_symbols;
16758 objfile->template_symbols = sym;
16759 list_to_add = NULL;
16760 }
16761
16762 if (list_to_add != NULL)
16763 add_symbol_to_list (sym, list_to_add);
16764
df8a16a1
DJ
16765 /* For the benefit of old versions of GCC, check for anonymous
16766 namespaces based on the demangled name. */
4d4ec4e5 16767 if (!cu->processing_has_namespace_info
94af9270 16768 && cu->language == language_cplus)
a10964d1 16769 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
16770 }
16771 return (sym);
16772}
16773
34eaf542
TT
16774/* A wrapper for new_symbol_full that always allocates a new symbol. */
16775
16776static struct symbol *
16777new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16778{
16779 return new_symbol_full (die, type, cu, NULL);
16780}
16781
98bfdba5
PA
16782/* Given an attr with a DW_FORM_dataN value in host byte order,
16783 zero-extend it as appropriate for the symbol's type. The DWARF
16784 standard (v4) is not entirely clear about the meaning of using
16785 DW_FORM_dataN for a constant with a signed type, where the type is
16786 wider than the data. The conclusion of a discussion on the DWARF
16787 list was that this is unspecified. We choose to always zero-extend
16788 because that is the interpretation long in use by GCC. */
c906108c 16789
98bfdba5 16790static gdb_byte *
ff39bb5e 16791dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 16792 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16793{
e7c27a73 16794 struct objfile *objfile = cu->objfile;
e17a4113
UW
16795 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16796 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16797 LONGEST l = DW_UNSND (attr);
16798
16799 if (bits < sizeof (*value) * 8)
16800 {
16801 l &= ((LONGEST) 1 << bits) - 1;
16802 *value = l;
16803 }
16804 else if (bits == sizeof (*value) * 8)
16805 *value = l;
16806 else
16807 {
16808 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16809 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16810 return bytes;
16811 }
16812
16813 return NULL;
16814}
16815
16816/* Read a constant value from an attribute. Either set *VALUE, or if
16817 the value does not fit in *VALUE, set *BYTES - either already
16818 allocated on the objfile obstack, or newly allocated on OBSTACK,
16819 or, set *BATON, if we translated the constant to a location
16820 expression. */
16821
16822static void
ff39bb5e 16823dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
16824 const char *name, struct obstack *obstack,
16825 struct dwarf2_cu *cu,
d521ce57 16826 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
16827 struct dwarf2_locexpr_baton **baton)
16828{
16829 struct objfile *objfile = cu->objfile;
16830 struct comp_unit_head *cu_header = &cu->header;
c906108c 16831 struct dwarf_block *blk;
98bfdba5
PA
16832 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16833 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16834
16835 *value = 0;
16836 *bytes = NULL;
16837 *baton = NULL;
c906108c
SS
16838
16839 switch (attr->form)
16840 {
16841 case DW_FORM_addr:
3019eac3 16842 case DW_FORM_GNU_addr_index:
ac56253d 16843 {
ac56253d
TT
16844 gdb_byte *data;
16845
98bfdba5
PA
16846 if (TYPE_LENGTH (type) != cu_header->addr_size)
16847 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16848 cu_header->addr_size,
98bfdba5 16849 TYPE_LENGTH (type));
ac56253d
TT
16850 /* Symbols of this form are reasonably rare, so we just
16851 piggyback on the existing location code rather than writing
16852 a new implementation of symbol_computed_ops. */
7919a973 16853 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
16854 (*baton)->per_cu = cu->per_cu;
16855 gdb_assert ((*baton)->per_cu);
ac56253d 16856
98bfdba5 16857 (*baton)->size = 2 + cu_header->addr_size;
7919a973 16858 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 16859 (*baton)->data = data;
ac56253d
TT
16860
16861 data[0] = DW_OP_addr;
16862 store_unsigned_integer (&data[1], cu_header->addr_size,
16863 byte_order, DW_ADDR (attr));
16864 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16865 }
c906108c 16866 break;
4ac36638 16867 case DW_FORM_string:
93b5768b 16868 case DW_FORM_strp:
3019eac3 16869 case DW_FORM_GNU_str_index:
36586728 16870 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16871 /* DW_STRING is already allocated on the objfile obstack, point
16872 directly to it. */
d521ce57 16873 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 16874 break;
c906108c
SS
16875 case DW_FORM_block1:
16876 case DW_FORM_block2:
16877 case DW_FORM_block4:
16878 case DW_FORM_block:
2dc7f7b3 16879 case DW_FORM_exprloc:
c906108c 16880 blk = DW_BLOCK (attr);
98bfdba5
PA
16881 if (TYPE_LENGTH (type) != blk->size)
16882 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16883 TYPE_LENGTH (type));
16884 *bytes = blk->data;
c906108c 16885 break;
2df3850c
JM
16886
16887 /* The DW_AT_const_value attributes are supposed to carry the
16888 symbol's value "represented as it would be on the target
16889 architecture." By the time we get here, it's already been
16890 converted to host endianness, so we just need to sign- or
16891 zero-extend it as appropriate. */
16892 case DW_FORM_data1:
3aef2284 16893 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 16894 break;
c906108c 16895 case DW_FORM_data2:
3aef2284 16896 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 16897 break;
c906108c 16898 case DW_FORM_data4:
3aef2284 16899 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 16900 break;
c906108c 16901 case DW_FORM_data8:
3aef2284 16902 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
16903 break;
16904
c906108c 16905 case DW_FORM_sdata:
98bfdba5 16906 *value = DW_SND (attr);
2df3850c
JM
16907 break;
16908
c906108c 16909 case DW_FORM_udata:
98bfdba5 16910 *value = DW_UNSND (attr);
c906108c 16911 break;
2df3850c 16912
c906108c 16913 default:
4d3c2250 16914 complaint (&symfile_complaints,
e2e0b3e5 16915 _("unsupported const value attribute form: '%s'"),
4d3c2250 16916 dwarf_form_name (attr->form));
98bfdba5 16917 *value = 0;
c906108c
SS
16918 break;
16919 }
16920}
16921
2df3850c 16922
98bfdba5
PA
16923/* Copy constant value from an attribute to a symbol. */
16924
2df3850c 16925static void
ff39bb5e 16926dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 16927 struct dwarf2_cu *cu)
2df3850c 16928{
98bfdba5
PA
16929 struct objfile *objfile = cu->objfile;
16930 struct comp_unit_head *cu_header = &cu->header;
12df843f 16931 LONGEST value;
d521ce57 16932 const gdb_byte *bytes;
98bfdba5 16933 struct dwarf2_locexpr_baton *baton;
2df3850c 16934
98bfdba5
PA
16935 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16936 SYMBOL_PRINT_NAME (sym),
16937 &objfile->objfile_obstack, cu,
16938 &value, &bytes, &baton);
2df3850c 16939
98bfdba5
PA
16940 if (baton != NULL)
16941 {
98bfdba5 16942 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16943 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
16944 }
16945 else if (bytes != NULL)
16946 {
16947 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 16948 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
16949 }
16950 else
16951 {
16952 SYMBOL_VALUE (sym) = value;
f1e6e072 16953 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 16954 }
2df3850c
JM
16955}
16956
c906108c
SS
16957/* Return the type of the die in question using its DW_AT_type attribute. */
16958
16959static struct type *
e7c27a73 16960die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16961{
c906108c 16962 struct attribute *type_attr;
c906108c 16963
e142c38c 16964 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16965 if (!type_attr)
16966 {
16967 /* A missing DW_AT_type represents a void type. */
46bf5051 16968 return objfile_type (cu->objfile)->builtin_void;
c906108c 16969 }
348e048f 16970
673bfd45 16971 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16972}
16973
b4ba55a1
JB
16974/* True iff CU's producer generates GNAT Ada auxiliary information
16975 that allows to find parallel types through that information instead
16976 of having to do expensive parallel lookups by type name. */
16977
16978static int
16979need_gnat_info (struct dwarf2_cu *cu)
16980{
16981 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16982 of GNAT produces this auxiliary information, without any indication
16983 that it is produced. Part of enhancing the FSF version of GNAT
16984 to produce that information will be to put in place an indicator
16985 that we can use in order to determine whether the descriptive type
16986 info is available or not. One suggestion that has been made is
16987 to use a new attribute, attached to the CU die. For now, assume
16988 that the descriptive type info is not available. */
16989 return 0;
16990}
16991
b4ba55a1
JB
16992/* Return the auxiliary type of the die in question using its
16993 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16994 attribute is not present. */
16995
16996static struct type *
16997die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16998{
b4ba55a1 16999 struct attribute *type_attr;
b4ba55a1
JB
17000
17001 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17002 if (!type_attr)
17003 return NULL;
17004
673bfd45 17005 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
17006}
17007
17008/* If DIE has a descriptive_type attribute, then set the TYPE's
17009 descriptive type accordingly. */
17010
17011static void
17012set_descriptive_type (struct type *type, struct die_info *die,
17013 struct dwarf2_cu *cu)
17014{
17015 struct type *descriptive_type = die_descriptive_type (die, cu);
17016
17017 if (descriptive_type)
17018 {
17019 ALLOCATE_GNAT_AUX_TYPE (type);
17020 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17021 }
17022}
17023
c906108c
SS
17024/* Return the containing type of the die in question using its
17025 DW_AT_containing_type attribute. */
17026
17027static struct type *
e7c27a73 17028die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17029{
c906108c 17030 struct attribute *type_attr;
c906108c 17031
e142c38c 17032 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
17033 if (!type_attr)
17034 error (_("Dwarf Error: Problem turning containing type into gdb type "
17035 "[in module %s]"), cu->objfile->name);
17036
673bfd45 17037 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17038}
17039
ac9ec31b
DE
17040/* Return an error marker type to use for the ill formed type in DIE/CU. */
17041
17042static struct type *
17043build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17044{
17045 struct objfile *objfile = dwarf2_per_objfile->objfile;
17046 char *message, *saved;
17047
17048 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17049 objfile->name,
17050 cu->header.offset.sect_off,
17051 die->offset.sect_off);
17052 saved = obstack_copy0 (&objfile->objfile_obstack,
17053 message, strlen (message));
17054 xfree (message);
17055
17056 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17057}
17058
673bfd45 17059/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
17060 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17061 DW_AT_containing_type.
673bfd45
DE
17062 If there is no type substitute an error marker. */
17063
c906108c 17064static struct type *
ff39bb5e 17065lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 17066 struct dwarf2_cu *cu)
c906108c 17067{
bb5ed363 17068 struct objfile *objfile = cu->objfile;
f792889a
DJ
17069 struct type *this_type;
17070
ac9ec31b
DE
17071 gdb_assert (attr->name == DW_AT_type
17072 || attr->name == DW_AT_GNAT_descriptive_type
17073 || attr->name == DW_AT_containing_type);
17074
673bfd45
DE
17075 /* First see if we have it cached. */
17076
36586728
TT
17077 if (attr->form == DW_FORM_GNU_ref_alt)
17078 {
17079 struct dwarf2_per_cu_data *per_cu;
17080 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17081
17082 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17083 this_type = get_die_type_at_offset (offset, per_cu);
17084 }
7771576e 17085 else if (attr_form_is_ref (attr))
673bfd45 17086 {
b64f50a1 17087 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
17088
17089 this_type = get_die_type_at_offset (offset, cu->per_cu);
17090 }
55f1336d 17091 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 17092 {
ac9ec31b 17093 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 17094
ac9ec31b 17095 return get_signatured_type (die, signature, cu);
673bfd45
DE
17096 }
17097 else
17098 {
ac9ec31b
DE
17099 complaint (&symfile_complaints,
17100 _("Dwarf Error: Bad type attribute %s in DIE"
17101 " at 0x%x [in module %s]"),
17102 dwarf_attr_name (attr->name), die->offset.sect_off,
17103 objfile->name);
17104 return build_error_marker_type (cu, die);
673bfd45
DE
17105 }
17106
17107 /* If not cached we need to read it in. */
17108
17109 if (this_type == NULL)
17110 {
ac9ec31b 17111 struct die_info *type_die = NULL;
673bfd45
DE
17112 struct dwarf2_cu *type_cu = cu;
17113
7771576e 17114 if (attr_form_is_ref (attr))
ac9ec31b
DE
17115 type_die = follow_die_ref (die, attr, &type_cu);
17116 if (type_die == NULL)
17117 return build_error_marker_type (cu, die);
17118 /* If we find the type now, it's probably because the type came
3019eac3
DE
17119 from an inter-CU reference and the type's CU got expanded before
17120 ours. */
ac9ec31b 17121 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
17122 }
17123
17124 /* If we still don't have a type use an error marker. */
17125
17126 if (this_type == NULL)
ac9ec31b 17127 return build_error_marker_type (cu, die);
673bfd45 17128
f792889a 17129 return this_type;
c906108c
SS
17130}
17131
673bfd45
DE
17132/* Return the type in DIE, CU.
17133 Returns NULL for invalid types.
17134
02142a6c 17135 This first does a lookup in die_type_hash,
673bfd45
DE
17136 and only reads the die in if necessary.
17137
17138 NOTE: This can be called when reading in partial or full symbols. */
17139
f792889a 17140static struct type *
e7c27a73 17141read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17142{
f792889a
DJ
17143 struct type *this_type;
17144
17145 this_type = get_die_type (die, cu);
17146 if (this_type)
17147 return this_type;
17148
673bfd45
DE
17149 return read_type_die_1 (die, cu);
17150}
17151
17152/* Read the type in DIE, CU.
17153 Returns NULL for invalid types. */
17154
17155static struct type *
17156read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17157{
17158 struct type *this_type = NULL;
17159
c906108c
SS
17160 switch (die->tag)
17161 {
17162 case DW_TAG_class_type:
680b30c7 17163 case DW_TAG_interface_type:
c906108c
SS
17164 case DW_TAG_structure_type:
17165 case DW_TAG_union_type:
f792889a 17166 this_type = read_structure_type (die, cu);
c906108c
SS
17167 break;
17168 case DW_TAG_enumeration_type:
f792889a 17169 this_type = read_enumeration_type (die, cu);
c906108c
SS
17170 break;
17171 case DW_TAG_subprogram:
17172 case DW_TAG_subroutine_type:
edb3359d 17173 case DW_TAG_inlined_subroutine:
f792889a 17174 this_type = read_subroutine_type (die, cu);
c906108c
SS
17175 break;
17176 case DW_TAG_array_type:
f792889a 17177 this_type = read_array_type (die, cu);
c906108c 17178 break;
72019c9c 17179 case DW_TAG_set_type:
f792889a 17180 this_type = read_set_type (die, cu);
72019c9c 17181 break;
c906108c 17182 case DW_TAG_pointer_type:
f792889a 17183 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
17184 break;
17185 case DW_TAG_ptr_to_member_type:
f792889a 17186 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
17187 break;
17188 case DW_TAG_reference_type:
f792889a 17189 this_type = read_tag_reference_type (die, cu);
c906108c
SS
17190 break;
17191 case DW_TAG_const_type:
f792889a 17192 this_type = read_tag_const_type (die, cu);
c906108c
SS
17193 break;
17194 case DW_TAG_volatile_type:
f792889a 17195 this_type = read_tag_volatile_type (die, cu);
c906108c 17196 break;
06d66ee9
TT
17197 case DW_TAG_restrict_type:
17198 this_type = read_tag_restrict_type (die, cu);
17199 break;
c906108c 17200 case DW_TAG_string_type:
f792889a 17201 this_type = read_tag_string_type (die, cu);
c906108c
SS
17202 break;
17203 case DW_TAG_typedef:
f792889a 17204 this_type = read_typedef (die, cu);
c906108c 17205 break;
a02abb62 17206 case DW_TAG_subrange_type:
f792889a 17207 this_type = read_subrange_type (die, cu);
a02abb62 17208 break;
c906108c 17209 case DW_TAG_base_type:
f792889a 17210 this_type = read_base_type (die, cu);
c906108c 17211 break;
81a17f79 17212 case DW_TAG_unspecified_type:
f792889a 17213 this_type = read_unspecified_type (die, cu);
81a17f79 17214 break;
0114d602
DJ
17215 case DW_TAG_namespace:
17216 this_type = read_namespace_type (die, cu);
17217 break;
f55ee35c
JK
17218 case DW_TAG_module:
17219 this_type = read_module_type (die, cu);
17220 break;
c906108c 17221 default:
3e43a32a
MS
17222 complaint (&symfile_complaints,
17223 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 17224 dwarf_tag_name (die->tag));
c906108c
SS
17225 break;
17226 }
63d06c5c 17227
f792889a 17228 return this_type;
63d06c5c
DC
17229}
17230
abc72ce4
DE
17231/* See if we can figure out if the class lives in a namespace. We do
17232 this by looking for a member function; its demangled name will
17233 contain namespace info, if there is any.
17234 Return the computed name or NULL.
17235 Space for the result is allocated on the objfile's obstack.
17236 This is the full-die version of guess_partial_die_structure_name.
17237 In this case we know DIE has no useful parent. */
17238
17239static char *
17240guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17241{
17242 struct die_info *spec_die;
17243 struct dwarf2_cu *spec_cu;
17244 struct die_info *child;
17245
17246 spec_cu = cu;
17247 spec_die = die_specification (die, &spec_cu);
17248 if (spec_die != NULL)
17249 {
17250 die = spec_die;
17251 cu = spec_cu;
17252 }
17253
17254 for (child = die->child;
17255 child != NULL;
17256 child = child->sibling)
17257 {
17258 if (child->tag == DW_TAG_subprogram)
17259 {
17260 struct attribute *attr;
17261
17262 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17263 if (attr == NULL)
17264 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17265 if (attr != NULL)
17266 {
17267 char *actual_name
17268 = language_class_name_from_physname (cu->language_defn,
17269 DW_STRING (attr));
17270 char *name = NULL;
17271
17272 if (actual_name != NULL)
17273 {
15d034d0 17274 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
17275
17276 if (die_name != NULL
17277 && strcmp (die_name, actual_name) != 0)
17278 {
17279 /* Strip off the class name from the full name.
17280 We want the prefix. */
17281 int die_name_len = strlen (die_name);
17282 int actual_name_len = strlen (actual_name);
17283
17284 /* Test for '::' as a sanity check. */
17285 if (actual_name_len > die_name_len + 2
3e43a32a
MS
17286 && actual_name[actual_name_len
17287 - die_name_len - 1] == ':')
abc72ce4 17288 name =
10f0c4bb
TT
17289 obstack_copy0 (&cu->objfile->objfile_obstack,
17290 actual_name,
17291 actual_name_len - die_name_len - 2);
abc72ce4
DE
17292 }
17293 }
17294 xfree (actual_name);
17295 return name;
17296 }
17297 }
17298 }
17299
17300 return NULL;
17301}
17302
96408a79
SA
17303/* GCC might emit a nameless typedef that has a linkage name. Determine the
17304 prefix part in such case. See
17305 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17306
17307static char *
17308anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17309{
17310 struct attribute *attr;
17311 char *base;
17312
17313 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17314 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17315 return NULL;
17316
17317 attr = dwarf2_attr (die, DW_AT_name, cu);
17318 if (attr != NULL && DW_STRING (attr) != NULL)
17319 return NULL;
17320
17321 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17322 if (attr == NULL)
17323 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17324 if (attr == NULL || DW_STRING (attr) == NULL)
17325 return NULL;
17326
17327 /* dwarf2_name had to be already called. */
17328 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17329
17330 /* Strip the base name, keep any leading namespaces/classes. */
17331 base = strrchr (DW_STRING (attr), ':');
17332 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17333 return "";
17334
10f0c4bb
TT
17335 return obstack_copy0 (&cu->objfile->objfile_obstack,
17336 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
17337}
17338
fdde2d81 17339/* Return the name of the namespace/class that DIE is defined within,
0114d602 17340 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 17341
0114d602
DJ
17342 For example, if we're within the method foo() in the following
17343 code:
17344
17345 namespace N {
17346 class C {
17347 void foo () {
17348 }
17349 };
17350 }
17351
17352 then determine_prefix on foo's die will return "N::C". */
fdde2d81 17353
0d5cff50 17354static const char *
e142c38c 17355determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 17356{
0114d602
DJ
17357 struct die_info *parent, *spec_die;
17358 struct dwarf2_cu *spec_cu;
17359 struct type *parent_type;
96408a79 17360 char *retval;
63d06c5c 17361
f55ee35c
JK
17362 if (cu->language != language_cplus && cu->language != language_java
17363 && cu->language != language_fortran)
0114d602
DJ
17364 return "";
17365
96408a79
SA
17366 retval = anonymous_struct_prefix (die, cu);
17367 if (retval)
17368 return retval;
17369
0114d602
DJ
17370 /* We have to be careful in the presence of DW_AT_specification.
17371 For example, with GCC 3.4, given the code
17372
17373 namespace N {
17374 void foo() {
17375 // Definition of N::foo.
17376 }
17377 }
17378
17379 then we'll have a tree of DIEs like this:
17380
17381 1: DW_TAG_compile_unit
17382 2: DW_TAG_namespace // N
17383 3: DW_TAG_subprogram // declaration of N::foo
17384 4: DW_TAG_subprogram // definition of N::foo
17385 DW_AT_specification // refers to die #3
17386
17387 Thus, when processing die #4, we have to pretend that we're in
17388 the context of its DW_AT_specification, namely the contex of die
17389 #3. */
17390 spec_cu = cu;
17391 spec_die = die_specification (die, &spec_cu);
17392 if (spec_die == NULL)
17393 parent = die->parent;
17394 else
63d06c5c 17395 {
0114d602
DJ
17396 parent = spec_die->parent;
17397 cu = spec_cu;
63d06c5c 17398 }
0114d602
DJ
17399
17400 if (parent == NULL)
17401 return "";
98bfdba5
PA
17402 else if (parent->building_fullname)
17403 {
17404 const char *name;
17405 const char *parent_name;
17406
17407 /* It has been seen on RealView 2.2 built binaries,
17408 DW_TAG_template_type_param types actually _defined_ as
17409 children of the parent class:
17410
17411 enum E {};
17412 template class <class Enum> Class{};
17413 Class<enum E> class_e;
17414
17415 1: DW_TAG_class_type (Class)
17416 2: DW_TAG_enumeration_type (E)
17417 3: DW_TAG_enumerator (enum1:0)
17418 3: DW_TAG_enumerator (enum2:1)
17419 ...
17420 2: DW_TAG_template_type_param
17421 DW_AT_type DW_FORM_ref_udata (E)
17422
17423 Besides being broken debug info, it can put GDB into an
17424 infinite loop. Consider:
17425
17426 When we're building the full name for Class<E>, we'll start
17427 at Class, and go look over its template type parameters,
17428 finding E. We'll then try to build the full name of E, and
17429 reach here. We're now trying to build the full name of E,
17430 and look over the parent DIE for containing scope. In the
17431 broken case, if we followed the parent DIE of E, we'd again
17432 find Class, and once again go look at its template type
17433 arguments, etc., etc. Simply don't consider such parent die
17434 as source-level parent of this die (it can't be, the language
17435 doesn't allow it), and break the loop here. */
17436 name = dwarf2_name (die, cu);
17437 parent_name = dwarf2_name (parent, cu);
17438 complaint (&symfile_complaints,
17439 _("template param type '%s' defined within parent '%s'"),
17440 name ? name : "<unknown>",
17441 parent_name ? parent_name : "<unknown>");
17442 return "";
17443 }
63d06c5c 17444 else
0114d602
DJ
17445 switch (parent->tag)
17446 {
63d06c5c 17447 case DW_TAG_namespace:
0114d602 17448 parent_type = read_type_die (parent, cu);
acebe513
UW
17449 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17450 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17451 Work around this problem here. */
17452 if (cu->language == language_cplus
17453 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17454 return "";
0114d602
DJ
17455 /* We give a name to even anonymous namespaces. */
17456 return TYPE_TAG_NAME (parent_type);
63d06c5c 17457 case DW_TAG_class_type:
680b30c7 17458 case DW_TAG_interface_type:
63d06c5c 17459 case DW_TAG_structure_type:
0114d602 17460 case DW_TAG_union_type:
f55ee35c 17461 case DW_TAG_module:
0114d602
DJ
17462 parent_type = read_type_die (parent, cu);
17463 if (TYPE_TAG_NAME (parent_type) != NULL)
17464 return TYPE_TAG_NAME (parent_type);
17465 else
17466 /* An anonymous structure is only allowed non-static data
17467 members; no typedefs, no member functions, et cetera.
17468 So it does not need a prefix. */
17469 return "";
abc72ce4 17470 case DW_TAG_compile_unit:
95554aad 17471 case DW_TAG_partial_unit:
abc72ce4
DE
17472 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17473 if (cu->language == language_cplus
8b70b953 17474 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
17475 && die->child != NULL
17476 && (die->tag == DW_TAG_class_type
17477 || die->tag == DW_TAG_structure_type
17478 || die->tag == DW_TAG_union_type))
17479 {
17480 char *name = guess_full_die_structure_name (die, cu);
17481 if (name != NULL)
17482 return name;
17483 }
17484 return "";
63d06c5c 17485 default:
8176b9b8 17486 return determine_prefix (parent, cu);
63d06c5c 17487 }
63d06c5c
DC
17488}
17489
3e43a32a
MS
17490/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17491 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17492 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17493 an obconcat, otherwise allocate storage for the result. The CU argument is
17494 used to determine the language and hence, the appropriate separator. */
987504bb 17495
f55ee35c 17496#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
17497
17498static char *
f55ee35c
JK
17499typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17500 int physname, struct dwarf2_cu *cu)
63d06c5c 17501{
f55ee35c 17502 const char *lead = "";
5c315b68 17503 const char *sep;
63d06c5c 17504
3e43a32a
MS
17505 if (suffix == NULL || suffix[0] == '\0'
17506 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
17507 sep = "";
17508 else if (cu->language == language_java)
17509 sep = ".";
f55ee35c
JK
17510 else if (cu->language == language_fortran && physname)
17511 {
17512 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17513 DW_AT_MIPS_linkage_name is preferred and used instead. */
17514
17515 lead = "__";
17516 sep = "_MOD_";
17517 }
987504bb
JJ
17518 else
17519 sep = "::";
63d06c5c 17520
6dd47d34
DE
17521 if (prefix == NULL)
17522 prefix = "";
17523 if (suffix == NULL)
17524 suffix = "";
17525
987504bb
JJ
17526 if (obs == NULL)
17527 {
3e43a32a
MS
17528 char *retval
17529 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 17530
f55ee35c
JK
17531 strcpy (retval, lead);
17532 strcat (retval, prefix);
6dd47d34
DE
17533 strcat (retval, sep);
17534 strcat (retval, suffix);
63d06c5c
DC
17535 return retval;
17536 }
987504bb
JJ
17537 else
17538 {
17539 /* We have an obstack. */
f55ee35c 17540 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 17541 }
63d06c5c
DC
17542}
17543
c906108c
SS
17544/* Return sibling of die, NULL if no sibling. */
17545
f9aca02d 17546static struct die_info *
fba45db2 17547sibling_die (struct die_info *die)
c906108c 17548{
639d11d3 17549 return die->sibling;
c906108c
SS
17550}
17551
71c25dea
TT
17552/* Get name of a die, return NULL if not found. */
17553
15d034d0
TT
17554static const char *
17555dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
17556 struct obstack *obstack)
17557{
17558 if (name && cu->language == language_cplus)
17559 {
17560 char *canon_name = cp_canonicalize_string (name);
17561
17562 if (canon_name != NULL)
17563 {
17564 if (strcmp (canon_name, name) != 0)
10f0c4bb 17565 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
17566 xfree (canon_name);
17567 }
17568 }
17569
17570 return name;
c906108c
SS
17571}
17572
9219021c
DC
17573/* Get name of a die, return NULL if not found. */
17574
15d034d0 17575static const char *
e142c38c 17576dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
17577{
17578 struct attribute *attr;
17579
e142c38c 17580 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
17581 if ((!attr || !DW_STRING (attr))
17582 && die->tag != DW_TAG_class_type
17583 && die->tag != DW_TAG_interface_type
17584 && die->tag != DW_TAG_structure_type
17585 && die->tag != DW_TAG_union_type)
71c25dea
TT
17586 return NULL;
17587
17588 switch (die->tag)
17589 {
17590 case DW_TAG_compile_unit:
95554aad 17591 case DW_TAG_partial_unit:
71c25dea
TT
17592 /* Compilation units have a DW_AT_name that is a filename, not
17593 a source language identifier. */
17594 case DW_TAG_enumeration_type:
17595 case DW_TAG_enumerator:
17596 /* These tags always have simple identifiers already; no need
17597 to canonicalize them. */
17598 return DW_STRING (attr);
907af001 17599
418835cc
KS
17600 case DW_TAG_subprogram:
17601 /* Java constructors will all be named "<init>", so return
17602 the class name when we see this special case. */
17603 if (cu->language == language_java
17604 && DW_STRING (attr) != NULL
17605 && strcmp (DW_STRING (attr), "<init>") == 0)
17606 {
17607 struct dwarf2_cu *spec_cu = cu;
17608 struct die_info *spec_die;
17609
17610 /* GCJ will output '<init>' for Java constructor names.
17611 For this special case, return the name of the parent class. */
17612
17613 /* GCJ may output suprogram DIEs with AT_specification set.
17614 If so, use the name of the specified DIE. */
17615 spec_die = die_specification (die, &spec_cu);
17616 if (spec_die != NULL)
17617 return dwarf2_name (spec_die, spec_cu);
17618
17619 do
17620 {
17621 die = die->parent;
17622 if (die->tag == DW_TAG_class_type)
17623 return dwarf2_name (die, cu);
17624 }
95554aad
TT
17625 while (die->tag != DW_TAG_compile_unit
17626 && die->tag != DW_TAG_partial_unit);
418835cc 17627 }
907af001
UW
17628 break;
17629
17630 case DW_TAG_class_type:
17631 case DW_TAG_interface_type:
17632 case DW_TAG_structure_type:
17633 case DW_TAG_union_type:
17634 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17635 structures or unions. These were of the form "._%d" in GCC 4.1,
17636 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17637 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
17638 if (attr && DW_STRING (attr)
17639 && (strncmp (DW_STRING (attr), "._", 2) == 0
17640 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 17641 return NULL;
53832f31
TT
17642
17643 /* GCC might emit a nameless typedef that has a linkage name. See
17644 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17645 if (!attr || DW_STRING (attr) == NULL)
17646 {
df5c6c50 17647 char *demangled = NULL;
53832f31
TT
17648
17649 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17650 if (attr == NULL)
17651 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17652
17653 if (attr == NULL || DW_STRING (attr) == NULL)
17654 return NULL;
17655
df5c6c50
JK
17656 /* Avoid demangling DW_STRING (attr) the second time on a second
17657 call for the same DIE. */
17658 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 17659 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
17660
17661 if (demangled)
17662 {
96408a79
SA
17663 char *base;
17664
53832f31 17665 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
17666 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17667 demangled, strlen (demangled));
53832f31
TT
17668 DW_STRING_IS_CANONICAL (attr) = 1;
17669 xfree (demangled);
96408a79
SA
17670
17671 /* Strip any leading namespaces/classes, keep only the base name.
17672 DW_AT_name for named DIEs does not contain the prefixes. */
17673 base = strrchr (DW_STRING (attr), ':');
17674 if (base && base > DW_STRING (attr) && base[-1] == ':')
17675 return &base[1];
17676 else
17677 return DW_STRING (attr);
53832f31
TT
17678 }
17679 }
907af001
UW
17680 break;
17681
71c25dea 17682 default:
907af001
UW
17683 break;
17684 }
17685
17686 if (!DW_STRING_IS_CANONICAL (attr))
17687 {
17688 DW_STRING (attr)
17689 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17690 &cu->objfile->objfile_obstack);
17691 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 17692 }
907af001 17693 return DW_STRING (attr);
9219021c
DC
17694}
17695
17696/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
17697 is none. *EXT_CU is the CU containing DIE on input, and the CU
17698 containing the return value on output. */
9219021c
DC
17699
17700static struct die_info *
f2f0e013 17701dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
17702{
17703 struct attribute *attr;
9219021c 17704
f2f0e013 17705 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
17706 if (attr == NULL)
17707 return NULL;
17708
f2f0e013 17709 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
17710}
17711
c906108c
SS
17712/* Convert a DIE tag into its string name. */
17713
f39c6ffd 17714static const char *
aa1ee363 17715dwarf_tag_name (unsigned tag)
c906108c 17716{
f39c6ffd
TT
17717 const char *name = get_DW_TAG_name (tag);
17718
17719 if (name == NULL)
17720 return "DW_TAG_<unknown>";
17721
17722 return name;
c906108c
SS
17723}
17724
17725/* Convert a DWARF attribute code into its string name. */
17726
f39c6ffd 17727static const char *
aa1ee363 17728dwarf_attr_name (unsigned attr)
c906108c 17729{
f39c6ffd
TT
17730 const char *name;
17731
c764a876 17732#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
17733 if (attr == DW_AT_MIPS_fde)
17734 return "DW_AT_MIPS_fde";
17735#else
17736 if (attr == DW_AT_HP_block_index)
17737 return "DW_AT_HP_block_index";
c764a876 17738#endif
f39c6ffd
TT
17739
17740 name = get_DW_AT_name (attr);
17741
17742 if (name == NULL)
17743 return "DW_AT_<unknown>";
17744
17745 return name;
c906108c
SS
17746}
17747
17748/* Convert a DWARF value form code into its string name. */
17749
f39c6ffd 17750static const char *
aa1ee363 17751dwarf_form_name (unsigned form)
c906108c 17752{
f39c6ffd
TT
17753 const char *name = get_DW_FORM_name (form);
17754
17755 if (name == NULL)
17756 return "DW_FORM_<unknown>";
17757
17758 return name;
c906108c
SS
17759}
17760
17761static char *
fba45db2 17762dwarf_bool_name (unsigned mybool)
c906108c
SS
17763{
17764 if (mybool)
17765 return "TRUE";
17766 else
17767 return "FALSE";
17768}
17769
17770/* Convert a DWARF type code into its string name. */
17771
f39c6ffd 17772static const char *
aa1ee363 17773dwarf_type_encoding_name (unsigned enc)
c906108c 17774{
f39c6ffd 17775 const char *name = get_DW_ATE_name (enc);
c906108c 17776
f39c6ffd
TT
17777 if (name == NULL)
17778 return "DW_ATE_<unknown>";
c906108c 17779
f39c6ffd 17780 return name;
c906108c 17781}
c906108c 17782
f9aca02d 17783static void
d97bc12b 17784dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17785{
17786 unsigned int i;
17787
d97bc12b
DE
17788 print_spaces (indent, f);
17789 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17790 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17791
17792 if (die->parent != NULL)
17793 {
17794 print_spaces (indent, f);
17795 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17796 die->parent->offset.sect_off);
d97bc12b
DE
17797 }
17798
17799 print_spaces (indent, f);
17800 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17801 dwarf_bool_name (die->child != NULL));
c906108c 17802
d97bc12b
DE
17803 print_spaces (indent, f);
17804 fprintf_unfiltered (f, " attributes:\n");
17805
c906108c
SS
17806 for (i = 0; i < die->num_attrs; ++i)
17807 {
d97bc12b
DE
17808 print_spaces (indent, f);
17809 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17810 dwarf_attr_name (die->attrs[i].name),
17811 dwarf_form_name (die->attrs[i].form));
d97bc12b 17812
c906108c
SS
17813 switch (die->attrs[i].form)
17814 {
c906108c 17815 case DW_FORM_addr:
3019eac3 17816 case DW_FORM_GNU_addr_index:
d97bc12b 17817 fprintf_unfiltered (f, "address: ");
5af949e3 17818 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17819 break;
17820 case DW_FORM_block2:
17821 case DW_FORM_block4:
17822 case DW_FORM_block:
17823 case DW_FORM_block1:
56eb65bd
SP
17824 fprintf_unfiltered (f, "block: size %s",
17825 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17826 break;
2dc7f7b3 17827 case DW_FORM_exprloc:
56eb65bd
SP
17828 fprintf_unfiltered (f, "expression: size %s",
17829 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17830 break;
4568ecf9
DE
17831 case DW_FORM_ref_addr:
17832 fprintf_unfiltered (f, "ref address: ");
17833 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17834 break;
36586728
TT
17835 case DW_FORM_GNU_ref_alt:
17836 fprintf_unfiltered (f, "alt ref address: ");
17837 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17838 break;
10b3939b
DJ
17839 case DW_FORM_ref1:
17840 case DW_FORM_ref2:
17841 case DW_FORM_ref4:
4568ecf9
DE
17842 case DW_FORM_ref8:
17843 case DW_FORM_ref_udata:
d97bc12b 17844 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17845 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17846 break;
c906108c
SS
17847 case DW_FORM_data1:
17848 case DW_FORM_data2:
17849 case DW_FORM_data4:
ce5d95e1 17850 case DW_FORM_data8:
c906108c
SS
17851 case DW_FORM_udata:
17852 case DW_FORM_sdata:
43bbcdc2
PH
17853 fprintf_unfiltered (f, "constant: %s",
17854 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17855 break;
2dc7f7b3
TT
17856 case DW_FORM_sec_offset:
17857 fprintf_unfiltered (f, "section offset: %s",
17858 pulongest (DW_UNSND (&die->attrs[i])));
17859 break;
55f1336d 17860 case DW_FORM_ref_sig8:
ac9ec31b
DE
17861 fprintf_unfiltered (f, "signature: %s",
17862 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 17863 break;
c906108c 17864 case DW_FORM_string:
4bdf3d34 17865 case DW_FORM_strp:
3019eac3 17866 case DW_FORM_GNU_str_index:
36586728 17867 case DW_FORM_GNU_strp_alt:
8285870a 17868 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17869 DW_STRING (&die->attrs[i])
8285870a
JK
17870 ? DW_STRING (&die->attrs[i]) : "",
17871 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17872 break;
17873 case DW_FORM_flag:
17874 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17875 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17876 else
d97bc12b 17877 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17878 break;
2dc7f7b3
TT
17879 case DW_FORM_flag_present:
17880 fprintf_unfiltered (f, "flag: TRUE");
17881 break;
a8329558 17882 case DW_FORM_indirect:
0963b4bd
MS
17883 /* The reader will have reduced the indirect form to
17884 the "base form" so this form should not occur. */
3e43a32a
MS
17885 fprintf_unfiltered (f,
17886 "unexpected attribute form: DW_FORM_indirect");
a8329558 17887 break;
c906108c 17888 default:
d97bc12b 17889 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17890 die->attrs[i].form);
d97bc12b 17891 break;
c906108c 17892 }
d97bc12b 17893 fprintf_unfiltered (f, "\n");
c906108c
SS
17894 }
17895}
17896
f9aca02d 17897static void
d97bc12b 17898dump_die_for_error (struct die_info *die)
c906108c 17899{
d97bc12b
DE
17900 dump_die_shallow (gdb_stderr, 0, die);
17901}
17902
17903static void
17904dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17905{
17906 int indent = level * 4;
17907
17908 gdb_assert (die != NULL);
17909
17910 if (level >= max_level)
17911 return;
17912
17913 dump_die_shallow (f, indent, die);
17914
17915 if (die->child != NULL)
c906108c 17916 {
d97bc12b
DE
17917 print_spaces (indent, f);
17918 fprintf_unfiltered (f, " Children:");
17919 if (level + 1 < max_level)
17920 {
17921 fprintf_unfiltered (f, "\n");
17922 dump_die_1 (f, level + 1, max_level, die->child);
17923 }
17924 else
17925 {
3e43a32a
MS
17926 fprintf_unfiltered (f,
17927 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17928 }
17929 }
17930
17931 if (die->sibling != NULL && level > 0)
17932 {
17933 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17934 }
17935}
17936
d97bc12b
DE
17937/* This is called from the pdie macro in gdbinit.in.
17938 It's not static so gcc will keep a copy callable from gdb. */
17939
17940void
17941dump_die (struct die_info *die, int max_level)
17942{
17943 dump_die_1 (gdb_stdlog, 0, max_level, die);
17944}
17945
f9aca02d 17946static void
51545339 17947store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17948{
51545339 17949 void **slot;
c906108c 17950
b64f50a1
JK
17951 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17952 INSERT);
51545339
DJ
17953
17954 *slot = die;
c906108c
SS
17955}
17956
b64f50a1
JK
17957/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17958 required kind. */
17959
17960static sect_offset
ff39bb5e 17961dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 17962{
4568ecf9 17963 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17964
7771576e 17965 if (attr_form_is_ref (attr))
b64f50a1 17966 return retval;
93311388 17967
b64f50a1 17968 retval.sect_off = 0;
93311388
DE
17969 complaint (&symfile_complaints,
17970 _("unsupported die ref attribute form: '%s'"),
17971 dwarf_form_name (attr->form));
b64f50a1 17972 return retval;
c906108c
SS
17973}
17974
43bbcdc2
PH
17975/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17976 * the value held by the attribute is not constant. */
a02abb62 17977
43bbcdc2 17978static LONGEST
ff39bb5e 17979dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
17980{
17981 if (attr->form == DW_FORM_sdata)
17982 return DW_SND (attr);
17983 else if (attr->form == DW_FORM_udata
17984 || attr->form == DW_FORM_data1
17985 || attr->form == DW_FORM_data2
17986 || attr->form == DW_FORM_data4
17987 || attr->form == DW_FORM_data8)
17988 return DW_UNSND (attr);
17989 else
17990 {
3e43a32a
MS
17991 complaint (&symfile_complaints,
17992 _("Attribute value is not a constant (%s)"),
a02abb62
JB
17993 dwarf_form_name (attr->form));
17994 return default_value;
17995 }
17996}
17997
348e048f
DE
17998/* Follow reference or signature attribute ATTR of SRC_DIE.
17999 On entry *REF_CU is the CU of SRC_DIE.
18000 On exit *REF_CU is the CU of the result. */
18001
18002static struct die_info *
ff39bb5e 18003follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
18004 struct dwarf2_cu **ref_cu)
18005{
18006 struct die_info *die;
18007
7771576e 18008 if (attr_form_is_ref (attr))
348e048f 18009 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 18010 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
18011 die = follow_die_sig (src_die, attr, ref_cu);
18012 else
18013 {
18014 dump_die_for_error (src_die);
18015 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18016 (*ref_cu)->objfile->name);
18017 }
18018
18019 return die;
03dd20cc
DJ
18020}
18021
5c631832 18022/* Follow reference OFFSET.
673bfd45
DE
18023 On entry *REF_CU is the CU of the source die referencing OFFSET.
18024 On exit *REF_CU is the CU of the result.
18025 Returns NULL if OFFSET is invalid. */
f504f079 18026
f9aca02d 18027static struct die_info *
36586728
TT
18028follow_die_offset (sect_offset offset, int offset_in_dwz,
18029 struct dwarf2_cu **ref_cu)
c906108c 18030{
10b3939b 18031 struct die_info temp_die;
f2f0e013 18032 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 18033
348e048f
DE
18034 gdb_assert (cu->per_cu != NULL);
18035
98bfdba5
PA
18036 target_cu = cu;
18037
3019eac3 18038 if (cu->per_cu->is_debug_types)
348e048f
DE
18039 {
18040 /* .debug_types CUs cannot reference anything outside their CU.
18041 If they need to, they have to reference a signatured type via
55f1336d 18042 DW_FORM_ref_sig8. */
348e048f 18043 if (! offset_in_cu_p (&cu->header, offset))
5c631832 18044 return NULL;
348e048f 18045 }
36586728
TT
18046 else if (offset_in_dwz != cu->per_cu->is_dwz
18047 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
18048 {
18049 struct dwarf2_per_cu_data *per_cu;
9a619af0 18050
36586728
TT
18051 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18052 cu->objfile);
03dd20cc
DJ
18053
18054 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
18055 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18056 load_full_comp_unit (per_cu, cu->language);
03dd20cc 18057
10b3939b
DJ
18058 target_cu = per_cu->cu;
18059 }
98bfdba5
PA
18060 else if (cu->dies == NULL)
18061 {
18062 /* We're loading full DIEs during partial symbol reading. */
18063 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 18064 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 18065 }
c906108c 18066
f2f0e013 18067 *ref_cu = target_cu;
51545339 18068 temp_die.offset = offset;
b64f50a1 18069 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 18070}
10b3939b 18071
5c631832
JK
18072/* Follow reference attribute ATTR of SRC_DIE.
18073 On entry *REF_CU is the CU of SRC_DIE.
18074 On exit *REF_CU is the CU of the result. */
18075
18076static struct die_info *
ff39bb5e 18077follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
18078 struct dwarf2_cu **ref_cu)
18079{
b64f50a1 18080 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
18081 struct dwarf2_cu *cu = *ref_cu;
18082 struct die_info *die;
18083
36586728
TT
18084 die = follow_die_offset (offset,
18085 (attr->form == DW_FORM_GNU_ref_alt
18086 || cu->per_cu->is_dwz),
18087 ref_cu);
5c631832
JK
18088 if (!die)
18089 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18090 "at 0x%x [in module %s]"),
b64f50a1 18091 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 18092
5c631832
JK
18093 return die;
18094}
18095
d83e736b
JK
18096/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18097 Returned value is intended for DW_OP_call*. Returned
18098 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
18099
18100struct dwarf2_locexpr_baton
8b9737bf
TT
18101dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18102 struct dwarf2_per_cu_data *per_cu,
18103 CORE_ADDR (*get_frame_pc) (void *baton),
18104 void *baton)
5c631832 18105{
918dd910 18106 struct dwarf2_cu *cu;
5c631832
JK
18107 struct die_info *die;
18108 struct attribute *attr;
18109 struct dwarf2_locexpr_baton retval;
18110
8cf6f0b1
TT
18111 dw2_setup (per_cu->objfile);
18112
918dd910
JK
18113 if (per_cu->cu == NULL)
18114 load_cu (per_cu);
18115 cu = per_cu->cu;
18116
36586728 18117 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
18118 if (!die)
18119 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 18120 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18121
18122 attr = dwarf2_attr (die, DW_AT_location, cu);
18123 if (!attr)
18124 {
e103e986
JK
18125 /* DWARF: "If there is no such attribute, then there is no effect.".
18126 DATA is ignored if SIZE is 0. */
5c631832 18127
e103e986 18128 retval.data = NULL;
5c631832
JK
18129 retval.size = 0;
18130 }
8cf6f0b1
TT
18131 else if (attr_form_is_section_offset (attr))
18132 {
18133 struct dwarf2_loclist_baton loclist_baton;
18134 CORE_ADDR pc = (*get_frame_pc) (baton);
18135 size_t size;
18136
18137 fill_in_loclist_baton (cu, &loclist_baton, attr);
18138
18139 retval.data = dwarf2_find_location_expression (&loclist_baton,
18140 &size, pc);
18141 retval.size = size;
18142 }
5c631832
JK
18143 else
18144 {
18145 if (!attr_form_is_block (attr))
18146 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18147 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 18148 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18149
18150 retval.data = DW_BLOCK (attr)->data;
18151 retval.size = DW_BLOCK (attr)->size;
18152 }
18153 retval.per_cu = cu->per_cu;
918dd910 18154
918dd910
JK
18155 age_cached_comp_units ();
18156
5c631832 18157 return retval;
348e048f
DE
18158}
18159
8b9737bf
TT
18160/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18161 offset. */
18162
18163struct dwarf2_locexpr_baton
18164dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18165 struct dwarf2_per_cu_data *per_cu,
18166 CORE_ADDR (*get_frame_pc) (void *baton),
18167 void *baton)
18168{
18169 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18170
18171 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18172}
18173
b6807d98
TT
18174/* Write a constant of a given type as target-ordered bytes into
18175 OBSTACK. */
18176
18177static const gdb_byte *
18178write_constant_as_bytes (struct obstack *obstack,
18179 enum bfd_endian byte_order,
18180 struct type *type,
18181 ULONGEST value,
18182 LONGEST *len)
18183{
18184 gdb_byte *result;
18185
18186 *len = TYPE_LENGTH (type);
18187 result = obstack_alloc (obstack, *len);
18188 store_unsigned_integer (result, *len, byte_order, value);
18189
18190 return result;
18191}
18192
18193/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18194 pointer to the constant bytes and set LEN to the length of the
18195 data. If memory is needed, allocate it on OBSTACK. If the DIE
18196 does not have a DW_AT_const_value, return NULL. */
18197
18198const gdb_byte *
18199dwarf2_fetch_constant_bytes (sect_offset offset,
18200 struct dwarf2_per_cu_data *per_cu,
18201 struct obstack *obstack,
18202 LONGEST *len)
18203{
18204 struct dwarf2_cu *cu;
18205 struct die_info *die;
18206 struct attribute *attr;
18207 const gdb_byte *result = NULL;
18208 struct type *type;
18209 LONGEST value;
18210 enum bfd_endian byte_order;
18211
18212 dw2_setup (per_cu->objfile);
18213
18214 if (per_cu->cu == NULL)
18215 load_cu (per_cu);
18216 cu = per_cu->cu;
18217
18218 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18219 if (!die)
18220 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18221 offset.sect_off, per_cu->objfile->name);
18222
18223
18224 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18225 if (attr == NULL)
18226 return NULL;
18227
18228 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18229 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18230
18231 switch (attr->form)
18232 {
18233 case DW_FORM_addr:
18234 case DW_FORM_GNU_addr_index:
18235 {
18236 gdb_byte *tem;
18237
18238 *len = cu->header.addr_size;
18239 tem = obstack_alloc (obstack, *len);
18240 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18241 result = tem;
18242 }
18243 break;
18244 case DW_FORM_string:
18245 case DW_FORM_strp:
18246 case DW_FORM_GNU_str_index:
18247 case DW_FORM_GNU_strp_alt:
18248 /* DW_STRING is already allocated on the objfile obstack, point
18249 directly to it. */
18250 result = (const gdb_byte *) DW_STRING (attr);
18251 *len = strlen (DW_STRING (attr));
18252 break;
18253 case DW_FORM_block1:
18254 case DW_FORM_block2:
18255 case DW_FORM_block4:
18256 case DW_FORM_block:
18257 case DW_FORM_exprloc:
18258 result = DW_BLOCK (attr)->data;
18259 *len = DW_BLOCK (attr)->size;
18260 break;
18261
18262 /* The DW_AT_const_value attributes are supposed to carry the
18263 symbol's value "represented as it would be on the target
18264 architecture." By the time we get here, it's already been
18265 converted to host endianness, so we just need to sign- or
18266 zero-extend it as appropriate. */
18267 case DW_FORM_data1:
18268 type = die_type (die, cu);
18269 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18270 if (result == NULL)
18271 result = write_constant_as_bytes (obstack, byte_order,
18272 type, value, len);
18273 break;
18274 case DW_FORM_data2:
18275 type = die_type (die, cu);
18276 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18277 if (result == NULL)
18278 result = write_constant_as_bytes (obstack, byte_order,
18279 type, value, len);
18280 break;
18281 case DW_FORM_data4:
18282 type = die_type (die, cu);
18283 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18284 if (result == NULL)
18285 result = write_constant_as_bytes (obstack, byte_order,
18286 type, value, len);
18287 break;
18288 case DW_FORM_data8:
18289 type = die_type (die, cu);
18290 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18291 if (result == NULL)
18292 result = write_constant_as_bytes (obstack, byte_order,
18293 type, value, len);
18294 break;
18295
18296 case DW_FORM_sdata:
18297 type = die_type (die, cu);
18298 result = write_constant_as_bytes (obstack, byte_order,
18299 type, DW_SND (attr), len);
18300 break;
18301
18302 case DW_FORM_udata:
18303 type = die_type (die, cu);
18304 result = write_constant_as_bytes (obstack, byte_order,
18305 type, DW_UNSND (attr), len);
18306 break;
18307
18308 default:
18309 complaint (&symfile_complaints,
18310 _("unsupported const value attribute form: '%s'"),
18311 dwarf_form_name (attr->form));
18312 break;
18313 }
18314
18315 return result;
18316}
18317
8a9b8146
TT
18318/* Return the type of the DIE at DIE_OFFSET in the CU named by
18319 PER_CU. */
18320
18321struct type *
b64f50a1 18322dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
18323 struct dwarf2_per_cu_data *per_cu)
18324{
b64f50a1
JK
18325 sect_offset die_offset_sect;
18326
8a9b8146 18327 dw2_setup (per_cu->objfile);
b64f50a1
JK
18328
18329 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18330 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
18331}
18332
ac9ec31b 18333/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 18334 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
18335 On exit *REF_CU is the CU of the result.
18336 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
18337
18338static struct die_info *
ac9ec31b
DE
18339follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18340 struct dwarf2_cu **ref_cu)
348e048f
DE
18341{
18342 struct objfile *objfile = (*ref_cu)->objfile;
18343 struct die_info temp_die;
348e048f
DE
18344 struct dwarf2_cu *sig_cu;
18345 struct die_info *die;
18346
ac9ec31b
DE
18347 /* While it might be nice to assert sig_type->type == NULL here,
18348 we can get here for DW_AT_imported_declaration where we need
18349 the DIE not the type. */
348e048f
DE
18350
18351 /* If necessary, add it to the queue and load its DIEs. */
18352
95554aad 18353 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 18354 read_signatured_type (sig_type);
348e048f
DE
18355
18356 gdb_assert (sig_type->per_cu.cu != NULL);
18357
18358 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
18359 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18360 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
18361 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18362 temp_die.offset.sect_off);
348e048f
DE
18363 if (die)
18364 {
796a7ff8
DE
18365 /* For .gdb_index version 7 keep track of included TUs.
18366 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18367 if (dwarf2_per_objfile->index_table != NULL
18368 && dwarf2_per_objfile->index_table->version <= 7)
18369 {
18370 VEC_safe_push (dwarf2_per_cu_ptr,
18371 (*ref_cu)->per_cu->imported_symtabs,
18372 sig_cu->per_cu);
18373 }
18374
348e048f
DE
18375 *ref_cu = sig_cu;
18376 return die;
18377 }
18378
ac9ec31b
DE
18379 return NULL;
18380}
18381
18382/* Follow signatured type referenced by ATTR in SRC_DIE.
18383 On entry *REF_CU is the CU of SRC_DIE.
18384 On exit *REF_CU is the CU of the result.
18385 The result is the DIE of the type.
18386 If the referenced type cannot be found an error is thrown. */
18387
18388static struct die_info *
ff39bb5e 18389follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
18390 struct dwarf2_cu **ref_cu)
18391{
18392 ULONGEST signature = DW_SIGNATURE (attr);
18393 struct signatured_type *sig_type;
18394 struct die_info *die;
18395
18396 gdb_assert (attr->form == DW_FORM_ref_sig8);
18397
a2ce51a0 18398 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
18399 /* sig_type will be NULL if the signatured type is missing from
18400 the debug info. */
18401 if (sig_type == NULL)
18402 {
18403 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18404 " from DIE at 0x%x [in module %s]"),
18405 hex_string (signature), src_die->offset.sect_off,
18406 (*ref_cu)->objfile->name);
18407 }
18408
18409 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18410 if (die == NULL)
18411 {
18412 dump_die_for_error (src_die);
18413 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18414 " from DIE at 0x%x [in module %s]"),
18415 hex_string (signature), src_die->offset.sect_off,
18416 (*ref_cu)->objfile->name);
18417 }
18418
18419 return die;
18420}
18421
18422/* Get the type specified by SIGNATURE referenced in DIE/CU,
18423 reading in and processing the type unit if necessary. */
18424
18425static struct type *
18426get_signatured_type (struct die_info *die, ULONGEST signature,
18427 struct dwarf2_cu *cu)
18428{
18429 struct signatured_type *sig_type;
18430 struct dwarf2_cu *type_cu;
18431 struct die_info *type_die;
18432 struct type *type;
18433
a2ce51a0 18434 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
18435 /* sig_type will be NULL if the signatured type is missing from
18436 the debug info. */
18437 if (sig_type == NULL)
18438 {
18439 complaint (&symfile_complaints,
18440 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18441 " from DIE at 0x%x [in module %s]"),
18442 hex_string (signature), die->offset.sect_off,
18443 dwarf2_per_objfile->objfile->name);
18444 return build_error_marker_type (cu, die);
18445 }
18446
18447 /* If we already know the type we're done. */
18448 if (sig_type->type != NULL)
18449 return sig_type->type;
18450
18451 type_cu = cu;
18452 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18453 if (type_die != NULL)
18454 {
18455 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18456 is created. This is important, for example, because for c++ classes
18457 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18458 type = read_type_die (type_die, type_cu);
18459 if (type == NULL)
18460 {
18461 complaint (&symfile_complaints,
18462 _("Dwarf Error: Cannot build signatured type %s"
18463 " referenced from DIE at 0x%x [in module %s]"),
18464 hex_string (signature), die->offset.sect_off,
18465 dwarf2_per_objfile->objfile->name);
18466 type = build_error_marker_type (cu, die);
18467 }
18468 }
18469 else
18470 {
18471 complaint (&symfile_complaints,
18472 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18473 " from DIE at 0x%x [in module %s]"),
18474 hex_string (signature), die->offset.sect_off,
18475 dwarf2_per_objfile->objfile->name);
18476 type = build_error_marker_type (cu, die);
18477 }
18478 sig_type->type = type;
18479
18480 return type;
18481}
18482
18483/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18484 reading in and processing the type unit if necessary. */
18485
18486static struct type *
ff39bb5e 18487get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 18488 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
18489{
18490 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 18491 if (attr_form_is_ref (attr))
ac9ec31b
DE
18492 {
18493 struct dwarf2_cu *type_cu = cu;
18494 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18495
18496 return read_type_die (type_die, type_cu);
18497 }
18498 else if (attr->form == DW_FORM_ref_sig8)
18499 {
18500 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18501 }
18502 else
18503 {
18504 complaint (&symfile_complaints,
18505 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18506 " at 0x%x [in module %s]"),
18507 dwarf_form_name (attr->form), die->offset.sect_off,
18508 dwarf2_per_objfile->objfile->name);
18509 return build_error_marker_type (cu, die);
18510 }
348e048f
DE
18511}
18512
e5fe5e75 18513/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
18514
18515static void
e5fe5e75 18516load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 18517{
52dc124a 18518 struct signatured_type *sig_type;
348e048f 18519
f4dc4d17
DE
18520 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18521 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18522
6721b2ec
DE
18523 /* We have the per_cu, but we need the signatured_type.
18524 Fortunately this is an easy translation. */
18525 gdb_assert (per_cu->is_debug_types);
18526 sig_type = (struct signatured_type *) per_cu;
348e048f 18527
6721b2ec 18528 gdb_assert (per_cu->cu == NULL);
348e048f 18529
52dc124a 18530 read_signatured_type (sig_type);
348e048f 18531
6721b2ec 18532 gdb_assert (per_cu->cu != NULL);
348e048f
DE
18533}
18534
dee91e82
DE
18535/* die_reader_func for read_signatured_type.
18536 This is identical to load_full_comp_unit_reader,
18537 but is kept separate for now. */
348e048f
DE
18538
18539static void
dee91e82 18540read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 18541 const gdb_byte *info_ptr,
dee91e82
DE
18542 struct die_info *comp_unit_die,
18543 int has_children,
18544 void *data)
348e048f 18545{
dee91e82 18546 struct dwarf2_cu *cu = reader->cu;
348e048f 18547
dee91e82
DE
18548 gdb_assert (cu->die_hash == NULL);
18549 cu->die_hash =
18550 htab_create_alloc_ex (cu->header.length / 12,
18551 die_hash,
18552 die_eq,
18553 NULL,
18554 &cu->comp_unit_obstack,
18555 hashtab_obstack_allocate,
18556 dummy_obstack_deallocate);
348e048f 18557
dee91e82
DE
18558 if (has_children)
18559 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18560 &info_ptr, comp_unit_die);
18561 cu->dies = comp_unit_die;
18562 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
18563
18564 /* We try not to read any attributes in this function, because not
9cdd5dbd 18565 all CUs needed for references have been loaded yet, and symbol
348e048f 18566 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
18567 or we won't be able to build types correctly.
18568 Similarly, if we do not read the producer, we can not apply
18569 producer-specific interpretation. */
95554aad 18570 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 18571}
348e048f 18572
3019eac3
DE
18573/* Read in a signatured type and build its CU and DIEs.
18574 If the type is a stub for the real type in a DWO file,
18575 read in the real type from the DWO file as well. */
dee91e82
DE
18576
18577static void
18578read_signatured_type (struct signatured_type *sig_type)
18579{
18580 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 18581
3019eac3 18582 gdb_assert (per_cu->is_debug_types);
dee91e82 18583 gdb_assert (per_cu->cu == NULL);
348e048f 18584
f4dc4d17
DE
18585 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18586 read_signatured_type_reader, NULL);
c906108c
SS
18587}
18588
c906108c
SS
18589/* Decode simple location descriptions.
18590 Given a pointer to a dwarf block that defines a location, compute
18591 the location and return the value.
18592
4cecd739
DJ
18593 NOTE drow/2003-11-18: This function is called in two situations
18594 now: for the address of static or global variables (partial symbols
18595 only) and for offsets into structures which are expected to be
18596 (more or less) constant. The partial symbol case should go away,
18597 and only the constant case should remain. That will let this
18598 function complain more accurately. A few special modes are allowed
18599 without complaint for global variables (for instance, global
18600 register values and thread-local values).
c906108c
SS
18601
18602 A location description containing no operations indicates that the
4cecd739 18603 object is optimized out. The return value is 0 for that case.
6b992462
DJ
18604 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18605 callers will only want a very basic result and this can become a
21ae7a4d
JK
18606 complaint.
18607
18608 Note that stack[0] is unused except as a default error return. */
c906108c
SS
18609
18610static CORE_ADDR
e7c27a73 18611decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 18612{
e7c27a73 18613 struct objfile *objfile = cu->objfile;
56eb65bd
SP
18614 size_t i;
18615 size_t size = blk->size;
d521ce57 18616 const gdb_byte *data = blk->data;
21ae7a4d
JK
18617 CORE_ADDR stack[64];
18618 int stacki;
18619 unsigned int bytes_read, unsnd;
18620 gdb_byte op;
c906108c 18621
21ae7a4d
JK
18622 i = 0;
18623 stacki = 0;
18624 stack[stacki] = 0;
18625 stack[++stacki] = 0;
18626
18627 while (i < size)
18628 {
18629 op = data[i++];
18630 switch (op)
18631 {
18632 case DW_OP_lit0:
18633 case DW_OP_lit1:
18634 case DW_OP_lit2:
18635 case DW_OP_lit3:
18636 case DW_OP_lit4:
18637 case DW_OP_lit5:
18638 case DW_OP_lit6:
18639 case DW_OP_lit7:
18640 case DW_OP_lit8:
18641 case DW_OP_lit9:
18642 case DW_OP_lit10:
18643 case DW_OP_lit11:
18644 case DW_OP_lit12:
18645 case DW_OP_lit13:
18646 case DW_OP_lit14:
18647 case DW_OP_lit15:
18648 case DW_OP_lit16:
18649 case DW_OP_lit17:
18650 case DW_OP_lit18:
18651 case DW_OP_lit19:
18652 case DW_OP_lit20:
18653 case DW_OP_lit21:
18654 case DW_OP_lit22:
18655 case DW_OP_lit23:
18656 case DW_OP_lit24:
18657 case DW_OP_lit25:
18658 case DW_OP_lit26:
18659 case DW_OP_lit27:
18660 case DW_OP_lit28:
18661 case DW_OP_lit29:
18662 case DW_OP_lit30:
18663 case DW_OP_lit31:
18664 stack[++stacki] = op - DW_OP_lit0;
18665 break;
f1bea926 18666
21ae7a4d
JK
18667 case DW_OP_reg0:
18668 case DW_OP_reg1:
18669 case DW_OP_reg2:
18670 case DW_OP_reg3:
18671 case DW_OP_reg4:
18672 case DW_OP_reg5:
18673 case DW_OP_reg6:
18674 case DW_OP_reg7:
18675 case DW_OP_reg8:
18676 case DW_OP_reg9:
18677 case DW_OP_reg10:
18678 case DW_OP_reg11:
18679 case DW_OP_reg12:
18680 case DW_OP_reg13:
18681 case DW_OP_reg14:
18682 case DW_OP_reg15:
18683 case DW_OP_reg16:
18684 case DW_OP_reg17:
18685 case DW_OP_reg18:
18686 case DW_OP_reg19:
18687 case DW_OP_reg20:
18688 case DW_OP_reg21:
18689 case DW_OP_reg22:
18690 case DW_OP_reg23:
18691 case DW_OP_reg24:
18692 case DW_OP_reg25:
18693 case DW_OP_reg26:
18694 case DW_OP_reg27:
18695 case DW_OP_reg28:
18696 case DW_OP_reg29:
18697 case DW_OP_reg30:
18698 case DW_OP_reg31:
18699 stack[++stacki] = op - DW_OP_reg0;
18700 if (i < size)
18701 dwarf2_complex_location_expr_complaint ();
18702 break;
c906108c 18703
21ae7a4d
JK
18704 case DW_OP_regx:
18705 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18706 i += bytes_read;
18707 stack[++stacki] = unsnd;
18708 if (i < size)
18709 dwarf2_complex_location_expr_complaint ();
18710 break;
c906108c 18711
21ae7a4d
JK
18712 case DW_OP_addr:
18713 stack[++stacki] = read_address (objfile->obfd, &data[i],
18714 cu, &bytes_read);
18715 i += bytes_read;
18716 break;
d53d4ac5 18717
21ae7a4d
JK
18718 case DW_OP_const1u:
18719 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18720 i += 1;
18721 break;
18722
18723 case DW_OP_const1s:
18724 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18725 i += 1;
18726 break;
18727
18728 case DW_OP_const2u:
18729 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18730 i += 2;
18731 break;
18732
18733 case DW_OP_const2s:
18734 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18735 i += 2;
18736 break;
d53d4ac5 18737
21ae7a4d
JK
18738 case DW_OP_const4u:
18739 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18740 i += 4;
18741 break;
18742
18743 case DW_OP_const4s:
18744 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18745 i += 4;
18746 break;
18747
585861ea
JK
18748 case DW_OP_const8u:
18749 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18750 i += 8;
18751 break;
18752
21ae7a4d
JK
18753 case DW_OP_constu:
18754 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18755 &bytes_read);
18756 i += bytes_read;
18757 break;
18758
18759 case DW_OP_consts:
18760 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18761 i += bytes_read;
18762 break;
18763
18764 case DW_OP_dup:
18765 stack[stacki + 1] = stack[stacki];
18766 stacki++;
18767 break;
18768
18769 case DW_OP_plus:
18770 stack[stacki - 1] += stack[stacki];
18771 stacki--;
18772 break;
18773
18774 case DW_OP_plus_uconst:
18775 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18776 &bytes_read);
18777 i += bytes_read;
18778 break;
18779
18780 case DW_OP_minus:
18781 stack[stacki - 1] -= stack[stacki];
18782 stacki--;
18783 break;
18784
18785 case DW_OP_deref:
18786 /* If we're not the last op, then we definitely can't encode
18787 this using GDB's address_class enum. This is valid for partial
18788 global symbols, although the variable's address will be bogus
18789 in the psymtab. */
18790 if (i < size)
18791 dwarf2_complex_location_expr_complaint ();
18792 break;
18793
18794 case DW_OP_GNU_push_tls_address:
18795 /* The top of the stack has the offset from the beginning
18796 of the thread control block at which the variable is located. */
18797 /* Nothing should follow this operator, so the top of stack would
18798 be returned. */
18799 /* This is valid for partial global symbols, but the variable's
585861ea
JK
18800 address will be bogus in the psymtab. Make it always at least
18801 non-zero to not look as a variable garbage collected by linker
18802 which have DW_OP_addr 0. */
21ae7a4d
JK
18803 if (i < size)
18804 dwarf2_complex_location_expr_complaint ();
585861ea 18805 stack[stacki]++;
21ae7a4d
JK
18806 break;
18807
18808 case DW_OP_GNU_uninit:
18809 break;
18810
3019eac3 18811 case DW_OP_GNU_addr_index:
49f6c839 18812 case DW_OP_GNU_const_index:
3019eac3
DE
18813 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18814 &bytes_read);
18815 i += bytes_read;
18816 break;
18817
21ae7a4d
JK
18818 default:
18819 {
f39c6ffd 18820 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
18821
18822 if (name)
18823 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18824 name);
18825 else
18826 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18827 op);
18828 }
18829
18830 return (stack[stacki]);
d53d4ac5 18831 }
3c6e0cb3 18832
21ae7a4d
JK
18833 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18834 outside of the allocated space. Also enforce minimum>0. */
18835 if (stacki >= ARRAY_SIZE (stack) - 1)
18836 {
18837 complaint (&symfile_complaints,
18838 _("location description stack overflow"));
18839 return 0;
18840 }
18841
18842 if (stacki <= 0)
18843 {
18844 complaint (&symfile_complaints,
18845 _("location description stack underflow"));
18846 return 0;
18847 }
18848 }
18849 return (stack[stacki]);
c906108c
SS
18850}
18851
18852/* memory allocation interface */
18853
c906108c 18854static struct dwarf_block *
7b5a2f43 18855dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
18856{
18857 struct dwarf_block *blk;
18858
18859 blk = (struct dwarf_block *)
7b5a2f43 18860 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
18861 return (blk);
18862}
18863
c906108c 18864static struct die_info *
b60c80d6 18865dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
18866{
18867 struct die_info *die;
b60c80d6
DJ
18868 size_t size = sizeof (struct die_info);
18869
18870 if (num_attrs > 1)
18871 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 18872
b60c80d6 18873 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
18874 memset (die, 0, sizeof (struct die_info));
18875 return (die);
18876}
2e276125
JB
18877
18878\f
18879/* Macro support. */
18880
233d95b5
JK
18881/* Return file name relative to the compilation directory of file number I in
18882 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 18883 responsible for freeing it. */
233d95b5 18884
2e276125 18885static char *
233d95b5 18886file_file_name (int file, struct line_header *lh)
2e276125 18887{
6a83a1e6
EZ
18888 /* Is the file number a valid index into the line header's file name
18889 table? Remember that file numbers start with one, not zero. */
18890 if (1 <= file && file <= lh->num_file_names)
18891 {
18892 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 18893
233d95b5 18894 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 18895 return xstrdup (fe->name);
233d95b5
JK
18896 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18897 fe->name, NULL);
6a83a1e6 18898 }
2e276125
JB
18899 else
18900 {
6a83a1e6
EZ
18901 /* The compiler produced a bogus file number. We can at least
18902 record the macro definitions made in the file, even if we
18903 won't be able to find the file by name. */
18904 char fake_name[80];
9a619af0 18905
8c042590
PM
18906 xsnprintf (fake_name, sizeof (fake_name),
18907 "<bad macro file number %d>", file);
2e276125 18908
6e70227d 18909 complaint (&symfile_complaints,
6a83a1e6
EZ
18910 _("bad file number in macro information (%d)"),
18911 file);
2e276125 18912
6a83a1e6 18913 return xstrdup (fake_name);
2e276125
JB
18914 }
18915}
18916
233d95b5
JK
18917/* Return the full name of file number I in *LH's file name table.
18918 Use COMP_DIR as the name of the current directory of the
18919 compilation. The result is allocated using xmalloc; the caller is
18920 responsible for freeing it. */
18921static char *
18922file_full_name (int file, struct line_header *lh, const char *comp_dir)
18923{
18924 /* Is the file number a valid index into the line header's file name
18925 table? Remember that file numbers start with one, not zero. */
18926 if (1 <= file && file <= lh->num_file_names)
18927 {
18928 char *relative = file_file_name (file, lh);
18929
18930 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18931 return relative;
18932 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18933 }
18934 else
18935 return file_file_name (file, lh);
18936}
18937
2e276125
JB
18938
18939static struct macro_source_file *
18940macro_start_file (int file, int line,
18941 struct macro_source_file *current_file,
18942 const char *comp_dir,
18943 struct line_header *lh, struct objfile *objfile)
18944{
233d95b5
JK
18945 /* File name relative to the compilation directory of this source file. */
18946 char *file_name = file_file_name (file, lh);
2e276125
JB
18947
18948 /* We don't create a macro table for this compilation unit
18949 at all until we actually get a filename. */
18950 if (! pending_macros)
6532ff36 18951 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
233d95b5
JK
18952 objfile->per_bfd->macro_cache,
18953 comp_dir);
2e276125
JB
18954
18955 if (! current_file)
abc9d0dc
TT
18956 {
18957 /* If we have no current file, then this must be the start_file
18958 directive for the compilation unit's main source file. */
233d95b5 18959 current_file = macro_set_main (pending_macros, file_name);
abc9d0dc
TT
18960 macro_define_special (pending_macros);
18961 }
2e276125 18962 else
233d95b5 18963 current_file = macro_include (current_file, line, file_name);
2e276125 18964
233d95b5 18965 xfree (file_name);
6e70227d 18966
2e276125
JB
18967 return current_file;
18968}
18969
18970
18971/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18972 followed by a null byte. */
18973static char *
18974copy_string (const char *buf, int len)
18975{
18976 char *s = xmalloc (len + 1);
9a619af0 18977
2e276125
JB
18978 memcpy (s, buf, len);
18979 s[len] = '\0';
2e276125
JB
18980 return s;
18981}
18982
18983
18984static const char *
18985consume_improper_spaces (const char *p, const char *body)
18986{
18987 if (*p == ' ')
18988 {
4d3c2250 18989 complaint (&symfile_complaints,
3e43a32a
MS
18990 _("macro definition contains spaces "
18991 "in formal argument list:\n`%s'"),
4d3c2250 18992 body);
2e276125
JB
18993
18994 while (*p == ' ')
18995 p++;
18996 }
18997
18998 return p;
18999}
19000
19001
19002static void
19003parse_macro_definition (struct macro_source_file *file, int line,
19004 const char *body)
19005{
19006 const char *p;
19007
19008 /* The body string takes one of two forms. For object-like macro
19009 definitions, it should be:
19010
19011 <macro name> " " <definition>
19012
19013 For function-like macro definitions, it should be:
19014
19015 <macro name> "() " <definition>
19016 or
19017 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19018
19019 Spaces may appear only where explicitly indicated, and in the
19020 <definition>.
19021
19022 The Dwarf 2 spec says that an object-like macro's name is always
19023 followed by a space, but versions of GCC around March 2002 omit
6e70227d 19024 the space when the macro's definition is the empty string.
2e276125
JB
19025
19026 The Dwarf 2 spec says that there should be no spaces between the
19027 formal arguments in a function-like macro's formal argument list,
19028 but versions of GCC around March 2002 include spaces after the
19029 commas. */
19030
19031
19032 /* Find the extent of the macro name. The macro name is terminated
19033 by either a space or null character (for an object-like macro) or
19034 an opening paren (for a function-like macro). */
19035 for (p = body; *p; p++)
19036 if (*p == ' ' || *p == '(')
19037 break;
19038
19039 if (*p == ' ' || *p == '\0')
19040 {
19041 /* It's an object-like macro. */
19042 int name_len = p - body;
19043 char *name = copy_string (body, name_len);
19044 const char *replacement;
19045
19046 if (*p == ' ')
19047 replacement = body + name_len + 1;
19048 else
19049 {
4d3c2250 19050 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19051 replacement = body + name_len;
19052 }
6e70227d 19053
2e276125
JB
19054 macro_define_object (file, line, name, replacement);
19055
19056 xfree (name);
19057 }
19058 else if (*p == '(')
19059 {
19060 /* It's a function-like macro. */
19061 char *name = copy_string (body, p - body);
19062 int argc = 0;
19063 int argv_size = 1;
19064 char **argv = xmalloc (argv_size * sizeof (*argv));
19065
19066 p++;
19067
19068 p = consume_improper_spaces (p, body);
19069
19070 /* Parse the formal argument list. */
19071 while (*p && *p != ')')
19072 {
19073 /* Find the extent of the current argument name. */
19074 const char *arg_start = p;
19075
19076 while (*p && *p != ',' && *p != ')' && *p != ' ')
19077 p++;
19078
19079 if (! *p || p == arg_start)
4d3c2250 19080 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19081 else
19082 {
19083 /* Make sure argv has room for the new argument. */
19084 if (argc >= argv_size)
19085 {
19086 argv_size *= 2;
19087 argv = xrealloc (argv, argv_size * sizeof (*argv));
19088 }
19089
19090 argv[argc++] = copy_string (arg_start, p - arg_start);
19091 }
19092
19093 p = consume_improper_spaces (p, body);
19094
19095 /* Consume the comma, if present. */
19096 if (*p == ',')
19097 {
19098 p++;
19099
19100 p = consume_improper_spaces (p, body);
19101 }
19102 }
19103
19104 if (*p == ')')
19105 {
19106 p++;
19107
19108 if (*p == ' ')
19109 /* Perfectly formed definition, no complaints. */
19110 macro_define_function (file, line, name,
6e70227d 19111 argc, (const char **) argv,
2e276125
JB
19112 p + 1);
19113 else if (*p == '\0')
19114 {
19115 /* Complain, but do define it. */
4d3c2250 19116 dwarf2_macro_malformed_definition_complaint (body);
2e276125 19117 macro_define_function (file, line, name,
6e70227d 19118 argc, (const char **) argv,
2e276125
JB
19119 p);
19120 }
19121 else
19122 /* Just complain. */
4d3c2250 19123 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19124 }
19125 else
19126 /* Just complain. */
4d3c2250 19127 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19128
19129 xfree (name);
19130 {
19131 int i;
19132
19133 for (i = 0; i < argc; i++)
19134 xfree (argv[i]);
19135 }
19136 xfree (argv);
19137 }
19138 else
4d3c2250 19139 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19140}
19141
cf2c3c16
TT
19142/* Skip some bytes from BYTES according to the form given in FORM.
19143 Returns the new pointer. */
2e276125 19144
d521ce57
TT
19145static const gdb_byte *
19146skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
19147 enum dwarf_form form,
19148 unsigned int offset_size,
19149 struct dwarf2_section_info *section)
2e276125 19150{
cf2c3c16 19151 unsigned int bytes_read;
2e276125 19152
cf2c3c16 19153 switch (form)
2e276125 19154 {
cf2c3c16
TT
19155 case DW_FORM_data1:
19156 case DW_FORM_flag:
19157 ++bytes;
19158 break;
19159
19160 case DW_FORM_data2:
19161 bytes += 2;
19162 break;
19163
19164 case DW_FORM_data4:
19165 bytes += 4;
19166 break;
19167
19168 case DW_FORM_data8:
19169 bytes += 8;
19170 break;
19171
19172 case DW_FORM_string:
19173 read_direct_string (abfd, bytes, &bytes_read);
19174 bytes += bytes_read;
19175 break;
19176
19177 case DW_FORM_sec_offset:
19178 case DW_FORM_strp:
36586728 19179 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
19180 bytes += offset_size;
19181 break;
19182
19183 case DW_FORM_block:
19184 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19185 bytes += bytes_read;
19186 break;
19187
19188 case DW_FORM_block1:
19189 bytes += 1 + read_1_byte (abfd, bytes);
19190 break;
19191 case DW_FORM_block2:
19192 bytes += 2 + read_2_bytes (abfd, bytes);
19193 break;
19194 case DW_FORM_block4:
19195 bytes += 4 + read_4_bytes (abfd, bytes);
19196 break;
19197
19198 case DW_FORM_sdata:
19199 case DW_FORM_udata:
3019eac3
DE
19200 case DW_FORM_GNU_addr_index:
19201 case DW_FORM_GNU_str_index:
d521ce57 19202 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
19203 if (bytes == NULL)
19204 {
19205 dwarf2_section_buffer_overflow_complaint (section);
19206 return NULL;
19207 }
cf2c3c16
TT
19208 break;
19209
19210 default:
19211 {
19212 complain:
19213 complaint (&symfile_complaints,
19214 _("invalid form 0x%x in `%s'"),
19215 form,
19216 section->asection->name);
19217 return NULL;
19218 }
2e276125
JB
19219 }
19220
cf2c3c16
TT
19221 return bytes;
19222}
757a13d0 19223
cf2c3c16
TT
19224/* A helper for dwarf_decode_macros that handles skipping an unknown
19225 opcode. Returns an updated pointer to the macro data buffer; or,
19226 on error, issues a complaint and returns NULL. */
757a13d0 19227
d521ce57 19228static const gdb_byte *
cf2c3c16 19229skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
19230 const gdb_byte **opcode_definitions,
19231 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
19232 bfd *abfd,
19233 unsigned int offset_size,
19234 struct dwarf2_section_info *section)
19235{
19236 unsigned int bytes_read, i;
19237 unsigned long arg;
d521ce57 19238 const gdb_byte *defn;
2e276125 19239
cf2c3c16 19240 if (opcode_definitions[opcode] == NULL)
2e276125 19241 {
cf2c3c16
TT
19242 complaint (&symfile_complaints,
19243 _("unrecognized DW_MACFINO opcode 0x%x"),
19244 opcode);
19245 return NULL;
19246 }
2e276125 19247
cf2c3c16
TT
19248 defn = opcode_definitions[opcode];
19249 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19250 defn += bytes_read;
2e276125 19251
cf2c3c16
TT
19252 for (i = 0; i < arg; ++i)
19253 {
f664829e
DE
19254 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19255 section);
cf2c3c16
TT
19256 if (mac_ptr == NULL)
19257 {
19258 /* skip_form_bytes already issued the complaint. */
19259 return NULL;
19260 }
19261 }
757a13d0 19262
cf2c3c16
TT
19263 return mac_ptr;
19264}
757a13d0 19265
cf2c3c16
TT
19266/* A helper function which parses the header of a macro section.
19267 If the macro section is the extended (for now called "GNU") type,
19268 then this updates *OFFSET_SIZE. Returns a pointer to just after
19269 the header, or issues a complaint and returns NULL on error. */
757a13d0 19270
d521ce57
TT
19271static const gdb_byte *
19272dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 19273 bfd *abfd,
d521ce57 19274 const gdb_byte *mac_ptr,
cf2c3c16
TT
19275 unsigned int *offset_size,
19276 int section_is_gnu)
19277{
19278 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 19279
cf2c3c16
TT
19280 if (section_is_gnu)
19281 {
19282 unsigned int version, flags;
757a13d0 19283
cf2c3c16
TT
19284 version = read_2_bytes (abfd, mac_ptr);
19285 if (version != 4)
19286 {
19287 complaint (&symfile_complaints,
19288 _("unrecognized version `%d' in .debug_macro section"),
19289 version);
19290 return NULL;
19291 }
19292 mac_ptr += 2;
757a13d0 19293
cf2c3c16
TT
19294 flags = read_1_byte (abfd, mac_ptr);
19295 ++mac_ptr;
19296 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 19297
cf2c3c16
TT
19298 if ((flags & 2) != 0)
19299 /* We don't need the line table offset. */
19300 mac_ptr += *offset_size;
757a13d0 19301
cf2c3c16
TT
19302 /* Vendor opcode descriptions. */
19303 if ((flags & 4) != 0)
19304 {
19305 unsigned int i, count;
757a13d0 19306
cf2c3c16
TT
19307 count = read_1_byte (abfd, mac_ptr);
19308 ++mac_ptr;
19309 for (i = 0; i < count; ++i)
19310 {
19311 unsigned int opcode, bytes_read;
19312 unsigned long arg;
19313
19314 opcode = read_1_byte (abfd, mac_ptr);
19315 ++mac_ptr;
19316 opcode_definitions[opcode] = mac_ptr;
19317 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19318 mac_ptr += bytes_read;
19319 mac_ptr += arg;
19320 }
757a13d0 19321 }
cf2c3c16 19322 }
757a13d0 19323
cf2c3c16
TT
19324 return mac_ptr;
19325}
757a13d0 19326
cf2c3c16 19327/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 19328 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
19329
19330static void
d521ce57
TT
19331dwarf_decode_macro_bytes (bfd *abfd,
19332 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 19333 struct macro_source_file *current_file,
15d034d0 19334 struct line_header *lh, const char *comp_dir,
cf2c3c16 19335 struct dwarf2_section_info *section,
36586728 19336 int section_is_gnu, int section_is_dwz,
cf2c3c16 19337 unsigned int offset_size,
8fc3fc34
TT
19338 struct objfile *objfile,
19339 htab_t include_hash)
cf2c3c16
TT
19340{
19341 enum dwarf_macro_record_type macinfo_type;
19342 int at_commandline;
d521ce57 19343 const gdb_byte *opcode_definitions[256];
757a13d0 19344
cf2c3c16
TT
19345 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19346 &offset_size, section_is_gnu);
19347 if (mac_ptr == NULL)
19348 {
19349 /* We already issued a complaint. */
19350 return;
19351 }
757a13d0
JK
19352
19353 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19354 GDB is still reading the definitions from command line. First
19355 DW_MACINFO_start_file will need to be ignored as it was already executed
19356 to create CURRENT_FILE for the main source holding also the command line
19357 definitions. On first met DW_MACINFO_start_file this flag is reset to
19358 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19359
19360 at_commandline = 1;
19361
19362 do
19363 {
19364 /* Do we at least have room for a macinfo type byte? */
19365 if (mac_ptr >= mac_end)
19366 {
f664829e 19367 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
19368 break;
19369 }
19370
19371 macinfo_type = read_1_byte (abfd, mac_ptr);
19372 mac_ptr++;
19373
cf2c3c16
TT
19374 /* Note that we rely on the fact that the corresponding GNU and
19375 DWARF constants are the same. */
757a13d0
JK
19376 switch (macinfo_type)
19377 {
19378 /* A zero macinfo type indicates the end of the macro
19379 information. */
19380 case 0:
19381 break;
2e276125 19382
cf2c3c16
TT
19383 case DW_MACRO_GNU_define:
19384 case DW_MACRO_GNU_undef:
19385 case DW_MACRO_GNU_define_indirect:
19386 case DW_MACRO_GNU_undef_indirect:
36586728
TT
19387 case DW_MACRO_GNU_define_indirect_alt:
19388 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 19389 {
891d2f0b 19390 unsigned int bytes_read;
2e276125 19391 int line;
d521ce57 19392 const char *body;
cf2c3c16 19393 int is_define;
2e276125 19394
cf2c3c16
TT
19395 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19396 mac_ptr += bytes_read;
19397
19398 if (macinfo_type == DW_MACRO_GNU_define
19399 || macinfo_type == DW_MACRO_GNU_undef)
19400 {
19401 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19402 mac_ptr += bytes_read;
19403 }
19404 else
19405 {
19406 LONGEST str_offset;
19407
19408 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19409 mac_ptr += offset_size;
2e276125 19410
36586728 19411 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
19412 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19413 || section_is_dwz)
36586728
TT
19414 {
19415 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19416
19417 body = read_indirect_string_from_dwz (dwz, str_offset);
19418 }
19419 else
19420 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
19421 }
19422
19423 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
19424 || macinfo_type == DW_MACRO_GNU_define_indirect
19425 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 19426 if (! current_file)
757a13d0
JK
19427 {
19428 /* DWARF violation as no main source is present. */
19429 complaint (&symfile_complaints,
19430 _("debug info with no main source gives macro %s "
19431 "on line %d: %s"),
cf2c3c16
TT
19432 is_define ? _("definition") : _("undefinition"),
19433 line, body);
757a13d0
JK
19434 break;
19435 }
3e43a32a
MS
19436 if ((line == 0 && !at_commandline)
19437 || (line != 0 && at_commandline))
4d3c2250 19438 complaint (&symfile_complaints,
757a13d0
JK
19439 _("debug info gives %s macro %s with %s line %d: %s"),
19440 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 19441 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
19442 line == 0 ? _("zero") : _("non-zero"), line, body);
19443
cf2c3c16 19444 if (is_define)
757a13d0 19445 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
19446 else
19447 {
19448 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
19449 || macinfo_type == DW_MACRO_GNU_undef_indirect
19450 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
19451 macro_undef (current_file, line, body);
19452 }
2e276125
JB
19453 }
19454 break;
19455
cf2c3c16 19456 case DW_MACRO_GNU_start_file:
2e276125 19457 {
891d2f0b 19458 unsigned int bytes_read;
2e276125
JB
19459 int line, file;
19460
19461 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19462 mac_ptr += bytes_read;
19463 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19464 mac_ptr += bytes_read;
19465
3e43a32a
MS
19466 if ((line == 0 && !at_commandline)
19467 || (line != 0 && at_commandline))
757a13d0
JK
19468 complaint (&symfile_complaints,
19469 _("debug info gives source %d included "
19470 "from %s at %s line %d"),
19471 file, at_commandline ? _("command-line") : _("file"),
19472 line == 0 ? _("zero") : _("non-zero"), line);
19473
19474 if (at_commandline)
19475 {
cf2c3c16
TT
19476 /* This DW_MACRO_GNU_start_file was executed in the
19477 pass one. */
757a13d0
JK
19478 at_commandline = 0;
19479 }
19480 else
19481 current_file = macro_start_file (file, line,
19482 current_file, comp_dir,
cf2c3c16 19483 lh, objfile);
2e276125
JB
19484 }
19485 break;
19486
cf2c3c16 19487 case DW_MACRO_GNU_end_file:
2e276125 19488 if (! current_file)
4d3c2250 19489 complaint (&symfile_complaints,
3e43a32a
MS
19490 _("macro debug info has an unmatched "
19491 "`close_file' directive"));
2e276125
JB
19492 else
19493 {
19494 current_file = current_file->included_by;
19495 if (! current_file)
19496 {
cf2c3c16 19497 enum dwarf_macro_record_type next_type;
2e276125
JB
19498
19499 /* GCC circa March 2002 doesn't produce the zero
19500 type byte marking the end of the compilation
19501 unit. Complain if it's not there, but exit no
19502 matter what. */
19503
19504 /* Do we at least have room for a macinfo type byte? */
19505 if (mac_ptr >= mac_end)
19506 {
f664829e 19507 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
19508 return;
19509 }
19510
19511 /* We don't increment mac_ptr here, so this is just
19512 a look-ahead. */
19513 next_type = read_1_byte (abfd, mac_ptr);
19514 if (next_type != 0)
4d3c2250 19515 complaint (&symfile_complaints,
3e43a32a
MS
19516 _("no terminating 0-type entry for "
19517 "macros in `.debug_macinfo' section"));
2e276125
JB
19518
19519 return;
19520 }
19521 }
19522 break;
19523
cf2c3c16 19524 case DW_MACRO_GNU_transparent_include:
36586728 19525 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19526 {
19527 LONGEST offset;
8fc3fc34 19528 void **slot;
a036ba48
TT
19529 bfd *include_bfd = abfd;
19530 struct dwarf2_section_info *include_section = section;
19531 struct dwarf2_section_info alt_section;
d521ce57 19532 const gdb_byte *include_mac_end = mac_end;
a036ba48 19533 int is_dwz = section_is_dwz;
d521ce57 19534 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
19535
19536 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19537 mac_ptr += offset_size;
19538
a036ba48
TT
19539 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19540 {
19541 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19542
19543 dwarf2_read_section (dwarf2_per_objfile->objfile,
19544 &dwz->macro);
19545
19546 include_bfd = dwz->macro.asection->owner;
19547 include_section = &dwz->macro;
19548 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19549 is_dwz = 1;
19550 }
19551
19552 new_mac_ptr = include_section->buffer + offset;
19553 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19554
8fc3fc34
TT
19555 if (*slot != NULL)
19556 {
19557 /* This has actually happened; see
19558 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19559 complaint (&symfile_complaints,
19560 _("recursive DW_MACRO_GNU_transparent_include in "
19561 ".debug_macro section"));
19562 }
19563 else
19564 {
d521ce57 19565 *slot = (void *) new_mac_ptr;
36586728 19566
a036ba48 19567 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 19568 include_mac_end, current_file,
8fc3fc34 19569 lh, comp_dir,
36586728 19570 section, section_is_gnu, is_dwz,
8fc3fc34
TT
19571 offset_size, objfile, include_hash);
19572
d521ce57 19573 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 19574 }
cf2c3c16
TT
19575 }
19576 break;
19577
2e276125 19578 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
19579 if (!section_is_gnu)
19580 {
19581 unsigned int bytes_read;
19582 int constant;
2e276125 19583
cf2c3c16
TT
19584 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19585 mac_ptr += bytes_read;
19586 read_direct_string (abfd, mac_ptr, &bytes_read);
19587 mac_ptr += bytes_read;
2e276125 19588
cf2c3c16
TT
19589 /* We don't recognize any vendor extensions. */
19590 break;
19591 }
19592 /* FALLTHROUGH */
19593
19594 default:
19595 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19596 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19597 section);
19598 if (mac_ptr == NULL)
19599 return;
19600 break;
2e276125 19601 }
757a13d0 19602 } while (macinfo_type != 0);
2e276125 19603}
8e19ed76 19604
cf2c3c16 19605static void
09262596 19606dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 19607 const char *comp_dir, int section_is_gnu)
cf2c3c16 19608{
bb5ed363 19609 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
19610 struct line_header *lh = cu->line_header;
19611 bfd *abfd;
d521ce57 19612 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
19613 struct macro_source_file *current_file = 0;
19614 enum dwarf_macro_record_type macinfo_type;
19615 unsigned int offset_size = cu->header.offset_size;
d521ce57 19616 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
19617 struct cleanup *cleanup;
19618 htab_t include_hash;
19619 void **slot;
09262596
DE
19620 struct dwarf2_section_info *section;
19621 const char *section_name;
19622
19623 if (cu->dwo_unit != NULL)
19624 {
19625 if (section_is_gnu)
19626 {
19627 section = &cu->dwo_unit->dwo_file->sections.macro;
19628 section_name = ".debug_macro.dwo";
19629 }
19630 else
19631 {
19632 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19633 section_name = ".debug_macinfo.dwo";
19634 }
19635 }
19636 else
19637 {
19638 if (section_is_gnu)
19639 {
19640 section = &dwarf2_per_objfile->macro;
19641 section_name = ".debug_macro";
19642 }
19643 else
19644 {
19645 section = &dwarf2_per_objfile->macinfo;
19646 section_name = ".debug_macinfo";
19647 }
19648 }
cf2c3c16 19649
bb5ed363 19650 dwarf2_read_section (objfile, section);
cf2c3c16
TT
19651 if (section->buffer == NULL)
19652 {
fceca515 19653 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
19654 return;
19655 }
09262596 19656 abfd = section->asection->owner;
cf2c3c16
TT
19657
19658 /* First pass: Find the name of the base filename.
19659 This filename is needed in order to process all macros whose definition
19660 (or undefinition) comes from the command line. These macros are defined
19661 before the first DW_MACINFO_start_file entry, and yet still need to be
19662 associated to the base file.
19663
19664 To determine the base file name, we scan the macro definitions until we
19665 reach the first DW_MACINFO_start_file entry. We then initialize
19666 CURRENT_FILE accordingly so that any macro definition found before the
19667 first DW_MACINFO_start_file can still be associated to the base file. */
19668
19669 mac_ptr = section->buffer + offset;
19670 mac_end = section->buffer + section->size;
19671
19672 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19673 &offset_size, section_is_gnu);
19674 if (mac_ptr == NULL)
19675 {
19676 /* We already issued a complaint. */
19677 return;
19678 }
19679
19680 do
19681 {
19682 /* Do we at least have room for a macinfo type byte? */
19683 if (mac_ptr >= mac_end)
19684 {
19685 /* Complaint is printed during the second pass as GDB will probably
19686 stop the first pass earlier upon finding
19687 DW_MACINFO_start_file. */
19688 break;
19689 }
19690
19691 macinfo_type = read_1_byte (abfd, mac_ptr);
19692 mac_ptr++;
19693
19694 /* Note that we rely on the fact that the corresponding GNU and
19695 DWARF constants are the same. */
19696 switch (macinfo_type)
19697 {
19698 /* A zero macinfo type indicates the end of the macro
19699 information. */
19700 case 0:
19701 break;
19702
19703 case DW_MACRO_GNU_define:
19704 case DW_MACRO_GNU_undef:
19705 /* Only skip the data by MAC_PTR. */
19706 {
19707 unsigned int bytes_read;
19708
19709 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19710 mac_ptr += bytes_read;
19711 read_direct_string (abfd, mac_ptr, &bytes_read);
19712 mac_ptr += bytes_read;
19713 }
19714 break;
19715
19716 case DW_MACRO_GNU_start_file:
19717 {
19718 unsigned int bytes_read;
19719 int line, file;
19720
19721 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19722 mac_ptr += bytes_read;
19723 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19724 mac_ptr += bytes_read;
19725
19726 current_file = macro_start_file (file, line, current_file,
bb5ed363 19727 comp_dir, lh, objfile);
cf2c3c16
TT
19728 }
19729 break;
19730
19731 case DW_MACRO_GNU_end_file:
19732 /* No data to skip by MAC_PTR. */
19733 break;
19734
19735 case DW_MACRO_GNU_define_indirect:
19736 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
19737 case DW_MACRO_GNU_define_indirect_alt:
19738 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
19739 {
19740 unsigned int bytes_read;
19741
19742 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19743 mac_ptr += bytes_read;
19744 mac_ptr += offset_size;
19745 }
19746 break;
19747
19748 case DW_MACRO_GNU_transparent_include:
f7a35f02 19749 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19750 /* Note that, according to the spec, a transparent include
19751 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19752 skip this opcode. */
19753 mac_ptr += offset_size;
19754 break;
19755
19756 case DW_MACINFO_vendor_ext:
19757 /* Only skip the data by MAC_PTR. */
19758 if (!section_is_gnu)
19759 {
19760 unsigned int bytes_read;
19761
19762 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19763 mac_ptr += bytes_read;
19764 read_direct_string (abfd, mac_ptr, &bytes_read);
19765 mac_ptr += bytes_read;
19766 }
19767 /* FALLTHROUGH */
19768
19769 default:
19770 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19771 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19772 section);
19773 if (mac_ptr == NULL)
19774 return;
19775 break;
19776 }
19777 } while (macinfo_type != 0 && current_file == NULL);
19778
19779 /* Second pass: Process all entries.
19780
19781 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19782 command-line macro definitions/undefinitions. This flag is unset when we
19783 reach the first DW_MACINFO_start_file entry. */
19784
8fc3fc34
TT
19785 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19786 NULL, xcalloc, xfree);
19787 cleanup = make_cleanup_htab_delete (include_hash);
19788 mac_ptr = section->buffer + offset;
19789 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 19790 *slot = (void *) mac_ptr;
8fc3fc34 19791 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
19792 current_file, lh, comp_dir, section,
19793 section_is_gnu, 0,
8fc3fc34
TT
19794 offset_size, objfile, include_hash);
19795 do_cleanups (cleanup);
cf2c3c16
TT
19796}
19797
8e19ed76 19798/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 19799 if so return true else false. */
380bca97 19800
8e19ed76 19801static int
6e5a29e1 19802attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
19803{
19804 return (attr == NULL ? 0 :
19805 attr->form == DW_FORM_block1
19806 || attr->form == DW_FORM_block2
19807 || attr->form == DW_FORM_block4
2dc7f7b3
TT
19808 || attr->form == DW_FORM_block
19809 || attr->form == DW_FORM_exprloc);
8e19ed76 19810}
4c2df51b 19811
c6a0999f
JB
19812/* Return non-zero if ATTR's value is a section offset --- classes
19813 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19814 You may use DW_UNSND (attr) to retrieve such offsets.
19815
19816 Section 7.5.4, "Attribute Encodings", explains that no attribute
19817 may have a value that belongs to more than one of these classes; it
19818 would be ambiguous if we did, because we use the same forms for all
19819 of them. */
380bca97 19820
3690dd37 19821static int
6e5a29e1 19822attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
19823{
19824 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
19825 || attr->form == DW_FORM_data8
19826 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
19827}
19828
3690dd37
JB
19829/* Return non-zero if ATTR's value falls in the 'constant' class, or
19830 zero otherwise. When this function returns true, you can apply
19831 dwarf2_get_attr_constant_value to it.
19832
19833 However, note that for some attributes you must check
19834 attr_form_is_section_offset before using this test. DW_FORM_data4
19835 and DW_FORM_data8 are members of both the constant class, and of
19836 the classes that contain offsets into other debug sections
19837 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19838 that, if an attribute's can be either a constant or one of the
19839 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19840 taken as section offsets, not constants. */
380bca97 19841
3690dd37 19842static int
6e5a29e1 19843attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
19844{
19845 switch (attr->form)
19846 {
19847 case DW_FORM_sdata:
19848 case DW_FORM_udata:
19849 case DW_FORM_data1:
19850 case DW_FORM_data2:
19851 case DW_FORM_data4:
19852 case DW_FORM_data8:
19853 return 1;
19854 default:
19855 return 0;
19856 }
19857}
19858
7771576e
SA
19859
19860/* DW_ADDR is always stored already as sect_offset; despite for the forms
19861 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19862
19863static int
6e5a29e1 19864attr_form_is_ref (const struct attribute *attr)
7771576e
SA
19865{
19866 switch (attr->form)
19867 {
19868 case DW_FORM_ref_addr:
19869 case DW_FORM_ref1:
19870 case DW_FORM_ref2:
19871 case DW_FORM_ref4:
19872 case DW_FORM_ref8:
19873 case DW_FORM_ref_udata:
19874 case DW_FORM_GNU_ref_alt:
19875 return 1;
19876 default:
19877 return 0;
19878 }
19879}
19880
3019eac3
DE
19881/* Return the .debug_loc section to use for CU.
19882 For DWO files use .debug_loc.dwo. */
19883
19884static struct dwarf2_section_info *
19885cu_debug_loc_section (struct dwarf2_cu *cu)
19886{
19887 if (cu->dwo_unit)
19888 return &cu->dwo_unit->dwo_file->sections.loc;
19889 return &dwarf2_per_objfile->loc;
19890}
19891
8cf6f0b1
TT
19892/* A helper function that fills in a dwarf2_loclist_baton. */
19893
19894static void
19895fill_in_loclist_baton (struct dwarf2_cu *cu,
19896 struct dwarf2_loclist_baton *baton,
ff39bb5e 19897 const struct attribute *attr)
8cf6f0b1 19898{
3019eac3
DE
19899 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19900
19901 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
19902
19903 baton->per_cu = cu->per_cu;
19904 gdb_assert (baton->per_cu);
19905 /* We don't know how long the location list is, but make sure we
19906 don't run off the edge of the section. */
3019eac3
DE
19907 baton->size = section->size - DW_UNSND (attr);
19908 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 19909 baton->base_address = cu->base_address;
f664829e 19910 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
19911}
19912
4c2df51b 19913static void
ff39bb5e 19914dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 19915 struct dwarf2_cu *cu, int is_block)
4c2df51b 19916{
bb5ed363 19917 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 19918 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 19919
3690dd37 19920 if (attr_form_is_section_offset (attr)
3019eac3 19921 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
19922 the section. If so, fall through to the complaint in the
19923 other branch. */
3019eac3 19924 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 19925 {
0d53c4c4 19926 struct dwarf2_loclist_baton *baton;
4c2df51b 19927
bb5ed363 19928 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19929 sizeof (struct dwarf2_loclist_baton));
4c2df51b 19930
8cf6f0b1 19931 fill_in_loclist_baton (cu, baton, attr);
be391dca 19932
d00adf39 19933 if (cu->base_known == 0)
0d53c4c4 19934 complaint (&symfile_complaints,
3e43a32a
MS
19935 _("Location list used without "
19936 "specifying the CU base address."));
4c2df51b 19937
f1e6e072
TT
19938 SYMBOL_ACLASS_INDEX (sym) = (is_block
19939 ? dwarf2_loclist_block_index
19940 : dwarf2_loclist_index);
0d53c4c4
DJ
19941 SYMBOL_LOCATION_BATON (sym) = baton;
19942 }
19943 else
19944 {
19945 struct dwarf2_locexpr_baton *baton;
19946
bb5ed363 19947 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19948 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
19949 baton->per_cu = cu->per_cu;
19950 gdb_assert (baton->per_cu);
0d53c4c4
DJ
19951
19952 if (attr_form_is_block (attr))
19953 {
19954 /* Note that we're just copying the block's data pointer
19955 here, not the actual data. We're still pointing into the
6502dd73
DJ
19956 info_buffer for SYM's objfile; right now we never release
19957 that buffer, but when we do clean up properly this may
19958 need to change. */
0d53c4c4
DJ
19959 baton->size = DW_BLOCK (attr)->size;
19960 baton->data = DW_BLOCK (attr)->data;
19961 }
19962 else
19963 {
19964 dwarf2_invalid_attrib_class_complaint ("location description",
19965 SYMBOL_NATURAL_NAME (sym));
19966 baton->size = 0;
0d53c4c4 19967 }
6e70227d 19968
f1e6e072
TT
19969 SYMBOL_ACLASS_INDEX (sym) = (is_block
19970 ? dwarf2_locexpr_block_index
19971 : dwarf2_locexpr_index);
0d53c4c4
DJ
19972 SYMBOL_LOCATION_BATON (sym) = baton;
19973 }
4c2df51b 19974}
6502dd73 19975
9aa1f1e3
TT
19976/* Return the OBJFILE associated with the compilation unit CU. If CU
19977 came from a separate debuginfo file, then the master objfile is
19978 returned. */
ae0d2f24
UW
19979
19980struct objfile *
19981dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19982{
9291a0cd 19983 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
19984
19985 /* Return the master objfile, so that we can report and look up the
19986 correct file containing this variable. */
19987 if (objfile->separate_debug_objfile_backlink)
19988 objfile = objfile->separate_debug_objfile_backlink;
19989
19990 return objfile;
19991}
19992
96408a79
SA
19993/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19994 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19995 CU_HEADERP first. */
19996
19997static const struct comp_unit_head *
19998per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19999 struct dwarf2_per_cu_data *per_cu)
20000{
d521ce57 20001 const gdb_byte *info_ptr;
96408a79
SA
20002
20003 if (per_cu->cu)
20004 return &per_cu->cu->header;
20005
8a0459fd 20006 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
20007
20008 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 20009 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
20010
20011 return cu_headerp;
20012}
20013
ae0d2f24
UW
20014/* Return the address size given in the compilation unit header for CU. */
20015
98714339 20016int
ae0d2f24
UW
20017dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20018{
96408a79
SA
20019 struct comp_unit_head cu_header_local;
20020 const struct comp_unit_head *cu_headerp;
c471e790 20021
96408a79
SA
20022 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20023
20024 return cu_headerp->addr_size;
ae0d2f24
UW
20025}
20026
9eae7c52
TT
20027/* Return the offset size given in the compilation unit header for CU. */
20028
20029int
20030dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20031{
96408a79
SA
20032 struct comp_unit_head cu_header_local;
20033 const struct comp_unit_head *cu_headerp;
9c6c53f7 20034
96408a79
SA
20035 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20036
20037 return cu_headerp->offset_size;
20038}
20039
20040/* See its dwarf2loc.h declaration. */
20041
20042int
20043dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20044{
20045 struct comp_unit_head cu_header_local;
20046 const struct comp_unit_head *cu_headerp;
20047
20048 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20049
20050 if (cu_headerp->version == 2)
20051 return cu_headerp->addr_size;
20052 else
20053 return cu_headerp->offset_size;
181cebd4
JK
20054}
20055
9aa1f1e3
TT
20056/* Return the text offset of the CU. The returned offset comes from
20057 this CU's objfile. If this objfile came from a separate debuginfo
20058 file, then the offset may be different from the corresponding
20059 offset in the parent objfile. */
20060
20061CORE_ADDR
20062dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20063{
bb3fa9d0 20064 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
20065
20066 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20067}
20068
348e048f
DE
20069/* Locate the .debug_info compilation unit from CU's objfile which contains
20070 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
20071
20072static struct dwarf2_per_cu_data *
b64f50a1 20073dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 20074 unsigned int offset_in_dwz,
ae038cb0
DJ
20075 struct objfile *objfile)
20076{
20077 struct dwarf2_per_cu_data *this_cu;
20078 int low, high;
36586728 20079 const sect_offset *cu_off;
ae038cb0 20080
ae038cb0
DJ
20081 low = 0;
20082 high = dwarf2_per_objfile->n_comp_units - 1;
20083 while (high > low)
20084 {
36586728 20085 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 20086 int mid = low + (high - low) / 2;
9a619af0 20087
36586728
TT
20088 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20089 cu_off = &mid_cu->offset;
20090 if (mid_cu->is_dwz > offset_in_dwz
20091 || (mid_cu->is_dwz == offset_in_dwz
20092 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
20093 high = mid;
20094 else
20095 low = mid + 1;
20096 }
20097 gdb_assert (low == high);
36586728
TT
20098 this_cu = dwarf2_per_objfile->all_comp_units[low];
20099 cu_off = &this_cu->offset;
20100 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 20101 {
36586728 20102 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
20103 error (_("Dwarf Error: could not find partial DIE containing "
20104 "offset 0x%lx [in module %s]"),
b64f50a1 20105 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 20106
b64f50a1
JK
20107 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20108 <= offset.sect_off);
ae038cb0
DJ
20109 return dwarf2_per_objfile->all_comp_units[low-1];
20110 }
20111 else
20112 {
20113 this_cu = dwarf2_per_objfile->all_comp_units[low];
20114 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
20115 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20116 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20117 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
20118 return this_cu;
20119 }
20120}
20121
23745b47 20122/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 20123
9816fde3 20124static void
23745b47 20125init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 20126{
9816fde3 20127 memset (cu, 0, sizeof (*cu));
23745b47
DE
20128 per_cu->cu = cu;
20129 cu->per_cu = per_cu;
20130 cu->objfile = per_cu->objfile;
93311388 20131 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
20132}
20133
20134/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20135
20136static void
95554aad
TT
20137prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20138 enum language pretend_language)
9816fde3
JK
20139{
20140 struct attribute *attr;
20141
20142 /* Set the language we're debugging. */
20143 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20144 if (attr)
20145 set_cu_language (DW_UNSND (attr), cu);
20146 else
9cded63f 20147 {
95554aad 20148 cu->language = pretend_language;
9cded63f
TT
20149 cu->language_defn = language_def (cu->language);
20150 }
dee91e82
DE
20151
20152 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20153 if (attr)
20154 cu->producer = DW_STRING (attr);
93311388
DE
20155}
20156
ae038cb0
DJ
20157/* Release one cached compilation unit, CU. We unlink it from the tree
20158 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
20159 the caller is responsible for that.
20160 NOTE: DATA is a void * because this function is also used as a
20161 cleanup routine. */
ae038cb0
DJ
20162
20163static void
68dc6402 20164free_heap_comp_unit (void *data)
ae038cb0
DJ
20165{
20166 struct dwarf2_cu *cu = data;
20167
23745b47
DE
20168 gdb_assert (cu->per_cu != NULL);
20169 cu->per_cu->cu = NULL;
ae038cb0
DJ
20170 cu->per_cu = NULL;
20171
20172 obstack_free (&cu->comp_unit_obstack, NULL);
20173
20174 xfree (cu);
20175}
20176
72bf9492 20177/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 20178 when we're finished with it. We can't free the pointer itself, but be
dee91e82 20179 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
20180
20181static void
20182free_stack_comp_unit (void *data)
20183{
20184 struct dwarf2_cu *cu = data;
20185
23745b47
DE
20186 gdb_assert (cu->per_cu != NULL);
20187 cu->per_cu->cu = NULL;
20188 cu->per_cu = NULL;
20189
72bf9492
DJ
20190 obstack_free (&cu->comp_unit_obstack, NULL);
20191 cu->partial_dies = NULL;
ae038cb0
DJ
20192}
20193
20194/* Free all cached compilation units. */
20195
20196static void
20197free_cached_comp_units (void *data)
20198{
20199 struct dwarf2_per_cu_data *per_cu, **last_chain;
20200
20201 per_cu = dwarf2_per_objfile->read_in_chain;
20202 last_chain = &dwarf2_per_objfile->read_in_chain;
20203 while (per_cu != NULL)
20204 {
20205 struct dwarf2_per_cu_data *next_cu;
20206
20207 next_cu = per_cu->cu->read_in_chain;
20208
68dc6402 20209 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20210 *last_chain = next_cu;
20211
20212 per_cu = next_cu;
20213 }
20214}
20215
20216/* Increase the age counter on each cached compilation unit, and free
20217 any that are too old. */
20218
20219static void
20220age_cached_comp_units (void)
20221{
20222 struct dwarf2_per_cu_data *per_cu, **last_chain;
20223
20224 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20225 per_cu = dwarf2_per_objfile->read_in_chain;
20226 while (per_cu != NULL)
20227 {
20228 per_cu->cu->last_used ++;
20229 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20230 dwarf2_mark (per_cu->cu);
20231 per_cu = per_cu->cu->read_in_chain;
20232 }
20233
20234 per_cu = dwarf2_per_objfile->read_in_chain;
20235 last_chain = &dwarf2_per_objfile->read_in_chain;
20236 while (per_cu != NULL)
20237 {
20238 struct dwarf2_per_cu_data *next_cu;
20239
20240 next_cu = per_cu->cu->read_in_chain;
20241
20242 if (!per_cu->cu->mark)
20243 {
68dc6402 20244 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20245 *last_chain = next_cu;
20246 }
20247 else
20248 last_chain = &per_cu->cu->read_in_chain;
20249
20250 per_cu = next_cu;
20251 }
20252}
20253
20254/* Remove a single compilation unit from the cache. */
20255
20256static void
dee91e82 20257free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
20258{
20259 struct dwarf2_per_cu_data *per_cu, **last_chain;
20260
20261 per_cu = dwarf2_per_objfile->read_in_chain;
20262 last_chain = &dwarf2_per_objfile->read_in_chain;
20263 while (per_cu != NULL)
20264 {
20265 struct dwarf2_per_cu_data *next_cu;
20266
20267 next_cu = per_cu->cu->read_in_chain;
20268
dee91e82 20269 if (per_cu == target_per_cu)
ae038cb0 20270 {
68dc6402 20271 free_heap_comp_unit (per_cu->cu);
dee91e82 20272 per_cu->cu = NULL;
ae038cb0
DJ
20273 *last_chain = next_cu;
20274 break;
20275 }
20276 else
20277 last_chain = &per_cu->cu->read_in_chain;
20278
20279 per_cu = next_cu;
20280 }
20281}
20282
fe3e1990
DJ
20283/* Release all extra memory associated with OBJFILE. */
20284
20285void
20286dwarf2_free_objfile (struct objfile *objfile)
20287{
20288 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20289
20290 if (dwarf2_per_objfile == NULL)
20291 return;
20292
20293 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20294 free_cached_comp_units (NULL);
20295
7b9f3c50
DE
20296 if (dwarf2_per_objfile->quick_file_names_table)
20297 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 20298
fe3e1990
DJ
20299 /* Everything else should be on the objfile obstack. */
20300}
20301
dee91e82
DE
20302/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20303 We store these in a hash table separate from the DIEs, and preserve them
20304 when the DIEs are flushed out of cache.
20305
20306 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 20307 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
20308 or the type may come from a DWO file. Furthermore, while it's more logical
20309 to use per_cu->section+offset, with Fission the section with the data is in
20310 the DWO file but we don't know that section at the point we need it.
20311 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20312 because we can enter the lookup routine, get_die_type_at_offset, from
20313 outside this file, and thus won't necessarily have PER_CU->cu.
20314 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 20315
dee91e82 20316struct dwarf2_per_cu_offset_and_type
1c379e20 20317{
dee91e82 20318 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 20319 sect_offset offset;
1c379e20
DJ
20320 struct type *type;
20321};
20322
dee91e82 20323/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20324
20325static hashval_t
dee91e82 20326per_cu_offset_and_type_hash (const void *item)
1c379e20 20327{
dee91e82 20328 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 20329
dee91e82 20330 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
20331}
20332
dee91e82 20333/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20334
20335static int
dee91e82 20336per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 20337{
dee91e82
DE
20338 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20339 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 20340
dee91e82
DE
20341 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20342 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
20343}
20344
20345/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
20346 table if necessary. For convenience, return TYPE.
20347
20348 The DIEs reading must have careful ordering to:
20349 * Not cause infite loops trying to read in DIEs as a prerequisite for
20350 reading current DIE.
20351 * Not trying to dereference contents of still incompletely read in types
20352 while reading in other DIEs.
20353 * Enable referencing still incompletely read in types just by a pointer to
20354 the type without accessing its fields.
20355
20356 Therefore caller should follow these rules:
20357 * Try to fetch any prerequisite types we may need to build this DIE type
20358 before building the type and calling set_die_type.
e71ec853 20359 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
20360 possible before fetching more types to complete the current type.
20361 * Make the type as complete as possible before fetching more types. */
1c379e20 20362
f792889a 20363static struct type *
1c379e20
DJ
20364set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20365{
dee91e82 20366 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 20367 struct objfile *objfile = cu->objfile;
1c379e20 20368
b4ba55a1
JB
20369 /* For Ada types, make sure that the gnat-specific data is always
20370 initialized (if not already set). There are a few types where
20371 we should not be doing so, because the type-specific area is
20372 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20373 where the type-specific area is used to store the floatformat).
20374 But this is not a problem, because the gnat-specific information
20375 is actually not needed for these types. */
20376 if (need_gnat_info (cu)
20377 && TYPE_CODE (type) != TYPE_CODE_FUNC
20378 && TYPE_CODE (type) != TYPE_CODE_FLT
20379 && !HAVE_GNAT_AUX_INFO (type))
20380 INIT_GNAT_SPECIFIC (type);
20381
dee91e82 20382 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20383 {
dee91e82
DE
20384 dwarf2_per_objfile->die_type_hash =
20385 htab_create_alloc_ex (127,
20386 per_cu_offset_and_type_hash,
20387 per_cu_offset_and_type_eq,
20388 NULL,
20389 &objfile->objfile_obstack,
20390 hashtab_obstack_allocate,
20391 dummy_obstack_deallocate);
f792889a 20392 }
1c379e20 20393
dee91e82 20394 ofs.per_cu = cu->per_cu;
1c379e20
DJ
20395 ofs.offset = die->offset;
20396 ofs.type = type;
dee91e82
DE
20397 slot = (struct dwarf2_per_cu_offset_and_type **)
20398 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
20399 if (*slot)
20400 complaint (&symfile_complaints,
20401 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 20402 die->offset.sect_off);
673bfd45 20403 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 20404 **slot = ofs;
f792889a 20405 return type;
1c379e20
DJ
20406}
20407
02142a6c
DE
20408/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20409 or return NULL if the die does not have a saved type. */
1c379e20
DJ
20410
20411static struct type *
b64f50a1 20412get_die_type_at_offset (sect_offset offset,
673bfd45 20413 struct dwarf2_per_cu_data *per_cu)
1c379e20 20414{
dee91e82 20415 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 20416
dee91e82 20417 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20418 return NULL;
1c379e20 20419
dee91e82 20420 ofs.per_cu = per_cu;
673bfd45 20421 ofs.offset = offset;
dee91e82 20422 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
20423 if (slot)
20424 return slot->type;
20425 else
20426 return NULL;
20427}
20428
02142a6c 20429/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
20430 or return NULL if DIE does not have a saved type. */
20431
20432static struct type *
20433get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20434{
20435 return get_die_type_at_offset (die->offset, cu->per_cu);
20436}
20437
10b3939b
DJ
20438/* Add a dependence relationship from CU to REF_PER_CU. */
20439
20440static void
20441dwarf2_add_dependence (struct dwarf2_cu *cu,
20442 struct dwarf2_per_cu_data *ref_per_cu)
20443{
20444 void **slot;
20445
20446 if (cu->dependencies == NULL)
20447 cu->dependencies
20448 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20449 NULL, &cu->comp_unit_obstack,
20450 hashtab_obstack_allocate,
20451 dummy_obstack_deallocate);
20452
20453 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20454 if (*slot == NULL)
20455 *slot = ref_per_cu;
20456}
1c379e20 20457
f504f079
DE
20458/* Subroutine of dwarf2_mark to pass to htab_traverse.
20459 Set the mark field in every compilation unit in the
ae038cb0
DJ
20460 cache that we must keep because we are keeping CU. */
20461
10b3939b
DJ
20462static int
20463dwarf2_mark_helper (void **slot, void *data)
20464{
20465 struct dwarf2_per_cu_data *per_cu;
20466
20467 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
20468
20469 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20470 reading of the chain. As such dependencies remain valid it is not much
20471 useful to track and undo them during QUIT cleanups. */
20472 if (per_cu->cu == NULL)
20473 return 1;
20474
10b3939b
DJ
20475 if (per_cu->cu->mark)
20476 return 1;
20477 per_cu->cu->mark = 1;
20478
20479 if (per_cu->cu->dependencies != NULL)
20480 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20481
20482 return 1;
20483}
20484
f504f079
DE
20485/* Set the mark field in CU and in every other compilation unit in the
20486 cache that we must keep because we are keeping CU. */
20487
ae038cb0
DJ
20488static void
20489dwarf2_mark (struct dwarf2_cu *cu)
20490{
20491 if (cu->mark)
20492 return;
20493 cu->mark = 1;
10b3939b
DJ
20494 if (cu->dependencies != NULL)
20495 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
20496}
20497
20498static void
20499dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20500{
20501 while (per_cu)
20502 {
20503 per_cu->cu->mark = 0;
20504 per_cu = per_cu->cu->read_in_chain;
20505 }
72bf9492
DJ
20506}
20507
72bf9492
DJ
20508/* Trivial hash function for partial_die_info: the hash value of a DIE
20509 is its offset in .debug_info for this objfile. */
20510
20511static hashval_t
20512partial_die_hash (const void *item)
20513{
20514 const struct partial_die_info *part_die = item;
9a619af0 20515
b64f50a1 20516 return part_die->offset.sect_off;
72bf9492
DJ
20517}
20518
20519/* Trivial comparison function for partial_die_info structures: two DIEs
20520 are equal if they have the same offset. */
20521
20522static int
20523partial_die_eq (const void *item_lhs, const void *item_rhs)
20524{
20525 const struct partial_die_info *part_die_lhs = item_lhs;
20526 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 20527
b64f50a1 20528 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
20529}
20530
ae038cb0
DJ
20531static struct cmd_list_element *set_dwarf2_cmdlist;
20532static struct cmd_list_element *show_dwarf2_cmdlist;
20533
20534static void
20535set_dwarf2_cmd (char *args, int from_tty)
20536{
20537 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20538}
20539
20540static void
20541show_dwarf2_cmd (char *args, int from_tty)
6e70227d 20542{
ae038cb0
DJ
20543 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20544}
20545
4bf44c1c 20546/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
20547
20548static void
c1bd65d0 20549dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
20550{
20551 struct dwarf2_per_objfile *data = d;
8b70b953 20552 int ix;
8b70b953 20553
626f2d1c
TT
20554 /* Make sure we don't accidentally use dwarf2_per_objfile while
20555 cleaning up. */
20556 dwarf2_per_objfile = NULL;
20557
59b0c7c1
JB
20558 for (ix = 0; ix < data->n_comp_units; ++ix)
20559 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 20560
59b0c7c1 20561 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 20562 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
20563 data->all_type_units[ix]->per_cu.imported_symtabs);
20564 xfree (data->all_type_units);
95554aad 20565
8b70b953 20566 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
20567
20568 if (data->dwo_files)
20569 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
20570 if (data->dwp_file)
20571 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
20572
20573 if (data->dwz_file && data->dwz_file->dwz_bfd)
20574 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
20575}
20576
20577\f
ae2de4f8 20578/* The "save gdb-index" command. */
9291a0cd
TT
20579
20580/* The contents of the hash table we create when building the string
20581 table. */
20582struct strtab_entry
20583{
20584 offset_type offset;
20585 const char *str;
20586};
20587
559a7a62
JK
20588/* Hash function for a strtab_entry.
20589
20590 Function is used only during write_hash_table so no index format backward
20591 compatibility is needed. */
b89be57b 20592
9291a0cd
TT
20593static hashval_t
20594hash_strtab_entry (const void *e)
20595{
20596 const struct strtab_entry *entry = e;
559a7a62 20597 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
20598}
20599
20600/* Equality function for a strtab_entry. */
b89be57b 20601
9291a0cd
TT
20602static int
20603eq_strtab_entry (const void *a, const void *b)
20604{
20605 const struct strtab_entry *ea = a;
20606 const struct strtab_entry *eb = b;
20607 return !strcmp (ea->str, eb->str);
20608}
20609
20610/* Create a strtab_entry hash table. */
b89be57b 20611
9291a0cd
TT
20612static htab_t
20613create_strtab (void)
20614{
20615 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20616 xfree, xcalloc, xfree);
20617}
20618
20619/* Add a string to the constant pool. Return the string's offset in
20620 host order. */
b89be57b 20621
9291a0cd
TT
20622static offset_type
20623add_string (htab_t table, struct obstack *cpool, const char *str)
20624{
20625 void **slot;
20626 struct strtab_entry entry;
20627 struct strtab_entry *result;
20628
20629 entry.str = str;
20630 slot = htab_find_slot (table, &entry, INSERT);
20631 if (*slot)
20632 result = *slot;
20633 else
20634 {
20635 result = XNEW (struct strtab_entry);
20636 result->offset = obstack_object_size (cpool);
20637 result->str = str;
20638 obstack_grow_str0 (cpool, str);
20639 *slot = result;
20640 }
20641 return result->offset;
20642}
20643
20644/* An entry in the symbol table. */
20645struct symtab_index_entry
20646{
20647 /* The name of the symbol. */
20648 const char *name;
20649 /* The offset of the name in the constant pool. */
20650 offset_type index_offset;
20651 /* A sorted vector of the indices of all the CUs that hold an object
20652 of this name. */
20653 VEC (offset_type) *cu_indices;
20654};
20655
20656/* The symbol table. This is a power-of-2-sized hash table. */
20657struct mapped_symtab
20658{
20659 offset_type n_elements;
20660 offset_type size;
20661 struct symtab_index_entry **data;
20662};
20663
20664/* Hash function for a symtab_index_entry. */
b89be57b 20665
9291a0cd
TT
20666static hashval_t
20667hash_symtab_entry (const void *e)
20668{
20669 const struct symtab_index_entry *entry = e;
20670 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20671 sizeof (offset_type) * VEC_length (offset_type,
20672 entry->cu_indices),
20673 0);
20674}
20675
20676/* Equality function for a symtab_index_entry. */
b89be57b 20677
9291a0cd
TT
20678static int
20679eq_symtab_entry (const void *a, const void *b)
20680{
20681 const struct symtab_index_entry *ea = a;
20682 const struct symtab_index_entry *eb = b;
20683 int len = VEC_length (offset_type, ea->cu_indices);
20684 if (len != VEC_length (offset_type, eb->cu_indices))
20685 return 0;
20686 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20687 VEC_address (offset_type, eb->cu_indices),
20688 sizeof (offset_type) * len);
20689}
20690
20691/* Destroy a symtab_index_entry. */
b89be57b 20692
9291a0cd
TT
20693static void
20694delete_symtab_entry (void *p)
20695{
20696 struct symtab_index_entry *entry = p;
20697 VEC_free (offset_type, entry->cu_indices);
20698 xfree (entry);
20699}
20700
20701/* Create a hash table holding symtab_index_entry objects. */
b89be57b 20702
9291a0cd 20703static htab_t
3876f04e 20704create_symbol_hash_table (void)
9291a0cd
TT
20705{
20706 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20707 delete_symtab_entry, xcalloc, xfree);
20708}
20709
20710/* Create a new mapped symtab object. */
b89be57b 20711
9291a0cd
TT
20712static struct mapped_symtab *
20713create_mapped_symtab (void)
20714{
20715 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20716 symtab->n_elements = 0;
20717 symtab->size = 1024;
20718 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20719 return symtab;
20720}
20721
20722/* Destroy a mapped_symtab. */
b89be57b 20723
9291a0cd
TT
20724static void
20725cleanup_mapped_symtab (void *p)
20726{
20727 struct mapped_symtab *symtab = p;
20728 /* The contents of the array are freed when the other hash table is
20729 destroyed. */
20730 xfree (symtab->data);
20731 xfree (symtab);
20732}
20733
20734/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
20735 the slot.
20736
20737 Function is used only during write_hash_table so no index format backward
20738 compatibility is needed. */
b89be57b 20739
9291a0cd
TT
20740static struct symtab_index_entry **
20741find_slot (struct mapped_symtab *symtab, const char *name)
20742{
559a7a62 20743 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
20744
20745 index = hash & (symtab->size - 1);
20746 step = ((hash * 17) & (symtab->size - 1)) | 1;
20747
20748 for (;;)
20749 {
20750 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20751 return &symtab->data[index];
20752 index = (index + step) & (symtab->size - 1);
20753 }
20754}
20755
20756/* Expand SYMTAB's hash table. */
b89be57b 20757
9291a0cd
TT
20758static void
20759hash_expand (struct mapped_symtab *symtab)
20760{
20761 offset_type old_size = symtab->size;
20762 offset_type i;
20763 struct symtab_index_entry **old_entries = symtab->data;
20764
20765 symtab->size *= 2;
20766 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20767
20768 for (i = 0; i < old_size; ++i)
20769 {
20770 if (old_entries[i])
20771 {
20772 struct symtab_index_entry **slot = find_slot (symtab,
20773 old_entries[i]->name);
20774 *slot = old_entries[i];
20775 }
20776 }
20777
20778 xfree (old_entries);
20779}
20780
156942c7
DE
20781/* Add an entry to SYMTAB. NAME is the name of the symbol.
20782 CU_INDEX is the index of the CU in which the symbol appears.
20783 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 20784
9291a0cd
TT
20785static void
20786add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 20787 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
20788 offset_type cu_index)
20789{
20790 struct symtab_index_entry **slot;
156942c7 20791 offset_type cu_index_and_attrs;
9291a0cd
TT
20792
20793 ++symtab->n_elements;
20794 if (4 * symtab->n_elements / 3 >= symtab->size)
20795 hash_expand (symtab);
20796
20797 slot = find_slot (symtab, name);
20798 if (!*slot)
20799 {
20800 *slot = XNEW (struct symtab_index_entry);
20801 (*slot)->name = name;
156942c7 20802 /* index_offset is set later. */
9291a0cd
TT
20803 (*slot)->cu_indices = NULL;
20804 }
156942c7
DE
20805
20806 cu_index_and_attrs = 0;
20807 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20808 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20809 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20810
20811 /* We don't want to record an index value twice as we want to avoid the
20812 duplication.
20813 We process all global symbols and then all static symbols
20814 (which would allow us to avoid the duplication by only having to check
20815 the last entry pushed), but a symbol could have multiple kinds in one CU.
20816 To keep things simple we don't worry about the duplication here and
20817 sort and uniqufy the list after we've processed all symbols. */
20818 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20819}
20820
20821/* qsort helper routine for uniquify_cu_indices. */
20822
20823static int
20824offset_type_compare (const void *ap, const void *bp)
20825{
20826 offset_type a = *(offset_type *) ap;
20827 offset_type b = *(offset_type *) bp;
20828
20829 return (a > b) - (b > a);
20830}
20831
20832/* Sort and remove duplicates of all symbols' cu_indices lists. */
20833
20834static void
20835uniquify_cu_indices (struct mapped_symtab *symtab)
20836{
20837 int i;
20838
20839 for (i = 0; i < symtab->size; ++i)
20840 {
20841 struct symtab_index_entry *entry = symtab->data[i];
20842
20843 if (entry
20844 && entry->cu_indices != NULL)
20845 {
20846 unsigned int next_to_insert, next_to_check;
20847 offset_type last_value;
20848
20849 qsort (VEC_address (offset_type, entry->cu_indices),
20850 VEC_length (offset_type, entry->cu_indices),
20851 sizeof (offset_type), offset_type_compare);
20852
20853 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20854 next_to_insert = 1;
20855 for (next_to_check = 1;
20856 next_to_check < VEC_length (offset_type, entry->cu_indices);
20857 ++next_to_check)
20858 {
20859 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20860 != last_value)
20861 {
20862 last_value = VEC_index (offset_type, entry->cu_indices,
20863 next_to_check);
20864 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20865 last_value);
20866 ++next_to_insert;
20867 }
20868 }
20869 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20870 }
20871 }
9291a0cd
TT
20872}
20873
20874/* Add a vector of indices to the constant pool. */
b89be57b 20875
9291a0cd 20876static offset_type
3876f04e 20877add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
20878 struct symtab_index_entry *entry)
20879{
20880 void **slot;
20881
3876f04e 20882 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
20883 if (!*slot)
20884 {
20885 offset_type len = VEC_length (offset_type, entry->cu_indices);
20886 offset_type val = MAYBE_SWAP (len);
20887 offset_type iter;
20888 int i;
20889
20890 *slot = entry;
20891 entry->index_offset = obstack_object_size (cpool);
20892
20893 obstack_grow (cpool, &val, sizeof (val));
20894 for (i = 0;
20895 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20896 ++i)
20897 {
20898 val = MAYBE_SWAP (iter);
20899 obstack_grow (cpool, &val, sizeof (val));
20900 }
20901 }
20902 else
20903 {
20904 struct symtab_index_entry *old_entry = *slot;
20905 entry->index_offset = old_entry->index_offset;
20906 entry = old_entry;
20907 }
20908 return entry->index_offset;
20909}
20910
20911/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20912 constant pool entries going into the obstack CPOOL. */
b89be57b 20913
9291a0cd
TT
20914static void
20915write_hash_table (struct mapped_symtab *symtab,
20916 struct obstack *output, struct obstack *cpool)
20917{
20918 offset_type i;
3876f04e 20919 htab_t symbol_hash_table;
9291a0cd
TT
20920 htab_t str_table;
20921
3876f04e 20922 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 20923 str_table = create_strtab ();
3876f04e 20924
9291a0cd
TT
20925 /* We add all the index vectors to the constant pool first, to
20926 ensure alignment is ok. */
20927 for (i = 0; i < symtab->size; ++i)
20928 {
20929 if (symtab->data[i])
3876f04e 20930 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
20931 }
20932
20933 /* Now write out the hash table. */
20934 for (i = 0; i < symtab->size; ++i)
20935 {
20936 offset_type str_off, vec_off;
20937
20938 if (symtab->data[i])
20939 {
20940 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20941 vec_off = symtab->data[i]->index_offset;
20942 }
20943 else
20944 {
20945 /* While 0 is a valid constant pool index, it is not valid
20946 to have 0 for both offsets. */
20947 str_off = 0;
20948 vec_off = 0;
20949 }
20950
20951 str_off = MAYBE_SWAP (str_off);
20952 vec_off = MAYBE_SWAP (vec_off);
20953
20954 obstack_grow (output, &str_off, sizeof (str_off));
20955 obstack_grow (output, &vec_off, sizeof (vec_off));
20956 }
20957
20958 htab_delete (str_table);
3876f04e 20959 htab_delete (symbol_hash_table);
9291a0cd
TT
20960}
20961
0a5429f6
DE
20962/* Struct to map psymtab to CU index in the index file. */
20963struct psymtab_cu_index_map
20964{
20965 struct partial_symtab *psymtab;
20966 unsigned int cu_index;
20967};
20968
20969static hashval_t
20970hash_psymtab_cu_index (const void *item)
20971{
20972 const struct psymtab_cu_index_map *map = item;
20973
20974 return htab_hash_pointer (map->psymtab);
20975}
20976
20977static int
20978eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20979{
20980 const struct psymtab_cu_index_map *lhs = item_lhs;
20981 const struct psymtab_cu_index_map *rhs = item_rhs;
20982
20983 return lhs->psymtab == rhs->psymtab;
20984}
20985
20986/* Helper struct for building the address table. */
20987struct addrmap_index_data
20988{
20989 struct objfile *objfile;
20990 struct obstack *addr_obstack;
20991 htab_t cu_index_htab;
20992
20993 /* Non-zero if the previous_* fields are valid.
20994 We can't write an entry until we see the next entry (since it is only then
20995 that we know the end of the entry). */
20996 int previous_valid;
20997 /* Index of the CU in the table of all CUs in the index file. */
20998 unsigned int previous_cu_index;
0963b4bd 20999 /* Start address of the CU. */
0a5429f6
DE
21000 CORE_ADDR previous_cu_start;
21001};
21002
21003/* Write an address entry to OBSTACK. */
b89be57b 21004
9291a0cd 21005static void
0a5429f6
DE
21006add_address_entry (struct objfile *objfile, struct obstack *obstack,
21007 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 21008{
0a5429f6 21009 offset_type cu_index_to_write;
948f8e3d 21010 gdb_byte addr[8];
9291a0cd
TT
21011 CORE_ADDR baseaddr;
21012
21013 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21014
0a5429f6
DE
21015 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21016 obstack_grow (obstack, addr, 8);
21017 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21018 obstack_grow (obstack, addr, 8);
21019 cu_index_to_write = MAYBE_SWAP (cu_index);
21020 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21021}
21022
21023/* Worker function for traversing an addrmap to build the address table. */
21024
21025static int
21026add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21027{
21028 struct addrmap_index_data *data = datap;
21029 struct partial_symtab *pst = obj;
0a5429f6
DE
21030
21031 if (data->previous_valid)
21032 add_address_entry (data->objfile, data->addr_obstack,
21033 data->previous_cu_start, start_addr,
21034 data->previous_cu_index);
21035
21036 data->previous_cu_start = start_addr;
21037 if (pst != NULL)
21038 {
21039 struct psymtab_cu_index_map find_map, *map;
21040 find_map.psymtab = pst;
21041 map = htab_find (data->cu_index_htab, &find_map);
21042 gdb_assert (map != NULL);
21043 data->previous_cu_index = map->cu_index;
21044 data->previous_valid = 1;
21045 }
21046 else
21047 data->previous_valid = 0;
21048
21049 return 0;
21050}
21051
21052/* Write OBJFILE's address map to OBSTACK.
21053 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21054 in the index file. */
21055
21056static void
21057write_address_map (struct objfile *objfile, struct obstack *obstack,
21058 htab_t cu_index_htab)
21059{
21060 struct addrmap_index_data addrmap_index_data;
21061
21062 /* When writing the address table, we have to cope with the fact that
21063 the addrmap iterator only provides the start of a region; we have to
21064 wait until the next invocation to get the start of the next region. */
21065
21066 addrmap_index_data.objfile = objfile;
21067 addrmap_index_data.addr_obstack = obstack;
21068 addrmap_index_data.cu_index_htab = cu_index_htab;
21069 addrmap_index_data.previous_valid = 0;
21070
21071 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21072 &addrmap_index_data);
21073
21074 /* It's highly unlikely the last entry (end address = 0xff...ff)
21075 is valid, but we should still handle it.
21076 The end address is recorded as the start of the next region, but that
21077 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21078 anyway. */
21079 if (addrmap_index_data.previous_valid)
21080 add_address_entry (objfile, obstack,
21081 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21082 addrmap_index_data.previous_cu_index);
9291a0cd
TT
21083}
21084
156942c7
DE
21085/* Return the symbol kind of PSYM. */
21086
21087static gdb_index_symbol_kind
21088symbol_kind (struct partial_symbol *psym)
21089{
21090 domain_enum domain = PSYMBOL_DOMAIN (psym);
21091 enum address_class aclass = PSYMBOL_CLASS (psym);
21092
21093 switch (domain)
21094 {
21095 case VAR_DOMAIN:
21096 switch (aclass)
21097 {
21098 case LOC_BLOCK:
21099 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21100 case LOC_TYPEDEF:
21101 return GDB_INDEX_SYMBOL_KIND_TYPE;
21102 case LOC_COMPUTED:
21103 case LOC_CONST_BYTES:
21104 case LOC_OPTIMIZED_OUT:
21105 case LOC_STATIC:
21106 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21107 case LOC_CONST:
21108 /* Note: It's currently impossible to recognize psyms as enum values
21109 short of reading the type info. For now punt. */
21110 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21111 default:
21112 /* There are other LOC_FOO values that one might want to classify
21113 as variables, but dwarf2read.c doesn't currently use them. */
21114 return GDB_INDEX_SYMBOL_KIND_OTHER;
21115 }
21116 case STRUCT_DOMAIN:
21117 return GDB_INDEX_SYMBOL_KIND_TYPE;
21118 default:
21119 return GDB_INDEX_SYMBOL_KIND_OTHER;
21120 }
21121}
21122
9291a0cd 21123/* Add a list of partial symbols to SYMTAB. */
b89be57b 21124
9291a0cd
TT
21125static void
21126write_psymbols (struct mapped_symtab *symtab,
987d643c 21127 htab_t psyms_seen,
9291a0cd
TT
21128 struct partial_symbol **psymp,
21129 int count,
987d643c
TT
21130 offset_type cu_index,
21131 int is_static)
9291a0cd
TT
21132{
21133 for (; count-- > 0; ++psymp)
21134 {
156942c7
DE
21135 struct partial_symbol *psym = *psymp;
21136 void **slot;
987d643c 21137
156942c7 21138 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 21139 error (_("Ada is not currently supported by the index"));
987d643c 21140
987d643c 21141 /* Only add a given psymbol once. */
156942c7 21142 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
21143 if (!*slot)
21144 {
156942c7
DE
21145 gdb_index_symbol_kind kind = symbol_kind (psym);
21146
21147 *slot = psym;
21148 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21149 is_static, kind, cu_index);
987d643c 21150 }
9291a0cd
TT
21151 }
21152}
21153
21154/* Write the contents of an ("unfinished") obstack to FILE. Throw an
21155 exception if there is an error. */
b89be57b 21156
9291a0cd
TT
21157static void
21158write_obstack (FILE *file, struct obstack *obstack)
21159{
21160 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21161 file)
21162 != obstack_object_size (obstack))
21163 error (_("couldn't data write to file"));
21164}
21165
21166/* Unlink a file if the argument is not NULL. */
b89be57b 21167
9291a0cd
TT
21168static void
21169unlink_if_set (void *p)
21170{
21171 char **filename = p;
21172 if (*filename)
21173 unlink (*filename);
21174}
21175
1fd400ff
TT
21176/* A helper struct used when iterating over debug_types. */
21177struct signatured_type_index_data
21178{
21179 struct objfile *objfile;
21180 struct mapped_symtab *symtab;
21181 struct obstack *types_list;
987d643c 21182 htab_t psyms_seen;
1fd400ff
TT
21183 int cu_index;
21184};
21185
21186/* A helper function that writes a single signatured_type to an
21187 obstack. */
b89be57b 21188
1fd400ff
TT
21189static int
21190write_one_signatured_type (void **slot, void *d)
21191{
21192 struct signatured_type_index_data *info = d;
21193 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 21194 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
21195 gdb_byte val[8];
21196
21197 write_psymbols (info->symtab,
987d643c 21198 info->psyms_seen,
3e43a32a
MS
21199 info->objfile->global_psymbols.list
21200 + psymtab->globals_offset,
987d643c
TT
21201 psymtab->n_global_syms, info->cu_index,
21202 0);
1fd400ff 21203 write_psymbols (info->symtab,
987d643c 21204 info->psyms_seen,
3e43a32a
MS
21205 info->objfile->static_psymbols.list
21206 + psymtab->statics_offset,
987d643c
TT
21207 psymtab->n_static_syms, info->cu_index,
21208 1);
1fd400ff 21209
b64f50a1
JK
21210 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21211 entry->per_cu.offset.sect_off);
1fd400ff 21212 obstack_grow (info->types_list, val, 8);
3019eac3
DE
21213 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21214 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
21215 obstack_grow (info->types_list, val, 8);
21216 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21217 obstack_grow (info->types_list, val, 8);
21218
21219 ++info->cu_index;
21220
21221 return 1;
21222}
21223
95554aad
TT
21224/* Recurse into all "included" dependencies and write their symbols as
21225 if they appeared in this psymtab. */
21226
21227static void
21228recursively_write_psymbols (struct objfile *objfile,
21229 struct partial_symtab *psymtab,
21230 struct mapped_symtab *symtab,
21231 htab_t psyms_seen,
21232 offset_type cu_index)
21233{
21234 int i;
21235
21236 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21237 if (psymtab->dependencies[i]->user != NULL)
21238 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21239 symtab, psyms_seen, cu_index);
21240
21241 write_psymbols (symtab,
21242 psyms_seen,
21243 objfile->global_psymbols.list + psymtab->globals_offset,
21244 psymtab->n_global_syms, cu_index,
21245 0);
21246 write_psymbols (symtab,
21247 psyms_seen,
21248 objfile->static_psymbols.list + psymtab->statics_offset,
21249 psymtab->n_static_syms, cu_index,
21250 1);
21251}
21252
9291a0cd 21253/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 21254
9291a0cd
TT
21255static void
21256write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21257{
21258 struct cleanup *cleanup;
21259 char *filename, *cleanup_filename;
1fd400ff
TT
21260 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21261 struct obstack cu_list, types_cu_list;
9291a0cd
TT
21262 int i;
21263 FILE *out_file;
21264 struct mapped_symtab *symtab;
21265 offset_type val, size_of_contents, total_len;
21266 struct stat st;
987d643c 21267 htab_t psyms_seen;
0a5429f6
DE
21268 htab_t cu_index_htab;
21269 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 21270
b4f2f049 21271 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 21272 return;
b4f2f049 21273
9291a0cd
TT
21274 if (dwarf2_per_objfile->using_index)
21275 error (_("Cannot use an index to create the index"));
21276
8b70b953
TT
21277 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21278 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21279
9291a0cd 21280 if (stat (objfile->name, &st) < 0)
7e17e088 21281 perror_with_name (objfile->name);
9291a0cd
TT
21282
21283 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21284 INDEX_SUFFIX, (char *) NULL);
21285 cleanup = make_cleanup (xfree, filename);
21286
614c279d 21287 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
21288 if (!out_file)
21289 error (_("Can't open `%s' for writing"), filename);
21290
21291 cleanup_filename = filename;
21292 make_cleanup (unlink_if_set, &cleanup_filename);
21293
21294 symtab = create_mapped_symtab ();
21295 make_cleanup (cleanup_mapped_symtab, symtab);
21296
21297 obstack_init (&addr_obstack);
21298 make_cleanup_obstack_free (&addr_obstack);
21299
21300 obstack_init (&cu_list);
21301 make_cleanup_obstack_free (&cu_list);
21302
1fd400ff
TT
21303 obstack_init (&types_cu_list);
21304 make_cleanup_obstack_free (&types_cu_list);
21305
987d643c
TT
21306 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21307 NULL, xcalloc, xfree);
96408a79 21308 make_cleanup_htab_delete (psyms_seen);
987d643c 21309
0a5429f6
DE
21310 /* While we're scanning CU's create a table that maps a psymtab pointer
21311 (which is what addrmap records) to its index (which is what is recorded
21312 in the index file). This will later be needed to write the address
21313 table. */
21314 cu_index_htab = htab_create_alloc (100,
21315 hash_psymtab_cu_index,
21316 eq_psymtab_cu_index,
21317 NULL, xcalloc, xfree);
96408a79 21318 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
21319 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21320 xmalloc (sizeof (struct psymtab_cu_index_map)
21321 * dwarf2_per_objfile->n_comp_units);
21322 make_cleanup (xfree, psymtab_cu_index_map);
21323
21324 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
21325 work here. Also, the debug_types entries do not appear in
21326 all_comp_units, but only in their own hash table. */
9291a0cd
TT
21327 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21328 {
3e43a32a
MS
21329 struct dwarf2_per_cu_data *per_cu
21330 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 21331 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 21332 gdb_byte val[8];
0a5429f6
DE
21333 struct psymtab_cu_index_map *map;
21334 void **slot;
9291a0cd 21335
92fac807
JK
21336 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21337 It may be referenced from a local scope but in such case it does not
21338 need to be present in .gdb_index. */
21339 if (psymtab == NULL)
21340 continue;
21341
95554aad
TT
21342 if (psymtab->user == NULL)
21343 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 21344
0a5429f6
DE
21345 map = &psymtab_cu_index_map[i];
21346 map->psymtab = psymtab;
21347 map->cu_index = i;
21348 slot = htab_find_slot (cu_index_htab, map, INSERT);
21349 gdb_assert (slot != NULL);
21350 gdb_assert (*slot == NULL);
21351 *slot = map;
9291a0cd 21352
b64f50a1
JK
21353 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21354 per_cu->offset.sect_off);
9291a0cd 21355 obstack_grow (&cu_list, val, 8);
e254ef6a 21356 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
21357 obstack_grow (&cu_list, val, 8);
21358 }
21359
0a5429f6
DE
21360 /* Dump the address map. */
21361 write_address_map (objfile, &addr_obstack, cu_index_htab);
21362
1fd400ff
TT
21363 /* Write out the .debug_type entries, if any. */
21364 if (dwarf2_per_objfile->signatured_types)
21365 {
21366 struct signatured_type_index_data sig_data;
21367
21368 sig_data.objfile = objfile;
21369 sig_data.symtab = symtab;
21370 sig_data.types_list = &types_cu_list;
987d643c 21371 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
21372 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21373 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21374 write_one_signatured_type, &sig_data);
21375 }
21376
156942c7
DE
21377 /* Now that we've processed all symbols we can shrink their cu_indices
21378 lists. */
21379 uniquify_cu_indices (symtab);
21380
9291a0cd
TT
21381 obstack_init (&constant_pool);
21382 make_cleanup_obstack_free (&constant_pool);
21383 obstack_init (&symtab_obstack);
21384 make_cleanup_obstack_free (&symtab_obstack);
21385 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21386
21387 obstack_init (&contents);
21388 make_cleanup_obstack_free (&contents);
1fd400ff 21389 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
21390 total_len = size_of_contents;
21391
21392 /* The version number. */
796a7ff8 21393 val = MAYBE_SWAP (8);
9291a0cd
TT
21394 obstack_grow (&contents, &val, sizeof (val));
21395
21396 /* The offset of the CU list from the start of the file. */
21397 val = MAYBE_SWAP (total_len);
21398 obstack_grow (&contents, &val, sizeof (val));
21399 total_len += obstack_object_size (&cu_list);
21400
1fd400ff
TT
21401 /* The offset of the types CU list from the start of the file. */
21402 val = MAYBE_SWAP (total_len);
21403 obstack_grow (&contents, &val, sizeof (val));
21404 total_len += obstack_object_size (&types_cu_list);
21405
9291a0cd
TT
21406 /* The offset of the address table from the start of the file. */
21407 val = MAYBE_SWAP (total_len);
21408 obstack_grow (&contents, &val, sizeof (val));
21409 total_len += obstack_object_size (&addr_obstack);
21410
21411 /* The offset of the symbol table from the start of the file. */
21412 val = MAYBE_SWAP (total_len);
21413 obstack_grow (&contents, &val, sizeof (val));
21414 total_len += obstack_object_size (&symtab_obstack);
21415
21416 /* The offset of the constant pool from the start of the file. */
21417 val = MAYBE_SWAP (total_len);
21418 obstack_grow (&contents, &val, sizeof (val));
21419 total_len += obstack_object_size (&constant_pool);
21420
21421 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21422
21423 write_obstack (out_file, &contents);
21424 write_obstack (out_file, &cu_list);
1fd400ff 21425 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
21426 write_obstack (out_file, &addr_obstack);
21427 write_obstack (out_file, &symtab_obstack);
21428 write_obstack (out_file, &constant_pool);
21429
21430 fclose (out_file);
21431
21432 /* We want to keep the file, so we set cleanup_filename to NULL
21433 here. See unlink_if_set. */
21434 cleanup_filename = NULL;
21435
21436 do_cleanups (cleanup);
21437}
21438
90476074
TT
21439/* Implementation of the `save gdb-index' command.
21440
21441 Note that the file format used by this command is documented in the
21442 GDB manual. Any changes here must be documented there. */
11570e71 21443
9291a0cd
TT
21444static void
21445save_gdb_index_command (char *arg, int from_tty)
21446{
21447 struct objfile *objfile;
21448
21449 if (!arg || !*arg)
96d19272 21450 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
21451
21452 ALL_OBJFILES (objfile)
21453 {
21454 struct stat st;
21455
21456 /* If the objfile does not correspond to an actual file, skip it. */
21457 if (stat (objfile->name, &st) < 0)
21458 continue;
21459
21460 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21461 if (dwarf2_per_objfile)
21462 {
21463 volatile struct gdb_exception except;
21464
21465 TRY_CATCH (except, RETURN_MASK_ERROR)
21466 {
21467 write_psymtabs_to_index (objfile, arg);
21468 }
21469 if (except.reason < 0)
21470 exception_fprintf (gdb_stderr, except,
21471 _("Error while writing index for `%s': "),
21472 objfile->name);
21473 }
21474 }
dce234bc
PP
21475}
21476
9291a0cd
TT
21477\f
21478
9eae7c52
TT
21479int dwarf2_always_disassemble;
21480
21481static void
21482show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21483 struct cmd_list_element *c, const char *value)
21484{
3e43a32a
MS
21485 fprintf_filtered (file,
21486 _("Whether to always disassemble "
21487 "DWARF expressions is %s.\n"),
9eae7c52
TT
21488 value);
21489}
21490
900e11f9
JK
21491static void
21492show_check_physname (struct ui_file *file, int from_tty,
21493 struct cmd_list_element *c, const char *value)
21494{
21495 fprintf_filtered (file,
21496 _("Whether to check \"physname\" is %s.\n"),
21497 value);
21498}
21499
6502dd73
DJ
21500void _initialize_dwarf2_read (void);
21501
21502void
21503_initialize_dwarf2_read (void)
21504{
96d19272
JK
21505 struct cmd_list_element *c;
21506
dce234bc 21507 dwarf2_objfile_data_key
c1bd65d0 21508 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 21509
1bedd215
AC
21510 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21511Set DWARF 2 specific variables.\n\
21512Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21513 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21514 0/*allow-unknown*/, &maintenance_set_cmdlist);
21515
1bedd215
AC
21516 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21517Show DWARF 2 specific variables\n\
21518Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21519 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21520 0/*allow-unknown*/, &maintenance_show_cmdlist);
21521
21522 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
21523 &dwarf2_max_cache_age, _("\
21524Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21525Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21526A higher limit means that cached compilation units will be stored\n\
21527in memory longer, and more total memory will be used. Zero disables\n\
21528caching, which can slow down startup."),
2c5b56ce 21529 NULL,
920d2a44 21530 show_dwarf2_max_cache_age,
2c5b56ce 21531 &set_dwarf2_cmdlist,
ae038cb0 21532 &show_dwarf2_cmdlist);
d97bc12b 21533
9eae7c52
TT
21534 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21535 &dwarf2_always_disassemble, _("\
21536Set whether `info address' always disassembles DWARF expressions."), _("\
21537Show whether `info address' always disassembles DWARF expressions."), _("\
21538When enabled, DWARF expressions are always printed in an assembly-like\n\
21539syntax. When disabled, expressions will be printed in a more\n\
21540conversational style, when possible."),
21541 NULL,
21542 show_dwarf2_always_disassemble,
21543 &set_dwarf2_cmdlist,
21544 &show_dwarf2_cmdlist);
21545
45cfd468
DE
21546 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21547Set debugging of the dwarf2 reader."), _("\
21548Show debugging of the dwarf2 reader."), _("\
21549When enabled, debugging messages are printed during dwarf2 reading\n\
21550and symtab expansion."),
21551 NULL,
21552 NULL,
21553 &setdebuglist, &showdebuglist);
21554
ccce17b0 21555 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
21556Set debugging of the dwarf2 DIE reader."), _("\
21557Show debugging of the dwarf2 DIE reader."), _("\
21558When enabled (non-zero), DIEs are dumped after they are read in.\n\
21559The value is the maximum depth to print."),
ccce17b0
YQ
21560 NULL,
21561 NULL,
21562 &setdebuglist, &showdebuglist);
9291a0cd 21563
900e11f9
JK
21564 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21565Set cross-checking of \"physname\" code against demangler."), _("\
21566Show cross-checking of \"physname\" code against demangler."), _("\
21567When enabled, GDB's internal \"physname\" code is checked against\n\
21568the demangler."),
21569 NULL, show_check_physname,
21570 &setdebuglist, &showdebuglist);
21571
e615022a
DE
21572 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21573 no_class, &use_deprecated_index_sections, _("\
21574Set whether to use deprecated gdb_index sections."), _("\
21575Show whether to use deprecated gdb_index sections."), _("\
21576When enabled, deprecated .gdb_index sections are used anyway.\n\
21577Normally they are ignored either because of a missing feature or\n\
21578performance issue.\n\
21579Warning: This option must be enabled before gdb reads the file."),
21580 NULL,
21581 NULL,
21582 &setlist, &showlist);
21583
96d19272 21584 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 21585 _("\
fc1a9d6e 21586Save a gdb-index file.\n\
11570e71 21587Usage: save gdb-index DIRECTORY"),
96d19272
JK
21588 &save_cmdlist);
21589 set_cmd_completer (c, filename_completer);
f1e6e072
TT
21590
21591 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21592 &dwarf2_locexpr_funcs);
21593 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21594 &dwarf2_loclist_funcs);
21595
21596 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21597 &dwarf2_block_frame_base_locexpr_funcs);
21598 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21599 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 21600}
This page took 5.775146 seconds and 4 git commands to generate.