Get "num" as unsigned in ctf
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
3a2b436a 1609/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1610 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1611enum pc_bounds_kind
1612{
e385593e 1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1614 PC_BOUNDS_NOT_PRESENT,
1615
e385593e
JK
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
3a2b436a
JK
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625};
1626
1627static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
c906108c 1631
fae299cd
DC
1632static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
801e3a5b
JB
1636static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
a14ed312 1639static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1640 struct dwarf2_cu *);
c906108c 1641
a14ed312 1642static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1643 struct type *, struct dwarf2_cu *);
c906108c 1644
a14ed312 1645static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1646 struct die_info *, struct type *,
e7c27a73 1647 struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1650 struct type *,
1651 struct dwarf2_cu *);
c906108c 1652
134d01f1 1653static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1654
e7c27a73 1655static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1656
e7c27a73 1657static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1658
5d7cb8df
JK
1659static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
22cee43f
PMR
1661static struct using_direct **using_directives (enum language);
1662
27aa8d6a
SW
1663static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
74921315
KS
1665static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
f55ee35c
JK
1667static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
38d518c9 1670static const char *namespace_name (struct die_info *die,
e142c38c 1671 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1672
134d01f1 1673static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1674
e7c27a73 1675static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1676
6e70227d 1677static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1678 struct dwarf2_cu *);
1679
bf6af496 1680static struct die_info *read_die_and_siblings_1
d521ce57 1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1682 struct die_info *);
639d11d3 1683
dee91e82 1684static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
639d11d3
DC
1687 struct die_info *parent);
1688
d521ce57
TT
1689static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
3019eac3 1692
d521ce57
TT
1693static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
93311388 1696
e7c27a73 1697static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1698
15d034d0
TT
1699static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
71c25dea 1701
15d034d0 1702static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1703
15d034d0 1704static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
ca69b9e6
DE
1708static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
e142c38c 1711static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1712 struct dwarf2_cu **);
9219021c 1713
f39c6ffd 1714static const char *dwarf_tag_name (unsigned int);
c906108c 1715
f39c6ffd 1716static const char *dwarf_attr_name (unsigned int);
c906108c 1717
f39c6ffd 1718static const char *dwarf_form_name (unsigned int);
c906108c 1719
a14ed312 1720static char *dwarf_bool_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1723
f9aca02d 1724static struct die_info *sibling_die (struct die_info *);
c906108c 1725
d97bc12b
DE
1726static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728static void dump_die_for_error (struct die_info *);
1729
1730static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
c906108c 1732
d97bc12b 1733/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1734
51545339 1735static void store_in_ref_table (struct die_info *,
10b3939b 1736 struct dwarf2_cu *);
c906108c 1737
ff39bb5e 1738static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1739
ff39bb5e 1740static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1741
348e048f 1742static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1743 const struct attribute *,
348e048f
DE
1744 struct dwarf2_cu **);
1745
10b3939b 1746static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1747 const struct attribute *,
f2f0e013 1748 struct dwarf2_cu **);
c906108c 1749
348e048f 1750static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1751 const struct attribute *,
348e048f
DE
1752 struct dwarf2_cu **);
1753
ac9ec31b
DE
1754static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1758 const struct attribute *,
ac9ec31b
DE
1759 struct dwarf2_cu *);
1760
e5fe5e75 1761static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1762
52dc124a 1763static void read_signatured_type (struct signatured_type *);
348e048f 1764
63e43d3a
PMR
1765static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
c906108c
SS
1769/* memory allocation interface */
1770
7b5a2f43 1771static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1772
b60c80d6 1773static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1774
43f3e411 1775static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1776
6e5a29e1 1777static int attr_form_is_block (const struct attribute *);
8e19ed76 1778
6e5a29e1 1779static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1780
6e5a29e1 1781static int attr_form_is_constant (const struct attribute *);
3690dd37 1782
6e5a29e1 1783static int attr_form_is_ref (const struct attribute *);
7771576e 1784
8cf6f0b1
TT
1785static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
ff39bb5e 1787 const struct attribute *attr);
8cf6f0b1 1788
ff39bb5e 1789static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1790 struct symbol *sym,
f1e6e072
TT
1791 struct dwarf2_cu *cu,
1792 int is_block);
4c2df51b 1793
d521ce57
TT
1794static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
4bb7a0a7 1797
72bf9492
DJ
1798static void free_stack_comp_unit (void *);
1799
72bf9492
DJ
1800static hashval_t partial_die_hash (const void *item);
1801
1802static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
ae038cb0 1804static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1806
9816fde3 1807static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1808 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1809
1810static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
93311388 1813
68dc6402 1814static void free_heap_comp_unit (void *);
ae038cb0
DJ
1815
1816static void free_cached_comp_units (void *);
1817
1818static void age_cached_comp_units (void);
1819
dee91e82 1820static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1821
f792889a
DJ
1822static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1c379e20 1824
ae038cb0
DJ
1825static void create_all_comp_units (struct objfile *);
1826
0e50663e 1827static int create_all_type_units (struct objfile *);
1fd400ff 1828
95554aad
TT
1829static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
10b3939b 1831
95554aad
TT
1832static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
10b3939b 1834
f4dc4d17
DE
1835static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
10b3939b
DJ
1838static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
ae038cb0
DJ
1841static void dwarf2_mark (struct dwarf2_cu *);
1842
1843static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
b64f50a1 1845static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1846 struct dwarf2_per_cu_data *);
673bfd45 1847
f792889a 1848static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1849
9291a0cd
TT
1850static void dwarf2_release_queue (void *dummy);
1851
95554aad
TT
1852static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
a0f42c21 1855static void process_queue (void);
9291a0cd
TT
1856
1857static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
15d034d0 1859 const char **name, const char **comp_dir);
9291a0cd
TT
1860
1861static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
d521ce57 1864static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
d521ce57 1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1868 int is_debug_types_section);
1869
fd820528 1870static void init_cutu_and_read_dies
f4dc4d17
DE
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
3019eac3
DE
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
dee91e82
DE
1875static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1878
673bfd45 1879static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1880
3019eac3
DE
1881static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
57d63ce2
DE
1883static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1886
1887static struct dwp_file *get_dwp_file (void);
1888
3019eac3 1889static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1891
1892static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1893 (struct signatured_type *, const char *, const char *);
3019eac3 1894
89e63ee4
DE
1895static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
3019eac3
DE
1897static void free_dwo_file_cleanup (void *);
1898
95554aad
TT
1899static void process_cu_includes (void);
1900
1b80a9fa 1901static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1902
1903static void free_line_header_voidp (void *arg);
4390d890
DE
1904\f
1905/* Various complaints about symbol reading that don't abort the process. */
1906
1907static void
1908dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909{
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912}
1913
1914static void
1915dwarf2_debug_line_missing_file_complaint (void)
1916{
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919}
1920
1921static void
1922dwarf2_debug_line_missing_end_sequence_complaint (void)
1923{
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927}
1928
1929static void
1930dwarf2_complex_location_expr_complaint (void)
1931{
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933}
1934
1935static void
1936dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938{
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942}
1943
1944static void
1945dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946{
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
a32a8923
DE
1950 get_section_name (section),
1951 get_section_file_name (section));
4390d890 1952}
1b80a9fa 1953
4390d890
DE
1954static void
1955dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956{
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961}
1962
1963static void
1964dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965{
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969}
527f3840
JK
1970
1971/* Hash function for line_header_hash. */
1972
1973static hashval_t
1974line_header_hash (const struct line_header *ofs)
1975{
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977}
1978
1979/* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981static hashval_t
1982line_header_hash_voidp (const void *item)
1983{
9a3c8263 1984 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1985
1986 return line_header_hash (ofs);
1987}
1988
1989/* Equality function for line_header_hash. */
1990
1991static int
1992line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993{
9a3c8263
SM
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999}
2000
4390d890 2001\f
9291a0cd
TT
2002#if WORDS_BIGENDIAN
2003
2004/* Convert VALUE between big- and little-endian. */
2005static offset_type
2006byte_swap (offset_type value)
2007{
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015}
2016
2017#define MAYBE_SWAP(V) byte_swap (V)
2018
2019#else
2020#define MAYBE_SWAP(V) (V)
2021#endif /* WORDS_BIGENDIAN */
2022
31aa7e4e
JB
2023/* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026static CORE_ADDR
2027attr_value_as_address (struct attribute *attr)
2028{
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051}
2052
9291a0cd
TT
2053/* The suffix for an index file. */
2054#define INDEX_SUFFIX ".gdb-index"
2055
c906108c 2056/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
c906108c
SS
2060
2061int
251d32d9
TG
2062dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
c906108c 2064{
9a3c8263
SM
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
8d749320 2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2072
be391dca
TT
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
6502dd73 2076
251d32d9
TG
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
be391dca
TT
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
73869dc2 2081 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2082 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2083 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2085}
2086
2087/* Return the containing section of virtual section SECTION. */
2088
2089static struct dwarf2_section_info *
2090get_containing_section (const struct dwarf2_section_info *section)
2091{
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
c906108c
SS
2094}
2095
a32a8923
DE
2096/* Return the bfd owner of SECTION. */
2097
2098static struct bfd *
2099get_section_bfd_owner (const struct dwarf2_section_info *section)
2100{
73869dc2
DE
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
049412e3 2106 return section->s.section->owner;
a32a8923
DE
2107}
2108
2109/* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112static asection *
2113get_section_bfd_section (const struct dwarf2_section_info *section)
2114{
73869dc2
DE
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
049412e3 2120 return section->s.section;
a32a8923
DE
2121}
2122
2123/* Return the name of SECTION. */
2124
2125static const char *
2126get_section_name (const struct dwarf2_section_info *section)
2127{
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132}
2133
2134/* Return the name of the file SECTION is in. */
2135
2136static const char *
2137get_section_file_name (const struct dwarf2_section_info *section)
2138{
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142}
2143
2144/* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147static int
2148get_section_id (const struct dwarf2_section_info *section)
2149{
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155}
2156
2157/* Return the flags of SECTION.
73869dc2 2158 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2159
2160static int
2161get_section_flags (const struct dwarf2_section_info *section)
2162{
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167}
2168
251d32d9
TG
2169/* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
233a11ab
CS
2171
2172static int
251d32d9
TG
2173section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
233a11ab 2175{
251d32d9
TG
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
233a11ab
CS
2183}
2184
c906108c
SS
2185/* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189static void
251d32d9 2190dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2191{
251d32d9 2192 const struct dwarf2_debug_sections *names;
dc7650b8 2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
dc7650b8
JK
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2207 }
251d32d9 2208 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2209 {
049412e3 2210 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->line))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2217 }
251d32d9 2218 else if (section_is_p (sectp->name, &names->loc))
c906108c 2219 {
049412e3 2220 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2224 {
049412e3 2225 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2227 }
cf2c3c16
TT
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
049412e3 2230 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->str))
c906108c 2234 {
049412e3 2235 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2237 }
3019eac3
DE
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
049412e3 2240 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
251d32d9 2243 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2244 {
049412e3 2245 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2247 }
251d32d9 2248 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2249 {
049412e3 2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2252 }
251d32d9 2253 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2254 {
049412e3 2255 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2257 }
251d32d9 2258 else if (section_is_p (sectp->name, &names->types))
348e048f 2259 {
8b70b953
TT
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
049412e3 2263 type_section.s.section = sectp;
8b70b953
TT
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
348e048f 2268 }
251d32d9 2269 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2270 {
049412e3 2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
dce234bc 2274
b4e1fd61 2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2278}
2279
fceca515
DE
2280/* A helper function that decides whether a section is empty,
2281 or not present. */
9e0ac564
TT
2282
2283static int
19ac8c2e 2284dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2285{
73869dc2
DE
2286 if (section->is_virtual)
2287 return section->size == 0;
049412e3 2288 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2289}
2290
3019eac3
DE
2291/* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
dce234bc 2295 If the section is compressed, uncompress it before returning. */
c906108c 2296
dce234bc
PP
2297static void
2298dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2299{
a32a8923 2300 asection *sectp;
3019eac3 2301 bfd *abfd;
dce234bc 2302 gdb_byte *buf, *retbuf;
c906108c 2303
be391dca
TT
2304 if (info->readin)
2305 return;
dce234bc 2306 info->buffer = NULL;
be391dca 2307 info->readin = 1;
188dd5d6 2308
9e0ac564 2309 if (dwarf2_section_empty_p (info))
dce234bc 2310 return;
c906108c 2311
a32a8923 2312 sectp = get_section_bfd_section (info);
3019eac3 2313
73869dc2
DE
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
4bf44c1c
TT
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2342 {
d521ce57 2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2344 return;
dce234bc 2345 }
dce234bc 2346
224c3ddb 2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2348 info->buffer = buf;
dce234bc
PP
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
ac8035ab 2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
a32a8923
DE
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
dce234bc
PP
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
dce234bc
PP
2371}
2372
9e0ac564
TT
2373/* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380static bfd_size_type
2381dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383{
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387}
2388
dce234bc 2389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2390 SECTION_NAME. */
af34e669 2391
dce234bc 2392void
3017a003
TG
2393dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
d521ce57 2395 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2396 bfd_size_type *sizep)
2397{
2398 struct dwarf2_per_objfile *data
9a3c8263
SM
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
dce234bc 2401 struct dwarf2_section_info *info;
a3b2a86b
TT
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
3017a003
TG
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
dce234bc 2423
9e0ac564 2424 dwarf2_read_section (objfile, info);
dce234bc 2425
a32a8923 2426 *sectp = get_section_bfd_section (info);
dce234bc
PP
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429}
2430
36586728
TT
2431/* A helper function to find the sections for a .dwz file. */
2432
2433static void
2434locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435{
9a3c8263 2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
049412e3 2442 dwz_file->abbrev.s.section = sectp;
36586728
TT
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
049412e3 2447 dwz_file->info.s.section = sectp;
36586728
TT
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
049412e3 2452 dwz_file->str.s.section = sectp;
36586728
TT
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
049412e3 2457 dwz_file->line.s.section = sectp;
36586728
TT
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
049412e3 2462 dwz_file->macro.s.section = sectp;
36586728
TT
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2ec9a5e0
TT
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
049412e3 2467 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
36586728
TT
2470}
2471
4db1a1dc
TT
2472/* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
36586728
TT
2475
2476static struct dwz_file *
2477dwarf2_get_dwz_file (void)
2478{
4db1a1dc
TT
2479 bfd *dwz_bfd;
2480 char *data;
36586728
TT
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
acd13123 2484 bfd_size_type buildid_len_arg;
dc294be5
TT
2485 size_t buildid_len;
2486 bfd_byte *buildid;
36586728
TT
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
4db1a1dc
TT
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2493 &buildid_len_arg, &buildid);
4db1a1dc
TT
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
36586728 2501 cleanup = make_cleanup (xfree, data);
dc294be5 2502 make_cleanup (xfree, buildid);
36586728 2503
acd13123
TT
2504 buildid_len = (size_t) buildid_len_arg;
2505
f9d83a0b 2506 filename = (const char *) data;
36586728
TT
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
4262abfb 2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
dc294be5
TT
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
36586728 2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2524 if (dwz_bfd != NULL)
36586728 2525 {
dc294be5
TT
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
13aaf454 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49
JK
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_java
45280282
IB
3010 || current_language->la_language == language_fortran
3011 || current_language->la_language == language_d)
0cf03b49
JK
3012 {
3013 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3014 not contain any. */
a8719064 3015
72998fb3 3016 if (strchr (name, '(') != NULL)
0cf03b49 3017 {
72998fb3 3018 char *without_params = cp_remove_params (name);
0cf03b49 3019
72998fb3
DE
3020 if (without_params != NULL)
3021 {
3022 make_cleanup (xfree, without_params);
3023 name = without_params;
3024 }
0cf03b49
JK
3025 }
3026 }
3027
559a7a62 3028 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3029 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3030 simulate our NAME being searched is also lowercased. */
3031 hash = mapped_index_string_hash ((index->version == 4
3032 && case_sensitivity == case_sensitive_off
3033 ? 5 : index->version),
3034 name);
3035
3876f04e
DE
3036 slot = hash & (index->symbol_table_slots - 1);
3037 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3038 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3039
3040 for (;;)
3041 {
3042 /* Convert a slot number to an offset into the table. */
3043 offset_type i = 2 * slot;
3044 const char *str;
3876f04e 3045 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3046 {
3047 do_cleanups (back_to);
3048 return 0;
3049 }
9291a0cd 3050
3876f04e 3051 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3052 if (!cmp (name, str))
9291a0cd
TT
3053 {
3054 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3055 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3056 do_cleanups (back_to);
9291a0cd
TT
3057 return 1;
3058 }
3059
3876f04e 3060 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3061 }
3062}
3063
2ec9a5e0
TT
3064/* A helper function that reads the .gdb_index from SECTION and fills
3065 in MAP. FILENAME is the name of the file containing the section;
3066 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3067 ok to use deprecated sections.
3068
3069 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3070 out parameters that are filled in with information about the CU and
3071 TU lists in the section.
3072
3073 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3074
9291a0cd 3075static int
2ec9a5e0
TT
3076read_index_from_section (struct objfile *objfile,
3077 const char *filename,
3078 int deprecated_ok,
3079 struct dwarf2_section_info *section,
3080 struct mapped_index *map,
3081 const gdb_byte **cu_list,
3082 offset_type *cu_list_elements,
3083 const gdb_byte **types_list,
3084 offset_type *types_list_elements)
9291a0cd 3085{
948f8e3d 3086 const gdb_byte *addr;
2ec9a5e0 3087 offset_type version;
b3b272e1 3088 offset_type *metadata;
1fd400ff 3089 int i;
9291a0cd 3090
2ec9a5e0 3091 if (dwarf2_section_empty_p (section))
9291a0cd 3092 return 0;
82430852
JK
3093
3094 /* Older elfutils strip versions could keep the section in the main
3095 executable while splitting it for the separate debug info file. */
a32a8923 3096 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3097 return 0;
3098
2ec9a5e0 3099 dwarf2_read_section (objfile, section);
9291a0cd 3100
2ec9a5e0 3101 addr = section->buffer;
9291a0cd 3102 /* Version check. */
1fd400ff 3103 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3104 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3105 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3106 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3107 indices. */
831adc1f 3108 if (version < 4)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3114 filename);
481860b3
GB
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Index version 4 uses a different hash function than index version
3120 5 and later.
3121
3122 Versions earlier than 6 did not emit psymbols for inlined
3123 functions. Using these files will cause GDB not to be able to
3124 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3125 indices unless the user has done
3126 "set use-deprecated-index-sections on". */
2ec9a5e0 3127 if (version < 6 && !deprecated_ok)
481860b3
GB
3128 {
3129 static int warning_printed = 0;
3130 if (!warning_printed)
3131 {
e615022a
DE
3132 warning (_("\
3133Skipping deprecated .gdb_index section in %s.\n\
3134Do \"set use-deprecated-index-sections on\" before the file is read\n\
3135to use the section anyway."),
2ec9a5e0 3136 filename);
481860b3
GB
3137 warning_printed = 1;
3138 }
3139 return 0;
3140 }
796a7ff8 3141 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3142 of the TU (for symbols coming from TUs),
3143 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3144 Plus gold-generated indices can have duplicate entries for global symbols,
3145 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3146 These are just performance bugs, and we can't distinguish gdb-generated
3147 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3148
481860b3 3149 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3150 longer backward compatible. */
796a7ff8 3151 if (version > 8)
594e8718 3152 return 0;
9291a0cd 3153
559a7a62 3154 map->version = version;
2ec9a5e0 3155 map->total_size = section->size;
9291a0cd
TT
3156
3157 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3158
3159 i = 0;
2ec9a5e0
TT
3160 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3161 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3162 / 8);
1fd400ff
TT
3163 ++i;
3164
2ec9a5e0
TT
3165 *types_list = addr + MAYBE_SWAP (metadata[i]);
3166 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3167 - MAYBE_SWAP (metadata[i]))
3168 / 8);
987d643c 3169 ++i;
1fd400ff
TT
3170
3171 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3172 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3173 - MAYBE_SWAP (metadata[i]));
3174 ++i;
3175
3876f04e
DE
3176 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3177 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3178 - MAYBE_SWAP (metadata[i]))
3179 / (2 * sizeof (offset_type)));
1fd400ff 3180 ++i;
9291a0cd 3181
f9d83a0b 3182 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3183
2ec9a5e0
TT
3184 return 1;
3185}
3186
3187
3188/* Read the index file. If everything went ok, initialize the "quick"
3189 elements of all the CUs and return 1. Otherwise, return 0. */
3190
3191static int
3192dwarf2_read_index (struct objfile *objfile)
3193{
3194 struct mapped_index local_map, *map;
3195 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3196 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3197 struct dwz_file *dwz;
2ec9a5e0 3198
4262abfb 3199 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3200 use_deprecated_index_sections,
3201 &dwarf2_per_objfile->gdb_index, &local_map,
3202 &cu_list, &cu_list_elements,
3203 &types_list, &types_list_elements))
3204 return 0;
3205
0fefef59 3206 /* Don't use the index if it's empty. */
2ec9a5e0 3207 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3208 return 0;
3209
2ec9a5e0
TT
3210 /* If there is a .dwz file, read it so we can get its CU list as
3211 well. */
4db1a1dc
TT
3212 dwz = dwarf2_get_dwz_file ();
3213 if (dwz != NULL)
2ec9a5e0 3214 {
2ec9a5e0
TT
3215 struct mapped_index dwz_map;
3216 const gdb_byte *dwz_types_ignore;
3217 offset_type dwz_types_elements_ignore;
3218
3219 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3220 1,
3221 &dwz->gdb_index, &dwz_map,
3222 &dwz_list, &dwz_list_elements,
3223 &dwz_types_ignore,
3224 &dwz_types_elements_ignore))
3225 {
3226 warning (_("could not read '.gdb_index' section from %s; skipping"),
3227 bfd_get_filename (dwz->dwz_bfd));
3228 return 0;
3229 }
3230 }
3231
74a0d9f6
JK
3232 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3233 dwz_list_elements);
1fd400ff 3234
8b70b953
TT
3235 if (types_list_elements)
3236 {
3237 struct dwarf2_section_info *section;
3238
3239 /* We can only handle a single .debug_types when we have an
3240 index. */
3241 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3242 return 0;
3243
3244 section = VEC_index (dwarf2_section_info_def,
3245 dwarf2_per_objfile->types, 0);
3246
74a0d9f6
JK
3247 create_signatured_type_table_from_index (objfile, section, types_list,
3248 types_list_elements);
8b70b953 3249 }
9291a0cd 3250
2ec9a5e0
TT
3251 create_addrmap_from_index (objfile, &local_map);
3252
8d749320 3253 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3254 *map = local_map;
9291a0cd
TT
3255
3256 dwarf2_per_objfile->index_table = map;
3257 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3258 dwarf2_per_objfile->quick_file_names_table =
3259 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3260
3261 return 1;
3262}
3263
3264/* A helper for the "quick" functions which sets the global
3265 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3266
9291a0cd
TT
3267static void
3268dw2_setup (struct objfile *objfile)
3269{
9a3c8263
SM
3270 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3271 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3272 gdb_assert (dwarf2_per_objfile);
3273}
3274
dee91e82 3275/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3276
dee91e82
DE
3277static void
3278dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3279 const gdb_byte *info_ptr,
dee91e82
DE
3280 struct die_info *comp_unit_die,
3281 int has_children,
3282 void *data)
9291a0cd 3283{
dee91e82
DE
3284 struct dwarf2_cu *cu = reader->cu;
3285 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3286 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3287 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3288 struct line_header *lh;
9291a0cd 3289 struct attribute *attr;
dee91e82 3290 int i;
15d034d0 3291 const char *name, *comp_dir;
7b9f3c50
DE
3292 void **slot;
3293 struct quick_file_names *qfn;
3294 unsigned int line_offset;
9291a0cd 3295
0186c6a7
DE
3296 gdb_assert (! this_cu->is_debug_types);
3297
07261596
TT
3298 /* Our callers never want to match partial units -- instead they
3299 will match the enclosing full CU. */
3300 if (comp_unit_die->tag == DW_TAG_partial_unit)
3301 {
3302 this_cu->v.quick->no_file_data = 1;
3303 return;
3304 }
3305
0186c6a7 3306 lh_cu = this_cu;
7b9f3c50
DE
3307 lh = NULL;
3308 slot = NULL;
3309 line_offset = 0;
dee91e82
DE
3310
3311 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3312 if (attr)
3313 {
7b9f3c50
DE
3314 struct quick_file_names find_entry;
3315
3316 line_offset = DW_UNSND (attr);
3317
3318 /* We may have already read in this line header (TU line header sharing).
3319 If we have we're done. */
094b34ac
DE
3320 find_entry.hash.dwo_unit = cu->dwo_unit;
3321 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3323 &find_entry, INSERT);
3324 if (*slot != NULL)
3325 {
9a3c8263 3326 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3327 return;
7b9f3c50
DE
3328 }
3329
3019eac3 3330 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3331 }
3332 if (lh == NULL)
3333 {
094b34ac 3334 lh_cu->v.quick->no_file_data = 1;
dee91e82 3335 return;
9291a0cd
TT
3336 }
3337
8d749320 3338 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3339 qfn->hash.dwo_unit = cu->dwo_unit;
3340 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3341 gdb_assert (slot != NULL);
3342 *slot = qfn;
9291a0cd 3343
dee91e82 3344 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3345
7b9f3c50 3346 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3347 qfn->file_names =
3348 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3349 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3350 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3351 qfn->real_names = NULL;
9291a0cd 3352
7b9f3c50 3353 free_line_header (lh);
7b9f3c50 3354
094b34ac 3355 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3356}
3357
3358/* A helper for the "quick" functions which attempts to read the line
3359 table for THIS_CU. */
3360
3361static struct quick_file_names *
e4a48d9d 3362dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3363{
0186c6a7
DE
3364 /* This should never be called for TUs. */
3365 gdb_assert (! this_cu->is_debug_types);
3366 /* Nor type unit groups. */
3367 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3368
dee91e82
DE
3369 if (this_cu->v.quick->file_names != NULL)
3370 return this_cu->v.quick->file_names;
3371 /* If we know there is no line data, no point in looking again. */
3372 if (this_cu->v.quick->no_file_data)
3373 return NULL;
3374
0186c6a7 3375 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3376
3377 if (this_cu->v.quick->no_file_data)
3378 return NULL;
3379 return this_cu->v.quick->file_names;
9291a0cd
TT
3380}
3381
3382/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3383 real path for a given file name from the line table. */
2fdf6df6 3384
9291a0cd 3385static const char *
7b9f3c50
DE
3386dw2_get_real_path (struct objfile *objfile,
3387 struct quick_file_names *qfn, int index)
9291a0cd 3388{
7b9f3c50
DE
3389 if (qfn->real_names == NULL)
3390 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3391 qfn->num_file_names, const char *);
9291a0cd 3392
7b9f3c50
DE
3393 if (qfn->real_names[index] == NULL)
3394 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3395
7b9f3c50 3396 return qfn->real_names[index];
9291a0cd
TT
3397}
3398
3399static struct symtab *
3400dw2_find_last_source_symtab (struct objfile *objfile)
3401{
43f3e411 3402 struct compunit_symtab *cust;
9291a0cd 3403 int index;
ae2de4f8 3404
9291a0cd
TT
3405 dw2_setup (objfile);
3406 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3407 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3408 if (cust == NULL)
3409 return NULL;
3410 return compunit_primary_filetab (cust);
9291a0cd
TT
3411}
3412
7b9f3c50
DE
3413/* Traversal function for dw2_forget_cached_source_info. */
3414
3415static int
3416dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3417{
7b9f3c50 3418 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3419
7b9f3c50 3420 if (file_data->real_names)
9291a0cd 3421 {
7b9f3c50 3422 int i;
9291a0cd 3423
7b9f3c50 3424 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3425 {
7b9f3c50
DE
3426 xfree ((void*) file_data->real_names[i]);
3427 file_data->real_names[i] = NULL;
9291a0cd
TT
3428 }
3429 }
7b9f3c50
DE
3430
3431 return 1;
3432}
3433
3434static void
3435dw2_forget_cached_source_info (struct objfile *objfile)
3436{
3437 dw2_setup (objfile);
3438
3439 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3440 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3441}
3442
f8eba3c6
TT
3443/* Helper function for dw2_map_symtabs_matching_filename that expands
3444 the symtabs and calls the iterator. */
3445
3446static int
3447dw2_map_expand_apply (struct objfile *objfile,
3448 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3449 const char *name, const char *real_path,
f8eba3c6
TT
3450 int (*callback) (struct symtab *, void *),
3451 void *data)
3452{
43f3e411 3453 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3454
3455 /* Don't visit already-expanded CUs. */
43f3e411 3456 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3457 return 0;
3458
3459 /* This may expand more than one symtab, and we want to iterate over
3460 all of them. */
a0f42c21 3461 dw2_instantiate_symtab (per_cu);
f8eba3c6 3462
f5b95b50 3463 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3464 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3465}
3466
3467/* Implementation of the map_symtabs_matching_filename method. */
3468
9291a0cd 3469static int
f8eba3c6 3470dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3471 const char *real_path,
f8eba3c6
TT
3472 int (*callback) (struct symtab *, void *),
3473 void *data)
9291a0cd
TT
3474{
3475 int i;
c011a4f4 3476 const char *name_basename = lbasename (name);
9291a0cd
TT
3477
3478 dw2_setup (objfile);
ae2de4f8 3479
848e3e78
DE
3480 /* The rule is CUs specify all the files, including those used by
3481 any TU, so there's no need to scan TUs here. */
f4dc4d17 3482
848e3e78 3483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3484 {
3485 int j;
8832e7e3 3486 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3487 struct quick_file_names *file_data;
9291a0cd 3488
3d7bb9d9 3489 /* We only need to look at symtabs not already expanded. */
43f3e411 3490 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3491 continue;
3492
e4a48d9d 3493 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3494 if (file_data == NULL)
9291a0cd
TT
3495 continue;
3496
7b9f3c50 3497 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3498 {
7b9f3c50 3499 const char *this_name = file_data->file_names[j];
da235a7c 3500 const char *this_real_name;
9291a0cd 3501
af529f8f 3502 if (compare_filenames_for_search (this_name, name))
9291a0cd 3503 {
f5b95b50 3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3505 callback, data))
3506 return 1;
288e77a7 3507 continue;
4aac40c8 3508 }
9291a0cd 3509
c011a4f4
DE
3510 /* Before we invoke realpath, which can get expensive when many
3511 files are involved, do a quick comparison of the basenames. */
3512 if (! basenames_may_differ
3513 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3514 continue;
3515
da235a7c
JK
3516 this_real_name = dw2_get_real_path (objfile, file_data, j);
3517 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3518 {
da235a7c
JK
3519 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3520 callback, data))
3521 return 1;
288e77a7 3522 continue;
da235a7c 3523 }
9291a0cd 3524
da235a7c
JK
3525 if (real_path != NULL)
3526 {
af529f8f
JK
3527 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3528 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3529 if (this_real_name != NULL
af529f8f 3530 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3531 {
f5b95b50 3532 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3533 callback, data))
3534 return 1;
288e77a7 3535 continue;
9291a0cd
TT
3536 }
3537 }
3538 }
3539 }
3540
9291a0cd
TT
3541 return 0;
3542}
3543
da51c347
DE
3544/* Struct used to manage iterating over all CUs looking for a symbol. */
3545
3546struct dw2_symtab_iterator
9291a0cd 3547{
da51c347
DE
3548 /* The internalized form of .gdb_index. */
3549 struct mapped_index *index;
3550 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3551 int want_specific_block;
3552 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3553 Unused if !WANT_SPECIFIC_BLOCK. */
3554 int block_index;
3555 /* The kind of symbol we're looking for. */
3556 domain_enum domain;
3557 /* The list of CUs from the index entry of the symbol,
3558 or NULL if not found. */
3559 offset_type *vec;
3560 /* The next element in VEC to look at. */
3561 int next;
3562 /* The number of elements in VEC, or zero if there is no match. */
3563 int length;
8943b874
DE
3564 /* Have we seen a global version of the symbol?
3565 If so we can ignore all further global instances.
3566 This is to work around gold/15646, inefficient gold-generated
3567 indices. */
3568 int global_seen;
da51c347 3569};
9291a0cd 3570
da51c347
DE
3571/* Initialize the index symtab iterator ITER.
3572 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3573 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3574
9291a0cd 3575static void
da51c347
DE
3576dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3577 struct mapped_index *index,
3578 int want_specific_block,
3579 int block_index,
3580 domain_enum domain,
3581 const char *name)
3582{
3583 iter->index = index;
3584 iter->want_specific_block = want_specific_block;
3585 iter->block_index = block_index;
3586 iter->domain = domain;
3587 iter->next = 0;
8943b874 3588 iter->global_seen = 0;
da51c347
DE
3589
3590 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3591 iter->length = MAYBE_SWAP (*iter->vec);
3592 else
3593 {
3594 iter->vec = NULL;
3595 iter->length = 0;
3596 }
3597}
3598
3599/* Return the next matching CU or NULL if there are no more. */
3600
3601static struct dwarf2_per_cu_data *
3602dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3603{
3604 for ( ; iter->next < iter->length; ++iter->next)
3605 {
3606 offset_type cu_index_and_attrs =
3607 MAYBE_SWAP (iter->vec[iter->next + 1]);
3608 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3609 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3610 int want_static = iter->block_index != GLOBAL_BLOCK;
3611 /* This value is only valid for index versions >= 7. */
3612 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3613 gdb_index_symbol_kind symbol_kind =
3614 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3615 /* Only check the symbol attributes if they're present.
3616 Indices prior to version 7 don't record them,
3617 and indices >= 7 may elide them for certain symbols
3618 (gold does this). */
3619 int attrs_valid =
3620 (iter->index->version >= 7
3621 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3622
3190f0c6
DE
3623 /* Don't crash on bad data. */
3624 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3625 + dwarf2_per_objfile->n_type_units))
3626 {
3627 complaint (&symfile_complaints,
3628 _(".gdb_index entry has bad CU index"
4262abfb
JK
3629 " [in module %s]"),
3630 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3631 continue;
3632 }
3633
8832e7e3 3634 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3635
da51c347 3636 /* Skip if already read in. */
43f3e411 3637 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3638 continue;
3639
8943b874
DE
3640 /* Check static vs global. */
3641 if (attrs_valid)
3642 {
3643 if (iter->want_specific_block
3644 && want_static != is_static)
3645 continue;
3646 /* Work around gold/15646. */
3647 if (!is_static && iter->global_seen)
3648 continue;
3649 if (!is_static)
3650 iter->global_seen = 1;
3651 }
da51c347
DE
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (iter->domain)
3657 {
3658 case VAR_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3660 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3661 /* Some types are also in VAR_DOMAIN. */
3662 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3663 continue;
3664 break;
3665 case STRUCT_DOMAIN:
3666 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3667 continue;
3668 break;
3669 case LABEL_DOMAIN:
3670 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3671 continue;
3672 break;
3673 default:
3674 break;
3675 }
3676 }
3677
3678 ++iter->next;
3679 return per_cu;
3680 }
3681
3682 return NULL;
3683}
3684
43f3e411 3685static struct compunit_symtab *
da51c347
DE
3686dw2_lookup_symbol (struct objfile *objfile, int block_index,
3687 const char *name, domain_enum domain)
9291a0cd 3688{
43f3e411 3689 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3690 struct mapped_index *index;
3691
9291a0cd
TT
3692 dw2_setup (objfile);
3693
156942c7
DE
3694 index = dwarf2_per_objfile->index_table;
3695
da51c347 3696 /* index is NULL if OBJF_READNOW. */
156942c7 3697 if (index)
9291a0cd 3698 {
da51c347
DE
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3703
da51c347 3704 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3705 {
b2e2f908 3706 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3707 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3708 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3709 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3710
b2e2f908
DE
3711 sym = block_find_symbol (block, name, domain,
3712 block_find_non_opaque_type_preferred,
3713 &with_opaque);
3714
da51c347
DE
3715 /* Some caution must be observed with overloaded functions
3716 and methods, since the index will not contain any overload
3717 information (but NAME might contain it). */
da51c347 3718
b2e2f908
DE
3719 if (sym != NULL
3720 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3721 return stab;
3722 if (with_opaque != NULL
3723 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3724 stab_best = stab;
da51c347
DE
3725
3726 /* Keep looking through other CUs. */
9291a0cd
TT
3727 }
3728 }
9291a0cd 3729
da51c347 3730 return stab_best;
9291a0cd
TT
3731}
3732
3733static void
3734dw2_print_stats (struct objfile *objfile)
3735{
e4a48d9d 3736 int i, total, count;
9291a0cd
TT
3737
3738 dw2_setup (objfile);
e4a48d9d 3739 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3740 count = 0;
e4a48d9d 3741 for (i = 0; i < total; ++i)
9291a0cd 3742 {
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3744
43f3e411 3745 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3746 ++count;
3747 }
e4a48d9d 3748 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3749 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3750}
3751
779bd270
DE
3752/* This dumps minimal information about the index.
3753 It is called via "mt print objfiles".
3754 One use is to verify .gdb_index has been loaded by the
3755 gdb.dwarf2/gdb-index.exp testcase. */
3756
9291a0cd
TT
3757static void
3758dw2_dump (struct objfile *objfile)
3759{
779bd270
DE
3760 dw2_setup (objfile);
3761 gdb_assert (dwarf2_per_objfile->using_index);
3762 printf_filtered (".gdb_index:");
3763 if (dwarf2_per_objfile->index_table != NULL)
3764 {
3765 printf_filtered (" version %d\n",
3766 dwarf2_per_objfile->index_table->version);
3767 }
3768 else
3769 printf_filtered (" faked for \"readnow\"\n");
3770 printf_filtered ("\n");
9291a0cd
TT
3771}
3772
3773static void
3189cb12
DE
3774dw2_relocate (struct objfile *objfile,
3775 const struct section_offsets *new_offsets,
3776 const struct section_offsets *delta)
9291a0cd
TT
3777{
3778 /* There's nothing to relocate here. */
3779}
3780
3781static void
3782dw2_expand_symtabs_for_function (struct objfile *objfile,
3783 const char *func_name)
3784{
da51c347
DE
3785 struct mapped_index *index;
3786
3787 dw2_setup (objfile);
3788
3789 index = dwarf2_per_objfile->index_table;
3790
3791 /* index is NULL if OBJF_READNOW. */
3792 if (index)
3793 {
3794 struct dw2_symtab_iterator iter;
3795 struct dwarf2_per_cu_data *per_cu;
3796
3797 /* Note: It doesn't matter what we pass for block_index here. */
3798 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3799 func_name);
3800
3801 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3802 dw2_instantiate_symtab (per_cu);
3803 }
9291a0cd
TT
3804}
3805
3806static void
3807dw2_expand_all_symtabs (struct objfile *objfile)
3808{
3809 int i;
3810
3811 dw2_setup (objfile);
1fd400ff
TT
3812
3813 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3814 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3815 {
8832e7e3 3816 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3817
a0f42c21 3818 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3819 }
3820}
3821
3822static void
652a8996
JK
3823dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3824 const char *fullname)
9291a0cd
TT
3825{
3826 int i;
3827
3828 dw2_setup (objfile);
d4637a04
DE
3829
3830 /* We don't need to consider type units here.
3831 This is only called for examining code, e.g. expand_line_sal.
3832 There can be an order of magnitude (or more) more type units
3833 than comp units, and we avoid them if we can. */
3834
3835 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3836 {
3837 int j;
8832e7e3 3838 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3839 struct quick_file_names *file_data;
9291a0cd 3840
3d7bb9d9 3841 /* We only need to look at symtabs not already expanded. */
43f3e411 3842 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3843 continue;
3844
e4a48d9d 3845 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3846 if (file_data == NULL)
9291a0cd
TT
3847 continue;
3848
7b9f3c50 3849 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3850 {
652a8996
JK
3851 const char *this_fullname = file_data->file_names[j];
3852
3853 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3854 {
a0f42c21 3855 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3856 break;
3857 }
3858 }
3859 }
3860}
3861
9291a0cd 3862static void
ade7ed9e 3863dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3864 const char * name, domain_enum domain,
ade7ed9e 3865 int global,
40658b94
PH
3866 int (*callback) (struct block *,
3867 struct symbol *, void *),
2edb89d3
JK
3868 void *data, symbol_compare_ftype *match,
3869 symbol_compare_ftype *ordered_compare)
9291a0cd 3870{
40658b94 3871 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3872 current language is Ada for a non-Ada objfile using GNU index. As Ada
3873 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3874}
3875
3876static void
f8eba3c6
TT
3877dw2_expand_symtabs_matching
3878 (struct objfile *objfile,
206f2a57
DE
3879 expand_symtabs_file_matcher_ftype *file_matcher,
3880 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3881 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3882 enum search_domain kind,
3883 void *data)
9291a0cd
TT
3884{
3885 int i;
3886 offset_type iter;
4b5246aa 3887 struct mapped_index *index;
9291a0cd
TT
3888
3889 dw2_setup (objfile);
ae2de4f8
DE
3890
3891 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3892 if (!dwarf2_per_objfile->index_table)
3893 return;
4b5246aa 3894 index = dwarf2_per_objfile->index_table;
9291a0cd 3895
7b08b9eb 3896 if (file_matcher != NULL)
24c79950
TT
3897 {
3898 struct cleanup *cleanup;
3899 htab_t visited_found, visited_not_found;
3900
3901 visited_found = htab_create_alloc (10,
3902 htab_hash_pointer, htab_eq_pointer,
3903 NULL, xcalloc, xfree);
3904 cleanup = make_cleanup_htab_delete (visited_found);
3905 visited_not_found = htab_create_alloc (10,
3906 htab_hash_pointer, htab_eq_pointer,
3907 NULL, xcalloc, xfree);
3908 make_cleanup_htab_delete (visited_not_found);
3909
848e3e78
DE
3910 /* The rule is CUs specify all the files, including those used by
3911 any TU, so there's no need to scan TUs here. */
3912
3913 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3914 {
3915 int j;
8832e7e3 3916 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3917 struct quick_file_names *file_data;
3918 void **slot;
7b08b9eb 3919
61d96d7e
DE
3920 QUIT;
3921
24c79950 3922 per_cu->v.quick->mark = 0;
3d7bb9d9 3923
24c79950 3924 /* We only need to look at symtabs not already expanded. */
43f3e411 3925 if (per_cu->v.quick->compunit_symtab)
24c79950 3926 continue;
7b08b9eb 3927
e4a48d9d 3928 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3929 if (file_data == NULL)
3930 continue;
7b08b9eb 3931
24c79950
TT
3932 if (htab_find (visited_not_found, file_data) != NULL)
3933 continue;
3934 else if (htab_find (visited_found, file_data) != NULL)
3935 {
3936 per_cu->v.quick->mark = 1;
3937 continue;
3938 }
3939
3940 for (j = 0; j < file_data->num_file_names; ++j)
3941 {
da235a7c
JK
3942 const char *this_real_name;
3943
fbd9ab74 3944 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3945 {
3946 per_cu->v.quick->mark = 1;
3947 break;
3948 }
da235a7c
JK
3949
3950 /* Before we invoke realpath, which can get expensive when many
3951 files are involved, do a quick comparison of the basenames. */
3952 if (!basenames_may_differ
3953 && !file_matcher (lbasename (file_data->file_names[j]),
3954 data, 1))
3955 continue;
3956
3957 this_real_name = dw2_get_real_path (objfile, file_data, j);
3958 if (file_matcher (this_real_name, data, 0))
3959 {
3960 per_cu->v.quick->mark = 1;
3961 break;
3962 }
24c79950
TT
3963 }
3964
3965 slot = htab_find_slot (per_cu->v.quick->mark
3966 ? visited_found
3967 : visited_not_found,
3968 file_data, INSERT);
3969 *slot = file_data;
3970 }
3971
3972 do_cleanups (cleanup);
3973 }
9291a0cd 3974
3876f04e 3975 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3976 {
3977 offset_type idx = 2 * iter;
3978 const char *name;
3979 offset_type *vec, vec_len, vec_idx;
8943b874 3980 int global_seen = 0;
9291a0cd 3981
61d96d7e
DE
3982 QUIT;
3983
3876f04e 3984 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3985 continue;
3986
3876f04e 3987 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3988
206f2a57 3989 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3990 continue;
3991
3992 /* The name was matched, now expand corresponding CUs that were
3993 marked. */
4b5246aa 3994 vec = (offset_type *) (index->constant_pool
3876f04e 3995 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3996 vec_len = MAYBE_SWAP (vec[0]);
3997 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3998 {
e254ef6a 3999 struct dwarf2_per_cu_data *per_cu;
156942c7 4000 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4001 /* This value is only valid for index versions >= 7. */
4002 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4003 gdb_index_symbol_kind symbol_kind =
4004 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4005 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4006 /* Only check the symbol attributes if they're present.
4007 Indices prior to version 7 don't record them,
4008 and indices >= 7 may elide them for certain symbols
4009 (gold does this). */
4010 int attrs_valid =
4011 (index->version >= 7
4012 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4013
8943b874
DE
4014 /* Work around gold/15646. */
4015 if (attrs_valid)
4016 {
4017 if (!is_static && global_seen)
4018 continue;
4019 if (!is_static)
4020 global_seen = 1;
4021 }
4022
3190f0c6
DE
4023 /* Only check the symbol's kind if it has one. */
4024 if (attrs_valid)
156942c7
DE
4025 {
4026 switch (kind)
4027 {
4028 case VARIABLES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4030 continue;
4031 break;
4032 case FUNCTIONS_DOMAIN:
4033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4034 continue;
4035 break;
4036 case TYPES_DOMAIN:
4037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 default:
4041 break;
4042 }
4043 }
4044
3190f0c6
DE
4045 /* Don't crash on bad data. */
4046 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4047 + dwarf2_per_objfile->n_type_units))
4048 {
4049 complaint (&symfile_complaints,
4050 _(".gdb_index entry has bad CU index"
4262abfb 4051 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4052 continue;
4053 }
4054
8832e7e3 4055 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4056 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4057 {
4058 int symtab_was_null =
4059 (per_cu->v.quick->compunit_symtab == NULL);
4060
4061 dw2_instantiate_symtab (per_cu);
4062
4063 if (expansion_notify != NULL
4064 && symtab_was_null
4065 && per_cu->v.quick->compunit_symtab != NULL)
4066 {
4067 expansion_notify (per_cu->v.quick->compunit_symtab,
4068 data);
4069 }
4070 }
9291a0cd
TT
4071 }
4072 }
4073}
4074
43f3e411 4075/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4076 symtab. */
4077
43f3e411
DE
4078static struct compunit_symtab *
4079recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4080 CORE_ADDR pc)
9703b513
TT
4081{
4082 int i;
4083
43f3e411
DE
4084 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4085 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4086 return cust;
9703b513 4087
43f3e411 4088 if (cust->includes == NULL)
a3ec0bb1
DE
4089 return NULL;
4090
43f3e411 4091 for (i = 0; cust->includes[i]; ++i)
9703b513 4092 {
43f3e411 4093 struct compunit_symtab *s = cust->includes[i];
9703b513 4094
43f3e411 4095 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4096 if (s != NULL)
4097 return s;
4098 }
4099
4100 return NULL;
4101}
4102
43f3e411
DE
4103static struct compunit_symtab *
4104dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4105 struct bound_minimal_symbol msymbol,
4106 CORE_ADDR pc,
4107 struct obj_section *section,
4108 int warn_if_readin)
9291a0cd
TT
4109{
4110 struct dwarf2_per_cu_data *data;
43f3e411 4111 struct compunit_symtab *result;
9291a0cd
TT
4112
4113 dw2_setup (objfile);
4114
4115 if (!objfile->psymtabs_addrmap)
4116 return NULL;
4117
9a3c8263
SM
4118 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4119 pc);
9291a0cd
TT
4120 if (!data)
4121 return NULL;
4122
43f3e411 4123 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4124 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4125 paddress (get_objfile_arch (objfile), pc));
4126
43f3e411
DE
4127 result
4128 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4129 pc);
9703b513
TT
4130 gdb_assert (result != NULL);
4131 return result;
9291a0cd
TT
4132}
4133
9291a0cd 4134static void
44b13c5a 4135dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4136 void *data, int need_fullname)
9291a0cd
TT
4137{
4138 int i;
24c79950
TT
4139 struct cleanup *cleanup;
4140 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4141 NULL, xcalloc, xfree);
9291a0cd 4142
24c79950 4143 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4144 dw2_setup (objfile);
ae2de4f8 4145
848e3e78
DE
4146 /* The rule is CUs specify all the files, including those used by
4147 any TU, so there's no need to scan TUs here.
4148 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4149
848e3e78 4150 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4151 {
8832e7e3 4152 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4153
43f3e411 4154 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4155 {
4156 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4157 INSERT);
4158
4159 *slot = per_cu->v.quick->file_names;
4160 }
4161 }
4162
848e3e78 4163 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4164 {
4165 int j;
8832e7e3 4166 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4167 struct quick_file_names *file_data;
24c79950 4168 void **slot;
9291a0cd 4169
3d7bb9d9 4170 /* We only need to look at symtabs not already expanded. */
43f3e411 4171 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4172 continue;
4173
e4a48d9d 4174 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4175 if (file_data == NULL)
9291a0cd
TT
4176 continue;
4177
24c79950
TT
4178 slot = htab_find_slot (visited, file_data, INSERT);
4179 if (*slot)
4180 {
4181 /* Already visited. */
4182 continue;
4183 }
4184 *slot = file_data;
4185
7b9f3c50 4186 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4187 {
74e2f255
DE
4188 const char *this_real_name;
4189
4190 if (need_fullname)
4191 this_real_name = dw2_get_real_path (objfile, file_data, j);
4192 else
4193 this_real_name = NULL;
7b9f3c50 4194 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4195 }
4196 }
24c79950
TT
4197
4198 do_cleanups (cleanup);
9291a0cd
TT
4199}
4200
4201static int
4202dw2_has_symbols (struct objfile *objfile)
4203{
4204 return 1;
4205}
4206
4207const struct quick_symbol_functions dwarf2_gdb_index_functions =
4208{
4209 dw2_has_symbols,
4210 dw2_find_last_source_symtab,
4211 dw2_forget_cached_source_info,
f8eba3c6 4212 dw2_map_symtabs_matching_filename,
9291a0cd 4213 dw2_lookup_symbol,
9291a0cd
TT
4214 dw2_print_stats,
4215 dw2_dump,
4216 dw2_relocate,
4217 dw2_expand_symtabs_for_function,
4218 dw2_expand_all_symtabs,
652a8996 4219 dw2_expand_symtabs_with_fullname,
40658b94 4220 dw2_map_matching_symbols,
9291a0cd 4221 dw2_expand_symtabs_matching,
43f3e411 4222 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4223 dw2_map_symbol_filenames
4224};
4225
4226/* Initialize for reading DWARF for this objfile. Return 0 if this
4227 file will use psymtabs, or 1 if using the GNU index. */
4228
4229int
4230dwarf2_initialize_objfile (struct objfile *objfile)
4231{
4232 /* If we're about to read full symbols, don't bother with the
4233 indices. In this case we also don't care if some other debug
4234 format is making psymtabs, because they are all about to be
4235 expanded anyway. */
4236 if ((objfile->flags & OBJF_READNOW))
4237 {
4238 int i;
4239
4240 dwarf2_per_objfile->using_index = 1;
4241 create_all_comp_units (objfile);
0e50663e 4242 create_all_type_units (objfile);
7b9f3c50
DE
4243 dwarf2_per_objfile->quick_file_names_table =
4244 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4245
1fd400ff 4246 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4247 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4248 {
8832e7e3 4249 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4250
e254ef6a
DE
4251 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4252 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4253 }
4254
4255 /* Return 1 so that gdb sees the "quick" functions. However,
4256 these functions will be no-ops because we will have expanded
4257 all symtabs. */
4258 return 1;
4259 }
4260
4261 if (dwarf2_read_index (objfile))
4262 return 1;
4263
9291a0cd
TT
4264 return 0;
4265}
4266
4267\f
4268
dce234bc
PP
4269/* Build a partial symbol table. */
4270
4271void
f29dff0a 4272dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4273{
c9bf0622 4274
f29dff0a 4275 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4276 {
4277 init_psymbol_list (objfile, 1024);
4278 }
4279
492d29ea 4280 TRY
c9bf0622
TT
4281 {
4282 /* This isn't really ideal: all the data we allocate on the
4283 objfile's obstack is still uselessly kept around. However,
4284 freeing it seems unsafe. */
4285 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4286
4287 dwarf2_build_psymtabs_hard (objfile);
4288 discard_cleanups (cleanups);
4289 }
492d29ea
PA
4290 CATCH (except, RETURN_MASK_ERROR)
4291 {
4292 exception_print (gdb_stderr, except);
4293 }
4294 END_CATCH
c906108c 4295}
c906108c 4296
1ce1cefd
DE
4297/* Return the total length of the CU described by HEADER. */
4298
4299static unsigned int
4300get_cu_length (const struct comp_unit_head *header)
4301{
4302 return header->initial_length_size + header->length;
4303}
4304
45452591
DE
4305/* Return TRUE if OFFSET is within CU_HEADER. */
4306
4307static inline int
b64f50a1 4308offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4309{
b64f50a1 4310 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4311 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4312
b64f50a1 4313 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4314}
4315
3b80fe9b
DE
4316/* Find the base address of the compilation unit for range lists and
4317 location lists. It will normally be specified by DW_AT_low_pc.
4318 In DWARF-3 draft 4, the base address could be overridden by
4319 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4320 compilation units with discontinuous ranges. */
4321
4322static void
4323dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4324{
4325 struct attribute *attr;
4326
4327 cu->base_known = 0;
4328 cu->base_address = 0;
4329
4330 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4331 if (attr)
4332 {
31aa7e4e 4333 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4334 cu->base_known = 1;
4335 }
4336 else
4337 {
4338 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4339 if (attr)
4340 {
31aa7e4e 4341 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4342 cu->base_known = 1;
4343 }
4344 }
4345}
4346
93311388
DE
4347/* Read in the comp unit header information from the debug_info at info_ptr.
4348 NOTE: This leaves members offset, first_die_offset to be filled in
4349 by the caller. */
107d2387 4350
d521ce57 4351static const gdb_byte *
107d2387 4352read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4353 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4354{
4355 int signed_addr;
891d2f0b 4356 unsigned int bytes_read;
c764a876
DE
4357
4358 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4359 cu_header->initial_length_size = bytes_read;
4360 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4361 info_ptr += bytes_read;
107d2387
AC
4362 cu_header->version = read_2_bytes (abfd, info_ptr);
4363 info_ptr += 2;
b64f50a1
JK
4364 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4365 &bytes_read);
613e1657 4366 info_ptr += bytes_read;
107d2387
AC
4367 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4368 info_ptr += 1;
4369 signed_addr = bfd_get_sign_extend_vma (abfd);
4370 if (signed_addr < 0)
8e65ff28 4371 internal_error (__FILE__, __LINE__,
e2e0b3e5 4372 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4373 cu_header->signed_addr_p = signed_addr;
c764a876 4374
107d2387
AC
4375 return info_ptr;
4376}
4377
36586728
TT
4378/* Helper function that returns the proper abbrev section for
4379 THIS_CU. */
4380
4381static struct dwarf2_section_info *
4382get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4383{
4384 struct dwarf2_section_info *abbrev;
4385
4386 if (this_cu->is_dwz)
4387 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4388 else
4389 abbrev = &dwarf2_per_objfile->abbrev;
4390
4391 return abbrev;
4392}
4393
9ff913ba
DE
4394/* Subroutine of read_and_check_comp_unit_head and
4395 read_and_check_type_unit_head to simplify them.
4396 Perform various error checking on the header. */
4397
4398static void
4399error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4400 struct dwarf2_section_info *section,
4401 struct dwarf2_section_info *abbrev_section)
9ff913ba 4402{
a32a8923 4403 const char *filename = get_section_file_name (section);
9ff913ba
DE
4404
4405 if (header->version != 2 && header->version != 3 && header->version != 4)
4406 error (_("Dwarf Error: wrong version in compilation unit header "
4407 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4408 filename);
4409
b64f50a1 4410 if (header->abbrev_offset.sect_off
36586728 4411 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4412 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4413 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4414 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4415 filename);
4416
4417 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4418 avoid potential 32-bit overflow. */
1ce1cefd 4419 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4420 > section->size)
4421 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4422 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4423 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4424 filename);
4425}
4426
4427/* Read in a CU/TU header and perform some basic error checking.
4428 The contents of the header are stored in HEADER.
4429 The result is a pointer to the start of the first DIE. */
adabb602 4430
d521ce57 4431static const gdb_byte *
9ff913ba
DE
4432read_and_check_comp_unit_head (struct comp_unit_head *header,
4433 struct dwarf2_section_info *section,
4bdcc0c1 4434 struct dwarf2_section_info *abbrev_section,
d521ce57 4435 const gdb_byte *info_ptr,
9ff913ba 4436 int is_debug_types_section)
72bf9492 4437{
d521ce57 4438 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4439 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4440
b64f50a1 4441 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4442
72bf9492
DJ
4443 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4444
460c1c54
CC
4445 /* If we're reading a type unit, skip over the signature and
4446 type_offset fields. */
b0df02fd 4447 if (is_debug_types_section)
460c1c54
CC
4448 info_ptr += 8 /*signature*/ + header->offset_size;
4449
b64f50a1 4450 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4451
4bdcc0c1 4452 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4453
4454 return info_ptr;
4455}
4456
348e048f
DE
4457/* Read in the types comp unit header information from .debug_types entry at
4458 types_ptr. The result is a pointer to one past the end of the header. */
4459
d521ce57 4460static const gdb_byte *
9ff913ba
DE
4461read_and_check_type_unit_head (struct comp_unit_head *header,
4462 struct dwarf2_section_info *section,
4bdcc0c1 4463 struct dwarf2_section_info *abbrev_section,
d521ce57 4464 const gdb_byte *info_ptr,
dee91e82
DE
4465 ULONGEST *signature,
4466 cu_offset *type_offset_in_tu)
348e048f 4467{
d521ce57 4468 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4469 bfd *abfd = get_section_bfd_owner (section);
348e048f 4470
b64f50a1 4471 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4472
9ff913ba 4473 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4474
9ff913ba
DE
4475 /* If we're reading a type unit, skip over the signature and
4476 type_offset fields. */
4477 if (signature != NULL)
4478 *signature = read_8_bytes (abfd, info_ptr);
4479 info_ptr += 8;
dee91e82
DE
4480 if (type_offset_in_tu != NULL)
4481 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4482 header->offset_size);
9ff913ba
DE
4483 info_ptr += header->offset_size;
4484
b64f50a1 4485 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4486
4bdcc0c1 4487 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4488
4489 return info_ptr;
348e048f
DE
4490}
4491
f4dc4d17
DE
4492/* Fetch the abbreviation table offset from a comp or type unit header. */
4493
4494static sect_offset
4495read_abbrev_offset (struct dwarf2_section_info *section,
4496 sect_offset offset)
4497{
a32a8923 4498 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4499 const gdb_byte *info_ptr;
ac298888 4500 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4501 sect_offset abbrev_offset;
4502
4503 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4504 info_ptr = section->buffer + offset.sect_off;
ac298888 4505 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4506 offset_size = initial_length_size == 4 ? 4 : 8;
4507 info_ptr += initial_length_size + 2 /*version*/;
4508 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4509 return abbrev_offset;
4510}
4511
aaa75496
JB
4512/* Allocate a new partial symtab for file named NAME and mark this new
4513 partial symtab as being an include of PST. */
4514
4515static void
d521ce57 4516dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4517 struct objfile *objfile)
4518{
4519 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4520
fbd9ab74
JK
4521 if (!IS_ABSOLUTE_PATH (subpst->filename))
4522 {
4523 /* It shares objfile->objfile_obstack. */
4524 subpst->dirname = pst->dirname;
4525 }
4526
aaa75496
JB
4527 subpst->textlow = 0;
4528 subpst->texthigh = 0;
4529
8d749320
SM
4530 subpst->dependencies
4531 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4532 subpst->dependencies[0] = pst;
4533 subpst->number_of_dependencies = 1;
4534
4535 subpst->globals_offset = 0;
4536 subpst->n_global_syms = 0;
4537 subpst->statics_offset = 0;
4538 subpst->n_static_syms = 0;
43f3e411 4539 subpst->compunit_symtab = NULL;
aaa75496
JB
4540 subpst->read_symtab = pst->read_symtab;
4541 subpst->readin = 0;
4542
4543 /* No private part is necessary for include psymtabs. This property
4544 can be used to differentiate between such include psymtabs and
10b3939b 4545 the regular ones. */
58a9656e 4546 subpst->read_symtab_private = NULL;
aaa75496
JB
4547}
4548
4549/* Read the Line Number Program data and extract the list of files
4550 included by the source file represented by PST. Build an include
d85a05f0 4551 partial symtab for each of these included files. */
aaa75496
JB
4552
4553static void
4554dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4555 struct die_info *die,
4556 struct partial_symtab *pst)
aaa75496 4557{
d85a05f0
DJ
4558 struct line_header *lh = NULL;
4559 struct attribute *attr;
aaa75496 4560
d85a05f0
DJ
4561 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4562 if (attr)
3019eac3 4563 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4564 if (lh == NULL)
4565 return; /* No linetable, so no includes. */
4566
c6da4cef 4567 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4568 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4569
4570 free_line_header (lh);
4571}
4572
348e048f 4573static hashval_t
52dc124a 4574hash_signatured_type (const void *item)
348e048f 4575{
9a3c8263
SM
4576 const struct signatured_type *sig_type
4577 = (const struct signatured_type *) item;
9a619af0 4578
348e048f 4579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4580 return sig_type->signature;
348e048f
DE
4581}
4582
4583static int
52dc124a 4584eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4585{
9a3c8263
SM
4586 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4587 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4588
348e048f
DE
4589 return lhs->signature == rhs->signature;
4590}
4591
1fd400ff
TT
4592/* Allocate a hash table for signatured types. */
4593
4594static htab_t
673bfd45 4595allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4596{
4597 return htab_create_alloc_ex (41,
52dc124a
DE
4598 hash_signatured_type,
4599 eq_signatured_type,
1fd400ff
TT
4600 NULL,
4601 &objfile->objfile_obstack,
4602 hashtab_obstack_allocate,
4603 dummy_obstack_deallocate);
4604}
4605
d467dd73 4606/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4607
4608static int
d467dd73 4609add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4610{
9a3c8263
SM
4611 struct signatured_type *sigt = (struct signatured_type *) *slot;
4612 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4613
b4dd5633 4614 **datap = sigt;
1fd400ff
TT
4615 ++*datap;
4616
4617 return 1;
4618}
4619
c88ee1f0
DE
4620/* Create the hash table of all entries in the .debug_types
4621 (or .debug_types.dwo) section(s).
4622 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4623 otherwise it is NULL.
4624
4625 The result is a pointer to the hash table or NULL if there are no types.
4626
4627 Note: This function processes DWO files only, not DWP files. */
348e048f 4628
3019eac3
DE
4629static htab_t
4630create_debug_types_hash_table (struct dwo_file *dwo_file,
4631 VEC (dwarf2_section_info_def) *types)
348e048f 4632{
3019eac3 4633 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4634 htab_t types_htab = NULL;
8b70b953
TT
4635 int ix;
4636 struct dwarf2_section_info *section;
4bdcc0c1 4637 struct dwarf2_section_info *abbrev_section;
348e048f 4638
3019eac3
DE
4639 if (VEC_empty (dwarf2_section_info_def, types))
4640 return NULL;
348e048f 4641
4bdcc0c1
DE
4642 abbrev_section = (dwo_file != NULL
4643 ? &dwo_file->sections.abbrev
4644 : &dwarf2_per_objfile->abbrev);
4645
b4f54984 4646 if (dwarf_read_debug)
09406207
DE
4647 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4648 dwo_file ? ".dwo" : "",
a32a8923 4649 get_section_file_name (abbrev_section));
09406207 4650
8b70b953 4651 for (ix = 0;
3019eac3 4652 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4653 ++ix)
4654 {
3019eac3 4655 bfd *abfd;
d521ce57 4656 const gdb_byte *info_ptr, *end_ptr;
348e048f 4657
8b70b953
TT
4658 dwarf2_read_section (objfile, section);
4659 info_ptr = section->buffer;
348e048f 4660
8b70b953
TT
4661 if (info_ptr == NULL)
4662 continue;
348e048f 4663
3019eac3 4664 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4665 not present, in which case the bfd is unknown. */
4666 abfd = get_section_bfd_owner (section);
3019eac3 4667
dee91e82
DE
4668 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4669 because we don't need to read any dies: the signature is in the
4670 header. */
8b70b953
TT
4671
4672 end_ptr = info_ptr + section->size;
4673 while (info_ptr < end_ptr)
4674 {
b64f50a1 4675 sect_offset offset;
3019eac3 4676 cu_offset type_offset_in_tu;
8b70b953 4677 ULONGEST signature;
52dc124a 4678 struct signatured_type *sig_type;
3019eac3 4679 struct dwo_unit *dwo_tu;
8b70b953 4680 void **slot;
d521ce57 4681 const gdb_byte *ptr = info_ptr;
9ff913ba 4682 struct comp_unit_head header;
dee91e82 4683 unsigned int length;
348e048f 4684
b64f50a1 4685 offset.sect_off = ptr - section->buffer;
348e048f 4686
8b70b953 4687 /* We need to read the type's signature in order to build the hash
9ff913ba 4688 table, but we don't need anything else just yet. */
348e048f 4689
4bdcc0c1
DE
4690 ptr = read_and_check_type_unit_head (&header, section,
4691 abbrev_section, ptr,
3019eac3 4692 &signature, &type_offset_in_tu);
6caca83c 4693
1ce1cefd 4694 length = get_cu_length (&header);
dee91e82 4695
6caca83c 4696 /* Skip dummy type units. */
dee91e82
DE
4697 if (ptr >= info_ptr + length
4698 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4699 {
1ce1cefd 4700 info_ptr += length;
6caca83c
CC
4701 continue;
4702 }
8b70b953 4703
0349ea22
DE
4704 if (types_htab == NULL)
4705 {
4706 if (dwo_file)
4707 types_htab = allocate_dwo_unit_table (objfile);
4708 else
4709 types_htab = allocate_signatured_type_table (objfile);
4710 }
4711
3019eac3
DE
4712 if (dwo_file)
4713 {
4714 sig_type = NULL;
4715 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4716 struct dwo_unit);
4717 dwo_tu->dwo_file = dwo_file;
4718 dwo_tu->signature = signature;
4719 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4720 dwo_tu->section = section;
3019eac3
DE
4721 dwo_tu->offset = offset;
4722 dwo_tu->length = length;
4723 }
4724 else
4725 {
4726 /* N.B.: type_offset is not usable if this type uses a DWO file.
4727 The real type_offset is in the DWO file. */
4728 dwo_tu = NULL;
4729 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4730 struct signatured_type);
4731 sig_type->signature = signature;
4732 sig_type->type_offset_in_tu = type_offset_in_tu;
4733 sig_type->per_cu.objfile = objfile;
4734 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4735 sig_type->per_cu.section = section;
3019eac3
DE
4736 sig_type->per_cu.offset = offset;
4737 sig_type->per_cu.length = length;
4738 }
8b70b953 4739
3019eac3
DE
4740 slot = htab_find_slot (types_htab,
4741 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4742 INSERT);
8b70b953
TT
4743 gdb_assert (slot != NULL);
4744 if (*slot != NULL)
4745 {
3019eac3
DE
4746 sect_offset dup_offset;
4747
4748 if (dwo_file)
4749 {
9a3c8263
SM
4750 const struct dwo_unit *dup_tu
4751 = (const struct dwo_unit *) *slot;
3019eac3
DE
4752
4753 dup_offset = dup_tu->offset;
4754 }
4755 else
4756 {
9a3c8263
SM
4757 const struct signatured_type *dup_tu
4758 = (const struct signatured_type *) *slot;
3019eac3
DE
4759
4760 dup_offset = dup_tu->per_cu.offset;
4761 }
b3c8eb43 4762
8b70b953 4763 complaint (&symfile_complaints,
c88ee1f0 4764 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4765 " the entry at offset 0x%x, signature %s"),
3019eac3 4766 offset.sect_off, dup_offset.sect_off,
4031ecc5 4767 hex_string (signature));
8b70b953 4768 }
3019eac3 4769 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4770
b4f54984 4771 if (dwarf_read_debug > 1)
4031ecc5 4772 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4773 offset.sect_off,
4031ecc5 4774 hex_string (signature));
348e048f 4775
dee91e82 4776 info_ptr += length;
8b70b953 4777 }
348e048f
DE
4778 }
4779
3019eac3
DE
4780 return types_htab;
4781}
4782
4783/* Create the hash table of all entries in the .debug_types section,
4784 and initialize all_type_units.
4785 The result is zero if there is an error (e.g. missing .debug_types section),
4786 otherwise non-zero. */
4787
4788static int
4789create_all_type_units (struct objfile *objfile)
4790{
4791 htab_t types_htab;
b4dd5633 4792 struct signatured_type **iter;
3019eac3
DE
4793
4794 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4795 if (types_htab == NULL)
4796 {
4797 dwarf2_per_objfile->signatured_types = NULL;
4798 return 0;
4799 }
4800
348e048f
DE
4801 dwarf2_per_objfile->signatured_types = types_htab;
4802
6aa5f3a6
DE
4803 dwarf2_per_objfile->n_type_units
4804 = dwarf2_per_objfile->n_allocated_type_units
4805 = htab_elements (types_htab);
8d749320
SM
4806 dwarf2_per_objfile->all_type_units =
4807 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4808 iter = &dwarf2_per_objfile->all_type_units[0];
4809 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4810 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4811 == dwarf2_per_objfile->n_type_units);
1fd400ff 4812
348e048f
DE
4813 return 1;
4814}
4815
6aa5f3a6
DE
4816/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4817 If SLOT is non-NULL, it is the entry to use in the hash table.
4818 Otherwise we find one. */
4819
4820static struct signatured_type *
4821add_type_unit (ULONGEST sig, void **slot)
4822{
4823 struct objfile *objfile = dwarf2_per_objfile->objfile;
4824 int n_type_units = dwarf2_per_objfile->n_type_units;
4825 struct signatured_type *sig_type;
4826
4827 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4828 ++n_type_units;
4829 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4830 {
4831 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4832 dwarf2_per_objfile->n_allocated_type_units = 1;
4833 dwarf2_per_objfile->n_allocated_type_units *= 2;
4834 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4835 = XRESIZEVEC (struct signatured_type *,
4836 dwarf2_per_objfile->all_type_units,
4837 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4838 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4839 }
4840 dwarf2_per_objfile->n_type_units = n_type_units;
4841
4842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4843 struct signatured_type);
4844 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4845 sig_type->signature = sig;
4846 sig_type->per_cu.is_debug_types = 1;
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 sig_type->per_cu.v.quick =
4850 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4851 struct dwarf2_per_cu_quick_data);
4852 }
4853
4854 if (slot == NULL)
4855 {
4856 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4857 sig_type, INSERT);
4858 }
4859 gdb_assert (*slot == NULL);
4860 *slot = sig_type;
4861 /* The rest of sig_type must be filled in by the caller. */
4862 return sig_type;
4863}
4864
a2ce51a0
DE
4865/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4866 Fill in SIG_ENTRY with DWO_ENTRY. */
4867
4868static void
4869fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4870 struct signatured_type *sig_entry,
4871 struct dwo_unit *dwo_entry)
4872{
7ee85ab1 4873 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4874 gdb_assert (! sig_entry->per_cu.queued);
4875 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4876 if (dwarf2_per_objfile->using_index)
4877 {
4878 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4879 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4880 }
4881 else
4882 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4883 gdb_assert (sig_entry->signature == dwo_entry->signature);
4884 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4885 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4886 gdb_assert (sig_entry->dwo_unit == NULL);
4887
4888 sig_entry->per_cu.section = dwo_entry->section;
4889 sig_entry->per_cu.offset = dwo_entry->offset;
4890 sig_entry->per_cu.length = dwo_entry->length;
4891 sig_entry->per_cu.reading_dwo_directly = 1;
4892 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4893 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4894 sig_entry->dwo_unit = dwo_entry;
4895}
4896
4897/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4898 If we haven't read the TU yet, create the signatured_type data structure
4899 for a TU to be read in directly from a DWO file, bypassing the stub.
4900 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4901 using .gdb_index, then when reading a CU we want to stay in the DWO file
4902 containing that CU. Otherwise we could end up reading several other DWO
4903 files (due to comdat folding) to process the transitive closure of all the
4904 mentioned TUs, and that can be slow. The current DWO file will have every
4905 type signature that it needs.
a2ce51a0
DE
4906 We only do this for .gdb_index because in the psymtab case we already have
4907 to read all the DWOs to build the type unit groups. */
4908
4909static struct signatured_type *
4910lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911{
4912 struct objfile *objfile = dwarf2_per_objfile->objfile;
4913 struct dwo_file *dwo_file;
4914 struct dwo_unit find_dwo_entry, *dwo_entry;
4915 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4916 void **slot;
a2ce51a0
DE
4917
4918 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4919
6aa5f3a6
DE
4920 /* If TU skeletons have been removed then we may not have read in any
4921 TUs yet. */
4922 if (dwarf2_per_objfile->signatured_types == NULL)
4923 {
4924 dwarf2_per_objfile->signatured_types
4925 = allocate_signatured_type_table (objfile);
4926 }
a2ce51a0
DE
4927
4928 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4929 Use the global signatured_types array to do our own comdat-folding
4930 of types. If this is the first time we're reading this TU, and
4931 the TU has an entry in .gdb_index, replace the recorded data from
4932 .gdb_index with this TU. */
a2ce51a0 4933
a2ce51a0 4934 find_sig_entry.signature = sig;
6aa5f3a6
DE
4935 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4936 &find_sig_entry, INSERT);
9a3c8263 4937 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4938
4939 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4940 read. Don't reassign the global entry to point to this DWO if that's
4941 the case. Also note that if the TU is already being read, it may not
4942 have come from a DWO, the program may be a mix of Fission-compiled
4943 code and non-Fission-compiled code. */
4944
4945 /* Have we already tried to read this TU?
4946 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4947 needn't exist in the global table yet). */
4948 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4949 return sig_entry;
4950
6aa5f3a6
DE
4951 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4952 dwo_unit of the TU itself. */
4953 dwo_file = cu->dwo_unit->dwo_file;
4954
a2ce51a0
DE
4955 /* Ok, this is the first time we're reading this TU. */
4956 if (dwo_file->tus == NULL)
4957 return NULL;
4958 find_dwo_entry.signature = sig;
9a3c8263 4959 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4960 if (dwo_entry == NULL)
4961 return NULL;
4962
6aa5f3a6
DE
4963 /* If the global table doesn't have an entry for this TU, add one. */
4964 if (sig_entry == NULL)
4965 sig_entry = add_type_unit (sig, slot);
4966
a2ce51a0 4967 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4968 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4969 return sig_entry;
4970}
4971
a2ce51a0
DE
4972/* Subroutine of lookup_signatured_type.
4973 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4974 then try the DWP file. If the TU stub (skeleton) has been removed then
4975 it won't be in .gdb_index. */
a2ce51a0
DE
4976
4977static struct signatured_type *
4978lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4979{
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwp_file *dwp_file = get_dwp_file ();
4982 struct dwo_unit *dwo_entry;
4983 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4984 void **slot;
a2ce51a0
DE
4985
4986 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4987 gdb_assert (dwp_file != NULL);
4988
6aa5f3a6
DE
4989 /* If TU skeletons have been removed then we may not have read in any
4990 TUs yet. */
4991 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4992 {
6aa5f3a6
DE
4993 dwarf2_per_objfile->signatured_types
4994 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4995 }
4996
6aa5f3a6
DE
4997 find_sig_entry.signature = sig;
4998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4999 &find_sig_entry, INSERT);
9a3c8263 5000 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5001
5002 /* Have we already tried to read this TU?
5003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5004 needn't exist in the global table yet). */
5005 if (sig_entry != NULL)
5006 return sig_entry;
5007
a2ce51a0
DE
5008 if (dwp_file->tus == NULL)
5009 return NULL;
57d63ce2
DE
5010 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5011 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5012 if (dwo_entry == NULL)
5013 return NULL;
5014
6aa5f3a6 5015 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5016 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5017
a2ce51a0
DE
5018 return sig_entry;
5019}
5020
380bca97 5021/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5022 Returns NULL if signature SIG is not present in the table.
5023 It is up to the caller to complain about this. */
348e048f
DE
5024
5025static struct signatured_type *
a2ce51a0 5026lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5027{
a2ce51a0
DE
5028 if (cu->dwo_unit
5029 && dwarf2_per_objfile->using_index)
5030 {
5031 /* We're in a DWO/DWP file, and we're using .gdb_index.
5032 These cases require special processing. */
5033 if (get_dwp_file () == NULL)
5034 return lookup_dwo_signatured_type (cu, sig);
5035 else
5036 return lookup_dwp_signatured_type (cu, sig);
5037 }
5038 else
5039 {
5040 struct signatured_type find_entry, *entry;
348e048f 5041
a2ce51a0
DE
5042 if (dwarf2_per_objfile->signatured_types == NULL)
5043 return NULL;
5044 find_entry.signature = sig;
9a3c8263
SM
5045 entry = ((struct signatured_type *)
5046 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5047 return entry;
5048 }
348e048f 5049}
42e7ad6c
DE
5050\f
5051/* Low level DIE reading support. */
348e048f 5052
d85a05f0
DJ
5053/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5054
5055static void
5056init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5057 struct dwarf2_cu *cu,
3019eac3
DE
5058 struct dwarf2_section_info *section,
5059 struct dwo_file *dwo_file)
d85a05f0 5060{
fceca515 5061 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5062 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5063 reader->cu = cu;
3019eac3 5064 reader->dwo_file = dwo_file;
dee91e82
DE
5065 reader->die_section = section;
5066 reader->buffer = section->buffer;
f664829e 5067 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5068 reader->comp_dir = NULL;
d85a05f0
DJ
5069}
5070
b0c7bfa9
DE
5071/* Subroutine of init_cutu_and_read_dies to simplify it.
5072 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5073 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5074 already.
5075
5076 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5077 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5078 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5079 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5080 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5081 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5082 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5083 are filled in with the info of the DIE from the DWO file.
5084 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5085 provided an abbrev table to use.
5086 The result is non-zero if a valid (non-dummy) DIE was found. */
5087
5088static int
5089read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5090 struct dwo_unit *dwo_unit,
5091 int abbrev_table_provided,
5092 struct die_info *stub_comp_unit_die,
a2ce51a0 5093 const char *stub_comp_dir,
b0c7bfa9 5094 struct die_reader_specs *result_reader,
d521ce57 5095 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5096 struct die_info **result_comp_unit_die,
5097 int *result_has_children)
5098{
5099 struct objfile *objfile = dwarf2_per_objfile->objfile;
5100 struct dwarf2_cu *cu = this_cu->cu;
5101 struct dwarf2_section_info *section;
5102 bfd *abfd;
d521ce57 5103 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5104 ULONGEST signature; /* Or dwo_id. */
5105 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5106 int i,num_extra_attrs;
5107 struct dwarf2_section_info *dwo_abbrev_section;
5108 struct attribute *attr;
5109 struct die_info *comp_unit_die;
5110
b0aeadb3
DE
5111 /* At most one of these may be provided. */
5112 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5113
b0c7bfa9
DE
5114 /* These attributes aren't processed until later:
5115 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5116 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5117 referenced later. However, these attributes are found in the stub
5118 which we won't have later. In order to not impose this complication
5119 on the rest of the code, we read them here and copy them to the
5120 DWO CU/TU die. */
b0c7bfa9
DE
5121
5122 stmt_list = NULL;
5123 low_pc = NULL;
5124 high_pc = NULL;
5125 ranges = NULL;
5126 comp_dir = NULL;
5127
5128 if (stub_comp_unit_die != NULL)
5129 {
5130 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5131 DWO file. */
5132 if (! this_cu->is_debug_types)
5133 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5134 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5135 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5136 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5137 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5138
5139 /* There should be a DW_AT_addr_base attribute here (if needed).
5140 We need the value before we can process DW_FORM_GNU_addr_index. */
5141 cu->addr_base = 0;
5142 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5143 if (attr)
5144 cu->addr_base = DW_UNSND (attr);
5145
5146 /* There should be a DW_AT_ranges_base attribute here (if needed).
5147 We need the value before we can process DW_AT_ranges. */
5148 cu->ranges_base = 0;
5149 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5150 if (attr)
5151 cu->ranges_base = DW_UNSND (attr);
5152 }
a2ce51a0
DE
5153 else if (stub_comp_dir != NULL)
5154 {
5155 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5156 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5157 comp_dir->name = DW_AT_comp_dir;
5158 comp_dir->form = DW_FORM_string;
5159 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5160 DW_STRING (comp_dir) = stub_comp_dir;
5161 }
b0c7bfa9
DE
5162
5163 /* Set up for reading the DWO CU/TU. */
5164 cu->dwo_unit = dwo_unit;
5165 section = dwo_unit->section;
5166 dwarf2_read_section (objfile, section);
a32a8923 5167 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5168 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5169 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5170 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5171
5172 if (this_cu->is_debug_types)
5173 {
5174 ULONGEST header_signature;
5175 cu_offset type_offset_in_tu;
5176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5177
5178 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5179 dwo_abbrev_section,
5180 info_ptr,
5181 &header_signature,
5182 &type_offset_in_tu);
a2ce51a0
DE
5183 /* This is not an assert because it can be caused by bad debug info. */
5184 if (sig_type->signature != header_signature)
5185 {
5186 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5187 " TU at offset 0x%x [in module %s]"),
5188 hex_string (sig_type->signature),
5189 hex_string (header_signature),
5190 dwo_unit->offset.sect_off,
5191 bfd_get_filename (abfd));
5192 }
b0c7bfa9
DE
5193 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5194 /* For DWOs coming from DWP files, we don't know the CU length
5195 nor the type's offset in the TU until now. */
5196 dwo_unit->length = get_cu_length (&cu->header);
5197 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5198
5199 /* Establish the type offset that can be used to lookup the type.
5200 For DWO files, we don't know it until now. */
5201 sig_type->type_offset_in_section.sect_off =
5202 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5203 }
5204 else
5205 {
5206 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5207 dwo_abbrev_section,
5208 info_ptr, 0);
5209 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5210 /* For DWOs coming from DWP files, we don't know the CU length
5211 until now. */
5212 dwo_unit->length = get_cu_length (&cu->header);
5213 }
5214
02142a6c
DE
5215 /* Replace the CU's original abbrev table with the DWO's.
5216 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5217 if (abbrev_table_provided)
5218 {
5219 /* Don't free the provided abbrev table, the caller of
5220 init_cutu_and_read_dies owns it. */
5221 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5222 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5223 make_cleanup (dwarf2_free_abbrev_table, cu);
5224 }
5225 else
5226 {
5227 dwarf2_free_abbrev_table (cu);
5228 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5229 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5230 }
5231
5232 /* Read in the die, but leave space to copy over the attributes
5233 from the stub. This has the benefit of simplifying the rest of
5234 the code - all the work to maintain the illusion of a single
5235 DW_TAG_{compile,type}_unit DIE is done here. */
5236 num_extra_attrs = ((stmt_list != NULL)
5237 + (low_pc != NULL)
5238 + (high_pc != NULL)
5239 + (ranges != NULL)
5240 + (comp_dir != NULL));
5241 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5242 result_has_children, num_extra_attrs);
5243
5244 /* Copy over the attributes from the stub to the DIE we just read in. */
5245 comp_unit_die = *result_comp_unit_die;
5246 i = comp_unit_die->num_attrs;
5247 if (stmt_list != NULL)
5248 comp_unit_die->attrs[i++] = *stmt_list;
5249 if (low_pc != NULL)
5250 comp_unit_die->attrs[i++] = *low_pc;
5251 if (high_pc != NULL)
5252 comp_unit_die->attrs[i++] = *high_pc;
5253 if (ranges != NULL)
5254 comp_unit_die->attrs[i++] = *ranges;
5255 if (comp_dir != NULL)
5256 comp_unit_die->attrs[i++] = *comp_dir;
5257 comp_unit_die->num_attrs += num_extra_attrs;
5258
b4f54984 5259 if (dwarf_die_debug)
bf6af496
DE
5260 {
5261 fprintf_unfiltered (gdb_stdlog,
5262 "Read die from %s@0x%x of %s:\n",
a32a8923 5263 get_section_name (section),
bf6af496
DE
5264 (unsigned) (begin_info_ptr - section->buffer),
5265 bfd_get_filename (abfd));
b4f54984 5266 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5267 }
5268
a2ce51a0
DE
5269 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5270 TUs by skipping the stub and going directly to the entry in the DWO file.
5271 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5272 to get it via circuitous means. Blech. */
5273 if (comp_dir != NULL)
5274 result_reader->comp_dir = DW_STRING (comp_dir);
5275
b0c7bfa9
DE
5276 /* Skip dummy compilation units. */
5277 if (info_ptr >= begin_info_ptr + dwo_unit->length
5278 || peek_abbrev_code (abfd, info_ptr) == 0)
5279 return 0;
5280
5281 *result_info_ptr = info_ptr;
5282 return 1;
5283}
5284
5285/* Subroutine of init_cutu_and_read_dies to simplify it.
5286 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5287 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5288
5289static struct dwo_unit *
5290lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5291 struct die_info *comp_unit_die)
5292{
5293 struct dwarf2_cu *cu = this_cu->cu;
5294 struct attribute *attr;
5295 ULONGEST signature;
5296 struct dwo_unit *dwo_unit;
5297 const char *comp_dir, *dwo_name;
5298
a2ce51a0
DE
5299 gdb_assert (cu != NULL);
5300
b0c7bfa9 5301 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5302 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5303 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5304
5305 if (this_cu->is_debug_types)
5306 {
5307 struct signatured_type *sig_type;
5308
5309 /* Since this_cu is the first member of struct signatured_type,
5310 we can go from a pointer to one to a pointer to the other. */
5311 sig_type = (struct signatured_type *) this_cu;
5312 signature = sig_type->signature;
5313 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5314 }
5315 else
5316 {
5317 struct attribute *attr;
5318
5319 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5320 if (! attr)
5321 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5322 " [in module %s]"),
4262abfb 5323 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5324 signature = DW_UNSND (attr);
5325 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5326 signature);
5327 }
5328
b0c7bfa9
DE
5329 return dwo_unit;
5330}
5331
a2ce51a0 5332/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5333 See it for a description of the parameters.
5334 Read a TU directly from a DWO file, bypassing the stub.
5335
5336 Note: This function could be a little bit simpler if we shared cleanups
5337 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5338 to do, so we keep this function self-contained. Or we could move this
5339 into our caller, but it's complex enough already. */
a2ce51a0
DE
5340
5341static void
6aa5f3a6
DE
5342init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5343 int use_existing_cu, int keep,
a2ce51a0
DE
5344 die_reader_func_ftype *die_reader_func,
5345 void *data)
5346{
5347 struct dwarf2_cu *cu;
5348 struct signatured_type *sig_type;
6aa5f3a6 5349 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5350 struct die_reader_specs reader;
5351 const gdb_byte *info_ptr;
5352 struct die_info *comp_unit_die;
5353 int has_children;
5354
5355 /* Verify we can do the following downcast, and that we have the
5356 data we need. */
5357 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5358 sig_type = (struct signatured_type *) this_cu;
5359 gdb_assert (sig_type->dwo_unit != NULL);
5360
5361 cleanups = make_cleanup (null_cleanup, NULL);
5362
6aa5f3a6
DE
5363 if (use_existing_cu && this_cu->cu != NULL)
5364 {
5365 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5366 cu = this_cu->cu;
5367 /* There's no need to do the rereading_dwo_cu handling that
5368 init_cutu_and_read_dies does since we don't read the stub. */
5369 }
5370 else
5371 {
5372 /* If !use_existing_cu, this_cu->cu must be NULL. */
5373 gdb_assert (this_cu->cu == NULL);
8d749320 5374 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5375 init_one_comp_unit (cu, this_cu);
5376 /* If an error occurs while loading, release our storage. */
5377 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5378 }
5379
5380 /* A future optimization, if needed, would be to use an existing
5381 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5382 could share abbrev tables. */
a2ce51a0
DE
5383
5384 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5385 0 /* abbrev_table_provided */,
5386 NULL /* stub_comp_unit_die */,
5387 sig_type->dwo_unit->dwo_file->comp_dir,
5388 &reader, &info_ptr,
5389 &comp_unit_die, &has_children) == 0)
5390 {
5391 /* Dummy die. */
5392 do_cleanups (cleanups);
5393 return;
5394 }
5395
5396 /* All the "real" work is done here. */
5397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5398
6aa5f3a6 5399 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5400 but the alternative is making the latter more complex.
5401 This function is only for the special case of using DWO files directly:
5402 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5403 if (free_cu_cleanup != NULL)
a2ce51a0 5404 {
6aa5f3a6
DE
5405 if (keep)
5406 {
5407 /* We've successfully allocated this compilation unit. Let our
5408 caller clean it up when finished with it. */
5409 discard_cleanups (free_cu_cleanup);
a2ce51a0 5410
6aa5f3a6
DE
5411 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5412 So we have to manually free the abbrev table. */
5413 dwarf2_free_abbrev_table (cu);
a2ce51a0 5414
6aa5f3a6
DE
5415 /* Link this CU into read_in_chain. */
5416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5417 dwarf2_per_objfile->read_in_chain = this_cu;
5418 }
5419 else
5420 do_cleanups (free_cu_cleanup);
a2ce51a0 5421 }
a2ce51a0
DE
5422
5423 do_cleanups (cleanups);
5424}
5425
fd820528 5426/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5427 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5428
f4dc4d17
DE
5429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5430 Otherwise the table specified in the comp unit header is read in and used.
5431 This is an optimization for when we already have the abbrev table.
5432
dee91e82
DE
5433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5434 Otherwise, a new CU is allocated with xmalloc.
5435
5436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5438
5439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5440 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5441
70221824 5442static void
fd820528 5443init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5444 struct abbrev_table *abbrev_table,
fd820528
DE
5445 int use_existing_cu, int keep,
5446 die_reader_func_ftype *die_reader_func,
5447 void *data)
c906108c 5448{
dee91e82 5449 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5450 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5451 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5452 struct dwarf2_cu *cu;
d521ce57 5453 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5454 struct die_reader_specs reader;
d85a05f0 5455 struct die_info *comp_unit_die;
dee91e82 5456 int has_children;
d85a05f0 5457 struct attribute *attr;
365156ad 5458 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5459 struct signatured_type *sig_type = NULL;
4bdcc0c1 5460 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5461 /* Non-zero if CU currently points to a DWO file and we need to
5462 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5463 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5464 int rereading_dwo_cu = 0;
c906108c 5465
b4f54984 5466 if (dwarf_die_debug)
09406207
DE
5467 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5468 this_cu->is_debug_types ? "type" : "comp",
5469 this_cu->offset.sect_off);
5470
dee91e82
DE
5471 if (use_existing_cu)
5472 gdb_assert (keep);
23745b47 5473
a2ce51a0
DE
5474 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5475 file (instead of going through the stub), short-circuit all of this. */
5476 if (this_cu->reading_dwo_directly)
5477 {
5478 /* Narrow down the scope of possibilities to have to understand. */
5479 gdb_assert (this_cu->is_debug_types);
5480 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5481 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5482 die_reader_func, data);
a2ce51a0
DE
5483 return;
5484 }
5485
dee91e82
DE
5486 cleanups = make_cleanup (null_cleanup, NULL);
5487
5488 /* This is cheap if the section is already read in. */
5489 dwarf2_read_section (objfile, section);
5490
5491 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5492
5493 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5494
5495 if (use_existing_cu && this_cu->cu != NULL)
5496 {
5497 cu = this_cu->cu;
42e7ad6c
DE
5498 /* If this CU is from a DWO file we need to start over, we need to
5499 refetch the attributes from the skeleton CU.
5500 This could be optimized by retrieving those attributes from when we
5501 were here the first time: the previous comp_unit_die was stored in
5502 comp_unit_obstack. But there's no data yet that we need this
5503 optimization. */
5504 if (cu->dwo_unit != NULL)
5505 rereading_dwo_cu = 1;
dee91e82
DE
5506 }
5507 else
5508 {
5509 /* If !use_existing_cu, this_cu->cu must be NULL. */
5510 gdb_assert (this_cu->cu == NULL);
8d749320 5511 cu = XNEW (struct dwarf2_cu);
dee91e82 5512 init_one_comp_unit (cu, this_cu);
dee91e82 5513 /* If an error occurs while loading, release our storage. */
365156ad 5514 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5515 }
dee91e82 5516
b0c7bfa9 5517 /* Get the header. */
42e7ad6c
DE
5518 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5519 {
5520 /* We already have the header, there's no need to read it in again. */
5521 info_ptr += cu->header.first_die_offset.cu_off;
5522 }
5523 else
5524 {
3019eac3 5525 if (this_cu->is_debug_types)
dee91e82
DE
5526 {
5527 ULONGEST signature;
42e7ad6c 5528 cu_offset type_offset_in_tu;
dee91e82 5529
4bdcc0c1
DE
5530 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5531 abbrev_section, info_ptr,
42e7ad6c
DE
5532 &signature,
5533 &type_offset_in_tu);
dee91e82 5534
42e7ad6c
DE
5535 /* Since per_cu is the first member of struct signatured_type,
5536 we can go from a pointer to one to a pointer to the other. */
5537 sig_type = (struct signatured_type *) this_cu;
5538 gdb_assert (sig_type->signature == signature);
5539 gdb_assert (sig_type->type_offset_in_tu.cu_off
5540 == type_offset_in_tu.cu_off);
dee91e82
DE
5541 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5542
42e7ad6c
DE
5543 /* LENGTH has not been set yet for type units if we're
5544 using .gdb_index. */
1ce1cefd 5545 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5546
5547 /* Establish the type offset that can be used to lookup the type. */
5548 sig_type->type_offset_in_section.sect_off =
5549 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5550 }
5551 else
5552 {
4bdcc0c1
DE
5553 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5554 abbrev_section,
5555 info_ptr, 0);
dee91e82
DE
5556
5557 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5558 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5559 }
5560 }
10b3939b 5561
6caca83c 5562 /* Skip dummy compilation units. */
dee91e82 5563 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5564 || peek_abbrev_code (abfd, info_ptr) == 0)
5565 {
dee91e82 5566 do_cleanups (cleanups);
21b2bd31 5567 return;
6caca83c
CC
5568 }
5569
433df2d4
DE
5570 /* If we don't have them yet, read the abbrevs for this compilation unit.
5571 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5572 done. Note that it's important that if the CU had an abbrev table
5573 on entry we don't free it when we're done: Somewhere up the call stack
5574 it may be in use. */
f4dc4d17
DE
5575 if (abbrev_table != NULL)
5576 {
5577 gdb_assert (cu->abbrev_table == NULL);
5578 gdb_assert (cu->header.abbrev_offset.sect_off
5579 == abbrev_table->offset.sect_off);
5580 cu->abbrev_table = abbrev_table;
5581 }
5582 else if (cu->abbrev_table == NULL)
dee91e82 5583 {
4bdcc0c1 5584 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5585 make_cleanup (dwarf2_free_abbrev_table, cu);
5586 }
42e7ad6c
DE
5587 else if (rereading_dwo_cu)
5588 {
5589 dwarf2_free_abbrev_table (cu);
5590 dwarf2_read_abbrevs (cu, abbrev_section);
5591 }
af703f96 5592
dee91e82 5593 /* Read the top level CU/TU die. */
3019eac3 5594 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5595 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5596
b0c7bfa9
DE
5597 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5598 from the DWO file.
5599 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5600 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5601 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5602 if (attr)
5603 {
3019eac3 5604 struct dwo_unit *dwo_unit;
b0c7bfa9 5605 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5606
5607 if (has_children)
6a506a2d
DE
5608 {
5609 complaint (&symfile_complaints,
5610 _("compilation unit with DW_AT_GNU_dwo_name"
5611 " has children (offset 0x%x) [in module %s]"),
5612 this_cu->offset.sect_off, bfd_get_filename (abfd));
5613 }
b0c7bfa9 5614 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5615 if (dwo_unit != NULL)
3019eac3 5616 {
6a506a2d
DE
5617 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5618 abbrev_table != NULL,
a2ce51a0 5619 comp_unit_die, NULL,
6a506a2d
DE
5620 &reader, &info_ptr,
5621 &dwo_comp_unit_die, &has_children) == 0)
5622 {
5623 /* Dummy die. */
5624 do_cleanups (cleanups);
5625 return;
5626 }
5627 comp_unit_die = dwo_comp_unit_die;
5628 }
5629 else
5630 {
5631 /* Yikes, we couldn't find the rest of the DIE, we only have
5632 the stub. A complaint has already been logged. There's
5633 not much more we can do except pass on the stub DIE to
5634 die_reader_func. We don't want to throw an error on bad
5635 debug info. */
3019eac3
DE
5636 }
5637 }
5638
b0c7bfa9 5639 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5640 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5641
b0c7bfa9 5642 /* Done, clean up. */
365156ad 5643 if (free_cu_cleanup != NULL)
348e048f 5644 {
365156ad
TT
5645 if (keep)
5646 {
5647 /* We've successfully allocated this compilation unit. Let our
5648 caller clean it up when finished with it. */
5649 discard_cleanups (free_cu_cleanup);
dee91e82 5650
365156ad
TT
5651 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5652 So we have to manually free the abbrev table. */
5653 dwarf2_free_abbrev_table (cu);
dee91e82 5654
365156ad
TT
5655 /* Link this CU into read_in_chain. */
5656 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5657 dwarf2_per_objfile->read_in_chain = this_cu;
5658 }
5659 else
5660 do_cleanups (free_cu_cleanup);
348e048f 5661 }
365156ad
TT
5662
5663 do_cleanups (cleanups);
dee91e82
DE
5664}
5665
33e80786
DE
5666/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5667 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5668 to have already done the lookup to find the DWO file).
dee91e82
DE
5669
5670 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5671 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5672
5673 We fill in THIS_CU->length.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5676 linker) then DIE_READER_FUNC will not get called.
5677
5678 THIS_CU->cu is always freed when done.
3019eac3
DE
5679 This is done in order to not leave THIS_CU->cu in a state where we have
5680 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5681
5682static void
5683init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5684 struct dwo_file *dwo_file,
dee91e82
DE
5685 die_reader_func_ftype *die_reader_func,
5686 void *data)
5687{
5688 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5689 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5690 bfd *abfd = get_section_bfd_owner (section);
33e80786 5691 struct dwarf2_section_info *abbrev_section;
dee91e82 5692 struct dwarf2_cu cu;
d521ce57 5693 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5694 struct die_reader_specs reader;
5695 struct cleanup *cleanups;
5696 struct die_info *comp_unit_die;
5697 int has_children;
5698
b4f54984 5699 if (dwarf_die_debug)
09406207
DE
5700 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5701 this_cu->is_debug_types ? "type" : "comp",
5702 this_cu->offset.sect_off);
5703
dee91e82
DE
5704 gdb_assert (this_cu->cu == NULL);
5705
33e80786
DE
5706 abbrev_section = (dwo_file != NULL
5707 ? &dwo_file->sections.abbrev
5708 : get_abbrev_section_for_cu (this_cu));
5709
dee91e82
DE
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
5713 init_one_comp_unit (&cu, this_cu);
5714
5715 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5716
5717 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5718 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5719 abbrev_section, info_ptr,
3019eac3 5720 this_cu->is_debug_types);
dee91e82 5721
1ce1cefd 5722 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5723
5724 /* Skip dummy compilation units. */
5725 if (info_ptr >= begin_info_ptr + this_cu->length
5726 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5727 {
dee91e82 5728 do_cleanups (cleanups);
21b2bd31 5729 return;
93311388 5730 }
72bf9492 5731
dee91e82
DE
5732 dwarf2_read_abbrevs (&cu, abbrev_section);
5733 make_cleanup (dwarf2_free_abbrev_table, &cu);
5734
3019eac3 5735 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5736 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5737
5738 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5739
5740 do_cleanups (cleanups);
5741}
5742
3019eac3
DE
5743/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5744 does not lookup the specified DWO file.
5745 This cannot be used to read DWO files.
dee91e82
DE
5746
5747 THIS_CU->cu is always freed when done.
3019eac3
DE
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU.
5750 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5751
5752static void
5753init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756{
33e80786 5757 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5758}
0018ea6f
DE
5759\f
5760/* Type Unit Groups.
dee91e82 5761
0018ea6f
DE
5762 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5763 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5764 so that all types coming from the same compilation (.o file) are grouped
5765 together. A future step could be to put the types in the same symtab as
5766 the CU the types ultimately came from. */
ff013f42 5767
f4dc4d17
DE
5768static hashval_t
5769hash_type_unit_group (const void *item)
5770{
9a3c8263
SM
5771 const struct type_unit_group *tu_group
5772 = (const struct type_unit_group *) item;
f4dc4d17 5773
094b34ac 5774 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5775}
348e048f
DE
5776
5777static int
f4dc4d17 5778eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5779{
9a3c8263
SM
5780 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5781 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5782
094b34ac 5783 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5784}
348e048f 5785
f4dc4d17
DE
5786/* Allocate a hash table for type unit groups. */
5787
5788static htab_t
5789allocate_type_unit_groups_table (void)
5790{
5791 return htab_create_alloc_ex (3,
5792 hash_type_unit_group,
5793 eq_type_unit_group,
5794 NULL,
5795 &dwarf2_per_objfile->objfile->objfile_obstack,
5796 hashtab_obstack_allocate,
5797 dummy_obstack_deallocate);
5798}
dee91e82 5799
f4dc4d17
DE
5800/* Type units that don't have DW_AT_stmt_list are grouped into their own
5801 partial symtabs. We combine several TUs per psymtab to not let the size
5802 of any one psymtab grow too big. */
5803#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5804#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5805
094b34ac 5806/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5807 Create the type_unit_group object used to hold one or more TUs. */
5808
5809static struct type_unit_group *
094b34ac 5810create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5811{
5812 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5813 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5814 struct type_unit_group *tu_group;
f4dc4d17
DE
5815
5816 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5817 struct type_unit_group);
094b34ac 5818 per_cu = &tu_group->per_cu;
f4dc4d17 5819 per_cu->objfile = objfile;
f4dc4d17 5820
094b34ac
DE
5821 if (dwarf2_per_objfile->using_index)
5822 {
5823 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5824 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5825 }
5826 else
5827 {
5828 unsigned int line_offset = line_offset_struct.sect_off;
5829 struct partial_symtab *pst;
5830 char *name;
5831
5832 /* Give the symtab a useful name for debug purposes. */
5833 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5834 name = xstrprintf ("<type_units_%d>",
5835 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5836 else
5837 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5838
5839 pst = create_partial_symtab (per_cu, name);
5840 pst->anonymous = 1;
f4dc4d17 5841
094b34ac
DE
5842 xfree (name);
5843 }
f4dc4d17 5844
094b34ac
DE
5845 tu_group->hash.dwo_unit = cu->dwo_unit;
5846 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5847
5848 return tu_group;
5849}
5850
094b34ac
DE
5851/* Look up the type_unit_group for type unit CU, and create it if necessary.
5852 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5853
5854static struct type_unit_group *
ff39bb5e 5855get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5856{
5857 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5858 struct type_unit_group *tu_group;
5859 void **slot;
5860 unsigned int line_offset;
5861 struct type_unit_group type_unit_group_for_lookup;
5862
5863 if (dwarf2_per_objfile->type_unit_groups == NULL)
5864 {
5865 dwarf2_per_objfile->type_unit_groups =
5866 allocate_type_unit_groups_table ();
5867 }
5868
5869 /* Do we need to create a new group, or can we use an existing one? */
5870
5871 if (stmt_list)
5872 {
5873 line_offset = DW_UNSND (stmt_list);
5874 ++tu_stats->nr_symtab_sharers;
5875 }
5876 else
5877 {
5878 /* Ugh, no stmt_list. Rare, but we have to handle it.
5879 We can do various things here like create one group per TU or
5880 spread them over multiple groups to split up the expansion work.
5881 To avoid worst case scenarios (too many groups or too large groups)
5882 we, umm, group them in bunches. */
5883 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5884 | (tu_stats->nr_stmt_less_type_units
5885 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5886 ++tu_stats->nr_stmt_less_type_units;
5887 }
5888
094b34ac
DE
5889 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5890 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5891 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5892 &type_unit_group_for_lookup, INSERT);
5893 if (*slot != NULL)
5894 {
9a3c8263 5895 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5896 gdb_assert (tu_group != NULL);
5897 }
5898 else
5899 {
5900 sect_offset line_offset_struct;
5901
5902 line_offset_struct.sect_off = line_offset;
094b34ac 5903 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5904 *slot = tu_group;
5905 ++tu_stats->nr_symtabs;
5906 }
5907
5908 return tu_group;
5909}
0018ea6f
DE
5910\f
5911/* Partial symbol tables. */
5912
5913/* Create a psymtab named NAME and assign it to PER_CU.
5914
5915 The caller must fill in the following details:
5916 dirname, textlow, texthigh. */
5917
5918static struct partial_symtab *
5919create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5920{
5921 struct objfile *objfile = per_cu->objfile;
5922 struct partial_symtab *pst;
5923
18a94d75 5924 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5925 objfile->global_psymbols.next,
5926 objfile->static_psymbols.next);
5927
5928 pst->psymtabs_addrmap_supported = 1;
5929
5930 /* This is the glue that links PST into GDB's symbol API. */
5931 pst->read_symtab_private = per_cu;
5932 pst->read_symtab = dwarf2_read_symtab;
5933 per_cu->v.psymtab = pst;
5934
5935 return pst;
5936}
5937
b93601f3
TT
5938/* The DATA object passed to process_psymtab_comp_unit_reader has this
5939 type. */
5940
5941struct process_psymtab_comp_unit_data
5942{
5943 /* True if we are reading a DW_TAG_partial_unit. */
5944
5945 int want_partial_unit;
5946
5947 /* The "pretend" language that is used if the CU doesn't declare a
5948 language. */
5949
5950 enum language pretend_language;
5951};
5952
0018ea6f
DE
5953/* die_reader_func for process_psymtab_comp_unit. */
5954
5955static void
5956process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5957 const gdb_byte *info_ptr,
0018ea6f
DE
5958 struct die_info *comp_unit_die,
5959 int has_children,
5960 void *data)
5961{
5962 struct dwarf2_cu *cu = reader->cu;
5963 struct objfile *objfile = cu->objfile;
3e29f34a 5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5966 CORE_ADDR baseaddr;
5967 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5968 struct partial_symtab *pst;
3a2b436a 5969 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5970 const char *filename;
9a3c8263
SM
5971 struct process_psymtab_comp_unit_data *info
5972 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5973
b93601f3 5974 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5975 return;
5976
5977 gdb_assert (! per_cu->is_debug_types);
5978
b93601f3 5979 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5980
5981 cu->list_in_scope = &file_symbols;
5982
5983 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5984 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5985 if (filename == NULL)
0018ea6f 5986 filename = "";
0018ea6f
DE
5987
5988 pst = create_partial_symtab (per_cu, filename);
5989
5990 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5991 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5992
5993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5994
5995 dwarf2_find_base_address (comp_unit_die, cu);
5996
5997 /* Possibly set the default values of LOWPC and HIGHPC from
5998 `DW_AT_ranges'. */
3a2b436a
JK
5999 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6000 &best_highpc, cu, pst);
6001 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6002 /* Store the contiguous range if it is not empty; it can be empty for
6003 CUs with no code. */
6004 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6005 gdbarch_adjust_dwarf2_addr (gdbarch,
6006 best_lowpc + baseaddr),
6007 gdbarch_adjust_dwarf2_addr (gdbarch,
6008 best_highpc + baseaddr) - 1,
6009 pst);
0018ea6f
DE
6010
6011 /* Check if comp unit has_children.
6012 If so, read the rest of the partial symbols from this comp unit.
6013 If not, there's no more debug_info for this comp unit. */
6014 if (has_children)
6015 {
6016 struct partial_die_info *first_die;
6017 CORE_ADDR lowpc, highpc;
6018
6019 lowpc = ((CORE_ADDR) -1);
6020 highpc = ((CORE_ADDR) 0);
6021
6022 first_die = load_partial_dies (reader, info_ptr, 1);
6023
6024 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6025 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6026
6027 /* If we didn't find a lowpc, set it to highpc to avoid
6028 complaints from `maint check'. */
6029 if (lowpc == ((CORE_ADDR) -1))
6030 lowpc = highpc;
6031
6032 /* If the compilation unit didn't have an explicit address range,
6033 then use the information extracted from its child dies. */
e385593e 6034 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6035 {
6036 best_lowpc = lowpc;
6037 best_highpc = highpc;
6038 }
6039 }
3e29f34a
MR
6040 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6041 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6042
8763cede 6043 end_psymtab_common (objfile, pst);
0018ea6f
DE
6044
6045 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6046 {
6047 int i;
6048 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6049 struct dwarf2_per_cu_data *iter;
6050
6051 /* Fill in 'dependencies' here; we fill in 'users' in a
6052 post-pass. */
6053 pst->number_of_dependencies = len;
8d749320
SM
6054 pst->dependencies =
6055 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6056 for (i = 0;
6057 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6058 i, iter);
6059 ++i)
6060 pst->dependencies[i] = iter->v.psymtab;
6061
6062 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6063 }
6064
6065 /* Get the list of files included in the current compilation unit,
6066 and build a psymtab for each of them. */
6067 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6068
b4f54984 6069 if (dwarf_read_debug)
0018ea6f
DE
6070 {
6071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6072
6073 fprintf_unfiltered (gdb_stdlog,
6074 "Psymtab for %s unit @0x%x: %s - %s"
6075 ", %d global, %d static syms\n",
6076 per_cu->is_debug_types ? "type" : "comp",
6077 per_cu->offset.sect_off,
6078 paddress (gdbarch, pst->textlow),
6079 paddress (gdbarch, pst->texthigh),
6080 pst->n_global_syms, pst->n_static_syms);
6081 }
6082}
6083
6084/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6085 Process compilation unit THIS_CU for a psymtab. */
6086
6087static void
6088process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6089 int want_partial_unit,
6090 enum language pretend_language)
0018ea6f 6091{
b93601f3
TT
6092 struct process_psymtab_comp_unit_data info;
6093
0018ea6f
DE
6094 /* If this compilation unit was already read in, free the
6095 cached copy in order to read it in again. This is
6096 necessary because we skipped some symbols when we first
6097 read in the compilation unit (see load_partial_dies).
6098 This problem could be avoided, but the benefit is unclear. */
6099 if (this_cu->cu != NULL)
6100 free_one_cached_comp_unit (this_cu);
6101
6102 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6103 info.want_partial_unit = want_partial_unit;
6104 info.pretend_language = pretend_language;
0018ea6f
DE
6105 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6106 process_psymtab_comp_unit_reader,
b93601f3 6107 &info);
0018ea6f
DE
6108
6109 /* Age out any secondary CUs. */
6110 age_cached_comp_units ();
6111}
f4dc4d17
DE
6112
6113/* Reader function for build_type_psymtabs. */
6114
6115static void
6116build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6117 const gdb_byte *info_ptr,
f4dc4d17
DE
6118 struct die_info *type_unit_die,
6119 int has_children,
6120 void *data)
6121{
6122 struct objfile *objfile = dwarf2_per_objfile->objfile;
6123 struct dwarf2_cu *cu = reader->cu;
6124 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6125 struct signatured_type *sig_type;
f4dc4d17
DE
6126 struct type_unit_group *tu_group;
6127 struct attribute *attr;
6128 struct partial_die_info *first_die;
6129 CORE_ADDR lowpc, highpc;
6130 struct partial_symtab *pst;
6131
6132 gdb_assert (data == NULL);
0186c6a7
DE
6133 gdb_assert (per_cu->is_debug_types);
6134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6135
6136 if (! has_children)
6137 return;
6138
6139 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6140 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6141
0186c6a7 6142 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6143
6144 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6145 cu->list_in_scope = &file_symbols;
6146 pst = create_partial_symtab (per_cu, "");
6147 pst->anonymous = 1;
6148
6149 first_die = load_partial_dies (reader, info_ptr, 1);
6150
6151 lowpc = (CORE_ADDR) -1;
6152 highpc = (CORE_ADDR) 0;
6153 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6154
8763cede 6155 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6156}
6157
73051182
DE
6158/* Struct used to sort TUs by their abbreviation table offset. */
6159
6160struct tu_abbrev_offset
6161{
6162 struct signatured_type *sig_type;
6163 sect_offset abbrev_offset;
6164};
6165
6166/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6167
6168static int
6169sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6170{
9a3c8263
SM
6171 const struct tu_abbrev_offset * const *a
6172 = (const struct tu_abbrev_offset * const*) ap;
6173 const struct tu_abbrev_offset * const *b
6174 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6175 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6176 unsigned int boff = (*b)->abbrev_offset.sect_off;
6177
6178 return (aoff > boff) - (aoff < boff);
6179}
6180
6181/* Efficiently read all the type units.
6182 This does the bulk of the work for build_type_psymtabs.
6183
6184 The efficiency is because we sort TUs by the abbrev table they use and
6185 only read each abbrev table once. In one program there are 200K TUs
6186 sharing 8K abbrev tables.
6187
6188 The main purpose of this function is to support building the
6189 dwarf2_per_objfile->type_unit_groups table.
6190 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6191 can collapse the search space by grouping them by stmt_list.
6192 The savings can be significant, in the same program from above the 200K TUs
6193 share 8K stmt_list tables.
6194
6195 FUNC is expected to call get_type_unit_group, which will create the
6196 struct type_unit_group if necessary and add it to
6197 dwarf2_per_objfile->type_unit_groups. */
6198
6199static void
6200build_type_psymtabs_1 (void)
6201{
73051182
DE
6202 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6203 struct cleanup *cleanups;
6204 struct abbrev_table *abbrev_table;
6205 sect_offset abbrev_offset;
6206 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6207 int i;
6208
6209 /* It's up to the caller to not call us multiple times. */
6210 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6211
6212 if (dwarf2_per_objfile->n_type_units == 0)
6213 return;
6214
6215 /* TUs typically share abbrev tables, and there can be way more TUs than
6216 abbrev tables. Sort by abbrev table to reduce the number of times we
6217 read each abbrev table in.
6218 Alternatives are to punt or to maintain a cache of abbrev tables.
6219 This is simpler and efficient enough for now.
6220
6221 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6222 symtab to use). Typically TUs with the same abbrev offset have the same
6223 stmt_list value too so in practice this should work well.
6224
6225 The basic algorithm here is:
6226
6227 sort TUs by abbrev table
6228 for each TU with same abbrev table:
6229 read abbrev table if first user
6230 read TU top level DIE
6231 [IWBN if DWO skeletons had DW_AT_stmt_list]
6232 call FUNC */
6233
b4f54984 6234 if (dwarf_read_debug)
73051182
DE
6235 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6236
6237 /* Sort in a separate table to maintain the order of all_type_units
6238 for .gdb_index: TU indices directly index all_type_units. */
6239 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6240 dwarf2_per_objfile->n_type_units);
6241 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6242 {
6243 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6244
6245 sorted_by_abbrev[i].sig_type = sig_type;
6246 sorted_by_abbrev[i].abbrev_offset =
6247 read_abbrev_offset (sig_type->per_cu.section,
6248 sig_type->per_cu.offset);
6249 }
6250 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6251 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6252 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6253
6254 abbrev_offset.sect_off = ~(unsigned) 0;
6255 abbrev_table = NULL;
6256 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6257
6258 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6259 {
6260 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6261
6262 /* Switch to the next abbrev table if necessary. */
6263 if (abbrev_table == NULL
6264 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6265 {
6266 if (abbrev_table != NULL)
6267 {
6268 abbrev_table_free (abbrev_table);
6269 /* Reset to NULL in case abbrev_table_read_table throws
6270 an error: abbrev_table_free_cleanup will get called. */
6271 abbrev_table = NULL;
6272 }
6273 abbrev_offset = tu->abbrev_offset;
6274 abbrev_table =
6275 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6276 abbrev_offset);
6277 ++tu_stats->nr_uniq_abbrev_tables;
6278 }
6279
6280 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6281 build_type_psymtabs_reader, NULL);
6282 }
6283
73051182 6284 do_cleanups (cleanups);
6aa5f3a6 6285}
73051182 6286
6aa5f3a6
DE
6287/* Print collected type unit statistics. */
6288
6289static void
6290print_tu_stats (void)
6291{
6292 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6293
6294 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6295 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6296 dwarf2_per_objfile->n_type_units);
6297 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6298 tu_stats->nr_uniq_abbrev_tables);
6299 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6300 tu_stats->nr_symtabs);
6301 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6302 tu_stats->nr_symtab_sharers);
6303 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6304 tu_stats->nr_stmt_less_type_units);
6305 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6306 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6307}
6308
f4dc4d17
DE
6309/* Traversal function for build_type_psymtabs. */
6310
6311static int
6312build_type_psymtab_dependencies (void **slot, void *info)
6313{
6314 struct objfile *objfile = dwarf2_per_objfile->objfile;
6315 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6316 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6317 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6318 int len = VEC_length (sig_type_ptr, tu_group->tus);
6319 struct signatured_type *iter;
f4dc4d17
DE
6320 int i;
6321
6322 gdb_assert (len > 0);
0186c6a7 6323 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6324
6325 pst->number_of_dependencies = len;
8d749320
SM
6326 pst->dependencies =
6327 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6328 for (i = 0;
0186c6a7 6329 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6330 ++i)
6331 {
0186c6a7
DE
6332 gdb_assert (iter->per_cu.is_debug_types);
6333 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6334 iter->type_unit_group = tu_group;
f4dc4d17
DE
6335 }
6336
0186c6a7 6337 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6338
6339 return 1;
6340}
6341
6342/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6343 Build partial symbol tables for the .debug_types comp-units. */
6344
6345static void
6346build_type_psymtabs (struct objfile *objfile)
6347{
0e50663e 6348 if (! create_all_type_units (objfile))
348e048f
DE
6349 return;
6350
73051182 6351 build_type_psymtabs_1 ();
6aa5f3a6 6352}
f4dc4d17 6353
6aa5f3a6
DE
6354/* Traversal function for process_skeletonless_type_unit.
6355 Read a TU in a DWO file and build partial symbols for it. */
6356
6357static int
6358process_skeletonless_type_unit (void **slot, void *info)
6359{
6360 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6361 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6362 struct signatured_type find_entry, *entry;
6363
6364 /* If this TU doesn't exist in the global table, add it and read it in. */
6365
6366 if (dwarf2_per_objfile->signatured_types == NULL)
6367 {
6368 dwarf2_per_objfile->signatured_types
6369 = allocate_signatured_type_table (objfile);
6370 }
6371
6372 find_entry.signature = dwo_unit->signature;
6373 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6374 INSERT);
6375 /* If we've already seen this type there's nothing to do. What's happening
6376 is we're doing our own version of comdat-folding here. */
6377 if (*slot != NULL)
6378 return 1;
6379
6380 /* This does the job that create_all_type_units would have done for
6381 this TU. */
6382 entry = add_type_unit (dwo_unit->signature, slot);
6383 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6384 *slot = entry;
6385
6386 /* This does the job that build_type_psymtabs_1 would have done. */
6387 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6388 build_type_psymtabs_reader, NULL);
6389
6390 return 1;
6391}
6392
6393/* Traversal function for process_skeletonless_type_units. */
6394
6395static int
6396process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6397{
6398 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6399
6400 if (dwo_file->tus != NULL)
6401 {
6402 htab_traverse_noresize (dwo_file->tus,
6403 process_skeletonless_type_unit, info);
6404 }
6405
6406 return 1;
6407}
6408
6409/* Scan all TUs of DWO files, verifying we've processed them.
6410 This is needed in case a TU was emitted without its skeleton.
6411 Note: This can't be done until we know what all the DWO files are. */
6412
6413static void
6414process_skeletonless_type_units (struct objfile *objfile)
6415{
6416 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6417 if (get_dwp_file () == NULL
6418 && dwarf2_per_objfile->dwo_files != NULL)
6419 {
6420 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6421 process_dwo_file_for_skeletonless_type_units,
6422 objfile);
6423 }
348e048f
DE
6424}
6425
60606b2c
TT
6426/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6427
6428static void
6429psymtabs_addrmap_cleanup (void *o)
6430{
9a3c8263 6431 struct objfile *objfile = (struct objfile *) o;
ec61707d 6432
60606b2c
TT
6433 objfile->psymtabs_addrmap = NULL;
6434}
6435
95554aad
TT
6436/* Compute the 'user' field for each psymtab in OBJFILE. */
6437
6438static void
6439set_partial_user (struct objfile *objfile)
6440{
6441 int i;
6442
6443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6444 {
8832e7e3 6445 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6446 struct partial_symtab *pst = per_cu->v.psymtab;
6447 int j;
6448
36586728
TT
6449 if (pst == NULL)
6450 continue;
6451
95554aad
TT
6452 for (j = 0; j < pst->number_of_dependencies; ++j)
6453 {
6454 /* Set the 'user' field only if it is not already set. */
6455 if (pst->dependencies[j]->user == NULL)
6456 pst->dependencies[j]->user = pst;
6457 }
6458 }
6459}
6460
93311388
DE
6461/* Build the partial symbol table by doing a quick pass through the
6462 .debug_info and .debug_abbrev sections. */
72bf9492 6463
93311388 6464static void
c67a9c90 6465dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6466{
60606b2c
TT
6467 struct cleanup *back_to, *addrmap_cleanup;
6468 struct obstack temp_obstack;
21b2bd31 6469 int i;
93311388 6470
b4f54984 6471 if (dwarf_read_debug)
45cfd468
DE
6472 {
6473 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6474 objfile_name (objfile));
45cfd468
DE
6475 }
6476
98bfdba5
PA
6477 dwarf2_per_objfile->reading_partial_symbols = 1;
6478
be391dca 6479 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6480
93311388
DE
6481 /* Any cached compilation units will be linked by the per-objfile
6482 read_in_chain. Make sure to free them when we're done. */
6483 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6484
348e048f
DE
6485 build_type_psymtabs (objfile);
6486
93311388 6487 create_all_comp_units (objfile);
c906108c 6488
60606b2c
TT
6489 /* Create a temporary address map on a temporary obstack. We later
6490 copy this to the final obstack. */
6491 obstack_init (&temp_obstack);
6492 make_cleanup_obstack_free (&temp_obstack);
6493 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6494 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6495
21b2bd31 6496 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6497 {
8832e7e3 6498 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6499
b93601f3 6500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6501 }
ff013f42 6502
6aa5f3a6
DE
6503 /* This has to wait until we read the CUs, we need the list of DWOs. */
6504 process_skeletonless_type_units (objfile);
6505
6506 /* Now that all TUs have been processed we can fill in the dependencies. */
6507 if (dwarf2_per_objfile->type_unit_groups != NULL)
6508 {
6509 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6510 build_type_psymtab_dependencies, NULL);
6511 }
6512
b4f54984 6513 if (dwarf_read_debug)
6aa5f3a6
DE
6514 print_tu_stats ();
6515
95554aad
TT
6516 set_partial_user (objfile);
6517
ff013f42
JK
6518 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6519 &objfile->objfile_obstack);
60606b2c 6520 discard_cleanups (addrmap_cleanup);
ff013f42 6521
ae038cb0 6522 do_cleanups (back_to);
45cfd468 6523
b4f54984 6524 if (dwarf_read_debug)
45cfd468 6525 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6526 objfile_name (objfile));
ae038cb0
DJ
6527}
6528
3019eac3 6529/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6530
6531static void
dee91e82 6532load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6533 const gdb_byte *info_ptr,
dee91e82
DE
6534 struct die_info *comp_unit_die,
6535 int has_children,
6536 void *data)
ae038cb0 6537{
dee91e82 6538 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6539
95554aad 6540 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6541
ae038cb0
DJ
6542 /* Check if comp unit has_children.
6543 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6544 If not, there's no more debug_info for this comp unit. */
d85a05f0 6545 if (has_children)
dee91e82
DE
6546 load_partial_dies (reader, info_ptr, 0);
6547}
98bfdba5 6548
dee91e82
DE
6549/* Load the partial DIEs for a secondary CU into memory.
6550 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6551
dee91e82
DE
6552static void
6553load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6554{
f4dc4d17
DE
6555 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6556 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6557}
6558
ae038cb0 6559static void
36586728
TT
6560read_comp_units_from_section (struct objfile *objfile,
6561 struct dwarf2_section_info *section,
6562 unsigned int is_dwz,
6563 int *n_allocated,
6564 int *n_comp_units,
6565 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6566{
d521ce57 6567 const gdb_byte *info_ptr;
a32a8923 6568 bfd *abfd = get_section_bfd_owner (section);
be391dca 6569
b4f54984 6570 if (dwarf_read_debug)
bf6af496 6571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6572 get_section_name (section),
6573 get_section_file_name (section));
bf6af496 6574
36586728 6575 dwarf2_read_section (objfile, section);
ae038cb0 6576
36586728 6577 info_ptr = section->buffer;
6e70227d 6578
36586728 6579 while (info_ptr < section->buffer + section->size)
ae038cb0 6580 {
c764a876 6581 unsigned int length, initial_length_size;
ae038cb0 6582 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6583 sect_offset offset;
ae038cb0 6584
36586728 6585 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6586
6587 /* Read just enough information to find out where the next
6588 compilation unit is. */
36586728 6589 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6590
6591 /* Save the compilation unit for later lookup. */
8d749320 6592 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6593 memset (this_cu, 0, sizeof (*this_cu));
6594 this_cu->offset = offset;
c764a876 6595 this_cu->length = length + initial_length_size;
36586728 6596 this_cu->is_dwz = is_dwz;
9291a0cd 6597 this_cu->objfile = objfile;
8a0459fd 6598 this_cu->section = section;
ae038cb0 6599
36586728 6600 if (*n_comp_units == *n_allocated)
ae038cb0 6601 {
36586728 6602 *n_allocated *= 2;
224c3ddb
SM
6603 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6604 *all_comp_units, *n_allocated);
ae038cb0 6605 }
36586728
TT
6606 (*all_comp_units)[*n_comp_units] = this_cu;
6607 ++*n_comp_units;
ae038cb0
DJ
6608
6609 info_ptr = info_ptr + this_cu->length;
6610 }
36586728
TT
6611}
6612
6613/* Create a list of all compilation units in OBJFILE.
6614 This is only done for -readnow and building partial symtabs. */
6615
6616static void
6617create_all_comp_units (struct objfile *objfile)
6618{
6619 int n_allocated;
6620 int n_comp_units;
6621 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6622 struct dwz_file *dwz;
36586728
TT
6623
6624 n_comp_units = 0;
6625 n_allocated = 10;
8d749320 6626 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6627
6628 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6629 &n_allocated, &n_comp_units, &all_comp_units);
6630
4db1a1dc
TT
6631 dwz = dwarf2_get_dwz_file ();
6632 if (dwz != NULL)
6633 read_comp_units_from_section (objfile, &dwz->info, 1,
6634 &n_allocated, &n_comp_units,
6635 &all_comp_units);
ae038cb0 6636
8d749320
SM
6637 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6638 struct dwarf2_per_cu_data *,
6639 n_comp_units);
ae038cb0
DJ
6640 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6641 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6642 xfree (all_comp_units);
6643 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6644}
6645
5734ee8b 6646/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6647 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6648 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6649 DW_AT_ranges). See the comments of add_partial_subprogram on how
6650 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6651
72bf9492
DJ
6652static void
6653scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6654 CORE_ADDR *highpc, int set_addrmap,
6655 struct dwarf2_cu *cu)
c906108c 6656{
72bf9492 6657 struct partial_die_info *pdi;
c906108c 6658
91c24f0a
DC
6659 /* Now, march along the PDI's, descending into ones which have
6660 interesting children but skipping the children of the other ones,
6661 until we reach the end of the compilation unit. */
c906108c 6662
72bf9492 6663 pdi = first_die;
91c24f0a 6664
72bf9492
DJ
6665 while (pdi != NULL)
6666 {
6667 fixup_partial_die (pdi, cu);
c906108c 6668
f55ee35c 6669 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6670 children, so we need to look at them. Ditto for anonymous
6671 enums. */
933c6fe4 6672
72bf9492 6673 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6674 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6675 || pdi->tag == DW_TAG_imported_unit)
c906108c 6676 {
72bf9492 6677 switch (pdi->tag)
c906108c
SS
6678 {
6679 case DW_TAG_subprogram:
cdc07690 6680 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6681 break;
72929c62 6682 case DW_TAG_constant:
c906108c
SS
6683 case DW_TAG_variable:
6684 case DW_TAG_typedef:
91c24f0a 6685 case DW_TAG_union_type:
72bf9492 6686 if (!pdi->is_declaration)
63d06c5c 6687 {
72bf9492 6688 add_partial_symbol (pdi, cu);
63d06c5c
DC
6689 }
6690 break;
c906108c 6691 case DW_TAG_class_type:
680b30c7 6692 case DW_TAG_interface_type:
c906108c 6693 case DW_TAG_structure_type:
72bf9492 6694 if (!pdi->is_declaration)
c906108c 6695 {
72bf9492 6696 add_partial_symbol (pdi, cu);
c906108c
SS
6697 }
6698 break;
91c24f0a 6699 case DW_TAG_enumeration_type:
72bf9492
DJ
6700 if (!pdi->is_declaration)
6701 add_partial_enumeration (pdi, cu);
c906108c
SS
6702 break;
6703 case DW_TAG_base_type:
a02abb62 6704 case DW_TAG_subrange_type:
c906108c 6705 /* File scope base type definitions are added to the partial
c5aa993b 6706 symbol table. */
72bf9492 6707 add_partial_symbol (pdi, cu);
c906108c 6708 break;
d9fa45fe 6709 case DW_TAG_namespace:
cdc07690 6710 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6711 break;
5d7cb8df 6712 case DW_TAG_module:
cdc07690 6713 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6714 break;
95554aad
TT
6715 case DW_TAG_imported_unit:
6716 {
6717 struct dwarf2_per_cu_data *per_cu;
6718
f4dc4d17
DE
6719 /* For now we don't handle imported units in type units. */
6720 if (cu->per_cu->is_debug_types)
6721 {
6722 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6723 " supported in type units [in module %s]"),
4262abfb 6724 objfile_name (cu->objfile));
f4dc4d17
DE
6725 }
6726
95554aad 6727 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6728 pdi->is_dwz,
95554aad
TT
6729 cu->objfile);
6730
6731 /* Go read the partial unit, if needed. */
6732 if (per_cu->v.psymtab == NULL)
b93601f3 6733 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6734
f4dc4d17 6735 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6736 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6737 }
6738 break;
74921315
KS
6739 case DW_TAG_imported_declaration:
6740 add_partial_symbol (pdi, cu);
6741 break;
c906108c
SS
6742 default:
6743 break;
6744 }
6745 }
6746
72bf9492
DJ
6747 /* If the die has a sibling, skip to the sibling. */
6748
6749 pdi = pdi->die_sibling;
6750 }
6751}
6752
6753/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6754
72bf9492 6755 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6756 name is concatenated with "::" and the partial DIE's name. For
6757 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6758 Enumerators are an exception; they use the scope of their parent
6759 enumeration type, i.e. the name of the enumeration type is not
6760 prepended to the enumerator.
91c24f0a 6761
72bf9492
DJ
6762 There are two complexities. One is DW_AT_specification; in this
6763 case "parent" means the parent of the target of the specification,
6764 instead of the direct parent of the DIE. The other is compilers
6765 which do not emit DW_TAG_namespace; in this case we try to guess
6766 the fully qualified name of structure types from their members'
6767 linkage names. This must be done using the DIE's children rather
6768 than the children of any DW_AT_specification target. We only need
6769 to do this for structures at the top level, i.e. if the target of
6770 any DW_AT_specification (if any; otherwise the DIE itself) does not
6771 have a parent. */
6772
6773/* Compute the scope prefix associated with PDI's parent, in
6774 compilation unit CU. The result will be allocated on CU's
6775 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6776 field. NULL is returned if no prefix is necessary. */
15d034d0 6777static const char *
72bf9492
DJ
6778partial_die_parent_scope (struct partial_die_info *pdi,
6779 struct dwarf2_cu *cu)
6780{
15d034d0 6781 const char *grandparent_scope;
72bf9492 6782 struct partial_die_info *parent, *real_pdi;
91c24f0a 6783
72bf9492
DJ
6784 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6785 then this means the parent of the specification DIE. */
6786
6787 real_pdi = pdi;
72bf9492 6788 while (real_pdi->has_specification)
36586728
TT
6789 real_pdi = find_partial_die (real_pdi->spec_offset,
6790 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6791
6792 parent = real_pdi->die_parent;
6793 if (parent == NULL)
6794 return NULL;
6795
6796 if (parent->scope_set)
6797 return parent->scope;
6798
6799 fixup_partial_die (parent, cu);
6800
10b3939b 6801 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6802
acebe513
UW
6803 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6804 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6805 Work around this problem here. */
6806 if (cu->language == language_cplus
6e70227d 6807 && parent->tag == DW_TAG_namespace
acebe513
UW
6808 && strcmp (parent->name, "::") == 0
6809 && grandparent_scope == NULL)
6810 {
6811 parent->scope = NULL;
6812 parent->scope_set = 1;
6813 return NULL;
6814 }
6815
9c6c53f7
SA
6816 if (pdi->tag == DW_TAG_enumerator)
6817 /* Enumerators should not get the name of the enumeration as a prefix. */
6818 parent->scope = grandparent_scope;
6819 else if (parent->tag == DW_TAG_namespace
f55ee35c 6820 || parent->tag == DW_TAG_module
72bf9492
DJ
6821 || parent->tag == DW_TAG_structure_type
6822 || parent->tag == DW_TAG_class_type
680b30c7 6823 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6824 || parent->tag == DW_TAG_union_type
6825 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6826 {
6827 if (grandparent_scope == NULL)
6828 parent->scope = parent->name;
6829 else
3e43a32a
MS
6830 parent->scope = typename_concat (&cu->comp_unit_obstack,
6831 grandparent_scope,
f55ee35c 6832 parent->name, 0, cu);
72bf9492 6833 }
72bf9492
DJ
6834 else
6835 {
6836 /* FIXME drow/2004-04-01: What should we be doing with
6837 function-local names? For partial symbols, we should probably be
6838 ignoring them. */
6839 complaint (&symfile_complaints,
e2e0b3e5 6840 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6841 parent->tag, pdi->offset.sect_off);
72bf9492 6842 parent->scope = grandparent_scope;
c906108c
SS
6843 }
6844
72bf9492
DJ
6845 parent->scope_set = 1;
6846 return parent->scope;
6847}
6848
6849/* Return the fully scoped name associated with PDI, from compilation unit
6850 CU. The result will be allocated with malloc. */
4568ecf9 6851
72bf9492
DJ
6852static char *
6853partial_die_full_name (struct partial_die_info *pdi,
6854 struct dwarf2_cu *cu)
6855{
15d034d0 6856 const char *parent_scope;
72bf9492 6857
98bfdba5
PA
6858 /* If this is a template instantiation, we can not work out the
6859 template arguments from partial DIEs. So, unfortunately, we have
6860 to go through the full DIEs. At least any work we do building
6861 types here will be reused if full symbols are loaded later. */
6862 if (pdi->has_template_arguments)
6863 {
6864 fixup_partial_die (pdi, cu);
6865
6866 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6867 {
6868 struct die_info *die;
6869 struct attribute attr;
6870 struct dwarf2_cu *ref_cu = cu;
6871
b64f50a1 6872 /* DW_FORM_ref_addr is using section offset. */
b4069958 6873 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6874 attr.form = DW_FORM_ref_addr;
4568ecf9 6875 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6876 die = follow_die_ref (NULL, &attr, &ref_cu);
6877
6878 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6879 }
6880 }
6881
72bf9492
DJ
6882 parent_scope = partial_die_parent_scope (pdi, cu);
6883 if (parent_scope == NULL)
6884 return NULL;
6885 else
f55ee35c 6886 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6887}
6888
6889static void
72bf9492 6890add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6891{
e7c27a73 6892 struct objfile *objfile = cu->objfile;
3e29f34a 6893 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6894 CORE_ADDR addr = 0;
15d034d0 6895 const char *actual_name = NULL;
e142c38c 6896 CORE_ADDR baseaddr;
15d034d0 6897 char *built_actual_name;
e142c38c
DJ
6898
6899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6900
15d034d0
TT
6901 built_actual_name = partial_die_full_name (pdi, cu);
6902 if (built_actual_name != NULL)
6903 actual_name = built_actual_name;
63d06c5c 6904
72bf9492
DJ
6905 if (actual_name == NULL)
6906 actual_name = pdi->name;
6907
c906108c
SS
6908 switch (pdi->tag)
6909 {
6910 case DW_TAG_subprogram:
3e29f34a 6911 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6912 if (pdi->is_external || cu->language == language_ada)
c906108c 6913 {
2cfa0c8d
JB
6914 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6915 of the global scope. But in Ada, we want to be able to access
6916 nested procedures globally. So all Ada subprograms are stored
6917 in the global scope. */
f47fb265 6918 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6919 built_actual_name != NULL,
f47fb265
MS
6920 VAR_DOMAIN, LOC_BLOCK,
6921 &objfile->global_psymbols,
1762568f 6922 addr, cu->language, objfile);
c906108c
SS
6923 }
6924 else
6925 {
f47fb265 6926 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6927 built_actual_name != NULL,
f47fb265
MS
6928 VAR_DOMAIN, LOC_BLOCK,
6929 &objfile->static_psymbols,
1762568f 6930 addr, cu->language, objfile);
c906108c
SS
6931 }
6932 break;
72929c62
JB
6933 case DW_TAG_constant:
6934 {
6935 struct psymbol_allocation_list *list;
6936
6937 if (pdi->is_external)
6938 list = &objfile->global_psymbols;
6939 else
6940 list = &objfile->static_psymbols;
f47fb265 6941 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6942 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6943 list, 0, cu->language, objfile);
72929c62
JB
6944 }
6945 break;
c906108c 6946 case DW_TAG_variable:
95554aad
TT
6947 if (pdi->d.locdesc)
6948 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6949
95554aad 6950 if (pdi->d.locdesc
caac4577
JG
6951 && addr == 0
6952 && !dwarf2_per_objfile->has_section_at_zero)
6953 {
6954 /* A global or static variable may also have been stripped
6955 out by the linker if unused, in which case its address
6956 will be nullified; do not add such variables into partial
6957 symbol table then. */
6958 }
6959 else if (pdi->is_external)
c906108c
SS
6960 {
6961 /* Global Variable.
6962 Don't enter into the minimal symbol tables as there is
6963 a minimal symbol table entry from the ELF symbols already.
6964 Enter into partial symbol table if it has a location
6965 descriptor or a type.
6966 If the location descriptor is missing, new_symbol will create
6967 a LOC_UNRESOLVED symbol, the address of the variable will then
6968 be determined from the minimal symbol table whenever the variable
6969 is referenced.
6970 The address for the partial symbol table entry is not
6971 used by GDB, but it comes in handy for debugging partial symbol
6972 table building. */
6973
95554aad 6974 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6975 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6976 built_actual_name != NULL,
f47fb265
MS
6977 VAR_DOMAIN, LOC_STATIC,
6978 &objfile->global_psymbols,
1762568f 6979 addr + baseaddr,
f47fb265 6980 cu->language, objfile);
c906108c
SS
6981 }
6982 else
6983 {
ff908ebf
AW
6984 int has_loc = pdi->d.locdesc != NULL;
6985
6986 /* Static Variable. Skip symbols whose value we cannot know (those
6987 without location descriptors or constant values). */
6988 if (!has_loc && !pdi->has_const_value)
decbce07 6989 {
15d034d0 6990 xfree (built_actual_name);
decbce07
MS
6991 return;
6992 }
ff908ebf 6993
f47fb265 6994 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6995 built_actual_name != NULL,
f47fb265
MS
6996 VAR_DOMAIN, LOC_STATIC,
6997 &objfile->static_psymbols,
ff908ebf 6998 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6999 cu->language, objfile);
c906108c
SS
7000 }
7001 break;
7002 case DW_TAG_typedef:
7003 case DW_TAG_base_type:
a02abb62 7004 case DW_TAG_subrange_type:
38d518c9 7005 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7006 built_actual_name != NULL,
176620f1 7007 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7008 &objfile->static_psymbols,
1762568f 7009 0, cu->language, objfile);
c906108c 7010 break;
74921315 7011 case DW_TAG_imported_declaration:
72bf9492
DJ
7012 case DW_TAG_namespace:
7013 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7014 built_actual_name != NULL,
72bf9492
DJ
7015 VAR_DOMAIN, LOC_TYPEDEF,
7016 &objfile->global_psymbols,
1762568f 7017 0, cu->language, objfile);
72bf9492 7018 break;
530e8392
KB
7019 case DW_TAG_module:
7020 add_psymbol_to_list (actual_name, strlen (actual_name),
7021 built_actual_name != NULL,
7022 MODULE_DOMAIN, LOC_TYPEDEF,
7023 &objfile->global_psymbols,
1762568f 7024 0, cu->language, objfile);
530e8392 7025 break;
c906108c 7026 case DW_TAG_class_type:
680b30c7 7027 case DW_TAG_interface_type:
c906108c
SS
7028 case DW_TAG_structure_type:
7029 case DW_TAG_union_type:
7030 case DW_TAG_enumeration_type:
fa4028e9
JB
7031 /* Skip external references. The DWARF standard says in the section
7032 about "Structure, Union, and Class Type Entries": "An incomplete
7033 structure, union or class type is represented by a structure,
7034 union or class entry that does not have a byte size attribute
7035 and that has a DW_AT_declaration attribute." */
7036 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7037 {
15d034d0 7038 xfree (built_actual_name);
decbce07
MS
7039 return;
7040 }
fa4028e9 7041
63d06c5c
DC
7042 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7043 static vs. global. */
38d518c9 7044 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7045 built_actual_name != NULL,
176620f1 7046 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7047 (cu->language == language_cplus
7048 || cu->language == language_java)
63d06c5c
DC
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
1762568f 7051 0, cu->language, objfile);
c906108c 7052
c906108c
SS
7053 break;
7054 case DW_TAG_enumerator:
38d518c9 7055 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7056 built_actual_name != NULL,
176620f1 7057 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7058 (cu->language == language_cplus
7059 || cu->language == language_java)
f6fe98ef
DJ
7060 ? &objfile->global_psymbols
7061 : &objfile->static_psymbols,
1762568f 7062 0, cu->language, objfile);
c906108c
SS
7063 break;
7064 default:
7065 break;
7066 }
5c4e30ca 7067
15d034d0 7068 xfree (built_actual_name);
c906108c
SS
7069}
7070
5c4e30ca
DC
7071/* Read a partial die corresponding to a namespace; also, add a symbol
7072 corresponding to that namespace to the symbol table. NAMESPACE is
7073 the name of the enclosing namespace. */
91c24f0a 7074
72bf9492
DJ
7075static void
7076add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7077 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7078 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7079{
72bf9492 7080 /* Add a symbol for the namespace. */
e7c27a73 7081
72bf9492 7082 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7083
7084 /* Now scan partial symbols in that namespace. */
7085
91c24f0a 7086 if (pdi->has_children)
cdc07690 7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7088}
7089
5d7cb8df
JK
7090/* Read a partial die corresponding to a Fortran module. */
7091
7092static void
7093add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7094 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7095{
530e8392
KB
7096 /* Add a symbol for the namespace. */
7097
7098 add_partial_symbol (pdi, cu);
7099
f55ee35c 7100 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7101
7102 if (pdi->has_children)
cdc07690 7103 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7104}
7105
bc30ff58
JB
7106/* Read a partial die corresponding to a subprogram and create a partial
7107 symbol for that subprogram. When the CU language allows it, this
7108 routine also defines a partial symbol for each nested subprogram
cdc07690 7109 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7110 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7111 and highest PC values found in PDI.
6e70227d 7112
cdc07690
YQ
7113 PDI may also be a lexical block, in which case we simply search
7114 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7115 Again, this is only performed when the CU language allows this
7116 type of definitions. */
7117
7118static void
7119add_partial_subprogram (struct partial_die_info *pdi,
7120 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7121 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7122{
7123 if (pdi->tag == DW_TAG_subprogram)
7124 {
7125 if (pdi->has_pc_info)
7126 {
7127 if (pdi->lowpc < *lowpc)
7128 *lowpc = pdi->lowpc;
7129 if (pdi->highpc > *highpc)
7130 *highpc = pdi->highpc;
cdc07690 7131 if (set_addrmap)
5734ee8b 7132 {
5734ee8b 7133 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7134 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7135 CORE_ADDR baseaddr;
7136 CORE_ADDR highpc;
7137 CORE_ADDR lowpc;
5734ee8b
DJ
7138
7139 baseaddr = ANOFFSET (objfile->section_offsets,
7140 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7141 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7142 pdi->lowpc + baseaddr);
7143 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7144 pdi->highpc + baseaddr);
7145 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7146 cu->per_cu->v.psymtab);
5734ee8b 7147 }
481860b3
GB
7148 }
7149
7150 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7151 {
bc30ff58 7152 if (!pdi->is_declaration)
e8d05480
JB
7153 /* Ignore subprogram DIEs that do not have a name, they are
7154 illegal. Do not emit a complaint at this point, we will
7155 do so when we convert this psymtab into a symtab. */
7156 if (pdi->name)
7157 add_partial_symbol (pdi, cu);
bc30ff58
JB
7158 }
7159 }
6e70227d 7160
bc30ff58
JB
7161 if (! pdi->has_children)
7162 return;
7163
7164 if (cu->language == language_ada)
7165 {
7166 pdi = pdi->die_child;
7167 while (pdi != NULL)
7168 {
7169 fixup_partial_die (pdi, cu);
7170 if (pdi->tag == DW_TAG_subprogram
7171 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7172 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7173 pdi = pdi->die_sibling;
7174 }
7175 }
7176}
7177
91c24f0a
DC
7178/* Read a partial die corresponding to an enumeration type. */
7179
72bf9492
DJ
7180static void
7181add_partial_enumeration (struct partial_die_info *enum_pdi,
7182 struct dwarf2_cu *cu)
91c24f0a 7183{
72bf9492 7184 struct partial_die_info *pdi;
91c24f0a
DC
7185
7186 if (enum_pdi->name != NULL)
72bf9492
DJ
7187 add_partial_symbol (enum_pdi, cu);
7188
7189 pdi = enum_pdi->die_child;
7190 while (pdi)
91c24f0a 7191 {
72bf9492 7192 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7193 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7194 else
72bf9492
DJ
7195 add_partial_symbol (pdi, cu);
7196 pdi = pdi->die_sibling;
91c24f0a 7197 }
91c24f0a
DC
7198}
7199
6caca83c
CC
7200/* Return the initial uleb128 in the die at INFO_PTR. */
7201
7202static unsigned int
d521ce57 7203peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7204{
7205 unsigned int bytes_read;
7206
7207 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7208}
7209
4bb7a0a7
DJ
7210/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7211 Return the corresponding abbrev, or NULL if the number is zero (indicating
7212 an empty DIE). In either case *BYTES_READ will be set to the length of
7213 the initial number. */
7214
7215static struct abbrev_info *
d521ce57 7216peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7217 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7218{
7219 bfd *abfd = cu->objfile->obfd;
7220 unsigned int abbrev_number;
7221 struct abbrev_info *abbrev;
7222
7223 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7224
7225 if (abbrev_number == 0)
7226 return NULL;
7227
433df2d4 7228 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7229 if (!abbrev)
7230 {
422b9917
DE
7231 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7232 " at offset 0x%x [in module %s]"),
7233 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7234 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7235 }
7236
7237 return abbrev;
7238}
7239
93311388
DE
7240/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7241 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7242 DIE. Any children of the skipped DIEs will also be skipped. */
7243
d521ce57
TT
7244static const gdb_byte *
7245skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7246{
dee91e82 7247 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7248 struct abbrev_info *abbrev;
7249 unsigned int bytes_read;
7250
7251 while (1)
7252 {
7253 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7254 if (abbrev == NULL)
7255 return info_ptr + bytes_read;
7256 else
dee91e82 7257 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7258 }
7259}
7260
93311388
DE
7261/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7262 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7263 abbrev corresponding to that skipped uleb128 should be passed in
7264 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7265 children. */
7266
d521ce57
TT
7267static const gdb_byte *
7268skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7269 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7270{
7271 unsigned int bytes_read;
7272 struct attribute attr;
dee91e82
DE
7273 bfd *abfd = reader->abfd;
7274 struct dwarf2_cu *cu = reader->cu;
d521ce57 7275 const gdb_byte *buffer = reader->buffer;
f664829e 7276 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7277 unsigned int form, i;
7278
7279 for (i = 0; i < abbrev->num_attrs; i++)
7280 {
7281 /* The only abbrev we care about is DW_AT_sibling. */
7282 if (abbrev->attrs[i].name == DW_AT_sibling)
7283 {
dee91e82 7284 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7285 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7286 complaint (&symfile_complaints,
7287 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7288 else
b9502d3f
WN
7289 {
7290 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7291 const gdb_byte *sibling_ptr = buffer + off;
7292
7293 if (sibling_ptr < info_ptr)
7294 complaint (&symfile_complaints,
7295 _("DW_AT_sibling points backwards"));
22869d73
KS
7296 else if (sibling_ptr > reader->buffer_end)
7297 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7298 else
7299 return sibling_ptr;
7300 }
4bb7a0a7
DJ
7301 }
7302
7303 /* If it isn't DW_AT_sibling, skip this attribute. */
7304 form = abbrev->attrs[i].form;
7305 skip_attribute:
7306 switch (form)
7307 {
4bb7a0a7 7308 case DW_FORM_ref_addr:
ae411497
TT
7309 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7310 and later it is offset sized. */
7311 if (cu->header.version == 2)
7312 info_ptr += cu->header.addr_size;
7313 else
7314 info_ptr += cu->header.offset_size;
7315 break;
36586728
TT
7316 case DW_FORM_GNU_ref_alt:
7317 info_ptr += cu->header.offset_size;
7318 break;
ae411497 7319 case DW_FORM_addr:
4bb7a0a7
DJ
7320 info_ptr += cu->header.addr_size;
7321 break;
7322 case DW_FORM_data1:
7323 case DW_FORM_ref1:
7324 case DW_FORM_flag:
7325 info_ptr += 1;
7326 break;
2dc7f7b3
TT
7327 case DW_FORM_flag_present:
7328 break;
4bb7a0a7
DJ
7329 case DW_FORM_data2:
7330 case DW_FORM_ref2:
7331 info_ptr += 2;
7332 break;
7333 case DW_FORM_data4:
7334 case DW_FORM_ref4:
7335 info_ptr += 4;
7336 break;
7337 case DW_FORM_data8:
7338 case DW_FORM_ref8:
55f1336d 7339 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7340 info_ptr += 8;
7341 break;
7342 case DW_FORM_string:
9b1c24c8 7343 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7344 info_ptr += bytes_read;
7345 break;
2dc7f7b3 7346 case DW_FORM_sec_offset:
4bb7a0a7 7347 case DW_FORM_strp:
36586728 7348 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7349 info_ptr += cu->header.offset_size;
7350 break;
2dc7f7b3 7351 case DW_FORM_exprloc:
4bb7a0a7
DJ
7352 case DW_FORM_block:
7353 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7354 info_ptr += bytes_read;
7355 break;
7356 case DW_FORM_block1:
7357 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7358 break;
7359 case DW_FORM_block2:
7360 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7361 break;
7362 case DW_FORM_block4:
7363 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7364 break;
7365 case DW_FORM_sdata:
7366 case DW_FORM_udata:
7367 case DW_FORM_ref_udata:
3019eac3
DE
7368 case DW_FORM_GNU_addr_index:
7369 case DW_FORM_GNU_str_index:
d521ce57 7370 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7371 break;
7372 case DW_FORM_indirect:
7373 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7374 info_ptr += bytes_read;
7375 /* We need to continue parsing from here, so just go back to
7376 the top. */
7377 goto skip_attribute;
7378
7379 default:
3e43a32a
MS
7380 error (_("Dwarf Error: Cannot handle %s "
7381 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7382 dwarf_form_name (form),
7383 bfd_get_filename (abfd));
7384 }
7385 }
7386
7387 if (abbrev->has_children)
dee91e82 7388 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7389 else
7390 return info_ptr;
7391}
7392
93311388 7393/* Locate ORIG_PDI's sibling.
dee91e82 7394 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7395
d521ce57 7396static const gdb_byte *
dee91e82
DE
7397locate_pdi_sibling (const struct die_reader_specs *reader,
7398 struct partial_die_info *orig_pdi,
d521ce57 7399 const gdb_byte *info_ptr)
91c24f0a
DC
7400{
7401 /* Do we know the sibling already? */
72bf9492 7402
91c24f0a
DC
7403 if (orig_pdi->sibling)
7404 return orig_pdi->sibling;
7405
7406 /* Are there any children to deal with? */
7407
7408 if (!orig_pdi->has_children)
7409 return info_ptr;
7410
4bb7a0a7 7411 /* Skip the children the long way. */
91c24f0a 7412
dee91e82 7413 return skip_children (reader, info_ptr);
91c24f0a
DC
7414}
7415
257e7a09 7416/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7417 not NULL. */
c906108c
SS
7418
7419static void
257e7a09
YQ
7420dwarf2_read_symtab (struct partial_symtab *self,
7421 struct objfile *objfile)
c906108c 7422{
257e7a09 7423 if (self->readin)
c906108c 7424 {
442e4d9c 7425 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7426 self->filename);
442e4d9c
YQ
7427 }
7428 else
7429 {
7430 if (info_verbose)
c906108c 7431 {
442e4d9c 7432 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7433 self->filename);
442e4d9c 7434 gdb_flush (gdb_stdout);
c906108c 7435 }
c906108c 7436
442e4d9c 7437 /* Restore our global data. */
9a3c8263
SM
7438 dwarf2_per_objfile
7439 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7440 dwarf2_objfile_data_key);
10b3939b 7441
442e4d9c
YQ
7442 /* If this psymtab is constructed from a debug-only objfile, the
7443 has_section_at_zero flag will not necessarily be correct. We
7444 can get the correct value for this flag by looking at the data
7445 associated with the (presumably stripped) associated objfile. */
7446 if (objfile->separate_debug_objfile_backlink)
7447 {
7448 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7449 = ((struct dwarf2_per_objfile *)
7450 objfile_data (objfile->separate_debug_objfile_backlink,
7451 dwarf2_objfile_data_key));
9a619af0 7452
442e4d9c
YQ
7453 dwarf2_per_objfile->has_section_at_zero
7454 = dpo_backlink->has_section_at_zero;
7455 }
b2ab525c 7456
442e4d9c 7457 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7458
257e7a09 7459 psymtab_to_symtab_1 (self);
c906108c 7460
442e4d9c
YQ
7461 /* Finish up the debug error message. */
7462 if (info_verbose)
7463 printf_filtered (_("done.\n"));
c906108c 7464 }
95554aad
TT
7465
7466 process_cu_includes ();
c906108c 7467}
9cdd5dbd
DE
7468\f
7469/* Reading in full CUs. */
c906108c 7470
10b3939b
DJ
7471/* Add PER_CU to the queue. */
7472
7473static void
95554aad
TT
7474queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7475 enum language pretend_language)
10b3939b
DJ
7476{
7477 struct dwarf2_queue_item *item;
7478
7479 per_cu->queued = 1;
8d749320 7480 item = XNEW (struct dwarf2_queue_item);
10b3939b 7481 item->per_cu = per_cu;
95554aad 7482 item->pretend_language = pretend_language;
10b3939b
DJ
7483 item->next = NULL;
7484
7485 if (dwarf2_queue == NULL)
7486 dwarf2_queue = item;
7487 else
7488 dwarf2_queue_tail->next = item;
7489
7490 dwarf2_queue_tail = item;
7491}
7492
89e63ee4
DE
7493/* If PER_CU is not yet queued, add it to the queue.
7494 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7495 dependency.
0907af0c 7496 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7497 meaning either PER_CU is already queued or it is already loaded.
7498
7499 N.B. There is an invariant here that if a CU is queued then it is loaded.
7500 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7501
7502static int
89e63ee4 7503maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7504 struct dwarf2_per_cu_data *per_cu,
7505 enum language pretend_language)
7506{
7507 /* We may arrive here during partial symbol reading, if we need full
7508 DIEs to process an unusual case (e.g. template arguments). Do
7509 not queue PER_CU, just tell our caller to load its DIEs. */
7510 if (dwarf2_per_objfile->reading_partial_symbols)
7511 {
7512 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7513 return 1;
7514 return 0;
7515 }
7516
7517 /* Mark the dependence relation so that we don't flush PER_CU
7518 too early. */
89e63ee4
DE
7519 if (dependent_cu != NULL)
7520 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7521
7522 /* If it's already on the queue, we have nothing to do. */
7523 if (per_cu->queued)
7524 return 0;
7525
7526 /* If the compilation unit is already loaded, just mark it as
7527 used. */
7528 if (per_cu->cu != NULL)
7529 {
7530 per_cu->cu->last_used = 0;
7531 return 0;
7532 }
7533
7534 /* Add it to the queue. */
7535 queue_comp_unit (per_cu, pretend_language);
7536
7537 return 1;
7538}
7539
10b3939b
DJ
7540/* Process the queue. */
7541
7542static void
a0f42c21 7543process_queue (void)
10b3939b
DJ
7544{
7545 struct dwarf2_queue_item *item, *next_item;
7546
b4f54984 7547 if (dwarf_read_debug)
45cfd468
DE
7548 {
7549 fprintf_unfiltered (gdb_stdlog,
7550 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7551 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7552 }
7553
03dd20cc
DJ
7554 /* The queue starts out with one item, but following a DIE reference
7555 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7556 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7557 {
cc12ce38
DE
7558 if ((dwarf2_per_objfile->using_index
7559 ? !item->per_cu->v.quick->compunit_symtab
7560 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7561 /* Skip dummy CUs. */
7562 && item->per_cu->cu != NULL)
f4dc4d17
DE
7563 {
7564 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7565 unsigned int debug_print_threshold;
247f5c4f 7566 char buf[100];
f4dc4d17 7567
247f5c4f 7568 if (per_cu->is_debug_types)
f4dc4d17 7569 {
247f5c4f
DE
7570 struct signatured_type *sig_type =
7571 (struct signatured_type *) per_cu;
7572
7573 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7574 hex_string (sig_type->signature),
7575 per_cu->offset.sect_off);
7576 /* There can be 100s of TUs.
7577 Only print them in verbose mode. */
7578 debug_print_threshold = 2;
f4dc4d17 7579 }
247f5c4f 7580 else
73be47f5
DE
7581 {
7582 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7583 debug_print_threshold = 1;
7584 }
247f5c4f 7585
b4f54984 7586 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7587 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7588
7589 if (per_cu->is_debug_types)
7590 process_full_type_unit (per_cu, item->pretend_language);
7591 else
7592 process_full_comp_unit (per_cu, item->pretend_language);
7593
b4f54984 7594 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7595 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7596 }
10b3939b
DJ
7597
7598 item->per_cu->queued = 0;
7599 next_item = item->next;
7600 xfree (item);
7601 }
7602
7603 dwarf2_queue_tail = NULL;
45cfd468 7604
b4f54984 7605 if (dwarf_read_debug)
45cfd468
DE
7606 {
7607 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7608 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7609 }
10b3939b
DJ
7610}
7611
7612/* Free all allocated queue entries. This function only releases anything if
7613 an error was thrown; if the queue was processed then it would have been
7614 freed as we went along. */
7615
7616static void
7617dwarf2_release_queue (void *dummy)
7618{
7619 struct dwarf2_queue_item *item, *last;
7620
7621 item = dwarf2_queue;
7622 while (item)
7623 {
7624 /* Anything still marked queued is likely to be in an
7625 inconsistent state, so discard it. */
7626 if (item->per_cu->queued)
7627 {
7628 if (item->per_cu->cu != NULL)
dee91e82 7629 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7630 item->per_cu->queued = 0;
7631 }
7632
7633 last = item;
7634 item = item->next;
7635 xfree (last);
7636 }
7637
7638 dwarf2_queue = dwarf2_queue_tail = NULL;
7639}
7640
7641/* Read in full symbols for PST, and anything it depends on. */
7642
c906108c 7643static void
fba45db2 7644psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7645{
10b3939b 7646 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7647 int i;
7648
95554aad
TT
7649 if (pst->readin)
7650 return;
7651
aaa75496 7652 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7653 if (!pst->dependencies[i]->readin
7654 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7655 {
7656 /* Inform about additional files that need to be read in. */
7657 if (info_verbose)
7658 {
a3f17187 7659 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7660 fputs_filtered (" ", gdb_stdout);
7661 wrap_here ("");
7662 fputs_filtered ("and ", gdb_stdout);
7663 wrap_here ("");
7664 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7665 wrap_here (""); /* Flush output. */
aaa75496
JB
7666 gdb_flush (gdb_stdout);
7667 }
7668 psymtab_to_symtab_1 (pst->dependencies[i]);
7669 }
7670
9a3c8263 7671 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7672
7673 if (per_cu == NULL)
aaa75496
JB
7674 {
7675 /* It's an include file, no symbols to read for it.
7676 Everything is in the parent symtab. */
7677 pst->readin = 1;
7678 return;
7679 }
c906108c 7680
a0f42c21 7681 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7682}
7683
dee91e82
DE
7684/* Trivial hash function for die_info: the hash value of a DIE
7685 is its offset in .debug_info for this objfile. */
10b3939b 7686
dee91e82
DE
7687static hashval_t
7688die_hash (const void *item)
10b3939b 7689{
9a3c8263 7690 const struct die_info *die = (const struct die_info *) item;
6502dd73 7691
dee91e82
DE
7692 return die->offset.sect_off;
7693}
63d06c5c 7694
dee91e82
DE
7695/* Trivial comparison function for die_info structures: two DIEs
7696 are equal if they have the same offset. */
98bfdba5 7697
dee91e82
DE
7698static int
7699die_eq (const void *item_lhs, const void *item_rhs)
7700{
9a3c8263
SM
7701 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7702 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7703
dee91e82
DE
7704 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7705}
c906108c 7706
dee91e82
DE
7707/* die_reader_func for load_full_comp_unit.
7708 This is identical to read_signatured_type_reader,
7709 but is kept separate for now. */
c906108c 7710
dee91e82
DE
7711static void
7712load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7713 const gdb_byte *info_ptr,
dee91e82
DE
7714 struct die_info *comp_unit_die,
7715 int has_children,
7716 void *data)
7717{
7718 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7719 enum language *language_ptr = (enum language *) data;
6caca83c 7720
dee91e82
DE
7721 gdb_assert (cu->die_hash == NULL);
7722 cu->die_hash =
7723 htab_create_alloc_ex (cu->header.length / 12,
7724 die_hash,
7725 die_eq,
7726 NULL,
7727 &cu->comp_unit_obstack,
7728 hashtab_obstack_allocate,
7729 dummy_obstack_deallocate);
e142c38c 7730
dee91e82
DE
7731 if (has_children)
7732 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7733 &info_ptr, comp_unit_die);
7734 cu->dies = comp_unit_die;
7735 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7736
7737 /* We try not to read any attributes in this function, because not
9cdd5dbd 7738 all CUs needed for references have been loaded yet, and symbol
10b3939b 7739 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7740 or we won't be able to build types correctly.
7741 Similarly, if we do not read the producer, we can not apply
7742 producer-specific interpretation. */
95554aad 7743 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7744}
10b3939b 7745
dee91e82 7746/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7747
dee91e82 7748static void
95554aad
TT
7749load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7750 enum language pretend_language)
dee91e82 7751{
3019eac3 7752 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7753
f4dc4d17
DE
7754 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7755 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7756}
7757
3da10d80
KS
7758/* Add a DIE to the delayed physname list. */
7759
7760static void
7761add_to_method_list (struct type *type, int fnfield_index, int index,
7762 const char *name, struct die_info *die,
7763 struct dwarf2_cu *cu)
7764{
7765 struct delayed_method_info mi;
7766 mi.type = type;
7767 mi.fnfield_index = fnfield_index;
7768 mi.index = index;
7769 mi.name = name;
7770 mi.die = die;
7771 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7772}
7773
7774/* A cleanup for freeing the delayed method list. */
7775
7776static void
7777free_delayed_list (void *ptr)
7778{
7779 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7780 if (cu->method_list != NULL)
7781 {
7782 VEC_free (delayed_method_info, cu->method_list);
7783 cu->method_list = NULL;
7784 }
7785}
7786
7787/* Compute the physnames of any methods on the CU's method list.
7788
7789 The computation of method physnames is delayed in order to avoid the
7790 (bad) condition that one of the method's formal parameters is of an as yet
7791 incomplete type. */
7792
7793static void
7794compute_delayed_physnames (struct dwarf2_cu *cu)
7795{
7796 int i;
7797 struct delayed_method_info *mi;
7798 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7799 {
1d06ead6 7800 const char *physname;
3da10d80
KS
7801 struct fn_fieldlist *fn_flp
7802 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7803 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7804 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7805 = physname ? physname : "";
3da10d80
KS
7806 }
7807}
7808
a766d390
DE
7809/* Go objects should be embedded in a DW_TAG_module DIE,
7810 and it's not clear if/how imported objects will appear.
7811 To keep Go support simple until that's worked out,
7812 go back through what we've read and create something usable.
7813 We could do this while processing each DIE, and feels kinda cleaner,
7814 but that way is more invasive.
7815 This is to, for example, allow the user to type "p var" or "b main"
7816 without having to specify the package name, and allow lookups
7817 of module.object to work in contexts that use the expression
7818 parser. */
7819
7820static void
7821fixup_go_packaging (struct dwarf2_cu *cu)
7822{
7823 char *package_name = NULL;
7824 struct pending *list;
7825 int i;
7826
7827 for (list = global_symbols; list != NULL; list = list->next)
7828 {
7829 for (i = 0; i < list->nsyms; ++i)
7830 {
7831 struct symbol *sym = list->symbol[i];
7832
7833 if (SYMBOL_LANGUAGE (sym) == language_go
7834 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7835 {
7836 char *this_package_name = go_symbol_package_name (sym);
7837
7838 if (this_package_name == NULL)
7839 continue;
7840 if (package_name == NULL)
7841 package_name = this_package_name;
7842 else
7843 {
7844 if (strcmp (package_name, this_package_name) != 0)
7845 complaint (&symfile_complaints,
7846 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7847 (symbol_symtab (sym) != NULL
7848 ? symtab_to_filename_for_display
7849 (symbol_symtab (sym))
4262abfb 7850 : objfile_name (cu->objfile)),
a766d390
DE
7851 this_package_name, package_name);
7852 xfree (this_package_name);
7853 }
7854 }
7855 }
7856 }
7857
7858 if (package_name != NULL)
7859 {
7860 struct objfile *objfile = cu->objfile;
34a68019 7861 const char *saved_package_name
224c3ddb
SM
7862 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7863 package_name,
7864 strlen (package_name));
a766d390 7865 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7866 saved_package_name, objfile);
a766d390
DE
7867 struct symbol *sym;
7868
7869 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7870
e623cf5d 7871 sym = allocate_symbol (objfile);
f85f34ed 7872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7873 SYMBOL_SET_NAMES (sym, saved_package_name,
7874 strlen (saved_package_name), 0, objfile);
a766d390
DE
7875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7876 e.g., "main" finds the "main" module and not C's main(). */
7877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7879 SYMBOL_TYPE (sym) = type;
7880
7881 add_symbol_to_list (sym, &global_symbols);
7882
7883 xfree (package_name);
7884 }
7885}
7886
95554aad
TT
7887/* Return the symtab for PER_CU. This works properly regardless of
7888 whether we're using the index or psymtabs. */
7889
43f3e411
DE
7890static struct compunit_symtab *
7891get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7892{
7893 return (dwarf2_per_objfile->using_index
43f3e411
DE
7894 ? per_cu->v.quick->compunit_symtab
7895 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7896}
7897
7898/* A helper function for computing the list of all symbol tables
7899 included by PER_CU. */
7900
7901static void
43f3e411 7902recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7903 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7904 struct dwarf2_per_cu_data *per_cu,
43f3e411 7905 struct compunit_symtab *immediate_parent)
95554aad
TT
7906{
7907 void **slot;
7908 int ix;
43f3e411 7909 struct compunit_symtab *cust;
95554aad
TT
7910 struct dwarf2_per_cu_data *iter;
7911
7912 slot = htab_find_slot (all_children, per_cu, INSERT);
7913 if (*slot != NULL)
7914 {
7915 /* This inclusion and its children have been processed. */
7916 return;
7917 }
7918
7919 *slot = per_cu;
7920 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7921 cust = get_compunit_symtab (per_cu);
7922 if (cust != NULL)
ec94af83
DE
7923 {
7924 /* If this is a type unit only add its symbol table if we haven't
7925 seen it yet (type unit per_cu's can share symtabs). */
7926 if (per_cu->is_debug_types)
7927 {
43f3e411 7928 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7929 if (*slot == NULL)
7930 {
43f3e411
DE
7931 *slot = cust;
7932 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7933 if (cust->user == NULL)
7934 cust->user = immediate_parent;
ec94af83
DE
7935 }
7936 }
7937 else
f9125b6c 7938 {
43f3e411
DE
7939 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7940 if (cust->user == NULL)
7941 cust->user = immediate_parent;
f9125b6c 7942 }
ec94af83 7943 }
95554aad
TT
7944
7945 for (ix = 0;
796a7ff8 7946 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7947 ++ix)
ec94af83
DE
7948 {
7949 recursively_compute_inclusions (result, all_children,
43f3e411 7950 all_type_symtabs, iter, cust);
ec94af83 7951 }
95554aad
TT
7952}
7953
43f3e411 7954/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7955 PER_CU. */
7956
7957static void
43f3e411 7958compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7959{
f4dc4d17
DE
7960 gdb_assert (! per_cu->is_debug_types);
7961
796a7ff8 7962 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7963 {
7964 int ix, len;
ec94af83 7965 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7966 struct compunit_symtab *compunit_symtab_iter;
7967 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7968 htab_t all_children, all_type_symtabs;
43f3e411 7969 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7970
7971 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7972 if (cust == NULL)
95554aad
TT
7973 return;
7974
7975 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7976 NULL, xcalloc, xfree);
ec94af83
DE
7977 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7978 NULL, xcalloc, xfree);
95554aad
TT
7979
7980 for (ix = 0;
796a7ff8 7981 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7982 ix, per_cu_iter);
95554aad 7983 ++ix)
ec94af83
DE
7984 {
7985 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7986 all_type_symtabs, per_cu_iter,
43f3e411 7987 cust);
ec94af83 7988 }
95554aad 7989
ec94af83 7990 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7991 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7992 cust->includes
8d749320
SM
7993 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7994 struct compunit_symtab *, len + 1);
95554aad 7995 for (ix = 0;
43f3e411
DE
7996 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7997 compunit_symtab_iter);
95554aad 7998 ++ix)
43f3e411
DE
7999 cust->includes[ix] = compunit_symtab_iter;
8000 cust->includes[len] = NULL;
95554aad 8001
43f3e411 8002 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8003 htab_delete (all_children);
ec94af83 8004 htab_delete (all_type_symtabs);
95554aad
TT
8005 }
8006}
8007
8008/* Compute the 'includes' field for the symtabs of all the CUs we just
8009 read. */
8010
8011static void
8012process_cu_includes (void)
8013{
8014 int ix;
8015 struct dwarf2_per_cu_data *iter;
8016
8017 for (ix = 0;
8018 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8019 ix, iter);
8020 ++ix)
f4dc4d17
DE
8021 {
8022 if (! iter->is_debug_types)
43f3e411 8023 compute_compunit_symtab_includes (iter);
f4dc4d17 8024 }
95554aad
TT
8025
8026 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8027}
8028
9cdd5dbd 8029/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8030 already been loaded into memory. */
8031
8032static void
95554aad
TT
8033process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8034 enum language pretend_language)
10b3939b 8035{
10b3939b 8036 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8037 struct objfile *objfile = per_cu->objfile;
3e29f34a 8038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8039 CORE_ADDR lowpc, highpc;
43f3e411 8040 struct compunit_symtab *cust;
3da10d80 8041 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8042 CORE_ADDR baseaddr;
4359dff1 8043 struct block *static_block;
3e29f34a 8044 CORE_ADDR addr;
10b3939b
DJ
8045
8046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8047
10b3939b
DJ
8048 buildsym_init ();
8049 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8050 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8051
8052 cu->list_in_scope = &file_symbols;
c906108c 8053
95554aad
TT
8054 cu->language = pretend_language;
8055 cu->language_defn = language_def (cu->language);
8056
c906108c 8057 /* Do line number decoding in read_file_scope () */
10b3939b 8058 process_die (cu->dies, cu);
c906108c 8059
a766d390
DE
8060 /* For now fudge the Go package. */
8061 if (cu->language == language_go)
8062 fixup_go_packaging (cu);
8063
3da10d80
KS
8064 /* Now that we have processed all the DIEs in the CU, all the types
8065 should be complete, and it should now be safe to compute all of the
8066 physnames. */
8067 compute_delayed_physnames (cu);
8068 do_cleanups (delayed_list_cleanup);
8069
fae299cd
DC
8070 /* Some compilers don't define a DW_AT_high_pc attribute for the
8071 compilation unit. If the DW_AT_high_pc is missing, synthesize
8072 it, by scanning the DIE's below the compilation unit. */
10b3939b 8073 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8074
3e29f34a
MR
8075 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8076 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8077
8078 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8079 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8080 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8081 addrmap to help ensure it has an accurate map of pc values belonging to
8082 this comp unit. */
8083 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8084
43f3e411
DE
8085 cust = end_symtab_from_static_block (static_block,
8086 SECT_OFF_TEXT (objfile), 0);
c906108c 8087
43f3e411 8088 if (cust != NULL)
c906108c 8089 {
df15bd07 8090 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8091
8be455d7
JK
8092 /* Set symtab language to language from DW_AT_language. If the
8093 compilation is from a C file generated by language preprocessors, do
8094 not set the language if it was already deduced by start_subfile. */
43f3e411 8095 if (!(cu->language == language_c
40e3ad0e 8096 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8097 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8098
8099 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8100 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8101 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8102 there were bugs in prologue debug info, fixed later in GCC-4.5
8103 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8104
8105 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8106 needed, it would be wrong due to missing DW_AT_producer there.
8107
8108 Still one can confuse GDB by using non-standard GCC compilation
8109 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8110 */
ab260dad 8111 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8112 cust->locations_valid = 1;
e0d00bc7
JK
8113
8114 if (gcc_4_minor >= 5)
43f3e411 8115 cust->epilogue_unwind_valid = 1;
96408a79 8116
43f3e411 8117 cust->call_site_htab = cu->call_site_htab;
c906108c 8118 }
9291a0cd
TT
8119
8120 if (dwarf2_per_objfile->using_index)
43f3e411 8121 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8122 else
8123 {
8124 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8125 pst->compunit_symtab = cust;
9291a0cd
TT
8126 pst->readin = 1;
8127 }
c906108c 8128
95554aad
TT
8129 /* Push it for inclusion processing later. */
8130 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8131
c906108c 8132 do_cleanups (back_to);
f4dc4d17 8133}
45cfd468 8134
f4dc4d17
DE
8135/* Generate full symbol information for type unit PER_CU, whose DIEs have
8136 already been loaded into memory. */
8137
8138static void
8139process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8140 enum language pretend_language)
8141{
8142 struct dwarf2_cu *cu = per_cu->cu;
8143 struct objfile *objfile = per_cu->objfile;
43f3e411 8144 struct compunit_symtab *cust;
f4dc4d17 8145 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8146 struct signatured_type *sig_type;
8147
8148 gdb_assert (per_cu->is_debug_types);
8149 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8150
8151 buildsym_init ();
8152 back_to = make_cleanup (really_free_pendings, NULL);
8153 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8154
8155 cu->list_in_scope = &file_symbols;
8156
8157 cu->language = pretend_language;
8158 cu->language_defn = language_def (cu->language);
8159
8160 /* The symbol tables are set up in read_type_unit_scope. */
8161 process_die (cu->dies, cu);
8162
8163 /* For now fudge the Go package. */
8164 if (cu->language == language_go)
8165 fixup_go_packaging (cu);
8166
8167 /* Now that we have processed all the DIEs in the CU, all the types
8168 should be complete, and it should now be safe to compute all of the
8169 physnames. */
8170 compute_delayed_physnames (cu);
8171 do_cleanups (delayed_list_cleanup);
8172
8173 /* TUs share symbol tables.
8174 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8175 of it with end_expandable_symtab. Otherwise, complete the addition of
8176 this TU's symbols to the existing symtab. */
43f3e411 8177 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8178 {
43f3e411
DE
8179 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8180 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8181
43f3e411 8182 if (cust != NULL)
f4dc4d17
DE
8183 {
8184 /* Set symtab language to language from DW_AT_language. If the
8185 compilation is from a C file generated by language preprocessors,
8186 do not set the language if it was already deduced by
8187 start_subfile. */
43f3e411
DE
8188 if (!(cu->language == language_c
8189 && COMPUNIT_FILETABS (cust)->language != language_c))
8190 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8191 }
8192 }
8193 else
8194 {
0ab9ce85 8195 augment_type_symtab ();
43f3e411 8196 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8197 }
8198
8199 if (dwarf2_per_objfile->using_index)
43f3e411 8200 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8201 else
8202 {
8203 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8204 pst->compunit_symtab = cust;
f4dc4d17 8205 pst->readin = 1;
45cfd468 8206 }
f4dc4d17
DE
8207
8208 do_cleanups (back_to);
c906108c
SS
8209}
8210
95554aad
TT
8211/* Process an imported unit DIE. */
8212
8213static void
8214process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8215{
8216 struct attribute *attr;
8217
f4dc4d17
DE
8218 /* For now we don't handle imported units in type units. */
8219 if (cu->per_cu->is_debug_types)
8220 {
8221 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8222 " supported in type units [in module %s]"),
4262abfb 8223 objfile_name (cu->objfile));
f4dc4d17
DE
8224 }
8225
95554aad
TT
8226 attr = dwarf2_attr (die, DW_AT_import, cu);
8227 if (attr != NULL)
8228 {
8229 struct dwarf2_per_cu_data *per_cu;
95554aad 8230 sect_offset offset;
36586728 8231 int is_dwz;
95554aad
TT
8232
8233 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8234 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8235 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8236
69d751e3 8237 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8238 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8239 load_full_comp_unit (per_cu, cu->language);
8240
796a7ff8 8241 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8242 per_cu);
8243 }
8244}
8245
adde2bff
DE
8246/* Reset the in_process bit of a die. */
8247
8248static void
8249reset_die_in_process (void *arg)
8250{
9a3c8263 8251 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8252
adde2bff
DE
8253 die->in_process = 0;
8254}
8255
c906108c
SS
8256/* Process a die and its children. */
8257
8258static void
e7c27a73 8259process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8260{
adde2bff
DE
8261 struct cleanup *in_process;
8262
8263 /* We should only be processing those not already in process. */
8264 gdb_assert (!die->in_process);
8265
8266 die->in_process = 1;
8267 in_process = make_cleanup (reset_die_in_process,die);
8268
c906108c
SS
8269 switch (die->tag)
8270 {
8271 case DW_TAG_padding:
8272 break;
8273 case DW_TAG_compile_unit:
95554aad 8274 case DW_TAG_partial_unit:
e7c27a73 8275 read_file_scope (die, cu);
c906108c 8276 break;
348e048f
DE
8277 case DW_TAG_type_unit:
8278 read_type_unit_scope (die, cu);
8279 break;
c906108c 8280 case DW_TAG_subprogram:
c906108c 8281 case DW_TAG_inlined_subroutine:
edb3359d 8282 read_func_scope (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_lexical_block:
14898363
L
8285 case DW_TAG_try_block:
8286 case DW_TAG_catch_block:
e7c27a73 8287 read_lexical_block_scope (die, cu);
c906108c 8288 break;
96408a79
SA
8289 case DW_TAG_GNU_call_site:
8290 read_call_site_scope (die, cu);
8291 break;
c906108c 8292 case DW_TAG_class_type:
680b30c7 8293 case DW_TAG_interface_type:
c906108c
SS
8294 case DW_TAG_structure_type:
8295 case DW_TAG_union_type:
134d01f1 8296 process_structure_scope (die, cu);
c906108c
SS
8297 break;
8298 case DW_TAG_enumeration_type:
134d01f1 8299 process_enumeration_scope (die, cu);
c906108c 8300 break;
134d01f1 8301
f792889a
DJ
8302 /* These dies have a type, but processing them does not create
8303 a symbol or recurse to process the children. Therefore we can
8304 read them on-demand through read_type_die. */
c906108c 8305 case DW_TAG_subroutine_type:
72019c9c 8306 case DW_TAG_set_type:
c906108c 8307 case DW_TAG_array_type:
c906108c 8308 case DW_TAG_pointer_type:
c906108c 8309 case DW_TAG_ptr_to_member_type:
c906108c 8310 case DW_TAG_reference_type:
c906108c 8311 case DW_TAG_string_type:
c906108c 8312 break;
134d01f1 8313
c906108c 8314 case DW_TAG_base_type:
a02abb62 8315 case DW_TAG_subrange_type:
cb249c71 8316 case DW_TAG_typedef:
134d01f1
DJ
8317 /* Add a typedef symbol for the type definition, if it has a
8318 DW_AT_name. */
f792889a 8319 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8320 break;
c906108c 8321 case DW_TAG_common_block:
e7c27a73 8322 read_common_block (die, cu);
c906108c
SS
8323 break;
8324 case DW_TAG_common_inclusion:
8325 break;
d9fa45fe 8326 case DW_TAG_namespace:
4d4ec4e5 8327 cu->processing_has_namespace_info = 1;
e7c27a73 8328 read_namespace (die, cu);
d9fa45fe 8329 break;
5d7cb8df 8330 case DW_TAG_module:
4d4ec4e5 8331 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8332 read_module (die, cu);
8333 break;
d9fa45fe 8334 case DW_TAG_imported_declaration:
74921315
KS
8335 cu->processing_has_namespace_info = 1;
8336 if (read_namespace_alias (die, cu))
8337 break;
8338 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8339 case DW_TAG_imported_module:
4d4ec4e5 8340 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8341 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8342 || cu->language != language_fortran))
8343 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8344 dwarf_tag_name (die->tag));
8345 read_import_statement (die, cu);
d9fa45fe 8346 break;
95554aad
TT
8347
8348 case DW_TAG_imported_unit:
8349 process_imported_unit_die (die, cu);
8350 break;
8351
c906108c 8352 default:
e7c27a73 8353 new_symbol (die, NULL, cu);
c906108c
SS
8354 break;
8355 }
adde2bff
DE
8356
8357 do_cleanups (in_process);
c906108c 8358}
ca69b9e6
DE
8359\f
8360/* DWARF name computation. */
c906108c 8361
94af9270
KS
8362/* A helper function for dwarf2_compute_name which determines whether DIE
8363 needs to have the name of the scope prepended to the name listed in the
8364 die. */
8365
8366static int
8367die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8368{
1c809c68
TT
8369 struct attribute *attr;
8370
94af9270
KS
8371 switch (die->tag)
8372 {
8373 case DW_TAG_namespace:
8374 case DW_TAG_typedef:
8375 case DW_TAG_class_type:
8376 case DW_TAG_interface_type:
8377 case DW_TAG_structure_type:
8378 case DW_TAG_union_type:
8379 case DW_TAG_enumeration_type:
8380 case DW_TAG_enumerator:
8381 case DW_TAG_subprogram:
08a76f8a 8382 case DW_TAG_inlined_subroutine:
94af9270 8383 case DW_TAG_member:
74921315 8384 case DW_TAG_imported_declaration:
94af9270
KS
8385 return 1;
8386
8387 case DW_TAG_variable:
c2b0a229 8388 case DW_TAG_constant:
94af9270
KS
8389 /* We only need to prefix "globally" visible variables. These include
8390 any variable marked with DW_AT_external or any variable that
8391 lives in a namespace. [Variables in anonymous namespaces
8392 require prefixing, but they are not DW_AT_external.] */
8393
8394 if (dwarf2_attr (die, DW_AT_specification, cu))
8395 {
8396 struct dwarf2_cu *spec_cu = cu;
9a619af0 8397
94af9270
KS
8398 return die_needs_namespace (die_specification (die, &spec_cu),
8399 spec_cu);
8400 }
8401
1c809c68 8402 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8403 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8404 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8405 return 0;
8406 /* A variable in a lexical block of some kind does not need a
8407 namespace, even though in C++ such variables may be external
8408 and have a mangled name. */
8409 if (die->parent->tag == DW_TAG_lexical_block
8410 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8411 || die->parent->tag == DW_TAG_catch_block
8412 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8413 return 0;
8414 return 1;
94af9270
KS
8415
8416 default:
8417 return 0;
8418 }
8419}
8420
98bfdba5
PA
8421/* Retrieve the last character from a mem_file. */
8422
8423static void
8424do_ui_file_peek_last (void *object, const char *buffer, long length)
8425{
8426 char *last_char_p = (char *) object;
8427
8428 if (length > 0)
8429 *last_char_p = buffer[length - 1];
8430}
8431
94af9270 8432/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8433 compute the physname for the object, which include a method's:
8434 - formal parameters (C++/Java),
8435 - receiver type (Go),
8436 - return type (Java).
8437
8438 The term "physname" is a bit confusing.
8439 For C++, for example, it is the demangled name.
8440 For Go, for example, it's the mangled name.
94af9270 8441
af6b7be1
JB
8442 For Ada, return the DIE's linkage name rather than the fully qualified
8443 name. PHYSNAME is ignored..
8444
94af9270
KS
8445 The result is allocated on the objfile_obstack and canonicalized. */
8446
8447static const char *
15d034d0
TT
8448dwarf2_compute_name (const char *name,
8449 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8450 int physname)
8451{
bb5ed363
DE
8452 struct objfile *objfile = cu->objfile;
8453
94af9270
KS
8454 if (name == NULL)
8455 name = dwarf2_name (die, cu);
8456
2ee7123e
DE
8457 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8458 but otherwise compute it by typename_concat inside GDB.
8459 FIXME: Actually this is not really true, or at least not always true.
8460 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8461 Fortran names because there is no mangling standard. So new_symbol_full
8462 will set the demangled name to the result of dwarf2_full_name, and it is
8463 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8464 if (cu->language == language_ada
8465 || (cu->language == language_fortran && physname))
8466 {
8467 /* For Ada unit, we prefer the linkage name over the name, as
8468 the former contains the exported name, which the user expects
8469 to be able to reference. Ideally, we want the user to be able
8470 to reference this entity using either natural or linkage name,
8471 but we haven't started looking at this enhancement yet. */
2ee7123e 8472 const char *linkage_name;
f55ee35c 8473
2ee7123e
DE
8474 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8475 if (linkage_name == NULL)
8476 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8477 if (linkage_name != NULL)
8478 return linkage_name;
f55ee35c
JK
8479 }
8480
94af9270
KS
8481 /* These are the only languages we know how to qualify names in. */
8482 if (name != NULL
f55ee35c 8483 && (cu->language == language_cplus || cu->language == language_java
c44af4eb
TT
8484 || cu->language == language_fortran || cu->language == language_d
8485 || cu->language == language_rust))
94af9270
KS
8486 {
8487 if (die_needs_namespace (die, cu))
8488 {
8489 long length;
0d5cff50 8490 const char *prefix;
94af9270 8491 struct ui_file *buf;
34a68019
TT
8492 char *intermediate_name;
8493 const char *canonical_name = NULL;
94af9270
KS
8494
8495 prefix = determine_prefix (die, cu);
8496 buf = mem_fileopen ();
8497 if (*prefix != '\0')
8498 {
f55ee35c
JK
8499 char *prefixed_name = typename_concat (NULL, prefix, name,
8500 physname, cu);
9a619af0 8501
94af9270
KS
8502 fputs_unfiltered (prefixed_name, buf);
8503 xfree (prefixed_name);
8504 }
8505 else
62d5b8da 8506 fputs_unfiltered (name, buf);
94af9270 8507
98bfdba5
PA
8508 /* Template parameters may be specified in the DIE's DW_AT_name, or
8509 as children with DW_TAG_template_type_param or
8510 DW_TAG_value_type_param. If the latter, add them to the name
8511 here. If the name already has template parameters, then
8512 skip this step; some versions of GCC emit both, and
8513 it is more efficient to use the pre-computed name.
8514
8515 Something to keep in mind about this process: it is very
8516 unlikely, or in some cases downright impossible, to produce
8517 something that will match the mangled name of a function.
8518 If the definition of the function has the same debug info,
8519 we should be able to match up with it anyway. But fallbacks
8520 using the minimal symbol, for instance to find a method
8521 implemented in a stripped copy of libstdc++, will not work.
8522 If we do not have debug info for the definition, we will have to
8523 match them up some other way.
8524
8525 When we do name matching there is a related problem with function
8526 templates; two instantiated function templates are allowed to
8527 differ only by their return types, which we do not add here. */
8528
8529 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8530 {
8531 struct attribute *attr;
8532 struct die_info *child;
8533 int first = 1;
8534
8535 die->building_fullname = 1;
8536
8537 for (child = die->child; child != NULL; child = child->sibling)
8538 {
8539 struct type *type;
12df843f 8540 LONGEST value;
d521ce57 8541 const gdb_byte *bytes;
98bfdba5
PA
8542 struct dwarf2_locexpr_baton *baton;
8543 struct value *v;
8544
8545 if (child->tag != DW_TAG_template_type_param
8546 && child->tag != DW_TAG_template_value_param)
8547 continue;
8548
8549 if (first)
8550 {
8551 fputs_unfiltered ("<", buf);
8552 first = 0;
8553 }
8554 else
8555 fputs_unfiltered (", ", buf);
8556
8557 attr = dwarf2_attr (child, DW_AT_type, cu);
8558 if (attr == NULL)
8559 {
8560 complaint (&symfile_complaints,
8561 _("template parameter missing DW_AT_type"));
8562 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8563 continue;
8564 }
8565 type = die_type (child, cu);
8566
8567 if (child->tag == DW_TAG_template_type_param)
8568 {
79d43c61 8569 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8570 continue;
8571 }
8572
8573 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8574 if (attr == NULL)
8575 {
8576 complaint (&symfile_complaints,
3e43a32a
MS
8577 _("template parameter missing "
8578 "DW_AT_const_value"));
98bfdba5
PA
8579 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8580 continue;
8581 }
8582
8583 dwarf2_const_value_attr (attr, type, name,
8584 &cu->comp_unit_obstack, cu,
8585 &value, &bytes, &baton);
8586
8587 if (TYPE_NOSIGN (type))
8588 /* GDB prints characters as NUMBER 'CHAR'. If that's
8589 changed, this can use value_print instead. */
8590 c_printchar (value, type, buf);
8591 else
8592 {
8593 struct value_print_options opts;
8594
8595 if (baton != NULL)
8596 v = dwarf2_evaluate_loc_desc (type, NULL,
8597 baton->data,
8598 baton->size,
8599 baton->per_cu);
8600 else if (bytes != NULL)
8601 {
8602 v = allocate_value (type);
8603 memcpy (value_contents_writeable (v), bytes,
8604 TYPE_LENGTH (type));
8605 }
8606 else
8607 v = value_from_longest (type, value);
8608
3e43a32a
MS
8609 /* Specify decimal so that we do not depend on
8610 the radix. */
98bfdba5
PA
8611 get_formatted_print_options (&opts, 'd');
8612 opts.raw = 1;
8613 value_print (v, buf, &opts);
8614 release_value (v);
8615 value_free (v);
8616 }
8617 }
8618
8619 die->building_fullname = 0;
8620
8621 if (!first)
8622 {
8623 /* Close the argument list, with a space if necessary
8624 (nested templates). */
8625 char last_char = '\0';
8626 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8627 if (last_char == '>')
8628 fputs_unfiltered (" >", buf);
8629 else
8630 fputs_unfiltered (">", buf);
8631 }
8632 }
8633
94af9270
KS
8634 /* For Java and C++ methods, append formal parameter type
8635 information, if PHYSNAME. */
6e70227d 8636
94af9270
KS
8637 if (physname && die->tag == DW_TAG_subprogram
8638 && (cu->language == language_cplus
8639 || cu->language == language_java))
8640 {
8641 struct type *type = read_type_die (die, cu);
8642
79d43c61
TT
8643 c_type_print_args (type, buf, 1, cu->language,
8644 &type_print_raw_options);
94af9270
KS
8645
8646 if (cu->language == language_java)
8647 {
8648 /* For java, we must append the return type to method
0963b4bd 8649 names. */
94af9270
KS
8650 if (die->tag == DW_TAG_subprogram)
8651 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8652 0, 0, &type_print_raw_options);
94af9270
KS
8653 }
8654 else if (cu->language == language_cplus)
8655 {
60430eff
DJ
8656 /* Assume that an artificial first parameter is
8657 "this", but do not crash if it is not. RealView
8658 marks unnamed (and thus unused) parameters as
8659 artificial; there is no way to differentiate
8660 the two cases. */
94af9270
KS
8661 if (TYPE_NFIELDS (type) > 0
8662 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8663 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8664 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8665 0))))
94af9270
KS
8666 fputs_unfiltered (" const", buf);
8667 }
8668 }
8669
34a68019 8670 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8671 ui_file_delete (buf);
8672
8673 if (cu->language == language_cplus)
34a68019
TT
8674 canonical_name
8675 = dwarf2_canonicalize_name (intermediate_name, cu,
8676 &objfile->per_bfd->storage_obstack);
8677
8678 /* If we only computed INTERMEDIATE_NAME, or if
8679 INTERMEDIATE_NAME is already canonical, then we need to
8680 copy it to the appropriate obstack. */
8681 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8682 name = ((const char *)
8683 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8684 intermediate_name,
8685 strlen (intermediate_name)));
34a68019
TT
8686 else
8687 name = canonical_name;
9a619af0 8688
34a68019 8689 xfree (intermediate_name);
94af9270
KS
8690 }
8691 }
8692
8693 return name;
8694}
8695
0114d602
DJ
8696/* Return the fully qualified name of DIE, based on its DW_AT_name.
8697 If scope qualifiers are appropriate they will be added. The result
34a68019 8698 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8699 not have a name. NAME may either be from a previous call to
8700 dwarf2_name or NULL.
8701
0963b4bd 8702 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8703
8704static const char *
15d034d0 8705dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8706{
94af9270
KS
8707 return dwarf2_compute_name (name, die, cu, 0);
8708}
0114d602 8709
94af9270
KS
8710/* Construct a physname for the given DIE in CU. NAME may either be
8711 from a previous call to dwarf2_name or NULL. The result will be
8712 allocated on the objfile_objstack or NULL if the DIE does not have a
8713 name.
0114d602 8714
94af9270 8715 The output string will be canonicalized (if C++/Java). */
0114d602 8716
94af9270 8717static const char *
15d034d0 8718dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8719{
bb5ed363 8720 struct objfile *objfile = cu->objfile;
900e11f9
JK
8721 const char *retval, *mangled = NULL, *canon = NULL;
8722 struct cleanup *back_to;
8723 int need_copy = 1;
8724
8725 /* In this case dwarf2_compute_name is just a shortcut not building anything
8726 on its own. */
8727 if (!die_needs_namespace (die, cu))
8728 return dwarf2_compute_name (name, die, cu, 1);
8729
8730 back_to = make_cleanup (null_cleanup, NULL);
8731
7d45c7c3
KB
8732 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8733 if (mangled == NULL)
8734 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8735
8736 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8737 has computed. */
7d45c7c3 8738 if (mangled != NULL)
900e11f9
JK
8739 {
8740 char *demangled;
8741
900e11f9
JK
8742 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8743 type. It is easier for GDB users to search for such functions as
8744 `name(params)' than `long name(params)'. In such case the minimal
8745 symbol names do not match the full symbol names but for template
8746 functions there is never a need to look up their definition from their
8747 declaration so the only disadvantage remains the minimal symbol
8748 variant `long name(params)' does not have the proper inferior type.
8749 */
8750
a766d390
DE
8751 if (cu->language == language_go)
8752 {
8753 /* This is a lie, but we already lie to the caller new_symbol_full.
8754 new_symbol_full assumes we return the mangled name.
8755 This just undoes that lie until things are cleaned up. */
8756 demangled = NULL;
8757 }
8758 else
8759 {
8de20a37
TT
8760 demangled = gdb_demangle (mangled,
8761 (DMGL_PARAMS | DMGL_ANSI
8762 | (cu->language == language_java
8763 ? DMGL_JAVA | DMGL_RET_POSTFIX
8764 : DMGL_RET_DROP)));
a766d390 8765 }
900e11f9
JK
8766 if (demangled)
8767 {
8768 make_cleanup (xfree, demangled);
8769 canon = demangled;
8770 }
8771 else
8772 {
8773 canon = mangled;
8774 need_copy = 0;
8775 }
8776 }
8777
8778 if (canon == NULL || check_physname)
8779 {
8780 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8781
8782 if (canon != NULL && strcmp (physname, canon) != 0)
8783 {
8784 /* It may not mean a bug in GDB. The compiler could also
8785 compute DW_AT_linkage_name incorrectly. But in such case
8786 GDB would need to be bug-to-bug compatible. */
8787
8788 complaint (&symfile_complaints,
8789 _("Computed physname <%s> does not match demangled <%s> "
8790 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8791 physname, canon, mangled, die->offset.sect_off,
8792 objfile_name (objfile));
900e11f9
JK
8793
8794 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8795 is available here - over computed PHYSNAME. It is safer
8796 against both buggy GDB and buggy compilers. */
8797
8798 retval = canon;
8799 }
8800 else
8801 {
8802 retval = physname;
8803 need_copy = 0;
8804 }
8805 }
8806 else
8807 retval = canon;
8808
8809 if (need_copy)
224c3ddb
SM
8810 retval = ((const char *)
8811 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8812 retval, strlen (retval)));
900e11f9
JK
8813
8814 do_cleanups (back_to);
8815 return retval;
0114d602
DJ
8816}
8817
74921315
KS
8818/* Inspect DIE in CU for a namespace alias. If one exists, record
8819 a new symbol for it.
8820
8821 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8822
8823static int
8824read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8825{
8826 struct attribute *attr;
8827
8828 /* If the die does not have a name, this is not a namespace
8829 alias. */
8830 attr = dwarf2_attr (die, DW_AT_name, cu);
8831 if (attr != NULL)
8832 {
8833 int num;
8834 struct die_info *d = die;
8835 struct dwarf2_cu *imported_cu = cu;
8836
8837 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8838 keep inspecting DIEs until we hit the underlying import. */
8839#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8840 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8841 {
8842 attr = dwarf2_attr (d, DW_AT_import, cu);
8843 if (attr == NULL)
8844 break;
8845
8846 d = follow_die_ref (d, attr, &imported_cu);
8847 if (d->tag != DW_TAG_imported_declaration)
8848 break;
8849 }
8850
8851 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8852 {
8853 complaint (&symfile_complaints,
8854 _("DIE at 0x%x has too many recursively imported "
8855 "declarations"), d->offset.sect_off);
8856 return 0;
8857 }
8858
8859 if (attr != NULL)
8860 {
8861 struct type *type;
8862 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8863
8864 type = get_die_type_at_offset (offset, cu->per_cu);
8865 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8866 {
8867 /* This declaration is a global namespace alias. Add
8868 a symbol for it whose type is the aliased namespace. */
8869 new_symbol (die, type, cu);
8870 return 1;
8871 }
8872 }
8873 }
8874
8875 return 0;
8876}
8877
22cee43f
PMR
8878/* Return the using directives repository (global or local?) to use in the
8879 current context for LANGUAGE.
8880
8881 For Ada, imported declarations can materialize renamings, which *may* be
8882 global. However it is impossible (for now?) in DWARF to distinguish
8883 "external" imported declarations and "static" ones. As all imported
8884 declarations seem to be static in all other languages, make them all CU-wide
8885 global only in Ada. */
8886
8887static struct using_direct **
8888using_directives (enum language language)
8889{
8890 if (language == language_ada && context_stack_depth == 0)
8891 return &global_using_directives;
8892 else
8893 return &local_using_directives;
8894}
8895
27aa8d6a
SW
8896/* Read the import statement specified by the given die and record it. */
8897
8898static void
8899read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8900{
bb5ed363 8901 struct objfile *objfile = cu->objfile;
27aa8d6a 8902 struct attribute *import_attr;
32019081 8903 struct die_info *imported_die, *child_die;
de4affc9 8904 struct dwarf2_cu *imported_cu;
27aa8d6a 8905 const char *imported_name;
794684b6 8906 const char *imported_name_prefix;
13387711
SW
8907 const char *canonical_name;
8908 const char *import_alias;
8909 const char *imported_declaration = NULL;
794684b6 8910 const char *import_prefix;
32019081
JK
8911 VEC (const_char_ptr) *excludes = NULL;
8912 struct cleanup *cleanups;
13387711 8913
27aa8d6a
SW
8914 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8915 if (import_attr == NULL)
8916 {
8917 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8918 dwarf_tag_name (die->tag));
8919 return;
8920 }
8921
de4affc9
CC
8922 imported_cu = cu;
8923 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8924 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8925 if (imported_name == NULL)
8926 {
8927 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8928
8929 The import in the following code:
8930 namespace A
8931 {
8932 typedef int B;
8933 }
8934
8935 int main ()
8936 {
8937 using A::B;
8938 B b;
8939 return b;
8940 }
8941
8942 ...
8943 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8944 <52> DW_AT_decl_file : 1
8945 <53> DW_AT_decl_line : 6
8946 <54> DW_AT_import : <0x75>
8947 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8948 <59> DW_AT_name : B
8949 <5b> DW_AT_decl_file : 1
8950 <5c> DW_AT_decl_line : 2
8951 <5d> DW_AT_type : <0x6e>
8952 ...
8953 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8954 <76> DW_AT_byte_size : 4
8955 <77> DW_AT_encoding : 5 (signed)
8956
8957 imports the wrong die ( 0x75 instead of 0x58 ).
8958 This case will be ignored until the gcc bug is fixed. */
8959 return;
8960 }
8961
82856980
SW
8962 /* Figure out the local name after import. */
8963 import_alias = dwarf2_name (die, cu);
27aa8d6a 8964
794684b6
SW
8965 /* Figure out where the statement is being imported to. */
8966 import_prefix = determine_prefix (die, cu);
8967
8968 /* Figure out what the scope of the imported die is and prepend it
8969 to the name of the imported die. */
de4affc9 8970 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8971
f55ee35c
JK
8972 if (imported_die->tag != DW_TAG_namespace
8973 && imported_die->tag != DW_TAG_module)
794684b6 8974 {
13387711
SW
8975 imported_declaration = imported_name;
8976 canonical_name = imported_name_prefix;
794684b6 8977 }
13387711 8978 else if (strlen (imported_name_prefix) > 0)
12aaed36 8979 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8980 imported_name_prefix,
8981 (cu->language == language_d ? "." : "::"),
8982 imported_name, (char *) NULL);
13387711
SW
8983 else
8984 canonical_name = imported_name;
794684b6 8985
32019081
JK
8986 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8987
8988 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8989 for (child_die = die->child; child_die && child_die->tag;
8990 child_die = sibling_die (child_die))
8991 {
8992 /* DWARF-4: A Fortran use statement with a “rename list” may be
8993 represented by an imported module entry with an import attribute
8994 referring to the module and owned entries corresponding to those
8995 entities that are renamed as part of being imported. */
8996
8997 if (child_die->tag != DW_TAG_imported_declaration)
8998 {
8999 complaint (&symfile_complaints,
9000 _("child DW_TAG_imported_declaration expected "
9001 "- DIE at 0x%x [in module %s]"),
4262abfb 9002 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9003 continue;
9004 }
9005
9006 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9007 if (import_attr == NULL)
9008 {
9009 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9010 dwarf_tag_name (child_die->tag));
9011 continue;
9012 }
9013
9014 imported_cu = cu;
9015 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9016 &imported_cu);
9017 imported_name = dwarf2_name (imported_die, imported_cu);
9018 if (imported_name == NULL)
9019 {
9020 complaint (&symfile_complaints,
9021 _("child DW_TAG_imported_declaration has unknown "
9022 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9023 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9024 continue;
9025 }
9026
9027 VEC_safe_push (const_char_ptr, excludes, imported_name);
9028
9029 process_die (child_die, cu);
9030 }
9031
22cee43f
PMR
9032 add_using_directive (using_directives (cu->language),
9033 import_prefix,
9034 canonical_name,
9035 import_alias,
9036 imported_declaration,
9037 excludes,
9038 0,
9039 &objfile->objfile_obstack);
32019081
JK
9040
9041 do_cleanups (cleanups);
27aa8d6a
SW
9042}
9043
f4dc4d17 9044/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9045
cb1df416
DJ
9046static void
9047free_cu_line_header (void *arg)
9048{
9a3c8263 9049 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9050
9051 free_line_header (cu->line_header);
9052 cu->line_header = NULL;
9053}
9054
1b80a9fa
JK
9055/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9056 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9057 this, it was first present in GCC release 4.3.0. */
9058
9059static int
9060producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9061{
9062 if (!cu->checked_producer)
9063 check_producer (cu);
9064
9065 return cu->producer_is_gcc_lt_4_3;
9066}
9067
9291a0cd
TT
9068static void
9069find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9070 const char **name, const char **comp_dir)
9291a0cd 9071{
9291a0cd
TT
9072 /* Find the filename. Do not use dwarf2_name here, since the filename
9073 is not a source language identifier. */
7d45c7c3
KB
9074 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9075 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9076
7d45c7c3
KB
9077 if (*comp_dir == NULL
9078 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9079 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9080 {
15d034d0
TT
9081 char *d = ldirname (*name);
9082
9083 *comp_dir = d;
9084 if (d != NULL)
9085 make_cleanup (xfree, d);
9291a0cd
TT
9086 }
9087 if (*comp_dir != NULL)
9088 {
9089 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9090 directory, get rid of it. */
e6a959d6 9091 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9092
9093 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9094 *comp_dir = cp + 1;
9095 }
9096
9097 if (*name == NULL)
9098 *name = "<unknown>";
9099}
9100
f4dc4d17
DE
9101/* Handle DW_AT_stmt_list for a compilation unit.
9102 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9103 COMP_DIR is the compilation directory. LOWPC is passed to
9104 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9105
9106static void
9107handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9108 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9109{
527f3840 9110 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9111 struct attribute *attr;
527f3840
JK
9112 unsigned int line_offset;
9113 struct line_header line_header_local;
9114 hashval_t line_header_local_hash;
9115 unsigned u;
9116 void **slot;
9117 int decode_mapping;
2ab95328 9118
f4dc4d17
DE
9119 gdb_assert (! cu->per_cu->is_debug_types);
9120
2ab95328 9121 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9122 if (attr == NULL)
9123 return;
9124
9125 line_offset = DW_UNSND (attr);
9126
9127 /* The line header hash table is only created if needed (it exists to
9128 prevent redundant reading of the line table for partial_units).
9129 If we're given a partial_unit, we'll need it. If we're given a
9130 compile_unit, then use the line header hash table if it's already
9131 created, but don't create one just yet. */
9132
9133 if (dwarf2_per_objfile->line_header_hash == NULL
9134 && die->tag == DW_TAG_partial_unit)
2ab95328 9135 {
527f3840
JK
9136 dwarf2_per_objfile->line_header_hash
9137 = htab_create_alloc_ex (127, line_header_hash_voidp,
9138 line_header_eq_voidp,
9139 free_line_header_voidp,
9140 &objfile->objfile_obstack,
9141 hashtab_obstack_allocate,
9142 dummy_obstack_deallocate);
9143 }
2ab95328 9144
527f3840
JK
9145 line_header_local.offset.sect_off = line_offset;
9146 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9147 line_header_local_hash = line_header_hash (&line_header_local);
9148 if (dwarf2_per_objfile->line_header_hash != NULL)
9149 {
9150 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9151 &line_header_local,
9152 line_header_local_hash, NO_INSERT);
9153
9154 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9155 is not present in *SLOT (since if there is something in *SLOT then
9156 it will be for a partial_unit). */
9157 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9158 {
527f3840 9159 gdb_assert (*slot != NULL);
9a3c8263 9160 cu->line_header = (struct line_header *) *slot;
527f3840 9161 return;
dee91e82 9162 }
2ab95328 9163 }
527f3840
JK
9164
9165 /* dwarf_decode_line_header does not yet provide sufficient information.
9166 We always have to call also dwarf_decode_lines for it. */
9167 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9168 if (cu->line_header == NULL)
9169 return;
9170
9171 if (dwarf2_per_objfile->line_header_hash == NULL)
9172 slot = NULL;
9173 else
9174 {
9175 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9176 &line_header_local,
9177 line_header_local_hash, INSERT);
9178 gdb_assert (slot != NULL);
9179 }
9180 if (slot != NULL && *slot == NULL)
9181 {
9182 /* This newly decoded line number information unit will be owned
9183 by line_header_hash hash table. */
9184 *slot = cu->line_header;
9185 }
9186 else
9187 {
9188 /* We cannot free any current entry in (*slot) as that struct line_header
9189 may be already used by multiple CUs. Create only temporary decoded
9190 line_header for this CU - it may happen at most once for each line
9191 number information unit. And if we're not using line_header_hash
9192 then this is what we want as well. */
9193 gdb_assert (die->tag != DW_TAG_partial_unit);
9194 make_cleanup (free_cu_line_header, cu);
9195 }
9196 decode_mapping = (die->tag != DW_TAG_partial_unit);
9197 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9198 decode_mapping);
2ab95328
TT
9199}
9200
95554aad 9201/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9202
c906108c 9203static void
e7c27a73 9204read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9205{
dee91e82 9206 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9208 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9209 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9210 CORE_ADDR highpc = ((CORE_ADDR) 0);
9211 struct attribute *attr;
15d034d0
TT
9212 const char *name = NULL;
9213 const char *comp_dir = NULL;
c906108c 9214 struct die_info *child_die;
e142c38c 9215 CORE_ADDR baseaddr;
6e70227d 9216
e142c38c 9217 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9218
fae299cd 9219 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9220
9221 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9222 from finish_block. */
2acceee2 9223 if (lowpc == ((CORE_ADDR) -1))
c906108c 9224 lowpc = highpc;
3e29f34a 9225 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9226
9291a0cd 9227 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9228
95554aad 9229 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9230
f4b8a18d
KW
9231 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9232 standardised yet. As a workaround for the language detection we fall
9233 back to the DW_AT_producer string. */
9234 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9235 cu->language = language_opencl;
9236
3019eac3
DE
9237 /* Similar hack for Go. */
9238 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9239 set_cu_language (DW_LANG_Go, cu);
9240
f4dc4d17 9241 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9242
9243 /* Decode line number information if present. We do this before
9244 processing child DIEs, so that the line header table is available
9245 for DW_AT_decl_file. */
c3b7b696 9246 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9247
9248 /* Process all dies in compilation unit. */
9249 if (die->child != NULL)
9250 {
9251 child_die = die->child;
9252 while (child_die && child_die->tag)
9253 {
9254 process_die (child_die, cu);
9255 child_die = sibling_die (child_die);
9256 }
9257 }
9258
9259 /* Decode macro information, if present. Dwarf 2 macro information
9260 refers to information in the line number info statement program
9261 header, so we can only read it if we've read the header
9262 successfully. */
9263 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9264 if (attr && cu->line_header)
9265 {
9266 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9267 complaint (&symfile_complaints,
9268 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9269
43f3e411 9270 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9271 }
9272 else
9273 {
9274 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9275 if (attr && cu->line_header)
9276 {
9277 unsigned int macro_offset = DW_UNSND (attr);
9278
43f3e411 9279 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9280 }
9281 }
9282
9283 do_cleanups (back_to);
9284}
9285
f4dc4d17
DE
9286/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9287 Create the set of symtabs used by this TU, or if this TU is sharing
9288 symtabs with another TU and the symtabs have already been created
9289 then restore those symtabs in the line header.
9290 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9291
9292static void
f4dc4d17 9293setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9294{
f4dc4d17
DE
9295 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9296 struct type_unit_group *tu_group;
9297 int first_time;
9298 struct line_header *lh;
3019eac3 9299 struct attribute *attr;
f4dc4d17 9300 unsigned int i, line_offset;
0186c6a7 9301 struct signatured_type *sig_type;
3019eac3 9302
f4dc4d17 9303 gdb_assert (per_cu->is_debug_types);
0186c6a7 9304 sig_type = (struct signatured_type *) per_cu;
3019eac3 9305
f4dc4d17 9306 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9307
f4dc4d17 9308 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9309 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9310 if (sig_type->type_unit_group == NULL)
9311 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9312 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9313
9314 /* If we've already processed this stmt_list there's no real need to
9315 do it again, we could fake it and just recreate the part we need
9316 (file name,index -> symtab mapping). If data shows this optimization
9317 is useful we can do it then. */
43f3e411 9318 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9319
9320 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9321 debug info. */
9322 lh = NULL;
9323 if (attr != NULL)
3019eac3 9324 {
f4dc4d17
DE
9325 line_offset = DW_UNSND (attr);
9326 lh = dwarf_decode_line_header (line_offset, cu);
9327 }
9328 if (lh == NULL)
9329 {
9330 if (first_time)
9331 dwarf2_start_symtab (cu, "", NULL, 0);
9332 else
9333 {
9334 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9335 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9336 }
f4dc4d17 9337 return;
3019eac3
DE
9338 }
9339
f4dc4d17
DE
9340 cu->line_header = lh;
9341 make_cleanup (free_cu_line_header, cu);
3019eac3 9342
f4dc4d17
DE
9343 if (first_time)
9344 {
43f3e411 9345 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9346
1fd60fc0
DE
9347 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9348 still initializing it, and our caller (a few levels up)
9349 process_full_type_unit still needs to know if this is the first
9350 time. */
9351
f4dc4d17
DE
9352 tu_group->num_symtabs = lh->num_file_names;
9353 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9354
f4dc4d17
DE
9355 for (i = 0; i < lh->num_file_names; ++i)
9356 {
d521ce57 9357 const char *dir = NULL;
f4dc4d17 9358 struct file_entry *fe = &lh->file_names[i];
3019eac3 9359
afa6c9ab 9360 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9361 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9362 dwarf2_start_subfile (fe->name, dir);
3019eac3 9363
f4dc4d17
DE
9364 if (current_subfile->symtab == NULL)
9365 {
9366 /* NOTE: start_subfile will recognize when it's been passed
9367 a file it has already seen. So we can't assume there's a
43f3e411 9368 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9369 lh->file_names may contain dups. */
43f3e411
DE
9370 current_subfile->symtab
9371 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9372 }
9373
9374 fe->symtab = current_subfile->symtab;
9375 tu_group->symtabs[i] = fe->symtab;
9376 }
9377 }
9378 else
3019eac3 9379 {
0ab9ce85 9380 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9381
9382 for (i = 0; i < lh->num_file_names; ++i)
9383 {
9384 struct file_entry *fe = &lh->file_names[i];
9385
9386 fe->symtab = tu_group->symtabs[i];
9387 }
3019eac3
DE
9388 }
9389
f4dc4d17
DE
9390 /* The main symtab is allocated last. Type units don't have DW_AT_name
9391 so they don't have a "real" (so to speak) symtab anyway.
9392 There is later code that will assign the main symtab to all symbols
9393 that don't have one. We need to handle the case of a symbol with a
9394 missing symtab (DW_AT_decl_file) anyway. */
9395}
3019eac3 9396
f4dc4d17
DE
9397/* Process DW_TAG_type_unit.
9398 For TUs we want to skip the first top level sibling if it's not the
9399 actual type being defined by this TU. In this case the first top
9400 level sibling is there to provide context only. */
3019eac3 9401
f4dc4d17
DE
9402static void
9403read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9404{
9405 struct die_info *child_die;
3019eac3 9406
f4dc4d17
DE
9407 prepare_one_comp_unit (cu, die, language_minimal);
9408
9409 /* Initialize (or reinitialize) the machinery for building symtabs.
9410 We do this before processing child DIEs, so that the line header table
9411 is available for DW_AT_decl_file. */
9412 setup_type_unit_groups (die, cu);
9413
9414 if (die->child != NULL)
9415 {
9416 child_die = die->child;
9417 while (child_die && child_die->tag)
9418 {
9419 process_die (child_die, cu);
9420 child_die = sibling_die (child_die);
9421 }
9422 }
3019eac3
DE
9423}
9424\f
80626a55
DE
9425/* DWO/DWP files.
9426
9427 http://gcc.gnu.org/wiki/DebugFission
9428 http://gcc.gnu.org/wiki/DebugFissionDWP
9429
9430 To simplify handling of both DWO files ("object" files with the DWARF info)
9431 and DWP files (a file with the DWOs packaged up into one file), we treat
9432 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9433
9434static hashval_t
9435hash_dwo_file (const void *item)
9436{
9a3c8263 9437 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9438 hashval_t hash;
3019eac3 9439
a2ce51a0
DE
9440 hash = htab_hash_string (dwo_file->dwo_name);
9441 if (dwo_file->comp_dir != NULL)
9442 hash += htab_hash_string (dwo_file->comp_dir);
9443 return hash;
3019eac3
DE
9444}
9445
9446static int
9447eq_dwo_file (const void *item_lhs, const void *item_rhs)
9448{
9a3c8263
SM
9449 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9450 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9451
a2ce51a0
DE
9452 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9453 return 0;
9454 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9455 return lhs->comp_dir == rhs->comp_dir;
9456 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9457}
9458
9459/* Allocate a hash table for DWO files. */
9460
9461static htab_t
9462allocate_dwo_file_hash_table (void)
9463{
9464 struct objfile *objfile = dwarf2_per_objfile->objfile;
9465
9466 return htab_create_alloc_ex (41,
9467 hash_dwo_file,
9468 eq_dwo_file,
9469 NULL,
9470 &objfile->objfile_obstack,
9471 hashtab_obstack_allocate,
9472 dummy_obstack_deallocate);
9473}
9474
80626a55
DE
9475/* Lookup DWO file DWO_NAME. */
9476
9477static void **
0ac5b59e 9478lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9479{
9480 struct dwo_file find_entry;
9481 void **slot;
9482
9483 if (dwarf2_per_objfile->dwo_files == NULL)
9484 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9485
9486 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9487 find_entry.dwo_name = dwo_name;
9488 find_entry.comp_dir = comp_dir;
80626a55
DE
9489 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9490
9491 return slot;
9492}
9493
3019eac3
DE
9494static hashval_t
9495hash_dwo_unit (const void *item)
9496{
9a3c8263 9497 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9498
9499 /* This drops the top 32 bits of the id, but is ok for a hash. */
9500 return dwo_unit->signature;
9501}
9502
9503static int
9504eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9505{
9a3c8263
SM
9506 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9507 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9508
9509 /* The signature is assumed to be unique within the DWO file.
9510 So while object file CU dwo_id's always have the value zero,
9511 that's OK, assuming each object file DWO file has only one CU,
9512 and that's the rule for now. */
9513 return lhs->signature == rhs->signature;
9514}
9515
9516/* Allocate a hash table for DWO CUs,TUs.
9517 There is one of these tables for each of CUs,TUs for each DWO file. */
9518
9519static htab_t
9520allocate_dwo_unit_table (struct objfile *objfile)
9521{
9522 /* Start out with a pretty small number.
9523 Generally DWO files contain only one CU and maybe some TUs. */
9524 return htab_create_alloc_ex (3,
9525 hash_dwo_unit,
9526 eq_dwo_unit,
9527 NULL,
9528 &objfile->objfile_obstack,
9529 hashtab_obstack_allocate,
9530 dummy_obstack_deallocate);
9531}
9532
80626a55 9533/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9534
19c3d4c9 9535struct create_dwo_cu_data
3019eac3
DE
9536{
9537 struct dwo_file *dwo_file;
19c3d4c9 9538 struct dwo_unit dwo_unit;
3019eac3
DE
9539};
9540
19c3d4c9 9541/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9542
9543static void
19c3d4c9
DE
9544create_dwo_cu_reader (const struct die_reader_specs *reader,
9545 const gdb_byte *info_ptr,
9546 struct die_info *comp_unit_die,
9547 int has_children,
9548 void *datap)
3019eac3
DE
9549{
9550 struct dwarf2_cu *cu = reader->cu;
3019eac3 9551 sect_offset offset = cu->per_cu->offset;
8a0459fd 9552 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9553 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9554 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9555 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9556 struct attribute *attr;
3019eac3
DE
9557
9558 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9559 if (attr == NULL)
9560 {
19c3d4c9
DE
9561 complaint (&symfile_complaints,
9562 _("Dwarf Error: debug entry at offset 0x%x is missing"
9563 " its dwo_id [in module %s]"),
9564 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9565 return;
9566 }
9567
3019eac3
DE
9568 dwo_unit->dwo_file = dwo_file;
9569 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9570 dwo_unit->section = section;
3019eac3
DE
9571 dwo_unit->offset = offset;
9572 dwo_unit->length = cu->per_cu->length;
9573
b4f54984 9574 if (dwarf_read_debug)
4031ecc5
DE
9575 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9576 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9577}
9578
19c3d4c9
DE
9579/* Create the dwo_unit for the lone CU in DWO_FILE.
9580 Note: This function processes DWO files only, not DWP files. */
3019eac3 9581
19c3d4c9
DE
9582static struct dwo_unit *
9583create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9584{
9585 struct objfile *objfile = dwarf2_per_objfile->objfile;
9586 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9587 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9588 struct create_dwo_cu_data create_dwo_cu_data;
9589 struct dwo_unit *dwo_unit;
3019eac3
DE
9590
9591 dwarf2_read_section (objfile, section);
9592 info_ptr = section->buffer;
9593
9594 if (info_ptr == NULL)
9595 return NULL;
9596
b4f54984 9597 if (dwarf_read_debug)
19c3d4c9
DE
9598 {
9599 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9600 get_section_name (section),
9601 get_section_file_name (section));
19c3d4c9 9602 }
3019eac3 9603
19c3d4c9
DE
9604 create_dwo_cu_data.dwo_file = dwo_file;
9605 dwo_unit = NULL;
3019eac3
DE
9606
9607 end_ptr = info_ptr + section->size;
9608 while (info_ptr < end_ptr)
9609 {
9610 struct dwarf2_per_cu_data per_cu;
9611
19c3d4c9
DE
9612 memset (&create_dwo_cu_data.dwo_unit, 0,
9613 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9614 memset (&per_cu, 0, sizeof (per_cu));
9615 per_cu.objfile = objfile;
9616 per_cu.is_debug_types = 0;
9617 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9618 per_cu.section = section;
3019eac3 9619
33e80786 9620 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9621 create_dwo_cu_reader,
9622 &create_dwo_cu_data);
9623
9624 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9625 {
9626 /* If we've already found one, complain. We only support one
9627 because having more than one requires hacking the dwo_name of
9628 each to match, which is highly unlikely to happen. */
9629 if (dwo_unit != NULL)
9630 {
9631 complaint (&symfile_complaints,
9632 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9633 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9634 break;
9635 }
9636
9637 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9638 *dwo_unit = create_dwo_cu_data.dwo_unit;
9639 }
3019eac3
DE
9640
9641 info_ptr += per_cu.length;
9642 }
9643
19c3d4c9 9644 return dwo_unit;
3019eac3
DE
9645}
9646
80626a55
DE
9647/* DWP file .debug_{cu,tu}_index section format:
9648 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9649
d2415c6c
DE
9650 DWP Version 1:
9651
80626a55
DE
9652 Both index sections have the same format, and serve to map a 64-bit
9653 signature to a set of section numbers. Each section begins with a header,
9654 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9655 indexes, and a pool of 32-bit section numbers. The index sections will be
9656 aligned at 8-byte boundaries in the file.
9657
d2415c6c
DE
9658 The index section header consists of:
9659
9660 V, 32 bit version number
9661 -, 32 bits unused
9662 N, 32 bit number of compilation units or type units in the index
9663 M, 32 bit number of slots in the hash table
80626a55 9664
d2415c6c 9665 Numbers are recorded using the byte order of the application binary.
80626a55 9666
d2415c6c
DE
9667 The hash table begins at offset 16 in the section, and consists of an array
9668 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9669 order of the application binary). Unused slots in the hash table are 0.
9670 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9671
d2415c6c
DE
9672 The parallel table begins immediately after the hash table
9673 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9674 array of 32-bit indexes (using the byte order of the application binary),
9675 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9676 table contains a 32-bit index into the pool of section numbers. For unused
9677 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9678
73869dc2
DE
9679 The pool of section numbers begins immediately following the hash table
9680 (at offset 16 + 12 * M from the beginning of the section). The pool of
9681 section numbers consists of an array of 32-bit words (using the byte order
9682 of the application binary). Each item in the array is indexed starting
9683 from 0. The hash table entry provides the index of the first section
9684 number in the set. Additional section numbers in the set follow, and the
9685 set is terminated by a 0 entry (section number 0 is not used in ELF).
9686
9687 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9688 section must be the first entry in the set, and the .debug_abbrev.dwo must
9689 be the second entry. Other members of the set may follow in any order.
9690
9691 ---
9692
9693 DWP Version 2:
9694
9695 DWP Version 2 combines all the .debug_info, etc. sections into one,
9696 and the entries in the index tables are now offsets into these sections.
9697 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9698 section.
9699
9700 Index Section Contents:
9701 Header
9702 Hash Table of Signatures dwp_hash_table.hash_table
9703 Parallel Table of Indices dwp_hash_table.unit_table
9704 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9705 Table of Section Sizes dwp_hash_table.v2.sizes
9706
9707 The index section header consists of:
9708
9709 V, 32 bit version number
9710 L, 32 bit number of columns in the table of section offsets
9711 N, 32 bit number of compilation units or type units in the index
9712 M, 32 bit number of slots in the hash table
9713
9714 Numbers are recorded using the byte order of the application binary.
9715
9716 The hash table has the same format as version 1.
9717 The parallel table of indices has the same format as version 1,
9718 except that the entries are origin-1 indices into the table of sections
9719 offsets and the table of section sizes.
9720
9721 The table of offsets begins immediately following the parallel table
9722 (at offset 16 + 12 * M from the beginning of the section). The table is
9723 a two-dimensional array of 32-bit words (using the byte order of the
9724 application binary), with L columns and N+1 rows, in row-major order.
9725 Each row in the array is indexed starting from 0. The first row provides
9726 a key to the remaining rows: each column in this row provides an identifier
9727 for a debug section, and the offsets in the same column of subsequent rows
9728 refer to that section. The section identifiers are:
9729
9730 DW_SECT_INFO 1 .debug_info.dwo
9731 DW_SECT_TYPES 2 .debug_types.dwo
9732 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9733 DW_SECT_LINE 4 .debug_line.dwo
9734 DW_SECT_LOC 5 .debug_loc.dwo
9735 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9736 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9737 DW_SECT_MACRO 8 .debug_macro.dwo
9738
9739 The offsets provided by the CU and TU index sections are the base offsets
9740 for the contributions made by each CU or TU to the corresponding section
9741 in the package file. Each CU and TU header contains an abbrev_offset
9742 field, used to find the abbreviations table for that CU or TU within the
9743 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9744 be interpreted as relative to the base offset given in the index section.
9745 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9746 should be interpreted as relative to the base offset for .debug_line.dwo,
9747 and offsets into other debug sections obtained from DWARF attributes should
9748 also be interpreted as relative to the corresponding base offset.
9749
9750 The table of sizes begins immediately following the table of offsets.
9751 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9752 with L columns and N rows, in row-major order. Each row in the array is
9753 indexed starting from 1 (row 0 is shared by the two tables).
9754
9755 ---
9756
9757 Hash table lookup is handled the same in version 1 and 2:
9758
9759 We assume that N and M will not exceed 2^32 - 1.
9760 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9761
d2415c6c
DE
9762 Given a 64-bit compilation unit signature or a type signature S, an entry
9763 in the hash table is located as follows:
80626a55 9764
d2415c6c
DE
9765 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9766 the low-order k bits all set to 1.
80626a55 9767
d2415c6c 9768 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9769
d2415c6c
DE
9770 3) If the hash table entry at index H matches the signature, use that
9771 entry. If the hash table entry at index H is unused (all zeroes),
9772 terminate the search: the signature is not present in the table.
80626a55 9773
d2415c6c 9774 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9775
d2415c6c 9776 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9777 to stop at an unused slot or find the match. */
80626a55
DE
9778
9779/* Create a hash table to map DWO IDs to their CU/TU entry in
9780 .debug_{info,types}.dwo in DWP_FILE.
9781 Returns NULL if there isn't one.
9782 Note: This function processes DWP files only, not DWO files. */
9783
9784static struct dwp_hash_table *
9785create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9786{
9787 struct objfile *objfile = dwarf2_per_objfile->objfile;
9788 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9789 const gdb_byte *index_ptr, *index_end;
80626a55 9790 struct dwarf2_section_info *index;
73869dc2 9791 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9792 struct dwp_hash_table *htab;
9793
9794 if (is_debug_types)
9795 index = &dwp_file->sections.tu_index;
9796 else
9797 index = &dwp_file->sections.cu_index;
9798
9799 if (dwarf2_section_empty_p (index))
9800 return NULL;
9801 dwarf2_read_section (objfile, index);
9802
9803 index_ptr = index->buffer;
9804 index_end = index_ptr + index->size;
9805
9806 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9807 index_ptr += 4;
9808 if (version == 2)
9809 nr_columns = read_4_bytes (dbfd, index_ptr);
9810 else
9811 nr_columns = 0;
9812 index_ptr += 4;
80626a55
DE
9813 nr_units = read_4_bytes (dbfd, index_ptr);
9814 index_ptr += 4;
9815 nr_slots = read_4_bytes (dbfd, index_ptr);
9816 index_ptr += 4;
9817
73869dc2 9818 if (version != 1 && version != 2)
80626a55 9819 {
21aa081e 9820 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9821 " [in module %s]"),
21aa081e 9822 pulongest (version), dwp_file->name);
80626a55
DE
9823 }
9824 if (nr_slots != (nr_slots & -nr_slots))
9825 {
21aa081e 9826 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9827 " is not power of 2 [in module %s]"),
21aa081e 9828 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9829 }
9830
9831 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9832 htab->version = version;
9833 htab->nr_columns = nr_columns;
80626a55
DE
9834 htab->nr_units = nr_units;
9835 htab->nr_slots = nr_slots;
9836 htab->hash_table = index_ptr;
9837 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9838
9839 /* Exit early if the table is empty. */
9840 if (nr_slots == 0 || nr_units == 0
9841 || (version == 2 && nr_columns == 0))
9842 {
9843 /* All must be zero. */
9844 if (nr_slots != 0 || nr_units != 0
9845 || (version == 2 && nr_columns != 0))
9846 {
9847 complaint (&symfile_complaints,
9848 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9849 " all zero [in modules %s]"),
9850 dwp_file->name);
9851 }
9852 return htab;
9853 }
9854
9855 if (version == 1)
9856 {
9857 htab->section_pool.v1.indices =
9858 htab->unit_table + sizeof (uint32_t) * nr_slots;
9859 /* It's harder to decide whether the section is too small in v1.
9860 V1 is deprecated anyway so we punt. */
9861 }
9862 else
9863 {
9864 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9865 int *ids = htab->section_pool.v2.section_ids;
9866 /* Reverse map for error checking. */
9867 int ids_seen[DW_SECT_MAX + 1];
9868 int i;
9869
9870 if (nr_columns < 2)
9871 {
9872 error (_("Dwarf Error: bad DWP hash table, too few columns"
9873 " in section table [in module %s]"),
9874 dwp_file->name);
9875 }
9876 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9877 {
9878 error (_("Dwarf Error: bad DWP hash table, too many columns"
9879 " in section table [in module %s]"),
9880 dwp_file->name);
9881 }
9882 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9883 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9884 for (i = 0; i < nr_columns; ++i)
9885 {
9886 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9887
9888 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9891 " in section table [in module %s]"),
9892 id, dwp_file->name);
9893 }
9894 if (ids_seen[id] != -1)
9895 {
9896 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9897 " id %d in section table [in module %s]"),
9898 id, dwp_file->name);
9899 }
9900 ids_seen[id] = i;
9901 ids[i] = id;
9902 }
9903 /* Must have exactly one info or types section. */
9904 if (((ids_seen[DW_SECT_INFO] != -1)
9905 + (ids_seen[DW_SECT_TYPES] != -1))
9906 != 1)
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9909 " DWO info/types section [in module %s]"),
9910 dwp_file->name);
9911 }
9912 /* Must have an abbrev section. */
9913 if (ids_seen[DW_SECT_ABBREV] == -1)
9914 {
9915 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9916 " section [in module %s]"),
9917 dwp_file->name);
9918 }
9919 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9920 htab->section_pool.v2.sizes =
9921 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9922 * nr_units * nr_columns);
9923 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9924 * nr_units * nr_columns))
9925 > index_end)
9926 {
9927 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9928 " [in module %s]"),
9929 dwp_file->name);
9930 }
9931 }
80626a55
DE
9932
9933 return htab;
9934}
9935
9936/* Update SECTIONS with the data from SECTP.
9937
9938 This function is like the other "locate" section routines that are
9939 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9940 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9941
9942 The result is non-zero for success, or zero if an error was found. */
9943
9944static int
73869dc2
DE
9945locate_v1_virtual_dwo_sections (asection *sectp,
9946 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9947{
9948 const struct dwop_section_names *names = &dwop_section_names;
9949
9950 if (section_is_p (sectp->name, &names->abbrev_dwo))
9951 {
9952 /* There can be only one. */
049412e3 9953 if (sections->abbrev.s.section != NULL)
80626a55 9954 return 0;
049412e3 9955 sections->abbrev.s.section = sectp;
80626a55
DE
9956 sections->abbrev.size = bfd_get_section_size (sectp);
9957 }
9958 else if (section_is_p (sectp->name, &names->info_dwo)
9959 || section_is_p (sectp->name, &names->types_dwo))
9960 {
9961 /* There can be only one. */
049412e3 9962 if (sections->info_or_types.s.section != NULL)
80626a55 9963 return 0;
049412e3 9964 sections->info_or_types.s.section = sectp;
80626a55
DE
9965 sections->info_or_types.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->line_dwo))
9968 {
9969 /* There can be only one. */
049412e3 9970 if (sections->line.s.section != NULL)
80626a55 9971 return 0;
049412e3 9972 sections->line.s.section = sectp;
80626a55
DE
9973 sections->line.size = bfd_get_section_size (sectp);
9974 }
9975 else if (section_is_p (sectp->name, &names->loc_dwo))
9976 {
9977 /* There can be only one. */
049412e3 9978 if (sections->loc.s.section != NULL)
80626a55 9979 return 0;
049412e3 9980 sections->loc.s.section = sectp;
80626a55
DE
9981 sections->loc.size = bfd_get_section_size (sectp);
9982 }
9983 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9984 {
9985 /* There can be only one. */
049412e3 9986 if (sections->macinfo.s.section != NULL)
80626a55 9987 return 0;
049412e3 9988 sections->macinfo.s.section = sectp;
80626a55
DE
9989 sections->macinfo.size = bfd_get_section_size (sectp);
9990 }
9991 else if (section_is_p (sectp->name, &names->macro_dwo))
9992 {
9993 /* There can be only one. */
049412e3 9994 if (sections->macro.s.section != NULL)
80626a55 9995 return 0;
049412e3 9996 sections->macro.s.section = sectp;
80626a55
DE
9997 sections->macro.size = bfd_get_section_size (sectp);
9998 }
9999 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10000 {
10001 /* There can be only one. */
049412e3 10002 if (sections->str_offsets.s.section != NULL)
80626a55 10003 return 0;
049412e3 10004 sections->str_offsets.s.section = sectp;
80626a55
DE
10005 sections->str_offsets.size = bfd_get_section_size (sectp);
10006 }
10007 else
10008 {
10009 /* No other kind of section is valid. */
10010 return 0;
10011 }
10012
10013 return 1;
10014}
10015
73869dc2
DE
10016/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10017 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10018 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10019 This is for DWP version 1 files. */
80626a55
DE
10020
10021static struct dwo_unit *
73869dc2
DE
10022create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10023 uint32_t unit_index,
10024 const char *comp_dir,
10025 ULONGEST signature, int is_debug_types)
80626a55
DE
10026{
10027 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10028 const struct dwp_hash_table *dwp_htab =
10029 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10030 bfd *dbfd = dwp_file->dbfd;
10031 const char *kind = is_debug_types ? "TU" : "CU";
10032 struct dwo_file *dwo_file;
10033 struct dwo_unit *dwo_unit;
73869dc2 10034 struct virtual_v1_dwo_sections sections;
80626a55
DE
10035 void **dwo_file_slot;
10036 char *virtual_dwo_name;
80626a55
DE
10037 struct cleanup *cleanups;
10038 int i;
10039
73869dc2
DE
10040 gdb_assert (dwp_file->version == 1);
10041
b4f54984 10042 if (dwarf_read_debug)
80626a55 10043 {
73869dc2 10044 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10045 kind,
73869dc2 10046 pulongest (unit_index), hex_string (signature),
80626a55
DE
10047 dwp_file->name);
10048 }
10049
19ac8c2e 10050 /* Fetch the sections of this DWO unit.
80626a55
DE
10051 Put a limit on the number of sections we look for so that bad data
10052 doesn't cause us to loop forever. */
10053
73869dc2 10054#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10055 (1 /* .debug_info or .debug_types */ \
10056 + 1 /* .debug_abbrev */ \
10057 + 1 /* .debug_line */ \
10058 + 1 /* .debug_loc */ \
10059 + 1 /* .debug_str_offsets */ \
19ac8c2e 10060 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10061 + 1 /* trailing zero */)
10062
10063 memset (&sections, 0, sizeof (sections));
10064 cleanups = make_cleanup (null_cleanup, 0);
10065
73869dc2 10066 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10067 {
10068 asection *sectp;
10069 uint32_t section_nr =
10070 read_4_bytes (dbfd,
73869dc2
DE
10071 dwp_htab->section_pool.v1.indices
10072 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10073
10074 if (section_nr == 0)
10075 break;
10076 if (section_nr >= dwp_file->num_sections)
10077 {
10078 error (_("Dwarf Error: bad DWP hash table, section number too large"
10079 " [in module %s]"),
10080 dwp_file->name);
10081 }
10082
10083 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10084 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10085 {
10086 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10087 " [in module %s]"),
10088 dwp_file->name);
10089 }
10090 }
10091
10092 if (i < 2
a32a8923
DE
10093 || dwarf2_section_empty_p (&sections.info_or_types)
10094 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10095 {
10096 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10097 " [in module %s]"),
10098 dwp_file->name);
10099 }
73869dc2 10100 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10101 {
10102 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10103 " [in module %s]"),
10104 dwp_file->name);
10105 }
10106
10107 /* It's easier for the rest of the code if we fake a struct dwo_file and
10108 have dwo_unit "live" in that. At least for now.
10109
10110 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10111 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10112 file, we can combine them back into a virtual DWO file to save space
10113 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10114 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10115
2792b94d
PM
10116 virtual_dwo_name =
10117 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10118 get_section_id (&sections.abbrev),
10119 get_section_id (&sections.line),
10120 get_section_id (&sections.loc),
10121 get_section_id (&sections.str_offsets));
80626a55
DE
10122 make_cleanup (xfree, virtual_dwo_name);
10123 /* Can we use an existing virtual DWO file? */
0ac5b59e 10124 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10125 /* Create one if necessary. */
10126 if (*dwo_file_slot == NULL)
10127 {
b4f54984 10128 if (dwarf_read_debug)
80626a55
DE
10129 {
10130 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10131 virtual_dwo_name);
10132 }
10133 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10134 dwo_file->dwo_name
10135 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10136 virtual_dwo_name,
10137 strlen (virtual_dwo_name));
0ac5b59e 10138 dwo_file->comp_dir = comp_dir;
80626a55
DE
10139 dwo_file->sections.abbrev = sections.abbrev;
10140 dwo_file->sections.line = sections.line;
10141 dwo_file->sections.loc = sections.loc;
10142 dwo_file->sections.macinfo = sections.macinfo;
10143 dwo_file->sections.macro = sections.macro;
10144 dwo_file->sections.str_offsets = sections.str_offsets;
10145 /* The "str" section is global to the entire DWP file. */
10146 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10147 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10148 there's no need to record it in dwo_file.
10149 Also, we can't simply record type sections in dwo_file because
10150 we record a pointer into the vector in dwo_unit. As we collect more
10151 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10152 for it, invalidating all copies of pointers into the previous
10153 contents. */
80626a55
DE
10154 *dwo_file_slot = dwo_file;
10155 }
10156 else
10157 {
b4f54984 10158 if (dwarf_read_debug)
80626a55
DE
10159 {
10160 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10161 virtual_dwo_name);
10162 }
9a3c8263 10163 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10164 }
10165 do_cleanups (cleanups);
10166
10167 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10168 dwo_unit->dwo_file = dwo_file;
10169 dwo_unit->signature = signature;
8d749320
SM
10170 dwo_unit->section =
10171 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10172 *dwo_unit->section = sections.info_or_types;
57d63ce2 10173 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10174
10175 return dwo_unit;
10176}
10177
73869dc2
DE
10178/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10179 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10180 piece within that section used by a TU/CU, return a virtual section
10181 of just that piece. */
10182
10183static struct dwarf2_section_info
10184create_dwp_v2_section (struct dwarf2_section_info *section,
10185 bfd_size_type offset, bfd_size_type size)
10186{
10187 struct dwarf2_section_info result;
10188 asection *sectp;
10189
10190 gdb_assert (section != NULL);
10191 gdb_assert (!section->is_virtual);
10192
10193 memset (&result, 0, sizeof (result));
10194 result.s.containing_section = section;
10195 result.is_virtual = 1;
10196
10197 if (size == 0)
10198 return result;
10199
10200 sectp = get_section_bfd_section (section);
10201
10202 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10203 bounds of the real section. This is a pretty-rare event, so just
10204 flag an error (easier) instead of a warning and trying to cope. */
10205 if (sectp == NULL
10206 || offset + size > bfd_get_section_size (sectp))
10207 {
10208 bfd *abfd = sectp->owner;
10209
10210 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10211 " in section %s [in module %s]"),
10212 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10213 objfile_name (dwarf2_per_objfile->objfile));
10214 }
10215
10216 result.virtual_offset = offset;
10217 result.size = size;
10218 return result;
10219}
10220
10221/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10222 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10223 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10224 This is for DWP version 2 files. */
10225
10226static struct dwo_unit *
10227create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10228 uint32_t unit_index,
10229 const char *comp_dir,
10230 ULONGEST signature, int is_debug_types)
10231{
10232 struct objfile *objfile = dwarf2_per_objfile->objfile;
10233 const struct dwp_hash_table *dwp_htab =
10234 is_debug_types ? dwp_file->tus : dwp_file->cus;
10235 bfd *dbfd = dwp_file->dbfd;
10236 const char *kind = is_debug_types ? "TU" : "CU";
10237 struct dwo_file *dwo_file;
10238 struct dwo_unit *dwo_unit;
10239 struct virtual_v2_dwo_sections sections;
10240 void **dwo_file_slot;
10241 char *virtual_dwo_name;
73869dc2
DE
10242 struct cleanup *cleanups;
10243 int i;
10244
10245 gdb_assert (dwp_file->version == 2);
10246
b4f54984 10247 if (dwarf_read_debug)
73869dc2
DE
10248 {
10249 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10250 kind,
10251 pulongest (unit_index), hex_string (signature),
10252 dwp_file->name);
10253 }
10254
10255 /* Fetch the section offsets of this DWO unit. */
10256
10257 memset (&sections, 0, sizeof (sections));
10258 cleanups = make_cleanup (null_cleanup, 0);
10259
10260 for (i = 0; i < dwp_htab->nr_columns; ++i)
10261 {
10262 uint32_t offset = read_4_bytes (dbfd,
10263 dwp_htab->section_pool.v2.offsets
10264 + (((unit_index - 1) * dwp_htab->nr_columns
10265 + i)
10266 * sizeof (uint32_t)));
10267 uint32_t size = read_4_bytes (dbfd,
10268 dwp_htab->section_pool.v2.sizes
10269 + (((unit_index - 1) * dwp_htab->nr_columns
10270 + i)
10271 * sizeof (uint32_t)));
10272
10273 switch (dwp_htab->section_pool.v2.section_ids[i])
10274 {
10275 case DW_SECT_INFO:
10276 case DW_SECT_TYPES:
10277 sections.info_or_types_offset = offset;
10278 sections.info_or_types_size = size;
10279 break;
10280 case DW_SECT_ABBREV:
10281 sections.abbrev_offset = offset;
10282 sections.abbrev_size = size;
10283 break;
10284 case DW_SECT_LINE:
10285 sections.line_offset = offset;
10286 sections.line_size = size;
10287 break;
10288 case DW_SECT_LOC:
10289 sections.loc_offset = offset;
10290 sections.loc_size = size;
10291 break;
10292 case DW_SECT_STR_OFFSETS:
10293 sections.str_offsets_offset = offset;
10294 sections.str_offsets_size = size;
10295 break;
10296 case DW_SECT_MACINFO:
10297 sections.macinfo_offset = offset;
10298 sections.macinfo_size = size;
10299 break;
10300 case DW_SECT_MACRO:
10301 sections.macro_offset = offset;
10302 sections.macro_size = size;
10303 break;
10304 }
10305 }
10306
10307 /* It's easier for the rest of the code if we fake a struct dwo_file and
10308 have dwo_unit "live" in that. At least for now.
10309
10310 The DWP file can be made up of a random collection of CUs and TUs.
10311 However, for each CU + set of TUs that came from the same original DWO
10312 file, we can combine them back into a virtual DWO file to save space
10313 (fewer struct dwo_file objects to allocate). Remember that for really
10314 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10315
10316 virtual_dwo_name =
10317 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10318 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10319 (long) (sections.line_size ? sections.line_offset : 0),
10320 (long) (sections.loc_size ? sections.loc_offset : 0),
10321 (long) (sections.str_offsets_size
10322 ? sections.str_offsets_offset : 0));
10323 make_cleanup (xfree, virtual_dwo_name);
10324 /* Can we use an existing virtual DWO file? */
10325 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10326 /* Create one if necessary. */
10327 if (*dwo_file_slot == NULL)
10328 {
b4f54984 10329 if (dwarf_read_debug)
73869dc2
DE
10330 {
10331 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10332 virtual_dwo_name);
10333 }
10334 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10335 dwo_file->dwo_name
10336 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10337 virtual_dwo_name,
10338 strlen (virtual_dwo_name));
73869dc2
DE
10339 dwo_file->comp_dir = comp_dir;
10340 dwo_file->sections.abbrev =
10341 create_dwp_v2_section (&dwp_file->sections.abbrev,
10342 sections.abbrev_offset, sections.abbrev_size);
10343 dwo_file->sections.line =
10344 create_dwp_v2_section (&dwp_file->sections.line,
10345 sections.line_offset, sections.line_size);
10346 dwo_file->sections.loc =
10347 create_dwp_v2_section (&dwp_file->sections.loc,
10348 sections.loc_offset, sections.loc_size);
10349 dwo_file->sections.macinfo =
10350 create_dwp_v2_section (&dwp_file->sections.macinfo,
10351 sections.macinfo_offset, sections.macinfo_size);
10352 dwo_file->sections.macro =
10353 create_dwp_v2_section (&dwp_file->sections.macro,
10354 sections.macro_offset, sections.macro_size);
10355 dwo_file->sections.str_offsets =
10356 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10357 sections.str_offsets_offset,
10358 sections.str_offsets_size);
10359 /* The "str" section is global to the entire DWP file. */
10360 dwo_file->sections.str = dwp_file->sections.str;
10361 /* The info or types section is assigned below to dwo_unit,
10362 there's no need to record it in dwo_file.
10363 Also, we can't simply record type sections in dwo_file because
10364 we record a pointer into the vector in dwo_unit. As we collect more
10365 types we'll grow the vector and eventually have to reallocate space
10366 for it, invalidating all copies of pointers into the previous
10367 contents. */
10368 *dwo_file_slot = dwo_file;
10369 }
10370 else
10371 {
b4f54984 10372 if (dwarf_read_debug)
73869dc2
DE
10373 {
10374 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10375 virtual_dwo_name);
10376 }
9a3c8263 10377 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10378 }
10379 do_cleanups (cleanups);
10380
10381 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10382 dwo_unit->dwo_file = dwo_file;
10383 dwo_unit->signature = signature;
8d749320
SM
10384 dwo_unit->section =
10385 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10386 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10387 ? &dwp_file->sections.types
10388 : &dwp_file->sections.info,
10389 sections.info_or_types_offset,
10390 sections.info_or_types_size);
10391 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10392
10393 return dwo_unit;
10394}
10395
57d63ce2
DE
10396/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10397 Returns NULL if the signature isn't found. */
80626a55
DE
10398
10399static struct dwo_unit *
57d63ce2
DE
10400lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10401 ULONGEST signature, int is_debug_types)
80626a55 10402{
57d63ce2
DE
10403 const struct dwp_hash_table *dwp_htab =
10404 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10405 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10406 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10407 uint32_t hash = signature & mask;
10408 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10409 unsigned int i;
10410 void **slot;
870f88f7 10411 struct dwo_unit find_dwo_cu;
80626a55
DE
10412
10413 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10414 find_dwo_cu.signature = signature;
19ac8c2e
DE
10415 slot = htab_find_slot (is_debug_types
10416 ? dwp_file->loaded_tus
10417 : dwp_file->loaded_cus,
10418 &find_dwo_cu, INSERT);
80626a55
DE
10419
10420 if (*slot != NULL)
9a3c8263 10421 return (struct dwo_unit *) *slot;
80626a55
DE
10422
10423 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10424 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10425 {
10426 ULONGEST signature_in_table;
10427
10428 signature_in_table =
57d63ce2 10429 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10430 if (signature_in_table == signature)
10431 {
57d63ce2
DE
10432 uint32_t unit_index =
10433 read_4_bytes (dbfd,
10434 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10435
73869dc2
DE
10436 if (dwp_file->version == 1)
10437 {
10438 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10439 comp_dir, signature,
10440 is_debug_types);
10441 }
10442 else
10443 {
10444 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10445 comp_dir, signature,
10446 is_debug_types);
10447 }
9a3c8263 10448 return (struct dwo_unit *) *slot;
80626a55
DE
10449 }
10450 if (signature_in_table == 0)
10451 return NULL;
10452 hash = (hash + hash2) & mask;
10453 }
10454
10455 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10456 " [in module %s]"),
10457 dwp_file->name);
10458}
10459
ab5088bf 10460/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10461 Open the file specified by FILE_NAME and hand it off to BFD for
10462 preliminary analysis. Return a newly initialized bfd *, which
10463 includes a canonicalized copy of FILE_NAME.
80626a55 10464 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10465 SEARCH_CWD is true if the current directory is to be searched.
10466 It will be searched before debug-file-directory.
13aaf454
DE
10467 If successful, the file is added to the bfd include table of the
10468 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10469 If unable to find/open the file, return NULL.
3019eac3
DE
10470 NOTE: This function is derived from symfile_bfd_open. */
10471
10472static bfd *
6ac97d4c 10473try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10474{
10475 bfd *sym_bfd;
80626a55 10476 int desc, flags;
3019eac3 10477 char *absolute_name;
9c02c129
DE
10478 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10479 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10480 to debug_file_directory. */
10481 char *search_path;
10482 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10483
6ac97d4c
DE
10484 if (search_cwd)
10485 {
10486 if (*debug_file_directory != '\0')
10487 search_path = concat (".", dirname_separator_string,
b36cec19 10488 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10489 else
10490 search_path = xstrdup (".");
10491 }
9c02c129 10492 else
6ac97d4c 10493 search_path = xstrdup (debug_file_directory);
3019eac3 10494
492c0ab7 10495 flags = OPF_RETURN_REALPATH;
80626a55
DE
10496 if (is_dwp)
10497 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10498 desc = openp (search_path, flags, file_name,
3019eac3 10499 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10500 xfree (search_path);
3019eac3
DE
10501 if (desc < 0)
10502 return NULL;
10503
bb397797 10504 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10505 xfree (absolute_name);
9c02c129
DE
10506 if (sym_bfd == NULL)
10507 return NULL;
3019eac3
DE
10508 bfd_set_cacheable (sym_bfd, 1);
10509
10510 if (!bfd_check_format (sym_bfd, bfd_object))
10511 {
cbb099e8 10512 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10513 return NULL;
10514 }
10515
13aaf454
DE
10516 /* Success. Record the bfd as having been included by the objfile's bfd.
10517 This is important because things like demangled_names_hash lives in the
10518 objfile's per_bfd space and may have references to things like symbol
10519 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10520 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10521
3019eac3
DE
10522 return sym_bfd;
10523}
10524
ab5088bf 10525/* Try to open DWO file FILE_NAME.
3019eac3
DE
10526 COMP_DIR is the DW_AT_comp_dir attribute.
10527 The result is the bfd handle of the file.
10528 If there is a problem finding or opening the file, return NULL.
10529 Upon success, the canonicalized path of the file is stored in the bfd,
10530 same as symfile_bfd_open. */
10531
10532static bfd *
ab5088bf 10533open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10534{
10535 bfd *abfd;
3019eac3 10536
80626a55 10537 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10538 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10539
10540 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10541
10542 if (comp_dir != NULL)
10543 {
b36cec19
PA
10544 char *path_to_try = concat (comp_dir, SLASH_STRING,
10545 file_name, (char *) NULL);
3019eac3
DE
10546
10547 /* NOTE: If comp_dir is a relative path, this will also try the
10548 search path, which seems useful. */
6ac97d4c 10549 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10550 xfree (path_to_try);
10551 if (abfd != NULL)
10552 return abfd;
10553 }
10554
10555 /* That didn't work, try debug-file-directory, which, despite its name,
10556 is a list of paths. */
10557
10558 if (*debug_file_directory == '\0')
10559 return NULL;
10560
6ac97d4c 10561 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10562}
10563
80626a55
DE
10564/* This function is mapped across the sections and remembers the offset and
10565 size of each of the DWO debugging sections we are interested in. */
10566
10567static void
10568dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10569{
9a3c8263 10570 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10571 const struct dwop_section_names *names = &dwop_section_names;
10572
10573 if (section_is_p (sectp->name, &names->abbrev_dwo))
10574 {
049412e3 10575 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10576 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->info_dwo))
10579 {
049412e3 10580 dwo_sections->info.s.section = sectp;
80626a55
DE
10581 dwo_sections->info.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->line_dwo))
10584 {
049412e3 10585 dwo_sections->line.s.section = sectp;
80626a55
DE
10586 dwo_sections->line.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->loc_dwo))
10589 {
049412e3 10590 dwo_sections->loc.s.section = sectp;
80626a55
DE
10591 dwo_sections->loc.size = bfd_get_section_size (sectp);
10592 }
10593 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10594 {
049412e3 10595 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10596 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10597 }
10598 else if (section_is_p (sectp->name, &names->macro_dwo))
10599 {
049412e3 10600 dwo_sections->macro.s.section = sectp;
80626a55
DE
10601 dwo_sections->macro.size = bfd_get_section_size (sectp);
10602 }
10603 else if (section_is_p (sectp->name, &names->str_dwo))
10604 {
049412e3 10605 dwo_sections->str.s.section = sectp;
80626a55
DE
10606 dwo_sections->str.size = bfd_get_section_size (sectp);
10607 }
10608 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10609 {
049412e3 10610 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10611 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10612 }
10613 else if (section_is_p (sectp->name, &names->types_dwo))
10614 {
10615 struct dwarf2_section_info type_section;
10616
10617 memset (&type_section, 0, sizeof (type_section));
049412e3 10618 type_section.s.section = sectp;
80626a55
DE
10619 type_section.size = bfd_get_section_size (sectp);
10620 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10621 &type_section);
10622 }
10623}
10624
ab5088bf 10625/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10626 by PER_CU. This is for the non-DWP case.
80626a55 10627 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10628
10629static struct dwo_file *
0ac5b59e
DE
10630open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10631 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10632{
10633 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10634 struct dwo_file *dwo_file;
10635 bfd *dbfd;
3019eac3
DE
10636 struct cleanup *cleanups;
10637
ab5088bf 10638 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10639 if (dbfd == NULL)
10640 {
b4f54984 10641 if (dwarf_read_debug)
80626a55
DE
10642 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10643 return NULL;
10644 }
10645 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10646 dwo_file->dwo_name = dwo_name;
10647 dwo_file->comp_dir = comp_dir;
80626a55 10648 dwo_file->dbfd = dbfd;
3019eac3
DE
10649
10650 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10651
80626a55 10652 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10653
19c3d4c9 10654 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10655
10656 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10657 dwo_file->sections.types);
10658
10659 discard_cleanups (cleanups);
10660
b4f54984 10661 if (dwarf_read_debug)
80626a55
DE
10662 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10663
3019eac3
DE
10664 return dwo_file;
10665}
10666
80626a55 10667/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10668 size of each of the DWP debugging sections common to version 1 and 2 that
10669 we are interested in. */
3019eac3 10670
80626a55 10671static void
73869dc2
DE
10672dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10673 void *dwp_file_ptr)
3019eac3 10674{
9a3c8263 10675 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10676 const struct dwop_section_names *names = &dwop_section_names;
10677 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10678
80626a55 10679 /* Record the ELF section number for later lookup: this is what the
73869dc2 10680 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10681 gdb_assert (elf_section_nr < dwp_file->num_sections);
10682 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10683
80626a55
DE
10684 /* Look for specific sections that we need. */
10685 if (section_is_p (sectp->name, &names->str_dwo))
10686 {
049412e3 10687 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10688 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10689 }
10690 else if (section_is_p (sectp->name, &names->cu_index))
10691 {
049412e3 10692 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10693 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10694 }
10695 else if (section_is_p (sectp->name, &names->tu_index))
10696 {
049412e3 10697 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10698 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10699 }
10700}
3019eac3 10701
73869dc2
DE
10702/* This function is mapped across the sections and remembers the offset and
10703 size of each of the DWP version 2 debugging sections that we are interested
10704 in. This is split into a separate function because we don't know if we
10705 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10706
10707static void
10708dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10709{
9a3c8263 10710 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10711 const struct dwop_section_names *names = &dwop_section_names;
10712 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10713
10714 /* Record the ELF section number for later lookup: this is what the
10715 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10716 gdb_assert (elf_section_nr < dwp_file->num_sections);
10717 dwp_file->elf_sections[elf_section_nr] = sectp;
10718
10719 /* Look for specific sections that we need. */
10720 if (section_is_p (sectp->name, &names->abbrev_dwo))
10721 {
049412e3 10722 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10723 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->info_dwo))
10726 {
049412e3 10727 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10728 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->line_dwo))
10731 {
049412e3 10732 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10733 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10734 }
10735 else if (section_is_p (sectp->name, &names->loc_dwo))
10736 {
049412e3 10737 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10738 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10739 }
10740 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10741 {
049412e3 10742 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10743 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10744 }
10745 else if (section_is_p (sectp->name, &names->macro_dwo))
10746 {
049412e3 10747 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10748 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10749 }
10750 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10751 {
049412e3 10752 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10753 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10754 }
10755 else if (section_is_p (sectp->name, &names->types_dwo))
10756 {
049412e3 10757 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10758 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10759 }
10760}
10761
80626a55 10762/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10763
80626a55
DE
10764static hashval_t
10765hash_dwp_loaded_cutus (const void *item)
10766{
9a3c8263 10767 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10768
80626a55
DE
10769 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10770 return dwo_unit->signature;
3019eac3
DE
10771}
10772
80626a55 10773/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10774
80626a55
DE
10775static int
10776eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10777{
9a3c8263
SM
10778 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10779 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10780
80626a55
DE
10781 return dua->signature == dub->signature;
10782}
3019eac3 10783
80626a55 10784/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10785
80626a55
DE
10786static htab_t
10787allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10788{
10789 return htab_create_alloc_ex (3,
10790 hash_dwp_loaded_cutus,
10791 eq_dwp_loaded_cutus,
10792 NULL,
10793 &objfile->objfile_obstack,
10794 hashtab_obstack_allocate,
10795 dummy_obstack_deallocate);
10796}
3019eac3 10797
ab5088bf
DE
10798/* Try to open DWP file FILE_NAME.
10799 The result is the bfd handle of the file.
10800 If there is a problem finding or opening the file, return NULL.
10801 Upon success, the canonicalized path of the file is stored in the bfd,
10802 same as symfile_bfd_open. */
10803
10804static bfd *
10805open_dwp_file (const char *file_name)
10806{
6ac97d4c
DE
10807 bfd *abfd;
10808
10809 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10810 if (abfd != NULL)
10811 return abfd;
10812
10813 /* Work around upstream bug 15652.
10814 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10815 [Whether that's a "bug" is debatable, but it is getting in our way.]
10816 We have no real idea where the dwp file is, because gdb's realpath-ing
10817 of the executable's path may have discarded the needed info.
10818 [IWBN if the dwp file name was recorded in the executable, akin to
10819 .gnu_debuglink, but that doesn't exist yet.]
10820 Strip the directory from FILE_NAME and search again. */
10821 if (*debug_file_directory != '\0')
10822 {
10823 /* Don't implicitly search the current directory here.
10824 If the user wants to search "." to handle this case,
10825 it must be added to debug-file-directory. */
10826 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10827 0 /*search_cwd*/);
10828 }
10829
10830 return NULL;
ab5088bf
DE
10831}
10832
80626a55
DE
10833/* Initialize the use of the DWP file for the current objfile.
10834 By convention the name of the DWP file is ${objfile}.dwp.
10835 The result is NULL if it can't be found. */
a766d390 10836
80626a55 10837static struct dwp_file *
ab5088bf 10838open_and_init_dwp_file (void)
80626a55
DE
10839{
10840 struct objfile *objfile = dwarf2_per_objfile->objfile;
10841 struct dwp_file *dwp_file;
10842 char *dwp_name;
10843 bfd *dbfd;
6c447423 10844 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10845
82bf32bc
JK
10846 /* Try to find first .dwp for the binary file before any symbolic links
10847 resolving. */
6c447423
DE
10848
10849 /* If the objfile is a debug file, find the name of the real binary
10850 file and get the name of dwp file from there. */
10851 if (objfile->separate_debug_objfile_backlink != NULL)
10852 {
10853 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10854 const char *backlink_basename = lbasename (backlink->original_name);
10855 char *debug_dirname = ldirname (objfile->original_name);
10856
10857 make_cleanup (xfree, debug_dirname);
10858 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10859 SLASH_STRING, backlink_basename);
10860 }
10861 else
10862 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10863 make_cleanup (xfree, dwp_name);
80626a55 10864
ab5088bf 10865 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10866 if (dbfd == NULL
10867 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10868 {
10869 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10870 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10871 make_cleanup (xfree, dwp_name);
10872 dbfd = open_dwp_file (dwp_name);
10873 }
10874
80626a55
DE
10875 if (dbfd == NULL)
10876 {
b4f54984 10877 if (dwarf_read_debug)
80626a55
DE
10878 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10879 do_cleanups (cleanups);
10880 return NULL;
3019eac3 10881 }
80626a55 10882 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10883 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10884 dwp_file->dbfd = dbfd;
10885 do_cleanups (cleanups);
c906108c 10886
80626a55
DE
10887 /* +1: section 0 is unused */
10888 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10889 dwp_file->elf_sections =
10890 OBSTACK_CALLOC (&objfile->objfile_obstack,
10891 dwp_file->num_sections, asection *);
10892
73869dc2 10893 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10894
10895 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10896
10897 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10898
73869dc2
DE
10899 /* The DWP file version is stored in the hash table. Oh well. */
10900 if (dwp_file->cus->version != dwp_file->tus->version)
10901 {
10902 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10903 pretty bizarre. We use pulongest here because that's the established
4d65956b 10904 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10905 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10906 " TU version %s [in DWP file %s]"),
10907 pulongest (dwp_file->cus->version),
10908 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10909 }
10910 dwp_file->version = dwp_file->cus->version;
10911
10912 if (dwp_file->version == 2)
10913 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10914
19ac8c2e
DE
10915 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10916 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10917
b4f54984 10918 if (dwarf_read_debug)
80626a55
DE
10919 {
10920 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10921 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10922 " %s CUs, %s TUs\n",
10923 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10924 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10925 }
10926
10927 return dwp_file;
3019eac3 10928}
c906108c 10929
ab5088bf
DE
10930/* Wrapper around open_and_init_dwp_file, only open it once. */
10931
10932static struct dwp_file *
10933get_dwp_file (void)
10934{
10935 if (! dwarf2_per_objfile->dwp_checked)
10936 {
10937 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10938 dwarf2_per_objfile->dwp_checked = 1;
10939 }
10940 return dwarf2_per_objfile->dwp_file;
10941}
10942
80626a55
DE
10943/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10944 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10945 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10946 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10947 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10948
10949 This is called, for example, when wanting to read a variable with a
10950 complex location. Therefore we don't want to do file i/o for every call.
10951 Therefore we don't want to look for a DWO file on every call.
10952 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10953 then we check if we've already seen DWO_NAME, and only THEN do we check
10954 for a DWO file.
10955
1c658ad5 10956 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10957 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10958
3019eac3 10959static struct dwo_unit *
80626a55
DE
10960lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10961 const char *dwo_name, const char *comp_dir,
10962 ULONGEST signature, int is_debug_types)
3019eac3
DE
10963{
10964 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10965 const char *kind = is_debug_types ? "TU" : "CU";
10966 void **dwo_file_slot;
3019eac3 10967 struct dwo_file *dwo_file;
80626a55 10968 struct dwp_file *dwp_file;
cb1df416 10969
6a506a2d
DE
10970 /* First see if there's a DWP file.
10971 If we have a DWP file but didn't find the DWO inside it, don't
10972 look for the original DWO file. It makes gdb behave differently
10973 depending on whether one is debugging in the build tree. */
cf2c3c16 10974
ab5088bf 10975 dwp_file = get_dwp_file ();
80626a55 10976 if (dwp_file != NULL)
cf2c3c16 10977 {
80626a55
DE
10978 const struct dwp_hash_table *dwp_htab =
10979 is_debug_types ? dwp_file->tus : dwp_file->cus;
10980
10981 if (dwp_htab != NULL)
10982 {
10983 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10984 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10985 signature, is_debug_types);
80626a55
DE
10986
10987 if (dwo_cutu != NULL)
10988 {
b4f54984 10989 if (dwarf_read_debug)
80626a55
DE
10990 {
10991 fprintf_unfiltered (gdb_stdlog,
10992 "Virtual DWO %s %s found: @%s\n",
10993 kind, hex_string (signature),
10994 host_address_to_string (dwo_cutu));
10995 }
10996 return dwo_cutu;
10997 }
10998 }
10999 }
6a506a2d 11000 else
80626a55 11001 {
6a506a2d 11002 /* No DWP file, look for the DWO file. */
80626a55 11003
6a506a2d
DE
11004 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11005 if (*dwo_file_slot == NULL)
80626a55 11006 {
6a506a2d
DE
11007 /* Read in the file and build a table of the CUs/TUs it contains. */
11008 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11009 }
6a506a2d 11010 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11011 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11012
6a506a2d 11013 if (dwo_file != NULL)
19c3d4c9 11014 {
6a506a2d
DE
11015 struct dwo_unit *dwo_cutu = NULL;
11016
11017 if (is_debug_types && dwo_file->tus)
11018 {
11019 struct dwo_unit find_dwo_cutu;
11020
11021 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11022 find_dwo_cutu.signature = signature;
9a3c8263
SM
11023 dwo_cutu
11024 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11025 }
11026 else if (!is_debug_types && dwo_file->cu)
80626a55 11027 {
6a506a2d
DE
11028 if (signature == dwo_file->cu->signature)
11029 dwo_cutu = dwo_file->cu;
11030 }
11031
11032 if (dwo_cutu != NULL)
11033 {
b4f54984 11034 if (dwarf_read_debug)
6a506a2d
DE
11035 {
11036 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11037 kind, dwo_name, hex_string (signature),
11038 host_address_to_string (dwo_cutu));
11039 }
11040 return dwo_cutu;
80626a55
DE
11041 }
11042 }
2e276125 11043 }
9cdd5dbd 11044
80626a55
DE
11045 /* We didn't find it. This could mean a dwo_id mismatch, or
11046 someone deleted the DWO/DWP file, or the search path isn't set up
11047 correctly to find the file. */
11048
b4f54984 11049 if (dwarf_read_debug)
80626a55
DE
11050 {
11051 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11052 kind, dwo_name, hex_string (signature));
11053 }
3019eac3 11054
6656a72d
DE
11055 /* This is a warning and not a complaint because it can be caused by
11056 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11057 {
11058 /* Print the name of the DWP file if we looked there, helps the user
11059 better diagnose the problem. */
11060 char *dwp_text = NULL;
11061 struct cleanup *cleanups;
11062
11063 if (dwp_file != NULL)
11064 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11065 cleanups = make_cleanup (xfree, dwp_text);
11066
11067 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11068 " [in module %s]"),
11069 kind, dwo_name, hex_string (signature),
11070 dwp_text != NULL ? dwp_text : "",
11071 this_unit->is_debug_types ? "TU" : "CU",
11072 this_unit->offset.sect_off, objfile_name (objfile));
11073
11074 do_cleanups (cleanups);
11075 }
3019eac3 11076 return NULL;
5fb290d7
DJ
11077}
11078
80626a55
DE
11079/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082static struct dwo_unit *
11083lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11084 const char *dwo_name, const char *comp_dir,
11085 ULONGEST signature)
11086{
11087 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11088}
11089
11090/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11091 See lookup_dwo_cutu_unit for details. */
11092
11093static struct dwo_unit *
11094lookup_dwo_type_unit (struct signatured_type *this_tu,
11095 const char *dwo_name, const char *comp_dir)
11096{
11097 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11098}
11099
89e63ee4
DE
11100/* Traversal function for queue_and_load_all_dwo_tus. */
11101
11102static int
11103queue_and_load_dwo_tu (void **slot, void *info)
11104{
11105 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11106 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11107 ULONGEST signature = dwo_unit->signature;
11108 struct signatured_type *sig_type =
11109 lookup_dwo_signatured_type (per_cu->cu, signature);
11110
11111 if (sig_type != NULL)
11112 {
11113 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11114
11115 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11116 a real dependency of PER_CU on SIG_TYPE. That is detected later
11117 while processing PER_CU. */
11118 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11119 load_full_type_unit (sig_cu);
11120 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11121 }
11122
11123 return 1;
11124}
11125
11126/* Queue all TUs contained in the DWO of PER_CU to be read in.
11127 The DWO may have the only definition of the type, though it may not be
11128 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11129 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11130
11131static void
11132queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11133{
11134 struct dwo_unit *dwo_unit;
11135 struct dwo_file *dwo_file;
11136
11137 gdb_assert (!per_cu->is_debug_types);
11138 gdb_assert (get_dwp_file () == NULL);
11139 gdb_assert (per_cu->cu != NULL);
11140
11141 dwo_unit = per_cu->cu->dwo_unit;
11142 gdb_assert (dwo_unit != NULL);
11143
11144 dwo_file = dwo_unit->dwo_file;
11145 if (dwo_file->tus != NULL)
11146 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11147}
11148
3019eac3
DE
11149/* Free all resources associated with DWO_FILE.
11150 Close the DWO file and munmap the sections.
11151 All memory should be on the objfile obstack. */
348e048f
DE
11152
11153static void
3019eac3 11154free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11155{
348e048f 11156
5c6fa7ab 11157 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11158 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11159
3019eac3
DE
11160 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11161}
348e048f 11162
3019eac3 11163/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11164
3019eac3
DE
11165static void
11166free_dwo_file_cleanup (void *arg)
11167{
11168 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11169 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11170
3019eac3
DE
11171 free_dwo_file (dwo_file, objfile);
11172}
348e048f 11173
3019eac3 11174/* Traversal function for free_dwo_files. */
2ab95328 11175
3019eac3
DE
11176static int
11177free_dwo_file_from_slot (void **slot, void *info)
11178{
11179 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11180 struct objfile *objfile = (struct objfile *) info;
348e048f 11181
3019eac3 11182 free_dwo_file (dwo_file, objfile);
348e048f 11183
3019eac3
DE
11184 return 1;
11185}
348e048f 11186
3019eac3 11187/* Free all resources associated with DWO_FILES. */
348e048f 11188
3019eac3
DE
11189static void
11190free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11191{
11192 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11193}
3019eac3
DE
11194\f
11195/* Read in various DIEs. */
348e048f 11196
d389af10
JK
11197/* qsort helper for inherit_abstract_dies. */
11198
11199static int
11200unsigned_int_compar (const void *ap, const void *bp)
11201{
11202 unsigned int a = *(unsigned int *) ap;
11203 unsigned int b = *(unsigned int *) bp;
11204
11205 return (a > b) - (b > a);
11206}
11207
11208/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11209 Inherit only the children of the DW_AT_abstract_origin DIE not being
11210 already referenced by DW_AT_abstract_origin from the children of the
11211 current DIE. */
d389af10
JK
11212
11213static void
11214inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11215{
11216 struct die_info *child_die;
11217 unsigned die_children_count;
11218 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11219 sect_offset *offsets;
11220 sect_offset *offsets_end, *offsetp;
d389af10
JK
11221 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11222 struct die_info *origin_die;
11223 /* Iterator of the ORIGIN_DIE children. */
11224 struct die_info *origin_child_die;
11225 struct cleanup *cleanups;
11226 struct attribute *attr;
cd02d79d
PA
11227 struct dwarf2_cu *origin_cu;
11228 struct pending **origin_previous_list_in_scope;
d389af10
JK
11229
11230 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11231 if (!attr)
11232 return;
11233
cd02d79d
PA
11234 /* Note that following die references may follow to a die in a
11235 different cu. */
11236
11237 origin_cu = cu;
11238 origin_die = follow_die_ref (die, attr, &origin_cu);
11239
11240 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11241 symbols in. */
11242 origin_previous_list_in_scope = origin_cu->list_in_scope;
11243 origin_cu->list_in_scope = cu->list_in_scope;
11244
edb3359d
DJ
11245 if (die->tag != origin_die->tag
11246 && !(die->tag == DW_TAG_inlined_subroutine
11247 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11248 complaint (&symfile_complaints,
11249 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11250 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11251
11252 child_die = die->child;
11253 die_children_count = 0;
11254 while (child_die && child_die->tag)
11255 {
11256 child_die = sibling_die (child_die);
11257 die_children_count++;
11258 }
8d749320 11259 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11260 cleanups = make_cleanup (xfree, offsets);
11261
11262 offsets_end = offsets;
3ea89b92
PMR
11263 for (child_die = die->child;
11264 child_die && child_die->tag;
11265 child_die = sibling_die (child_die))
11266 {
11267 struct die_info *child_origin_die;
11268 struct dwarf2_cu *child_origin_cu;
11269
11270 /* We are trying to process concrete instance entries:
11271 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11272 it's not relevant to our analysis here. i.e. detecting DIEs that are
11273 present in the abstract instance but not referenced in the concrete
11274 one. */
11275 if (child_die->tag == DW_TAG_GNU_call_site)
11276 continue;
11277
c38f313d
DJ
11278 /* For each CHILD_DIE, find the corresponding child of
11279 ORIGIN_DIE. If there is more than one layer of
11280 DW_AT_abstract_origin, follow them all; there shouldn't be,
11281 but GCC versions at least through 4.4 generate this (GCC PR
11282 40573). */
3ea89b92
PMR
11283 child_origin_die = child_die;
11284 child_origin_cu = cu;
c38f313d
DJ
11285 while (1)
11286 {
cd02d79d
PA
11287 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11288 child_origin_cu);
c38f313d
DJ
11289 if (attr == NULL)
11290 break;
cd02d79d
PA
11291 child_origin_die = follow_die_ref (child_origin_die, attr,
11292 &child_origin_cu);
c38f313d
DJ
11293 }
11294
d389af10
JK
11295 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11296 counterpart may exist. */
c38f313d 11297 if (child_origin_die != child_die)
d389af10 11298 {
edb3359d
DJ
11299 if (child_die->tag != child_origin_die->tag
11300 && !(child_die->tag == DW_TAG_inlined_subroutine
11301 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11302 complaint (&symfile_complaints,
11303 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11304 "different tags"), child_die->offset.sect_off,
11305 child_origin_die->offset.sect_off);
c38f313d
DJ
11306 if (child_origin_die->parent != origin_die)
11307 complaint (&symfile_complaints,
11308 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11309 "different parents"), child_die->offset.sect_off,
11310 child_origin_die->offset.sect_off);
c38f313d
DJ
11311 else
11312 *offsets_end++ = child_origin_die->offset;
d389af10 11313 }
d389af10
JK
11314 }
11315 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11316 unsigned_int_compar);
11317 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11318 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11319 complaint (&symfile_complaints,
11320 _("Multiple children of DIE 0x%x refer "
11321 "to DIE 0x%x as their abstract origin"),
b64f50a1 11322 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11323
11324 offsetp = offsets;
11325 origin_child_die = origin_die->child;
11326 while (origin_child_die && origin_child_die->tag)
11327 {
11328 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11329 while (offsetp < offsets_end
11330 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11331 offsetp++;
b64f50a1
JK
11332 if (offsetp >= offsets_end
11333 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11334 {
adde2bff
DE
11335 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11336 Check whether we're already processing ORIGIN_CHILD_DIE.
11337 This can happen with mutually referenced abstract_origins.
11338 PR 16581. */
11339 if (!origin_child_die->in_process)
11340 process_die (origin_child_die, origin_cu);
d389af10
JK
11341 }
11342 origin_child_die = sibling_die (origin_child_die);
11343 }
cd02d79d 11344 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11345
11346 do_cleanups (cleanups);
11347}
11348
c906108c 11349static void
e7c27a73 11350read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11351{
e7c27a73 11352 struct objfile *objfile = cu->objfile;
3e29f34a 11353 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11354 struct context_stack *newobj;
c906108c
SS
11355 CORE_ADDR lowpc;
11356 CORE_ADDR highpc;
11357 struct die_info *child_die;
edb3359d 11358 struct attribute *attr, *call_line, *call_file;
15d034d0 11359 const char *name;
e142c38c 11360 CORE_ADDR baseaddr;
801e3a5b 11361 struct block *block;
edb3359d 11362 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11363 VEC (symbolp) *template_args = NULL;
11364 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11365
11366 if (inlined_func)
11367 {
11368 /* If we do not have call site information, we can't show the
11369 caller of this inlined function. That's too confusing, so
11370 only use the scope for local variables. */
11371 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11372 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11373 if (call_line == NULL || call_file == NULL)
11374 {
11375 read_lexical_block_scope (die, cu);
11376 return;
11377 }
11378 }
c906108c 11379
e142c38c
DJ
11380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11381
94af9270 11382 name = dwarf2_name (die, cu);
c906108c 11383
e8d05480
JB
11384 /* Ignore functions with missing or empty names. These are actually
11385 illegal according to the DWARF standard. */
11386 if (name == NULL)
11387 {
11388 complaint (&symfile_complaints,
b64f50a1
JK
11389 _("missing name for subprogram DIE at %d"),
11390 die->offset.sect_off);
e8d05480
JB
11391 return;
11392 }
11393
11394 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11395 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11396 <= PC_BOUNDS_INVALID)
e8d05480 11397 {
ae4d0c03
PM
11398 attr = dwarf2_attr (die, DW_AT_external, cu);
11399 if (!attr || !DW_UNSND (attr))
11400 complaint (&symfile_complaints,
3e43a32a
MS
11401 _("cannot get low and high bounds "
11402 "for subprogram DIE at %d"),
b64f50a1 11403 die->offset.sect_off);
e8d05480
JB
11404 return;
11405 }
c906108c 11406
3e29f34a
MR
11407 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11408 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11409
34eaf542
TT
11410 /* If we have any template arguments, then we must allocate a
11411 different sort of symbol. */
11412 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11413 {
11414 if (child_die->tag == DW_TAG_template_type_param
11415 || child_die->tag == DW_TAG_template_value_param)
11416 {
e623cf5d 11417 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11418 templ_func->base.is_cplus_template_function = 1;
11419 break;
11420 }
11421 }
11422
fe978cb0
PA
11423 newobj = push_context (0, lowpc);
11424 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11425 (struct symbol *) templ_func);
4c2df51b 11426
4cecd739
DJ
11427 /* If there is a location expression for DW_AT_frame_base, record
11428 it. */
e142c38c 11429 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11430 if (attr)
fe978cb0 11431 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11432
63e43d3a
PMR
11433 /* If there is a location for the static link, record it. */
11434 newobj->static_link = NULL;
11435 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11436 if (attr)
11437 {
224c3ddb
SM
11438 newobj->static_link
11439 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11440 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11441 }
11442
e142c38c 11443 cu->list_in_scope = &local_symbols;
c906108c 11444
639d11d3 11445 if (die->child != NULL)
c906108c 11446 {
639d11d3 11447 child_die = die->child;
c906108c
SS
11448 while (child_die && child_die->tag)
11449 {
34eaf542
TT
11450 if (child_die->tag == DW_TAG_template_type_param
11451 || child_die->tag == DW_TAG_template_value_param)
11452 {
11453 struct symbol *arg = new_symbol (child_die, NULL, cu);
11454
f1078f66
DJ
11455 if (arg != NULL)
11456 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11457 }
11458 else
11459 process_die (child_die, cu);
c906108c
SS
11460 child_die = sibling_die (child_die);
11461 }
11462 }
11463
d389af10
JK
11464 inherit_abstract_dies (die, cu);
11465
4a811a97
UW
11466 /* If we have a DW_AT_specification, we might need to import using
11467 directives from the context of the specification DIE. See the
11468 comment in determine_prefix. */
11469 if (cu->language == language_cplus
11470 && dwarf2_attr (die, DW_AT_specification, cu))
11471 {
11472 struct dwarf2_cu *spec_cu = cu;
11473 struct die_info *spec_die = die_specification (die, &spec_cu);
11474
11475 while (spec_die)
11476 {
11477 child_die = spec_die->child;
11478 while (child_die && child_die->tag)
11479 {
11480 if (child_die->tag == DW_TAG_imported_module)
11481 process_die (child_die, spec_cu);
11482 child_die = sibling_die (child_die);
11483 }
11484
11485 /* In some cases, GCC generates specification DIEs that
11486 themselves contain DW_AT_specification attributes. */
11487 spec_die = die_specification (spec_die, &spec_cu);
11488 }
11489 }
11490
fe978cb0 11491 newobj = pop_context ();
c906108c 11492 /* Make a block for the local symbols within. */
fe978cb0 11493 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11494 newobj->static_link, lowpc, highpc);
801e3a5b 11495
df8a16a1 11496 /* For C++, set the block's scope. */
45280282
IB
11497 if ((cu->language == language_cplus
11498 || cu->language == language_fortran
c44af4eb
TT
11499 || cu->language == language_d
11500 || cu->language == language_rust)
4d4ec4e5 11501 && cu->processing_has_namespace_info)
195a3f6c
TT
11502 block_set_scope (block, determine_prefix (die, cu),
11503 &objfile->objfile_obstack);
df8a16a1 11504
801e3a5b
JB
11505 /* If we have address ranges, record them. */
11506 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11507
fe978cb0 11508 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11509
34eaf542
TT
11510 /* Attach template arguments to function. */
11511 if (! VEC_empty (symbolp, template_args))
11512 {
11513 gdb_assert (templ_func != NULL);
11514
11515 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11516 templ_func->template_arguments
8d749320
SM
11517 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11518 templ_func->n_template_arguments);
34eaf542
TT
11519 memcpy (templ_func->template_arguments,
11520 VEC_address (symbolp, template_args),
11521 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11522 VEC_free (symbolp, template_args);
11523 }
11524
208d8187
JB
11525 /* In C++, we can have functions nested inside functions (e.g., when
11526 a function declares a class that has methods). This means that
11527 when we finish processing a function scope, we may need to go
11528 back to building a containing block's symbol lists. */
fe978cb0 11529 local_symbols = newobj->locals;
22cee43f 11530 local_using_directives = newobj->local_using_directives;
208d8187 11531
921e78cf
JB
11532 /* If we've finished processing a top-level function, subsequent
11533 symbols go in the file symbol list. */
11534 if (outermost_context_p ())
e142c38c 11535 cu->list_in_scope = &file_symbols;
c906108c
SS
11536}
11537
11538/* Process all the DIES contained within a lexical block scope. Start
11539 a new scope, process the dies, and then close the scope. */
11540
11541static void
e7c27a73 11542read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11543{
e7c27a73 11544 struct objfile *objfile = cu->objfile;
3e29f34a 11545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11546 struct context_stack *newobj;
c906108c
SS
11547 CORE_ADDR lowpc, highpc;
11548 struct die_info *child_die;
e142c38c
DJ
11549 CORE_ADDR baseaddr;
11550
11551 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11552
11553 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11554 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11555 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11556 be nasty. Might be easier to properly extend generic blocks to
af34e669 11557 describe ranges. */
e385593e
JK
11558 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11559 {
11560 case PC_BOUNDS_NOT_PRESENT:
11561 /* DW_TAG_lexical_block has no attributes, process its children as if
11562 there was no wrapping by that DW_TAG_lexical_block.
11563 GCC does no longer produces such DWARF since GCC r224161. */
11564 for (child_die = die->child;
11565 child_die != NULL && child_die->tag;
11566 child_die = sibling_die (child_die))
11567 process_die (child_die, cu);
11568 return;
11569 case PC_BOUNDS_INVALID:
11570 return;
11571 }
3e29f34a
MR
11572 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11573 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11574
11575 push_context (0, lowpc);
639d11d3 11576 if (die->child != NULL)
c906108c 11577 {
639d11d3 11578 child_die = die->child;
c906108c
SS
11579 while (child_die && child_die->tag)
11580 {
e7c27a73 11581 process_die (child_die, cu);
c906108c
SS
11582 child_die = sibling_die (child_die);
11583 }
11584 }
3ea89b92 11585 inherit_abstract_dies (die, cu);
fe978cb0 11586 newobj = pop_context ();
c906108c 11587
22cee43f 11588 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11589 {
801e3a5b 11590 struct block *block
63e43d3a 11591 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11592 newobj->start_addr, highpc);
801e3a5b
JB
11593
11594 /* Note that recording ranges after traversing children, as we
11595 do here, means that recording a parent's ranges entails
11596 walking across all its children's ranges as they appear in
11597 the address map, which is quadratic behavior.
11598
11599 It would be nicer to record the parent's ranges before
11600 traversing its children, simply overriding whatever you find
11601 there. But since we don't even decide whether to create a
11602 block until after we've traversed its children, that's hard
11603 to do. */
11604 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11605 }
fe978cb0 11606 local_symbols = newobj->locals;
22cee43f 11607 local_using_directives = newobj->local_using_directives;
c906108c
SS
11608}
11609
96408a79
SA
11610/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11611
11612static void
11613read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11614{
11615 struct objfile *objfile = cu->objfile;
11616 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11617 CORE_ADDR pc, baseaddr;
11618 struct attribute *attr;
11619 struct call_site *call_site, call_site_local;
11620 void **slot;
11621 int nparams;
11622 struct die_info *child_die;
11623
11624 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11625
11626 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11627 if (!attr)
11628 {
11629 complaint (&symfile_complaints,
11630 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11631 "DIE 0x%x [in module %s]"),
4262abfb 11632 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11633 return;
11634 }
31aa7e4e 11635 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11636 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11637
11638 if (cu->call_site_htab == NULL)
11639 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11640 NULL, &objfile->objfile_obstack,
11641 hashtab_obstack_allocate, NULL);
11642 call_site_local.pc = pc;
11643 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11644 if (*slot != NULL)
11645 {
11646 complaint (&symfile_complaints,
11647 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11648 "DIE 0x%x [in module %s]"),
4262abfb
JK
11649 paddress (gdbarch, pc), die->offset.sect_off,
11650 objfile_name (objfile));
96408a79
SA
11651 return;
11652 }
11653
11654 /* Count parameters at the caller. */
11655
11656 nparams = 0;
11657 for (child_die = die->child; child_die && child_die->tag;
11658 child_die = sibling_die (child_die))
11659 {
11660 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11661 {
11662 complaint (&symfile_complaints,
11663 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11664 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11665 child_die->tag, child_die->offset.sect_off,
11666 objfile_name (objfile));
96408a79
SA
11667 continue;
11668 }
11669
11670 nparams++;
11671 }
11672
224c3ddb
SM
11673 call_site
11674 = ((struct call_site *)
11675 obstack_alloc (&objfile->objfile_obstack,
11676 sizeof (*call_site)
11677 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11678 *slot = call_site;
11679 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11680 call_site->pc = pc;
11681
11682 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11683 {
11684 struct die_info *func_die;
11685
11686 /* Skip also over DW_TAG_inlined_subroutine. */
11687 for (func_die = die->parent;
11688 func_die && func_die->tag != DW_TAG_subprogram
11689 && func_die->tag != DW_TAG_subroutine_type;
11690 func_die = func_die->parent);
11691
11692 /* DW_AT_GNU_all_call_sites is a superset
11693 of DW_AT_GNU_all_tail_call_sites. */
11694 if (func_die
11695 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11696 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11697 {
11698 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11699 not complete. But keep CALL_SITE for look ups via call_site_htab,
11700 both the initial caller containing the real return address PC and
11701 the final callee containing the current PC of a chain of tail
11702 calls do not need to have the tail call list complete. But any
11703 function candidate for a virtual tail call frame searched via
11704 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11705 determined unambiguously. */
11706 }
11707 else
11708 {
11709 struct type *func_type = NULL;
11710
11711 if (func_die)
11712 func_type = get_die_type (func_die, cu);
11713 if (func_type != NULL)
11714 {
11715 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11716
11717 /* Enlist this call site to the function. */
11718 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11719 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11720 }
11721 else
11722 complaint (&symfile_complaints,
11723 _("Cannot find function owning DW_TAG_GNU_call_site "
11724 "DIE 0x%x [in module %s]"),
4262abfb 11725 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11726 }
11727 }
11728
11729 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11730 if (attr == NULL)
11731 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11732 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11733 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11734 /* Keep NULL DWARF_BLOCK. */;
11735 else if (attr_form_is_block (attr))
11736 {
11737 struct dwarf2_locexpr_baton *dlbaton;
11738
8d749320 11739 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11740 dlbaton->data = DW_BLOCK (attr)->data;
11741 dlbaton->size = DW_BLOCK (attr)->size;
11742 dlbaton->per_cu = cu->per_cu;
11743
11744 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11745 }
7771576e 11746 else if (attr_form_is_ref (attr))
96408a79 11747 {
96408a79
SA
11748 struct dwarf2_cu *target_cu = cu;
11749 struct die_info *target_die;
11750
ac9ec31b 11751 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11752 gdb_assert (target_cu->objfile == objfile);
11753 if (die_is_declaration (target_die, target_cu))
11754 {
7d45c7c3 11755 const char *target_physname;
9112db09
JK
11756
11757 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11758 target_physname = dwarf2_string_attr (target_die,
11759 DW_AT_linkage_name,
11760 target_cu);
11761 if (target_physname == NULL)
11762 target_physname = dwarf2_string_attr (target_die,
11763 DW_AT_MIPS_linkage_name,
11764 target_cu);
11765 if (target_physname == NULL)
9112db09 11766 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11767 if (target_physname == NULL)
11768 complaint (&symfile_complaints,
11769 _("DW_AT_GNU_call_site_target target DIE has invalid "
11770 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11771 die->offset.sect_off, objfile_name (objfile));
96408a79 11772 else
7d455152 11773 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11774 }
11775 else
11776 {
11777 CORE_ADDR lowpc;
11778
11779 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11780 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11781 <= PC_BOUNDS_INVALID)
96408a79
SA
11782 complaint (&symfile_complaints,
11783 _("DW_AT_GNU_call_site_target target DIE has invalid "
11784 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11785 die->offset.sect_off, objfile_name (objfile));
96408a79 11786 else
3e29f34a
MR
11787 {
11788 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11789 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11790 }
96408a79
SA
11791 }
11792 }
11793 else
11794 complaint (&symfile_complaints,
11795 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11796 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11797 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11798
11799 call_site->per_cu = cu->per_cu;
11800
11801 for (child_die = die->child;
11802 child_die && child_die->tag;
11803 child_die = sibling_die (child_die))
11804 {
96408a79 11805 struct call_site_parameter *parameter;
1788b2d3 11806 struct attribute *loc, *origin;
96408a79
SA
11807
11808 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11809 {
11810 /* Already printed the complaint above. */
11811 continue;
11812 }
11813
11814 gdb_assert (call_site->parameter_count < nparams);
11815 parameter = &call_site->parameter[call_site->parameter_count];
11816
1788b2d3
JK
11817 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11818 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11819 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11820
24c5c679 11821 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11822 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11823 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11824 {
11825 sect_offset offset;
11826
11827 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11828 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11829 if (!offset_in_cu_p (&cu->header, offset))
11830 {
11831 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11832 binding can be done only inside one CU. Such referenced DIE
11833 therefore cannot be even moved to DW_TAG_partial_unit. */
11834 complaint (&symfile_complaints,
11835 _("DW_AT_abstract_origin offset is not in CU for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11837 "[in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11839 continue;
11840 }
1788b2d3
JK
11841 parameter->u.param_offset.cu_off = (offset.sect_off
11842 - cu->header.offset.sect_off);
11843 }
11844 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11845 {
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_location for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11849 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11850 continue;
11851 }
24c5c679 11852 else
96408a79 11853 {
24c5c679
JK
11854 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11855 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11856 if (parameter->u.dwarf_reg != -1)
11857 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11858 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11859 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11860 &parameter->u.fb_offset))
11861 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11862 else
11863 {
11864 complaint (&symfile_complaints,
11865 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11866 "for DW_FORM_block* DW_AT_location is supported for "
11867 "DW_TAG_GNU_call_site child DIE 0x%x "
11868 "[in module %s]"),
4262abfb 11869 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11870 continue;
11871 }
96408a79
SA
11872 }
11873
11874 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11875 if (!attr_form_is_block (attr))
11876 {
11877 complaint (&symfile_complaints,
11878 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11879 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11880 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11881 continue;
11882 }
11883 parameter->value = DW_BLOCK (attr)->data;
11884 parameter->value_size = DW_BLOCK (attr)->size;
11885
11886 /* Parameters are not pre-cleared by memset above. */
11887 parameter->data_value = NULL;
11888 parameter->data_value_size = 0;
11889 call_site->parameter_count++;
11890
11891 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11892 if (attr)
11893 {
11894 if (!attr_form_is_block (attr))
11895 complaint (&symfile_complaints,
11896 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11897 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11898 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11899 else
11900 {
11901 parameter->data_value = DW_BLOCK (attr)->data;
11902 parameter->data_value_size = DW_BLOCK (attr)->size;
11903 }
11904 }
11905 }
11906}
11907
43039443 11908/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11909 Return 1 if the attributes are present and valid, otherwise, return 0.
11910 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11911
11912static int
11913dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11914 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11915 struct partial_symtab *ranges_pst)
43039443
JK
11916{
11917 struct objfile *objfile = cu->objfile;
3e29f34a 11918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11919 struct comp_unit_head *cu_header = &cu->header;
11920 bfd *obfd = objfile->obfd;
11921 unsigned int addr_size = cu_header->addr_size;
11922 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11923 /* Base address selection entry. */
11924 CORE_ADDR base;
11925 int found_base;
11926 unsigned int dummy;
d521ce57 11927 const gdb_byte *buffer;
43039443
JK
11928 int low_set;
11929 CORE_ADDR low = 0;
11930 CORE_ADDR high = 0;
ff013f42 11931 CORE_ADDR baseaddr;
43039443 11932
d00adf39
DE
11933 found_base = cu->base_known;
11934 base = cu->base_address;
43039443 11935
be391dca 11936 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11937 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11938 {
11939 complaint (&symfile_complaints,
11940 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11941 offset);
11942 return 0;
11943 }
dce234bc 11944 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11945
43039443
JK
11946 low_set = 0;
11947
e7030f15 11948 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11949
43039443
JK
11950 while (1)
11951 {
11952 CORE_ADDR range_beginning, range_end;
11953
11954 range_beginning = read_address (obfd, buffer, cu, &dummy);
11955 buffer += addr_size;
11956 range_end = read_address (obfd, buffer, cu, &dummy);
11957 buffer += addr_size;
11958 offset += 2 * addr_size;
11959
11960 /* An end of list marker is a pair of zero addresses. */
11961 if (range_beginning == 0 && range_end == 0)
11962 /* Found the end of list entry. */
11963 break;
11964
11965 /* Each base address selection entry is a pair of 2 values.
11966 The first is the largest possible address, the second is
11967 the base address. Check for a base address here. */
11968 if ((range_beginning & mask) == mask)
11969 {
28d2bfb9
AB
11970 /* If we found the largest possible address, then we already
11971 have the base address in range_end. */
11972 base = range_end;
43039443
JK
11973 found_base = 1;
11974 continue;
11975 }
11976
11977 if (!found_base)
11978 {
11979 /* We have no valid base address for the ranges
11980 data. */
11981 complaint (&symfile_complaints,
11982 _("Invalid .debug_ranges data (no base address)"));
11983 return 0;
11984 }
11985
9277c30c
UW
11986 if (range_beginning > range_end)
11987 {
11988 /* Inverted range entries are invalid. */
11989 complaint (&symfile_complaints,
11990 _("Invalid .debug_ranges data (inverted range)"));
11991 return 0;
11992 }
11993
11994 /* Empty range entries have no effect. */
11995 if (range_beginning == range_end)
11996 continue;
11997
43039443
JK
11998 range_beginning += base;
11999 range_end += base;
12000
01093045
DE
12001 /* A not-uncommon case of bad debug info.
12002 Don't pollute the addrmap with bad data. */
12003 if (range_beginning + baseaddr == 0
12004 && !dwarf2_per_objfile->has_section_at_zero)
12005 {
12006 complaint (&symfile_complaints,
12007 _(".debug_ranges entry has start address of zero"
4262abfb 12008 " [in module %s]"), objfile_name (objfile));
01093045
DE
12009 continue;
12010 }
12011
9277c30c 12012 if (ranges_pst != NULL)
3e29f34a
MR
12013 {
12014 CORE_ADDR lowpc;
12015 CORE_ADDR highpc;
12016
12017 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12018 range_beginning + baseaddr);
12019 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12020 range_end + baseaddr);
12021 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12022 ranges_pst);
12023 }
ff013f42 12024
43039443
JK
12025 /* FIXME: This is recording everything as a low-high
12026 segment of consecutive addresses. We should have a
12027 data structure for discontiguous block ranges
12028 instead. */
12029 if (! low_set)
12030 {
12031 low = range_beginning;
12032 high = range_end;
12033 low_set = 1;
12034 }
12035 else
12036 {
12037 if (range_beginning < low)
12038 low = range_beginning;
12039 if (range_end > high)
12040 high = range_end;
12041 }
12042 }
12043
12044 if (! low_set)
12045 /* If the first entry is an end-of-list marker, the range
12046 describes an empty scope, i.e. no instructions. */
12047 return 0;
12048
12049 if (low_return)
12050 *low_return = low;
12051 if (high_return)
12052 *high_return = high;
12053 return 1;
12054}
12055
3a2b436a
JK
12056/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12057 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12058 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12059
3a2b436a 12060static enum pc_bounds_kind
af34e669 12061dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12062 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12063 struct partial_symtab *pst)
c906108c
SS
12064{
12065 struct attribute *attr;
91da1414 12066 struct attribute *attr_high;
af34e669
DJ
12067 CORE_ADDR low = 0;
12068 CORE_ADDR high = 0;
e385593e 12069 enum pc_bounds_kind ret;
c906108c 12070
91da1414
MW
12071 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12072 if (attr_high)
af34e669 12073 {
e142c38c 12074 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12075 if (attr)
91da1414 12076 {
31aa7e4e
JB
12077 low = attr_value_as_address (attr);
12078 high = attr_value_as_address (attr_high);
12079 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12080 high += low;
91da1414 12081 }
af34e669
DJ
12082 else
12083 /* Found high w/o low attribute. */
e385593e 12084 return PC_BOUNDS_INVALID;
af34e669
DJ
12085
12086 /* Found consecutive range of addresses. */
3a2b436a 12087 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12088 }
c906108c 12089 else
af34e669 12090 {
e142c38c 12091 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12092 if (attr != NULL)
12093 {
ab435259
DE
12094 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12095 We take advantage of the fact that DW_AT_ranges does not appear
12096 in DW_TAG_compile_unit of DWO files. */
12097 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12098 unsigned int ranges_offset = (DW_UNSND (attr)
12099 + (need_ranges_base
12100 ? cu->ranges_base
12101 : 0));
2e3cf129 12102
af34e669 12103 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12104 .debug_ranges section. */
2e3cf129 12105 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12106 return PC_BOUNDS_INVALID;
43039443 12107 /* Found discontinuous range of addresses. */
3a2b436a 12108 ret = PC_BOUNDS_RANGES;
af34e669 12109 }
e385593e
JK
12110 else
12111 return PC_BOUNDS_NOT_PRESENT;
af34e669 12112 }
c906108c 12113
9373cf26
JK
12114 /* read_partial_die has also the strict LOW < HIGH requirement. */
12115 if (high <= low)
e385593e 12116 return PC_BOUNDS_INVALID;
c906108c
SS
12117
12118 /* When using the GNU linker, .gnu.linkonce. sections are used to
12119 eliminate duplicate copies of functions and vtables and such.
12120 The linker will arbitrarily choose one and discard the others.
12121 The AT_*_pc values for such functions refer to local labels in
12122 these sections. If the section from that file was discarded, the
12123 labels are not in the output, so the relocs get a value of 0.
12124 If this is a discarded function, mark the pc bounds as invalid,
12125 so that GDB will ignore it. */
72dca2f5 12126 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12127 return PC_BOUNDS_INVALID;
c906108c
SS
12128
12129 *lowpc = low;
96408a79
SA
12130 if (highpc)
12131 *highpc = high;
af34e669 12132 return ret;
c906108c
SS
12133}
12134
b084d499
JB
12135/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12136 its low and high PC addresses. Do nothing if these addresses could not
12137 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12138 and HIGHPC to the high address if greater than HIGHPC. */
12139
12140static void
12141dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12142 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12143 struct dwarf2_cu *cu)
12144{
12145 CORE_ADDR low, high;
12146 struct die_info *child = die->child;
12147
e385593e 12148 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499
JB
12149 {
12150 *lowpc = min (*lowpc, low);
12151 *highpc = max (*highpc, high);
12152 }
12153
12154 /* If the language does not allow nested subprograms (either inside
12155 subprograms or lexical blocks), we're done. */
12156 if (cu->language != language_ada)
12157 return;
6e70227d 12158
b084d499
JB
12159 /* Check all the children of the given DIE. If it contains nested
12160 subprograms, then check their pc bounds. Likewise, we need to
12161 check lexical blocks as well, as they may also contain subprogram
12162 definitions. */
12163 while (child && child->tag)
12164 {
12165 if (child->tag == DW_TAG_subprogram
12166 || child->tag == DW_TAG_lexical_block)
12167 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12168 child = sibling_die (child);
12169 }
12170}
12171
fae299cd
DC
12172/* Get the low and high pc's represented by the scope DIE, and store
12173 them in *LOWPC and *HIGHPC. If the correct values can't be
12174 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12175
12176static void
12177get_scope_pc_bounds (struct die_info *die,
12178 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12179 struct dwarf2_cu *cu)
12180{
12181 CORE_ADDR best_low = (CORE_ADDR) -1;
12182 CORE_ADDR best_high = (CORE_ADDR) 0;
12183 CORE_ADDR current_low, current_high;
12184
3a2b436a 12185 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12186 >= PC_BOUNDS_RANGES)
fae299cd
DC
12187 {
12188 best_low = current_low;
12189 best_high = current_high;
12190 }
12191 else
12192 {
12193 struct die_info *child = die->child;
12194
12195 while (child && child->tag)
12196 {
12197 switch (child->tag) {
12198 case DW_TAG_subprogram:
b084d499 12199 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12200 break;
12201 case DW_TAG_namespace:
f55ee35c 12202 case DW_TAG_module:
fae299cd
DC
12203 /* FIXME: carlton/2004-01-16: Should we do this for
12204 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12205 that current GCC's always emit the DIEs corresponding
12206 to definitions of methods of classes as children of a
12207 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12208 the DIEs giving the declarations, which could be
12209 anywhere). But I don't see any reason why the
12210 standards says that they have to be there. */
12211 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12212
12213 if (current_low != ((CORE_ADDR) -1))
12214 {
12215 best_low = min (best_low, current_low);
12216 best_high = max (best_high, current_high);
12217 }
12218 break;
12219 default:
0963b4bd 12220 /* Ignore. */
fae299cd
DC
12221 break;
12222 }
12223
12224 child = sibling_die (child);
12225 }
12226 }
12227
12228 *lowpc = best_low;
12229 *highpc = best_high;
12230}
12231
801e3a5b
JB
12232/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12233 in DIE. */
380bca97 12234
801e3a5b
JB
12235static void
12236dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12237 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12238{
bb5ed363 12239 struct objfile *objfile = cu->objfile;
3e29f34a 12240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12241 struct attribute *attr;
91da1414 12242 struct attribute *attr_high;
801e3a5b 12243
91da1414
MW
12244 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12245 if (attr_high)
801e3a5b 12246 {
801e3a5b
JB
12247 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12248 if (attr)
12249 {
31aa7e4e
JB
12250 CORE_ADDR low = attr_value_as_address (attr);
12251 CORE_ADDR high = attr_value_as_address (attr_high);
12252
12253 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12254 high += low;
9a619af0 12255
3e29f34a
MR
12256 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12257 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12258 record_block_range (block, low, high - 1);
801e3a5b
JB
12259 }
12260 }
12261
12262 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12263 if (attr)
12264 {
bb5ed363 12265 bfd *obfd = objfile->obfd;
ab435259
DE
12266 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12267 We take advantage of the fact that DW_AT_ranges does not appear
12268 in DW_TAG_compile_unit of DWO files. */
12269 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12270
12271 /* The value of the DW_AT_ranges attribute is the offset of the
12272 address range list in the .debug_ranges section. */
ab435259
DE
12273 unsigned long offset = (DW_UNSND (attr)
12274 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12275 const gdb_byte *buffer;
801e3a5b
JB
12276
12277 /* For some target architectures, but not others, the
12278 read_address function sign-extends the addresses it returns.
12279 To recognize base address selection entries, we need a
12280 mask. */
12281 unsigned int addr_size = cu->header.addr_size;
12282 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12283
12284 /* The base address, to which the next pair is relative. Note
12285 that this 'base' is a DWARF concept: most entries in a range
12286 list are relative, to reduce the number of relocs against the
12287 debugging information. This is separate from this function's
12288 'baseaddr' argument, which GDB uses to relocate debugging
12289 information from a shared library based on the address at
12290 which the library was loaded. */
d00adf39
DE
12291 CORE_ADDR base = cu->base_address;
12292 int base_known = cu->base_known;
801e3a5b 12293
d62bfeaf 12294 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12295 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12296 {
12297 complaint (&symfile_complaints,
12298 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12299 offset);
12300 return;
12301 }
d62bfeaf 12302 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12303
12304 for (;;)
12305 {
12306 unsigned int bytes_read;
12307 CORE_ADDR start, end;
12308
12309 start = read_address (obfd, buffer, cu, &bytes_read);
12310 buffer += bytes_read;
12311 end = read_address (obfd, buffer, cu, &bytes_read);
12312 buffer += bytes_read;
12313
12314 /* Did we find the end of the range list? */
12315 if (start == 0 && end == 0)
12316 break;
12317
12318 /* Did we find a base address selection entry? */
12319 else if ((start & base_select_mask) == base_select_mask)
12320 {
12321 base = end;
12322 base_known = 1;
12323 }
12324
12325 /* We found an ordinary address range. */
12326 else
12327 {
12328 if (!base_known)
12329 {
12330 complaint (&symfile_complaints,
3e43a32a
MS
12331 _("Invalid .debug_ranges data "
12332 "(no base address)"));
801e3a5b
JB
12333 return;
12334 }
12335
9277c30c
UW
12336 if (start > end)
12337 {
12338 /* Inverted range entries are invalid. */
12339 complaint (&symfile_complaints,
12340 _("Invalid .debug_ranges data "
12341 "(inverted range)"));
12342 return;
12343 }
12344
12345 /* Empty range entries have no effect. */
12346 if (start == end)
12347 continue;
12348
01093045
DE
12349 start += base + baseaddr;
12350 end += base + baseaddr;
12351
12352 /* A not-uncommon case of bad debug info.
12353 Don't pollute the addrmap with bad data. */
12354 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12355 {
12356 complaint (&symfile_complaints,
12357 _(".debug_ranges entry has start address of zero"
4262abfb 12358 " [in module %s]"), objfile_name (objfile));
01093045
DE
12359 continue;
12360 }
12361
3e29f34a
MR
12362 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12363 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12364 record_block_range (block, start, end - 1);
801e3a5b
JB
12365 }
12366 }
12367 }
12368}
12369
685b1105
JK
12370/* Check whether the producer field indicates either of GCC < 4.6, or the
12371 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12372
685b1105
JK
12373static void
12374check_producer (struct dwarf2_cu *cu)
60d5a603 12375{
38360086 12376 int major, minor;
60d5a603
JK
12377
12378 if (cu->producer == NULL)
12379 {
12380 /* For unknown compilers expect their behavior is DWARF version
12381 compliant.
12382
12383 GCC started to support .debug_types sections by -gdwarf-4 since
12384 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12385 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12386 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12387 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12388 }
b1ffba5a 12389 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12390 {
38360086
MW
12391 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12392 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12393 }
61012eef 12394 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12395 cu->producer_is_icc = 1;
12396 else
12397 {
12398 /* For other non-GCC compilers, expect their behavior is DWARF version
12399 compliant. */
60d5a603
JK
12400 }
12401
ba919b58 12402 cu->checked_producer = 1;
685b1105 12403}
ba919b58 12404
685b1105
JK
12405/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12406 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12407 during 4.6.0 experimental. */
12408
12409static int
12410producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12411{
12412 if (!cu->checked_producer)
12413 check_producer (cu);
12414
12415 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12416}
12417
12418/* Return the default accessibility type if it is not overriden by
12419 DW_AT_accessibility. */
12420
12421static enum dwarf_access_attribute
12422dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12423{
12424 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12425 {
12426 /* The default DWARF 2 accessibility for members is public, the default
12427 accessibility for inheritance is private. */
12428
12429 if (die->tag != DW_TAG_inheritance)
12430 return DW_ACCESS_public;
12431 else
12432 return DW_ACCESS_private;
12433 }
12434 else
12435 {
12436 /* DWARF 3+ defines the default accessibility a different way. The same
12437 rules apply now for DW_TAG_inheritance as for the members and it only
12438 depends on the container kind. */
12439
12440 if (die->parent->tag == DW_TAG_class_type)
12441 return DW_ACCESS_private;
12442 else
12443 return DW_ACCESS_public;
12444 }
12445}
12446
74ac6d43
TT
12447/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12448 offset. If the attribute was not found return 0, otherwise return
12449 1. If it was found but could not properly be handled, set *OFFSET
12450 to 0. */
12451
12452static int
12453handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12454 LONGEST *offset)
12455{
12456 struct attribute *attr;
12457
12458 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12459 if (attr != NULL)
12460 {
12461 *offset = 0;
12462
12463 /* Note that we do not check for a section offset first here.
12464 This is because DW_AT_data_member_location is new in DWARF 4,
12465 so if we see it, we can assume that a constant form is really
12466 a constant and not a section offset. */
12467 if (attr_form_is_constant (attr))
12468 *offset = dwarf2_get_attr_constant_value (attr, 0);
12469 else if (attr_form_is_section_offset (attr))
12470 dwarf2_complex_location_expr_complaint ();
12471 else if (attr_form_is_block (attr))
12472 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12473 else
12474 dwarf2_complex_location_expr_complaint ();
12475
12476 return 1;
12477 }
12478
12479 return 0;
12480}
12481
c906108c
SS
12482/* Add an aggregate field to the field list. */
12483
12484static void
107d2387 12485dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12486 struct dwarf2_cu *cu)
6e70227d 12487{
e7c27a73 12488 struct objfile *objfile = cu->objfile;
5e2b427d 12489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12490 struct nextfield *new_field;
12491 struct attribute *attr;
12492 struct field *fp;
15d034d0 12493 const char *fieldname = "";
c906108c
SS
12494
12495 /* Allocate a new field list entry and link it in. */
8d749320 12496 new_field = XNEW (struct nextfield);
b8c9b27d 12497 make_cleanup (xfree, new_field);
c906108c 12498 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12499
12500 if (die->tag == DW_TAG_inheritance)
12501 {
12502 new_field->next = fip->baseclasses;
12503 fip->baseclasses = new_field;
12504 }
12505 else
12506 {
12507 new_field->next = fip->fields;
12508 fip->fields = new_field;
12509 }
c906108c
SS
12510 fip->nfields++;
12511
e142c38c 12512 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12513 if (attr)
12514 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12515 else
12516 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12517 if (new_field->accessibility != DW_ACCESS_public)
12518 fip->non_public_fields = 1;
60d5a603 12519
e142c38c 12520 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12521 if (attr)
12522 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12523 else
12524 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12525
12526 fp = &new_field->field;
a9a9bd0f 12527
e142c38c 12528 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12529 {
74ac6d43
TT
12530 LONGEST offset;
12531
a9a9bd0f 12532 /* Data member other than a C++ static data member. */
6e70227d 12533
c906108c 12534 /* Get type of field. */
e7c27a73 12535 fp->type = die_type (die, cu);
c906108c 12536
d6a843b5 12537 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12538
c906108c 12539 /* Get bit size of field (zero if none). */
e142c38c 12540 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12541 if (attr)
12542 {
12543 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12544 }
12545 else
12546 {
12547 FIELD_BITSIZE (*fp) = 0;
12548 }
12549
12550 /* Get bit offset of field. */
74ac6d43
TT
12551 if (handle_data_member_location (die, cu, &offset))
12552 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12553 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12554 if (attr)
12555 {
5e2b427d 12556 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12557 {
12558 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12559 additional bit offset from the MSB of the containing
12560 anonymous object to the MSB of the field. We don't
12561 have to do anything special since we don't need to
12562 know the size of the anonymous object. */
f41f5e61 12563 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12564 }
12565 else
12566 {
12567 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12568 MSB of the anonymous object, subtract off the number of
12569 bits from the MSB of the field to the MSB of the
12570 object, and then subtract off the number of bits of
12571 the field itself. The result is the bit offset of
12572 the LSB of the field. */
c906108c
SS
12573 int anonymous_size;
12574 int bit_offset = DW_UNSND (attr);
12575
e142c38c 12576 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12577 if (attr)
12578 {
12579 /* The size of the anonymous object containing
12580 the bit field is explicit, so use the
12581 indicated size (in bytes). */
12582 anonymous_size = DW_UNSND (attr);
12583 }
12584 else
12585 {
12586 /* The size of the anonymous object containing
12587 the bit field must be inferred from the type
12588 attribute of the data member containing the
12589 bit field. */
12590 anonymous_size = TYPE_LENGTH (fp->type);
12591 }
f41f5e61
PA
12592 SET_FIELD_BITPOS (*fp,
12593 (FIELD_BITPOS (*fp)
12594 + anonymous_size * bits_per_byte
12595 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12596 }
12597 }
12598
12599 /* Get name of field. */
39cbfefa
DJ
12600 fieldname = dwarf2_name (die, cu);
12601 if (fieldname == NULL)
12602 fieldname = "";
d8151005
DJ
12603
12604 /* The name is already allocated along with this objfile, so we don't
12605 need to duplicate it for the type. */
12606 fp->name = fieldname;
c906108c
SS
12607
12608 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12609 pointer or virtual base class pointer) to private. */
e142c38c 12610 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12611 {
d48cc9dd 12612 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12613 new_field->accessibility = DW_ACCESS_private;
12614 fip->non_public_fields = 1;
12615 }
12616 }
a9a9bd0f 12617 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12618 {
a9a9bd0f
DC
12619 /* C++ static member. */
12620
12621 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12622 is a declaration, but all versions of G++ as of this writing
12623 (so through at least 3.2.1) incorrectly generate
12624 DW_TAG_variable tags. */
6e70227d 12625
ff355380 12626 const char *physname;
c906108c 12627
a9a9bd0f 12628 /* Get name of field. */
39cbfefa
DJ
12629 fieldname = dwarf2_name (die, cu);
12630 if (fieldname == NULL)
c906108c
SS
12631 return;
12632
254e6b9e 12633 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12634 if (attr
12635 /* Only create a symbol if this is an external value.
12636 new_symbol checks this and puts the value in the global symbol
12637 table, which we want. If it is not external, new_symbol
12638 will try to put the value in cu->list_in_scope which is wrong. */
12639 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12640 {
12641 /* A static const member, not much different than an enum as far as
12642 we're concerned, except that we can support more types. */
12643 new_symbol (die, NULL, cu);
12644 }
12645
2df3850c 12646 /* Get physical name. */
ff355380 12647 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12648
d8151005
DJ
12649 /* The name is already allocated along with this objfile, so we don't
12650 need to duplicate it for the type. */
12651 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12652 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12653 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12654 }
12655 else if (die->tag == DW_TAG_inheritance)
12656 {
74ac6d43 12657 LONGEST offset;
d4b96c9a 12658
74ac6d43
TT
12659 /* C++ base class field. */
12660 if (handle_data_member_location (die, cu, &offset))
12661 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12662 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12663 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12664 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12665 fip->nbaseclasses++;
12666 }
12667}
12668
98751a41
JK
12669/* Add a typedef defined in the scope of the FIP's class. */
12670
12671static void
12672dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12673 struct dwarf2_cu *cu)
6e70227d 12674{
98751a41 12675 struct typedef_field_list *new_field;
98751a41 12676 struct typedef_field *fp;
98751a41
JK
12677
12678 /* Allocate a new field list entry and link it in. */
8d749320 12679 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12680 make_cleanup (xfree, new_field);
12681
12682 gdb_assert (die->tag == DW_TAG_typedef);
12683
12684 fp = &new_field->field;
12685
12686 /* Get name of field. */
12687 fp->name = dwarf2_name (die, cu);
12688 if (fp->name == NULL)
12689 return;
12690
12691 fp->type = read_type_die (die, cu);
12692
12693 new_field->next = fip->typedef_field_list;
12694 fip->typedef_field_list = new_field;
12695 fip->typedef_field_list_count++;
12696}
12697
c906108c
SS
12698/* Create the vector of fields, and attach it to the type. */
12699
12700static void
fba45db2 12701dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12702 struct dwarf2_cu *cu)
c906108c
SS
12703{
12704 int nfields = fip->nfields;
12705
12706 /* Record the field count, allocate space for the array of fields,
12707 and create blank accessibility bitfields if necessary. */
12708 TYPE_NFIELDS (type) = nfields;
12709 TYPE_FIELDS (type) = (struct field *)
12710 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12711 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12712
b4ba55a1 12713 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12714 {
12715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12716
12717 TYPE_FIELD_PRIVATE_BITS (type) =
12718 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12719 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12720
12721 TYPE_FIELD_PROTECTED_BITS (type) =
12722 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12723 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12724
774b6a14
TT
12725 TYPE_FIELD_IGNORE_BITS (type) =
12726 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12727 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12728 }
12729
12730 /* If the type has baseclasses, allocate and clear a bit vector for
12731 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12732 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12733 {
12734 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12735 unsigned char *pointer;
c906108c
SS
12736
12737 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12738 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12739 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12740 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12741 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12742 }
12743
3e43a32a
MS
12744 /* Copy the saved-up fields into the field vector. Start from the head of
12745 the list, adding to the tail of the field array, so that they end up in
12746 the same order in the array in which they were added to the list. */
c906108c
SS
12747 while (nfields-- > 0)
12748 {
7d0ccb61
DJ
12749 struct nextfield *fieldp;
12750
12751 if (fip->fields)
12752 {
12753 fieldp = fip->fields;
12754 fip->fields = fieldp->next;
12755 }
12756 else
12757 {
12758 fieldp = fip->baseclasses;
12759 fip->baseclasses = fieldp->next;
12760 }
12761
12762 TYPE_FIELD (type, nfields) = fieldp->field;
12763 switch (fieldp->accessibility)
c906108c 12764 {
c5aa993b 12765 case DW_ACCESS_private:
b4ba55a1
JB
12766 if (cu->language != language_ada)
12767 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12768 break;
c906108c 12769
c5aa993b 12770 case DW_ACCESS_protected:
b4ba55a1
JB
12771 if (cu->language != language_ada)
12772 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12773 break;
c906108c 12774
c5aa993b
JM
12775 case DW_ACCESS_public:
12776 break;
c906108c 12777
c5aa993b
JM
12778 default:
12779 /* Unknown accessibility. Complain and treat it as public. */
12780 {
e2e0b3e5 12781 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12782 fieldp->accessibility);
c5aa993b
JM
12783 }
12784 break;
c906108c
SS
12785 }
12786 if (nfields < fip->nbaseclasses)
12787 {
7d0ccb61 12788 switch (fieldp->virtuality)
c906108c 12789 {
c5aa993b
JM
12790 case DW_VIRTUALITY_virtual:
12791 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12792 if (cu->language == language_ada)
a73c6dcd 12793 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12794 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12795 break;
c906108c
SS
12796 }
12797 }
c906108c
SS
12798 }
12799}
12800
7d27a96d
TT
12801/* Return true if this member function is a constructor, false
12802 otherwise. */
12803
12804static int
12805dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12806{
12807 const char *fieldname;
fe978cb0 12808 const char *type_name;
7d27a96d
TT
12809 int len;
12810
12811 if (die->parent == NULL)
12812 return 0;
12813
12814 if (die->parent->tag != DW_TAG_structure_type
12815 && die->parent->tag != DW_TAG_union_type
12816 && die->parent->tag != DW_TAG_class_type)
12817 return 0;
12818
12819 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12820 type_name = dwarf2_name (die->parent, cu);
12821 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12822 return 0;
12823
12824 len = strlen (fieldname);
fe978cb0
PA
12825 return (strncmp (fieldname, type_name, len) == 0
12826 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12827}
12828
c906108c
SS
12829/* Add a member function to the proper fieldlist. */
12830
12831static void
107d2387 12832dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12833 struct type *type, struct dwarf2_cu *cu)
c906108c 12834{
e7c27a73 12835 struct objfile *objfile = cu->objfile;
c906108c
SS
12836 struct attribute *attr;
12837 struct fnfieldlist *flp;
12838 int i;
12839 struct fn_field *fnp;
15d034d0 12840 const char *fieldname;
c906108c 12841 struct nextfnfield *new_fnfield;
f792889a 12842 struct type *this_type;
60d5a603 12843 enum dwarf_access_attribute accessibility;
c906108c 12844
b4ba55a1 12845 if (cu->language == language_ada)
a73c6dcd 12846 error (_("unexpected member function in Ada type"));
b4ba55a1 12847
2df3850c 12848 /* Get name of member function. */
39cbfefa
DJ
12849 fieldname = dwarf2_name (die, cu);
12850 if (fieldname == NULL)
2df3850c 12851 return;
c906108c 12852
c906108c
SS
12853 /* Look up member function name in fieldlist. */
12854 for (i = 0; i < fip->nfnfields; i++)
12855 {
27bfe10e 12856 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12857 break;
12858 }
12859
12860 /* Create new list element if necessary. */
12861 if (i < fip->nfnfields)
12862 flp = &fip->fnfieldlists[i];
12863 else
12864 {
12865 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12866 {
12867 fip->fnfieldlists = (struct fnfieldlist *)
12868 xrealloc (fip->fnfieldlists,
12869 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12870 * sizeof (struct fnfieldlist));
c906108c 12871 if (fip->nfnfields == 0)
c13c43fd 12872 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12873 }
12874 flp = &fip->fnfieldlists[fip->nfnfields];
12875 flp->name = fieldname;
12876 flp->length = 0;
12877 flp->head = NULL;
3da10d80 12878 i = fip->nfnfields++;
c906108c
SS
12879 }
12880
12881 /* Create a new member function field and chain it to the field list
0963b4bd 12882 entry. */
8d749320 12883 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12884 make_cleanup (xfree, new_fnfield);
c906108c
SS
12885 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12886 new_fnfield->next = flp->head;
12887 flp->head = new_fnfield;
12888 flp->length++;
12889
12890 /* Fill in the member function field info. */
12891 fnp = &new_fnfield->fnfield;
3da10d80
KS
12892
12893 /* Delay processing of the physname until later. */
12894 if (cu->language == language_cplus || cu->language == language_java)
12895 {
12896 add_to_method_list (type, i, flp->length - 1, fieldname,
12897 die, cu);
12898 }
12899 else
12900 {
1d06ead6 12901 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12902 fnp->physname = physname ? physname : "";
12903 }
12904
c906108c 12905 fnp->type = alloc_type (objfile);
f792889a
DJ
12906 this_type = read_type_die (die, cu);
12907 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12908 {
f792889a 12909 int nparams = TYPE_NFIELDS (this_type);
c906108c 12910
f792889a 12911 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12912 of the method itself (TYPE_CODE_METHOD). */
12913 smash_to_method_type (fnp->type, type,
f792889a
DJ
12914 TYPE_TARGET_TYPE (this_type),
12915 TYPE_FIELDS (this_type),
12916 TYPE_NFIELDS (this_type),
12917 TYPE_VARARGS (this_type));
c906108c
SS
12918
12919 /* Handle static member functions.
c5aa993b 12920 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12921 member functions. G++ helps GDB by marking the first
12922 parameter for non-static member functions (which is the this
12923 pointer) as artificial. We obtain this information from
12924 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12925 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12926 fnp->voffset = VOFFSET_STATIC;
12927 }
12928 else
e2e0b3e5 12929 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12930 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12931
12932 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12933 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12934 fnp->fcontext = die_containing_type (die, cu);
c906108c 12935
3e43a32a
MS
12936 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12937 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12938
12939 /* Get accessibility. */
e142c38c 12940 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12941 if (attr)
aead7601 12942 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12943 else
12944 accessibility = dwarf2_default_access_attribute (die, cu);
12945 switch (accessibility)
c906108c 12946 {
60d5a603
JK
12947 case DW_ACCESS_private:
12948 fnp->is_private = 1;
12949 break;
12950 case DW_ACCESS_protected:
12951 fnp->is_protected = 1;
12952 break;
c906108c
SS
12953 }
12954
b02dede2 12955 /* Check for artificial methods. */
e142c38c 12956 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12957 if (attr && DW_UNSND (attr) != 0)
12958 fnp->is_artificial = 1;
12959
7d27a96d
TT
12960 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12961
0d564a31 12962 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12963 function. For older versions of GCC, this is an offset in the
12964 appropriate virtual table, as specified by DW_AT_containing_type.
12965 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12966 to the object address. */
12967
e142c38c 12968 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12969 if (attr)
8e19ed76 12970 {
aec5aa8b 12971 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12972 {
aec5aa8b
TT
12973 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12974 {
12975 /* Old-style GCC. */
12976 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12977 }
12978 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12979 || (DW_BLOCK (attr)->size > 1
12980 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12981 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12982 {
aec5aa8b
TT
12983 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12984 if ((fnp->voffset % cu->header.addr_size) != 0)
12985 dwarf2_complex_location_expr_complaint ();
12986 else
12987 fnp->voffset /= cu->header.addr_size;
12988 fnp->voffset += 2;
12989 }
12990 else
12991 dwarf2_complex_location_expr_complaint ();
12992
12993 if (!fnp->fcontext)
7e993ebf
KS
12994 {
12995 /* If there is no `this' field and no DW_AT_containing_type,
12996 we cannot actually find a base class context for the
12997 vtable! */
12998 if (TYPE_NFIELDS (this_type) == 0
12999 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13000 {
13001 complaint (&symfile_complaints,
13002 _("cannot determine context for virtual member "
13003 "function \"%s\" (offset %d)"),
13004 fieldname, die->offset.sect_off);
13005 }
13006 else
13007 {
13008 fnp->fcontext
13009 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13010 }
13011 }
aec5aa8b 13012 }
3690dd37 13013 else if (attr_form_is_section_offset (attr))
8e19ed76 13014 {
4d3c2250 13015 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13016 }
13017 else
13018 {
4d3c2250
KB
13019 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13020 fieldname);
8e19ed76 13021 }
0d564a31 13022 }
d48cc9dd
DJ
13023 else
13024 {
13025 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13026 if (attr && DW_UNSND (attr))
13027 {
13028 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13029 complaint (&symfile_complaints,
3e43a32a
MS
13030 _("Member function \"%s\" (offset %d) is virtual "
13031 "but the vtable offset is not specified"),
b64f50a1 13032 fieldname, die->offset.sect_off);
9655fd1a 13033 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13034 TYPE_CPLUS_DYNAMIC (type) = 1;
13035 }
13036 }
c906108c
SS
13037}
13038
13039/* Create the vector of member function fields, and attach it to the type. */
13040
13041static void
fba45db2 13042dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13043 struct dwarf2_cu *cu)
c906108c
SS
13044{
13045 struct fnfieldlist *flp;
c906108c
SS
13046 int i;
13047
b4ba55a1 13048 if (cu->language == language_ada)
a73c6dcd 13049 error (_("unexpected member functions in Ada type"));
b4ba55a1 13050
c906108c
SS
13051 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13052 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13053 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13054
13055 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13056 {
13057 struct nextfnfield *nfp = flp->head;
13058 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13059 int k;
13060
13061 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13062 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13063 fn_flp->fn_fields = (struct fn_field *)
13064 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13065 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13066 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13067 }
13068
13069 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13070}
13071
1168df01
JB
13072/* Returns non-zero if NAME is the name of a vtable member in CU's
13073 language, zero otherwise. */
13074static int
13075is_vtable_name (const char *name, struct dwarf2_cu *cu)
13076{
13077 static const char vptr[] = "_vptr";
987504bb 13078 static const char vtable[] = "vtable";
1168df01 13079
987504bb
JJ
13080 /* Look for the C++ and Java forms of the vtable. */
13081 if ((cu->language == language_java
61012eef
GB
13082 && startswith (name, vtable))
13083 || (startswith (name, vptr)
987504bb 13084 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13085 return 1;
13086
13087 return 0;
13088}
13089
c0dd20ea 13090/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13091 functions, with the ABI-specified layout. If TYPE describes
13092 such a structure, smash it into a member function type.
61049d3b
DJ
13093
13094 GCC shouldn't do this; it should just output pointer to member DIEs.
13095 This is GCC PR debug/28767. */
c0dd20ea 13096
0b92b5bb
TT
13097static void
13098quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13099{
09e2d7c7 13100 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13101
13102 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13103 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13104 return;
c0dd20ea
DJ
13105
13106 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13107 if (TYPE_FIELD_NAME (type, 0) == NULL
13108 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13109 || TYPE_FIELD_NAME (type, 1) == NULL
13110 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13111 return;
c0dd20ea
DJ
13112
13113 /* Find the type of the method. */
0b92b5bb 13114 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13115 if (pfn_type == NULL
13116 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13117 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13118 return;
c0dd20ea
DJ
13119
13120 /* Look for the "this" argument. */
13121 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13122 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13123 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13124 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13125 return;
c0dd20ea 13126
09e2d7c7 13127 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13128 new_type = alloc_type (objfile);
09e2d7c7 13129 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13130 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13131 TYPE_VARARGS (pfn_type));
0b92b5bb 13132 smash_to_methodptr_type (type, new_type);
c0dd20ea 13133}
1168df01 13134
685b1105
JK
13135/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13136 (icc). */
13137
13138static int
13139producer_is_icc (struct dwarf2_cu *cu)
13140{
13141 if (!cu->checked_producer)
13142 check_producer (cu);
13143
13144 return cu->producer_is_icc;
13145}
13146
c906108c 13147/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13148 (definition) to create a type for the structure or union. Fill in
13149 the type's name and general properties; the members will not be
83655187
DE
13150 processed until process_structure_scope. A symbol table entry for
13151 the type will also not be done until process_structure_scope (assuming
13152 the type has a name).
c906108c 13153
c767944b
DJ
13154 NOTE: we need to call these functions regardless of whether or not the
13155 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13156 structure or union. This gets the type entered into our set of
83655187 13157 user defined types. */
c906108c 13158
f792889a 13159static struct type *
134d01f1 13160read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13161{
e7c27a73 13162 struct objfile *objfile = cu->objfile;
c906108c
SS
13163 struct type *type;
13164 struct attribute *attr;
15d034d0 13165 const char *name;
c906108c 13166
348e048f
DE
13167 /* If the definition of this type lives in .debug_types, read that type.
13168 Don't follow DW_AT_specification though, that will take us back up
13169 the chain and we want to go down. */
45e58e77 13170 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13171 if (attr)
13172 {
ac9ec31b 13173 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13174
ac9ec31b 13175 /* The type's CU may not be the same as CU.
02142a6c 13176 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13177 return set_die_type (die, type, cu);
13178 }
13179
c0dd20ea 13180 type = alloc_type (objfile);
c906108c 13181 INIT_CPLUS_SPECIFIC (type);
93311388 13182
39cbfefa
DJ
13183 name = dwarf2_name (die, cu);
13184 if (name != NULL)
c906108c 13185 {
987504bb 13186 if (cu->language == language_cplus
45280282 13187 || cu->language == language_java
c44af4eb
TT
13188 || cu->language == language_d
13189 || cu->language == language_rust)
63d06c5c 13190 {
15d034d0 13191 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13192
13193 /* dwarf2_full_name might have already finished building the DIE's
13194 type. If so, there is no need to continue. */
13195 if (get_die_type (die, cu) != NULL)
13196 return get_die_type (die, cu);
13197
13198 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13199 if (die->tag == DW_TAG_structure_type
13200 || die->tag == DW_TAG_class_type)
13201 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13202 }
13203 else
13204 {
d8151005
DJ
13205 /* The name is already allocated along with this objfile, so
13206 we don't need to duplicate it for the type. */
7d455152 13207 TYPE_TAG_NAME (type) = name;
94af9270
KS
13208 if (die->tag == DW_TAG_class_type)
13209 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13210 }
c906108c
SS
13211 }
13212
13213 if (die->tag == DW_TAG_structure_type)
13214 {
13215 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13216 }
13217 else if (die->tag == DW_TAG_union_type)
13218 {
13219 TYPE_CODE (type) = TYPE_CODE_UNION;
13220 }
13221 else
13222 {
4753d33b 13223 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13224 }
13225
0cc2414c
TT
13226 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13227 TYPE_DECLARED_CLASS (type) = 1;
13228
e142c38c 13229 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13230 if (attr)
13231 {
155bfbd3
JB
13232 if (attr_form_is_constant (attr))
13233 TYPE_LENGTH (type) = DW_UNSND (attr);
13234 else
13235 {
13236 /* For the moment, dynamic type sizes are not supported
13237 by GDB's struct type. The actual size is determined
13238 on-demand when resolving the type of a given object,
13239 so set the type's length to zero for now. Otherwise,
13240 we record an expression as the length, and that expression
13241 could lead to a very large value, which could eventually
13242 lead to us trying to allocate that much memory when creating
13243 a value of that type. */
13244 TYPE_LENGTH (type) = 0;
13245 }
c906108c
SS
13246 }
13247 else
13248 {
13249 TYPE_LENGTH (type) = 0;
13250 }
13251
422b1cb0 13252 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13253 {
13254 /* ICC does not output the required DW_AT_declaration
13255 on incomplete types, but gives them a size of zero. */
422b1cb0 13256 TYPE_STUB (type) = 1;
685b1105
JK
13257 }
13258 else
13259 TYPE_STUB_SUPPORTED (type) = 1;
13260
dc718098 13261 if (die_is_declaration (die, cu))
876cecd0 13262 TYPE_STUB (type) = 1;
a6c727b2
DJ
13263 else if (attr == NULL && die->child == NULL
13264 && producer_is_realview (cu->producer))
13265 /* RealView does not output the required DW_AT_declaration
13266 on incomplete types. */
13267 TYPE_STUB (type) = 1;
dc718098 13268
c906108c
SS
13269 /* We need to add the type field to the die immediately so we don't
13270 infinitely recurse when dealing with pointers to the structure
0963b4bd 13271 type within the structure itself. */
1c379e20 13272 set_die_type (die, type, cu);
c906108c 13273
7e314c57
JK
13274 /* set_die_type should be already done. */
13275 set_descriptive_type (type, die, cu);
13276
c767944b
DJ
13277 return type;
13278}
13279
13280/* Finish creating a structure or union type, including filling in
13281 its members and creating a symbol for it. */
13282
13283static void
13284process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13285{
13286 struct objfile *objfile = cu->objfile;
ca040673 13287 struct die_info *child_die;
c767944b
DJ
13288 struct type *type;
13289
13290 type = get_die_type (die, cu);
13291 if (type == NULL)
13292 type = read_structure_type (die, cu);
13293
e142c38c 13294 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13295 {
13296 struct field_info fi;
34eaf542 13297 VEC (symbolp) *template_args = NULL;
c767944b 13298 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13299
13300 memset (&fi, 0, sizeof (struct field_info));
13301
639d11d3 13302 child_die = die->child;
c906108c
SS
13303
13304 while (child_die && child_die->tag)
13305 {
a9a9bd0f
DC
13306 if (child_die->tag == DW_TAG_member
13307 || child_die->tag == DW_TAG_variable)
c906108c 13308 {
a9a9bd0f
DC
13309 /* NOTE: carlton/2002-11-05: A C++ static data member
13310 should be a DW_TAG_member that is a declaration, but
13311 all versions of G++ as of this writing (so through at
13312 least 3.2.1) incorrectly generate DW_TAG_variable
13313 tags for them instead. */
e7c27a73 13314 dwarf2_add_field (&fi, child_die, cu);
c906108c 13315 }
8713b1b1 13316 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13317 {
0963b4bd 13318 /* C++ member function. */
e7c27a73 13319 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13320 }
13321 else if (child_die->tag == DW_TAG_inheritance)
13322 {
13323 /* C++ base class field. */
e7c27a73 13324 dwarf2_add_field (&fi, child_die, cu);
c906108c 13325 }
98751a41
JK
13326 else if (child_die->tag == DW_TAG_typedef)
13327 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13328 else if (child_die->tag == DW_TAG_template_type_param
13329 || child_die->tag == DW_TAG_template_value_param)
13330 {
13331 struct symbol *arg = new_symbol (child_die, NULL, cu);
13332
f1078f66
DJ
13333 if (arg != NULL)
13334 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13335 }
13336
c906108c
SS
13337 child_die = sibling_die (child_die);
13338 }
13339
34eaf542
TT
13340 /* Attach template arguments to type. */
13341 if (! VEC_empty (symbolp, template_args))
13342 {
13343 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13344 TYPE_N_TEMPLATE_ARGUMENTS (type)
13345 = VEC_length (symbolp, template_args);
13346 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13347 = XOBNEWVEC (&objfile->objfile_obstack,
13348 struct symbol *,
13349 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13350 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13351 VEC_address (symbolp, template_args),
13352 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13353 * sizeof (struct symbol *)));
13354 VEC_free (symbolp, template_args);
13355 }
13356
c906108c
SS
13357 /* Attach fields and member functions to the type. */
13358 if (fi.nfields)
e7c27a73 13359 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13360 if (fi.nfnfields)
13361 {
e7c27a73 13362 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13363
c5aa993b 13364 /* Get the type which refers to the base class (possibly this
c906108c 13365 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13366 class from the DW_AT_containing_type attribute. This use of
13367 DW_AT_containing_type is a GNU extension. */
c906108c 13368
e142c38c 13369 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13370 {
e7c27a73 13371 struct type *t = die_containing_type (die, cu);
c906108c 13372
ae6ae975 13373 set_type_vptr_basetype (type, t);
c906108c
SS
13374 if (type == t)
13375 {
c906108c
SS
13376 int i;
13377
13378 /* Our own class provides vtbl ptr. */
13379 for (i = TYPE_NFIELDS (t) - 1;
13380 i >= TYPE_N_BASECLASSES (t);
13381 --i)
13382 {
0d5cff50 13383 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13384
1168df01 13385 if (is_vtable_name (fieldname, cu))
c906108c 13386 {
ae6ae975 13387 set_type_vptr_fieldno (type, i);
c906108c
SS
13388 break;
13389 }
13390 }
13391
13392 /* Complain if virtual function table field not found. */
13393 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13394 complaint (&symfile_complaints,
3e43a32a
MS
13395 _("virtual function table pointer "
13396 "not found when defining class '%s'"),
4d3c2250
KB
13397 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13398 "");
c906108c
SS
13399 }
13400 else
13401 {
ae6ae975 13402 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13403 }
13404 }
f6235d4c 13405 else if (cu->producer
61012eef 13406 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13407 {
13408 /* The IBM XLC compiler does not provide direct indication
13409 of the containing type, but the vtable pointer is
13410 always named __vfp. */
13411
13412 int i;
13413
13414 for (i = TYPE_NFIELDS (type) - 1;
13415 i >= TYPE_N_BASECLASSES (type);
13416 --i)
13417 {
13418 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13419 {
ae6ae975
DE
13420 set_type_vptr_fieldno (type, i);
13421 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13422 break;
13423 }
13424 }
13425 }
c906108c 13426 }
98751a41
JK
13427
13428 /* Copy fi.typedef_field_list linked list elements content into the
13429 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13430 if (fi.typedef_field_list)
13431 {
13432 int i = fi.typedef_field_list_count;
13433
a0d7a4ff 13434 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13435 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13436 = ((struct typedef_field *)
13437 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13438 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13439
13440 /* Reverse the list order to keep the debug info elements order. */
13441 while (--i >= 0)
13442 {
13443 struct typedef_field *dest, *src;
6e70227d 13444
98751a41
JK
13445 dest = &TYPE_TYPEDEF_FIELD (type, i);
13446 src = &fi.typedef_field_list->field;
13447 fi.typedef_field_list = fi.typedef_field_list->next;
13448 *dest = *src;
13449 }
13450 }
c767944b
DJ
13451
13452 do_cleanups (back_to);
eb2a6f42
TT
13453
13454 if (HAVE_CPLUS_STRUCT (type))
13455 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13456 }
63d06c5c 13457
bb5ed363 13458 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13459
90aeadfc
DC
13460 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13461 snapshots) has been known to create a die giving a declaration
13462 for a class that has, as a child, a die giving a definition for a
13463 nested class. So we have to process our children even if the
13464 current die is a declaration. Normally, of course, a declaration
13465 won't have any children at all. */
134d01f1 13466
ca040673
DE
13467 child_die = die->child;
13468
90aeadfc
DC
13469 while (child_die != NULL && child_die->tag)
13470 {
13471 if (child_die->tag == DW_TAG_member
13472 || child_die->tag == DW_TAG_variable
34eaf542
TT
13473 || child_die->tag == DW_TAG_inheritance
13474 || child_die->tag == DW_TAG_template_value_param
13475 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13476 {
90aeadfc 13477 /* Do nothing. */
134d01f1 13478 }
90aeadfc
DC
13479 else
13480 process_die (child_die, cu);
134d01f1 13481
90aeadfc 13482 child_die = sibling_die (child_die);
134d01f1
DJ
13483 }
13484
fa4028e9
JB
13485 /* Do not consider external references. According to the DWARF standard,
13486 these DIEs are identified by the fact that they have no byte_size
13487 attribute, and a declaration attribute. */
13488 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13489 || !die_is_declaration (die, cu))
c767944b 13490 new_symbol (die, type, cu);
134d01f1
DJ
13491}
13492
55426c9d
JB
13493/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13494 update TYPE using some information only available in DIE's children. */
13495
13496static void
13497update_enumeration_type_from_children (struct die_info *die,
13498 struct type *type,
13499 struct dwarf2_cu *cu)
13500{
13501 struct obstack obstack;
60f7655a 13502 struct die_info *child_die;
55426c9d
JB
13503 int unsigned_enum = 1;
13504 int flag_enum = 1;
13505 ULONGEST mask = 0;
13506 struct cleanup *old_chain;
13507
13508 obstack_init (&obstack);
13509 old_chain = make_cleanup_obstack_free (&obstack);
13510
60f7655a
DE
13511 for (child_die = die->child;
13512 child_die != NULL && child_die->tag;
13513 child_die = sibling_die (child_die))
55426c9d
JB
13514 {
13515 struct attribute *attr;
13516 LONGEST value;
13517 const gdb_byte *bytes;
13518 struct dwarf2_locexpr_baton *baton;
13519 const char *name;
60f7655a 13520
55426c9d
JB
13521 if (child_die->tag != DW_TAG_enumerator)
13522 continue;
13523
13524 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13525 if (attr == NULL)
13526 continue;
13527
13528 name = dwarf2_name (child_die, cu);
13529 if (name == NULL)
13530 name = "<anonymous enumerator>";
13531
13532 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13533 &value, &bytes, &baton);
13534 if (value < 0)
13535 {
13536 unsigned_enum = 0;
13537 flag_enum = 0;
13538 }
13539 else if ((mask & value) != 0)
13540 flag_enum = 0;
13541 else
13542 mask |= value;
13543
13544 /* If we already know that the enum type is neither unsigned, nor
13545 a flag type, no need to look at the rest of the enumerates. */
13546 if (!unsigned_enum && !flag_enum)
13547 break;
55426c9d
JB
13548 }
13549
13550 if (unsigned_enum)
13551 TYPE_UNSIGNED (type) = 1;
13552 if (flag_enum)
13553 TYPE_FLAG_ENUM (type) = 1;
13554
13555 do_cleanups (old_chain);
13556}
13557
134d01f1
DJ
13558/* Given a DW_AT_enumeration_type die, set its type. We do not
13559 complete the type's fields yet, or create any symbols. */
c906108c 13560
f792889a 13561static struct type *
134d01f1 13562read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13563{
e7c27a73 13564 struct objfile *objfile = cu->objfile;
c906108c 13565 struct type *type;
c906108c 13566 struct attribute *attr;
0114d602 13567 const char *name;
134d01f1 13568
348e048f
DE
13569 /* If the definition of this type lives in .debug_types, read that type.
13570 Don't follow DW_AT_specification though, that will take us back up
13571 the chain and we want to go down. */
45e58e77 13572 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13573 if (attr)
13574 {
ac9ec31b 13575 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13576
ac9ec31b 13577 /* The type's CU may not be the same as CU.
02142a6c 13578 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13579 return set_die_type (die, type, cu);
13580 }
13581
c906108c
SS
13582 type = alloc_type (objfile);
13583
13584 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13585 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13586 if (name != NULL)
7d455152 13587 TYPE_TAG_NAME (type) = name;
c906108c 13588
0626fc76
TT
13589 attr = dwarf2_attr (die, DW_AT_type, cu);
13590 if (attr != NULL)
13591 {
13592 struct type *underlying_type = die_type (die, cu);
13593
13594 TYPE_TARGET_TYPE (type) = underlying_type;
13595 }
13596
e142c38c 13597 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13598 if (attr)
13599 {
13600 TYPE_LENGTH (type) = DW_UNSND (attr);
13601 }
13602 else
13603 {
13604 TYPE_LENGTH (type) = 0;
13605 }
13606
137033e9
JB
13607 /* The enumeration DIE can be incomplete. In Ada, any type can be
13608 declared as private in the package spec, and then defined only
13609 inside the package body. Such types are known as Taft Amendment
13610 Types. When another package uses such a type, an incomplete DIE
13611 may be generated by the compiler. */
02eb380e 13612 if (die_is_declaration (die, cu))
876cecd0 13613 TYPE_STUB (type) = 1;
02eb380e 13614
0626fc76
TT
13615 /* Finish the creation of this type by using the enum's children.
13616 We must call this even when the underlying type has been provided
13617 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13618 update_enumeration_type_from_children (die, type, cu);
13619
0626fc76
TT
13620 /* If this type has an underlying type that is not a stub, then we
13621 may use its attributes. We always use the "unsigned" attribute
13622 in this situation, because ordinarily we guess whether the type
13623 is unsigned -- but the guess can be wrong and the underlying type
13624 can tell us the reality. However, we defer to a local size
13625 attribute if one exists, because this lets the compiler override
13626 the underlying type if needed. */
13627 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13628 {
13629 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13630 if (TYPE_LENGTH (type) == 0)
13631 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13632 }
13633
3d567982
TT
13634 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13635
f792889a 13636 return set_die_type (die, type, cu);
134d01f1
DJ
13637}
13638
13639/* Given a pointer to a die which begins an enumeration, process all
13640 the dies that define the members of the enumeration, and create the
13641 symbol for the enumeration type.
13642
13643 NOTE: We reverse the order of the element list. */
13644
13645static void
13646process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13647{
f792889a 13648 struct type *this_type;
134d01f1 13649
f792889a
DJ
13650 this_type = get_die_type (die, cu);
13651 if (this_type == NULL)
13652 this_type = read_enumeration_type (die, cu);
9dc481d3 13653
639d11d3 13654 if (die->child != NULL)
c906108c 13655 {
9dc481d3
DE
13656 struct die_info *child_die;
13657 struct symbol *sym;
13658 struct field *fields = NULL;
13659 int num_fields = 0;
15d034d0 13660 const char *name;
9dc481d3 13661
639d11d3 13662 child_die = die->child;
c906108c
SS
13663 while (child_die && child_die->tag)
13664 {
13665 if (child_die->tag != DW_TAG_enumerator)
13666 {
e7c27a73 13667 process_die (child_die, cu);
c906108c
SS
13668 }
13669 else
13670 {
39cbfefa
DJ
13671 name = dwarf2_name (child_die, cu);
13672 if (name)
c906108c 13673 {
f792889a 13674 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13675
13676 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13677 {
13678 fields = (struct field *)
13679 xrealloc (fields,
13680 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13681 * sizeof (struct field));
c906108c
SS
13682 }
13683
3567439c 13684 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13685 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13686 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13687 FIELD_BITSIZE (fields[num_fields]) = 0;
13688
13689 num_fields++;
13690 }
13691 }
13692
13693 child_die = sibling_die (child_die);
13694 }
13695
13696 if (num_fields)
13697 {
f792889a
DJ
13698 TYPE_NFIELDS (this_type) = num_fields;
13699 TYPE_FIELDS (this_type) = (struct field *)
13700 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13701 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13702 sizeof (struct field) * num_fields);
b8c9b27d 13703 xfree (fields);
c906108c 13704 }
c906108c 13705 }
134d01f1 13706
6c83ed52
TT
13707 /* If we are reading an enum from a .debug_types unit, and the enum
13708 is a declaration, and the enum is not the signatured type in the
13709 unit, then we do not want to add a symbol for it. Adding a
13710 symbol would in some cases obscure the true definition of the
13711 enum, giving users an incomplete type when the definition is
13712 actually available. Note that we do not want to do this for all
13713 enums which are just declarations, because C++0x allows forward
13714 enum declarations. */
3019eac3 13715 if (cu->per_cu->is_debug_types
6c83ed52
TT
13716 && die_is_declaration (die, cu))
13717 {
52dc124a 13718 struct signatured_type *sig_type;
6c83ed52 13719
c0f78cd4 13720 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13721 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13722 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13723 return;
13724 }
13725
f792889a 13726 new_symbol (die, this_type, cu);
c906108c
SS
13727}
13728
13729/* Extract all information from a DW_TAG_array_type DIE and put it in
13730 the DIE's type field. For now, this only handles one dimensional
13731 arrays. */
13732
f792889a 13733static struct type *
e7c27a73 13734read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13735{
e7c27a73 13736 struct objfile *objfile = cu->objfile;
c906108c 13737 struct die_info *child_die;
7e314c57 13738 struct type *type;
c906108c
SS
13739 struct type *element_type, *range_type, *index_type;
13740 struct type **range_types = NULL;
13741 struct attribute *attr;
13742 int ndim = 0;
13743 struct cleanup *back_to;
15d034d0 13744 const char *name;
dc53a7ad 13745 unsigned int bit_stride = 0;
c906108c 13746
e7c27a73 13747 element_type = die_type (die, cu);
c906108c 13748
7e314c57
JK
13749 /* The die_type call above may have already set the type for this DIE. */
13750 type = get_die_type (die, cu);
13751 if (type)
13752 return type;
13753
dc53a7ad
JB
13754 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13755 if (attr != NULL)
13756 bit_stride = DW_UNSND (attr) * 8;
13757
13758 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13759 if (attr != NULL)
13760 bit_stride = DW_UNSND (attr);
13761
c906108c
SS
13762 /* Irix 6.2 native cc creates array types without children for
13763 arrays with unspecified length. */
639d11d3 13764 if (die->child == NULL)
c906108c 13765 {
46bf5051 13766 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13767 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13768 type = create_array_type_with_stride (NULL, element_type, range_type,
13769 bit_stride);
f792889a 13770 return set_die_type (die, type, cu);
c906108c
SS
13771 }
13772
13773 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13774 child_die = die->child;
c906108c
SS
13775 while (child_die && child_die->tag)
13776 {
13777 if (child_die->tag == DW_TAG_subrange_type)
13778 {
f792889a 13779 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13780
f792889a 13781 if (child_type != NULL)
a02abb62 13782 {
0963b4bd
MS
13783 /* The range type was succesfully read. Save it for the
13784 array type creation. */
a02abb62
JB
13785 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13786 {
13787 range_types = (struct type **)
13788 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13789 * sizeof (struct type *));
13790 if (ndim == 0)
13791 make_cleanup (free_current_contents, &range_types);
13792 }
f792889a 13793 range_types[ndim++] = child_type;
a02abb62 13794 }
c906108c
SS
13795 }
13796 child_die = sibling_die (child_die);
13797 }
13798
13799 /* Dwarf2 dimensions are output from left to right, create the
13800 necessary array types in backwards order. */
7ca2d3a3 13801
c906108c 13802 type = element_type;
7ca2d3a3
DL
13803
13804 if (read_array_order (die, cu) == DW_ORD_col_major)
13805 {
13806 int i = 0;
9a619af0 13807
7ca2d3a3 13808 while (i < ndim)
dc53a7ad
JB
13809 type = create_array_type_with_stride (NULL, type, range_types[i++],
13810 bit_stride);
7ca2d3a3
DL
13811 }
13812 else
13813 {
13814 while (ndim-- > 0)
dc53a7ad
JB
13815 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13816 bit_stride);
7ca2d3a3 13817 }
c906108c 13818
f5f8a009
EZ
13819 /* Understand Dwarf2 support for vector types (like they occur on
13820 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13821 array type. This is not part of the Dwarf2/3 standard yet, but a
13822 custom vendor extension. The main difference between a regular
13823 array and the vector variant is that vectors are passed by value
13824 to functions. */
e142c38c 13825 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13826 if (attr)
ea37ba09 13827 make_vector_type (type);
f5f8a009 13828
dbc98a8b
KW
13829 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13830 implementation may choose to implement triple vectors using this
13831 attribute. */
13832 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13833 if (attr)
13834 {
13835 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13836 TYPE_LENGTH (type) = DW_UNSND (attr);
13837 else
3e43a32a
MS
13838 complaint (&symfile_complaints,
13839 _("DW_AT_byte_size for array type smaller "
13840 "than the total size of elements"));
dbc98a8b
KW
13841 }
13842
39cbfefa
DJ
13843 name = dwarf2_name (die, cu);
13844 if (name)
13845 TYPE_NAME (type) = name;
6e70227d 13846
0963b4bd 13847 /* Install the type in the die. */
7e314c57
JK
13848 set_die_type (die, type, cu);
13849
13850 /* set_die_type should be already done. */
b4ba55a1
JB
13851 set_descriptive_type (type, die, cu);
13852
c906108c
SS
13853 do_cleanups (back_to);
13854
7e314c57 13855 return type;
c906108c
SS
13856}
13857
7ca2d3a3 13858static enum dwarf_array_dim_ordering
6e70227d 13859read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13860{
13861 struct attribute *attr;
13862
13863 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13864
aead7601
SM
13865 if (attr)
13866 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13867
0963b4bd
MS
13868 /* GNU F77 is a special case, as at 08/2004 array type info is the
13869 opposite order to the dwarf2 specification, but data is still
13870 laid out as per normal fortran.
7ca2d3a3 13871
0963b4bd
MS
13872 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13873 version checking. */
7ca2d3a3 13874
905e0470
PM
13875 if (cu->language == language_fortran
13876 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13877 {
13878 return DW_ORD_row_major;
13879 }
13880
6e70227d 13881 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13882 {
13883 case array_column_major:
13884 return DW_ORD_col_major;
13885 case array_row_major:
13886 default:
13887 return DW_ORD_row_major;
13888 };
13889}
13890
72019c9c 13891/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13892 the DIE's type field. */
72019c9c 13893
f792889a 13894static struct type *
72019c9c
GM
13895read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13896{
7e314c57
JK
13897 struct type *domain_type, *set_type;
13898 struct attribute *attr;
f792889a 13899
7e314c57
JK
13900 domain_type = die_type (die, cu);
13901
13902 /* The die_type call above may have already set the type for this DIE. */
13903 set_type = get_die_type (die, cu);
13904 if (set_type)
13905 return set_type;
13906
13907 set_type = create_set_type (NULL, domain_type);
13908
13909 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13910 if (attr)
13911 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13912
f792889a 13913 return set_die_type (die, set_type, cu);
72019c9c 13914}
7ca2d3a3 13915
0971de02
TT
13916/* A helper for read_common_block that creates a locexpr baton.
13917 SYM is the symbol which we are marking as computed.
13918 COMMON_DIE is the DIE for the common block.
13919 COMMON_LOC is the location expression attribute for the common
13920 block itself.
13921 MEMBER_LOC is the location expression attribute for the particular
13922 member of the common block that we are processing.
13923 CU is the CU from which the above come. */
13924
13925static void
13926mark_common_block_symbol_computed (struct symbol *sym,
13927 struct die_info *common_die,
13928 struct attribute *common_loc,
13929 struct attribute *member_loc,
13930 struct dwarf2_cu *cu)
13931{
13932 struct objfile *objfile = dwarf2_per_objfile->objfile;
13933 struct dwarf2_locexpr_baton *baton;
13934 gdb_byte *ptr;
13935 unsigned int cu_off;
13936 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13937 LONGEST offset = 0;
13938
13939 gdb_assert (common_loc && member_loc);
13940 gdb_assert (attr_form_is_block (common_loc));
13941 gdb_assert (attr_form_is_block (member_loc)
13942 || attr_form_is_constant (member_loc));
13943
8d749320 13944 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13945 baton->per_cu = cu->per_cu;
13946 gdb_assert (baton->per_cu);
13947
13948 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13949
13950 if (attr_form_is_constant (member_loc))
13951 {
13952 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13953 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13954 }
13955 else
13956 baton->size += DW_BLOCK (member_loc)->size;
13957
224c3ddb 13958 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13959 baton->data = ptr;
13960
13961 *ptr++ = DW_OP_call4;
13962 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13963 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13964 ptr += 4;
13965
13966 if (attr_form_is_constant (member_loc))
13967 {
13968 *ptr++ = DW_OP_addr;
13969 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13970 ptr += cu->header.addr_size;
13971 }
13972 else
13973 {
13974 /* We have to copy the data here, because DW_OP_call4 will only
13975 use a DW_AT_location attribute. */
13976 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13977 ptr += DW_BLOCK (member_loc)->size;
13978 }
13979
13980 *ptr++ = DW_OP_plus;
13981 gdb_assert (ptr - baton->data == baton->size);
13982
0971de02 13983 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13984 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13985}
13986
4357ac6c
TT
13987/* Create appropriate locally-scoped variables for all the
13988 DW_TAG_common_block entries. Also create a struct common_block
13989 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13990 is used to sepate the common blocks name namespace from regular
13991 variable names. */
c906108c
SS
13992
13993static void
e7c27a73 13994read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13995{
0971de02
TT
13996 struct attribute *attr;
13997
13998 attr = dwarf2_attr (die, DW_AT_location, cu);
13999 if (attr)
14000 {
14001 /* Support the .debug_loc offsets. */
14002 if (attr_form_is_block (attr))
14003 {
14004 /* Ok. */
14005 }
14006 else if (attr_form_is_section_offset (attr))
14007 {
14008 dwarf2_complex_location_expr_complaint ();
14009 attr = NULL;
14010 }
14011 else
14012 {
14013 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14014 "common block member");
14015 attr = NULL;
14016 }
14017 }
14018
639d11d3 14019 if (die->child != NULL)
c906108c 14020 {
4357ac6c
TT
14021 struct objfile *objfile = cu->objfile;
14022 struct die_info *child_die;
14023 size_t n_entries = 0, size;
14024 struct common_block *common_block;
14025 struct symbol *sym;
74ac6d43 14026
4357ac6c
TT
14027 for (child_die = die->child;
14028 child_die && child_die->tag;
14029 child_die = sibling_die (child_die))
14030 ++n_entries;
14031
14032 size = (sizeof (struct common_block)
14033 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14034 common_block
14035 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14036 size);
4357ac6c
TT
14037 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14038 common_block->n_entries = 0;
14039
14040 for (child_die = die->child;
14041 child_die && child_die->tag;
14042 child_die = sibling_die (child_die))
14043 {
14044 /* Create the symbol in the DW_TAG_common_block block in the current
14045 symbol scope. */
e7c27a73 14046 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14047 if (sym != NULL)
14048 {
14049 struct attribute *member_loc;
14050
14051 common_block->contents[common_block->n_entries++] = sym;
14052
14053 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14054 cu);
14055 if (member_loc)
14056 {
14057 /* GDB has handled this for a long time, but it is
14058 not specified by DWARF. It seems to have been
14059 emitted by gfortran at least as recently as:
14060 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14061 complaint (&symfile_complaints,
14062 _("Variable in common block has "
14063 "DW_AT_data_member_location "
14064 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14065 child_die->offset.sect_off,
14066 objfile_name (cu->objfile));
0971de02
TT
14067
14068 if (attr_form_is_section_offset (member_loc))
14069 dwarf2_complex_location_expr_complaint ();
14070 else if (attr_form_is_constant (member_loc)
14071 || attr_form_is_block (member_loc))
14072 {
14073 if (attr)
14074 mark_common_block_symbol_computed (sym, die, attr,
14075 member_loc, cu);
14076 }
14077 else
14078 dwarf2_complex_location_expr_complaint ();
14079 }
14080 }
c906108c 14081 }
4357ac6c
TT
14082
14083 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14084 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14085 }
14086}
14087
0114d602 14088/* Create a type for a C++ namespace. */
d9fa45fe 14089
0114d602
DJ
14090static struct type *
14091read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14092{
e7c27a73 14093 struct objfile *objfile = cu->objfile;
0114d602 14094 const char *previous_prefix, *name;
9219021c 14095 int is_anonymous;
0114d602
DJ
14096 struct type *type;
14097
14098 /* For extensions, reuse the type of the original namespace. */
14099 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14100 {
14101 struct die_info *ext_die;
14102 struct dwarf2_cu *ext_cu = cu;
9a619af0 14103
0114d602
DJ
14104 ext_die = dwarf2_extension (die, &ext_cu);
14105 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14106
14107 /* EXT_CU may not be the same as CU.
02142a6c 14108 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14109 return set_die_type (die, type, cu);
14110 }
9219021c 14111
e142c38c 14112 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14113
14114 /* Now build the name of the current namespace. */
14115
0114d602
DJ
14116 previous_prefix = determine_prefix (die, cu);
14117 if (previous_prefix[0] != '\0')
14118 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14119 previous_prefix, name, 0, cu);
0114d602
DJ
14120
14121 /* Create the type. */
14122 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14123 objfile);
abee88f2 14124 TYPE_NAME (type) = name;
0114d602
DJ
14125 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14126
60531b24 14127 return set_die_type (die, type, cu);
0114d602
DJ
14128}
14129
22cee43f 14130/* Read a namespace scope. */
0114d602
DJ
14131
14132static void
14133read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14134{
14135 struct objfile *objfile = cu->objfile;
0114d602 14136 int is_anonymous;
9219021c 14137
5c4e30ca
DC
14138 /* Add a symbol associated to this if we haven't seen the namespace
14139 before. Also, add a using directive if it's an anonymous
14140 namespace. */
9219021c 14141
f2f0e013 14142 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14143 {
14144 struct type *type;
14145
0114d602 14146 type = read_type_die (die, cu);
e7c27a73 14147 new_symbol (die, type, cu);
5c4e30ca 14148
e8e80198 14149 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14150 if (is_anonymous)
0114d602
DJ
14151 {
14152 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14153
22cee43f
PMR
14154 add_using_directive (using_directives (cu->language),
14155 previous_prefix, TYPE_NAME (type), NULL,
14156 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14157 }
5c4e30ca 14158 }
9219021c 14159
639d11d3 14160 if (die->child != NULL)
d9fa45fe 14161 {
639d11d3 14162 struct die_info *child_die = die->child;
6e70227d 14163
d9fa45fe
DC
14164 while (child_die && child_die->tag)
14165 {
e7c27a73 14166 process_die (child_die, cu);
d9fa45fe
DC
14167 child_die = sibling_die (child_die);
14168 }
14169 }
38d518c9
EZ
14170}
14171
f55ee35c
JK
14172/* Read a Fortran module as type. This DIE can be only a declaration used for
14173 imported module. Still we need that type as local Fortran "use ... only"
14174 declaration imports depend on the created type in determine_prefix. */
14175
14176static struct type *
14177read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14178{
14179 struct objfile *objfile = cu->objfile;
15d034d0 14180 const char *module_name;
f55ee35c
JK
14181 struct type *type;
14182
14183 module_name = dwarf2_name (die, cu);
14184 if (!module_name)
3e43a32a
MS
14185 complaint (&symfile_complaints,
14186 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14187 die->offset.sect_off);
f55ee35c
JK
14188 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14189
14190 /* determine_prefix uses TYPE_TAG_NAME. */
14191 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14192
14193 return set_die_type (die, type, cu);
14194}
14195
5d7cb8df
JK
14196/* Read a Fortran module. */
14197
14198static void
14199read_module (struct die_info *die, struct dwarf2_cu *cu)
14200{
14201 struct die_info *child_die = die->child;
530e8392
KB
14202 struct type *type;
14203
14204 type = read_type_die (die, cu);
14205 new_symbol (die, type, cu);
5d7cb8df 14206
5d7cb8df
JK
14207 while (child_die && child_die->tag)
14208 {
14209 process_die (child_die, cu);
14210 child_die = sibling_die (child_die);
14211 }
14212}
14213
38d518c9
EZ
14214/* Return the name of the namespace represented by DIE. Set
14215 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14216 namespace. */
14217
14218static const char *
e142c38c 14219namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14220{
14221 struct die_info *current_die;
14222 const char *name = NULL;
14223
14224 /* Loop through the extensions until we find a name. */
14225
14226 for (current_die = die;
14227 current_die != NULL;
f2f0e013 14228 current_die = dwarf2_extension (die, &cu))
38d518c9 14229 {
96553a0c
DE
14230 /* We don't use dwarf2_name here so that we can detect the absence
14231 of a name -> anonymous namespace. */
7d45c7c3 14232 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14233
38d518c9
EZ
14234 if (name != NULL)
14235 break;
14236 }
14237
14238 /* Is it an anonymous namespace? */
14239
14240 *is_anonymous = (name == NULL);
14241 if (*is_anonymous)
2b1dbab0 14242 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14243
14244 return name;
d9fa45fe
DC
14245}
14246
c906108c
SS
14247/* Extract all information from a DW_TAG_pointer_type DIE and add to
14248 the user defined type vector. */
14249
f792889a 14250static struct type *
e7c27a73 14251read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14252{
5e2b427d 14253 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14254 struct comp_unit_head *cu_header = &cu->header;
c906108c 14255 struct type *type;
8b2dbe47
KB
14256 struct attribute *attr_byte_size;
14257 struct attribute *attr_address_class;
14258 int byte_size, addr_class;
7e314c57
JK
14259 struct type *target_type;
14260
14261 target_type = die_type (die, cu);
c906108c 14262
7e314c57
JK
14263 /* The die_type call above may have already set the type for this DIE. */
14264 type = get_die_type (die, cu);
14265 if (type)
14266 return type;
14267
14268 type = lookup_pointer_type (target_type);
8b2dbe47 14269
e142c38c 14270 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14271 if (attr_byte_size)
14272 byte_size = DW_UNSND (attr_byte_size);
c906108c 14273 else
8b2dbe47
KB
14274 byte_size = cu_header->addr_size;
14275
e142c38c 14276 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14277 if (attr_address_class)
14278 addr_class = DW_UNSND (attr_address_class);
14279 else
14280 addr_class = DW_ADDR_none;
14281
14282 /* If the pointer size or address class is different than the
14283 default, create a type variant marked as such and set the
14284 length accordingly. */
14285 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14286 {
5e2b427d 14287 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14288 {
14289 int type_flags;
14290
849957d9 14291 type_flags = gdbarch_address_class_type_flags
5e2b427d 14292 (gdbarch, byte_size, addr_class);
876cecd0
TT
14293 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14294 == 0);
8b2dbe47
KB
14295 type = make_type_with_address_space (type, type_flags);
14296 }
14297 else if (TYPE_LENGTH (type) != byte_size)
14298 {
3e43a32a
MS
14299 complaint (&symfile_complaints,
14300 _("invalid pointer size %d"), byte_size);
8b2dbe47 14301 }
6e70227d 14302 else
9a619af0
MS
14303 {
14304 /* Should we also complain about unhandled address classes? */
14305 }
c906108c 14306 }
8b2dbe47
KB
14307
14308 TYPE_LENGTH (type) = byte_size;
f792889a 14309 return set_die_type (die, type, cu);
c906108c
SS
14310}
14311
14312/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14313 the user defined type vector. */
14314
f792889a 14315static struct type *
e7c27a73 14316read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14317{
14318 struct type *type;
14319 struct type *to_type;
14320 struct type *domain;
14321
e7c27a73
DJ
14322 to_type = die_type (die, cu);
14323 domain = die_containing_type (die, cu);
0d5de010 14324
7e314c57
JK
14325 /* The calls above may have already set the type for this DIE. */
14326 type = get_die_type (die, cu);
14327 if (type)
14328 return type;
14329
0d5de010
DJ
14330 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14331 type = lookup_methodptr_type (to_type);
7078baeb
TT
14332 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14333 {
14334 struct type *new_type = alloc_type (cu->objfile);
14335
14336 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14337 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14338 TYPE_VARARGS (to_type));
14339 type = lookup_methodptr_type (new_type);
14340 }
0d5de010
DJ
14341 else
14342 type = lookup_memberptr_type (to_type, domain);
c906108c 14343
f792889a 14344 return set_die_type (die, type, cu);
c906108c
SS
14345}
14346
14347/* Extract all information from a DW_TAG_reference_type DIE and add to
14348 the user defined type vector. */
14349
f792889a 14350static struct type *
e7c27a73 14351read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14352{
e7c27a73 14353 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14354 struct type *type, *target_type;
c906108c
SS
14355 struct attribute *attr;
14356
7e314c57
JK
14357 target_type = die_type (die, cu);
14358
14359 /* The die_type call above may have already set the type for this DIE. */
14360 type = get_die_type (die, cu);
14361 if (type)
14362 return type;
14363
14364 type = lookup_reference_type (target_type);
e142c38c 14365 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14366 if (attr)
14367 {
14368 TYPE_LENGTH (type) = DW_UNSND (attr);
14369 }
14370 else
14371 {
107d2387 14372 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14373 }
f792889a 14374 return set_die_type (die, type, cu);
c906108c
SS
14375}
14376
cf363f18
MW
14377/* Add the given cv-qualifiers to the element type of the array. GCC
14378 outputs DWARF type qualifiers that apply to an array, not the
14379 element type. But GDB relies on the array element type to carry
14380 the cv-qualifiers. This mimics section 6.7.3 of the C99
14381 specification. */
14382
14383static struct type *
14384add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14385 struct type *base_type, int cnst, int voltl)
14386{
14387 struct type *el_type, *inner_array;
14388
14389 base_type = copy_type (base_type);
14390 inner_array = base_type;
14391
14392 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14393 {
14394 TYPE_TARGET_TYPE (inner_array) =
14395 copy_type (TYPE_TARGET_TYPE (inner_array));
14396 inner_array = TYPE_TARGET_TYPE (inner_array);
14397 }
14398
14399 el_type = TYPE_TARGET_TYPE (inner_array);
14400 cnst |= TYPE_CONST (el_type);
14401 voltl |= TYPE_VOLATILE (el_type);
14402 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14403
14404 return set_die_type (die, base_type, cu);
14405}
14406
f792889a 14407static struct type *
e7c27a73 14408read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14409{
f792889a 14410 struct type *base_type, *cv_type;
c906108c 14411
e7c27a73 14412 base_type = die_type (die, cu);
7e314c57
JK
14413
14414 /* The die_type call above may have already set the type for this DIE. */
14415 cv_type = get_die_type (die, cu);
14416 if (cv_type)
14417 return cv_type;
14418
2f608a3a
KW
14419 /* In case the const qualifier is applied to an array type, the element type
14420 is so qualified, not the array type (section 6.7.3 of C99). */
14421 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14422 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14423
f792889a
DJ
14424 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14425 return set_die_type (die, cv_type, cu);
c906108c
SS
14426}
14427
f792889a 14428static struct type *
e7c27a73 14429read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14430{
f792889a 14431 struct type *base_type, *cv_type;
c906108c 14432
e7c27a73 14433 base_type = die_type (die, cu);
7e314c57
JK
14434
14435 /* The die_type call above may have already set the type for this DIE. */
14436 cv_type = get_die_type (die, cu);
14437 if (cv_type)
14438 return cv_type;
14439
cf363f18
MW
14440 /* In case the volatile qualifier is applied to an array type, the
14441 element type is so qualified, not the array type (section 6.7.3
14442 of C99). */
14443 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14444 return add_array_cv_type (die, cu, base_type, 0, 1);
14445
f792889a
DJ
14446 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14447 return set_die_type (die, cv_type, cu);
c906108c
SS
14448}
14449
06d66ee9
TT
14450/* Handle DW_TAG_restrict_type. */
14451
14452static struct type *
14453read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14454{
14455 struct type *base_type, *cv_type;
14456
14457 base_type = die_type (die, cu);
14458
14459 /* The die_type call above may have already set the type for this DIE. */
14460 cv_type = get_die_type (die, cu);
14461 if (cv_type)
14462 return cv_type;
14463
14464 cv_type = make_restrict_type (base_type);
14465 return set_die_type (die, cv_type, cu);
14466}
14467
a2c2acaf
MW
14468/* Handle DW_TAG_atomic_type. */
14469
14470static struct type *
14471read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14472{
14473 struct type *base_type, *cv_type;
14474
14475 base_type = die_type (die, cu);
14476
14477 /* The die_type call above may have already set the type for this DIE. */
14478 cv_type = get_die_type (die, cu);
14479 if (cv_type)
14480 return cv_type;
14481
14482 cv_type = make_atomic_type (base_type);
14483 return set_die_type (die, cv_type, cu);
14484}
14485
c906108c
SS
14486/* Extract all information from a DW_TAG_string_type DIE and add to
14487 the user defined type vector. It isn't really a user defined type,
14488 but it behaves like one, with other DIE's using an AT_user_def_type
14489 attribute to reference it. */
14490
f792889a 14491static struct type *
e7c27a73 14492read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14493{
e7c27a73 14494 struct objfile *objfile = cu->objfile;
3b7538c0 14495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14496 struct type *type, *range_type, *index_type, *char_type;
14497 struct attribute *attr;
14498 unsigned int length;
14499
e142c38c 14500 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14501 if (attr)
14502 {
14503 length = DW_UNSND (attr);
14504 }
14505 else
14506 {
0963b4bd 14507 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14508 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14509 if (attr)
14510 {
14511 length = DW_UNSND (attr);
14512 }
14513 else
14514 {
14515 length = 1;
14516 }
c906108c 14517 }
6ccb9162 14518
46bf5051 14519 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14520 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14521 char_type = language_string_char_type (cu->language_defn, gdbarch);
14522 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14523
f792889a 14524 return set_die_type (die, type, cu);
c906108c
SS
14525}
14526
4d804846
JB
14527/* Assuming that DIE corresponds to a function, returns nonzero
14528 if the function is prototyped. */
14529
14530static int
14531prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14532{
14533 struct attribute *attr;
14534
14535 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14536 if (attr && (DW_UNSND (attr) != 0))
14537 return 1;
14538
14539 /* The DWARF standard implies that the DW_AT_prototyped attribute
14540 is only meaninful for C, but the concept also extends to other
14541 languages that allow unprototyped functions (Eg: Objective C).
14542 For all other languages, assume that functions are always
14543 prototyped. */
14544 if (cu->language != language_c
14545 && cu->language != language_objc
14546 && cu->language != language_opencl)
14547 return 1;
14548
14549 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14550 prototyped and unprototyped functions; default to prototyped,
14551 since that is more common in modern code (and RealView warns
14552 about unprototyped functions). */
14553 if (producer_is_realview (cu->producer))
14554 return 1;
14555
14556 return 0;
14557}
14558
c906108c
SS
14559/* Handle DIES due to C code like:
14560
14561 struct foo
c5aa993b
JM
14562 {
14563 int (*funcp)(int a, long l);
14564 int b;
14565 };
c906108c 14566
0963b4bd 14567 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14568
f792889a 14569static struct type *
e7c27a73 14570read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14571{
bb5ed363 14572 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14573 struct type *type; /* Type that this function returns. */
14574 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14575 struct attribute *attr;
14576
e7c27a73 14577 type = die_type (die, cu);
7e314c57
JK
14578
14579 /* The die_type call above may have already set the type for this DIE. */
14580 ftype = get_die_type (die, cu);
14581 if (ftype)
14582 return ftype;
14583
0c8b41f1 14584 ftype = lookup_function_type (type);
c906108c 14585
4d804846 14586 if (prototyped_function_p (die, cu))
a6c727b2 14587 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14588
c055b101
CV
14589 /* Store the calling convention in the type if it's available in
14590 the subroutine die. Otherwise set the calling convention to
14591 the default value DW_CC_normal. */
14592 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14593 if (attr)
14594 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14595 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14596 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14597 else
14598 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14599
743649fd
MW
14600 /* Record whether the function returns normally to its caller or not
14601 if the DWARF producer set that information. */
14602 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14603 if (attr && (DW_UNSND (attr) != 0))
14604 TYPE_NO_RETURN (ftype) = 1;
14605
76c10ea2
GM
14606 /* We need to add the subroutine type to the die immediately so
14607 we don't infinitely recurse when dealing with parameters
0963b4bd 14608 declared as the same subroutine type. */
76c10ea2 14609 set_die_type (die, ftype, cu);
6e70227d 14610
639d11d3 14611 if (die->child != NULL)
c906108c 14612 {
bb5ed363 14613 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14614 struct die_info *child_die;
8072405b 14615 int nparams, iparams;
c906108c
SS
14616
14617 /* Count the number of parameters.
14618 FIXME: GDB currently ignores vararg functions, but knows about
14619 vararg member functions. */
8072405b 14620 nparams = 0;
639d11d3 14621 child_die = die->child;
c906108c
SS
14622 while (child_die && child_die->tag)
14623 {
14624 if (child_die->tag == DW_TAG_formal_parameter)
14625 nparams++;
14626 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14627 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14628 child_die = sibling_die (child_die);
14629 }
14630
14631 /* Allocate storage for parameters and fill them in. */
14632 TYPE_NFIELDS (ftype) = nparams;
14633 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14634 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14635
8072405b
JK
14636 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14637 even if we error out during the parameters reading below. */
14638 for (iparams = 0; iparams < nparams; iparams++)
14639 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14640
14641 iparams = 0;
639d11d3 14642 child_die = die->child;
c906108c
SS
14643 while (child_die && child_die->tag)
14644 {
14645 if (child_die->tag == DW_TAG_formal_parameter)
14646 {
3ce3b1ba
PA
14647 struct type *arg_type;
14648
14649 /* DWARF version 2 has no clean way to discern C++
14650 static and non-static member functions. G++ helps
14651 GDB by marking the first parameter for non-static
14652 member functions (which is the this pointer) as
14653 artificial. We pass this information to
14654 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14655
14656 DWARF version 3 added DW_AT_object_pointer, which GCC
14657 4.5 does not yet generate. */
e142c38c 14658 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14659 if (attr)
14660 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14661 else
418835cc
KS
14662 {
14663 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14664
14665 /* GCC/43521: In java, the formal parameter
14666 "this" is sometimes not marked with DW_AT_artificial. */
14667 if (cu->language == language_java)
14668 {
14669 const char *name = dwarf2_name (child_die, cu);
9a619af0 14670
418835cc
KS
14671 if (name && !strcmp (name, "this"))
14672 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14673 }
14674 }
3ce3b1ba
PA
14675 arg_type = die_type (child_die, cu);
14676
14677 /* RealView does not mark THIS as const, which the testsuite
14678 expects. GCC marks THIS as const in method definitions,
14679 but not in the class specifications (GCC PR 43053). */
14680 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14681 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14682 {
14683 int is_this = 0;
14684 struct dwarf2_cu *arg_cu = cu;
14685 const char *name = dwarf2_name (child_die, cu);
14686
14687 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14688 if (attr)
14689 {
14690 /* If the compiler emits this, use it. */
14691 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14692 is_this = 1;
14693 }
14694 else if (name && strcmp (name, "this") == 0)
14695 /* Function definitions will have the argument names. */
14696 is_this = 1;
14697 else if (name == NULL && iparams == 0)
14698 /* Declarations may not have the names, so like
14699 elsewhere in GDB, assume an artificial first
14700 argument is "this". */
14701 is_this = 1;
14702
14703 if (is_this)
14704 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14705 arg_type, 0);
14706 }
14707
14708 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14709 iparams++;
14710 }
14711 child_die = sibling_die (child_die);
14712 }
14713 }
14714
76c10ea2 14715 return ftype;
c906108c
SS
14716}
14717
f792889a 14718static struct type *
e7c27a73 14719read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14720{
e7c27a73 14721 struct objfile *objfile = cu->objfile;
0114d602 14722 const char *name = NULL;
3c8e0968 14723 struct type *this_type, *target_type;
c906108c 14724
94af9270 14725 name = dwarf2_full_name (NULL, die, cu);
f792889a 14726 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14727 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14728 TYPE_NAME (this_type) = name;
f792889a 14729 set_die_type (die, this_type, cu);
3c8e0968
DE
14730 target_type = die_type (die, cu);
14731 if (target_type != this_type)
14732 TYPE_TARGET_TYPE (this_type) = target_type;
14733 else
14734 {
14735 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14736 spec and cause infinite loops in GDB. */
14737 complaint (&symfile_complaints,
14738 _("Self-referential DW_TAG_typedef "
14739 "- DIE at 0x%x [in module %s]"),
4262abfb 14740 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14741 TYPE_TARGET_TYPE (this_type) = NULL;
14742 }
f792889a 14743 return this_type;
c906108c
SS
14744}
14745
14746/* Find a representation of a given base type and install
14747 it in the TYPE field of the die. */
14748
f792889a 14749static struct type *
e7c27a73 14750read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14751{
e7c27a73 14752 struct objfile *objfile = cu->objfile;
c906108c
SS
14753 struct type *type;
14754 struct attribute *attr;
14755 int encoding = 0, size = 0;
15d034d0 14756 const char *name;
6ccb9162
UW
14757 enum type_code code = TYPE_CODE_INT;
14758 int type_flags = 0;
14759 struct type *target_type = NULL;
c906108c 14760
e142c38c 14761 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14762 if (attr)
14763 {
14764 encoding = DW_UNSND (attr);
14765 }
e142c38c 14766 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14767 if (attr)
14768 {
14769 size = DW_UNSND (attr);
14770 }
39cbfefa 14771 name = dwarf2_name (die, cu);
6ccb9162 14772 if (!name)
c906108c 14773 {
6ccb9162
UW
14774 complaint (&symfile_complaints,
14775 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14776 }
6ccb9162
UW
14777
14778 switch (encoding)
c906108c 14779 {
6ccb9162
UW
14780 case DW_ATE_address:
14781 /* Turn DW_ATE_address into a void * pointer. */
14782 code = TYPE_CODE_PTR;
14783 type_flags |= TYPE_FLAG_UNSIGNED;
14784 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14785 break;
14786 case DW_ATE_boolean:
14787 code = TYPE_CODE_BOOL;
14788 type_flags |= TYPE_FLAG_UNSIGNED;
14789 break;
14790 case DW_ATE_complex_float:
14791 code = TYPE_CODE_COMPLEX;
14792 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14793 break;
14794 case DW_ATE_decimal_float:
14795 code = TYPE_CODE_DECFLOAT;
14796 break;
14797 case DW_ATE_float:
14798 code = TYPE_CODE_FLT;
14799 break;
14800 case DW_ATE_signed:
14801 break;
14802 case DW_ATE_unsigned:
14803 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14804 if (cu->language == language_fortran
14805 && name
61012eef 14806 && startswith (name, "character("))
3b2b8fea 14807 code = TYPE_CODE_CHAR;
6ccb9162
UW
14808 break;
14809 case DW_ATE_signed_char:
6e70227d 14810 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14811 || cu->language == language_pascal
14812 || cu->language == language_fortran)
6ccb9162
UW
14813 code = TYPE_CODE_CHAR;
14814 break;
14815 case DW_ATE_unsigned_char:
868a0084 14816 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14817 || cu->language == language_pascal
c44af4eb
TT
14818 || cu->language == language_fortran
14819 || cu->language == language_rust)
6ccb9162
UW
14820 code = TYPE_CODE_CHAR;
14821 type_flags |= TYPE_FLAG_UNSIGNED;
14822 break;
75079b2b
TT
14823 case DW_ATE_UTF:
14824 /* We just treat this as an integer and then recognize the
14825 type by name elsewhere. */
14826 break;
14827
6ccb9162
UW
14828 default:
14829 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14830 dwarf_type_encoding_name (encoding));
14831 break;
c906108c 14832 }
6ccb9162 14833
0114d602
DJ
14834 type = init_type (code, size, type_flags, NULL, objfile);
14835 TYPE_NAME (type) = name;
6ccb9162
UW
14836 TYPE_TARGET_TYPE (type) = target_type;
14837
0114d602 14838 if (name && strcmp (name, "char") == 0)
876cecd0 14839 TYPE_NOSIGN (type) = 1;
0114d602 14840
f792889a 14841 return set_die_type (die, type, cu);
c906108c
SS
14842}
14843
80180f79
SA
14844/* Parse dwarf attribute if it's a block, reference or constant and put the
14845 resulting value of the attribute into struct bound_prop.
14846 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14847
14848static int
14849attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14850 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14851{
14852 struct dwarf2_property_baton *baton;
14853 struct obstack *obstack = &cu->objfile->objfile_obstack;
14854
14855 if (attr == NULL || prop == NULL)
14856 return 0;
14857
14858 if (attr_form_is_block (attr))
14859 {
8d749320 14860 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14861 baton->referenced_type = NULL;
14862 baton->locexpr.per_cu = cu->per_cu;
14863 baton->locexpr.size = DW_BLOCK (attr)->size;
14864 baton->locexpr.data = DW_BLOCK (attr)->data;
14865 prop->data.baton = baton;
14866 prop->kind = PROP_LOCEXPR;
14867 gdb_assert (prop->data.baton != NULL);
14868 }
14869 else if (attr_form_is_ref (attr))
14870 {
14871 struct dwarf2_cu *target_cu = cu;
14872 struct die_info *target_die;
14873 struct attribute *target_attr;
14874
14875 target_die = follow_die_ref (die, attr, &target_cu);
14876 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14877 if (target_attr == NULL)
14878 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14879 target_cu);
80180f79
SA
14880 if (target_attr == NULL)
14881 return 0;
14882
df25ebbd 14883 switch (target_attr->name)
80180f79 14884 {
df25ebbd
JB
14885 case DW_AT_location:
14886 if (attr_form_is_section_offset (target_attr))
14887 {
8d749320 14888 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14889 baton->referenced_type = die_type (target_die, target_cu);
14890 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14891 prop->data.baton = baton;
14892 prop->kind = PROP_LOCLIST;
14893 gdb_assert (prop->data.baton != NULL);
14894 }
14895 else if (attr_form_is_block (target_attr))
14896 {
8d749320 14897 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14898 baton->referenced_type = die_type (target_die, target_cu);
14899 baton->locexpr.per_cu = cu->per_cu;
14900 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14901 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14902 prop->data.baton = baton;
14903 prop->kind = PROP_LOCEXPR;
14904 gdb_assert (prop->data.baton != NULL);
14905 }
14906 else
14907 {
14908 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14909 "dynamic property");
14910 return 0;
14911 }
14912 break;
14913 case DW_AT_data_member_location:
14914 {
14915 LONGEST offset;
14916
14917 if (!handle_data_member_location (target_die, target_cu,
14918 &offset))
14919 return 0;
14920
8d749320 14921 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14922 baton->referenced_type = read_type_die (target_die->parent,
14923 target_cu);
df25ebbd
JB
14924 baton->offset_info.offset = offset;
14925 baton->offset_info.type = die_type (target_die, target_cu);
14926 prop->data.baton = baton;
14927 prop->kind = PROP_ADDR_OFFSET;
14928 break;
14929 }
80180f79
SA
14930 }
14931 }
14932 else if (attr_form_is_constant (attr))
14933 {
14934 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14935 prop->kind = PROP_CONST;
14936 }
14937 else
14938 {
14939 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14940 dwarf2_name (die, cu));
14941 return 0;
14942 }
14943
14944 return 1;
14945}
14946
a02abb62
JB
14947/* Read the given DW_AT_subrange DIE. */
14948
f792889a 14949static struct type *
a02abb62
JB
14950read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14951{
4c9ad8c2 14952 struct type *base_type, *orig_base_type;
a02abb62
JB
14953 struct type *range_type;
14954 struct attribute *attr;
729efb13 14955 struct dynamic_prop low, high;
4fae6e18 14956 int low_default_is_valid;
c451ebe5 14957 int high_bound_is_count = 0;
15d034d0 14958 const char *name;
43bbcdc2 14959 LONGEST negative_mask;
e77813c8 14960
4c9ad8c2
TT
14961 orig_base_type = die_type (die, cu);
14962 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14963 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14964 creating the range type, but we use the result of check_typedef
14965 when examining properties of the type. */
14966 base_type = check_typedef (orig_base_type);
a02abb62 14967
7e314c57
JK
14968 /* The die_type call above may have already set the type for this DIE. */
14969 range_type = get_die_type (die, cu);
14970 if (range_type)
14971 return range_type;
14972
729efb13
SA
14973 low.kind = PROP_CONST;
14974 high.kind = PROP_CONST;
14975 high.data.const_val = 0;
14976
4fae6e18
JK
14977 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14978 omitting DW_AT_lower_bound. */
14979 switch (cu->language)
6e70227d 14980 {
4fae6e18
JK
14981 case language_c:
14982 case language_cplus:
729efb13 14983 low.data.const_val = 0;
4fae6e18
JK
14984 low_default_is_valid = 1;
14985 break;
14986 case language_fortran:
729efb13 14987 low.data.const_val = 1;
4fae6e18
JK
14988 low_default_is_valid = 1;
14989 break;
14990 case language_d:
14991 case language_java:
14992 case language_objc:
c44af4eb 14993 case language_rust:
729efb13 14994 low.data.const_val = 0;
4fae6e18
JK
14995 low_default_is_valid = (cu->header.version >= 4);
14996 break;
14997 case language_ada:
14998 case language_m2:
14999 case language_pascal:
729efb13 15000 low.data.const_val = 1;
4fae6e18
JK
15001 low_default_is_valid = (cu->header.version >= 4);
15002 break;
15003 default:
729efb13 15004 low.data.const_val = 0;
4fae6e18
JK
15005 low_default_is_valid = 0;
15006 break;
a02abb62
JB
15007 }
15008
e142c38c 15009 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15010 if (attr)
11c1ba78 15011 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15012 else if (!low_default_is_valid)
15013 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15014 "- DIE at 0x%x [in module %s]"),
4262abfb 15015 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15016
e142c38c 15017 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15018 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15019 {
15020 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15021 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15022 {
c451ebe5
SA
15023 /* If bounds are constant do the final calculation here. */
15024 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15025 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15026 else
15027 high_bound_is_count = 1;
c2ff108b 15028 }
e77813c8
PM
15029 }
15030
15031 /* Dwarf-2 specifications explicitly allows to create subrange types
15032 without specifying a base type.
15033 In that case, the base type must be set to the type of
15034 the lower bound, upper bound or count, in that order, if any of these
15035 three attributes references an object that has a type.
15036 If no base type is found, the Dwarf-2 specifications say that
15037 a signed integer type of size equal to the size of an address should
15038 be used.
15039 For the following C code: `extern char gdb_int [];'
15040 GCC produces an empty range DIE.
15041 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15042 high bound or count are not yet handled by this code. */
e77813c8
PM
15043 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15044 {
15045 struct objfile *objfile = cu->objfile;
15046 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15047 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15048 struct type *int_type = objfile_type (objfile)->builtin_int;
15049
15050 /* Test "int", "long int", and "long long int" objfile types,
15051 and select the first one having a size above or equal to the
15052 architecture address size. */
15053 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15054 base_type = int_type;
15055 else
15056 {
15057 int_type = objfile_type (objfile)->builtin_long;
15058 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15059 base_type = int_type;
15060 else
15061 {
15062 int_type = objfile_type (objfile)->builtin_long_long;
15063 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15064 base_type = int_type;
15065 }
15066 }
15067 }
a02abb62 15068
dbb9c2b1
JB
15069 /* Normally, the DWARF producers are expected to use a signed
15070 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15071 But this is unfortunately not always the case, as witnessed
15072 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15073 is used instead. To work around that ambiguity, we treat
15074 the bounds as signed, and thus sign-extend their values, when
15075 the base type is signed. */
6e70227d 15076 negative_mask =
66c6502d 15077 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15078 if (low.kind == PROP_CONST
15079 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15080 low.data.const_val |= negative_mask;
15081 if (high.kind == PROP_CONST
15082 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15083 high.data.const_val |= negative_mask;
43bbcdc2 15084
729efb13 15085 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15086
c451ebe5
SA
15087 if (high_bound_is_count)
15088 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15089
c2ff108b
JK
15090 /* Ada expects an empty array on no boundary attributes. */
15091 if (attr == NULL && cu->language != language_ada)
729efb13 15092 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15093
39cbfefa
DJ
15094 name = dwarf2_name (die, cu);
15095 if (name)
15096 TYPE_NAME (range_type) = name;
6e70227d 15097
e142c38c 15098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15099 if (attr)
15100 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15101
7e314c57
JK
15102 set_die_type (die, range_type, cu);
15103
15104 /* set_die_type should be already done. */
b4ba55a1
JB
15105 set_descriptive_type (range_type, die, cu);
15106
7e314c57 15107 return range_type;
a02abb62 15108}
6e70227d 15109
f792889a 15110static struct type *
81a17f79
JB
15111read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15112{
15113 struct type *type;
81a17f79 15114
81a17f79
JB
15115 /* For now, we only support the C meaning of an unspecified type: void. */
15116
0114d602
DJ
15117 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15118 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15119
f792889a 15120 return set_die_type (die, type, cu);
81a17f79 15121}
a02abb62 15122
639d11d3
DC
15123/* Read a single die and all its descendents. Set the die's sibling
15124 field to NULL; set other fields in the die correctly, and set all
15125 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15126 location of the info_ptr after reading all of those dies. PARENT
15127 is the parent of the die in question. */
15128
15129static struct die_info *
dee91e82 15130read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15131 const gdb_byte *info_ptr,
15132 const gdb_byte **new_info_ptr,
dee91e82 15133 struct die_info *parent)
639d11d3
DC
15134{
15135 struct die_info *die;
d521ce57 15136 const gdb_byte *cur_ptr;
639d11d3
DC
15137 int has_children;
15138
bf6af496 15139 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15140 if (die == NULL)
15141 {
15142 *new_info_ptr = cur_ptr;
15143 return NULL;
15144 }
93311388 15145 store_in_ref_table (die, reader->cu);
639d11d3
DC
15146
15147 if (has_children)
bf6af496 15148 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15149 else
15150 {
15151 die->child = NULL;
15152 *new_info_ptr = cur_ptr;
15153 }
15154
15155 die->sibling = NULL;
15156 die->parent = parent;
15157 return die;
15158}
15159
15160/* Read a die, all of its descendents, and all of its siblings; set
15161 all of the fields of all of the dies correctly. Arguments are as
15162 in read_die_and_children. */
15163
15164static struct die_info *
bf6af496 15165read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15166 const gdb_byte *info_ptr,
15167 const gdb_byte **new_info_ptr,
bf6af496 15168 struct die_info *parent)
639d11d3
DC
15169{
15170 struct die_info *first_die, *last_sibling;
d521ce57 15171 const gdb_byte *cur_ptr;
639d11d3 15172
c906108c 15173 cur_ptr = info_ptr;
639d11d3
DC
15174 first_die = last_sibling = NULL;
15175
15176 while (1)
c906108c 15177 {
639d11d3 15178 struct die_info *die
dee91e82 15179 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15180
1d325ec1 15181 if (die == NULL)
c906108c 15182 {
639d11d3
DC
15183 *new_info_ptr = cur_ptr;
15184 return first_die;
c906108c 15185 }
1d325ec1
DJ
15186
15187 if (!first_die)
15188 first_die = die;
c906108c 15189 else
1d325ec1
DJ
15190 last_sibling->sibling = die;
15191
15192 last_sibling = die;
c906108c 15193 }
c906108c
SS
15194}
15195
bf6af496
DE
15196/* Read a die, all of its descendents, and all of its siblings; set
15197 all of the fields of all of the dies correctly. Arguments are as
15198 in read_die_and_children.
15199 This the main entry point for reading a DIE and all its children. */
15200
15201static struct die_info *
15202read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15203 const gdb_byte *info_ptr,
15204 const gdb_byte **new_info_ptr,
bf6af496
DE
15205 struct die_info *parent)
15206{
15207 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15208 new_info_ptr, parent);
15209
b4f54984 15210 if (dwarf_die_debug)
bf6af496
DE
15211 {
15212 fprintf_unfiltered (gdb_stdlog,
15213 "Read die from %s@0x%x of %s:\n",
a32a8923 15214 get_section_name (reader->die_section),
bf6af496
DE
15215 (unsigned) (info_ptr - reader->die_section->buffer),
15216 bfd_get_filename (reader->abfd));
b4f54984 15217 dump_die (die, dwarf_die_debug);
bf6af496
DE
15218 }
15219
15220 return die;
15221}
15222
3019eac3
DE
15223/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15224 attributes.
15225 The caller is responsible for filling in the extra attributes
15226 and updating (*DIEP)->num_attrs.
15227 Set DIEP to point to a newly allocated die with its information,
15228 except for its child, sibling, and parent fields.
15229 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15230
d521ce57 15231static const gdb_byte *
3019eac3 15232read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15233 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15234 int *has_children, int num_extra_attrs)
93311388 15235{
b64f50a1
JK
15236 unsigned int abbrev_number, bytes_read, i;
15237 sect_offset offset;
93311388
DE
15238 struct abbrev_info *abbrev;
15239 struct die_info *die;
15240 struct dwarf2_cu *cu = reader->cu;
15241 bfd *abfd = reader->abfd;
15242
b64f50a1 15243 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15244 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15245 info_ptr += bytes_read;
15246 if (!abbrev_number)
15247 {
15248 *diep = NULL;
15249 *has_children = 0;
15250 return info_ptr;
15251 }
15252
433df2d4 15253 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15254 if (!abbrev)
348e048f
DE
15255 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15256 abbrev_number,
15257 bfd_get_filename (abfd));
15258
3019eac3 15259 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15260 die->offset = offset;
15261 die->tag = abbrev->tag;
15262 die->abbrev = abbrev_number;
15263
3019eac3
DE
15264 /* Make the result usable.
15265 The caller needs to update num_attrs after adding the extra
15266 attributes. */
93311388
DE
15267 die->num_attrs = abbrev->num_attrs;
15268
15269 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15270 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15271 info_ptr);
93311388
DE
15272
15273 *diep = die;
15274 *has_children = abbrev->has_children;
15275 return info_ptr;
15276}
15277
3019eac3
DE
15278/* Read a die and all its attributes.
15279 Set DIEP to point to a newly allocated die with its information,
15280 except for its child, sibling, and parent fields.
15281 Set HAS_CHILDREN to tell whether the die has children or not. */
15282
d521ce57 15283static const gdb_byte *
3019eac3 15284read_full_die (const struct die_reader_specs *reader,
d521ce57 15285 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15286 int *has_children)
15287{
d521ce57 15288 const gdb_byte *result;
bf6af496
DE
15289
15290 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15291
b4f54984 15292 if (dwarf_die_debug)
bf6af496
DE
15293 {
15294 fprintf_unfiltered (gdb_stdlog,
15295 "Read die from %s@0x%x of %s:\n",
a32a8923 15296 get_section_name (reader->die_section),
bf6af496
DE
15297 (unsigned) (info_ptr - reader->die_section->buffer),
15298 bfd_get_filename (reader->abfd));
b4f54984 15299 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15300 }
15301
15302 return result;
3019eac3 15303}
433df2d4
DE
15304\f
15305/* Abbreviation tables.
3019eac3 15306
433df2d4 15307 In DWARF version 2, the description of the debugging information is
c906108c
SS
15308 stored in a separate .debug_abbrev section. Before we read any
15309 dies from a section we read in all abbreviations and install them
433df2d4
DE
15310 in a hash table. */
15311
15312/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15313
15314static struct abbrev_info *
15315abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15316{
15317 struct abbrev_info *abbrev;
15318
8d749320 15319 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15320 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15321
433df2d4
DE
15322 return abbrev;
15323}
15324
15325/* Add an abbreviation to the table. */
c906108c
SS
15326
15327static void
433df2d4
DE
15328abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15329 unsigned int abbrev_number,
15330 struct abbrev_info *abbrev)
15331{
15332 unsigned int hash_number;
15333
15334 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15335 abbrev->next = abbrev_table->abbrevs[hash_number];
15336 abbrev_table->abbrevs[hash_number] = abbrev;
15337}
dee91e82 15338
433df2d4
DE
15339/* Look up an abbrev in the table.
15340 Returns NULL if the abbrev is not found. */
15341
15342static struct abbrev_info *
15343abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15344 unsigned int abbrev_number)
c906108c 15345{
433df2d4
DE
15346 unsigned int hash_number;
15347 struct abbrev_info *abbrev;
15348
15349 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15350 abbrev = abbrev_table->abbrevs[hash_number];
15351
15352 while (abbrev)
15353 {
15354 if (abbrev->number == abbrev_number)
15355 return abbrev;
15356 abbrev = abbrev->next;
15357 }
15358 return NULL;
15359}
15360
15361/* Read in an abbrev table. */
15362
15363static struct abbrev_table *
15364abbrev_table_read_table (struct dwarf2_section_info *section,
15365 sect_offset offset)
15366{
15367 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15368 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15369 struct abbrev_table *abbrev_table;
d521ce57 15370 const gdb_byte *abbrev_ptr;
c906108c
SS
15371 struct abbrev_info *cur_abbrev;
15372 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15373 unsigned int abbrev_form;
f3dd6933
DJ
15374 struct attr_abbrev *cur_attrs;
15375 unsigned int allocated_attrs;
c906108c 15376
70ba0933 15377 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15378 abbrev_table->offset = offset;
433df2d4 15379 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15380 abbrev_table->abbrevs =
15381 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15382 ABBREV_HASH_SIZE);
433df2d4
DE
15383 memset (abbrev_table->abbrevs, 0,
15384 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15385
433df2d4
DE
15386 dwarf2_read_section (objfile, section);
15387 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15388 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15389 abbrev_ptr += bytes_read;
15390
f3dd6933 15391 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15392 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15393
0963b4bd 15394 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15395 while (abbrev_number)
15396 {
433df2d4 15397 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15398
15399 /* read in abbrev header */
15400 cur_abbrev->number = abbrev_number;
aead7601
SM
15401 cur_abbrev->tag
15402 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15403 abbrev_ptr += bytes_read;
15404 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15405 abbrev_ptr += 1;
15406
15407 /* now read in declarations */
15408 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15409 abbrev_ptr += bytes_read;
15410 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15411 abbrev_ptr += bytes_read;
15412 while (abbrev_name)
15413 {
f3dd6933 15414 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15415 {
f3dd6933
DJ
15416 allocated_attrs += ATTR_ALLOC_CHUNK;
15417 cur_attrs
224c3ddb 15418 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15419 }
ae038cb0 15420
aead7601
SM
15421 cur_attrs[cur_abbrev->num_attrs].name
15422 = (enum dwarf_attribute) abbrev_name;
15423 cur_attrs[cur_abbrev->num_attrs++].form
15424 = (enum dwarf_form) abbrev_form;
c906108c
SS
15425 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15426 abbrev_ptr += bytes_read;
15427 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15428 abbrev_ptr += bytes_read;
15429 }
15430
8d749320
SM
15431 cur_abbrev->attrs =
15432 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15433 cur_abbrev->num_attrs);
f3dd6933
DJ
15434 memcpy (cur_abbrev->attrs, cur_attrs,
15435 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15436
433df2d4 15437 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15438
15439 /* Get next abbreviation.
15440 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15441 always properly terminated with an abbrev number of 0.
15442 Exit loop if we encounter an abbreviation which we have
15443 already read (which means we are about to read the abbreviations
15444 for the next compile unit) or if the end of the abbreviation
15445 table is reached. */
433df2d4 15446 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15447 break;
15448 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15449 abbrev_ptr += bytes_read;
433df2d4 15450 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15451 break;
15452 }
f3dd6933
DJ
15453
15454 xfree (cur_attrs);
433df2d4 15455 return abbrev_table;
c906108c
SS
15456}
15457
433df2d4 15458/* Free the resources held by ABBREV_TABLE. */
c906108c 15459
c906108c 15460static void
433df2d4 15461abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15462{
433df2d4
DE
15463 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15464 xfree (abbrev_table);
c906108c
SS
15465}
15466
f4dc4d17
DE
15467/* Same as abbrev_table_free but as a cleanup.
15468 We pass in a pointer to the pointer to the table so that we can
15469 set the pointer to NULL when we're done. It also simplifies
73051182 15470 build_type_psymtabs_1. */
f4dc4d17
DE
15471
15472static void
15473abbrev_table_free_cleanup (void *table_ptr)
15474{
9a3c8263 15475 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15476
15477 if (*abbrev_table_ptr != NULL)
15478 abbrev_table_free (*abbrev_table_ptr);
15479 *abbrev_table_ptr = NULL;
15480}
15481
433df2d4
DE
15482/* Read the abbrev table for CU from ABBREV_SECTION. */
15483
15484static void
15485dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15486 struct dwarf2_section_info *abbrev_section)
c906108c 15487{
433df2d4
DE
15488 cu->abbrev_table =
15489 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15490}
c906108c 15491
433df2d4 15492/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15493
433df2d4
DE
15494static void
15495dwarf2_free_abbrev_table (void *ptr_to_cu)
15496{
9a3c8263 15497 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15498
a2ce51a0
DE
15499 if (cu->abbrev_table != NULL)
15500 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15501 /* Set this to NULL so that we SEGV if we try to read it later,
15502 and also because free_comp_unit verifies this is NULL. */
15503 cu->abbrev_table = NULL;
15504}
15505\f
72bf9492
DJ
15506/* Returns nonzero if TAG represents a type that we might generate a partial
15507 symbol for. */
15508
15509static int
15510is_type_tag_for_partial (int tag)
15511{
15512 switch (tag)
15513 {
15514#if 0
15515 /* Some types that would be reasonable to generate partial symbols for,
15516 that we don't at present. */
15517 case DW_TAG_array_type:
15518 case DW_TAG_file_type:
15519 case DW_TAG_ptr_to_member_type:
15520 case DW_TAG_set_type:
15521 case DW_TAG_string_type:
15522 case DW_TAG_subroutine_type:
15523#endif
15524 case DW_TAG_base_type:
15525 case DW_TAG_class_type:
680b30c7 15526 case DW_TAG_interface_type:
72bf9492
DJ
15527 case DW_TAG_enumeration_type:
15528 case DW_TAG_structure_type:
15529 case DW_TAG_subrange_type:
15530 case DW_TAG_typedef:
15531 case DW_TAG_union_type:
15532 return 1;
15533 default:
15534 return 0;
15535 }
15536}
15537
15538/* Load all DIEs that are interesting for partial symbols into memory. */
15539
15540static struct partial_die_info *
dee91e82 15541load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15542 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15543{
dee91e82 15544 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15545 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15546 struct partial_die_info *part_die;
15547 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15548 struct abbrev_info *abbrev;
15549 unsigned int bytes_read;
5afb4e99 15550 unsigned int load_all = 0;
72bf9492
DJ
15551 int nesting_level = 1;
15552
15553 parent_die = NULL;
15554 last_die = NULL;
15555
7adf1e79
DE
15556 gdb_assert (cu->per_cu != NULL);
15557 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15558 load_all = 1;
15559
72bf9492
DJ
15560 cu->partial_dies
15561 = htab_create_alloc_ex (cu->header.length / 12,
15562 partial_die_hash,
15563 partial_die_eq,
15564 NULL,
15565 &cu->comp_unit_obstack,
15566 hashtab_obstack_allocate,
15567 dummy_obstack_deallocate);
15568
8d749320 15569 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15570
15571 while (1)
15572 {
15573 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15574
15575 /* A NULL abbrev means the end of a series of children. */
15576 if (abbrev == NULL)
15577 {
15578 if (--nesting_level == 0)
15579 {
15580 /* PART_DIE was probably the last thing allocated on the
15581 comp_unit_obstack, so we could call obstack_free
15582 here. We don't do that because the waste is small,
15583 and will be cleaned up when we're done with this
15584 compilation unit. This way, we're also more robust
15585 against other users of the comp_unit_obstack. */
15586 return first_die;
15587 }
15588 info_ptr += bytes_read;
15589 last_die = parent_die;
15590 parent_die = parent_die->die_parent;
15591 continue;
15592 }
15593
98bfdba5
PA
15594 /* Check for template arguments. We never save these; if
15595 they're seen, we just mark the parent, and go on our way. */
15596 if (parent_die != NULL
15597 && cu->language == language_cplus
15598 && (abbrev->tag == DW_TAG_template_type_param
15599 || abbrev->tag == DW_TAG_template_value_param))
15600 {
15601 parent_die->has_template_arguments = 1;
15602
15603 if (!load_all)
15604 {
15605 /* We don't need a partial DIE for the template argument. */
dee91e82 15606 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15607 continue;
15608 }
15609 }
15610
0d99eb77 15611 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15612 Skip their other children. */
15613 if (!load_all
15614 && cu->language == language_cplus
15615 && parent_die != NULL
15616 && parent_die->tag == DW_TAG_subprogram)
15617 {
dee91e82 15618 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15619 continue;
15620 }
15621
5afb4e99
DJ
15622 /* Check whether this DIE is interesting enough to save. Normally
15623 we would not be interested in members here, but there may be
15624 later variables referencing them via DW_AT_specification (for
15625 static members). */
15626 if (!load_all
15627 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15628 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15629 && abbrev->tag != DW_TAG_enumerator
15630 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15631 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15632 && abbrev->tag != DW_TAG_variable
5afb4e99 15633 && abbrev->tag != DW_TAG_namespace
f55ee35c 15634 && abbrev->tag != DW_TAG_module
95554aad 15635 && abbrev->tag != DW_TAG_member
74921315
KS
15636 && abbrev->tag != DW_TAG_imported_unit
15637 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15638 {
15639 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15640 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15641 continue;
15642 }
15643
dee91e82
DE
15644 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15645 info_ptr);
72bf9492
DJ
15646
15647 /* This two-pass algorithm for processing partial symbols has a
15648 high cost in cache pressure. Thus, handle some simple cases
15649 here which cover the majority of C partial symbols. DIEs
15650 which neither have specification tags in them, nor could have
15651 specification tags elsewhere pointing at them, can simply be
15652 processed and discarded.
15653
15654 This segment is also optional; scan_partial_symbols and
15655 add_partial_symbol will handle these DIEs if we chain
15656 them in normally. When compilers which do not emit large
15657 quantities of duplicate debug information are more common,
15658 this code can probably be removed. */
15659
15660 /* Any complete simple types at the top level (pretty much all
15661 of them, for a language without namespaces), can be processed
15662 directly. */
15663 if (parent_die == NULL
15664 && part_die->has_specification == 0
15665 && part_die->is_declaration == 0
d8228535 15666 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15667 || part_die->tag == DW_TAG_base_type
15668 || part_die->tag == DW_TAG_subrange_type))
15669 {
15670 if (building_psymtab && part_die->name != NULL)
04a679b8 15671 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15672 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15673 &objfile->static_psymbols,
1762568f 15674 0, cu->language, objfile);
dee91e82 15675 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15676 continue;
15677 }
15678
d8228535
JK
15679 /* The exception for DW_TAG_typedef with has_children above is
15680 a workaround of GCC PR debug/47510. In the case of this complaint
15681 type_name_no_tag_or_error will error on such types later.
15682
15683 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15684 it could not find the child DIEs referenced later, this is checked
15685 above. In correct DWARF DW_TAG_typedef should have no children. */
15686
15687 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15688 complaint (&symfile_complaints,
15689 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15690 "- DIE at 0x%x [in module %s]"),
4262abfb 15691 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15692
72bf9492
DJ
15693 /* If we're at the second level, and we're an enumerator, and
15694 our parent has no specification (meaning possibly lives in a
15695 namespace elsewhere), then we can add the partial symbol now
15696 instead of queueing it. */
15697 if (part_die->tag == DW_TAG_enumerator
15698 && parent_die != NULL
15699 && parent_die->die_parent == NULL
15700 && parent_die->tag == DW_TAG_enumeration_type
15701 && parent_die->has_specification == 0)
15702 {
15703 if (part_die->name == NULL)
3e43a32a
MS
15704 complaint (&symfile_complaints,
15705 _("malformed enumerator DIE ignored"));
72bf9492 15706 else if (building_psymtab)
04a679b8 15707 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15708 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15709 (cu->language == language_cplus
15710 || cu->language == language_java)
bb5ed363
DE
15711 ? &objfile->global_psymbols
15712 : &objfile->static_psymbols,
1762568f 15713 0, cu->language, objfile);
72bf9492 15714
dee91e82 15715 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15716 continue;
15717 }
15718
15719 /* We'll save this DIE so link it in. */
15720 part_die->die_parent = parent_die;
15721 part_die->die_sibling = NULL;
15722 part_die->die_child = NULL;
15723
15724 if (last_die && last_die == parent_die)
15725 last_die->die_child = part_die;
15726 else if (last_die)
15727 last_die->die_sibling = part_die;
15728
15729 last_die = part_die;
15730
15731 if (first_die == NULL)
15732 first_die = part_die;
15733
15734 /* Maybe add the DIE to the hash table. Not all DIEs that we
15735 find interesting need to be in the hash table, because we
15736 also have the parent/sibling/child chains; only those that we
15737 might refer to by offset later during partial symbol reading.
15738
15739 For now this means things that might have be the target of a
15740 DW_AT_specification, DW_AT_abstract_origin, or
15741 DW_AT_extension. DW_AT_extension will refer only to
15742 namespaces; DW_AT_abstract_origin refers to functions (and
15743 many things under the function DIE, but we do not recurse
15744 into function DIEs during partial symbol reading) and
15745 possibly variables as well; DW_AT_specification refers to
15746 declarations. Declarations ought to have the DW_AT_declaration
15747 flag. It happens that GCC forgets to put it in sometimes, but
15748 only for functions, not for types.
15749
15750 Adding more things than necessary to the hash table is harmless
15751 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15752 wasted time in find_partial_die, when we reread the compilation
15753 unit with load_all_dies set. */
72bf9492 15754
5afb4e99 15755 if (load_all
72929c62 15756 || abbrev->tag == DW_TAG_constant
5afb4e99 15757 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15758 || abbrev->tag == DW_TAG_variable
15759 || abbrev->tag == DW_TAG_namespace
15760 || part_die->is_declaration)
15761 {
15762 void **slot;
15763
15764 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15765 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15766 *slot = part_die;
15767 }
15768
8d749320 15769 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15770
15771 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15772 we have no reason to follow the children of structures; for other
98bfdba5
PA
15773 languages we have to, so that we can get at method physnames
15774 to infer fully qualified class names, for DW_AT_specification,
15775 and for C++ template arguments. For C++, we also look one level
15776 inside functions to find template arguments (if the name of the
15777 function does not already contain the template arguments).
bc30ff58
JB
15778
15779 For Ada, we need to scan the children of subprograms and lexical
15780 blocks as well because Ada allows the definition of nested
15781 entities that could be interesting for the debugger, such as
15782 nested subprograms for instance. */
72bf9492 15783 if (last_die->has_children
5afb4e99
DJ
15784 && (load_all
15785 || last_die->tag == DW_TAG_namespace
f55ee35c 15786 || last_die->tag == DW_TAG_module
72bf9492 15787 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15788 || (cu->language == language_cplus
15789 && last_die->tag == DW_TAG_subprogram
15790 && (last_die->name == NULL
15791 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15792 || (cu->language != language_c
15793 && (last_die->tag == DW_TAG_class_type
680b30c7 15794 || last_die->tag == DW_TAG_interface_type
72bf9492 15795 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15796 || last_die->tag == DW_TAG_union_type))
15797 || (cu->language == language_ada
15798 && (last_die->tag == DW_TAG_subprogram
15799 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15800 {
15801 nesting_level++;
15802 parent_die = last_die;
15803 continue;
15804 }
15805
15806 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15807 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15808
15809 /* Back to the top, do it again. */
15810 }
15811}
15812
c906108c
SS
15813/* Read a minimal amount of information into the minimal die structure. */
15814
d521ce57 15815static const gdb_byte *
dee91e82
DE
15816read_partial_die (const struct die_reader_specs *reader,
15817 struct partial_die_info *part_die,
15818 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15819 const gdb_byte *info_ptr)
c906108c 15820{
dee91e82 15821 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15822 struct objfile *objfile = cu->objfile;
d521ce57 15823 const gdb_byte *buffer = reader->buffer;
fa238c03 15824 unsigned int i;
c906108c 15825 struct attribute attr;
c5aa993b 15826 int has_low_pc_attr = 0;
c906108c 15827 int has_high_pc_attr = 0;
91da1414 15828 int high_pc_relative = 0;
c906108c 15829
72bf9492 15830 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15831
b64f50a1 15832 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15833
15834 info_ptr += abbrev_len;
15835
15836 if (abbrev == NULL)
15837 return info_ptr;
15838
c906108c
SS
15839 part_die->tag = abbrev->tag;
15840 part_die->has_children = abbrev->has_children;
c906108c
SS
15841
15842 for (i = 0; i < abbrev->num_attrs; ++i)
15843 {
dee91e82 15844 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15845
15846 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15847 partial symbol table. */
c906108c
SS
15848 switch (attr.name)
15849 {
15850 case DW_AT_name:
71c25dea
TT
15851 switch (part_die->tag)
15852 {
15853 case DW_TAG_compile_unit:
95554aad 15854 case DW_TAG_partial_unit:
348e048f 15855 case DW_TAG_type_unit:
71c25dea
TT
15856 /* Compilation units have a DW_AT_name that is a filename, not
15857 a source language identifier. */
15858 case DW_TAG_enumeration_type:
15859 case DW_TAG_enumerator:
15860 /* These tags always have simple identifiers already; no need
15861 to canonicalize them. */
15862 part_die->name = DW_STRING (&attr);
15863 break;
15864 default:
15865 part_die->name
15866 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15867 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15868 break;
15869 }
c906108c 15870 break;
31ef98ae 15871 case DW_AT_linkage_name:
c906108c 15872 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15873 /* Note that both forms of linkage name might appear. We
15874 assume they will be the same, and we only store the last
15875 one we see. */
94af9270
KS
15876 if (cu->language == language_ada)
15877 part_die->name = DW_STRING (&attr);
abc72ce4 15878 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15879 break;
15880 case DW_AT_low_pc:
15881 has_low_pc_attr = 1;
31aa7e4e 15882 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15883 break;
15884 case DW_AT_high_pc:
15885 has_high_pc_attr = 1;
31aa7e4e
JB
15886 part_die->highpc = attr_value_as_address (&attr);
15887 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15888 high_pc_relative = 1;
c906108c
SS
15889 break;
15890 case DW_AT_location:
0963b4bd 15891 /* Support the .debug_loc offsets. */
8e19ed76
PS
15892 if (attr_form_is_block (&attr))
15893 {
95554aad 15894 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15895 }
3690dd37 15896 else if (attr_form_is_section_offset (&attr))
8e19ed76 15897 {
4d3c2250 15898 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15899 }
15900 else
15901 {
4d3c2250
KB
15902 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15903 "partial symbol information");
8e19ed76 15904 }
c906108c 15905 break;
c906108c
SS
15906 case DW_AT_external:
15907 part_die->is_external = DW_UNSND (&attr);
15908 break;
15909 case DW_AT_declaration:
15910 part_die->is_declaration = DW_UNSND (&attr);
15911 break;
15912 case DW_AT_type:
15913 part_die->has_type = 1;
15914 break;
15915 case DW_AT_abstract_origin:
15916 case DW_AT_specification:
72bf9492
DJ
15917 case DW_AT_extension:
15918 part_die->has_specification = 1;
c764a876 15919 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15920 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15921 || cu->per_cu->is_dwz);
c906108c
SS
15922 break;
15923 case DW_AT_sibling:
15924 /* Ignore absolute siblings, they might point outside of
15925 the current compile unit. */
15926 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15927 complaint (&symfile_complaints,
15928 _("ignoring absolute DW_AT_sibling"));
c906108c 15929 else
b9502d3f
WN
15930 {
15931 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15932 const gdb_byte *sibling_ptr = buffer + off;
15933
15934 if (sibling_ptr < info_ptr)
15935 complaint (&symfile_complaints,
15936 _("DW_AT_sibling points backwards"));
22869d73
KS
15937 else if (sibling_ptr > reader->buffer_end)
15938 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15939 else
15940 part_die->sibling = sibling_ptr;
15941 }
c906108c 15942 break;
fa4028e9
JB
15943 case DW_AT_byte_size:
15944 part_die->has_byte_size = 1;
15945 break;
ff908ebf
AW
15946 case DW_AT_const_value:
15947 part_die->has_const_value = 1;
15948 break;
68511cec
CES
15949 case DW_AT_calling_convention:
15950 /* DWARF doesn't provide a way to identify a program's source-level
15951 entry point. DW_AT_calling_convention attributes are only meant
15952 to describe functions' calling conventions.
15953
15954 However, because it's a necessary piece of information in
15955 Fortran, and because DW_CC_program is the only piece of debugging
15956 information whose definition refers to a 'main program' at all,
15957 several compilers have begun marking Fortran main programs with
15958 DW_CC_program --- even when those functions use the standard
15959 calling conventions.
15960
15961 So until DWARF specifies a way to provide this information and
15962 compilers pick up the new representation, we'll support this
15963 practice. */
15964 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15965 && cu->language == language_fortran
15966 && part_die->name != NULL)
3d548a53 15967 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15968 break;
481860b3
GB
15969 case DW_AT_inline:
15970 if (DW_UNSND (&attr) == DW_INL_inlined
15971 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15972 part_die->may_be_inlined = 1;
15973 break;
95554aad
TT
15974
15975 case DW_AT_import:
15976 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15977 {
15978 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15979 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15980 || cu->per_cu->is_dwz);
15981 }
95554aad
TT
15982 break;
15983
c906108c
SS
15984 default:
15985 break;
15986 }
15987 }
15988
91da1414
MW
15989 if (high_pc_relative)
15990 part_die->highpc += part_die->lowpc;
15991
9373cf26
JK
15992 if (has_low_pc_attr && has_high_pc_attr)
15993 {
15994 /* When using the GNU linker, .gnu.linkonce. sections are used to
15995 eliminate duplicate copies of functions and vtables and such.
15996 The linker will arbitrarily choose one and discard the others.
15997 The AT_*_pc values for such functions refer to local labels in
15998 these sections. If the section from that file was discarded, the
15999 labels are not in the output, so the relocs get a value of 0.
16000 If this is a discarded function, mark the pc bounds as invalid,
16001 so that GDB will ignore it. */
16002 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16003 {
bb5ed363 16004 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16005
16006 complaint (&symfile_complaints,
16007 _("DW_AT_low_pc %s is zero "
16008 "for DIE at 0x%x [in module %s]"),
16009 paddress (gdbarch, part_die->lowpc),
4262abfb 16010 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16011 }
16012 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16013 else if (part_die->lowpc >= part_die->highpc)
16014 {
bb5ed363 16015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16016
16017 complaint (&symfile_complaints,
16018 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16019 "for DIE at 0x%x [in module %s]"),
16020 paddress (gdbarch, part_die->lowpc),
16021 paddress (gdbarch, part_die->highpc),
4262abfb 16022 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16023 }
16024 else
16025 part_die->has_pc_info = 1;
16026 }
85cbf3d3 16027
c906108c
SS
16028 return info_ptr;
16029}
16030
72bf9492
DJ
16031/* Find a cached partial DIE at OFFSET in CU. */
16032
16033static struct partial_die_info *
b64f50a1 16034find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16035{
16036 struct partial_die_info *lookup_die = NULL;
16037 struct partial_die_info part_die;
16038
16039 part_die.offset = offset;
9a3c8263
SM
16040 lookup_die = ((struct partial_die_info *)
16041 htab_find_with_hash (cu->partial_dies, &part_die,
16042 offset.sect_off));
72bf9492 16043
72bf9492
DJ
16044 return lookup_die;
16045}
16046
348e048f
DE
16047/* Find a partial DIE at OFFSET, which may or may not be in CU,
16048 except in the case of .debug_types DIEs which do not reference
16049 outside their CU (they do however referencing other types via
55f1336d 16050 DW_FORM_ref_sig8). */
72bf9492
DJ
16051
16052static struct partial_die_info *
36586728 16053find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16054{
bb5ed363 16055 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16056 struct dwarf2_per_cu_data *per_cu = NULL;
16057 struct partial_die_info *pd = NULL;
72bf9492 16058
36586728
TT
16059 if (offset_in_dwz == cu->per_cu->is_dwz
16060 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16061 {
16062 pd = find_partial_die_in_comp_unit (offset, cu);
16063 if (pd != NULL)
16064 return pd;
0d99eb77
DE
16065 /* We missed recording what we needed.
16066 Load all dies and try again. */
16067 per_cu = cu->per_cu;
5afb4e99 16068 }
0d99eb77
DE
16069 else
16070 {
16071 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16072 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16073 {
16074 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16075 " external reference to offset 0x%lx [in module %s].\n"),
16076 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16077 bfd_get_filename (objfile->obfd));
16078 }
36586728
TT
16079 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16080 objfile);
72bf9492 16081
0d99eb77
DE
16082 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16083 load_partial_comp_unit (per_cu);
ae038cb0 16084
0d99eb77
DE
16085 per_cu->cu->last_used = 0;
16086 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16087 }
5afb4e99 16088
dee91e82
DE
16089 /* If we didn't find it, and not all dies have been loaded,
16090 load them all and try again. */
16091
5afb4e99
DJ
16092 if (pd == NULL && per_cu->load_all_dies == 0)
16093 {
5afb4e99 16094 per_cu->load_all_dies = 1;
fd820528
DE
16095
16096 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16097 THIS_CU->cu may already be in use. So we can't just free it and
16098 replace its DIEs with the ones we read in. Instead, we leave those
16099 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16100 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16101 set. */
dee91e82 16102 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16103
16104 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16105 }
16106
16107 if (pd == NULL)
16108 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16109 _("could not find partial DIE 0x%x "
16110 "in cache [from module %s]\n"),
b64f50a1 16111 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16112 return pd;
72bf9492
DJ
16113}
16114
abc72ce4
DE
16115/* See if we can figure out if the class lives in a namespace. We do
16116 this by looking for a member function; its demangled name will
16117 contain namespace info, if there is any. */
16118
16119static void
16120guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16121 struct dwarf2_cu *cu)
16122{
16123 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16124 what template types look like, because the demangler
16125 frequently doesn't give the same name as the debug info. We
16126 could fix this by only using the demangled name to get the
16127 prefix (but see comment in read_structure_type). */
16128
16129 struct partial_die_info *real_pdi;
16130 struct partial_die_info *child_pdi;
16131
16132 /* If this DIE (this DIE's specification, if any) has a parent, then
16133 we should not do this. We'll prepend the parent's fully qualified
16134 name when we create the partial symbol. */
16135
16136 real_pdi = struct_pdi;
16137 while (real_pdi->has_specification)
36586728
TT
16138 real_pdi = find_partial_die (real_pdi->spec_offset,
16139 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16140
16141 if (real_pdi->die_parent != NULL)
16142 return;
16143
16144 for (child_pdi = struct_pdi->die_child;
16145 child_pdi != NULL;
16146 child_pdi = child_pdi->die_sibling)
16147 {
16148 if (child_pdi->tag == DW_TAG_subprogram
16149 && child_pdi->linkage_name != NULL)
16150 {
16151 char *actual_class_name
16152 = language_class_name_from_physname (cu->language_defn,
16153 child_pdi->linkage_name);
16154 if (actual_class_name != NULL)
16155 {
16156 struct_pdi->name
224c3ddb
SM
16157 = ((const char *)
16158 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16159 actual_class_name,
16160 strlen (actual_class_name)));
abc72ce4
DE
16161 xfree (actual_class_name);
16162 }
16163 break;
16164 }
16165 }
16166}
16167
72bf9492
DJ
16168/* Adjust PART_DIE before generating a symbol for it. This function
16169 may set the is_external flag or change the DIE's name. */
16170
16171static void
16172fixup_partial_die (struct partial_die_info *part_die,
16173 struct dwarf2_cu *cu)
16174{
abc72ce4
DE
16175 /* Once we've fixed up a die, there's no point in doing so again.
16176 This also avoids a memory leak if we were to call
16177 guess_partial_die_structure_name multiple times. */
16178 if (part_die->fixup_called)
16179 return;
16180
72bf9492
DJ
16181 /* If we found a reference attribute and the DIE has no name, try
16182 to find a name in the referred to DIE. */
16183
16184 if (part_die->name == NULL && part_die->has_specification)
16185 {
16186 struct partial_die_info *spec_die;
72bf9492 16187
36586728
TT
16188 spec_die = find_partial_die (part_die->spec_offset,
16189 part_die->spec_is_dwz, cu);
72bf9492 16190
10b3939b 16191 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16192
16193 if (spec_die->name)
16194 {
16195 part_die->name = spec_die->name;
16196
16197 /* Copy DW_AT_external attribute if it is set. */
16198 if (spec_die->is_external)
16199 part_die->is_external = spec_die->is_external;
16200 }
16201 }
16202
16203 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16204
16205 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16206 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16207
abc72ce4
DE
16208 /* If there is no parent die to provide a namespace, and there are
16209 children, see if we can determine the namespace from their linkage
122d1940 16210 name. */
abc72ce4 16211 if (cu->language == language_cplus
8b70b953 16212 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16213 && part_die->die_parent == NULL
16214 && part_die->has_children
16215 && (part_die->tag == DW_TAG_class_type
16216 || part_die->tag == DW_TAG_structure_type
16217 || part_die->tag == DW_TAG_union_type))
16218 guess_partial_die_structure_name (part_die, cu);
16219
53832f31
TT
16220 /* GCC might emit a nameless struct or union that has a linkage
16221 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16222 if (part_die->name == NULL
96408a79
SA
16223 && (part_die->tag == DW_TAG_class_type
16224 || part_die->tag == DW_TAG_interface_type
16225 || part_die->tag == DW_TAG_structure_type
16226 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16227 && part_die->linkage_name != NULL)
16228 {
16229 char *demangled;
16230
8de20a37 16231 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16232 if (demangled)
16233 {
96408a79
SA
16234 const char *base;
16235
16236 /* Strip any leading namespaces/classes, keep only the base name.
16237 DW_AT_name for named DIEs does not contain the prefixes. */
16238 base = strrchr (demangled, ':');
16239 if (base && base > demangled && base[-1] == ':')
16240 base++;
16241 else
16242 base = demangled;
16243
34a68019 16244 part_die->name
224c3ddb
SM
16245 = ((const char *)
16246 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16247 base, strlen (base)));
53832f31
TT
16248 xfree (demangled);
16249 }
16250 }
16251
abc72ce4 16252 part_die->fixup_called = 1;
72bf9492
DJ
16253}
16254
a8329558 16255/* Read an attribute value described by an attribute form. */
c906108c 16256
d521ce57 16257static const gdb_byte *
dee91e82
DE
16258read_attribute_value (const struct die_reader_specs *reader,
16259 struct attribute *attr, unsigned form,
d521ce57 16260 const gdb_byte *info_ptr)
c906108c 16261{
dee91e82 16262 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16263 struct objfile *objfile = cu->objfile;
16264 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16265 bfd *abfd = reader->abfd;
e7c27a73 16266 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16267 unsigned int bytes_read;
16268 struct dwarf_block *blk;
16269
aead7601 16270 attr->form = (enum dwarf_form) form;
a8329558 16271 switch (form)
c906108c 16272 {
c906108c 16273 case DW_FORM_ref_addr:
ae411497 16274 if (cu->header.version == 2)
4568ecf9 16275 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16276 else
4568ecf9
DE
16277 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16278 &cu->header, &bytes_read);
ae411497
TT
16279 info_ptr += bytes_read;
16280 break;
36586728
TT
16281 case DW_FORM_GNU_ref_alt:
16282 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16283 info_ptr += bytes_read;
16284 break;
ae411497 16285 case DW_FORM_addr:
e7c27a73 16286 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16287 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16288 info_ptr += bytes_read;
c906108c
SS
16289 break;
16290 case DW_FORM_block2:
7b5a2f43 16291 blk = dwarf_alloc_block (cu);
c906108c
SS
16292 blk->size = read_2_bytes (abfd, info_ptr);
16293 info_ptr += 2;
16294 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16295 info_ptr += blk->size;
16296 DW_BLOCK (attr) = blk;
16297 break;
16298 case DW_FORM_block4:
7b5a2f43 16299 blk = dwarf_alloc_block (cu);
c906108c
SS
16300 blk->size = read_4_bytes (abfd, info_ptr);
16301 info_ptr += 4;
16302 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16303 info_ptr += blk->size;
16304 DW_BLOCK (attr) = blk;
16305 break;
16306 case DW_FORM_data2:
16307 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16308 info_ptr += 2;
16309 break;
16310 case DW_FORM_data4:
16311 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16312 info_ptr += 4;
16313 break;
16314 case DW_FORM_data8:
16315 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16316 info_ptr += 8;
16317 break;
2dc7f7b3
TT
16318 case DW_FORM_sec_offset:
16319 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16320 info_ptr += bytes_read;
16321 break;
c906108c 16322 case DW_FORM_string:
9b1c24c8 16323 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16324 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16325 info_ptr += bytes_read;
16326 break;
4bdf3d34 16327 case DW_FORM_strp:
36586728
TT
16328 if (!cu->per_cu->is_dwz)
16329 {
16330 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16331 &bytes_read);
16332 DW_STRING_IS_CANONICAL (attr) = 0;
16333 info_ptr += bytes_read;
16334 break;
16335 }
16336 /* FALLTHROUGH */
16337 case DW_FORM_GNU_strp_alt:
16338 {
16339 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16340 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16341 &bytes_read);
16342
16343 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16344 DW_STRING_IS_CANONICAL (attr) = 0;
16345 info_ptr += bytes_read;
16346 }
4bdf3d34 16347 break;
2dc7f7b3 16348 case DW_FORM_exprloc:
c906108c 16349 case DW_FORM_block:
7b5a2f43 16350 blk = dwarf_alloc_block (cu);
c906108c
SS
16351 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16352 info_ptr += bytes_read;
16353 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16354 info_ptr += blk->size;
16355 DW_BLOCK (attr) = blk;
16356 break;
16357 case DW_FORM_block1:
7b5a2f43 16358 blk = dwarf_alloc_block (cu);
c906108c
SS
16359 blk->size = read_1_byte (abfd, info_ptr);
16360 info_ptr += 1;
16361 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16362 info_ptr += blk->size;
16363 DW_BLOCK (attr) = blk;
16364 break;
16365 case DW_FORM_data1:
16366 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16367 info_ptr += 1;
16368 break;
16369 case DW_FORM_flag:
16370 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16371 info_ptr += 1;
16372 break;
2dc7f7b3
TT
16373 case DW_FORM_flag_present:
16374 DW_UNSND (attr) = 1;
16375 break;
c906108c
SS
16376 case DW_FORM_sdata:
16377 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16378 info_ptr += bytes_read;
16379 break;
16380 case DW_FORM_udata:
16381 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16382 info_ptr += bytes_read;
16383 break;
16384 case DW_FORM_ref1:
4568ecf9
DE
16385 DW_UNSND (attr) = (cu->header.offset.sect_off
16386 + read_1_byte (abfd, info_ptr));
c906108c
SS
16387 info_ptr += 1;
16388 break;
16389 case DW_FORM_ref2:
4568ecf9
DE
16390 DW_UNSND (attr) = (cu->header.offset.sect_off
16391 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16392 info_ptr += 2;
16393 break;
16394 case DW_FORM_ref4:
4568ecf9
DE
16395 DW_UNSND (attr) = (cu->header.offset.sect_off
16396 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16397 info_ptr += 4;
16398 break;
613e1657 16399 case DW_FORM_ref8:
4568ecf9
DE
16400 DW_UNSND (attr) = (cu->header.offset.sect_off
16401 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16402 info_ptr += 8;
16403 break;
55f1336d 16404 case DW_FORM_ref_sig8:
ac9ec31b 16405 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16406 info_ptr += 8;
16407 break;
c906108c 16408 case DW_FORM_ref_udata:
4568ecf9
DE
16409 DW_UNSND (attr) = (cu->header.offset.sect_off
16410 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16411 info_ptr += bytes_read;
16412 break;
c906108c 16413 case DW_FORM_indirect:
a8329558
KW
16414 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16415 info_ptr += bytes_read;
dee91e82 16416 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16417 break;
3019eac3
DE
16418 case DW_FORM_GNU_addr_index:
16419 if (reader->dwo_file == NULL)
16420 {
16421 /* For now flag a hard error.
16422 Later we can turn this into a complaint. */
16423 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16424 dwarf_form_name (form),
16425 bfd_get_filename (abfd));
16426 }
16427 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16428 info_ptr += bytes_read;
16429 break;
16430 case DW_FORM_GNU_str_index:
16431 if (reader->dwo_file == NULL)
16432 {
16433 /* For now flag a hard error.
16434 Later we can turn this into a complaint if warranted. */
16435 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16436 dwarf_form_name (form),
16437 bfd_get_filename (abfd));
16438 }
16439 {
16440 ULONGEST str_index =
16441 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16442
342587c4 16443 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16444 DW_STRING_IS_CANONICAL (attr) = 0;
16445 info_ptr += bytes_read;
16446 }
16447 break;
c906108c 16448 default:
8a3fe4f8 16449 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16450 dwarf_form_name (form),
16451 bfd_get_filename (abfd));
c906108c 16452 }
28e94949 16453
36586728 16454 /* Super hack. */
7771576e 16455 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16456 attr->form = DW_FORM_GNU_ref_alt;
16457
28e94949
JB
16458 /* We have seen instances where the compiler tried to emit a byte
16459 size attribute of -1 which ended up being encoded as an unsigned
16460 0xffffffff. Although 0xffffffff is technically a valid size value,
16461 an object of this size seems pretty unlikely so we can relatively
16462 safely treat these cases as if the size attribute was invalid and
16463 treat them as zero by default. */
16464 if (attr->name == DW_AT_byte_size
16465 && form == DW_FORM_data4
16466 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16467 {
16468 complaint
16469 (&symfile_complaints,
43bbcdc2
PH
16470 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16471 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16472 DW_UNSND (attr) = 0;
16473 }
28e94949 16474
c906108c
SS
16475 return info_ptr;
16476}
16477
a8329558
KW
16478/* Read an attribute described by an abbreviated attribute. */
16479
d521ce57 16480static const gdb_byte *
dee91e82
DE
16481read_attribute (const struct die_reader_specs *reader,
16482 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16483 const gdb_byte *info_ptr)
a8329558
KW
16484{
16485 attr->name = abbrev->name;
dee91e82 16486 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16487}
16488
0963b4bd 16489/* Read dwarf information from a buffer. */
c906108c
SS
16490
16491static unsigned int
a1855c1d 16492read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16493{
fe1b8b76 16494 return bfd_get_8 (abfd, buf);
c906108c
SS
16495}
16496
16497static int
a1855c1d 16498read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16499{
fe1b8b76 16500 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16501}
16502
16503static unsigned int
a1855c1d 16504read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16505{
fe1b8b76 16506 return bfd_get_16 (abfd, buf);
c906108c
SS
16507}
16508
21ae7a4d 16509static int
a1855c1d 16510read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16511{
16512 return bfd_get_signed_16 (abfd, buf);
16513}
16514
c906108c 16515static unsigned int
a1855c1d 16516read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16517{
fe1b8b76 16518 return bfd_get_32 (abfd, buf);
c906108c
SS
16519}
16520
21ae7a4d 16521static int
a1855c1d 16522read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16523{
16524 return bfd_get_signed_32 (abfd, buf);
16525}
16526
93311388 16527static ULONGEST
a1855c1d 16528read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16529{
fe1b8b76 16530 return bfd_get_64 (abfd, buf);
c906108c
SS
16531}
16532
16533static CORE_ADDR
d521ce57 16534read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16535 unsigned int *bytes_read)
c906108c 16536{
e7c27a73 16537 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16538 CORE_ADDR retval = 0;
16539
107d2387 16540 if (cu_header->signed_addr_p)
c906108c 16541 {
107d2387
AC
16542 switch (cu_header->addr_size)
16543 {
16544 case 2:
fe1b8b76 16545 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16546 break;
16547 case 4:
fe1b8b76 16548 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16549 break;
16550 case 8:
fe1b8b76 16551 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16552 break;
16553 default:
8e65ff28 16554 internal_error (__FILE__, __LINE__,
e2e0b3e5 16555 _("read_address: bad switch, signed [in module %s]"),
659b0389 16556 bfd_get_filename (abfd));
107d2387
AC
16557 }
16558 }
16559 else
16560 {
16561 switch (cu_header->addr_size)
16562 {
16563 case 2:
fe1b8b76 16564 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16565 break;
16566 case 4:
fe1b8b76 16567 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16568 break;
16569 case 8:
fe1b8b76 16570 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16571 break;
16572 default:
8e65ff28 16573 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16574 _("read_address: bad switch, "
16575 "unsigned [in module %s]"),
659b0389 16576 bfd_get_filename (abfd));
107d2387 16577 }
c906108c 16578 }
64367e0a 16579
107d2387
AC
16580 *bytes_read = cu_header->addr_size;
16581 return retval;
c906108c
SS
16582}
16583
f7ef9339 16584/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16585 specification allows the initial length to take up either 4 bytes
16586 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16587 bytes describe the length and all offsets will be 8 bytes in length
16588 instead of 4.
16589
f7ef9339
KB
16590 An older, non-standard 64-bit format is also handled by this
16591 function. The older format in question stores the initial length
16592 as an 8-byte quantity without an escape value. Lengths greater
16593 than 2^32 aren't very common which means that the initial 4 bytes
16594 is almost always zero. Since a length value of zero doesn't make
16595 sense for the 32-bit format, this initial zero can be considered to
16596 be an escape value which indicates the presence of the older 64-bit
16597 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16598 greater than 4GB. If it becomes necessary to handle lengths
16599 somewhat larger than 4GB, we could allow other small values (such
16600 as the non-sensical values of 1, 2, and 3) to also be used as
16601 escape values indicating the presence of the old format.
f7ef9339 16602
917c78fc
MK
16603 The value returned via bytes_read should be used to increment the
16604 relevant pointer after calling read_initial_length().
c764a876 16605
613e1657
KB
16606 [ Note: read_initial_length() and read_offset() are based on the
16607 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16608 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16609 from:
16610
f7ef9339 16611 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16612
613e1657
KB
16613 This document is only a draft and is subject to change. (So beware.)
16614
f7ef9339 16615 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16616 determined empirically by examining 64-bit ELF files produced by
16617 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16618
16619 - Kevin, July 16, 2002
613e1657
KB
16620 ] */
16621
16622static LONGEST
d521ce57 16623read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16624{
fe1b8b76 16625 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16626
dd373385 16627 if (length == 0xffffffff)
613e1657 16628 {
fe1b8b76 16629 length = bfd_get_64 (abfd, buf + 4);
613e1657 16630 *bytes_read = 12;
613e1657 16631 }
dd373385 16632 else if (length == 0)
f7ef9339 16633 {
dd373385 16634 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16635 length = bfd_get_64 (abfd, buf);
f7ef9339 16636 *bytes_read = 8;
f7ef9339 16637 }
613e1657
KB
16638 else
16639 {
16640 *bytes_read = 4;
613e1657
KB
16641 }
16642
c764a876
DE
16643 return length;
16644}
dd373385 16645
c764a876
DE
16646/* Cover function for read_initial_length.
16647 Returns the length of the object at BUF, and stores the size of the
16648 initial length in *BYTES_READ and stores the size that offsets will be in
16649 *OFFSET_SIZE.
16650 If the initial length size is not equivalent to that specified in
16651 CU_HEADER then issue a complaint.
16652 This is useful when reading non-comp-unit headers. */
dd373385 16653
c764a876 16654static LONGEST
d521ce57 16655read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16656 const struct comp_unit_head *cu_header,
16657 unsigned int *bytes_read,
16658 unsigned int *offset_size)
16659{
16660 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16661
16662 gdb_assert (cu_header->initial_length_size == 4
16663 || cu_header->initial_length_size == 8
16664 || cu_header->initial_length_size == 12);
16665
16666 if (cu_header->initial_length_size != *bytes_read)
16667 complaint (&symfile_complaints,
16668 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16669
c764a876 16670 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16671 return length;
613e1657
KB
16672}
16673
16674/* Read an offset from the data stream. The size of the offset is
917c78fc 16675 given by cu_header->offset_size. */
613e1657
KB
16676
16677static LONGEST
d521ce57
TT
16678read_offset (bfd *abfd, const gdb_byte *buf,
16679 const struct comp_unit_head *cu_header,
891d2f0b 16680 unsigned int *bytes_read)
c764a876
DE
16681{
16682 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16683
c764a876
DE
16684 *bytes_read = cu_header->offset_size;
16685 return offset;
16686}
16687
16688/* Read an offset from the data stream. */
16689
16690static LONGEST
d521ce57 16691read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16692{
16693 LONGEST retval = 0;
16694
c764a876 16695 switch (offset_size)
613e1657
KB
16696 {
16697 case 4:
fe1b8b76 16698 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16699 break;
16700 case 8:
fe1b8b76 16701 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16702 break;
16703 default:
8e65ff28 16704 internal_error (__FILE__, __LINE__,
c764a876 16705 _("read_offset_1: bad switch [in module %s]"),
659b0389 16706 bfd_get_filename (abfd));
613e1657
KB
16707 }
16708
917c78fc 16709 return retval;
613e1657
KB
16710}
16711
d521ce57
TT
16712static const gdb_byte *
16713read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16714{
16715 /* If the size of a host char is 8 bits, we can return a pointer
16716 to the buffer, otherwise we have to copy the data to a buffer
16717 allocated on the temporary obstack. */
4bdf3d34 16718 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16719 return buf;
c906108c
SS
16720}
16721
d521ce57
TT
16722static const char *
16723read_direct_string (bfd *abfd, const gdb_byte *buf,
16724 unsigned int *bytes_read_ptr)
c906108c
SS
16725{
16726 /* If the size of a host char is 8 bits, we can return a pointer
16727 to the string, otherwise we have to copy the string to a buffer
16728 allocated on the temporary obstack. */
4bdf3d34 16729 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16730 if (*buf == '\0')
16731 {
16732 *bytes_read_ptr = 1;
16733 return NULL;
16734 }
d521ce57
TT
16735 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16736 return (const char *) buf;
4bdf3d34
JJ
16737}
16738
d521ce57 16739static const char *
cf2c3c16 16740read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16741{
be391dca 16742 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16743 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16744 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16745 bfd_get_filename (abfd));
dce234bc 16746 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16747 error (_("DW_FORM_strp pointing outside of "
16748 ".debug_str section [in module %s]"),
16749 bfd_get_filename (abfd));
4bdf3d34 16750 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16751 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16752 return NULL;
d521ce57 16753 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16754}
16755
36586728
TT
16756/* Read a string at offset STR_OFFSET in the .debug_str section from
16757 the .dwz file DWZ. Throw an error if the offset is too large. If
16758 the string consists of a single NUL byte, return NULL; otherwise
16759 return a pointer to the string. */
16760
d521ce57 16761static const char *
36586728
TT
16762read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16763{
16764 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16765
16766 if (dwz->str.buffer == NULL)
16767 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16768 "section [in module %s]"),
16769 bfd_get_filename (dwz->dwz_bfd));
16770 if (str_offset >= dwz->str.size)
16771 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16772 ".debug_str section [in module %s]"),
16773 bfd_get_filename (dwz->dwz_bfd));
16774 gdb_assert (HOST_CHAR_BIT == 8);
16775 if (dwz->str.buffer[str_offset] == '\0')
16776 return NULL;
d521ce57 16777 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16778}
16779
d521ce57
TT
16780static const char *
16781read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16782 const struct comp_unit_head *cu_header,
16783 unsigned int *bytes_read_ptr)
16784{
16785 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16786
16787 return read_indirect_string_at_offset (abfd, str_offset);
16788}
16789
12df843f 16790static ULONGEST
d521ce57
TT
16791read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16792 unsigned int *bytes_read_ptr)
c906108c 16793{
12df843f 16794 ULONGEST result;
ce5d95e1 16795 unsigned int num_read;
870f88f7 16796 int shift;
c906108c
SS
16797 unsigned char byte;
16798
16799 result = 0;
16800 shift = 0;
16801 num_read = 0;
c906108c
SS
16802 while (1)
16803 {
fe1b8b76 16804 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16805 buf++;
16806 num_read++;
12df843f 16807 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16808 if ((byte & 128) == 0)
16809 {
16810 break;
16811 }
16812 shift += 7;
16813 }
16814 *bytes_read_ptr = num_read;
16815 return result;
16816}
16817
12df843f 16818static LONGEST
d521ce57
TT
16819read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16820 unsigned int *bytes_read_ptr)
c906108c 16821{
12df843f 16822 LONGEST result;
870f88f7 16823 int shift, num_read;
c906108c
SS
16824 unsigned char byte;
16825
16826 result = 0;
16827 shift = 0;
c906108c 16828 num_read = 0;
c906108c
SS
16829 while (1)
16830 {
fe1b8b76 16831 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16832 buf++;
16833 num_read++;
12df843f 16834 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16835 shift += 7;
16836 if ((byte & 128) == 0)
16837 {
16838 break;
16839 }
16840 }
77e0b926 16841 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16842 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16843 *bytes_read_ptr = num_read;
16844 return result;
16845}
16846
3019eac3
DE
16847/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16848 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16849 ADDR_SIZE is the size of addresses from the CU header. */
16850
16851static CORE_ADDR
16852read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16853{
16854 struct objfile *objfile = dwarf2_per_objfile->objfile;
16855 bfd *abfd = objfile->obfd;
16856 const gdb_byte *info_ptr;
16857
16858 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16859 if (dwarf2_per_objfile->addr.buffer == NULL)
16860 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16861 objfile_name (objfile));
3019eac3
DE
16862 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16863 error (_("DW_FORM_addr_index pointing outside of "
16864 ".debug_addr section [in module %s]"),
4262abfb 16865 objfile_name (objfile));
3019eac3
DE
16866 info_ptr = (dwarf2_per_objfile->addr.buffer
16867 + addr_base + addr_index * addr_size);
16868 if (addr_size == 4)
16869 return bfd_get_32 (abfd, info_ptr);
16870 else
16871 return bfd_get_64 (abfd, info_ptr);
16872}
16873
16874/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16875
16876static CORE_ADDR
16877read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16878{
16879 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16880}
16881
16882/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16883
16884static CORE_ADDR
d521ce57 16885read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16886 unsigned int *bytes_read)
16887{
16888 bfd *abfd = cu->objfile->obfd;
16889 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16890
16891 return read_addr_index (cu, addr_index);
16892}
16893
16894/* Data structure to pass results from dwarf2_read_addr_index_reader
16895 back to dwarf2_read_addr_index. */
16896
16897struct dwarf2_read_addr_index_data
16898{
16899 ULONGEST addr_base;
16900 int addr_size;
16901};
16902
16903/* die_reader_func for dwarf2_read_addr_index. */
16904
16905static void
16906dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16907 const gdb_byte *info_ptr,
3019eac3
DE
16908 struct die_info *comp_unit_die,
16909 int has_children,
16910 void *data)
16911{
16912 struct dwarf2_cu *cu = reader->cu;
16913 struct dwarf2_read_addr_index_data *aidata =
16914 (struct dwarf2_read_addr_index_data *) data;
16915
16916 aidata->addr_base = cu->addr_base;
16917 aidata->addr_size = cu->header.addr_size;
16918}
16919
16920/* Given an index in .debug_addr, fetch the value.
16921 NOTE: This can be called during dwarf expression evaluation,
16922 long after the debug information has been read, and thus per_cu->cu
16923 may no longer exist. */
16924
16925CORE_ADDR
16926dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16927 unsigned int addr_index)
16928{
16929 struct objfile *objfile = per_cu->objfile;
16930 struct dwarf2_cu *cu = per_cu->cu;
16931 ULONGEST addr_base;
16932 int addr_size;
16933
16934 /* This is intended to be called from outside this file. */
16935 dw2_setup (objfile);
16936
16937 /* We need addr_base and addr_size.
16938 If we don't have PER_CU->cu, we have to get it.
16939 Nasty, but the alternative is storing the needed info in PER_CU,
16940 which at this point doesn't seem justified: it's not clear how frequently
16941 it would get used and it would increase the size of every PER_CU.
16942 Entry points like dwarf2_per_cu_addr_size do a similar thing
16943 so we're not in uncharted territory here.
16944 Alas we need to be a bit more complicated as addr_base is contained
16945 in the DIE.
16946
16947 We don't need to read the entire CU(/TU).
16948 We just need the header and top level die.
a1b64ce1 16949
3019eac3 16950 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16951 For now we skip this optimization. */
3019eac3
DE
16952
16953 if (cu != NULL)
16954 {
16955 addr_base = cu->addr_base;
16956 addr_size = cu->header.addr_size;
16957 }
16958 else
16959 {
16960 struct dwarf2_read_addr_index_data aidata;
16961
a1b64ce1
DE
16962 /* Note: We can't use init_cutu_and_read_dies_simple here,
16963 we need addr_base. */
16964 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16965 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16966 addr_base = aidata.addr_base;
16967 addr_size = aidata.addr_size;
16968 }
16969
16970 return read_addr_index_1 (addr_index, addr_base, addr_size);
16971}
16972
57d63ce2
DE
16973/* Given a DW_FORM_GNU_str_index, fetch the string.
16974 This is only used by the Fission support. */
3019eac3 16975
d521ce57 16976static const char *
342587c4 16977read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16978{
16979 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16980 const char *objf_name = objfile_name (objfile);
3019eac3 16981 bfd *abfd = objfile->obfd;
342587c4 16982 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16983 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16984 struct dwarf2_section_info *str_offsets_section =
16985 &reader->dwo_file->sections.str_offsets;
d521ce57 16986 const gdb_byte *info_ptr;
3019eac3 16987 ULONGEST str_offset;
57d63ce2 16988 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16989
73869dc2
DE
16990 dwarf2_read_section (objfile, str_section);
16991 dwarf2_read_section (objfile, str_offsets_section);
16992 if (str_section->buffer == NULL)
57d63ce2 16993 error (_("%s used without .debug_str.dwo section"
3019eac3 16994 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16995 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16996 if (str_offsets_section->buffer == NULL)
57d63ce2 16997 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16998 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16999 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17000 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17001 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 17002 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17003 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17004 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17005 + str_index * cu->header.offset_size);
17006 if (cu->header.offset_size == 4)
17007 str_offset = bfd_get_32 (abfd, info_ptr);
17008 else
17009 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17010 if (str_offset >= str_section->size)
57d63ce2 17011 error (_("Offset from %s pointing outside of"
3019eac3 17012 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17013 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17014 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17015}
17016
3019eac3
DE
17017/* Return the length of an LEB128 number in BUF. */
17018
17019static int
17020leb128_size (const gdb_byte *buf)
17021{
17022 const gdb_byte *begin = buf;
17023 gdb_byte byte;
17024
17025 while (1)
17026 {
17027 byte = *buf++;
17028 if ((byte & 128) == 0)
17029 return buf - begin;
17030 }
17031}
17032
c906108c 17033static void
e142c38c 17034set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17035{
17036 switch (lang)
17037 {
17038 case DW_LANG_C89:
76bee0cc 17039 case DW_LANG_C99:
0cfd832f 17040 case DW_LANG_C11:
c906108c 17041 case DW_LANG_C:
d1be3247 17042 case DW_LANG_UPC:
e142c38c 17043 cu->language = language_c;
c906108c
SS
17044 break;
17045 case DW_LANG_C_plus_plus:
0cfd832f
MW
17046 case DW_LANG_C_plus_plus_11:
17047 case DW_LANG_C_plus_plus_14:
e142c38c 17048 cu->language = language_cplus;
c906108c 17049 break;
6aecb9c2
JB
17050 case DW_LANG_D:
17051 cu->language = language_d;
17052 break;
c906108c
SS
17053 case DW_LANG_Fortran77:
17054 case DW_LANG_Fortran90:
b21b22e0 17055 case DW_LANG_Fortran95:
f7de9aab
MW
17056 case DW_LANG_Fortran03:
17057 case DW_LANG_Fortran08:
e142c38c 17058 cu->language = language_fortran;
c906108c 17059 break;
a766d390
DE
17060 case DW_LANG_Go:
17061 cu->language = language_go;
17062 break;
c906108c 17063 case DW_LANG_Mips_Assembler:
e142c38c 17064 cu->language = language_asm;
c906108c 17065 break;
bebd888e 17066 case DW_LANG_Java:
e142c38c 17067 cu->language = language_java;
bebd888e 17068 break;
c906108c 17069 case DW_LANG_Ada83:
8aaf0b47 17070 case DW_LANG_Ada95:
bc5f45f8
JB
17071 cu->language = language_ada;
17072 break;
72019c9c
GM
17073 case DW_LANG_Modula2:
17074 cu->language = language_m2;
17075 break;
fe8e67fd
PM
17076 case DW_LANG_Pascal83:
17077 cu->language = language_pascal;
17078 break;
22566fbd
DJ
17079 case DW_LANG_ObjC:
17080 cu->language = language_objc;
17081 break;
c44af4eb
TT
17082 case DW_LANG_Rust:
17083 case DW_LANG_Rust_old:
17084 cu->language = language_rust;
17085 break;
c906108c
SS
17086 case DW_LANG_Cobol74:
17087 case DW_LANG_Cobol85:
c906108c 17088 default:
e142c38c 17089 cu->language = language_minimal;
c906108c
SS
17090 break;
17091 }
e142c38c 17092 cu->language_defn = language_def (cu->language);
c906108c
SS
17093}
17094
17095/* Return the named attribute or NULL if not there. */
17096
17097static struct attribute *
e142c38c 17098dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17099{
a48e046c 17100 for (;;)
c906108c 17101 {
a48e046c
TT
17102 unsigned int i;
17103 struct attribute *spec = NULL;
17104
17105 for (i = 0; i < die->num_attrs; ++i)
17106 {
17107 if (die->attrs[i].name == name)
17108 return &die->attrs[i];
17109 if (die->attrs[i].name == DW_AT_specification
17110 || die->attrs[i].name == DW_AT_abstract_origin)
17111 spec = &die->attrs[i];
17112 }
17113
17114 if (!spec)
17115 break;
c906108c 17116
f2f0e013 17117 die = follow_die_ref (die, spec, &cu);
f2f0e013 17118 }
c5aa993b 17119
c906108c
SS
17120 return NULL;
17121}
17122
348e048f
DE
17123/* Return the named attribute or NULL if not there,
17124 but do not follow DW_AT_specification, etc.
17125 This is for use in contexts where we're reading .debug_types dies.
17126 Following DW_AT_specification, DW_AT_abstract_origin will take us
17127 back up the chain, and we want to go down. */
17128
17129static struct attribute *
45e58e77 17130dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17131{
17132 unsigned int i;
17133
17134 for (i = 0; i < die->num_attrs; ++i)
17135 if (die->attrs[i].name == name)
17136 return &die->attrs[i];
17137
17138 return NULL;
17139}
17140
7d45c7c3
KB
17141/* Return the string associated with a string-typed attribute, or NULL if it
17142 is either not found or is of an incorrect type. */
17143
17144static const char *
17145dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17146{
17147 struct attribute *attr;
17148 const char *str = NULL;
17149
17150 attr = dwarf2_attr (die, name, cu);
17151
17152 if (attr != NULL)
17153 {
17154 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17155 || attr->form == DW_FORM_GNU_strp_alt)
17156 str = DW_STRING (attr);
17157 else
17158 complaint (&symfile_complaints,
17159 _("string type expected for attribute %s for "
17160 "DIE at 0x%x in module %s"),
17161 dwarf_attr_name (name), die->offset.sect_off,
17162 objfile_name (cu->objfile));
17163 }
17164
17165 return str;
17166}
17167
05cf31d1
JB
17168/* Return non-zero iff the attribute NAME is defined for the given DIE,
17169 and holds a non-zero value. This function should only be used for
2dc7f7b3 17170 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17171
17172static int
17173dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17174{
17175 struct attribute *attr = dwarf2_attr (die, name, cu);
17176
17177 return (attr && DW_UNSND (attr));
17178}
17179
3ca72b44 17180static int
e142c38c 17181die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17182{
05cf31d1
JB
17183 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17184 which value is non-zero. However, we have to be careful with
17185 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17186 (via dwarf2_flag_true_p) follows this attribute. So we may
17187 end up accidently finding a declaration attribute that belongs
17188 to a different DIE referenced by the specification attribute,
17189 even though the given DIE does not have a declaration attribute. */
17190 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17191 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17192}
17193
63d06c5c 17194/* Return the die giving the specification for DIE, if there is
f2f0e013 17195 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17196 containing the return value on output. If there is no
17197 specification, but there is an abstract origin, that is
17198 returned. */
63d06c5c
DC
17199
17200static struct die_info *
f2f0e013 17201die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17202{
f2f0e013
DJ
17203 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17204 *spec_cu);
63d06c5c 17205
edb3359d
DJ
17206 if (spec_attr == NULL)
17207 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17208
63d06c5c
DC
17209 if (spec_attr == NULL)
17210 return NULL;
17211 else
f2f0e013 17212 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17213}
c906108c 17214
debd256d 17215/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17216 refers to.
17217 NOTE: This is also used as a "cleanup" function. */
17218
debd256d
JB
17219static void
17220free_line_header (struct line_header *lh)
17221{
17222 if (lh->standard_opcode_lengths)
a8bc7b56 17223 xfree (lh->standard_opcode_lengths);
debd256d
JB
17224
17225 /* Remember that all the lh->file_names[i].name pointers are
17226 pointers into debug_line_buffer, and don't need to be freed. */
17227 if (lh->file_names)
a8bc7b56 17228 xfree (lh->file_names);
debd256d
JB
17229
17230 /* Similarly for the include directory names. */
17231 if (lh->include_dirs)
a8bc7b56 17232 xfree (lh->include_dirs);
debd256d 17233
a8bc7b56 17234 xfree (lh);
debd256d
JB
17235}
17236
527f3840
JK
17237/* Stub for free_line_header to match void * callback types. */
17238
17239static void
17240free_line_header_voidp (void *arg)
17241{
9a3c8263 17242 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17243
17244 free_line_header (lh);
17245}
17246
debd256d 17247/* Add an entry to LH's include directory table. */
ae2de4f8 17248
debd256d 17249static void
d521ce57 17250add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17251{
27e0867f
DE
17252 if (dwarf_line_debug >= 2)
17253 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17254 lh->num_include_dirs + 1, include_dir);
17255
debd256d
JB
17256 /* Grow the array if necessary. */
17257 if (lh->include_dirs_size == 0)
c5aa993b 17258 {
debd256d 17259 lh->include_dirs_size = 1; /* for testing */
8d749320 17260 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17261 }
17262 else if (lh->num_include_dirs >= lh->include_dirs_size)
17263 {
17264 lh->include_dirs_size *= 2;
8d749320
SM
17265 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17266 lh->include_dirs_size);
c5aa993b 17267 }
c906108c 17268
debd256d
JB
17269 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17270}
6e70227d 17271
debd256d 17272/* Add an entry to LH's file name table. */
ae2de4f8 17273
debd256d
JB
17274static void
17275add_file_name (struct line_header *lh,
d521ce57 17276 const char *name,
debd256d
JB
17277 unsigned int dir_index,
17278 unsigned int mod_time,
17279 unsigned int length)
17280{
17281 struct file_entry *fe;
17282
27e0867f
DE
17283 if (dwarf_line_debug >= 2)
17284 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17285 lh->num_file_names + 1, name);
17286
debd256d
JB
17287 /* Grow the array if necessary. */
17288 if (lh->file_names_size == 0)
17289 {
17290 lh->file_names_size = 1; /* for testing */
8d749320 17291 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17292 }
17293 else if (lh->num_file_names >= lh->file_names_size)
17294 {
17295 lh->file_names_size *= 2;
224c3ddb
SM
17296 lh->file_names
17297 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17298 }
17299
17300 fe = &lh->file_names[lh->num_file_names++];
17301 fe->name = name;
17302 fe->dir_index = dir_index;
17303 fe->mod_time = mod_time;
17304 fe->length = length;
aaa75496 17305 fe->included_p = 0;
cb1df416 17306 fe->symtab = NULL;
debd256d 17307}
6e70227d 17308
83769d0b 17309/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17310
17311static struct dwarf2_section_info *
17312get_debug_line_section (struct dwarf2_cu *cu)
17313{
17314 struct dwarf2_section_info *section;
17315
17316 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17317 DWO file. */
17318 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17319 section = &cu->dwo_unit->dwo_file->sections.line;
17320 else if (cu->per_cu->is_dwz)
17321 {
17322 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17323
17324 section = &dwz->line;
17325 }
17326 else
17327 section = &dwarf2_per_objfile->line;
17328
17329 return section;
17330}
17331
debd256d 17332/* Read the statement program header starting at OFFSET in
3019eac3 17333 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17334 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17335 Returns NULL if there is a problem reading the header, e.g., if it
17336 has a version we don't understand.
debd256d
JB
17337
17338 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17339 the returned object point into the dwarf line section buffer,
17340 and must not be freed. */
ae2de4f8 17341
debd256d 17342static struct line_header *
3019eac3 17343dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17344{
17345 struct cleanup *back_to;
17346 struct line_header *lh;
d521ce57 17347 const gdb_byte *line_ptr;
c764a876 17348 unsigned int bytes_read, offset_size;
debd256d 17349 int i;
d521ce57 17350 const char *cur_dir, *cur_file;
3019eac3
DE
17351 struct dwarf2_section_info *section;
17352 bfd *abfd;
17353
36586728 17354 section = get_debug_line_section (cu);
3019eac3
DE
17355 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17356 if (section->buffer == NULL)
debd256d 17357 {
3019eac3
DE
17358 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17359 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17360 else
17361 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17362 return 0;
17363 }
17364
fceca515
DE
17365 /* We can't do this until we know the section is non-empty.
17366 Only then do we know we have such a section. */
a32a8923 17367 abfd = get_section_bfd_owner (section);
fceca515 17368
a738430d
MK
17369 /* Make sure that at least there's room for the total_length field.
17370 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17371 if (offset + 4 >= section->size)
debd256d 17372 {
4d3c2250 17373 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17374 return 0;
17375 }
17376
8d749320 17377 lh = XNEW (struct line_header);
debd256d
JB
17378 memset (lh, 0, sizeof (*lh));
17379 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17380 (void *) lh);
17381
527f3840
JK
17382 lh->offset.sect_off = offset;
17383 lh->offset_in_dwz = cu->per_cu->is_dwz;
17384
3019eac3 17385 line_ptr = section->buffer + offset;
debd256d 17386
a738430d 17387 /* Read in the header. */
6e70227d 17388 lh->total_length =
c764a876
DE
17389 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17390 &bytes_read, &offset_size);
debd256d 17391 line_ptr += bytes_read;
3019eac3 17392 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17393 {
4d3c2250 17394 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17395 do_cleanups (back_to);
debd256d
JB
17396 return 0;
17397 }
17398 lh->statement_program_end = line_ptr + lh->total_length;
17399 lh->version = read_2_bytes (abfd, line_ptr);
17400 line_ptr += 2;
cd366ee8
DE
17401 if (lh->version > 4)
17402 {
17403 /* This is a version we don't understand. The format could have
17404 changed in ways we don't handle properly so just punt. */
17405 complaint (&symfile_complaints,
17406 _("unsupported version in .debug_line section"));
17407 return NULL;
17408 }
c764a876
DE
17409 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17410 line_ptr += offset_size;
debd256d
JB
17411 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17412 line_ptr += 1;
2dc7f7b3
TT
17413 if (lh->version >= 4)
17414 {
17415 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17416 line_ptr += 1;
17417 }
17418 else
17419 lh->maximum_ops_per_instruction = 1;
17420
17421 if (lh->maximum_ops_per_instruction == 0)
17422 {
17423 lh->maximum_ops_per_instruction = 1;
17424 complaint (&symfile_complaints,
3e43a32a
MS
17425 _("invalid maximum_ops_per_instruction "
17426 "in `.debug_line' section"));
2dc7f7b3
TT
17427 }
17428
debd256d
JB
17429 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17430 line_ptr += 1;
17431 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17432 line_ptr += 1;
17433 lh->line_range = read_1_byte (abfd, line_ptr);
17434 line_ptr += 1;
17435 lh->opcode_base = read_1_byte (abfd, line_ptr);
17436 line_ptr += 1;
8d749320 17437 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17438
17439 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17440 for (i = 1; i < lh->opcode_base; ++i)
17441 {
17442 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17443 line_ptr += 1;
17444 }
17445
a738430d 17446 /* Read directory table. */
9b1c24c8 17447 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17448 {
17449 line_ptr += bytes_read;
17450 add_include_dir (lh, cur_dir);
17451 }
17452 line_ptr += bytes_read;
17453
a738430d 17454 /* Read file name table. */
9b1c24c8 17455 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17456 {
17457 unsigned int dir_index, mod_time, length;
17458
17459 line_ptr += bytes_read;
17460 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17461 line_ptr += bytes_read;
17462 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17463 line_ptr += bytes_read;
17464 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17465 line_ptr += bytes_read;
17466
17467 add_file_name (lh, cur_file, dir_index, mod_time, length);
17468 }
17469 line_ptr += bytes_read;
6e70227d 17470 lh->statement_program_start = line_ptr;
debd256d 17471
3019eac3 17472 if (line_ptr > (section->buffer + section->size))
4d3c2250 17473 complaint (&symfile_complaints,
3e43a32a
MS
17474 _("line number info header doesn't "
17475 "fit in `.debug_line' section"));
debd256d
JB
17476
17477 discard_cleanups (back_to);
17478 return lh;
17479}
c906108c 17480
c6da4cef
DE
17481/* Subroutine of dwarf_decode_lines to simplify it.
17482 Return the file name of the psymtab for included file FILE_INDEX
17483 in line header LH of PST.
17484 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17485 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17486 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17487
17488 The function creates dangling cleanup registration. */
c6da4cef 17489
d521ce57 17490static const char *
c6da4cef
DE
17491psymtab_include_file_name (const struct line_header *lh, int file_index,
17492 const struct partial_symtab *pst,
17493 const char *comp_dir)
17494{
17495 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17496 const char *include_name = fe.name;
17497 const char *include_name_to_compare = include_name;
17498 const char *dir_name = NULL;
72b9f47f
TT
17499 const char *pst_filename;
17500 char *copied_name = NULL;
c6da4cef
DE
17501 int file_is_pst;
17502
afa6c9ab 17503 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17504 dir_name = lh->include_dirs[fe.dir_index - 1];
17505
17506 if (!IS_ABSOLUTE_PATH (include_name)
17507 && (dir_name != NULL || comp_dir != NULL))
17508 {
17509 /* Avoid creating a duplicate psymtab for PST.
17510 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17511 Before we do the comparison, however, we need to account
17512 for DIR_NAME and COMP_DIR.
17513 First prepend dir_name (if non-NULL). If we still don't
17514 have an absolute path prepend comp_dir (if non-NULL).
17515 However, the directory we record in the include-file's
17516 psymtab does not contain COMP_DIR (to match the
17517 corresponding symtab(s)).
17518
17519 Example:
17520
17521 bash$ cd /tmp
17522 bash$ gcc -g ./hello.c
17523 include_name = "hello.c"
17524 dir_name = "."
17525 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17526 DW_AT_name = "./hello.c"
17527
17528 */
c6da4cef
DE
17529
17530 if (dir_name != NULL)
17531 {
d521ce57
TT
17532 char *tem = concat (dir_name, SLASH_STRING,
17533 include_name, (char *)NULL);
17534
17535 make_cleanup (xfree, tem);
17536 include_name = tem;
c6da4cef 17537 include_name_to_compare = include_name;
c6da4cef
DE
17538 }
17539 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17540 {
d521ce57
TT
17541 char *tem = concat (comp_dir, SLASH_STRING,
17542 include_name, (char *)NULL);
17543
17544 make_cleanup (xfree, tem);
17545 include_name_to_compare = tem;
c6da4cef
DE
17546 }
17547 }
17548
17549 pst_filename = pst->filename;
17550 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17551 {
72b9f47f
TT
17552 copied_name = concat (pst->dirname, SLASH_STRING,
17553 pst_filename, (char *)NULL);
17554 pst_filename = copied_name;
c6da4cef
DE
17555 }
17556
1e3fad37 17557 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17558
72b9f47f
TT
17559 if (copied_name != NULL)
17560 xfree (copied_name);
c6da4cef
DE
17561
17562 if (file_is_pst)
17563 return NULL;
17564 return include_name;
17565}
17566
d9b3de22
DE
17567/* State machine to track the state of the line number program. */
17568
17569typedef struct
17570{
17571 /* These are part of the standard DWARF line number state machine. */
17572
17573 unsigned char op_index;
17574 unsigned int file;
17575 unsigned int line;
17576 CORE_ADDR address;
17577 int is_stmt;
17578 unsigned int discriminator;
17579
17580 /* Additional bits of state we need to track. */
17581
17582 /* The last file that we called dwarf2_start_subfile for.
17583 This is only used for TLLs. */
17584 unsigned int last_file;
17585 /* The last file a line number was recorded for. */
17586 struct subfile *last_subfile;
17587
17588 /* The function to call to record a line. */
17589 record_line_ftype *record_line;
17590
17591 /* The last line number that was recorded, used to coalesce
17592 consecutive entries for the same line. This can happen, for
17593 example, when discriminators are present. PR 17276. */
17594 unsigned int last_line;
17595 int line_has_non_zero_discriminator;
17596} lnp_state_machine;
17597
17598/* There's a lot of static state to pass to dwarf_record_line.
17599 This keeps it all together. */
17600
17601typedef struct
17602{
17603 /* The gdbarch. */
17604 struct gdbarch *gdbarch;
17605
17606 /* The line number header. */
17607 struct line_header *line_header;
17608
17609 /* Non-zero if we're recording lines.
17610 Otherwise we're building partial symtabs and are just interested in
17611 finding include files mentioned by the line number program. */
17612 int record_lines_p;
17613} lnp_reader_state;
17614
c91513d8
PP
17615/* Ignore this record_line request. */
17616
17617static void
17618noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17619{
17620 return;
17621}
17622
a05a36a5
DE
17623/* Return non-zero if we should add LINE to the line number table.
17624 LINE is the line to add, LAST_LINE is the last line that was added,
17625 LAST_SUBFILE is the subfile for LAST_LINE.
17626 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17627 had a non-zero discriminator.
17628
17629 We have to be careful in the presence of discriminators.
17630 E.g., for this line:
17631
17632 for (i = 0; i < 100000; i++);
17633
17634 clang can emit four line number entries for that one line,
17635 each with a different discriminator.
17636 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17637
17638 However, we want gdb to coalesce all four entries into one.
17639 Otherwise the user could stepi into the middle of the line and
17640 gdb would get confused about whether the pc really was in the
17641 middle of the line.
17642
17643 Things are further complicated by the fact that two consecutive
17644 line number entries for the same line is a heuristic used by gcc
17645 to denote the end of the prologue. So we can't just discard duplicate
17646 entries, we have to be selective about it. The heuristic we use is
17647 that we only collapse consecutive entries for the same line if at least
17648 one of those entries has a non-zero discriminator. PR 17276.
17649
17650 Note: Addresses in the line number state machine can never go backwards
17651 within one sequence, thus this coalescing is ok. */
17652
17653static int
17654dwarf_record_line_p (unsigned int line, unsigned int last_line,
17655 int line_has_non_zero_discriminator,
17656 struct subfile *last_subfile)
17657{
17658 if (current_subfile != last_subfile)
17659 return 1;
17660 if (line != last_line)
17661 return 1;
17662 /* Same line for the same file that we've seen already.
17663 As a last check, for pr 17276, only record the line if the line
17664 has never had a non-zero discriminator. */
17665 if (!line_has_non_zero_discriminator)
17666 return 1;
17667 return 0;
17668}
17669
252a6764
DE
17670/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17671 in the line table of subfile SUBFILE. */
17672
17673static void
d9b3de22
DE
17674dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17675 unsigned int line, CORE_ADDR address,
17676 record_line_ftype p_record_line)
252a6764
DE
17677{
17678 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17679
27e0867f
DE
17680 if (dwarf_line_debug)
17681 {
17682 fprintf_unfiltered (gdb_stdlog,
17683 "Recording line %u, file %s, address %s\n",
17684 line, lbasename (subfile->name),
17685 paddress (gdbarch, address));
17686 }
17687
d5962de5 17688 (*p_record_line) (subfile, line, addr);
252a6764
DE
17689}
17690
17691/* Subroutine of dwarf_decode_lines_1 to simplify it.
17692 Mark the end of a set of line number records.
d9b3de22 17693 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17694 If SUBFILE is NULL the request is ignored. */
17695
17696static void
17697dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17698 CORE_ADDR address, record_line_ftype p_record_line)
17699{
27e0867f
DE
17700 if (subfile == NULL)
17701 return;
17702
17703 if (dwarf_line_debug)
17704 {
17705 fprintf_unfiltered (gdb_stdlog,
17706 "Finishing current line, file %s, address %s\n",
17707 lbasename (subfile->name),
17708 paddress (gdbarch, address));
17709 }
17710
d9b3de22
DE
17711 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17712}
17713
17714/* Record the line in STATE.
17715 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17716
17717static void
17718dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17719 int end_sequence)
17720{
17721 const struct line_header *lh = reader->line_header;
17722 unsigned int file, line, discriminator;
17723 int is_stmt;
17724
17725 file = state->file;
17726 line = state->line;
17727 is_stmt = state->is_stmt;
17728 discriminator = state->discriminator;
17729
17730 if (dwarf_line_debug)
17731 {
17732 fprintf_unfiltered (gdb_stdlog,
17733 "Processing actual line %u: file %u,"
17734 " address %s, is_stmt %u, discrim %u\n",
17735 line, file,
17736 paddress (reader->gdbarch, state->address),
17737 is_stmt, discriminator);
17738 }
17739
17740 if (file == 0 || file - 1 >= lh->num_file_names)
17741 dwarf2_debug_line_missing_file_complaint ();
17742 /* For now we ignore lines not starting on an instruction boundary.
17743 But not when processing end_sequence for compatibility with the
17744 previous version of the code. */
17745 else if (state->op_index == 0 || end_sequence)
17746 {
17747 lh->file_names[file - 1].included_p = 1;
17748 if (reader->record_lines_p && is_stmt)
17749 {
e815d2d2 17750 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17751 {
17752 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17753 state->address, state->record_line);
17754 }
17755
17756 if (!end_sequence)
17757 {
17758 if (dwarf_record_line_p (line, state->last_line,
17759 state->line_has_non_zero_discriminator,
17760 state->last_subfile))
17761 {
17762 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17763 line, state->address,
17764 state->record_line);
17765 }
17766 state->last_subfile = current_subfile;
17767 state->last_line = line;
17768 }
17769 }
17770 }
17771}
17772
17773/* Initialize STATE for the start of a line number program. */
17774
17775static void
17776init_lnp_state_machine (lnp_state_machine *state,
17777 const lnp_reader_state *reader)
17778{
17779 memset (state, 0, sizeof (*state));
17780
17781 /* Just starting, there is no "last file". */
17782 state->last_file = 0;
17783 state->last_subfile = NULL;
17784
17785 state->record_line = record_line;
17786
17787 state->last_line = 0;
17788 state->line_has_non_zero_discriminator = 0;
17789
17790 /* Initialize these according to the DWARF spec. */
17791 state->op_index = 0;
17792 state->file = 1;
17793 state->line = 1;
17794 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17795 was a line entry for it so that the backend has a chance to adjust it
17796 and also record it in case it needs it. This is currently used by MIPS
17797 code, cf. `mips_adjust_dwarf2_line'. */
17798 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17799 state->is_stmt = reader->line_header->default_is_stmt;
17800 state->discriminator = 0;
252a6764
DE
17801}
17802
924c2928
DE
17803/* Check address and if invalid nop-out the rest of the lines in this
17804 sequence. */
17805
17806static void
d9b3de22 17807check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17808 const gdb_byte *line_ptr,
17809 CORE_ADDR lowpc, CORE_ADDR address)
17810{
17811 /* If address < lowpc then it's not a usable value, it's outside the
17812 pc range of the CU. However, we restrict the test to only address
17813 values of zero to preserve GDB's previous behaviour which is to
17814 handle the specific case of a function being GC'd by the linker. */
17815
17816 if (address == 0 && address < lowpc)
17817 {
17818 /* This line table is for a function which has been
17819 GCd by the linker. Ignore it. PR gdb/12528 */
17820
17821 struct objfile *objfile = cu->objfile;
17822 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17823
17824 complaint (&symfile_complaints,
17825 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17826 line_offset, objfile_name (objfile));
d9b3de22
DE
17827 state->record_line = noop_record_line;
17828 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17829 until we see DW_LNE_end_sequence. */
17830 }
17831}
17832
f3f5162e 17833/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17834 Process the line number information in LH.
17835 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17836 program in order to set included_p for every referenced header. */
debd256d 17837
c906108c 17838static void
43f3e411
DE
17839dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17840 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17841{
d521ce57
TT
17842 const gdb_byte *line_ptr, *extended_end;
17843 const gdb_byte *line_end;
a8c50c1f 17844 unsigned int bytes_read, extended_len;
699ca60a 17845 unsigned char op_code, extended_op;
e142c38c
DJ
17846 CORE_ADDR baseaddr;
17847 struct objfile *objfile = cu->objfile;
f3f5162e 17848 bfd *abfd = objfile->obfd;
fbf65064 17849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17850 /* Non-zero if we're recording line info (as opposed to building partial
17851 symtabs). */
17852 int record_lines_p = !decode_for_pst_p;
17853 /* A collection of things we need to pass to dwarf_record_line. */
17854 lnp_reader_state reader_state;
e142c38c
DJ
17855
17856 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17857
debd256d
JB
17858 line_ptr = lh->statement_program_start;
17859 line_end = lh->statement_program_end;
c906108c 17860
d9b3de22
DE
17861 reader_state.gdbarch = gdbarch;
17862 reader_state.line_header = lh;
17863 reader_state.record_lines_p = record_lines_p;
17864
c906108c
SS
17865 /* Read the statement sequences until there's nothing left. */
17866 while (line_ptr < line_end)
17867 {
d9b3de22
DE
17868 /* The DWARF line number program state machine. */
17869 lnp_state_machine state_machine;
c906108c 17870 int end_sequence = 0;
d9b3de22
DE
17871
17872 /* Reset the state machine at the start of each sequence. */
17873 init_lnp_state_machine (&state_machine, &reader_state);
17874
17875 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17876 {
aaa75496 17877 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17878 /* lh->include_dirs and lh->file_names are 0-based, but the
17879 directory and file name numbers in the statement program
17880 are 1-based. */
d9b3de22 17881 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17882 const char *dir = NULL;
a738430d 17883
afa6c9ab 17884 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17885 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17886
4d663531 17887 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17888 }
17889
a738430d 17890 /* Decode the table. */
d9b3de22 17891 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17892 {
17893 op_code = read_1_byte (abfd, line_ptr);
17894 line_ptr += 1;
9aa1fe7e 17895
debd256d 17896 if (op_code >= lh->opcode_base)
6e70227d 17897 {
8e07a239 17898 /* Special opcode. */
699ca60a 17899 unsigned char adj_opcode;
3e29f34a 17900 CORE_ADDR addr_adj;
a05a36a5 17901 int line_delta;
8e07a239 17902
debd256d 17903 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17904 addr_adj = (((state_machine.op_index
17905 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17906 / lh->maximum_ops_per_instruction)
17907 * lh->minimum_instruction_length);
d9b3de22
DE
17908 state_machine.address
17909 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17910 state_machine.op_index = ((state_machine.op_index
17911 + (adj_opcode / lh->line_range))
17912 % lh->maximum_ops_per_instruction);
a05a36a5 17913 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17914 state_machine.line += line_delta;
a05a36a5 17915 if (line_delta != 0)
d9b3de22
DE
17916 state_machine.line_has_non_zero_discriminator
17917 = state_machine.discriminator != 0;
17918
17919 dwarf_record_line (&reader_state, &state_machine, 0);
17920 state_machine.discriminator = 0;
9aa1fe7e
GK
17921 }
17922 else switch (op_code)
c906108c
SS
17923 {
17924 case DW_LNS_extended_op:
3e43a32a
MS
17925 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17926 &bytes_read);
473b7be6 17927 line_ptr += bytes_read;
a8c50c1f 17928 extended_end = line_ptr + extended_len;
c906108c
SS
17929 extended_op = read_1_byte (abfd, line_ptr);
17930 line_ptr += 1;
17931 switch (extended_op)
17932 {
17933 case DW_LNE_end_sequence:
d9b3de22 17934 state_machine.record_line = record_line;
c906108c 17935 end_sequence = 1;
c906108c
SS
17936 break;
17937 case DW_LNE_set_address:
d9b3de22
DE
17938 {
17939 CORE_ADDR address
17940 = read_address (abfd, line_ptr, cu, &bytes_read);
17941
17942 line_ptr += bytes_read;
17943 check_line_address (cu, &state_machine, line_ptr,
17944 lowpc, address);
17945 state_machine.op_index = 0;
17946 address += baseaddr;
17947 state_machine.address
17948 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17949 }
c906108c
SS
17950 break;
17951 case DW_LNE_define_file:
debd256d 17952 {
d521ce57 17953 const char *cur_file;
debd256d 17954 unsigned int dir_index, mod_time, length;
6e70227d 17955
3e43a32a
MS
17956 cur_file = read_direct_string (abfd, line_ptr,
17957 &bytes_read);
debd256d
JB
17958 line_ptr += bytes_read;
17959 dir_index =
17960 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17961 line_ptr += bytes_read;
17962 mod_time =
17963 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17964 line_ptr += bytes_read;
17965 length =
17966 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17967 line_ptr += bytes_read;
17968 add_file_name (lh, cur_file, dir_index, mod_time, length);
17969 }
c906108c 17970 break;
d0c6ba3d
CC
17971 case DW_LNE_set_discriminator:
17972 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17973 just ignore it. We still need to check its value though:
17974 if there are consecutive entries for the same
17975 (non-prologue) line we want to coalesce them.
17976 PR 17276. */
d9b3de22
DE
17977 state_machine.discriminator
17978 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17979 state_machine.line_has_non_zero_discriminator
17980 |= state_machine.discriminator != 0;
a05a36a5 17981 line_ptr += bytes_read;
d0c6ba3d 17982 break;
c906108c 17983 default:
4d3c2250 17984 complaint (&symfile_complaints,
e2e0b3e5 17985 _("mangled .debug_line section"));
debd256d 17986 return;
c906108c 17987 }
a8c50c1f
DJ
17988 /* Make sure that we parsed the extended op correctly. If e.g.
17989 we expected a different address size than the producer used,
17990 we may have read the wrong number of bytes. */
17991 if (line_ptr != extended_end)
17992 {
17993 complaint (&symfile_complaints,
17994 _("mangled .debug_line section"));
17995 return;
17996 }
c906108c
SS
17997 break;
17998 case DW_LNS_copy:
d9b3de22
DE
17999 dwarf_record_line (&reader_state, &state_machine, 0);
18000 state_machine.discriminator = 0;
c906108c
SS
18001 break;
18002 case DW_LNS_advance_pc:
2dc7f7b3
TT
18003 {
18004 CORE_ADDR adjust
18005 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18006 CORE_ADDR addr_adj;
2dc7f7b3 18007
d9b3de22 18008 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18009 / lh->maximum_ops_per_instruction)
18010 * lh->minimum_instruction_length);
d9b3de22
DE
18011 state_machine.address
18012 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18013 state_machine.op_index = ((state_machine.op_index + adjust)
18014 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18015 line_ptr += bytes_read;
18016 }
c906108c
SS
18017 break;
18018 case DW_LNS_advance_line:
a05a36a5
DE
18019 {
18020 int line_delta
18021 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18022
d9b3de22 18023 state_machine.line += line_delta;
a05a36a5 18024 if (line_delta != 0)
d9b3de22
DE
18025 state_machine.line_has_non_zero_discriminator
18026 = state_machine.discriminator != 0;
a05a36a5
DE
18027 line_ptr += bytes_read;
18028 }
c906108c
SS
18029 break;
18030 case DW_LNS_set_file:
d9b3de22
DE
18031 {
18032 /* The arrays lh->include_dirs and lh->file_names are
18033 0-based, but the directory and file name numbers in
18034 the statement program are 1-based. */
18035 struct file_entry *fe;
18036 const char *dir = NULL;
18037
18038 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18039 &bytes_read);
18040 line_ptr += bytes_read;
18041 if (state_machine.file == 0
18042 || state_machine.file - 1 >= lh->num_file_names)
18043 dwarf2_debug_line_missing_file_complaint ();
18044 else
18045 {
18046 fe = &lh->file_names[state_machine.file - 1];
18047 if (fe->dir_index && lh->include_dirs != NULL)
18048 dir = lh->include_dirs[fe->dir_index - 1];
18049 if (record_lines_p)
18050 {
18051 state_machine.last_subfile = current_subfile;
18052 state_machine.line_has_non_zero_discriminator
18053 = state_machine.discriminator != 0;
18054 dwarf2_start_subfile (fe->name, dir);
18055 }
18056 }
18057 }
c906108c
SS
18058 break;
18059 case DW_LNS_set_column:
0ad93d4f 18060 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18061 line_ptr += bytes_read;
18062 break;
18063 case DW_LNS_negate_stmt:
d9b3de22 18064 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18065 break;
18066 case DW_LNS_set_basic_block:
c906108c 18067 break;
c2c6d25f
JM
18068 /* Add to the address register of the state machine the
18069 address increment value corresponding to special opcode
a738430d
MK
18070 255. I.e., this value is scaled by the minimum
18071 instruction length since special opcode 255 would have
b021a221 18072 scaled the increment. */
c906108c 18073 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18074 {
18075 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18076 CORE_ADDR addr_adj;
2dc7f7b3 18077
d9b3de22 18078 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18079 / lh->maximum_ops_per_instruction)
18080 * lh->minimum_instruction_length);
d9b3de22
DE
18081 state_machine.address
18082 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18083 state_machine.op_index = ((state_machine.op_index + adjust)
18084 % lh->maximum_ops_per_instruction);
2dc7f7b3 18085 }
c906108c
SS
18086 break;
18087 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18088 {
18089 CORE_ADDR addr_adj;
18090
18091 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18092 state_machine.address
18093 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18094 state_machine.op_index = 0;
3e29f34a
MR
18095 line_ptr += 2;
18096 }
c906108c 18097 break;
9aa1fe7e 18098 default:
a738430d
MK
18099 {
18100 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18101 int i;
a738430d 18102
debd256d 18103 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18104 {
18105 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18106 line_ptr += bytes_read;
18107 }
18108 }
c906108c
SS
18109 }
18110 }
d9b3de22
DE
18111
18112 if (!end_sequence)
18113 dwarf2_debug_line_missing_end_sequence_complaint ();
18114
18115 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18116 in which case we still finish recording the last line). */
18117 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18118 }
f3f5162e
DE
18119}
18120
18121/* Decode the Line Number Program (LNP) for the given line_header
18122 structure and CU. The actual information extracted and the type
18123 of structures created from the LNP depends on the value of PST.
18124
18125 1. If PST is NULL, then this procedure uses the data from the program
18126 to create all necessary symbol tables, and their linetables.
18127
18128 2. If PST is not NULL, this procedure reads the program to determine
18129 the list of files included by the unit represented by PST, and
18130 builds all the associated partial symbol tables.
18131
18132 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18133 It is used for relative paths in the line table.
18134 NOTE: When processing partial symtabs (pst != NULL),
18135 comp_dir == pst->dirname.
18136
18137 NOTE: It is important that psymtabs have the same file name (via strcmp)
18138 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18139 symtab we don't use it in the name of the psymtabs we create.
18140 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18141 A good testcase for this is mb-inline.exp.
18142
527f3840
JK
18143 LOWPC is the lowest address in CU (or 0 if not known).
18144
18145 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18146 for its PC<->lines mapping information. Otherwise only the filename
18147 table is read in. */
f3f5162e
DE
18148
18149static void
18150dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18151 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18152 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18153{
18154 struct objfile *objfile = cu->objfile;
18155 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18156
527f3840
JK
18157 if (decode_mapping)
18158 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18159
18160 if (decode_for_pst_p)
18161 {
18162 int file_index;
18163
18164 /* Now that we're done scanning the Line Header Program, we can
18165 create the psymtab of each included file. */
18166 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18167 if (lh->file_names[file_index].included_p == 1)
18168 {
d521ce57 18169 const char *include_name =
c6da4cef
DE
18170 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18171 if (include_name != NULL)
aaa75496
JB
18172 dwarf2_create_include_psymtab (include_name, pst, objfile);
18173 }
18174 }
cb1df416
DJ
18175 else
18176 {
18177 /* Make sure a symtab is created for every file, even files
18178 which contain only variables (i.e. no code with associated
18179 line numbers). */
43f3e411 18180 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18181 int i;
cb1df416
DJ
18182
18183 for (i = 0; i < lh->num_file_names; i++)
18184 {
d521ce57 18185 const char *dir = NULL;
f3f5162e 18186 struct file_entry *fe;
9a619af0 18187
cb1df416 18188 fe = &lh->file_names[i];
afa6c9ab 18189 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18190 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18191 dwarf2_start_subfile (fe->name, dir);
cb1df416 18192
cb1df416 18193 if (current_subfile->symtab == NULL)
43f3e411
DE
18194 {
18195 current_subfile->symtab
18196 = allocate_symtab (cust, current_subfile->name);
18197 }
cb1df416
DJ
18198 fe->symtab = current_subfile->symtab;
18199 }
18200 }
c906108c
SS
18201}
18202
18203/* Start a subfile for DWARF. FILENAME is the name of the file and
18204 DIRNAME the name of the source directory which contains FILENAME
4d663531 18205 or NULL if not known.
c906108c
SS
18206 This routine tries to keep line numbers from identical absolute and
18207 relative file names in a common subfile.
18208
18209 Using the `list' example from the GDB testsuite, which resides in
18210 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18211 of /srcdir/list0.c yields the following debugging information for list0.c:
18212
c5aa993b 18213 DW_AT_name: /srcdir/list0.c
4d663531 18214 DW_AT_comp_dir: /compdir
357e46e7 18215 files.files[0].name: list0.h
c5aa993b 18216 files.files[0].dir: /srcdir
357e46e7 18217 files.files[1].name: list0.c
c5aa993b 18218 files.files[1].dir: /srcdir
c906108c
SS
18219
18220 The line number information for list0.c has to end up in a single
4f1520fb
FR
18221 subfile, so that `break /srcdir/list0.c:1' works as expected.
18222 start_subfile will ensure that this happens provided that we pass the
18223 concatenation of files.files[1].dir and files.files[1].name as the
18224 subfile's name. */
c906108c
SS
18225
18226static void
4d663531 18227dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18228{
d521ce57 18229 char *copy = NULL;
4f1520fb 18230
4d663531 18231 /* In order not to lose the line information directory,
4f1520fb
FR
18232 we concatenate it to the filename when it makes sense.
18233 Note that the Dwarf3 standard says (speaking of filenames in line
18234 information): ``The directory index is ignored for file names
18235 that represent full path names''. Thus ignoring dirname in the
18236 `else' branch below isn't an issue. */
c906108c 18237
d5166ae1 18238 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18239 {
18240 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18241 filename = copy;
18242 }
c906108c 18243
4d663531 18244 start_subfile (filename);
4f1520fb 18245
d521ce57
TT
18246 if (copy != NULL)
18247 xfree (copy);
c906108c
SS
18248}
18249
f4dc4d17
DE
18250/* Start a symtab for DWARF.
18251 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18252
43f3e411 18253static struct compunit_symtab *
f4dc4d17 18254dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18255 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18256{
43f3e411
DE
18257 struct compunit_symtab *cust
18258 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18259
f4dc4d17
DE
18260 record_debugformat ("DWARF 2");
18261 record_producer (cu->producer);
18262
18263 /* We assume that we're processing GCC output. */
18264 processing_gcc_compilation = 2;
18265
4d4ec4e5 18266 cu->processing_has_namespace_info = 0;
43f3e411
DE
18267
18268 return cust;
f4dc4d17
DE
18269}
18270
4c2df51b
DJ
18271static void
18272var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18273 struct dwarf2_cu *cu)
4c2df51b 18274{
e7c27a73
DJ
18275 struct objfile *objfile = cu->objfile;
18276 struct comp_unit_head *cu_header = &cu->header;
18277
4c2df51b
DJ
18278 /* NOTE drow/2003-01-30: There used to be a comment and some special
18279 code here to turn a symbol with DW_AT_external and a
18280 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18281 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18282 with some versions of binutils) where shared libraries could have
18283 relocations against symbols in their debug information - the
18284 minimal symbol would have the right address, but the debug info
18285 would not. It's no longer necessary, because we will explicitly
18286 apply relocations when we read in the debug information now. */
18287
18288 /* A DW_AT_location attribute with no contents indicates that a
18289 variable has been optimized away. */
18290 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18291 {
f1e6e072 18292 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18293 return;
18294 }
18295
18296 /* Handle one degenerate form of location expression specially, to
18297 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18298 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18299 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18300
18301 if (attr_form_is_block (attr)
3019eac3
DE
18302 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18303 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18304 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18305 && (DW_BLOCK (attr)->size
18306 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18307 {
891d2f0b 18308 unsigned int dummy;
4c2df51b 18309
3019eac3
DE
18310 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18311 SYMBOL_VALUE_ADDRESS (sym) =
18312 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18313 else
18314 SYMBOL_VALUE_ADDRESS (sym) =
18315 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18316 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18317 fixup_symbol_section (sym, objfile);
18318 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18319 SYMBOL_SECTION (sym));
4c2df51b
DJ
18320 return;
18321 }
18322
18323 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18324 expression evaluator, and use LOC_COMPUTED only when necessary
18325 (i.e. when the value of a register or memory location is
18326 referenced, or a thread-local block, etc.). Then again, it might
18327 not be worthwhile. I'm assuming that it isn't unless performance
18328 or memory numbers show me otherwise. */
18329
f1e6e072 18330 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18331
f1e6e072 18332 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18333 cu->has_loclist = 1;
4c2df51b
DJ
18334}
18335
c906108c
SS
18336/* Given a pointer to a DWARF information entry, figure out if we need
18337 to make a symbol table entry for it, and if so, create a new entry
18338 and return a pointer to it.
18339 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18340 used the passed type.
18341 If SPACE is not NULL, use it to hold the new symbol. If it is
18342 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18343
18344static struct symbol *
34eaf542
TT
18345new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18346 struct symbol *space)
c906108c 18347{
e7c27a73 18348 struct objfile *objfile = cu->objfile;
3e29f34a 18349 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18350 struct symbol *sym = NULL;
15d034d0 18351 const char *name;
c906108c
SS
18352 struct attribute *attr = NULL;
18353 struct attribute *attr2 = NULL;
e142c38c 18354 CORE_ADDR baseaddr;
e37fd15a
SW
18355 struct pending **list_to_add = NULL;
18356
edb3359d 18357 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18358
18359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18360
94af9270 18361 name = dwarf2_name (die, cu);
c906108c
SS
18362 if (name)
18363 {
94af9270 18364 const char *linkagename;
34eaf542 18365 int suppress_add = 0;
94af9270 18366
34eaf542
TT
18367 if (space)
18368 sym = space;
18369 else
e623cf5d 18370 sym = allocate_symbol (objfile);
c906108c 18371 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18372
18373 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18374 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18375 linkagename = dwarf2_physname (name, die, cu);
18376 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18377
f55ee35c
JK
18378 /* Fortran does not have mangling standard and the mangling does differ
18379 between gfortran, iFort etc. */
18380 if (cu->language == language_fortran
b250c185 18381 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18382 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18383 dwarf2_full_name (name, die, cu),
29df156d 18384 NULL);
f55ee35c 18385
c906108c 18386 /* Default assumptions.
c5aa993b 18387 Use the passed type or decode it from the die. */
176620f1 18388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18389 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18390 if (type != NULL)
18391 SYMBOL_TYPE (sym) = type;
18392 else
e7c27a73 18393 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18394 attr = dwarf2_attr (die,
18395 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18396 cu);
c906108c
SS
18397 if (attr)
18398 {
18399 SYMBOL_LINE (sym) = DW_UNSND (attr);
18400 }
cb1df416 18401
edb3359d
DJ
18402 attr = dwarf2_attr (die,
18403 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18404 cu);
cb1df416
DJ
18405 if (attr)
18406 {
18407 int file_index = DW_UNSND (attr);
9a619af0 18408
cb1df416
DJ
18409 if (cu->line_header == NULL
18410 || file_index > cu->line_header->num_file_names)
18411 complaint (&symfile_complaints,
18412 _("file index out of range"));
1c3d648d 18413 else if (file_index > 0)
cb1df416
DJ
18414 {
18415 struct file_entry *fe;
9a619af0 18416
cb1df416 18417 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18418 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18419 }
18420 }
18421
c906108c
SS
18422 switch (die->tag)
18423 {
18424 case DW_TAG_label:
e142c38c 18425 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18426 if (attr)
3e29f34a
MR
18427 {
18428 CORE_ADDR addr;
18429
18430 addr = attr_value_as_address (attr);
18431 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18432 SYMBOL_VALUE_ADDRESS (sym) = addr;
18433 }
0f5238ed
TT
18434 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18435 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18436 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18437 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18438 break;
18439 case DW_TAG_subprogram:
18440 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18441 finish_block. */
f1e6e072 18442 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18443 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18444 if ((attr2 && (DW_UNSND (attr2) != 0))
18445 || cu->language == language_ada)
c906108c 18446 {
2cfa0c8d
JB
18447 /* Subprograms marked external are stored as a global symbol.
18448 Ada subprograms, whether marked external or not, are always
18449 stored as a global symbol, because we want to be able to
18450 access them globally. For instance, we want to be able
18451 to break on a nested subprogram without having to
18452 specify the context. */
e37fd15a 18453 list_to_add = &global_symbols;
c906108c
SS
18454 }
18455 else
18456 {
e37fd15a 18457 list_to_add = cu->list_in_scope;
c906108c
SS
18458 }
18459 break;
edb3359d
DJ
18460 case DW_TAG_inlined_subroutine:
18461 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18462 finish_block. */
f1e6e072 18463 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18464 SYMBOL_INLINED (sym) = 1;
481860b3 18465 list_to_add = cu->list_in_scope;
edb3359d 18466 break;
34eaf542
TT
18467 case DW_TAG_template_value_param:
18468 suppress_add = 1;
18469 /* Fall through. */
72929c62 18470 case DW_TAG_constant:
c906108c 18471 case DW_TAG_variable:
254e6b9e 18472 case DW_TAG_member:
0963b4bd
MS
18473 /* Compilation with minimal debug info may result in
18474 variables with missing type entries. Change the
18475 misleading `void' type to something sensible. */
c906108c 18476 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18477 SYMBOL_TYPE (sym)
46bf5051 18478 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18479
e142c38c 18480 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18481 /* In the case of DW_TAG_member, we should only be called for
18482 static const members. */
18483 if (die->tag == DW_TAG_member)
18484 {
3863f96c
DE
18485 /* dwarf2_add_field uses die_is_declaration,
18486 so we do the same. */
254e6b9e
DE
18487 gdb_assert (die_is_declaration (die, cu));
18488 gdb_assert (attr);
18489 }
c906108c
SS
18490 if (attr)
18491 {
e7c27a73 18492 dwarf2_const_value (attr, sym, cu);
e142c38c 18493 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18494 if (!suppress_add)
34eaf542
TT
18495 {
18496 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18497 list_to_add = &global_symbols;
34eaf542 18498 else
e37fd15a 18499 list_to_add = cu->list_in_scope;
34eaf542 18500 }
c906108c
SS
18501 break;
18502 }
e142c38c 18503 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18504 if (attr)
18505 {
e7c27a73 18506 var_decode_location (attr, sym, cu);
e142c38c 18507 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18508
18509 /* Fortran explicitly imports any global symbols to the local
18510 scope by DW_TAG_common_block. */
18511 if (cu->language == language_fortran && die->parent
18512 && die->parent->tag == DW_TAG_common_block)
18513 attr2 = NULL;
18514
caac4577
JG
18515 if (SYMBOL_CLASS (sym) == LOC_STATIC
18516 && SYMBOL_VALUE_ADDRESS (sym) == 0
18517 && !dwarf2_per_objfile->has_section_at_zero)
18518 {
18519 /* When a static variable is eliminated by the linker,
18520 the corresponding debug information is not stripped
18521 out, but the variable address is set to null;
18522 do not add such variables into symbol table. */
18523 }
18524 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18525 {
f55ee35c
JK
18526 /* Workaround gfortran PR debug/40040 - it uses
18527 DW_AT_location for variables in -fPIC libraries which may
18528 get overriden by other libraries/executable and get
18529 a different address. Resolve it by the minimal symbol
18530 which may come from inferior's executable using copy
18531 relocation. Make this workaround only for gfortran as for
18532 other compilers GDB cannot guess the minimal symbol
18533 Fortran mangling kind. */
18534 if (cu->language == language_fortran && die->parent
18535 && die->parent->tag == DW_TAG_module
18536 && cu->producer
28586665 18537 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18538 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18539
1c809c68
TT
18540 /* A variable with DW_AT_external is never static,
18541 but it may be block-scoped. */
18542 list_to_add = (cu->list_in_scope == &file_symbols
18543 ? &global_symbols : cu->list_in_scope);
1c809c68 18544 }
c906108c 18545 else
e37fd15a 18546 list_to_add = cu->list_in_scope;
c906108c
SS
18547 }
18548 else
18549 {
18550 /* We do not know the address of this symbol.
c5aa993b
JM
18551 If it is an external symbol and we have type information
18552 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18553 The address of the variable will then be determined from
18554 the minimal symbol table whenever the variable is
18555 referenced. */
e142c38c 18556 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18557
18558 /* Fortran explicitly imports any global symbols to the local
18559 scope by DW_TAG_common_block. */
18560 if (cu->language == language_fortran && die->parent
18561 && die->parent->tag == DW_TAG_common_block)
18562 {
18563 /* SYMBOL_CLASS doesn't matter here because
18564 read_common_block is going to reset it. */
18565 if (!suppress_add)
18566 list_to_add = cu->list_in_scope;
18567 }
18568 else if (attr2 && (DW_UNSND (attr2) != 0)
18569 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18570 {
0fe7935b
DJ
18571 /* A variable with DW_AT_external is never static, but it
18572 may be block-scoped. */
18573 list_to_add = (cu->list_in_scope == &file_symbols
18574 ? &global_symbols : cu->list_in_scope);
18575
f1e6e072 18576 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18577 }
442ddf59
JK
18578 else if (!die_is_declaration (die, cu))
18579 {
18580 /* Use the default LOC_OPTIMIZED_OUT class. */
18581 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18582 if (!suppress_add)
18583 list_to_add = cu->list_in_scope;
442ddf59 18584 }
c906108c
SS
18585 }
18586 break;
18587 case DW_TAG_formal_parameter:
edb3359d
DJ
18588 /* If we are inside a function, mark this as an argument. If
18589 not, we might be looking at an argument to an inlined function
18590 when we do not have enough information to show inlined frames;
18591 pretend it's a local variable in that case so that the user can
18592 still see it. */
18593 if (context_stack_depth > 0
18594 && context_stack[context_stack_depth - 1].name != NULL)
18595 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18596 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18597 if (attr)
18598 {
e7c27a73 18599 var_decode_location (attr, sym, cu);
c906108c 18600 }
e142c38c 18601 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18602 if (attr)
18603 {
e7c27a73 18604 dwarf2_const_value (attr, sym, cu);
c906108c 18605 }
f346a30d 18606
e37fd15a 18607 list_to_add = cu->list_in_scope;
c906108c
SS
18608 break;
18609 case DW_TAG_unspecified_parameters:
18610 /* From varargs functions; gdb doesn't seem to have any
18611 interest in this information, so just ignore it for now.
18612 (FIXME?) */
18613 break;
34eaf542
TT
18614 case DW_TAG_template_type_param:
18615 suppress_add = 1;
18616 /* Fall through. */
c906108c 18617 case DW_TAG_class_type:
680b30c7 18618 case DW_TAG_interface_type:
c906108c
SS
18619 case DW_TAG_structure_type:
18620 case DW_TAG_union_type:
72019c9c 18621 case DW_TAG_set_type:
c906108c 18622 case DW_TAG_enumeration_type:
f1e6e072 18623 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18624 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18625
63d06c5c 18626 {
987504bb 18627 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18628 really ever be static objects: otherwise, if you try
18629 to, say, break of a class's method and you're in a file
18630 which doesn't mention that class, it won't work unless
18631 the check for all static symbols in lookup_symbol_aux
18632 saves you. See the OtherFileClass tests in
18633 gdb.c++/namespace.exp. */
18634
e37fd15a 18635 if (!suppress_add)
34eaf542 18636 {
34eaf542
TT
18637 list_to_add = (cu->list_in_scope == &file_symbols
18638 && (cu->language == language_cplus
18639 || cu->language == language_java)
18640 ? &global_symbols : cu->list_in_scope);
63d06c5c 18641
64382290
TT
18642 /* The semantics of C++ state that "struct foo {
18643 ... }" also defines a typedef for "foo". A Java
18644 class declaration also defines a typedef for the
18645 class. */
18646 if (cu->language == language_cplus
18647 || cu->language == language_java
45280282 18648 || cu->language == language_ada
c44af4eb
TT
18649 || cu->language == language_d
18650 || cu->language == language_rust)
64382290
TT
18651 {
18652 /* The symbol's name is already allocated along
18653 with this objfile, so we don't need to
18654 duplicate it for the type. */
18655 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18656 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18657 }
63d06c5c
DC
18658 }
18659 }
c906108c
SS
18660 break;
18661 case DW_TAG_typedef:
f1e6e072 18662 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18663 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18664 list_to_add = cu->list_in_scope;
63d06c5c 18665 break;
c906108c 18666 case DW_TAG_base_type:
a02abb62 18667 case DW_TAG_subrange_type:
f1e6e072 18668 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18669 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18670 list_to_add = cu->list_in_scope;
c906108c
SS
18671 break;
18672 case DW_TAG_enumerator:
e142c38c 18673 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18674 if (attr)
18675 {
e7c27a73 18676 dwarf2_const_value (attr, sym, cu);
c906108c 18677 }
63d06c5c
DC
18678 {
18679 /* NOTE: carlton/2003-11-10: See comment above in the
18680 DW_TAG_class_type, etc. block. */
18681
e142c38c 18682 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18683 && (cu->language == language_cplus
18684 || cu->language == language_java)
e142c38c 18685 ? &global_symbols : cu->list_in_scope);
63d06c5c 18686 }
c906108c 18687 break;
74921315 18688 case DW_TAG_imported_declaration:
5c4e30ca 18689 case DW_TAG_namespace:
f1e6e072 18690 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18691 list_to_add = &global_symbols;
5c4e30ca 18692 break;
530e8392
KB
18693 case DW_TAG_module:
18694 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18695 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18696 list_to_add = &global_symbols;
18697 break;
4357ac6c 18698 case DW_TAG_common_block:
f1e6e072 18699 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18700 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18701 add_symbol_to_list (sym, cu->list_in_scope);
18702 break;
c906108c
SS
18703 default:
18704 /* Not a tag we recognize. Hopefully we aren't processing
18705 trash data, but since we must specifically ignore things
18706 we don't recognize, there is nothing else we should do at
0963b4bd 18707 this point. */
e2e0b3e5 18708 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18709 dwarf_tag_name (die->tag));
c906108c
SS
18710 break;
18711 }
df8a16a1 18712
e37fd15a
SW
18713 if (suppress_add)
18714 {
18715 sym->hash_next = objfile->template_symbols;
18716 objfile->template_symbols = sym;
18717 list_to_add = NULL;
18718 }
18719
18720 if (list_to_add != NULL)
18721 add_symbol_to_list (sym, list_to_add);
18722
df8a16a1
DJ
18723 /* For the benefit of old versions of GCC, check for anonymous
18724 namespaces based on the demangled name. */
4d4ec4e5 18725 if (!cu->processing_has_namespace_info
94af9270 18726 && cu->language == language_cplus)
a10964d1 18727 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18728 }
18729 return (sym);
18730}
18731
34eaf542
TT
18732/* A wrapper for new_symbol_full that always allocates a new symbol. */
18733
18734static struct symbol *
18735new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18736{
18737 return new_symbol_full (die, type, cu, NULL);
18738}
18739
98bfdba5
PA
18740/* Given an attr with a DW_FORM_dataN value in host byte order,
18741 zero-extend it as appropriate for the symbol's type. The DWARF
18742 standard (v4) is not entirely clear about the meaning of using
18743 DW_FORM_dataN for a constant with a signed type, where the type is
18744 wider than the data. The conclusion of a discussion on the DWARF
18745 list was that this is unspecified. We choose to always zero-extend
18746 because that is the interpretation long in use by GCC. */
c906108c 18747
98bfdba5 18748static gdb_byte *
ff39bb5e 18749dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18750 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18751{
e7c27a73 18752 struct objfile *objfile = cu->objfile;
e17a4113
UW
18753 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18754 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18755 LONGEST l = DW_UNSND (attr);
18756
18757 if (bits < sizeof (*value) * 8)
18758 {
18759 l &= ((LONGEST) 1 << bits) - 1;
18760 *value = l;
18761 }
18762 else if (bits == sizeof (*value) * 8)
18763 *value = l;
18764 else
18765 {
224c3ddb 18766 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18767 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18768 return bytes;
18769 }
18770
18771 return NULL;
18772}
18773
18774/* Read a constant value from an attribute. Either set *VALUE, or if
18775 the value does not fit in *VALUE, set *BYTES - either already
18776 allocated on the objfile obstack, or newly allocated on OBSTACK,
18777 or, set *BATON, if we translated the constant to a location
18778 expression. */
18779
18780static void
ff39bb5e 18781dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18782 const char *name, struct obstack *obstack,
18783 struct dwarf2_cu *cu,
d521ce57 18784 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18785 struct dwarf2_locexpr_baton **baton)
18786{
18787 struct objfile *objfile = cu->objfile;
18788 struct comp_unit_head *cu_header = &cu->header;
c906108c 18789 struct dwarf_block *blk;
98bfdba5
PA
18790 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18791 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18792
18793 *value = 0;
18794 *bytes = NULL;
18795 *baton = NULL;
c906108c
SS
18796
18797 switch (attr->form)
18798 {
18799 case DW_FORM_addr:
3019eac3 18800 case DW_FORM_GNU_addr_index:
ac56253d 18801 {
ac56253d
TT
18802 gdb_byte *data;
18803
98bfdba5
PA
18804 if (TYPE_LENGTH (type) != cu_header->addr_size)
18805 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18806 cu_header->addr_size,
98bfdba5 18807 TYPE_LENGTH (type));
ac56253d
TT
18808 /* Symbols of this form are reasonably rare, so we just
18809 piggyback on the existing location code rather than writing
18810 a new implementation of symbol_computed_ops. */
8d749320 18811 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18812 (*baton)->per_cu = cu->per_cu;
18813 gdb_assert ((*baton)->per_cu);
ac56253d 18814
98bfdba5 18815 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18816 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18817 (*baton)->data = data;
ac56253d
TT
18818
18819 data[0] = DW_OP_addr;
18820 store_unsigned_integer (&data[1], cu_header->addr_size,
18821 byte_order, DW_ADDR (attr));
18822 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18823 }
c906108c 18824 break;
4ac36638 18825 case DW_FORM_string:
93b5768b 18826 case DW_FORM_strp:
3019eac3 18827 case DW_FORM_GNU_str_index:
36586728 18828 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18829 /* DW_STRING is already allocated on the objfile obstack, point
18830 directly to it. */
d521ce57 18831 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18832 break;
c906108c
SS
18833 case DW_FORM_block1:
18834 case DW_FORM_block2:
18835 case DW_FORM_block4:
18836 case DW_FORM_block:
2dc7f7b3 18837 case DW_FORM_exprloc:
c906108c 18838 blk = DW_BLOCK (attr);
98bfdba5
PA
18839 if (TYPE_LENGTH (type) != blk->size)
18840 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18841 TYPE_LENGTH (type));
18842 *bytes = blk->data;
c906108c 18843 break;
2df3850c
JM
18844
18845 /* The DW_AT_const_value attributes are supposed to carry the
18846 symbol's value "represented as it would be on the target
18847 architecture." By the time we get here, it's already been
18848 converted to host endianness, so we just need to sign- or
18849 zero-extend it as appropriate. */
18850 case DW_FORM_data1:
3aef2284 18851 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18852 break;
c906108c 18853 case DW_FORM_data2:
3aef2284 18854 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18855 break;
c906108c 18856 case DW_FORM_data4:
3aef2284 18857 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18858 break;
c906108c 18859 case DW_FORM_data8:
3aef2284 18860 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18861 break;
18862
c906108c 18863 case DW_FORM_sdata:
98bfdba5 18864 *value = DW_SND (attr);
2df3850c
JM
18865 break;
18866
c906108c 18867 case DW_FORM_udata:
98bfdba5 18868 *value = DW_UNSND (attr);
c906108c 18869 break;
2df3850c 18870
c906108c 18871 default:
4d3c2250 18872 complaint (&symfile_complaints,
e2e0b3e5 18873 _("unsupported const value attribute form: '%s'"),
4d3c2250 18874 dwarf_form_name (attr->form));
98bfdba5 18875 *value = 0;
c906108c
SS
18876 break;
18877 }
18878}
18879
2df3850c 18880
98bfdba5
PA
18881/* Copy constant value from an attribute to a symbol. */
18882
2df3850c 18883static void
ff39bb5e 18884dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18885 struct dwarf2_cu *cu)
2df3850c 18886{
98bfdba5 18887 struct objfile *objfile = cu->objfile;
12df843f 18888 LONGEST value;
d521ce57 18889 const gdb_byte *bytes;
98bfdba5 18890 struct dwarf2_locexpr_baton *baton;
2df3850c 18891
98bfdba5
PA
18892 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18893 SYMBOL_PRINT_NAME (sym),
18894 &objfile->objfile_obstack, cu,
18895 &value, &bytes, &baton);
2df3850c 18896
98bfdba5
PA
18897 if (baton != NULL)
18898 {
98bfdba5 18899 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18900 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18901 }
18902 else if (bytes != NULL)
18903 {
18904 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18905 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18906 }
18907 else
18908 {
18909 SYMBOL_VALUE (sym) = value;
f1e6e072 18910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18911 }
2df3850c
JM
18912}
18913
c906108c
SS
18914/* Return the type of the die in question using its DW_AT_type attribute. */
18915
18916static struct type *
e7c27a73 18917die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18918{
c906108c 18919 struct attribute *type_attr;
c906108c 18920
e142c38c 18921 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18922 if (!type_attr)
18923 {
18924 /* A missing DW_AT_type represents a void type. */
46bf5051 18925 return objfile_type (cu->objfile)->builtin_void;
c906108c 18926 }
348e048f 18927
673bfd45 18928 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18929}
18930
b4ba55a1
JB
18931/* True iff CU's producer generates GNAT Ada auxiliary information
18932 that allows to find parallel types through that information instead
18933 of having to do expensive parallel lookups by type name. */
18934
18935static int
18936need_gnat_info (struct dwarf2_cu *cu)
18937{
18938 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18939 of GNAT produces this auxiliary information, without any indication
18940 that it is produced. Part of enhancing the FSF version of GNAT
18941 to produce that information will be to put in place an indicator
18942 that we can use in order to determine whether the descriptive type
18943 info is available or not. One suggestion that has been made is
18944 to use a new attribute, attached to the CU die. For now, assume
18945 that the descriptive type info is not available. */
18946 return 0;
18947}
18948
b4ba55a1
JB
18949/* Return the auxiliary type of the die in question using its
18950 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18951 attribute is not present. */
18952
18953static struct type *
18954die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18955{
b4ba55a1 18956 struct attribute *type_attr;
b4ba55a1
JB
18957
18958 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18959 if (!type_attr)
18960 return NULL;
18961
673bfd45 18962 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18963}
18964
18965/* If DIE has a descriptive_type attribute, then set the TYPE's
18966 descriptive type accordingly. */
18967
18968static void
18969set_descriptive_type (struct type *type, struct die_info *die,
18970 struct dwarf2_cu *cu)
18971{
18972 struct type *descriptive_type = die_descriptive_type (die, cu);
18973
18974 if (descriptive_type)
18975 {
18976 ALLOCATE_GNAT_AUX_TYPE (type);
18977 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18978 }
18979}
18980
c906108c
SS
18981/* Return the containing type of the die in question using its
18982 DW_AT_containing_type attribute. */
18983
18984static struct type *
e7c27a73 18985die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18986{
c906108c 18987 struct attribute *type_attr;
c906108c 18988
e142c38c 18989 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18990 if (!type_attr)
18991 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18992 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18993
673bfd45 18994 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18995}
18996
ac9ec31b
DE
18997/* Return an error marker type to use for the ill formed type in DIE/CU. */
18998
18999static struct type *
19000build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19001{
19002 struct objfile *objfile = dwarf2_per_objfile->objfile;
19003 char *message, *saved;
19004
19005 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19006 objfile_name (objfile),
ac9ec31b
DE
19007 cu->header.offset.sect_off,
19008 die->offset.sect_off);
224c3ddb
SM
19009 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19010 message, strlen (message));
ac9ec31b
DE
19011 xfree (message);
19012
19013 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
19014}
19015
673bfd45 19016/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19017 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19018 DW_AT_containing_type.
673bfd45
DE
19019 If there is no type substitute an error marker. */
19020
c906108c 19021static struct type *
ff39bb5e 19022lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19023 struct dwarf2_cu *cu)
c906108c 19024{
bb5ed363 19025 struct objfile *objfile = cu->objfile;
f792889a
DJ
19026 struct type *this_type;
19027
ac9ec31b
DE
19028 gdb_assert (attr->name == DW_AT_type
19029 || attr->name == DW_AT_GNAT_descriptive_type
19030 || attr->name == DW_AT_containing_type);
19031
673bfd45
DE
19032 /* First see if we have it cached. */
19033
36586728
TT
19034 if (attr->form == DW_FORM_GNU_ref_alt)
19035 {
19036 struct dwarf2_per_cu_data *per_cu;
19037 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19038
19039 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19040 this_type = get_die_type_at_offset (offset, per_cu);
19041 }
7771576e 19042 else if (attr_form_is_ref (attr))
673bfd45 19043 {
b64f50a1 19044 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19045
19046 this_type = get_die_type_at_offset (offset, cu->per_cu);
19047 }
55f1336d 19048 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19049 {
ac9ec31b 19050 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19051
ac9ec31b 19052 return get_signatured_type (die, signature, cu);
673bfd45
DE
19053 }
19054 else
19055 {
ac9ec31b
DE
19056 complaint (&symfile_complaints,
19057 _("Dwarf Error: Bad type attribute %s in DIE"
19058 " at 0x%x [in module %s]"),
19059 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19060 objfile_name (objfile));
ac9ec31b 19061 return build_error_marker_type (cu, die);
673bfd45
DE
19062 }
19063
19064 /* If not cached we need to read it in. */
19065
19066 if (this_type == NULL)
19067 {
ac9ec31b 19068 struct die_info *type_die = NULL;
673bfd45
DE
19069 struct dwarf2_cu *type_cu = cu;
19070
7771576e 19071 if (attr_form_is_ref (attr))
ac9ec31b
DE
19072 type_die = follow_die_ref (die, attr, &type_cu);
19073 if (type_die == NULL)
19074 return build_error_marker_type (cu, die);
19075 /* If we find the type now, it's probably because the type came
3019eac3
DE
19076 from an inter-CU reference and the type's CU got expanded before
19077 ours. */
ac9ec31b 19078 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19079 }
19080
19081 /* If we still don't have a type use an error marker. */
19082
19083 if (this_type == NULL)
ac9ec31b 19084 return build_error_marker_type (cu, die);
673bfd45 19085
f792889a 19086 return this_type;
c906108c
SS
19087}
19088
673bfd45
DE
19089/* Return the type in DIE, CU.
19090 Returns NULL for invalid types.
19091
02142a6c 19092 This first does a lookup in die_type_hash,
673bfd45
DE
19093 and only reads the die in if necessary.
19094
19095 NOTE: This can be called when reading in partial or full symbols. */
19096
f792889a 19097static struct type *
e7c27a73 19098read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19099{
f792889a
DJ
19100 struct type *this_type;
19101
19102 this_type = get_die_type (die, cu);
19103 if (this_type)
19104 return this_type;
19105
673bfd45
DE
19106 return read_type_die_1 (die, cu);
19107}
19108
19109/* Read the type in DIE, CU.
19110 Returns NULL for invalid types. */
19111
19112static struct type *
19113read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19114{
19115 struct type *this_type = NULL;
19116
c906108c
SS
19117 switch (die->tag)
19118 {
19119 case DW_TAG_class_type:
680b30c7 19120 case DW_TAG_interface_type:
c906108c
SS
19121 case DW_TAG_structure_type:
19122 case DW_TAG_union_type:
f792889a 19123 this_type = read_structure_type (die, cu);
c906108c
SS
19124 break;
19125 case DW_TAG_enumeration_type:
f792889a 19126 this_type = read_enumeration_type (die, cu);
c906108c
SS
19127 break;
19128 case DW_TAG_subprogram:
19129 case DW_TAG_subroutine_type:
edb3359d 19130 case DW_TAG_inlined_subroutine:
f792889a 19131 this_type = read_subroutine_type (die, cu);
c906108c
SS
19132 break;
19133 case DW_TAG_array_type:
f792889a 19134 this_type = read_array_type (die, cu);
c906108c 19135 break;
72019c9c 19136 case DW_TAG_set_type:
f792889a 19137 this_type = read_set_type (die, cu);
72019c9c 19138 break;
c906108c 19139 case DW_TAG_pointer_type:
f792889a 19140 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19141 break;
19142 case DW_TAG_ptr_to_member_type:
f792889a 19143 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19144 break;
19145 case DW_TAG_reference_type:
f792889a 19146 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19147 break;
19148 case DW_TAG_const_type:
f792889a 19149 this_type = read_tag_const_type (die, cu);
c906108c
SS
19150 break;
19151 case DW_TAG_volatile_type:
f792889a 19152 this_type = read_tag_volatile_type (die, cu);
c906108c 19153 break;
06d66ee9
TT
19154 case DW_TAG_restrict_type:
19155 this_type = read_tag_restrict_type (die, cu);
19156 break;
c906108c 19157 case DW_TAG_string_type:
f792889a 19158 this_type = read_tag_string_type (die, cu);
c906108c
SS
19159 break;
19160 case DW_TAG_typedef:
f792889a 19161 this_type = read_typedef (die, cu);
c906108c 19162 break;
a02abb62 19163 case DW_TAG_subrange_type:
f792889a 19164 this_type = read_subrange_type (die, cu);
a02abb62 19165 break;
c906108c 19166 case DW_TAG_base_type:
f792889a 19167 this_type = read_base_type (die, cu);
c906108c 19168 break;
81a17f79 19169 case DW_TAG_unspecified_type:
f792889a 19170 this_type = read_unspecified_type (die, cu);
81a17f79 19171 break;
0114d602
DJ
19172 case DW_TAG_namespace:
19173 this_type = read_namespace_type (die, cu);
19174 break;
f55ee35c
JK
19175 case DW_TAG_module:
19176 this_type = read_module_type (die, cu);
19177 break;
a2c2acaf
MW
19178 case DW_TAG_atomic_type:
19179 this_type = read_tag_atomic_type (die, cu);
19180 break;
c906108c 19181 default:
3e43a32a
MS
19182 complaint (&symfile_complaints,
19183 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19184 dwarf_tag_name (die->tag));
c906108c
SS
19185 break;
19186 }
63d06c5c 19187
f792889a 19188 return this_type;
63d06c5c
DC
19189}
19190
abc72ce4
DE
19191/* See if we can figure out if the class lives in a namespace. We do
19192 this by looking for a member function; its demangled name will
19193 contain namespace info, if there is any.
19194 Return the computed name or NULL.
19195 Space for the result is allocated on the objfile's obstack.
19196 This is the full-die version of guess_partial_die_structure_name.
19197 In this case we know DIE has no useful parent. */
19198
19199static char *
19200guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19201{
19202 struct die_info *spec_die;
19203 struct dwarf2_cu *spec_cu;
19204 struct die_info *child;
19205
19206 spec_cu = cu;
19207 spec_die = die_specification (die, &spec_cu);
19208 if (spec_die != NULL)
19209 {
19210 die = spec_die;
19211 cu = spec_cu;
19212 }
19213
19214 for (child = die->child;
19215 child != NULL;
19216 child = child->sibling)
19217 {
19218 if (child->tag == DW_TAG_subprogram)
19219 {
7d45c7c3 19220 const char *linkage_name;
abc72ce4 19221
7d45c7c3
KB
19222 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19223 if (linkage_name == NULL)
19224 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19225 cu);
19226 if (linkage_name != NULL)
abc72ce4
DE
19227 {
19228 char *actual_name
19229 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19230 linkage_name);
abc72ce4
DE
19231 char *name = NULL;
19232
19233 if (actual_name != NULL)
19234 {
15d034d0 19235 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19236
19237 if (die_name != NULL
19238 && strcmp (die_name, actual_name) != 0)
19239 {
19240 /* Strip off the class name from the full name.
19241 We want the prefix. */
19242 int die_name_len = strlen (die_name);
19243 int actual_name_len = strlen (actual_name);
19244
19245 /* Test for '::' as a sanity check. */
19246 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19247 && actual_name[actual_name_len
19248 - die_name_len - 1] == ':')
224c3ddb
SM
19249 name = (char *) obstack_copy0 (
19250 &cu->objfile->per_bfd->storage_obstack,
19251 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19252 }
19253 }
19254 xfree (actual_name);
19255 return name;
19256 }
19257 }
19258 }
19259
19260 return NULL;
19261}
19262
96408a79
SA
19263/* GCC might emit a nameless typedef that has a linkage name. Determine the
19264 prefix part in such case. See
19265 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19266
19267static char *
19268anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19269{
19270 struct attribute *attr;
e6a959d6 19271 const char *base;
96408a79
SA
19272
19273 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19274 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19275 return NULL;
19276
7d45c7c3 19277 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19278 return NULL;
19279
19280 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19281 if (attr == NULL)
19282 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19283 if (attr == NULL || DW_STRING (attr) == NULL)
19284 return NULL;
19285
19286 /* dwarf2_name had to be already called. */
19287 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19288
19289 /* Strip the base name, keep any leading namespaces/classes. */
19290 base = strrchr (DW_STRING (attr), ':');
19291 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19292 return "";
19293
224c3ddb
SM
19294 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19295 DW_STRING (attr),
19296 &base[-1] - DW_STRING (attr));
96408a79
SA
19297}
19298
fdde2d81 19299/* Return the name of the namespace/class that DIE is defined within,
0114d602 19300 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19301
0114d602
DJ
19302 For example, if we're within the method foo() in the following
19303 code:
19304
19305 namespace N {
19306 class C {
19307 void foo () {
19308 }
19309 };
19310 }
19311
19312 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19313
0d5cff50 19314static const char *
e142c38c 19315determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19316{
0114d602
DJ
19317 struct die_info *parent, *spec_die;
19318 struct dwarf2_cu *spec_cu;
19319 struct type *parent_type;
96408a79 19320 char *retval;
63d06c5c 19321
f55ee35c 19322 if (cu->language != language_cplus && cu->language != language_java
c44af4eb
TT
19323 && cu->language != language_fortran && cu->language != language_d
19324 && cu->language != language_rust)
0114d602
DJ
19325 return "";
19326
96408a79
SA
19327 retval = anonymous_struct_prefix (die, cu);
19328 if (retval)
19329 return retval;
19330
0114d602
DJ
19331 /* We have to be careful in the presence of DW_AT_specification.
19332 For example, with GCC 3.4, given the code
19333
19334 namespace N {
19335 void foo() {
19336 // Definition of N::foo.
19337 }
19338 }
19339
19340 then we'll have a tree of DIEs like this:
19341
19342 1: DW_TAG_compile_unit
19343 2: DW_TAG_namespace // N
19344 3: DW_TAG_subprogram // declaration of N::foo
19345 4: DW_TAG_subprogram // definition of N::foo
19346 DW_AT_specification // refers to die #3
19347
19348 Thus, when processing die #4, we have to pretend that we're in
19349 the context of its DW_AT_specification, namely the contex of die
19350 #3. */
19351 spec_cu = cu;
19352 spec_die = die_specification (die, &spec_cu);
19353 if (spec_die == NULL)
19354 parent = die->parent;
19355 else
63d06c5c 19356 {
0114d602
DJ
19357 parent = spec_die->parent;
19358 cu = spec_cu;
63d06c5c 19359 }
0114d602
DJ
19360
19361 if (parent == NULL)
19362 return "";
98bfdba5
PA
19363 else if (parent->building_fullname)
19364 {
19365 const char *name;
19366 const char *parent_name;
19367
19368 /* It has been seen on RealView 2.2 built binaries,
19369 DW_TAG_template_type_param types actually _defined_ as
19370 children of the parent class:
19371
19372 enum E {};
19373 template class <class Enum> Class{};
19374 Class<enum E> class_e;
19375
19376 1: DW_TAG_class_type (Class)
19377 2: DW_TAG_enumeration_type (E)
19378 3: DW_TAG_enumerator (enum1:0)
19379 3: DW_TAG_enumerator (enum2:1)
19380 ...
19381 2: DW_TAG_template_type_param
19382 DW_AT_type DW_FORM_ref_udata (E)
19383
19384 Besides being broken debug info, it can put GDB into an
19385 infinite loop. Consider:
19386
19387 When we're building the full name for Class<E>, we'll start
19388 at Class, and go look over its template type parameters,
19389 finding E. We'll then try to build the full name of E, and
19390 reach here. We're now trying to build the full name of E,
19391 and look over the parent DIE for containing scope. In the
19392 broken case, if we followed the parent DIE of E, we'd again
19393 find Class, and once again go look at its template type
19394 arguments, etc., etc. Simply don't consider such parent die
19395 as source-level parent of this die (it can't be, the language
19396 doesn't allow it), and break the loop here. */
19397 name = dwarf2_name (die, cu);
19398 parent_name = dwarf2_name (parent, cu);
19399 complaint (&symfile_complaints,
19400 _("template param type '%s' defined within parent '%s'"),
19401 name ? name : "<unknown>",
19402 parent_name ? parent_name : "<unknown>");
19403 return "";
19404 }
63d06c5c 19405 else
0114d602
DJ
19406 switch (parent->tag)
19407 {
63d06c5c 19408 case DW_TAG_namespace:
0114d602 19409 parent_type = read_type_die (parent, cu);
acebe513
UW
19410 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19411 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19412 Work around this problem here. */
19413 if (cu->language == language_cplus
19414 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19415 return "";
0114d602
DJ
19416 /* We give a name to even anonymous namespaces. */
19417 return TYPE_TAG_NAME (parent_type);
63d06c5c 19418 case DW_TAG_class_type:
680b30c7 19419 case DW_TAG_interface_type:
63d06c5c 19420 case DW_TAG_structure_type:
0114d602 19421 case DW_TAG_union_type:
f55ee35c 19422 case DW_TAG_module:
0114d602
DJ
19423 parent_type = read_type_die (parent, cu);
19424 if (TYPE_TAG_NAME (parent_type) != NULL)
19425 return TYPE_TAG_NAME (parent_type);
19426 else
19427 /* An anonymous structure is only allowed non-static data
19428 members; no typedefs, no member functions, et cetera.
19429 So it does not need a prefix. */
19430 return "";
abc72ce4 19431 case DW_TAG_compile_unit:
95554aad 19432 case DW_TAG_partial_unit:
abc72ce4
DE
19433 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19434 if (cu->language == language_cplus
8b70b953 19435 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19436 && die->child != NULL
19437 && (die->tag == DW_TAG_class_type
19438 || die->tag == DW_TAG_structure_type
19439 || die->tag == DW_TAG_union_type))
19440 {
19441 char *name = guess_full_die_structure_name (die, cu);
19442 if (name != NULL)
19443 return name;
19444 }
19445 return "";
3d567982
TT
19446 case DW_TAG_enumeration_type:
19447 parent_type = read_type_die (parent, cu);
19448 if (TYPE_DECLARED_CLASS (parent_type))
19449 {
19450 if (TYPE_TAG_NAME (parent_type) != NULL)
19451 return TYPE_TAG_NAME (parent_type);
19452 return "";
19453 }
19454 /* Fall through. */
63d06c5c 19455 default:
8176b9b8 19456 return determine_prefix (parent, cu);
63d06c5c 19457 }
63d06c5c
DC
19458}
19459
3e43a32a
MS
19460/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19461 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19462 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19463 an obconcat, otherwise allocate storage for the result. The CU argument is
19464 used to determine the language and hence, the appropriate separator. */
987504bb 19465
f55ee35c 19466#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19467
19468static char *
f55ee35c
JK
19469typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19470 int physname, struct dwarf2_cu *cu)
63d06c5c 19471{
f55ee35c 19472 const char *lead = "";
5c315b68 19473 const char *sep;
63d06c5c 19474
3e43a32a
MS
19475 if (suffix == NULL || suffix[0] == '\0'
19476 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19477 sep = "";
19478 else if (cu->language == language_java)
19479 sep = ".";
45280282
IB
19480 else if (cu->language == language_d)
19481 {
19482 /* For D, the 'main' function could be defined in any module, but it
19483 should never be prefixed. */
19484 if (strcmp (suffix, "D main") == 0)
19485 {
19486 prefix = "";
19487 sep = "";
19488 }
19489 else
19490 sep = ".";
19491 }
f55ee35c
JK
19492 else if (cu->language == language_fortran && physname)
19493 {
19494 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19495 DW_AT_MIPS_linkage_name is preferred and used instead. */
19496
19497 lead = "__";
19498 sep = "_MOD_";
19499 }
987504bb
JJ
19500 else
19501 sep = "::";
63d06c5c 19502
6dd47d34
DE
19503 if (prefix == NULL)
19504 prefix = "";
19505 if (suffix == NULL)
19506 suffix = "";
19507
987504bb
JJ
19508 if (obs == NULL)
19509 {
3e43a32a 19510 char *retval
224c3ddb
SM
19511 = ((char *)
19512 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19513
f55ee35c
JK
19514 strcpy (retval, lead);
19515 strcat (retval, prefix);
6dd47d34
DE
19516 strcat (retval, sep);
19517 strcat (retval, suffix);
63d06c5c
DC
19518 return retval;
19519 }
987504bb
JJ
19520 else
19521 {
19522 /* We have an obstack. */
f55ee35c 19523 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19524 }
63d06c5c
DC
19525}
19526
c906108c
SS
19527/* Return sibling of die, NULL if no sibling. */
19528
f9aca02d 19529static struct die_info *
fba45db2 19530sibling_die (struct die_info *die)
c906108c 19531{
639d11d3 19532 return die->sibling;
c906108c
SS
19533}
19534
71c25dea
TT
19535/* Get name of a die, return NULL if not found. */
19536
15d034d0
TT
19537static const char *
19538dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19539 struct obstack *obstack)
19540{
19541 if (name && cu->language == language_cplus)
19542 {
19543 char *canon_name = cp_canonicalize_string (name);
19544
19545 if (canon_name != NULL)
19546 {
19547 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19548 name = (const char *) obstack_copy0 (obstack, canon_name,
19549 strlen (canon_name));
71c25dea
TT
19550 xfree (canon_name);
19551 }
19552 }
19553
19554 return name;
c906108c
SS
19555}
19556
96553a0c
DE
19557/* Get name of a die, return NULL if not found.
19558 Anonymous namespaces are converted to their magic string. */
9219021c 19559
15d034d0 19560static const char *
e142c38c 19561dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19562{
19563 struct attribute *attr;
19564
e142c38c 19565 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19566 if ((!attr || !DW_STRING (attr))
96553a0c 19567 && die->tag != DW_TAG_namespace
53832f31
TT
19568 && die->tag != DW_TAG_class_type
19569 && die->tag != DW_TAG_interface_type
19570 && die->tag != DW_TAG_structure_type
19571 && die->tag != DW_TAG_union_type)
71c25dea
TT
19572 return NULL;
19573
19574 switch (die->tag)
19575 {
19576 case DW_TAG_compile_unit:
95554aad 19577 case DW_TAG_partial_unit:
71c25dea
TT
19578 /* Compilation units have a DW_AT_name that is a filename, not
19579 a source language identifier. */
19580 case DW_TAG_enumeration_type:
19581 case DW_TAG_enumerator:
19582 /* These tags always have simple identifiers already; no need
19583 to canonicalize them. */
19584 return DW_STRING (attr);
907af001 19585
96553a0c
DE
19586 case DW_TAG_namespace:
19587 if (attr != NULL && DW_STRING (attr) != NULL)
19588 return DW_STRING (attr);
19589 return CP_ANONYMOUS_NAMESPACE_STR;
19590
418835cc
KS
19591 case DW_TAG_subprogram:
19592 /* Java constructors will all be named "<init>", so return
19593 the class name when we see this special case. */
19594 if (cu->language == language_java
19595 && DW_STRING (attr) != NULL
19596 && strcmp (DW_STRING (attr), "<init>") == 0)
19597 {
19598 struct dwarf2_cu *spec_cu = cu;
19599 struct die_info *spec_die;
19600
19601 /* GCJ will output '<init>' for Java constructor names.
19602 For this special case, return the name of the parent class. */
19603
cdc07690 19604 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19605 If so, use the name of the specified DIE. */
19606 spec_die = die_specification (die, &spec_cu);
19607 if (spec_die != NULL)
19608 return dwarf2_name (spec_die, spec_cu);
19609
19610 do
19611 {
19612 die = die->parent;
19613 if (die->tag == DW_TAG_class_type)
19614 return dwarf2_name (die, cu);
19615 }
95554aad
TT
19616 while (die->tag != DW_TAG_compile_unit
19617 && die->tag != DW_TAG_partial_unit);
418835cc 19618 }
907af001
UW
19619 break;
19620
19621 case DW_TAG_class_type:
19622 case DW_TAG_interface_type:
19623 case DW_TAG_structure_type:
19624 case DW_TAG_union_type:
19625 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19626 structures or unions. These were of the form "._%d" in GCC 4.1,
19627 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19628 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19629 if (attr && DW_STRING (attr)
61012eef
GB
19630 && (startswith (DW_STRING (attr), "._")
19631 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19632 return NULL;
53832f31
TT
19633
19634 /* GCC might emit a nameless typedef that has a linkage name. See
19635 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19636 if (!attr || DW_STRING (attr) == NULL)
19637 {
df5c6c50 19638 char *demangled = NULL;
53832f31
TT
19639
19640 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19641 if (attr == NULL)
19642 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19643
19644 if (attr == NULL || DW_STRING (attr) == NULL)
19645 return NULL;
19646
df5c6c50
JK
19647 /* Avoid demangling DW_STRING (attr) the second time on a second
19648 call for the same DIE. */
19649 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19650 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19651
19652 if (demangled)
19653 {
e6a959d6 19654 const char *base;
96408a79 19655
53832f31 19656 /* FIXME: we already did this for the partial symbol... */
34a68019 19657 DW_STRING (attr)
224c3ddb
SM
19658 = ((const char *)
19659 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19660 demangled, strlen (demangled)));
53832f31
TT
19661 DW_STRING_IS_CANONICAL (attr) = 1;
19662 xfree (demangled);
96408a79
SA
19663
19664 /* Strip any leading namespaces/classes, keep only the base name.
19665 DW_AT_name for named DIEs does not contain the prefixes. */
19666 base = strrchr (DW_STRING (attr), ':');
19667 if (base && base > DW_STRING (attr) && base[-1] == ':')
19668 return &base[1];
19669 else
19670 return DW_STRING (attr);
53832f31
TT
19671 }
19672 }
907af001
UW
19673 break;
19674
71c25dea 19675 default:
907af001
UW
19676 break;
19677 }
19678
19679 if (!DW_STRING_IS_CANONICAL (attr))
19680 {
19681 DW_STRING (attr)
19682 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19683 &cu->objfile->per_bfd->storage_obstack);
907af001 19684 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19685 }
907af001 19686 return DW_STRING (attr);
9219021c
DC
19687}
19688
19689/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19690 is none. *EXT_CU is the CU containing DIE on input, and the CU
19691 containing the return value on output. */
9219021c
DC
19692
19693static struct die_info *
f2f0e013 19694dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19695{
19696 struct attribute *attr;
9219021c 19697
f2f0e013 19698 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19699 if (attr == NULL)
19700 return NULL;
19701
f2f0e013 19702 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19703}
19704
c906108c
SS
19705/* Convert a DIE tag into its string name. */
19706
f39c6ffd 19707static const char *
aa1ee363 19708dwarf_tag_name (unsigned tag)
c906108c 19709{
f39c6ffd
TT
19710 const char *name = get_DW_TAG_name (tag);
19711
19712 if (name == NULL)
19713 return "DW_TAG_<unknown>";
19714
19715 return name;
c906108c
SS
19716}
19717
19718/* Convert a DWARF attribute code into its string name. */
19719
f39c6ffd 19720static const char *
aa1ee363 19721dwarf_attr_name (unsigned attr)
c906108c 19722{
f39c6ffd
TT
19723 const char *name;
19724
c764a876 19725#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19726 if (attr == DW_AT_MIPS_fde)
19727 return "DW_AT_MIPS_fde";
19728#else
19729 if (attr == DW_AT_HP_block_index)
19730 return "DW_AT_HP_block_index";
c764a876 19731#endif
f39c6ffd
TT
19732
19733 name = get_DW_AT_name (attr);
19734
19735 if (name == NULL)
19736 return "DW_AT_<unknown>";
19737
19738 return name;
c906108c
SS
19739}
19740
19741/* Convert a DWARF value form code into its string name. */
19742
f39c6ffd 19743static const char *
aa1ee363 19744dwarf_form_name (unsigned form)
c906108c 19745{
f39c6ffd
TT
19746 const char *name = get_DW_FORM_name (form);
19747
19748 if (name == NULL)
19749 return "DW_FORM_<unknown>";
19750
19751 return name;
c906108c
SS
19752}
19753
19754static char *
fba45db2 19755dwarf_bool_name (unsigned mybool)
c906108c
SS
19756{
19757 if (mybool)
19758 return "TRUE";
19759 else
19760 return "FALSE";
19761}
19762
19763/* Convert a DWARF type code into its string name. */
19764
f39c6ffd 19765static const char *
aa1ee363 19766dwarf_type_encoding_name (unsigned enc)
c906108c 19767{
f39c6ffd 19768 const char *name = get_DW_ATE_name (enc);
c906108c 19769
f39c6ffd
TT
19770 if (name == NULL)
19771 return "DW_ATE_<unknown>";
c906108c 19772
f39c6ffd 19773 return name;
c906108c 19774}
c906108c 19775
f9aca02d 19776static void
d97bc12b 19777dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19778{
19779 unsigned int i;
19780
d97bc12b
DE
19781 print_spaces (indent, f);
19782 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19783 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19784
19785 if (die->parent != NULL)
19786 {
19787 print_spaces (indent, f);
19788 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19789 die->parent->offset.sect_off);
d97bc12b
DE
19790 }
19791
19792 print_spaces (indent, f);
19793 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19794 dwarf_bool_name (die->child != NULL));
c906108c 19795
d97bc12b
DE
19796 print_spaces (indent, f);
19797 fprintf_unfiltered (f, " attributes:\n");
19798
c906108c
SS
19799 for (i = 0; i < die->num_attrs; ++i)
19800 {
d97bc12b
DE
19801 print_spaces (indent, f);
19802 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19803 dwarf_attr_name (die->attrs[i].name),
19804 dwarf_form_name (die->attrs[i].form));
d97bc12b 19805
c906108c
SS
19806 switch (die->attrs[i].form)
19807 {
c906108c 19808 case DW_FORM_addr:
3019eac3 19809 case DW_FORM_GNU_addr_index:
d97bc12b 19810 fprintf_unfiltered (f, "address: ");
5af949e3 19811 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19812 break;
19813 case DW_FORM_block2:
19814 case DW_FORM_block4:
19815 case DW_FORM_block:
19816 case DW_FORM_block1:
56eb65bd
SP
19817 fprintf_unfiltered (f, "block: size %s",
19818 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19819 break;
2dc7f7b3 19820 case DW_FORM_exprloc:
56eb65bd
SP
19821 fprintf_unfiltered (f, "expression: size %s",
19822 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19823 break;
4568ecf9
DE
19824 case DW_FORM_ref_addr:
19825 fprintf_unfiltered (f, "ref address: ");
19826 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19827 break;
36586728
TT
19828 case DW_FORM_GNU_ref_alt:
19829 fprintf_unfiltered (f, "alt ref address: ");
19830 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19831 break;
10b3939b
DJ
19832 case DW_FORM_ref1:
19833 case DW_FORM_ref2:
19834 case DW_FORM_ref4:
4568ecf9
DE
19835 case DW_FORM_ref8:
19836 case DW_FORM_ref_udata:
d97bc12b 19837 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19838 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19839 break;
c906108c
SS
19840 case DW_FORM_data1:
19841 case DW_FORM_data2:
19842 case DW_FORM_data4:
ce5d95e1 19843 case DW_FORM_data8:
c906108c
SS
19844 case DW_FORM_udata:
19845 case DW_FORM_sdata:
43bbcdc2
PH
19846 fprintf_unfiltered (f, "constant: %s",
19847 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19848 break;
2dc7f7b3
TT
19849 case DW_FORM_sec_offset:
19850 fprintf_unfiltered (f, "section offset: %s",
19851 pulongest (DW_UNSND (&die->attrs[i])));
19852 break;
55f1336d 19853 case DW_FORM_ref_sig8:
ac9ec31b
DE
19854 fprintf_unfiltered (f, "signature: %s",
19855 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19856 break;
c906108c 19857 case DW_FORM_string:
4bdf3d34 19858 case DW_FORM_strp:
3019eac3 19859 case DW_FORM_GNU_str_index:
36586728 19860 case DW_FORM_GNU_strp_alt:
8285870a 19861 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19862 DW_STRING (&die->attrs[i])
8285870a
JK
19863 ? DW_STRING (&die->attrs[i]) : "",
19864 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19865 break;
19866 case DW_FORM_flag:
19867 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19868 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19869 else
d97bc12b 19870 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19871 break;
2dc7f7b3
TT
19872 case DW_FORM_flag_present:
19873 fprintf_unfiltered (f, "flag: TRUE");
19874 break;
a8329558 19875 case DW_FORM_indirect:
0963b4bd
MS
19876 /* The reader will have reduced the indirect form to
19877 the "base form" so this form should not occur. */
3e43a32a
MS
19878 fprintf_unfiltered (f,
19879 "unexpected attribute form: DW_FORM_indirect");
a8329558 19880 break;
c906108c 19881 default:
d97bc12b 19882 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19883 die->attrs[i].form);
d97bc12b 19884 break;
c906108c 19885 }
d97bc12b 19886 fprintf_unfiltered (f, "\n");
c906108c
SS
19887 }
19888}
19889
f9aca02d 19890static void
d97bc12b 19891dump_die_for_error (struct die_info *die)
c906108c 19892{
d97bc12b
DE
19893 dump_die_shallow (gdb_stderr, 0, die);
19894}
19895
19896static void
19897dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19898{
19899 int indent = level * 4;
19900
19901 gdb_assert (die != NULL);
19902
19903 if (level >= max_level)
19904 return;
19905
19906 dump_die_shallow (f, indent, die);
19907
19908 if (die->child != NULL)
c906108c 19909 {
d97bc12b
DE
19910 print_spaces (indent, f);
19911 fprintf_unfiltered (f, " Children:");
19912 if (level + 1 < max_level)
19913 {
19914 fprintf_unfiltered (f, "\n");
19915 dump_die_1 (f, level + 1, max_level, die->child);
19916 }
19917 else
19918 {
3e43a32a
MS
19919 fprintf_unfiltered (f,
19920 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19921 }
19922 }
19923
19924 if (die->sibling != NULL && level > 0)
19925 {
19926 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19927 }
19928}
19929
d97bc12b
DE
19930/* This is called from the pdie macro in gdbinit.in.
19931 It's not static so gcc will keep a copy callable from gdb. */
19932
19933void
19934dump_die (struct die_info *die, int max_level)
19935{
19936 dump_die_1 (gdb_stdlog, 0, max_level, die);
19937}
19938
f9aca02d 19939static void
51545339 19940store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19941{
51545339 19942 void **slot;
c906108c 19943
b64f50a1
JK
19944 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19945 INSERT);
51545339
DJ
19946
19947 *slot = die;
c906108c
SS
19948}
19949
b64f50a1
JK
19950/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19951 required kind. */
19952
19953static sect_offset
ff39bb5e 19954dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19955{
4568ecf9 19956 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19957
7771576e 19958 if (attr_form_is_ref (attr))
b64f50a1 19959 return retval;
93311388 19960
b64f50a1 19961 retval.sect_off = 0;
93311388
DE
19962 complaint (&symfile_complaints,
19963 _("unsupported die ref attribute form: '%s'"),
19964 dwarf_form_name (attr->form));
b64f50a1 19965 return retval;
c906108c
SS
19966}
19967
43bbcdc2
PH
19968/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19969 * the value held by the attribute is not constant. */
a02abb62 19970
43bbcdc2 19971static LONGEST
ff39bb5e 19972dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19973{
19974 if (attr->form == DW_FORM_sdata)
19975 return DW_SND (attr);
19976 else if (attr->form == DW_FORM_udata
19977 || attr->form == DW_FORM_data1
19978 || attr->form == DW_FORM_data2
19979 || attr->form == DW_FORM_data4
19980 || attr->form == DW_FORM_data8)
19981 return DW_UNSND (attr);
19982 else
19983 {
3e43a32a
MS
19984 complaint (&symfile_complaints,
19985 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19986 dwarf_form_name (attr->form));
19987 return default_value;
19988 }
19989}
19990
348e048f
DE
19991/* Follow reference or signature attribute ATTR of SRC_DIE.
19992 On entry *REF_CU is the CU of SRC_DIE.
19993 On exit *REF_CU is the CU of the result. */
19994
19995static struct die_info *
ff39bb5e 19996follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19997 struct dwarf2_cu **ref_cu)
19998{
19999 struct die_info *die;
20000
7771576e 20001 if (attr_form_is_ref (attr))
348e048f 20002 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20003 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20004 die = follow_die_sig (src_die, attr, ref_cu);
20005 else
20006 {
20007 dump_die_for_error (src_die);
20008 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20009 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20010 }
20011
20012 return die;
03dd20cc
DJ
20013}
20014
5c631832 20015/* Follow reference OFFSET.
673bfd45
DE
20016 On entry *REF_CU is the CU of the source die referencing OFFSET.
20017 On exit *REF_CU is the CU of the result.
20018 Returns NULL if OFFSET is invalid. */
f504f079 20019
f9aca02d 20020static struct die_info *
36586728
TT
20021follow_die_offset (sect_offset offset, int offset_in_dwz,
20022 struct dwarf2_cu **ref_cu)
c906108c 20023{
10b3939b 20024 struct die_info temp_die;
f2f0e013 20025 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20026
348e048f
DE
20027 gdb_assert (cu->per_cu != NULL);
20028
98bfdba5
PA
20029 target_cu = cu;
20030
3019eac3 20031 if (cu->per_cu->is_debug_types)
348e048f
DE
20032 {
20033 /* .debug_types CUs cannot reference anything outside their CU.
20034 If they need to, they have to reference a signatured type via
55f1336d 20035 DW_FORM_ref_sig8. */
348e048f 20036 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20037 return NULL;
348e048f 20038 }
36586728
TT
20039 else if (offset_in_dwz != cu->per_cu->is_dwz
20040 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20041 {
20042 struct dwarf2_per_cu_data *per_cu;
9a619af0 20043
36586728
TT
20044 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20045 cu->objfile);
03dd20cc
DJ
20046
20047 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20048 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20049 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20050
10b3939b
DJ
20051 target_cu = per_cu->cu;
20052 }
98bfdba5
PA
20053 else if (cu->dies == NULL)
20054 {
20055 /* We're loading full DIEs during partial symbol reading. */
20056 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20057 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20058 }
c906108c 20059
f2f0e013 20060 *ref_cu = target_cu;
51545339 20061 temp_die.offset = offset;
9a3c8263
SM
20062 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20063 &temp_die, offset.sect_off);
5c631832 20064}
10b3939b 20065
5c631832
JK
20066/* Follow reference attribute ATTR of SRC_DIE.
20067 On entry *REF_CU is the CU of SRC_DIE.
20068 On exit *REF_CU is the CU of the result. */
20069
20070static struct die_info *
ff39bb5e 20071follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20072 struct dwarf2_cu **ref_cu)
20073{
b64f50a1 20074 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20075 struct dwarf2_cu *cu = *ref_cu;
20076 struct die_info *die;
20077
36586728
TT
20078 die = follow_die_offset (offset,
20079 (attr->form == DW_FORM_GNU_ref_alt
20080 || cu->per_cu->is_dwz),
20081 ref_cu);
5c631832
JK
20082 if (!die)
20083 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20084 "at 0x%x [in module %s]"),
4262abfb
JK
20085 offset.sect_off, src_die->offset.sect_off,
20086 objfile_name (cu->objfile));
348e048f 20087
5c631832
JK
20088 return die;
20089}
20090
d83e736b
JK
20091/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20092 Returned value is intended for DW_OP_call*. Returned
20093 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20094
20095struct dwarf2_locexpr_baton
8b9737bf
TT
20096dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20097 struct dwarf2_per_cu_data *per_cu,
20098 CORE_ADDR (*get_frame_pc) (void *baton),
20099 void *baton)
5c631832 20100{
918dd910 20101 struct dwarf2_cu *cu;
5c631832
JK
20102 struct die_info *die;
20103 struct attribute *attr;
20104 struct dwarf2_locexpr_baton retval;
20105
8cf6f0b1
TT
20106 dw2_setup (per_cu->objfile);
20107
918dd910
JK
20108 if (per_cu->cu == NULL)
20109 load_cu (per_cu);
20110 cu = per_cu->cu;
cc12ce38
DE
20111 if (cu == NULL)
20112 {
20113 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20114 Instead just throw an error, not much else we can do. */
20115 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20116 offset.sect_off, objfile_name (per_cu->objfile));
20117 }
918dd910 20118
36586728 20119 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20120 if (!die)
20121 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20122 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20123
20124 attr = dwarf2_attr (die, DW_AT_location, cu);
20125 if (!attr)
20126 {
e103e986
JK
20127 /* DWARF: "If there is no such attribute, then there is no effect.".
20128 DATA is ignored if SIZE is 0. */
5c631832 20129
e103e986 20130 retval.data = NULL;
5c631832
JK
20131 retval.size = 0;
20132 }
8cf6f0b1
TT
20133 else if (attr_form_is_section_offset (attr))
20134 {
20135 struct dwarf2_loclist_baton loclist_baton;
20136 CORE_ADDR pc = (*get_frame_pc) (baton);
20137 size_t size;
20138
20139 fill_in_loclist_baton (cu, &loclist_baton, attr);
20140
20141 retval.data = dwarf2_find_location_expression (&loclist_baton,
20142 &size, pc);
20143 retval.size = size;
20144 }
5c631832
JK
20145 else
20146 {
20147 if (!attr_form_is_block (attr))
20148 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20149 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20150 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20151
20152 retval.data = DW_BLOCK (attr)->data;
20153 retval.size = DW_BLOCK (attr)->size;
20154 }
20155 retval.per_cu = cu->per_cu;
918dd910 20156
918dd910
JK
20157 age_cached_comp_units ();
20158
5c631832 20159 return retval;
348e048f
DE
20160}
20161
8b9737bf
TT
20162/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20163 offset. */
20164
20165struct dwarf2_locexpr_baton
20166dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20167 struct dwarf2_per_cu_data *per_cu,
20168 CORE_ADDR (*get_frame_pc) (void *baton),
20169 void *baton)
20170{
20171 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20172
20173 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20174}
20175
b6807d98
TT
20176/* Write a constant of a given type as target-ordered bytes into
20177 OBSTACK. */
20178
20179static const gdb_byte *
20180write_constant_as_bytes (struct obstack *obstack,
20181 enum bfd_endian byte_order,
20182 struct type *type,
20183 ULONGEST value,
20184 LONGEST *len)
20185{
20186 gdb_byte *result;
20187
20188 *len = TYPE_LENGTH (type);
224c3ddb 20189 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20190 store_unsigned_integer (result, *len, byte_order, value);
20191
20192 return result;
20193}
20194
20195/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20196 pointer to the constant bytes and set LEN to the length of the
20197 data. If memory is needed, allocate it on OBSTACK. If the DIE
20198 does not have a DW_AT_const_value, return NULL. */
20199
20200const gdb_byte *
20201dwarf2_fetch_constant_bytes (sect_offset offset,
20202 struct dwarf2_per_cu_data *per_cu,
20203 struct obstack *obstack,
20204 LONGEST *len)
20205{
20206 struct dwarf2_cu *cu;
20207 struct die_info *die;
20208 struct attribute *attr;
20209 const gdb_byte *result = NULL;
20210 struct type *type;
20211 LONGEST value;
20212 enum bfd_endian byte_order;
20213
20214 dw2_setup (per_cu->objfile);
20215
20216 if (per_cu->cu == NULL)
20217 load_cu (per_cu);
20218 cu = per_cu->cu;
cc12ce38
DE
20219 if (cu == NULL)
20220 {
20221 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20222 Instead just throw an error, not much else we can do. */
20223 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20224 offset.sect_off, objfile_name (per_cu->objfile));
20225 }
b6807d98
TT
20226
20227 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20228 if (!die)
20229 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20230 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20231
20232
20233 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20234 if (attr == NULL)
20235 return NULL;
20236
20237 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20238 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20239
20240 switch (attr->form)
20241 {
20242 case DW_FORM_addr:
20243 case DW_FORM_GNU_addr_index:
20244 {
20245 gdb_byte *tem;
20246
20247 *len = cu->header.addr_size;
224c3ddb 20248 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20249 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20250 result = tem;
20251 }
20252 break;
20253 case DW_FORM_string:
20254 case DW_FORM_strp:
20255 case DW_FORM_GNU_str_index:
20256 case DW_FORM_GNU_strp_alt:
20257 /* DW_STRING is already allocated on the objfile obstack, point
20258 directly to it. */
20259 result = (const gdb_byte *) DW_STRING (attr);
20260 *len = strlen (DW_STRING (attr));
20261 break;
20262 case DW_FORM_block1:
20263 case DW_FORM_block2:
20264 case DW_FORM_block4:
20265 case DW_FORM_block:
20266 case DW_FORM_exprloc:
20267 result = DW_BLOCK (attr)->data;
20268 *len = DW_BLOCK (attr)->size;
20269 break;
20270
20271 /* The DW_AT_const_value attributes are supposed to carry the
20272 symbol's value "represented as it would be on the target
20273 architecture." By the time we get here, it's already been
20274 converted to host endianness, so we just need to sign- or
20275 zero-extend it as appropriate. */
20276 case DW_FORM_data1:
20277 type = die_type (die, cu);
20278 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20279 if (result == NULL)
20280 result = write_constant_as_bytes (obstack, byte_order,
20281 type, value, len);
20282 break;
20283 case DW_FORM_data2:
20284 type = die_type (die, cu);
20285 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20286 if (result == NULL)
20287 result = write_constant_as_bytes (obstack, byte_order,
20288 type, value, len);
20289 break;
20290 case DW_FORM_data4:
20291 type = die_type (die, cu);
20292 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20293 if (result == NULL)
20294 result = write_constant_as_bytes (obstack, byte_order,
20295 type, value, len);
20296 break;
20297 case DW_FORM_data8:
20298 type = die_type (die, cu);
20299 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20300 if (result == NULL)
20301 result = write_constant_as_bytes (obstack, byte_order,
20302 type, value, len);
20303 break;
20304
20305 case DW_FORM_sdata:
20306 type = die_type (die, cu);
20307 result = write_constant_as_bytes (obstack, byte_order,
20308 type, DW_SND (attr), len);
20309 break;
20310
20311 case DW_FORM_udata:
20312 type = die_type (die, cu);
20313 result = write_constant_as_bytes (obstack, byte_order,
20314 type, DW_UNSND (attr), len);
20315 break;
20316
20317 default:
20318 complaint (&symfile_complaints,
20319 _("unsupported const value attribute form: '%s'"),
20320 dwarf_form_name (attr->form));
20321 break;
20322 }
20323
20324 return result;
20325}
20326
8a9b8146
TT
20327/* Return the type of the DIE at DIE_OFFSET in the CU named by
20328 PER_CU. */
20329
20330struct type *
b64f50a1 20331dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20332 struct dwarf2_per_cu_data *per_cu)
20333{
b64f50a1
JK
20334 sect_offset die_offset_sect;
20335
8a9b8146 20336 dw2_setup (per_cu->objfile);
b64f50a1
JK
20337
20338 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20339 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20340}
20341
ac9ec31b 20342/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20343 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20344 On exit *REF_CU is the CU of the result.
20345 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20346
20347static struct die_info *
ac9ec31b
DE
20348follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20349 struct dwarf2_cu **ref_cu)
348e048f 20350{
348e048f 20351 struct die_info temp_die;
348e048f
DE
20352 struct dwarf2_cu *sig_cu;
20353 struct die_info *die;
20354
ac9ec31b
DE
20355 /* While it might be nice to assert sig_type->type == NULL here,
20356 we can get here for DW_AT_imported_declaration where we need
20357 the DIE not the type. */
348e048f
DE
20358
20359 /* If necessary, add it to the queue and load its DIEs. */
20360
95554aad 20361 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20362 read_signatured_type (sig_type);
348e048f 20363
348e048f 20364 sig_cu = sig_type->per_cu.cu;
69d751e3 20365 gdb_assert (sig_cu != NULL);
3019eac3
DE
20366 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20367 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20368 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20369 temp_die.offset.sect_off);
348e048f
DE
20370 if (die)
20371 {
796a7ff8
DE
20372 /* For .gdb_index version 7 keep track of included TUs.
20373 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20374 if (dwarf2_per_objfile->index_table != NULL
20375 && dwarf2_per_objfile->index_table->version <= 7)
20376 {
20377 VEC_safe_push (dwarf2_per_cu_ptr,
20378 (*ref_cu)->per_cu->imported_symtabs,
20379 sig_cu->per_cu);
20380 }
20381
348e048f
DE
20382 *ref_cu = sig_cu;
20383 return die;
20384 }
20385
ac9ec31b
DE
20386 return NULL;
20387}
20388
20389/* Follow signatured type referenced by ATTR in SRC_DIE.
20390 On entry *REF_CU is the CU of SRC_DIE.
20391 On exit *REF_CU is the CU of the result.
20392 The result is the DIE of the type.
20393 If the referenced type cannot be found an error is thrown. */
20394
20395static struct die_info *
ff39bb5e 20396follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20397 struct dwarf2_cu **ref_cu)
20398{
20399 ULONGEST signature = DW_SIGNATURE (attr);
20400 struct signatured_type *sig_type;
20401 struct die_info *die;
20402
20403 gdb_assert (attr->form == DW_FORM_ref_sig8);
20404
a2ce51a0 20405 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20406 /* sig_type will be NULL if the signatured type is missing from
20407 the debug info. */
20408 if (sig_type == NULL)
20409 {
20410 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20411 " from DIE at 0x%x [in module %s]"),
20412 hex_string (signature), src_die->offset.sect_off,
4262abfb 20413 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20414 }
20415
20416 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20417 if (die == NULL)
20418 {
20419 dump_die_for_error (src_die);
20420 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20421 " from DIE at 0x%x [in module %s]"),
20422 hex_string (signature), src_die->offset.sect_off,
4262abfb 20423 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20424 }
20425
20426 return die;
20427}
20428
20429/* Get the type specified by SIGNATURE referenced in DIE/CU,
20430 reading in and processing the type unit if necessary. */
20431
20432static struct type *
20433get_signatured_type (struct die_info *die, ULONGEST signature,
20434 struct dwarf2_cu *cu)
20435{
20436 struct signatured_type *sig_type;
20437 struct dwarf2_cu *type_cu;
20438 struct die_info *type_die;
20439 struct type *type;
20440
a2ce51a0 20441 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20442 /* sig_type will be NULL if the signatured type is missing from
20443 the debug info. */
20444 if (sig_type == NULL)
20445 {
20446 complaint (&symfile_complaints,
20447 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20448 " from DIE at 0x%x [in module %s]"),
20449 hex_string (signature), die->offset.sect_off,
4262abfb 20450 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20451 return build_error_marker_type (cu, die);
20452 }
20453
20454 /* If we already know the type we're done. */
20455 if (sig_type->type != NULL)
20456 return sig_type->type;
20457
20458 type_cu = cu;
20459 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20460 if (type_die != NULL)
20461 {
20462 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20463 is created. This is important, for example, because for c++ classes
20464 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20465 type = read_type_die (type_die, type_cu);
20466 if (type == NULL)
20467 {
20468 complaint (&symfile_complaints,
20469 _("Dwarf Error: Cannot build signatured type %s"
20470 " referenced from DIE at 0x%x [in module %s]"),
20471 hex_string (signature), die->offset.sect_off,
4262abfb 20472 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20473 type = build_error_marker_type (cu, die);
20474 }
20475 }
20476 else
20477 {
20478 complaint (&symfile_complaints,
20479 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20480 " from DIE at 0x%x [in module %s]"),
20481 hex_string (signature), die->offset.sect_off,
4262abfb 20482 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20483 type = build_error_marker_type (cu, die);
20484 }
20485 sig_type->type = type;
20486
20487 return type;
20488}
20489
20490/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20491 reading in and processing the type unit if necessary. */
20492
20493static struct type *
ff39bb5e 20494get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20495 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20496{
20497 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20498 if (attr_form_is_ref (attr))
ac9ec31b
DE
20499 {
20500 struct dwarf2_cu *type_cu = cu;
20501 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20502
20503 return read_type_die (type_die, type_cu);
20504 }
20505 else if (attr->form == DW_FORM_ref_sig8)
20506 {
20507 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20508 }
20509 else
20510 {
20511 complaint (&symfile_complaints,
20512 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20513 " at 0x%x [in module %s]"),
20514 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20515 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20516 return build_error_marker_type (cu, die);
20517 }
348e048f
DE
20518}
20519
e5fe5e75 20520/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20521
20522static void
e5fe5e75 20523load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20524{
52dc124a 20525 struct signatured_type *sig_type;
348e048f 20526
f4dc4d17
DE
20527 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20528 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20529
6721b2ec
DE
20530 /* We have the per_cu, but we need the signatured_type.
20531 Fortunately this is an easy translation. */
20532 gdb_assert (per_cu->is_debug_types);
20533 sig_type = (struct signatured_type *) per_cu;
348e048f 20534
6721b2ec 20535 gdb_assert (per_cu->cu == NULL);
348e048f 20536
52dc124a 20537 read_signatured_type (sig_type);
348e048f 20538
6721b2ec 20539 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20540}
20541
dee91e82
DE
20542/* die_reader_func for read_signatured_type.
20543 This is identical to load_full_comp_unit_reader,
20544 but is kept separate for now. */
348e048f
DE
20545
20546static void
dee91e82 20547read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20548 const gdb_byte *info_ptr,
dee91e82
DE
20549 struct die_info *comp_unit_die,
20550 int has_children,
20551 void *data)
348e048f 20552{
dee91e82 20553 struct dwarf2_cu *cu = reader->cu;
348e048f 20554
dee91e82
DE
20555 gdb_assert (cu->die_hash == NULL);
20556 cu->die_hash =
20557 htab_create_alloc_ex (cu->header.length / 12,
20558 die_hash,
20559 die_eq,
20560 NULL,
20561 &cu->comp_unit_obstack,
20562 hashtab_obstack_allocate,
20563 dummy_obstack_deallocate);
348e048f 20564
dee91e82
DE
20565 if (has_children)
20566 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20567 &info_ptr, comp_unit_die);
20568 cu->dies = comp_unit_die;
20569 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20570
20571 /* We try not to read any attributes in this function, because not
9cdd5dbd 20572 all CUs needed for references have been loaded yet, and symbol
348e048f 20573 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20574 or we won't be able to build types correctly.
20575 Similarly, if we do not read the producer, we can not apply
20576 producer-specific interpretation. */
95554aad 20577 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20578}
348e048f 20579
3019eac3
DE
20580/* Read in a signatured type and build its CU and DIEs.
20581 If the type is a stub for the real type in a DWO file,
20582 read in the real type from the DWO file as well. */
dee91e82
DE
20583
20584static void
20585read_signatured_type (struct signatured_type *sig_type)
20586{
20587 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20588
3019eac3 20589 gdb_assert (per_cu->is_debug_types);
dee91e82 20590 gdb_assert (per_cu->cu == NULL);
348e048f 20591
f4dc4d17
DE
20592 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20593 read_signatured_type_reader, NULL);
7ee85ab1 20594 sig_type->per_cu.tu_read = 1;
c906108c
SS
20595}
20596
c906108c
SS
20597/* Decode simple location descriptions.
20598 Given a pointer to a dwarf block that defines a location, compute
20599 the location and return the value.
20600
4cecd739
DJ
20601 NOTE drow/2003-11-18: This function is called in two situations
20602 now: for the address of static or global variables (partial symbols
20603 only) and for offsets into structures which are expected to be
20604 (more or less) constant. The partial symbol case should go away,
20605 and only the constant case should remain. That will let this
20606 function complain more accurately. A few special modes are allowed
20607 without complaint for global variables (for instance, global
20608 register values and thread-local values).
c906108c
SS
20609
20610 A location description containing no operations indicates that the
4cecd739 20611 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20612 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20613 callers will only want a very basic result and this can become a
21ae7a4d
JK
20614 complaint.
20615
20616 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20617
20618static CORE_ADDR
e7c27a73 20619decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20620{
e7c27a73 20621 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20622 size_t i;
20623 size_t size = blk->size;
d521ce57 20624 const gdb_byte *data = blk->data;
21ae7a4d
JK
20625 CORE_ADDR stack[64];
20626 int stacki;
20627 unsigned int bytes_read, unsnd;
20628 gdb_byte op;
c906108c 20629
21ae7a4d
JK
20630 i = 0;
20631 stacki = 0;
20632 stack[stacki] = 0;
20633 stack[++stacki] = 0;
20634
20635 while (i < size)
20636 {
20637 op = data[i++];
20638 switch (op)
20639 {
20640 case DW_OP_lit0:
20641 case DW_OP_lit1:
20642 case DW_OP_lit2:
20643 case DW_OP_lit3:
20644 case DW_OP_lit4:
20645 case DW_OP_lit5:
20646 case DW_OP_lit6:
20647 case DW_OP_lit7:
20648 case DW_OP_lit8:
20649 case DW_OP_lit9:
20650 case DW_OP_lit10:
20651 case DW_OP_lit11:
20652 case DW_OP_lit12:
20653 case DW_OP_lit13:
20654 case DW_OP_lit14:
20655 case DW_OP_lit15:
20656 case DW_OP_lit16:
20657 case DW_OP_lit17:
20658 case DW_OP_lit18:
20659 case DW_OP_lit19:
20660 case DW_OP_lit20:
20661 case DW_OP_lit21:
20662 case DW_OP_lit22:
20663 case DW_OP_lit23:
20664 case DW_OP_lit24:
20665 case DW_OP_lit25:
20666 case DW_OP_lit26:
20667 case DW_OP_lit27:
20668 case DW_OP_lit28:
20669 case DW_OP_lit29:
20670 case DW_OP_lit30:
20671 case DW_OP_lit31:
20672 stack[++stacki] = op - DW_OP_lit0;
20673 break;
f1bea926 20674
21ae7a4d
JK
20675 case DW_OP_reg0:
20676 case DW_OP_reg1:
20677 case DW_OP_reg2:
20678 case DW_OP_reg3:
20679 case DW_OP_reg4:
20680 case DW_OP_reg5:
20681 case DW_OP_reg6:
20682 case DW_OP_reg7:
20683 case DW_OP_reg8:
20684 case DW_OP_reg9:
20685 case DW_OP_reg10:
20686 case DW_OP_reg11:
20687 case DW_OP_reg12:
20688 case DW_OP_reg13:
20689 case DW_OP_reg14:
20690 case DW_OP_reg15:
20691 case DW_OP_reg16:
20692 case DW_OP_reg17:
20693 case DW_OP_reg18:
20694 case DW_OP_reg19:
20695 case DW_OP_reg20:
20696 case DW_OP_reg21:
20697 case DW_OP_reg22:
20698 case DW_OP_reg23:
20699 case DW_OP_reg24:
20700 case DW_OP_reg25:
20701 case DW_OP_reg26:
20702 case DW_OP_reg27:
20703 case DW_OP_reg28:
20704 case DW_OP_reg29:
20705 case DW_OP_reg30:
20706 case DW_OP_reg31:
20707 stack[++stacki] = op - DW_OP_reg0;
20708 if (i < size)
20709 dwarf2_complex_location_expr_complaint ();
20710 break;
c906108c 20711
21ae7a4d
JK
20712 case DW_OP_regx:
20713 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20714 i += bytes_read;
20715 stack[++stacki] = unsnd;
20716 if (i < size)
20717 dwarf2_complex_location_expr_complaint ();
20718 break;
c906108c 20719
21ae7a4d
JK
20720 case DW_OP_addr:
20721 stack[++stacki] = read_address (objfile->obfd, &data[i],
20722 cu, &bytes_read);
20723 i += bytes_read;
20724 break;
d53d4ac5 20725
21ae7a4d
JK
20726 case DW_OP_const1u:
20727 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20728 i += 1;
20729 break;
20730
20731 case DW_OP_const1s:
20732 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20733 i += 1;
20734 break;
20735
20736 case DW_OP_const2u:
20737 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20738 i += 2;
20739 break;
20740
20741 case DW_OP_const2s:
20742 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20743 i += 2;
20744 break;
d53d4ac5 20745
21ae7a4d
JK
20746 case DW_OP_const4u:
20747 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20748 i += 4;
20749 break;
20750
20751 case DW_OP_const4s:
20752 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20753 i += 4;
20754 break;
20755
585861ea
JK
20756 case DW_OP_const8u:
20757 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20758 i += 8;
20759 break;
20760
21ae7a4d
JK
20761 case DW_OP_constu:
20762 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20763 &bytes_read);
20764 i += bytes_read;
20765 break;
20766
20767 case DW_OP_consts:
20768 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20769 i += bytes_read;
20770 break;
20771
20772 case DW_OP_dup:
20773 stack[stacki + 1] = stack[stacki];
20774 stacki++;
20775 break;
20776
20777 case DW_OP_plus:
20778 stack[stacki - 1] += stack[stacki];
20779 stacki--;
20780 break;
20781
20782 case DW_OP_plus_uconst:
20783 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20784 &bytes_read);
20785 i += bytes_read;
20786 break;
20787
20788 case DW_OP_minus:
20789 stack[stacki - 1] -= stack[stacki];
20790 stacki--;
20791 break;
20792
20793 case DW_OP_deref:
20794 /* If we're not the last op, then we definitely can't encode
20795 this using GDB's address_class enum. This is valid for partial
20796 global symbols, although the variable's address will be bogus
20797 in the psymtab. */
20798 if (i < size)
20799 dwarf2_complex_location_expr_complaint ();
20800 break;
20801
20802 case DW_OP_GNU_push_tls_address:
20803 /* The top of the stack has the offset from the beginning
20804 of the thread control block at which the variable is located. */
20805 /* Nothing should follow this operator, so the top of stack would
20806 be returned. */
20807 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20808 address will be bogus in the psymtab. Make it always at least
20809 non-zero to not look as a variable garbage collected by linker
20810 which have DW_OP_addr 0. */
21ae7a4d
JK
20811 if (i < size)
20812 dwarf2_complex_location_expr_complaint ();
585861ea 20813 stack[stacki]++;
21ae7a4d
JK
20814 break;
20815
20816 case DW_OP_GNU_uninit:
20817 break;
20818
3019eac3 20819 case DW_OP_GNU_addr_index:
49f6c839 20820 case DW_OP_GNU_const_index:
3019eac3
DE
20821 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20822 &bytes_read);
20823 i += bytes_read;
20824 break;
20825
21ae7a4d
JK
20826 default:
20827 {
f39c6ffd 20828 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20829
20830 if (name)
20831 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20832 name);
20833 else
20834 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20835 op);
20836 }
20837
20838 return (stack[stacki]);
d53d4ac5 20839 }
3c6e0cb3 20840
21ae7a4d
JK
20841 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20842 outside of the allocated space. Also enforce minimum>0. */
20843 if (stacki >= ARRAY_SIZE (stack) - 1)
20844 {
20845 complaint (&symfile_complaints,
20846 _("location description stack overflow"));
20847 return 0;
20848 }
20849
20850 if (stacki <= 0)
20851 {
20852 complaint (&symfile_complaints,
20853 _("location description stack underflow"));
20854 return 0;
20855 }
20856 }
20857 return (stack[stacki]);
c906108c
SS
20858}
20859
20860/* memory allocation interface */
20861
c906108c 20862static struct dwarf_block *
7b5a2f43 20863dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20864{
8d749320 20865 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20866}
20867
c906108c 20868static struct die_info *
b60c80d6 20869dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20870{
20871 struct die_info *die;
b60c80d6
DJ
20872 size_t size = sizeof (struct die_info);
20873
20874 if (num_attrs > 1)
20875 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20876
b60c80d6 20877 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20878 memset (die, 0, sizeof (struct die_info));
20879 return (die);
20880}
2e276125
JB
20881
20882\f
20883/* Macro support. */
20884
233d95b5
JK
20885/* Return file name relative to the compilation directory of file number I in
20886 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20887 responsible for freeing it. */
233d95b5 20888
2e276125 20889static char *
233d95b5 20890file_file_name (int file, struct line_header *lh)
2e276125 20891{
6a83a1e6
EZ
20892 /* Is the file number a valid index into the line header's file name
20893 table? Remember that file numbers start with one, not zero. */
20894 if (1 <= file && file <= lh->num_file_names)
20895 {
20896 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20897
afa6c9ab
SL
20898 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20899 || lh->include_dirs == NULL)
6a83a1e6 20900 return xstrdup (fe->name);
233d95b5 20901 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20902 fe->name, (char *) NULL);
6a83a1e6 20903 }
2e276125
JB
20904 else
20905 {
6a83a1e6
EZ
20906 /* The compiler produced a bogus file number. We can at least
20907 record the macro definitions made in the file, even if we
20908 won't be able to find the file by name. */
20909 char fake_name[80];
9a619af0 20910
8c042590
PM
20911 xsnprintf (fake_name, sizeof (fake_name),
20912 "<bad macro file number %d>", file);
2e276125 20913
6e70227d 20914 complaint (&symfile_complaints,
6a83a1e6
EZ
20915 _("bad file number in macro information (%d)"),
20916 file);
2e276125 20917
6a83a1e6 20918 return xstrdup (fake_name);
2e276125
JB
20919 }
20920}
20921
233d95b5
JK
20922/* Return the full name of file number I in *LH's file name table.
20923 Use COMP_DIR as the name of the current directory of the
20924 compilation. The result is allocated using xmalloc; the caller is
20925 responsible for freeing it. */
20926static char *
20927file_full_name (int file, struct line_header *lh, const char *comp_dir)
20928{
20929 /* Is the file number a valid index into the line header's file name
20930 table? Remember that file numbers start with one, not zero. */
20931 if (1 <= file && file <= lh->num_file_names)
20932 {
20933 char *relative = file_file_name (file, lh);
20934
20935 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20936 return relative;
b36cec19
PA
20937 return reconcat (relative, comp_dir, SLASH_STRING,
20938 relative, (char *) NULL);
233d95b5
JK
20939 }
20940 else
20941 return file_file_name (file, lh);
20942}
20943
2e276125
JB
20944
20945static struct macro_source_file *
20946macro_start_file (int file, int line,
20947 struct macro_source_file *current_file,
43f3e411 20948 struct line_header *lh)
2e276125 20949{
233d95b5
JK
20950 /* File name relative to the compilation directory of this source file. */
20951 char *file_name = file_file_name (file, lh);
2e276125 20952
2e276125 20953 if (! current_file)
abc9d0dc 20954 {
fc474241
DE
20955 /* Note: We don't create a macro table for this compilation unit
20956 at all until we actually get a filename. */
43f3e411 20957 struct macro_table *macro_table = get_macro_table ();
fc474241 20958
abc9d0dc
TT
20959 /* If we have no current file, then this must be the start_file
20960 directive for the compilation unit's main source file. */
fc474241
DE
20961 current_file = macro_set_main (macro_table, file_name);
20962 macro_define_special (macro_table);
abc9d0dc 20963 }
2e276125 20964 else
233d95b5 20965 current_file = macro_include (current_file, line, file_name);
2e276125 20966
233d95b5 20967 xfree (file_name);
6e70227d 20968
2e276125
JB
20969 return current_file;
20970}
20971
20972
20973/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20974 followed by a null byte. */
20975static char *
20976copy_string (const char *buf, int len)
20977{
224c3ddb 20978 char *s = (char *) xmalloc (len + 1);
9a619af0 20979
2e276125
JB
20980 memcpy (s, buf, len);
20981 s[len] = '\0';
2e276125
JB
20982 return s;
20983}
20984
20985
20986static const char *
20987consume_improper_spaces (const char *p, const char *body)
20988{
20989 if (*p == ' ')
20990 {
4d3c2250 20991 complaint (&symfile_complaints,
3e43a32a
MS
20992 _("macro definition contains spaces "
20993 "in formal argument list:\n`%s'"),
4d3c2250 20994 body);
2e276125
JB
20995
20996 while (*p == ' ')
20997 p++;
20998 }
20999
21000 return p;
21001}
21002
21003
21004static void
21005parse_macro_definition (struct macro_source_file *file, int line,
21006 const char *body)
21007{
21008 const char *p;
21009
21010 /* The body string takes one of two forms. For object-like macro
21011 definitions, it should be:
21012
21013 <macro name> " " <definition>
21014
21015 For function-like macro definitions, it should be:
21016
21017 <macro name> "() " <definition>
21018 or
21019 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21020
21021 Spaces may appear only where explicitly indicated, and in the
21022 <definition>.
21023
21024 The Dwarf 2 spec says that an object-like macro's name is always
21025 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21026 the space when the macro's definition is the empty string.
2e276125
JB
21027
21028 The Dwarf 2 spec says that there should be no spaces between the
21029 formal arguments in a function-like macro's formal argument list,
21030 but versions of GCC around March 2002 include spaces after the
21031 commas. */
21032
21033
21034 /* Find the extent of the macro name. The macro name is terminated
21035 by either a space or null character (for an object-like macro) or
21036 an opening paren (for a function-like macro). */
21037 for (p = body; *p; p++)
21038 if (*p == ' ' || *p == '(')
21039 break;
21040
21041 if (*p == ' ' || *p == '\0')
21042 {
21043 /* It's an object-like macro. */
21044 int name_len = p - body;
21045 char *name = copy_string (body, name_len);
21046 const char *replacement;
21047
21048 if (*p == ' ')
21049 replacement = body + name_len + 1;
21050 else
21051 {
4d3c2250 21052 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21053 replacement = body + name_len;
21054 }
6e70227d 21055
2e276125
JB
21056 macro_define_object (file, line, name, replacement);
21057
21058 xfree (name);
21059 }
21060 else if (*p == '(')
21061 {
21062 /* It's a function-like macro. */
21063 char *name = copy_string (body, p - body);
21064 int argc = 0;
21065 int argv_size = 1;
8d749320 21066 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21067
21068 p++;
21069
21070 p = consume_improper_spaces (p, body);
21071
21072 /* Parse the formal argument list. */
21073 while (*p && *p != ')')
21074 {
21075 /* Find the extent of the current argument name. */
21076 const char *arg_start = p;
21077
21078 while (*p && *p != ',' && *p != ')' && *p != ' ')
21079 p++;
21080
21081 if (! *p || p == arg_start)
4d3c2250 21082 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21083 else
21084 {
21085 /* Make sure argv has room for the new argument. */
21086 if (argc >= argv_size)
21087 {
21088 argv_size *= 2;
224c3ddb 21089 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21090 }
21091
21092 argv[argc++] = copy_string (arg_start, p - arg_start);
21093 }
21094
21095 p = consume_improper_spaces (p, body);
21096
21097 /* Consume the comma, if present. */
21098 if (*p == ',')
21099 {
21100 p++;
21101
21102 p = consume_improper_spaces (p, body);
21103 }
21104 }
21105
21106 if (*p == ')')
21107 {
21108 p++;
21109
21110 if (*p == ' ')
21111 /* Perfectly formed definition, no complaints. */
21112 macro_define_function (file, line, name,
6e70227d 21113 argc, (const char **) argv,
2e276125
JB
21114 p + 1);
21115 else if (*p == '\0')
21116 {
21117 /* Complain, but do define it. */
4d3c2250 21118 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21119 macro_define_function (file, line, name,
6e70227d 21120 argc, (const char **) argv,
2e276125
JB
21121 p);
21122 }
21123 else
21124 /* Just complain. */
4d3c2250 21125 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21126 }
21127 else
21128 /* Just complain. */
4d3c2250 21129 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21130
21131 xfree (name);
21132 {
21133 int i;
21134
21135 for (i = 0; i < argc; i++)
21136 xfree (argv[i]);
21137 }
21138 xfree (argv);
21139 }
21140 else
4d3c2250 21141 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21142}
21143
cf2c3c16
TT
21144/* Skip some bytes from BYTES according to the form given in FORM.
21145 Returns the new pointer. */
2e276125 21146
d521ce57
TT
21147static const gdb_byte *
21148skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21149 enum dwarf_form form,
21150 unsigned int offset_size,
21151 struct dwarf2_section_info *section)
2e276125 21152{
cf2c3c16 21153 unsigned int bytes_read;
2e276125 21154
cf2c3c16 21155 switch (form)
2e276125 21156 {
cf2c3c16
TT
21157 case DW_FORM_data1:
21158 case DW_FORM_flag:
21159 ++bytes;
21160 break;
21161
21162 case DW_FORM_data2:
21163 bytes += 2;
21164 break;
21165
21166 case DW_FORM_data4:
21167 bytes += 4;
21168 break;
21169
21170 case DW_FORM_data8:
21171 bytes += 8;
21172 break;
21173
21174 case DW_FORM_string:
21175 read_direct_string (abfd, bytes, &bytes_read);
21176 bytes += bytes_read;
21177 break;
21178
21179 case DW_FORM_sec_offset:
21180 case DW_FORM_strp:
36586728 21181 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21182 bytes += offset_size;
21183 break;
21184
21185 case DW_FORM_block:
21186 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21187 bytes += bytes_read;
21188 break;
21189
21190 case DW_FORM_block1:
21191 bytes += 1 + read_1_byte (abfd, bytes);
21192 break;
21193 case DW_FORM_block2:
21194 bytes += 2 + read_2_bytes (abfd, bytes);
21195 break;
21196 case DW_FORM_block4:
21197 bytes += 4 + read_4_bytes (abfd, bytes);
21198 break;
21199
21200 case DW_FORM_sdata:
21201 case DW_FORM_udata:
3019eac3
DE
21202 case DW_FORM_GNU_addr_index:
21203 case DW_FORM_GNU_str_index:
d521ce57 21204 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21205 if (bytes == NULL)
21206 {
21207 dwarf2_section_buffer_overflow_complaint (section);
21208 return NULL;
21209 }
cf2c3c16
TT
21210 break;
21211
21212 default:
21213 {
21214 complain:
21215 complaint (&symfile_complaints,
21216 _("invalid form 0x%x in `%s'"),
a32a8923 21217 form, get_section_name (section));
cf2c3c16
TT
21218 return NULL;
21219 }
2e276125
JB
21220 }
21221
cf2c3c16
TT
21222 return bytes;
21223}
757a13d0 21224
cf2c3c16
TT
21225/* A helper for dwarf_decode_macros that handles skipping an unknown
21226 opcode. Returns an updated pointer to the macro data buffer; or,
21227 on error, issues a complaint and returns NULL. */
757a13d0 21228
d521ce57 21229static const gdb_byte *
cf2c3c16 21230skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21231 const gdb_byte **opcode_definitions,
21232 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21233 bfd *abfd,
21234 unsigned int offset_size,
21235 struct dwarf2_section_info *section)
21236{
21237 unsigned int bytes_read, i;
21238 unsigned long arg;
d521ce57 21239 const gdb_byte *defn;
2e276125 21240
cf2c3c16 21241 if (opcode_definitions[opcode] == NULL)
2e276125 21242 {
cf2c3c16
TT
21243 complaint (&symfile_complaints,
21244 _("unrecognized DW_MACFINO opcode 0x%x"),
21245 opcode);
21246 return NULL;
21247 }
2e276125 21248
cf2c3c16
TT
21249 defn = opcode_definitions[opcode];
21250 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21251 defn += bytes_read;
2e276125 21252
cf2c3c16
TT
21253 for (i = 0; i < arg; ++i)
21254 {
aead7601
SM
21255 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21256 (enum dwarf_form) defn[i], offset_size,
f664829e 21257 section);
cf2c3c16
TT
21258 if (mac_ptr == NULL)
21259 {
21260 /* skip_form_bytes already issued the complaint. */
21261 return NULL;
21262 }
21263 }
757a13d0 21264
cf2c3c16
TT
21265 return mac_ptr;
21266}
757a13d0 21267
cf2c3c16
TT
21268/* A helper function which parses the header of a macro section.
21269 If the macro section is the extended (for now called "GNU") type,
21270 then this updates *OFFSET_SIZE. Returns a pointer to just after
21271 the header, or issues a complaint and returns NULL on error. */
757a13d0 21272
d521ce57
TT
21273static const gdb_byte *
21274dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21275 bfd *abfd,
d521ce57 21276 const gdb_byte *mac_ptr,
cf2c3c16
TT
21277 unsigned int *offset_size,
21278 int section_is_gnu)
21279{
21280 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21281
cf2c3c16
TT
21282 if (section_is_gnu)
21283 {
21284 unsigned int version, flags;
757a13d0 21285
cf2c3c16
TT
21286 version = read_2_bytes (abfd, mac_ptr);
21287 if (version != 4)
21288 {
21289 complaint (&symfile_complaints,
21290 _("unrecognized version `%d' in .debug_macro section"),
21291 version);
21292 return NULL;
21293 }
21294 mac_ptr += 2;
757a13d0 21295
cf2c3c16
TT
21296 flags = read_1_byte (abfd, mac_ptr);
21297 ++mac_ptr;
21298 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21299
cf2c3c16
TT
21300 if ((flags & 2) != 0)
21301 /* We don't need the line table offset. */
21302 mac_ptr += *offset_size;
757a13d0 21303
cf2c3c16
TT
21304 /* Vendor opcode descriptions. */
21305 if ((flags & 4) != 0)
21306 {
21307 unsigned int i, count;
757a13d0 21308
cf2c3c16
TT
21309 count = read_1_byte (abfd, mac_ptr);
21310 ++mac_ptr;
21311 for (i = 0; i < count; ++i)
21312 {
21313 unsigned int opcode, bytes_read;
21314 unsigned long arg;
21315
21316 opcode = read_1_byte (abfd, mac_ptr);
21317 ++mac_ptr;
21318 opcode_definitions[opcode] = mac_ptr;
21319 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21320 mac_ptr += bytes_read;
21321 mac_ptr += arg;
21322 }
757a13d0 21323 }
cf2c3c16 21324 }
757a13d0 21325
cf2c3c16
TT
21326 return mac_ptr;
21327}
757a13d0 21328
cf2c3c16 21329/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21330 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21331
21332static void
d521ce57
TT
21333dwarf_decode_macro_bytes (bfd *abfd,
21334 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21335 struct macro_source_file *current_file,
43f3e411 21336 struct line_header *lh,
cf2c3c16 21337 struct dwarf2_section_info *section,
36586728 21338 int section_is_gnu, int section_is_dwz,
cf2c3c16 21339 unsigned int offset_size,
8fc3fc34 21340 htab_t include_hash)
cf2c3c16 21341{
4d663531 21342 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21343 enum dwarf_macro_record_type macinfo_type;
21344 int at_commandline;
d521ce57 21345 const gdb_byte *opcode_definitions[256];
757a13d0 21346
cf2c3c16
TT
21347 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21348 &offset_size, section_is_gnu);
21349 if (mac_ptr == NULL)
21350 {
21351 /* We already issued a complaint. */
21352 return;
21353 }
757a13d0
JK
21354
21355 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21356 GDB is still reading the definitions from command line. First
21357 DW_MACINFO_start_file will need to be ignored as it was already executed
21358 to create CURRENT_FILE for the main source holding also the command line
21359 definitions. On first met DW_MACINFO_start_file this flag is reset to
21360 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21361
21362 at_commandline = 1;
21363
21364 do
21365 {
21366 /* Do we at least have room for a macinfo type byte? */
21367 if (mac_ptr >= mac_end)
21368 {
f664829e 21369 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21370 break;
21371 }
21372
aead7601 21373 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21374 mac_ptr++;
21375
cf2c3c16
TT
21376 /* Note that we rely on the fact that the corresponding GNU and
21377 DWARF constants are the same. */
757a13d0
JK
21378 switch (macinfo_type)
21379 {
21380 /* A zero macinfo type indicates the end of the macro
21381 information. */
21382 case 0:
21383 break;
2e276125 21384
cf2c3c16
TT
21385 case DW_MACRO_GNU_define:
21386 case DW_MACRO_GNU_undef:
21387 case DW_MACRO_GNU_define_indirect:
21388 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21389 case DW_MACRO_GNU_define_indirect_alt:
21390 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21391 {
891d2f0b 21392 unsigned int bytes_read;
2e276125 21393 int line;
d521ce57 21394 const char *body;
cf2c3c16 21395 int is_define;
2e276125 21396
cf2c3c16
TT
21397 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21398 mac_ptr += bytes_read;
21399
21400 if (macinfo_type == DW_MACRO_GNU_define
21401 || macinfo_type == DW_MACRO_GNU_undef)
21402 {
21403 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21404 mac_ptr += bytes_read;
21405 }
21406 else
21407 {
21408 LONGEST str_offset;
21409
21410 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21411 mac_ptr += offset_size;
2e276125 21412
36586728 21413 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21414 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21415 || section_is_dwz)
36586728
TT
21416 {
21417 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21418
21419 body = read_indirect_string_from_dwz (dwz, str_offset);
21420 }
21421 else
21422 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21423 }
21424
21425 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21426 || macinfo_type == DW_MACRO_GNU_define_indirect
21427 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21428 if (! current_file)
757a13d0
JK
21429 {
21430 /* DWARF violation as no main source is present. */
21431 complaint (&symfile_complaints,
21432 _("debug info with no main source gives macro %s "
21433 "on line %d: %s"),
cf2c3c16
TT
21434 is_define ? _("definition") : _("undefinition"),
21435 line, body);
757a13d0
JK
21436 break;
21437 }
3e43a32a
MS
21438 if ((line == 0 && !at_commandline)
21439 || (line != 0 && at_commandline))
4d3c2250 21440 complaint (&symfile_complaints,
757a13d0
JK
21441 _("debug info gives %s macro %s with %s line %d: %s"),
21442 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21443 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21444 line == 0 ? _("zero") : _("non-zero"), line, body);
21445
cf2c3c16 21446 if (is_define)
757a13d0 21447 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21448 else
21449 {
21450 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21451 || macinfo_type == DW_MACRO_GNU_undef_indirect
21452 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21453 macro_undef (current_file, line, body);
21454 }
2e276125
JB
21455 }
21456 break;
21457
cf2c3c16 21458 case DW_MACRO_GNU_start_file:
2e276125 21459 {
891d2f0b 21460 unsigned int bytes_read;
2e276125
JB
21461 int line, file;
21462
21463 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21464 mac_ptr += bytes_read;
21465 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21466 mac_ptr += bytes_read;
21467
3e43a32a
MS
21468 if ((line == 0 && !at_commandline)
21469 || (line != 0 && at_commandline))
757a13d0
JK
21470 complaint (&symfile_complaints,
21471 _("debug info gives source %d included "
21472 "from %s at %s line %d"),
21473 file, at_commandline ? _("command-line") : _("file"),
21474 line == 0 ? _("zero") : _("non-zero"), line);
21475
21476 if (at_commandline)
21477 {
cf2c3c16
TT
21478 /* This DW_MACRO_GNU_start_file was executed in the
21479 pass one. */
757a13d0
JK
21480 at_commandline = 0;
21481 }
21482 else
43f3e411 21483 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21484 }
21485 break;
21486
cf2c3c16 21487 case DW_MACRO_GNU_end_file:
2e276125 21488 if (! current_file)
4d3c2250 21489 complaint (&symfile_complaints,
3e43a32a
MS
21490 _("macro debug info has an unmatched "
21491 "`close_file' directive"));
2e276125
JB
21492 else
21493 {
21494 current_file = current_file->included_by;
21495 if (! current_file)
21496 {
cf2c3c16 21497 enum dwarf_macro_record_type next_type;
2e276125
JB
21498
21499 /* GCC circa March 2002 doesn't produce the zero
21500 type byte marking the end of the compilation
21501 unit. Complain if it's not there, but exit no
21502 matter what. */
21503
21504 /* Do we at least have room for a macinfo type byte? */
21505 if (mac_ptr >= mac_end)
21506 {
f664829e 21507 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21508 return;
21509 }
21510
21511 /* We don't increment mac_ptr here, so this is just
21512 a look-ahead. */
aead7601
SM
21513 next_type
21514 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21515 mac_ptr);
2e276125 21516 if (next_type != 0)
4d3c2250 21517 complaint (&symfile_complaints,
3e43a32a
MS
21518 _("no terminating 0-type entry for "
21519 "macros in `.debug_macinfo' section"));
2e276125
JB
21520
21521 return;
21522 }
21523 }
21524 break;
21525
cf2c3c16 21526 case DW_MACRO_GNU_transparent_include:
36586728 21527 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21528 {
21529 LONGEST offset;
8fc3fc34 21530 void **slot;
a036ba48
TT
21531 bfd *include_bfd = abfd;
21532 struct dwarf2_section_info *include_section = section;
d521ce57 21533 const gdb_byte *include_mac_end = mac_end;
a036ba48 21534 int is_dwz = section_is_dwz;
d521ce57 21535 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21536
21537 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21538 mac_ptr += offset_size;
21539
a036ba48
TT
21540 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21541 {
21542 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21543
4d663531 21544 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21545
a036ba48 21546 include_section = &dwz->macro;
a32a8923 21547 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21548 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21549 is_dwz = 1;
21550 }
21551
21552 new_mac_ptr = include_section->buffer + offset;
21553 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21554
8fc3fc34
TT
21555 if (*slot != NULL)
21556 {
21557 /* This has actually happened; see
21558 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21559 complaint (&symfile_complaints,
21560 _("recursive DW_MACRO_GNU_transparent_include in "
21561 ".debug_macro section"));
21562 }
21563 else
21564 {
d521ce57 21565 *slot = (void *) new_mac_ptr;
36586728 21566
a036ba48 21567 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21568 include_mac_end, current_file, lh,
36586728 21569 section, section_is_gnu, is_dwz,
4d663531 21570 offset_size, include_hash);
8fc3fc34 21571
d521ce57 21572 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21573 }
cf2c3c16
TT
21574 }
21575 break;
21576
2e276125 21577 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21578 if (!section_is_gnu)
21579 {
21580 unsigned int bytes_read;
2e276125 21581
ac298888
TT
21582 /* This reads the constant, but since we don't recognize
21583 any vendor extensions, we ignore it. */
21584 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21585 mac_ptr += bytes_read;
21586 read_direct_string (abfd, mac_ptr, &bytes_read);
21587 mac_ptr += bytes_read;
2e276125 21588
cf2c3c16
TT
21589 /* We don't recognize any vendor extensions. */
21590 break;
21591 }
21592 /* FALLTHROUGH */
21593
21594 default:
21595 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21596 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21597 section);
21598 if (mac_ptr == NULL)
21599 return;
21600 break;
2e276125 21601 }
757a13d0 21602 } while (macinfo_type != 0);
2e276125 21603}
8e19ed76 21604
cf2c3c16 21605static void
09262596 21606dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21607 int section_is_gnu)
cf2c3c16 21608{
bb5ed363 21609 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21610 struct line_header *lh = cu->line_header;
21611 bfd *abfd;
d521ce57 21612 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21613 struct macro_source_file *current_file = 0;
21614 enum dwarf_macro_record_type macinfo_type;
21615 unsigned int offset_size = cu->header.offset_size;
d521ce57 21616 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21617 struct cleanup *cleanup;
21618 htab_t include_hash;
21619 void **slot;
09262596
DE
21620 struct dwarf2_section_info *section;
21621 const char *section_name;
21622
21623 if (cu->dwo_unit != NULL)
21624 {
21625 if (section_is_gnu)
21626 {
21627 section = &cu->dwo_unit->dwo_file->sections.macro;
21628 section_name = ".debug_macro.dwo";
21629 }
21630 else
21631 {
21632 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21633 section_name = ".debug_macinfo.dwo";
21634 }
21635 }
21636 else
21637 {
21638 if (section_is_gnu)
21639 {
21640 section = &dwarf2_per_objfile->macro;
21641 section_name = ".debug_macro";
21642 }
21643 else
21644 {
21645 section = &dwarf2_per_objfile->macinfo;
21646 section_name = ".debug_macinfo";
21647 }
21648 }
cf2c3c16 21649
bb5ed363 21650 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21651 if (section->buffer == NULL)
21652 {
fceca515 21653 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21654 return;
21655 }
a32a8923 21656 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21657
21658 /* First pass: Find the name of the base filename.
21659 This filename is needed in order to process all macros whose definition
21660 (or undefinition) comes from the command line. These macros are defined
21661 before the first DW_MACINFO_start_file entry, and yet still need to be
21662 associated to the base file.
21663
21664 To determine the base file name, we scan the macro definitions until we
21665 reach the first DW_MACINFO_start_file entry. We then initialize
21666 CURRENT_FILE accordingly so that any macro definition found before the
21667 first DW_MACINFO_start_file can still be associated to the base file. */
21668
21669 mac_ptr = section->buffer + offset;
21670 mac_end = section->buffer + section->size;
21671
21672 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21673 &offset_size, section_is_gnu);
21674 if (mac_ptr == NULL)
21675 {
21676 /* We already issued a complaint. */
21677 return;
21678 }
21679
21680 do
21681 {
21682 /* Do we at least have room for a macinfo type byte? */
21683 if (mac_ptr >= mac_end)
21684 {
21685 /* Complaint is printed during the second pass as GDB will probably
21686 stop the first pass earlier upon finding
21687 DW_MACINFO_start_file. */
21688 break;
21689 }
21690
aead7601 21691 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21692 mac_ptr++;
21693
21694 /* Note that we rely on the fact that the corresponding GNU and
21695 DWARF constants are the same. */
21696 switch (macinfo_type)
21697 {
21698 /* A zero macinfo type indicates the end of the macro
21699 information. */
21700 case 0:
21701 break;
21702
21703 case DW_MACRO_GNU_define:
21704 case DW_MACRO_GNU_undef:
21705 /* Only skip the data by MAC_PTR. */
21706 {
21707 unsigned int bytes_read;
21708
21709 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21710 mac_ptr += bytes_read;
21711 read_direct_string (abfd, mac_ptr, &bytes_read);
21712 mac_ptr += bytes_read;
21713 }
21714 break;
21715
21716 case DW_MACRO_GNU_start_file:
21717 {
21718 unsigned int bytes_read;
21719 int line, file;
21720
21721 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21722 mac_ptr += bytes_read;
21723 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21724 mac_ptr += bytes_read;
21725
43f3e411 21726 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21727 }
21728 break;
21729
21730 case DW_MACRO_GNU_end_file:
21731 /* No data to skip by MAC_PTR. */
21732 break;
21733
21734 case DW_MACRO_GNU_define_indirect:
21735 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21736 case DW_MACRO_GNU_define_indirect_alt:
21737 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21738 {
21739 unsigned int bytes_read;
21740
21741 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21742 mac_ptr += bytes_read;
21743 mac_ptr += offset_size;
21744 }
21745 break;
21746
21747 case DW_MACRO_GNU_transparent_include:
f7a35f02 21748 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21749 /* Note that, according to the spec, a transparent include
21750 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21751 skip this opcode. */
21752 mac_ptr += offset_size;
21753 break;
21754
21755 case DW_MACINFO_vendor_ext:
21756 /* Only skip the data by MAC_PTR. */
21757 if (!section_is_gnu)
21758 {
21759 unsigned int bytes_read;
21760
21761 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21762 mac_ptr += bytes_read;
21763 read_direct_string (abfd, mac_ptr, &bytes_read);
21764 mac_ptr += bytes_read;
21765 }
21766 /* FALLTHROUGH */
21767
21768 default:
21769 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21770 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21771 section);
21772 if (mac_ptr == NULL)
21773 return;
21774 break;
21775 }
21776 } while (macinfo_type != 0 && current_file == NULL);
21777
21778 /* Second pass: Process all entries.
21779
21780 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21781 command-line macro definitions/undefinitions. This flag is unset when we
21782 reach the first DW_MACINFO_start_file entry. */
21783
8fc3fc34
TT
21784 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21785 NULL, xcalloc, xfree);
21786 cleanup = make_cleanup_htab_delete (include_hash);
21787 mac_ptr = section->buffer + offset;
21788 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21789 *slot = (void *) mac_ptr;
8fc3fc34 21790 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21791 current_file, lh, section,
4d663531 21792 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21793 do_cleanups (cleanup);
cf2c3c16
TT
21794}
21795
8e19ed76 21796/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21797 if so return true else false. */
380bca97 21798
8e19ed76 21799static int
6e5a29e1 21800attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21801{
21802 return (attr == NULL ? 0 :
21803 attr->form == DW_FORM_block1
21804 || attr->form == DW_FORM_block2
21805 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21806 || attr->form == DW_FORM_block
21807 || attr->form == DW_FORM_exprloc);
8e19ed76 21808}
4c2df51b 21809
c6a0999f
JB
21810/* Return non-zero if ATTR's value is a section offset --- classes
21811 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21812 You may use DW_UNSND (attr) to retrieve such offsets.
21813
21814 Section 7.5.4, "Attribute Encodings", explains that no attribute
21815 may have a value that belongs to more than one of these classes; it
21816 would be ambiguous if we did, because we use the same forms for all
21817 of them. */
380bca97 21818
3690dd37 21819static int
6e5a29e1 21820attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21821{
21822 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21823 || attr->form == DW_FORM_data8
21824 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21825}
21826
3690dd37
JB
21827/* Return non-zero if ATTR's value falls in the 'constant' class, or
21828 zero otherwise. When this function returns true, you can apply
21829 dwarf2_get_attr_constant_value to it.
21830
21831 However, note that for some attributes you must check
21832 attr_form_is_section_offset before using this test. DW_FORM_data4
21833 and DW_FORM_data8 are members of both the constant class, and of
21834 the classes that contain offsets into other debug sections
21835 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21836 that, if an attribute's can be either a constant or one of the
21837 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21838 taken as section offsets, not constants. */
380bca97 21839
3690dd37 21840static int
6e5a29e1 21841attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21842{
21843 switch (attr->form)
21844 {
21845 case DW_FORM_sdata:
21846 case DW_FORM_udata:
21847 case DW_FORM_data1:
21848 case DW_FORM_data2:
21849 case DW_FORM_data4:
21850 case DW_FORM_data8:
21851 return 1;
21852 default:
21853 return 0;
21854 }
21855}
21856
7771576e
SA
21857
21858/* DW_ADDR is always stored already as sect_offset; despite for the forms
21859 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21860
21861static int
6e5a29e1 21862attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21863{
21864 switch (attr->form)
21865 {
21866 case DW_FORM_ref_addr:
21867 case DW_FORM_ref1:
21868 case DW_FORM_ref2:
21869 case DW_FORM_ref4:
21870 case DW_FORM_ref8:
21871 case DW_FORM_ref_udata:
21872 case DW_FORM_GNU_ref_alt:
21873 return 1;
21874 default:
21875 return 0;
21876 }
21877}
21878
3019eac3
DE
21879/* Return the .debug_loc section to use for CU.
21880 For DWO files use .debug_loc.dwo. */
21881
21882static struct dwarf2_section_info *
21883cu_debug_loc_section (struct dwarf2_cu *cu)
21884{
21885 if (cu->dwo_unit)
21886 return &cu->dwo_unit->dwo_file->sections.loc;
21887 return &dwarf2_per_objfile->loc;
21888}
21889
8cf6f0b1
TT
21890/* A helper function that fills in a dwarf2_loclist_baton. */
21891
21892static void
21893fill_in_loclist_baton (struct dwarf2_cu *cu,
21894 struct dwarf2_loclist_baton *baton,
ff39bb5e 21895 const struct attribute *attr)
8cf6f0b1 21896{
3019eac3
DE
21897 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21898
21899 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21900
21901 baton->per_cu = cu->per_cu;
21902 gdb_assert (baton->per_cu);
21903 /* We don't know how long the location list is, but make sure we
21904 don't run off the edge of the section. */
3019eac3
DE
21905 baton->size = section->size - DW_UNSND (attr);
21906 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21907 baton->base_address = cu->base_address;
f664829e 21908 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21909}
21910
4c2df51b 21911static void
ff39bb5e 21912dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21913 struct dwarf2_cu *cu, int is_block)
4c2df51b 21914{
bb5ed363 21915 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21916 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21917
3690dd37 21918 if (attr_form_is_section_offset (attr)
3019eac3 21919 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21920 the section. If so, fall through to the complaint in the
21921 other branch. */
3019eac3 21922 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21923 {
0d53c4c4 21924 struct dwarf2_loclist_baton *baton;
4c2df51b 21925
8d749320 21926 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21927
8cf6f0b1 21928 fill_in_loclist_baton (cu, baton, attr);
be391dca 21929
d00adf39 21930 if (cu->base_known == 0)
0d53c4c4 21931 complaint (&symfile_complaints,
3e43a32a
MS
21932 _("Location list used without "
21933 "specifying the CU base address."));
4c2df51b 21934
f1e6e072
TT
21935 SYMBOL_ACLASS_INDEX (sym) = (is_block
21936 ? dwarf2_loclist_block_index
21937 : dwarf2_loclist_index);
0d53c4c4
DJ
21938 SYMBOL_LOCATION_BATON (sym) = baton;
21939 }
21940 else
21941 {
21942 struct dwarf2_locexpr_baton *baton;
21943
8d749320 21944 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21945 baton->per_cu = cu->per_cu;
21946 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21947
21948 if (attr_form_is_block (attr))
21949 {
21950 /* Note that we're just copying the block's data pointer
21951 here, not the actual data. We're still pointing into the
6502dd73
DJ
21952 info_buffer for SYM's objfile; right now we never release
21953 that buffer, but when we do clean up properly this may
21954 need to change. */
0d53c4c4
DJ
21955 baton->size = DW_BLOCK (attr)->size;
21956 baton->data = DW_BLOCK (attr)->data;
21957 }
21958 else
21959 {
21960 dwarf2_invalid_attrib_class_complaint ("location description",
21961 SYMBOL_NATURAL_NAME (sym));
21962 baton->size = 0;
0d53c4c4 21963 }
6e70227d 21964
f1e6e072
TT
21965 SYMBOL_ACLASS_INDEX (sym) = (is_block
21966 ? dwarf2_locexpr_block_index
21967 : dwarf2_locexpr_index);
0d53c4c4
DJ
21968 SYMBOL_LOCATION_BATON (sym) = baton;
21969 }
4c2df51b 21970}
6502dd73 21971
9aa1f1e3
TT
21972/* Return the OBJFILE associated with the compilation unit CU. If CU
21973 came from a separate debuginfo file, then the master objfile is
21974 returned. */
ae0d2f24
UW
21975
21976struct objfile *
21977dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21978{
9291a0cd 21979 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21980
21981 /* Return the master objfile, so that we can report and look up the
21982 correct file containing this variable. */
21983 if (objfile->separate_debug_objfile_backlink)
21984 objfile = objfile->separate_debug_objfile_backlink;
21985
21986 return objfile;
21987}
21988
96408a79
SA
21989/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21990 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21991 CU_HEADERP first. */
21992
21993static const struct comp_unit_head *
21994per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21995 struct dwarf2_per_cu_data *per_cu)
21996{
d521ce57 21997 const gdb_byte *info_ptr;
96408a79
SA
21998
21999 if (per_cu->cu)
22000 return &per_cu->cu->header;
22001
8a0459fd 22002 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
22003
22004 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 22005 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
22006
22007 return cu_headerp;
22008}
22009
ae0d2f24
UW
22010/* Return the address size given in the compilation unit header for CU. */
22011
98714339 22012int
ae0d2f24
UW
22013dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22014{
96408a79
SA
22015 struct comp_unit_head cu_header_local;
22016 const struct comp_unit_head *cu_headerp;
c471e790 22017
96408a79
SA
22018 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22019
22020 return cu_headerp->addr_size;
ae0d2f24
UW
22021}
22022
9eae7c52
TT
22023/* Return the offset size given in the compilation unit header for CU. */
22024
22025int
22026dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22027{
96408a79
SA
22028 struct comp_unit_head cu_header_local;
22029 const struct comp_unit_head *cu_headerp;
9c6c53f7 22030
96408a79
SA
22031 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22032
22033 return cu_headerp->offset_size;
22034}
22035
22036/* See its dwarf2loc.h declaration. */
22037
22038int
22039dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22040{
22041 struct comp_unit_head cu_header_local;
22042 const struct comp_unit_head *cu_headerp;
22043
22044 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22045
22046 if (cu_headerp->version == 2)
22047 return cu_headerp->addr_size;
22048 else
22049 return cu_headerp->offset_size;
181cebd4
JK
22050}
22051
9aa1f1e3
TT
22052/* Return the text offset of the CU. The returned offset comes from
22053 this CU's objfile. If this objfile came from a separate debuginfo
22054 file, then the offset may be different from the corresponding
22055 offset in the parent objfile. */
22056
22057CORE_ADDR
22058dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22059{
bb3fa9d0 22060 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22061
22062 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22063}
22064
348e048f
DE
22065/* Locate the .debug_info compilation unit from CU's objfile which contains
22066 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22067
22068static struct dwarf2_per_cu_data *
b64f50a1 22069dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22070 unsigned int offset_in_dwz,
ae038cb0
DJ
22071 struct objfile *objfile)
22072{
22073 struct dwarf2_per_cu_data *this_cu;
22074 int low, high;
36586728 22075 const sect_offset *cu_off;
ae038cb0 22076
ae038cb0
DJ
22077 low = 0;
22078 high = dwarf2_per_objfile->n_comp_units - 1;
22079 while (high > low)
22080 {
36586728 22081 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22082 int mid = low + (high - low) / 2;
9a619af0 22083
36586728
TT
22084 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22085 cu_off = &mid_cu->offset;
22086 if (mid_cu->is_dwz > offset_in_dwz
22087 || (mid_cu->is_dwz == offset_in_dwz
22088 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22089 high = mid;
22090 else
22091 low = mid + 1;
22092 }
22093 gdb_assert (low == high);
36586728
TT
22094 this_cu = dwarf2_per_objfile->all_comp_units[low];
22095 cu_off = &this_cu->offset;
22096 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22097 {
36586728 22098 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22099 error (_("Dwarf Error: could not find partial DIE containing "
22100 "offset 0x%lx [in module %s]"),
b64f50a1 22101 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22102
b64f50a1
JK
22103 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22104 <= offset.sect_off);
ae038cb0
DJ
22105 return dwarf2_per_objfile->all_comp_units[low-1];
22106 }
22107 else
22108 {
22109 this_cu = dwarf2_per_objfile->all_comp_units[low];
22110 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22111 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22112 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22113 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22114 return this_cu;
22115 }
22116}
22117
23745b47 22118/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22119
9816fde3 22120static void
23745b47 22121init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22122{
9816fde3 22123 memset (cu, 0, sizeof (*cu));
23745b47
DE
22124 per_cu->cu = cu;
22125 cu->per_cu = per_cu;
22126 cu->objfile = per_cu->objfile;
93311388 22127 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22128}
22129
22130/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22131
22132static void
95554aad
TT
22133prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22134 enum language pretend_language)
9816fde3
JK
22135{
22136 struct attribute *attr;
22137
22138 /* Set the language we're debugging. */
22139 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22140 if (attr)
22141 set_cu_language (DW_UNSND (attr), cu);
22142 else
9cded63f 22143 {
95554aad 22144 cu->language = pretend_language;
9cded63f
TT
22145 cu->language_defn = language_def (cu->language);
22146 }
dee91e82 22147
7d45c7c3 22148 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22149}
22150
ae038cb0
DJ
22151/* Release one cached compilation unit, CU. We unlink it from the tree
22152 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22153 the caller is responsible for that.
22154 NOTE: DATA is a void * because this function is also used as a
22155 cleanup routine. */
ae038cb0
DJ
22156
22157static void
68dc6402 22158free_heap_comp_unit (void *data)
ae038cb0 22159{
9a3c8263 22160 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22161
23745b47
DE
22162 gdb_assert (cu->per_cu != NULL);
22163 cu->per_cu->cu = NULL;
ae038cb0
DJ
22164 cu->per_cu = NULL;
22165
22166 obstack_free (&cu->comp_unit_obstack, NULL);
22167
22168 xfree (cu);
22169}
22170
72bf9492 22171/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22172 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22173 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22174
22175static void
22176free_stack_comp_unit (void *data)
22177{
9a3c8263 22178 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22179
23745b47
DE
22180 gdb_assert (cu->per_cu != NULL);
22181 cu->per_cu->cu = NULL;
22182 cu->per_cu = NULL;
22183
72bf9492
DJ
22184 obstack_free (&cu->comp_unit_obstack, NULL);
22185 cu->partial_dies = NULL;
ae038cb0
DJ
22186}
22187
22188/* Free all cached compilation units. */
22189
22190static void
22191free_cached_comp_units (void *data)
22192{
22193 struct dwarf2_per_cu_data *per_cu, **last_chain;
22194
22195 per_cu = dwarf2_per_objfile->read_in_chain;
22196 last_chain = &dwarf2_per_objfile->read_in_chain;
22197 while (per_cu != NULL)
22198 {
22199 struct dwarf2_per_cu_data *next_cu;
22200
22201 next_cu = per_cu->cu->read_in_chain;
22202
68dc6402 22203 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22204 *last_chain = next_cu;
22205
22206 per_cu = next_cu;
22207 }
22208}
22209
22210/* Increase the age counter on each cached compilation unit, and free
22211 any that are too old. */
22212
22213static void
22214age_cached_comp_units (void)
22215{
22216 struct dwarf2_per_cu_data *per_cu, **last_chain;
22217
22218 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22219 per_cu = dwarf2_per_objfile->read_in_chain;
22220 while (per_cu != NULL)
22221 {
22222 per_cu->cu->last_used ++;
b4f54984 22223 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22224 dwarf2_mark (per_cu->cu);
22225 per_cu = per_cu->cu->read_in_chain;
22226 }
22227
22228 per_cu = dwarf2_per_objfile->read_in_chain;
22229 last_chain = &dwarf2_per_objfile->read_in_chain;
22230 while (per_cu != NULL)
22231 {
22232 struct dwarf2_per_cu_data *next_cu;
22233
22234 next_cu = per_cu->cu->read_in_chain;
22235
22236 if (!per_cu->cu->mark)
22237 {
68dc6402 22238 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22239 *last_chain = next_cu;
22240 }
22241 else
22242 last_chain = &per_cu->cu->read_in_chain;
22243
22244 per_cu = next_cu;
22245 }
22246}
22247
22248/* Remove a single compilation unit from the cache. */
22249
22250static void
dee91e82 22251free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22252{
22253 struct dwarf2_per_cu_data *per_cu, **last_chain;
22254
22255 per_cu = dwarf2_per_objfile->read_in_chain;
22256 last_chain = &dwarf2_per_objfile->read_in_chain;
22257 while (per_cu != NULL)
22258 {
22259 struct dwarf2_per_cu_data *next_cu;
22260
22261 next_cu = per_cu->cu->read_in_chain;
22262
dee91e82 22263 if (per_cu == target_per_cu)
ae038cb0 22264 {
68dc6402 22265 free_heap_comp_unit (per_cu->cu);
dee91e82 22266 per_cu->cu = NULL;
ae038cb0
DJ
22267 *last_chain = next_cu;
22268 break;
22269 }
22270 else
22271 last_chain = &per_cu->cu->read_in_chain;
22272
22273 per_cu = next_cu;
22274 }
22275}
22276
fe3e1990
DJ
22277/* Release all extra memory associated with OBJFILE. */
22278
22279void
22280dwarf2_free_objfile (struct objfile *objfile)
22281{
9a3c8263
SM
22282 dwarf2_per_objfile
22283 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22284 dwarf2_objfile_data_key);
fe3e1990
DJ
22285
22286 if (dwarf2_per_objfile == NULL)
22287 return;
22288
22289 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22290 free_cached_comp_units (NULL);
22291
7b9f3c50
DE
22292 if (dwarf2_per_objfile->quick_file_names_table)
22293 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22294
527f3840
JK
22295 if (dwarf2_per_objfile->line_header_hash)
22296 htab_delete (dwarf2_per_objfile->line_header_hash);
22297
fe3e1990
DJ
22298 /* Everything else should be on the objfile obstack. */
22299}
22300
dee91e82
DE
22301/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22302 We store these in a hash table separate from the DIEs, and preserve them
22303 when the DIEs are flushed out of cache.
22304
22305 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22306 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22307 or the type may come from a DWO file. Furthermore, while it's more logical
22308 to use per_cu->section+offset, with Fission the section with the data is in
22309 the DWO file but we don't know that section at the point we need it.
22310 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22311 because we can enter the lookup routine, get_die_type_at_offset, from
22312 outside this file, and thus won't necessarily have PER_CU->cu.
22313 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22314
dee91e82 22315struct dwarf2_per_cu_offset_and_type
1c379e20 22316{
dee91e82 22317 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22318 sect_offset offset;
1c379e20
DJ
22319 struct type *type;
22320};
22321
dee91e82 22322/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22323
22324static hashval_t
dee91e82 22325per_cu_offset_and_type_hash (const void *item)
1c379e20 22326{
9a3c8263
SM
22327 const struct dwarf2_per_cu_offset_and_type *ofs
22328 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22329
dee91e82 22330 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22331}
22332
dee91e82 22333/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22334
22335static int
dee91e82 22336per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22337{
9a3c8263
SM
22338 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22339 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22340 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22341 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22342
dee91e82
DE
22343 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22344 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22345}
22346
22347/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22348 table if necessary. For convenience, return TYPE.
22349
22350 The DIEs reading must have careful ordering to:
22351 * Not cause infite loops trying to read in DIEs as a prerequisite for
22352 reading current DIE.
22353 * Not trying to dereference contents of still incompletely read in types
22354 while reading in other DIEs.
22355 * Enable referencing still incompletely read in types just by a pointer to
22356 the type without accessing its fields.
22357
22358 Therefore caller should follow these rules:
22359 * Try to fetch any prerequisite types we may need to build this DIE type
22360 before building the type and calling set_die_type.
e71ec853 22361 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22362 possible before fetching more types to complete the current type.
22363 * Make the type as complete as possible before fetching more types. */
1c379e20 22364
f792889a 22365static struct type *
1c379e20
DJ
22366set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22367{
dee91e82 22368 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22369 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22370 struct attribute *attr;
22371 struct dynamic_prop prop;
1c379e20 22372
b4ba55a1
JB
22373 /* For Ada types, make sure that the gnat-specific data is always
22374 initialized (if not already set). There are a few types where
22375 we should not be doing so, because the type-specific area is
22376 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22377 where the type-specific area is used to store the floatformat).
22378 But this is not a problem, because the gnat-specific information
22379 is actually not needed for these types. */
22380 if (need_gnat_info (cu)
22381 && TYPE_CODE (type) != TYPE_CODE_FUNC
22382 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22383 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22384 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22385 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22386 && !HAVE_GNAT_AUX_INFO (type))
22387 INIT_GNAT_SPECIFIC (type);
22388
3f2f83dd
KB
22389 /* Read DW_AT_allocated and set in type. */
22390 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22391 if (attr_form_is_block (attr))
22392 {
22393 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22394 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22395 }
22396 else if (attr != NULL)
22397 {
22398 complaint (&symfile_complaints,
22399 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22400 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22401 die->offset.sect_off);
22402 }
22403
22404 /* Read DW_AT_associated and set in type. */
22405 attr = dwarf2_attr (die, DW_AT_associated, cu);
22406 if (attr_form_is_block (attr))
22407 {
22408 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22409 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22410 }
22411 else if (attr != NULL)
22412 {
22413 complaint (&symfile_complaints,
22414 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22415 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22416 die->offset.sect_off);
22417 }
22418
3cdcd0ce
JB
22419 /* Read DW_AT_data_location and set in type. */
22420 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22421 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22422 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22423
dee91e82 22424 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22425 {
dee91e82
DE
22426 dwarf2_per_objfile->die_type_hash =
22427 htab_create_alloc_ex (127,
22428 per_cu_offset_and_type_hash,
22429 per_cu_offset_and_type_eq,
22430 NULL,
22431 &objfile->objfile_obstack,
22432 hashtab_obstack_allocate,
22433 dummy_obstack_deallocate);
f792889a 22434 }
1c379e20 22435
dee91e82 22436 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22437 ofs.offset = die->offset;
22438 ofs.type = type;
dee91e82
DE
22439 slot = (struct dwarf2_per_cu_offset_and_type **)
22440 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22441 if (*slot)
22442 complaint (&symfile_complaints,
22443 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22444 die->offset.sect_off);
8d749320
SM
22445 *slot = XOBNEW (&objfile->objfile_obstack,
22446 struct dwarf2_per_cu_offset_and_type);
1c379e20 22447 **slot = ofs;
f792889a 22448 return type;
1c379e20
DJ
22449}
22450
02142a6c
DE
22451/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22452 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22453
22454static struct type *
b64f50a1 22455get_die_type_at_offset (sect_offset offset,
673bfd45 22456 struct dwarf2_per_cu_data *per_cu)
1c379e20 22457{
dee91e82 22458 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22459
dee91e82 22460 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22461 return NULL;
1c379e20 22462
dee91e82 22463 ofs.per_cu = per_cu;
673bfd45 22464 ofs.offset = offset;
9a3c8263
SM
22465 slot = ((struct dwarf2_per_cu_offset_and_type *)
22466 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22467 if (slot)
22468 return slot->type;
22469 else
22470 return NULL;
22471}
22472
02142a6c 22473/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22474 or return NULL if DIE does not have a saved type. */
22475
22476static struct type *
22477get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22478{
22479 return get_die_type_at_offset (die->offset, cu->per_cu);
22480}
22481
10b3939b
DJ
22482/* Add a dependence relationship from CU to REF_PER_CU. */
22483
22484static void
22485dwarf2_add_dependence (struct dwarf2_cu *cu,
22486 struct dwarf2_per_cu_data *ref_per_cu)
22487{
22488 void **slot;
22489
22490 if (cu->dependencies == NULL)
22491 cu->dependencies
22492 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22493 NULL, &cu->comp_unit_obstack,
22494 hashtab_obstack_allocate,
22495 dummy_obstack_deallocate);
22496
22497 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22498 if (*slot == NULL)
22499 *slot = ref_per_cu;
22500}
1c379e20 22501
f504f079
DE
22502/* Subroutine of dwarf2_mark to pass to htab_traverse.
22503 Set the mark field in every compilation unit in the
ae038cb0
DJ
22504 cache that we must keep because we are keeping CU. */
22505
10b3939b
DJ
22506static int
22507dwarf2_mark_helper (void **slot, void *data)
22508{
22509 struct dwarf2_per_cu_data *per_cu;
22510
22511 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22512
22513 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22514 reading of the chain. As such dependencies remain valid it is not much
22515 useful to track and undo them during QUIT cleanups. */
22516 if (per_cu->cu == NULL)
22517 return 1;
22518
10b3939b
DJ
22519 if (per_cu->cu->mark)
22520 return 1;
22521 per_cu->cu->mark = 1;
22522
22523 if (per_cu->cu->dependencies != NULL)
22524 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22525
22526 return 1;
22527}
22528
f504f079
DE
22529/* Set the mark field in CU and in every other compilation unit in the
22530 cache that we must keep because we are keeping CU. */
22531
ae038cb0
DJ
22532static void
22533dwarf2_mark (struct dwarf2_cu *cu)
22534{
22535 if (cu->mark)
22536 return;
22537 cu->mark = 1;
10b3939b
DJ
22538 if (cu->dependencies != NULL)
22539 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22540}
22541
22542static void
22543dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22544{
22545 while (per_cu)
22546 {
22547 per_cu->cu->mark = 0;
22548 per_cu = per_cu->cu->read_in_chain;
22549 }
72bf9492
DJ
22550}
22551
72bf9492
DJ
22552/* Trivial hash function for partial_die_info: the hash value of a DIE
22553 is its offset in .debug_info for this objfile. */
22554
22555static hashval_t
22556partial_die_hash (const void *item)
22557{
9a3c8263
SM
22558 const struct partial_die_info *part_die
22559 = (const struct partial_die_info *) item;
9a619af0 22560
b64f50a1 22561 return part_die->offset.sect_off;
72bf9492
DJ
22562}
22563
22564/* Trivial comparison function for partial_die_info structures: two DIEs
22565 are equal if they have the same offset. */
22566
22567static int
22568partial_die_eq (const void *item_lhs, const void *item_rhs)
22569{
9a3c8263
SM
22570 const struct partial_die_info *part_die_lhs
22571 = (const struct partial_die_info *) item_lhs;
22572 const struct partial_die_info *part_die_rhs
22573 = (const struct partial_die_info *) item_rhs;
9a619af0 22574
b64f50a1 22575 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22576}
22577
b4f54984
DE
22578static struct cmd_list_element *set_dwarf_cmdlist;
22579static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22580
22581static void
b4f54984 22582set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22583{
b4f54984 22584 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22585 gdb_stdout);
ae038cb0
DJ
22586}
22587
22588static void
b4f54984 22589show_dwarf_cmd (char *args, int from_tty)
6e70227d 22590{
b4f54984 22591 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22592}
22593
4bf44c1c 22594/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22595
22596static void
c1bd65d0 22597dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22598{
9a3c8263 22599 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22600 int ix;
8b70b953 22601
626f2d1c
TT
22602 /* Make sure we don't accidentally use dwarf2_per_objfile while
22603 cleaning up. */
22604 dwarf2_per_objfile = NULL;
22605
59b0c7c1
JB
22606 for (ix = 0; ix < data->n_comp_units; ++ix)
22607 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22608
59b0c7c1 22609 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22610 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22611 data->all_type_units[ix]->per_cu.imported_symtabs);
22612 xfree (data->all_type_units);
95554aad 22613
8b70b953 22614 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22615
22616 if (data->dwo_files)
22617 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22618 if (data->dwp_file)
22619 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22620
22621 if (data->dwz_file && data->dwz_file->dwz_bfd)
22622 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22623}
22624
22625\f
ae2de4f8 22626/* The "save gdb-index" command. */
9291a0cd
TT
22627
22628/* The contents of the hash table we create when building the string
22629 table. */
22630struct strtab_entry
22631{
22632 offset_type offset;
22633 const char *str;
22634};
22635
559a7a62
JK
22636/* Hash function for a strtab_entry.
22637
22638 Function is used only during write_hash_table so no index format backward
22639 compatibility is needed. */
b89be57b 22640
9291a0cd
TT
22641static hashval_t
22642hash_strtab_entry (const void *e)
22643{
9a3c8263 22644 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22645 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22646}
22647
22648/* Equality function for a strtab_entry. */
b89be57b 22649
9291a0cd
TT
22650static int
22651eq_strtab_entry (const void *a, const void *b)
22652{
9a3c8263
SM
22653 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22654 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22655 return !strcmp (ea->str, eb->str);
22656}
22657
22658/* Create a strtab_entry hash table. */
b89be57b 22659
9291a0cd
TT
22660static htab_t
22661create_strtab (void)
22662{
22663 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22664 xfree, xcalloc, xfree);
22665}
22666
22667/* Add a string to the constant pool. Return the string's offset in
22668 host order. */
b89be57b 22669
9291a0cd
TT
22670static offset_type
22671add_string (htab_t table, struct obstack *cpool, const char *str)
22672{
22673 void **slot;
22674 struct strtab_entry entry;
22675 struct strtab_entry *result;
22676
22677 entry.str = str;
22678 slot = htab_find_slot (table, &entry, INSERT);
22679 if (*slot)
9a3c8263 22680 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22681 else
22682 {
22683 result = XNEW (struct strtab_entry);
22684 result->offset = obstack_object_size (cpool);
22685 result->str = str;
22686 obstack_grow_str0 (cpool, str);
22687 *slot = result;
22688 }
22689 return result->offset;
22690}
22691
22692/* An entry in the symbol table. */
22693struct symtab_index_entry
22694{
22695 /* The name of the symbol. */
22696 const char *name;
22697 /* The offset of the name in the constant pool. */
22698 offset_type index_offset;
22699 /* A sorted vector of the indices of all the CUs that hold an object
22700 of this name. */
22701 VEC (offset_type) *cu_indices;
22702};
22703
22704/* The symbol table. This is a power-of-2-sized hash table. */
22705struct mapped_symtab
22706{
22707 offset_type n_elements;
22708 offset_type size;
22709 struct symtab_index_entry **data;
22710};
22711
22712/* Hash function for a symtab_index_entry. */
b89be57b 22713
9291a0cd
TT
22714static hashval_t
22715hash_symtab_entry (const void *e)
22716{
9a3c8263
SM
22717 const struct symtab_index_entry *entry
22718 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22719 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22720 sizeof (offset_type) * VEC_length (offset_type,
22721 entry->cu_indices),
22722 0);
22723}
22724
22725/* Equality function for a symtab_index_entry. */
b89be57b 22726
9291a0cd
TT
22727static int
22728eq_symtab_entry (const void *a, const void *b)
22729{
9a3c8263
SM
22730 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22731 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22732 int len = VEC_length (offset_type, ea->cu_indices);
22733 if (len != VEC_length (offset_type, eb->cu_indices))
22734 return 0;
22735 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22736 VEC_address (offset_type, eb->cu_indices),
22737 sizeof (offset_type) * len);
22738}
22739
22740/* Destroy a symtab_index_entry. */
b89be57b 22741
9291a0cd
TT
22742static void
22743delete_symtab_entry (void *p)
22744{
9a3c8263 22745 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22746 VEC_free (offset_type, entry->cu_indices);
22747 xfree (entry);
22748}
22749
22750/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22751
9291a0cd 22752static htab_t
3876f04e 22753create_symbol_hash_table (void)
9291a0cd
TT
22754{
22755 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22756 delete_symtab_entry, xcalloc, xfree);
22757}
22758
22759/* Create a new mapped symtab object. */
b89be57b 22760
9291a0cd
TT
22761static struct mapped_symtab *
22762create_mapped_symtab (void)
22763{
22764 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22765 symtab->n_elements = 0;
22766 symtab->size = 1024;
22767 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22768 return symtab;
22769}
22770
22771/* Destroy a mapped_symtab. */
b89be57b 22772
9291a0cd
TT
22773static void
22774cleanup_mapped_symtab (void *p)
22775{
9a3c8263 22776 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22777 /* The contents of the array are freed when the other hash table is
22778 destroyed. */
22779 xfree (symtab->data);
22780 xfree (symtab);
22781}
22782
22783/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22784 the slot.
22785
22786 Function is used only during write_hash_table so no index format backward
22787 compatibility is needed. */
b89be57b 22788
9291a0cd
TT
22789static struct symtab_index_entry **
22790find_slot (struct mapped_symtab *symtab, const char *name)
22791{
559a7a62 22792 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22793
22794 index = hash & (symtab->size - 1);
22795 step = ((hash * 17) & (symtab->size - 1)) | 1;
22796
22797 for (;;)
22798 {
22799 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22800 return &symtab->data[index];
22801 index = (index + step) & (symtab->size - 1);
22802 }
22803}
22804
22805/* Expand SYMTAB's hash table. */
b89be57b 22806
9291a0cd
TT
22807static void
22808hash_expand (struct mapped_symtab *symtab)
22809{
22810 offset_type old_size = symtab->size;
22811 offset_type i;
22812 struct symtab_index_entry **old_entries = symtab->data;
22813
22814 symtab->size *= 2;
22815 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22816
22817 for (i = 0; i < old_size; ++i)
22818 {
22819 if (old_entries[i])
22820 {
22821 struct symtab_index_entry **slot = find_slot (symtab,
22822 old_entries[i]->name);
22823 *slot = old_entries[i];
22824 }
22825 }
22826
22827 xfree (old_entries);
22828}
22829
156942c7
DE
22830/* Add an entry to SYMTAB. NAME is the name of the symbol.
22831 CU_INDEX is the index of the CU in which the symbol appears.
22832 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22833
9291a0cd
TT
22834static void
22835add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22836 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22837 offset_type cu_index)
22838{
22839 struct symtab_index_entry **slot;
156942c7 22840 offset_type cu_index_and_attrs;
9291a0cd
TT
22841
22842 ++symtab->n_elements;
22843 if (4 * symtab->n_elements / 3 >= symtab->size)
22844 hash_expand (symtab);
22845
22846 slot = find_slot (symtab, name);
22847 if (!*slot)
22848 {
22849 *slot = XNEW (struct symtab_index_entry);
22850 (*slot)->name = name;
156942c7 22851 /* index_offset is set later. */
9291a0cd
TT
22852 (*slot)->cu_indices = NULL;
22853 }
156942c7
DE
22854
22855 cu_index_and_attrs = 0;
22856 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22857 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22858 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22859
22860 /* We don't want to record an index value twice as we want to avoid the
22861 duplication.
22862 We process all global symbols and then all static symbols
22863 (which would allow us to avoid the duplication by only having to check
22864 the last entry pushed), but a symbol could have multiple kinds in one CU.
22865 To keep things simple we don't worry about the duplication here and
22866 sort and uniqufy the list after we've processed all symbols. */
22867 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22868}
22869
22870/* qsort helper routine for uniquify_cu_indices. */
22871
22872static int
22873offset_type_compare (const void *ap, const void *bp)
22874{
22875 offset_type a = *(offset_type *) ap;
22876 offset_type b = *(offset_type *) bp;
22877
22878 return (a > b) - (b > a);
22879}
22880
22881/* Sort and remove duplicates of all symbols' cu_indices lists. */
22882
22883static void
22884uniquify_cu_indices (struct mapped_symtab *symtab)
22885{
22886 int i;
22887
22888 for (i = 0; i < symtab->size; ++i)
22889 {
22890 struct symtab_index_entry *entry = symtab->data[i];
22891
22892 if (entry
22893 && entry->cu_indices != NULL)
22894 {
22895 unsigned int next_to_insert, next_to_check;
22896 offset_type last_value;
22897
22898 qsort (VEC_address (offset_type, entry->cu_indices),
22899 VEC_length (offset_type, entry->cu_indices),
22900 sizeof (offset_type), offset_type_compare);
22901
22902 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22903 next_to_insert = 1;
22904 for (next_to_check = 1;
22905 next_to_check < VEC_length (offset_type, entry->cu_indices);
22906 ++next_to_check)
22907 {
22908 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22909 != last_value)
22910 {
22911 last_value = VEC_index (offset_type, entry->cu_indices,
22912 next_to_check);
22913 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22914 last_value);
22915 ++next_to_insert;
22916 }
22917 }
22918 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22919 }
22920 }
9291a0cd
TT
22921}
22922
22923/* Add a vector of indices to the constant pool. */
b89be57b 22924
9291a0cd 22925static offset_type
3876f04e 22926add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22927 struct symtab_index_entry *entry)
22928{
22929 void **slot;
22930
3876f04e 22931 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22932 if (!*slot)
22933 {
22934 offset_type len = VEC_length (offset_type, entry->cu_indices);
22935 offset_type val = MAYBE_SWAP (len);
22936 offset_type iter;
22937 int i;
22938
22939 *slot = entry;
22940 entry->index_offset = obstack_object_size (cpool);
22941
22942 obstack_grow (cpool, &val, sizeof (val));
22943 for (i = 0;
22944 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22945 ++i)
22946 {
22947 val = MAYBE_SWAP (iter);
22948 obstack_grow (cpool, &val, sizeof (val));
22949 }
22950 }
22951 else
22952 {
9a3c8263
SM
22953 struct symtab_index_entry *old_entry
22954 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22955 entry->index_offset = old_entry->index_offset;
22956 entry = old_entry;
22957 }
22958 return entry->index_offset;
22959}
22960
22961/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22962 constant pool entries going into the obstack CPOOL. */
b89be57b 22963
9291a0cd
TT
22964static void
22965write_hash_table (struct mapped_symtab *symtab,
22966 struct obstack *output, struct obstack *cpool)
22967{
22968 offset_type i;
3876f04e 22969 htab_t symbol_hash_table;
9291a0cd
TT
22970 htab_t str_table;
22971
3876f04e 22972 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22973 str_table = create_strtab ();
3876f04e 22974
9291a0cd
TT
22975 /* We add all the index vectors to the constant pool first, to
22976 ensure alignment is ok. */
22977 for (i = 0; i < symtab->size; ++i)
22978 {
22979 if (symtab->data[i])
3876f04e 22980 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22981 }
22982
22983 /* Now write out the hash table. */
22984 for (i = 0; i < symtab->size; ++i)
22985 {
22986 offset_type str_off, vec_off;
22987
22988 if (symtab->data[i])
22989 {
22990 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22991 vec_off = symtab->data[i]->index_offset;
22992 }
22993 else
22994 {
22995 /* While 0 is a valid constant pool index, it is not valid
22996 to have 0 for both offsets. */
22997 str_off = 0;
22998 vec_off = 0;
22999 }
23000
23001 str_off = MAYBE_SWAP (str_off);
23002 vec_off = MAYBE_SWAP (vec_off);
23003
23004 obstack_grow (output, &str_off, sizeof (str_off));
23005 obstack_grow (output, &vec_off, sizeof (vec_off));
23006 }
23007
23008 htab_delete (str_table);
3876f04e 23009 htab_delete (symbol_hash_table);
9291a0cd
TT
23010}
23011
0a5429f6
DE
23012/* Struct to map psymtab to CU index in the index file. */
23013struct psymtab_cu_index_map
23014{
23015 struct partial_symtab *psymtab;
23016 unsigned int cu_index;
23017};
23018
23019static hashval_t
23020hash_psymtab_cu_index (const void *item)
23021{
9a3c8263
SM
23022 const struct psymtab_cu_index_map *map
23023 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23024
23025 return htab_hash_pointer (map->psymtab);
23026}
23027
23028static int
23029eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23030{
9a3c8263
SM
23031 const struct psymtab_cu_index_map *lhs
23032 = (const struct psymtab_cu_index_map *) item_lhs;
23033 const struct psymtab_cu_index_map *rhs
23034 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23035
23036 return lhs->psymtab == rhs->psymtab;
23037}
23038
23039/* Helper struct for building the address table. */
23040struct addrmap_index_data
23041{
23042 struct objfile *objfile;
23043 struct obstack *addr_obstack;
23044 htab_t cu_index_htab;
23045
23046 /* Non-zero if the previous_* fields are valid.
23047 We can't write an entry until we see the next entry (since it is only then
23048 that we know the end of the entry). */
23049 int previous_valid;
23050 /* Index of the CU in the table of all CUs in the index file. */
23051 unsigned int previous_cu_index;
0963b4bd 23052 /* Start address of the CU. */
0a5429f6
DE
23053 CORE_ADDR previous_cu_start;
23054};
23055
23056/* Write an address entry to OBSTACK. */
b89be57b 23057
9291a0cd 23058static void
0a5429f6
DE
23059add_address_entry (struct objfile *objfile, struct obstack *obstack,
23060 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23061{
0a5429f6 23062 offset_type cu_index_to_write;
948f8e3d 23063 gdb_byte addr[8];
9291a0cd
TT
23064 CORE_ADDR baseaddr;
23065
23066 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23067
0a5429f6
DE
23068 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23069 obstack_grow (obstack, addr, 8);
23070 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23071 obstack_grow (obstack, addr, 8);
23072 cu_index_to_write = MAYBE_SWAP (cu_index);
23073 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23074}
23075
23076/* Worker function for traversing an addrmap to build the address table. */
23077
23078static int
23079add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23080{
9a3c8263
SM
23081 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23082 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23083
23084 if (data->previous_valid)
23085 add_address_entry (data->objfile, data->addr_obstack,
23086 data->previous_cu_start, start_addr,
23087 data->previous_cu_index);
23088
23089 data->previous_cu_start = start_addr;
23090 if (pst != NULL)
23091 {
23092 struct psymtab_cu_index_map find_map, *map;
23093 find_map.psymtab = pst;
9a3c8263
SM
23094 map = ((struct psymtab_cu_index_map *)
23095 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23096 gdb_assert (map != NULL);
23097 data->previous_cu_index = map->cu_index;
23098 data->previous_valid = 1;
23099 }
23100 else
23101 data->previous_valid = 0;
23102
23103 return 0;
23104}
23105
23106/* Write OBJFILE's address map to OBSTACK.
23107 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23108 in the index file. */
23109
23110static void
23111write_address_map (struct objfile *objfile, struct obstack *obstack,
23112 htab_t cu_index_htab)
23113{
23114 struct addrmap_index_data addrmap_index_data;
23115
23116 /* When writing the address table, we have to cope with the fact that
23117 the addrmap iterator only provides the start of a region; we have to
23118 wait until the next invocation to get the start of the next region. */
23119
23120 addrmap_index_data.objfile = objfile;
23121 addrmap_index_data.addr_obstack = obstack;
23122 addrmap_index_data.cu_index_htab = cu_index_htab;
23123 addrmap_index_data.previous_valid = 0;
23124
23125 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23126 &addrmap_index_data);
23127
23128 /* It's highly unlikely the last entry (end address = 0xff...ff)
23129 is valid, but we should still handle it.
23130 The end address is recorded as the start of the next region, but that
23131 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23132 anyway. */
23133 if (addrmap_index_data.previous_valid)
23134 add_address_entry (objfile, obstack,
23135 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23136 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23137}
23138
156942c7
DE
23139/* Return the symbol kind of PSYM. */
23140
23141static gdb_index_symbol_kind
23142symbol_kind (struct partial_symbol *psym)
23143{
23144 domain_enum domain = PSYMBOL_DOMAIN (psym);
23145 enum address_class aclass = PSYMBOL_CLASS (psym);
23146
23147 switch (domain)
23148 {
23149 case VAR_DOMAIN:
23150 switch (aclass)
23151 {
23152 case LOC_BLOCK:
23153 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23154 case LOC_TYPEDEF:
23155 return GDB_INDEX_SYMBOL_KIND_TYPE;
23156 case LOC_COMPUTED:
23157 case LOC_CONST_BYTES:
23158 case LOC_OPTIMIZED_OUT:
23159 case LOC_STATIC:
23160 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23161 case LOC_CONST:
23162 /* Note: It's currently impossible to recognize psyms as enum values
23163 short of reading the type info. For now punt. */
23164 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23165 default:
23166 /* There are other LOC_FOO values that one might want to classify
23167 as variables, but dwarf2read.c doesn't currently use them. */
23168 return GDB_INDEX_SYMBOL_KIND_OTHER;
23169 }
23170 case STRUCT_DOMAIN:
23171 return GDB_INDEX_SYMBOL_KIND_TYPE;
23172 default:
23173 return GDB_INDEX_SYMBOL_KIND_OTHER;
23174 }
23175}
23176
9291a0cd 23177/* Add a list of partial symbols to SYMTAB. */
b89be57b 23178
9291a0cd
TT
23179static void
23180write_psymbols (struct mapped_symtab *symtab,
987d643c 23181 htab_t psyms_seen,
9291a0cd
TT
23182 struct partial_symbol **psymp,
23183 int count,
987d643c
TT
23184 offset_type cu_index,
23185 int is_static)
9291a0cd
TT
23186{
23187 for (; count-- > 0; ++psymp)
23188 {
156942c7
DE
23189 struct partial_symbol *psym = *psymp;
23190 void **slot;
987d643c 23191
156942c7 23192 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23193 error (_("Ada is not currently supported by the index"));
987d643c 23194
987d643c 23195 /* Only add a given psymbol once. */
156942c7 23196 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23197 if (!*slot)
23198 {
156942c7
DE
23199 gdb_index_symbol_kind kind = symbol_kind (psym);
23200
23201 *slot = psym;
23202 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23203 is_static, kind, cu_index);
987d643c 23204 }
9291a0cd
TT
23205 }
23206}
23207
23208/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23209 exception if there is an error. */
b89be57b 23210
9291a0cd
TT
23211static void
23212write_obstack (FILE *file, struct obstack *obstack)
23213{
23214 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23215 file)
23216 != obstack_object_size (obstack))
23217 error (_("couldn't data write to file"));
23218}
23219
23220/* Unlink a file if the argument is not NULL. */
b89be57b 23221
9291a0cd
TT
23222static void
23223unlink_if_set (void *p)
23224{
9a3c8263 23225 char **filename = (char **) p;
9291a0cd
TT
23226 if (*filename)
23227 unlink (*filename);
23228}
23229
1fd400ff
TT
23230/* A helper struct used when iterating over debug_types. */
23231struct signatured_type_index_data
23232{
23233 struct objfile *objfile;
23234 struct mapped_symtab *symtab;
23235 struct obstack *types_list;
987d643c 23236 htab_t psyms_seen;
1fd400ff
TT
23237 int cu_index;
23238};
23239
23240/* A helper function that writes a single signatured_type to an
23241 obstack. */
b89be57b 23242
1fd400ff
TT
23243static int
23244write_one_signatured_type (void **slot, void *d)
23245{
9a3c8263
SM
23246 struct signatured_type_index_data *info
23247 = (struct signatured_type_index_data *) d;
1fd400ff 23248 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23249 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23250 gdb_byte val[8];
23251
23252 write_psymbols (info->symtab,
987d643c 23253 info->psyms_seen,
3e43a32a
MS
23254 info->objfile->global_psymbols.list
23255 + psymtab->globals_offset,
987d643c
TT
23256 psymtab->n_global_syms, info->cu_index,
23257 0);
1fd400ff 23258 write_psymbols (info->symtab,
987d643c 23259 info->psyms_seen,
3e43a32a
MS
23260 info->objfile->static_psymbols.list
23261 + psymtab->statics_offset,
987d643c
TT
23262 psymtab->n_static_syms, info->cu_index,
23263 1);
1fd400ff 23264
b64f50a1
JK
23265 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23266 entry->per_cu.offset.sect_off);
1fd400ff 23267 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23268 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23269 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23270 obstack_grow (info->types_list, val, 8);
23271 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23272 obstack_grow (info->types_list, val, 8);
23273
23274 ++info->cu_index;
23275
23276 return 1;
23277}
23278
95554aad
TT
23279/* Recurse into all "included" dependencies and write their symbols as
23280 if they appeared in this psymtab. */
23281
23282static void
23283recursively_write_psymbols (struct objfile *objfile,
23284 struct partial_symtab *psymtab,
23285 struct mapped_symtab *symtab,
23286 htab_t psyms_seen,
23287 offset_type cu_index)
23288{
23289 int i;
23290
23291 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23292 if (psymtab->dependencies[i]->user != NULL)
23293 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23294 symtab, psyms_seen, cu_index);
23295
23296 write_psymbols (symtab,
23297 psyms_seen,
23298 objfile->global_psymbols.list + psymtab->globals_offset,
23299 psymtab->n_global_syms, cu_index,
23300 0);
23301 write_psymbols (symtab,
23302 psyms_seen,
23303 objfile->static_psymbols.list + psymtab->statics_offset,
23304 psymtab->n_static_syms, cu_index,
23305 1);
23306}
23307
9291a0cd 23308/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23309
9291a0cd
TT
23310static void
23311write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23312{
23313 struct cleanup *cleanup;
23314 char *filename, *cleanup_filename;
1fd400ff
TT
23315 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23316 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23317 int i;
23318 FILE *out_file;
23319 struct mapped_symtab *symtab;
23320 offset_type val, size_of_contents, total_len;
23321 struct stat st;
987d643c 23322 htab_t psyms_seen;
0a5429f6
DE
23323 htab_t cu_index_htab;
23324 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23325
9291a0cd
TT
23326 if (dwarf2_per_objfile->using_index)
23327 error (_("Cannot use an index to create the index"));
23328
8b70b953
TT
23329 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23330 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23331
260b681b
DE
23332 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23333 return;
23334
4262abfb
JK
23335 if (stat (objfile_name (objfile), &st) < 0)
23336 perror_with_name (objfile_name (objfile));
9291a0cd 23337
4262abfb 23338 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23339 INDEX_SUFFIX, (char *) NULL);
23340 cleanup = make_cleanup (xfree, filename);
23341
614c279d 23342 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23343 if (!out_file)
23344 error (_("Can't open `%s' for writing"), filename);
23345
23346 cleanup_filename = filename;
23347 make_cleanup (unlink_if_set, &cleanup_filename);
23348
23349 symtab = create_mapped_symtab ();
23350 make_cleanup (cleanup_mapped_symtab, symtab);
23351
23352 obstack_init (&addr_obstack);
23353 make_cleanup_obstack_free (&addr_obstack);
23354
23355 obstack_init (&cu_list);
23356 make_cleanup_obstack_free (&cu_list);
23357
1fd400ff
TT
23358 obstack_init (&types_cu_list);
23359 make_cleanup_obstack_free (&types_cu_list);
23360
987d643c
TT
23361 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23362 NULL, xcalloc, xfree);
96408a79 23363 make_cleanup_htab_delete (psyms_seen);
987d643c 23364
0a5429f6
DE
23365 /* While we're scanning CU's create a table that maps a psymtab pointer
23366 (which is what addrmap records) to its index (which is what is recorded
23367 in the index file). This will later be needed to write the address
23368 table. */
23369 cu_index_htab = htab_create_alloc (100,
23370 hash_psymtab_cu_index,
23371 eq_psymtab_cu_index,
23372 NULL, xcalloc, xfree);
96408a79 23373 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23374 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23375 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23376 make_cleanup (xfree, psymtab_cu_index_map);
23377
23378 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23379 work here. Also, the debug_types entries do not appear in
23380 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23381 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23382 {
3e43a32a
MS
23383 struct dwarf2_per_cu_data *per_cu
23384 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23385 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23386 gdb_byte val[8];
0a5429f6
DE
23387 struct psymtab_cu_index_map *map;
23388 void **slot;
9291a0cd 23389
92fac807
JK
23390 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23391 It may be referenced from a local scope but in such case it does not
23392 need to be present in .gdb_index. */
23393 if (psymtab == NULL)
23394 continue;
23395
95554aad
TT
23396 if (psymtab->user == NULL)
23397 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23398
0a5429f6
DE
23399 map = &psymtab_cu_index_map[i];
23400 map->psymtab = psymtab;
23401 map->cu_index = i;
23402 slot = htab_find_slot (cu_index_htab, map, INSERT);
23403 gdb_assert (slot != NULL);
23404 gdb_assert (*slot == NULL);
23405 *slot = map;
9291a0cd 23406
b64f50a1
JK
23407 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23408 per_cu->offset.sect_off);
9291a0cd 23409 obstack_grow (&cu_list, val, 8);
e254ef6a 23410 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23411 obstack_grow (&cu_list, val, 8);
23412 }
23413
0a5429f6
DE
23414 /* Dump the address map. */
23415 write_address_map (objfile, &addr_obstack, cu_index_htab);
23416
1fd400ff
TT
23417 /* Write out the .debug_type entries, if any. */
23418 if (dwarf2_per_objfile->signatured_types)
23419 {
23420 struct signatured_type_index_data sig_data;
23421
23422 sig_data.objfile = objfile;
23423 sig_data.symtab = symtab;
23424 sig_data.types_list = &types_cu_list;
987d643c 23425 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23426 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23427 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23428 write_one_signatured_type, &sig_data);
23429 }
23430
156942c7
DE
23431 /* Now that we've processed all symbols we can shrink their cu_indices
23432 lists. */
23433 uniquify_cu_indices (symtab);
23434
9291a0cd
TT
23435 obstack_init (&constant_pool);
23436 make_cleanup_obstack_free (&constant_pool);
23437 obstack_init (&symtab_obstack);
23438 make_cleanup_obstack_free (&symtab_obstack);
23439 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23440
23441 obstack_init (&contents);
23442 make_cleanup_obstack_free (&contents);
1fd400ff 23443 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23444 total_len = size_of_contents;
23445
23446 /* The version number. */
796a7ff8 23447 val = MAYBE_SWAP (8);
9291a0cd
TT
23448 obstack_grow (&contents, &val, sizeof (val));
23449
23450 /* The offset of the CU list from the start of the file. */
23451 val = MAYBE_SWAP (total_len);
23452 obstack_grow (&contents, &val, sizeof (val));
23453 total_len += obstack_object_size (&cu_list);
23454
1fd400ff
TT
23455 /* The offset of the types CU list from the start of the file. */
23456 val = MAYBE_SWAP (total_len);
23457 obstack_grow (&contents, &val, sizeof (val));
23458 total_len += obstack_object_size (&types_cu_list);
23459
9291a0cd
TT
23460 /* The offset of the address table from the start of the file. */
23461 val = MAYBE_SWAP (total_len);
23462 obstack_grow (&contents, &val, sizeof (val));
23463 total_len += obstack_object_size (&addr_obstack);
23464
23465 /* The offset of the symbol table from the start of the file. */
23466 val = MAYBE_SWAP (total_len);
23467 obstack_grow (&contents, &val, sizeof (val));
23468 total_len += obstack_object_size (&symtab_obstack);
23469
23470 /* The offset of the constant pool from the start of the file. */
23471 val = MAYBE_SWAP (total_len);
23472 obstack_grow (&contents, &val, sizeof (val));
23473 total_len += obstack_object_size (&constant_pool);
23474
23475 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23476
23477 write_obstack (out_file, &contents);
23478 write_obstack (out_file, &cu_list);
1fd400ff 23479 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23480 write_obstack (out_file, &addr_obstack);
23481 write_obstack (out_file, &symtab_obstack);
23482 write_obstack (out_file, &constant_pool);
23483
23484 fclose (out_file);
23485
23486 /* We want to keep the file, so we set cleanup_filename to NULL
23487 here. See unlink_if_set. */
23488 cleanup_filename = NULL;
23489
23490 do_cleanups (cleanup);
23491}
23492
90476074
TT
23493/* Implementation of the `save gdb-index' command.
23494
23495 Note that the file format used by this command is documented in the
23496 GDB manual. Any changes here must be documented there. */
11570e71 23497
9291a0cd
TT
23498static void
23499save_gdb_index_command (char *arg, int from_tty)
23500{
23501 struct objfile *objfile;
23502
23503 if (!arg || !*arg)
96d19272 23504 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23505
23506 ALL_OBJFILES (objfile)
23507 {
23508 struct stat st;
23509
23510 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23511 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23512 continue;
23513
9a3c8263
SM
23514 dwarf2_per_objfile
23515 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23516 dwarf2_objfile_data_key);
9291a0cd
TT
23517 if (dwarf2_per_objfile)
23518 {
9291a0cd 23519
492d29ea 23520 TRY
9291a0cd
TT
23521 {
23522 write_psymtabs_to_index (objfile, arg);
23523 }
492d29ea
PA
23524 CATCH (except, RETURN_MASK_ERROR)
23525 {
23526 exception_fprintf (gdb_stderr, except,
23527 _("Error while writing index for `%s': "),
23528 objfile_name (objfile));
23529 }
23530 END_CATCH
9291a0cd
TT
23531 }
23532 }
dce234bc
PP
23533}
23534
9291a0cd
TT
23535\f
23536
b4f54984 23537int dwarf_always_disassemble;
9eae7c52
TT
23538
23539static void
b4f54984
DE
23540show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23541 struct cmd_list_element *c, const char *value)
9eae7c52 23542{
3e43a32a
MS
23543 fprintf_filtered (file,
23544 _("Whether to always disassemble "
23545 "DWARF expressions is %s.\n"),
9eae7c52
TT
23546 value);
23547}
23548
900e11f9
JK
23549static void
23550show_check_physname (struct ui_file *file, int from_tty,
23551 struct cmd_list_element *c, const char *value)
23552{
23553 fprintf_filtered (file,
23554 _("Whether to check \"physname\" is %s.\n"),
23555 value);
23556}
23557
6502dd73
DJ
23558void _initialize_dwarf2_read (void);
23559
23560void
23561_initialize_dwarf2_read (void)
23562{
96d19272
JK
23563 struct cmd_list_element *c;
23564
dce234bc 23565 dwarf2_objfile_data_key
c1bd65d0 23566 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23567
b4f54984
DE
23568 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23569Set DWARF specific variables.\n\
23570Configure DWARF variables such as the cache size"),
23571 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23572 0/*allow-unknown*/, &maintenance_set_cmdlist);
23573
b4f54984
DE
23574 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23575Show DWARF specific variables\n\
23576Show DWARF variables such as the cache size"),
23577 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23578 0/*allow-unknown*/, &maintenance_show_cmdlist);
23579
23580 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23581 &dwarf_max_cache_age, _("\
23582Set the upper bound on the age of cached DWARF compilation units."), _("\
23583Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23584A higher limit means that cached compilation units will be stored\n\
23585in memory longer, and more total memory will be used. Zero disables\n\
23586caching, which can slow down startup."),
2c5b56ce 23587 NULL,
b4f54984
DE
23588 show_dwarf_max_cache_age,
23589 &set_dwarf_cmdlist,
23590 &show_dwarf_cmdlist);
d97bc12b 23591
9eae7c52 23592 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23593 &dwarf_always_disassemble, _("\
9eae7c52
TT
23594Set whether `info address' always disassembles DWARF expressions."), _("\
23595Show whether `info address' always disassembles DWARF expressions."), _("\
23596When enabled, DWARF expressions are always printed in an assembly-like\n\
23597syntax. When disabled, expressions will be printed in a more\n\
23598conversational style, when possible."),
23599 NULL,
b4f54984
DE
23600 show_dwarf_always_disassemble,
23601 &set_dwarf_cmdlist,
23602 &show_dwarf_cmdlist);
23603
23604 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23605Set debugging of the DWARF reader."), _("\
23606Show debugging of the DWARF reader."), _("\
23607When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23608reading and symtab expansion. A value of 1 (one) provides basic\n\
23609information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23610 NULL,
23611 NULL,
23612 &setdebuglist, &showdebuglist);
23613
b4f54984
DE
23614 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23615Set debugging of the DWARF DIE reader."), _("\
23616Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23617When enabled (non-zero), DIEs are dumped after they are read in.\n\
23618The value is the maximum depth to print."),
ccce17b0
YQ
23619 NULL,
23620 NULL,
23621 &setdebuglist, &showdebuglist);
9291a0cd 23622
27e0867f
DE
23623 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23624Set debugging of the dwarf line reader."), _("\
23625Show debugging of the dwarf line reader."), _("\
23626When enabled (non-zero), line number entries are dumped as they are read in.\n\
23627A value of 1 (one) provides basic information.\n\
23628A value greater than 1 provides more verbose information."),
23629 NULL,
23630 NULL,
23631 &setdebuglist, &showdebuglist);
23632
900e11f9
JK
23633 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23634Set cross-checking of \"physname\" code against demangler."), _("\
23635Show cross-checking of \"physname\" code against demangler."), _("\
23636When enabled, GDB's internal \"physname\" code is checked against\n\
23637the demangler."),
23638 NULL, show_check_physname,
23639 &setdebuglist, &showdebuglist);
23640
e615022a
DE
23641 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23642 no_class, &use_deprecated_index_sections, _("\
23643Set whether to use deprecated gdb_index sections."), _("\
23644Show whether to use deprecated gdb_index sections."), _("\
23645When enabled, deprecated .gdb_index sections are used anyway.\n\
23646Normally they are ignored either because of a missing feature or\n\
23647performance issue.\n\
23648Warning: This option must be enabled before gdb reads the file."),
23649 NULL,
23650 NULL,
23651 &setlist, &showlist);
23652
96d19272 23653 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23654 _("\
fc1a9d6e 23655Save a gdb-index file.\n\
11570e71 23656Usage: save gdb-index DIRECTORY"),
96d19272
JK
23657 &save_cmdlist);
23658 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23659
23660 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23661 &dwarf2_locexpr_funcs);
23662 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23663 &dwarf2_loclist_funcs);
23664
23665 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23666 &dwarf2_block_frame_base_locexpr_funcs);
23667 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23668 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23669}
This page took 3.79226 seconds and 4 git commands to generate.