* interp.c: Include config.h first. Do not include sysdep.h.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
0b302171 3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
c906108c
SS
33#include "symtab.h"
34#include "gdbtypes.h"
c906108c 35#include "objfiles.h"
fa8f86ff 36#include "dwarf2.h"
c906108c
SS
37#include "buildsym.h"
38#include "demangle.h"
50f182aa 39#include "gdb-demangle.h"
c906108c 40#include "expression.h"
d5166ae1 41#include "filenames.h" /* for DOSish file names */
2e276125 42#include "macrotab.h"
c906108c
SS
43#include "language.h"
44#include "complaints.h"
357e46e7 45#include "bcache.h"
4c2df51b
DJ
46#include "dwarf2expr.h"
47#include "dwarf2loc.h"
9219021c 48#include "cp-support.h"
72bf9492 49#include "hashtab.h"
ae038cb0
DJ
50#include "command.h"
51#include "gdbcmd.h"
edb3359d 52#include "block.h"
ff013f42 53#include "addrmap.h"
94af9270
KS
54#include "typeprint.h"
55#include "jv-lang.h"
ccefe4c4 56#include "psympriv.h"
9291a0cd
TT
57#include "exceptions.h"
58#include "gdb_stat.h"
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
60d5a603 65#include <ctype.h>
4c2df51b 66
c906108c
SS
67#include <fcntl.h>
68#include "gdb_string.h"
4bdf3d34 69#include "gdb_assert.h"
c906108c 70#include <sys/types.h>
233a11ab
CS
71#ifdef HAVE_ZLIB_H
72#include <zlib.h>
73#endif
dce234bc
PP
74#ifdef HAVE_MMAP
75#include <sys/mman.h>
85d9bd0e
TT
76#ifndef MAP_FAILED
77#define MAP_FAILED ((void *) -1)
78#endif
dce234bc 79#endif
d8151005 80
34eaf542
TT
81typedef struct symbol *symbolp;
82DEF_VEC_P (symbolp);
83
d97bc12b
DE
84/* When non-zero, dump DIEs after they are read in. */
85static int dwarf2_die_debug = 0;
86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3
GB
90/* When non-zero, do not reject deprecated .gdb_index sections. */
91int use_deprecated_index_sections = 0;
92
dce234bc
PP
93static int pagesize;
94
df8a16a1
DJ
95/* When set, the file that we're processing is known to have debugging
96 info for C++ namespaces. GCC 3.3.x did not produce this information,
97 but later versions do. */
98
99static int processing_has_namespace_info;
100
6502dd73
DJ
101static const struct objfile_data *dwarf2_objfile_data_key;
102
dce234bc
PP
103struct dwarf2_section_info
104{
105 asection *asection;
106 gdb_byte *buffer;
107 bfd_size_type size;
b315ab21
TG
108 /* Not NULL if the section was actually mmapped. */
109 void *map_addr;
110 /* Page aligned size of mmapped area. */
111 bfd_size_type map_len;
be391dca
TT
112 /* True if we have tried to read this section. */
113 int readin;
dce234bc
PP
114};
115
8b70b953
TT
116typedef struct dwarf2_section_info dwarf2_section_info_def;
117DEF_VEC_O (dwarf2_section_info_def);
118
9291a0cd
TT
119/* All offsets in the index are of this type. It must be
120 architecture-independent. */
121typedef uint32_t offset_type;
122
123DEF_VEC_I (offset_type);
124
125/* A description of the mapped index. The file format is described in
126 a comment by the code that writes the index. */
127struct mapped_index
128{
559a7a62
JK
129 /* Index data format version. */
130 int version;
131
9291a0cd
TT
132 /* The total length of the buffer. */
133 off_t total_size;
b11b1f88 134
9291a0cd
TT
135 /* A pointer to the address table data. */
136 const gdb_byte *address_table;
b11b1f88 137
9291a0cd
TT
138 /* Size of the address table data in bytes. */
139 offset_type address_table_size;
b11b1f88 140
3876f04e
DE
141 /* The symbol table, implemented as a hash table. */
142 const offset_type *symbol_table;
b11b1f88 143
9291a0cd 144 /* Size in slots, each slot is 2 offset_types. */
3876f04e 145 offset_type symbol_table_slots;
b11b1f88 146
9291a0cd
TT
147 /* A pointer to the constant pool. */
148 const char *constant_pool;
149};
150
95554aad
TT
151typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
152DEF_VEC_P (dwarf2_per_cu_ptr);
153
9cdd5dbd
DE
154/* Collection of data recorded per objfile.
155 This hangs off of dwarf2_objfile_data_key. */
156
6502dd73
DJ
157struct dwarf2_per_objfile
158{
dce234bc
PP
159 struct dwarf2_section_info info;
160 struct dwarf2_section_info abbrev;
161 struct dwarf2_section_info line;
dce234bc
PP
162 struct dwarf2_section_info loc;
163 struct dwarf2_section_info macinfo;
cf2c3c16 164 struct dwarf2_section_info macro;
dce234bc
PP
165 struct dwarf2_section_info str;
166 struct dwarf2_section_info ranges;
3019eac3 167 struct dwarf2_section_info addr;
dce234bc
PP
168 struct dwarf2_section_info frame;
169 struct dwarf2_section_info eh_frame;
9291a0cd 170 struct dwarf2_section_info gdb_index;
ae038cb0 171
8b70b953
TT
172 VEC (dwarf2_section_info_def) *types;
173
be391dca
TT
174 /* Back link. */
175 struct objfile *objfile;
176
d467dd73 177 /* Table of all the compilation units. This is used to locate
10b3939b 178 the target compilation unit of a particular reference. */
ae038cb0
DJ
179 struct dwarf2_per_cu_data **all_comp_units;
180
181 /* The number of compilation units in ALL_COMP_UNITS. */
182 int n_comp_units;
183
1fd400ff 184 /* The number of .debug_types-related CUs. */
d467dd73 185 int n_type_units;
1fd400ff 186
d467dd73
DE
187 /* The .debug_types-related CUs (TUs). */
188 struct dwarf2_per_cu_data **all_type_units;
1fd400ff 189
ae038cb0
DJ
190 /* A chain of compilation units that are currently read in, so that
191 they can be freed later. */
192 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 193
348e048f
DE
194 /* A table mapping .debug_types signatures to its signatured_type entry.
195 This is NULL if the .debug_types section hasn't been read in yet. */
196 htab_t signatured_types;
197
3019eac3
DE
198 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
199 This is NULL if the table hasn't been allocated yet. */
200 htab_t dwo_files;
201
72dca2f5
FR
202 /* A flag indicating wether this objfile has a section loaded at a
203 VMA of 0. */
204 int has_section_at_zero;
9291a0cd 205
ae2de4f8
DE
206 /* True if we are using the mapped index,
207 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
208 unsigned char using_index;
209
ae2de4f8 210 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 211 struct mapped_index *index_table;
98bfdba5 212
7b9f3c50
DE
213 /* When using index_table, this keeps track of all quick_file_names entries.
214 TUs can share line table entries with CUs or other TUs, and there can be
215 a lot more TUs than unique line tables, so we maintain a separate table
216 of all line table entries to support the sharing. */
217 htab_t quick_file_names_table;
218
98bfdba5
PA
219 /* Set during partial symbol reading, to prevent queueing of full
220 symbols. */
221 int reading_partial_symbols;
673bfd45 222
dee91e82 223 /* Table mapping type DIEs to their struct type *.
673bfd45 224 This is NULL if not allocated yet.
dee91e82
DE
225 The mapping is done via (CU/TU signature + DIE offset) -> type. */
226 htab_t die_type_hash;
95554aad
TT
227
228 /* The CUs we recently read. */
229 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
230};
231
232static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 233
251d32d9 234/* Default names of the debugging sections. */
c906108c 235
233a11ab
CS
236/* Note that if the debugging section has been compressed, it might
237 have a name like .zdebug_info. */
238
9cdd5dbd
DE
239static const struct dwarf2_debug_sections dwarf2_elf_names =
240{
251d32d9
TG
241 { ".debug_info", ".zdebug_info" },
242 { ".debug_abbrev", ".zdebug_abbrev" },
243 { ".debug_line", ".zdebug_line" },
244 { ".debug_loc", ".zdebug_loc" },
245 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 246 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
247 { ".debug_str", ".zdebug_str" },
248 { ".debug_ranges", ".zdebug_ranges" },
249 { ".debug_types", ".zdebug_types" },
3019eac3 250 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
251 { ".debug_frame", ".zdebug_frame" },
252 { ".eh_frame", NULL },
24d3216f
TT
253 { ".gdb_index", ".zgdb_index" },
254 23
251d32d9 255};
c906108c 256
3019eac3
DE
257/* List of DWO sections. */
258
259static const struct dwo_section_names
260{
261 struct dwarf2_section_names abbrev_dwo;
262 struct dwarf2_section_names info_dwo;
263 struct dwarf2_section_names line_dwo;
264 struct dwarf2_section_names loc_dwo;
265 struct dwarf2_section_names str_dwo;
266 struct dwarf2_section_names str_offsets_dwo;
267 struct dwarf2_section_names types_dwo;
268}
269dwo_section_names =
270{
271 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
272 { ".debug_info.dwo", ".zdebug_info.dwo" },
273 { ".debug_line.dwo", ".zdebug_line.dwo" },
274 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
275 { ".debug_str.dwo", ".zdebug_str.dwo" },
276 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
277 { ".debug_types.dwo", ".zdebug_types.dwo" },
278};
279
c906108c
SS
280/* local data types */
281
0963b4bd 282/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
283#ifndef ABBREV_HASH_SIZE
284#define ABBREV_HASH_SIZE 121
285#endif
286
107d2387
AC
287/* The data in a compilation unit header, after target2host
288 translation, looks like this. */
c906108c 289struct comp_unit_head
a738430d 290{
c764a876 291 unsigned int length;
a738430d 292 short version;
a738430d
MK
293 unsigned char addr_size;
294 unsigned char signed_addr_p;
b64f50a1 295 sect_offset abbrev_offset;
57349743 296
a738430d
MK
297 /* Size of file offsets; either 4 or 8. */
298 unsigned int offset_size;
57349743 299
a738430d
MK
300 /* Size of the length field; either 4 or 12. */
301 unsigned int initial_length_size;
57349743 302
a738430d
MK
303 /* Offset to the first byte of this compilation unit header in the
304 .debug_info section, for resolving relative reference dies. */
b64f50a1 305 sect_offset offset;
57349743 306
d00adf39
DE
307 /* Offset to first die in this cu from the start of the cu.
308 This will be the first byte following the compilation unit header. */
b64f50a1 309 cu_offset first_die_offset;
a738430d 310};
c906108c 311
3da10d80
KS
312/* Type used for delaying computation of method physnames.
313 See comments for compute_delayed_physnames. */
314struct delayed_method_info
315{
316 /* The type to which the method is attached, i.e., its parent class. */
317 struct type *type;
318
319 /* The index of the method in the type's function fieldlists. */
320 int fnfield_index;
321
322 /* The index of the method in the fieldlist. */
323 int index;
324
325 /* The name of the DIE. */
326 const char *name;
327
328 /* The DIE associated with this method. */
329 struct die_info *die;
330};
331
332typedef struct delayed_method_info delayed_method_info;
333DEF_VEC_O (delayed_method_info);
334
e7c27a73
DJ
335/* Internal state when decoding a particular compilation unit. */
336struct dwarf2_cu
337{
338 /* The objfile containing this compilation unit. */
339 struct objfile *objfile;
340
d00adf39 341 /* The header of the compilation unit. */
e7c27a73 342 struct comp_unit_head header;
e142c38c 343
d00adf39
DE
344 /* Base address of this compilation unit. */
345 CORE_ADDR base_address;
346
347 /* Non-zero if base_address has been set. */
348 int base_known;
349
e142c38c
DJ
350 /* The language we are debugging. */
351 enum language language;
352 const struct language_defn *language_defn;
353
b0f35d58
DL
354 const char *producer;
355
e142c38c
DJ
356 /* The generic symbol table building routines have separate lists for
357 file scope symbols and all all other scopes (local scopes). So
358 we need to select the right one to pass to add_symbol_to_list().
359 We do it by keeping a pointer to the correct list in list_in_scope.
360
361 FIXME: The original dwarf code just treated the file scope as the
362 first local scope, and all other local scopes as nested local
363 scopes, and worked fine. Check to see if we really need to
364 distinguish these in buildsym.c. */
365 struct pending **list_in_scope;
366
f3dd6933
DJ
367 /* DWARF abbreviation table associated with this compilation unit. */
368 struct abbrev_info **dwarf2_abbrevs;
369
370 /* Storage for the abbrev table. */
371 struct obstack abbrev_obstack;
72bf9492 372
b64f50a1
JK
373 /* Hash table holding all the loaded partial DIEs
374 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
375 htab_t partial_dies;
376
377 /* Storage for things with the same lifetime as this read-in compilation
378 unit, including partial DIEs. */
379 struct obstack comp_unit_obstack;
380
ae038cb0
DJ
381 /* When multiple dwarf2_cu structures are living in memory, this field
382 chains them all together, so that they can be released efficiently.
383 We will probably also want a generation counter so that most-recently-used
384 compilation units are cached... */
385 struct dwarf2_per_cu_data *read_in_chain;
386
387 /* Backchain to our per_cu entry if the tree has been built. */
388 struct dwarf2_per_cu_data *per_cu;
389
390 /* How many compilation units ago was this CU last referenced? */
391 int last_used;
392
b64f50a1
JK
393 /* A hash table of DIE cu_offset for following references with
394 die_info->offset.sect_off as hash. */
51545339 395 htab_t die_hash;
10b3939b
DJ
396
397 /* Full DIEs if read in. */
398 struct die_info *dies;
399
400 /* A set of pointers to dwarf2_per_cu_data objects for compilation
401 units referenced by this one. Only set during full symbol processing;
402 partial symbol tables do not have dependencies. */
403 htab_t dependencies;
404
cb1df416
DJ
405 /* Header data from the line table, during full symbol processing. */
406 struct line_header *line_header;
407
3da10d80
KS
408 /* A list of methods which need to have physnames computed
409 after all type information has been read. */
410 VEC (delayed_method_info) *method_list;
411
96408a79
SA
412 /* To be copied to symtab->call_site_htab. */
413 htab_t call_site_htab;
414
034e5797
DE
415 /* Non-NULL if this CU came from a DWO file.
416 There is an invariant here that is important to remember:
417 Except for attributes copied from the top level DIE in the "main"
418 (or "stub") file in preparation for reading the DWO file
419 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
420 Either there isn't a DWO file (in which case this is NULL and the point
421 is moot), or there is and either we're not going to read it (in which
422 case this is NULL) or there is and we are reading it (in which case this
423 is non-NULL). */
3019eac3
DE
424 struct dwo_unit *dwo_unit;
425
426 /* The DW_AT_addr_base attribute if present, zero otherwise
427 (zero is a valid value though).
428 Note this value comes from the stub CU/TU's DIE. */
429 ULONGEST addr_base;
430
ae038cb0
DJ
431 /* Mark used when releasing cached dies. */
432 unsigned int mark : 1;
433
8be455d7
JK
434 /* This CU references .debug_loc. See the symtab->locations_valid field.
435 This test is imperfect as there may exist optimized debug code not using
436 any location list and still facing inlining issues if handled as
437 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 438 unsigned int has_loclist : 1;
ba919b58 439
685b1105
JK
440 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
441 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
442 are valid. This information is cached because profiling CU expansion
443 showed excessive time spent in producer_is_gxx_lt_4_6. */
ba919b58
TT
444 unsigned int checked_producer : 1;
445 unsigned int producer_is_gxx_lt_4_6 : 1;
685b1105 446 unsigned int producer_is_icc : 1;
3019eac3
DE
447
448 /* Non-zero if DW_AT_addr_base was found.
449 Used when processing DWO files. */
450 unsigned int have_addr_base : 1;
e7c27a73
DJ
451};
452
10b3939b
DJ
453/* Persistent data held for a compilation unit, even when not
454 processing it. We put a pointer to this structure in the
28dee7f5 455 read_symtab_private field of the psymtab. */
10b3939b 456
ae038cb0
DJ
457struct dwarf2_per_cu_data
458{
348e048f 459 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 460 bytes should suffice to store the length of any compilation unit
45452591
DE
461 - if it doesn't, GDB will fall over anyway.
462 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
463 initial_length_size.
464 If the DIE refers to a DWO file, this is always of the original die,
465 not the DWO file. */
b64f50a1 466 sect_offset offset;
348e048f 467 unsigned int length : 29;
ae038cb0
DJ
468
469 /* Flag indicating this compilation unit will be read in before
470 any of the current compilation units are processed. */
c764a876 471 unsigned int queued : 1;
ae038cb0 472
0d99eb77
DE
473 /* This flag will be set when reading partial DIEs if we need to load
474 absolutely all DIEs for this compilation unit, instead of just the ones
475 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
476 hash table and don't find it. */
477 unsigned int load_all_dies : 1;
478
3019eac3
DE
479 /* Non-zero if this CU is from .debug_types. */
480 unsigned int is_debug_types : 1;
481
482 /* The section this CU/TU lives in.
483 If the DIE refers to a DWO file, this is always the original die,
484 not the DWO file. */
485 struct dwarf2_section_info *info_or_types_section;
348e048f 486
17ea53c3
JK
487 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
488 of the CU cache it gets reset to NULL again. */
ae038cb0 489 struct dwarf2_cu *cu;
1c379e20 490
9cdd5dbd
DE
491 /* The corresponding objfile.
492 Normally we can get the objfile from dwarf2_per_objfile.
493 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
494 struct objfile *objfile;
495
496 /* When using partial symbol tables, the 'psymtab' field is active.
497 Otherwise the 'quick' field is active. */
498 union
499 {
500 /* The partial symbol table associated with this compilation unit,
95554aad 501 or NULL for unread partial units. */
9291a0cd
TT
502 struct partial_symtab *psymtab;
503
504 /* Data needed by the "quick" functions. */
505 struct dwarf2_per_cu_quick_data *quick;
506 } v;
95554aad
TT
507
508 /* The CUs we import using DW_TAG_imported_unit. This is filled in
509 while reading psymtabs, used to compute the psymtab dependencies,
510 and then cleared. Then it is filled in again while reading full
511 symbols, and only deleted when the objfile is destroyed. */
512 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
513};
514
348e048f
DE
515/* Entry in the signatured_types hash table. */
516
517struct signatured_type
518{
3019eac3 519 /* The type's signature. */
348e048f
DE
520 ULONGEST signature;
521
3019eac3
DE
522 /* Offset in the TU of the type's DIE, as read from the TU header.
523 If the definition lives in a DWO file, this value is unusable. */
524 cu_offset type_offset_in_tu;
525
526 /* Offset in the section of the type's DIE.
527 If the definition lives in a DWO file, this is the offset in the
528 .debug_types.dwo section.
529 The value is zero until the actual value is known.
530 Zero is otherwise not a valid section offset. */
531 sect_offset type_offset_in_section;
348e048f
DE
532
533 /* The CU(/TU) of this type. */
534 struct dwarf2_per_cu_data per_cu;
535};
536
3019eac3
DE
537/* These sections are what may appear in a "dwo" file. */
538
539struct dwo_sections
540{
541 struct dwarf2_section_info abbrev;
542 struct dwarf2_section_info info;
543 struct dwarf2_section_info line;
544 struct dwarf2_section_info loc;
545 struct dwarf2_section_info str;
546 struct dwarf2_section_info str_offsets;
547 VEC (dwarf2_section_info_def) *types;
548};
549
550/* Common bits of DWO CUs/TUs. */
551
552struct dwo_unit
553{
554 /* Backlink to the containing struct dwo_file. */
555 struct dwo_file *dwo_file;
556
557 /* The "id" that distinguishes this CU/TU.
558 .debug_info calls this "dwo_id", .debug_types calls this "signature".
559 Since signatures came first, we stick with it for consistency. */
560 ULONGEST signature;
561
562 /* The section this CU/TU lives in, in the DWO file. */
563 struct dwarf2_section_info *info_or_types_section;
564
565 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
566 sect_offset offset;
567 unsigned int length;
568
569 /* For types, offset in the type's DIE of the type defined by this TU. */
570 cu_offset type_offset_in_tu;
571};
572
573/* Data for one DWO file. */
574
575struct dwo_file
576{
577 /* The DW_AT_GNU_dwo_name attribute.
578 We don't manage space for this, it's an attribute. */
579 const char *dwo_name;
580
581 /* The bfd, when the file is open. Otherwise this is NULL. */
582 bfd *dwo_bfd;
583
584 /* Section info for this file. */
585 struct dwo_sections sections;
586
587 /* Table of CUs in the file.
588 Each element is a struct dwo_unit. */
589 htab_t cus;
590
591 /* Table of TUs in the file.
592 Each element is a struct dwo_unit. */
593 htab_t tus;
594};
595
0963b4bd
MS
596/* Struct used to pass misc. parameters to read_die_and_children, et
597 al. which are used for both .debug_info and .debug_types dies.
598 All parameters here are unchanging for the life of the call. This
dee91e82 599 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
600
601struct die_reader_specs
602{
dee91e82 603 /* die_section->asection->owner. */
93311388
DE
604 bfd* abfd;
605
606 /* The CU of the DIE we are parsing. */
607 struct dwarf2_cu *cu;
608
3019eac3
DE
609 /* Non-NULL if reading a DWO file. */
610 struct dwo_file *dwo_file;
611
dee91e82 612 /* The section the die comes from.
3019eac3 613 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
614 struct dwarf2_section_info *die_section;
615
616 /* die_section->buffer. */
617 gdb_byte *buffer;
f664829e
DE
618
619 /* The end of the buffer. */
620 const gdb_byte *buffer_end;
93311388
DE
621};
622
fd820528 623/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82
DE
624typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
625 gdb_byte *info_ptr,
626 struct die_info *comp_unit_die,
627 int has_children,
628 void *data);
629
debd256d
JB
630/* The line number information for a compilation unit (found in the
631 .debug_line section) begins with a "statement program header",
632 which contains the following information. */
633struct line_header
634{
635 unsigned int total_length;
636 unsigned short version;
637 unsigned int header_length;
638 unsigned char minimum_instruction_length;
2dc7f7b3 639 unsigned char maximum_ops_per_instruction;
debd256d
JB
640 unsigned char default_is_stmt;
641 int line_base;
642 unsigned char line_range;
643 unsigned char opcode_base;
644
645 /* standard_opcode_lengths[i] is the number of operands for the
646 standard opcode whose value is i. This means that
647 standard_opcode_lengths[0] is unused, and the last meaningful
648 element is standard_opcode_lengths[opcode_base - 1]. */
649 unsigned char *standard_opcode_lengths;
650
651 /* The include_directories table. NOTE! These strings are not
652 allocated with xmalloc; instead, they are pointers into
653 debug_line_buffer. If you try to free them, `free' will get
654 indigestion. */
655 unsigned int num_include_dirs, include_dirs_size;
656 char **include_dirs;
657
658 /* The file_names table. NOTE! These strings are not allocated
659 with xmalloc; instead, they are pointers into debug_line_buffer.
660 Don't try to free them directly. */
661 unsigned int num_file_names, file_names_size;
662 struct file_entry
c906108c 663 {
debd256d
JB
664 char *name;
665 unsigned int dir_index;
666 unsigned int mod_time;
667 unsigned int length;
aaa75496 668 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 669 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
670 } *file_names;
671
672 /* The start and end of the statement program following this
6502dd73 673 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 674 gdb_byte *statement_program_start, *statement_program_end;
debd256d 675};
c906108c
SS
676
677/* When we construct a partial symbol table entry we only
0963b4bd 678 need this much information. */
c906108c
SS
679struct partial_die_info
680 {
72bf9492 681 /* Offset of this DIE. */
b64f50a1 682 sect_offset offset;
72bf9492
DJ
683
684 /* DWARF-2 tag for this DIE. */
685 ENUM_BITFIELD(dwarf_tag) tag : 16;
686
72bf9492
DJ
687 /* Assorted flags describing the data found in this DIE. */
688 unsigned int has_children : 1;
689 unsigned int is_external : 1;
690 unsigned int is_declaration : 1;
691 unsigned int has_type : 1;
692 unsigned int has_specification : 1;
693 unsigned int has_pc_info : 1;
481860b3 694 unsigned int may_be_inlined : 1;
72bf9492
DJ
695
696 /* Flag set if the SCOPE field of this structure has been
697 computed. */
698 unsigned int scope_set : 1;
699
fa4028e9
JB
700 /* Flag set if the DIE has a byte_size attribute. */
701 unsigned int has_byte_size : 1;
702
98bfdba5
PA
703 /* Flag set if any of the DIE's children are template arguments. */
704 unsigned int has_template_arguments : 1;
705
abc72ce4
DE
706 /* Flag set if fixup_partial_die has been called on this die. */
707 unsigned int fixup_called : 1;
708
72bf9492 709 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 710 sometimes a default name for unnamed DIEs. */
c906108c 711 char *name;
72bf9492 712
abc72ce4
DE
713 /* The linkage name, if present. */
714 const char *linkage_name;
715
72bf9492
DJ
716 /* The scope to prepend to our children. This is generally
717 allocated on the comp_unit_obstack, so will disappear
718 when this compilation unit leaves the cache. */
719 char *scope;
720
95554aad
TT
721 /* Some data associated with the partial DIE. The tag determines
722 which field is live. */
723 union
724 {
725 /* The location description associated with this DIE, if any. */
726 struct dwarf_block *locdesc;
727 /* The offset of an import, for DW_TAG_imported_unit. */
728 sect_offset offset;
729 } d;
72bf9492
DJ
730
731 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
732 CORE_ADDR lowpc;
733 CORE_ADDR highpc;
72bf9492 734
93311388 735 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 736 DW_AT_sibling, if any. */
abc72ce4
DE
737 /* NOTE: This member isn't strictly necessary, read_partial_die could
738 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 739 gdb_byte *sibling;
72bf9492
DJ
740
741 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
742 DW_AT_specification (or DW_AT_abstract_origin or
743 DW_AT_extension). */
b64f50a1 744 sect_offset spec_offset;
72bf9492
DJ
745
746 /* Pointers to this DIE's parent, first child, and next sibling,
747 if any. */
748 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
749 };
750
0963b4bd 751/* This data structure holds the information of an abbrev. */
c906108c
SS
752struct abbrev_info
753 {
754 unsigned int number; /* number identifying abbrev */
755 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
756 unsigned short has_children; /* boolean */
757 unsigned short num_attrs; /* number of attributes */
c906108c
SS
758 struct attr_abbrev *attrs; /* an array of attribute descriptions */
759 struct abbrev_info *next; /* next in chain */
760 };
761
762struct attr_abbrev
763 {
9d25dd43
DE
764 ENUM_BITFIELD(dwarf_attribute) name : 16;
765 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
766 };
767
0963b4bd 768/* Attributes have a name and a value. */
b60c80d6
DJ
769struct attribute
770 {
9d25dd43 771 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
772 ENUM_BITFIELD(dwarf_form) form : 15;
773
774 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
775 field should be in u.str (existing only for DW_STRING) but it is kept
776 here for better struct attribute alignment. */
777 unsigned int string_is_canonical : 1;
778
b60c80d6
DJ
779 union
780 {
781 char *str;
782 struct dwarf_block *blk;
43bbcdc2
PH
783 ULONGEST unsnd;
784 LONGEST snd;
b60c80d6 785 CORE_ADDR addr;
348e048f 786 struct signatured_type *signatured_type;
b60c80d6
DJ
787 }
788 u;
789 };
790
0963b4bd 791/* This data structure holds a complete die structure. */
c906108c
SS
792struct die_info
793 {
76815b17
DE
794 /* DWARF-2 tag for this DIE. */
795 ENUM_BITFIELD(dwarf_tag) tag : 16;
796
797 /* Number of attributes */
98bfdba5
PA
798 unsigned char num_attrs;
799
800 /* True if we're presently building the full type name for the
801 type derived from this DIE. */
802 unsigned char building_fullname : 1;
76815b17
DE
803
804 /* Abbrev number */
805 unsigned int abbrev;
806
93311388 807 /* Offset in .debug_info or .debug_types section. */
b64f50a1 808 sect_offset offset;
78ba4af6
JB
809
810 /* The dies in a compilation unit form an n-ary tree. PARENT
811 points to this die's parent; CHILD points to the first child of
812 this node; and all the children of a given node are chained
4950bc1c 813 together via their SIBLING fields. */
639d11d3
DC
814 struct die_info *child; /* Its first child, if any. */
815 struct die_info *sibling; /* Its next sibling, if any. */
816 struct die_info *parent; /* Its parent, if any. */
c906108c 817
b60c80d6
DJ
818 /* An array of attributes, with NUM_ATTRS elements. There may be
819 zero, but it's not common and zero-sized arrays are not
820 sufficiently portable C. */
821 struct attribute attrs[1];
c906108c
SS
822 };
823
0963b4bd 824/* Get at parts of an attribute structure. */
c906108c
SS
825
826#define DW_STRING(attr) ((attr)->u.str)
8285870a 827#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
828#define DW_UNSND(attr) ((attr)->u.unsnd)
829#define DW_BLOCK(attr) ((attr)->u.blk)
830#define DW_SND(attr) ((attr)->u.snd)
831#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 832#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 833
0963b4bd 834/* Blocks are a bunch of untyped bytes. */
c906108c
SS
835struct dwarf_block
836 {
837 unsigned int size;
1d6edc3c
JK
838
839 /* Valid only if SIZE is not zero. */
fe1b8b76 840 gdb_byte *data;
c906108c
SS
841 };
842
c906108c
SS
843#ifndef ATTR_ALLOC_CHUNK
844#define ATTR_ALLOC_CHUNK 4
845#endif
846
c906108c
SS
847/* Allocate fields for structs, unions and enums in this size. */
848#ifndef DW_FIELD_ALLOC_CHUNK
849#define DW_FIELD_ALLOC_CHUNK 4
850#endif
851
c906108c
SS
852/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
853 but this would require a corresponding change in unpack_field_as_long
854 and friends. */
855static int bits_per_byte = 8;
856
857/* The routines that read and process dies for a C struct or C++ class
858 pass lists of data member fields and lists of member function fields
859 in an instance of a field_info structure, as defined below. */
860struct field_info
c5aa993b 861 {
0963b4bd 862 /* List of data member and baseclasses fields. */
c5aa993b
JM
863 struct nextfield
864 {
865 struct nextfield *next;
866 int accessibility;
867 int virtuality;
868 struct field field;
869 }
7d0ccb61 870 *fields, *baseclasses;
c906108c 871
7d0ccb61 872 /* Number of fields (including baseclasses). */
c5aa993b 873 int nfields;
c906108c 874
c5aa993b
JM
875 /* Number of baseclasses. */
876 int nbaseclasses;
c906108c 877
c5aa993b
JM
878 /* Set if the accesibility of one of the fields is not public. */
879 int non_public_fields;
c906108c 880
c5aa993b
JM
881 /* Member function fields array, entries are allocated in the order they
882 are encountered in the object file. */
883 struct nextfnfield
884 {
885 struct nextfnfield *next;
886 struct fn_field fnfield;
887 }
888 *fnfields;
c906108c 889
c5aa993b
JM
890 /* Member function fieldlist array, contains name of possibly overloaded
891 member function, number of overloaded member functions and a pointer
892 to the head of the member function field chain. */
893 struct fnfieldlist
894 {
895 char *name;
896 int length;
897 struct nextfnfield *head;
898 }
899 *fnfieldlists;
c906108c 900
c5aa993b
JM
901 /* Number of entries in the fnfieldlists array. */
902 int nfnfields;
98751a41
JK
903
904 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
905 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
906 struct typedef_field_list
907 {
908 struct typedef_field field;
909 struct typedef_field_list *next;
910 }
911 *typedef_field_list;
912 unsigned typedef_field_list_count;
c5aa993b 913 };
c906108c 914
10b3939b
DJ
915/* One item on the queue of compilation units to read in full symbols
916 for. */
917struct dwarf2_queue_item
918{
919 struct dwarf2_per_cu_data *per_cu;
95554aad 920 enum language pretend_language;
10b3939b
DJ
921 struct dwarf2_queue_item *next;
922};
923
924/* The current queue. */
925static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
926
ae038cb0
DJ
927/* Loaded secondary compilation units are kept in memory until they
928 have not been referenced for the processing of this many
929 compilation units. Set this to zero to disable caching. Cache
930 sizes of up to at least twenty will improve startup time for
931 typical inter-CU-reference binaries, at an obvious memory cost. */
932static int dwarf2_max_cache_age = 5;
920d2a44
AC
933static void
934show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
935 struct cmd_list_element *c, const char *value)
936{
3e43a32a
MS
937 fprintf_filtered (file, _("The upper bound on the age of cached "
938 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
939 value);
940}
941
ae038cb0 942
0963b4bd 943/* Various complaints about symbol reading that don't abort the process. */
c906108c 944
4d3c2250
KB
945static void
946dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 947{
4d3c2250 948 complaint (&symfile_complaints,
e2e0b3e5 949 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
950}
951
25e43795
DJ
952static void
953dwarf2_debug_line_missing_file_complaint (void)
954{
955 complaint (&symfile_complaints,
956 _(".debug_line section has line data without a file"));
957}
958
59205f5a
JB
959static void
960dwarf2_debug_line_missing_end_sequence_complaint (void)
961{
962 complaint (&symfile_complaints,
3e43a32a
MS
963 _(".debug_line section has line "
964 "program sequence without an end"));
59205f5a
JB
965}
966
4d3c2250
KB
967static void
968dwarf2_complex_location_expr_complaint (void)
2e276125 969{
e2e0b3e5 970 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
971}
972
4d3c2250
KB
973static void
974dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
975 int arg3)
2e276125 976{
4d3c2250 977 complaint (&symfile_complaints,
3e43a32a
MS
978 _("const value length mismatch for '%s', got %d, expected %d"),
979 arg1, arg2, arg3);
4d3c2250
KB
980}
981
982static void
f664829e 983dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 984{
4d3c2250 985 complaint (&symfile_complaints,
f664829e
DE
986 _("debug info runs off end of %s section"
987 " [in module %s]"),
988 section->asection->name,
989 bfd_get_filename (section->asection->owner));
4d3c2250
KB
990}
991
992static void
993dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 994{
4d3c2250 995 complaint (&symfile_complaints,
3e43a32a
MS
996 _("macro debug info contains a "
997 "malformed macro definition:\n`%s'"),
4d3c2250
KB
998 arg1);
999}
1000
1001static void
1002dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1003{
4d3c2250 1004 complaint (&symfile_complaints,
3e43a32a
MS
1005 _("invalid attribute class or form for '%s' in '%s'"),
1006 arg1, arg2);
4d3c2250 1007}
c906108c 1008
c906108c
SS
1009/* local function prototypes */
1010
4efb68b1 1011static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1012
aaa75496
JB
1013static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1014 struct objfile *);
1015
918dd910
JK
1016static void dwarf2_find_base_address (struct die_info *die,
1017 struct dwarf2_cu *cu);
1018
c67a9c90 1019static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1020
72bf9492
DJ
1021static void scan_partial_symbols (struct partial_die_info *,
1022 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1023 int, struct dwarf2_cu *);
c906108c 1024
72bf9492
DJ
1025static void add_partial_symbol (struct partial_die_info *,
1026 struct dwarf2_cu *);
63d06c5c 1027
72bf9492
DJ
1028static void add_partial_namespace (struct partial_die_info *pdi,
1029 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1030 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1031
5d7cb8df
JK
1032static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1033 CORE_ADDR *highpc, int need_pc,
1034 struct dwarf2_cu *cu);
1035
72bf9492
DJ
1036static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1037 struct dwarf2_cu *cu);
91c24f0a 1038
bc30ff58
JB
1039static void add_partial_subprogram (struct partial_die_info *pdi,
1040 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1041 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1042
a14ed312 1043static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 1044
a14ed312 1045static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1046
dee91e82
DE
1047static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1048 struct dwarf2_section_info *);
c906108c 1049
f3dd6933 1050static void dwarf2_free_abbrev_table (void *);
c906108c 1051
6caca83c
CC
1052static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1053
fe1b8b76 1054static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 1055 struct dwarf2_cu *);
72bf9492 1056
57349743 1057static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 1058 struct dwarf2_cu *);
c906108c 1059
dee91e82
DE
1060static struct partial_die_info *load_partial_dies
1061 (const struct die_reader_specs *, gdb_byte *, int);
72bf9492 1062
dee91e82
DE
1063static gdb_byte *read_partial_die (const struct die_reader_specs *,
1064 struct partial_die_info *,
1065 struct abbrev_info *,
1066 unsigned int,
1067 gdb_byte *);
c906108c 1068
b64f50a1 1069static struct partial_die_info *find_partial_die (sect_offset,
10b3939b 1070 struct dwarf2_cu *);
72bf9492
DJ
1071
1072static void fixup_partial_die (struct partial_die_info *,
1073 struct dwarf2_cu *);
1074
dee91e82
DE
1075static gdb_byte *read_attribute (const struct die_reader_specs *,
1076 struct attribute *, struct attr_abbrev *,
1077 gdb_byte *);
a8329558 1078
fe1b8b76 1079static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 1080
fe1b8b76 1081static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 1082
fe1b8b76 1083static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 1084
fe1b8b76 1085static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 1086
93311388 1087static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 1088
fe1b8b76 1089static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1090 unsigned int *);
c906108c 1091
c764a876
DE
1092static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1093
1094static LONGEST read_checked_initial_length_and_offset
1095 (bfd *, gdb_byte *, const struct comp_unit_head *,
1096 unsigned int *, unsigned int *);
613e1657 1097
fe1b8b76 1098static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
1099 unsigned int *);
1100
1101static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 1102
fe1b8b76 1103static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 1104
9b1c24c8 1105static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 1106
fe1b8b76
JB
1107static char *read_indirect_string (bfd *, gdb_byte *,
1108 const struct comp_unit_head *,
1109 unsigned int *);
4bdf3d34 1110
12df843f 1111static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 1112
12df843f 1113static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 1114
3019eac3
DE
1115static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1116 unsigned int *);
1117
1118static char *read_str_index (const struct die_reader_specs *reader,
1119 struct dwarf2_cu *cu, ULONGEST str_index);
1120
e142c38c 1121static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1122
e142c38c
DJ
1123static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1124 struct dwarf2_cu *);
c906108c 1125
348e048f
DE
1126static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1127 unsigned int,
1128 struct dwarf2_cu *);
1129
05cf31d1
JB
1130static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1131 struct dwarf2_cu *cu);
1132
e142c38c 1133static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1134
e142c38c 1135static struct die_info *die_specification (struct die_info *die,
f2f0e013 1136 struct dwarf2_cu **);
63d06c5c 1137
debd256d
JB
1138static void free_line_header (struct line_header *lh);
1139
aaa75496
JB
1140static void add_file_name (struct line_header *, char *, unsigned int,
1141 unsigned int, unsigned int);
1142
3019eac3
DE
1143static struct line_header *dwarf_decode_line_header (unsigned int offset,
1144 struct dwarf2_cu *cu);
debd256d 1145
f3f5162e
DE
1146static void dwarf_decode_lines (struct line_header *, const char *,
1147 struct dwarf2_cu *, struct partial_symtab *,
1148 int);
c906108c 1149
72b9f47f 1150static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 1151
a14ed312 1152static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1153 struct dwarf2_cu *);
c906108c 1154
34eaf542
TT
1155static struct symbol *new_symbol_full (struct die_info *, struct type *,
1156 struct dwarf2_cu *, struct symbol *);
1157
a14ed312 1158static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1159 struct dwarf2_cu *);
c906108c 1160
98bfdba5
PA
1161static void dwarf2_const_value_attr (struct attribute *attr,
1162 struct type *type,
1163 const char *name,
1164 struct obstack *obstack,
12df843f 1165 struct dwarf2_cu *cu, LONGEST *value,
98bfdba5
PA
1166 gdb_byte **bytes,
1167 struct dwarf2_locexpr_baton **baton);
2df3850c 1168
e7c27a73 1169static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1170
b4ba55a1
JB
1171static int need_gnat_info (struct dwarf2_cu *);
1172
3e43a32a
MS
1173static struct type *die_descriptive_type (struct die_info *,
1174 struct dwarf2_cu *);
b4ba55a1
JB
1175
1176static void set_descriptive_type (struct type *, struct die_info *,
1177 struct dwarf2_cu *);
1178
e7c27a73
DJ
1179static struct type *die_containing_type (struct die_info *,
1180 struct dwarf2_cu *);
c906108c 1181
673bfd45
DE
1182static struct type *lookup_die_type (struct die_info *, struct attribute *,
1183 struct dwarf2_cu *);
c906108c 1184
f792889a 1185static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1186
673bfd45
DE
1187static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1188
0d5cff50 1189static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1190
6e70227d 1191static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1192 const char *suffix, int physname,
1193 struct dwarf2_cu *cu);
63d06c5c 1194
e7c27a73 1195static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1196
348e048f
DE
1197static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1198
e7c27a73 1199static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1200
e7c27a73 1201static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1202
96408a79
SA
1203static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1204
ff013f42
JK
1205static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1206 struct dwarf2_cu *, struct partial_symtab *);
1207
a14ed312 1208static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1209 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1210 struct partial_symtab *);
c906108c 1211
fae299cd
DC
1212static void get_scope_pc_bounds (struct die_info *,
1213 CORE_ADDR *, CORE_ADDR *,
1214 struct dwarf2_cu *);
1215
801e3a5b
JB
1216static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1217 CORE_ADDR, struct dwarf2_cu *);
1218
a14ed312 1219static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1220 struct dwarf2_cu *);
c906108c 1221
a14ed312 1222static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1223 struct type *, struct dwarf2_cu *);
c906108c 1224
a14ed312 1225static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1226 struct die_info *, struct type *,
e7c27a73 1227 struct dwarf2_cu *);
c906108c 1228
a14ed312 1229static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1230 struct type *,
1231 struct dwarf2_cu *);
c906108c 1232
134d01f1 1233static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1234
e7c27a73 1235static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1236
e7c27a73 1237static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1238
5d7cb8df
JK
1239static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1240
27aa8d6a
SW
1241static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1242
f55ee35c
JK
1243static struct type *read_module_type (struct die_info *die,
1244 struct dwarf2_cu *cu);
1245
38d518c9 1246static const char *namespace_name (struct die_info *die,
e142c38c 1247 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1248
134d01f1 1249static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1250
e7c27a73 1251static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1252
6e70227d 1253static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1254 struct dwarf2_cu *);
1255
dee91e82 1256static struct die_info *read_die_and_children (const struct die_reader_specs *,
93311388 1257 gdb_byte *info_ptr,
fe1b8b76 1258 gdb_byte **new_info_ptr,
639d11d3
DC
1259 struct die_info *parent);
1260
dee91e82 1261static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
93311388 1262 gdb_byte *info_ptr,
fe1b8b76 1263 gdb_byte **new_info_ptr,
639d11d3
DC
1264 struct die_info *parent);
1265
3019eac3
DE
1266static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1267 struct die_info **, gdb_byte *, int *, int);
1268
dee91e82
DE
1269static gdb_byte *read_full_die (const struct die_reader_specs *,
1270 struct die_info **, gdb_byte *, int *);
93311388 1271
e7c27a73 1272static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1273
71c25dea
TT
1274static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1275 struct obstack *);
1276
e142c38c 1277static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1278
98bfdba5
PA
1279static const char *dwarf2_full_name (char *name,
1280 struct die_info *die,
1281 struct dwarf2_cu *cu);
1282
e142c38c 1283static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1284 struct dwarf2_cu **);
9219021c 1285
f39c6ffd 1286static const char *dwarf_tag_name (unsigned int);
c906108c 1287
f39c6ffd 1288static const char *dwarf_attr_name (unsigned int);
c906108c 1289
f39c6ffd 1290static const char *dwarf_form_name (unsigned int);
c906108c 1291
a14ed312 1292static char *dwarf_bool_name (unsigned int);
c906108c 1293
f39c6ffd 1294static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1295
f9aca02d 1296static struct die_info *sibling_die (struct die_info *);
c906108c 1297
d97bc12b
DE
1298static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1299
1300static void dump_die_for_error (struct die_info *);
1301
1302static void dump_die_1 (struct ui_file *, int level, int max_level,
1303 struct die_info *);
c906108c 1304
d97bc12b 1305/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1306
51545339 1307static void store_in_ref_table (struct die_info *,
10b3939b 1308 struct dwarf2_cu *);
c906108c 1309
93311388
DE
1310static int is_ref_attr (struct attribute *);
1311
b64f50a1 1312static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1313
43bbcdc2 1314static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1315
348e048f
DE
1316static struct die_info *follow_die_ref_or_sig (struct die_info *,
1317 struct attribute *,
1318 struct dwarf2_cu **);
1319
10b3939b
DJ
1320static struct die_info *follow_die_ref (struct die_info *,
1321 struct attribute *,
f2f0e013 1322 struct dwarf2_cu **);
c906108c 1323
348e048f
DE
1324static struct die_info *follow_die_sig (struct die_info *,
1325 struct attribute *,
1326 struct dwarf2_cu **);
1327
6c83ed52
TT
1328static struct signatured_type *lookup_signatured_type_at_offset
1329 (struct objfile *objfile,
b64f50a1 1330 struct dwarf2_section_info *section, sect_offset offset);
6c83ed52 1331
e5fe5e75 1332static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1333
52dc124a 1334static void read_signatured_type (struct signatured_type *);
348e048f 1335
c906108c
SS
1336/* memory allocation interface */
1337
7b5a2f43 1338static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1339
f3dd6933 1340static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1341
b60c80d6 1342static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1343
2e276125 1344static void dwarf_decode_macros (struct line_header *, unsigned int,
cf2c3c16
TT
1345 char *, bfd *, struct dwarf2_cu *,
1346 struct dwarf2_section_info *,
fceca515 1347 int, const char *);
2e276125 1348
8e19ed76
PS
1349static int attr_form_is_block (struct attribute *);
1350
3690dd37
JB
1351static int attr_form_is_section_offset (struct attribute *);
1352
1353static int attr_form_is_constant (struct attribute *);
1354
8cf6f0b1
TT
1355static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1356 struct dwarf2_loclist_baton *baton,
1357 struct attribute *attr);
1358
93e7bd98
DJ
1359static void dwarf2_symbol_mark_computed (struct attribute *attr,
1360 struct symbol *sym,
1361 struct dwarf2_cu *cu);
4c2df51b 1362
dee91e82
DE
1363static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1364 gdb_byte *info_ptr,
1365 struct abbrev_info *abbrev);
4bb7a0a7 1366
72bf9492
DJ
1367static void free_stack_comp_unit (void *);
1368
72bf9492
DJ
1369static hashval_t partial_die_hash (const void *item);
1370
1371static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1372
ae038cb0 1373static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
b64f50a1 1374 (sect_offset offset, struct objfile *objfile);
ae038cb0 1375
9816fde3 1376static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1377 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1378
1379static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1380 struct die_info *comp_unit_die,
1381 enum language pretend_language);
93311388 1382
68dc6402 1383static void free_heap_comp_unit (void *);
ae038cb0
DJ
1384
1385static void free_cached_comp_units (void *);
1386
1387static void age_cached_comp_units (void);
1388
dee91e82 1389static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1390
f792889a
DJ
1391static struct type *set_die_type (struct die_info *, struct type *,
1392 struct dwarf2_cu *);
1c379e20 1393
ae038cb0
DJ
1394static void create_all_comp_units (struct objfile *);
1395
0e50663e 1396static int create_all_type_units (struct objfile *);
1fd400ff 1397
95554aad
TT
1398static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1399 enum language);
10b3939b 1400
95554aad
TT
1401static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1402 enum language);
10b3939b
DJ
1403
1404static void dwarf2_add_dependence (struct dwarf2_cu *,
1405 struct dwarf2_per_cu_data *);
1406
ae038cb0
DJ
1407static void dwarf2_mark (struct dwarf2_cu *);
1408
1409static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1410
b64f50a1 1411static struct type *get_die_type_at_offset (sect_offset,
673bfd45
DE
1412 struct dwarf2_per_cu_data *per_cu);
1413
f792889a 1414static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1415
9291a0cd
TT
1416static void dwarf2_release_queue (void *dummy);
1417
95554aad
TT
1418static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1419 enum language pretend_language);
1420
1421static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1422 struct dwarf2_per_cu_data *per_cu,
1423 enum language pretend_language);
9291a0cd 1424
a0f42c21 1425static void process_queue (void);
9291a0cd
TT
1426
1427static void find_file_and_directory (struct die_info *die,
1428 struct dwarf2_cu *cu,
1429 char **name, char **comp_dir);
1430
1431static char *file_full_name (int file, struct line_header *lh,
1432 const char *comp_dir);
1433
9ff913ba
DE
1434static gdb_byte *read_and_check_comp_unit_head
1435 (struct comp_unit_head *header,
1436 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1437 int is_debug_types_section);
9291a0cd 1438
fd820528
DE
1439static void init_cutu_and_read_dies
1440 (struct dwarf2_per_cu_data *this_cu, int use_existing_cu, int keep,
3019eac3
DE
1441 die_reader_func_ftype *die_reader_func, void *data);
1442
dee91e82
DE
1443static void init_cutu_and_read_dies_simple
1444 (struct dwarf2_per_cu_data *this_cu,
1445 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1446
673bfd45 1447static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1448
95554aad 1449static void process_psymtab_comp_unit (struct dwarf2_per_cu_data *, int);
dee91e82 1450
3019eac3
DE
1451static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1452
1453static struct dwo_unit *lookup_dwo_comp_unit
1454 (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST);
1455
1456static struct dwo_unit *lookup_dwo_type_unit
1457 (struct signatured_type *, char *, const char *);
1458
1459static void free_dwo_file_cleanup (void *);
1460
1461static void munmap_section_buffer (struct dwarf2_section_info *);
1462
95554aad
TT
1463static void process_cu_includes (void);
1464
9291a0cd
TT
1465#if WORDS_BIGENDIAN
1466
1467/* Convert VALUE between big- and little-endian. */
1468static offset_type
1469byte_swap (offset_type value)
1470{
1471 offset_type result;
1472
1473 result = (value & 0xff) << 24;
1474 result |= (value & 0xff00) << 8;
1475 result |= (value & 0xff0000) >> 8;
1476 result |= (value & 0xff000000) >> 24;
1477 return result;
1478}
1479
1480#define MAYBE_SWAP(V) byte_swap (V)
1481
1482#else
1483#define MAYBE_SWAP(V) (V)
1484#endif /* WORDS_BIGENDIAN */
1485
1486/* The suffix for an index file. */
1487#define INDEX_SUFFIX ".gdb-index"
1488
3da10d80
KS
1489static const char *dwarf2_physname (char *name, struct die_info *die,
1490 struct dwarf2_cu *cu);
1491
c906108c 1492/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1493 information and return true if we have enough to do something.
1494 NAMES points to the dwarf2 section names, or is NULL if the standard
1495 ELF names are used. */
c906108c
SS
1496
1497int
251d32d9
TG
1498dwarf2_has_info (struct objfile *objfile,
1499 const struct dwarf2_debug_sections *names)
c906108c 1500{
be391dca
TT
1501 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1502 if (!dwarf2_per_objfile)
1503 {
1504 /* Initialize per-objfile state. */
1505 struct dwarf2_per_objfile *data
1506 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1507
be391dca
TT
1508 memset (data, 0, sizeof (*data));
1509 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1510 dwarf2_per_objfile = data;
6502dd73 1511
251d32d9
TG
1512 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1513 (void *) names);
be391dca
TT
1514 dwarf2_per_objfile->objfile = objfile;
1515 }
1516 return (dwarf2_per_objfile->info.asection != NULL
1517 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1518}
1519
251d32d9
TG
1520/* When loading sections, we look either for uncompressed section or for
1521 compressed section names. */
233a11ab
CS
1522
1523static int
251d32d9
TG
1524section_is_p (const char *section_name,
1525 const struct dwarf2_section_names *names)
233a11ab 1526{
251d32d9
TG
1527 if (names->normal != NULL
1528 && strcmp (section_name, names->normal) == 0)
1529 return 1;
1530 if (names->compressed != NULL
1531 && strcmp (section_name, names->compressed) == 0)
1532 return 1;
1533 return 0;
233a11ab
CS
1534}
1535
c906108c
SS
1536/* This function is mapped across the sections and remembers the
1537 offset and size of each of the debugging sections we are interested
1538 in. */
1539
1540static void
251d32d9 1541dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1542{
251d32d9
TG
1543 const struct dwarf2_debug_sections *names;
1544
1545 if (vnames == NULL)
1546 names = &dwarf2_elf_names;
1547 else
1548 names = (const struct dwarf2_debug_sections *) vnames;
1549
1550 if (section_is_p (sectp->name, &names->info))
c906108c 1551 {
dce234bc
PP
1552 dwarf2_per_objfile->info.asection = sectp;
1553 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1554 }
251d32d9 1555 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1556 {
dce234bc
PP
1557 dwarf2_per_objfile->abbrev.asection = sectp;
1558 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1559 }
251d32d9 1560 else if (section_is_p (sectp->name, &names->line))
c906108c 1561 {
dce234bc
PP
1562 dwarf2_per_objfile->line.asection = sectp;
1563 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1564 }
251d32d9 1565 else if (section_is_p (sectp->name, &names->loc))
c906108c 1566 {
dce234bc
PP
1567 dwarf2_per_objfile->loc.asection = sectp;
1568 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1569 }
251d32d9 1570 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1571 {
dce234bc
PP
1572 dwarf2_per_objfile->macinfo.asection = sectp;
1573 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1574 }
cf2c3c16
TT
1575 else if (section_is_p (sectp->name, &names->macro))
1576 {
1577 dwarf2_per_objfile->macro.asection = sectp;
1578 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1579 }
251d32d9 1580 else if (section_is_p (sectp->name, &names->str))
c906108c 1581 {
dce234bc
PP
1582 dwarf2_per_objfile->str.asection = sectp;
1583 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1584 }
3019eac3
DE
1585 else if (section_is_p (sectp->name, &names->addr))
1586 {
1587 dwarf2_per_objfile->addr.asection = sectp;
1588 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1589 }
251d32d9 1590 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1591 {
dce234bc
PP
1592 dwarf2_per_objfile->frame.asection = sectp;
1593 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1594 }
251d32d9 1595 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1596 {
81b9b86e 1597 flagword aflag = bfd_get_section_flags (abfd, sectp);
9a619af0 1598
3799ccc6
EZ
1599 if (aflag & SEC_HAS_CONTENTS)
1600 {
dce234bc
PP
1601 dwarf2_per_objfile->eh_frame.asection = sectp;
1602 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1603 }
b6af0555 1604 }
251d32d9 1605 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1606 {
dce234bc
PP
1607 dwarf2_per_objfile->ranges.asection = sectp;
1608 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1609 }
251d32d9 1610 else if (section_is_p (sectp->name, &names->types))
348e048f 1611 {
8b70b953
TT
1612 struct dwarf2_section_info type_section;
1613
1614 memset (&type_section, 0, sizeof (type_section));
1615 type_section.asection = sectp;
1616 type_section.size = bfd_get_section_size (sectp);
1617
1618 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1619 &type_section);
348e048f 1620 }
251d32d9 1621 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1622 {
1623 dwarf2_per_objfile->gdb_index.asection = sectp;
1624 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1625 }
dce234bc 1626
72dca2f5
FR
1627 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1628 && bfd_section_vma (abfd, sectp) == 0)
1629 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1630}
1631
dce234bc
PP
1632/* Decompress a section that was compressed using zlib. Store the
1633 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1634
1635static void
dce234bc
PP
1636zlib_decompress_section (struct objfile *objfile, asection *sectp,
1637 gdb_byte **outbuf, bfd_size_type *outsize)
1638{
3019eac3 1639 bfd *abfd = sectp->owner;
dce234bc
PP
1640#ifndef HAVE_ZLIB_H
1641 error (_("Support for zlib-compressed DWARF data (from '%s') "
1642 "is disabled in this copy of GDB"),
1643 bfd_get_filename (abfd));
1644#else
1645 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1646 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1647 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1648 bfd_size_type uncompressed_size;
1649 gdb_byte *uncompressed_buffer;
1650 z_stream strm;
1651 int rc;
1652 int header_size = 12;
1653
1654 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1655 || bfd_bread (compressed_buffer,
1656 compressed_size, abfd) != compressed_size)
dce234bc
PP
1657 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1658 bfd_get_filename (abfd));
1659
1660 /* Read the zlib header. In this case, it should be "ZLIB" followed
1661 by the uncompressed section size, 8 bytes in big-endian order. */
1662 if (compressed_size < header_size
1663 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1664 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1665 bfd_get_filename (abfd));
1666 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1667 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1668 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1669 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1670 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1671 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1672 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1673 uncompressed_size += compressed_buffer[11];
1674
1675 /* It is possible the section consists of several compressed
1676 buffers concatenated together, so we uncompress in a loop. */
1677 strm.zalloc = NULL;
1678 strm.zfree = NULL;
1679 strm.opaque = NULL;
1680 strm.avail_in = compressed_size - header_size;
1681 strm.next_in = (Bytef*) compressed_buffer + header_size;
1682 strm.avail_out = uncompressed_size;
1683 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1684 uncompressed_size);
1685 rc = inflateInit (&strm);
1686 while (strm.avail_in > 0)
1687 {
1688 if (rc != Z_OK)
1689 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1690 bfd_get_filename (abfd), rc);
1691 strm.next_out = ((Bytef*) uncompressed_buffer
1692 + (uncompressed_size - strm.avail_out));
1693 rc = inflate (&strm, Z_FINISH);
1694 if (rc != Z_STREAM_END)
1695 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1696 bfd_get_filename (abfd), rc);
1697 rc = inflateReset (&strm);
1698 }
1699 rc = inflateEnd (&strm);
1700 if (rc != Z_OK
1701 || strm.avail_out != 0)
1702 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1703 bfd_get_filename (abfd), rc);
1704
affddf13 1705 do_cleanups (cleanup);
dce234bc
PP
1706 *outbuf = uncompressed_buffer;
1707 *outsize = uncompressed_size;
1708#endif
233a11ab
CS
1709}
1710
fceca515
DE
1711/* A helper function that decides whether a section is empty,
1712 or not present. */
9e0ac564
TT
1713
1714static int
1715dwarf2_section_empty_p (struct dwarf2_section_info *info)
1716{
1717 return info->asection == NULL || info->size == 0;
1718}
1719
3019eac3
DE
1720/* Read the contents of the section INFO.
1721 OBJFILE is the main object file, but not necessarily the file where
1722 the section comes from. E.g., for DWO files INFO->asection->owner
1723 is the bfd of the DWO file.
dce234bc 1724 If the section is compressed, uncompress it before returning. */
c906108c 1725
dce234bc
PP
1726static void
1727dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1728{
dce234bc 1729 asection *sectp = info->asection;
3019eac3 1730 bfd *abfd;
dce234bc
PP
1731 gdb_byte *buf, *retbuf;
1732 unsigned char header[4];
c906108c 1733
be391dca
TT
1734 if (info->readin)
1735 return;
dce234bc 1736 info->buffer = NULL;
b315ab21 1737 info->map_addr = NULL;
be391dca 1738 info->readin = 1;
188dd5d6 1739
9e0ac564 1740 if (dwarf2_section_empty_p (info))
dce234bc 1741 return;
c906108c 1742
3019eac3
DE
1743 /* Note that ABFD may not be from OBJFILE, e.g. a DWO section. */
1744 abfd = sectp->owner;
1745
dce234bc
PP
1746 /* Check if the file has a 4-byte header indicating compression. */
1747 if (info->size > sizeof (header)
1748 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1749 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1750 {
1751 /* Upon decompression, update the buffer and its size. */
1752 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1753 {
1754 zlib_decompress_section (objfile, sectp, &info->buffer,
1755 &info->size);
1756 return;
1757 }
1758 }
4bdf3d34 1759
dce234bc
PP
1760#ifdef HAVE_MMAP
1761 if (pagesize == 0)
1762 pagesize = getpagesize ();
2e276125 1763
dce234bc
PP
1764 /* Only try to mmap sections which are large enough: we don't want to
1765 waste space due to fragmentation. Also, only try mmap for sections
1766 without relocations. */
1767
1768 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1769 {
b315ab21
TG
1770 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1771 MAP_PRIVATE, sectp->filepos,
1772 &info->map_addr, &info->map_len);
dce234bc 1773
b315ab21 1774 if ((caddr_t)info->buffer != MAP_FAILED)
dce234bc 1775 {
be391dca 1776#if HAVE_POSIX_MADVISE
b315ab21 1777 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
be391dca 1778#endif
dce234bc
PP
1779 return;
1780 }
1781 }
1782#endif
1783
1784 /* If we get here, we are a normal, not-compressed section. */
1785 info->buffer = buf
1786 = obstack_alloc (&objfile->objfile_obstack, info->size);
1787
1788 /* When debugging .o files, we may need to apply relocations; see
1789 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1790 We never compress sections in .o files, so we only need to
1791 try this when the section is not compressed. */
ac8035ab 1792 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1793 if (retbuf != NULL)
1794 {
1795 info->buffer = retbuf;
1796 return;
1797 }
1798
1799 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1800 || bfd_bread (buf, info->size, abfd) != info->size)
1801 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1802 bfd_get_filename (abfd));
1803}
1804
9e0ac564
TT
1805/* A helper function that returns the size of a section in a safe way.
1806 If you are positive that the section has been read before using the
1807 size, then it is safe to refer to the dwarf2_section_info object's
1808 "size" field directly. In other cases, you must call this
1809 function, because for compressed sections the size field is not set
1810 correctly until the section has been read. */
1811
1812static bfd_size_type
1813dwarf2_section_size (struct objfile *objfile,
1814 struct dwarf2_section_info *info)
1815{
1816 if (!info->readin)
1817 dwarf2_read_section (objfile, info);
1818 return info->size;
1819}
1820
dce234bc 1821/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1822 SECTION_NAME. */
af34e669 1823
dce234bc 1824void
3017a003
TG
1825dwarf2_get_section_info (struct objfile *objfile,
1826 enum dwarf2_section_enum sect,
dce234bc
PP
1827 asection **sectp, gdb_byte **bufp,
1828 bfd_size_type *sizep)
1829{
1830 struct dwarf2_per_objfile *data
1831 = objfile_data (objfile, dwarf2_objfile_data_key);
1832 struct dwarf2_section_info *info;
a3b2a86b
TT
1833
1834 /* We may see an objfile without any DWARF, in which case we just
1835 return nothing. */
1836 if (data == NULL)
1837 {
1838 *sectp = NULL;
1839 *bufp = NULL;
1840 *sizep = 0;
1841 return;
1842 }
3017a003
TG
1843 switch (sect)
1844 {
1845 case DWARF2_DEBUG_FRAME:
1846 info = &data->frame;
1847 break;
1848 case DWARF2_EH_FRAME:
1849 info = &data->eh_frame;
1850 break;
1851 default:
1852 gdb_assert_not_reached ("unexpected section");
1853 }
dce234bc 1854
9e0ac564 1855 dwarf2_read_section (objfile, info);
dce234bc
PP
1856
1857 *sectp = info->asection;
1858 *bufp = info->buffer;
1859 *sizep = info->size;
1860}
1861
9291a0cd 1862\f
7b9f3c50
DE
1863/* DWARF quick_symbols_functions support. */
1864
1865/* TUs can share .debug_line entries, and there can be a lot more TUs than
1866 unique line tables, so we maintain a separate table of all .debug_line
1867 derived entries to support the sharing.
1868 All the quick functions need is the list of file names. We discard the
1869 line_header when we're done and don't need to record it here. */
1870struct quick_file_names
1871{
1872 /* The offset in .debug_line of the line table. We hash on this. */
1873 unsigned int offset;
1874
1875 /* The number of entries in file_names, real_names. */
1876 unsigned int num_file_names;
1877
1878 /* The file names from the line table, after being run through
1879 file_full_name. */
1880 const char **file_names;
1881
1882 /* The file names from the line table after being run through
1883 gdb_realpath. These are computed lazily. */
1884 const char **real_names;
1885};
1886
1887/* When using the index (and thus not using psymtabs), each CU has an
1888 object of this type. This is used to hold information needed by
1889 the various "quick" methods. */
1890struct dwarf2_per_cu_quick_data
1891{
1892 /* The file table. This can be NULL if there was no file table
1893 or it's currently not read in.
1894 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1895 struct quick_file_names *file_names;
1896
1897 /* The corresponding symbol table. This is NULL if symbols for this
1898 CU have not yet been read. */
1899 struct symtab *symtab;
1900
1901 /* A temporary mark bit used when iterating over all CUs in
1902 expand_symtabs_matching. */
1903 unsigned int mark : 1;
1904
1905 /* True if we've tried to read the file table and found there isn't one.
1906 There will be no point in trying to read it again next time. */
1907 unsigned int no_file_data : 1;
1908};
1909
1910/* Hash function for a quick_file_names. */
1911
1912static hashval_t
1913hash_file_name_entry (const void *e)
1914{
1915 const struct quick_file_names *file_data = e;
1916
1917 return file_data->offset;
1918}
1919
1920/* Equality function for a quick_file_names. */
1921
1922static int
1923eq_file_name_entry (const void *a, const void *b)
1924{
1925 const struct quick_file_names *ea = a;
1926 const struct quick_file_names *eb = b;
1927
1928 return ea->offset == eb->offset;
1929}
1930
1931/* Delete function for a quick_file_names. */
1932
1933static void
1934delete_file_name_entry (void *e)
1935{
1936 struct quick_file_names *file_data = e;
1937 int i;
1938
1939 for (i = 0; i < file_data->num_file_names; ++i)
1940 {
1941 xfree ((void*) file_data->file_names[i]);
1942 if (file_data->real_names)
1943 xfree ((void*) file_data->real_names[i]);
1944 }
1945
1946 /* The space for the struct itself lives on objfile_obstack,
1947 so we don't free it here. */
1948}
1949
1950/* Create a quick_file_names hash table. */
1951
1952static htab_t
1953create_quick_file_names_table (unsigned int nr_initial_entries)
1954{
1955 return htab_create_alloc (nr_initial_entries,
1956 hash_file_name_entry, eq_file_name_entry,
1957 delete_file_name_entry, xcalloc, xfree);
1958}
9291a0cd 1959
918dd910
JK
1960/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1961 have to be created afterwards. You should call age_cached_comp_units after
1962 processing PER_CU->CU. dw2_setup must have been already called. */
1963
1964static void
1965load_cu (struct dwarf2_per_cu_data *per_cu)
1966{
3019eac3 1967 if (per_cu->is_debug_types)
e5fe5e75 1968 load_full_type_unit (per_cu);
918dd910 1969 else
95554aad 1970 load_full_comp_unit (per_cu, language_minimal);
918dd910 1971
918dd910 1972 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
1973
1974 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
1975}
1976
a0f42c21 1977/* Read in the symbols for PER_CU. */
2fdf6df6 1978
9291a0cd 1979static void
a0f42c21 1980dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
1981{
1982 struct cleanup *back_to;
1983
1984 back_to = make_cleanup (dwarf2_release_queue, NULL);
1985
95554aad
TT
1986 if (dwarf2_per_objfile->using_index
1987 ? per_cu->v.quick->symtab == NULL
1988 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
1989 {
1990 queue_comp_unit (per_cu, language_minimal);
1991 load_cu (per_cu);
1992 }
9291a0cd 1993
a0f42c21 1994 process_queue ();
9291a0cd
TT
1995
1996 /* Age the cache, releasing compilation units that have not
1997 been used recently. */
1998 age_cached_comp_units ();
1999
2000 do_cleanups (back_to);
2001}
2002
2003/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2004 the objfile from which this CU came. Returns the resulting symbol
2005 table. */
2fdf6df6 2006
9291a0cd 2007static struct symtab *
a0f42c21 2008dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2009{
95554aad 2010 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2011 if (!per_cu->v.quick->symtab)
2012 {
2013 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2014 increment_reading_symtab ();
a0f42c21 2015 dw2_do_instantiate_symtab (per_cu);
95554aad 2016 process_cu_includes ();
9291a0cd
TT
2017 do_cleanups (back_to);
2018 }
2019 return per_cu->v.quick->symtab;
2020}
2021
1fd400ff 2022/* Return the CU given its index. */
2fdf6df6 2023
1fd400ff
TT
2024static struct dwarf2_per_cu_data *
2025dw2_get_cu (int index)
2026{
2027 if (index >= dwarf2_per_objfile->n_comp_units)
2028 {
2029 index -= dwarf2_per_objfile->n_comp_units;
d467dd73 2030 return dwarf2_per_objfile->all_type_units[index];
1fd400ff
TT
2031 }
2032 return dwarf2_per_objfile->all_comp_units[index];
2033}
2034
9291a0cd
TT
2035/* A helper function that knows how to read a 64-bit value in a way
2036 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2037 otherwise. */
2fdf6df6 2038
9291a0cd
TT
2039static int
2040extract_cu_value (const char *bytes, ULONGEST *result)
2041{
2042 if (sizeof (ULONGEST) < 8)
2043 {
2044 int i;
2045
2046 /* Ignore the upper 4 bytes if they are all zero. */
2047 for (i = 0; i < 4; ++i)
2048 if (bytes[i + 4] != 0)
2049 return 0;
2050
2051 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2052 }
2053 else
2054 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2055 return 1;
2056}
2057
2058/* Read the CU list from the mapped index, and use it to create all
2059 the CU objects for this objfile. Return 0 if something went wrong,
2060 1 if everything went ok. */
2fdf6df6 2061
9291a0cd 2062static int
1fd400ff
TT
2063create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
2064 offset_type cu_list_elements)
9291a0cd
TT
2065{
2066 offset_type i;
9291a0cd
TT
2067
2068 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
2069 dwarf2_per_objfile->all_comp_units
2070 = obstack_alloc (&objfile->objfile_obstack,
2071 dwarf2_per_objfile->n_comp_units
2072 * sizeof (struct dwarf2_per_cu_data *));
2073
2074 for (i = 0; i < cu_list_elements; i += 2)
2075 {
2076 struct dwarf2_per_cu_data *the_cu;
2077 ULONGEST offset, length;
2078
2079 if (!extract_cu_value (cu_list, &offset)
2080 || !extract_cu_value (cu_list + 8, &length))
2081 return 0;
2082 cu_list += 2 * 8;
2083
2084 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2085 struct dwarf2_per_cu_data);
b64f50a1 2086 the_cu->offset.sect_off = offset;
9291a0cd
TT
2087 the_cu->length = length;
2088 the_cu->objfile = objfile;
3019eac3 2089 the_cu->info_or_types_section = &dwarf2_per_objfile->info;
9291a0cd
TT
2090 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2091 struct dwarf2_per_cu_quick_data);
2092 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
2093 }
2094
2095 return 1;
2096}
2097
1fd400ff 2098/* Create the signatured type hash table from the index. */
673bfd45 2099
1fd400ff 2100static int
673bfd45 2101create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2102 struct dwarf2_section_info *section,
673bfd45
DE
2103 const gdb_byte *bytes,
2104 offset_type elements)
1fd400ff
TT
2105{
2106 offset_type i;
673bfd45 2107 htab_t sig_types_hash;
1fd400ff 2108
d467dd73
DE
2109 dwarf2_per_objfile->n_type_units = elements / 3;
2110 dwarf2_per_objfile->all_type_units
1fd400ff 2111 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 2112 dwarf2_per_objfile->n_type_units
1fd400ff
TT
2113 * sizeof (struct dwarf2_per_cu_data *));
2114
673bfd45 2115 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2116
2117 for (i = 0; i < elements; i += 3)
2118 {
52dc124a
DE
2119 struct signatured_type *sig_type;
2120 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2121 void **slot;
2122
2123 if (!extract_cu_value (bytes, &offset)
52dc124a 2124 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
1fd400ff
TT
2125 return 0;
2126 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2127 bytes += 3 * 8;
2128
52dc124a 2129 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2130 struct signatured_type);
52dc124a 2131 sig_type->signature = signature;
3019eac3
DE
2132 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2133 sig_type->per_cu.is_debug_types = 1;
2134 sig_type->per_cu.info_or_types_section = section;
52dc124a
DE
2135 sig_type->per_cu.offset.sect_off = offset;
2136 sig_type->per_cu.objfile = objfile;
2137 sig_type->per_cu.v.quick
1fd400ff
TT
2138 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2139 struct dwarf2_per_cu_quick_data);
2140
52dc124a
DE
2141 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2142 *slot = sig_type;
1fd400ff 2143
52dc124a 2144 dwarf2_per_objfile->all_type_units[i / 3] = &sig_type->per_cu;
1fd400ff
TT
2145 }
2146
673bfd45 2147 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2148
2149 return 1;
2150}
2151
9291a0cd
TT
2152/* Read the address map data from the mapped index, and use it to
2153 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2154
9291a0cd
TT
2155static void
2156create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2157{
2158 const gdb_byte *iter, *end;
2159 struct obstack temp_obstack;
2160 struct addrmap *mutable_map;
2161 struct cleanup *cleanup;
2162 CORE_ADDR baseaddr;
2163
2164 obstack_init (&temp_obstack);
2165 cleanup = make_cleanup_obstack_free (&temp_obstack);
2166 mutable_map = addrmap_create_mutable (&temp_obstack);
2167
2168 iter = index->address_table;
2169 end = iter + index->address_table_size;
2170
2171 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2172
2173 while (iter < end)
2174 {
2175 ULONGEST hi, lo, cu_index;
2176 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2177 iter += 8;
2178 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2179 iter += 8;
2180 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2181 iter += 4;
2182
2183 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 2184 dw2_get_cu (cu_index));
9291a0cd
TT
2185 }
2186
2187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2188 &objfile->objfile_obstack);
2189 do_cleanups (cleanup);
2190}
2191
59d7bcaf
JK
2192/* The hash function for strings in the mapped index. This is the same as
2193 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2194 implementation. This is necessary because the hash function is tied to the
2195 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2196 SYMBOL_HASH_NEXT.
2197
2198 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2199
9291a0cd 2200static hashval_t
559a7a62 2201mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2202{
2203 const unsigned char *str = (const unsigned char *) p;
2204 hashval_t r = 0;
2205 unsigned char c;
2206
2207 while ((c = *str++) != 0)
559a7a62
JK
2208 {
2209 if (index_version >= 5)
2210 c = tolower (c);
2211 r = r * 67 + c - 113;
2212 }
9291a0cd
TT
2213
2214 return r;
2215}
2216
2217/* Find a slot in the mapped index INDEX for the object named NAME.
2218 If NAME is found, set *VEC_OUT to point to the CU vector in the
2219 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2220
9291a0cd
TT
2221static int
2222find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2223 offset_type **vec_out)
2224{
0cf03b49
JK
2225 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2226 offset_type hash;
9291a0cd 2227 offset_type slot, step;
559a7a62 2228 int (*cmp) (const char *, const char *);
9291a0cd 2229
0cf03b49
JK
2230 if (current_language->la_language == language_cplus
2231 || current_language->la_language == language_java
2232 || current_language->la_language == language_fortran)
2233 {
2234 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2235 not contain any. */
2236 const char *paren = strchr (name, '(');
2237
2238 if (paren)
2239 {
2240 char *dup;
2241
2242 dup = xmalloc (paren - name + 1);
2243 memcpy (dup, name, paren - name);
2244 dup[paren - name] = 0;
2245
2246 make_cleanup (xfree, dup);
2247 name = dup;
2248 }
2249 }
2250
559a7a62 2251 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2252 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2253 simulate our NAME being searched is also lowercased. */
2254 hash = mapped_index_string_hash ((index->version == 4
2255 && case_sensitivity == case_sensitive_off
2256 ? 5 : index->version),
2257 name);
2258
3876f04e
DE
2259 slot = hash & (index->symbol_table_slots - 1);
2260 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2261 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2262
2263 for (;;)
2264 {
2265 /* Convert a slot number to an offset into the table. */
2266 offset_type i = 2 * slot;
2267 const char *str;
3876f04e 2268 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2269 {
2270 do_cleanups (back_to);
2271 return 0;
2272 }
9291a0cd 2273
3876f04e 2274 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2275 if (!cmp (name, str))
9291a0cd
TT
2276 {
2277 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2278 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2279 do_cleanups (back_to);
9291a0cd
TT
2280 return 1;
2281 }
2282
3876f04e 2283 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2284 }
2285}
2286
2287/* Read the index file. If everything went ok, initialize the "quick"
2288 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 2289
9291a0cd
TT
2290static int
2291dwarf2_read_index (struct objfile *objfile)
2292{
9291a0cd
TT
2293 char *addr;
2294 struct mapped_index *map;
b3b272e1 2295 offset_type *metadata;
ac0b195c
KW
2296 const gdb_byte *cu_list;
2297 const gdb_byte *types_list = NULL;
2298 offset_type version, cu_list_elements;
2299 offset_type types_list_elements = 0;
1fd400ff 2300 int i;
9291a0cd 2301
9e0ac564 2302 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
9291a0cd 2303 return 0;
82430852
JK
2304
2305 /* Older elfutils strip versions could keep the section in the main
2306 executable while splitting it for the separate debug info file. */
2307 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2308 & SEC_HAS_CONTENTS) == 0)
2309 return 0;
2310
9291a0cd
TT
2311 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2312
2313 addr = dwarf2_per_objfile->gdb_index.buffer;
2314 /* Version check. */
1fd400ff 2315 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2316 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2317 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2318 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2319 indices. */
831adc1f 2320 if (version < 4)
481860b3
GB
2321 {
2322 static int warning_printed = 0;
2323 if (!warning_printed)
2324 {
2325 warning (_("Skipping obsolete .gdb_index section in %s."),
2326 objfile->name);
2327 warning_printed = 1;
2328 }
2329 return 0;
2330 }
2331 /* Index version 4 uses a different hash function than index version
2332 5 and later.
2333
2334 Versions earlier than 6 did not emit psymbols for inlined
2335 functions. Using these files will cause GDB not to be able to
2336 set breakpoints on inlined functions by name, so we ignore these
2337 indices unless the --use-deprecated-index-sections command line
2338 option was supplied. */
2339 if (version < 6 && !use_deprecated_index_sections)
2340 {
2341 static int warning_printed = 0;
2342 if (!warning_printed)
2343 {
2344 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2345 "--use-deprecated-index-sections to use them anyway"),
2346 objfile->name);
2347 warning_printed = 1;
2348 }
2349 return 0;
2350 }
2351 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2352 longer backward compatible. */
481860b3 2353 if (version > 6)
594e8718 2354 return 0;
9291a0cd
TT
2355
2356 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
559a7a62 2357 map->version = version;
b3b272e1 2358 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2359
2360 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2361
2362 i = 0;
2363 cu_list = addr + MAYBE_SWAP (metadata[i]);
2364 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2365 / 8);
1fd400ff
TT
2366 ++i;
2367
987d643c
TT
2368 types_list = addr + MAYBE_SWAP (metadata[i]);
2369 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2370 - MAYBE_SWAP (metadata[i]))
2371 / 8);
2372 ++i;
1fd400ff
TT
2373
2374 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2375 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2376 - MAYBE_SWAP (metadata[i]));
2377 ++i;
2378
3876f04e
DE
2379 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2380 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2381 - MAYBE_SWAP (metadata[i]))
2382 / (2 * sizeof (offset_type)));
1fd400ff 2383 ++i;
9291a0cd 2384
1fd400ff
TT
2385 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2386
0fefef59
DE
2387 /* Don't use the index if it's empty. */
2388 if (map->symbol_table_slots == 0)
2389 return 0;
2390
1fd400ff
TT
2391 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2392 return 0;
2393
8b70b953
TT
2394 if (types_list_elements)
2395 {
2396 struct dwarf2_section_info *section;
2397
2398 /* We can only handle a single .debug_types when we have an
2399 index. */
2400 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2401 return 0;
2402
2403 section = VEC_index (dwarf2_section_info_def,
2404 dwarf2_per_objfile->types, 0);
2405
2406 if (!create_signatured_type_table_from_index (objfile, section,
2407 types_list,
2408 types_list_elements))
2409 return 0;
2410 }
9291a0cd
TT
2411
2412 create_addrmap_from_index (objfile, map);
2413
2414 dwarf2_per_objfile->index_table = map;
2415 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2416 dwarf2_per_objfile->quick_file_names_table =
2417 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2418
2419 return 1;
2420}
2421
2422/* A helper for the "quick" functions which sets the global
2423 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2424
9291a0cd
TT
2425static void
2426dw2_setup (struct objfile *objfile)
2427{
2428 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2429 gdb_assert (dwarf2_per_objfile);
2430}
2431
dee91e82 2432/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2433
dee91e82
DE
2434static void
2435dw2_get_file_names_reader (const struct die_reader_specs *reader,
2436 gdb_byte *info_ptr,
2437 struct die_info *comp_unit_die,
2438 int has_children,
2439 void *data)
9291a0cd 2440{
dee91e82
DE
2441 struct dwarf2_cu *cu = reader->cu;
2442 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2443 struct objfile *objfile = dwarf2_per_objfile->objfile;
7b9f3c50 2444 struct line_header *lh;
9291a0cd 2445 struct attribute *attr;
dee91e82 2446 int i;
9291a0cd 2447 char *name, *comp_dir;
7b9f3c50
DE
2448 void **slot;
2449 struct quick_file_names *qfn;
2450 unsigned int line_offset;
9291a0cd 2451
07261596
TT
2452 /* Our callers never want to match partial units -- instead they
2453 will match the enclosing full CU. */
2454 if (comp_unit_die->tag == DW_TAG_partial_unit)
2455 {
2456 this_cu->v.quick->no_file_data = 1;
2457 return;
2458 }
2459
7b9f3c50
DE
2460 lh = NULL;
2461 slot = NULL;
2462 line_offset = 0;
dee91e82
DE
2463
2464 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2465 if (attr)
2466 {
7b9f3c50
DE
2467 struct quick_file_names find_entry;
2468
2469 line_offset = DW_UNSND (attr);
2470
2471 /* We may have already read in this line header (TU line header sharing).
2472 If we have we're done. */
2473 find_entry.offset = line_offset;
2474 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2475 &find_entry, INSERT);
2476 if (*slot != NULL)
2477 {
7b9f3c50 2478 this_cu->v.quick->file_names = *slot;
dee91e82 2479 return;
7b9f3c50
DE
2480 }
2481
3019eac3 2482 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2483 }
2484 if (lh == NULL)
2485 {
7b9f3c50 2486 this_cu->v.quick->no_file_data = 1;
dee91e82 2487 return;
9291a0cd
TT
2488 }
2489
7b9f3c50
DE
2490 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2491 qfn->offset = line_offset;
2492 gdb_assert (slot != NULL);
2493 *slot = qfn;
9291a0cd 2494
dee91e82 2495 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2496
7b9f3c50
DE
2497 qfn->num_file_names = lh->num_file_names;
2498 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2499 lh->num_file_names * sizeof (char *));
9291a0cd 2500 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2501 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2502 qfn->real_names = NULL;
9291a0cd 2503
7b9f3c50 2504 free_line_header (lh);
7b9f3c50
DE
2505
2506 this_cu->v.quick->file_names = qfn;
dee91e82
DE
2507}
2508
2509/* A helper for the "quick" functions which attempts to read the line
2510 table for THIS_CU. */
2511
2512static struct quick_file_names *
2513dw2_get_file_names (struct objfile *objfile,
2514 struct dwarf2_per_cu_data *this_cu)
2515{
2516 if (this_cu->v.quick->file_names != NULL)
2517 return this_cu->v.quick->file_names;
2518 /* If we know there is no line data, no point in looking again. */
2519 if (this_cu->v.quick->no_file_data)
2520 return NULL;
2521
3019eac3
DE
2522 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2523 in the stub for CUs, there's is no need to lookup the DWO file.
2524 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2525 DWO file. */
2526 if (this_cu->is_debug_types)
fd820528 2527 init_cutu_and_read_dies (this_cu, 0, 0, dw2_get_file_names_reader, NULL);
3019eac3
DE
2528 else
2529 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2530
2531 if (this_cu->v.quick->no_file_data)
2532 return NULL;
2533 return this_cu->v.quick->file_names;
9291a0cd
TT
2534}
2535
2536/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2537 real path for a given file name from the line table. */
2fdf6df6 2538
9291a0cd 2539static const char *
7b9f3c50
DE
2540dw2_get_real_path (struct objfile *objfile,
2541 struct quick_file_names *qfn, int index)
9291a0cd 2542{
7b9f3c50
DE
2543 if (qfn->real_names == NULL)
2544 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2545 qfn->num_file_names, sizeof (char *));
9291a0cd 2546
7b9f3c50
DE
2547 if (qfn->real_names[index] == NULL)
2548 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2549
7b9f3c50 2550 return qfn->real_names[index];
9291a0cd
TT
2551}
2552
2553static struct symtab *
2554dw2_find_last_source_symtab (struct objfile *objfile)
2555{
2556 int index;
ae2de4f8 2557
9291a0cd
TT
2558 dw2_setup (objfile);
2559 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 2560 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
2561}
2562
7b9f3c50
DE
2563/* Traversal function for dw2_forget_cached_source_info. */
2564
2565static int
2566dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2567{
7b9f3c50 2568 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2569
7b9f3c50 2570 if (file_data->real_names)
9291a0cd 2571 {
7b9f3c50 2572 int i;
9291a0cd 2573
7b9f3c50 2574 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2575 {
7b9f3c50
DE
2576 xfree ((void*) file_data->real_names[i]);
2577 file_data->real_names[i] = NULL;
9291a0cd
TT
2578 }
2579 }
7b9f3c50
DE
2580
2581 return 1;
2582}
2583
2584static void
2585dw2_forget_cached_source_info (struct objfile *objfile)
2586{
2587 dw2_setup (objfile);
2588
2589 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2590 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2591}
2592
f8eba3c6
TT
2593/* Helper function for dw2_map_symtabs_matching_filename that expands
2594 the symtabs and calls the iterator. */
2595
2596static int
2597dw2_map_expand_apply (struct objfile *objfile,
2598 struct dwarf2_per_cu_data *per_cu,
2599 const char *name,
2600 const char *full_path, const char *real_path,
2601 int (*callback) (struct symtab *, void *),
2602 void *data)
2603{
2604 struct symtab *last_made = objfile->symtabs;
2605
2606 /* Don't visit already-expanded CUs. */
2607 if (per_cu->v.quick->symtab)
2608 return 0;
2609
2610 /* This may expand more than one symtab, and we want to iterate over
2611 all of them. */
a0f42c21 2612 dw2_instantiate_symtab (per_cu);
f8eba3c6
TT
2613
2614 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2615 objfile->symtabs, last_made);
2616}
2617
2618/* Implementation of the map_symtabs_matching_filename method. */
2619
9291a0cd 2620static int
f8eba3c6
TT
2621dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2622 const char *full_path, const char *real_path,
2623 int (*callback) (struct symtab *, void *),
2624 void *data)
9291a0cd
TT
2625{
2626 int i;
c011a4f4 2627 const char *name_basename = lbasename (name);
4aac40c8
TT
2628 int name_len = strlen (name);
2629 int is_abs = IS_ABSOLUTE_PATH (name);
9291a0cd
TT
2630
2631 dw2_setup (objfile);
ae2de4f8 2632
1fd400ff 2633 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2634 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd
TT
2635 {
2636 int j;
e254ef6a 2637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2638 struct quick_file_names *file_data;
9291a0cd 2639
3d7bb9d9 2640 /* We only need to look at symtabs not already expanded. */
e254ef6a 2641 if (per_cu->v.quick->symtab)
9291a0cd
TT
2642 continue;
2643
7b9f3c50
DE
2644 file_data = dw2_get_file_names (objfile, per_cu);
2645 if (file_data == NULL)
9291a0cd
TT
2646 continue;
2647
7b9f3c50 2648 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2649 {
7b9f3c50 2650 const char *this_name = file_data->file_names[j];
9291a0cd 2651
4aac40c8
TT
2652 if (FILENAME_CMP (name, this_name) == 0
2653 || (!is_abs && compare_filenames_for_search (this_name,
2654 name, name_len)))
9291a0cd 2655 {
f8eba3c6
TT
2656 if (dw2_map_expand_apply (objfile, per_cu,
2657 name, full_path, real_path,
2658 callback, data))
2659 return 1;
4aac40c8 2660 }
9291a0cd 2661
c011a4f4
DE
2662 /* Before we invoke realpath, which can get expensive when many
2663 files are involved, do a quick comparison of the basenames. */
2664 if (! basenames_may_differ
2665 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2666 continue;
2667
9291a0cd
TT
2668 if (full_path != NULL)
2669 {
7b9f3c50
DE
2670 const char *this_real_name = dw2_get_real_path (objfile,
2671 file_data, j);
9291a0cd 2672
7b9f3c50 2673 if (this_real_name != NULL
4aac40c8
TT
2674 && (FILENAME_CMP (full_path, this_real_name) == 0
2675 || (!is_abs
2676 && compare_filenames_for_search (this_real_name,
2677 name, name_len))))
9291a0cd 2678 {
f8eba3c6
TT
2679 if (dw2_map_expand_apply (objfile, per_cu,
2680 name, full_path, real_path,
2681 callback, data))
2682 return 1;
9291a0cd
TT
2683 }
2684 }
2685
2686 if (real_path != NULL)
2687 {
7b9f3c50
DE
2688 const char *this_real_name = dw2_get_real_path (objfile,
2689 file_data, j);
9291a0cd 2690
7b9f3c50 2691 if (this_real_name != NULL
4aac40c8
TT
2692 && (FILENAME_CMP (real_path, this_real_name) == 0
2693 || (!is_abs
2694 && compare_filenames_for_search (this_real_name,
2695 name, name_len))))
9291a0cd 2696 {
f8eba3c6
TT
2697 if (dw2_map_expand_apply (objfile, per_cu,
2698 name, full_path, real_path,
2699 callback, data))
2700 return 1;
9291a0cd
TT
2701 }
2702 }
2703 }
2704 }
2705
9291a0cd
TT
2706 return 0;
2707}
2708
2709static struct symtab *
2710dw2_lookup_symbol (struct objfile *objfile, int block_index,
2711 const char *name, domain_enum domain)
2712{
774b6a14 2713 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2714 instead. */
2715 return NULL;
2716}
2717
2718/* A helper function that expands all symtabs that hold an object
2719 named NAME. */
2fdf6df6 2720
9291a0cd
TT
2721static void
2722dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2723{
2724 dw2_setup (objfile);
2725
ae2de4f8 2726 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2727 if (dwarf2_per_objfile->index_table)
2728 {
2729 offset_type *vec;
2730
2731 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2732 name, &vec))
2733 {
2734 offset_type i, len = MAYBE_SWAP (*vec);
2735 for (i = 0; i < len; ++i)
2736 {
2737 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2739
a0f42c21 2740 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2741 }
2742 }
2743 }
2744}
2745
774b6a14
TT
2746static void
2747dw2_pre_expand_symtabs_matching (struct objfile *objfile,
8903c50d 2748 enum block_enum block_kind, const char *name,
774b6a14 2749 domain_enum domain)
9291a0cd 2750{
774b6a14 2751 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2752}
2753
2754static void
2755dw2_print_stats (struct objfile *objfile)
2756{
2757 int i, count;
2758
2759 dw2_setup (objfile);
2760 count = 0;
1fd400ff 2761 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2762 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 2763 {
e254ef6a 2764 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2765
e254ef6a 2766 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2767 ++count;
2768 }
2769 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2770}
2771
2772static void
2773dw2_dump (struct objfile *objfile)
2774{
2775 /* Nothing worth printing. */
2776}
2777
2778static void
2779dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2780 struct section_offsets *delta)
2781{
2782 /* There's nothing to relocate here. */
2783}
2784
2785static void
2786dw2_expand_symtabs_for_function (struct objfile *objfile,
2787 const char *func_name)
2788{
2789 dw2_do_expand_symtabs_matching (objfile, func_name);
2790}
2791
2792static void
2793dw2_expand_all_symtabs (struct objfile *objfile)
2794{
2795 int i;
2796
2797 dw2_setup (objfile);
1fd400ff
TT
2798
2799 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 2800 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 2801 {
e254ef6a 2802 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2803
a0f42c21 2804 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2805 }
2806}
2807
2808static void
2809dw2_expand_symtabs_with_filename (struct objfile *objfile,
2810 const char *filename)
2811{
2812 int i;
2813
2814 dw2_setup (objfile);
d4637a04
DE
2815
2816 /* We don't need to consider type units here.
2817 This is only called for examining code, e.g. expand_line_sal.
2818 There can be an order of magnitude (or more) more type units
2819 than comp units, and we avoid them if we can. */
2820
2821 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2822 {
2823 int j;
e254ef6a 2824 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2825 struct quick_file_names *file_data;
9291a0cd 2826
3d7bb9d9 2827 /* We only need to look at symtabs not already expanded. */
e254ef6a 2828 if (per_cu->v.quick->symtab)
9291a0cd
TT
2829 continue;
2830
7b9f3c50
DE
2831 file_data = dw2_get_file_names (objfile, per_cu);
2832 if (file_data == NULL)
9291a0cd
TT
2833 continue;
2834
7b9f3c50 2835 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2836 {
7b9f3c50 2837 const char *this_name = file_data->file_names[j];
1ef75ecc 2838 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2839 {
a0f42c21 2840 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
2841 break;
2842 }
2843 }
2844 }
2845}
2846
356d9f9d
TT
2847/* A helper function for dw2_find_symbol_file that finds the primary
2848 file name for a given CU. This is a die_reader_func. */
2849
2850static void
2851dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
2852 gdb_byte *info_ptr,
2853 struct die_info *comp_unit_die,
2854 int has_children,
2855 void *data)
2856{
2857 const char **result_ptr = data;
2858 struct dwarf2_cu *cu = reader->cu;
2859 struct attribute *attr;
2860
2861 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
2862 if (attr == NULL)
2863 *result_ptr = NULL;
2864 else
2865 *result_ptr = DW_STRING (attr);
2866}
2867
dd786858 2868static const char *
9291a0cd
TT
2869dw2_find_symbol_file (struct objfile *objfile, const char *name)
2870{
e254ef6a 2871 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2872 offset_type *vec;
7b9f3c50 2873 struct quick_file_names *file_data;
356d9f9d 2874 const char *filename;
9291a0cd
TT
2875
2876 dw2_setup (objfile);
2877
ae2de4f8 2878 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 2879 if (!dwarf2_per_objfile->index_table)
96408a79
SA
2880 {
2881 struct symtab *s;
2882
d790cf0a
DE
2883 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2884 {
2885 struct blockvector *bv = BLOCKVECTOR (s);
2886 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2887 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2888
2889 if (sym)
2890 return sym->symtab->filename;
2891 }
96408a79
SA
2892 return NULL;
2893 }
9291a0cd
TT
2894
2895 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2896 name, &vec))
2897 return NULL;
2898
2899 /* Note that this just looks at the very first one named NAME -- but
2900 actually we are looking for a function. find_main_filename
2901 should be rewritten so that it doesn't require a custom hook. It
2902 could just use the ordinary symbol tables. */
2903 /* vec[0] is the length, which must always be >0. */
e254ef6a 2904 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2905
356d9f9d
TT
2906 if (per_cu->v.quick->symtab != NULL)
2907 return per_cu->v.quick->symtab->filename;
2908
663b969e
TT
2909 init_cutu_and_read_dies (per_cu, 0, 0, dw2_get_primary_filename_reader,
2910 &filename);
9291a0cd 2911
356d9f9d 2912 return filename;
9291a0cd
TT
2913}
2914
2915static void
40658b94
PH
2916dw2_map_matching_symbols (const char * name, domain_enum namespace,
2917 struct objfile *objfile, int global,
2918 int (*callback) (struct block *,
2919 struct symbol *, void *),
2edb89d3
JK
2920 void *data, symbol_compare_ftype *match,
2921 symbol_compare_ftype *ordered_compare)
9291a0cd 2922{
40658b94 2923 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2924 current language is Ada for a non-Ada objfile using GNU index. As Ada
2925 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2926}
2927
2928static void
f8eba3c6
TT
2929dw2_expand_symtabs_matching
2930 (struct objfile *objfile,
2931 int (*file_matcher) (const char *, void *),
e078317b 2932 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
2933 enum search_domain kind,
2934 void *data)
9291a0cd
TT
2935{
2936 int i;
2937 offset_type iter;
4b5246aa 2938 struct mapped_index *index;
9291a0cd
TT
2939
2940 dw2_setup (objfile);
ae2de4f8
DE
2941
2942 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2943 if (!dwarf2_per_objfile->index_table)
2944 return;
4b5246aa 2945 index = dwarf2_per_objfile->index_table;
9291a0cd 2946
7b08b9eb 2947 if (file_matcher != NULL)
24c79950
TT
2948 {
2949 struct cleanup *cleanup;
2950 htab_t visited_found, visited_not_found;
2951
2952 visited_found = htab_create_alloc (10,
2953 htab_hash_pointer, htab_eq_pointer,
2954 NULL, xcalloc, xfree);
2955 cleanup = make_cleanup_htab_delete (visited_found);
2956 visited_not_found = htab_create_alloc (10,
2957 htab_hash_pointer, htab_eq_pointer,
2958 NULL, xcalloc, xfree);
2959 make_cleanup_htab_delete (visited_not_found);
2960
2961 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2962 + dwarf2_per_objfile->n_type_units); ++i)
2963 {
2964 int j;
2965 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2966 struct quick_file_names *file_data;
2967 void **slot;
7b08b9eb 2968
24c79950 2969 per_cu->v.quick->mark = 0;
3d7bb9d9 2970
24c79950
TT
2971 /* We only need to look at symtabs not already expanded. */
2972 if (per_cu->v.quick->symtab)
2973 continue;
7b08b9eb 2974
24c79950
TT
2975 file_data = dw2_get_file_names (objfile, per_cu);
2976 if (file_data == NULL)
2977 continue;
7b08b9eb 2978
24c79950
TT
2979 if (htab_find (visited_not_found, file_data) != NULL)
2980 continue;
2981 else if (htab_find (visited_found, file_data) != NULL)
2982 {
2983 per_cu->v.quick->mark = 1;
2984 continue;
2985 }
2986
2987 for (j = 0; j < file_data->num_file_names; ++j)
2988 {
2989 if (file_matcher (file_data->file_names[j], data))
2990 {
2991 per_cu->v.quick->mark = 1;
2992 break;
2993 }
2994 }
2995
2996 slot = htab_find_slot (per_cu->v.quick->mark
2997 ? visited_found
2998 : visited_not_found,
2999 file_data, INSERT);
3000 *slot = file_data;
3001 }
3002
3003 do_cleanups (cleanup);
3004 }
9291a0cd 3005
3876f04e 3006 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3007 {
3008 offset_type idx = 2 * iter;
3009 const char *name;
3010 offset_type *vec, vec_len, vec_idx;
3011
3876f04e 3012 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3013 continue;
3014
3876f04e 3015 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3016
e078317b 3017 if (! (*name_matcher) (name, data))
9291a0cd
TT
3018 continue;
3019
3020 /* The name was matched, now expand corresponding CUs that were
3021 marked. */
4b5246aa 3022 vec = (offset_type *) (index->constant_pool
3876f04e 3023 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3024 vec_len = MAYBE_SWAP (vec[0]);
3025 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3026 {
e254ef6a 3027 struct dwarf2_per_cu_data *per_cu;
1fd400ff 3028
e254ef6a 3029 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
7b08b9eb 3030 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3031 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3032 }
3033 }
3034}
3035
9703b513
TT
3036/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3037 symtab. */
3038
3039static struct symtab *
3040recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3041{
3042 int i;
3043
3044 if (BLOCKVECTOR (symtab) != NULL
3045 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3046 return symtab;
3047
a3ec0bb1
DE
3048 if (symtab->includes == NULL)
3049 return NULL;
3050
9703b513
TT
3051 for (i = 0; symtab->includes[i]; ++i)
3052 {
a3ec0bb1 3053 struct symtab *s = symtab->includes[i];
9703b513
TT
3054
3055 s = recursively_find_pc_sect_symtab (s, pc);
3056 if (s != NULL)
3057 return s;
3058 }
3059
3060 return NULL;
3061}
3062
9291a0cd
TT
3063static struct symtab *
3064dw2_find_pc_sect_symtab (struct objfile *objfile,
3065 struct minimal_symbol *msymbol,
3066 CORE_ADDR pc,
3067 struct obj_section *section,
3068 int warn_if_readin)
3069{
3070 struct dwarf2_per_cu_data *data;
9703b513 3071 struct symtab *result;
9291a0cd
TT
3072
3073 dw2_setup (objfile);
3074
3075 if (!objfile->psymtabs_addrmap)
3076 return NULL;
3077
3078 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3079 if (!data)
3080 return NULL;
3081
3082 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3083 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3084 paddress (get_objfile_arch (objfile), pc));
3085
9703b513
TT
3086 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3087 gdb_assert (result != NULL);
3088 return result;
9291a0cd
TT
3089}
3090
9291a0cd 3091static void
44b13c5a 3092dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3093 void *data, int need_fullname)
9291a0cd
TT
3094{
3095 int i;
24c79950
TT
3096 struct cleanup *cleanup;
3097 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3098 NULL, xcalloc, xfree);
9291a0cd 3099
24c79950 3100 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3101 dw2_setup (objfile);
ae2de4f8 3102
24c79950
TT
3103 /* We can ignore file names coming from already-expanded CUs. */
3104 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3105 + dwarf2_per_objfile->n_type_units); ++i)
3106 {
3107 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3108
3109 if (per_cu->v.quick->symtab)
3110 {
3111 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3112 INSERT);
3113
3114 *slot = per_cu->v.quick->file_names;
3115 }
3116 }
3117
1fd400ff 3118 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3119 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd
TT
3120 {
3121 int j;
e254ef6a 3122 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3123 struct quick_file_names *file_data;
24c79950 3124 void **slot;
9291a0cd 3125
3d7bb9d9 3126 /* We only need to look at symtabs not already expanded. */
e254ef6a 3127 if (per_cu->v.quick->symtab)
9291a0cd
TT
3128 continue;
3129
7b9f3c50
DE
3130 file_data = dw2_get_file_names (objfile, per_cu);
3131 if (file_data == NULL)
9291a0cd
TT
3132 continue;
3133
24c79950
TT
3134 slot = htab_find_slot (visited, file_data, INSERT);
3135 if (*slot)
3136 {
3137 /* Already visited. */
3138 continue;
3139 }
3140 *slot = file_data;
3141
7b9f3c50 3142 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3143 {
74e2f255
DE
3144 const char *this_real_name;
3145
3146 if (need_fullname)
3147 this_real_name = dw2_get_real_path (objfile, file_data, j);
3148 else
3149 this_real_name = NULL;
7b9f3c50 3150 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3151 }
3152 }
24c79950
TT
3153
3154 do_cleanups (cleanup);
9291a0cd
TT
3155}
3156
3157static int
3158dw2_has_symbols (struct objfile *objfile)
3159{
3160 return 1;
3161}
3162
3163const struct quick_symbol_functions dwarf2_gdb_index_functions =
3164{
3165 dw2_has_symbols,
3166 dw2_find_last_source_symtab,
3167 dw2_forget_cached_source_info,
f8eba3c6 3168 dw2_map_symtabs_matching_filename,
9291a0cd 3169 dw2_lookup_symbol,
774b6a14 3170 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
3171 dw2_print_stats,
3172 dw2_dump,
3173 dw2_relocate,
3174 dw2_expand_symtabs_for_function,
3175 dw2_expand_all_symtabs,
3176 dw2_expand_symtabs_with_filename,
3177 dw2_find_symbol_file,
40658b94 3178 dw2_map_matching_symbols,
9291a0cd
TT
3179 dw2_expand_symtabs_matching,
3180 dw2_find_pc_sect_symtab,
9291a0cd
TT
3181 dw2_map_symbol_filenames
3182};
3183
3184/* Initialize for reading DWARF for this objfile. Return 0 if this
3185 file will use psymtabs, or 1 if using the GNU index. */
3186
3187int
3188dwarf2_initialize_objfile (struct objfile *objfile)
3189{
3190 /* If we're about to read full symbols, don't bother with the
3191 indices. In this case we also don't care if some other debug
3192 format is making psymtabs, because they are all about to be
3193 expanded anyway. */
3194 if ((objfile->flags & OBJF_READNOW))
3195 {
3196 int i;
3197
3198 dwarf2_per_objfile->using_index = 1;
3199 create_all_comp_units (objfile);
0e50663e 3200 create_all_type_units (objfile);
7b9f3c50
DE
3201 dwarf2_per_objfile->quick_file_names_table =
3202 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3203
1fd400ff 3204 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3205 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3206 {
e254ef6a 3207 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3208
e254ef6a
DE
3209 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3210 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3211 }
3212
3213 /* Return 1 so that gdb sees the "quick" functions. However,
3214 these functions will be no-ops because we will have expanded
3215 all symtabs. */
3216 return 1;
3217 }
3218
3219 if (dwarf2_read_index (objfile))
3220 return 1;
3221
9291a0cd
TT
3222 return 0;
3223}
3224
3225\f
3226
dce234bc
PP
3227/* Build a partial symbol table. */
3228
3229void
f29dff0a 3230dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3231{
f29dff0a 3232 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3233 {
3234 init_psymbol_list (objfile, 1024);
3235 }
3236
d146bf1e 3237 dwarf2_build_psymtabs_hard (objfile);
c906108c 3238}
c906108c 3239
45452591
DE
3240/* Return TRUE if OFFSET is within CU_HEADER. */
3241
3242static inline int
b64f50a1 3243offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3244{
b64f50a1
JK
3245 sect_offset bottom = { cu_header->offset.sect_off };
3246 sect_offset top = { (cu_header->offset.sect_off + cu_header->length
3247 + cu_header->initial_length_size) };
9a619af0 3248
b64f50a1 3249 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3250}
3251
93311388
DE
3252/* Read in the comp unit header information from the debug_info at info_ptr.
3253 NOTE: This leaves members offset, first_die_offset to be filled in
3254 by the caller. */
107d2387 3255
fe1b8b76 3256static gdb_byte *
107d2387 3257read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 3258 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3259{
3260 int signed_addr;
891d2f0b 3261 unsigned int bytes_read;
c764a876
DE
3262
3263 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3264 cu_header->initial_length_size = bytes_read;
3265 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3266 info_ptr += bytes_read;
107d2387
AC
3267 cu_header->version = read_2_bytes (abfd, info_ptr);
3268 info_ptr += 2;
b64f50a1
JK
3269 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3270 &bytes_read);
613e1657 3271 info_ptr += bytes_read;
107d2387
AC
3272 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3273 info_ptr += 1;
3274 signed_addr = bfd_get_sign_extend_vma (abfd);
3275 if (signed_addr < 0)
8e65ff28 3276 internal_error (__FILE__, __LINE__,
e2e0b3e5 3277 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3278 cu_header->signed_addr_p = signed_addr;
c764a876 3279
107d2387
AC
3280 return info_ptr;
3281}
3282
9ff913ba
DE
3283/* Subroutine of read_and_check_comp_unit_head and
3284 read_and_check_type_unit_head to simplify them.
3285 Perform various error checking on the header. */
3286
3287static void
3288error_check_comp_unit_head (struct comp_unit_head *header,
3289 struct dwarf2_section_info *section)
3290{
3291 bfd *abfd = section->asection->owner;
3292 const char *filename = bfd_get_filename (abfd);
3293
3294 if (header->version != 2 && header->version != 3 && header->version != 4)
3295 error (_("Dwarf Error: wrong version in compilation unit header "
3296 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3297 filename);
3298
b64f50a1 3299 if (header->abbrev_offset.sect_off
9ff913ba
DE
3300 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3301 &dwarf2_per_objfile->abbrev))
3302 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3303 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 3304 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
3305 filename);
3306
3307 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3308 avoid potential 32-bit overflow. */
b64f50a1 3309 if (((unsigned long) header->offset.sect_off
9ff913ba
DE
3310 + header->length + header->initial_length_size)
3311 > section->size)
3312 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3313 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 3314 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
3315 filename);
3316}
3317
3318/* Read in a CU/TU header and perform some basic error checking.
3319 The contents of the header are stored in HEADER.
3320 The result is a pointer to the start of the first DIE. */
adabb602 3321
fe1b8b76 3322static gdb_byte *
9ff913ba
DE
3323read_and_check_comp_unit_head (struct comp_unit_head *header,
3324 struct dwarf2_section_info *section,
3325 gdb_byte *info_ptr,
3326 int is_debug_types_section)
72bf9492 3327{
fe1b8b76 3328 gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 3329 bfd *abfd = section->asection->owner;
72bf9492 3330
b64f50a1 3331 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 3332
72bf9492
DJ
3333 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3334
460c1c54
CC
3335 /* If we're reading a type unit, skip over the signature and
3336 type_offset fields. */
b0df02fd 3337 if (is_debug_types_section)
460c1c54
CC
3338 info_ptr += 8 /*signature*/ + header->offset_size;
3339
b64f50a1 3340 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 3341
9ff913ba 3342 error_check_comp_unit_head (header, section);
72bf9492
DJ
3343
3344 return info_ptr;
3345}
3346
348e048f
DE
3347/* Read in the types comp unit header information from .debug_types entry at
3348 types_ptr. The result is a pointer to one past the end of the header. */
3349
3350static gdb_byte *
9ff913ba
DE
3351read_and_check_type_unit_head (struct comp_unit_head *header,
3352 struct dwarf2_section_info *section,
3353 gdb_byte *info_ptr,
dee91e82
DE
3354 ULONGEST *signature,
3355 cu_offset *type_offset_in_tu)
348e048f 3356{
9ff913ba
DE
3357 gdb_byte *beg_of_comp_unit = info_ptr;
3358 bfd *abfd = section->asection->owner;
348e048f 3359
b64f50a1 3360 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 3361
9ff913ba 3362 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 3363
9ff913ba
DE
3364 /* If we're reading a type unit, skip over the signature and
3365 type_offset fields. */
3366 if (signature != NULL)
3367 *signature = read_8_bytes (abfd, info_ptr);
3368 info_ptr += 8;
dee91e82
DE
3369 if (type_offset_in_tu != NULL)
3370 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3371 header->offset_size);
9ff913ba
DE
3372 info_ptr += header->offset_size;
3373
b64f50a1 3374 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 3375
9ff913ba
DE
3376 error_check_comp_unit_head (header, section);
3377
3378 return info_ptr;
348e048f
DE
3379}
3380
aaa75496
JB
3381/* Allocate a new partial symtab for file named NAME and mark this new
3382 partial symtab as being an include of PST. */
3383
3384static void
3385dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3386 struct objfile *objfile)
3387{
3388 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3389
3390 subpst->section_offsets = pst->section_offsets;
3391 subpst->textlow = 0;
3392 subpst->texthigh = 0;
3393
3394 subpst->dependencies = (struct partial_symtab **)
3395 obstack_alloc (&objfile->objfile_obstack,
3396 sizeof (struct partial_symtab *));
3397 subpst->dependencies[0] = pst;
3398 subpst->number_of_dependencies = 1;
3399
3400 subpst->globals_offset = 0;
3401 subpst->n_global_syms = 0;
3402 subpst->statics_offset = 0;
3403 subpst->n_static_syms = 0;
3404 subpst->symtab = NULL;
3405 subpst->read_symtab = pst->read_symtab;
3406 subpst->readin = 0;
3407
3408 /* No private part is necessary for include psymtabs. This property
3409 can be used to differentiate between such include psymtabs and
10b3939b 3410 the regular ones. */
58a9656e 3411 subpst->read_symtab_private = NULL;
aaa75496
JB
3412}
3413
3414/* Read the Line Number Program data and extract the list of files
3415 included by the source file represented by PST. Build an include
d85a05f0 3416 partial symtab for each of these included files. */
aaa75496
JB
3417
3418static void
3419dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
3420 struct die_info *die,
3421 struct partial_symtab *pst)
aaa75496 3422{
d85a05f0
DJ
3423 struct line_header *lh = NULL;
3424 struct attribute *attr;
aaa75496 3425
d85a05f0
DJ
3426 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3427 if (attr)
3019eac3 3428 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
3429 if (lh == NULL)
3430 return; /* No linetable, so no includes. */
3431
c6da4cef 3432 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 3433 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
3434
3435 free_line_header (lh);
3436}
3437
348e048f 3438static hashval_t
52dc124a 3439hash_signatured_type (const void *item)
348e048f 3440{
52dc124a 3441 const struct signatured_type *sig_type = item;
9a619af0 3442
348e048f 3443 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 3444 return sig_type->signature;
348e048f
DE
3445}
3446
3447static int
52dc124a 3448eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
3449{
3450 const struct signatured_type *lhs = item_lhs;
3451 const struct signatured_type *rhs = item_rhs;
9a619af0 3452
348e048f
DE
3453 return lhs->signature == rhs->signature;
3454}
3455
1fd400ff
TT
3456/* Allocate a hash table for signatured types. */
3457
3458static htab_t
673bfd45 3459allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
3460{
3461 return htab_create_alloc_ex (41,
52dc124a
DE
3462 hash_signatured_type,
3463 eq_signatured_type,
1fd400ff
TT
3464 NULL,
3465 &objfile->objfile_obstack,
3466 hashtab_obstack_allocate,
3467 dummy_obstack_deallocate);
3468}
3469
d467dd73 3470/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
3471
3472static int
d467dd73 3473add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
3474{
3475 struct signatured_type *sigt = *slot;
3476 struct dwarf2_per_cu_data ***datap = datum;
3477
3478 **datap = &sigt->per_cu;
3479 ++*datap;
3480
3481 return 1;
3482}
3483
3019eac3
DE
3484/* Create the hash table of all entries in the .debug_types section.
3485 DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise.
3486 The result is a pointer to the hash table or NULL if there are
3487 no types. */
348e048f 3488
3019eac3
DE
3489static htab_t
3490create_debug_types_hash_table (struct dwo_file *dwo_file,
3491 VEC (dwarf2_section_info_def) *types)
348e048f 3492{
3019eac3 3493 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 3494 htab_t types_htab = NULL;
8b70b953
TT
3495 int ix;
3496 struct dwarf2_section_info *section;
348e048f 3497
3019eac3
DE
3498 if (VEC_empty (dwarf2_section_info_def, types))
3499 return NULL;
348e048f 3500
8b70b953 3501 for (ix = 0;
3019eac3 3502 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
3503 ++ix)
3504 {
3019eac3 3505 bfd *abfd;
8b70b953 3506 gdb_byte *info_ptr, *end_ptr;
348e048f 3507
8b70b953
TT
3508 dwarf2_read_section (objfile, section);
3509 info_ptr = section->buffer;
348e048f 3510
8b70b953
TT
3511 if (info_ptr == NULL)
3512 continue;
348e048f 3513
3019eac3
DE
3514 /* We can't set abfd until now because the section may be empty or
3515 not present, in which case section->asection will be NULL. */
3516 abfd = section->asection->owner;
3517
8b70b953 3518 if (types_htab == NULL)
3019eac3
DE
3519 {
3520 if (dwo_file)
3521 types_htab = allocate_dwo_unit_table (objfile);
3522 else
3523 types_htab = allocate_signatured_type_table (objfile);
3524 }
348e048f 3525
8b70b953 3526 if (dwarf2_die_debug)
dee91e82
DE
3527 fprintf_unfiltered (gdb_stdlog, "Reading signatured types for %s:\n",
3528 bfd_get_filename (abfd));
3529
3530 /* We don't use init_cutu_and_read_dies_simple, or some such, here
3531 because we don't need to read any dies: the signature is in the
3532 header. */
8b70b953
TT
3533
3534 end_ptr = info_ptr + section->size;
3535 while (info_ptr < end_ptr)
3536 {
b64f50a1 3537 sect_offset offset;
3019eac3 3538 cu_offset type_offset_in_tu;
8b70b953 3539 ULONGEST signature;
52dc124a 3540 struct signatured_type *sig_type;
3019eac3 3541 struct dwo_unit *dwo_tu;
8b70b953
TT
3542 void **slot;
3543 gdb_byte *ptr = info_ptr;
9ff913ba 3544 struct comp_unit_head header;
dee91e82 3545 unsigned int length;
348e048f 3546
b64f50a1 3547 offset.sect_off = ptr - section->buffer;
348e048f 3548
8b70b953 3549 /* We need to read the type's signature in order to build the hash
9ff913ba 3550 table, but we don't need anything else just yet. */
348e048f 3551
9ff913ba 3552 ptr = read_and_check_type_unit_head (&header, section, ptr,
3019eac3 3553 &signature, &type_offset_in_tu);
6caca83c 3554
dee91e82
DE
3555 length = header.initial_length_size + header.length;
3556
6caca83c 3557 /* Skip dummy type units. */
dee91e82
DE
3558 if (ptr >= info_ptr + length
3559 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 3560 {
dee91e82 3561 info_ptr += header.initial_length_size + header.length;
6caca83c
CC
3562 continue;
3563 }
8b70b953 3564
3019eac3
DE
3565 if (dwo_file)
3566 {
3567 sig_type = NULL;
3568 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3569 struct dwo_unit);
3570 dwo_tu->dwo_file = dwo_file;
3571 dwo_tu->signature = signature;
3572 dwo_tu->type_offset_in_tu = type_offset_in_tu;
3573 dwo_tu->info_or_types_section = section;
3574 dwo_tu->offset = offset;
3575 dwo_tu->length = length;
3576 }
3577 else
3578 {
3579 /* N.B.: type_offset is not usable if this type uses a DWO file.
3580 The real type_offset is in the DWO file. */
3581 dwo_tu = NULL;
3582 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3583 struct signatured_type);
3584 sig_type->signature = signature;
3585 sig_type->type_offset_in_tu = type_offset_in_tu;
3586 sig_type->per_cu.objfile = objfile;
3587 sig_type->per_cu.is_debug_types = 1;
3588 sig_type->per_cu.info_or_types_section = section;
3589 sig_type->per_cu.offset = offset;
3590 sig_type->per_cu.length = length;
3591 }
8b70b953 3592
3019eac3
DE
3593 slot = htab_find_slot (types_htab,
3594 dwo_file ? (void*) dwo_tu : (void *) sig_type,
3595 INSERT);
8b70b953
TT
3596 gdb_assert (slot != NULL);
3597 if (*slot != NULL)
3598 {
3019eac3
DE
3599 sect_offset dup_offset;
3600
3601 if (dwo_file)
3602 {
3603 const struct dwo_unit *dup_tu = *slot;
3604
3605 dup_offset = dup_tu->offset;
3606 }
3607 else
3608 {
3609 const struct signatured_type *dup_tu = *slot;
3610
3611 dup_offset = dup_tu->per_cu.offset;
3612 }
b3c8eb43 3613
8b70b953
TT
3614 complaint (&symfile_complaints,
3615 _("debug type entry at offset 0x%x is duplicate to the "
3616 "entry at offset 0x%x, signature 0x%s"),
3019eac3 3617 offset.sect_off, dup_offset.sect_off,
8b70b953 3618 phex (signature, sizeof (signature)));
8b70b953 3619 }
3019eac3 3620 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 3621
8b70b953
TT
3622 if (dwarf2_die_debug)
3623 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
b64f50a1
JK
3624 offset.sect_off,
3625 phex (signature, sizeof (signature)));
348e048f 3626
dee91e82 3627 info_ptr += length;
8b70b953 3628 }
348e048f
DE
3629 }
3630
3019eac3
DE
3631 return types_htab;
3632}
3633
3634/* Create the hash table of all entries in the .debug_types section,
3635 and initialize all_type_units.
3636 The result is zero if there is an error (e.g. missing .debug_types section),
3637 otherwise non-zero. */
3638
3639static int
3640create_all_type_units (struct objfile *objfile)
3641{
3642 htab_t types_htab;
3643 struct dwarf2_per_cu_data **iter;
3644
3645 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
3646 if (types_htab == NULL)
3647 {
3648 dwarf2_per_objfile->signatured_types = NULL;
3649 return 0;
3650 }
3651
348e048f
DE
3652 dwarf2_per_objfile->signatured_types = types_htab;
3653
d467dd73
DE
3654 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3655 dwarf2_per_objfile->all_type_units
1fd400ff 3656 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 3657 dwarf2_per_objfile->n_type_units
1fd400ff 3658 * sizeof (struct dwarf2_per_cu_data *));
d467dd73
DE
3659 iter = &dwarf2_per_objfile->all_type_units[0];
3660 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3661 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3662 == dwarf2_per_objfile->n_type_units);
1fd400ff 3663
348e048f
DE
3664 return 1;
3665}
3666
380bca97 3667/* Lookup a signature based type for DW_FORM_ref_sig8.
e319fa28 3668 Returns NULL if signature SIG is not present in the table. */
348e048f
DE
3669
3670static struct signatured_type *
e319fa28 3671lookup_signatured_type (ULONGEST sig)
348e048f
DE
3672{
3673 struct signatured_type find_entry, *entry;
3674
3675 if (dwarf2_per_objfile->signatured_types == NULL)
3676 {
3677 complaint (&symfile_complaints,
55f1336d 3678 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
dcc07052 3679 return NULL;
348e048f
DE
3680 }
3681
3682 find_entry.signature = sig;
3683 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3684 return entry;
3685}
3686
d85a05f0
DJ
3687/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3688
3689static void
3690init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 3691 struct dwarf2_cu *cu,
3019eac3
DE
3692 struct dwarf2_section_info *section,
3693 struct dwo_file *dwo_file)
d85a05f0 3694{
fceca515 3695 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 3696 reader->abfd = section->asection->owner;
d85a05f0 3697 reader->cu = cu;
3019eac3 3698 reader->dwo_file = dwo_file;
dee91e82
DE
3699 reader->die_section = section;
3700 reader->buffer = section->buffer;
f664829e 3701 reader->buffer_end = section->buffer + section->size;
d85a05f0
DJ
3702}
3703
3704/* Find the base address of the compilation unit for range lists and
3705 location lists. It will normally be specified by DW_AT_low_pc.
3706 In DWARF-3 draft 4, the base address could be overridden by
3707 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3708 compilation units with discontinuous ranges. */
3709
3710static void
3711dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3712{
3713 struct attribute *attr;
3714
3715 cu->base_known = 0;
3716 cu->base_address = 0;
3717
3718 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3719 if (attr)
3720 {
3721 cu->base_address = DW_ADDR (attr);
3722 cu->base_known = 1;
3723 }
3724 else
3725 {
3726 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3727 if (attr)
3728 {
3729 cu->base_address = DW_ADDR (attr);
3730 cu->base_known = 1;
3731 }
3732 }
3733}
3734
fd820528 3735/* Initialize a CU (or TU) and read its DIEs.
3019eac3 3736 If the CU defers to a DWO file, read the DWO file as well.
dee91e82
DE
3737
3738 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
3739 Otherwise, a new CU is allocated with xmalloc.
3740
3741 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
3742 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
3743
3744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 3745 linker) then DIE_READER_FUNC will not get called. */
aaa75496 3746
70221824 3747static void
fd820528
DE
3748init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
3749 int use_existing_cu, int keep,
3750 die_reader_func_ftype *die_reader_func,
3751 void *data)
c906108c 3752{
dee91e82 3753 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3
DE
3754 struct dwarf2_section_info *section = this_cu->info_or_types_section;
3755 bfd *abfd = section->asection->owner;
dee91e82
DE
3756 struct dwarf2_cu *cu;
3757 gdb_byte *begin_info_ptr, *info_ptr;
3758 struct die_reader_specs reader;
d85a05f0 3759 struct die_info *comp_unit_die;
dee91e82 3760 int has_children;
d85a05f0 3761 struct attribute *attr;
dee91e82
DE
3762 struct cleanup *cleanups, *free_cu_cleanup = NULL;
3763 struct signatured_type *sig_type = NULL;
c906108c 3764
dee91e82
DE
3765 if (use_existing_cu)
3766 gdb_assert (keep);
23745b47 3767
dee91e82
DE
3768 cleanups = make_cleanup (null_cleanup, NULL);
3769
3770 /* This is cheap if the section is already read in. */
3771 dwarf2_read_section (objfile, section);
3772
3773 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
3774
3775 if (use_existing_cu && this_cu->cu != NULL)
3776 {
3777 cu = this_cu->cu;
3778 info_ptr += cu->header.first_die_offset.cu_off;
3779 }
3780 else
3781 {
3782 /* If !use_existing_cu, this_cu->cu must be NULL. */
3783 gdb_assert (this_cu->cu == NULL);
3784
3785 cu = xmalloc (sizeof (*cu));
3786 init_one_comp_unit (cu, this_cu);
3787
3788 /* If an error occurs while loading, release our storage. */
3789 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3790
3019eac3 3791 if (this_cu->is_debug_types)
dee91e82
DE
3792 {
3793 ULONGEST signature;
3794
3795 info_ptr = read_and_check_type_unit_head (&cu->header,
3796 section, info_ptr,
3797 &signature, NULL);
3798
3799 /* There's no way to get from PER_CU to its containing
3800 struct signatured_type.
3801 But we have the signature so we can use that. */
3802 sig_type = lookup_signatured_type (signature);
3803 /* We've already scanned all the signatured types,
3804 this must succeed. */
3805 gdb_assert (sig_type != NULL);
3806 gdb_assert (&sig_type->per_cu == this_cu);
3807 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
3808
3809 /* LENGTH has not been set yet for type units. */
3810 this_cu->length = cu->header.length + cu->header.initial_length_size;
3019eac3
DE
3811
3812 /* Establish the type offset that can be used to lookup the type. */
3813 sig_type->type_offset_in_section.sect_off =
3814 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
3815 }
3816 else
3817 {
3818 info_ptr = read_and_check_comp_unit_head (&cu->header,
3819 section, info_ptr, 0);
3820
3821 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
3822 gdb_assert (this_cu->length
3823 == cu->header.length + cu->header.initial_length_size);
3824 }
3825 }
10b3939b 3826
6caca83c 3827 /* Skip dummy compilation units. */
dee91e82 3828 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
3829 || peek_abbrev_code (abfd, info_ptr) == 0)
3830 {
dee91e82 3831 do_cleanups (cleanups);
21b2bd31 3832 return;
6caca83c
CC
3833 }
3834
93311388 3835 /* Read the abbrevs for this compilation unit into a table. */
dee91e82
DE
3836 if (cu->dwarf2_abbrevs == NULL)
3837 {
3838 dwarf2_read_abbrevs (cu, &dwarf2_per_objfile->abbrev);
3839 make_cleanup (dwarf2_free_abbrev_table, cu);
3840 }
af703f96 3841
dee91e82 3842 /* Read the top level CU/TU die. */
3019eac3 3843 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 3844 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 3845
3019eac3
DE
3846 /* If we have a DWO stub, process it and then read in the DWO file.
3847 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
3848 a DWO CU, that this test will fail. */
3849 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
3850 if (attr)
3851 {
3852 char *dwo_name = DW_STRING (attr);
3853 const char *comp_dir;
3854 struct dwo_unit *dwo_unit;
3855 ULONGEST signature; /* Or dwo_id. */
3856 struct attribute *stmt_list, *low_pc, *high_pc, *ranges;
3857 int i,num_extra_attrs;
3858
3859 if (has_children)
3860 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
3861 " has children (offset 0x%x) [in module %s]"),
3862 this_cu->offset.sect_off, bfd_get_filename (abfd));
3863
3864 /* These attributes aren't processed until later:
3865 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
3866 However, the attribute is found in the stub which we won't have later.
3867 In order to not impose this complication on the rest of the code,
3868 we read them here and copy them to the DWO CU/TU die. */
3869 stmt_list = low_pc = high_pc = ranges = NULL;
3870
3871 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
3872 DWO file. */
3873 if (! this_cu->is_debug_types)
3874 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3875 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
3876 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
3877 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
3878
3879 /* There should be a DW_AT_addr_base attribute here (if needed).
3880 We need the value before we can process DW_FORM_GNU_addr_index. */
3881 cu->addr_base = 0;
3882 cu->have_addr_base = 0;
3883 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
3884 if (attr)
3885 {
3886 cu->addr_base = DW_UNSND (attr);
3887 cu->have_addr_base = 1;
3888 }
3889
3890 if (this_cu->is_debug_types)
3891 {
3892 gdb_assert (sig_type != NULL);
3893 signature = sig_type->signature;
3894 }
3895 else
3896 {
3897 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
3898 if (! attr)
3899 error (_("Dwarf Error: missing dwo_id [in module %s]"),
3900 dwo_name);
3901 signature = DW_UNSND (attr);
3902 }
3903
3904 /* We may need the comp_dir in order to find the DWO file. */
3905 comp_dir = NULL;
3906 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
3907 if (attr)
3908 comp_dir = DW_STRING (attr);
3909
3910 if (this_cu->is_debug_types)
3911 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
3912 else
3913 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
3914 signature);
3915
3916 if (dwo_unit == NULL)
3917 {
3918 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
3919 " with ID %s [in module %s]"),
3920 this_cu->offset.sect_off,
3921 phex (signature, sizeof (signature)),
3922 objfile->name);
3923 }
3924
3925 /* Set up for reading the DWO CU/TU. */
3926 cu->dwo_unit = dwo_unit;
3927 section = dwo_unit->info_or_types_section;
3928 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
3929 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
3930
3931 if (this_cu->is_debug_types)
3932 {
3933 ULONGEST signature;
3934
3935 info_ptr = read_and_check_type_unit_head (&cu->header,
3936 section, info_ptr,
3937 &signature, NULL);
3938 gdb_assert (sig_type->signature == signature);
3939 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
3940 gdb_assert (dwo_unit->length
3941 == cu->header.length + cu->header.initial_length_size);
3942
3943 /* Establish the type offset that can be used to lookup the type.
3944 For DWO files, we don't know it until now. */
3945 sig_type->type_offset_in_section.sect_off =
3946 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
3947 }
3948 else
3949 {
3950 info_ptr = read_and_check_comp_unit_head (&cu->header,
3951 section, info_ptr, 0);
3952 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
3953 gdb_assert (dwo_unit->length
3954 == cu->header.length + cu->header.initial_length_size);
3955 }
3956
3957 /* Discard the original CU's abbrev table, and read the DWO's. */
3958 dwarf2_free_abbrev_table (cu);
3959 dwarf2_read_abbrevs (cu, &dwo_unit->dwo_file->sections.abbrev);
3960
3961 /* Read in the die, but leave space to copy over the attributes
3962 from the stub. This has the benefit of simplifying the rest of
3963 the code - all the real work is done here. */
3964 num_extra_attrs = ((stmt_list != NULL)
3965 + (low_pc != NULL)
3966 + (high_pc != NULL)
3967 + (ranges != NULL));
3968 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
3969 &has_children, num_extra_attrs);
3970
3971 /* Copy over the attributes from the stub to the DWO die. */
3972 i = comp_unit_die->num_attrs;
3973 if (stmt_list != NULL)
3974 comp_unit_die->attrs[i++] = *stmt_list;
3975 if (low_pc != NULL)
3976 comp_unit_die->attrs[i++] = *low_pc;
3977 if (high_pc != NULL)
3978 comp_unit_die->attrs[i++] = *high_pc;
3979 if (ranges != NULL)
3980 comp_unit_die->attrs[i++] = *ranges;
3981 comp_unit_die->num_attrs += num_extra_attrs;
3982
3983 /* Skip dummy compilation units. */
3984 if (info_ptr >= begin_info_ptr + dwo_unit->length
3985 || peek_abbrev_code (abfd, info_ptr) == 0)
3986 {
3987 do_cleanups (cleanups);
3988 return;
3989 }
3990 }
3991
dee91e82
DE
3992 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
3993
3994 if (free_cu_cleanup != NULL)
348e048f 3995 {
dee91e82
DE
3996 if (keep)
3997 {
3998 /* We've successfully allocated this compilation unit. Let our
3999 caller clean it up when finished with it. */
4000 discard_cleanups (free_cu_cleanup);
4001
4002 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4003 So we have to manually free the abbrev table. */
4004 dwarf2_free_abbrev_table (cu);
4005
4006 /* Link this CU into read_in_chain. */
4007 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4008 dwarf2_per_objfile->read_in_chain = this_cu;
4009 }
4010 else
4011 do_cleanups (free_cu_cleanup);
348e048f 4012 }
dee91e82
DE
4013
4014 do_cleanups (cleanups);
4015}
4016
3019eac3
DE
4017/* Read CU/TU THIS_CU in section SECTION,
4018 but do not follow DW_AT_GNU_dwo_name if present.
4019 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to
4020 have already done the lookup to find the DWO file).
dee91e82
DE
4021
4022 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 4023 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
4024
4025 We fill in THIS_CU->length.
4026
4027 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4028 linker) then DIE_READER_FUNC will not get called.
4029
4030 THIS_CU->cu is always freed when done.
3019eac3
DE
4031 This is done in order to not leave THIS_CU->cu in a state where we have
4032 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
4033
4034static void
4035init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4036 struct dwarf2_section_info *abbrev_section,
3019eac3 4037 struct dwo_file *dwo_file,
dee91e82
DE
4038 die_reader_func_ftype *die_reader_func,
4039 void *data)
4040{
4041 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3
DE
4042 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4043 bfd *abfd = section->asection->owner;
dee91e82
DE
4044 struct dwarf2_cu cu;
4045 gdb_byte *begin_info_ptr, *info_ptr;
4046 struct die_reader_specs reader;
4047 struct cleanup *cleanups;
4048 struct die_info *comp_unit_die;
4049 int has_children;
4050
4051 gdb_assert (this_cu->cu == NULL);
4052
dee91e82
DE
4053 /* This is cheap if the section is already read in. */
4054 dwarf2_read_section (objfile, section);
4055
4056 init_one_comp_unit (&cu, this_cu);
4057
4058 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4059
4060 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4061 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3019eac3 4062 this_cu->is_debug_types);
dee91e82
DE
4063
4064 this_cu->length = cu.header.length + cu.header.initial_length_size;
4065
4066 /* Skip dummy compilation units. */
4067 if (info_ptr >= begin_info_ptr + this_cu->length
4068 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 4069 {
dee91e82 4070 do_cleanups (cleanups);
21b2bd31 4071 return;
93311388 4072 }
72bf9492 4073
dee91e82
DE
4074 dwarf2_read_abbrevs (&cu, abbrev_section);
4075 make_cleanup (dwarf2_free_abbrev_table, &cu);
4076
3019eac3 4077 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
4078 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4079
4080 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4081
4082 do_cleanups (cleanups);
4083}
4084
3019eac3
DE
4085/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4086 does not lookup the specified DWO file.
4087 This cannot be used to read DWO files.
dee91e82
DE
4088
4089 THIS_CU->cu is always freed when done.
3019eac3
DE
4090 This is done in order to not leave THIS_CU->cu in a state where we have
4091 to care whether it refers to the "main" CU or the DWO CU.
4092 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
4093
4094static void
4095init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4096 die_reader_func_ftype *die_reader_func,
4097 void *data)
4098{
4099 init_cutu_and_read_dies_no_follow (this_cu,
4100 &dwarf2_per_objfile->abbrev,
3019eac3 4101 NULL,
dee91e82
DE
4102 die_reader_func, data);
4103}
4104
4105/* die_reader_func for process_psymtab_comp_unit. */
4106
4107static void
4108process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4109 gdb_byte *info_ptr,
4110 struct die_info *comp_unit_die,
4111 int has_children,
4112 void *data)
4113{
4114 struct dwarf2_cu *cu = reader->cu;
4115 struct objfile *objfile = cu->objfile;
4116 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
dee91e82
DE
4117 struct attribute *attr;
4118 CORE_ADDR baseaddr;
4119 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4120 struct partial_symtab *pst;
4121 int has_pc_info;
4122 const char *filename;
95554aad 4123 int *want_partial_unit_ptr = data;
dee91e82 4124
95554aad
TT
4125 if (comp_unit_die->tag == DW_TAG_partial_unit
4126 && (want_partial_unit_ptr == NULL
4127 || !*want_partial_unit_ptr))
dee91e82
DE
4128 return;
4129
95554aad 4130 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
dee91e82
DE
4131
4132 cu->list_in_scope = &file_symbols;
c906108c 4133
93311388 4134 /* Allocate a new partial symbol table structure. */
dee91e82 4135 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3e2a0cee
TT
4136 if (attr == NULL || !DW_STRING (attr))
4137 filename = "";
4138 else
4139 filename = DW_STRING (attr);
93311388 4140 pst = start_psymtab_common (objfile, objfile->section_offsets,
3e2a0cee 4141 filename,
93311388
DE
4142 /* TEXTLOW and TEXTHIGH are set below. */
4143 0,
4144 objfile->global_psymbols.next,
4145 objfile->static_psymbols.next);
9750bca9 4146 pst->psymtabs_addrmap_supported = 1;
72bf9492 4147
dee91e82 4148 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
d85a05f0
DJ
4149 if (attr != NULL)
4150 pst->dirname = DW_STRING (attr);
72bf9492 4151
dee91e82 4152 pst->read_symtab_private = per_cu;
72bf9492 4153
93311388 4154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 4155
0963b4bd 4156 /* Store the function that reads in the rest of the symbol table. */
93311388 4157 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 4158
dee91e82 4159 per_cu->v.psymtab = pst;
c906108c 4160
dee91e82 4161 dwarf2_find_base_address (comp_unit_die, cu);
d85a05f0 4162
93311388
DE
4163 /* Possibly set the default values of LOWPC and HIGHPC from
4164 `DW_AT_ranges'. */
d85a05f0 4165 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
dee91e82 4166 &best_highpc, cu, pst);
d85a05f0 4167 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
4168 /* Store the contiguous range if it is not empty; it can be empty for
4169 CUs with no code. */
4170 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
4171 best_lowpc + baseaddr,
4172 best_highpc + baseaddr - 1, pst);
93311388
DE
4173
4174 /* Check if comp unit has_children.
4175 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 4176 If not, there's no more debug_info for this comp unit. */
d85a05f0 4177 if (has_children)
93311388
DE
4178 {
4179 struct partial_die_info *first_die;
4180 CORE_ADDR lowpc, highpc;
31ffec48 4181
93311388
DE
4182 lowpc = ((CORE_ADDR) -1);
4183 highpc = ((CORE_ADDR) 0);
c906108c 4184
dee91e82 4185 first_die = load_partial_dies (reader, info_ptr, 1);
c906108c 4186
93311388 4187 scan_partial_symbols (first_die, &lowpc, &highpc,
dee91e82 4188 ! has_pc_info, cu);
57c22c6c 4189
93311388
DE
4190 /* If we didn't find a lowpc, set it to highpc to avoid
4191 complaints from `maint check'. */
4192 if (lowpc == ((CORE_ADDR) -1))
4193 lowpc = highpc;
10b3939b 4194
93311388
DE
4195 /* If the compilation unit didn't have an explicit address range,
4196 then use the information extracted from its child dies. */
d85a05f0 4197 if (! has_pc_info)
93311388 4198 {
d85a05f0
DJ
4199 best_lowpc = lowpc;
4200 best_highpc = highpc;
93311388
DE
4201 }
4202 }
d85a05f0
DJ
4203 pst->textlow = best_lowpc + baseaddr;
4204 pst->texthigh = best_highpc + baseaddr;
c906108c 4205
93311388
DE
4206 pst->n_global_syms = objfile->global_psymbols.next -
4207 (objfile->global_psymbols.list + pst->globals_offset);
4208 pst->n_static_syms = objfile->static_psymbols.next -
4209 (objfile->static_psymbols.list + pst->statics_offset);
4210 sort_pst_symbols (pst);
c906108c 4211
95554aad
TT
4212 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4213 {
4214 int i;
4215 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4216 struct dwarf2_per_cu_data *iter;
4217
4218 /* Fill in 'dependencies' here; we fill in 'users' in a
4219 post-pass. */
4220 pst->number_of_dependencies = len;
4221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4222 len * sizeof (struct symtab *));
4223 for (i = 0;
4224 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4225 i, iter);
4226 ++i)
4227 pst->dependencies[i] = iter->v.psymtab;
4228
4229 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4230 }
4231
3019eac3 4232 if (per_cu->is_debug_types)
348e048f
DE
4233 {
4234 /* It's not clear we want to do anything with stmt lists here.
4235 Waiting to see what gcc ultimately does. */
4236 }
d85a05f0 4237 else
93311388
DE
4238 {
4239 /* Get the list of files included in the current compilation unit,
4240 and build a psymtab for each of them. */
dee91e82 4241 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
93311388 4242 }
dee91e82 4243}
ae038cb0 4244
dee91e82
DE
4245/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4246 Process compilation unit THIS_CU for a psymtab. */
4247
4248static void
95554aad
TT
4249process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4250 int want_partial_unit)
dee91e82
DE
4251{
4252 /* If this compilation unit was already read in, free the
4253 cached copy in order to read it in again. This is
4254 necessary because we skipped some symbols when we first
4255 read in the compilation unit (see load_partial_dies).
4256 This problem could be avoided, but the benefit is unclear. */
4257 if (this_cu->cu != NULL)
4258 free_one_cached_comp_unit (this_cu);
4259
3019eac3 4260 gdb_assert (! this_cu->is_debug_types);
fd820528 4261 init_cutu_and_read_dies (this_cu, 0, 0, process_psymtab_comp_unit_reader,
95554aad 4262 &want_partial_unit);
dee91e82
DE
4263
4264 /* Age out any secondary CUs. */
4265 age_cached_comp_units ();
93311388 4266}
ff013f42 4267
348e048f
DE
4268/* Traversal function for htab_traverse_noresize.
4269 Process one .debug_types comp-unit. */
4270
4271static int
dee91e82 4272process_psymtab_type_unit (void **slot, void *info)
348e048f 4273{
dee91e82
DE
4274 struct signatured_type *sig_type = (struct signatured_type *) *slot;
4275 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 4276
fd820528 4277 gdb_assert (per_cu->is_debug_types);
a0f42c21 4278 gdb_assert (info == NULL);
348e048f 4279
dee91e82
DE
4280 /* If this compilation unit was already read in, free the
4281 cached copy in order to read it in again. This is
4282 necessary because we skipped some symbols when we first
4283 read in the compilation unit (see load_partial_dies).
4284 This problem could be avoided, but the benefit is unclear. */
4285 if (per_cu->cu != NULL)
4286 free_one_cached_comp_unit (per_cu);
4287
fd820528
DE
4288 init_cutu_and_read_dies (per_cu, 0, 0, process_psymtab_comp_unit_reader,
4289 NULL);
dee91e82
DE
4290
4291 /* Age out any secondary CUs. */
4292 age_cached_comp_units ();
348e048f
DE
4293
4294 return 1;
4295}
4296
4297/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4298 Build partial symbol tables for the .debug_types comp-units. */
4299
4300static void
4301build_type_psymtabs (struct objfile *objfile)
4302{
0e50663e 4303 if (! create_all_type_units (objfile))
348e048f
DE
4304 return;
4305
4306 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
dee91e82 4307 process_psymtab_type_unit, NULL);
348e048f
DE
4308}
4309
60606b2c
TT
4310/* A cleanup function that clears objfile's psymtabs_addrmap field. */
4311
4312static void
4313psymtabs_addrmap_cleanup (void *o)
4314{
4315 struct objfile *objfile = o;
ec61707d 4316
60606b2c
TT
4317 objfile->psymtabs_addrmap = NULL;
4318}
4319
95554aad
TT
4320/* Compute the 'user' field for each psymtab in OBJFILE. */
4321
4322static void
4323set_partial_user (struct objfile *objfile)
4324{
4325 int i;
4326
4327 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4328 {
4329 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4330 struct partial_symtab *pst = per_cu->v.psymtab;
4331 int j;
4332
4333 for (j = 0; j < pst->number_of_dependencies; ++j)
4334 {
4335 /* Set the 'user' field only if it is not already set. */
4336 if (pst->dependencies[j]->user == NULL)
4337 pst->dependencies[j]->user = pst;
4338 }
4339 }
4340}
4341
93311388
DE
4342/* Build the partial symbol table by doing a quick pass through the
4343 .debug_info and .debug_abbrev sections. */
72bf9492 4344
93311388 4345static void
c67a9c90 4346dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 4347{
60606b2c
TT
4348 struct cleanup *back_to, *addrmap_cleanup;
4349 struct obstack temp_obstack;
21b2bd31 4350 int i;
93311388 4351
98bfdba5
PA
4352 dwarf2_per_objfile->reading_partial_symbols = 1;
4353
be391dca 4354 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 4355
93311388
DE
4356 /* Any cached compilation units will be linked by the per-objfile
4357 read_in_chain. Make sure to free them when we're done. */
4358 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 4359
348e048f
DE
4360 build_type_psymtabs (objfile);
4361
93311388 4362 create_all_comp_units (objfile);
c906108c 4363
60606b2c
TT
4364 /* Create a temporary address map on a temporary obstack. We later
4365 copy this to the final obstack. */
4366 obstack_init (&temp_obstack);
4367 make_cleanup_obstack_free (&temp_obstack);
4368 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
4369 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 4370
21b2bd31 4371 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 4372 {
21b2bd31 4373 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 4374
95554aad 4375 process_psymtab_comp_unit (per_cu, 0);
c906108c 4376 }
ff013f42 4377
95554aad
TT
4378 set_partial_user (objfile);
4379
ff013f42
JK
4380 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
4381 &objfile->objfile_obstack);
60606b2c 4382 discard_cleanups (addrmap_cleanup);
ff013f42 4383
ae038cb0
DJ
4384 do_cleanups (back_to);
4385}
4386
3019eac3 4387/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
4388
4389static void
dee91e82
DE
4390load_partial_comp_unit_reader (const struct die_reader_specs *reader,
4391 gdb_byte *info_ptr,
4392 struct die_info *comp_unit_die,
4393 int has_children,
4394 void *data)
ae038cb0 4395{
dee91e82 4396 struct dwarf2_cu *cu = reader->cu;
ae038cb0 4397
95554aad 4398 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 4399
ae038cb0
DJ
4400 /* Check if comp unit has_children.
4401 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 4402 If not, there's no more debug_info for this comp unit. */
d85a05f0 4403 if (has_children)
dee91e82
DE
4404 load_partial_dies (reader, info_ptr, 0);
4405}
98bfdba5 4406
dee91e82
DE
4407/* Load the partial DIEs for a secondary CU into memory.
4408 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 4409
dee91e82
DE
4410static void
4411load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
4412{
fd820528 4413 init_cutu_and_read_dies (this_cu, 1, 1, load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
4414}
4415
9cdd5dbd
DE
4416/* Create a list of all compilation units in OBJFILE.
4417 This is only done for -readnow and building partial symtabs. */
ae038cb0
DJ
4418
4419static void
4420create_all_comp_units (struct objfile *objfile)
4421{
4422 int n_allocated;
4423 int n_comp_units;
4424 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
4425 gdb_byte *info_ptr;
4426
4427 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4428 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
4429
4430 n_comp_units = 0;
4431 n_allocated = 10;
4432 all_comp_units = xmalloc (n_allocated
4433 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 4434
3e43a32a
MS
4435 while (info_ptr < dwarf2_per_objfile->info.buffer
4436 + dwarf2_per_objfile->info.size)
ae038cb0 4437 {
c764a876 4438 unsigned int length, initial_length_size;
ae038cb0 4439 struct dwarf2_per_cu_data *this_cu;
b64f50a1 4440 sect_offset offset;
ae038cb0 4441
b64f50a1 4442 offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
4443
4444 /* Read just enough information to find out where the next
4445 compilation unit is. */
c764a876
DE
4446 length = read_initial_length (objfile->obfd, info_ptr,
4447 &initial_length_size);
ae038cb0
DJ
4448
4449 /* Save the compilation unit for later lookup. */
4450 this_cu = obstack_alloc (&objfile->objfile_obstack,
4451 sizeof (struct dwarf2_per_cu_data));
4452 memset (this_cu, 0, sizeof (*this_cu));
4453 this_cu->offset = offset;
c764a876 4454 this_cu->length = length + initial_length_size;
9291a0cd 4455 this_cu->objfile = objfile;
3019eac3 4456 this_cu->info_or_types_section = &dwarf2_per_objfile->info;
ae038cb0
DJ
4457
4458 if (n_comp_units == n_allocated)
4459 {
4460 n_allocated *= 2;
4461 all_comp_units = xrealloc (all_comp_units,
4462 n_allocated
4463 * sizeof (struct dwarf2_per_cu_data *));
4464 }
4465 all_comp_units[n_comp_units++] = this_cu;
4466
4467 info_ptr = info_ptr + this_cu->length;
4468 }
4469
4470 dwarf2_per_objfile->all_comp_units
4471 = obstack_alloc (&objfile->objfile_obstack,
4472 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
4473 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
4474 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
4475 xfree (all_comp_units);
4476 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
4477}
4478
5734ee8b
DJ
4479/* Process all loaded DIEs for compilation unit CU, starting at
4480 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
4481 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
4482 DW_AT_ranges). If NEED_PC is set, then this function will set
4483 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
4484 and record the covered ranges in the addrmap. */
c906108c 4485
72bf9492
DJ
4486static void
4487scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 4488 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 4489{
72bf9492 4490 struct partial_die_info *pdi;
c906108c 4491
91c24f0a
DC
4492 /* Now, march along the PDI's, descending into ones which have
4493 interesting children but skipping the children of the other ones,
4494 until we reach the end of the compilation unit. */
c906108c 4495
72bf9492 4496 pdi = first_die;
91c24f0a 4497
72bf9492
DJ
4498 while (pdi != NULL)
4499 {
4500 fixup_partial_die (pdi, cu);
c906108c 4501
f55ee35c 4502 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
4503 children, so we need to look at them. Ditto for anonymous
4504 enums. */
933c6fe4 4505
72bf9492 4506 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
4507 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
4508 || pdi->tag == DW_TAG_imported_unit)
c906108c 4509 {
72bf9492 4510 switch (pdi->tag)
c906108c
SS
4511 {
4512 case DW_TAG_subprogram:
5734ee8b 4513 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 4514 break;
72929c62 4515 case DW_TAG_constant:
c906108c
SS
4516 case DW_TAG_variable:
4517 case DW_TAG_typedef:
91c24f0a 4518 case DW_TAG_union_type:
72bf9492 4519 if (!pdi->is_declaration)
63d06c5c 4520 {
72bf9492 4521 add_partial_symbol (pdi, cu);
63d06c5c
DC
4522 }
4523 break;
c906108c 4524 case DW_TAG_class_type:
680b30c7 4525 case DW_TAG_interface_type:
c906108c 4526 case DW_TAG_structure_type:
72bf9492 4527 if (!pdi->is_declaration)
c906108c 4528 {
72bf9492 4529 add_partial_symbol (pdi, cu);
c906108c
SS
4530 }
4531 break;
91c24f0a 4532 case DW_TAG_enumeration_type:
72bf9492
DJ
4533 if (!pdi->is_declaration)
4534 add_partial_enumeration (pdi, cu);
c906108c
SS
4535 break;
4536 case DW_TAG_base_type:
a02abb62 4537 case DW_TAG_subrange_type:
c906108c 4538 /* File scope base type definitions are added to the partial
c5aa993b 4539 symbol table. */
72bf9492 4540 add_partial_symbol (pdi, cu);
c906108c 4541 break;
d9fa45fe 4542 case DW_TAG_namespace:
5734ee8b 4543 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 4544 break;
5d7cb8df
JK
4545 case DW_TAG_module:
4546 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
4547 break;
95554aad
TT
4548 case DW_TAG_imported_unit:
4549 {
4550 struct dwarf2_per_cu_data *per_cu;
4551
4552 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
4553 cu->objfile);
4554
4555 /* Go read the partial unit, if needed. */
4556 if (per_cu->v.psymtab == NULL)
4557 process_psymtab_comp_unit (per_cu, 1);
4558
4559 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4560 per_cu);
4561 }
4562 break;
c906108c
SS
4563 default:
4564 break;
4565 }
4566 }
4567
72bf9492
DJ
4568 /* If the die has a sibling, skip to the sibling. */
4569
4570 pdi = pdi->die_sibling;
4571 }
4572}
4573
4574/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 4575
72bf9492 4576 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
4577 name is concatenated with "::" and the partial DIE's name. For
4578 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
4579 Enumerators are an exception; they use the scope of their parent
4580 enumeration type, i.e. the name of the enumeration type is not
4581 prepended to the enumerator.
91c24f0a 4582
72bf9492
DJ
4583 There are two complexities. One is DW_AT_specification; in this
4584 case "parent" means the parent of the target of the specification,
4585 instead of the direct parent of the DIE. The other is compilers
4586 which do not emit DW_TAG_namespace; in this case we try to guess
4587 the fully qualified name of structure types from their members'
4588 linkage names. This must be done using the DIE's children rather
4589 than the children of any DW_AT_specification target. We only need
4590 to do this for structures at the top level, i.e. if the target of
4591 any DW_AT_specification (if any; otherwise the DIE itself) does not
4592 have a parent. */
4593
4594/* Compute the scope prefix associated with PDI's parent, in
4595 compilation unit CU. The result will be allocated on CU's
4596 comp_unit_obstack, or a copy of the already allocated PDI->NAME
4597 field. NULL is returned if no prefix is necessary. */
4598static char *
4599partial_die_parent_scope (struct partial_die_info *pdi,
4600 struct dwarf2_cu *cu)
4601{
4602 char *grandparent_scope;
4603 struct partial_die_info *parent, *real_pdi;
91c24f0a 4604
72bf9492
DJ
4605 /* We need to look at our parent DIE; if we have a DW_AT_specification,
4606 then this means the parent of the specification DIE. */
4607
4608 real_pdi = pdi;
72bf9492 4609 while (real_pdi->has_specification)
10b3939b 4610 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
4611
4612 parent = real_pdi->die_parent;
4613 if (parent == NULL)
4614 return NULL;
4615
4616 if (parent->scope_set)
4617 return parent->scope;
4618
4619 fixup_partial_die (parent, cu);
4620
10b3939b 4621 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 4622
acebe513
UW
4623 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
4624 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
4625 Work around this problem here. */
4626 if (cu->language == language_cplus
6e70227d 4627 && parent->tag == DW_TAG_namespace
acebe513
UW
4628 && strcmp (parent->name, "::") == 0
4629 && grandparent_scope == NULL)
4630 {
4631 parent->scope = NULL;
4632 parent->scope_set = 1;
4633 return NULL;
4634 }
4635
9c6c53f7
SA
4636 if (pdi->tag == DW_TAG_enumerator)
4637 /* Enumerators should not get the name of the enumeration as a prefix. */
4638 parent->scope = grandparent_scope;
4639 else if (parent->tag == DW_TAG_namespace
f55ee35c 4640 || parent->tag == DW_TAG_module
72bf9492
DJ
4641 || parent->tag == DW_TAG_structure_type
4642 || parent->tag == DW_TAG_class_type
680b30c7 4643 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
4644 || parent->tag == DW_TAG_union_type
4645 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
4646 {
4647 if (grandparent_scope == NULL)
4648 parent->scope = parent->name;
4649 else
3e43a32a
MS
4650 parent->scope = typename_concat (&cu->comp_unit_obstack,
4651 grandparent_scope,
f55ee35c 4652 parent->name, 0, cu);
72bf9492 4653 }
72bf9492
DJ
4654 else
4655 {
4656 /* FIXME drow/2004-04-01: What should we be doing with
4657 function-local names? For partial symbols, we should probably be
4658 ignoring them. */
4659 complaint (&symfile_complaints,
e2e0b3e5 4660 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 4661 parent->tag, pdi->offset.sect_off);
72bf9492 4662 parent->scope = grandparent_scope;
c906108c
SS
4663 }
4664
72bf9492
DJ
4665 parent->scope_set = 1;
4666 return parent->scope;
4667}
4668
4669/* Return the fully scoped name associated with PDI, from compilation unit
4670 CU. The result will be allocated with malloc. */
4568ecf9 4671
72bf9492
DJ
4672static char *
4673partial_die_full_name (struct partial_die_info *pdi,
4674 struct dwarf2_cu *cu)
4675{
4676 char *parent_scope;
4677
98bfdba5
PA
4678 /* If this is a template instantiation, we can not work out the
4679 template arguments from partial DIEs. So, unfortunately, we have
4680 to go through the full DIEs. At least any work we do building
4681 types here will be reused if full symbols are loaded later. */
4682 if (pdi->has_template_arguments)
4683 {
4684 fixup_partial_die (pdi, cu);
4685
4686 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4687 {
4688 struct die_info *die;
4689 struct attribute attr;
4690 struct dwarf2_cu *ref_cu = cu;
4691
b64f50a1 4692 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
4693 attr.name = 0;
4694 attr.form = DW_FORM_ref_addr;
4568ecf9 4695 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
4696 die = follow_die_ref (NULL, &attr, &ref_cu);
4697
4698 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4699 }
4700 }
4701
72bf9492
DJ
4702 parent_scope = partial_die_parent_scope (pdi, cu);
4703 if (parent_scope == NULL)
4704 return NULL;
4705 else
f55ee35c 4706 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
4707}
4708
4709static void
72bf9492 4710add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 4711{
e7c27a73 4712 struct objfile *objfile = cu->objfile;
c906108c 4713 CORE_ADDR addr = 0;
decbce07 4714 char *actual_name = NULL;
e142c38c 4715 CORE_ADDR baseaddr;
72bf9492 4716 int built_actual_name = 0;
e142c38c
DJ
4717
4718 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 4719
94af9270
KS
4720 actual_name = partial_die_full_name (pdi, cu);
4721 if (actual_name)
4722 built_actual_name = 1;
63d06c5c 4723
72bf9492
DJ
4724 if (actual_name == NULL)
4725 actual_name = pdi->name;
4726
c906108c
SS
4727 switch (pdi->tag)
4728 {
4729 case DW_TAG_subprogram:
2cfa0c8d 4730 if (pdi->is_external || cu->language == language_ada)
c906108c 4731 {
2cfa0c8d
JB
4732 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4733 of the global scope. But in Ada, we want to be able to access
4734 nested procedures globally. So all Ada subprograms are stored
4735 in the global scope. */
f47fb265 4736 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 4737 mst_text, objfile); */
f47fb265
MS
4738 add_psymbol_to_list (actual_name, strlen (actual_name),
4739 built_actual_name,
4740 VAR_DOMAIN, LOC_BLOCK,
4741 &objfile->global_psymbols,
4742 0, pdi->lowpc + baseaddr,
4743 cu->language, objfile);
c906108c
SS
4744 }
4745 else
4746 {
f47fb265 4747 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 4748 mst_file_text, objfile); */
f47fb265
MS
4749 add_psymbol_to_list (actual_name, strlen (actual_name),
4750 built_actual_name,
4751 VAR_DOMAIN, LOC_BLOCK,
4752 &objfile->static_psymbols,
4753 0, pdi->lowpc + baseaddr,
4754 cu->language, objfile);
c906108c
SS
4755 }
4756 break;
72929c62
JB
4757 case DW_TAG_constant:
4758 {
4759 struct psymbol_allocation_list *list;
4760
4761 if (pdi->is_external)
4762 list = &objfile->global_psymbols;
4763 else
4764 list = &objfile->static_psymbols;
f47fb265
MS
4765 add_psymbol_to_list (actual_name, strlen (actual_name),
4766 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4767 list, 0, 0, cu->language, objfile);
72929c62
JB
4768 }
4769 break;
c906108c 4770 case DW_TAG_variable:
95554aad
TT
4771 if (pdi->d.locdesc)
4772 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 4773
95554aad 4774 if (pdi->d.locdesc
caac4577
JG
4775 && addr == 0
4776 && !dwarf2_per_objfile->has_section_at_zero)
4777 {
4778 /* A global or static variable may also have been stripped
4779 out by the linker if unused, in which case its address
4780 will be nullified; do not add such variables into partial
4781 symbol table then. */
4782 }
4783 else if (pdi->is_external)
c906108c
SS
4784 {
4785 /* Global Variable.
4786 Don't enter into the minimal symbol tables as there is
4787 a minimal symbol table entry from the ELF symbols already.
4788 Enter into partial symbol table if it has a location
4789 descriptor or a type.
4790 If the location descriptor is missing, new_symbol will create
4791 a LOC_UNRESOLVED symbol, the address of the variable will then
4792 be determined from the minimal symbol table whenever the variable
4793 is referenced.
4794 The address for the partial symbol table entry is not
4795 used by GDB, but it comes in handy for debugging partial symbol
4796 table building. */
4797
95554aad 4798 if (pdi->d.locdesc || pdi->has_type)
f47fb265
MS
4799 add_psymbol_to_list (actual_name, strlen (actual_name),
4800 built_actual_name,
4801 VAR_DOMAIN, LOC_STATIC,
4802 &objfile->global_psymbols,
4803 0, addr + baseaddr,
4804 cu->language, objfile);
c906108c
SS
4805 }
4806 else
4807 {
0963b4bd 4808 /* Static Variable. Skip symbols without location descriptors. */
95554aad 4809 if (pdi->d.locdesc == NULL)
decbce07
MS
4810 {
4811 if (built_actual_name)
4812 xfree (actual_name);
4813 return;
4814 }
f47fb265 4815 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 4816 mst_file_data, objfile); */
f47fb265
MS
4817 add_psymbol_to_list (actual_name, strlen (actual_name),
4818 built_actual_name,
4819 VAR_DOMAIN, LOC_STATIC,
4820 &objfile->static_psymbols,
4821 0, addr + baseaddr,
4822 cu->language, objfile);
c906108c
SS
4823 }
4824 break;
4825 case DW_TAG_typedef:
4826 case DW_TAG_base_type:
a02abb62 4827 case DW_TAG_subrange_type:
38d518c9 4828 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4829 built_actual_name,
176620f1 4830 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 4831 &objfile->static_psymbols,
e142c38c 4832 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 4833 break;
72bf9492
DJ
4834 case DW_TAG_namespace:
4835 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4836 built_actual_name,
72bf9492
DJ
4837 VAR_DOMAIN, LOC_TYPEDEF,
4838 &objfile->global_psymbols,
4839 0, (CORE_ADDR) 0, cu->language, objfile);
4840 break;
c906108c 4841 case DW_TAG_class_type:
680b30c7 4842 case DW_TAG_interface_type:
c906108c
SS
4843 case DW_TAG_structure_type:
4844 case DW_TAG_union_type:
4845 case DW_TAG_enumeration_type:
fa4028e9
JB
4846 /* Skip external references. The DWARF standard says in the section
4847 about "Structure, Union, and Class Type Entries": "An incomplete
4848 structure, union or class type is represented by a structure,
4849 union or class entry that does not have a byte size attribute
4850 and that has a DW_AT_declaration attribute." */
4851 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
4852 {
4853 if (built_actual_name)
4854 xfree (actual_name);
4855 return;
4856 }
fa4028e9 4857
63d06c5c
DC
4858 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4859 static vs. global. */
38d518c9 4860 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4861 built_actual_name,
176620f1 4862 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
4863 (cu->language == language_cplus
4864 || cu->language == language_java)
63d06c5c
DC
4865 ? &objfile->global_psymbols
4866 : &objfile->static_psymbols,
e142c38c 4867 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 4868
c906108c
SS
4869 break;
4870 case DW_TAG_enumerator:
38d518c9 4871 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4872 built_actual_name,
176620f1 4873 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
4874 (cu->language == language_cplus
4875 || cu->language == language_java)
f6fe98ef
DJ
4876 ? &objfile->global_psymbols
4877 : &objfile->static_psymbols,
e142c38c 4878 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
4879 break;
4880 default:
4881 break;
4882 }
5c4e30ca 4883
72bf9492
DJ
4884 if (built_actual_name)
4885 xfree (actual_name);
c906108c
SS
4886}
4887
5c4e30ca
DC
4888/* Read a partial die corresponding to a namespace; also, add a symbol
4889 corresponding to that namespace to the symbol table. NAMESPACE is
4890 the name of the enclosing namespace. */
91c24f0a 4891
72bf9492
DJ
4892static void
4893add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 4894 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4895 int need_pc, struct dwarf2_cu *cu)
91c24f0a 4896{
72bf9492 4897 /* Add a symbol for the namespace. */
e7c27a73 4898
72bf9492 4899 add_partial_symbol (pdi, cu);
5c4e30ca
DC
4900
4901 /* Now scan partial symbols in that namespace. */
4902
91c24f0a 4903 if (pdi->has_children)
5734ee8b 4904 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
4905}
4906
5d7cb8df
JK
4907/* Read a partial die corresponding to a Fortran module. */
4908
4909static void
4910add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4911 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4912{
f55ee35c 4913 /* Now scan partial symbols in that module. */
5d7cb8df
JK
4914
4915 if (pdi->has_children)
4916 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4917}
4918
bc30ff58
JB
4919/* Read a partial die corresponding to a subprogram and create a partial
4920 symbol for that subprogram. When the CU language allows it, this
4921 routine also defines a partial symbol for each nested subprogram
4922 that this subprogram contains.
6e70227d 4923
bc30ff58
JB
4924 DIE my also be a lexical block, in which case we simply search
4925 recursively for suprograms defined inside that lexical block.
4926 Again, this is only performed when the CU language allows this
4927 type of definitions. */
4928
4929static void
4930add_partial_subprogram (struct partial_die_info *pdi,
4931 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4932 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4933{
4934 if (pdi->tag == DW_TAG_subprogram)
4935 {
4936 if (pdi->has_pc_info)
4937 {
4938 if (pdi->lowpc < *lowpc)
4939 *lowpc = pdi->lowpc;
4940 if (pdi->highpc > *highpc)
4941 *highpc = pdi->highpc;
5734ee8b
DJ
4942 if (need_pc)
4943 {
4944 CORE_ADDR baseaddr;
4945 struct objfile *objfile = cu->objfile;
4946
4947 baseaddr = ANOFFSET (objfile->section_offsets,
4948 SECT_OFF_TEXT (objfile));
4949 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4950 pdi->lowpc + baseaddr,
4951 pdi->highpc - 1 + baseaddr,
9291a0cd 4952 cu->per_cu->v.psymtab);
5734ee8b 4953 }
481860b3
GB
4954 }
4955
4956 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
4957 {
bc30ff58 4958 if (!pdi->is_declaration)
e8d05480
JB
4959 /* Ignore subprogram DIEs that do not have a name, they are
4960 illegal. Do not emit a complaint at this point, we will
4961 do so when we convert this psymtab into a symtab. */
4962 if (pdi->name)
4963 add_partial_symbol (pdi, cu);
bc30ff58
JB
4964 }
4965 }
6e70227d 4966
bc30ff58
JB
4967 if (! pdi->has_children)
4968 return;
4969
4970 if (cu->language == language_ada)
4971 {
4972 pdi = pdi->die_child;
4973 while (pdi != NULL)
4974 {
4975 fixup_partial_die (pdi, cu);
4976 if (pdi->tag == DW_TAG_subprogram
4977 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4978 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4979 pdi = pdi->die_sibling;
4980 }
4981 }
4982}
4983
91c24f0a
DC
4984/* Read a partial die corresponding to an enumeration type. */
4985
72bf9492
DJ
4986static void
4987add_partial_enumeration (struct partial_die_info *enum_pdi,
4988 struct dwarf2_cu *cu)
91c24f0a 4989{
72bf9492 4990 struct partial_die_info *pdi;
91c24f0a
DC
4991
4992 if (enum_pdi->name != NULL)
72bf9492
DJ
4993 add_partial_symbol (enum_pdi, cu);
4994
4995 pdi = enum_pdi->die_child;
4996 while (pdi)
91c24f0a 4997 {
72bf9492 4998 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4999 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 5000 else
72bf9492
DJ
5001 add_partial_symbol (pdi, cu);
5002 pdi = pdi->die_sibling;
91c24f0a 5003 }
91c24f0a
DC
5004}
5005
6caca83c
CC
5006/* Return the initial uleb128 in the die at INFO_PTR. */
5007
5008static unsigned int
5009peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
5010{
5011 unsigned int bytes_read;
5012
5013 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5014}
5015
4bb7a0a7
DJ
5016/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
5017 Return the corresponding abbrev, or NULL if the number is zero (indicating
5018 an empty DIE). In either case *BYTES_READ will be set to the length of
5019 the initial number. */
5020
5021static struct abbrev_info *
fe1b8b76 5022peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 5023 struct dwarf2_cu *cu)
4bb7a0a7
DJ
5024{
5025 bfd *abfd = cu->objfile->obfd;
5026 unsigned int abbrev_number;
5027 struct abbrev_info *abbrev;
5028
5029 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
5030
5031 if (abbrev_number == 0)
5032 return NULL;
5033
5034 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5035 if (!abbrev)
5036 {
3e43a32a
MS
5037 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
5038 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
5039 }
5040
5041 return abbrev;
5042}
5043
93311388
DE
5044/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
5045 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
5046 DIE. Any children of the skipped DIEs will also be skipped. */
5047
fe1b8b76 5048static gdb_byte *
dee91e82 5049skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
4bb7a0a7 5050{
dee91e82 5051 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
5052 struct abbrev_info *abbrev;
5053 unsigned int bytes_read;
5054
5055 while (1)
5056 {
5057 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5058 if (abbrev == NULL)
5059 return info_ptr + bytes_read;
5060 else
dee91e82 5061 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
5062 }
5063}
5064
93311388
DE
5065/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
5066 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
5067 abbrev corresponding to that skipped uleb128 should be passed in
5068 ABBREV. Returns a pointer to this DIE's sibling, skipping any
5069 children. */
5070
fe1b8b76 5071static gdb_byte *
dee91e82
DE
5072skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
5073 struct abbrev_info *abbrev)
4bb7a0a7
DJ
5074{
5075 unsigned int bytes_read;
5076 struct attribute attr;
dee91e82
DE
5077 bfd *abfd = reader->abfd;
5078 struct dwarf2_cu *cu = reader->cu;
5079 gdb_byte *buffer = reader->buffer;
f664829e
DE
5080 const gdb_byte *buffer_end = reader->buffer_end;
5081 gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
5082 unsigned int form, i;
5083
5084 for (i = 0; i < abbrev->num_attrs; i++)
5085 {
5086 /* The only abbrev we care about is DW_AT_sibling. */
5087 if (abbrev->attrs[i].name == DW_AT_sibling)
5088 {
dee91e82 5089 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 5090 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
5091 complaint (&symfile_complaints,
5092 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 5093 else
b64f50a1 5094 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
5095 }
5096
5097 /* If it isn't DW_AT_sibling, skip this attribute. */
5098 form = abbrev->attrs[i].form;
5099 skip_attribute:
5100 switch (form)
5101 {
4bb7a0a7 5102 case DW_FORM_ref_addr:
ae411497
TT
5103 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
5104 and later it is offset sized. */
5105 if (cu->header.version == 2)
5106 info_ptr += cu->header.addr_size;
5107 else
5108 info_ptr += cu->header.offset_size;
5109 break;
5110 case DW_FORM_addr:
4bb7a0a7
DJ
5111 info_ptr += cu->header.addr_size;
5112 break;
5113 case DW_FORM_data1:
5114 case DW_FORM_ref1:
5115 case DW_FORM_flag:
5116 info_ptr += 1;
5117 break;
2dc7f7b3
TT
5118 case DW_FORM_flag_present:
5119 break;
4bb7a0a7
DJ
5120 case DW_FORM_data2:
5121 case DW_FORM_ref2:
5122 info_ptr += 2;
5123 break;
5124 case DW_FORM_data4:
5125 case DW_FORM_ref4:
5126 info_ptr += 4;
5127 break;
5128 case DW_FORM_data8:
5129 case DW_FORM_ref8:
55f1336d 5130 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
5131 info_ptr += 8;
5132 break;
5133 case DW_FORM_string:
9b1c24c8 5134 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
5135 info_ptr += bytes_read;
5136 break;
2dc7f7b3 5137 case DW_FORM_sec_offset:
4bb7a0a7
DJ
5138 case DW_FORM_strp:
5139 info_ptr += cu->header.offset_size;
5140 break;
2dc7f7b3 5141 case DW_FORM_exprloc:
4bb7a0a7
DJ
5142 case DW_FORM_block:
5143 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5144 info_ptr += bytes_read;
5145 break;
5146 case DW_FORM_block1:
5147 info_ptr += 1 + read_1_byte (abfd, info_ptr);
5148 break;
5149 case DW_FORM_block2:
5150 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
5151 break;
5152 case DW_FORM_block4:
5153 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
5154 break;
5155 case DW_FORM_sdata:
5156 case DW_FORM_udata:
5157 case DW_FORM_ref_udata:
3019eac3
DE
5158 case DW_FORM_GNU_addr_index:
5159 case DW_FORM_GNU_str_index:
f664829e 5160 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
5161 break;
5162 case DW_FORM_indirect:
5163 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5164 info_ptr += bytes_read;
5165 /* We need to continue parsing from here, so just go back to
5166 the top. */
5167 goto skip_attribute;
5168
5169 default:
3e43a32a
MS
5170 error (_("Dwarf Error: Cannot handle %s "
5171 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
5172 dwarf_form_name (form),
5173 bfd_get_filename (abfd));
5174 }
5175 }
5176
5177 if (abbrev->has_children)
dee91e82 5178 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
5179 else
5180 return info_ptr;
5181}
5182
93311388 5183/* Locate ORIG_PDI's sibling.
dee91e82 5184 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 5185
fe1b8b76 5186static gdb_byte *
dee91e82
DE
5187locate_pdi_sibling (const struct die_reader_specs *reader,
5188 struct partial_die_info *orig_pdi,
5189 gdb_byte *info_ptr)
91c24f0a
DC
5190{
5191 /* Do we know the sibling already? */
72bf9492 5192
91c24f0a
DC
5193 if (orig_pdi->sibling)
5194 return orig_pdi->sibling;
5195
5196 /* Are there any children to deal with? */
5197
5198 if (!orig_pdi->has_children)
5199 return info_ptr;
5200
4bb7a0a7 5201 /* Skip the children the long way. */
91c24f0a 5202
dee91e82 5203 return skip_children (reader, info_ptr);
91c24f0a
DC
5204}
5205
c906108c
SS
5206/* Expand this partial symbol table into a full symbol table. */
5207
5208static void
fba45db2 5209dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 5210{
c906108c
SS
5211 if (pst != NULL)
5212 {
5213 if (pst->readin)
5214 {
3e43a32a
MS
5215 warning (_("bug: psymtab for %s is already read in."),
5216 pst->filename);
c906108c
SS
5217 }
5218 else
5219 {
5220 if (info_verbose)
5221 {
3e43a32a
MS
5222 printf_filtered (_("Reading in symbols for %s..."),
5223 pst->filename);
c906108c
SS
5224 gdb_flush (gdb_stdout);
5225 }
5226
10b3939b
DJ
5227 /* Restore our global data. */
5228 dwarf2_per_objfile = objfile_data (pst->objfile,
5229 dwarf2_objfile_data_key);
5230
b2ab525c
KB
5231 /* If this psymtab is constructed from a debug-only objfile, the
5232 has_section_at_zero flag will not necessarily be correct. We
5233 can get the correct value for this flag by looking at the data
5234 associated with the (presumably stripped) associated objfile. */
5235 if (pst->objfile->separate_debug_objfile_backlink)
5236 {
5237 struct dwarf2_per_objfile *dpo_backlink
5238 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
5239 dwarf2_objfile_data_key);
9a619af0 5240
b2ab525c
KB
5241 dwarf2_per_objfile->has_section_at_zero
5242 = dpo_backlink->has_section_at_zero;
5243 }
5244
98bfdba5
PA
5245 dwarf2_per_objfile->reading_partial_symbols = 0;
5246
c906108c
SS
5247 psymtab_to_symtab_1 (pst);
5248
5249 /* Finish up the debug error message. */
5250 if (info_verbose)
a3f17187 5251 printf_filtered (_("done.\n"));
c906108c
SS
5252 }
5253 }
95554aad
TT
5254
5255 process_cu_includes ();
c906108c 5256}
9cdd5dbd
DE
5257\f
5258/* Reading in full CUs. */
c906108c 5259
10b3939b
DJ
5260/* Add PER_CU to the queue. */
5261
5262static void
95554aad
TT
5263queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
5264 enum language pretend_language)
10b3939b
DJ
5265{
5266 struct dwarf2_queue_item *item;
5267
5268 per_cu->queued = 1;
5269 item = xmalloc (sizeof (*item));
5270 item->per_cu = per_cu;
95554aad 5271 item->pretend_language = pretend_language;
10b3939b
DJ
5272 item->next = NULL;
5273
5274 if (dwarf2_queue == NULL)
5275 dwarf2_queue = item;
5276 else
5277 dwarf2_queue_tail->next = item;
5278
5279 dwarf2_queue_tail = item;
5280}
5281
5282/* Process the queue. */
5283
5284static void
a0f42c21 5285process_queue (void)
10b3939b
DJ
5286{
5287 struct dwarf2_queue_item *item, *next_item;
5288
03dd20cc
DJ
5289 /* The queue starts out with one item, but following a DIE reference
5290 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
5291 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
5292 {
9291a0cd
TT
5293 if (dwarf2_per_objfile->using_index
5294 ? !item->per_cu->v.quick->symtab
5295 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
95554aad 5296 process_full_comp_unit (item->per_cu, item->pretend_language);
10b3939b
DJ
5297
5298 item->per_cu->queued = 0;
5299 next_item = item->next;
5300 xfree (item);
5301 }
5302
5303 dwarf2_queue_tail = NULL;
5304}
5305
5306/* Free all allocated queue entries. This function only releases anything if
5307 an error was thrown; if the queue was processed then it would have been
5308 freed as we went along. */
5309
5310static void
5311dwarf2_release_queue (void *dummy)
5312{
5313 struct dwarf2_queue_item *item, *last;
5314
5315 item = dwarf2_queue;
5316 while (item)
5317 {
5318 /* Anything still marked queued is likely to be in an
5319 inconsistent state, so discard it. */
5320 if (item->per_cu->queued)
5321 {
5322 if (item->per_cu->cu != NULL)
dee91e82 5323 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
5324 item->per_cu->queued = 0;
5325 }
5326
5327 last = item;
5328 item = item->next;
5329 xfree (last);
5330 }
5331
5332 dwarf2_queue = dwarf2_queue_tail = NULL;
5333}
5334
5335/* Read in full symbols for PST, and anything it depends on. */
5336
c906108c 5337static void
fba45db2 5338psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 5339{
10b3939b 5340 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
5341 int i;
5342
95554aad
TT
5343 if (pst->readin)
5344 return;
5345
aaa75496 5346 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
5347 if (!pst->dependencies[i]->readin
5348 && pst->dependencies[i]->user == NULL)
aaa75496
JB
5349 {
5350 /* Inform about additional files that need to be read in. */
5351 if (info_verbose)
5352 {
a3f17187 5353 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
5354 fputs_filtered (" ", gdb_stdout);
5355 wrap_here ("");
5356 fputs_filtered ("and ", gdb_stdout);
5357 wrap_here ("");
5358 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 5359 wrap_here (""); /* Flush output. */
aaa75496
JB
5360 gdb_flush (gdb_stdout);
5361 }
5362 psymtab_to_symtab_1 (pst->dependencies[i]);
5363 }
5364
e38df1d0 5365 per_cu = pst->read_symtab_private;
10b3939b
DJ
5366
5367 if (per_cu == NULL)
aaa75496
JB
5368 {
5369 /* It's an include file, no symbols to read for it.
5370 Everything is in the parent symtab. */
5371 pst->readin = 1;
5372 return;
5373 }
c906108c 5374
a0f42c21 5375 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
5376}
5377
dee91e82
DE
5378/* Trivial hash function for die_info: the hash value of a DIE
5379 is its offset in .debug_info for this objfile. */
10b3939b 5380
dee91e82
DE
5381static hashval_t
5382die_hash (const void *item)
10b3939b 5383{
dee91e82 5384 const struct die_info *die = item;
6502dd73 5385
dee91e82
DE
5386 return die->offset.sect_off;
5387}
63d06c5c 5388
dee91e82
DE
5389/* Trivial comparison function for die_info structures: two DIEs
5390 are equal if they have the same offset. */
98bfdba5 5391
dee91e82
DE
5392static int
5393die_eq (const void *item_lhs, const void *item_rhs)
5394{
5395 const struct die_info *die_lhs = item_lhs;
5396 const struct die_info *die_rhs = item_rhs;
c906108c 5397
dee91e82
DE
5398 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
5399}
c906108c 5400
dee91e82
DE
5401/* die_reader_func for load_full_comp_unit.
5402 This is identical to read_signatured_type_reader,
5403 but is kept separate for now. */
c906108c 5404
dee91e82
DE
5405static void
5406load_full_comp_unit_reader (const struct die_reader_specs *reader,
5407 gdb_byte *info_ptr,
5408 struct die_info *comp_unit_die,
5409 int has_children,
5410 void *data)
5411{
5412 struct dwarf2_cu *cu = reader->cu;
95554aad 5413 enum language *language_ptr = data;
6caca83c 5414
dee91e82
DE
5415 gdb_assert (cu->die_hash == NULL);
5416 cu->die_hash =
5417 htab_create_alloc_ex (cu->header.length / 12,
5418 die_hash,
5419 die_eq,
5420 NULL,
5421 &cu->comp_unit_obstack,
5422 hashtab_obstack_allocate,
5423 dummy_obstack_deallocate);
e142c38c 5424
dee91e82
DE
5425 if (has_children)
5426 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
5427 &info_ptr, comp_unit_die);
5428 cu->dies = comp_unit_die;
5429 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
5430
5431 /* We try not to read any attributes in this function, because not
9cdd5dbd 5432 all CUs needed for references have been loaded yet, and symbol
10b3939b 5433 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
5434 or we won't be able to build types correctly.
5435 Similarly, if we do not read the producer, we can not apply
5436 producer-specific interpretation. */
95554aad 5437 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 5438}
10b3939b 5439
dee91e82 5440/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 5441
dee91e82 5442static void
95554aad
TT
5443load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
5444 enum language pretend_language)
dee91e82 5445{
3019eac3 5446 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 5447
95554aad
TT
5448 init_cutu_and_read_dies (this_cu, 1, 1, load_full_comp_unit_reader,
5449 &pretend_language);
10b3939b
DJ
5450}
5451
3da10d80
KS
5452/* Add a DIE to the delayed physname list. */
5453
5454static void
5455add_to_method_list (struct type *type, int fnfield_index, int index,
5456 const char *name, struct die_info *die,
5457 struct dwarf2_cu *cu)
5458{
5459 struct delayed_method_info mi;
5460 mi.type = type;
5461 mi.fnfield_index = fnfield_index;
5462 mi.index = index;
5463 mi.name = name;
5464 mi.die = die;
5465 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
5466}
5467
5468/* A cleanup for freeing the delayed method list. */
5469
5470static void
5471free_delayed_list (void *ptr)
5472{
5473 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
5474 if (cu->method_list != NULL)
5475 {
5476 VEC_free (delayed_method_info, cu->method_list);
5477 cu->method_list = NULL;
5478 }
5479}
5480
5481/* Compute the physnames of any methods on the CU's method list.
5482
5483 The computation of method physnames is delayed in order to avoid the
5484 (bad) condition that one of the method's formal parameters is of an as yet
5485 incomplete type. */
5486
5487static void
5488compute_delayed_physnames (struct dwarf2_cu *cu)
5489{
5490 int i;
5491 struct delayed_method_info *mi;
5492 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
5493 {
1d06ead6 5494 const char *physname;
3da10d80
KS
5495 struct fn_fieldlist *fn_flp
5496 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
1d06ead6 5497 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
3da10d80
KS
5498 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
5499 }
5500}
5501
a766d390
DE
5502/* Go objects should be embedded in a DW_TAG_module DIE,
5503 and it's not clear if/how imported objects will appear.
5504 To keep Go support simple until that's worked out,
5505 go back through what we've read and create something usable.
5506 We could do this while processing each DIE, and feels kinda cleaner,
5507 but that way is more invasive.
5508 This is to, for example, allow the user to type "p var" or "b main"
5509 without having to specify the package name, and allow lookups
5510 of module.object to work in contexts that use the expression
5511 parser. */
5512
5513static void
5514fixup_go_packaging (struct dwarf2_cu *cu)
5515{
5516 char *package_name = NULL;
5517 struct pending *list;
5518 int i;
5519
5520 for (list = global_symbols; list != NULL; list = list->next)
5521 {
5522 for (i = 0; i < list->nsyms; ++i)
5523 {
5524 struct symbol *sym = list->symbol[i];
5525
5526 if (SYMBOL_LANGUAGE (sym) == language_go
5527 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5528 {
5529 char *this_package_name = go_symbol_package_name (sym);
5530
5531 if (this_package_name == NULL)
5532 continue;
5533 if (package_name == NULL)
5534 package_name = this_package_name;
5535 else
5536 {
5537 if (strcmp (package_name, this_package_name) != 0)
5538 complaint (&symfile_complaints,
5539 _("Symtab %s has objects from two different Go packages: %s and %s"),
5540 (sym->symtab && sym->symtab->filename
5541 ? sym->symtab->filename
5542 : cu->objfile->name),
5543 this_package_name, package_name);
5544 xfree (this_package_name);
5545 }
5546 }
5547 }
5548 }
5549
5550 if (package_name != NULL)
5551 {
5552 struct objfile *objfile = cu->objfile;
5553 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
5554 package_name, objfile);
5555 struct symbol *sym;
5556
5557 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5558
5559 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5560 SYMBOL_SET_LANGUAGE (sym, language_go);
5561 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
5562 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
5563 e.g., "main" finds the "main" module and not C's main(). */
5564 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
5565 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
5566 SYMBOL_TYPE (sym) = type;
5567
5568 add_symbol_to_list (sym, &global_symbols);
5569
5570 xfree (package_name);
5571 }
5572}
5573
95554aad
TT
5574static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
5575
5576/* Return the symtab for PER_CU. This works properly regardless of
5577 whether we're using the index or psymtabs. */
5578
5579static struct symtab *
5580get_symtab (struct dwarf2_per_cu_data *per_cu)
5581{
5582 return (dwarf2_per_objfile->using_index
5583 ? per_cu->v.quick->symtab
5584 : per_cu->v.psymtab->symtab);
5585}
5586
5587/* A helper function for computing the list of all symbol tables
5588 included by PER_CU. */
5589
5590static void
5591recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
5592 htab_t all_children,
5593 struct dwarf2_per_cu_data *per_cu)
5594{
5595 void **slot;
5596 int ix;
5597 struct dwarf2_per_cu_data *iter;
5598
5599 slot = htab_find_slot (all_children, per_cu, INSERT);
5600 if (*slot != NULL)
5601 {
5602 /* This inclusion and its children have been processed. */
5603 return;
5604 }
5605
5606 *slot = per_cu;
5607 /* Only add a CU if it has a symbol table. */
5608 if (get_symtab (per_cu) != NULL)
5609 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
5610
5611 for (ix = 0;
5612 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
5613 ++ix)
5614 recursively_compute_inclusions (result, all_children, iter);
5615}
5616
5617/* Compute the symtab 'includes' fields for the symtab related to
5618 PER_CU. */
5619
5620static void
5621compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
5622{
5623 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
5624 {
5625 int ix, len;
5626 struct dwarf2_per_cu_data *iter;
5627 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
5628 htab_t all_children;
5629 struct symtab *symtab = get_symtab (per_cu);
5630
5631 /* If we don't have a symtab, we can just skip this case. */
5632 if (symtab == NULL)
5633 return;
5634
5635 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
5636 NULL, xcalloc, xfree);
5637
5638 for (ix = 0;
5639 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
5640 ix, iter);
5641 ++ix)
5642 recursively_compute_inclusions (&result_children, all_children, iter);
5643
5644 /* Now we have a transitive closure of all the included CUs, so
5645 we can convert it to a list of symtabs. */
5646 len = VEC_length (dwarf2_per_cu_ptr, result_children);
5647 symtab->includes
5648 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
5649 (len + 1) * sizeof (struct symtab *));
5650 for (ix = 0;
5651 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
5652 ++ix)
5653 symtab->includes[ix] = get_symtab (iter);
5654 symtab->includes[len] = NULL;
5655
5656 VEC_free (dwarf2_per_cu_ptr, result_children);
5657 htab_delete (all_children);
5658 }
5659}
5660
5661/* Compute the 'includes' field for the symtabs of all the CUs we just
5662 read. */
5663
5664static void
5665process_cu_includes (void)
5666{
5667 int ix;
5668 struct dwarf2_per_cu_data *iter;
5669
5670 for (ix = 0;
5671 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
5672 ix, iter);
5673 ++ix)
5674 compute_symtab_includes (iter);
5675
5676 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
5677}
5678
9cdd5dbd 5679/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
5680 already been loaded into memory. */
5681
5682static void
95554aad
TT
5683process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
5684 enum language pretend_language)
10b3939b 5685{
10b3939b 5686 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 5687 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
5688 CORE_ADDR lowpc, highpc;
5689 struct symtab *symtab;
3da10d80 5690 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
5691 CORE_ADDR baseaddr;
5692
5693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5694
10b3939b
DJ
5695 buildsym_init ();
5696 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 5697 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
5698
5699 cu->list_in_scope = &file_symbols;
c906108c 5700
95554aad
TT
5701 cu->language = pretend_language;
5702 cu->language_defn = language_def (cu->language);
5703
c906108c 5704 /* Do line number decoding in read_file_scope () */
10b3939b 5705 process_die (cu->dies, cu);
c906108c 5706
a766d390
DE
5707 /* For now fudge the Go package. */
5708 if (cu->language == language_go)
5709 fixup_go_packaging (cu);
5710
3da10d80
KS
5711 /* Now that we have processed all the DIEs in the CU, all the types
5712 should be complete, and it should now be safe to compute all of the
5713 physnames. */
5714 compute_delayed_physnames (cu);
5715 do_cleanups (delayed_list_cleanup);
5716
fae299cd
DC
5717 /* Some compilers don't define a DW_AT_high_pc attribute for the
5718 compilation unit. If the DW_AT_high_pc is missing, synthesize
5719 it, by scanning the DIE's below the compilation unit. */
10b3939b 5720 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 5721
613e1657 5722 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c 5723
8be455d7 5724 if (symtab != NULL)
c906108c 5725 {
df15bd07 5726 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 5727
8be455d7
JK
5728 /* Set symtab language to language from DW_AT_language. If the
5729 compilation is from a C file generated by language preprocessors, do
5730 not set the language if it was already deduced by start_subfile. */
5731 if (!(cu->language == language_c && symtab->language != language_c))
5732 symtab->language = cu->language;
5733
5734 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
5735 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
5736 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
5737 there were bugs in prologue debug info, fixed later in GCC-4.5
5738 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
5739
5740 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
5741 needed, it would be wrong due to missing DW_AT_producer there.
5742
5743 Still one can confuse GDB by using non-standard GCC compilation
5744 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
5745 */
ab260dad 5746 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 5747 symtab->locations_valid = 1;
e0d00bc7
JK
5748
5749 if (gcc_4_minor >= 5)
5750 symtab->epilogue_unwind_valid = 1;
96408a79
SA
5751
5752 symtab->call_site_htab = cu->call_site_htab;
c906108c 5753 }
9291a0cd
TT
5754
5755 if (dwarf2_per_objfile->using_index)
5756 per_cu->v.quick->symtab = symtab;
5757 else
5758 {
5759 struct partial_symtab *pst = per_cu->v.psymtab;
5760 pst->symtab = symtab;
5761 pst->readin = 1;
5762 }
c906108c 5763
95554aad
TT
5764 /* Push it for inclusion processing later. */
5765 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
5766
c906108c
SS
5767 do_cleanups (back_to);
5768}
5769
95554aad
TT
5770/* Process an imported unit DIE. */
5771
5772static void
5773process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
5774{
5775 struct attribute *attr;
5776
5777 attr = dwarf2_attr (die, DW_AT_import, cu);
5778 if (attr != NULL)
5779 {
5780 struct dwarf2_per_cu_data *per_cu;
5781 struct symtab *imported_symtab;
5782 sect_offset offset;
5783
5784 offset = dwarf2_get_ref_die_offset (attr);
5785 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5786
5787 /* Queue the unit, if needed. */
5788 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
5789 load_full_comp_unit (per_cu, cu->language);
5790
5791 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5792 per_cu);
5793 }
5794}
5795
c906108c
SS
5796/* Process a die and its children. */
5797
5798static void
e7c27a73 5799process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5800{
5801 switch (die->tag)
5802 {
5803 case DW_TAG_padding:
5804 break;
5805 case DW_TAG_compile_unit:
95554aad 5806 case DW_TAG_partial_unit:
e7c27a73 5807 read_file_scope (die, cu);
c906108c 5808 break;
348e048f
DE
5809 case DW_TAG_type_unit:
5810 read_type_unit_scope (die, cu);
5811 break;
c906108c 5812 case DW_TAG_subprogram:
c906108c 5813 case DW_TAG_inlined_subroutine:
edb3359d 5814 read_func_scope (die, cu);
c906108c
SS
5815 break;
5816 case DW_TAG_lexical_block:
14898363
L
5817 case DW_TAG_try_block:
5818 case DW_TAG_catch_block:
e7c27a73 5819 read_lexical_block_scope (die, cu);
c906108c 5820 break;
96408a79
SA
5821 case DW_TAG_GNU_call_site:
5822 read_call_site_scope (die, cu);
5823 break;
c906108c 5824 case DW_TAG_class_type:
680b30c7 5825 case DW_TAG_interface_type:
c906108c
SS
5826 case DW_TAG_structure_type:
5827 case DW_TAG_union_type:
134d01f1 5828 process_structure_scope (die, cu);
c906108c
SS
5829 break;
5830 case DW_TAG_enumeration_type:
134d01f1 5831 process_enumeration_scope (die, cu);
c906108c 5832 break;
134d01f1 5833
f792889a
DJ
5834 /* These dies have a type, but processing them does not create
5835 a symbol or recurse to process the children. Therefore we can
5836 read them on-demand through read_type_die. */
c906108c 5837 case DW_TAG_subroutine_type:
72019c9c 5838 case DW_TAG_set_type:
c906108c 5839 case DW_TAG_array_type:
c906108c 5840 case DW_TAG_pointer_type:
c906108c 5841 case DW_TAG_ptr_to_member_type:
c906108c 5842 case DW_TAG_reference_type:
c906108c 5843 case DW_TAG_string_type:
c906108c 5844 break;
134d01f1 5845
c906108c 5846 case DW_TAG_base_type:
a02abb62 5847 case DW_TAG_subrange_type:
cb249c71 5848 case DW_TAG_typedef:
134d01f1
DJ
5849 /* Add a typedef symbol for the type definition, if it has a
5850 DW_AT_name. */
f792889a 5851 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 5852 break;
c906108c 5853 case DW_TAG_common_block:
e7c27a73 5854 read_common_block (die, cu);
c906108c
SS
5855 break;
5856 case DW_TAG_common_inclusion:
5857 break;
d9fa45fe 5858 case DW_TAG_namespace:
63d06c5c 5859 processing_has_namespace_info = 1;
e7c27a73 5860 read_namespace (die, cu);
d9fa45fe 5861 break;
5d7cb8df 5862 case DW_TAG_module:
f55ee35c 5863 processing_has_namespace_info = 1;
5d7cb8df
JK
5864 read_module (die, cu);
5865 break;
d9fa45fe
DC
5866 case DW_TAG_imported_declaration:
5867 case DW_TAG_imported_module:
63d06c5c 5868 processing_has_namespace_info = 1;
27aa8d6a
SW
5869 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
5870 || cu->language != language_fortran))
5871 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
5872 dwarf_tag_name (die->tag));
5873 read_import_statement (die, cu);
d9fa45fe 5874 break;
95554aad
TT
5875
5876 case DW_TAG_imported_unit:
5877 process_imported_unit_die (die, cu);
5878 break;
5879
c906108c 5880 default:
e7c27a73 5881 new_symbol (die, NULL, cu);
c906108c
SS
5882 break;
5883 }
5884}
5885
94af9270
KS
5886/* A helper function for dwarf2_compute_name which determines whether DIE
5887 needs to have the name of the scope prepended to the name listed in the
5888 die. */
5889
5890static int
5891die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
5892{
1c809c68
TT
5893 struct attribute *attr;
5894
94af9270
KS
5895 switch (die->tag)
5896 {
5897 case DW_TAG_namespace:
5898 case DW_TAG_typedef:
5899 case DW_TAG_class_type:
5900 case DW_TAG_interface_type:
5901 case DW_TAG_structure_type:
5902 case DW_TAG_union_type:
5903 case DW_TAG_enumeration_type:
5904 case DW_TAG_enumerator:
5905 case DW_TAG_subprogram:
5906 case DW_TAG_member:
5907 return 1;
5908
5909 case DW_TAG_variable:
c2b0a229 5910 case DW_TAG_constant:
94af9270
KS
5911 /* We only need to prefix "globally" visible variables. These include
5912 any variable marked with DW_AT_external or any variable that
5913 lives in a namespace. [Variables in anonymous namespaces
5914 require prefixing, but they are not DW_AT_external.] */
5915
5916 if (dwarf2_attr (die, DW_AT_specification, cu))
5917 {
5918 struct dwarf2_cu *spec_cu = cu;
9a619af0 5919
94af9270
KS
5920 return die_needs_namespace (die_specification (die, &spec_cu),
5921 spec_cu);
5922 }
5923
1c809c68 5924 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
5925 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5926 && die->parent->tag != DW_TAG_module)
1c809c68
TT
5927 return 0;
5928 /* A variable in a lexical block of some kind does not need a
5929 namespace, even though in C++ such variables may be external
5930 and have a mangled name. */
5931 if (die->parent->tag == DW_TAG_lexical_block
5932 || die->parent->tag == DW_TAG_try_block
1054b214
TT
5933 || die->parent->tag == DW_TAG_catch_block
5934 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
5935 return 0;
5936 return 1;
94af9270
KS
5937
5938 default:
5939 return 0;
5940 }
5941}
5942
98bfdba5
PA
5943/* Retrieve the last character from a mem_file. */
5944
5945static void
5946do_ui_file_peek_last (void *object, const char *buffer, long length)
5947{
5948 char *last_char_p = (char *) object;
5949
5950 if (length > 0)
5951 *last_char_p = buffer[length - 1];
5952}
5953
94af9270 5954/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
5955 compute the physname for the object, which include a method's:
5956 - formal parameters (C++/Java),
5957 - receiver type (Go),
5958 - return type (Java).
5959
5960 The term "physname" is a bit confusing.
5961 For C++, for example, it is the demangled name.
5962 For Go, for example, it's the mangled name.
94af9270 5963
af6b7be1
JB
5964 For Ada, return the DIE's linkage name rather than the fully qualified
5965 name. PHYSNAME is ignored..
5966
94af9270
KS
5967 The result is allocated on the objfile_obstack and canonicalized. */
5968
5969static const char *
5970dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5971 int physname)
5972{
bb5ed363
DE
5973 struct objfile *objfile = cu->objfile;
5974
94af9270
KS
5975 if (name == NULL)
5976 name = dwarf2_name (die, cu);
5977
f55ee35c
JK
5978 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5979 compute it by typename_concat inside GDB. */
5980 if (cu->language == language_ada
5981 || (cu->language == language_fortran && physname))
5982 {
5983 /* For Ada unit, we prefer the linkage name over the name, as
5984 the former contains the exported name, which the user expects
5985 to be able to reference. Ideally, we want the user to be able
5986 to reference this entity using either natural or linkage name,
5987 but we haven't started looking at this enhancement yet. */
5988 struct attribute *attr;
5989
5990 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5991 if (attr == NULL)
5992 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5993 if (attr && DW_STRING (attr))
5994 return DW_STRING (attr);
5995 }
5996
94af9270
KS
5997 /* These are the only languages we know how to qualify names in. */
5998 if (name != NULL
f55ee35c
JK
5999 && (cu->language == language_cplus || cu->language == language_java
6000 || cu->language == language_fortran))
94af9270
KS
6001 {
6002 if (die_needs_namespace (die, cu))
6003 {
6004 long length;
0d5cff50 6005 const char *prefix;
94af9270
KS
6006 struct ui_file *buf;
6007
6008 prefix = determine_prefix (die, cu);
6009 buf = mem_fileopen ();
6010 if (*prefix != '\0')
6011 {
f55ee35c
JK
6012 char *prefixed_name = typename_concat (NULL, prefix, name,
6013 physname, cu);
9a619af0 6014
94af9270
KS
6015 fputs_unfiltered (prefixed_name, buf);
6016 xfree (prefixed_name);
6017 }
6018 else
62d5b8da 6019 fputs_unfiltered (name, buf);
94af9270 6020
98bfdba5
PA
6021 /* Template parameters may be specified in the DIE's DW_AT_name, or
6022 as children with DW_TAG_template_type_param or
6023 DW_TAG_value_type_param. If the latter, add them to the name
6024 here. If the name already has template parameters, then
6025 skip this step; some versions of GCC emit both, and
6026 it is more efficient to use the pre-computed name.
6027
6028 Something to keep in mind about this process: it is very
6029 unlikely, or in some cases downright impossible, to produce
6030 something that will match the mangled name of a function.
6031 If the definition of the function has the same debug info,
6032 we should be able to match up with it anyway. But fallbacks
6033 using the minimal symbol, for instance to find a method
6034 implemented in a stripped copy of libstdc++, will not work.
6035 If we do not have debug info for the definition, we will have to
6036 match them up some other way.
6037
6038 When we do name matching there is a related problem with function
6039 templates; two instantiated function templates are allowed to
6040 differ only by their return types, which we do not add here. */
6041
6042 if (cu->language == language_cplus && strchr (name, '<') == NULL)
6043 {
6044 struct attribute *attr;
6045 struct die_info *child;
6046 int first = 1;
6047
6048 die->building_fullname = 1;
6049
6050 for (child = die->child; child != NULL; child = child->sibling)
6051 {
6052 struct type *type;
12df843f 6053 LONGEST value;
98bfdba5
PA
6054 gdb_byte *bytes;
6055 struct dwarf2_locexpr_baton *baton;
6056 struct value *v;
6057
6058 if (child->tag != DW_TAG_template_type_param
6059 && child->tag != DW_TAG_template_value_param)
6060 continue;
6061
6062 if (first)
6063 {
6064 fputs_unfiltered ("<", buf);
6065 first = 0;
6066 }
6067 else
6068 fputs_unfiltered (", ", buf);
6069
6070 attr = dwarf2_attr (child, DW_AT_type, cu);
6071 if (attr == NULL)
6072 {
6073 complaint (&symfile_complaints,
6074 _("template parameter missing DW_AT_type"));
6075 fputs_unfiltered ("UNKNOWN_TYPE", buf);
6076 continue;
6077 }
6078 type = die_type (child, cu);
6079
6080 if (child->tag == DW_TAG_template_type_param)
6081 {
6082 c_print_type (type, "", buf, -1, 0);
6083 continue;
6084 }
6085
6086 attr = dwarf2_attr (child, DW_AT_const_value, cu);
6087 if (attr == NULL)
6088 {
6089 complaint (&symfile_complaints,
3e43a32a
MS
6090 _("template parameter missing "
6091 "DW_AT_const_value"));
98bfdba5
PA
6092 fputs_unfiltered ("UNKNOWN_VALUE", buf);
6093 continue;
6094 }
6095
6096 dwarf2_const_value_attr (attr, type, name,
6097 &cu->comp_unit_obstack, cu,
6098 &value, &bytes, &baton);
6099
6100 if (TYPE_NOSIGN (type))
6101 /* GDB prints characters as NUMBER 'CHAR'. If that's
6102 changed, this can use value_print instead. */
6103 c_printchar (value, type, buf);
6104 else
6105 {
6106 struct value_print_options opts;
6107
6108 if (baton != NULL)
6109 v = dwarf2_evaluate_loc_desc (type, NULL,
6110 baton->data,
6111 baton->size,
6112 baton->per_cu);
6113 else if (bytes != NULL)
6114 {
6115 v = allocate_value (type);
6116 memcpy (value_contents_writeable (v), bytes,
6117 TYPE_LENGTH (type));
6118 }
6119 else
6120 v = value_from_longest (type, value);
6121
3e43a32a
MS
6122 /* Specify decimal so that we do not depend on
6123 the radix. */
98bfdba5
PA
6124 get_formatted_print_options (&opts, 'd');
6125 opts.raw = 1;
6126 value_print (v, buf, &opts);
6127 release_value (v);
6128 value_free (v);
6129 }
6130 }
6131
6132 die->building_fullname = 0;
6133
6134 if (!first)
6135 {
6136 /* Close the argument list, with a space if necessary
6137 (nested templates). */
6138 char last_char = '\0';
6139 ui_file_put (buf, do_ui_file_peek_last, &last_char);
6140 if (last_char == '>')
6141 fputs_unfiltered (" >", buf);
6142 else
6143 fputs_unfiltered (">", buf);
6144 }
6145 }
6146
94af9270
KS
6147 /* For Java and C++ methods, append formal parameter type
6148 information, if PHYSNAME. */
6e70227d 6149
94af9270
KS
6150 if (physname && die->tag == DW_TAG_subprogram
6151 && (cu->language == language_cplus
6152 || cu->language == language_java))
6153 {
6154 struct type *type = read_type_die (die, cu);
6155
3167638f 6156 c_type_print_args (type, buf, 1, cu->language);
94af9270
KS
6157
6158 if (cu->language == language_java)
6159 {
6160 /* For java, we must append the return type to method
0963b4bd 6161 names. */
94af9270
KS
6162 if (die->tag == DW_TAG_subprogram)
6163 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
6164 0, 0);
6165 }
6166 else if (cu->language == language_cplus)
6167 {
60430eff
DJ
6168 /* Assume that an artificial first parameter is
6169 "this", but do not crash if it is not. RealView
6170 marks unnamed (and thus unused) parameters as
6171 artificial; there is no way to differentiate
6172 the two cases. */
94af9270
KS
6173 if (TYPE_NFIELDS (type) > 0
6174 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 6175 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
6176 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
6177 0))))
94af9270
KS
6178 fputs_unfiltered (" const", buf);
6179 }
6180 }
6181
bb5ed363 6182 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
6183 &length);
6184 ui_file_delete (buf);
6185
6186 if (cu->language == language_cplus)
6187 {
6188 char *cname
6189 = dwarf2_canonicalize_name (name, cu,
bb5ed363 6190 &objfile->objfile_obstack);
9a619af0 6191
94af9270
KS
6192 if (cname != NULL)
6193 name = cname;
6194 }
6195 }
6196 }
6197
6198 return name;
6199}
6200
0114d602
DJ
6201/* Return the fully qualified name of DIE, based on its DW_AT_name.
6202 If scope qualifiers are appropriate they will be added. The result
6203 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
6204 not have a name. NAME may either be from a previous call to
6205 dwarf2_name or NULL.
6206
0963b4bd 6207 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
6208
6209static const char *
94af9270 6210dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 6211{
94af9270
KS
6212 return dwarf2_compute_name (name, die, cu, 0);
6213}
0114d602 6214
94af9270
KS
6215/* Construct a physname for the given DIE in CU. NAME may either be
6216 from a previous call to dwarf2_name or NULL. The result will be
6217 allocated on the objfile_objstack or NULL if the DIE does not have a
6218 name.
0114d602 6219
94af9270 6220 The output string will be canonicalized (if C++/Java). */
0114d602 6221
94af9270
KS
6222static const char *
6223dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
6224{
bb5ed363 6225 struct objfile *objfile = cu->objfile;
900e11f9
JK
6226 struct attribute *attr;
6227 const char *retval, *mangled = NULL, *canon = NULL;
6228 struct cleanup *back_to;
6229 int need_copy = 1;
6230
6231 /* In this case dwarf2_compute_name is just a shortcut not building anything
6232 on its own. */
6233 if (!die_needs_namespace (die, cu))
6234 return dwarf2_compute_name (name, die, cu, 1);
6235
6236 back_to = make_cleanup (null_cleanup, NULL);
6237
6238 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
6239 if (!attr)
6240 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
6241
6242 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
6243 has computed. */
6244 if (attr && DW_STRING (attr))
6245 {
6246 char *demangled;
6247
6248 mangled = DW_STRING (attr);
6249
6250 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
6251 type. It is easier for GDB users to search for such functions as
6252 `name(params)' than `long name(params)'. In such case the minimal
6253 symbol names do not match the full symbol names but for template
6254 functions there is never a need to look up their definition from their
6255 declaration so the only disadvantage remains the minimal symbol
6256 variant `long name(params)' does not have the proper inferior type.
6257 */
6258
a766d390
DE
6259 if (cu->language == language_go)
6260 {
6261 /* This is a lie, but we already lie to the caller new_symbol_full.
6262 new_symbol_full assumes we return the mangled name.
6263 This just undoes that lie until things are cleaned up. */
6264 demangled = NULL;
6265 }
6266 else
6267 {
6268 demangled = cplus_demangle (mangled,
6269 (DMGL_PARAMS | DMGL_ANSI
6270 | (cu->language == language_java
6271 ? DMGL_JAVA | DMGL_RET_POSTFIX
6272 : DMGL_RET_DROP)));
6273 }
900e11f9
JK
6274 if (demangled)
6275 {
6276 make_cleanup (xfree, demangled);
6277 canon = demangled;
6278 }
6279 else
6280 {
6281 canon = mangled;
6282 need_copy = 0;
6283 }
6284 }
6285
6286 if (canon == NULL || check_physname)
6287 {
6288 const char *physname = dwarf2_compute_name (name, die, cu, 1);
6289
6290 if (canon != NULL && strcmp (physname, canon) != 0)
6291 {
6292 /* It may not mean a bug in GDB. The compiler could also
6293 compute DW_AT_linkage_name incorrectly. But in such case
6294 GDB would need to be bug-to-bug compatible. */
6295
6296 complaint (&symfile_complaints,
6297 _("Computed physname <%s> does not match demangled <%s> "
6298 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 6299 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
6300
6301 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
6302 is available here - over computed PHYSNAME. It is safer
6303 against both buggy GDB and buggy compilers. */
6304
6305 retval = canon;
6306 }
6307 else
6308 {
6309 retval = physname;
6310 need_copy = 0;
6311 }
6312 }
6313 else
6314 retval = canon;
6315
6316 if (need_copy)
6317 retval = obsavestring (retval, strlen (retval),
bb5ed363 6318 &objfile->objfile_obstack);
900e11f9
JK
6319
6320 do_cleanups (back_to);
6321 return retval;
0114d602
DJ
6322}
6323
27aa8d6a
SW
6324/* Read the import statement specified by the given die and record it. */
6325
6326static void
6327read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
6328{
bb5ed363 6329 struct objfile *objfile = cu->objfile;
27aa8d6a 6330 struct attribute *import_attr;
32019081 6331 struct die_info *imported_die, *child_die;
de4affc9 6332 struct dwarf2_cu *imported_cu;
27aa8d6a 6333 const char *imported_name;
794684b6 6334 const char *imported_name_prefix;
13387711
SW
6335 const char *canonical_name;
6336 const char *import_alias;
6337 const char *imported_declaration = NULL;
794684b6 6338 const char *import_prefix;
32019081
JK
6339 VEC (const_char_ptr) *excludes = NULL;
6340 struct cleanup *cleanups;
13387711
SW
6341
6342 char *temp;
27aa8d6a
SW
6343
6344 import_attr = dwarf2_attr (die, DW_AT_import, cu);
6345 if (import_attr == NULL)
6346 {
6347 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
6348 dwarf_tag_name (die->tag));
6349 return;
6350 }
6351
de4affc9
CC
6352 imported_cu = cu;
6353 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
6354 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
6355 if (imported_name == NULL)
6356 {
6357 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
6358
6359 The import in the following code:
6360 namespace A
6361 {
6362 typedef int B;
6363 }
6364
6365 int main ()
6366 {
6367 using A::B;
6368 B b;
6369 return b;
6370 }
6371
6372 ...
6373 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
6374 <52> DW_AT_decl_file : 1
6375 <53> DW_AT_decl_line : 6
6376 <54> DW_AT_import : <0x75>
6377 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
6378 <59> DW_AT_name : B
6379 <5b> DW_AT_decl_file : 1
6380 <5c> DW_AT_decl_line : 2
6381 <5d> DW_AT_type : <0x6e>
6382 ...
6383 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
6384 <76> DW_AT_byte_size : 4
6385 <77> DW_AT_encoding : 5 (signed)
6386
6387 imports the wrong die ( 0x75 instead of 0x58 ).
6388 This case will be ignored until the gcc bug is fixed. */
6389 return;
6390 }
6391
82856980
SW
6392 /* Figure out the local name after import. */
6393 import_alias = dwarf2_name (die, cu);
27aa8d6a 6394
794684b6
SW
6395 /* Figure out where the statement is being imported to. */
6396 import_prefix = determine_prefix (die, cu);
6397
6398 /* Figure out what the scope of the imported die is and prepend it
6399 to the name of the imported die. */
de4affc9 6400 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 6401
f55ee35c
JK
6402 if (imported_die->tag != DW_TAG_namespace
6403 && imported_die->tag != DW_TAG_module)
794684b6 6404 {
13387711
SW
6405 imported_declaration = imported_name;
6406 canonical_name = imported_name_prefix;
794684b6 6407 }
13387711 6408 else if (strlen (imported_name_prefix) > 0)
794684b6 6409 {
13387711
SW
6410 temp = alloca (strlen (imported_name_prefix)
6411 + 2 + strlen (imported_name) + 1);
6412 strcpy (temp, imported_name_prefix);
6413 strcat (temp, "::");
6414 strcat (temp, imported_name);
6415 canonical_name = temp;
794684b6 6416 }
13387711
SW
6417 else
6418 canonical_name = imported_name;
794684b6 6419
32019081
JK
6420 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
6421
6422 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
6423 for (child_die = die->child; child_die && child_die->tag;
6424 child_die = sibling_die (child_die))
6425 {
6426 /* DWARF-4: A Fortran use statement with a “rename list” may be
6427 represented by an imported module entry with an import attribute
6428 referring to the module and owned entries corresponding to those
6429 entities that are renamed as part of being imported. */
6430
6431 if (child_die->tag != DW_TAG_imported_declaration)
6432 {
6433 complaint (&symfile_complaints,
6434 _("child DW_TAG_imported_declaration expected "
6435 "- DIE at 0x%x [in module %s]"),
b64f50a1 6436 child_die->offset.sect_off, objfile->name);
32019081
JK
6437 continue;
6438 }
6439
6440 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
6441 if (import_attr == NULL)
6442 {
6443 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
6444 dwarf_tag_name (child_die->tag));
6445 continue;
6446 }
6447
6448 imported_cu = cu;
6449 imported_die = follow_die_ref_or_sig (child_die, import_attr,
6450 &imported_cu);
6451 imported_name = dwarf2_name (imported_die, imported_cu);
6452 if (imported_name == NULL)
6453 {
6454 complaint (&symfile_complaints,
6455 _("child DW_TAG_imported_declaration has unknown "
6456 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 6457 child_die->offset.sect_off, objfile->name);
32019081
JK
6458 continue;
6459 }
6460
6461 VEC_safe_push (const_char_ptr, excludes, imported_name);
6462
6463 process_die (child_die, cu);
6464 }
6465
c0cc3a76
SW
6466 cp_add_using_directive (import_prefix,
6467 canonical_name,
6468 import_alias,
13387711 6469 imported_declaration,
32019081 6470 excludes,
bb5ed363 6471 &objfile->objfile_obstack);
32019081
JK
6472
6473 do_cleanups (cleanups);
27aa8d6a
SW
6474}
6475
ae2de4f8
DE
6476/* Cleanup function for read_file_scope. */
6477
cb1df416
DJ
6478static void
6479free_cu_line_header (void *arg)
6480{
6481 struct dwarf2_cu *cu = arg;
6482
6483 free_line_header (cu->line_header);
6484 cu->line_header = NULL;
6485}
6486
9291a0cd
TT
6487static void
6488find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
6489 char **name, char **comp_dir)
6490{
6491 struct attribute *attr;
6492
6493 *name = NULL;
6494 *comp_dir = NULL;
6495
6496 /* Find the filename. Do not use dwarf2_name here, since the filename
6497 is not a source language identifier. */
6498 attr = dwarf2_attr (die, DW_AT_name, cu);
6499 if (attr)
6500 {
6501 *name = DW_STRING (attr);
6502 }
6503
6504 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
6505 if (attr)
6506 *comp_dir = DW_STRING (attr);
6507 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
6508 {
6509 *comp_dir = ldirname (*name);
6510 if (*comp_dir != NULL)
6511 make_cleanup (xfree, *comp_dir);
6512 }
6513 if (*comp_dir != NULL)
6514 {
6515 /* Irix 6.2 native cc prepends <machine>.: to the compilation
6516 directory, get rid of it. */
6517 char *cp = strchr (*comp_dir, ':');
6518
6519 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
6520 *comp_dir = cp + 1;
6521 }
6522
6523 if (*name == NULL)
6524 *name = "<unknown>";
6525}
6526
f3f5162e
DE
6527/* Handle DW_AT_stmt_list for a compilation unit or type unit.
6528 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
6529 COMP_DIR is the compilation directory.
6530 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
6531
6532static void
6533handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
f3f5162e 6534 const char *comp_dir, int want_line_info)
2ab95328
TT
6535{
6536 struct attribute *attr;
2ab95328 6537
2ab95328
TT
6538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6539 if (attr)
6540 {
6541 unsigned int line_offset = DW_UNSND (attr);
6542 struct line_header *line_header
3019eac3 6543 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
6544
6545 if (line_header)
dee91e82
DE
6546 {
6547 cu->line_header = line_header;
6548 make_cleanup (free_cu_line_header, cu);
f3f5162e 6549 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
dee91e82 6550 }
2ab95328
TT
6551 }
6552}
6553
95554aad 6554/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 6555
c906108c 6556static void
e7c27a73 6557read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6558{
dee91e82 6559 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 6560 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 6561 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
6562 CORE_ADDR highpc = ((CORE_ADDR) 0);
6563 struct attribute *attr;
e1024ff1 6564 char *name = NULL;
c906108c
SS
6565 char *comp_dir = NULL;
6566 struct die_info *child_die;
6567 bfd *abfd = objfile->obfd;
e142c38c 6568 CORE_ADDR baseaddr;
6e70227d 6569
e142c38c 6570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6571
fae299cd 6572 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
6573
6574 /* If we didn't find a lowpc, set it to highpc to avoid complaints
6575 from finish_block. */
2acceee2 6576 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
6577 lowpc = highpc;
6578 lowpc += baseaddr;
6579 highpc += baseaddr;
6580
9291a0cd 6581 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 6582
95554aad 6583 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 6584
f4b8a18d
KW
6585 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
6586 standardised yet. As a workaround for the language detection we fall
6587 back to the DW_AT_producer string. */
6588 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
6589 cu->language = language_opencl;
6590
3019eac3
DE
6591 /* Similar hack for Go. */
6592 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
6593 set_cu_language (DW_LANG_Go, cu);
6594
6595 /* We assume that we're processing GCC output. */
6596 processing_gcc_compilation = 2;
6597
6598 processing_has_namespace_info = 0;
6599
6600 start_symtab (name, comp_dir, lowpc);
6601 record_debugformat ("DWARF 2");
6602 record_producer (cu->producer);
6603
6604 /* Decode line number information if present. We do this before
6605 processing child DIEs, so that the line header table is available
6606 for DW_AT_decl_file. */
6607 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
6608
6609 /* Process all dies in compilation unit. */
6610 if (die->child != NULL)
6611 {
6612 child_die = die->child;
6613 while (child_die && child_die->tag)
6614 {
6615 process_die (child_die, cu);
6616 child_die = sibling_die (child_die);
6617 }
6618 }
6619
6620 /* Decode macro information, if present. Dwarf 2 macro information
6621 refers to information in the line number info statement program
6622 header, so we can only read it if we've read the header
6623 successfully. */
6624 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
6625 if (attr && cu->line_header)
6626 {
6627 if (dwarf2_attr (die, DW_AT_macro_info, cu))
6628 complaint (&symfile_complaints,
6629 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
6630
6631 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
6632 comp_dir, abfd, cu,
fceca515
DE
6633 &dwarf2_per_objfile->macro, 1,
6634 ".debug_macro");
3019eac3
DE
6635 }
6636 else
6637 {
6638 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
6639 if (attr && cu->line_header)
6640 {
6641 unsigned int macro_offset = DW_UNSND (attr);
6642
6643 dwarf_decode_macros (cu->line_header, macro_offset,
6644 comp_dir, abfd, cu,
fceca515
DE
6645 &dwarf2_per_objfile->macinfo, 0,
6646 ".debug_macinfo");
3019eac3
DE
6647 }
6648 }
6649
6650 do_cleanups (back_to);
6651}
6652
6653/* Process DW_TAG_type_unit.
6654 For TUs we want to skip the first top level sibling if it's not the
6655 actual type being defined by this TU. In this case the first top
6656 level sibling is there to provide context only. */
6657
6658static void
6659read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
6660{
6661 struct objfile *objfile = cu->objfile;
6662 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6663 CORE_ADDR lowpc;
6664 struct attribute *attr;
6665 char *name = NULL;
6666 char *comp_dir = NULL;
6667 struct die_info *child_die;
6668 bfd *abfd = objfile->obfd;
6669
6670 /* start_symtab needs a low pc, but we don't really have one.
6671 Do what read_file_scope would do in the absence of such info. */
6672 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6673
6674 /* Find the filename. Do not use dwarf2_name here, since the filename
6675 is not a source language identifier. */
6676 attr = dwarf2_attr (die, DW_AT_name, cu);
6677 if (attr)
6678 name = DW_STRING (attr);
6679
6680 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
6681 if (attr)
6682 comp_dir = DW_STRING (attr);
6683 else if (name != NULL && IS_ABSOLUTE_PATH (name))
6684 {
6685 comp_dir = ldirname (name);
6686 if (comp_dir != NULL)
6687 make_cleanup (xfree, comp_dir);
6688 }
6689
6690 if (name == NULL)
6691 name = "<unknown>";
6692
95554aad 6693 prepare_one_comp_unit (cu, die, language_minimal);
3019eac3
DE
6694
6695 /* We assume that we're processing GCC output. */
6696 processing_gcc_compilation = 2;
6697
6698 processing_has_namespace_info = 0;
6699
6700 start_symtab (name, comp_dir, lowpc);
6701 record_debugformat ("DWARF 2");
6702 record_producer (cu->producer);
6703
6704 /* Decode line number information if present. We do this before
6705 processing child DIEs, so that the line header table is available
6706 for DW_AT_decl_file.
6707 We don't need the pc/line-number mapping for type units. */
6708 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
6709
6710 /* Process the dies in the type unit. */
6711 if (die->child == NULL)
6712 {
6713 dump_die_for_error (die);
6714 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
6715 bfd_get_filename (abfd));
6716 }
6717
6718 child_die = die->child;
6719
6720 while (child_die && child_die->tag)
6721 {
6722 process_die (child_die, cu);
6723
6724 child_die = sibling_die (child_die);
6725 }
6726
6727 do_cleanups (back_to);
6728}
6729\f
6730/* DWO files. */
6731
6732static hashval_t
6733hash_dwo_file (const void *item)
6734{
6735 const struct dwo_file *dwo_file = item;
6736
6737 return htab_hash_string (dwo_file->dwo_name);
6738}
6739
6740static int
6741eq_dwo_file (const void *item_lhs, const void *item_rhs)
6742{
6743 const struct dwo_file *lhs = item_lhs;
6744 const struct dwo_file *rhs = item_rhs;
6745
6746 return strcmp (lhs->dwo_name, rhs->dwo_name) == 0;
6747}
6748
6749/* Allocate a hash table for DWO files. */
6750
6751static htab_t
6752allocate_dwo_file_hash_table (void)
6753{
6754 struct objfile *objfile = dwarf2_per_objfile->objfile;
6755
6756 return htab_create_alloc_ex (41,
6757 hash_dwo_file,
6758 eq_dwo_file,
6759 NULL,
6760 &objfile->objfile_obstack,
6761 hashtab_obstack_allocate,
6762 dummy_obstack_deallocate);
6763}
6764
6765static hashval_t
6766hash_dwo_unit (const void *item)
6767{
6768 const struct dwo_unit *dwo_unit = item;
6769
6770 /* This drops the top 32 bits of the id, but is ok for a hash. */
6771 return dwo_unit->signature;
6772}
6773
6774static int
6775eq_dwo_unit (const void *item_lhs, const void *item_rhs)
6776{
6777 const struct dwo_unit *lhs = item_lhs;
6778 const struct dwo_unit *rhs = item_rhs;
6779
6780 /* The signature is assumed to be unique within the DWO file.
6781 So while object file CU dwo_id's always have the value zero,
6782 that's OK, assuming each object file DWO file has only one CU,
6783 and that's the rule for now. */
6784 return lhs->signature == rhs->signature;
6785}
6786
6787/* Allocate a hash table for DWO CUs,TUs.
6788 There is one of these tables for each of CUs,TUs for each DWO file. */
6789
6790static htab_t
6791allocate_dwo_unit_table (struct objfile *objfile)
6792{
6793 /* Start out with a pretty small number.
6794 Generally DWO files contain only one CU and maybe some TUs. */
6795 return htab_create_alloc_ex (3,
6796 hash_dwo_unit,
6797 eq_dwo_unit,
6798 NULL,
6799 &objfile->objfile_obstack,
6800 hashtab_obstack_allocate,
6801 dummy_obstack_deallocate);
6802}
6803
6804/* This function is mapped across the sections and remembers the offset and
6805 size of each of the DWO debugging sections we are interested in. */
6806
6807static void
6808dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr)
6809{
6810 struct dwo_file *dwo_file = dwo_file_ptr;
6811 const struct dwo_section_names *names = &dwo_section_names;
6812
6813 if (section_is_p (sectp->name, &names->abbrev_dwo))
6814 {
6815 dwo_file->sections.abbrev.asection = sectp;
6816 dwo_file->sections.abbrev.size = bfd_get_section_size (sectp);
6817 }
6818 else if (section_is_p (sectp->name, &names->info_dwo))
6819 {
6820 dwo_file->sections.info.asection = sectp;
6821 dwo_file->sections.info.size = bfd_get_section_size (sectp);
6822 }
6823 else if (section_is_p (sectp->name, &names->line_dwo))
6824 {
6825 dwo_file->sections.line.asection = sectp;
6826 dwo_file->sections.line.size = bfd_get_section_size (sectp);
6827 }
6828 else if (section_is_p (sectp->name, &names->loc_dwo))
6829 {
6830 dwo_file->sections.loc.asection = sectp;
6831 dwo_file->sections.loc.size = bfd_get_section_size (sectp);
6832 }
6833 else if (section_is_p (sectp->name, &names->str_dwo))
6834 {
6835 dwo_file->sections.str.asection = sectp;
6836 dwo_file->sections.str.size = bfd_get_section_size (sectp);
6837 }
6838 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
6839 {
6840 dwo_file->sections.str_offsets.asection = sectp;
6841 dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp);
6842 }
6843 else if (section_is_p (sectp->name, &names->types_dwo))
6844 {
6845 struct dwarf2_section_info type_section;
6846
6847 memset (&type_section, 0, sizeof (type_section));
6848 type_section.asection = sectp;
6849 type_section.size = bfd_get_section_size (sectp);
6850 VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types,
6851 &type_section);
6852 }
6853}
6854
6855/* Structure used to pass data to create_debug_info_hash_table_reader. */
6856
6857struct create_dwo_info_table_data
6858{
6859 struct dwo_file *dwo_file;
6860 htab_t cu_htab;
6861};
6862
6863/* die_reader_func for create_debug_info_hash_table. */
6864
6865static void
6866create_debug_info_hash_table_reader (const struct die_reader_specs *reader,
6867 gdb_byte *info_ptr,
6868 struct die_info *comp_unit_die,
6869 int has_children,
6870 void *datap)
6871{
6872 struct dwarf2_cu *cu = reader->cu;
6873 struct objfile *objfile = dwarf2_per_objfile->objfile;
6874 sect_offset offset = cu->per_cu->offset;
6875 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
6876 struct create_dwo_info_table_data *data = datap;
6877 struct dwo_file *dwo_file = data->dwo_file;
6878 htab_t cu_htab = data->cu_htab;
6879 void **slot;
6880 struct attribute *attr;
6881 struct dwo_unit *dwo_unit;
6882
6883 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6884 if (attr == NULL)
6885 {
6886 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
6887 " its dwo_id [in module %s]"),
6888 offset.sect_off, dwo_file->dwo_name);
6889 return;
6890 }
6891
6892 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
6893 dwo_unit->dwo_file = dwo_file;
6894 dwo_unit->signature = DW_UNSND (attr);
6895 dwo_unit->info_or_types_section = section;
6896 dwo_unit->offset = offset;
6897 dwo_unit->length = cu->per_cu->length;
6898
6899 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
6900 gdb_assert (slot != NULL);
6901 if (*slot != NULL)
6902 {
6903 const struct dwo_unit *dup_dwo_unit = *slot;
6904
6905 complaint (&symfile_complaints,
6906 _("debug entry at offset 0x%x is duplicate to the entry at"
6907 " offset 0x%x, dwo_id 0x%s [in module %s]"),
6908 offset.sect_off, dup_dwo_unit->offset.sect_off,
6909 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
6910 dwo_file->dwo_name);
6911 }
6912 else
6913 *slot = dwo_unit;
6914
6915 if (dwarf2_die_debug)
6916 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
6917 offset.sect_off,
6918 phex (dwo_unit->signature,
6919 sizeof (dwo_unit->signature)));
6920}
6921
6922/* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */
6923
6924static htab_t
6925create_debug_info_hash_table (struct dwo_file *dwo_file)
6926{
6927 struct objfile *objfile = dwarf2_per_objfile->objfile;
6928 struct dwarf2_section_info *section = &dwo_file->sections.info;
6929 bfd *abfd;
6930 htab_t cu_htab;
6931 gdb_byte *info_ptr, *end_ptr;
6932 struct create_dwo_info_table_data create_dwo_info_table_data;
6933
6934 dwarf2_read_section (objfile, section);
6935 info_ptr = section->buffer;
6936
6937 if (info_ptr == NULL)
6938 return NULL;
6939
6940 /* We can't set abfd until now because the section may be empty or
6941 not present, in which case section->asection will be NULL. */
6942 abfd = section->asection->owner;
6943
6944 if (dwarf2_die_debug)
6945 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
6946 bfd_get_filename (abfd));
6947
6948 cu_htab = allocate_dwo_unit_table (objfile);
6949
6950 create_dwo_info_table_data.dwo_file = dwo_file;
6951 create_dwo_info_table_data.cu_htab = cu_htab;
6952
6953 end_ptr = info_ptr + section->size;
6954 while (info_ptr < end_ptr)
6955 {
6956 struct dwarf2_per_cu_data per_cu;
6957
6958 memset (&per_cu, 0, sizeof (per_cu));
6959 per_cu.objfile = objfile;
6960 per_cu.is_debug_types = 0;
6961 per_cu.offset.sect_off = info_ptr - section->buffer;
6962 per_cu.info_or_types_section = section;
6963
6964 init_cutu_and_read_dies_no_follow (&per_cu,
6965 &dwo_file->sections.abbrev,
6966 dwo_file,
6967 create_debug_info_hash_table_reader,
6968 &create_dwo_info_table_data);
6969
6970 info_ptr += per_cu.length;
6971 }
6972
6973 return cu_htab;
6974}
6975
6976/* Subroutine of open_dwo_file to simplify it.
6977 Open the file specified by FILE_NAME and hand it off to BFD for
6978 preliminary analysis. Return a newly initialized bfd *, which
6979 includes a canonicalized copy of FILE_NAME.
6980 In case of trouble, return NULL.
6981 NOTE: This function is derived from symfile_bfd_open. */
6982
6983static bfd *
6984try_open_dwo_file (const char *file_name)
6985{
6986 bfd *sym_bfd;
6987 int desc;
6988 char *absolute_name;
3019eac3
DE
6989
6990 desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name,
6991 O_RDONLY | O_BINARY, &absolute_name);
6992 if (desc < 0)
6993 return NULL;
6994
6995 sym_bfd = bfd_fopen (absolute_name, gnutarget, FOPEN_RB, desc);
6996 if (!sym_bfd)
6997 {
3019eac3
DE
6998 xfree (absolute_name);
6999 return NULL;
7000 }
7001 bfd_set_cacheable (sym_bfd, 1);
7002
7003 if (!bfd_check_format (sym_bfd, bfd_object))
7004 {
7005 bfd_close (sym_bfd); /* This also closes desc. */
7006 xfree (absolute_name);
7007 return NULL;
7008 }
7009
7010 /* bfd_usrdata exists for applications and libbfd must not touch it. */
7011 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
7012
7013 return sym_bfd;
7014}
7015
7016/* Try to open DWO file DWO_NAME.
7017 COMP_DIR is the DW_AT_comp_dir attribute.
7018 The result is the bfd handle of the file.
7019 If there is a problem finding or opening the file, return NULL.
7020 Upon success, the canonicalized path of the file is stored in the bfd,
7021 same as symfile_bfd_open. */
7022
7023static bfd *
7024open_dwo_file (const char *dwo_name, const char *comp_dir)
7025{
7026 bfd *abfd;
3019eac3
DE
7027
7028 if (IS_ABSOLUTE_PATH (dwo_name))
7029 return try_open_dwo_file (dwo_name);
7030
7031 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
7032
7033 if (comp_dir != NULL)
7034 {
7035 char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL);
7036
7037 /* NOTE: If comp_dir is a relative path, this will also try the
7038 search path, which seems useful. */
7039 abfd = try_open_dwo_file (path_to_try);
7040 xfree (path_to_try);
7041 if (abfd != NULL)
7042 return abfd;
7043 }
7044
7045 /* That didn't work, try debug-file-directory, which, despite its name,
7046 is a list of paths. */
7047
7048 if (*debug_file_directory == '\0')
7049 return NULL;
7050
7051 return try_open_dwo_file (dwo_name);
7052}
7053
7054/* Initialize the use of the DWO file specified by DWO_NAME. */
7055
7056static struct dwo_file *
7057init_dwo_file (const char *dwo_name, const char *comp_dir)
7058{
7059 struct objfile *objfile = dwarf2_per_objfile->objfile;
7060 struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7061 struct dwo_file);
7062 bfd *abfd;
7063 struct cleanup *cleanups;
7064
7065 if (dwarf2_die_debug)
7066 fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name);
7067
7068 abfd = open_dwo_file (dwo_name, comp_dir);
7069 if (abfd == NULL)
7070 return NULL;
7071 dwo_file->dwo_name = dwo_name;
7072 dwo_file->dwo_bfd = abfd;
7073
7074 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
7075
7076 bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file);
7077
7078 dwo_file->cus = create_debug_info_hash_table (dwo_file);
7079
7080 dwo_file->tus = create_debug_types_hash_table (dwo_file,
7081 dwo_file->sections.types);
7082
7083 discard_cleanups (cleanups);
7084
7085 return dwo_file;
7086}
7087
7088/* Lookup DWO file DWO_NAME. */
7089
7090static struct dwo_file *
7091lookup_dwo_file (char *dwo_name, const char *comp_dir)
7092{
7093 struct dwo_file *dwo_file;
7094 struct dwo_file find_entry;
7095 void **slot;
7096
7097 if (dwarf2_per_objfile->dwo_files == NULL)
7098 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
7099
7100 /* Have we already seen this DWO file? */
7101 find_entry.dwo_name = dwo_name;
7102 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
7103
7104 /* If not, read it in and build a table of the DWOs it contains. */
7105 if (*slot == NULL)
7106 *slot = init_dwo_file (dwo_name, comp_dir);
7107
7108 /* NOTE: This will be NULL if unable to open the file. */
7109 dwo_file = *slot;
7110
7111 return dwo_file;
7112}
7113
7114/* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME.
7115 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
7116 SIGNATURE is the "dwo_id" of the CU (for consistency we use the same
7117 nomenclature as TUs).
7118 The result is the DWO CU or NULL if we didn't find it
7119 (dwo_id mismatch or couldn't find the DWO file). */
7120
7121static struct dwo_unit *
7122lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
7123 char *dwo_name, const char *comp_dir,
7124 ULONGEST signature)
7125{
7126 struct objfile *objfile = dwarf2_per_objfile->objfile;
7127 struct dwo_file *dwo_file;
7128
7129 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
7130 if (dwo_file == NULL)
7131 return NULL;
7132
7133 /* Look up the DWO using its signature(dwo_id). */
7134
7135 if (dwo_file->cus != NULL)
7136 {
7137 struct dwo_unit find_dwo_cu, *dwo_cu;
7138
7139 find_dwo_cu.signature = signature;
7140 dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu);
a766d390 7141
3019eac3
DE
7142 if (dwo_cu != NULL)
7143 return dwo_cu;
7144 }
c906108c 7145
3019eac3 7146 /* We didn't find it. This must mean a dwo_id mismatch. */
df8a16a1 7147
3019eac3
DE
7148 complaint (&symfile_complaints,
7149 _("Could not find DWO CU referenced by CU at offset 0x%x"
7150 " [in module %s]"),
7151 this_cu->offset.sect_off, objfile->name);
7152 return NULL;
7153}
c906108c 7154
3019eac3
DE
7155/* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME.
7156 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
7157 The result is the DWO CU or NULL if we didn't find it
7158 (dwo_id mismatch or couldn't find the DWO file). */
debd256d 7159
3019eac3
DE
7160static struct dwo_unit *
7161lookup_dwo_type_unit (struct signatured_type *this_tu,
7162 char *dwo_name, const char *comp_dir)
7163{
7164 struct objfile *objfile = dwarf2_per_objfile->objfile;
7165 struct dwo_file *dwo_file;
cb1df416 7166
3019eac3
DE
7167 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
7168 if (dwo_file == NULL)
7169 return NULL;
cf2c3c16 7170
3019eac3
DE
7171 /* Look up the DWO using its signature(dwo_id). */
7172
7173 if (dwo_file->tus != NULL)
cf2c3c16 7174 {
3019eac3 7175 struct dwo_unit find_dwo_tu, *dwo_tu;
9a619af0 7176
3019eac3
DE
7177 find_dwo_tu.signature = this_tu->signature;
7178 dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu);
7179
7180 if (dwo_tu != NULL)
7181 return dwo_tu;
2e276125 7182 }
9cdd5dbd 7183
3019eac3
DE
7184 /* We didn't find it. This must mean a dwo_id mismatch. */
7185
7186 complaint (&symfile_complaints,
7187 _("Could not find DWO TU referenced by TU at offset 0x%x"
7188 " [in module %s]"),
7189 this_tu->per_cu.offset.sect_off, objfile->name);
7190 return NULL;
5fb290d7
DJ
7191}
7192
3019eac3
DE
7193/* Free all resources associated with DWO_FILE.
7194 Close the DWO file and munmap the sections.
7195 All memory should be on the objfile obstack. */
348e048f
DE
7196
7197static void
3019eac3 7198free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 7199{
3019eac3
DE
7200 int ix;
7201 struct dwarf2_section_info *section;
348e048f 7202
3019eac3
DE
7203 gdb_assert (dwo_file->dwo_bfd != objfile->obfd);
7204 bfd_close (dwo_file->dwo_bfd);
348e048f 7205
3019eac3
DE
7206 munmap_section_buffer (&dwo_file->sections.abbrev);
7207 munmap_section_buffer (&dwo_file->sections.info);
7208 munmap_section_buffer (&dwo_file->sections.line);
7209 munmap_section_buffer (&dwo_file->sections.loc);
7210 munmap_section_buffer (&dwo_file->sections.str);
7211 munmap_section_buffer (&dwo_file->sections.str_offsets);
348e048f 7212
3019eac3
DE
7213 for (ix = 0;
7214 VEC_iterate (dwarf2_section_info_def, dwo_file->sections.types,
7215 ix, section);
7216 ++ix)
7217 munmap_section_buffer (section);
348e048f 7218
3019eac3
DE
7219 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
7220}
348e048f 7221
3019eac3 7222/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 7223
3019eac3
DE
7224static void
7225free_dwo_file_cleanup (void *arg)
7226{
7227 struct dwo_file *dwo_file = (struct dwo_file *) arg;
7228 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 7229
3019eac3
DE
7230 free_dwo_file (dwo_file, objfile);
7231}
348e048f 7232
3019eac3 7233/* Traversal function for free_dwo_files. */
2ab95328 7234
3019eac3
DE
7235static int
7236free_dwo_file_from_slot (void **slot, void *info)
7237{
7238 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7239 struct objfile *objfile = (struct objfile *) info;
348e048f 7240
3019eac3 7241 free_dwo_file (dwo_file, objfile);
348e048f 7242
3019eac3
DE
7243 return 1;
7244}
348e048f 7245
3019eac3 7246/* Free all resources associated with DWO_FILES. */
348e048f 7247
3019eac3
DE
7248static void
7249free_dwo_files (htab_t dwo_files, struct objfile *objfile)
7250{
7251 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 7252}
3019eac3
DE
7253\f
7254/* Read in various DIEs. */
348e048f 7255
d389af10
JK
7256/* qsort helper for inherit_abstract_dies. */
7257
7258static int
7259unsigned_int_compar (const void *ap, const void *bp)
7260{
7261 unsigned int a = *(unsigned int *) ap;
7262 unsigned int b = *(unsigned int *) bp;
7263
7264 return (a > b) - (b > a);
7265}
7266
7267/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
7268 Inherit only the children of the DW_AT_abstract_origin DIE not being
7269 already referenced by DW_AT_abstract_origin from the children of the
7270 current DIE. */
d389af10
JK
7271
7272static void
7273inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
7274{
7275 struct die_info *child_die;
7276 unsigned die_children_count;
7277 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
7278 sect_offset *offsets;
7279 sect_offset *offsets_end, *offsetp;
d389af10
JK
7280 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
7281 struct die_info *origin_die;
7282 /* Iterator of the ORIGIN_DIE children. */
7283 struct die_info *origin_child_die;
7284 struct cleanup *cleanups;
7285 struct attribute *attr;
cd02d79d
PA
7286 struct dwarf2_cu *origin_cu;
7287 struct pending **origin_previous_list_in_scope;
d389af10
JK
7288
7289 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
7290 if (!attr)
7291 return;
7292
cd02d79d
PA
7293 /* Note that following die references may follow to a die in a
7294 different cu. */
7295
7296 origin_cu = cu;
7297 origin_die = follow_die_ref (die, attr, &origin_cu);
7298
7299 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
7300 symbols in. */
7301 origin_previous_list_in_scope = origin_cu->list_in_scope;
7302 origin_cu->list_in_scope = cu->list_in_scope;
7303
edb3359d
DJ
7304 if (die->tag != origin_die->tag
7305 && !(die->tag == DW_TAG_inlined_subroutine
7306 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
7307 complaint (&symfile_complaints,
7308 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 7309 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
7310
7311 child_die = die->child;
7312 die_children_count = 0;
7313 while (child_die && child_die->tag)
7314 {
7315 child_die = sibling_die (child_die);
7316 die_children_count++;
7317 }
7318 offsets = xmalloc (sizeof (*offsets) * die_children_count);
7319 cleanups = make_cleanup (xfree, offsets);
7320
7321 offsets_end = offsets;
7322 child_die = die->child;
7323 while (child_die && child_die->tag)
7324 {
c38f313d
DJ
7325 /* For each CHILD_DIE, find the corresponding child of
7326 ORIGIN_DIE. If there is more than one layer of
7327 DW_AT_abstract_origin, follow them all; there shouldn't be,
7328 but GCC versions at least through 4.4 generate this (GCC PR
7329 40573). */
7330 struct die_info *child_origin_die = child_die;
cd02d79d 7331 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 7332
c38f313d
DJ
7333 while (1)
7334 {
cd02d79d
PA
7335 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
7336 child_origin_cu);
c38f313d
DJ
7337 if (attr == NULL)
7338 break;
cd02d79d
PA
7339 child_origin_die = follow_die_ref (child_origin_die, attr,
7340 &child_origin_cu);
c38f313d
DJ
7341 }
7342
d389af10
JK
7343 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
7344 counterpart may exist. */
c38f313d 7345 if (child_origin_die != child_die)
d389af10 7346 {
edb3359d
DJ
7347 if (child_die->tag != child_origin_die->tag
7348 && !(child_die->tag == DW_TAG_inlined_subroutine
7349 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
7350 complaint (&symfile_complaints,
7351 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
7352 "different tags"), child_die->offset.sect_off,
7353 child_origin_die->offset.sect_off);
c38f313d
DJ
7354 if (child_origin_die->parent != origin_die)
7355 complaint (&symfile_complaints,
7356 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
7357 "different parents"), child_die->offset.sect_off,
7358 child_origin_die->offset.sect_off);
c38f313d
DJ
7359 else
7360 *offsets_end++ = child_origin_die->offset;
d389af10
JK
7361 }
7362 child_die = sibling_die (child_die);
7363 }
7364 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
7365 unsigned_int_compar);
7366 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 7367 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
7368 complaint (&symfile_complaints,
7369 _("Multiple children of DIE 0x%x refer "
7370 "to DIE 0x%x as their abstract origin"),
b64f50a1 7371 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
7372
7373 offsetp = offsets;
7374 origin_child_die = origin_die->child;
7375 while (origin_child_die && origin_child_die->tag)
7376 {
7377 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
7378 while (offsetp < offsets_end
7379 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 7380 offsetp++;
b64f50a1
JK
7381 if (offsetp >= offsets_end
7382 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
7383 {
7384 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 7385 process_die (origin_child_die, origin_cu);
d389af10
JK
7386 }
7387 origin_child_die = sibling_die (origin_child_die);
7388 }
cd02d79d 7389 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
7390
7391 do_cleanups (cleanups);
7392}
7393
c906108c 7394static void
e7c27a73 7395read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7396{
e7c27a73 7397 struct objfile *objfile = cu->objfile;
52f0bd74 7398 struct context_stack *new;
c906108c
SS
7399 CORE_ADDR lowpc;
7400 CORE_ADDR highpc;
7401 struct die_info *child_die;
edb3359d 7402 struct attribute *attr, *call_line, *call_file;
c906108c 7403 char *name;
e142c38c 7404 CORE_ADDR baseaddr;
801e3a5b 7405 struct block *block;
edb3359d 7406 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
7407 VEC (symbolp) *template_args = NULL;
7408 struct template_symbol *templ_func = NULL;
edb3359d
DJ
7409
7410 if (inlined_func)
7411 {
7412 /* If we do not have call site information, we can't show the
7413 caller of this inlined function. That's too confusing, so
7414 only use the scope for local variables. */
7415 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
7416 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
7417 if (call_line == NULL || call_file == NULL)
7418 {
7419 read_lexical_block_scope (die, cu);
7420 return;
7421 }
7422 }
c906108c 7423
e142c38c
DJ
7424 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7425
94af9270 7426 name = dwarf2_name (die, cu);
c906108c 7427
e8d05480
JB
7428 /* Ignore functions with missing or empty names. These are actually
7429 illegal according to the DWARF standard. */
7430 if (name == NULL)
7431 {
7432 complaint (&symfile_complaints,
b64f50a1
JK
7433 _("missing name for subprogram DIE at %d"),
7434 die->offset.sect_off);
e8d05480
JB
7435 return;
7436 }
7437
7438 /* Ignore functions with missing or invalid low and high pc attributes. */
7439 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
7440 {
ae4d0c03
PM
7441 attr = dwarf2_attr (die, DW_AT_external, cu);
7442 if (!attr || !DW_UNSND (attr))
7443 complaint (&symfile_complaints,
3e43a32a
MS
7444 _("cannot get low and high bounds "
7445 "for subprogram DIE at %d"),
b64f50a1 7446 die->offset.sect_off);
e8d05480
JB
7447 return;
7448 }
c906108c
SS
7449
7450 lowpc += baseaddr;
7451 highpc += baseaddr;
7452
34eaf542
TT
7453 /* If we have any template arguments, then we must allocate a
7454 different sort of symbol. */
7455 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
7456 {
7457 if (child_die->tag == DW_TAG_template_type_param
7458 || child_die->tag == DW_TAG_template_value_param)
7459 {
7460 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7461 struct template_symbol);
7462 templ_func->base.is_cplus_template_function = 1;
7463 break;
7464 }
7465 }
7466
c906108c 7467 new = push_context (0, lowpc);
34eaf542
TT
7468 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
7469 (struct symbol *) templ_func);
4c2df51b 7470
4cecd739
DJ
7471 /* If there is a location expression for DW_AT_frame_base, record
7472 it. */
e142c38c 7473 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 7474 if (attr)
c034e007
AC
7475 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
7476 expression is being recorded directly in the function's symbol
7477 and not in a separate frame-base object. I guess this hack is
7478 to avoid adding some sort of frame-base adjunct/annex to the
7479 function's symbol :-(. The problem with doing this is that it
7480 results in a function symbol with a location expression that
7481 has nothing to do with the location of the function, ouch! The
7482 relationship should be: a function's symbol has-a frame base; a
7483 frame-base has-a location expression. */
e7c27a73 7484 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 7485
e142c38c 7486 cu->list_in_scope = &local_symbols;
c906108c 7487
639d11d3 7488 if (die->child != NULL)
c906108c 7489 {
639d11d3 7490 child_die = die->child;
c906108c
SS
7491 while (child_die && child_die->tag)
7492 {
34eaf542
TT
7493 if (child_die->tag == DW_TAG_template_type_param
7494 || child_die->tag == DW_TAG_template_value_param)
7495 {
7496 struct symbol *arg = new_symbol (child_die, NULL, cu);
7497
f1078f66
DJ
7498 if (arg != NULL)
7499 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
7500 }
7501 else
7502 process_die (child_die, cu);
c906108c
SS
7503 child_die = sibling_die (child_die);
7504 }
7505 }
7506
d389af10
JK
7507 inherit_abstract_dies (die, cu);
7508
4a811a97
UW
7509 /* If we have a DW_AT_specification, we might need to import using
7510 directives from the context of the specification DIE. See the
7511 comment in determine_prefix. */
7512 if (cu->language == language_cplus
7513 && dwarf2_attr (die, DW_AT_specification, cu))
7514 {
7515 struct dwarf2_cu *spec_cu = cu;
7516 struct die_info *spec_die = die_specification (die, &spec_cu);
7517
7518 while (spec_die)
7519 {
7520 child_die = spec_die->child;
7521 while (child_die && child_die->tag)
7522 {
7523 if (child_die->tag == DW_TAG_imported_module)
7524 process_die (child_die, spec_cu);
7525 child_die = sibling_die (child_die);
7526 }
7527
7528 /* In some cases, GCC generates specification DIEs that
7529 themselves contain DW_AT_specification attributes. */
7530 spec_die = die_specification (spec_die, &spec_cu);
7531 }
7532 }
7533
c906108c
SS
7534 new = pop_context ();
7535 /* Make a block for the local symbols within. */
801e3a5b
JB
7536 block = finish_block (new->name, &local_symbols, new->old_blocks,
7537 lowpc, highpc, objfile);
7538
df8a16a1 7539 /* For C++, set the block's scope. */
f55ee35c 7540 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 7541 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 7542 determine_prefix (die, cu),
df8a16a1
DJ
7543 processing_has_namespace_info);
7544
801e3a5b
JB
7545 /* If we have address ranges, record them. */
7546 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 7547
34eaf542
TT
7548 /* Attach template arguments to function. */
7549 if (! VEC_empty (symbolp, template_args))
7550 {
7551 gdb_assert (templ_func != NULL);
7552
7553 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
7554 templ_func->template_arguments
7555 = obstack_alloc (&objfile->objfile_obstack,
7556 (templ_func->n_template_arguments
7557 * sizeof (struct symbol *)));
7558 memcpy (templ_func->template_arguments,
7559 VEC_address (symbolp, template_args),
7560 (templ_func->n_template_arguments * sizeof (struct symbol *)));
7561 VEC_free (symbolp, template_args);
7562 }
7563
208d8187
JB
7564 /* In C++, we can have functions nested inside functions (e.g., when
7565 a function declares a class that has methods). This means that
7566 when we finish processing a function scope, we may need to go
7567 back to building a containing block's symbol lists. */
7568 local_symbols = new->locals;
7569 param_symbols = new->params;
27aa8d6a 7570 using_directives = new->using_directives;
208d8187 7571
921e78cf
JB
7572 /* If we've finished processing a top-level function, subsequent
7573 symbols go in the file symbol list. */
7574 if (outermost_context_p ())
e142c38c 7575 cu->list_in_scope = &file_symbols;
c906108c
SS
7576}
7577
7578/* Process all the DIES contained within a lexical block scope. Start
7579 a new scope, process the dies, and then close the scope. */
7580
7581static void
e7c27a73 7582read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7583{
e7c27a73 7584 struct objfile *objfile = cu->objfile;
52f0bd74 7585 struct context_stack *new;
c906108c
SS
7586 CORE_ADDR lowpc, highpc;
7587 struct die_info *child_die;
e142c38c
DJ
7588 CORE_ADDR baseaddr;
7589
7590 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
7591
7592 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
7593 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
7594 as multiple lexical blocks? Handling children in a sane way would
6e70227d 7595 be nasty. Might be easier to properly extend generic blocks to
af34e669 7596 describe ranges. */
d85a05f0 7597 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
7598 return;
7599 lowpc += baseaddr;
7600 highpc += baseaddr;
7601
7602 push_context (0, lowpc);
639d11d3 7603 if (die->child != NULL)
c906108c 7604 {
639d11d3 7605 child_die = die->child;
c906108c
SS
7606 while (child_die && child_die->tag)
7607 {
e7c27a73 7608 process_die (child_die, cu);
c906108c
SS
7609 child_die = sibling_die (child_die);
7610 }
7611 }
7612 new = pop_context ();
7613
8540c487 7614 if (local_symbols != NULL || using_directives != NULL)
c906108c 7615 {
801e3a5b
JB
7616 struct block *block
7617 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
7618 highpc, objfile);
7619
7620 /* Note that recording ranges after traversing children, as we
7621 do here, means that recording a parent's ranges entails
7622 walking across all its children's ranges as they appear in
7623 the address map, which is quadratic behavior.
7624
7625 It would be nicer to record the parent's ranges before
7626 traversing its children, simply overriding whatever you find
7627 there. But since we don't even decide whether to create a
7628 block until after we've traversed its children, that's hard
7629 to do. */
7630 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
7631 }
7632 local_symbols = new->locals;
27aa8d6a 7633 using_directives = new->using_directives;
c906108c
SS
7634}
7635
96408a79
SA
7636/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
7637
7638static void
7639read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
7640{
7641 struct objfile *objfile = cu->objfile;
7642 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7643 CORE_ADDR pc, baseaddr;
7644 struct attribute *attr;
7645 struct call_site *call_site, call_site_local;
7646 void **slot;
7647 int nparams;
7648 struct die_info *child_die;
7649
7650 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7651
7652 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7653 if (!attr)
7654 {
7655 complaint (&symfile_complaints,
7656 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
7657 "DIE 0x%x [in module %s]"),
b64f50a1 7658 die->offset.sect_off, objfile->name);
96408a79
SA
7659 return;
7660 }
7661 pc = DW_ADDR (attr) + baseaddr;
7662
7663 if (cu->call_site_htab == NULL)
7664 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
7665 NULL, &objfile->objfile_obstack,
7666 hashtab_obstack_allocate, NULL);
7667 call_site_local.pc = pc;
7668 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
7669 if (*slot != NULL)
7670 {
7671 complaint (&symfile_complaints,
7672 _("Duplicate PC %s for DW_TAG_GNU_call_site "
7673 "DIE 0x%x [in module %s]"),
b64f50a1 7674 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
7675 return;
7676 }
7677
7678 /* Count parameters at the caller. */
7679
7680 nparams = 0;
7681 for (child_die = die->child; child_die && child_die->tag;
7682 child_die = sibling_die (child_die))
7683 {
7684 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
7685 {
7686 complaint (&symfile_complaints,
7687 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
7688 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 7689 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
7690 continue;
7691 }
7692
7693 nparams++;
7694 }
7695
7696 call_site = obstack_alloc (&objfile->objfile_obstack,
7697 (sizeof (*call_site)
7698 + (sizeof (*call_site->parameter)
7699 * (nparams - 1))));
7700 *slot = call_site;
7701 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
7702 call_site->pc = pc;
7703
7704 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
7705 {
7706 struct die_info *func_die;
7707
7708 /* Skip also over DW_TAG_inlined_subroutine. */
7709 for (func_die = die->parent;
7710 func_die && func_die->tag != DW_TAG_subprogram
7711 && func_die->tag != DW_TAG_subroutine_type;
7712 func_die = func_die->parent);
7713
7714 /* DW_AT_GNU_all_call_sites is a superset
7715 of DW_AT_GNU_all_tail_call_sites. */
7716 if (func_die
7717 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
7718 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
7719 {
7720 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
7721 not complete. But keep CALL_SITE for look ups via call_site_htab,
7722 both the initial caller containing the real return address PC and
7723 the final callee containing the current PC of a chain of tail
7724 calls do not need to have the tail call list complete. But any
7725 function candidate for a virtual tail call frame searched via
7726 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
7727 determined unambiguously. */
7728 }
7729 else
7730 {
7731 struct type *func_type = NULL;
7732
7733 if (func_die)
7734 func_type = get_die_type (func_die, cu);
7735 if (func_type != NULL)
7736 {
7737 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
7738
7739 /* Enlist this call site to the function. */
7740 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
7741 TYPE_TAIL_CALL_LIST (func_type) = call_site;
7742 }
7743 else
7744 complaint (&symfile_complaints,
7745 _("Cannot find function owning DW_TAG_GNU_call_site "
7746 "DIE 0x%x [in module %s]"),
b64f50a1 7747 die->offset.sect_off, objfile->name);
96408a79
SA
7748 }
7749 }
7750
7751 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
7752 if (attr == NULL)
7753 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
7754 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
7755 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
7756 /* Keep NULL DWARF_BLOCK. */;
7757 else if (attr_form_is_block (attr))
7758 {
7759 struct dwarf2_locexpr_baton *dlbaton;
7760
7761 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
7762 dlbaton->data = DW_BLOCK (attr)->data;
7763 dlbaton->size = DW_BLOCK (attr)->size;
7764 dlbaton->per_cu = cu->per_cu;
7765
7766 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
7767 }
7768 else if (is_ref_attr (attr))
7769 {
96408a79
SA
7770 struct dwarf2_cu *target_cu = cu;
7771 struct die_info *target_die;
7772
7773 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
7774 gdb_assert (target_cu->objfile == objfile);
7775 if (die_is_declaration (target_die, target_cu))
7776 {
7777 const char *target_physname;
7778
7779 target_physname = dwarf2_physname (NULL, target_die, target_cu);
7780 if (target_physname == NULL)
7781 complaint (&symfile_complaints,
7782 _("DW_AT_GNU_call_site_target target DIE has invalid "
7783 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 7784 die->offset.sect_off, objfile->name);
96408a79
SA
7785 else
7786 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
7787 }
7788 else
7789 {
7790 CORE_ADDR lowpc;
7791
7792 /* DW_AT_entry_pc should be preferred. */
7793 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
7794 complaint (&symfile_complaints,
7795 _("DW_AT_GNU_call_site_target target DIE has invalid "
7796 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 7797 die->offset.sect_off, objfile->name);
96408a79
SA
7798 else
7799 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
7800 }
7801 }
7802 else
7803 complaint (&symfile_complaints,
7804 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
7805 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 7806 die->offset.sect_off, objfile->name);
96408a79
SA
7807
7808 call_site->per_cu = cu->per_cu;
7809
7810 for (child_die = die->child;
7811 child_die && child_die->tag;
7812 child_die = sibling_die (child_die))
7813 {
96408a79
SA
7814 struct call_site_parameter *parameter;
7815
7816 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
7817 {
7818 /* Already printed the complaint above. */
7819 continue;
7820 }
7821
7822 gdb_assert (call_site->parameter_count < nparams);
7823 parameter = &call_site->parameter[call_site->parameter_count];
7824
7825 /* DW_AT_location specifies the register number. Value of the data
7826 assumed for the register is contained in DW_AT_GNU_call_site_value. */
7827
7828 attr = dwarf2_attr (child_die, DW_AT_location, cu);
7829 if (!attr || !attr_form_is_block (attr))
7830 {
7831 complaint (&symfile_complaints,
7832 _("No DW_FORM_block* DW_AT_location for "
7833 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 7834 child_die->offset.sect_off, objfile->name);
96408a79
SA
7835 continue;
7836 }
7837 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
7838 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
7839 if (parameter->dwarf_reg == -1
7840 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
7841 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
7842 &parameter->fb_offset))
7843 {
7844 complaint (&symfile_complaints,
7845 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
7846 "for DW_FORM_block* DW_AT_location for "
7847 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 7848 child_die->offset.sect_off, objfile->name);
96408a79
SA
7849 continue;
7850 }
7851
7852 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
7853 if (!attr_form_is_block (attr))
7854 {
7855 complaint (&symfile_complaints,
7856 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
7857 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 7858 child_die->offset.sect_off, objfile->name);
96408a79
SA
7859 continue;
7860 }
7861 parameter->value = DW_BLOCK (attr)->data;
7862 parameter->value_size = DW_BLOCK (attr)->size;
7863
7864 /* Parameters are not pre-cleared by memset above. */
7865 parameter->data_value = NULL;
7866 parameter->data_value_size = 0;
7867 call_site->parameter_count++;
7868
7869 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
7870 if (attr)
7871 {
7872 if (!attr_form_is_block (attr))
7873 complaint (&symfile_complaints,
7874 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
7875 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 7876 child_die->offset.sect_off, objfile->name);
96408a79
SA
7877 else
7878 {
7879 parameter->data_value = DW_BLOCK (attr)->data;
7880 parameter->data_value_size = DW_BLOCK (attr)->size;
7881 }
7882 }
7883 }
7884}
7885
43039443 7886/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
7887 Return 1 if the attributes are present and valid, otherwise, return 0.
7888 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
7889
7890static int
7891dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
7892 CORE_ADDR *high_return, struct dwarf2_cu *cu,
7893 struct partial_symtab *ranges_pst)
43039443
JK
7894{
7895 struct objfile *objfile = cu->objfile;
7896 struct comp_unit_head *cu_header = &cu->header;
7897 bfd *obfd = objfile->obfd;
7898 unsigned int addr_size = cu_header->addr_size;
7899 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
7900 /* Base address selection entry. */
7901 CORE_ADDR base;
7902 int found_base;
7903 unsigned int dummy;
7904 gdb_byte *buffer;
7905 CORE_ADDR marker;
7906 int low_set;
7907 CORE_ADDR low = 0;
7908 CORE_ADDR high = 0;
ff013f42 7909 CORE_ADDR baseaddr;
43039443 7910
d00adf39
DE
7911 found_base = cu->base_known;
7912 base = cu->base_address;
43039443 7913
be391dca 7914 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 7915 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
7916 {
7917 complaint (&symfile_complaints,
7918 _("Offset %d out of bounds for DW_AT_ranges attribute"),
7919 offset);
7920 return 0;
7921 }
dce234bc 7922 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
7923
7924 /* Read in the largest possible address. */
7925 marker = read_address (obfd, buffer, cu, &dummy);
7926 if ((marker & mask) == mask)
7927 {
7928 /* If we found the largest possible address, then
7929 read the base address. */
7930 base = read_address (obfd, buffer + addr_size, cu, &dummy);
7931 buffer += 2 * addr_size;
7932 offset += 2 * addr_size;
7933 found_base = 1;
7934 }
7935
7936 low_set = 0;
7937
e7030f15 7938 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 7939
43039443
JK
7940 while (1)
7941 {
7942 CORE_ADDR range_beginning, range_end;
7943
7944 range_beginning = read_address (obfd, buffer, cu, &dummy);
7945 buffer += addr_size;
7946 range_end = read_address (obfd, buffer, cu, &dummy);
7947 buffer += addr_size;
7948 offset += 2 * addr_size;
7949
7950 /* An end of list marker is a pair of zero addresses. */
7951 if (range_beginning == 0 && range_end == 0)
7952 /* Found the end of list entry. */
7953 break;
7954
7955 /* Each base address selection entry is a pair of 2 values.
7956 The first is the largest possible address, the second is
7957 the base address. Check for a base address here. */
7958 if ((range_beginning & mask) == mask)
7959 {
7960 /* If we found the largest possible address, then
7961 read the base address. */
7962 base = read_address (obfd, buffer + addr_size, cu, &dummy);
7963 found_base = 1;
7964 continue;
7965 }
7966
7967 if (!found_base)
7968 {
7969 /* We have no valid base address for the ranges
7970 data. */
7971 complaint (&symfile_complaints,
7972 _("Invalid .debug_ranges data (no base address)"));
7973 return 0;
7974 }
7975
9277c30c
UW
7976 if (range_beginning > range_end)
7977 {
7978 /* Inverted range entries are invalid. */
7979 complaint (&symfile_complaints,
7980 _("Invalid .debug_ranges data (inverted range)"));
7981 return 0;
7982 }
7983
7984 /* Empty range entries have no effect. */
7985 if (range_beginning == range_end)
7986 continue;
7987
43039443
JK
7988 range_beginning += base;
7989 range_end += base;
7990
9277c30c 7991 if (ranges_pst != NULL)
ff013f42 7992 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
7993 range_beginning + baseaddr,
7994 range_end - 1 + baseaddr,
ff013f42
JK
7995 ranges_pst);
7996
43039443
JK
7997 /* FIXME: This is recording everything as a low-high
7998 segment of consecutive addresses. We should have a
7999 data structure for discontiguous block ranges
8000 instead. */
8001 if (! low_set)
8002 {
8003 low = range_beginning;
8004 high = range_end;
8005 low_set = 1;
8006 }
8007 else
8008 {
8009 if (range_beginning < low)
8010 low = range_beginning;
8011 if (range_end > high)
8012 high = range_end;
8013 }
8014 }
8015
8016 if (! low_set)
8017 /* If the first entry is an end-of-list marker, the range
8018 describes an empty scope, i.e. no instructions. */
8019 return 0;
8020
8021 if (low_return)
8022 *low_return = low;
8023 if (high_return)
8024 *high_return = high;
8025 return 1;
8026}
8027
af34e669
DJ
8028/* Get low and high pc attributes from a die. Return 1 if the attributes
8029 are present and valid, otherwise, return 0. Return -1 if the range is
8030 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 8031
c906108c 8032static int
af34e669 8033dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
8034 CORE_ADDR *highpc, struct dwarf2_cu *cu,
8035 struct partial_symtab *pst)
c906108c
SS
8036{
8037 struct attribute *attr;
91da1414 8038 struct attribute *attr_high;
af34e669
DJ
8039 CORE_ADDR low = 0;
8040 CORE_ADDR high = 0;
8041 int ret = 0;
c906108c 8042
91da1414
MW
8043 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
8044 if (attr_high)
af34e669 8045 {
e142c38c 8046 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 8047 if (attr)
91da1414
MW
8048 {
8049 low = DW_ADDR (attr);
3019eac3
DE
8050 if (attr_high->form == DW_FORM_addr
8051 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
8052 high = DW_ADDR (attr_high);
8053 else
8054 high = low + DW_UNSND (attr_high);
8055 }
af34e669
DJ
8056 else
8057 /* Found high w/o low attribute. */
8058 return 0;
8059
8060 /* Found consecutive range of addresses. */
8061 ret = 1;
8062 }
c906108c 8063 else
af34e669 8064 {
e142c38c 8065 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
8066 if (attr != NULL)
8067 {
af34e669 8068 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 8069 .debug_ranges section. */
d85a05f0 8070 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 8071 return 0;
43039443 8072 /* Found discontinuous range of addresses. */
af34e669
DJ
8073 ret = -1;
8074 }
8075 }
c906108c 8076
9373cf26
JK
8077 /* read_partial_die has also the strict LOW < HIGH requirement. */
8078 if (high <= low)
c906108c
SS
8079 return 0;
8080
8081 /* When using the GNU linker, .gnu.linkonce. sections are used to
8082 eliminate duplicate copies of functions and vtables and such.
8083 The linker will arbitrarily choose one and discard the others.
8084 The AT_*_pc values for such functions refer to local labels in
8085 these sections. If the section from that file was discarded, the
8086 labels are not in the output, so the relocs get a value of 0.
8087 If this is a discarded function, mark the pc bounds as invalid,
8088 so that GDB will ignore it. */
72dca2f5 8089 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
8090 return 0;
8091
8092 *lowpc = low;
96408a79
SA
8093 if (highpc)
8094 *highpc = high;
af34e669 8095 return ret;
c906108c
SS
8096}
8097
b084d499
JB
8098/* Assuming that DIE represents a subprogram DIE or a lexical block, get
8099 its low and high PC addresses. Do nothing if these addresses could not
8100 be determined. Otherwise, set LOWPC to the low address if it is smaller,
8101 and HIGHPC to the high address if greater than HIGHPC. */
8102
8103static void
8104dwarf2_get_subprogram_pc_bounds (struct die_info *die,
8105 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8106 struct dwarf2_cu *cu)
8107{
8108 CORE_ADDR low, high;
8109 struct die_info *child = die->child;
8110
d85a05f0 8111 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
8112 {
8113 *lowpc = min (*lowpc, low);
8114 *highpc = max (*highpc, high);
8115 }
8116
8117 /* If the language does not allow nested subprograms (either inside
8118 subprograms or lexical blocks), we're done. */
8119 if (cu->language != language_ada)
8120 return;
6e70227d 8121
b084d499
JB
8122 /* Check all the children of the given DIE. If it contains nested
8123 subprograms, then check their pc bounds. Likewise, we need to
8124 check lexical blocks as well, as they may also contain subprogram
8125 definitions. */
8126 while (child && child->tag)
8127 {
8128 if (child->tag == DW_TAG_subprogram
8129 || child->tag == DW_TAG_lexical_block)
8130 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
8131 child = sibling_die (child);
8132 }
8133}
8134
fae299cd
DC
8135/* Get the low and high pc's represented by the scope DIE, and store
8136 them in *LOWPC and *HIGHPC. If the correct values can't be
8137 determined, set *LOWPC to -1 and *HIGHPC to 0. */
8138
8139static void
8140get_scope_pc_bounds (struct die_info *die,
8141 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8142 struct dwarf2_cu *cu)
8143{
8144 CORE_ADDR best_low = (CORE_ADDR) -1;
8145 CORE_ADDR best_high = (CORE_ADDR) 0;
8146 CORE_ADDR current_low, current_high;
8147
d85a05f0 8148 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
8149 {
8150 best_low = current_low;
8151 best_high = current_high;
8152 }
8153 else
8154 {
8155 struct die_info *child = die->child;
8156
8157 while (child && child->tag)
8158 {
8159 switch (child->tag) {
8160 case DW_TAG_subprogram:
b084d499 8161 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
8162 break;
8163 case DW_TAG_namespace:
f55ee35c 8164 case DW_TAG_module:
fae299cd
DC
8165 /* FIXME: carlton/2004-01-16: Should we do this for
8166 DW_TAG_class_type/DW_TAG_structure_type, too? I think
8167 that current GCC's always emit the DIEs corresponding
8168 to definitions of methods of classes as children of a
8169 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
8170 the DIEs giving the declarations, which could be
8171 anywhere). But I don't see any reason why the
8172 standards says that they have to be there. */
8173 get_scope_pc_bounds (child, &current_low, &current_high, cu);
8174
8175 if (current_low != ((CORE_ADDR) -1))
8176 {
8177 best_low = min (best_low, current_low);
8178 best_high = max (best_high, current_high);
8179 }
8180 break;
8181 default:
0963b4bd 8182 /* Ignore. */
fae299cd
DC
8183 break;
8184 }
8185
8186 child = sibling_die (child);
8187 }
8188 }
8189
8190 *lowpc = best_low;
8191 *highpc = best_high;
8192}
8193
801e3a5b
JB
8194/* Record the address ranges for BLOCK, offset by BASEADDR, as given
8195 in DIE. */
380bca97 8196
801e3a5b
JB
8197static void
8198dwarf2_record_block_ranges (struct die_info *die, struct block *block,
8199 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
8200{
bb5ed363 8201 struct objfile *objfile = cu->objfile;
801e3a5b 8202 struct attribute *attr;
91da1414 8203 struct attribute *attr_high;
801e3a5b 8204
91da1414
MW
8205 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
8206 if (attr_high)
801e3a5b 8207 {
801e3a5b
JB
8208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8209 if (attr)
8210 {
8211 CORE_ADDR low = DW_ADDR (attr);
91da1414 8212 CORE_ADDR high;
3019eac3
DE
8213 if (attr_high->form == DW_FORM_addr
8214 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
8215 high = DW_ADDR (attr_high);
8216 else
8217 high = low + DW_UNSND (attr_high);
9a619af0 8218
801e3a5b
JB
8219 record_block_range (block, baseaddr + low, baseaddr + high - 1);
8220 }
8221 }
8222
8223 attr = dwarf2_attr (die, DW_AT_ranges, cu);
8224 if (attr)
8225 {
bb5ed363 8226 bfd *obfd = objfile->obfd;
801e3a5b
JB
8227
8228 /* The value of the DW_AT_ranges attribute is the offset of the
8229 address range list in the .debug_ranges section. */
8230 unsigned long offset = DW_UNSND (attr);
dce234bc 8231 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
8232
8233 /* For some target architectures, but not others, the
8234 read_address function sign-extends the addresses it returns.
8235 To recognize base address selection entries, we need a
8236 mask. */
8237 unsigned int addr_size = cu->header.addr_size;
8238 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
8239
8240 /* The base address, to which the next pair is relative. Note
8241 that this 'base' is a DWARF concept: most entries in a range
8242 list are relative, to reduce the number of relocs against the
8243 debugging information. This is separate from this function's
8244 'baseaddr' argument, which GDB uses to relocate debugging
8245 information from a shared library based on the address at
8246 which the library was loaded. */
d00adf39
DE
8247 CORE_ADDR base = cu->base_address;
8248 int base_known = cu->base_known;
801e3a5b 8249
be391dca 8250 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 8251 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
8252 {
8253 complaint (&symfile_complaints,
8254 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
8255 offset);
8256 return;
8257 }
8258
8259 for (;;)
8260 {
8261 unsigned int bytes_read;
8262 CORE_ADDR start, end;
8263
8264 start = read_address (obfd, buffer, cu, &bytes_read);
8265 buffer += bytes_read;
8266 end = read_address (obfd, buffer, cu, &bytes_read);
8267 buffer += bytes_read;
8268
8269 /* Did we find the end of the range list? */
8270 if (start == 0 && end == 0)
8271 break;
8272
8273 /* Did we find a base address selection entry? */
8274 else if ((start & base_select_mask) == base_select_mask)
8275 {
8276 base = end;
8277 base_known = 1;
8278 }
8279
8280 /* We found an ordinary address range. */
8281 else
8282 {
8283 if (!base_known)
8284 {
8285 complaint (&symfile_complaints,
3e43a32a
MS
8286 _("Invalid .debug_ranges data "
8287 "(no base address)"));
801e3a5b
JB
8288 return;
8289 }
8290
9277c30c
UW
8291 if (start > end)
8292 {
8293 /* Inverted range entries are invalid. */
8294 complaint (&symfile_complaints,
8295 _("Invalid .debug_ranges data "
8296 "(inverted range)"));
8297 return;
8298 }
8299
8300 /* Empty range entries have no effect. */
8301 if (start == end)
8302 continue;
8303
6e70227d
DE
8304 record_block_range (block,
8305 baseaddr + base + start,
801e3a5b
JB
8306 baseaddr + base + end - 1);
8307 }
8308 }
8309 }
8310}
8311
685b1105
JK
8312/* Check whether the producer field indicates either of GCC < 4.6, or the
8313 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 8314
685b1105
JK
8315static void
8316check_producer (struct dwarf2_cu *cu)
60d5a603
JK
8317{
8318 const char *cs;
8319 int major, minor, release;
8320
8321 if (cu->producer == NULL)
8322 {
8323 /* For unknown compilers expect their behavior is DWARF version
8324 compliant.
8325
8326 GCC started to support .debug_types sections by -gdwarf-4 since
8327 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
8328 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
8329 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
8330 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 8331 }
685b1105 8332 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 8333 {
685b1105
JK
8334 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
8335
ba919b58
TT
8336 cs = &cu->producer[strlen ("GNU ")];
8337 while (*cs && !isdigit (*cs))
8338 cs++;
8339 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
8340 {
8341 /* Not recognized as GCC. */
8342 }
8343 else
685b1105
JK
8344 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
8345 }
8346 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
8347 cu->producer_is_icc = 1;
8348 else
8349 {
8350 /* For other non-GCC compilers, expect their behavior is DWARF version
8351 compliant. */
60d5a603
JK
8352 }
8353
ba919b58 8354 cu->checked_producer = 1;
685b1105 8355}
ba919b58 8356
685b1105
JK
8357/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
8358 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
8359 during 4.6.0 experimental. */
8360
8361static int
8362producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
8363{
8364 if (!cu->checked_producer)
8365 check_producer (cu);
8366
8367 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
8368}
8369
8370/* Return the default accessibility type if it is not overriden by
8371 DW_AT_accessibility. */
8372
8373static enum dwarf_access_attribute
8374dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
8375{
8376 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
8377 {
8378 /* The default DWARF 2 accessibility for members is public, the default
8379 accessibility for inheritance is private. */
8380
8381 if (die->tag != DW_TAG_inheritance)
8382 return DW_ACCESS_public;
8383 else
8384 return DW_ACCESS_private;
8385 }
8386 else
8387 {
8388 /* DWARF 3+ defines the default accessibility a different way. The same
8389 rules apply now for DW_TAG_inheritance as for the members and it only
8390 depends on the container kind. */
8391
8392 if (die->parent->tag == DW_TAG_class_type)
8393 return DW_ACCESS_private;
8394 else
8395 return DW_ACCESS_public;
8396 }
8397}
8398
74ac6d43
TT
8399/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
8400 offset. If the attribute was not found return 0, otherwise return
8401 1. If it was found but could not properly be handled, set *OFFSET
8402 to 0. */
8403
8404static int
8405handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
8406 LONGEST *offset)
8407{
8408 struct attribute *attr;
8409
8410 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
8411 if (attr != NULL)
8412 {
8413 *offset = 0;
8414
8415 /* Note that we do not check for a section offset first here.
8416 This is because DW_AT_data_member_location is new in DWARF 4,
8417 so if we see it, we can assume that a constant form is really
8418 a constant and not a section offset. */
8419 if (attr_form_is_constant (attr))
8420 *offset = dwarf2_get_attr_constant_value (attr, 0);
8421 else if (attr_form_is_section_offset (attr))
8422 dwarf2_complex_location_expr_complaint ();
8423 else if (attr_form_is_block (attr))
8424 *offset = decode_locdesc (DW_BLOCK (attr), cu);
8425 else
8426 dwarf2_complex_location_expr_complaint ();
8427
8428 return 1;
8429 }
8430
8431 return 0;
8432}
8433
c906108c
SS
8434/* Add an aggregate field to the field list. */
8435
8436static void
107d2387 8437dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 8438 struct dwarf2_cu *cu)
6e70227d 8439{
e7c27a73 8440 struct objfile *objfile = cu->objfile;
5e2b427d 8441 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
8442 struct nextfield *new_field;
8443 struct attribute *attr;
8444 struct field *fp;
8445 char *fieldname = "";
8446
8447 /* Allocate a new field list entry and link it in. */
8448 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 8449 make_cleanup (xfree, new_field);
c906108c 8450 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
8451
8452 if (die->tag == DW_TAG_inheritance)
8453 {
8454 new_field->next = fip->baseclasses;
8455 fip->baseclasses = new_field;
8456 }
8457 else
8458 {
8459 new_field->next = fip->fields;
8460 fip->fields = new_field;
8461 }
c906108c
SS
8462 fip->nfields++;
8463
e142c38c 8464 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
8465 if (attr)
8466 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
8467 else
8468 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
8469 if (new_field->accessibility != DW_ACCESS_public)
8470 fip->non_public_fields = 1;
60d5a603 8471
e142c38c 8472 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
8473 if (attr)
8474 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
8475 else
8476 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
8477
8478 fp = &new_field->field;
a9a9bd0f 8479
e142c38c 8480 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 8481 {
74ac6d43
TT
8482 LONGEST offset;
8483
a9a9bd0f 8484 /* Data member other than a C++ static data member. */
6e70227d 8485
c906108c 8486 /* Get type of field. */
e7c27a73 8487 fp->type = die_type (die, cu);
c906108c 8488
d6a843b5 8489 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 8490
c906108c 8491 /* Get bit size of field (zero if none). */
e142c38c 8492 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
8493 if (attr)
8494 {
8495 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
8496 }
8497 else
8498 {
8499 FIELD_BITSIZE (*fp) = 0;
8500 }
8501
8502 /* Get bit offset of field. */
74ac6d43
TT
8503 if (handle_data_member_location (die, cu, &offset))
8504 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 8505 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
8506 if (attr)
8507 {
5e2b427d 8508 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
8509 {
8510 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
8511 additional bit offset from the MSB of the containing
8512 anonymous object to the MSB of the field. We don't
8513 have to do anything special since we don't need to
8514 know the size of the anonymous object. */
f41f5e61 8515 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
8516 }
8517 else
8518 {
8519 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
8520 MSB of the anonymous object, subtract off the number of
8521 bits from the MSB of the field to the MSB of the
8522 object, and then subtract off the number of bits of
8523 the field itself. The result is the bit offset of
8524 the LSB of the field. */
c906108c
SS
8525 int anonymous_size;
8526 int bit_offset = DW_UNSND (attr);
8527
e142c38c 8528 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8529 if (attr)
8530 {
8531 /* The size of the anonymous object containing
8532 the bit field is explicit, so use the
8533 indicated size (in bytes). */
8534 anonymous_size = DW_UNSND (attr);
8535 }
8536 else
8537 {
8538 /* The size of the anonymous object containing
8539 the bit field must be inferred from the type
8540 attribute of the data member containing the
8541 bit field. */
8542 anonymous_size = TYPE_LENGTH (fp->type);
8543 }
f41f5e61
PA
8544 SET_FIELD_BITPOS (*fp,
8545 (FIELD_BITPOS (*fp)
8546 + anonymous_size * bits_per_byte
8547 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
8548 }
8549 }
8550
8551 /* Get name of field. */
39cbfefa
DJ
8552 fieldname = dwarf2_name (die, cu);
8553 if (fieldname == NULL)
8554 fieldname = "";
d8151005
DJ
8555
8556 /* The name is already allocated along with this objfile, so we don't
8557 need to duplicate it for the type. */
8558 fp->name = fieldname;
c906108c
SS
8559
8560 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 8561 pointer or virtual base class pointer) to private. */
e142c38c 8562 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 8563 {
d48cc9dd 8564 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
8565 new_field->accessibility = DW_ACCESS_private;
8566 fip->non_public_fields = 1;
8567 }
8568 }
a9a9bd0f 8569 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 8570 {
a9a9bd0f
DC
8571 /* C++ static member. */
8572
8573 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
8574 is a declaration, but all versions of G++ as of this writing
8575 (so through at least 3.2.1) incorrectly generate
8576 DW_TAG_variable tags. */
6e70227d 8577
ff355380 8578 const char *physname;
c906108c 8579
a9a9bd0f 8580 /* Get name of field. */
39cbfefa
DJ
8581 fieldname = dwarf2_name (die, cu);
8582 if (fieldname == NULL)
c906108c
SS
8583 return;
8584
254e6b9e 8585 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
8586 if (attr
8587 /* Only create a symbol if this is an external value.
8588 new_symbol checks this and puts the value in the global symbol
8589 table, which we want. If it is not external, new_symbol
8590 will try to put the value in cu->list_in_scope which is wrong. */
8591 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
8592 {
8593 /* A static const member, not much different than an enum as far as
8594 we're concerned, except that we can support more types. */
8595 new_symbol (die, NULL, cu);
8596 }
8597
2df3850c 8598 /* Get physical name. */
ff355380 8599 physname = dwarf2_physname (fieldname, die, cu);
c906108c 8600
d8151005
DJ
8601 /* The name is already allocated along with this objfile, so we don't
8602 need to duplicate it for the type. */
8603 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 8604 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 8605 FIELD_NAME (*fp) = fieldname;
c906108c
SS
8606 }
8607 else if (die->tag == DW_TAG_inheritance)
8608 {
74ac6d43 8609 LONGEST offset;
d4b96c9a 8610
74ac6d43
TT
8611 /* C++ base class field. */
8612 if (handle_data_member_location (die, cu, &offset))
8613 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 8614 FIELD_BITSIZE (*fp) = 0;
e7c27a73 8615 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
8616 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
8617 fip->nbaseclasses++;
8618 }
8619}
8620
98751a41
JK
8621/* Add a typedef defined in the scope of the FIP's class. */
8622
8623static void
8624dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
8625 struct dwarf2_cu *cu)
6e70227d 8626{
98751a41 8627 struct objfile *objfile = cu->objfile;
98751a41
JK
8628 struct typedef_field_list *new_field;
8629 struct attribute *attr;
8630 struct typedef_field *fp;
8631 char *fieldname = "";
8632
8633 /* Allocate a new field list entry and link it in. */
8634 new_field = xzalloc (sizeof (*new_field));
8635 make_cleanup (xfree, new_field);
8636
8637 gdb_assert (die->tag == DW_TAG_typedef);
8638
8639 fp = &new_field->field;
8640
8641 /* Get name of field. */
8642 fp->name = dwarf2_name (die, cu);
8643 if (fp->name == NULL)
8644 return;
8645
8646 fp->type = read_type_die (die, cu);
8647
8648 new_field->next = fip->typedef_field_list;
8649 fip->typedef_field_list = new_field;
8650 fip->typedef_field_list_count++;
8651}
8652
c906108c
SS
8653/* Create the vector of fields, and attach it to the type. */
8654
8655static void
fba45db2 8656dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 8657 struct dwarf2_cu *cu)
c906108c
SS
8658{
8659 int nfields = fip->nfields;
8660
8661 /* Record the field count, allocate space for the array of fields,
8662 and create blank accessibility bitfields if necessary. */
8663 TYPE_NFIELDS (type) = nfields;
8664 TYPE_FIELDS (type) = (struct field *)
8665 TYPE_ALLOC (type, sizeof (struct field) * nfields);
8666 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
8667
b4ba55a1 8668 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
8669 {
8670 ALLOCATE_CPLUS_STRUCT_TYPE (type);
8671
8672 TYPE_FIELD_PRIVATE_BITS (type) =
8673 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
8674 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
8675
8676 TYPE_FIELD_PROTECTED_BITS (type) =
8677 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
8678 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
8679
774b6a14
TT
8680 TYPE_FIELD_IGNORE_BITS (type) =
8681 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
8682 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
8683 }
8684
8685 /* If the type has baseclasses, allocate and clear a bit vector for
8686 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 8687 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
8688 {
8689 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 8690 unsigned char *pointer;
c906108c
SS
8691
8692 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
8693 pointer = TYPE_ALLOC (type, num_bytes);
8694 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
8695 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
8696 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
8697 }
8698
3e43a32a
MS
8699 /* Copy the saved-up fields into the field vector. Start from the head of
8700 the list, adding to the tail of the field array, so that they end up in
8701 the same order in the array in which they were added to the list. */
c906108c
SS
8702 while (nfields-- > 0)
8703 {
7d0ccb61
DJ
8704 struct nextfield *fieldp;
8705
8706 if (fip->fields)
8707 {
8708 fieldp = fip->fields;
8709 fip->fields = fieldp->next;
8710 }
8711 else
8712 {
8713 fieldp = fip->baseclasses;
8714 fip->baseclasses = fieldp->next;
8715 }
8716
8717 TYPE_FIELD (type, nfields) = fieldp->field;
8718 switch (fieldp->accessibility)
c906108c 8719 {
c5aa993b 8720 case DW_ACCESS_private:
b4ba55a1
JB
8721 if (cu->language != language_ada)
8722 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 8723 break;
c906108c 8724
c5aa993b 8725 case DW_ACCESS_protected:
b4ba55a1
JB
8726 if (cu->language != language_ada)
8727 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 8728 break;
c906108c 8729
c5aa993b
JM
8730 case DW_ACCESS_public:
8731 break;
c906108c 8732
c5aa993b
JM
8733 default:
8734 /* Unknown accessibility. Complain and treat it as public. */
8735 {
e2e0b3e5 8736 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 8737 fieldp->accessibility);
c5aa993b
JM
8738 }
8739 break;
c906108c
SS
8740 }
8741 if (nfields < fip->nbaseclasses)
8742 {
7d0ccb61 8743 switch (fieldp->virtuality)
c906108c 8744 {
c5aa993b
JM
8745 case DW_VIRTUALITY_virtual:
8746 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 8747 if (cu->language == language_ada)
a73c6dcd 8748 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
8749 SET_TYPE_FIELD_VIRTUAL (type, nfields);
8750 break;
c906108c
SS
8751 }
8752 }
c906108c
SS
8753 }
8754}
8755
c906108c
SS
8756/* Add a member function to the proper fieldlist. */
8757
8758static void
107d2387 8759dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 8760 struct type *type, struct dwarf2_cu *cu)
c906108c 8761{
e7c27a73 8762 struct objfile *objfile = cu->objfile;
c906108c
SS
8763 struct attribute *attr;
8764 struct fnfieldlist *flp;
8765 int i;
8766 struct fn_field *fnp;
8767 char *fieldname;
c906108c 8768 struct nextfnfield *new_fnfield;
f792889a 8769 struct type *this_type;
60d5a603 8770 enum dwarf_access_attribute accessibility;
c906108c 8771
b4ba55a1 8772 if (cu->language == language_ada)
a73c6dcd 8773 error (_("unexpected member function in Ada type"));
b4ba55a1 8774
2df3850c 8775 /* Get name of member function. */
39cbfefa
DJ
8776 fieldname = dwarf2_name (die, cu);
8777 if (fieldname == NULL)
2df3850c 8778 return;
c906108c 8779
c906108c
SS
8780 /* Look up member function name in fieldlist. */
8781 for (i = 0; i < fip->nfnfields; i++)
8782 {
27bfe10e 8783 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
8784 break;
8785 }
8786
8787 /* Create new list element if necessary. */
8788 if (i < fip->nfnfields)
8789 flp = &fip->fnfieldlists[i];
8790 else
8791 {
8792 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
8793 {
8794 fip->fnfieldlists = (struct fnfieldlist *)
8795 xrealloc (fip->fnfieldlists,
8796 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 8797 * sizeof (struct fnfieldlist));
c906108c 8798 if (fip->nfnfields == 0)
c13c43fd 8799 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
8800 }
8801 flp = &fip->fnfieldlists[fip->nfnfields];
8802 flp->name = fieldname;
8803 flp->length = 0;
8804 flp->head = NULL;
3da10d80 8805 i = fip->nfnfields++;
c906108c
SS
8806 }
8807
8808 /* Create a new member function field and chain it to the field list
0963b4bd 8809 entry. */
c906108c 8810 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 8811 make_cleanup (xfree, new_fnfield);
c906108c
SS
8812 memset (new_fnfield, 0, sizeof (struct nextfnfield));
8813 new_fnfield->next = flp->head;
8814 flp->head = new_fnfield;
8815 flp->length++;
8816
8817 /* Fill in the member function field info. */
8818 fnp = &new_fnfield->fnfield;
3da10d80
KS
8819
8820 /* Delay processing of the physname until later. */
8821 if (cu->language == language_cplus || cu->language == language_java)
8822 {
8823 add_to_method_list (type, i, flp->length - 1, fieldname,
8824 die, cu);
8825 }
8826 else
8827 {
1d06ead6 8828 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
8829 fnp->physname = physname ? physname : "";
8830 }
8831
c906108c 8832 fnp->type = alloc_type (objfile);
f792889a
DJ
8833 this_type = read_type_die (die, cu);
8834 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 8835 {
f792889a 8836 int nparams = TYPE_NFIELDS (this_type);
c906108c 8837
f792889a 8838 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
8839 of the method itself (TYPE_CODE_METHOD). */
8840 smash_to_method_type (fnp->type, type,
f792889a
DJ
8841 TYPE_TARGET_TYPE (this_type),
8842 TYPE_FIELDS (this_type),
8843 TYPE_NFIELDS (this_type),
8844 TYPE_VARARGS (this_type));
c906108c
SS
8845
8846 /* Handle static member functions.
c5aa993b 8847 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
8848 member functions. G++ helps GDB by marking the first
8849 parameter for non-static member functions (which is the this
8850 pointer) as artificial. We obtain this information from
8851 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 8852 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
8853 fnp->voffset = VOFFSET_STATIC;
8854 }
8855 else
e2e0b3e5 8856 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 8857 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
8858
8859 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 8860 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 8861 fnp->fcontext = die_containing_type (die, cu);
c906108c 8862
3e43a32a
MS
8863 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
8864 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
8865
8866 /* Get accessibility. */
e142c38c 8867 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 8868 if (attr)
60d5a603
JK
8869 accessibility = DW_UNSND (attr);
8870 else
8871 accessibility = dwarf2_default_access_attribute (die, cu);
8872 switch (accessibility)
c906108c 8873 {
60d5a603
JK
8874 case DW_ACCESS_private:
8875 fnp->is_private = 1;
8876 break;
8877 case DW_ACCESS_protected:
8878 fnp->is_protected = 1;
8879 break;
c906108c
SS
8880 }
8881
b02dede2 8882 /* Check for artificial methods. */
e142c38c 8883 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
8884 if (attr && DW_UNSND (attr) != 0)
8885 fnp->is_artificial = 1;
8886
0d564a31 8887 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
8888 function. For older versions of GCC, this is an offset in the
8889 appropriate virtual table, as specified by DW_AT_containing_type.
8890 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
8891 to the object address. */
8892
e142c38c 8893 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 8894 if (attr)
8e19ed76 8895 {
aec5aa8b 8896 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 8897 {
aec5aa8b
TT
8898 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
8899 {
8900 /* Old-style GCC. */
8901 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8902 }
8903 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
8904 || (DW_BLOCK (attr)->size > 1
8905 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
8906 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
8907 {
8908 struct dwarf_block blk;
8909 int offset;
8910
8911 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
8912 ? 1 : 2);
8913 blk.size = DW_BLOCK (attr)->size - offset;
8914 blk.data = DW_BLOCK (attr)->data + offset;
8915 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
8916 if ((fnp->voffset % cu->header.addr_size) != 0)
8917 dwarf2_complex_location_expr_complaint ();
8918 else
8919 fnp->voffset /= cu->header.addr_size;
8920 fnp->voffset += 2;
8921 }
8922 else
8923 dwarf2_complex_location_expr_complaint ();
8924
8925 if (!fnp->fcontext)
8926 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
8927 }
3690dd37 8928 else if (attr_form_is_section_offset (attr))
8e19ed76 8929 {
4d3c2250 8930 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
8931 }
8932 else
8933 {
4d3c2250
KB
8934 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
8935 fieldname);
8e19ed76 8936 }
0d564a31 8937 }
d48cc9dd
DJ
8938 else
8939 {
8940 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
8941 if (attr && DW_UNSND (attr))
8942 {
8943 /* GCC does this, as of 2008-08-25; PR debug/37237. */
8944 complaint (&symfile_complaints,
3e43a32a
MS
8945 _("Member function \"%s\" (offset %d) is virtual "
8946 "but the vtable offset is not specified"),
b64f50a1 8947 fieldname, die->offset.sect_off);
9655fd1a 8948 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
8949 TYPE_CPLUS_DYNAMIC (type) = 1;
8950 }
8951 }
c906108c
SS
8952}
8953
8954/* Create the vector of member function fields, and attach it to the type. */
8955
8956static void
fba45db2 8957dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 8958 struct dwarf2_cu *cu)
c906108c
SS
8959{
8960 struct fnfieldlist *flp;
c906108c
SS
8961 int i;
8962
b4ba55a1 8963 if (cu->language == language_ada)
a73c6dcd 8964 error (_("unexpected member functions in Ada type"));
b4ba55a1 8965
c906108c
SS
8966 ALLOCATE_CPLUS_STRUCT_TYPE (type);
8967 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
8968 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
8969
8970 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
8971 {
8972 struct nextfnfield *nfp = flp->head;
8973 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
8974 int k;
8975
8976 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
8977 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
8978 fn_flp->fn_fields = (struct fn_field *)
8979 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
8980 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 8981 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
8982 }
8983
8984 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
8985}
8986
1168df01
JB
8987/* Returns non-zero if NAME is the name of a vtable member in CU's
8988 language, zero otherwise. */
8989static int
8990is_vtable_name (const char *name, struct dwarf2_cu *cu)
8991{
8992 static const char vptr[] = "_vptr";
987504bb 8993 static const char vtable[] = "vtable";
1168df01 8994
987504bb
JJ
8995 /* Look for the C++ and Java forms of the vtable. */
8996 if ((cu->language == language_java
8997 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
8998 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
8999 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
9000 return 1;
9001
9002 return 0;
9003}
9004
c0dd20ea 9005/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
9006 functions, with the ABI-specified layout. If TYPE describes
9007 such a structure, smash it into a member function type.
61049d3b
DJ
9008
9009 GCC shouldn't do this; it should just output pointer to member DIEs.
9010 This is GCC PR debug/28767. */
c0dd20ea 9011
0b92b5bb
TT
9012static void
9013quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 9014{
0b92b5bb 9015 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
9016
9017 /* Check for a structure with no name and two children. */
0b92b5bb
TT
9018 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
9019 return;
c0dd20ea
DJ
9020
9021 /* Check for __pfn and __delta members. */
0b92b5bb
TT
9022 if (TYPE_FIELD_NAME (type, 0) == NULL
9023 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
9024 || TYPE_FIELD_NAME (type, 1) == NULL
9025 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
9026 return;
c0dd20ea
DJ
9027
9028 /* Find the type of the method. */
0b92b5bb 9029 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
9030 if (pfn_type == NULL
9031 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
9032 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 9033 return;
c0dd20ea
DJ
9034
9035 /* Look for the "this" argument. */
9036 pfn_type = TYPE_TARGET_TYPE (pfn_type);
9037 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 9038 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 9039 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 9040 return;
c0dd20ea
DJ
9041
9042 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
9043 new_type = alloc_type (objfile);
9044 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
9045 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
9046 TYPE_VARARGS (pfn_type));
0b92b5bb 9047 smash_to_methodptr_type (type, new_type);
c0dd20ea 9048}
1168df01 9049
685b1105
JK
9050/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
9051 (icc). */
9052
9053static int
9054producer_is_icc (struct dwarf2_cu *cu)
9055{
9056 if (!cu->checked_producer)
9057 check_producer (cu);
9058
9059 return cu->producer_is_icc;
9060}
9061
c906108c 9062/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
9063 (definition) to create a type for the structure or union. Fill in
9064 the type's name and general properties; the members will not be
9065 processed until process_structure_type.
c906108c 9066
c767944b
DJ
9067 NOTE: we need to call these functions regardless of whether or not the
9068 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
9069 structure or union. This gets the type entered into our set of
9070 user defined types.
9071
9072 However, if the structure is incomplete (an opaque struct/union)
9073 then suppress creating a symbol table entry for it since gdb only
9074 wants to find the one with the complete definition. Note that if
9075 it is complete, we just call new_symbol, which does it's own
9076 checking about whether the struct/union is anonymous or not (and
9077 suppresses creating a symbol table entry itself). */
9078
f792889a 9079static struct type *
134d01f1 9080read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9081{
e7c27a73 9082 struct objfile *objfile = cu->objfile;
c906108c
SS
9083 struct type *type;
9084 struct attribute *attr;
39cbfefa 9085 char *name;
c906108c 9086
348e048f
DE
9087 /* If the definition of this type lives in .debug_types, read that type.
9088 Don't follow DW_AT_specification though, that will take us back up
9089 the chain and we want to go down. */
9090 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
9091 if (attr)
9092 {
9093 struct dwarf2_cu *type_cu = cu;
9094 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 9095
348e048f
DE
9096 /* We could just recurse on read_structure_type, but we need to call
9097 get_die_type to ensure only one type for this DIE is created.
9098 This is important, for example, because for c++ classes we need
9099 TYPE_NAME set which is only done by new_symbol. Blech. */
9100 type = read_type_die (type_die, type_cu);
9dc481d3
DE
9101
9102 /* TYPE_CU may not be the same as CU.
9103 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
9104 return set_die_type (die, type, cu);
9105 }
9106
c0dd20ea 9107 type = alloc_type (objfile);
c906108c 9108 INIT_CPLUS_SPECIFIC (type);
93311388 9109
39cbfefa
DJ
9110 name = dwarf2_name (die, cu);
9111 if (name != NULL)
c906108c 9112 {
987504bb
JJ
9113 if (cu->language == language_cplus
9114 || cu->language == language_java)
63d06c5c 9115 {
3da10d80
KS
9116 char *full_name = (char *) dwarf2_full_name (name, die, cu);
9117
9118 /* dwarf2_full_name might have already finished building the DIE's
9119 type. If so, there is no need to continue. */
9120 if (get_die_type (die, cu) != NULL)
9121 return get_die_type (die, cu);
9122
9123 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
9124 if (die->tag == DW_TAG_structure_type
9125 || die->tag == DW_TAG_class_type)
9126 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
9127 }
9128 else
9129 {
d8151005
DJ
9130 /* The name is already allocated along with this objfile, so
9131 we don't need to duplicate it for the type. */
94af9270
KS
9132 TYPE_TAG_NAME (type) = (char *) name;
9133 if (die->tag == DW_TAG_class_type)
9134 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 9135 }
c906108c
SS
9136 }
9137
9138 if (die->tag == DW_TAG_structure_type)
9139 {
9140 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9141 }
9142 else if (die->tag == DW_TAG_union_type)
9143 {
9144 TYPE_CODE (type) = TYPE_CODE_UNION;
9145 }
9146 else
9147 {
c906108c
SS
9148 TYPE_CODE (type) = TYPE_CODE_CLASS;
9149 }
9150
0cc2414c
TT
9151 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
9152 TYPE_DECLARED_CLASS (type) = 1;
9153
e142c38c 9154 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
9155 if (attr)
9156 {
9157 TYPE_LENGTH (type) = DW_UNSND (attr);
9158 }
9159 else
9160 {
9161 TYPE_LENGTH (type) = 0;
9162 }
9163
685b1105
JK
9164 if (producer_is_icc (cu))
9165 {
9166 /* ICC does not output the required DW_AT_declaration
9167 on incomplete types, but gives them a size of zero. */
9168 }
9169 else
9170 TYPE_STUB_SUPPORTED (type) = 1;
9171
dc718098 9172 if (die_is_declaration (die, cu))
876cecd0 9173 TYPE_STUB (type) = 1;
a6c727b2
DJ
9174 else if (attr == NULL && die->child == NULL
9175 && producer_is_realview (cu->producer))
9176 /* RealView does not output the required DW_AT_declaration
9177 on incomplete types. */
9178 TYPE_STUB (type) = 1;
dc718098 9179
c906108c
SS
9180 /* We need to add the type field to the die immediately so we don't
9181 infinitely recurse when dealing with pointers to the structure
0963b4bd 9182 type within the structure itself. */
1c379e20 9183 set_die_type (die, type, cu);
c906108c 9184
7e314c57
JK
9185 /* set_die_type should be already done. */
9186 set_descriptive_type (type, die, cu);
9187
c767944b
DJ
9188 return type;
9189}
9190
9191/* Finish creating a structure or union type, including filling in
9192 its members and creating a symbol for it. */
9193
9194static void
9195process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
9196{
9197 struct objfile *objfile = cu->objfile;
9198 struct die_info *child_die = die->child;
9199 struct type *type;
9200
9201 type = get_die_type (die, cu);
9202 if (type == NULL)
9203 type = read_structure_type (die, cu);
9204
e142c38c 9205 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
9206 {
9207 struct field_info fi;
9208 struct die_info *child_die;
34eaf542 9209 VEC (symbolp) *template_args = NULL;
c767944b 9210 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
9211
9212 memset (&fi, 0, sizeof (struct field_info));
9213
639d11d3 9214 child_die = die->child;
c906108c
SS
9215
9216 while (child_die && child_die->tag)
9217 {
a9a9bd0f
DC
9218 if (child_die->tag == DW_TAG_member
9219 || child_die->tag == DW_TAG_variable)
c906108c 9220 {
a9a9bd0f
DC
9221 /* NOTE: carlton/2002-11-05: A C++ static data member
9222 should be a DW_TAG_member that is a declaration, but
9223 all versions of G++ as of this writing (so through at
9224 least 3.2.1) incorrectly generate DW_TAG_variable
9225 tags for them instead. */
e7c27a73 9226 dwarf2_add_field (&fi, child_die, cu);
c906108c 9227 }
8713b1b1 9228 else if (child_die->tag == DW_TAG_subprogram)
c906108c 9229 {
0963b4bd 9230 /* C++ member function. */
e7c27a73 9231 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
9232 }
9233 else if (child_die->tag == DW_TAG_inheritance)
9234 {
9235 /* C++ base class field. */
e7c27a73 9236 dwarf2_add_field (&fi, child_die, cu);
c906108c 9237 }
98751a41
JK
9238 else if (child_die->tag == DW_TAG_typedef)
9239 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
9240 else if (child_die->tag == DW_TAG_template_type_param
9241 || child_die->tag == DW_TAG_template_value_param)
9242 {
9243 struct symbol *arg = new_symbol (child_die, NULL, cu);
9244
f1078f66
DJ
9245 if (arg != NULL)
9246 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
9247 }
9248
c906108c
SS
9249 child_die = sibling_die (child_die);
9250 }
9251
34eaf542
TT
9252 /* Attach template arguments to type. */
9253 if (! VEC_empty (symbolp, template_args))
9254 {
9255 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9256 TYPE_N_TEMPLATE_ARGUMENTS (type)
9257 = VEC_length (symbolp, template_args);
9258 TYPE_TEMPLATE_ARGUMENTS (type)
9259 = obstack_alloc (&objfile->objfile_obstack,
9260 (TYPE_N_TEMPLATE_ARGUMENTS (type)
9261 * sizeof (struct symbol *)));
9262 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
9263 VEC_address (symbolp, template_args),
9264 (TYPE_N_TEMPLATE_ARGUMENTS (type)
9265 * sizeof (struct symbol *)));
9266 VEC_free (symbolp, template_args);
9267 }
9268
c906108c
SS
9269 /* Attach fields and member functions to the type. */
9270 if (fi.nfields)
e7c27a73 9271 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
9272 if (fi.nfnfields)
9273 {
e7c27a73 9274 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 9275
c5aa993b 9276 /* Get the type which refers to the base class (possibly this
c906108c 9277 class itself) which contains the vtable pointer for the current
0d564a31
DJ
9278 class from the DW_AT_containing_type attribute. This use of
9279 DW_AT_containing_type is a GNU extension. */
c906108c 9280
e142c38c 9281 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 9282 {
e7c27a73 9283 struct type *t = die_containing_type (die, cu);
c906108c
SS
9284
9285 TYPE_VPTR_BASETYPE (type) = t;
9286 if (type == t)
9287 {
c906108c
SS
9288 int i;
9289
9290 /* Our own class provides vtbl ptr. */
9291 for (i = TYPE_NFIELDS (t) - 1;
9292 i >= TYPE_N_BASECLASSES (t);
9293 --i)
9294 {
0d5cff50 9295 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 9296
1168df01 9297 if (is_vtable_name (fieldname, cu))
c906108c
SS
9298 {
9299 TYPE_VPTR_FIELDNO (type) = i;
9300 break;
9301 }
9302 }
9303
9304 /* Complain if virtual function table field not found. */
9305 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 9306 complaint (&symfile_complaints,
3e43a32a
MS
9307 _("virtual function table pointer "
9308 "not found when defining class '%s'"),
4d3c2250
KB
9309 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
9310 "");
c906108c
SS
9311 }
9312 else
9313 {
9314 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
9315 }
9316 }
f6235d4c
EZ
9317 else if (cu->producer
9318 && strncmp (cu->producer,
9319 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
9320 {
9321 /* The IBM XLC compiler does not provide direct indication
9322 of the containing type, but the vtable pointer is
9323 always named __vfp. */
9324
9325 int i;
9326
9327 for (i = TYPE_NFIELDS (type) - 1;
9328 i >= TYPE_N_BASECLASSES (type);
9329 --i)
9330 {
9331 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
9332 {
9333 TYPE_VPTR_FIELDNO (type) = i;
9334 TYPE_VPTR_BASETYPE (type) = type;
9335 break;
9336 }
9337 }
9338 }
c906108c 9339 }
98751a41
JK
9340
9341 /* Copy fi.typedef_field_list linked list elements content into the
9342 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
9343 if (fi.typedef_field_list)
9344 {
9345 int i = fi.typedef_field_list_count;
9346
a0d7a4ff 9347 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
9348 TYPE_TYPEDEF_FIELD_ARRAY (type)
9349 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
9350 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
9351
9352 /* Reverse the list order to keep the debug info elements order. */
9353 while (--i >= 0)
9354 {
9355 struct typedef_field *dest, *src;
6e70227d 9356
98751a41
JK
9357 dest = &TYPE_TYPEDEF_FIELD (type, i);
9358 src = &fi.typedef_field_list->field;
9359 fi.typedef_field_list = fi.typedef_field_list->next;
9360 *dest = *src;
9361 }
9362 }
c767944b
DJ
9363
9364 do_cleanups (back_to);
eb2a6f42
TT
9365
9366 if (HAVE_CPLUS_STRUCT (type))
9367 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 9368 }
63d06c5c 9369
bb5ed363 9370 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 9371
90aeadfc
DC
9372 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
9373 snapshots) has been known to create a die giving a declaration
9374 for a class that has, as a child, a die giving a definition for a
9375 nested class. So we have to process our children even if the
9376 current die is a declaration. Normally, of course, a declaration
9377 won't have any children at all. */
134d01f1 9378
90aeadfc
DC
9379 while (child_die != NULL && child_die->tag)
9380 {
9381 if (child_die->tag == DW_TAG_member
9382 || child_die->tag == DW_TAG_variable
34eaf542
TT
9383 || child_die->tag == DW_TAG_inheritance
9384 || child_die->tag == DW_TAG_template_value_param
9385 || child_die->tag == DW_TAG_template_type_param)
134d01f1 9386 {
90aeadfc 9387 /* Do nothing. */
134d01f1 9388 }
90aeadfc
DC
9389 else
9390 process_die (child_die, cu);
134d01f1 9391
90aeadfc 9392 child_die = sibling_die (child_die);
134d01f1
DJ
9393 }
9394
fa4028e9
JB
9395 /* Do not consider external references. According to the DWARF standard,
9396 these DIEs are identified by the fact that they have no byte_size
9397 attribute, and a declaration attribute. */
9398 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
9399 || !die_is_declaration (die, cu))
c767944b 9400 new_symbol (die, type, cu);
134d01f1
DJ
9401}
9402
9403/* Given a DW_AT_enumeration_type die, set its type. We do not
9404 complete the type's fields yet, or create any symbols. */
c906108c 9405
f792889a 9406static struct type *
134d01f1 9407read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9408{
e7c27a73 9409 struct objfile *objfile = cu->objfile;
c906108c 9410 struct type *type;
c906108c 9411 struct attribute *attr;
0114d602 9412 const char *name;
134d01f1 9413
348e048f
DE
9414 /* If the definition of this type lives in .debug_types, read that type.
9415 Don't follow DW_AT_specification though, that will take us back up
9416 the chain and we want to go down. */
9417 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
9418 if (attr)
9419 {
9420 struct dwarf2_cu *type_cu = cu;
9421 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 9422
348e048f 9423 type = read_type_die (type_die, type_cu);
9dc481d3
DE
9424
9425 /* TYPE_CU may not be the same as CU.
9426 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
9427 return set_die_type (die, type, cu);
9428 }
9429
c906108c
SS
9430 type = alloc_type (objfile);
9431
9432 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 9433 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 9434 if (name != NULL)
0114d602 9435 TYPE_TAG_NAME (type) = (char *) name;
c906108c 9436
e142c38c 9437 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
9438 if (attr)
9439 {
9440 TYPE_LENGTH (type) = DW_UNSND (attr);
9441 }
9442 else
9443 {
9444 TYPE_LENGTH (type) = 0;
9445 }
9446
137033e9
JB
9447 /* The enumeration DIE can be incomplete. In Ada, any type can be
9448 declared as private in the package spec, and then defined only
9449 inside the package body. Such types are known as Taft Amendment
9450 Types. When another package uses such a type, an incomplete DIE
9451 may be generated by the compiler. */
02eb380e 9452 if (die_is_declaration (die, cu))
876cecd0 9453 TYPE_STUB (type) = 1;
02eb380e 9454
f792889a 9455 return set_die_type (die, type, cu);
134d01f1
DJ
9456}
9457
9458/* Given a pointer to a die which begins an enumeration, process all
9459 the dies that define the members of the enumeration, and create the
9460 symbol for the enumeration type.
9461
9462 NOTE: We reverse the order of the element list. */
9463
9464static void
9465process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
9466{
f792889a 9467 struct type *this_type;
134d01f1 9468
f792889a
DJ
9469 this_type = get_die_type (die, cu);
9470 if (this_type == NULL)
9471 this_type = read_enumeration_type (die, cu);
9dc481d3 9472
639d11d3 9473 if (die->child != NULL)
c906108c 9474 {
9dc481d3
DE
9475 struct die_info *child_die;
9476 struct symbol *sym;
9477 struct field *fields = NULL;
9478 int num_fields = 0;
9479 int unsigned_enum = 1;
9480 char *name;
cafec441
TT
9481 int flag_enum = 1;
9482 ULONGEST mask = 0;
9dc481d3 9483
639d11d3 9484 child_die = die->child;
c906108c
SS
9485 while (child_die && child_die->tag)
9486 {
9487 if (child_die->tag != DW_TAG_enumerator)
9488 {
e7c27a73 9489 process_die (child_die, cu);
c906108c
SS
9490 }
9491 else
9492 {
39cbfefa
DJ
9493 name = dwarf2_name (child_die, cu);
9494 if (name)
c906108c 9495 {
f792889a 9496 sym = new_symbol (child_die, this_type, cu);
c906108c 9497 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
9498 {
9499 unsigned_enum = 0;
9500 flag_enum = 0;
9501 }
9502 else if ((mask & SYMBOL_VALUE (sym)) != 0)
9503 flag_enum = 0;
9504 else
9505 mask |= SYMBOL_VALUE (sym);
c906108c
SS
9506
9507 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
9508 {
9509 fields = (struct field *)
9510 xrealloc (fields,
9511 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 9512 * sizeof (struct field));
c906108c
SS
9513 }
9514
3567439c 9515 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 9516 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 9517 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
9518 FIELD_BITSIZE (fields[num_fields]) = 0;
9519
9520 num_fields++;
9521 }
9522 }
9523
9524 child_die = sibling_die (child_die);
9525 }
9526
9527 if (num_fields)
9528 {
f792889a
DJ
9529 TYPE_NFIELDS (this_type) = num_fields;
9530 TYPE_FIELDS (this_type) = (struct field *)
9531 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
9532 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 9533 sizeof (struct field) * num_fields);
b8c9b27d 9534 xfree (fields);
c906108c
SS
9535 }
9536 if (unsigned_enum)
876cecd0 9537 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
9538 if (flag_enum)
9539 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 9540 }
134d01f1 9541
6c83ed52
TT
9542 /* If we are reading an enum from a .debug_types unit, and the enum
9543 is a declaration, and the enum is not the signatured type in the
9544 unit, then we do not want to add a symbol for it. Adding a
9545 symbol would in some cases obscure the true definition of the
9546 enum, giving users an incomplete type when the definition is
9547 actually available. Note that we do not want to do this for all
9548 enums which are just declarations, because C++0x allows forward
9549 enum declarations. */
3019eac3 9550 if (cu->per_cu->is_debug_types
6c83ed52
TT
9551 && die_is_declaration (die, cu))
9552 {
52dc124a 9553 struct signatured_type *sig_type;
6c83ed52 9554
52dc124a 9555 sig_type
6c83ed52 9556 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
3019eac3 9557 cu->per_cu->info_or_types_section,
6c83ed52 9558 cu->per_cu->offset);
3019eac3
DE
9559 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
9560 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
9561 return;
9562 }
9563
f792889a 9564 new_symbol (die, this_type, cu);
c906108c
SS
9565}
9566
9567/* Extract all information from a DW_TAG_array_type DIE and put it in
9568 the DIE's type field. For now, this only handles one dimensional
9569 arrays. */
9570
f792889a 9571static struct type *
e7c27a73 9572read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9573{
e7c27a73 9574 struct objfile *objfile = cu->objfile;
c906108c 9575 struct die_info *child_die;
7e314c57 9576 struct type *type;
c906108c
SS
9577 struct type *element_type, *range_type, *index_type;
9578 struct type **range_types = NULL;
9579 struct attribute *attr;
9580 int ndim = 0;
9581 struct cleanup *back_to;
39cbfefa 9582 char *name;
c906108c 9583
e7c27a73 9584 element_type = die_type (die, cu);
c906108c 9585
7e314c57
JK
9586 /* The die_type call above may have already set the type for this DIE. */
9587 type = get_die_type (die, cu);
9588 if (type)
9589 return type;
9590
c906108c
SS
9591 /* Irix 6.2 native cc creates array types without children for
9592 arrays with unspecified length. */
639d11d3 9593 if (die->child == NULL)
c906108c 9594 {
46bf5051 9595 index_type = objfile_type (objfile)->builtin_int;
c906108c 9596 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
9597 type = create_array_type (NULL, element_type, range_type);
9598 return set_die_type (die, type, cu);
c906108c
SS
9599 }
9600
9601 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 9602 child_die = die->child;
c906108c
SS
9603 while (child_die && child_die->tag)
9604 {
9605 if (child_die->tag == DW_TAG_subrange_type)
9606 {
f792889a 9607 struct type *child_type = read_type_die (child_die, cu);
9a619af0 9608
f792889a 9609 if (child_type != NULL)
a02abb62 9610 {
0963b4bd
MS
9611 /* The range type was succesfully read. Save it for the
9612 array type creation. */
a02abb62
JB
9613 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
9614 {
9615 range_types = (struct type **)
9616 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
9617 * sizeof (struct type *));
9618 if (ndim == 0)
9619 make_cleanup (free_current_contents, &range_types);
9620 }
f792889a 9621 range_types[ndim++] = child_type;
a02abb62 9622 }
c906108c
SS
9623 }
9624 child_die = sibling_die (child_die);
9625 }
9626
9627 /* Dwarf2 dimensions are output from left to right, create the
9628 necessary array types in backwards order. */
7ca2d3a3 9629
c906108c 9630 type = element_type;
7ca2d3a3
DL
9631
9632 if (read_array_order (die, cu) == DW_ORD_col_major)
9633 {
9634 int i = 0;
9a619af0 9635
7ca2d3a3
DL
9636 while (i < ndim)
9637 type = create_array_type (NULL, type, range_types[i++]);
9638 }
9639 else
9640 {
9641 while (ndim-- > 0)
9642 type = create_array_type (NULL, type, range_types[ndim]);
9643 }
c906108c 9644
f5f8a009
EZ
9645 /* Understand Dwarf2 support for vector types (like they occur on
9646 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
9647 array type. This is not part of the Dwarf2/3 standard yet, but a
9648 custom vendor extension. The main difference between a regular
9649 array and the vector variant is that vectors are passed by value
9650 to functions. */
e142c38c 9651 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 9652 if (attr)
ea37ba09 9653 make_vector_type (type);
f5f8a009 9654
dbc98a8b
KW
9655 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
9656 implementation may choose to implement triple vectors using this
9657 attribute. */
9658 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9659 if (attr)
9660 {
9661 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
9662 TYPE_LENGTH (type) = DW_UNSND (attr);
9663 else
3e43a32a
MS
9664 complaint (&symfile_complaints,
9665 _("DW_AT_byte_size for array type smaller "
9666 "than the total size of elements"));
dbc98a8b
KW
9667 }
9668
39cbfefa
DJ
9669 name = dwarf2_name (die, cu);
9670 if (name)
9671 TYPE_NAME (type) = name;
6e70227d 9672
0963b4bd 9673 /* Install the type in the die. */
7e314c57
JK
9674 set_die_type (die, type, cu);
9675
9676 /* set_die_type should be already done. */
b4ba55a1
JB
9677 set_descriptive_type (type, die, cu);
9678
c906108c
SS
9679 do_cleanups (back_to);
9680
7e314c57 9681 return type;
c906108c
SS
9682}
9683
7ca2d3a3 9684static enum dwarf_array_dim_ordering
6e70227d 9685read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
9686{
9687 struct attribute *attr;
9688
9689 attr = dwarf2_attr (die, DW_AT_ordering, cu);
9690
9691 if (attr) return DW_SND (attr);
9692
0963b4bd
MS
9693 /* GNU F77 is a special case, as at 08/2004 array type info is the
9694 opposite order to the dwarf2 specification, but data is still
9695 laid out as per normal fortran.
7ca2d3a3 9696
0963b4bd
MS
9697 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
9698 version checking. */
7ca2d3a3 9699
905e0470
PM
9700 if (cu->language == language_fortran
9701 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
9702 {
9703 return DW_ORD_row_major;
9704 }
9705
6e70227d 9706 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
9707 {
9708 case array_column_major:
9709 return DW_ORD_col_major;
9710 case array_row_major:
9711 default:
9712 return DW_ORD_row_major;
9713 };
9714}
9715
72019c9c 9716/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 9717 the DIE's type field. */
72019c9c 9718
f792889a 9719static struct type *
72019c9c
GM
9720read_set_type (struct die_info *die, struct dwarf2_cu *cu)
9721{
7e314c57
JK
9722 struct type *domain_type, *set_type;
9723 struct attribute *attr;
f792889a 9724
7e314c57
JK
9725 domain_type = die_type (die, cu);
9726
9727 /* The die_type call above may have already set the type for this DIE. */
9728 set_type = get_die_type (die, cu);
9729 if (set_type)
9730 return set_type;
9731
9732 set_type = create_set_type (NULL, domain_type);
9733
9734 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
9735 if (attr)
9736 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 9737
f792889a 9738 return set_die_type (die, set_type, cu);
72019c9c 9739}
7ca2d3a3 9740
c906108c
SS
9741/* First cut: install each common block member as a global variable. */
9742
9743static void
e7c27a73 9744read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
9745{
9746 struct die_info *child_die;
9747 struct attribute *attr;
9748 struct symbol *sym;
9749 CORE_ADDR base = (CORE_ADDR) 0;
9750
e142c38c 9751 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
9752 if (attr)
9753 {
0963b4bd 9754 /* Support the .debug_loc offsets. */
8e19ed76
PS
9755 if (attr_form_is_block (attr))
9756 {
e7c27a73 9757 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 9758 }
3690dd37 9759 else if (attr_form_is_section_offset (attr))
8e19ed76 9760 {
4d3c2250 9761 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9762 }
9763 else
9764 {
4d3c2250
KB
9765 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9766 "common block member");
8e19ed76 9767 }
c906108c 9768 }
639d11d3 9769 if (die->child != NULL)
c906108c 9770 {
639d11d3 9771 child_die = die->child;
c906108c
SS
9772 while (child_die && child_die->tag)
9773 {
74ac6d43
TT
9774 LONGEST offset;
9775
e7c27a73 9776 sym = new_symbol (child_die, NULL, cu);
e8d28ef4
TT
9777 if (sym != NULL
9778 && handle_data_member_location (child_die, cu, &offset))
c906108c 9779 {
74ac6d43 9780 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
c906108c
SS
9781 add_symbol_to_list (sym, &global_symbols);
9782 }
9783 child_die = sibling_die (child_die);
9784 }
9785 }
9786}
9787
0114d602 9788/* Create a type for a C++ namespace. */
d9fa45fe 9789
0114d602
DJ
9790static struct type *
9791read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 9792{
e7c27a73 9793 struct objfile *objfile = cu->objfile;
0114d602 9794 const char *previous_prefix, *name;
9219021c 9795 int is_anonymous;
0114d602
DJ
9796 struct type *type;
9797
9798 /* For extensions, reuse the type of the original namespace. */
9799 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
9800 {
9801 struct die_info *ext_die;
9802 struct dwarf2_cu *ext_cu = cu;
9a619af0 9803
0114d602
DJ
9804 ext_die = dwarf2_extension (die, &ext_cu);
9805 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
9806
9807 /* EXT_CU may not be the same as CU.
9808 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
9809 return set_die_type (die, type, cu);
9810 }
9219021c 9811
e142c38c 9812 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
9813
9814 /* Now build the name of the current namespace. */
9815
0114d602
DJ
9816 previous_prefix = determine_prefix (die, cu);
9817 if (previous_prefix[0] != '\0')
9818 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 9819 previous_prefix, name, 0, cu);
0114d602
DJ
9820
9821 /* Create the type. */
9822 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
9823 objfile);
9824 TYPE_NAME (type) = (char *) name;
9825 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9826
60531b24 9827 return set_die_type (die, type, cu);
0114d602
DJ
9828}
9829
9830/* Read a C++ namespace. */
9831
9832static void
9833read_namespace (struct die_info *die, struct dwarf2_cu *cu)
9834{
9835 struct objfile *objfile = cu->objfile;
0114d602 9836 int is_anonymous;
9219021c 9837
5c4e30ca
DC
9838 /* Add a symbol associated to this if we haven't seen the namespace
9839 before. Also, add a using directive if it's an anonymous
9840 namespace. */
9219021c 9841
f2f0e013 9842 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
9843 {
9844 struct type *type;
9845
0114d602 9846 type = read_type_die (die, cu);
e7c27a73 9847 new_symbol (die, type, cu);
5c4e30ca 9848
e8e80198 9849 namespace_name (die, &is_anonymous, cu);
5c4e30ca 9850 if (is_anonymous)
0114d602
DJ
9851 {
9852 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 9853
c0cc3a76 9854 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
32019081 9855 NULL, NULL, &objfile->objfile_obstack);
0114d602 9856 }
5c4e30ca 9857 }
9219021c 9858
639d11d3 9859 if (die->child != NULL)
d9fa45fe 9860 {
639d11d3 9861 struct die_info *child_die = die->child;
6e70227d 9862
d9fa45fe
DC
9863 while (child_die && child_die->tag)
9864 {
e7c27a73 9865 process_die (child_die, cu);
d9fa45fe
DC
9866 child_die = sibling_die (child_die);
9867 }
9868 }
38d518c9
EZ
9869}
9870
f55ee35c
JK
9871/* Read a Fortran module as type. This DIE can be only a declaration used for
9872 imported module. Still we need that type as local Fortran "use ... only"
9873 declaration imports depend on the created type in determine_prefix. */
9874
9875static struct type *
9876read_module_type (struct die_info *die, struct dwarf2_cu *cu)
9877{
9878 struct objfile *objfile = cu->objfile;
9879 char *module_name;
9880 struct type *type;
9881
9882 module_name = dwarf2_name (die, cu);
9883 if (!module_name)
3e43a32a
MS
9884 complaint (&symfile_complaints,
9885 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 9886 die->offset.sect_off);
f55ee35c
JK
9887 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
9888
9889 /* determine_prefix uses TYPE_TAG_NAME. */
9890 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9891
9892 return set_die_type (die, type, cu);
9893}
9894
5d7cb8df
JK
9895/* Read a Fortran module. */
9896
9897static void
9898read_module (struct die_info *die, struct dwarf2_cu *cu)
9899{
9900 struct die_info *child_die = die->child;
9901
5d7cb8df
JK
9902 while (child_die && child_die->tag)
9903 {
9904 process_die (child_die, cu);
9905 child_die = sibling_die (child_die);
9906 }
9907}
9908
38d518c9
EZ
9909/* Return the name of the namespace represented by DIE. Set
9910 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
9911 namespace. */
9912
9913static const char *
e142c38c 9914namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
9915{
9916 struct die_info *current_die;
9917 const char *name = NULL;
9918
9919 /* Loop through the extensions until we find a name. */
9920
9921 for (current_die = die;
9922 current_die != NULL;
f2f0e013 9923 current_die = dwarf2_extension (die, &cu))
38d518c9 9924 {
e142c38c 9925 name = dwarf2_name (current_die, cu);
38d518c9
EZ
9926 if (name != NULL)
9927 break;
9928 }
9929
9930 /* Is it an anonymous namespace? */
9931
9932 *is_anonymous = (name == NULL);
9933 if (*is_anonymous)
2b1dbab0 9934 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
9935
9936 return name;
d9fa45fe
DC
9937}
9938
c906108c
SS
9939/* Extract all information from a DW_TAG_pointer_type DIE and add to
9940 the user defined type vector. */
9941
f792889a 9942static struct type *
e7c27a73 9943read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9944{
5e2b427d 9945 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 9946 struct comp_unit_head *cu_header = &cu->header;
c906108c 9947 struct type *type;
8b2dbe47
KB
9948 struct attribute *attr_byte_size;
9949 struct attribute *attr_address_class;
9950 int byte_size, addr_class;
7e314c57
JK
9951 struct type *target_type;
9952
9953 target_type = die_type (die, cu);
c906108c 9954
7e314c57
JK
9955 /* The die_type call above may have already set the type for this DIE. */
9956 type = get_die_type (die, cu);
9957 if (type)
9958 return type;
9959
9960 type = lookup_pointer_type (target_type);
8b2dbe47 9961
e142c38c 9962 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
9963 if (attr_byte_size)
9964 byte_size = DW_UNSND (attr_byte_size);
c906108c 9965 else
8b2dbe47
KB
9966 byte_size = cu_header->addr_size;
9967
e142c38c 9968 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
9969 if (attr_address_class)
9970 addr_class = DW_UNSND (attr_address_class);
9971 else
9972 addr_class = DW_ADDR_none;
9973
9974 /* If the pointer size or address class is different than the
9975 default, create a type variant marked as such and set the
9976 length accordingly. */
9977 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 9978 {
5e2b427d 9979 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
9980 {
9981 int type_flags;
9982
849957d9 9983 type_flags = gdbarch_address_class_type_flags
5e2b427d 9984 (gdbarch, byte_size, addr_class);
876cecd0
TT
9985 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
9986 == 0);
8b2dbe47
KB
9987 type = make_type_with_address_space (type, type_flags);
9988 }
9989 else if (TYPE_LENGTH (type) != byte_size)
9990 {
3e43a32a
MS
9991 complaint (&symfile_complaints,
9992 _("invalid pointer size %d"), byte_size);
8b2dbe47 9993 }
6e70227d 9994 else
9a619af0
MS
9995 {
9996 /* Should we also complain about unhandled address classes? */
9997 }
c906108c 9998 }
8b2dbe47
KB
9999
10000 TYPE_LENGTH (type) = byte_size;
f792889a 10001 return set_die_type (die, type, cu);
c906108c
SS
10002}
10003
10004/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
10005 the user defined type vector. */
10006
f792889a 10007static struct type *
e7c27a73 10008read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
10009{
10010 struct type *type;
10011 struct type *to_type;
10012 struct type *domain;
10013
e7c27a73
DJ
10014 to_type = die_type (die, cu);
10015 domain = die_containing_type (die, cu);
0d5de010 10016
7e314c57
JK
10017 /* The calls above may have already set the type for this DIE. */
10018 type = get_die_type (die, cu);
10019 if (type)
10020 return type;
10021
0d5de010
DJ
10022 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
10023 type = lookup_methodptr_type (to_type);
10024 else
10025 type = lookup_memberptr_type (to_type, domain);
c906108c 10026
f792889a 10027 return set_die_type (die, type, cu);
c906108c
SS
10028}
10029
10030/* Extract all information from a DW_TAG_reference_type DIE and add to
10031 the user defined type vector. */
10032
f792889a 10033static struct type *
e7c27a73 10034read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10035{
e7c27a73 10036 struct comp_unit_head *cu_header = &cu->header;
7e314c57 10037 struct type *type, *target_type;
c906108c
SS
10038 struct attribute *attr;
10039
7e314c57
JK
10040 target_type = die_type (die, cu);
10041
10042 /* The die_type call above may have already set the type for this DIE. */
10043 type = get_die_type (die, cu);
10044 if (type)
10045 return type;
10046
10047 type = lookup_reference_type (target_type);
e142c38c 10048 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
10049 if (attr)
10050 {
10051 TYPE_LENGTH (type) = DW_UNSND (attr);
10052 }
10053 else
10054 {
107d2387 10055 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 10056 }
f792889a 10057 return set_die_type (die, type, cu);
c906108c
SS
10058}
10059
f792889a 10060static struct type *
e7c27a73 10061read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10062{
f792889a 10063 struct type *base_type, *cv_type;
c906108c 10064
e7c27a73 10065 base_type = die_type (die, cu);
7e314c57
JK
10066
10067 /* The die_type call above may have already set the type for this DIE. */
10068 cv_type = get_die_type (die, cu);
10069 if (cv_type)
10070 return cv_type;
10071
2f608a3a
KW
10072 /* In case the const qualifier is applied to an array type, the element type
10073 is so qualified, not the array type (section 6.7.3 of C99). */
10074 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
10075 {
10076 struct type *el_type, *inner_array;
10077
10078 base_type = copy_type (base_type);
10079 inner_array = base_type;
10080
10081 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
10082 {
10083 TYPE_TARGET_TYPE (inner_array) =
10084 copy_type (TYPE_TARGET_TYPE (inner_array));
10085 inner_array = TYPE_TARGET_TYPE (inner_array);
10086 }
10087
10088 el_type = TYPE_TARGET_TYPE (inner_array);
10089 TYPE_TARGET_TYPE (inner_array) =
10090 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
10091
10092 return set_die_type (die, base_type, cu);
10093 }
10094
f792889a
DJ
10095 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
10096 return set_die_type (die, cv_type, cu);
c906108c
SS
10097}
10098
f792889a 10099static struct type *
e7c27a73 10100read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10101{
f792889a 10102 struct type *base_type, *cv_type;
c906108c 10103
e7c27a73 10104 base_type = die_type (die, cu);
7e314c57
JK
10105
10106 /* The die_type call above may have already set the type for this DIE. */
10107 cv_type = get_die_type (die, cu);
10108 if (cv_type)
10109 return cv_type;
10110
f792889a
DJ
10111 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
10112 return set_die_type (die, cv_type, cu);
c906108c
SS
10113}
10114
10115/* Extract all information from a DW_TAG_string_type DIE and add to
10116 the user defined type vector. It isn't really a user defined type,
10117 but it behaves like one, with other DIE's using an AT_user_def_type
10118 attribute to reference it. */
10119
f792889a 10120static struct type *
e7c27a73 10121read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10122{
e7c27a73 10123 struct objfile *objfile = cu->objfile;
3b7538c0 10124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
10125 struct type *type, *range_type, *index_type, *char_type;
10126 struct attribute *attr;
10127 unsigned int length;
10128
e142c38c 10129 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
10130 if (attr)
10131 {
10132 length = DW_UNSND (attr);
10133 }
10134 else
10135 {
0963b4bd 10136 /* Check for the DW_AT_byte_size attribute. */
e142c38c 10137 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
10138 if (attr)
10139 {
10140 length = DW_UNSND (attr);
10141 }
10142 else
10143 {
10144 length = 1;
10145 }
c906108c 10146 }
6ccb9162 10147
46bf5051 10148 index_type = objfile_type (objfile)->builtin_int;
c906108c 10149 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
10150 char_type = language_string_char_type (cu->language_defn, gdbarch);
10151 type = create_string_type (NULL, char_type, range_type);
6ccb9162 10152
f792889a 10153 return set_die_type (die, type, cu);
c906108c
SS
10154}
10155
10156/* Handle DIES due to C code like:
10157
10158 struct foo
c5aa993b
JM
10159 {
10160 int (*funcp)(int a, long l);
10161 int b;
10162 };
c906108c 10163
0963b4bd 10164 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 10165
f792889a 10166static struct type *
e7c27a73 10167read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10168{
bb5ed363 10169 struct objfile *objfile = cu->objfile;
0963b4bd
MS
10170 struct type *type; /* Type that this function returns. */
10171 struct type *ftype; /* Function that returns above type. */
c906108c
SS
10172 struct attribute *attr;
10173
e7c27a73 10174 type = die_type (die, cu);
7e314c57
JK
10175
10176 /* The die_type call above may have already set the type for this DIE. */
10177 ftype = get_die_type (die, cu);
10178 if (ftype)
10179 return ftype;
10180
0c8b41f1 10181 ftype = lookup_function_type (type);
c906108c 10182
5b8101ae 10183 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 10184 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 10185 if ((attr && (DW_UNSND (attr) != 0))
987504bb 10186 || cu->language == language_cplus
5b8101ae
PM
10187 || cu->language == language_java
10188 || cu->language == language_pascal)
876cecd0 10189 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
10190 else if (producer_is_realview (cu->producer))
10191 /* RealView does not emit DW_AT_prototyped. We can not
10192 distinguish prototyped and unprototyped functions; default to
10193 prototyped, since that is more common in modern code (and
10194 RealView warns about unprototyped functions). */
10195 TYPE_PROTOTYPED (ftype) = 1;
c906108c 10196
c055b101
CV
10197 /* Store the calling convention in the type if it's available in
10198 the subroutine die. Otherwise set the calling convention to
10199 the default value DW_CC_normal. */
10200 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
10201 if (attr)
10202 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
10203 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
10204 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
10205 else
10206 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
10207
10208 /* We need to add the subroutine type to the die immediately so
10209 we don't infinitely recurse when dealing with parameters
0963b4bd 10210 declared as the same subroutine type. */
76c10ea2 10211 set_die_type (die, ftype, cu);
6e70227d 10212
639d11d3 10213 if (die->child != NULL)
c906108c 10214 {
bb5ed363 10215 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 10216 struct die_info *child_die;
8072405b 10217 int nparams, iparams;
c906108c
SS
10218
10219 /* Count the number of parameters.
10220 FIXME: GDB currently ignores vararg functions, but knows about
10221 vararg member functions. */
8072405b 10222 nparams = 0;
639d11d3 10223 child_die = die->child;
c906108c
SS
10224 while (child_die && child_die->tag)
10225 {
10226 if (child_die->tag == DW_TAG_formal_parameter)
10227 nparams++;
10228 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 10229 TYPE_VARARGS (ftype) = 1;
c906108c
SS
10230 child_die = sibling_die (child_die);
10231 }
10232
10233 /* Allocate storage for parameters and fill them in. */
10234 TYPE_NFIELDS (ftype) = nparams;
10235 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 10236 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 10237
8072405b
JK
10238 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
10239 even if we error out during the parameters reading below. */
10240 for (iparams = 0; iparams < nparams; iparams++)
10241 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
10242
10243 iparams = 0;
639d11d3 10244 child_die = die->child;
c906108c
SS
10245 while (child_die && child_die->tag)
10246 {
10247 if (child_die->tag == DW_TAG_formal_parameter)
10248 {
3ce3b1ba
PA
10249 struct type *arg_type;
10250
10251 /* DWARF version 2 has no clean way to discern C++
10252 static and non-static member functions. G++ helps
10253 GDB by marking the first parameter for non-static
10254 member functions (which is the this pointer) as
10255 artificial. We pass this information to
10256 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
10257
10258 DWARF version 3 added DW_AT_object_pointer, which GCC
10259 4.5 does not yet generate. */
e142c38c 10260 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
10261 if (attr)
10262 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
10263 else
418835cc
KS
10264 {
10265 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
10266
10267 /* GCC/43521: In java, the formal parameter
10268 "this" is sometimes not marked with DW_AT_artificial. */
10269 if (cu->language == language_java)
10270 {
10271 const char *name = dwarf2_name (child_die, cu);
9a619af0 10272
418835cc
KS
10273 if (name && !strcmp (name, "this"))
10274 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
10275 }
10276 }
3ce3b1ba
PA
10277 arg_type = die_type (child_die, cu);
10278
10279 /* RealView does not mark THIS as const, which the testsuite
10280 expects. GCC marks THIS as const in method definitions,
10281 but not in the class specifications (GCC PR 43053). */
10282 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
10283 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
10284 {
10285 int is_this = 0;
10286 struct dwarf2_cu *arg_cu = cu;
10287 const char *name = dwarf2_name (child_die, cu);
10288
10289 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
10290 if (attr)
10291 {
10292 /* If the compiler emits this, use it. */
10293 if (follow_die_ref (die, attr, &arg_cu) == child_die)
10294 is_this = 1;
10295 }
10296 else if (name && strcmp (name, "this") == 0)
10297 /* Function definitions will have the argument names. */
10298 is_this = 1;
10299 else if (name == NULL && iparams == 0)
10300 /* Declarations may not have the names, so like
10301 elsewhere in GDB, assume an artificial first
10302 argument is "this". */
10303 is_this = 1;
10304
10305 if (is_this)
10306 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
10307 arg_type, 0);
10308 }
10309
10310 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
10311 iparams++;
10312 }
10313 child_die = sibling_die (child_die);
10314 }
10315 }
10316
76c10ea2 10317 return ftype;
c906108c
SS
10318}
10319
f792889a 10320static struct type *
e7c27a73 10321read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10322{
e7c27a73 10323 struct objfile *objfile = cu->objfile;
0114d602 10324 const char *name = NULL;
3c8e0968 10325 struct type *this_type, *target_type;
c906108c 10326
94af9270 10327 name = dwarf2_full_name (NULL, die, cu);
f792889a 10328 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
10329 TYPE_FLAG_TARGET_STUB, NULL, objfile);
10330 TYPE_NAME (this_type) = (char *) name;
f792889a 10331 set_die_type (die, this_type, cu);
3c8e0968
DE
10332 target_type = die_type (die, cu);
10333 if (target_type != this_type)
10334 TYPE_TARGET_TYPE (this_type) = target_type;
10335 else
10336 {
10337 /* Self-referential typedefs are, it seems, not allowed by the DWARF
10338 spec and cause infinite loops in GDB. */
10339 complaint (&symfile_complaints,
10340 _("Self-referential DW_TAG_typedef "
10341 "- DIE at 0x%x [in module %s]"),
b64f50a1 10342 die->offset.sect_off, objfile->name);
3c8e0968
DE
10343 TYPE_TARGET_TYPE (this_type) = NULL;
10344 }
f792889a 10345 return this_type;
c906108c
SS
10346}
10347
10348/* Find a representation of a given base type and install
10349 it in the TYPE field of the die. */
10350
f792889a 10351static struct type *
e7c27a73 10352read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10353{
e7c27a73 10354 struct objfile *objfile = cu->objfile;
c906108c
SS
10355 struct type *type;
10356 struct attribute *attr;
10357 int encoding = 0, size = 0;
39cbfefa 10358 char *name;
6ccb9162
UW
10359 enum type_code code = TYPE_CODE_INT;
10360 int type_flags = 0;
10361 struct type *target_type = NULL;
c906108c 10362
e142c38c 10363 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
10364 if (attr)
10365 {
10366 encoding = DW_UNSND (attr);
10367 }
e142c38c 10368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
10369 if (attr)
10370 {
10371 size = DW_UNSND (attr);
10372 }
39cbfefa 10373 name = dwarf2_name (die, cu);
6ccb9162 10374 if (!name)
c906108c 10375 {
6ccb9162
UW
10376 complaint (&symfile_complaints,
10377 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 10378 }
6ccb9162
UW
10379
10380 switch (encoding)
c906108c 10381 {
6ccb9162
UW
10382 case DW_ATE_address:
10383 /* Turn DW_ATE_address into a void * pointer. */
10384 code = TYPE_CODE_PTR;
10385 type_flags |= TYPE_FLAG_UNSIGNED;
10386 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
10387 break;
10388 case DW_ATE_boolean:
10389 code = TYPE_CODE_BOOL;
10390 type_flags |= TYPE_FLAG_UNSIGNED;
10391 break;
10392 case DW_ATE_complex_float:
10393 code = TYPE_CODE_COMPLEX;
10394 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
10395 break;
10396 case DW_ATE_decimal_float:
10397 code = TYPE_CODE_DECFLOAT;
10398 break;
10399 case DW_ATE_float:
10400 code = TYPE_CODE_FLT;
10401 break;
10402 case DW_ATE_signed:
10403 break;
10404 case DW_ATE_unsigned:
10405 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
10406 if (cu->language == language_fortran
10407 && name
10408 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
10409 code = TYPE_CODE_CHAR;
6ccb9162
UW
10410 break;
10411 case DW_ATE_signed_char:
6e70227d 10412 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
10413 || cu->language == language_pascal
10414 || cu->language == language_fortran)
6ccb9162
UW
10415 code = TYPE_CODE_CHAR;
10416 break;
10417 case DW_ATE_unsigned_char:
868a0084 10418 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
10419 || cu->language == language_pascal
10420 || cu->language == language_fortran)
6ccb9162
UW
10421 code = TYPE_CODE_CHAR;
10422 type_flags |= TYPE_FLAG_UNSIGNED;
10423 break;
75079b2b
TT
10424 case DW_ATE_UTF:
10425 /* We just treat this as an integer and then recognize the
10426 type by name elsewhere. */
10427 break;
10428
6ccb9162
UW
10429 default:
10430 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
10431 dwarf_type_encoding_name (encoding));
10432 break;
c906108c 10433 }
6ccb9162 10434
0114d602
DJ
10435 type = init_type (code, size, type_flags, NULL, objfile);
10436 TYPE_NAME (type) = name;
6ccb9162
UW
10437 TYPE_TARGET_TYPE (type) = target_type;
10438
0114d602 10439 if (name && strcmp (name, "char") == 0)
876cecd0 10440 TYPE_NOSIGN (type) = 1;
0114d602 10441
f792889a 10442 return set_die_type (die, type, cu);
c906108c
SS
10443}
10444
a02abb62
JB
10445/* Read the given DW_AT_subrange DIE. */
10446
f792889a 10447static struct type *
a02abb62
JB
10448read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
10449{
10450 struct type *base_type;
10451 struct type *range_type;
10452 struct attribute *attr;
4fae6e18
JK
10453 LONGEST low, high;
10454 int low_default_is_valid;
39cbfefa 10455 char *name;
43bbcdc2 10456 LONGEST negative_mask;
e77813c8 10457
a02abb62 10458 base_type = die_type (die, cu);
953ac07e
JK
10459 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
10460 check_typedef (base_type);
a02abb62 10461
7e314c57
JK
10462 /* The die_type call above may have already set the type for this DIE. */
10463 range_type = get_die_type (die, cu);
10464 if (range_type)
10465 return range_type;
10466
4fae6e18
JK
10467 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
10468 omitting DW_AT_lower_bound. */
10469 switch (cu->language)
6e70227d 10470 {
4fae6e18
JK
10471 case language_c:
10472 case language_cplus:
10473 low = 0;
10474 low_default_is_valid = 1;
10475 break;
10476 case language_fortran:
10477 low = 1;
10478 low_default_is_valid = 1;
10479 break;
10480 case language_d:
10481 case language_java:
10482 case language_objc:
10483 low = 0;
10484 low_default_is_valid = (cu->header.version >= 4);
10485 break;
10486 case language_ada:
10487 case language_m2:
10488 case language_pascal:
a02abb62 10489 low = 1;
4fae6e18
JK
10490 low_default_is_valid = (cu->header.version >= 4);
10491 break;
10492 default:
10493 low = 0;
10494 low_default_is_valid = 0;
10495 break;
a02abb62
JB
10496 }
10497
dd5e6932
DJ
10498 /* FIXME: For variable sized arrays either of these could be
10499 a variable rather than a constant value. We'll allow it,
10500 but we don't know how to handle it. */
e142c38c 10501 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 10502 if (attr)
4fae6e18
JK
10503 low = dwarf2_get_attr_constant_value (attr, low);
10504 else if (!low_default_is_valid)
10505 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
10506 "- DIE at 0x%x [in module %s]"),
10507 die->offset.sect_off, cu->objfile->name);
a02abb62 10508
e142c38c 10509 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 10510 if (attr)
6e70227d 10511 {
d48323d8 10512 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
10513 {
10514 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 10515 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
10516 FIXME: GDB does not yet know how to handle dynamic
10517 arrays properly, treat them as arrays with unspecified
10518 length for now.
10519
10520 FIXME: jimb/2003-09-22: GDB does not really know
10521 how to handle arrays of unspecified length
10522 either; we just represent them as zero-length
10523 arrays. Choose an appropriate upper bound given
10524 the lower bound we've computed above. */
10525 high = low - 1;
10526 }
10527 else
10528 high = dwarf2_get_attr_constant_value (attr, 1);
10529 }
e77813c8
PM
10530 else
10531 {
10532 attr = dwarf2_attr (die, DW_AT_count, cu);
10533 if (attr)
10534 {
10535 int count = dwarf2_get_attr_constant_value (attr, 1);
10536 high = low + count - 1;
10537 }
c2ff108b
JK
10538 else
10539 {
10540 /* Unspecified array length. */
10541 high = low - 1;
10542 }
e77813c8
PM
10543 }
10544
10545 /* Dwarf-2 specifications explicitly allows to create subrange types
10546 without specifying a base type.
10547 In that case, the base type must be set to the type of
10548 the lower bound, upper bound or count, in that order, if any of these
10549 three attributes references an object that has a type.
10550 If no base type is found, the Dwarf-2 specifications say that
10551 a signed integer type of size equal to the size of an address should
10552 be used.
10553 For the following C code: `extern char gdb_int [];'
10554 GCC produces an empty range DIE.
10555 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 10556 high bound or count are not yet handled by this code. */
e77813c8
PM
10557 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
10558 {
10559 struct objfile *objfile = cu->objfile;
10560 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10561 int addr_size = gdbarch_addr_bit (gdbarch) /8;
10562 struct type *int_type = objfile_type (objfile)->builtin_int;
10563
10564 /* Test "int", "long int", and "long long int" objfile types,
10565 and select the first one having a size above or equal to the
10566 architecture address size. */
10567 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
10568 base_type = int_type;
10569 else
10570 {
10571 int_type = objfile_type (objfile)->builtin_long;
10572 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
10573 base_type = int_type;
10574 else
10575 {
10576 int_type = objfile_type (objfile)->builtin_long_long;
10577 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
10578 base_type = int_type;
10579 }
10580 }
10581 }
a02abb62 10582
6e70227d 10583 negative_mask =
43bbcdc2
PH
10584 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
10585 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
10586 low |= negative_mask;
10587 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
10588 high |= negative_mask;
10589
a02abb62
JB
10590 range_type = create_range_type (NULL, base_type, low, high);
10591
bbb0eef6
JK
10592 /* Mark arrays with dynamic length at least as an array of unspecified
10593 length. GDB could check the boundary but before it gets implemented at
10594 least allow accessing the array elements. */
d48323d8 10595 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
10596 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
10597
c2ff108b
JK
10598 /* Ada expects an empty array on no boundary attributes. */
10599 if (attr == NULL && cu->language != language_ada)
10600 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
10601
39cbfefa
DJ
10602 name = dwarf2_name (die, cu);
10603 if (name)
10604 TYPE_NAME (range_type) = name;
6e70227d 10605
e142c38c 10606 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
10607 if (attr)
10608 TYPE_LENGTH (range_type) = DW_UNSND (attr);
10609
7e314c57
JK
10610 set_die_type (die, range_type, cu);
10611
10612 /* set_die_type should be already done. */
b4ba55a1
JB
10613 set_descriptive_type (range_type, die, cu);
10614
7e314c57 10615 return range_type;
a02abb62 10616}
6e70227d 10617
f792889a 10618static struct type *
81a17f79
JB
10619read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
10620{
10621 struct type *type;
81a17f79 10622
81a17f79
JB
10623 /* For now, we only support the C meaning of an unspecified type: void. */
10624
0114d602
DJ
10625 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
10626 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 10627
f792889a 10628 return set_die_type (die, type, cu);
81a17f79 10629}
a02abb62 10630
639d11d3
DC
10631/* Read a single die and all its descendents. Set the die's sibling
10632 field to NULL; set other fields in the die correctly, and set all
10633 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
10634 location of the info_ptr after reading all of those dies. PARENT
10635 is the parent of the die in question. */
10636
10637static struct die_info *
dee91e82
DE
10638read_die_and_children (const struct die_reader_specs *reader,
10639 gdb_byte *info_ptr,
10640 gdb_byte **new_info_ptr,
10641 struct die_info *parent)
639d11d3
DC
10642{
10643 struct die_info *die;
fe1b8b76 10644 gdb_byte *cur_ptr;
639d11d3
DC
10645 int has_children;
10646
93311388 10647 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
10648 if (die == NULL)
10649 {
10650 *new_info_ptr = cur_ptr;
10651 return NULL;
10652 }
93311388 10653 store_in_ref_table (die, reader->cu);
639d11d3
DC
10654
10655 if (has_children)
348e048f 10656 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
10657 else
10658 {
10659 die->child = NULL;
10660 *new_info_ptr = cur_ptr;
10661 }
10662
10663 die->sibling = NULL;
10664 die->parent = parent;
10665 return die;
10666}
10667
10668/* Read a die, all of its descendents, and all of its siblings; set
10669 all of the fields of all of the dies correctly. Arguments are as
10670 in read_die_and_children. */
10671
10672static struct die_info *
93311388
DE
10673read_die_and_siblings (const struct die_reader_specs *reader,
10674 gdb_byte *info_ptr,
fe1b8b76 10675 gdb_byte **new_info_ptr,
639d11d3
DC
10676 struct die_info *parent)
10677{
10678 struct die_info *first_die, *last_sibling;
fe1b8b76 10679 gdb_byte *cur_ptr;
639d11d3 10680
c906108c 10681 cur_ptr = info_ptr;
639d11d3
DC
10682 first_die = last_sibling = NULL;
10683
10684 while (1)
c906108c 10685 {
639d11d3 10686 struct die_info *die
dee91e82 10687 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 10688
1d325ec1 10689 if (die == NULL)
c906108c 10690 {
639d11d3
DC
10691 *new_info_ptr = cur_ptr;
10692 return first_die;
c906108c 10693 }
1d325ec1
DJ
10694
10695 if (!first_die)
10696 first_die = die;
c906108c 10697 else
1d325ec1
DJ
10698 last_sibling->sibling = die;
10699
10700 last_sibling = die;
c906108c 10701 }
c906108c
SS
10702}
10703
3019eac3
DE
10704/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
10705 attributes.
10706 The caller is responsible for filling in the extra attributes
10707 and updating (*DIEP)->num_attrs.
10708 Set DIEP to point to a newly allocated die with its information,
10709 except for its child, sibling, and parent fields.
10710 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388
DE
10711
10712static gdb_byte *
3019eac3
DE
10713read_full_die_1 (const struct die_reader_specs *reader,
10714 struct die_info **diep, gdb_byte *info_ptr,
10715 int *has_children, int num_extra_attrs)
93311388 10716{
b64f50a1
JK
10717 unsigned int abbrev_number, bytes_read, i;
10718 sect_offset offset;
93311388
DE
10719 struct abbrev_info *abbrev;
10720 struct die_info *die;
10721 struct dwarf2_cu *cu = reader->cu;
10722 bfd *abfd = reader->abfd;
10723
b64f50a1 10724 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
10725 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10726 info_ptr += bytes_read;
10727 if (!abbrev_number)
10728 {
10729 *diep = NULL;
10730 *has_children = 0;
10731 return info_ptr;
10732 }
10733
10734 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
10735 if (!abbrev)
348e048f
DE
10736 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
10737 abbrev_number,
10738 bfd_get_filename (abfd));
10739
3019eac3 10740 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
10741 die->offset = offset;
10742 die->tag = abbrev->tag;
10743 die->abbrev = abbrev_number;
10744
3019eac3
DE
10745 /* Make the result usable.
10746 The caller needs to update num_attrs after adding the extra
10747 attributes. */
93311388
DE
10748 die->num_attrs = abbrev->num_attrs;
10749
10750 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
10751 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
10752 info_ptr);
93311388
DE
10753
10754 *diep = die;
10755 *has_children = abbrev->has_children;
10756 return info_ptr;
10757}
10758
3019eac3
DE
10759/* Read a die and all its attributes.
10760 Set DIEP to point to a newly allocated die with its information,
10761 except for its child, sibling, and parent fields.
10762 Set HAS_CHILDREN to tell whether the die has children or not. */
10763
10764static gdb_byte *
10765read_full_die (const struct die_reader_specs *reader,
10766 struct die_info **diep, gdb_byte *info_ptr,
10767 int *has_children)
10768{
10769 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
10770}
10771
c906108c
SS
10772/* In DWARF version 2, the description of the debugging information is
10773 stored in a separate .debug_abbrev section. Before we read any
10774 dies from a section we read in all abbreviations and install them
72bf9492
DJ
10775 in a hash table. This function also sets flags in CU describing
10776 the data found in the abbrev table. */
c906108c
SS
10777
10778static void
dee91e82
DE
10779dwarf2_read_abbrevs (struct dwarf2_cu *cu,
10780 struct dwarf2_section_info *abbrev_section)
10781
c906108c 10782{
dee91e82 10783 bfd *abfd = abbrev_section->asection->owner;
e7c27a73 10784 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 10785 gdb_byte *abbrev_ptr;
c906108c
SS
10786 struct abbrev_info *cur_abbrev;
10787 unsigned int abbrev_number, bytes_read, abbrev_name;
10788 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
10789 struct attr_abbrev *cur_attrs;
10790 unsigned int allocated_attrs;
c906108c 10791
0963b4bd 10792 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
10793 obstack_init (&cu->abbrev_obstack);
10794 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
10795 (ABBREV_HASH_SIZE
10796 * sizeof (struct abbrev_info *)));
10797 memset (cu->dwarf2_abbrevs, 0,
10798 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 10799
dee91e82
DE
10800 dwarf2_read_section (cu->objfile, abbrev_section);
10801 abbrev_ptr = abbrev_section->buffer + cu_header->abbrev_offset.sect_off;
c906108c
SS
10802 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10803 abbrev_ptr += bytes_read;
10804
f3dd6933
DJ
10805 allocated_attrs = ATTR_ALLOC_CHUNK;
10806 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 10807
0963b4bd 10808 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
10809 while (abbrev_number)
10810 {
f3dd6933 10811 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
10812
10813 /* read in abbrev header */
10814 cur_abbrev->number = abbrev_number;
10815 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10816 abbrev_ptr += bytes_read;
10817 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
10818 abbrev_ptr += 1;
10819
10820 /* now read in declarations */
10821 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10822 abbrev_ptr += bytes_read;
10823 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10824 abbrev_ptr += bytes_read;
10825 while (abbrev_name)
10826 {
f3dd6933 10827 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 10828 {
f3dd6933
DJ
10829 allocated_attrs += ATTR_ALLOC_CHUNK;
10830 cur_attrs
10831 = xrealloc (cur_attrs, (allocated_attrs
10832 * sizeof (struct attr_abbrev)));
c906108c 10833 }
ae038cb0 10834
f3dd6933
DJ
10835 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
10836 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
10837 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10838 abbrev_ptr += bytes_read;
10839 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10840 abbrev_ptr += bytes_read;
10841 }
10842
f3dd6933
DJ
10843 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
10844 (cur_abbrev->num_attrs
10845 * sizeof (struct attr_abbrev)));
10846 memcpy (cur_abbrev->attrs, cur_attrs,
10847 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
10848
c906108c 10849 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
10850 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
10851 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
10852
10853 /* Get next abbreviation.
10854 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
10855 always properly terminated with an abbrev number of 0.
10856 Exit loop if we encounter an abbreviation which we have
10857 already read (which means we are about to read the abbreviations
10858 for the next compile unit) or if the end of the abbreviation
10859 table is reached. */
dee91e82
DE
10860 if ((unsigned int) (abbrev_ptr - abbrev_section->buffer)
10861 >= abbrev_section->size)
c906108c
SS
10862 break;
10863 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10864 abbrev_ptr += bytes_read;
e7c27a73 10865 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
10866 break;
10867 }
f3dd6933
DJ
10868
10869 xfree (cur_attrs);
c906108c
SS
10870}
10871
f3dd6933 10872/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 10873
c906108c 10874static void
f3dd6933 10875dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 10876{
f3dd6933 10877 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 10878
f3dd6933
DJ
10879 obstack_free (&cu->abbrev_obstack, NULL);
10880 cu->dwarf2_abbrevs = NULL;
c906108c
SS
10881}
10882
10883/* Lookup an abbrev_info structure in the abbrev hash table. */
10884
10885static struct abbrev_info *
e7c27a73 10886dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
10887{
10888 unsigned int hash_number;
10889 struct abbrev_info *abbrev;
10890
10891 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 10892 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
10893
10894 while (abbrev)
10895 {
10896 if (abbrev->number == number)
10897 return abbrev;
10898 else
10899 abbrev = abbrev->next;
10900 }
10901 return NULL;
10902}
10903
72bf9492
DJ
10904/* Returns nonzero if TAG represents a type that we might generate a partial
10905 symbol for. */
10906
10907static int
10908is_type_tag_for_partial (int tag)
10909{
10910 switch (tag)
10911 {
10912#if 0
10913 /* Some types that would be reasonable to generate partial symbols for,
10914 that we don't at present. */
10915 case DW_TAG_array_type:
10916 case DW_TAG_file_type:
10917 case DW_TAG_ptr_to_member_type:
10918 case DW_TAG_set_type:
10919 case DW_TAG_string_type:
10920 case DW_TAG_subroutine_type:
10921#endif
10922 case DW_TAG_base_type:
10923 case DW_TAG_class_type:
680b30c7 10924 case DW_TAG_interface_type:
72bf9492
DJ
10925 case DW_TAG_enumeration_type:
10926 case DW_TAG_structure_type:
10927 case DW_TAG_subrange_type:
10928 case DW_TAG_typedef:
10929 case DW_TAG_union_type:
10930 return 1;
10931 default:
10932 return 0;
10933 }
10934}
10935
10936/* Load all DIEs that are interesting for partial symbols into memory. */
10937
10938static struct partial_die_info *
dee91e82
DE
10939load_partial_dies (const struct die_reader_specs *reader,
10940 gdb_byte *info_ptr, int building_psymtab)
72bf9492 10941{
dee91e82 10942 struct dwarf2_cu *cu = reader->cu;
bb5ed363 10943 struct objfile *objfile = cu->objfile;
72bf9492
DJ
10944 struct partial_die_info *part_die;
10945 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
10946 struct abbrev_info *abbrev;
10947 unsigned int bytes_read;
5afb4e99 10948 unsigned int load_all = 0;
72bf9492
DJ
10949 int nesting_level = 1;
10950
10951 parent_die = NULL;
10952 last_die = NULL;
10953
7adf1e79
DE
10954 gdb_assert (cu->per_cu != NULL);
10955 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
10956 load_all = 1;
10957
72bf9492
DJ
10958 cu->partial_dies
10959 = htab_create_alloc_ex (cu->header.length / 12,
10960 partial_die_hash,
10961 partial_die_eq,
10962 NULL,
10963 &cu->comp_unit_obstack,
10964 hashtab_obstack_allocate,
10965 dummy_obstack_deallocate);
10966
10967 part_die = obstack_alloc (&cu->comp_unit_obstack,
10968 sizeof (struct partial_die_info));
10969
10970 while (1)
10971 {
10972 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
10973
10974 /* A NULL abbrev means the end of a series of children. */
10975 if (abbrev == NULL)
10976 {
10977 if (--nesting_level == 0)
10978 {
10979 /* PART_DIE was probably the last thing allocated on the
10980 comp_unit_obstack, so we could call obstack_free
10981 here. We don't do that because the waste is small,
10982 and will be cleaned up when we're done with this
10983 compilation unit. This way, we're also more robust
10984 against other users of the comp_unit_obstack. */
10985 return first_die;
10986 }
10987 info_ptr += bytes_read;
10988 last_die = parent_die;
10989 parent_die = parent_die->die_parent;
10990 continue;
10991 }
10992
98bfdba5
PA
10993 /* Check for template arguments. We never save these; if
10994 they're seen, we just mark the parent, and go on our way. */
10995 if (parent_die != NULL
10996 && cu->language == language_cplus
10997 && (abbrev->tag == DW_TAG_template_type_param
10998 || abbrev->tag == DW_TAG_template_value_param))
10999 {
11000 parent_die->has_template_arguments = 1;
11001
11002 if (!load_all)
11003 {
11004 /* We don't need a partial DIE for the template argument. */
dee91e82 11005 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
11006 continue;
11007 }
11008 }
11009
0d99eb77 11010 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
11011 Skip their other children. */
11012 if (!load_all
11013 && cu->language == language_cplus
11014 && parent_die != NULL
11015 && parent_die->tag == DW_TAG_subprogram)
11016 {
dee91e82 11017 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
11018 continue;
11019 }
11020
5afb4e99
DJ
11021 /* Check whether this DIE is interesting enough to save. Normally
11022 we would not be interested in members here, but there may be
11023 later variables referencing them via DW_AT_specification (for
11024 static members). */
11025 if (!load_all
11026 && !is_type_tag_for_partial (abbrev->tag)
72929c62 11027 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
11028 && abbrev->tag != DW_TAG_enumerator
11029 && abbrev->tag != DW_TAG_subprogram
bc30ff58 11030 && abbrev->tag != DW_TAG_lexical_block
72bf9492 11031 && abbrev->tag != DW_TAG_variable
5afb4e99 11032 && abbrev->tag != DW_TAG_namespace
f55ee35c 11033 && abbrev->tag != DW_TAG_module
95554aad
TT
11034 && abbrev->tag != DW_TAG_member
11035 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
11036 {
11037 /* Otherwise we skip to the next sibling, if any. */
dee91e82 11038 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
11039 continue;
11040 }
11041
dee91e82
DE
11042 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
11043 info_ptr);
72bf9492
DJ
11044
11045 /* This two-pass algorithm for processing partial symbols has a
11046 high cost in cache pressure. Thus, handle some simple cases
11047 here which cover the majority of C partial symbols. DIEs
11048 which neither have specification tags in them, nor could have
11049 specification tags elsewhere pointing at them, can simply be
11050 processed and discarded.
11051
11052 This segment is also optional; scan_partial_symbols and
11053 add_partial_symbol will handle these DIEs if we chain
11054 them in normally. When compilers which do not emit large
11055 quantities of duplicate debug information are more common,
11056 this code can probably be removed. */
11057
11058 /* Any complete simple types at the top level (pretty much all
11059 of them, for a language without namespaces), can be processed
11060 directly. */
11061 if (parent_die == NULL
11062 && part_die->has_specification == 0
11063 && part_die->is_declaration == 0
d8228535 11064 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
11065 || part_die->tag == DW_TAG_base_type
11066 || part_die->tag == DW_TAG_subrange_type))
11067 {
11068 if (building_psymtab && part_die->name != NULL)
04a679b8 11069 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 11070 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
11071 &objfile->static_psymbols,
11072 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 11073 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
11074 continue;
11075 }
11076
d8228535
JK
11077 /* The exception for DW_TAG_typedef with has_children above is
11078 a workaround of GCC PR debug/47510. In the case of this complaint
11079 type_name_no_tag_or_error will error on such types later.
11080
11081 GDB skipped children of DW_TAG_typedef by the shortcut above and then
11082 it could not find the child DIEs referenced later, this is checked
11083 above. In correct DWARF DW_TAG_typedef should have no children. */
11084
11085 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
11086 complaint (&symfile_complaints,
11087 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
11088 "- DIE at 0x%x [in module %s]"),
b64f50a1 11089 part_die->offset.sect_off, objfile->name);
d8228535 11090
72bf9492
DJ
11091 /* If we're at the second level, and we're an enumerator, and
11092 our parent has no specification (meaning possibly lives in a
11093 namespace elsewhere), then we can add the partial symbol now
11094 instead of queueing it. */
11095 if (part_die->tag == DW_TAG_enumerator
11096 && parent_die != NULL
11097 && parent_die->die_parent == NULL
11098 && parent_die->tag == DW_TAG_enumeration_type
11099 && parent_die->has_specification == 0)
11100 {
11101 if (part_die->name == NULL)
3e43a32a
MS
11102 complaint (&symfile_complaints,
11103 _("malformed enumerator DIE ignored"));
72bf9492 11104 else if (building_psymtab)
04a679b8 11105 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 11106 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
11107 (cu->language == language_cplus
11108 || cu->language == language_java)
bb5ed363
DE
11109 ? &objfile->global_psymbols
11110 : &objfile->static_psymbols,
11111 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 11112
dee91e82 11113 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
11114 continue;
11115 }
11116
11117 /* We'll save this DIE so link it in. */
11118 part_die->die_parent = parent_die;
11119 part_die->die_sibling = NULL;
11120 part_die->die_child = NULL;
11121
11122 if (last_die && last_die == parent_die)
11123 last_die->die_child = part_die;
11124 else if (last_die)
11125 last_die->die_sibling = part_die;
11126
11127 last_die = part_die;
11128
11129 if (first_die == NULL)
11130 first_die = part_die;
11131
11132 /* Maybe add the DIE to the hash table. Not all DIEs that we
11133 find interesting need to be in the hash table, because we
11134 also have the parent/sibling/child chains; only those that we
11135 might refer to by offset later during partial symbol reading.
11136
11137 For now this means things that might have be the target of a
11138 DW_AT_specification, DW_AT_abstract_origin, or
11139 DW_AT_extension. DW_AT_extension will refer only to
11140 namespaces; DW_AT_abstract_origin refers to functions (and
11141 many things under the function DIE, but we do not recurse
11142 into function DIEs during partial symbol reading) and
11143 possibly variables as well; DW_AT_specification refers to
11144 declarations. Declarations ought to have the DW_AT_declaration
11145 flag. It happens that GCC forgets to put it in sometimes, but
11146 only for functions, not for types.
11147
11148 Adding more things than necessary to the hash table is harmless
11149 except for the performance cost. Adding too few will result in
5afb4e99
DJ
11150 wasted time in find_partial_die, when we reread the compilation
11151 unit with load_all_dies set. */
72bf9492 11152
5afb4e99 11153 if (load_all
72929c62 11154 || abbrev->tag == DW_TAG_constant
5afb4e99 11155 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
11156 || abbrev->tag == DW_TAG_variable
11157 || abbrev->tag == DW_TAG_namespace
11158 || part_die->is_declaration)
11159 {
11160 void **slot;
11161
11162 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 11163 part_die->offset.sect_off, INSERT);
72bf9492
DJ
11164 *slot = part_die;
11165 }
11166
11167 part_die = obstack_alloc (&cu->comp_unit_obstack,
11168 sizeof (struct partial_die_info));
11169
11170 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 11171 we have no reason to follow the children of structures; for other
98bfdba5
PA
11172 languages we have to, so that we can get at method physnames
11173 to infer fully qualified class names, for DW_AT_specification,
11174 and for C++ template arguments. For C++, we also look one level
11175 inside functions to find template arguments (if the name of the
11176 function does not already contain the template arguments).
bc30ff58
JB
11177
11178 For Ada, we need to scan the children of subprograms and lexical
11179 blocks as well because Ada allows the definition of nested
11180 entities that could be interesting for the debugger, such as
11181 nested subprograms for instance. */
72bf9492 11182 if (last_die->has_children
5afb4e99
DJ
11183 && (load_all
11184 || last_die->tag == DW_TAG_namespace
f55ee35c 11185 || last_die->tag == DW_TAG_module
72bf9492 11186 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
11187 || (cu->language == language_cplus
11188 && last_die->tag == DW_TAG_subprogram
11189 && (last_die->name == NULL
11190 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
11191 || (cu->language != language_c
11192 && (last_die->tag == DW_TAG_class_type
680b30c7 11193 || last_die->tag == DW_TAG_interface_type
72bf9492 11194 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
11195 || last_die->tag == DW_TAG_union_type))
11196 || (cu->language == language_ada
11197 && (last_die->tag == DW_TAG_subprogram
11198 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
11199 {
11200 nesting_level++;
11201 parent_die = last_die;
11202 continue;
11203 }
11204
11205 /* Otherwise we skip to the next sibling, if any. */
dee91e82 11206 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
11207
11208 /* Back to the top, do it again. */
11209 }
11210}
11211
c906108c
SS
11212/* Read a minimal amount of information into the minimal die structure. */
11213
fe1b8b76 11214static gdb_byte *
dee91e82
DE
11215read_partial_die (const struct die_reader_specs *reader,
11216 struct partial_die_info *part_die,
11217 struct abbrev_info *abbrev, unsigned int abbrev_len,
11218 gdb_byte *info_ptr)
c906108c 11219{
dee91e82 11220 struct dwarf2_cu *cu = reader->cu;
bb5ed363 11221 struct objfile *objfile = cu->objfile;
dee91e82 11222 gdb_byte *buffer = reader->buffer;
fa238c03 11223 unsigned int i;
c906108c 11224 struct attribute attr;
c5aa993b 11225 int has_low_pc_attr = 0;
c906108c 11226 int has_high_pc_attr = 0;
91da1414 11227 int high_pc_relative = 0;
c906108c 11228
72bf9492 11229 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 11230
b64f50a1 11231 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
11232
11233 info_ptr += abbrev_len;
11234
11235 if (abbrev == NULL)
11236 return info_ptr;
11237
c906108c
SS
11238 part_die->tag = abbrev->tag;
11239 part_die->has_children = abbrev->has_children;
c906108c
SS
11240
11241 for (i = 0; i < abbrev->num_attrs; ++i)
11242 {
dee91e82 11243 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
11244
11245 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 11246 partial symbol table. */
c906108c
SS
11247 switch (attr.name)
11248 {
11249 case DW_AT_name:
71c25dea
TT
11250 switch (part_die->tag)
11251 {
11252 case DW_TAG_compile_unit:
95554aad 11253 case DW_TAG_partial_unit:
348e048f 11254 case DW_TAG_type_unit:
71c25dea
TT
11255 /* Compilation units have a DW_AT_name that is a filename, not
11256 a source language identifier. */
11257 case DW_TAG_enumeration_type:
11258 case DW_TAG_enumerator:
11259 /* These tags always have simple identifiers already; no need
11260 to canonicalize them. */
11261 part_die->name = DW_STRING (&attr);
11262 break;
11263 default:
11264 part_die->name
11265 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 11266 &objfile->objfile_obstack);
71c25dea
TT
11267 break;
11268 }
c906108c 11269 break;
31ef98ae 11270 case DW_AT_linkage_name:
c906108c 11271 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
11272 /* Note that both forms of linkage name might appear. We
11273 assume they will be the same, and we only store the last
11274 one we see. */
94af9270
KS
11275 if (cu->language == language_ada)
11276 part_die->name = DW_STRING (&attr);
abc72ce4 11277 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
11278 break;
11279 case DW_AT_low_pc:
11280 has_low_pc_attr = 1;
11281 part_die->lowpc = DW_ADDR (&attr);
11282 break;
11283 case DW_AT_high_pc:
11284 has_high_pc_attr = 1;
3019eac3
DE
11285 if (attr.form == DW_FORM_addr
11286 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
11287 part_die->highpc = DW_ADDR (&attr);
11288 else
11289 {
11290 high_pc_relative = 1;
11291 part_die->highpc = DW_UNSND (&attr);
11292 }
c906108c
SS
11293 break;
11294 case DW_AT_location:
0963b4bd 11295 /* Support the .debug_loc offsets. */
8e19ed76
PS
11296 if (attr_form_is_block (&attr))
11297 {
95554aad 11298 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 11299 }
3690dd37 11300 else if (attr_form_is_section_offset (&attr))
8e19ed76 11301 {
4d3c2250 11302 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
11303 }
11304 else
11305 {
4d3c2250
KB
11306 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11307 "partial symbol information");
8e19ed76 11308 }
c906108c 11309 break;
c906108c
SS
11310 case DW_AT_external:
11311 part_die->is_external = DW_UNSND (&attr);
11312 break;
11313 case DW_AT_declaration:
11314 part_die->is_declaration = DW_UNSND (&attr);
11315 break;
11316 case DW_AT_type:
11317 part_die->has_type = 1;
11318 break;
11319 case DW_AT_abstract_origin:
11320 case DW_AT_specification:
72bf9492
DJ
11321 case DW_AT_extension:
11322 part_die->has_specification = 1;
c764a876 11323 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
11324 break;
11325 case DW_AT_sibling:
11326 /* Ignore absolute siblings, they might point outside of
11327 the current compile unit. */
11328 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
11329 complaint (&symfile_complaints,
11330 _("ignoring absolute DW_AT_sibling"));
c906108c 11331 else
b64f50a1 11332 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 11333 break;
fa4028e9
JB
11334 case DW_AT_byte_size:
11335 part_die->has_byte_size = 1;
11336 break;
68511cec
CES
11337 case DW_AT_calling_convention:
11338 /* DWARF doesn't provide a way to identify a program's source-level
11339 entry point. DW_AT_calling_convention attributes are only meant
11340 to describe functions' calling conventions.
11341
11342 However, because it's a necessary piece of information in
11343 Fortran, and because DW_CC_program is the only piece of debugging
11344 information whose definition refers to a 'main program' at all,
11345 several compilers have begun marking Fortran main programs with
11346 DW_CC_program --- even when those functions use the standard
11347 calling conventions.
11348
11349 So until DWARF specifies a way to provide this information and
11350 compilers pick up the new representation, we'll support this
11351 practice. */
11352 if (DW_UNSND (&attr) == DW_CC_program
11353 && cu->language == language_fortran)
01f8c46d
JK
11354 {
11355 set_main_name (part_die->name);
11356
11357 /* As this DIE has a static linkage the name would be difficult
11358 to look up later. */
11359 language_of_main = language_fortran;
11360 }
68511cec 11361 break;
481860b3
GB
11362 case DW_AT_inline:
11363 if (DW_UNSND (&attr) == DW_INL_inlined
11364 || DW_UNSND (&attr) == DW_INL_declared_inlined)
11365 part_die->may_be_inlined = 1;
11366 break;
95554aad
TT
11367
11368 case DW_AT_import:
11369 if (part_die->tag == DW_TAG_imported_unit)
11370 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
11371 break;
11372
c906108c
SS
11373 default:
11374 break;
11375 }
11376 }
11377
91da1414
MW
11378 if (high_pc_relative)
11379 part_die->highpc += part_die->lowpc;
11380
9373cf26
JK
11381 if (has_low_pc_attr && has_high_pc_attr)
11382 {
11383 /* When using the GNU linker, .gnu.linkonce. sections are used to
11384 eliminate duplicate copies of functions and vtables and such.
11385 The linker will arbitrarily choose one and discard the others.
11386 The AT_*_pc values for such functions refer to local labels in
11387 these sections. If the section from that file was discarded, the
11388 labels are not in the output, so the relocs get a value of 0.
11389 If this is a discarded function, mark the pc bounds as invalid,
11390 so that GDB will ignore it. */
11391 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
11392 {
bb5ed363 11393 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
11394
11395 complaint (&symfile_complaints,
11396 _("DW_AT_low_pc %s is zero "
11397 "for DIE at 0x%x [in module %s]"),
11398 paddress (gdbarch, part_die->lowpc),
b64f50a1 11399 part_die->offset.sect_off, objfile->name);
9373cf26
JK
11400 }
11401 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
11402 else if (part_die->lowpc >= part_die->highpc)
11403 {
bb5ed363 11404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
11405
11406 complaint (&symfile_complaints,
11407 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
11408 "for DIE at 0x%x [in module %s]"),
11409 paddress (gdbarch, part_die->lowpc),
11410 paddress (gdbarch, part_die->highpc),
b64f50a1 11411 part_die->offset.sect_off, objfile->name);
9373cf26
JK
11412 }
11413 else
11414 part_die->has_pc_info = 1;
11415 }
85cbf3d3 11416
c906108c
SS
11417 return info_ptr;
11418}
11419
72bf9492
DJ
11420/* Find a cached partial DIE at OFFSET in CU. */
11421
11422static struct partial_die_info *
b64f50a1 11423find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
11424{
11425 struct partial_die_info *lookup_die = NULL;
11426 struct partial_die_info part_die;
11427
11428 part_die.offset = offset;
b64f50a1
JK
11429 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
11430 offset.sect_off);
72bf9492 11431
72bf9492
DJ
11432 return lookup_die;
11433}
11434
348e048f
DE
11435/* Find a partial DIE at OFFSET, which may or may not be in CU,
11436 except in the case of .debug_types DIEs which do not reference
11437 outside their CU (they do however referencing other types via
55f1336d 11438 DW_FORM_ref_sig8). */
72bf9492
DJ
11439
11440static struct partial_die_info *
b64f50a1 11441find_partial_die (sect_offset offset, struct dwarf2_cu *cu)
72bf9492 11442{
bb5ed363 11443 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
11444 struct dwarf2_per_cu_data *per_cu = NULL;
11445 struct partial_die_info *pd = NULL;
72bf9492 11446
45452591 11447 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
11448 {
11449 pd = find_partial_die_in_comp_unit (offset, cu);
11450 if (pd != NULL)
11451 return pd;
0d99eb77
DE
11452 /* We missed recording what we needed.
11453 Load all dies and try again. */
11454 per_cu = cu->per_cu;
5afb4e99 11455 }
0d99eb77
DE
11456 else
11457 {
11458 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 11459 if (cu->per_cu->is_debug_types)
0d99eb77
DE
11460 {
11461 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
11462 " external reference to offset 0x%lx [in module %s].\n"),
11463 (long) cu->header.offset.sect_off, (long) offset.sect_off,
11464 bfd_get_filename (objfile->obfd));
11465 }
11466 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
72bf9492 11467
0d99eb77
DE
11468 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
11469 load_partial_comp_unit (per_cu);
ae038cb0 11470
0d99eb77
DE
11471 per_cu->cu->last_used = 0;
11472 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
11473 }
5afb4e99 11474
dee91e82
DE
11475 /* If we didn't find it, and not all dies have been loaded,
11476 load them all and try again. */
11477
5afb4e99
DJ
11478 if (pd == NULL && per_cu->load_all_dies == 0)
11479 {
5afb4e99 11480 per_cu->load_all_dies = 1;
fd820528
DE
11481
11482 /* This is nasty. When we reread the DIEs, somewhere up the call chain
11483 THIS_CU->cu may already be in use. So we can't just free it and
11484 replace its DIEs with the ones we read in. Instead, we leave those
11485 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
11486 and clobber THIS_CU->cu->partial_dies with the hash table for the new
11487 set. */
dee91e82 11488 load_partial_comp_unit (per_cu);
5afb4e99
DJ
11489
11490 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
11491 }
11492
11493 if (pd == NULL)
11494 internal_error (__FILE__, __LINE__,
3e43a32a
MS
11495 _("could not find partial DIE 0x%x "
11496 "in cache [from module %s]\n"),
b64f50a1 11497 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 11498 return pd;
72bf9492
DJ
11499}
11500
abc72ce4
DE
11501/* See if we can figure out if the class lives in a namespace. We do
11502 this by looking for a member function; its demangled name will
11503 contain namespace info, if there is any. */
11504
11505static void
11506guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
11507 struct dwarf2_cu *cu)
11508{
11509 /* NOTE: carlton/2003-10-07: Getting the info this way changes
11510 what template types look like, because the demangler
11511 frequently doesn't give the same name as the debug info. We
11512 could fix this by only using the demangled name to get the
11513 prefix (but see comment in read_structure_type). */
11514
11515 struct partial_die_info *real_pdi;
11516 struct partial_die_info *child_pdi;
11517
11518 /* If this DIE (this DIE's specification, if any) has a parent, then
11519 we should not do this. We'll prepend the parent's fully qualified
11520 name when we create the partial symbol. */
11521
11522 real_pdi = struct_pdi;
11523 while (real_pdi->has_specification)
11524 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
11525
11526 if (real_pdi->die_parent != NULL)
11527 return;
11528
11529 for (child_pdi = struct_pdi->die_child;
11530 child_pdi != NULL;
11531 child_pdi = child_pdi->die_sibling)
11532 {
11533 if (child_pdi->tag == DW_TAG_subprogram
11534 && child_pdi->linkage_name != NULL)
11535 {
11536 char *actual_class_name
11537 = language_class_name_from_physname (cu->language_defn,
11538 child_pdi->linkage_name);
11539 if (actual_class_name != NULL)
11540 {
11541 struct_pdi->name
11542 = obsavestring (actual_class_name,
11543 strlen (actual_class_name),
11544 &cu->objfile->objfile_obstack);
11545 xfree (actual_class_name);
11546 }
11547 break;
11548 }
11549 }
11550}
11551
72bf9492
DJ
11552/* Adjust PART_DIE before generating a symbol for it. This function
11553 may set the is_external flag or change the DIE's name. */
11554
11555static void
11556fixup_partial_die (struct partial_die_info *part_die,
11557 struct dwarf2_cu *cu)
11558{
abc72ce4
DE
11559 /* Once we've fixed up a die, there's no point in doing so again.
11560 This also avoids a memory leak if we were to call
11561 guess_partial_die_structure_name multiple times. */
11562 if (part_die->fixup_called)
11563 return;
11564
72bf9492
DJ
11565 /* If we found a reference attribute and the DIE has no name, try
11566 to find a name in the referred to DIE. */
11567
11568 if (part_die->name == NULL && part_die->has_specification)
11569 {
11570 struct partial_die_info *spec_die;
72bf9492 11571
10b3939b 11572 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 11573
10b3939b 11574 fixup_partial_die (spec_die, cu);
72bf9492
DJ
11575
11576 if (spec_die->name)
11577 {
11578 part_die->name = spec_die->name;
11579
11580 /* Copy DW_AT_external attribute if it is set. */
11581 if (spec_die->is_external)
11582 part_die->is_external = spec_die->is_external;
11583 }
11584 }
11585
11586 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
11587
11588 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 11589 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 11590
abc72ce4
DE
11591 /* If there is no parent die to provide a namespace, and there are
11592 children, see if we can determine the namespace from their linkage
122d1940 11593 name. */
abc72ce4 11594 if (cu->language == language_cplus
8b70b953 11595 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
11596 && part_die->die_parent == NULL
11597 && part_die->has_children
11598 && (part_die->tag == DW_TAG_class_type
11599 || part_die->tag == DW_TAG_structure_type
11600 || part_die->tag == DW_TAG_union_type))
11601 guess_partial_die_structure_name (part_die, cu);
11602
53832f31
TT
11603 /* GCC might emit a nameless struct or union that has a linkage
11604 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
11605 if (part_die->name == NULL
96408a79
SA
11606 && (part_die->tag == DW_TAG_class_type
11607 || part_die->tag == DW_TAG_interface_type
11608 || part_die->tag == DW_TAG_structure_type
11609 || part_die->tag == DW_TAG_union_type)
53832f31
TT
11610 && part_die->linkage_name != NULL)
11611 {
11612 char *demangled;
11613
11614 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
11615 if (demangled)
11616 {
96408a79
SA
11617 const char *base;
11618
11619 /* Strip any leading namespaces/classes, keep only the base name.
11620 DW_AT_name for named DIEs does not contain the prefixes. */
11621 base = strrchr (demangled, ':');
11622 if (base && base > demangled && base[-1] == ':')
11623 base++;
11624 else
11625 base = demangled;
11626
11627 part_die->name = obsavestring (base, strlen (base),
53832f31
TT
11628 &cu->objfile->objfile_obstack);
11629 xfree (demangled);
11630 }
11631 }
11632
abc72ce4 11633 part_die->fixup_called = 1;
72bf9492
DJ
11634}
11635
a8329558 11636/* Read an attribute value described by an attribute form. */
c906108c 11637
fe1b8b76 11638static gdb_byte *
dee91e82
DE
11639read_attribute_value (const struct die_reader_specs *reader,
11640 struct attribute *attr, unsigned form,
11641 gdb_byte *info_ptr)
c906108c 11642{
dee91e82
DE
11643 struct dwarf2_cu *cu = reader->cu;
11644 bfd *abfd = reader->abfd;
e7c27a73 11645 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
11646 unsigned int bytes_read;
11647 struct dwarf_block *blk;
11648
a8329558
KW
11649 attr->form = form;
11650 switch (form)
c906108c 11651 {
c906108c 11652 case DW_FORM_ref_addr:
ae411497 11653 if (cu->header.version == 2)
4568ecf9 11654 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 11655 else
4568ecf9
DE
11656 DW_UNSND (attr) = read_offset (abfd, info_ptr,
11657 &cu->header, &bytes_read);
ae411497
TT
11658 info_ptr += bytes_read;
11659 break;
11660 case DW_FORM_addr:
e7c27a73 11661 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 11662 info_ptr += bytes_read;
c906108c
SS
11663 break;
11664 case DW_FORM_block2:
7b5a2f43 11665 blk = dwarf_alloc_block (cu);
c906108c
SS
11666 blk->size = read_2_bytes (abfd, info_ptr);
11667 info_ptr += 2;
11668 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11669 info_ptr += blk->size;
11670 DW_BLOCK (attr) = blk;
11671 break;
11672 case DW_FORM_block4:
7b5a2f43 11673 blk = dwarf_alloc_block (cu);
c906108c
SS
11674 blk->size = read_4_bytes (abfd, info_ptr);
11675 info_ptr += 4;
11676 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11677 info_ptr += blk->size;
11678 DW_BLOCK (attr) = blk;
11679 break;
11680 case DW_FORM_data2:
11681 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
11682 info_ptr += 2;
11683 break;
11684 case DW_FORM_data4:
11685 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
11686 info_ptr += 4;
11687 break;
11688 case DW_FORM_data8:
11689 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
11690 info_ptr += 8;
11691 break;
2dc7f7b3
TT
11692 case DW_FORM_sec_offset:
11693 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
11694 info_ptr += bytes_read;
11695 break;
c906108c 11696 case DW_FORM_string:
9b1c24c8 11697 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 11698 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
11699 info_ptr += bytes_read;
11700 break;
4bdf3d34
JJ
11701 case DW_FORM_strp:
11702 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
11703 &bytes_read);
8285870a 11704 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
11705 info_ptr += bytes_read;
11706 break;
2dc7f7b3 11707 case DW_FORM_exprloc:
c906108c 11708 case DW_FORM_block:
7b5a2f43 11709 blk = dwarf_alloc_block (cu);
c906108c
SS
11710 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11711 info_ptr += bytes_read;
11712 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11713 info_ptr += blk->size;
11714 DW_BLOCK (attr) = blk;
11715 break;
11716 case DW_FORM_block1:
7b5a2f43 11717 blk = dwarf_alloc_block (cu);
c906108c
SS
11718 blk->size = read_1_byte (abfd, info_ptr);
11719 info_ptr += 1;
11720 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11721 info_ptr += blk->size;
11722 DW_BLOCK (attr) = blk;
11723 break;
11724 case DW_FORM_data1:
11725 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
11726 info_ptr += 1;
11727 break;
11728 case DW_FORM_flag:
11729 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
11730 info_ptr += 1;
11731 break;
2dc7f7b3
TT
11732 case DW_FORM_flag_present:
11733 DW_UNSND (attr) = 1;
11734 break;
c906108c
SS
11735 case DW_FORM_sdata:
11736 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
11737 info_ptr += bytes_read;
11738 break;
11739 case DW_FORM_udata:
11740 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11741 info_ptr += bytes_read;
11742 break;
11743 case DW_FORM_ref1:
4568ecf9
DE
11744 DW_UNSND (attr) = (cu->header.offset.sect_off
11745 + read_1_byte (abfd, info_ptr));
c906108c
SS
11746 info_ptr += 1;
11747 break;
11748 case DW_FORM_ref2:
4568ecf9
DE
11749 DW_UNSND (attr) = (cu->header.offset.sect_off
11750 + read_2_bytes (abfd, info_ptr));
c906108c
SS
11751 info_ptr += 2;
11752 break;
11753 case DW_FORM_ref4:
4568ecf9
DE
11754 DW_UNSND (attr) = (cu->header.offset.sect_off
11755 + read_4_bytes (abfd, info_ptr));
c906108c
SS
11756 info_ptr += 4;
11757 break;
613e1657 11758 case DW_FORM_ref8:
4568ecf9
DE
11759 DW_UNSND (attr) = (cu->header.offset.sect_off
11760 + read_8_bytes (abfd, info_ptr));
613e1657
KB
11761 info_ptr += 8;
11762 break;
55f1336d 11763 case DW_FORM_ref_sig8:
348e048f
DE
11764 /* Convert the signature to something we can record in DW_UNSND
11765 for later lookup.
11766 NOTE: This is NULL if the type wasn't found. */
11767 DW_SIGNATURED_TYPE (attr) =
e319fa28 11768 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
348e048f
DE
11769 info_ptr += 8;
11770 break;
c906108c 11771 case DW_FORM_ref_udata:
4568ecf9
DE
11772 DW_UNSND (attr) = (cu->header.offset.sect_off
11773 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
11774 info_ptr += bytes_read;
11775 break;
c906108c 11776 case DW_FORM_indirect:
a8329558
KW
11777 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11778 info_ptr += bytes_read;
dee91e82 11779 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 11780 break;
3019eac3
DE
11781 case DW_FORM_GNU_addr_index:
11782 if (reader->dwo_file == NULL)
11783 {
11784 /* For now flag a hard error.
11785 Later we can turn this into a complaint. */
11786 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
11787 dwarf_form_name (form),
11788 bfd_get_filename (abfd));
11789 }
11790 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
11791 info_ptr += bytes_read;
11792 break;
11793 case DW_FORM_GNU_str_index:
11794 if (reader->dwo_file == NULL)
11795 {
11796 /* For now flag a hard error.
11797 Later we can turn this into a complaint if warranted. */
11798 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
11799 dwarf_form_name (form),
11800 bfd_get_filename (abfd));
11801 }
11802 {
11803 ULONGEST str_index =
11804 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11805
11806 DW_STRING (attr) = read_str_index (reader, cu, str_index);
11807 DW_STRING_IS_CANONICAL (attr) = 0;
11808 info_ptr += bytes_read;
11809 }
11810 break;
c906108c 11811 default:
8a3fe4f8 11812 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
11813 dwarf_form_name (form),
11814 bfd_get_filename (abfd));
c906108c 11815 }
28e94949
JB
11816
11817 /* We have seen instances where the compiler tried to emit a byte
11818 size attribute of -1 which ended up being encoded as an unsigned
11819 0xffffffff. Although 0xffffffff is technically a valid size value,
11820 an object of this size seems pretty unlikely so we can relatively
11821 safely treat these cases as if the size attribute was invalid and
11822 treat them as zero by default. */
11823 if (attr->name == DW_AT_byte_size
11824 && form == DW_FORM_data4
11825 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
11826 {
11827 complaint
11828 (&symfile_complaints,
43bbcdc2
PH
11829 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
11830 hex_string (DW_UNSND (attr)));
01c66ae6
JB
11831 DW_UNSND (attr) = 0;
11832 }
28e94949 11833
c906108c
SS
11834 return info_ptr;
11835}
11836
a8329558
KW
11837/* Read an attribute described by an abbreviated attribute. */
11838
fe1b8b76 11839static gdb_byte *
dee91e82
DE
11840read_attribute (const struct die_reader_specs *reader,
11841 struct attribute *attr, struct attr_abbrev *abbrev,
11842 gdb_byte *info_ptr)
a8329558
KW
11843{
11844 attr->name = abbrev->name;
dee91e82 11845 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
11846}
11847
0963b4bd 11848/* Read dwarf information from a buffer. */
c906108c
SS
11849
11850static unsigned int
fe1b8b76 11851read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 11852{
fe1b8b76 11853 return bfd_get_8 (abfd, buf);
c906108c
SS
11854}
11855
11856static int
fe1b8b76 11857read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 11858{
fe1b8b76 11859 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
11860}
11861
11862static unsigned int
fe1b8b76 11863read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 11864{
fe1b8b76 11865 return bfd_get_16 (abfd, buf);
c906108c
SS
11866}
11867
21ae7a4d
JK
11868static int
11869read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
11870{
11871 return bfd_get_signed_16 (abfd, buf);
11872}
11873
c906108c 11874static unsigned int
fe1b8b76 11875read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 11876{
fe1b8b76 11877 return bfd_get_32 (abfd, buf);
c906108c
SS
11878}
11879
21ae7a4d
JK
11880static int
11881read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
11882{
11883 return bfd_get_signed_32 (abfd, buf);
11884}
11885
93311388 11886static ULONGEST
fe1b8b76 11887read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 11888{
fe1b8b76 11889 return bfd_get_64 (abfd, buf);
c906108c
SS
11890}
11891
11892static CORE_ADDR
fe1b8b76 11893read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 11894 unsigned int *bytes_read)
c906108c 11895{
e7c27a73 11896 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
11897 CORE_ADDR retval = 0;
11898
107d2387 11899 if (cu_header->signed_addr_p)
c906108c 11900 {
107d2387
AC
11901 switch (cu_header->addr_size)
11902 {
11903 case 2:
fe1b8b76 11904 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
11905 break;
11906 case 4:
fe1b8b76 11907 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
11908 break;
11909 case 8:
fe1b8b76 11910 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
11911 break;
11912 default:
8e65ff28 11913 internal_error (__FILE__, __LINE__,
e2e0b3e5 11914 _("read_address: bad switch, signed [in module %s]"),
659b0389 11915 bfd_get_filename (abfd));
107d2387
AC
11916 }
11917 }
11918 else
11919 {
11920 switch (cu_header->addr_size)
11921 {
11922 case 2:
fe1b8b76 11923 retval = bfd_get_16 (abfd, buf);
107d2387
AC
11924 break;
11925 case 4:
fe1b8b76 11926 retval = bfd_get_32 (abfd, buf);
107d2387
AC
11927 break;
11928 case 8:
fe1b8b76 11929 retval = bfd_get_64 (abfd, buf);
107d2387
AC
11930 break;
11931 default:
8e65ff28 11932 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
11933 _("read_address: bad switch, "
11934 "unsigned [in module %s]"),
659b0389 11935 bfd_get_filename (abfd));
107d2387 11936 }
c906108c 11937 }
64367e0a 11938
107d2387
AC
11939 *bytes_read = cu_header->addr_size;
11940 return retval;
c906108c
SS
11941}
11942
f7ef9339 11943/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
11944 specification allows the initial length to take up either 4 bytes
11945 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
11946 bytes describe the length and all offsets will be 8 bytes in length
11947 instead of 4.
11948
f7ef9339
KB
11949 An older, non-standard 64-bit format is also handled by this
11950 function. The older format in question stores the initial length
11951 as an 8-byte quantity without an escape value. Lengths greater
11952 than 2^32 aren't very common which means that the initial 4 bytes
11953 is almost always zero. Since a length value of zero doesn't make
11954 sense for the 32-bit format, this initial zero can be considered to
11955 be an escape value which indicates the presence of the older 64-bit
11956 format. As written, the code can't detect (old format) lengths
917c78fc
MK
11957 greater than 4GB. If it becomes necessary to handle lengths
11958 somewhat larger than 4GB, we could allow other small values (such
11959 as the non-sensical values of 1, 2, and 3) to also be used as
11960 escape values indicating the presence of the old format.
f7ef9339 11961
917c78fc
MK
11962 The value returned via bytes_read should be used to increment the
11963 relevant pointer after calling read_initial_length().
c764a876 11964
613e1657
KB
11965 [ Note: read_initial_length() and read_offset() are based on the
11966 document entitled "DWARF Debugging Information Format", revision
f7ef9339 11967 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
11968 from:
11969
f7ef9339 11970 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 11971
613e1657
KB
11972 This document is only a draft and is subject to change. (So beware.)
11973
f7ef9339 11974 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
11975 determined empirically by examining 64-bit ELF files produced by
11976 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
11977
11978 - Kevin, July 16, 2002
613e1657
KB
11979 ] */
11980
11981static LONGEST
c764a876 11982read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 11983{
fe1b8b76 11984 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 11985
dd373385 11986 if (length == 0xffffffff)
613e1657 11987 {
fe1b8b76 11988 length = bfd_get_64 (abfd, buf + 4);
613e1657 11989 *bytes_read = 12;
613e1657 11990 }
dd373385 11991 else if (length == 0)
f7ef9339 11992 {
dd373385 11993 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 11994 length = bfd_get_64 (abfd, buf);
f7ef9339 11995 *bytes_read = 8;
f7ef9339 11996 }
613e1657
KB
11997 else
11998 {
11999 *bytes_read = 4;
613e1657
KB
12000 }
12001
c764a876
DE
12002 return length;
12003}
dd373385 12004
c764a876
DE
12005/* Cover function for read_initial_length.
12006 Returns the length of the object at BUF, and stores the size of the
12007 initial length in *BYTES_READ and stores the size that offsets will be in
12008 *OFFSET_SIZE.
12009 If the initial length size is not equivalent to that specified in
12010 CU_HEADER then issue a complaint.
12011 This is useful when reading non-comp-unit headers. */
dd373385 12012
c764a876
DE
12013static LONGEST
12014read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
12015 const struct comp_unit_head *cu_header,
12016 unsigned int *bytes_read,
12017 unsigned int *offset_size)
12018{
12019 LONGEST length = read_initial_length (abfd, buf, bytes_read);
12020
12021 gdb_assert (cu_header->initial_length_size == 4
12022 || cu_header->initial_length_size == 8
12023 || cu_header->initial_length_size == 12);
12024
12025 if (cu_header->initial_length_size != *bytes_read)
12026 complaint (&symfile_complaints,
12027 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 12028
c764a876 12029 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 12030 return length;
613e1657
KB
12031}
12032
12033/* Read an offset from the data stream. The size of the offset is
917c78fc 12034 given by cu_header->offset_size. */
613e1657
KB
12035
12036static LONGEST
fe1b8b76 12037read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 12038 unsigned int *bytes_read)
c764a876
DE
12039{
12040 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 12041
c764a876
DE
12042 *bytes_read = cu_header->offset_size;
12043 return offset;
12044}
12045
12046/* Read an offset from the data stream. */
12047
12048static LONGEST
12049read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
12050{
12051 LONGEST retval = 0;
12052
c764a876 12053 switch (offset_size)
613e1657
KB
12054 {
12055 case 4:
fe1b8b76 12056 retval = bfd_get_32 (abfd, buf);
613e1657
KB
12057 break;
12058 case 8:
fe1b8b76 12059 retval = bfd_get_64 (abfd, buf);
613e1657
KB
12060 break;
12061 default:
8e65ff28 12062 internal_error (__FILE__, __LINE__,
c764a876 12063 _("read_offset_1: bad switch [in module %s]"),
659b0389 12064 bfd_get_filename (abfd));
613e1657
KB
12065 }
12066
917c78fc 12067 return retval;
613e1657
KB
12068}
12069
fe1b8b76
JB
12070static gdb_byte *
12071read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
12072{
12073 /* If the size of a host char is 8 bits, we can return a pointer
12074 to the buffer, otherwise we have to copy the data to a buffer
12075 allocated on the temporary obstack. */
4bdf3d34 12076 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 12077 return buf;
c906108c
SS
12078}
12079
12080static char *
9b1c24c8 12081read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
12082{
12083 /* If the size of a host char is 8 bits, we can return a pointer
12084 to the string, otherwise we have to copy the string to a buffer
12085 allocated on the temporary obstack. */
4bdf3d34 12086 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
12087 if (*buf == '\0')
12088 {
12089 *bytes_read_ptr = 1;
12090 return NULL;
12091 }
fe1b8b76
JB
12092 *bytes_read_ptr = strlen ((char *) buf) + 1;
12093 return (char *) buf;
4bdf3d34
JJ
12094}
12095
12096static char *
cf2c3c16 12097read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 12098{
be391dca 12099 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 12100 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
12101 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
12102 bfd_get_filename (abfd));
dce234bc 12103 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
12104 error (_("DW_FORM_strp pointing outside of "
12105 ".debug_str section [in module %s]"),
12106 bfd_get_filename (abfd));
4bdf3d34 12107 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 12108 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 12109 return NULL;
dce234bc 12110 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
12111}
12112
cf2c3c16
TT
12113static char *
12114read_indirect_string (bfd *abfd, gdb_byte *buf,
12115 const struct comp_unit_head *cu_header,
12116 unsigned int *bytes_read_ptr)
12117{
12118 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
12119
12120 return read_indirect_string_at_offset (abfd, str_offset);
12121}
12122
12df843f 12123static ULONGEST
fe1b8b76 12124read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 12125{
12df843f 12126 ULONGEST result;
ce5d95e1 12127 unsigned int num_read;
c906108c
SS
12128 int i, shift;
12129 unsigned char byte;
12130
12131 result = 0;
12132 shift = 0;
12133 num_read = 0;
12134 i = 0;
12135 while (1)
12136 {
fe1b8b76 12137 byte = bfd_get_8 (abfd, buf);
c906108c
SS
12138 buf++;
12139 num_read++;
12df843f 12140 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
12141 if ((byte & 128) == 0)
12142 {
12143 break;
12144 }
12145 shift += 7;
12146 }
12147 *bytes_read_ptr = num_read;
12148 return result;
12149}
12150
12df843f 12151static LONGEST
fe1b8b76 12152read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 12153{
12df843f 12154 LONGEST result;
77e0b926 12155 int i, shift, num_read;
c906108c
SS
12156 unsigned char byte;
12157
12158 result = 0;
12159 shift = 0;
c906108c
SS
12160 num_read = 0;
12161 i = 0;
12162 while (1)
12163 {
fe1b8b76 12164 byte = bfd_get_8 (abfd, buf);
c906108c
SS
12165 buf++;
12166 num_read++;
12df843f 12167 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
12168 shift += 7;
12169 if ((byte & 128) == 0)
12170 {
12171 break;
12172 }
12173 }
77e0b926 12174 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 12175 result |= -(((LONGEST) 1) << shift);
c906108c
SS
12176 *bytes_read_ptr = num_read;
12177 return result;
12178}
12179
3019eac3
DE
12180/* Given index ADDR_INDEX in .debug_addr, fetch the value.
12181 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
12182 ADDR_SIZE is the size of addresses from the CU header. */
12183
12184static CORE_ADDR
12185read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
12186{
12187 struct objfile *objfile = dwarf2_per_objfile->objfile;
12188 bfd *abfd = objfile->obfd;
12189 const gdb_byte *info_ptr;
12190
12191 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
12192 if (dwarf2_per_objfile->addr.buffer == NULL)
12193 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
12194 objfile->name);
12195 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
12196 error (_("DW_FORM_addr_index pointing outside of "
12197 ".debug_addr section [in module %s]"),
12198 objfile->name);
12199 info_ptr = (dwarf2_per_objfile->addr.buffer
12200 + addr_base + addr_index * addr_size);
12201 if (addr_size == 4)
12202 return bfd_get_32 (abfd, info_ptr);
12203 else
12204 return bfd_get_64 (abfd, info_ptr);
12205}
12206
12207/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
12208
12209static CORE_ADDR
12210read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
12211{
12212 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
12213}
12214
12215/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
12216
12217static CORE_ADDR
12218read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
12219 unsigned int *bytes_read)
12220{
12221 bfd *abfd = cu->objfile->obfd;
12222 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
12223
12224 return read_addr_index (cu, addr_index);
12225}
12226
12227/* Data structure to pass results from dwarf2_read_addr_index_reader
12228 back to dwarf2_read_addr_index. */
12229
12230struct dwarf2_read_addr_index_data
12231{
12232 ULONGEST addr_base;
12233 int addr_size;
12234};
12235
12236/* die_reader_func for dwarf2_read_addr_index. */
12237
12238static void
12239dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
12240 gdb_byte *info_ptr,
12241 struct die_info *comp_unit_die,
12242 int has_children,
12243 void *data)
12244{
12245 struct dwarf2_cu *cu = reader->cu;
12246 struct dwarf2_read_addr_index_data *aidata =
12247 (struct dwarf2_read_addr_index_data *) data;
12248
12249 aidata->addr_base = cu->addr_base;
12250 aidata->addr_size = cu->header.addr_size;
12251}
12252
12253/* Given an index in .debug_addr, fetch the value.
12254 NOTE: This can be called during dwarf expression evaluation,
12255 long after the debug information has been read, and thus per_cu->cu
12256 may no longer exist. */
12257
12258CORE_ADDR
12259dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
12260 unsigned int addr_index)
12261{
12262 struct objfile *objfile = per_cu->objfile;
12263 struct dwarf2_cu *cu = per_cu->cu;
12264 ULONGEST addr_base;
12265 int addr_size;
12266
12267 /* This is intended to be called from outside this file. */
12268 dw2_setup (objfile);
12269
12270 /* We need addr_base and addr_size.
12271 If we don't have PER_CU->cu, we have to get it.
12272 Nasty, but the alternative is storing the needed info in PER_CU,
12273 which at this point doesn't seem justified: it's not clear how frequently
12274 it would get used and it would increase the size of every PER_CU.
12275 Entry points like dwarf2_per_cu_addr_size do a similar thing
12276 so we're not in uncharted territory here.
12277 Alas we need to be a bit more complicated as addr_base is contained
12278 in the DIE.
12279
12280 We don't need to read the entire CU(/TU).
12281 We just need the header and top level die.
12282 IWBN to use the aging mechanism to let us lazily later discard the CU.
12283 See however init_cutu_and_read_dies_simple. */
12284
12285 if (cu != NULL)
12286 {
12287 addr_base = cu->addr_base;
12288 addr_size = cu->header.addr_size;
12289 }
12290 else
12291 {
12292 struct dwarf2_read_addr_index_data aidata;
12293
12294 init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader,
12295 &aidata);
12296 addr_base = aidata.addr_base;
12297 addr_size = aidata.addr_size;
12298 }
12299
12300 return read_addr_index_1 (addr_index, addr_base, addr_size);
12301}
12302
12303/* Given a DW_AT_str_index, fetch the string. */
12304
12305static char *
12306read_str_index (const struct die_reader_specs *reader,
12307 struct dwarf2_cu *cu, ULONGEST str_index)
12308{
12309 struct objfile *objfile = dwarf2_per_objfile->objfile;
12310 const char *dwo_name = objfile->name;
12311 bfd *abfd = objfile->obfd;
12312 struct dwo_sections *sections = &reader->dwo_file->sections;
12313 gdb_byte *info_ptr;
12314 ULONGEST str_offset;
12315
12316 dwarf2_read_section (objfile, &sections->str);
12317 dwarf2_read_section (objfile, &sections->str_offsets);
12318 if (sections->str.buffer == NULL)
12319 error (_("DW_FORM_str_index used without .debug_str.dwo section"
12320 " in CU at offset 0x%lx [in module %s]"),
12321 (long) cu->header.offset.sect_off, dwo_name);
12322 if (sections->str_offsets.buffer == NULL)
12323 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
12324 " in CU at offset 0x%lx [in module %s]"),
12325 (long) cu->header.offset.sect_off, dwo_name);
12326 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
12327 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
12328 " section in CU at offset 0x%lx [in module %s]"),
12329 (long) cu->header.offset.sect_off, dwo_name);
12330 info_ptr = (sections->str_offsets.buffer
12331 + str_index * cu->header.offset_size);
12332 if (cu->header.offset_size == 4)
12333 str_offset = bfd_get_32 (abfd, info_ptr);
12334 else
12335 str_offset = bfd_get_64 (abfd, info_ptr);
12336 if (str_offset >= sections->str.size)
12337 error (_("Offset from DW_FORM_str_index pointing outside of"
12338 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
12339 (long) cu->header.offset.sect_off, dwo_name);
12340 return (char *) (sections->str.buffer + str_offset);
12341}
12342
3019eac3
DE
12343/* Return the length of an LEB128 number in BUF. */
12344
12345static int
12346leb128_size (const gdb_byte *buf)
12347{
12348 const gdb_byte *begin = buf;
12349 gdb_byte byte;
12350
12351 while (1)
12352 {
12353 byte = *buf++;
12354 if ((byte & 128) == 0)
12355 return buf - begin;
12356 }
12357}
12358
c906108c 12359static void
e142c38c 12360set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
12361{
12362 switch (lang)
12363 {
12364 case DW_LANG_C89:
76bee0cc 12365 case DW_LANG_C99:
c906108c 12366 case DW_LANG_C:
e142c38c 12367 cu->language = language_c;
c906108c
SS
12368 break;
12369 case DW_LANG_C_plus_plus:
e142c38c 12370 cu->language = language_cplus;
c906108c 12371 break;
6aecb9c2
JB
12372 case DW_LANG_D:
12373 cu->language = language_d;
12374 break;
c906108c
SS
12375 case DW_LANG_Fortran77:
12376 case DW_LANG_Fortran90:
b21b22e0 12377 case DW_LANG_Fortran95:
e142c38c 12378 cu->language = language_fortran;
c906108c 12379 break;
a766d390
DE
12380 case DW_LANG_Go:
12381 cu->language = language_go;
12382 break;
c906108c 12383 case DW_LANG_Mips_Assembler:
e142c38c 12384 cu->language = language_asm;
c906108c 12385 break;
bebd888e 12386 case DW_LANG_Java:
e142c38c 12387 cu->language = language_java;
bebd888e 12388 break;
c906108c 12389 case DW_LANG_Ada83:
8aaf0b47 12390 case DW_LANG_Ada95:
bc5f45f8
JB
12391 cu->language = language_ada;
12392 break;
72019c9c
GM
12393 case DW_LANG_Modula2:
12394 cu->language = language_m2;
12395 break;
fe8e67fd
PM
12396 case DW_LANG_Pascal83:
12397 cu->language = language_pascal;
12398 break;
22566fbd
DJ
12399 case DW_LANG_ObjC:
12400 cu->language = language_objc;
12401 break;
c906108c
SS
12402 case DW_LANG_Cobol74:
12403 case DW_LANG_Cobol85:
c906108c 12404 default:
e142c38c 12405 cu->language = language_minimal;
c906108c
SS
12406 break;
12407 }
e142c38c 12408 cu->language_defn = language_def (cu->language);
c906108c
SS
12409}
12410
12411/* Return the named attribute or NULL if not there. */
12412
12413static struct attribute *
e142c38c 12414dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 12415{
a48e046c 12416 for (;;)
c906108c 12417 {
a48e046c
TT
12418 unsigned int i;
12419 struct attribute *spec = NULL;
12420
12421 for (i = 0; i < die->num_attrs; ++i)
12422 {
12423 if (die->attrs[i].name == name)
12424 return &die->attrs[i];
12425 if (die->attrs[i].name == DW_AT_specification
12426 || die->attrs[i].name == DW_AT_abstract_origin)
12427 spec = &die->attrs[i];
12428 }
12429
12430 if (!spec)
12431 break;
c906108c 12432
f2f0e013 12433 die = follow_die_ref (die, spec, &cu);
f2f0e013 12434 }
c5aa993b 12435
c906108c
SS
12436 return NULL;
12437}
12438
348e048f
DE
12439/* Return the named attribute or NULL if not there,
12440 but do not follow DW_AT_specification, etc.
12441 This is for use in contexts where we're reading .debug_types dies.
12442 Following DW_AT_specification, DW_AT_abstract_origin will take us
12443 back up the chain, and we want to go down. */
12444
12445static struct attribute *
12446dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
12447 struct dwarf2_cu *cu)
12448{
12449 unsigned int i;
12450
12451 for (i = 0; i < die->num_attrs; ++i)
12452 if (die->attrs[i].name == name)
12453 return &die->attrs[i];
12454
12455 return NULL;
12456}
12457
05cf31d1
JB
12458/* Return non-zero iff the attribute NAME is defined for the given DIE,
12459 and holds a non-zero value. This function should only be used for
2dc7f7b3 12460 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
12461
12462static int
12463dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
12464{
12465 struct attribute *attr = dwarf2_attr (die, name, cu);
12466
12467 return (attr && DW_UNSND (attr));
12468}
12469
3ca72b44 12470static int
e142c38c 12471die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 12472{
05cf31d1
JB
12473 /* A DIE is a declaration if it has a DW_AT_declaration attribute
12474 which value is non-zero. However, we have to be careful with
12475 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
12476 (via dwarf2_flag_true_p) follows this attribute. So we may
12477 end up accidently finding a declaration attribute that belongs
12478 to a different DIE referenced by the specification attribute,
12479 even though the given DIE does not have a declaration attribute. */
12480 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
12481 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
12482}
12483
63d06c5c 12484/* Return the die giving the specification for DIE, if there is
f2f0e013 12485 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
12486 containing the return value on output. If there is no
12487 specification, but there is an abstract origin, that is
12488 returned. */
63d06c5c
DC
12489
12490static struct die_info *
f2f0e013 12491die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 12492{
f2f0e013
DJ
12493 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
12494 *spec_cu);
63d06c5c 12495
edb3359d
DJ
12496 if (spec_attr == NULL)
12497 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
12498
63d06c5c
DC
12499 if (spec_attr == NULL)
12500 return NULL;
12501 else
f2f0e013 12502 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 12503}
c906108c 12504
debd256d 12505/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
12506 refers to.
12507 NOTE: This is also used as a "cleanup" function. */
12508
debd256d
JB
12509static void
12510free_line_header (struct line_header *lh)
12511{
12512 if (lh->standard_opcode_lengths)
a8bc7b56 12513 xfree (lh->standard_opcode_lengths);
debd256d
JB
12514
12515 /* Remember that all the lh->file_names[i].name pointers are
12516 pointers into debug_line_buffer, and don't need to be freed. */
12517 if (lh->file_names)
a8bc7b56 12518 xfree (lh->file_names);
debd256d
JB
12519
12520 /* Similarly for the include directory names. */
12521 if (lh->include_dirs)
a8bc7b56 12522 xfree (lh->include_dirs);
debd256d 12523
a8bc7b56 12524 xfree (lh);
debd256d
JB
12525}
12526
debd256d 12527/* Add an entry to LH's include directory table. */
ae2de4f8 12528
debd256d
JB
12529static void
12530add_include_dir (struct line_header *lh, char *include_dir)
c906108c 12531{
debd256d
JB
12532 /* Grow the array if necessary. */
12533 if (lh->include_dirs_size == 0)
c5aa993b 12534 {
debd256d
JB
12535 lh->include_dirs_size = 1; /* for testing */
12536 lh->include_dirs = xmalloc (lh->include_dirs_size
12537 * sizeof (*lh->include_dirs));
12538 }
12539 else if (lh->num_include_dirs >= lh->include_dirs_size)
12540 {
12541 lh->include_dirs_size *= 2;
12542 lh->include_dirs = xrealloc (lh->include_dirs,
12543 (lh->include_dirs_size
12544 * sizeof (*lh->include_dirs)));
c5aa993b 12545 }
c906108c 12546
debd256d
JB
12547 lh->include_dirs[lh->num_include_dirs++] = include_dir;
12548}
6e70227d 12549
debd256d 12550/* Add an entry to LH's file name table. */
ae2de4f8 12551
debd256d
JB
12552static void
12553add_file_name (struct line_header *lh,
12554 char *name,
12555 unsigned int dir_index,
12556 unsigned int mod_time,
12557 unsigned int length)
12558{
12559 struct file_entry *fe;
12560
12561 /* Grow the array if necessary. */
12562 if (lh->file_names_size == 0)
12563 {
12564 lh->file_names_size = 1; /* for testing */
12565 lh->file_names = xmalloc (lh->file_names_size
12566 * sizeof (*lh->file_names));
12567 }
12568 else if (lh->num_file_names >= lh->file_names_size)
12569 {
12570 lh->file_names_size *= 2;
12571 lh->file_names = xrealloc (lh->file_names,
12572 (lh->file_names_size
12573 * sizeof (*lh->file_names)));
12574 }
12575
12576 fe = &lh->file_names[lh->num_file_names++];
12577 fe->name = name;
12578 fe->dir_index = dir_index;
12579 fe->mod_time = mod_time;
12580 fe->length = length;
aaa75496 12581 fe->included_p = 0;
cb1df416 12582 fe->symtab = NULL;
debd256d 12583}
6e70227d 12584
debd256d 12585/* Read the statement program header starting at OFFSET in
3019eac3 12586 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 12587 to a struct line_header, allocated using xmalloc.
debd256d
JB
12588
12589 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
12590 the returned object point into the dwarf line section buffer,
12591 and must not be freed. */
ae2de4f8 12592
debd256d 12593static struct line_header *
3019eac3 12594dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
12595{
12596 struct cleanup *back_to;
12597 struct line_header *lh;
fe1b8b76 12598 gdb_byte *line_ptr;
c764a876 12599 unsigned int bytes_read, offset_size;
debd256d
JB
12600 int i;
12601 char *cur_dir, *cur_file;
3019eac3
DE
12602 struct dwarf2_section_info *section;
12603 bfd *abfd;
12604
12605 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
12606 DWO file. */
12607 if (cu->dwo_unit && cu->per_cu->is_debug_types)
12608 section = &cu->dwo_unit->dwo_file->sections.line;
12609 else
12610 section = &dwarf2_per_objfile->line;
debd256d 12611
3019eac3
DE
12612 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
12613 if (section->buffer == NULL)
debd256d 12614 {
3019eac3
DE
12615 if (cu->dwo_unit && cu->per_cu->is_debug_types)
12616 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
12617 else
12618 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
12619 return 0;
12620 }
12621
fceca515
DE
12622 /* We can't do this until we know the section is non-empty.
12623 Only then do we know we have such a section. */
12624 abfd = section->asection->owner;
12625
a738430d
MK
12626 /* Make sure that at least there's room for the total_length field.
12627 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 12628 if (offset + 4 >= section->size)
debd256d 12629 {
4d3c2250 12630 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
12631 return 0;
12632 }
12633
12634 lh = xmalloc (sizeof (*lh));
12635 memset (lh, 0, sizeof (*lh));
12636 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
12637 (void *) lh);
12638
3019eac3 12639 line_ptr = section->buffer + offset;
debd256d 12640
a738430d 12641 /* Read in the header. */
6e70227d 12642 lh->total_length =
c764a876
DE
12643 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
12644 &bytes_read, &offset_size);
debd256d 12645 line_ptr += bytes_read;
3019eac3 12646 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 12647 {
4d3c2250 12648 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
12649 return 0;
12650 }
12651 lh->statement_program_end = line_ptr + lh->total_length;
12652 lh->version = read_2_bytes (abfd, line_ptr);
12653 line_ptr += 2;
c764a876
DE
12654 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
12655 line_ptr += offset_size;
debd256d
JB
12656 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
12657 line_ptr += 1;
2dc7f7b3
TT
12658 if (lh->version >= 4)
12659 {
12660 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
12661 line_ptr += 1;
12662 }
12663 else
12664 lh->maximum_ops_per_instruction = 1;
12665
12666 if (lh->maximum_ops_per_instruction == 0)
12667 {
12668 lh->maximum_ops_per_instruction = 1;
12669 complaint (&symfile_complaints,
3e43a32a
MS
12670 _("invalid maximum_ops_per_instruction "
12671 "in `.debug_line' section"));
2dc7f7b3
TT
12672 }
12673
debd256d
JB
12674 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
12675 line_ptr += 1;
12676 lh->line_base = read_1_signed_byte (abfd, line_ptr);
12677 line_ptr += 1;
12678 lh->line_range = read_1_byte (abfd, line_ptr);
12679 line_ptr += 1;
12680 lh->opcode_base = read_1_byte (abfd, line_ptr);
12681 line_ptr += 1;
12682 lh->standard_opcode_lengths
fe1b8b76 12683 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
12684
12685 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
12686 for (i = 1; i < lh->opcode_base; ++i)
12687 {
12688 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
12689 line_ptr += 1;
12690 }
12691
a738430d 12692 /* Read directory table. */
9b1c24c8 12693 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
12694 {
12695 line_ptr += bytes_read;
12696 add_include_dir (lh, cur_dir);
12697 }
12698 line_ptr += bytes_read;
12699
a738430d 12700 /* Read file name table. */
9b1c24c8 12701 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
12702 {
12703 unsigned int dir_index, mod_time, length;
12704
12705 line_ptr += bytes_read;
12706 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12707 line_ptr += bytes_read;
12708 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12709 line_ptr += bytes_read;
12710 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12711 line_ptr += bytes_read;
12712
12713 add_file_name (lh, cur_file, dir_index, mod_time, length);
12714 }
12715 line_ptr += bytes_read;
6e70227d 12716 lh->statement_program_start = line_ptr;
debd256d 12717
3019eac3 12718 if (line_ptr > (section->buffer + section->size))
4d3c2250 12719 complaint (&symfile_complaints,
3e43a32a
MS
12720 _("line number info header doesn't "
12721 "fit in `.debug_line' section"));
debd256d
JB
12722
12723 discard_cleanups (back_to);
12724 return lh;
12725}
c906108c 12726
c6da4cef
DE
12727/* Subroutine of dwarf_decode_lines to simplify it.
12728 Return the file name of the psymtab for included file FILE_INDEX
12729 in line header LH of PST.
12730 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
12731 If space for the result is malloc'd, it will be freed by a cleanup.
12732 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
12733
12734static char *
12735psymtab_include_file_name (const struct line_header *lh, int file_index,
12736 const struct partial_symtab *pst,
12737 const char *comp_dir)
12738{
12739 const struct file_entry fe = lh->file_names [file_index];
12740 char *include_name = fe.name;
12741 char *include_name_to_compare = include_name;
12742 char *dir_name = NULL;
72b9f47f
TT
12743 const char *pst_filename;
12744 char *copied_name = NULL;
c6da4cef
DE
12745 int file_is_pst;
12746
12747 if (fe.dir_index)
12748 dir_name = lh->include_dirs[fe.dir_index - 1];
12749
12750 if (!IS_ABSOLUTE_PATH (include_name)
12751 && (dir_name != NULL || comp_dir != NULL))
12752 {
12753 /* Avoid creating a duplicate psymtab for PST.
12754 We do this by comparing INCLUDE_NAME and PST_FILENAME.
12755 Before we do the comparison, however, we need to account
12756 for DIR_NAME and COMP_DIR.
12757 First prepend dir_name (if non-NULL). If we still don't
12758 have an absolute path prepend comp_dir (if non-NULL).
12759 However, the directory we record in the include-file's
12760 psymtab does not contain COMP_DIR (to match the
12761 corresponding symtab(s)).
12762
12763 Example:
12764
12765 bash$ cd /tmp
12766 bash$ gcc -g ./hello.c
12767 include_name = "hello.c"
12768 dir_name = "."
12769 DW_AT_comp_dir = comp_dir = "/tmp"
12770 DW_AT_name = "./hello.c" */
12771
12772 if (dir_name != NULL)
12773 {
12774 include_name = concat (dir_name, SLASH_STRING,
12775 include_name, (char *)NULL);
12776 include_name_to_compare = include_name;
12777 make_cleanup (xfree, include_name);
12778 }
12779 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
12780 {
12781 include_name_to_compare = concat (comp_dir, SLASH_STRING,
12782 include_name, (char *)NULL);
12783 }
12784 }
12785
12786 pst_filename = pst->filename;
12787 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
12788 {
72b9f47f
TT
12789 copied_name = concat (pst->dirname, SLASH_STRING,
12790 pst_filename, (char *)NULL);
12791 pst_filename = copied_name;
c6da4cef
DE
12792 }
12793
1e3fad37 12794 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
12795
12796 if (include_name_to_compare != include_name)
12797 xfree (include_name_to_compare);
72b9f47f
TT
12798 if (copied_name != NULL)
12799 xfree (copied_name);
c6da4cef
DE
12800
12801 if (file_is_pst)
12802 return NULL;
12803 return include_name;
12804}
12805
c91513d8
PP
12806/* Ignore this record_line request. */
12807
12808static void
12809noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
12810{
12811 return;
12812}
12813
f3f5162e
DE
12814/* Subroutine of dwarf_decode_lines to simplify it.
12815 Process the line number information in LH. */
debd256d 12816
c906108c 12817static void
f3f5162e
DE
12818dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
12819 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 12820{
a8c50c1f 12821 gdb_byte *line_ptr, *extended_end;
fe1b8b76 12822 gdb_byte *line_end;
a8c50c1f 12823 unsigned int bytes_read, extended_len;
c906108c 12824 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
12825 CORE_ADDR baseaddr;
12826 struct objfile *objfile = cu->objfile;
f3f5162e 12827 bfd *abfd = objfile->obfd;
fbf65064 12828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 12829 const int decode_for_pst_p = (pst != NULL);
f3f5162e 12830 struct subfile *last_subfile = NULL;
c91513d8
PP
12831 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
12832 = record_line;
e142c38c
DJ
12833
12834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 12835
debd256d
JB
12836 line_ptr = lh->statement_program_start;
12837 line_end = lh->statement_program_end;
c906108c
SS
12838
12839 /* Read the statement sequences until there's nothing left. */
12840 while (line_ptr < line_end)
12841 {
12842 /* state machine registers */
12843 CORE_ADDR address = 0;
12844 unsigned int file = 1;
12845 unsigned int line = 1;
12846 unsigned int column = 0;
debd256d 12847 int is_stmt = lh->default_is_stmt;
c906108c
SS
12848 int basic_block = 0;
12849 int end_sequence = 0;
fbf65064 12850 CORE_ADDR addr;
2dc7f7b3 12851 unsigned char op_index = 0;
c906108c 12852
aaa75496 12853 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 12854 {
aaa75496 12855 /* Start a subfile for the current file of the state machine. */
debd256d
JB
12856 /* lh->include_dirs and lh->file_names are 0-based, but the
12857 directory and file name numbers in the statement program
12858 are 1-based. */
12859 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 12860 char *dir = NULL;
a738430d 12861
debd256d
JB
12862 if (fe->dir_index)
12863 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
12864
12865 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
12866 }
12867
a738430d 12868 /* Decode the table. */
c5aa993b 12869 while (!end_sequence)
c906108c
SS
12870 {
12871 op_code = read_1_byte (abfd, line_ptr);
12872 line_ptr += 1;
59205f5a
JB
12873 if (line_ptr > line_end)
12874 {
12875 dwarf2_debug_line_missing_end_sequence_complaint ();
12876 break;
12877 }
9aa1fe7e 12878
debd256d 12879 if (op_code >= lh->opcode_base)
6e70227d 12880 {
a738430d 12881 /* Special operand. */
debd256d 12882 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
12883 address += (((op_index + (adj_opcode / lh->line_range))
12884 / lh->maximum_ops_per_instruction)
12885 * lh->minimum_instruction_length);
12886 op_index = ((op_index + (adj_opcode / lh->line_range))
12887 % lh->maximum_ops_per_instruction);
debd256d 12888 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 12889 if (lh->num_file_names < file || file == 0)
25e43795 12890 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
12891 /* For now we ignore lines not starting on an
12892 instruction boundary. */
12893 else if (op_index == 0)
25e43795
DJ
12894 {
12895 lh->file_names[file - 1].included_p = 1;
ca5f395d 12896 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
12897 {
12898 if (last_subfile != current_subfile)
12899 {
12900 addr = gdbarch_addr_bits_remove (gdbarch, address);
12901 if (last_subfile)
c91513d8 12902 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
12903 last_subfile = current_subfile;
12904 }
25e43795 12905 /* Append row to matrix using current values. */
7019d805 12906 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 12907 (*p_record_line) (current_subfile, line, addr);
366da635 12908 }
25e43795 12909 }
ca5f395d 12910 basic_block = 0;
9aa1fe7e
GK
12911 }
12912 else switch (op_code)
c906108c
SS
12913 {
12914 case DW_LNS_extended_op:
3e43a32a
MS
12915 extended_len = read_unsigned_leb128 (abfd, line_ptr,
12916 &bytes_read);
473b7be6 12917 line_ptr += bytes_read;
a8c50c1f 12918 extended_end = line_ptr + extended_len;
c906108c
SS
12919 extended_op = read_1_byte (abfd, line_ptr);
12920 line_ptr += 1;
12921 switch (extended_op)
12922 {
12923 case DW_LNE_end_sequence:
c91513d8 12924 p_record_line = record_line;
c906108c 12925 end_sequence = 1;
c906108c
SS
12926 break;
12927 case DW_LNE_set_address:
e7c27a73 12928 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
12929
12930 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
12931 {
12932 /* This line table is for a function which has been
12933 GCd by the linker. Ignore it. PR gdb/12528 */
12934
12935 long line_offset
12936 = line_ptr - dwarf2_per_objfile->line.buffer;
12937
12938 complaint (&symfile_complaints,
12939 _(".debug_line address at offset 0x%lx is 0 "
12940 "[in module %s]"),
bb5ed363 12941 line_offset, objfile->name);
c91513d8
PP
12942 p_record_line = noop_record_line;
12943 }
12944
2dc7f7b3 12945 op_index = 0;
107d2387
AC
12946 line_ptr += bytes_read;
12947 address += baseaddr;
c906108c
SS
12948 break;
12949 case DW_LNE_define_file:
debd256d
JB
12950 {
12951 char *cur_file;
12952 unsigned int dir_index, mod_time, length;
6e70227d 12953
3e43a32a
MS
12954 cur_file = read_direct_string (abfd, line_ptr,
12955 &bytes_read);
debd256d
JB
12956 line_ptr += bytes_read;
12957 dir_index =
12958 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12959 line_ptr += bytes_read;
12960 mod_time =
12961 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12962 line_ptr += bytes_read;
12963 length =
12964 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12965 line_ptr += bytes_read;
12966 add_file_name (lh, cur_file, dir_index, mod_time, length);
12967 }
c906108c 12968 break;
d0c6ba3d
CC
12969 case DW_LNE_set_discriminator:
12970 /* The discriminator is not interesting to the debugger;
12971 just ignore it. */
12972 line_ptr = extended_end;
12973 break;
c906108c 12974 default:
4d3c2250 12975 complaint (&symfile_complaints,
e2e0b3e5 12976 _("mangled .debug_line section"));
debd256d 12977 return;
c906108c 12978 }
a8c50c1f
DJ
12979 /* Make sure that we parsed the extended op correctly. If e.g.
12980 we expected a different address size than the producer used,
12981 we may have read the wrong number of bytes. */
12982 if (line_ptr != extended_end)
12983 {
12984 complaint (&symfile_complaints,
12985 _("mangled .debug_line section"));
12986 return;
12987 }
c906108c
SS
12988 break;
12989 case DW_LNS_copy:
59205f5a 12990 if (lh->num_file_names < file || file == 0)
25e43795
DJ
12991 dwarf2_debug_line_missing_file_complaint ();
12992 else
366da635 12993 {
25e43795 12994 lh->file_names[file - 1].included_p = 1;
ca5f395d 12995 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
12996 {
12997 if (last_subfile != current_subfile)
12998 {
12999 addr = gdbarch_addr_bits_remove (gdbarch, address);
13000 if (last_subfile)
c91513d8 13001 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
13002 last_subfile = current_subfile;
13003 }
7019d805 13004 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 13005 (*p_record_line) (current_subfile, line, addr);
fbf65064 13006 }
366da635 13007 }
c906108c
SS
13008 basic_block = 0;
13009 break;
13010 case DW_LNS_advance_pc:
2dc7f7b3
TT
13011 {
13012 CORE_ADDR adjust
13013 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13014
13015 address += (((op_index + adjust)
13016 / lh->maximum_ops_per_instruction)
13017 * lh->minimum_instruction_length);
13018 op_index = ((op_index + adjust)
13019 % lh->maximum_ops_per_instruction);
13020 line_ptr += bytes_read;
13021 }
c906108c
SS
13022 break;
13023 case DW_LNS_advance_line:
13024 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
13025 line_ptr += bytes_read;
13026 break;
13027 case DW_LNS_set_file:
debd256d 13028 {
a738430d
MK
13029 /* The arrays lh->include_dirs and lh->file_names are
13030 0-based, but the directory and file name numbers in
13031 the statement program are 1-based. */
debd256d 13032 struct file_entry *fe;
4f1520fb 13033 char *dir = NULL;
a738430d 13034
debd256d
JB
13035 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13036 line_ptr += bytes_read;
59205f5a 13037 if (lh->num_file_names < file || file == 0)
25e43795
DJ
13038 dwarf2_debug_line_missing_file_complaint ();
13039 else
13040 {
13041 fe = &lh->file_names[file - 1];
13042 if (fe->dir_index)
13043 dir = lh->include_dirs[fe->dir_index - 1];
13044 if (!decode_for_pst_p)
13045 {
13046 last_subfile = current_subfile;
13047 dwarf2_start_subfile (fe->name, dir, comp_dir);
13048 }
13049 }
debd256d 13050 }
c906108c
SS
13051 break;
13052 case DW_LNS_set_column:
13053 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13054 line_ptr += bytes_read;
13055 break;
13056 case DW_LNS_negate_stmt:
13057 is_stmt = (!is_stmt);
13058 break;
13059 case DW_LNS_set_basic_block:
13060 basic_block = 1;
13061 break;
c2c6d25f
JM
13062 /* Add to the address register of the state machine the
13063 address increment value corresponding to special opcode
a738430d
MK
13064 255. I.e., this value is scaled by the minimum
13065 instruction length since special opcode 255 would have
b021a221 13066 scaled the increment. */
c906108c 13067 case DW_LNS_const_add_pc:
2dc7f7b3
TT
13068 {
13069 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
13070
13071 address += (((op_index + adjust)
13072 / lh->maximum_ops_per_instruction)
13073 * lh->minimum_instruction_length);
13074 op_index = ((op_index + adjust)
13075 % lh->maximum_ops_per_instruction);
13076 }
c906108c
SS
13077 break;
13078 case DW_LNS_fixed_advance_pc:
13079 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 13080 op_index = 0;
c906108c
SS
13081 line_ptr += 2;
13082 break;
9aa1fe7e 13083 default:
a738430d
MK
13084 {
13085 /* Unknown standard opcode, ignore it. */
9aa1fe7e 13086 int i;
a738430d 13087
debd256d 13088 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
13089 {
13090 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13091 line_ptr += bytes_read;
13092 }
13093 }
c906108c
SS
13094 }
13095 }
59205f5a
JB
13096 if (lh->num_file_names < file || file == 0)
13097 dwarf2_debug_line_missing_file_complaint ();
13098 else
13099 {
13100 lh->file_names[file - 1].included_p = 1;
13101 if (!decode_for_pst_p)
fbf65064
UW
13102 {
13103 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 13104 (*p_record_line) (current_subfile, 0, addr);
fbf65064 13105 }
59205f5a 13106 }
c906108c 13107 }
f3f5162e
DE
13108}
13109
13110/* Decode the Line Number Program (LNP) for the given line_header
13111 structure and CU. The actual information extracted and the type
13112 of structures created from the LNP depends on the value of PST.
13113
13114 1. If PST is NULL, then this procedure uses the data from the program
13115 to create all necessary symbol tables, and their linetables.
13116
13117 2. If PST is not NULL, this procedure reads the program to determine
13118 the list of files included by the unit represented by PST, and
13119 builds all the associated partial symbol tables.
13120
13121 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
13122 It is used for relative paths in the line table.
13123 NOTE: When processing partial symtabs (pst != NULL),
13124 comp_dir == pst->dirname.
13125
13126 NOTE: It is important that psymtabs have the same file name (via strcmp)
13127 as the corresponding symtab. Since COMP_DIR is not used in the name of the
13128 symtab we don't use it in the name of the psymtabs we create.
13129 E.g. expand_line_sal requires this when finding psymtabs to expand.
13130 A good testcase for this is mb-inline.exp. */
13131
13132static void
13133dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
13134 struct dwarf2_cu *cu, struct partial_symtab *pst,
13135 int want_line_info)
13136{
13137 struct objfile *objfile = cu->objfile;
13138 const int decode_for_pst_p = (pst != NULL);
13139 struct subfile *first_subfile = current_subfile;
13140
13141 if (want_line_info)
13142 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
13143
13144 if (decode_for_pst_p)
13145 {
13146 int file_index;
13147
13148 /* Now that we're done scanning the Line Header Program, we can
13149 create the psymtab of each included file. */
13150 for (file_index = 0; file_index < lh->num_file_names; file_index++)
13151 if (lh->file_names[file_index].included_p == 1)
13152 {
c6da4cef
DE
13153 char *include_name =
13154 psymtab_include_file_name (lh, file_index, pst, comp_dir);
13155 if (include_name != NULL)
aaa75496
JB
13156 dwarf2_create_include_psymtab (include_name, pst, objfile);
13157 }
13158 }
cb1df416
DJ
13159 else
13160 {
13161 /* Make sure a symtab is created for every file, even files
13162 which contain only variables (i.e. no code with associated
13163 line numbers). */
cb1df416 13164 int i;
cb1df416
DJ
13165
13166 for (i = 0; i < lh->num_file_names; i++)
13167 {
13168 char *dir = NULL;
f3f5162e 13169 struct file_entry *fe;
9a619af0 13170
cb1df416
DJ
13171 fe = &lh->file_names[i];
13172 if (fe->dir_index)
13173 dir = lh->include_dirs[fe->dir_index - 1];
13174 dwarf2_start_subfile (fe->name, dir, comp_dir);
13175
13176 /* Skip the main file; we don't need it, and it must be
13177 allocated last, so that it will show up before the
13178 non-primary symtabs in the objfile's symtab list. */
13179 if (current_subfile == first_subfile)
13180 continue;
13181
13182 if (current_subfile->symtab == NULL)
13183 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 13184 objfile);
cb1df416
DJ
13185 fe->symtab = current_subfile->symtab;
13186 }
13187 }
c906108c
SS
13188}
13189
13190/* Start a subfile for DWARF. FILENAME is the name of the file and
13191 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
13192 or NULL if not known. COMP_DIR is the compilation directory for the
13193 linetable's compilation unit or NULL if not known.
c906108c
SS
13194 This routine tries to keep line numbers from identical absolute and
13195 relative file names in a common subfile.
13196
13197 Using the `list' example from the GDB testsuite, which resides in
13198 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
13199 of /srcdir/list0.c yields the following debugging information for list0.c:
13200
c5aa993b
JM
13201 DW_AT_name: /srcdir/list0.c
13202 DW_AT_comp_dir: /compdir
357e46e7 13203 files.files[0].name: list0.h
c5aa993b 13204 files.files[0].dir: /srcdir
357e46e7 13205 files.files[1].name: list0.c
c5aa993b 13206 files.files[1].dir: /srcdir
c906108c
SS
13207
13208 The line number information for list0.c has to end up in a single
4f1520fb
FR
13209 subfile, so that `break /srcdir/list0.c:1' works as expected.
13210 start_subfile will ensure that this happens provided that we pass the
13211 concatenation of files.files[1].dir and files.files[1].name as the
13212 subfile's name. */
c906108c
SS
13213
13214static void
3e43a32a
MS
13215dwarf2_start_subfile (char *filename, const char *dirname,
13216 const char *comp_dir)
c906108c 13217{
4f1520fb
FR
13218 char *fullname;
13219
13220 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
13221 `start_symtab' will always pass the contents of DW_AT_comp_dir as
13222 second argument to start_subfile. To be consistent, we do the
13223 same here. In order not to lose the line information directory,
13224 we concatenate it to the filename when it makes sense.
13225 Note that the Dwarf3 standard says (speaking of filenames in line
13226 information): ``The directory index is ignored for file names
13227 that represent full path names''. Thus ignoring dirname in the
13228 `else' branch below isn't an issue. */
c906108c 13229
d5166ae1 13230 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
13231 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
13232 else
13233 fullname = filename;
c906108c 13234
4f1520fb
FR
13235 start_subfile (fullname, comp_dir);
13236
13237 if (fullname != filename)
13238 xfree (fullname);
c906108c
SS
13239}
13240
4c2df51b
DJ
13241static void
13242var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 13243 struct dwarf2_cu *cu)
4c2df51b 13244{
e7c27a73
DJ
13245 struct objfile *objfile = cu->objfile;
13246 struct comp_unit_head *cu_header = &cu->header;
13247
4c2df51b
DJ
13248 /* NOTE drow/2003-01-30: There used to be a comment and some special
13249 code here to turn a symbol with DW_AT_external and a
13250 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
13251 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
13252 with some versions of binutils) where shared libraries could have
13253 relocations against symbols in their debug information - the
13254 minimal symbol would have the right address, but the debug info
13255 would not. It's no longer necessary, because we will explicitly
13256 apply relocations when we read in the debug information now. */
13257
13258 /* A DW_AT_location attribute with no contents indicates that a
13259 variable has been optimized away. */
13260 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
13261 {
13262 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
13263 return;
13264 }
13265
13266 /* Handle one degenerate form of location expression specially, to
13267 preserve GDB's previous behavior when section offsets are
3019eac3
DE
13268 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
13269 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
13270
13271 if (attr_form_is_block (attr)
3019eac3
DE
13272 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
13273 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
13274 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
13275 && (DW_BLOCK (attr)->size
13276 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 13277 {
891d2f0b 13278 unsigned int dummy;
4c2df51b 13279
3019eac3
DE
13280 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
13281 SYMBOL_VALUE_ADDRESS (sym) =
13282 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
13283 else
13284 SYMBOL_VALUE_ADDRESS (sym) =
13285 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
907fc202 13286 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
13287 fixup_symbol_section (sym, objfile);
13288 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
13289 SYMBOL_SECTION (sym));
4c2df51b
DJ
13290 return;
13291 }
13292
13293 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
13294 expression evaluator, and use LOC_COMPUTED only when necessary
13295 (i.e. when the value of a register or memory location is
13296 referenced, or a thread-local block, etc.). Then again, it might
13297 not be worthwhile. I'm assuming that it isn't unless performance
13298 or memory numbers show me otherwise. */
13299
e7c27a73 13300 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b 13301 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8be455d7
JK
13302
13303 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
13304 cu->has_loclist = 1;
4c2df51b
DJ
13305}
13306
c906108c
SS
13307/* Given a pointer to a DWARF information entry, figure out if we need
13308 to make a symbol table entry for it, and if so, create a new entry
13309 and return a pointer to it.
13310 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
13311 used the passed type.
13312 If SPACE is not NULL, use it to hold the new symbol. If it is
13313 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
13314
13315static struct symbol *
34eaf542
TT
13316new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
13317 struct symbol *space)
c906108c 13318{
e7c27a73 13319 struct objfile *objfile = cu->objfile;
c906108c
SS
13320 struct symbol *sym = NULL;
13321 char *name;
13322 struct attribute *attr = NULL;
13323 struct attribute *attr2 = NULL;
e142c38c 13324 CORE_ADDR baseaddr;
e37fd15a
SW
13325 struct pending **list_to_add = NULL;
13326
edb3359d 13327 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
13328
13329 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 13330
94af9270 13331 name = dwarf2_name (die, cu);
c906108c
SS
13332 if (name)
13333 {
94af9270 13334 const char *linkagename;
34eaf542 13335 int suppress_add = 0;
94af9270 13336
34eaf542
TT
13337 if (space)
13338 sym = space;
13339 else
13340 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 13341 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
13342
13343 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 13344 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
13345 linkagename = dwarf2_physname (name, die, cu);
13346 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 13347
f55ee35c
JK
13348 /* Fortran does not have mangling standard and the mangling does differ
13349 between gfortran, iFort etc. */
13350 if (cu->language == language_fortran
b250c185 13351 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
13352 symbol_set_demangled_name (&(sym->ginfo),
13353 (char *) dwarf2_full_name (name, die, cu),
13354 NULL);
f55ee35c 13355
c906108c 13356 /* Default assumptions.
c5aa993b 13357 Use the passed type or decode it from the die. */
176620f1 13358 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 13359 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
13360 if (type != NULL)
13361 SYMBOL_TYPE (sym) = type;
13362 else
e7c27a73 13363 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
13364 attr = dwarf2_attr (die,
13365 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
13366 cu);
c906108c
SS
13367 if (attr)
13368 {
13369 SYMBOL_LINE (sym) = DW_UNSND (attr);
13370 }
cb1df416 13371
edb3359d
DJ
13372 attr = dwarf2_attr (die,
13373 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
13374 cu);
cb1df416
DJ
13375 if (attr)
13376 {
13377 int file_index = DW_UNSND (attr);
9a619af0 13378
cb1df416
DJ
13379 if (cu->line_header == NULL
13380 || file_index > cu->line_header->num_file_names)
13381 complaint (&symfile_complaints,
13382 _("file index out of range"));
1c3d648d 13383 else if (file_index > 0)
cb1df416
DJ
13384 {
13385 struct file_entry *fe;
9a619af0 13386
cb1df416
DJ
13387 fe = &cu->line_header->file_names[file_index - 1];
13388 SYMBOL_SYMTAB (sym) = fe->symtab;
13389 }
13390 }
13391
c906108c
SS
13392 switch (die->tag)
13393 {
13394 case DW_TAG_label:
e142c38c 13395 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
13396 if (attr)
13397 {
13398 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
13399 }
0f5238ed
TT
13400 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
13401 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 13402 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 13403 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
13404 break;
13405 case DW_TAG_subprogram:
13406 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
13407 finish_block. */
13408 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 13409 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
13410 if ((attr2 && (DW_UNSND (attr2) != 0))
13411 || cu->language == language_ada)
c906108c 13412 {
2cfa0c8d
JB
13413 /* Subprograms marked external are stored as a global symbol.
13414 Ada subprograms, whether marked external or not, are always
13415 stored as a global symbol, because we want to be able to
13416 access them globally. For instance, we want to be able
13417 to break on a nested subprogram without having to
13418 specify the context. */
e37fd15a 13419 list_to_add = &global_symbols;
c906108c
SS
13420 }
13421 else
13422 {
e37fd15a 13423 list_to_add = cu->list_in_scope;
c906108c
SS
13424 }
13425 break;
edb3359d
DJ
13426 case DW_TAG_inlined_subroutine:
13427 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
13428 finish_block. */
13429 SYMBOL_CLASS (sym) = LOC_BLOCK;
13430 SYMBOL_INLINED (sym) = 1;
481860b3 13431 list_to_add = cu->list_in_scope;
edb3359d 13432 break;
34eaf542
TT
13433 case DW_TAG_template_value_param:
13434 suppress_add = 1;
13435 /* Fall through. */
72929c62 13436 case DW_TAG_constant:
c906108c 13437 case DW_TAG_variable:
254e6b9e 13438 case DW_TAG_member:
0963b4bd
MS
13439 /* Compilation with minimal debug info may result in
13440 variables with missing type entries. Change the
13441 misleading `void' type to something sensible. */
c906108c 13442 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 13443 SYMBOL_TYPE (sym)
46bf5051 13444 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 13445
e142c38c 13446 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
13447 /* In the case of DW_TAG_member, we should only be called for
13448 static const members. */
13449 if (die->tag == DW_TAG_member)
13450 {
3863f96c
DE
13451 /* dwarf2_add_field uses die_is_declaration,
13452 so we do the same. */
254e6b9e
DE
13453 gdb_assert (die_is_declaration (die, cu));
13454 gdb_assert (attr);
13455 }
c906108c
SS
13456 if (attr)
13457 {
e7c27a73 13458 dwarf2_const_value (attr, sym, cu);
e142c38c 13459 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 13460 if (!suppress_add)
34eaf542
TT
13461 {
13462 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 13463 list_to_add = &global_symbols;
34eaf542 13464 else
e37fd15a 13465 list_to_add = cu->list_in_scope;
34eaf542 13466 }
c906108c
SS
13467 break;
13468 }
e142c38c 13469 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
13470 if (attr)
13471 {
e7c27a73 13472 var_decode_location (attr, sym, cu);
e142c38c 13473 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
13474 if (SYMBOL_CLASS (sym) == LOC_STATIC
13475 && SYMBOL_VALUE_ADDRESS (sym) == 0
13476 && !dwarf2_per_objfile->has_section_at_zero)
13477 {
13478 /* When a static variable is eliminated by the linker,
13479 the corresponding debug information is not stripped
13480 out, but the variable address is set to null;
13481 do not add such variables into symbol table. */
13482 }
13483 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 13484 {
f55ee35c
JK
13485 /* Workaround gfortran PR debug/40040 - it uses
13486 DW_AT_location for variables in -fPIC libraries which may
13487 get overriden by other libraries/executable and get
13488 a different address. Resolve it by the minimal symbol
13489 which may come from inferior's executable using copy
13490 relocation. Make this workaround only for gfortran as for
13491 other compilers GDB cannot guess the minimal symbol
13492 Fortran mangling kind. */
13493 if (cu->language == language_fortran && die->parent
13494 && die->parent->tag == DW_TAG_module
13495 && cu->producer
13496 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
13497 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
13498
1c809c68
TT
13499 /* A variable with DW_AT_external is never static,
13500 but it may be block-scoped. */
13501 list_to_add = (cu->list_in_scope == &file_symbols
13502 ? &global_symbols : cu->list_in_scope);
1c809c68 13503 }
c906108c 13504 else
e37fd15a 13505 list_to_add = cu->list_in_scope;
c906108c
SS
13506 }
13507 else
13508 {
13509 /* We do not know the address of this symbol.
c5aa993b
JM
13510 If it is an external symbol and we have type information
13511 for it, enter the symbol as a LOC_UNRESOLVED symbol.
13512 The address of the variable will then be determined from
13513 the minimal symbol table whenever the variable is
13514 referenced. */
e142c38c 13515 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 13516 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 13517 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 13518 {
0fe7935b
DJ
13519 /* A variable with DW_AT_external is never static, but it
13520 may be block-scoped. */
13521 list_to_add = (cu->list_in_scope == &file_symbols
13522 ? &global_symbols : cu->list_in_scope);
13523
c906108c 13524 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 13525 }
442ddf59
JK
13526 else if (!die_is_declaration (die, cu))
13527 {
13528 /* Use the default LOC_OPTIMIZED_OUT class. */
13529 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
13530 if (!suppress_add)
13531 list_to_add = cu->list_in_scope;
442ddf59 13532 }
c906108c
SS
13533 }
13534 break;
13535 case DW_TAG_formal_parameter:
edb3359d
DJ
13536 /* If we are inside a function, mark this as an argument. If
13537 not, we might be looking at an argument to an inlined function
13538 when we do not have enough information to show inlined frames;
13539 pretend it's a local variable in that case so that the user can
13540 still see it. */
13541 if (context_stack_depth > 0
13542 && context_stack[context_stack_depth - 1].name != NULL)
13543 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 13544 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
13545 if (attr)
13546 {
e7c27a73 13547 var_decode_location (attr, sym, cu);
c906108c 13548 }
e142c38c 13549 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
13550 if (attr)
13551 {
e7c27a73 13552 dwarf2_const_value (attr, sym, cu);
c906108c 13553 }
f346a30d 13554
e37fd15a 13555 list_to_add = cu->list_in_scope;
c906108c
SS
13556 break;
13557 case DW_TAG_unspecified_parameters:
13558 /* From varargs functions; gdb doesn't seem to have any
13559 interest in this information, so just ignore it for now.
13560 (FIXME?) */
13561 break;
34eaf542
TT
13562 case DW_TAG_template_type_param:
13563 suppress_add = 1;
13564 /* Fall through. */
c906108c 13565 case DW_TAG_class_type:
680b30c7 13566 case DW_TAG_interface_type:
c906108c
SS
13567 case DW_TAG_structure_type:
13568 case DW_TAG_union_type:
72019c9c 13569 case DW_TAG_set_type:
c906108c
SS
13570 case DW_TAG_enumeration_type:
13571 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 13572 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 13573
63d06c5c 13574 {
987504bb 13575 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
13576 really ever be static objects: otherwise, if you try
13577 to, say, break of a class's method and you're in a file
13578 which doesn't mention that class, it won't work unless
13579 the check for all static symbols in lookup_symbol_aux
13580 saves you. See the OtherFileClass tests in
13581 gdb.c++/namespace.exp. */
13582
e37fd15a 13583 if (!suppress_add)
34eaf542 13584 {
34eaf542
TT
13585 list_to_add = (cu->list_in_scope == &file_symbols
13586 && (cu->language == language_cplus
13587 || cu->language == language_java)
13588 ? &global_symbols : cu->list_in_scope);
63d06c5c 13589
64382290
TT
13590 /* The semantics of C++ state that "struct foo {
13591 ... }" also defines a typedef for "foo". A Java
13592 class declaration also defines a typedef for the
13593 class. */
13594 if (cu->language == language_cplus
13595 || cu->language == language_java
13596 || cu->language == language_ada)
13597 {
13598 /* The symbol's name is already allocated along
13599 with this objfile, so we don't need to
13600 duplicate it for the type. */
13601 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
13602 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
13603 }
63d06c5c
DC
13604 }
13605 }
c906108c
SS
13606 break;
13607 case DW_TAG_typedef:
63d06c5c
DC
13608 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
13609 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 13610 list_to_add = cu->list_in_scope;
63d06c5c 13611 break;
c906108c 13612 case DW_TAG_base_type:
a02abb62 13613 case DW_TAG_subrange_type:
c906108c 13614 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 13615 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 13616 list_to_add = cu->list_in_scope;
c906108c
SS
13617 break;
13618 case DW_TAG_enumerator:
e142c38c 13619 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
13620 if (attr)
13621 {
e7c27a73 13622 dwarf2_const_value (attr, sym, cu);
c906108c 13623 }
63d06c5c
DC
13624 {
13625 /* NOTE: carlton/2003-11-10: See comment above in the
13626 DW_TAG_class_type, etc. block. */
13627
e142c38c 13628 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
13629 && (cu->language == language_cplus
13630 || cu->language == language_java)
e142c38c 13631 ? &global_symbols : cu->list_in_scope);
63d06c5c 13632 }
c906108c 13633 break;
5c4e30ca
DC
13634 case DW_TAG_namespace:
13635 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 13636 list_to_add = &global_symbols;
5c4e30ca 13637 break;
c906108c
SS
13638 default:
13639 /* Not a tag we recognize. Hopefully we aren't processing
13640 trash data, but since we must specifically ignore things
13641 we don't recognize, there is nothing else we should do at
0963b4bd 13642 this point. */
e2e0b3e5 13643 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 13644 dwarf_tag_name (die->tag));
c906108c
SS
13645 break;
13646 }
df8a16a1 13647
e37fd15a
SW
13648 if (suppress_add)
13649 {
13650 sym->hash_next = objfile->template_symbols;
13651 objfile->template_symbols = sym;
13652 list_to_add = NULL;
13653 }
13654
13655 if (list_to_add != NULL)
13656 add_symbol_to_list (sym, list_to_add);
13657
df8a16a1
DJ
13658 /* For the benefit of old versions of GCC, check for anonymous
13659 namespaces based on the demangled name. */
13660 if (!processing_has_namespace_info
94af9270 13661 && cu->language == language_cplus)
a10964d1 13662 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
13663 }
13664 return (sym);
13665}
13666
34eaf542
TT
13667/* A wrapper for new_symbol_full that always allocates a new symbol. */
13668
13669static struct symbol *
13670new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
13671{
13672 return new_symbol_full (die, type, cu, NULL);
13673}
13674
98bfdba5
PA
13675/* Given an attr with a DW_FORM_dataN value in host byte order,
13676 zero-extend it as appropriate for the symbol's type. The DWARF
13677 standard (v4) is not entirely clear about the meaning of using
13678 DW_FORM_dataN for a constant with a signed type, where the type is
13679 wider than the data. The conclusion of a discussion on the DWARF
13680 list was that this is unspecified. We choose to always zero-extend
13681 because that is the interpretation long in use by GCC. */
c906108c 13682
98bfdba5
PA
13683static gdb_byte *
13684dwarf2_const_value_data (struct attribute *attr, struct type *type,
13685 const char *name, struct obstack *obstack,
12df843f 13686 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 13687{
e7c27a73 13688 struct objfile *objfile = cu->objfile;
e17a4113
UW
13689 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
13690 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
13691 LONGEST l = DW_UNSND (attr);
13692
13693 if (bits < sizeof (*value) * 8)
13694 {
13695 l &= ((LONGEST) 1 << bits) - 1;
13696 *value = l;
13697 }
13698 else if (bits == sizeof (*value) * 8)
13699 *value = l;
13700 else
13701 {
13702 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
13703 store_unsigned_integer (bytes, bits / 8, byte_order, l);
13704 return bytes;
13705 }
13706
13707 return NULL;
13708}
13709
13710/* Read a constant value from an attribute. Either set *VALUE, or if
13711 the value does not fit in *VALUE, set *BYTES - either already
13712 allocated on the objfile obstack, or newly allocated on OBSTACK,
13713 or, set *BATON, if we translated the constant to a location
13714 expression. */
13715
13716static void
13717dwarf2_const_value_attr (struct attribute *attr, struct type *type,
13718 const char *name, struct obstack *obstack,
13719 struct dwarf2_cu *cu,
12df843f 13720 LONGEST *value, gdb_byte **bytes,
98bfdba5
PA
13721 struct dwarf2_locexpr_baton **baton)
13722{
13723 struct objfile *objfile = cu->objfile;
13724 struct comp_unit_head *cu_header = &cu->header;
c906108c 13725 struct dwarf_block *blk;
98bfdba5
PA
13726 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
13727 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
13728
13729 *value = 0;
13730 *bytes = NULL;
13731 *baton = NULL;
c906108c
SS
13732
13733 switch (attr->form)
13734 {
13735 case DW_FORM_addr:
3019eac3 13736 case DW_FORM_GNU_addr_index:
ac56253d 13737 {
ac56253d
TT
13738 gdb_byte *data;
13739
98bfdba5
PA
13740 if (TYPE_LENGTH (type) != cu_header->addr_size)
13741 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 13742 cu_header->addr_size,
98bfdba5 13743 TYPE_LENGTH (type));
ac56253d
TT
13744 /* Symbols of this form are reasonably rare, so we just
13745 piggyback on the existing location code rather than writing
13746 a new implementation of symbol_computed_ops. */
98bfdba5
PA
13747 *baton = obstack_alloc (&objfile->objfile_obstack,
13748 sizeof (struct dwarf2_locexpr_baton));
13749 (*baton)->per_cu = cu->per_cu;
13750 gdb_assert ((*baton)->per_cu);
ac56253d 13751
98bfdba5
PA
13752 (*baton)->size = 2 + cu_header->addr_size;
13753 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
13754 (*baton)->data = data;
ac56253d
TT
13755
13756 data[0] = DW_OP_addr;
13757 store_unsigned_integer (&data[1], cu_header->addr_size,
13758 byte_order, DW_ADDR (attr));
13759 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 13760 }
c906108c 13761 break;
4ac36638 13762 case DW_FORM_string:
93b5768b 13763 case DW_FORM_strp:
3019eac3 13764 case DW_FORM_GNU_str_index:
98bfdba5
PA
13765 /* DW_STRING is already allocated on the objfile obstack, point
13766 directly to it. */
13767 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 13768 break;
c906108c
SS
13769 case DW_FORM_block1:
13770 case DW_FORM_block2:
13771 case DW_FORM_block4:
13772 case DW_FORM_block:
2dc7f7b3 13773 case DW_FORM_exprloc:
c906108c 13774 blk = DW_BLOCK (attr);
98bfdba5
PA
13775 if (TYPE_LENGTH (type) != blk->size)
13776 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
13777 TYPE_LENGTH (type));
13778 *bytes = blk->data;
c906108c 13779 break;
2df3850c
JM
13780
13781 /* The DW_AT_const_value attributes are supposed to carry the
13782 symbol's value "represented as it would be on the target
13783 architecture." By the time we get here, it's already been
13784 converted to host endianness, so we just need to sign- or
13785 zero-extend it as appropriate. */
13786 case DW_FORM_data1:
3e43a32a
MS
13787 *bytes = dwarf2_const_value_data (attr, type, name,
13788 obstack, cu, value, 8);
2df3850c 13789 break;
c906108c 13790 case DW_FORM_data2:
3e43a32a
MS
13791 *bytes = dwarf2_const_value_data (attr, type, name,
13792 obstack, cu, value, 16);
2df3850c 13793 break;
c906108c 13794 case DW_FORM_data4:
3e43a32a
MS
13795 *bytes = dwarf2_const_value_data (attr, type, name,
13796 obstack, cu, value, 32);
2df3850c 13797 break;
c906108c 13798 case DW_FORM_data8:
3e43a32a
MS
13799 *bytes = dwarf2_const_value_data (attr, type, name,
13800 obstack, cu, value, 64);
2df3850c
JM
13801 break;
13802
c906108c 13803 case DW_FORM_sdata:
98bfdba5 13804 *value = DW_SND (attr);
2df3850c
JM
13805 break;
13806
c906108c 13807 case DW_FORM_udata:
98bfdba5 13808 *value = DW_UNSND (attr);
c906108c 13809 break;
2df3850c 13810
c906108c 13811 default:
4d3c2250 13812 complaint (&symfile_complaints,
e2e0b3e5 13813 _("unsupported const value attribute form: '%s'"),
4d3c2250 13814 dwarf_form_name (attr->form));
98bfdba5 13815 *value = 0;
c906108c
SS
13816 break;
13817 }
13818}
13819
2df3850c 13820
98bfdba5
PA
13821/* Copy constant value from an attribute to a symbol. */
13822
2df3850c 13823static void
98bfdba5
PA
13824dwarf2_const_value (struct attribute *attr, struct symbol *sym,
13825 struct dwarf2_cu *cu)
2df3850c 13826{
98bfdba5
PA
13827 struct objfile *objfile = cu->objfile;
13828 struct comp_unit_head *cu_header = &cu->header;
12df843f 13829 LONGEST value;
98bfdba5
PA
13830 gdb_byte *bytes;
13831 struct dwarf2_locexpr_baton *baton;
2df3850c 13832
98bfdba5
PA
13833 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
13834 SYMBOL_PRINT_NAME (sym),
13835 &objfile->objfile_obstack, cu,
13836 &value, &bytes, &baton);
2df3850c 13837
98bfdba5
PA
13838 if (baton != NULL)
13839 {
13840 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
13841 SYMBOL_LOCATION_BATON (sym) = baton;
13842 SYMBOL_CLASS (sym) = LOC_COMPUTED;
13843 }
13844 else if (bytes != NULL)
13845 {
13846 SYMBOL_VALUE_BYTES (sym) = bytes;
13847 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
13848 }
13849 else
13850 {
13851 SYMBOL_VALUE (sym) = value;
13852 SYMBOL_CLASS (sym) = LOC_CONST;
13853 }
2df3850c
JM
13854}
13855
c906108c
SS
13856/* Return the type of the die in question using its DW_AT_type attribute. */
13857
13858static struct type *
e7c27a73 13859die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13860{
c906108c 13861 struct attribute *type_attr;
c906108c 13862
e142c38c 13863 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
13864 if (!type_attr)
13865 {
13866 /* A missing DW_AT_type represents a void type. */
46bf5051 13867 return objfile_type (cu->objfile)->builtin_void;
c906108c 13868 }
348e048f 13869
673bfd45 13870 return lookup_die_type (die, type_attr, cu);
c906108c
SS
13871}
13872
b4ba55a1
JB
13873/* True iff CU's producer generates GNAT Ada auxiliary information
13874 that allows to find parallel types through that information instead
13875 of having to do expensive parallel lookups by type name. */
13876
13877static int
13878need_gnat_info (struct dwarf2_cu *cu)
13879{
13880 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
13881 of GNAT produces this auxiliary information, without any indication
13882 that it is produced. Part of enhancing the FSF version of GNAT
13883 to produce that information will be to put in place an indicator
13884 that we can use in order to determine whether the descriptive type
13885 info is available or not. One suggestion that has been made is
13886 to use a new attribute, attached to the CU die. For now, assume
13887 that the descriptive type info is not available. */
13888 return 0;
13889}
13890
b4ba55a1
JB
13891/* Return the auxiliary type of the die in question using its
13892 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
13893 attribute is not present. */
13894
13895static struct type *
13896die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
13897{
b4ba55a1 13898 struct attribute *type_attr;
b4ba55a1
JB
13899
13900 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
13901 if (!type_attr)
13902 return NULL;
13903
673bfd45 13904 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
13905}
13906
13907/* If DIE has a descriptive_type attribute, then set the TYPE's
13908 descriptive type accordingly. */
13909
13910static void
13911set_descriptive_type (struct type *type, struct die_info *die,
13912 struct dwarf2_cu *cu)
13913{
13914 struct type *descriptive_type = die_descriptive_type (die, cu);
13915
13916 if (descriptive_type)
13917 {
13918 ALLOCATE_GNAT_AUX_TYPE (type);
13919 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
13920 }
13921}
13922
c906108c
SS
13923/* Return the containing type of the die in question using its
13924 DW_AT_containing_type attribute. */
13925
13926static struct type *
e7c27a73 13927die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13928{
c906108c 13929 struct attribute *type_attr;
c906108c 13930
e142c38c 13931 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
13932 if (!type_attr)
13933 error (_("Dwarf Error: Problem turning containing type into gdb type "
13934 "[in module %s]"), cu->objfile->name);
13935
673bfd45 13936 return lookup_die_type (die, type_attr, cu);
c906108c
SS
13937}
13938
673bfd45
DE
13939/* Look up the type of DIE in CU using its type attribute ATTR.
13940 If there is no type substitute an error marker. */
13941
c906108c 13942static struct type *
673bfd45
DE
13943lookup_die_type (struct die_info *die, struct attribute *attr,
13944 struct dwarf2_cu *cu)
c906108c 13945{
bb5ed363 13946 struct objfile *objfile = cu->objfile;
f792889a
DJ
13947 struct type *this_type;
13948
673bfd45
DE
13949 /* First see if we have it cached. */
13950
13951 if (is_ref_attr (attr))
13952 {
b64f50a1 13953 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
13954
13955 this_type = get_die_type_at_offset (offset, cu->per_cu);
13956 }
55f1336d 13957 else if (attr->form == DW_FORM_ref_sig8)
673bfd45
DE
13958 {
13959 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
673bfd45
DE
13960
13961 /* sig_type will be NULL if the signatured type is missing from
13962 the debug info. */
13963 if (sig_type == NULL)
13964 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13965 "at 0x%x [in module %s]"),
b64f50a1 13966 die->offset.sect_off, objfile->name);
673bfd45 13967
3019eac3
DE
13968 gdb_assert (sig_type->per_cu.is_debug_types);
13969 /* If we haven't filled in type_offset_in_section yet, then we
13970 haven't read the type in yet. */
13971 this_type = NULL;
13972 if (sig_type->type_offset_in_section.sect_off != 0)
13973 {
13974 this_type =
13975 get_die_type_at_offset (sig_type->type_offset_in_section,
13976 &sig_type->per_cu);
13977 }
673bfd45
DE
13978 }
13979 else
13980 {
13981 dump_die_for_error (die);
13982 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
bb5ed363 13983 dwarf_attr_name (attr->name), objfile->name);
673bfd45
DE
13984 }
13985
13986 /* If not cached we need to read it in. */
13987
13988 if (this_type == NULL)
13989 {
13990 struct die_info *type_die;
13991 struct dwarf2_cu *type_cu = cu;
13992
13993 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
3019eac3
DE
13994 /* If we found the type now, it's probably because the type came
13995 from an inter-CU reference and the type's CU got expanded before
13996 ours. */
13997 this_type = get_die_type (type_die, type_cu);
13998 if (this_type == NULL)
13999 this_type = read_type_die_1 (type_die, type_cu);
673bfd45
DE
14000 }
14001
14002 /* If we still don't have a type use an error marker. */
14003
14004 if (this_type == NULL)
c906108c 14005 {
b00fdb78
TT
14006 char *message, *saved;
14007
14008 /* read_type_die already issued a complaint. */
14009 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
bb5ed363 14010 objfile->name,
b64f50a1
JK
14011 cu->header.offset.sect_off,
14012 die->offset.sect_off);
bb5ed363 14013 saved = obstack_copy0 (&objfile->objfile_obstack,
b00fdb78
TT
14014 message, strlen (message));
14015 xfree (message);
14016
bb5ed363 14017 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
c906108c 14018 }
673bfd45 14019
f792889a 14020 return this_type;
c906108c
SS
14021}
14022
673bfd45
DE
14023/* Return the type in DIE, CU.
14024 Returns NULL for invalid types.
14025
14026 This first does a lookup in the appropriate type_hash table,
14027 and only reads the die in if necessary.
14028
14029 NOTE: This can be called when reading in partial or full symbols. */
14030
f792889a 14031static struct type *
e7c27a73 14032read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14033{
f792889a
DJ
14034 struct type *this_type;
14035
14036 this_type = get_die_type (die, cu);
14037 if (this_type)
14038 return this_type;
14039
673bfd45
DE
14040 return read_type_die_1 (die, cu);
14041}
14042
14043/* Read the type in DIE, CU.
14044 Returns NULL for invalid types. */
14045
14046static struct type *
14047read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
14048{
14049 struct type *this_type = NULL;
14050
c906108c
SS
14051 switch (die->tag)
14052 {
14053 case DW_TAG_class_type:
680b30c7 14054 case DW_TAG_interface_type:
c906108c
SS
14055 case DW_TAG_structure_type:
14056 case DW_TAG_union_type:
f792889a 14057 this_type = read_structure_type (die, cu);
c906108c
SS
14058 break;
14059 case DW_TAG_enumeration_type:
f792889a 14060 this_type = read_enumeration_type (die, cu);
c906108c
SS
14061 break;
14062 case DW_TAG_subprogram:
14063 case DW_TAG_subroutine_type:
edb3359d 14064 case DW_TAG_inlined_subroutine:
f792889a 14065 this_type = read_subroutine_type (die, cu);
c906108c
SS
14066 break;
14067 case DW_TAG_array_type:
f792889a 14068 this_type = read_array_type (die, cu);
c906108c 14069 break;
72019c9c 14070 case DW_TAG_set_type:
f792889a 14071 this_type = read_set_type (die, cu);
72019c9c 14072 break;
c906108c 14073 case DW_TAG_pointer_type:
f792889a 14074 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
14075 break;
14076 case DW_TAG_ptr_to_member_type:
f792889a 14077 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
14078 break;
14079 case DW_TAG_reference_type:
f792889a 14080 this_type = read_tag_reference_type (die, cu);
c906108c
SS
14081 break;
14082 case DW_TAG_const_type:
f792889a 14083 this_type = read_tag_const_type (die, cu);
c906108c
SS
14084 break;
14085 case DW_TAG_volatile_type:
f792889a 14086 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
14087 break;
14088 case DW_TAG_string_type:
f792889a 14089 this_type = read_tag_string_type (die, cu);
c906108c
SS
14090 break;
14091 case DW_TAG_typedef:
f792889a 14092 this_type = read_typedef (die, cu);
c906108c 14093 break;
a02abb62 14094 case DW_TAG_subrange_type:
f792889a 14095 this_type = read_subrange_type (die, cu);
a02abb62 14096 break;
c906108c 14097 case DW_TAG_base_type:
f792889a 14098 this_type = read_base_type (die, cu);
c906108c 14099 break;
81a17f79 14100 case DW_TAG_unspecified_type:
f792889a 14101 this_type = read_unspecified_type (die, cu);
81a17f79 14102 break;
0114d602
DJ
14103 case DW_TAG_namespace:
14104 this_type = read_namespace_type (die, cu);
14105 break;
f55ee35c
JK
14106 case DW_TAG_module:
14107 this_type = read_module_type (die, cu);
14108 break;
c906108c 14109 default:
3e43a32a
MS
14110 complaint (&symfile_complaints,
14111 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 14112 dwarf_tag_name (die->tag));
c906108c
SS
14113 break;
14114 }
63d06c5c 14115
f792889a 14116 return this_type;
63d06c5c
DC
14117}
14118
abc72ce4
DE
14119/* See if we can figure out if the class lives in a namespace. We do
14120 this by looking for a member function; its demangled name will
14121 contain namespace info, if there is any.
14122 Return the computed name or NULL.
14123 Space for the result is allocated on the objfile's obstack.
14124 This is the full-die version of guess_partial_die_structure_name.
14125 In this case we know DIE has no useful parent. */
14126
14127static char *
14128guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
14129{
14130 struct die_info *spec_die;
14131 struct dwarf2_cu *spec_cu;
14132 struct die_info *child;
14133
14134 spec_cu = cu;
14135 spec_die = die_specification (die, &spec_cu);
14136 if (spec_die != NULL)
14137 {
14138 die = spec_die;
14139 cu = spec_cu;
14140 }
14141
14142 for (child = die->child;
14143 child != NULL;
14144 child = child->sibling)
14145 {
14146 if (child->tag == DW_TAG_subprogram)
14147 {
14148 struct attribute *attr;
14149
14150 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
14151 if (attr == NULL)
14152 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
14153 if (attr != NULL)
14154 {
14155 char *actual_name
14156 = language_class_name_from_physname (cu->language_defn,
14157 DW_STRING (attr));
14158 char *name = NULL;
14159
14160 if (actual_name != NULL)
14161 {
14162 char *die_name = dwarf2_name (die, cu);
14163
14164 if (die_name != NULL
14165 && strcmp (die_name, actual_name) != 0)
14166 {
14167 /* Strip off the class name from the full name.
14168 We want the prefix. */
14169 int die_name_len = strlen (die_name);
14170 int actual_name_len = strlen (actual_name);
14171
14172 /* Test for '::' as a sanity check. */
14173 if (actual_name_len > die_name_len + 2
3e43a32a
MS
14174 && actual_name[actual_name_len
14175 - die_name_len - 1] == ':')
abc72ce4
DE
14176 name =
14177 obsavestring (actual_name,
14178 actual_name_len - die_name_len - 2,
14179 &cu->objfile->objfile_obstack);
14180 }
14181 }
14182 xfree (actual_name);
14183 return name;
14184 }
14185 }
14186 }
14187
14188 return NULL;
14189}
14190
96408a79
SA
14191/* GCC might emit a nameless typedef that has a linkage name. Determine the
14192 prefix part in such case. See
14193 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14194
14195static char *
14196anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
14197{
14198 struct attribute *attr;
14199 char *base;
14200
14201 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
14202 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
14203 return NULL;
14204
14205 attr = dwarf2_attr (die, DW_AT_name, cu);
14206 if (attr != NULL && DW_STRING (attr) != NULL)
14207 return NULL;
14208
14209 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
14210 if (attr == NULL)
14211 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
14212 if (attr == NULL || DW_STRING (attr) == NULL)
14213 return NULL;
14214
14215 /* dwarf2_name had to be already called. */
14216 gdb_assert (DW_STRING_IS_CANONICAL (attr));
14217
14218 /* Strip the base name, keep any leading namespaces/classes. */
14219 base = strrchr (DW_STRING (attr), ':');
14220 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
14221 return "";
14222
14223 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
14224 &cu->objfile->objfile_obstack);
14225}
14226
fdde2d81 14227/* Return the name of the namespace/class that DIE is defined within,
0114d602 14228 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 14229
0114d602
DJ
14230 For example, if we're within the method foo() in the following
14231 code:
14232
14233 namespace N {
14234 class C {
14235 void foo () {
14236 }
14237 };
14238 }
14239
14240 then determine_prefix on foo's die will return "N::C". */
fdde2d81 14241
0d5cff50 14242static const char *
e142c38c 14243determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 14244{
0114d602
DJ
14245 struct die_info *parent, *spec_die;
14246 struct dwarf2_cu *spec_cu;
14247 struct type *parent_type;
96408a79 14248 char *retval;
63d06c5c 14249
f55ee35c
JK
14250 if (cu->language != language_cplus && cu->language != language_java
14251 && cu->language != language_fortran)
0114d602
DJ
14252 return "";
14253
96408a79
SA
14254 retval = anonymous_struct_prefix (die, cu);
14255 if (retval)
14256 return retval;
14257
0114d602
DJ
14258 /* We have to be careful in the presence of DW_AT_specification.
14259 For example, with GCC 3.4, given the code
14260
14261 namespace N {
14262 void foo() {
14263 // Definition of N::foo.
14264 }
14265 }
14266
14267 then we'll have a tree of DIEs like this:
14268
14269 1: DW_TAG_compile_unit
14270 2: DW_TAG_namespace // N
14271 3: DW_TAG_subprogram // declaration of N::foo
14272 4: DW_TAG_subprogram // definition of N::foo
14273 DW_AT_specification // refers to die #3
14274
14275 Thus, when processing die #4, we have to pretend that we're in
14276 the context of its DW_AT_specification, namely the contex of die
14277 #3. */
14278 spec_cu = cu;
14279 spec_die = die_specification (die, &spec_cu);
14280 if (spec_die == NULL)
14281 parent = die->parent;
14282 else
63d06c5c 14283 {
0114d602
DJ
14284 parent = spec_die->parent;
14285 cu = spec_cu;
63d06c5c 14286 }
0114d602
DJ
14287
14288 if (parent == NULL)
14289 return "";
98bfdba5
PA
14290 else if (parent->building_fullname)
14291 {
14292 const char *name;
14293 const char *parent_name;
14294
14295 /* It has been seen on RealView 2.2 built binaries,
14296 DW_TAG_template_type_param types actually _defined_ as
14297 children of the parent class:
14298
14299 enum E {};
14300 template class <class Enum> Class{};
14301 Class<enum E> class_e;
14302
14303 1: DW_TAG_class_type (Class)
14304 2: DW_TAG_enumeration_type (E)
14305 3: DW_TAG_enumerator (enum1:0)
14306 3: DW_TAG_enumerator (enum2:1)
14307 ...
14308 2: DW_TAG_template_type_param
14309 DW_AT_type DW_FORM_ref_udata (E)
14310
14311 Besides being broken debug info, it can put GDB into an
14312 infinite loop. Consider:
14313
14314 When we're building the full name for Class<E>, we'll start
14315 at Class, and go look over its template type parameters,
14316 finding E. We'll then try to build the full name of E, and
14317 reach here. We're now trying to build the full name of E,
14318 and look over the parent DIE for containing scope. In the
14319 broken case, if we followed the parent DIE of E, we'd again
14320 find Class, and once again go look at its template type
14321 arguments, etc., etc. Simply don't consider such parent die
14322 as source-level parent of this die (it can't be, the language
14323 doesn't allow it), and break the loop here. */
14324 name = dwarf2_name (die, cu);
14325 parent_name = dwarf2_name (parent, cu);
14326 complaint (&symfile_complaints,
14327 _("template param type '%s' defined within parent '%s'"),
14328 name ? name : "<unknown>",
14329 parent_name ? parent_name : "<unknown>");
14330 return "";
14331 }
63d06c5c 14332 else
0114d602
DJ
14333 switch (parent->tag)
14334 {
63d06c5c 14335 case DW_TAG_namespace:
0114d602 14336 parent_type = read_type_die (parent, cu);
acebe513
UW
14337 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
14338 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
14339 Work around this problem here. */
14340 if (cu->language == language_cplus
14341 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
14342 return "";
0114d602
DJ
14343 /* We give a name to even anonymous namespaces. */
14344 return TYPE_TAG_NAME (parent_type);
63d06c5c 14345 case DW_TAG_class_type:
680b30c7 14346 case DW_TAG_interface_type:
63d06c5c 14347 case DW_TAG_structure_type:
0114d602 14348 case DW_TAG_union_type:
f55ee35c 14349 case DW_TAG_module:
0114d602
DJ
14350 parent_type = read_type_die (parent, cu);
14351 if (TYPE_TAG_NAME (parent_type) != NULL)
14352 return TYPE_TAG_NAME (parent_type);
14353 else
14354 /* An anonymous structure is only allowed non-static data
14355 members; no typedefs, no member functions, et cetera.
14356 So it does not need a prefix. */
14357 return "";
abc72ce4 14358 case DW_TAG_compile_unit:
95554aad 14359 case DW_TAG_partial_unit:
abc72ce4
DE
14360 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
14361 if (cu->language == language_cplus
8b70b953 14362 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
14363 && die->child != NULL
14364 && (die->tag == DW_TAG_class_type
14365 || die->tag == DW_TAG_structure_type
14366 || die->tag == DW_TAG_union_type))
14367 {
14368 char *name = guess_full_die_structure_name (die, cu);
14369 if (name != NULL)
14370 return name;
14371 }
14372 return "";
63d06c5c 14373 default:
8176b9b8 14374 return determine_prefix (parent, cu);
63d06c5c 14375 }
63d06c5c
DC
14376}
14377
3e43a32a
MS
14378/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
14379 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
14380 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
14381 an obconcat, otherwise allocate storage for the result. The CU argument is
14382 used to determine the language and hence, the appropriate separator. */
987504bb 14383
f55ee35c 14384#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
14385
14386static char *
f55ee35c
JK
14387typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
14388 int physname, struct dwarf2_cu *cu)
63d06c5c 14389{
f55ee35c 14390 const char *lead = "";
5c315b68 14391 const char *sep;
63d06c5c 14392
3e43a32a
MS
14393 if (suffix == NULL || suffix[0] == '\0'
14394 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
14395 sep = "";
14396 else if (cu->language == language_java)
14397 sep = ".";
f55ee35c
JK
14398 else if (cu->language == language_fortran && physname)
14399 {
14400 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
14401 DW_AT_MIPS_linkage_name is preferred and used instead. */
14402
14403 lead = "__";
14404 sep = "_MOD_";
14405 }
987504bb
JJ
14406 else
14407 sep = "::";
63d06c5c 14408
6dd47d34
DE
14409 if (prefix == NULL)
14410 prefix = "";
14411 if (suffix == NULL)
14412 suffix = "";
14413
987504bb
JJ
14414 if (obs == NULL)
14415 {
3e43a32a
MS
14416 char *retval
14417 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 14418
f55ee35c
JK
14419 strcpy (retval, lead);
14420 strcat (retval, prefix);
6dd47d34
DE
14421 strcat (retval, sep);
14422 strcat (retval, suffix);
63d06c5c
DC
14423 return retval;
14424 }
987504bb
JJ
14425 else
14426 {
14427 /* We have an obstack. */
f55ee35c 14428 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 14429 }
63d06c5c
DC
14430}
14431
c906108c
SS
14432/* Return sibling of die, NULL if no sibling. */
14433
f9aca02d 14434static struct die_info *
fba45db2 14435sibling_die (struct die_info *die)
c906108c 14436{
639d11d3 14437 return die->sibling;
c906108c
SS
14438}
14439
71c25dea
TT
14440/* Get name of a die, return NULL if not found. */
14441
14442static char *
14443dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
14444 struct obstack *obstack)
14445{
14446 if (name && cu->language == language_cplus)
14447 {
14448 char *canon_name = cp_canonicalize_string (name);
14449
14450 if (canon_name != NULL)
14451 {
14452 if (strcmp (canon_name, name) != 0)
14453 name = obsavestring (canon_name, strlen (canon_name),
14454 obstack);
14455 xfree (canon_name);
14456 }
14457 }
14458
14459 return name;
c906108c
SS
14460}
14461
9219021c
DC
14462/* Get name of a die, return NULL if not found. */
14463
14464static char *
e142c38c 14465dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
14466{
14467 struct attribute *attr;
14468
e142c38c 14469 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
14470 if ((!attr || !DW_STRING (attr))
14471 && die->tag != DW_TAG_class_type
14472 && die->tag != DW_TAG_interface_type
14473 && die->tag != DW_TAG_structure_type
14474 && die->tag != DW_TAG_union_type)
71c25dea
TT
14475 return NULL;
14476
14477 switch (die->tag)
14478 {
14479 case DW_TAG_compile_unit:
95554aad 14480 case DW_TAG_partial_unit:
71c25dea
TT
14481 /* Compilation units have a DW_AT_name that is a filename, not
14482 a source language identifier. */
14483 case DW_TAG_enumeration_type:
14484 case DW_TAG_enumerator:
14485 /* These tags always have simple identifiers already; no need
14486 to canonicalize them. */
14487 return DW_STRING (attr);
907af001 14488
418835cc
KS
14489 case DW_TAG_subprogram:
14490 /* Java constructors will all be named "<init>", so return
14491 the class name when we see this special case. */
14492 if (cu->language == language_java
14493 && DW_STRING (attr) != NULL
14494 && strcmp (DW_STRING (attr), "<init>") == 0)
14495 {
14496 struct dwarf2_cu *spec_cu = cu;
14497 struct die_info *spec_die;
14498
14499 /* GCJ will output '<init>' for Java constructor names.
14500 For this special case, return the name of the parent class. */
14501
14502 /* GCJ may output suprogram DIEs with AT_specification set.
14503 If so, use the name of the specified DIE. */
14504 spec_die = die_specification (die, &spec_cu);
14505 if (spec_die != NULL)
14506 return dwarf2_name (spec_die, spec_cu);
14507
14508 do
14509 {
14510 die = die->parent;
14511 if (die->tag == DW_TAG_class_type)
14512 return dwarf2_name (die, cu);
14513 }
95554aad
TT
14514 while (die->tag != DW_TAG_compile_unit
14515 && die->tag != DW_TAG_partial_unit);
418835cc 14516 }
907af001
UW
14517 break;
14518
14519 case DW_TAG_class_type:
14520 case DW_TAG_interface_type:
14521 case DW_TAG_structure_type:
14522 case DW_TAG_union_type:
14523 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
14524 structures or unions. These were of the form "._%d" in GCC 4.1,
14525 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
14526 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
14527 if (attr && DW_STRING (attr)
14528 && (strncmp (DW_STRING (attr), "._", 2) == 0
14529 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 14530 return NULL;
53832f31
TT
14531
14532 /* GCC might emit a nameless typedef that has a linkage name. See
14533 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14534 if (!attr || DW_STRING (attr) == NULL)
14535 {
df5c6c50 14536 char *demangled = NULL;
53832f31
TT
14537
14538 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
14539 if (attr == NULL)
14540 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
14541
14542 if (attr == NULL || DW_STRING (attr) == NULL)
14543 return NULL;
14544
df5c6c50
JK
14545 /* Avoid demangling DW_STRING (attr) the second time on a second
14546 call for the same DIE. */
14547 if (!DW_STRING_IS_CANONICAL (attr))
14548 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
14549
14550 if (demangled)
14551 {
96408a79
SA
14552 char *base;
14553
53832f31 14554 /* FIXME: we already did this for the partial symbol... */
96408a79
SA
14555 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
14556 &cu->objfile->objfile_obstack);
53832f31
TT
14557 DW_STRING_IS_CANONICAL (attr) = 1;
14558 xfree (demangled);
96408a79
SA
14559
14560 /* Strip any leading namespaces/classes, keep only the base name.
14561 DW_AT_name for named DIEs does not contain the prefixes. */
14562 base = strrchr (DW_STRING (attr), ':');
14563 if (base && base > DW_STRING (attr) && base[-1] == ':')
14564 return &base[1];
14565 else
14566 return DW_STRING (attr);
53832f31
TT
14567 }
14568 }
907af001
UW
14569 break;
14570
71c25dea 14571 default:
907af001
UW
14572 break;
14573 }
14574
14575 if (!DW_STRING_IS_CANONICAL (attr))
14576 {
14577 DW_STRING (attr)
14578 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
14579 &cu->objfile->objfile_obstack);
14580 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 14581 }
907af001 14582 return DW_STRING (attr);
9219021c
DC
14583}
14584
14585/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
14586 is none. *EXT_CU is the CU containing DIE on input, and the CU
14587 containing the return value on output. */
9219021c
DC
14588
14589static struct die_info *
f2f0e013 14590dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
14591{
14592 struct attribute *attr;
9219021c 14593
f2f0e013 14594 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
14595 if (attr == NULL)
14596 return NULL;
14597
f2f0e013 14598 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
14599}
14600
c906108c
SS
14601/* Convert a DIE tag into its string name. */
14602
f39c6ffd 14603static const char *
aa1ee363 14604dwarf_tag_name (unsigned tag)
c906108c 14605{
f39c6ffd
TT
14606 const char *name = get_DW_TAG_name (tag);
14607
14608 if (name == NULL)
14609 return "DW_TAG_<unknown>";
14610
14611 return name;
c906108c
SS
14612}
14613
14614/* Convert a DWARF attribute code into its string name. */
14615
f39c6ffd 14616static const char *
aa1ee363 14617dwarf_attr_name (unsigned attr)
c906108c 14618{
f39c6ffd
TT
14619 const char *name;
14620
c764a876 14621#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
14622 if (attr == DW_AT_MIPS_fde)
14623 return "DW_AT_MIPS_fde";
14624#else
14625 if (attr == DW_AT_HP_block_index)
14626 return "DW_AT_HP_block_index";
c764a876 14627#endif
f39c6ffd
TT
14628
14629 name = get_DW_AT_name (attr);
14630
14631 if (name == NULL)
14632 return "DW_AT_<unknown>";
14633
14634 return name;
c906108c
SS
14635}
14636
14637/* Convert a DWARF value form code into its string name. */
14638
f39c6ffd 14639static const char *
aa1ee363 14640dwarf_form_name (unsigned form)
c906108c 14641{
f39c6ffd
TT
14642 const char *name = get_DW_FORM_name (form);
14643
14644 if (name == NULL)
14645 return "DW_FORM_<unknown>";
14646
14647 return name;
c906108c
SS
14648}
14649
14650static char *
fba45db2 14651dwarf_bool_name (unsigned mybool)
c906108c
SS
14652{
14653 if (mybool)
14654 return "TRUE";
14655 else
14656 return "FALSE";
14657}
14658
14659/* Convert a DWARF type code into its string name. */
14660
f39c6ffd 14661static const char *
aa1ee363 14662dwarf_type_encoding_name (unsigned enc)
c906108c 14663{
f39c6ffd 14664 const char *name = get_DW_ATE_name (enc);
c906108c 14665
f39c6ffd
TT
14666 if (name == NULL)
14667 return "DW_ATE_<unknown>";
c906108c 14668
f39c6ffd 14669 return name;
c906108c 14670}
c906108c 14671
f9aca02d 14672static void
d97bc12b 14673dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
14674{
14675 unsigned int i;
14676
d97bc12b
DE
14677 print_spaces (indent, f);
14678 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 14679 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
14680
14681 if (die->parent != NULL)
14682 {
14683 print_spaces (indent, f);
14684 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 14685 die->parent->offset.sect_off);
d97bc12b
DE
14686 }
14687
14688 print_spaces (indent, f);
14689 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 14690 dwarf_bool_name (die->child != NULL));
c906108c 14691
d97bc12b
DE
14692 print_spaces (indent, f);
14693 fprintf_unfiltered (f, " attributes:\n");
14694
c906108c
SS
14695 for (i = 0; i < die->num_attrs; ++i)
14696 {
d97bc12b
DE
14697 print_spaces (indent, f);
14698 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
14699 dwarf_attr_name (die->attrs[i].name),
14700 dwarf_form_name (die->attrs[i].form));
d97bc12b 14701
c906108c
SS
14702 switch (die->attrs[i].form)
14703 {
c906108c 14704 case DW_FORM_addr:
3019eac3 14705 case DW_FORM_GNU_addr_index:
d97bc12b 14706 fprintf_unfiltered (f, "address: ");
5af949e3 14707 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
14708 break;
14709 case DW_FORM_block2:
14710 case DW_FORM_block4:
14711 case DW_FORM_block:
14712 case DW_FORM_block1:
3e43a32a
MS
14713 fprintf_unfiltered (f, "block: size %d",
14714 DW_BLOCK (&die->attrs[i])->size);
c906108c 14715 break;
2dc7f7b3
TT
14716 case DW_FORM_exprloc:
14717 fprintf_unfiltered (f, "expression: size %u",
14718 DW_BLOCK (&die->attrs[i])->size);
14719 break;
4568ecf9
DE
14720 case DW_FORM_ref_addr:
14721 fprintf_unfiltered (f, "ref address: ");
14722 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
14723 break;
10b3939b
DJ
14724 case DW_FORM_ref1:
14725 case DW_FORM_ref2:
14726 case DW_FORM_ref4:
4568ecf9
DE
14727 case DW_FORM_ref8:
14728 case DW_FORM_ref_udata:
d97bc12b 14729 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 14730 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 14731 break;
c906108c
SS
14732 case DW_FORM_data1:
14733 case DW_FORM_data2:
14734 case DW_FORM_data4:
ce5d95e1 14735 case DW_FORM_data8:
c906108c
SS
14736 case DW_FORM_udata:
14737 case DW_FORM_sdata:
43bbcdc2
PH
14738 fprintf_unfiltered (f, "constant: %s",
14739 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 14740 break;
2dc7f7b3
TT
14741 case DW_FORM_sec_offset:
14742 fprintf_unfiltered (f, "section offset: %s",
14743 pulongest (DW_UNSND (&die->attrs[i])));
14744 break;
55f1336d 14745 case DW_FORM_ref_sig8:
348e048f
DE
14746 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
14747 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
b64f50a1 14748 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
348e048f
DE
14749 else
14750 fprintf_unfiltered (f, "signatured type, offset: unknown");
14751 break;
c906108c 14752 case DW_FORM_string:
4bdf3d34 14753 case DW_FORM_strp:
3019eac3 14754 case DW_FORM_GNU_str_index:
8285870a 14755 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 14756 DW_STRING (&die->attrs[i])
8285870a
JK
14757 ? DW_STRING (&die->attrs[i]) : "",
14758 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
14759 break;
14760 case DW_FORM_flag:
14761 if (DW_UNSND (&die->attrs[i]))
d97bc12b 14762 fprintf_unfiltered (f, "flag: TRUE");
c906108c 14763 else
d97bc12b 14764 fprintf_unfiltered (f, "flag: FALSE");
c906108c 14765 break;
2dc7f7b3
TT
14766 case DW_FORM_flag_present:
14767 fprintf_unfiltered (f, "flag: TRUE");
14768 break;
a8329558 14769 case DW_FORM_indirect:
0963b4bd
MS
14770 /* The reader will have reduced the indirect form to
14771 the "base form" so this form should not occur. */
3e43a32a
MS
14772 fprintf_unfiltered (f,
14773 "unexpected attribute form: DW_FORM_indirect");
a8329558 14774 break;
c906108c 14775 default:
d97bc12b 14776 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 14777 die->attrs[i].form);
d97bc12b 14778 break;
c906108c 14779 }
d97bc12b 14780 fprintf_unfiltered (f, "\n");
c906108c
SS
14781 }
14782}
14783
f9aca02d 14784static void
d97bc12b 14785dump_die_for_error (struct die_info *die)
c906108c 14786{
d97bc12b
DE
14787 dump_die_shallow (gdb_stderr, 0, die);
14788}
14789
14790static void
14791dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14792{
14793 int indent = level * 4;
14794
14795 gdb_assert (die != NULL);
14796
14797 if (level >= max_level)
14798 return;
14799
14800 dump_die_shallow (f, indent, die);
14801
14802 if (die->child != NULL)
c906108c 14803 {
d97bc12b
DE
14804 print_spaces (indent, f);
14805 fprintf_unfiltered (f, " Children:");
14806 if (level + 1 < max_level)
14807 {
14808 fprintf_unfiltered (f, "\n");
14809 dump_die_1 (f, level + 1, max_level, die->child);
14810 }
14811 else
14812 {
3e43a32a
MS
14813 fprintf_unfiltered (f,
14814 " [not printed, max nesting level reached]\n");
d97bc12b
DE
14815 }
14816 }
14817
14818 if (die->sibling != NULL && level > 0)
14819 {
14820 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
14821 }
14822}
14823
d97bc12b
DE
14824/* This is called from the pdie macro in gdbinit.in.
14825 It's not static so gcc will keep a copy callable from gdb. */
14826
14827void
14828dump_die (struct die_info *die, int max_level)
14829{
14830 dump_die_1 (gdb_stdlog, 0, max_level, die);
14831}
14832
f9aca02d 14833static void
51545339 14834store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14835{
51545339 14836 void **slot;
c906108c 14837
b64f50a1
JK
14838 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
14839 INSERT);
51545339
DJ
14840
14841 *slot = die;
c906108c
SS
14842}
14843
b64f50a1
JK
14844/* DW_ADDR is always stored already as sect_offset; despite for the forms
14845 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
14846
93311388
DE
14847static int
14848is_ref_attr (struct attribute *attr)
c906108c 14849{
c906108c
SS
14850 switch (attr->form)
14851 {
14852 case DW_FORM_ref_addr:
c906108c
SS
14853 case DW_FORM_ref1:
14854 case DW_FORM_ref2:
14855 case DW_FORM_ref4:
613e1657 14856 case DW_FORM_ref8:
c906108c 14857 case DW_FORM_ref_udata:
93311388 14858 return 1;
c906108c 14859 default:
93311388 14860 return 0;
c906108c 14861 }
93311388
DE
14862}
14863
b64f50a1
JK
14864/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
14865 required kind. */
14866
14867static sect_offset
93311388
DE
14868dwarf2_get_ref_die_offset (struct attribute *attr)
14869{
4568ecf9 14870 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 14871
93311388 14872 if (is_ref_attr (attr))
b64f50a1 14873 return retval;
93311388 14874
b64f50a1 14875 retval.sect_off = 0;
93311388
DE
14876 complaint (&symfile_complaints,
14877 _("unsupported die ref attribute form: '%s'"),
14878 dwarf_form_name (attr->form));
b64f50a1 14879 return retval;
c906108c
SS
14880}
14881
43bbcdc2
PH
14882/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14883 * the value held by the attribute is not constant. */
a02abb62 14884
43bbcdc2 14885static LONGEST
a02abb62
JB
14886dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14887{
14888 if (attr->form == DW_FORM_sdata)
14889 return DW_SND (attr);
14890 else if (attr->form == DW_FORM_udata
14891 || attr->form == DW_FORM_data1
14892 || attr->form == DW_FORM_data2
14893 || attr->form == DW_FORM_data4
14894 || attr->form == DW_FORM_data8)
14895 return DW_UNSND (attr);
14896 else
14897 {
3e43a32a
MS
14898 complaint (&symfile_complaints,
14899 _("Attribute value is not a constant (%s)"),
a02abb62
JB
14900 dwarf_form_name (attr->form));
14901 return default_value;
14902 }
14903}
14904
03dd20cc 14905/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
14906 unit and add it to our queue.
14907 The result is non-zero if PER_CU was queued, otherwise the result is zero
14908 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 14909
348e048f 14910static int
03dd20cc 14911maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
95554aad
TT
14912 struct dwarf2_per_cu_data *per_cu,
14913 enum language pretend_language)
03dd20cc 14914{
98bfdba5
PA
14915 /* We may arrive here during partial symbol reading, if we need full
14916 DIEs to process an unusual case (e.g. template arguments). Do
14917 not queue PER_CU, just tell our caller to load its DIEs. */
14918 if (dwarf2_per_objfile->reading_partial_symbols)
14919 {
14920 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14921 return 1;
14922 return 0;
14923 }
14924
03dd20cc
DJ
14925 /* Mark the dependence relation so that we don't flush PER_CU
14926 too early. */
14927 dwarf2_add_dependence (this_cu, per_cu);
14928
14929 /* If it's already on the queue, we have nothing to do. */
14930 if (per_cu->queued)
348e048f 14931 return 0;
03dd20cc
DJ
14932
14933 /* If the compilation unit is already loaded, just mark it as
14934 used. */
14935 if (per_cu->cu != NULL)
14936 {
14937 per_cu->cu->last_used = 0;
348e048f 14938 return 0;
03dd20cc
DJ
14939 }
14940
14941 /* Add it to the queue. */
95554aad 14942 queue_comp_unit (per_cu, pretend_language);
348e048f
DE
14943
14944 return 1;
14945}
14946
14947/* Follow reference or signature attribute ATTR of SRC_DIE.
14948 On entry *REF_CU is the CU of SRC_DIE.
14949 On exit *REF_CU is the CU of the result. */
14950
14951static struct die_info *
14952follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14953 struct dwarf2_cu **ref_cu)
14954{
14955 struct die_info *die;
14956
14957 if (is_ref_attr (attr))
14958 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 14959 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
14960 die = follow_die_sig (src_die, attr, ref_cu);
14961 else
14962 {
14963 dump_die_for_error (src_die);
14964 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14965 (*ref_cu)->objfile->name);
14966 }
14967
14968 return die;
03dd20cc
DJ
14969}
14970
5c631832 14971/* Follow reference OFFSET.
673bfd45
DE
14972 On entry *REF_CU is the CU of the source die referencing OFFSET.
14973 On exit *REF_CU is the CU of the result.
14974 Returns NULL if OFFSET is invalid. */
f504f079 14975
f9aca02d 14976static struct die_info *
b64f50a1 14977follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu)
c906108c 14978{
10b3939b 14979 struct die_info temp_die;
f2f0e013 14980 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 14981
348e048f
DE
14982 gdb_assert (cu->per_cu != NULL);
14983
98bfdba5
PA
14984 target_cu = cu;
14985
3019eac3 14986 if (cu->per_cu->is_debug_types)
348e048f
DE
14987 {
14988 /* .debug_types CUs cannot reference anything outside their CU.
14989 If they need to, they have to reference a signatured type via
55f1336d 14990 DW_FORM_ref_sig8. */
348e048f 14991 if (! offset_in_cu_p (&cu->header, offset))
5c631832 14992 return NULL;
348e048f
DE
14993 }
14994 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
14995 {
14996 struct dwarf2_per_cu_data *per_cu;
9a619af0 14997
45452591 14998 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
14999
15000 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
15001 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
15002 load_full_comp_unit (per_cu, cu->language);
03dd20cc 15003
10b3939b
DJ
15004 target_cu = per_cu->cu;
15005 }
98bfdba5
PA
15006 else if (cu->dies == NULL)
15007 {
15008 /* We're loading full DIEs during partial symbol reading. */
15009 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 15010 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 15011 }
c906108c 15012
f2f0e013 15013 *ref_cu = target_cu;
51545339 15014 temp_die.offset = offset;
b64f50a1 15015 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 15016}
10b3939b 15017
5c631832
JK
15018/* Follow reference attribute ATTR of SRC_DIE.
15019 On entry *REF_CU is the CU of SRC_DIE.
15020 On exit *REF_CU is the CU of the result. */
15021
15022static struct die_info *
15023follow_die_ref (struct die_info *src_die, struct attribute *attr,
15024 struct dwarf2_cu **ref_cu)
15025{
b64f50a1 15026 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
15027 struct dwarf2_cu *cu = *ref_cu;
15028 struct die_info *die;
15029
15030 die = follow_die_offset (offset, ref_cu);
15031 if (!die)
15032 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
15033 "at 0x%x [in module %s]"),
b64f50a1 15034 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 15035
5c631832
JK
15036 return die;
15037}
15038
d83e736b
JK
15039/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
15040 Returned value is intended for DW_OP_call*. Returned
15041 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
15042
15043struct dwarf2_locexpr_baton
b64f50a1 15044dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
8cf6f0b1
TT
15045 struct dwarf2_per_cu_data *per_cu,
15046 CORE_ADDR (*get_frame_pc) (void *baton),
15047 void *baton)
5c631832 15048{
b64f50a1 15049 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
918dd910 15050 struct dwarf2_cu *cu;
5c631832
JK
15051 struct die_info *die;
15052 struct attribute *attr;
15053 struct dwarf2_locexpr_baton retval;
15054
8cf6f0b1
TT
15055 dw2_setup (per_cu->objfile);
15056
918dd910
JK
15057 if (per_cu->cu == NULL)
15058 load_cu (per_cu);
15059 cu = per_cu->cu;
15060
5c631832
JK
15061 die = follow_die_offset (offset, &cu);
15062 if (!die)
15063 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 15064 offset.sect_off, per_cu->objfile->name);
5c631832
JK
15065
15066 attr = dwarf2_attr (die, DW_AT_location, cu);
15067 if (!attr)
15068 {
e103e986
JK
15069 /* DWARF: "If there is no such attribute, then there is no effect.".
15070 DATA is ignored if SIZE is 0. */
5c631832 15071
e103e986 15072 retval.data = NULL;
5c631832
JK
15073 retval.size = 0;
15074 }
8cf6f0b1
TT
15075 else if (attr_form_is_section_offset (attr))
15076 {
15077 struct dwarf2_loclist_baton loclist_baton;
15078 CORE_ADDR pc = (*get_frame_pc) (baton);
15079 size_t size;
15080
15081 fill_in_loclist_baton (cu, &loclist_baton, attr);
15082
15083 retval.data = dwarf2_find_location_expression (&loclist_baton,
15084 &size, pc);
15085 retval.size = size;
15086 }
5c631832
JK
15087 else
15088 {
15089 if (!attr_form_is_block (attr))
15090 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
15091 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 15092 offset.sect_off, per_cu->objfile->name);
5c631832
JK
15093
15094 retval.data = DW_BLOCK (attr)->data;
15095 retval.size = DW_BLOCK (attr)->size;
15096 }
15097 retval.per_cu = cu->per_cu;
918dd910 15098
918dd910
JK
15099 age_cached_comp_units ();
15100
5c631832 15101 return retval;
348e048f
DE
15102}
15103
8a9b8146
TT
15104/* Return the type of the DIE at DIE_OFFSET in the CU named by
15105 PER_CU. */
15106
15107struct type *
b64f50a1 15108dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
15109 struct dwarf2_per_cu_data *per_cu)
15110{
b64f50a1
JK
15111 sect_offset die_offset_sect;
15112
8a9b8146 15113 dw2_setup (per_cu->objfile);
b64f50a1
JK
15114
15115 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
15116 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
15117}
15118
348e048f
DE
15119/* Follow the signature attribute ATTR in SRC_DIE.
15120 On entry *REF_CU is the CU of SRC_DIE.
15121 On exit *REF_CU is the CU of the result. */
15122
15123static struct die_info *
15124follow_die_sig (struct die_info *src_die, struct attribute *attr,
15125 struct dwarf2_cu **ref_cu)
15126{
15127 struct objfile *objfile = (*ref_cu)->objfile;
15128 struct die_info temp_die;
15129 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
15130 struct dwarf2_cu *sig_cu;
15131 struct die_info *die;
15132
15133 /* sig_type will be NULL if the signatured type is missing from
15134 the debug info. */
15135 if (sig_type == NULL)
15136 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
15137 "at 0x%x [in module %s]"),
b64f50a1 15138 src_die->offset.sect_off, objfile->name);
348e048f
DE
15139
15140 /* If necessary, add it to the queue and load its DIEs. */
15141
95554aad 15142 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 15143 read_signatured_type (sig_type);
348e048f
DE
15144
15145 gdb_assert (sig_type->per_cu.cu != NULL);
15146
15147 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
15148 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
15149 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
15150 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
15151 temp_die.offset.sect_off);
348e048f
DE
15152 if (die)
15153 {
15154 *ref_cu = sig_cu;
15155 return die;
15156 }
15157
3e43a32a
MS
15158 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
15159 "from DIE at 0x%x [in module %s]"),
b64f50a1 15160 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
348e048f
DE
15161}
15162
15163/* Given an offset of a signatured type, return its signatured_type. */
15164
15165static struct signatured_type *
8b70b953
TT
15166lookup_signatured_type_at_offset (struct objfile *objfile,
15167 struct dwarf2_section_info *section,
b64f50a1 15168 sect_offset offset)
348e048f 15169{
b64f50a1 15170 gdb_byte *info_ptr = section->buffer + offset.sect_off;
348e048f
DE
15171 unsigned int length, initial_length_size;
15172 unsigned int sig_offset;
52dc124a 15173 struct signatured_type find_entry, *sig_type;
348e048f
DE
15174
15175 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
15176 sig_offset = (initial_length_size
15177 + 2 /*version*/
15178 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
15179 + 1 /*address_size*/);
15180 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
52dc124a 15181 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
348e048f
DE
15182
15183 /* This is only used to lookup previously recorded types.
15184 If we didn't find it, it's our bug. */
52dc124a
DE
15185 gdb_assert (sig_type != NULL);
15186 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
348e048f 15187
52dc124a 15188 return sig_type;
348e048f
DE
15189}
15190
e5fe5e75 15191/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
15192
15193static void
e5fe5e75 15194load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 15195{
e5fe5e75 15196 struct objfile *objfile = per_cu->objfile;
3019eac3 15197 struct dwarf2_section_info *sect = per_cu->info_or_types_section;
b64f50a1 15198 sect_offset offset = per_cu->offset;
52dc124a 15199 struct signatured_type *sig_type;
348e048f 15200
8b70b953 15201 dwarf2_read_section (objfile, sect);
be391dca 15202
348e048f 15203 /* We have the section offset, but we need the signature to do the
e5fe5e75
DE
15204 hash table lookup. */
15205 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
15206 the signature to assert we found the right one.
15207 Ok, but it's a lot of work. We should simplify things so any needed
15208 assert doesn't require all this clumsiness. */
52dc124a 15209 sig_type = lookup_signatured_type_at_offset (objfile, sect, offset);
348e048f 15210
dee91e82 15211 gdb_assert (&sig_type->per_cu == per_cu);
52dc124a 15212 gdb_assert (sig_type->per_cu.cu == NULL);
348e048f 15213
52dc124a 15214 read_signatured_type (sig_type);
348e048f 15215
52dc124a 15216 gdb_assert (sig_type->per_cu.cu != NULL);
348e048f
DE
15217}
15218
dee91e82
DE
15219/* die_reader_func for read_signatured_type.
15220 This is identical to load_full_comp_unit_reader,
15221 but is kept separate for now. */
348e048f
DE
15222
15223static void
dee91e82
DE
15224read_signatured_type_reader (const struct die_reader_specs *reader,
15225 gdb_byte *info_ptr,
15226 struct die_info *comp_unit_die,
15227 int has_children,
15228 void *data)
348e048f 15229{
dee91e82 15230 struct dwarf2_cu *cu = reader->cu;
348e048f 15231
dee91e82
DE
15232 gdb_assert (cu->die_hash == NULL);
15233 cu->die_hash =
15234 htab_create_alloc_ex (cu->header.length / 12,
15235 die_hash,
15236 die_eq,
15237 NULL,
15238 &cu->comp_unit_obstack,
15239 hashtab_obstack_allocate,
15240 dummy_obstack_deallocate);
348e048f 15241
dee91e82
DE
15242 if (has_children)
15243 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
15244 &info_ptr, comp_unit_die);
15245 cu->dies = comp_unit_die;
15246 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
15247
15248 /* We try not to read any attributes in this function, because not
9cdd5dbd 15249 all CUs needed for references have been loaded yet, and symbol
348e048f 15250 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
15251 or we won't be able to build types correctly.
15252 Similarly, if we do not read the producer, we can not apply
15253 producer-specific interpretation. */
95554aad 15254 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 15255}
348e048f 15256
3019eac3
DE
15257/* Read in a signatured type and build its CU and DIEs.
15258 If the type is a stub for the real type in a DWO file,
15259 read in the real type from the DWO file as well. */
dee91e82
DE
15260
15261static void
15262read_signatured_type (struct signatured_type *sig_type)
15263{
15264 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 15265
3019eac3 15266 gdb_assert (per_cu->is_debug_types);
dee91e82 15267 gdb_assert (per_cu->cu == NULL);
348e048f 15268
fd820528 15269 init_cutu_and_read_dies (per_cu, 0, 1, read_signatured_type_reader, NULL);
c906108c
SS
15270}
15271
c906108c
SS
15272/* Decode simple location descriptions.
15273 Given a pointer to a dwarf block that defines a location, compute
15274 the location and return the value.
15275
4cecd739
DJ
15276 NOTE drow/2003-11-18: This function is called in two situations
15277 now: for the address of static or global variables (partial symbols
15278 only) and for offsets into structures which are expected to be
15279 (more or less) constant. The partial symbol case should go away,
15280 and only the constant case should remain. That will let this
15281 function complain more accurately. A few special modes are allowed
15282 without complaint for global variables (for instance, global
15283 register values and thread-local values).
c906108c
SS
15284
15285 A location description containing no operations indicates that the
4cecd739 15286 object is optimized out. The return value is 0 for that case.
6b992462
DJ
15287 FIXME drow/2003-11-16: No callers check for this case any more; soon all
15288 callers will only want a very basic result and this can become a
21ae7a4d
JK
15289 complaint.
15290
15291 Note that stack[0] is unused except as a default error return. */
c906108c
SS
15292
15293static CORE_ADDR
e7c27a73 15294decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 15295{
e7c27a73 15296 struct objfile *objfile = cu->objfile;
21ae7a4d
JK
15297 int i;
15298 int size = blk->size;
15299 gdb_byte *data = blk->data;
15300 CORE_ADDR stack[64];
15301 int stacki;
15302 unsigned int bytes_read, unsnd;
15303 gdb_byte op;
c906108c 15304
21ae7a4d
JK
15305 i = 0;
15306 stacki = 0;
15307 stack[stacki] = 0;
15308 stack[++stacki] = 0;
15309
15310 while (i < size)
15311 {
15312 op = data[i++];
15313 switch (op)
15314 {
15315 case DW_OP_lit0:
15316 case DW_OP_lit1:
15317 case DW_OP_lit2:
15318 case DW_OP_lit3:
15319 case DW_OP_lit4:
15320 case DW_OP_lit5:
15321 case DW_OP_lit6:
15322 case DW_OP_lit7:
15323 case DW_OP_lit8:
15324 case DW_OP_lit9:
15325 case DW_OP_lit10:
15326 case DW_OP_lit11:
15327 case DW_OP_lit12:
15328 case DW_OP_lit13:
15329 case DW_OP_lit14:
15330 case DW_OP_lit15:
15331 case DW_OP_lit16:
15332 case DW_OP_lit17:
15333 case DW_OP_lit18:
15334 case DW_OP_lit19:
15335 case DW_OP_lit20:
15336 case DW_OP_lit21:
15337 case DW_OP_lit22:
15338 case DW_OP_lit23:
15339 case DW_OP_lit24:
15340 case DW_OP_lit25:
15341 case DW_OP_lit26:
15342 case DW_OP_lit27:
15343 case DW_OP_lit28:
15344 case DW_OP_lit29:
15345 case DW_OP_lit30:
15346 case DW_OP_lit31:
15347 stack[++stacki] = op - DW_OP_lit0;
15348 break;
f1bea926 15349
21ae7a4d
JK
15350 case DW_OP_reg0:
15351 case DW_OP_reg1:
15352 case DW_OP_reg2:
15353 case DW_OP_reg3:
15354 case DW_OP_reg4:
15355 case DW_OP_reg5:
15356 case DW_OP_reg6:
15357 case DW_OP_reg7:
15358 case DW_OP_reg8:
15359 case DW_OP_reg9:
15360 case DW_OP_reg10:
15361 case DW_OP_reg11:
15362 case DW_OP_reg12:
15363 case DW_OP_reg13:
15364 case DW_OP_reg14:
15365 case DW_OP_reg15:
15366 case DW_OP_reg16:
15367 case DW_OP_reg17:
15368 case DW_OP_reg18:
15369 case DW_OP_reg19:
15370 case DW_OP_reg20:
15371 case DW_OP_reg21:
15372 case DW_OP_reg22:
15373 case DW_OP_reg23:
15374 case DW_OP_reg24:
15375 case DW_OP_reg25:
15376 case DW_OP_reg26:
15377 case DW_OP_reg27:
15378 case DW_OP_reg28:
15379 case DW_OP_reg29:
15380 case DW_OP_reg30:
15381 case DW_OP_reg31:
15382 stack[++stacki] = op - DW_OP_reg0;
15383 if (i < size)
15384 dwarf2_complex_location_expr_complaint ();
15385 break;
c906108c 15386
21ae7a4d
JK
15387 case DW_OP_regx:
15388 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
15389 i += bytes_read;
15390 stack[++stacki] = unsnd;
15391 if (i < size)
15392 dwarf2_complex_location_expr_complaint ();
15393 break;
c906108c 15394
21ae7a4d
JK
15395 case DW_OP_addr:
15396 stack[++stacki] = read_address (objfile->obfd, &data[i],
15397 cu, &bytes_read);
15398 i += bytes_read;
15399 break;
d53d4ac5 15400
21ae7a4d
JK
15401 case DW_OP_const1u:
15402 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
15403 i += 1;
15404 break;
15405
15406 case DW_OP_const1s:
15407 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
15408 i += 1;
15409 break;
15410
15411 case DW_OP_const2u:
15412 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
15413 i += 2;
15414 break;
15415
15416 case DW_OP_const2s:
15417 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
15418 i += 2;
15419 break;
d53d4ac5 15420
21ae7a4d
JK
15421 case DW_OP_const4u:
15422 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
15423 i += 4;
15424 break;
15425
15426 case DW_OP_const4s:
15427 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
15428 i += 4;
15429 break;
15430
585861ea
JK
15431 case DW_OP_const8u:
15432 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
15433 i += 8;
15434 break;
15435
21ae7a4d
JK
15436 case DW_OP_constu:
15437 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
15438 &bytes_read);
15439 i += bytes_read;
15440 break;
15441
15442 case DW_OP_consts:
15443 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
15444 i += bytes_read;
15445 break;
15446
15447 case DW_OP_dup:
15448 stack[stacki + 1] = stack[stacki];
15449 stacki++;
15450 break;
15451
15452 case DW_OP_plus:
15453 stack[stacki - 1] += stack[stacki];
15454 stacki--;
15455 break;
15456
15457 case DW_OP_plus_uconst:
15458 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
15459 &bytes_read);
15460 i += bytes_read;
15461 break;
15462
15463 case DW_OP_minus:
15464 stack[stacki - 1] -= stack[stacki];
15465 stacki--;
15466 break;
15467
15468 case DW_OP_deref:
15469 /* If we're not the last op, then we definitely can't encode
15470 this using GDB's address_class enum. This is valid for partial
15471 global symbols, although the variable's address will be bogus
15472 in the psymtab. */
15473 if (i < size)
15474 dwarf2_complex_location_expr_complaint ();
15475 break;
15476
15477 case DW_OP_GNU_push_tls_address:
15478 /* The top of the stack has the offset from the beginning
15479 of the thread control block at which the variable is located. */
15480 /* Nothing should follow this operator, so the top of stack would
15481 be returned. */
15482 /* This is valid for partial global symbols, but the variable's
585861ea
JK
15483 address will be bogus in the psymtab. Make it always at least
15484 non-zero to not look as a variable garbage collected by linker
15485 which have DW_OP_addr 0. */
21ae7a4d
JK
15486 if (i < size)
15487 dwarf2_complex_location_expr_complaint ();
585861ea 15488 stack[stacki]++;
21ae7a4d
JK
15489 break;
15490
15491 case DW_OP_GNU_uninit:
15492 break;
15493
3019eac3
DE
15494 case DW_OP_GNU_addr_index:
15495 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
15496 &bytes_read);
15497 i += bytes_read;
15498 break;
15499
21ae7a4d
JK
15500 default:
15501 {
f39c6ffd 15502 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
15503
15504 if (name)
15505 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
15506 name);
15507 else
15508 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
15509 op);
15510 }
15511
15512 return (stack[stacki]);
d53d4ac5 15513 }
3c6e0cb3 15514
21ae7a4d
JK
15515 /* Enforce maximum stack depth of SIZE-1 to avoid writing
15516 outside of the allocated space. Also enforce minimum>0. */
15517 if (stacki >= ARRAY_SIZE (stack) - 1)
15518 {
15519 complaint (&symfile_complaints,
15520 _("location description stack overflow"));
15521 return 0;
15522 }
15523
15524 if (stacki <= 0)
15525 {
15526 complaint (&symfile_complaints,
15527 _("location description stack underflow"));
15528 return 0;
15529 }
15530 }
15531 return (stack[stacki]);
c906108c
SS
15532}
15533
15534/* memory allocation interface */
15535
c906108c 15536static struct dwarf_block *
7b5a2f43 15537dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
15538{
15539 struct dwarf_block *blk;
15540
15541 blk = (struct dwarf_block *)
7b5a2f43 15542 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
15543 return (blk);
15544}
15545
15546static struct abbrev_info *
f3dd6933 15547dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
15548{
15549 struct abbrev_info *abbrev;
15550
f3dd6933
DJ
15551 abbrev = (struct abbrev_info *)
15552 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
15553 memset (abbrev, 0, sizeof (struct abbrev_info));
15554 return (abbrev);
15555}
15556
15557static struct die_info *
b60c80d6 15558dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
15559{
15560 struct die_info *die;
b60c80d6
DJ
15561 size_t size = sizeof (struct die_info);
15562
15563 if (num_attrs > 1)
15564 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 15565
b60c80d6 15566 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
15567 memset (die, 0, sizeof (struct die_info));
15568 return (die);
15569}
2e276125
JB
15570
15571\f
15572/* Macro support. */
15573
2e276125
JB
15574/* Return the full name of file number I in *LH's file name table.
15575 Use COMP_DIR as the name of the current directory of the
15576 compilation. The result is allocated using xmalloc; the caller is
15577 responsible for freeing it. */
15578static char *
15579file_full_name (int file, struct line_header *lh, const char *comp_dir)
15580{
6a83a1e6
EZ
15581 /* Is the file number a valid index into the line header's file name
15582 table? Remember that file numbers start with one, not zero. */
15583 if (1 <= file && file <= lh->num_file_names)
15584 {
15585 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 15586
6a83a1e6
EZ
15587 if (IS_ABSOLUTE_PATH (fe->name))
15588 return xstrdup (fe->name);
15589 else
15590 {
15591 const char *dir;
15592 int dir_len;
15593 char *full_name;
15594
15595 if (fe->dir_index)
15596 dir = lh->include_dirs[fe->dir_index - 1];
15597 else
15598 dir = comp_dir;
15599
15600 if (dir)
15601 {
15602 dir_len = strlen (dir);
15603 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
15604 strcpy (full_name, dir);
15605 full_name[dir_len] = '/';
15606 strcpy (full_name + dir_len + 1, fe->name);
15607 return full_name;
15608 }
15609 else
15610 return xstrdup (fe->name);
15611 }
15612 }
2e276125
JB
15613 else
15614 {
6a83a1e6
EZ
15615 /* The compiler produced a bogus file number. We can at least
15616 record the macro definitions made in the file, even if we
15617 won't be able to find the file by name. */
15618 char fake_name[80];
9a619af0 15619
6a83a1e6 15620 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 15621
6e70227d 15622 complaint (&symfile_complaints,
6a83a1e6
EZ
15623 _("bad file number in macro information (%d)"),
15624 file);
2e276125 15625
6a83a1e6 15626 return xstrdup (fake_name);
2e276125
JB
15627 }
15628}
15629
15630
15631static struct macro_source_file *
15632macro_start_file (int file, int line,
15633 struct macro_source_file *current_file,
15634 const char *comp_dir,
15635 struct line_header *lh, struct objfile *objfile)
15636{
15637 /* The full name of this source file. */
15638 char *full_name = file_full_name (file, lh, comp_dir);
15639
15640 /* We don't create a macro table for this compilation unit
15641 at all until we actually get a filename. */
15642 if (! pending_macros)
4a146b47 15643 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 15644 objfile->macro_cache);
2e276125
JB
15645
15646 if (! current_file)
abc9d0dc
TT
15647 {
15648 /* If we have no current file, then this must be the start_file
15649 directive for the compilation unit's main source file. */
15650 current_file = macro_set_main (pending_macros, full_name);
15651 macro_define_special (pending_macros);
15652 }
2e276125
JB
15653 else
15654 current_file = macro_include (current_file, line, full_name);
15655
15656 xfree (full_name);
6e70227d 15657
2e276125
JB
15658 return current_file;
15659}
15660
15661
15662/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
15663 followed by a null byte. */
15664static char *
15665copy_string (const char *buf, int len)
15666{
15667 char *s = xmalloc (len + 1);
9a619af0 15668
2e276125
JB
15669 memcpy (s, buf, len);
15670 s[len] = '\0';
2e276125
JB
15671 return s;
15672}
15673
15674
15675static const char *
15676consume_improper_spaces (const char *p, const char *body)
15677{
15678 if (*p == ' ')
15679 {
4d3c2250 15680 complaint (&symfile_complaints,
3e43a32a
MS
15681 _("macro definition contains spaces "
15682 "in formal argument list:\n`%s'"),
4d3c2250 15683 body);
2e276125
JB
15684
15685 while (*p == ' ')
15686 p++;
15687 }
15688
15689 return p;
15690}
15691
15692
15693static void
15694parse_macro_definition (struct macro_source_file *file, int line,
15695 const char *body)
15696{
15697 const char *p;
15698
15699 /* The body string takes one of two forms. For object-like macro
15700 definitions, it should be:
15701
15702 <macro name> " " <definition>
15703
15704 For function-like macro definitions, it should be:
15705
15706 <macro name> "() " <definition>
15707 or
15708 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
15709
15710 Spaces may appear only where explicitly indicated, and in the
15711 <definition>.
15712
15713 The Dwarf 2 spec says that an object-like macro's name is always
15714 followed by a space, but versions of GCC around March 2002 omit
6e70227d 15715 the space when the macro's definition is the empty string.
2e276125
JB
15716
15717 The Dwarf 2 spec says that there should be no spaces between the
15718 formal arguments in a function-like macro's formal argument list,
15719 but versions of GCC around March 2002 include spaces after the
15720 commas. */
15721
15722
15723 /* Find the extent of the macro name. The macro name is terminated
15724 by either a space or null character (for an object-like macro) or
15725 an opening paren (for a function-like macro). */
15726 for (p = body; *p; p++)
15727 if (*p == ' ' || *p == '(')
15728 break;
15729
15730 if (*p == ' ' || *p == '\0')
15731 {
15732 /* It's an object-like macro. */
15733 int name_len = p - body;
15734 char *name = copy_string (body, name_len);
15735 const char *replacement;
15736
15737 if (*p == ' ')
15738 replacement = body + name_len + 1;
15739 else
15740 {
4d3c2250 15741 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
15742 replacement = body + name_len;
15743 }
6e70227d 15744
2e276125
JB
15745 macro_define_object (file, line, name, replacement);
15746
15747 xfree (name);
15748 }
15749 else if (*p == '(')
15750 {
15751 /* It's a function-like macro. */
15752 char *name = copy_string (body, p - body);
15753 int argc = 0;
15754 int argv_size = 1;
15755 char **argv = xmalloc (argv_size * sizeof (*argv));
15756
15757 p++;
15758
15759 p = consume_improper_spaces (p, body);
15760
15761 /* Parse the formal argument list. */
15762 while (*p && *p != ')')
15763 {
15764 /* Find the extent of the current argument name. */
15765 const char *arg_start = p;
15766
15767 while (*p && *p != ',' && *p != ')' && *p != ' ')
15768 p++;
15769
15770 if (! *p || p == arg_start)
4d3c2250 15771 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
15772 else
15773 {
15774 /* Make sure argv has room for the new argument. */
15775 if (argc >= argv_size)
15776 {
15777 argv_size *= 2;
15778 argv = xrealloc (argv, argv_size * sizeof (*argv));
15779 }
15780
15781 argv[argc++] = copy_string (arg_start, p - arg_start);
15782 }
15783
15784 p = consume_improper_spaces (p, body);
15785
15786 /* Consume the comma, if present. */
15787 if (*p == ',')
15788 {
15789 p++;
15790
15791 p = consume_improper_spaces (p, body);
15792 }
15793 }
15794
15795 if (*p == ')')
15796 {
15797 p++;
15798
15799 if (*p == ' ')
15800 /* Perfectly formed definition, no complaints. */
15801 macro_define_function (file, line, name,
6e70227d 15802 argc, (const char **) argv,
2e276125
JB
15803 p + 1);
15804 else if (*p == '\0')
15805 {
15806 /* Complain, but do define it. */
4d3c2250 15807 dwarf2_macro_malformed_definition_complaint (body);
2e276125 15808 macro_define_function (file, line, name,
6e70227d 15809 argc, (const char **) argv,
2e276125
JB
15810 p);
15811 }
15812 else
15813 /* Just complain. */
4d3c2250 15814 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
15815 }
15816 else
15817 /* Just complain. */
4d3c2250 15818 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
15819
15820 xfree (name);
15821 {
15822 int i;
15823
15824 for (i = 0; i < argc; i++)
15825 xfree (argv[i]);
15826 }
15827 xfree (argv);
15828 }
15829 else
4d3c2250 15830 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
15831}
15832
cf2c3c16
TT
15833/* Skip some bytes from BYTES according to the form given in FORM.
15834 Returns the new pointer. */
2e276125 15835
cf2c3c16 15836static gdb_byte *
f664829e 15837skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
cf2c3c16
TT
15838 enum dwarf_form form,
15839 unsigned int offset_size,
15840 struct dwarf2_section_info *section)
2e276125 15841{
cf2c3c16 15842 unsigned int bytes_read;
2e276125 15843
cf2c3c16 15844 switch (form)
2e276125 15845 {
cf2c3c16
TT
15846 case DW_FORM_data1:
15847 case DW_FORM_flag:
15848 ++bytes;
15849 break;
15850
15851 case DW_FORM_data2:
15852 bytes += 2;
15853 break;
15854
15855 case DW_FORM_data4:
15856 bytes += 4;
15857 break;
15858
15859 case DW_FORM_data8:
15860 bytes += 8;
15861 break;
15862
15863 case DW_FORM_string:
15864 read_direct_string (abfd, bytes, &bytes_read);
15865 bytes += bytes_read;
15866 break;
15867
15868 case DW_FORM_sec_offset:
15869 case DW_FORM_strp:
15870 bytes += offset_size;
15871 break;
15872
15873 case DW_FORM_block:
15874 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15875 bytes += bytes_read;
15876 break;
15877
15878 case DW_FORM_block1:
15879 bytes += 1 + read_1_byte (abfd, bytes);
15880 break;
15881 case DW_FORM_block2:
15882 bytes += 2 + read_2_bytes (abfd, bytes);
15883 break;
15884 case DW_FORM_block4:
15885 bytes += 4 + read_4_bytes (abfd, bytes);
15886 break;
15887
15888 case DW_FORM_sdata:
15889 case DW_FORM_udata:
3019eac3
DE
15890 case DW_FORM_GNU_addr_index:
15891 case DW_FORM_GNU_str_index:
f664829e
DE
15892 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
15893 if (bytes == NULL)
15894 {
15895 dwarf2_section_buffer_overflow_complaint (section);
15896 return NULL;
15897 }
cf2c3c16
TT
15898 break;
15899
15900 default:
15901 {
15902 complain:
15903 complaint (&symfile_complaints,
15904 _("invalid form 0x%x in `%s'"),
15905 form,
15906 section->asection->name);
15907 return NULL;
15908 }
2e276125
JB
15909 }
15910
cf2c3c16
TT
15911 return bytes;
15912}
757a13d0 15913
cf2c3c16
TT
15914/* A helper for dwarf_decode_macros that handles skipping an unknown
15915 opcode. Returns an updated pointer to the macro data buffer; or,
15916 on error, issues a complaint and returns NULL. */
757a13d0 15917
cf2c3c16
TT
15918static gdb_byte *
15919skip_unknown_opcode (unsigned int opcode,
15920 gdb_byte **opcode_definitions,
f664829e 15921 gdb_byte *mac_ptr, gdb_byte *mac_end,
cf2c3c16
TT
15922 bfd *abfd,
15923 unsigned int offset_size,
15924 struct dwarf2_section_info *section)
15925{
15926 unsigned int bytes_read, i;
15927 unsigned long arg;
15928 gdb_byte *defn;
2e276125 15929
cf2c3c16 15930 if (opcode_definitions[opcode] == NULL)
2e276125 15931 {
cf2c3c16
TT
15932 complaint (&symfile_complaints,
15933 _("unrecognized DW_MACFINO opcode 0x%x"),
15934 opcode);
15935 return NULL;
15936 }
2e276125 15937
cf2c3c16
TT
15938 defn = opcode_definitions[opcode];
15939 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15940 defn += bytes_read;
2e276125 15941
cf2c3c16
TT
15942 for (i = 0; i < arg; ++i)
15943 {
f664829e
DE
15944 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
15945 section);
cf2c3c16
TT
15946 if (mac_ptr == NULL)
15947 {
15948 /* skip_form_bytes already issued the complaint. */
15949 return NULL;
15950 }
15951 }
757a13d0 15952
cf2c3c16
TT
15953 return mac_ptr;
15954}
757a13d0 15955
cf2c3c16
TT
15956/* A helper function which parses the header of a macro section.
15957 If the macro section is the extended (for now called "GNU") type,
15958 then this updates *OFFSET_SIZE. Returns a pointer to just after
15959 the header, or issues a complaint and returns NULL on error. */
757a13d0 15960
cf2c3c16
TT
15961static gdb_byte *
15962dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15963 bfd *abfd,
15964 gdb_byte *mac_ptr,
15965 unsigned int *offset_size,
15966 int section_is_gnu)
15967{
15968 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 15969
cf2c3c16
TT
15970 if (section_is_gnu)
15971 {
15972 unsigned int version, flags;
757a13d0 15973
cf2c3c16
TT
15974 version = read_2_bytes (abfd, mac_ptr);
15975 if (version != 4)
15976 {
15977 complaint (&symfile_complaints,
15978 _("unrecognized version `%d' in .debug_macro section"),
15979 version);
15980 return NULL;
15981 }
15982 mac_ptr += 2;
757a13d0 15983
cf2c3c16
TT
15984 flags = read_1_byte (abfd, mac_ptr);
15985 ++mac_ptr;
15986 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 15987
cf2c3c16
TT
15988 if ((flags & 2) != 0)
15989 /* We don't need the line table offset. */
15990 mac_ptr += *offset_size;
757a13d0 15991
cf2c3c16
TT
15992 /* Vendor opcode descriptions. */
15993 if ((flags & 4) != 0)
15994 {
15995 unsigned int i, count;
757a13d0 15996
cf2c3c16
TT
15997 count = read_1_byte (abfd, mac_ptr);
15998 ++mac_ptr;
15999 for (i = 0; i < count; ++i)
16000 {
16001 unsigned int opcode, bytes_read;
16002 unsigned long arg;
16003
16004 opcode = read_1_byte (abfd, mac_ptr);
16005 ++mac_ptr;
16006 opcode_definitions[opcode] = mac_ptr;
16007 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16008 mac_ptr += bytes_read;
16009 mac_ptr += arg;
16010 }
757a13d0 16011 }
cf2c3c16 16012 }
757a13d0 16013
cf2c3c16
TT
16014 return mac_ptr;
16015}
757a13d0 16016
cf2c3c16 16017/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 16018 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
16019
16020static void
16021dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
16022 struct macro_source_file *current_file,
16023 struct line_header *lh, char *comp_dir,
16024 struct dwarf2_section_info *section,
16025 int section_is_gnu,
16026 unsigned int offset_size,
8fc3fc34
TT
16027 struct objfile *objfile,
16028 htab_t include_hash)
cf2c3c16
TT
16029{
16030 enum dwarf_macro_record_type macinfo_type;
16031 int at_commandline;
16032 gdb_byte *opcode_definitions[256];
757a13d0 16033
cf2c3c16
TT
16034 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
16035 &offset_size, section_is_gnu);
16036 if (mac_ptr == NULL)
16037 {
16038 /* We already issued a complaint. */
16039 return;
16040 }
757a13d0
JK
16041
16042 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
16043 GDB is still reading the definitions from command line. First
16044 DW_MACINFO_start_file will need to be ignored as it was already executed
16045 to create CURRENT_FILE for the main source holding also the command line
16046 definitions. On first met DW_MACINFO_start_file this flag is reset to
16047 normally execute all the remaining DW_MACINFO_start_file macinfos. */
16048
16049 at_commandline = 1;
16050
16051 do
16052 {
16053 /* Do we at least have room for a macinfo type byte? */
16054 if (mac_ptr >= mac_end)
16055 {
f664829e 16056 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
16057 break;
16058 }
16059
16060 macinfo_type = read_1_byte (abfd, mac_ptr);
16061 mac_ptr++;
16062
cf2c3c16
TT
16063 /* Note that we rely on the fact that the corresponding GNU and
16064 DWARF constants are the same. */
757a13d0
JK
16065 switch (macinfo_type)
16066 {
16067 /* A zero macinfo type indicates the end of the macro
16068 information. */
16069 case 0:
16070 break;
2e276125 16071
cf2c3c16
TT
16072 case DW_MACRO_GNU_define:
16073 case DW_MACRO_GNU_undef:
16074 case DW_MACRO_GNU_define_indirect:
16075 case DW_MACRO_GNU_undef_indirect:
2e276125 16076 {
891d2f0b 16077 unsigned int bytes_read;
2e276125
JB
16078 int line;
16079 char *body;
cf2c3c16 16080 int is_define;
2e276125 16081
cf2c3c16
TT
16082 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16083 mac_ptr += bytes_read;
16084
16085 if (macinfo_type == DW_MACRO_GNU_define
16086 || macinfo_type == DW_MACRO_GNU_undef)
16087 {
16088 body = read_direct_string (abfd, mac_ptr, &bytes_read);
16089 mac_ptr += bytes_read;
16090 }
16091 else
16092 {
16093 LONGEST str_offset;
16094
16095 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
16096 mac_ptr += offset_size;
2e276125 16097
cf2c3c16
TT
16098 body = read_indirect_string_at_offset (abfd, str_offset);
16099 }
16100
16101 is_define = (macinfo_type == DW_MACRO_GNU_define
16102 || macinfo_type == DW_MACRO_GNU_define_indirect);
2e276125 16103 if (! current_file)
757a13d0
JK
16104 {
16105 /* DWARF violation as no main source is present. */
16106 complaint (&symfile_complaints,
16107 _("debug info with no main source gives macro %s "
16108 "on line %d: %s"),
cf2c3c16
TT
16109 is_define ? _("definition") : _("undefinition"),
16110 line, body);
757a13d0
JK
16111 break;
16112 }
3e43a32a
MS
16113 if ((line == 0 && !at_commandline)
16114 || (line != 0 && at_commandline))
4d3c2250 16115 complaint (&symfile_complaints,
757a13d0
JK
16116 _("debug info gives %s macro %s with %s line %d: %s"),
16117 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 16118 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
16119 line == 0 ? _("zero") : _("non-zero"), line, body);
16120
cf2c3c16 16121 if (is_define)
757a13d0 16122 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
16123 else
16124 {
16125 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
16126 || macinfo_type == DW_MACRO_GNU_undef_indirect);
16127 macro_undef (current_file, line, body);
16128 }
2e276125
JB
16129 }
16130 break;
16131
cf2c3c16 16132 case DW_MACRO_GNU_start_file:
2e276125 16133 {
891d2f0b 16134 unsigned int bytes_read;
2e276125
JB
16135 int line, file;
16136
16137 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16138 mac_ptr += bytes_read;
16139 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16140 mac_ptr += bytes_read;
16141
3e43a32a
MS
16142 if ((line == 0 && !at_commandline)
16143 || (line != 0 && at_commandline))
757a13d0
JK
16144 complaint (&symfile_complaints,
16145 _("debug info gives source %d included "
16146 "from %s at %s line %d"),
16147 file, at_commandline ? _("command-line") : _("file"),
16148 line == 0 ? _("zero") : _("non-zero"), line);
16149
16150 if (at_commandline)
16151 {
cf2c3c16
TT
16152 /* This DW_MACRO_GNU_start_file was executed in the
16153 pass one. */
757a13d0
JK
16154 at_commandline = 0;
16155 }
16156 else
16157 current_file = macro_start_file (file, line,
16158 current_file, comp_dir,
cf2c3c16 16159 lh, objfile);
2e276125
JB
16160 }
16161 break;
16162
cf2c3c16 16163 case DW_MACRO_GNU_end_file:
2e276125 16164 if (! current_file)
4d3c2250 16165 complaint (&symfile_complaints,
3e43a32a
MS
16166 _("macro debug info has an unmatched "
16167 "`close_file' directive"));
2e276125
JB
16168 else
16169 {
16170 current_file = current_file->included_by;
16171 if (! current_file)
16172 {
cf2c3c16 16173 enum dwarf_macro_record_type next_type;
2e276125
JB
16174
16175 /* GCC circa March 2002 doesn't produce the zero
16176 type byte marking the end of the compilation
16177 unit. Complain if it's not there, but exit no
16178 matter what. */
16179
16180 /* Do we at least have room for a macinfo type byte? */
16181 if (mac_ptr >= mac_end)
16182 {
f664829e 16183 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
16184 return;
16185 }
16186
16187 /* We don't increment mac_ptr here, so this is just
16188 a look-ahead. */
16189 next_type = read_1_byte (abfd, mac_ptr);
16190 if (next_type != 0)
4d3c2250 16191 complaint (&symfile_complaints,
3e43a32a
MS
16192 _("no terminating 0-type entry for "
16193 "macros in `.debug_macinfo' section"));
2e276125
JB
16194
16195 return;
16196 }
16197 }
16198 break;
16199
cf2c3c16
TT
16200 case DW_MACRO_GNU_transparent_include:
16201 {
16202 LONGEST offset;
8fc3fc34 16203 void **slot;
cf2c3c16
TT
16204
16205 offset = read_offset_1 (abfd, mac_ptr, offset_size);
16206 mac_ptr += offset_size;
16207
8fc3fc34
TT
16208 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
16209 if (*slot != NULL)
16210 {
16211 /* This has actually happened; see
16212 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
16213 complaint (&symfile_complaints,
16214 _("recursive DW_MACRO_GNU_transparent_include in "
16215 ".debug_macro section"));
16216 }
16217 else
16218 {
16219 *slot = mac_ptr;
16220
16221 dwarf_decode_macro_bytes (abfd,
16222 section->buffer + offset,
16223 mac_end, current_file,
16224 lh, comp_dir,
16225 section, section_is_gnu,
16226 offset_size, objfile, include_hash);
16227
16228 htab_remove_elt (include_hash, mac_ptr);
16229 }
cf2c3c16
TT
16230 }
16231 break;
16232
2e276125 16233 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
16234 if (!section_is_gnu)
16235 {
16236 unsigned int bytes_read;
16237 int constant;
2e276125 16238
cf2c3c16
TT
16239 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16240 mac_ptr += bytes_read;
16241 read_direct_string (abfd, mac_ptr, &bytes_read);
16242 mac_ptr += bytes_read;
2e276125 16243
cf2c3c16
TT
16244 /* We don't recognize any vendor extensions. */
16245 break;
16246 }
16247 /* FALLTHROUGH */
16248
16249 default:
16250 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 16251 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
16252 section);
16253 if (mac_ptr == NULL)
16254 return;
16255 break;
2e276125 16256 }
757a13d0 16257 } while (macinfo_type != 0);
2e276125 16258}
8e19ed76 16259
cf2c3c16
TT
16260static void
16261dwarf_decode_macros (struct line_header *lh, unsigned int offset,
16262 char *comp_dir, bfd *abfd,
16263 struct dwarf2_cu *cu,
16264 struct dwarf2_section_info *section,
fceca515 16265 int section_is_gnu, const char *section_name)
cf2c3c16 16266{
bb5ed363 16267 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
16268 gdb_byte *mac_ptr, *mac_end;
16269 struct macro_source_file *current_file = 0;
16270 enum dwarf_macro_record_type macinfo_type;
16271 unsigned int offset_size = cu->header.offset_size;
16272 gdb_byte *opcode_definitions[256];
8fc3fc34
TT
16273 struct cleanup *cleanup;
16274 htab_t include_hash;
16275 void **slot;
cf2c3c16 16276
bb5ed363 16277 dwarf2_read_section (objfile, section);
cf2c3c16
TT
16278 if (section->buffer == NULL)
16279 {
fceca515 16280 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
16281 return;
16282 }
16283
16284 /* First pass: Find the name of the base filename.
16285 This filename is needed in order to process all macros whose definition
16286 (or undefinition) comes from the command line. These macros are defined
16287 before the first DW_MACINFO_start_file entry, and yet still need to be
16288 associated to the base file.
16289
16290 To determine the base file name, we scan the macro definitions until we
16291 reach the first DW_MACINFO_start_file entry. We then initialize
16292 CURRENT_FILE accordingly so that any macro definition found before the
16293 first DW_MACINFO_start_file can still be associated to the base file. */
16294
16295 mac_ptr = section->buffer + offset;
16296 mac_end = section->buffer + section->size;
16297
16298 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
16299 &offset_size, section_is_gnu);
16300 if (mac_ptr == NULL)
16301 {
16302 /* We already issued a complaint. */
16303 return;
16304 }
16305
16306 do
16307 {
16308 /* Do we at least have room for a macinfo type byte? */
16309 if (mac_ptr >= mac_end)
16310 {
16311 /* Complaint is printed during the second pass as GDB will probably
16312 stop the first pass earlier upon finding
16313 DW_MACINFO_start_file. */
16314 break;
16315 }
16316
16317 macinfo_type = read_1_byte (abfd, mac_ptr);
16318 mac_ptr++;
16319
16320 /* Note that we rely on the fact that the corresponding GNU and
16321 DWARF constants are the same. */
16322 switch (macinfo_type)
16323 {
16324 /* A zero macinfo type indicates the end of the macro
16325 information. */
16326 case 0:
16327 break;
16328
16329 case DW_MACRO_GNU_define:
16330 case DW_MACRO_GNU_undef:
16331 /* Only skip the data by MAC_PTR. */
16332 {
16333 unsigned int bytes_read;
16334
16335 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16336 mac_ptr += bytes_read;
16337 read_direct_string (abfd, mac_ptr, &bytes_read);
16338 mac_ptr += bytes_read;
16339 }
16340 break;
16341
16342 case DW_MACRO_GNU_start_file:
16343 {
16344 unsigned int bytes_read;
16345 int line, file;
16346
16347 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16348 mac_ptr += bytes_read;
16349 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16350 mac_ptr += bytes_read;
16351
16352 current_file = macro_start_file (file, line, current_file,
bb5ed363 16353 comp_dir, lh, objfile);
cf2c3c16
TT
16354 }
16355 break;
16356
16357 case DW_MACRO_GNU_end_file:
16358 /* No data to skip by MAC_PTR. */
16359 break;
16360
16361 case DW_MACRO_GNU_define_indirect:
16362 case DW_MACRO_GNU_undef_indirect:
16363 {
16364 unsigned int bytes_read;
16365
16366 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16367 mac_ptr += bytes_read;
16368 mac_ptr += offset_size;
16369 }
16370 break;
16371
16372 case DW_MACRO_GNU_transparent_include:
16373 /* Note that, according to the spec, a transparent include
16374 chain cannot call DW_MACRO_GNU_start_file. So, we can just
16375 skip this opcode. */
16376 mac_ptr += offset_size;
16377 break;
16378
16379 case DW_MACINFO_vendor_ext:
16380 /* Only skip the data by MAC_PTR. */
16381 if (!section_is_gnu)
16382 {
16383 unsigned int bytes_read;
16384
16385 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16386 mac_ptr += bytes_read;
16387 read_direct_string (abfd, mac_ptr, &bytes_read);
16388 mac_ptr += bytes_read;
16389 }
16390 /* FALLTHROUGH */
16391
16392 default:
16393 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 16394 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
16395 section);
16396 if (mac_ptr == NULL)
16397 return;
16398 break;
16399 }
16400 } while (macinfo_type != 0 && current_file == NULL);
16401
16402 /* Second pass: Process all entries.
16403
16404 Use the AT_COMMAND_LINE flag to determine whether we are still processing
16405 command-line macro definitions/undefinitions. This flag is unset when we
16406 reach the first DW_MACINFO_start_file entry. */
16407
8fc3fc34
TT
16408 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
16409 NULL, xcalloc, xfree);
16410 cleanup = make_cleanup_htab_delete (include_hash);
16411 mac_ptr = section->buffer + offset;
16412 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
16413 *slot = mac_ptr;
16414 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
cf2c3c16 16415 current_file, lh, comp_dir, section, section_is_gnu,
8fc3fc34
TT
16416 offset_size, objfile, include_hash);
16417 do_cleanups (cleanup);
cf2c3c16
TT
16418}
16419
8e19ed76 16420/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 16421 if so return true else false. */
380bca97 16422
8e19ed76
PS
16423static int
16424attr_form_is_block (struct attribute *attr)
16425{
16426 return (attr == NULL ? 0 :
16427 attr->form == DW_FORM_block1
16428 || attr->form == DW_FORM_block2
16429 || attr->form == DW_FORM_block4
2dc7f7b3
TT
16430 || attr->form == DW_FORM_block
16431 || attr->form == DW_FORM_exprloc);
8e19ed76 16432}
4c2df51b 16433
c6a0999f
JB
16434/* Return non-zero if ATTR's value is a section offset --- classes
16435 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
16436 You may use DW_UNSND (attr) to retrieve such offsets.
16437
16438 Section 7.5.4, "Attribute Encodings", explains that no attribute
16439 may have a value that belongs to more than one of these classes; it
16440 would be ambiguous if we did, because we use the same forms for all
16441 of them. */
380bca97 16442
3690dd37
JB
16443static int
16444attr_form_is_section_offset (struct attribute *attr)
16445{
16446 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
16447 || attr->form == DW_FORM_data8
16448 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
16449}
16450
3690dd37
JB
16451/* Return non-zero if ATTR's value falls in the 'constant' class, or
16452 zero otherwise. When this function returns true, you can apply
16453 dwarf2_get_attr_constant_value to it.
16454
16455 However, note that for some attributes you must check
16456 attr_form_is_section_offset before using this test. DW_FORM_data4
16457 and DW_FORM_data8 are members of both the constant class, and of
16458 the classes that contain offsets into other debug sections
16459 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
16460 that, if an attribute's can be either a constant or one of the
16461 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
16462 taken as section offsets, not constants. */
380bca97 16463
3690dd37
JB
16464static int
16465attr_form_is_constant (struct attribute *attr)
16466{
16467 switch (attr->form)
16468 {
16469 case DW_FORM_sdata:
16470 case DW_FORM_udata:
16471 case DW_FORM_data1:
16472 case DW_FORM_data2:
16473 case DW_FORM_data4:
16474 case DW_FORM_data8:
16475 return 1;
16476 default:
16477 return 0;
16478 }
16479}
16480
3019eac3
DE
16481/* Return the .debug_loc section to use for CU.
16482 For DWO files use .debug_loc.dwo. */
16483
16484static struct dwarf2_section_info *
16485cu_debug_loc_section (struct dwarf2_cu *cu)
16486{
16487 if (cu->dwo_unit)
16488 return &cu->dwo_unit->dwo_file->sections.loc;
16489 return &dwarf2_per_objfile->loc;
16490}
16491
8cf6f0b1
TT
16492/* A helper function that fills in a dwarf2_loclist_baton. */
16493
16494static void
16495fill_in_loclist_baton (struct dwarf2_cu *cu,
16496 struct dwarf2_loclist_baton *baton,
16497 struct attribute *attr)
16498{
3019eac3
DE
16499 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
16500
16501 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
16502
16503 baton->per_cu = cu->per_cu;
16504 gdb_assert (baton->per_cu);
16505 /* We don't know how long the location list is, but make sure we
16506 don't run off the edge of the section. */
3019eac3
DE
16507 baton->size = section->size - DW_UNSND (attr);
16508 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 16509 baton->base_address = cu->base_address;
f664829e 16510 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
16511}
16512
4c2df51b
DJ
16513static void
16514dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 16515 struct dwarf2_cu *cu)
4c2df51b 16516{
bb5ed363 16517 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 16518 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 16519
3690dd37 16520 if (attr_form_is_section_offset (attr)
3019eac3 16521 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
16522 the section. If so, fall through to the complaint in the
16523 other branch. */
3019eac3 16524 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 16525 {
0d53c4c4 16526 struct dwarf2_loclist_baton *baton;
4c2df51b 16527
bb5ed363 16528 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 16529 sizeof (struct dwarf2_loclist_baton));
4c2df51b 16530
8cf6f0b1 16531 fill_in_loclist_baton (cu, baton, attr);
be391dca 16532
d00adf39 16533 if (cu->base_known == 0)
0d53c4c4 16534 complaint (&symfile_complaints,
3e43a32a
MS
16535 _("Location list used without "
16536 "specifying the CU base address."));
4c2df51b 16537
768a979c 16538 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
16539 SYMBOL_LOCATION_BATON (sym) = baton;
16540 }
16541 else
16542 {
16543 struct dwarf2_locexpr_baton *baton;
16544
bb5ed363 16545 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 16546 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
16547 baton->per_cu = cu->per_cu;
16548 gdb_assert (baton->per_cu);
0d53c4c4
DJ
16549
16550 if (attr_form_is_block (attr))
16551 {
16552 /* Note that we're just copying the block's data pointer
16553 here, not the actual data. We're still pointing into the
6502dd73
DJ
16554 info_buffer for SYM's objfile; right now we never release
16555 that buffer, but when we do clean up properly this may
16556 need to change. */
0d53c4c4
DJ
16557 baton->size = DW_BLOCK (attr)->size;
16558 baton->data = DW_BLOCK (attr)->data;
16559 }
16560 else
16561 {
16562 dwarf2_invalid_attrib_class_complaint ("location description",
16563 SYMBOL_NATURAL_NAME (sym));
16564 baton->size = 0;
0d53c4c4 16565 }
6e70227d 16566
768a979c 16567 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
16568 SYMBOL_LOCATION_BATON (sym) = baton;
16569 }
4c2df51b 16570}
6502dd73 16571
9aa1f1e3
TT
16572/* Return the OBJFILE associated with the compilation unit CU. If CU
16573 came from a separate debuginfo file, then the master objfile is
16574 returned. */
ae0d2f24
UW
16575
16576struct objfile *
16577dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
16578{
9291a0cd 16579 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
16580
16581 /* Return the master objfile, so that we can report and look up the
16582 correct file containing this variable. */
16583 if (objfile->separate_debug_objfile_backlink)
16584 objfile = objfile->separate_debug_objfile_backlink;
16585
16586 return objfile;
16587}
16588
96408a79
SA
16589/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
16590 (CU_HEADERP is unused in such case) or prepare a temporary copy at
16591 CU_HEADERP first. */
16592
16593static const struct comp_unit_head *
16594per_cu_header_read_in (struct comp_unit_head *cu_headerp,
16595 struct dwarf2_per_cu_data *per_cu)
16596{
16597 struct objfile *objfile;
16598 struct dwarf2_per_objfile *per_objfile;
16599 gdb_byte *info_ptr;
16600
16601 if (per_cu->cu)
16602 return &per_cu->cu->header;
16603
16604 objfile = per_cu->objfile;
16605 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
b64f50a1 16606 info_ptr = per_objfile->info.buffer + per_cu->offset.sect_off;
96408a79
SA
16607
16608 memset (cu_headerp, 0, sizeof (*cu_headerp));
16609 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
16610
16611 return cu_headerp;
16612}
16613
ae0d2f24
UW
16614/* Return the address size given in the compilation unit header for CU. */
16615
98714339 16616int
ae0d2f24
UW
16617dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
16618{
96408a79
SA
16619 struct comp_unit_head cu_header_local;
16620 const struct comp_unit_head *cu_headerp;
c471e790 16621
96408a79
SA
16622 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
16623
16624 return cu_headerp->addr_size;
ae0d2f24
UW
16625}
16626
9eae7c52
TT
16627/* Return the offset size given in the compilation unit header for CU. */
16628
16629int
16630dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
16631{
96408a79
SA
16632 struct comp_unit_head cu_header_local;
16633 const struct comp_unit_head *cu_headerp;
9c6c53f7 16634
96408a79
SA
16635 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
16636
16637 return cu_headerp->offset_size;
16638}
16639
16640/* See its dwarf2loc.h declaration. */
16641
16642int
16643dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
16644{
16645 struct comp_unit_head cu_header_local;
16646 const struct comp_unit_head *cu_headerp;
16647
16648 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
16649
16650 if (cu_headerp->version == 2)
16651 return cu_headerp->addr_size;
16652 else
16653 return cu_headerp->offset_size;
181cebd4
JK
16654}
16655
9aa1f1e3
TT
16656/* Return the text offset of the CU. The returned offset comes from
16657 this CU's objfile. If this objfile came from a separate debuginfo
16658 file, then the offset may be different from the corresponding
16659 offset in the parent objfile. */
16660
16661CORE_ADDR
16662dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
16663{
bb3fa9d0 16664 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
16665
16666 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16667}
16668
348e048f
DE
16669/* Locate the .debug_info compilation unit from CU's objfile which contains
16670 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
16671
16672static struct dwarf2_per_cu_data *
b64f50a1 16673dwarf2_find_containing_comp_unit (sect_offset offset,
ae038cb0
DJ
16674 struct objfile *objfile)
16675{
16676 struct dwarf2_per_cu_data *this_cu;
16677 int low, high;
16678
ae038cb0
DJ
16679 low = 0;
16680 high = dwarf2_per_objfile->n_comp_units - 1;
16681 while (high > low)
16682 {
16683 int mid = low + (high - low) / 2;
9a619af0 16684
b64f50a1
JK
16685 if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off
16686 >= offset.sect_off)
ae038cb0
DJ
16687 high = mid;
16688 else
16689 low = mid + 1;
16690 }
16691 gdb_assert (low == high);
b64f50a1
JK
16692 if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off
16693 > offset.sect_off)
ae038cb0 16694 {
10b3939b 16695 if (low == 0)
8a3fe4f8
AC
16696 error (_("Dwarf Error: could not find partial DIE containing "
16697 "offset 0x%lx [in module %s]"),
b64f50a1 16698 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 16699
b64f50a1
JK
16700 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
16701 <= offset.sect_off);
ae038cb0
DJ
16702 return dwarf2_per_objfile->all_comp_units[low-1];
16703 }
16704 else
16705 {
16706 this_cu = dwarf2_per_objfile->all_comp_units[low];
16707 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
16708 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
16709 error (_("invalid dwarf2 offset %u"), offset.sect_off);
16710 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
16711 return this_cu;
16712 }
16713}
16714
23745b47 16715/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 16716
9816fde3 16717static void
23745b47 16718init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 16719{
9816fde3 16720 memset (cu, 0, sizeof (*cu));
23745b47
DE
16721 per_cu->cu = cu;
16722 cu->per_cu = per_cu;
16723 cu->objfile = per_cu->objfile;
93311388 16724 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
16725}
16726
16727/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
16728
16729static void
95554aad
TT
16730prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
16731 enum language pretend_language)
9816fde3
JK
16732{
16733 struct attribute *attr;
16734
16735 /* Set the language we're debugging. */
16736 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
16737 if (attr)
16738 set_cu_language (DW_UNSND (attr), cu);
16739 else
9cded63f 16740 {
95554aad 16741 cu->language = pretend_language;
9cded63f
TT
16742 cu->language_defn = language_def (cu->language);
16743 }
dee91e82
DE
16744
16745 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
16746 if (attr)
16747 cu->producer = DW_STRING (attr);
93311388
DE
16748}
16749
ae038cb0
DJ
16750/* Release one cached compilation unit, CU. We unlink it from the tree
16751 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
16752 the caller is responsible for that.
16753 NOTE: DATA is a void * because this function is also used as a
16754 cleanup routine. */
ae038cb0
DJ
16755
16756static void
68dc6402 16757free_heap_comp_unit (void *data)
ae038cb0
DJ
16758{
16759 struct dwarf2_cu *cu = data;
16760
23745b47
DE
16761 gdb_assert (cu->per_cu != NULL);
16762 cu->per_cu->cu = NULL;
ae038cb0
DJ
16763 cu->per_cu = NULL;
16764
16765 obstack_free (&cu->comp_unit_obstack, NULL);
16766
16767 xfree (cu);
16768}
16769
72bf9492 16770/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 16771 when we're finished with it. We can't free the pointer itself, but be
dee91e82 16772 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
16773
16774static void
16775free_stack_comp_unit (void *data)
16776{
16777 struct dwarf2_cu *cu = data;
16778
23745b47
DE
16779 gdb_assert (cu->per_cu != NULL);
16780 cu->per_cu->cu = NULL;
16781 cu->per_cu = NULL;
16782
72bf9492
DJ
16783 obstack_free (&cu->comp_unit_obstack, NULL);
16784 cu->partial_dies = NULL;
ae038cb0
DJ
16785}
16786
16787/* Free all cached compilation units. */
16788
16789static void
16790free_cached_comp_units (void *data)
16791{
16792 struct dwarf2_per_cu_data *per_cu, **last_chain;
16793
16794 per_cu = dwarf2_per_objfile->read_in_chain;
16795 last_chain = &dwarf2_per_objfile->read_in_chain;
16796 while (per_cu != NULL)
16797 {
16798 struct dwarf2_per_cu_data *next_cu;
16799
16800 next_cu = per_cu->cu->read_in_chain;
16801
68dc6402 16802 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
16803 *last_chain = next_cu;
16804
16805 per_cu = next_cu;
16806 }
16807}
16808
16809/* Increase the age counter on each cached compilation unit, and free
16810 any that are too old. */
16811
16812static void
16813age_cached_comp_units (void)
16814{
16815 struct dwarf2_per_cu_data *per_cu, **last_chain;
16816
16817 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16818 per_cu = dwarf2_per_objfile->read_in_chain;
16819 while (per_cu != NULL)
16820 {
16821 per_cu->cu->last_used ++;
16822 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16823 dwarf2_mark (per_cu->cu);
16824 per_cu = per_cu->cu->read_in_chain;
16825 }
16826
16827 per_cu = dwarf2_per_objfile->read_in_chain;
16828 last_chain = &dwarf2_per_objfile->read_in_chain;
16829 while (per_cu != NULL)
16830 {
16831 struct dwarf2_per_cu_data *next_cu;
16832
16833 next_cu = per_cu->cu->read_in_chain;
16834
16835 if (!per_cu->cu->mark)
16836 {
68dc6402 16837 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
16838 *last_chain = next_cu;
16839 }
16840 else
16841 last_chain = &per_cu->cu->read_in_chain;
16842
16843 per_cu = next_cu;
16844 }
16845}
16846
16847/* Remove a single compilation unit from the cache. */
16848
16849static void
dee91e82 16850free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
16851{
16852 struct dwarf2_per_cu_data *per_cu, **last_chain;
16853
16854 per_cu = dwarf2_per_objfile->read_in_chain;
16855 last_chain = &dwarf2_per_objfile->read_in_chain;
16856 while (per_cu != NULL)
16857 {
16858 struct dwarf2_per_cu_data *next_cu;
16859
16860 next_cu = per_cu->cu->read_in_chain;
16861
dee91e82 16862 if (per_cu == target_per_cu)
ae038cb0 16863 {
68dc6402 16864 free_heap_comp_unit (per_cu->cu);
dee91e82 16865 per_cu->cu = NULL;
ae038cb0
DJ
16866 *last_chain = next_cu;
16867 break;
16868 }
16869 else
16870 last_chain = &per_cu->cu->read_in_chain;
16871
16872 per_cu = next_cu;
16873 }
16874}
16875
fe3e1990
DJ
16876/* Release all extra memory associated with OBJFILE. */
16877
16878void
16879dwarf2_free_objfile (struct objfile *objfile)
16880{
16881 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16882
16883 if (dwarf2_per_objfile == NULL)
16884 return;
16885
16886 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16887 free_cached_comp_units (NULL);
16888
7b9f3c50
DE
16889 if (dwarf2_per_objfile->quick_file_names_table)
16890 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 16891
fe3e1990
DJ
16892 /* Everything else should be on the objfile obstack. */
16893}
16894
dee91e82
DE
16895/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
16896 We store these in a hash table separate from the DIEs, and preserve them
16897 when the DIEs are flushed out of cache.
16898
16899 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3
DE
16900 uniquely identify the type. A file may have multiple .debug_types sections,
16901 or the type may come from a DWO file. We have to use something in
16902 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
16903 routine, get_die_type_at_offset, from outside this file, and thus won't
16904 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
16905 of the objfile. */
1c379e20 16906
dee91e82 16907struct dwarf2_per_cu_offset_and_type
1c379e20 16908{
dee91e82 16909 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 16910 sect_offset offset;
1c379e20
DJ
16911 struct type *type;
16912};
16913
dee91e82 16914/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
16915
16916static hashval_t
dee91e82 16917per_cu_offset_and_type_hash (const void *item)
1c379e20 16918{
dee91e82 16919 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 16920
dee91e82 16921 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
16922}
16923
dee91e82 16924/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
16925
16926static int
dee91e82 16927per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 16928{
dee91e82
DE
16929 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
16930 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 16931
dee91e82
DE
16932 return (ofs_lhs->per_cu == ofs_rhs->per_cu
16933 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
16934}
16935
16936/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
16937 table if necessary. For convenience, return TYPE.
16938
16939 The DIEs reading must have careful ordering to:
16940 * Not cause infite loops trying to read in DIEs as a prerequisite for
16941 reading current DIE.
16942 * Not trying to dereference contents of still incompletely read in types
16943 while reading in other DIEs.
16944 * Enable referencing still incompletely read in types just by a pointer to
16945 the type without accessing its fields.
16946
16947 Therefore caller should follow these rules:
16948 * Try to fetch any prerequisite types we may need to build this DIE type
16949 before building the type and calling set_die_type.
e71ec853 16950 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
16951 possible before fetching more types to complete the current type.
16952 * Make the type as complete as possible before fetching more types. */
1c379e20 16953
f792889a 16954static struct type *
1c379e20
DJ
16955set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16956{
dee91e82 16957 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 16958 struct objfile *objfile = cu->objfile;
1c379e20 16959
b4ba55a1
JB
16960 /* For Ada types, make sure that the gnat-specific data is always
16961 initialized (if not already set). There are a few types where
16962 we should not be doing so, because the type-specific area is
16963 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16964 where the type-specific area is used to store the floatformat).
16965 But this is not a problem, because the gnat-specific information
16966 is actually not needed for these types. */
16967 if (need_gnat_info (cu)
16968 && TYPE_CODE (type) != TYPE_CODE_FUNC
16969 && TYPE_CODE (type) != TYPE_CODE_FLT
16970 && !HAVE_GNAT_AUX_INFO (type))
16971 INIT_GNAT_SPECIFIC (type);
16972
dee91e82 16973 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 16974 {
dee91e82
DE
16975 dwarf2_per_objfile->die_type_hash =
16976 htab_create_alloc_ex (127,
16977 per_cu_offset_and_type_hash,
16978 per_cu_offset_and_type_eq,
16979 NULL,
16980 &objfile->objfile_obstack,
16981 hashtab_obstack_allocate,
16982 dummy_obstack_deallocate);
f792889a 16983 }
1c379e20 16984
dee91e82 16985 ofs.per_cu = cu->per_cu;
1c379e20
DJ
16986 ofs.offset = die->offset;
16987 ofs.type = type;
dee91e82
DE
16988 slot = (struct dwarf2_per_cu_offset_and_type **)
16989 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
16990 if (*slot)
16991 complaint (&symfile_complaints,
16992 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 16993 die->offset.sect_off);
673bfd45 16994 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 16995 **slot = ofs;
f792889a 16996 return type;
1c379e20
DJ
16997}
16998
380bca97 16999/* Look up the type for the die at OFFSET in the appropriate type_hash
673bfd45 17000 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
17001
17002static struct type *
b64f50a1 17003get_die_type_at_offset (sect_offset offset,
673bfd45 17004 struct dwarf2_per_cu_data *per_cu)
1c379e20 17005{
dee91e82 17006 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 17007
dee91e82 17008 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 17009 return NULL;
1c379e20 17010
dee91e82 17011 ofs.per_cu = per_cu;
673bfd45 17012 ofs.offset = offset;
dee91e82 17013 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
17014 if (slot)
17015 return slot->type;
17016 else
17017 return NULL;
17018}
17019
673bfd45
DE
17020/* Look up the type for DIE in the appropriate type_hash table,
17021 or return NULL if DIE does not have a saved type. */
17022
17023static struct type *
17024get_die_type (struct die_info *die, struct dwarf2_cu *cu)
17025{
17026 return get_die_type_at_offset (die->offset, cu->per_cu);
17027}
17028
10b3939b
DJ
17029/* Add a dependence relationship from CU to REF_PER_CU. */
17030
17031static void
17032dwarf2_add_dependence (struct dwarf2_cu *cu,
17033 struct dwarf2_per_cu_data *ref_per_cu)
17034{
17035 void **slot;
17036
17037 if (cu->dependencies == NULL)
17038 cu->dependencies
17039 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
17040 NULL, &cu->comp_unit_obstack,
17041 hashtab_obstack_allocate,
17042 dummy_obstack_deallocate);
17043
17044 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
17045 if (*slot == NULL)
17046 *slot = ref_per_cu;
17047}
1c379e20 17048
f504f079
DE
17049/* Subroutine of dwarf2_mark to pass to htab_traverse.
17050 Set the mark field in every compilation unit in the
ae038cb0
DJ
17051 cache that we must keep because we are keeping CU. */
17052
10b3939b
DJ
17053static int
17054dwarf2_mark_helper (void **slot, void *data)
17055{
17056 struct dwarf2_per_cu_data *per_cu;
17057
17058 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
17059
17060 /* cu->dependencies references may not yet have been ever read if QUIT aborts
17061 reading of the chain. As such dependencies remain valid it is not much
17062 useful to track and undo them during QUIT cleanups. */
17063 if (per_cu->cu == NULL)
17064 return 1;
17065
10b3939b
DJ
17066 if (per_cu->cu->mark)
17067 return 1;
17068 per_cu->cu->mark = 1;
17069
17070 if (per_cu->cu->dependencies != NULL)
17071 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
17072
17073 return 1;
17074}
17075
f504f079
DE
17076/* Set the mark field in CU and in every other compilation unit in the
17077 cache that we must keep because we are keeping CU. */
17078
ae038cb0
DJ
17079static void
17080dwarf2_mark (struct dwarf2_cu *cu)
17081{
17082 if (cu->mark)
17083 return;
17084 cu->mark = 1;
10b3939b
DJ
17085 if (cu->dependencies != NULL)
17086 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
17087}
17088
17089static void
17090dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
17091{
17092 while (per_cu)
17093 {
17094 per_cu->cu->mark = 0;
17095 per_cu = per_cu->cu->read_in_chain;
17096 }
72bf9492
DJ
17097}
17098
72bf9492
DJ
17099/* Trivial hash function for partial_die_info: the hash value of a DIE
17100 is its offset in .debug_info for this objfile. */
17101
17102static hashval_t
17103partial_die_hash (const void *item)
17104{
17105 const struct partial_die_info *part_die = item;
9a619af0 17106
b64f50a1 17107 return part_die->offset.sect_off;
72bf9492
DJ
17108}
17109
17110/* Trivial comparison function for partial_die_info structures: two DIEs
17111 are equal if they have the same offset. */
17112
17113static int
17114partial_die_eq (const void *item_lhs, const void *item_rhs)
17115{
17116 const struct partial_die_info *part_die_lhs = item_lhs;
17117 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 17118
b64f50a1 17119 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
17120}
17121
ae038cb0
DJ
17122static struct cmd_list_element *set_dwarf2_cmdlist;
17123static struct cmd_list_element *show_dwarf2_cmdlist;
17124
17125static void
17126set_dwarf2_cmd (char *args, int from_tty)
17127{
17128 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
17129}
17130
17131static void
17132show_dwarf2_cmd (char *args, int from_tty)
6e70227d 17133{
ae038cb0
DJ
17134 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
17135}
17136
dce234bc
PP
17137/* If section described by INFO was mmapped, munmap it now. */
17138
17139static void
17140munmap_section_buffer (struct dwarf2_section_info *info)
17141{
b315ab21 17142 if (info->map_addr != NULL)
dce234bc
PP
17143 {
17144#ifdef HAVE_MMAP
b315ab21 17145 int res;
9a619af0 17146
b315ab21
TG
17147 res = munmap (info->map_addr, info->map_len);
17148 gdb_assert (res == 0);
dce234bc
PP
17149#else
17150 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 17151 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
17152#endif
17153 }
17154}
17155
17156/* munmap debug sections for OBJFILE, if necessary. */
17157
17158static void
c1bd65d0 17159dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
17160{
17161 struct dwarf2_per_objfile *data = d;
8b70b953
TT
17162 int ix;
17163 struct dwarf2_section_info *section;
9a619af0 17164
16be1145
DE
17165 /* This is sorted according to the order they're defined in to make it easier
17166 to keep in sync. */
dce234bc
PP
17167 munmap_section_buffer (&data->info);
17168 munmap_section_buffer (&data->abbrev);
17169 munmap_section_buffer (&data->line);
16be1145 17170 munmap_section_buffer (&data->loc);
dce234bc 17171 munmap_section_buffer (&data->macinfo);
cf2c3c16 17172 munmap_section_buffer (&data->macro);
16be1145 17173 munmap_section_buffer (&data->str);
dce234bc 17174 munmap_section_buffer (&data->ranges);
3019eac3 17175 munmap_section_buffer (&data->addr);
dce234bc
PP
17176 munmap_section_buffer (&data->frame);
17177 munmap_section_buffer (&data->eh_frame);
9291a0cd 17178 munmap_section_buffer (&data->gdb_index);
8b70b953
TT
17179
17180 for (ix = 0;
17181 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
17182 ++ix)
17183 munmap_section_buffer (section);
17184
95554aad
TT
17185 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
17186 VEC_free (dwarf2_per_cu_ptr,
17187 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
17188
8b70b953 17189 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
17190
17191 if (data->dwo_files)
17192 free_dwo_files (data->dwo_files, objfile);
9291a0cd
TT
17193}
17194
17195\f
ae2de4f8 17196/* The "save gdb-index" command. */
9291a0cd
TT
17197
17198/* The contents of the hash table we create when building the string
17199 table. */
17200struct strtab_entry
17201{
17202 offset_type offset;
17203 const char *str;
17204};
17205
559a7a62
JK
17206/* Hash function for a strtab_entry.
17207
17208 Function is used only during write_hash_table so no index format backward
17209 compatibility is needed. */
b89be57b 17210
9291a0cd
TT
17211static hashval_t
17212hash_strtab_entry (const void *e)
17213{
17214 const struct strtab_entry *entry = e;
559a7a62 17215 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
17216}
17217
17218/* Equality function for a strtab_entry. */
b89be57b 17219
9291a0cd
TT
17220static int
17221eq_strtab_entry (const void *a, const void *b)
17222{
17223 const struct strtab_entry *ea = a;
17224 const struct strtab_entry *eb = b;
17225 return !strcmp (ea->str, eb->str);
17226}
17227
17228/* Create a strtab_entry hash table. */
b89be57b 17229
9291a0cd
TT
17230static htab_t
17231create_strtab (void)
17232{
17233 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
17234 xfree, xcalloc, xfree);
17235}
17236
17237/* Add a string to the constant pool. Return the string's offset in
17238 host order. */
b89be57b 17239
9291a0cd
TT
17240static offset_type
17241add_string (htab_t table, struct obstack *cpool, const char *str)
17242{
17243 void **slot;
17244 struct strtab_entry entry;
17245 struct strtab_entry *result;
17246
17247 entry.str = str;
17248 slot = htab_find_slot (table, &entry, INSERT);
17249 if (*slot)
17250 result = *slot;
17251 else
17252 {
17253 result = XNEW (struct strtab_entry);
17254 result->offset = obstack_object_size (cpool);
17255 result->str = str;
17256 obstack_grow_str0 (cpool, str);
17257 *slot = result;
17258 }
17259 return result->offset;
17260}
17261
17262/* An entry in the symbol table. */
17263struct symtab_index_entry
17264{
17265 /* The name of the symbol. */
17266 const char *name;
17267 /* The offset of the name in the constant pool. */
17268 offset_type index_offset;
17269 /* A sorted vector of the indices of all the CUs that hold an object
17270 of this name. */
17271 VEC (offset_type) *cu_indices;
17272};
17273
17274/* The symbol table. This is a power-of-2-sized hash table. */
17275struct mapped_symtab
17276{
17277 offset_type n_elements;
17278 offset_type size;
17279 struct symtab_index_entry **data;
17280};
17281
17282/* Hash function for a symtab_index_entry. */
b89be57b 17283
9291a0cd
TT
17284static hashval_t
17285hash_symtab_entry (const void *e)
17286{
17287 const struct symtab_index_entry *entry = e;
17288 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
17289 sizeof (offset_type) * VEC_length (offset_type,
17290 entry->cu_indices),
17291 0);
17292}
17293
17294/* Equality function for a symtab_index_entry. */
b89be57b 17295
9291a0cd
TT
17296static int
17297eq_symtab_entry (const void *a, const void *b)
17298{
17299 const struct symtab_index_entry *ea = a;
17300 const struct symtab_index_entry *eb = b;
17301 int len = VEC_length (offset_type, ea->cu_indices);
17302 if (len != VEC_length (offset_type, eb->cu_indices))
17303 return 0;
17304 return !memcmp (VEC_address (offset_type, ea->cu_indices),
17305 VEC_address (offset_type, eb->cu_indices),
17306 sizeof (offset_type) * len);
17307}
17308
17309/* Destroy a symtab_index_entry. */
b89be57b 17310
9291a0cd
TT
17311static void
17312delete_symtab_entry (void *p)
17313{
17314 struct symtab_index_entry *entry = p;
17315 VEC_free (offset_type, entry->cu_indices);
17316 xfree (entry);
17317}
17318
17319/* Create a hash table holding symtab_index_entry objects. */
b89be57b 17320
9291a0cd 17321static htab_t
3876f04e 17322create_symbol_hash_table (void)
9291a0cd
TT
17323{
17324 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
17325 delete_symtab_entry, xcalloc, xfree);
17326}
17327
17328/* Create a new mapped symtab object. */
b89be57b 17329
9291a0cd
TT
17330static struct mapped_symtab *
17331create_mapped_symtab (void)
17332{
17333 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
17334 symtab->n_elements = 0;
17335 symtab->size = 1024;
17336 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
17337 return symtab;
17338}
17339
17340/* Destroy a mapped_symtab. */
b89be57b 17341
9291a0cd
TT
17342static void
17343cleanup_mapped_symtab (void *p)
17344{
17345 struct mapped_symtab *symtab = p;
17346 /* The contents of the array are freed when the other hash table is
17347 destroyed. */
17348 xfree (symtab->data);
17349 xfree (symtab);
17350}
17351
17352/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
17353 the slot.
17354
17355 Function is used only during write_hash_table so no index format backward
17356 compatibility is needed. */
b89be57b 17357
9291a0cd
TT
17358static struct symtab_index_entry **
17359find_slot (struct mapped_symtab *symtab, const char *name)
17360{
559a7a62 17361 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
17362
17363 index = hash & (symtab->size - 1);
17364 step = ((hash * 17) & (symtab->size - 1)) | 1;
17365
17366 for (;;)
17367 {
17368 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
17369 return &symtab->data[index];
17370 index = (index + step) & (symtab->size - 1);
17371 }
17372}
17373
17374/* Expand SYMTAB's hash table. */
b89be57b 17375
9291a0cd
TT
17376static void
17377hash_expand (struct mapped_symtab *symtab)
17378{
17379 offset_type old_size = symtab->size;
17380 offset_type i;
17381 struct symtab_index_entry **old_entries = symtab->data;
17382
17383 symtab->size *= 2;
17384 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
17385
17386 for (i = 0; i < old_size; ++i)
17387 {
17388 if (old_entries[i])
17389 {
17390 struct symtab_index_entry **slot = find_slot (symtab,
17391 old_entries[i]->name);
17392 *slot = old_entries[i];
17393 }
17394 }
17395
17396 xfree (old_entries);
17397}
17398
17399/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
17400 is the index of the CU in which the symbol appears. */
b89be57b 17401
9291a0cd
TT
17402static void
17403add_index_entry (struct mapped_symtab *symtab, const char *name,
17404 offset_type cu_index)
17405{
17406 struct symtab_index_entry **slot;
17407
17408 ++symtab->n_elements;
17409 if (4 * symtab->n_elements / 3 >= symtab->size)
17410 hash_expand (symtab);
17411
17412 slot = find_slot (symtab, name);
17413 if (!*slot)
17414 {
17415 *slot = XNEW (struct symtab_index_entry);
17416 (*slot)->name = name;
17417 (*slot)->cu_indices = NULL;
17418 }
17419 /* Don't push an index twice. Due to how we add entries we only
17420 have to check the last one. */
17421 if (VEC_empty (offset_type, (*slot)->cu_indices)
cf31e6f9 17422 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
9291a0cd
TT
17423 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
17424}
17425
17426/* Add a vector of indices to the constant pool. */
b89be57b 17427
9291a0cd 17428static offset_type
3876f04e 17429add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
17430 struct symtab_index_entry *entry)
17431{
17432 void **slot;
17433
3876f04e 17434 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
17435 if (!*slot)
17436 {
17437 offset_type len = VEC_length (offset_type, entry->cu_indices);
17438 offset_type val = MAYBE_SWAP (len);
17439 offset_type iter;
17440 int i;
17441
17442 *slot = entry;
17443 entry->index_offset = obstack_object_size (cpool);
17444
17445 obstack_grow (cpool, &val, sizeof (val));
17446 for (i = 0;
17447 VEC_iterate (offset_type, entry->cu_indices, i, iter);
17448 ++i)
17449 {
17450 val = MAYBE_SWAP (iter);
17451 obstack_grow (cpool, &val, sizeof (val));
17452 }
17453 }
17454 else
17455 {
17456 struct symtab_index_entry *old_entry = *slot;
17457 entry->index_offset = old_entry->index_offset;
17458 entry = old_entry;
17459 }
17460 return entry->index_offset;
17461}
17462
17463/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
17464 constant pool entries going into the obstack CPOOL. */
b89be57b 17465
9291a0cd
TT
17466static void
17467write_hash_table (struct mapped_symtab *symtab,
17468 struct obstack *output, struct obstack *cpool)
17469{
17470 offset_type i;
3876f04e 17471 htab_t symbol_hash_table;
9291a0cd
TT
17472 htab_t str_table;
17473
3876f04e 17474 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 17475 str_table = create_strtab ();
3876f04e 17476
9291a0cd
TT
17477 /* We add all the index vectors to the constant pool first, to
17478 ensure alignment is ok. */
17479 for (i = 0; i < symtab->size; ++i)
17480 {
17481 if (symtab->data[i])
3876f04e 17482 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
17483 }
17484
17485 /* Now write out the hash table. */
17486 for (i = 0; i < symtab->size; ++i)
17487 {
17488 offset_type str_off, vec_off;
17489
17490 if (symtab->data[i])
17491 {
17492 str_off = add_string (str_table, cpool, symtab->data[i]->name);
17493 vec_off = symtab->data[i]->index_offset;
17494 }
17495 else
17496 {
17497 /* While 0 is a valid constant pool index, it is not valid
17498 to have 0 for both offsets. */
17499 str_off = 0;
17500 vec_off = 0;
17501 }
17502
17503 str_off = MAYBE_SWAP (str_off);
17504 vec_off = MAYBE_SWAP (vec_off);
17505
17506 obstack_grow (output, &str_off, sizeof (str_off));
17507 obstack_grow (output, &vec_off, sizeof (vec_off));
17508 }
17509
17510 htab_delete (str_table);
3876f04e 17511 htab_delete (symbol_hash_table);
9291a0cd
TT
17512}
17513
0a5429f6
DE
17514/* Struct to map psymtab to CU index in the index file. */
17515struct psymtab_cu_index_map
17516{
17517 struct partial_symtab *psymtab;
17518 unsigned int cu_index;
17519};
17520
17521static hashval_t
17522hash_psymtab_cu_index (const void *item)
17523{
17524 const struct psymtab_cu_index_map *map = item;
17525
17526 return htab_hash_pointer (map->psymtab);
17527}
17528
17529static int
17530eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
17531{
17532 const struct psymtab_cu_index_map *lhs = item_lhs;
17533 const struct psymtab_cu_index_map *rhs = item_rhs;
17534
17535 return lhs->psymtab == rhs->psymtab;
17536}
17537
17538/* Helper struct for building the address table. */
17539struct addrmap_index_data
17540{
17541 struct objfile *objfile;
17542 struct obstack *addr_obstack;
17543 htab_t cu_index_htab;
17544
17545 /* Non-zero if the previous_* fields are valid.
17546 We can't write an entry until we see the next entry (since it is only then
17547 that we know the end of the entry). */
17548 int previous_valid;
17549 /* Index of the CU in the table of all CUs in the index file. */
17550 unsigned int previous_cu_index;
0963b4bd 17551 /* Start address of the CU. */
0a5429f6
DE
17552 CORE_ADDR previous_cu_start;
17553};
17554
17555/* Write an address entry to OBSTACK. */
b89be57b 17556
9291a0cd 17557static void
0a5429f6
DE
17558add_address_entry (struct objfile *objfile, struct obstack *obstack,
17559 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 17560{
0a5429f6 17561 offset_type cu_index_to_write;
9291a0cd
TT
17562 char addr[8];
17563 CORE_ADDR baseaddr;
17564
17565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17566
0a5429f6
DE
17567 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
17568 obstack_grow (obstack, addr, 8);
17569 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
17570 obstack_grow (obstack, addr, 8);
17571 cu_index_to_write = MAYBE_SWAP (cu_index);
17572 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
17573}
17574
17575/* Worker function for traversing an addrmap to build the address table. */
17576
17577static int
17578add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
17579{
17580 struct addrmap_index_data *data = datap;
17581 struct partial_symtab *pst = obj;
0a5429f6
DE
17582
17583 if (data->previous_valid)
17584 add_address_entry (data->objfile, data->addr_obstack,
17585 data->previous_cu_start, start_addr,
17586 data->previous_cu_index);
17587
17588 data->previous_cu_start = start_addr;
17589 if (pst != NULL)
17590 {
17591 struct psymtab_cu_index_map find_map, *map;
17592 find_map.psymtab = pst;
17593 map = htab_find (data->cu_index_htab, &find_map);
17594 gdb_assert (map != NULL);
17595 data->previous_cu_index = map->cu_index;
17596 data->previous_valid = 1;
17597 }
17598 else
17599 data->previous_valid = 0;
17600
17601 return 0;
17602}
17603
17604/* Write OBJFILE's address map to OBSTACK.
17605 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
17606 in the index file. */
17607
17608static void
17609write_address_map (struct objfile *objfile, struct obstack *obstack,
17610 htab_t cu_index_htab)
17611{
17612 struct addrmap_index_data addrmap_index_data;
17613
17614 /* When writing the address table, we have to cope with the fact that
17615 the addrmap iterator only provides the start of a region; we have to
17616 wait until the next invocation to get the start of the next region. */
17617
17618 addrmap_index_data.objfile = objfile;
17619 addrmap_index_data.addr_obstack = obstack;
17620 addrmap_index_data.cu_index_htab = cu_index_htab;
17621 addrmap_index_data.previous_valid = 0;
17622
17623 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
17624 &addrmap_index_data);
17625
17626 /* It's highly unlikely the last entry (end address = 0xff...ff)
17627 is valid, but we should still handle it.
17628 The end address is recorded as the start of the next region, but that
17629 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
17630 anyway. */
17631 if (addrmap_index_data.previous_valid)
17632 add_address_entry (objfile, obstack,
17633 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
17634 addrmap_index_data.previous_cu_index);
9291a0cd
TT
17635}
17636
17637/* Add a list of partial symbols to SYMTAB. */
b89be57b 17638
9291a0cd
TT
17639static void
17640write_psymbols (struct mapped_symtab *symtab,
987d643c 17641 htab_t psyms_seen,
9291a0cd
TT
17642 struct partial_symbol **psymp,
17643 int count,
987d643c
TT
17644 offset_type cu_index,
17645 int is_static)
9291a0cd
TT
17646{
17647 for (; count-- > 0; ++psymp)
17648 {
987d643c
TT
17649 void **slot, *lookup;
17650
9291a0cd
TT
17651 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
17652 error (_("Ada is not currently supported by the index"));
987d643c
TT
17653
17654 /* We only want to add a given psymbol once. However, we also
17655 want to account for whether it is global or static. So, we
17656 may add it twice, using slightly different values. */
17657 if (is_static)
17658 {
17659 uintptr_t val = 1 | (uintptr_t) *psymp;
17660
17661 lookup = (void *) val;
17662 }
17663 else
17664 lookup = *psymp;
17665
17666 /* Only add a given psymbol once. */
17667 slot = htab_find_slot (psyms_seen, lookup, INSERT);
17668 if (!*slot)
17669 {
17670 *slot = lookup;
bb2f58dc 17671 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
987d643c 17672 }
9291a0cd
TT
17673 }
17674}
17675
17676/* Write the contents of an ("unfinished") obstack to FILE. Throw an
17677 exception if there is an error. */
b89be57b 17678
9291a0cd
TT
17679static void
17680write_obstack (FILE *file, struct obstack *obstack)
17681{
17682 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
17683 file)
17684 != obstack_object_size (obstack))
17685 error (_("couldn't data write to file"));
17686}
17687
17688/* Unlink a file if the argument is not NULL. */
b89be57b 17689
9291a0cd
TT
17690static void
17691unlink_if_set (void *p)
17692{
17693 char **filename = p;
17694 if (*filename)
17695 unlink (*filename);
17696}
17697
1fd400ff
TT
17698/* A helper struct used when iterating over debug_types. */
17699struct signatured_type_index_data
17700{
17701 struct objfile *objfile;
17702 struct mapped_symtab *symtab;
17703 struct obstack *types_list;
987d643c 17704 htab_t psyms_seen;
1fd400ff
TT
17705 int cu_index;
17706};
17707
17708/* A helper function that writes a single signatured_type to an
17709 obstack. */
b89be57b 17710
1fd400ff
TT
17711static int
17712write_one_signatured_type (void **slot, void *d)
17713{
17714 struct signatured_type_index_data *info = d;
17715 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
17716 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
17717 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
17718 gdb_byte val[8];
17719
17720 write_psymbols (info->symtab,
987d643c 17721 info->psyms_seen,
3e43a32a
MS
17722 info->objfile->global_psymbols.list
17723 + psymtab->globals_offset,
987d643c
TT
17724 psymtab->n_global_syms, info->cu_index,
17725 0);
1fd400ff 17726 write_psymbols (info->symtab,
987d643c 17727 info->psyms_seen,
3e43a32a
MS
17728 info->objfile->static_psymbols.list
17729 + psymtab->statics_offset,
987d643c
TT
17730 psymtab->n_static_syms, info->cu_index,
17731 1);
1fd400ff 17732
b64f50a1
JK
17733 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17734 entry->per_cu.offset.sect_off);
1fd400ff 17735 obstack_grow (info->types_list, val, 8);
3019eac3
DE
17736 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17737 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
17738 obstack_grow (info->types_list, val, 8);
17739 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
17740 obstack_grow (info->types_list, val, 8);
17741
17742 ++info->cu_index;
17743
17744 return 1;
17745}
17746
95554aad
TT
17747/* Recurse into all "included" dependencies and write their symbols as
17748 if they appeared in this psymtab. */
17749
17750static void
17751recursively_write_psymbols (struct objfile *objfile,
17752 struct partial_symtab *psymtab,
17753 struct mapped_symtab *symtab,
17754 htab_t psyms_seen,
17755 offset_type cu_index)
17756{
17757 int i;
17758
17759 for (i = 0; i < psymtab->number_of_dependencies; ++i)
17760 if (psymtab->dependencies[i]->user != NULL)
17761 recursively_write_psymbols (objfile, psymtab->dependencies[i],
17762 symtab, psyms_seen, cu_index);
17763
17764 write_psymbols (symtab,
17765 psyms_seen,
17766 objfile->global_psymbols.list + psymtab->globals_offset,
17767 psymtab->n_global_syms, cu_index,
17768 0);
17769 write_psymbols (symtab,
17770 psyms_seen,
17771 objfile->static_psymbols.list + psymtab->statics_offset,
17772 psymtab->n_static_syms, cu_index,
17773 1);
17774}
17775
9291a0cd 17776/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 17777
9291a0cd
TT
17778static void
17779write_psymtabs_to_index (struct objfile *objfile, const char *dir)
17780{
17781 struct cleanup *cleanup;
17782 char *filename, *cleanup_filename;
1fd400ff
TT
17783 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
17784 struct obstack cu_list, types_cu_list;
9291a0cd
TT
17785 int i;
17786 FILE *out_file;
17787 struct mapped_symtab *symtab;
17788 offset_type val, size_of_contents, total_len;
17789 struct stat st;
987d643c 17790 htab_t psyms_seen;
0a5429f6
DE
17791 htab_t cu_index_htab;
17792 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 17793
b4f2f049 17794 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 17795 return;
b4f2f049 17796
9291a0cd
TT
17797 if (dwarf2_per_objfile->using_index)
17798 error (_("Cannot use an index to create the index"));
17799
8b70b953
TT
17800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
17801 error (_("Cannot make an index when the file has multiple .debug_types sections"));
17802
9291a0cd 17803 if (stat (objfile->name, &st) < 0)
7e17e088 17804 perror_with_name (objfile->name);
9291a0cd
TT
17805
17806 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
17807 INDEX_SUFFIX, (char *) NULL);
17808 cleanup = make_cleanup (xfree, filename);
17809
17810 out_file = fopen (filename, "wb");
17811 if (!out_file)
17812 error (_("Can't open `%s' for writing"), filename);
17813
17814 cleanup_filename = filename;
17815 make_cleanup (unlink_if_set, &cleanup_filename);
17816
17817 symtab = create_mapped_symtab ();
17818 make_cleanup (cleanup_mapped_symtab, symtab);
17819
17820 obstack_init (&addr_obstack);
17821 make_cleanup_obstack_free (&addr_obstack);
17822
17823 obstack_init (&cu_list);
17824 make_cleanup_obstack_free (&cu_list);
17825
1fd400ff
TT
17826 obstack_init (&types_cu_list);
17827 make_cleanup_obstack_free (&types_cu_list);
17828
987d643c
TT
17829 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
17830 NULL, xcalloc, xfree);
96408a79 17831 make_cleanup_htab_delete (psyms_seen);
987d643c 17832
0a5429f6
DE
17833 /* While we're scanning CU's create a table that maps a psymtab pointer
17834 (which is what addrmap records) to its index (which is what is recorded
17835 in the index file). This will later be needed to write the address
17836 table. */
17837 cu_index_htab = htab_create_alloc (100,
17838 hash_psymtab_cu_index,
17839 eq_psymtab_cu_index,
17840 NULL, xcalloc, xfree);
96408a79 17841 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
17842 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
17843 xmalloc (sizeof (struct psymtab_cu_index_map)
17844 * dwarf2_per_objfile->n_comp_units);
17845 make_cleanup (xfree, psymtab_cu_index_map);
17846
17847 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
17848 work here. Also, the debug_types entries do not appear in
17849 all_comp_units, but only in their own hash table. */
9291a0cd
TT
17850 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17851 {
3e43a32a
MS
17852 struct dwarf2_per_cu_data *per_cu
17853 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 17854 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 17855 gdb_byte val[8];
0a5429f6
DE
17856 struct psymtab_cu_index_map *map;
17857 void **slot;
9291a0cd 17858
95554aad
TT
17859 if (psymtab->user == NULL)
17860 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 17861
0a5429f6
DE
17862 map = &psymtab_cu_index_map[i];
17863 map->psymtab = psymtab;
17864 map->cu_index = i;
17865 slot = htab_find_slot (cu_index_htab, map, INSERT);
17866 gdb_assert (slot != NULL);
17867 gdb_assert (*slot == NULL);
17868 *slot = map;
9291a0cd 17869
b64f50a1
JK
17870 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17871 per_cu->offset.sect_off);
9291a0cd 17872 obstack_grow (&cu_list, val, 8);
e254ef6a 17873 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
17874 obstack_grow (&cu_list, val, 8);
17875 }
17876
0a5429f6
DE
17877 /* Dump the address map. */
17878 write_address_map (objfile, &addr_obstack, cu_index_htab);
17879
1fd400ff
TT
17880 /* Write out the .debug_type entries, if any. */
17881 if (dwarf2_per_objfile->signatured_types)
17882 {
17883 struct signatured_type_index_data sig_data;
17884
17885 sig_data.objfile = objfile;
17886 sig_data.symtab = symtab;
17887 sig_data.types_list = &types_cu_list;
987d643c 17888 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
17889 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17890 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17891 write_one_signatured_type, &sig_data);
17892 }
17893
9291a0cd
TT
17894 obstack_init (&constant_pool);
17895 make_cleanup_obstack_free (&constant_pool);
17896 obstack_init (&symtab_obstack);
17897 make_cleanup_obstack_free (&symtab_obstack);
17898 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17899
17900 obstack_init (&contents);
17901 make_cleanup_obstack_free (&contents);
1fd400ff 17902 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
17903 total_len = size_of_contents;
17904
17905 /* The version number. */
481860b3 17906 val = MAYBE_SWAP (6);
9291a0cd
TT
17907 obstack_grow (&contents, &val, sizeof (val));
17908
17909 /* The offset of the CU list from the start of the file. */
17910 val = MAYBE_SWAP (total_len);
17911 obstack_grow (&contents, &val, sizeof (val));
17912 total_len += obstack_object_size (&cu_list);
17913
1fd400ff
TT
17914 /* The offset of the types CU list from the start of the file. */
17915 val = MAYBE_SWAP (total_len);
17916 obstack_grow (&contents, &val, sizeof (val));
17917 total_len += obstack_object_size (&types_cu_list);
17918
9291a0cd
TT
17919 /* The offset of the address table from the start of the file. */
17920 val = MAYBE_SWAP (total_len);
17921 obstack_grow (&contents, &val, sizeof (val));
17922 total_len += obstack_object_size (&addr_obstack);
17923
17924 /* The offset of the symbol table from the start of the file. */
17925 val = MAYBE_SWAP (total_len);
17926 obstack_grow (&contents, &val, sizeof (val));
17927 total_len += obstack_object_size (&symtab_obstack);
17928
17929 /* The offset of the constant pool from the start of the file. */
17930 val = MAYBE_SWAP (total_len);
17931 obstack_grow (&contents, &val, sizeof (val));
17932 total_len += obstack_object_size (&constant_pool);
17933
17934 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17935
17936 write_obstack (out_file, &contents);
17937 write_obstack (out_file, &cu_list);
1fd400ff 17938 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
17939 write_obstack (out_file, &addr_obstack);
17940 write_obstack (out_file, &symtab_obstack);
17941 write_obstack (out_file, &constant_pool);
17942
17943 fclose (out_file);
17944
17945 /* We want to keep the file, so we set cleanup_filename to NULL
17946 here. See unlink_if_set. */
17947 cleanup_filename = NULL;
17948
17949 do_cleanups (cleanup);
17950}
17951
90476074
TT
17952/* Implementation of the `save gdb-index' command.
17953
17954 Note that the file format used by this command is documented in the
17955 GDB manual. Any changes here must be documented there. */
11570e71 17956
9291a0cd
TT
17957static void
17958save_gdb_index_command (char *arg, int from_tty)
17959{
17960 struct objfile *objfile;
17961
17962 if (!arg || !*arg)
96d19272 17963 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
17964
17965 ALL_OBJFILES (objfile)
17966 {
17967 struct stat st;
17968
17969 /* If the objfile does not correspond to an actual file, skip it. */
17970 if (stat (objfile->name, &st) < 0)
17971 continue;
17972
17973 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17974 if (dwarf2_per_objfile)
17975 {
17976 volatile struct gdb_exception except;
17977
17978 TRY_CATCH (except, RETURN_MASK_ERROR)
17979 {
17980 write_psymtabs_to_index (objfile, arg);
17981 }
17982 if (except.reason < 0)
17983 exception_fprintf (gdb_stderr, except,
17984 _("Error while writing index for `%s': "),
17985 objfile->name);
17986 }
17987 }
dce234bc
PP
17988}
17989
9291a0cd
TT
17990\f
17991
9eae7c52
TT
17992int dwarf2_always_disassemble;
17993
17994static void
17995show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17996 struct cmd_list_element *c, const char *value)
17997{
3e43a32a
MS
17998 fprintf_filtered (file,
17999 _("Whether to always disassemble "
18000 "DWARF expressions is %s.\n"),
9eae7c52
TT
18001 value);
18002}
18003
900e11f9
JK
18004static void
18005show_check_physname (struct ui_file *file, int from_tty,
18006 struct cmd_list_element *c, const char *value)
18007{
18008 fprintf_filtered (file,
18009 _("Whether to check \"physname\" is %s.\n"),
18010 value);
18011}
18012
6502dd73
DJ
18013void _initialize_dwarf2_read (void);
18014
18015void
18016_initialize_dwarf2_read (void)
18017{
96d19272
JK
18018 struct cmd_list_element *c;
18019
dce234bc 18020 dwarf2_objfile_data_key
c1bd65d0 18021 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 18022
1bedd215
AC
18023 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
18024Set DWARF 2 specific variables.\n\
18025Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
18026 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
18027 0/*allow-unknown*/, &maintenance_set_cmdlist);
18028
1bedd215
AC
18029 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
18030Show DWARF 2 specific variables\n\
18031Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
18032 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
18033 0/*allow-unknown*/, &maintenance_show_cmdlist);
18034
18035 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
18036 &dwarf2_max_cache_age, _("\
18037Set the upper bound on the age of cached dwarf2 compilation units."), _("\
18038Show the upper bound on the age of cached dwarf2 compilation units."), _("\
18039A higher limit means that cached compilation units will be stored\n\
18040in memory longer, and more total memory will be used. Zero disables\n\
18041caching, which can slow down startup."),
2c5b56ce 18042 NULL,
920d2a44 18043 show_dwarf2_max_cache_age,
2c5b56ce 18044 &set_dwarf2_cmdlist,
ae038cb0 18045 &show_dwarf2_cmdlist);
d97bc12b 18046
9eae7c52
TT
18047 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
18048 &dwarf2_always_disassemble, _("\
18049Set whether `info address' always disassembles DWARF expressions."), _("\
18050Show whether `info address' always disassembles DWARF expressions."), _("\
18051When enabled, DWARF expressions are always printed in an assembly-like\n\
18052syntax. When disabled, expressions will be printed in a more\n\
18053conversational style, when possible."),
18054 NULL,
18055 show_dwarf2_always_disassemble,
18056 &set_dwarf2_cmdlist,
18057 &show_dwarf2_cmdlist);
18058
d97bc12b
DE
18059 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
18060Set debugging of the dwarf2 DIE reader."), _("\
18061Show debugging of the dwarf2 DIE reader."), _("\
18062When enabled (non-zero), DIEs are dumped after they are read in.\n\
18063The value is the maximum depth to print."),
18064 NULL,
18065 NULL,
18066 &setdebuglist, &showdebuglist);
9291a0cd 18067
900e11f9
JK
18068 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
18069Set cross-checking of \"physname\" code against demangler."), _("\
18070Show cross-checking of \"physname\" code against demangler."), _("\
18071When enabled, GDB's internal \"physname\" code is checked against\n\
18072the demangler."),
18073 NULL, show_check_physname,
18074 &setdebuglist, &showdebuglist);
18075
96d19272 18076 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 18077 _("\
fc1a9d6e 18078Save a gdb-index file.\n\
11570e71 18079Usage: save gdb-index DIRECTORY"),
96d19272
JK
18080 &save_cmdlist);
18081 set_cmd_completer (c, filename_completer);
6502dd73 18082}
This page took 3.247501 seconds and 4 git commands to generate.