* elf64-ppc.c (ppc64_elf_relocate_section): Optimize unaligned relocs.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b
AC
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c 24
5ae7ca1d
MC
25/*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
28
29 DWARF (also known as DWARF-1) is headed for obsoletion.
30
31 In gcc 3.2.1, these targets prefer dwarf-1:
32
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
36 m88k-dg-dgux* # TD-R2
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
39
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
43
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
45
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
49
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
53
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
57
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
59
60 There may be non-gcc compilers that still emit dwarf-1.
61
62 -- chastain 2003-02-04
63*/
64
c906108c
SS
65/*
66
c5aa993b
JM
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
c906108c 69
c5aa993b
JM
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
74 contents.
c906108c 75
c5aa993b
JM
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
c906108c 78
c5aa993b
JM
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
c906108c 81
c5aa993b 82 */
c906108c
SS
83
84#include "defs.h"
85#include "symtab.h"
86#include "gdbtypes.h"
87#include "symfile.h"
88#include "objfiles.h"
89#include "elf/dwarf.h"
90#include "buildsym.h"
91#include "demangle.h"
c5aa993b 92#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
93#include "language.h"
94#include "complaints.h"
95
96#include <fcntl.h>
97#include "gdb_string.h"
98
99/* Some macros to provide DIE info for complaints. */
100
101#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
103
104/* Complaints that can be issued during DWARF debug info reading. */
105
23136709
KB
106static void
107bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 108{
23136709
KB
109 complaint (&symfile_complaints,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
111 arg1, arg2, arg3);
112}
c906108c 113
23136709
KB
114static void
115unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 116{
23136709
KB
117 complaint (&symfile_complaints,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
119 arg3);
120}
c906108c 121
23136709
KB
122static void
123dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 124{
23136709
KB
125 complaint (&symfile_complaints,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
127 arg1, arg2);
128}
c906108c 129
23136709
KB
130static void
131bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 132{
23136709
KB
133 complaint (&symfile_complaints,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
135 arg2, arg3);
136}
c906108c
SS
137
138typedef unsigned int DIE_REF; /* Reference to a DIE */
139
140#ifndef GCC_PRODUCER
141#define GCC_PRODUCER "GNU C "
142#endif
143
144#ifndef GPLUS_PRODUCER
145#define GPLUS_PRODUCER "GNU C++ "
146#endif
147
148#ifndef LCC_PRODUCER
149#define LCC_PRODUCER "NCR C/C++"
150#endif
151
c906108c
SS
152/* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
157 int. */
158
159#define GET_UNSIGNED 0 /* No sign extension required */
160#define GET_SIGNED 1 /* Sign extension required */
161
162/* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
165
166#define SIZEOF_DIE_LENGTH 4
167#define SIZEOF_DIE_TAG 2
168#define SIZEOF_ATTRIBUTE 2
169#define SIZEOF_FORMAT_SPECIFIER 1
170#define SIZEOF_FMT_FT 2
171#define SIZEOF_LINETBL_LENGTH 4
172#define SIZEOF_LINETBL_LINENO 4
173#define SIZEOF_LINETBL_STMT 2
174#define SIZEOF_LINETBL_DELTA 4
175#define SIZEOF_LOC_ATOM_CODE 1
176
177#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
178
179/* Macros that return the sizes of various types of data in the target
180 environment.
181
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
188
189#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
191
192/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
198
199#define AT_short_element_list (0x00f0|FORM_BLOCK2)
200
c906108c
SS
201/* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
205
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
210
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
215
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
219
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
c5aa993b 225
c906108c 226 */
c5aa993b 227
c906108c
SS
228typedef char BLOCK;
229
c5aa993b
JM
230struct dieinfo
231 {
232 char *die; /* Pointer to the raw DIE data */
233 unsigned long die_length; /* Length of the raw DIE data */
234 DIE_REF die_ref; /* Offset of this DIE */
235 unsigned short die_tag; /* Tag for this DIE */
236 unsigned long at_padding;
237 unsigned long at_sibling;
238 BLOCK *at_location;
239 char *at_name;
240 unsigned short at_fund_type;
241 BLOCK *at_mod_fund_type;
242 unsigned long at_user_def_type;
243 BLOCK *at_mod_u_d_type;
244 unsigned short at_ordering;
245 BLOCK *at_subscr_data;
246 unsigned long at_byte_size;
247 unsigned short at_bit_offset;
248 unsigned long at_bit_size;
249 BLOCK *at_element_list;
250 unsigned long at_stmt_list;
251 CORE_ADDR at_low_pc;
252 CORE_ADDR at_high_pc;
253 unsigned long at_language;
254 unsigned long at_member;
255 unsigned long at_discr;
256 BLOCK *at_discr_value;
257 BLOCK *at_string_length;
258 char *at_comp_dir;
259 char *at_producer;
260 unsigned long at_start_scope;
261 unsigned long at_stride_size;
262 unsigned long at_src_info;
263 char *at_prototyped;
264 unsigned int has_at_low_pc:1;
265 unsigned int has_at_stmt_list:1;
266 unsigned int has_at_byte_size:1;
267 unsigned int short_element_list:1;
268
269 /* Kludge to identify register variables */
270
271 unsigned int isreg;
272
273 /* Kludge to identify optimized out variables */
274
275 unsigned int optimized_out;
276
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
279
280 unsigned int offreg;
281
282 /* Kludge to identify which base register is it relative to. */
283
284 unsigned int basereg;
285 };
c906108c 286
c5aa993b 287static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
288static struct dieinfo *curdie; /* For warnings and such */
289
c5aa993b
JM
290static char *dbbase; /* Base pointer to dwarf info */
291static int dbsize; /* Size of dwarf info in bytes */
292static int dbroff; /* Relative offset from start of .debug section */
293static char *lnbase; /* Base pointer to line section */
c906108c
SS
294
295/* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298static CORE_ADDR baseaddr; /* Add to each symbol value */
299
300/* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302static struct section_offsets *base_section_offsets;
303
304/* We put a pointer to this structure in the read_symtab_private field
305 of the psymtab. */
306
c5aa993b
JM
307struct dwfinfo
308 {
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
311 file_ptr dbfoff;
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
319 int dbroff;
320 /* The size of the chunk of DIE's being examined, in bytes. */
321 int dblength;
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
327 file_ptr lnfoff;
328 };
c906108c
SS
329
330#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
334
335/* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
339
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
343
344struct pending **list_in_scope = &file_symbols;
345
346/* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
349
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
355
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
361
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
370 algorithms. */
371
372static struct type **utypes; /* Pointer to array of user type pointers */
373static int numutypes; /* Max number of user type pointers */
374
375/* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
384
c5aa993b 385static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
386
387/* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
395 types. */
396
397static enum language cu_language;
398static const struct language_defn *cu_language_defn;
399
400/* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
402
4efb68b1 403static void free_utypes (void *);
c906108c 404
a14ed312 405static int attribute_size (unsigned int);
c906108c 406
a14ed312 407static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 408
a14ed312 409static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 410
a14ed312 411static void handle_producer (char *);
c906108c 412
570b8f7c
AC
413static void read_file_scope (struct dieinfo *, char *, char *,
414 struct objfile *);
c906108c 415
570b8f7c
AC
416static void read_func_scope (struct dieinfo *, char *, char *,
417 struct objfile *);
c906108c 418
570b8f7c
AC
419static void read_lexical_block_scope (struct dieinfo *, char *, char *,
420 struct objfile *);
c906108c 421
a14ed312 422static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 423
570b8f7c
AC
424static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
425 struct objfile *);
c906108c 426
a14ed312 427static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 428
a14ed312 429static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 430
a14ed312 431static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 432
a14ed312 433static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 434
a14ed312 435static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 436
a14ed312 437static void read_ofile_symtab (struct partial_symtab *);
c906108c 438
a14ed312 439static void process_dies (char *, char *, struct objfile *);
c906108c 440
570b8f7c
AC
441static void read_structure_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
c906108c 443
a14ed312 444static struct type *decode_array_element_type (char *);
c906108c 445
a14ed312 446static struct type *decode_subscript_data_item (char *, char *);
c906108c 447
a14ed312 448static void dwarf_read_array_type (struct dieinfo *);
c906108c 449
a14ed312 450static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 451
a14ed312 452static void read_tag_string_type (struct dieinfo *dip);
c906108c 453
a14ed312 454static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 455
570b8f7c
AC
456static void read_enumeration (struct dieinfo *, char *, char *,
457 struct objfile *);
c906108c 458
a14ed312
KB
459static struct type *struct_type (struct dieinfo *, char *, char *,
460 struct objfile *);
c906108c 461
a14ed312 462static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 463
a14ed312 464static void decode_line_numbers (char *);
c906108c 465
a14ed312 466static struct type *decode_die_type (struct dieinfo *);
c906108c 467
a14ed312 468static struct type *decode_mod_fund_type (char *);
c906108c 469
a14ed312 470static struct type *decode_mod_u_d_type (char *);
c906108c 471
a14ed312 472static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 473
a14ed312 474static struct type *decode_fund_type (unsigned int);
c906108c 475
a14ed312 476static char *create_name (char *, struct obstack *);
c906108c 477
a14ed312 478static struct type *lookup_utype (DIE_REF);
c906108c 479
a14ed312 480static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 481
a14ed312 482static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 483
570b8f7c
AC
484static void synthesize_typedef (struct dieinfo *, struct objfile *,
485 struct type *);
c906108c 486
a14ed312 487static int locval (struct dieinfo *);
c906108c 488
a14ed312 489static void set_cu_language (struct dieinfo *);
c906108c 490
a14ed312 491static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
492
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b
JM
502 struct type *
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 504
c5aa993b 505 DESCRIPTION
c906108c 506
c5aa993b
JM
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
c906108c 512
c5aa993b
JM
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
c906108c 521
c5aa993b 522 RETURNS
c906108c 523
c5aa993b 524 Pointer to a fundamental type.
c906108c 525
c5aa993b 526 */
c906108c
SS
527
528static struct type *
fba45db2 529dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
530{
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
532 {
533 error ("internal error - invalid fundamental type id %d", typeid);
534 }
535
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
539
540 if (ftypes[typeid] == NULL)
541 {
c5aa993b 542 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
543 }
544
545 return (ftypes[typeid]);
546}
547
548/*
549
c5aa993b 550 LOCAL FUNCTION
c906108c 551
c5aa993b 552 set_cu_language -- set local copy of language for compilation unit
c906108c 553
c5aa993b 554 SYNOPSIS
c906108c 555
c5aa993b
JM
556 void
557 set_cu_language (struct dieinfo *dip)
c906108c 558
c5aa993b 559 DESCRIPTION
c906108c 560
c5aa993b
JM
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
c906108c 564
c5aa993b 565 RETURNS
c906108c 566
c5aa993b 567 No return value.
c906108c
SS
568
569 */
570
571static void
fba45db2 572set_cu_language (struct dieinfo *dip)
c906108c 573{
c5aa993b 574 switch (dip->at_language)
c906108c 575 {
c5aa993b
JM
576 case LANG_C89:
577 case LANG_C:
578 cu_language = language_c;
579 break;
580 case LANG_C_PLUS_PLUS:
581 cu_language = language_cplus;
582 break;
c5aa993b
JM
583 case LANG_MODULA2:
584 cu_language = language_m2;
585 break;
586 case LANG_FORTRAN77:
587 case LANG_FORTRAN90:
588 cu_language = language_fortran;
589 break;
590 case LANG_ADA83:
591 case LANG_COBOL74:
592 case LANG_COBOL85:
593 case LANG_PASCAL83:
594 /* We don't know anything special about these yet. */
595 cu_language = language_unknown;
596 break;
597 default:
598 /* If no at_language, try to deduce one from the filename */
599 cu_language = deduce_language_from_filename (dip->at_name);
600 break;
c906108c
SS
601 }
602 cu_language_defn = language_def (cu_language);
603}
604
605/*
606
c5aa993b 607 GLOBAL FUNCTION
c906108c 608
c5aa993b 609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 610
c5aa993b 611 SYNOPSIS
c906108c 612
c5aa993b 613 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
c906108c 616
c5aa993b 617 DESCRIPTION
c906108c 618
c5aa993b
JM
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 621
c5aa993b
JM
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
628 information.
c906108c 629
c5aa993b 630 RETURNS
c906108c 631
c5aa993b 632 No return value.
c906108c
SS
633
634 */
635
636void
fba45db2
KB
637dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
638 unsigned int dbfsize, file_ptr lnoffset,
639 unsigned int lnsize)
c906108c
SS
640{
641 bfd *abfd = objfile->obfd;
642 struct cleanup *back_to;
c5aa993b 643
c906108c
SS
644 current_objfile = objfile;
645 dbsize = dbfsize;
646 dbbase = xmalloc (dbsize);
647 dbroff = 0;
648 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 649 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 650 {
b8c9b27d 651 xfree (dbbase);
c906108c
SS
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
653 }
b8c9b27d 654 back_to = make_cleanup (xfree, dbbase);
c5aa993b 655
c906108c
SS
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
c5aa993b 659
ef96bde8
EZ
660 if (mainline
661 || (objfile->global_psymbols.size == 0
662 && objfile->static_psymbols.size == 0))
c906108c
SS
663 {
664 init_psymbol_list (objfile, 1024);
665 }
c5aa993b 666
c906108c
SS
667 /* Save the relocation factor where everybody can see it. */
668
d4f3574e
SS
669 base_section_offsets = objfile->section_offsets;
670 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
671
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
c5aa993b 675
c906108c 676 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 677
c906108c
SS
678 do_cleanups (back_to);
679 current_objfile = NULL;
680}
681
682/*
683
c5aa993b 684 LOCAL FUNCTION
c906108c 685
c5aa993b 686 read_lexical_block_scope -- process all dies in a lexical block
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b
JM
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
c906108c 692
c5aa993b 693 DESCRIPTION
c906108c 694
c5aa993b
JM
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
c906108c
SS
697
698 */
699
700static void
fba45db2
KB
701read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
702 struct objfile *objfile)
c906108c 703{
b59661bd 704 struct context_stack *new;
c906108c 705
c5aa993b
JM
706 push_context (0, dip->at_low_pc);
707 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
708 new = pop_context ();
709 if (local_symbols != NULL)
710 {
c5aa993b
JM
711 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
712 dip->at_high_pc, objfile);
c906108c 713 }
c5aa993b 714 local_symbols = new->locals;
c906108c
SS
715}
716
717/*
718
c5aa993b 719 LOCAL FUNCTION
c906108c 720
c5aa993b 721 lookup_utype -- look up a user defined type from die reference
c906108c 722
c5aa993b 723 SYNOPSIS
c906108c 724
c5aa993b 725 static type *lookup_utype (DIE_REF die_ref)
c906108c 726
c5aa993b 727 DESCRIPTION
c906108c 728
c5aa993b
JM
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
c906108c
SS
734 */
735
736static struct type *
fba45db2 737lookup_utype (DIE_REF die_ref)
c906108c
SS
738{
739 struct type *type = NULL;
740 int utypeidx;
c5aa993b 741
c906108c
SS
742 utypeidx = (die_ref - dbroff) / 4;
743 if ((utypeidx < 0) || (utypeidx >= numutypes))
744 {
23136709 745 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
746 }
747 else
748 {
749 type = *(utypes + utypeidx);
750 }
751 return (type);
752}
753
754
755/*
756
c5aa993b 757 LOCAL FUNCTION
c906108c 758
c5aa993b 759 alloc_utype -- add a user defined type for die reference
c906108c 760
c5aa993b 761 SYNOPSIS
c906108c 762
c5aa993b 763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 764
c5aa993b 765 DESCRIPTION
c906108c 766
c5aa993b
JM
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
c906108c 771
c5aa993b
JM
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
c906108c
SS
774 */
775
776static struct type *
fba45db2 777alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
778{
779 struct type **typep;
780 int utypeidx;
c5aa993b 781
c906108c
SS
782 utypeidx = (die_ref - dbroff) / 4;
783 typep = utypes + utypeidx;
784 if ((utypeidx < 0) || (utypeidx >= numutypes))
785 {
786 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 787 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
788 }
789 else if (*typep != NULL)
790 {
791 utypep = *typep;
23136709
KB
792 complaint (&symfile_complaints,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
794 DIE_ID, DIE_NAME);
c906108c
SS
795 }
796 else
797 {
798 if (utypep == NULL)
799 {
800 utypep = alloc_type (current_objfile);
801 }
802 *typep = utypep;
803 }
804 return (utypep);
805}
806
807/*
808
c5aa993b 809 LOCAL FUNCTION
c906108c 810
c5aa993b 811 free_utypes -- free the utypes array and reset pointer & count
c906108c 812
c5aa993b 813 SYNOPSIS
c906108c 814
4efb68b1 815 static void free_utypes (void *dummy)
c906108c 816
c5aa993b 817 DESCRIPTION
c906108c 818
c5aa993b
JM
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
c906108c
SS
822 */
823
824static void
4efb68b1 825free_utypes (void *dummy)
c906108c 826{
b8c9b27d 827 xfree (utypes);
c906108c
SS
828 utypes = NULL;
829 numutypes = 0;
830}
831
832
833/*
834
c5aa993b 835 LOCAL FUNCTION
c906108c 836
c5aa993b 837 decode_die_type -- return a type for a specified die
c906108c 838
c5aa993b 839 SYNOPSIS
c906108c 840
c5aa993b 841 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 842
c5aa993b 843 DESCRIPTION
c906108c 844
c5aa993b
JM
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
c906108c
SS
848 */
849
850static struct type *
fba45db2 851decode_die_type (struct dieinfo *dip)
c906108c
SS
852{
853 struct type *type = NULL;
c5aa993b
JM
854
855 if (dip->at_fund_type != 0)
c906108c 856 {
c5aa993b 857 type = decode_fund_type (dip->at_fund_type);
c906108c 858 }
c5aa993b 859 else if (dip->at_mod_fund_type != NULL)
c906108c 860 {
c5aa993b 861 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 862 }
c5aa993b 863 else if (dip->at_user_def_type)
c906108c 864 {
b59661bd
AC
865 type = lookup_utype (dip->at_user_def_type);
866 if (type == NULL)
c906108c 867 {
c5aa993b 868 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
869 }
870 }
c5aa993b 871 else if (dip->at_mod_u_d_type)
c906108c 872 {
c5aa993b 873 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
874 }
875 else
876 {
877 type = dwarf_fundamental_type (current_objfile, FT_VOID);
878 }
879 return (type);
880}
881
882/*
883
c5aa993b 884 LOCAL FUNCTION
c906108c 885
c5aa993b 886 struct_type -- compute and return the type for a struct or union
c906108c 887
c5aa993b 888 SYNOPSIS
c906108c 889
c5aa993b
JM
890 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
891 char *enddie, struct objfile *objfile)
c906108c 892
c5aa993b 893 DESCRIPTION
c906108c 894
c5aa993b
JM
895 Given pointer to a die information structure for a die which
896 defines a union or structure (and MUST define one or the other),
897 and pointers to the raw die data that define the range of dies which
898 define the members, compute and return the user defined type for the
899 structure or union.
c906108c
SS
900 */
901
902static struct type *
fba45db2
KB
903struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
904 struct objfile *objfile)
c906108c
SS
905{
906 struct type *type;
c5aa993b
JM
907 struct nextfield
908 {
909 struct nextfield *next;
910 struct field field;
911 };
c906108c
SS
912 struct nextfield *list = NULL;
913 struct nextfield *new;
914 int nfields = 0;
915 int n;
916 struct dieinfo mbr;
917 char *nextdie;
918 int anonymous_size;
c5aa993b 919
b59661bd
AC
920 type = lookup_utype (dip->die_ref);
921 if (type == NULL)
c906108c
SS
922 {
923 /* No forward references created an empty type, so install one now */
c5aa993b 924 type = alloc_utype (dip->die_ref, NULL);
c906108c 925 }
c5aa993b
JM
926 INIT_CPLUS_SPECIFIC (type);
927 switch (dip->die_tag)
c906108c 928 {
c5aa993b
JM
929 case TAG_class_type:
930 TYPE_CODE (type) = TYPE_CODE_CLASS;
931 break;
932 case TAG_structure_type:
933 TYPE_CODE (type) = TYPE_CODE_STRUCT;
934 break;
935 case TAG_union_type:
936 TYPE_CODE (type) = TYPE_CODE_UNION;
937 break;
938 default:
939 /* Should never happen */
940 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709
KB
941 complaint (&symfile_complaints,
942 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
943 DIE_ID, DIE_NAME);
c5aa993b 944 break;
c906108c
SS
945 }
946 /* Some compilers try to be helpful by inventing "fake" names for
947 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
948 Thanks, but no thanks... */
c5aa993b
JM
949 if (dip->at_name != NULL
950 && *dip->at_name != '~'
951 && *dip->at_name != '.')
c906108c 952 {
c5aa993b
JM
953 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
954 "", "", dip->at_name);
c906108c
SS
955 }
956 /* Use whatever size is known. Zero is a valid size. We might however
957 wish to check has_at_byte_size to make sure that some byte size was
958 given explicitly, but DWARF doesn't specify that explicit sizes of
959 zero have to present, so complaining about missing sizes should
960 probably not be the default. */
c5aa993b
JM
961 TYPE_LENGTH (type) = dip->at_byte_size;
962 thisdie += dip->die_length;
c906108c
SS
963 while (thisdie < enddie)
964 {
965 basicdieinfo (&mbr, thisdie, objfile);
966 completedieinfo (&mbr, objfile);
967 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
968 {
969 break;
970 }
971 else if (mbr.at_sibling != 0)
972 {
973 nextdie = dbbase + mbr.at_sibling - dbroff;
974 }
975 else
976 {
977 nextdie = thisdie + mbr.die_length;
978 }
979 switch (mbr.die_tag)
980 {
981 case TAG_member:
982 /* Get space to record the next field's data. */
983 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 984 new->next = list;
c906108c
SS
985 list = new;
986 /* Save the data. */
c5aa993b
JM
987 list->field.name =
988 obsavestring (mbr.at_name, strlen (mbr.at_name),
989 &objfile->type_obstack);
c906108c
SS
990 FIELD_TYPE (list->field) = decode_die_type (&mbr);
991 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 992 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
993 /* Handle bit fields. */
994 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
995 if (BITS_BIG_ENDIAN)
996 {
997 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
998 additional bit offset from the MSB of the containing
999 anonymous object to the MSB of the field. We don't
1000 have to do anything special since we don't need to
1001 know the size of the anonymous object. */
c906108c
SS
1002 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1003 }
1004 else
1005 {
1006 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1007 at_bit_size, so that we know we are in fact dealing
1008 with a bitfield. Compute the bit offset to the MSB
1009 of the anonymous object, subtract off the number of
1010 bits from the MSB of the field to the MSB of the
1011 object, and then subtract off the number of bits of
1012 the field itself. The result is the bit offset of
1013 the LSB of the field. */
c906108c
SS
1014 if (mbr.at_bit_size > 0)
1015 {
1016 if (mbr.has_at_byte_size)
1017 {
1018 /* The size of the anonymous object containing
c5aa993b
JM
1019 the bit field is explicit, so use the
1020 indicated size (in bytes). */
c906108c
SS
1021 anonymous_size = mbr.at_byte_size;
1022 }
1023 else
1024 {
1025 /* The size of the anonymous object containing
c5aa993b
JM
1026 the bit field matches the size of an object
1027 of the bit field's type. DWARF allows
1028 at_byte_size to be left out in such cases, as
1029 a debug information size optimization. */
1030 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1031 }
1032 FIELD_BITPOS (list->field) +=
1033 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1034 }
1035 }
1036 nfields++;
1037 break;
1038 default:
1039 process_dies (thisdie, nextdie, objfile);
1040 break;
1041 }
1042 thisdie = nextdie;
1043 }
1044 /* Now create the vector of fields, and record how big it is. We may
1045 not even have any fields, if this DIE was generated due to a reference
1046 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1047 set, which clues gdb in to the fact that it needs to search elsewhere
1048 for the full structure definition. */
1049 if (nfields == 0)
1050 {
1051 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1052 }
1053 else
1054 {
1055 TYPE_NFIELDS (type) = nfields;
1056 TYPE_FIELDS (type) = (struct field *)
1057 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1058 /* Copy the saved-up fields into the field vector. */
c5aa993b 1059 for (n = nfields; list; list = list->next)
c906108c 1060 {
c5aa993b
JM
1061 TYPE_FIELD (type, --n) = list->field;
1062 }
c906108c
SS
1063 }
1064 return (type);
1065}
1066
1067/*
1068
c5aa993b 1069 LOCAL FUNCTION
c906108c 1070
c5aa993b 1071 read_structure_scope -- process all dies within struct or union
c906108c 1072
c5aa993b 1073 SYNOPSIS
c906108c 1074
c5aa993b
JM
1075 static void read_structure_scope (struct dieinfo *dip,
1076 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1077
c5aa993b 1078 DESCRIPTION
c906108c 1079
c5aa993b
JM
1080 Called when we find the DIE that starts a structure or union
1081 scope (definition) to process all dies that define the members
1082 of the structure or union. DIP is a pointer to the die info
1083 struct for the DIE that names the structure or union.
c906108c 1084
c5aa993b
JM
1085 NOTES
1086
1087 Note that we need to call struct_type regardless of whether or not
1088 the DIE has an at_name attribute, since it might be an anonymous
1089 structure or union. This gets the type entered into our set of
1090 user defined types.
1091
1092 However, if the structure is incomplete (an opaque struct/union)
1093 then suppress creating a symbol table entry for it since gdb only
1094 wants to find the one with the complete definition. Note that if
1095 it is complete, we just call new_symbol, which does it's own
1096 checking about whether the struct/union is anonymous or not (and
1097 suppresses creating a symbol table entry itself).
c906108c 1098
c906108c
SS
1099 */
1100
1101static void
fba45db2
KB
1102read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1103 struct objfile *objfile)
c906108c
SS
1104{
1105 struct type *type;
1106 struct symbol *sym;
c5aa993b 1107
c906108c 1108 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1109 if (!TYPE_STUB (type))
c906108c
SS
1110 {
1111 sym = new_symbol (dip, objfile);
1112 if (sym != NULL)
1113 {
1114 SYMBOL_TYPE (sym) = type;
1115 if (cu_language == language_cplus)
1116 {
1117 synthesize_typedef (dip, objfile, type);
1118 }
1119 }
1120 }
1121}
1122
1123/*
1124
c5aa993b 1125 LOCAL FUNCTION
c906108c 1126
c5aa993b 1127 decode_array_element_type -- decode type of the array elements
c906108c 1128
c5aa993b 1129 SYNOPSIS
c906108c 1130
c5aa993b 1131 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1132
c5aa993b 1133 DESCRIPTION
c906108c 1134
c5aa993b
JM
1135 As the last step in decoding the array subscript information for an
1136 array DIE, we need to decode the type of the array elements. We are
1137 passed a pointer to this last part of the subscript information and
1138 must return the appropriate type. If the type attribute is not
1139 recognized, just warn about the problem and return type int.
c906108c
SS
1140 */
1141
1142static struct type *
fba45db2 1143decode_array_element_type (char *scan)
c906108c
SS
1144{
1145 struct type *typep;
1146 DIE_REF die_ref;
1147 unsigned short attribute;
1148 unsigned short fundtype;
1149 int nbytes;
c5aa993b 1150
c906108c
SS
1151 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1152 current_objfile);
1153 scan += SIZEOF_ATTRIBUTE;
b59661bd
AC
1154 nbytes = attribute_size (attribute);
1155 if (nbytes == -1)
c906108c 1156 {
23136709 1157 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1158 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1159 }
1160 else
1161 {
1162 switch (attribute)
1163 {
c5aa993b
JM
1164 case AT_fund_type:
1165 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1166 current_objfile);
1167 typep = decode_fund_type (fundtype);
1168 break;
1169 case AT_mod_fund_type:
1170 typep = decode_mod_fund_type (scan);
1171 break;
1172 case AT_user_def_type:
1173 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1174 current_objfile);
b59661bd
AC
1175 typep = lookup_utype (die_ref);
1176 if (typep == NULL)
c5aa993b
JM
1177 {
1178 typep = alloc_utype (die_ref, NULL);
1179 }
1180 break;
1181 case AT_mod_u_d_type:
1182 typep = decode_mod_u_d_type (scan);
1183 break;
1184 default:
23136709 1185 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1186 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1187 break;
1188 }
c906108c
SS
1189 }
1190 return (typep);
1191}
1192
1193/*
1194
c5aa993b 1195 LOCAL FUNCTION
c906108c 1196
c5aa993b 1197 decode_subscript_data_item -- decode array subscript item
c906108c 1198
c5aa993b 1199 SYNOPSIS
c906108c 1200
c5aa993b
JM
1201 static struct type *
1202 decode_subscript_data_item (char *scan, char *end)
c906108c 1203
c5aa993b 1204 DESCRIPTION
c906108c 1205
c5aa993b
JM
1206 The array subscripts and the data type of the elements of an
1207 array are described by a list of data items, stored as a block
1208 of contiguous bytes. There is a data item describing each array
1209 dimension, and a final data item describing the element type.
1210 The data items are ordered the same as their appearance in the
1211 source (I.E. leftmost dimension first, next to leftmost second,
1212 etc).
c906108c 1213
c5aa993b
JM
1214 The data items describing each array dimension consist of four
1215 parts: (1) a format specifier, (2) type type of the subscript
1216 index, (3) a description of the low bound of the array dimension,
1217 and (4) a description of the high bound of the array dimension.
c906108c 1218
c5aa993b
JM
1219 The last data item is the description of the type of each of
1220 the array elements.
c906108c 1221
c5aa993b
JM
1222 We are passed a pointer to the start of the block of bytes
1223 containing the remaining data items, and a pointer to the first
1224 byte past the data. This function recursively decodes the
1225 remaining data items and returns a type.
c906108c 1226
c5aa993b
JM
1227 If we somehow fail to decode some data, we complain about it
1228 and return a type "array of int".
c906108c 1229
c5aa993b
JM
1230 BUGS
1231 FIXME: This code only implements the forms currently used
1232 by the AT&T and GNU C compilers.
c906108c 1233
c5aa993b
JM
1234 The end pointer is supplied for error checking, maybe we should
1235 use it for that...
c906108c
SS
1236 */
1237
1238static struct type *
fba45db2 1239decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1240{
1241 struct type *typep = NULL; /* Array type we are building */
1242 struct type *nexttype; /* Type of each element (may be array) */
1243 struct type *indextype; /* Type of this index */
1244 struct type *rangetype;
1245 unsigned int format;
1246 unsigned short fundtype;
1247 unsigned long lowbound;
1248 unsigned long highbound;
1249 int nbytes;
c5aa993b 1250
c906108c
SS
1251 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1252 current_objfile);
1253 scan += SIZEOF_FORMAT_SPECIFIER;
1254 switch (format)
1255 {
1256 case FMT_ET:
1257 typep = decode_array_element_type (scan);
1258 break;
1259 case FMT_FT_C_C:
1260 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1261 current_objfile);
1262 indextype = decode_fund_type (fundtype);
1263 scan += SIZEOF_FMT_FT;
1264 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1265 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1266 scan += nbytes;
1267 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1268 scan += nbytes;
1269 nexttype = decode_subscript_data_item (scan, end);
1270 if (nexttype == NULL)
1271 {
1272 /* Munged subscript data or other problem, fake it. */
23136709
KB
1273 complaint (&symfile_complaints,
1274 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1275 DIE_ID, DIE_NAME);
c906108c
SS
1276 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1277 }
1278 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1279 lowbound, highbound);
c906108c
SS
1280 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1281 break;
1282 case FMT_FT_C_X:
1283 case FMT_FT_X_C:
1284 case FMT_FT_X_X:
1285 case FMT_UT_C_C:
1286 case FMT_UT_C_X:
1287 case FMT_UT_X_C:
1288 case FMT_UT_X_X:
23136709
KB
1289 complaint (&symfile_complaints,
1290 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1291 DIE_ID, DIE_NAME, format);
c906108c
SS
1292 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1293 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1294 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1295 break;
1296 default:
23136709
KB
1297 complaint (&symfile_complaints,
1298 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1299 DIE_NAME, format);
c906108c
SS
1300 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1301 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1302 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1303 break;
1304 }
1305 return (typep);
1306}
1307
1308/*
1309
c5aa993b 1310 LOCAL FUNCTION
c906108c 1311
c5aa993b 1312 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1313
c5aa993b 1314 SYNOPSIS
c906108c 1315
c5aa993b 1316 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1317
c5aa993b 1318 DESCRIPTION
c906108c 1319
c5aa993b
JM
1320 Extract all information from a TAG_array_type DIE and add to
1321 the user defined type vector.
c906108c
SS
1322 */
1323
1324static void
fba45db2 1325dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1326{
1327 struct type *type;
1328 struct type *utype;
1329 char *sub;
1330 char *subend;
1331 unsigned short blocksz;
1332 int nbytes;
c5aa993b
JM
1333
1334 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1335 {
1336 /* FIXME: Can gdb even handle column major arrays? */
23136709
KB
1337 complaint (&symfile_complaints,
1338 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1339 DIE_ID, DIE_NAME);
c906108c 1340 }
b59661bd
AC
1341 sub = dip->at_subscr_data;
1342 if (sub != NULL)
c906108c
SS
1343 {
1344 nbytes = attribute_size (AT_subscr_data);
1345 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1346 subend = sub + nbytes + blocksz;
1347 sub += nbytes;
1348 type = decode_subscript_data_item (sub, subend);
b59661bd
AC
1349 utype = lookup_utype (dip->die_ref);
1350 if (utype == NULL)
c906108c
SS
1351 {
1352 /* Install user defined type that has not been referenced yet. */
c5aa993b 1353 alloc_utype (dip->die_ref, type);
c906108c
SS
1354 }
1355 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1356 {
1357 /* Ick! A forward ref has already generated a blank type in our
1358 slot, and this type probably already has things pointing to it
1359 (which is what caused it to be created in the first place).
1360 If it's just a place holder we can plop our fully defined type
1361 on top of it. We can't recover the space allocated for our
1362 new type since it might be on an obstack, but we could reuse
1363 it if we kept a list of them, but it might not be worth it
1364 (FIXME). */
1365 *utype = *type;
1366 }
1367 else
1368 {
1369 /* Double ick! Not only is a type already in our slot, but
1370 someone has decorated it. Complain and leave it alone. */
23136709 1371 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1372 }
1373 }
1374}
1375
1376/*
1377
c5aa993b 1378 LOCAL FUNCTION
c906108c 1379
c5aa993b 1380 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1381
c5aa993b 1382 SYNOPSIS
c906108c 1383
c5aa993b 1384 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1385
c5aa993b 1386 DESCRIPTION
c906108c 1387
c5aa993b
JM
1388 Extract all information from a TAG_pointer_type DIE and add to
1389 the user defined type vector.
c906108c
SS
1390 */
1391
1392static void
fba45db2 1393read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1394{
1395 struct type *type;
1396 struct type *utype;
c5aa993b 1397
c906108c 1398 type = decode_die_type (dip);
b59661bd
AC
1399 utype = lookup_utype (dip->die_ref);
1400 if (utype == NULL)
c906108c
SS
1401 {
1402 utype = lookup_pointer_type (type);
c5aa993b 1403 alloc_utype (dip->die_ref, utype);
c906108c
SS
1404 }
1405 else
1406 {
1407 TYPE_TARGET_TYPE (utype) = type;
1408 TYPE_POINTER_TYPE (type) = utype;
1409
1410 /* We assume the machine has only one representation for pointers! */
1411 /* FIXME: Possably a poor assumption */
c5aa993b 1412 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1413 TYPE_CODE (utype) = TYPE_CODE_PTR;
1414 }
1415}
1416
1417/*
1418
c5aa993b 1419 LOCAL FUNCTION
c906108c 1420
c5aa993b 1421 read_tag_string_type -- read TAG_string_type DIE
c906108c 1422
c5aa993b 1423 SYNOPSIS
c906108c 1424
c5aa993b 1425 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1426
c5aa993b 1427 DESCRIPTION
c906108c 1428
c5aa993b
JM
1429 Extract all information from a TAG_string_type DIE and add to
1430 the user defined type vector. It isn't really a user defined
1431 type, but it behaves like one, with other DIE's using an
1432 AT_user_def_type attribute to reference it.
c906108c
SS
1433 */
1434
1435static void
fba45db2 1436read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1437{
1438 struct type *utype;
1439 struct type *indextype;
1440 struct type *rangetype;
1441 unsigned long lowbound = 0;
1442 unsigned long highbound;
1443
c5aa993b 1444 if (dip->has_at_byte_size)
c906108c
SS
1445 {
1446 /* A fixed bounds string */
c5aa993b 1447 highbound = dip->at_byte_size - 1;
c906108c
SS
1448 }
1449 else
1450 {
1451 /* A varying length string. Stub for now. (FIXME) */
1452 highbound = 1;
1453 }
1454 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1455 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1456 highbound);
c5aa993b
JM
1457
1458 utype = lookup_utype (dip->die_ref);
c906108c
SS
1459 if (utype == NULL)
1460 {
1461 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1462 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1463 }
1464 else
1465 {
1466 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1467 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1468 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1469 {
23136709 1470 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1471 return;
1472 }
1473 }
1474
1475 /* Create the string type using the blank type we either found or created. */
1476 utype = create_string_type (utype, rangetype);
1477}
1478
1479/*
1480
c5aa993b 1481 LOCAL FUNCTION
c906108c 1482
c5aa993b 1483 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1484
c5aa993b 1485 SYNOPSIS
c906108c 1486
c5aa993b
JM
1487 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1488 char *enddie)
c906108c 1489
c5aa993b 1490 DESCRIPTION
c906108c 1491
c5aa993b 1492 Handle DIES due to C code like:
c906108c 1493
c5aa993b
JM
1494 struct foo {
1495 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1496 int b;
1497 };
c906108c 1498
c5aa993b 1499 NOTES
c906108c 1500
c5aa993b
JM
1501 The parameter DIES are currently ignored. See if gdb has a way to
1502 include this info in it's type system, and decode them if so. Is
1503 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1504 */
1505
1506static void
fba45db2 1507read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1508{
1509 struct type *type; /* Type that this function returns */
1510 struct type *ftype; /* Function that returns above type */
c5aa993b 1511
c906108c
SS
1512 /* Decode the type that this subroutine returns */
1513
1514 type = decode_die_type (dip);
1515
1516 /* Check to see if we already have a partially constructed user
1517 defined type for this DIE, from a forward reference. */
1518
b59661bd
AC
1519 ftype = lookup_utype (dip->die_ref);
1520 if (ftype == NULL)
c906108c
SS
1521 {
1522 /* This is the first reference to one of these types. Make
c5aa993b 1523 a new one and place it in the user defined types. */
c906108c 1524 ftype = lookup_function_type (type);
c5aa993b 1525 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1526 }
1527 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1528 {
1529 /* We have an existing partially constructed type, so bash it
c5aa993b 1530 into the correct type. */
c906108c
SS
1531 TYPE_TARGET_TYPE (ftype) = type;
1532 TYPE_LENGTH (ftype) = 1;
1533 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1534 }
1535 else
1536 {
23136709 1537 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1538 }
1539}
1540
1541/*
1542
c5aa993b 1543 LOCAL FUNCTION
c906108c 1544
c5aa993b 1545 read_enumeration -- process dies which define an enumeration
c906108c 1546
c5aa993b 1547 SYNOPSIS
c906108c 1548
c5aa993b
JM
1549 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1550 char *enddie, struct objfile *objfile)
c906108c 1551
c5aa993b 1552 DESCRIPTION
c906108c 1553
c5aa993b
JM
1554 Given a pointer to a die which begins an enumeration, process all
1555 the dies that define the members of the enumeration.
c906108c 1556
c5aa993b 1557 NOTES
c906108c 1558
c5aa993b
JM
1559 Note that we need to call enum_type regardless of whether or not we
1560 have a symbol, since we might have an enum without a tag name (thus
1561 no symbol for the tagname).
c906108c
SS
1562 */
1563
1564static void
fba45db2
KB
1565read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1566 struct objfile *objfile)
c906108c
SS
1567{
1568 struct type *type;
1569 struct symbol *sym;
c5aa993b 1570
c906108c
SS
1571 type = enum_type (dip, objfile);
1572 sym = new_symbol (dip, objfile);
1573 if (sym != NULL)
1574 {
1575 SYMBOL_TYPE (sym) = type;
1576 if (cu_language == language_cplus)
1577 {
1578 synthesize_typedef (dip, objfile, type);
1579 }
1580 }
1581}
1582
1583/*
1584
c5aa993b 1585 LOCAL FUNCTION
c906108c 1586
c5aa993b 1587 enum_type -- decode and return a type for an enumeration
c906108c 1588
c5aa993b 1589 SYNOPSIS
c906108c 1590
c5aa993b 1591 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1592
c5aa993b 1593 DESCRIPTION
c906108c 1594
c5aa993b
JM
1595 Given a pointer to a die information structure for the die which
1596 starts an enumeration, process all the dies that define the members
1597 of the enumeration and return a type pointer for the enumeration.
c906108c 1598
c5aa993b 1599 At the same time, for each member of the enumeration, create a
176620f1 1600 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
c5aa993b 1601 and give it the type of the enumeration itself.
c906108c 1602
c5aa993b 1603 NOTES
c906108c 1604
c5aa993b
JM
1605 Note that the DWARF specification explicitly mandates that enum
1606 constants occur in reverse order from the source program order,
1607 for "consistency" and because this ordering is easier for many
1608 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1609 Entries). Because gdb wants to see the enum members in program
1610 source order, we have to ensure that the order gets reversed while
1611 we are processing them.
c906108c
SS
1612 */
1613
1614static struct type *
fba45db2 1615enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1616{
1617 struct type *type;
c5aa993b
JM
1618 struct nextfield
1619 {
1620 struct nextfield *next;
1621 struct field field;
1622 };
c906108c
SS
1623 struct nextfield *list = NULL;
1624 struct nextfield *new;
1625 int nfields = 0;
1626 int n;
1627 char *scan;
1628 char *listend;
1629 unsigned short blocksz;
1630 struct symbol *sym;
1631 int nbytes;
1632 int unsigned_enum = 1;
c5aa993b 1633
b59661bd
AC
1634 type = lookup_utype (dip->die_ref);
1635 if (type == NULL)
c906108c
SS
1636 {
1637 /* No forward references created an empty type, so install one now */
c5aa993b 1638 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1639 }
1640 TYPE_CODE (type) = TYPE_CODE_ENUM;
1641 /* Some compilers try to be helpful by inventing "fake" names for
1642 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1643 Thanks, but no thanks... */
c5aa993b
JM
1644 if (dip->at_name != NULL
1645 && *dip->at_name != '~'
1646 && *dip->at_name != '.')
c906108c 1647 {
c5aa993b
JM
1648 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1649 "", "", dip->at_name);
c906108c 1650 }
c5aa993b 1651 if (dip->at_byte_size != 0)
c906108c 1652 {
c5aa993b 1653 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1654 }
b59661bd
AC
1655 scan = dip->at_element_list;
1656 if (scan != NULL)
c906108c 1657 {
c5aa993b 1658 if (dip->short_element_list)
c906108c
SS
1659 {
1660 nbytes = attribute_size (AT_short_element_list);
1661 }
1662 else
1663 {
1664 nbytes = attribute_size (AT_element_list);
1665 }
1666 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1667 listend = scan + nbytes + blocksz;
1668 scan += nbytes;
1669 while (scan < listend)
1670 {
1671 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1672 new->next = list;
c906108c
SS
1673 list = new;
1674 FIELD_TYPE (list->field) = NULL;
1675 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1676 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1677 FIELD_BITPOS (list->field) =
1678 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1679 objfile);
1680 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1681 list->field.name = obsavestring (scan, strlen (scan),
1682 &objfile->type_obstack);
c906108c
SS
1683 scan += strlen (scan) + 1;
1684 nfields++;
1685 /* Handcraft a new symbol for this enum member. */
1686 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1687 sizeof (struct symbol));
1688 memset (sym, 0, sizeof (struct symbol));
22abf04a 1689 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1690 &objfile->symbol_obstack);
1691 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
176620f1 1692 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1693 SYMBOL_CLASS (sym) = LOC_CONST;
1694 SYMBOL_TYPE (sym) = type;
1695 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1696 if (SYMBOL_VALUE (sym) < 0)
1697 unsigned_enum = 0;
1698 add_symbol_to_list (sym, list_in_scope);
1699 }
1700 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1701 where we reverse the order, by pulling the members off the list in
1702 reverse order from how they were inserted. If we have no fields
1703 (this is apparently possible in C++) then skip building a field
1704 vector. */
c906108c
SS
1705 if (nfields > 0)
1706 {
1707 if (unsigned_enum)
1708 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1709 TYPE_NFIELDS (type) = nfields;
1710 TYPE_FIELDS (type) = (struct field *)
1711 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1712 /* Copy the saved-up fields into the field vector. */
c5aa993b 1713 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1714 {
c5aa993b
JM
1715 TYPE_FIELD (type, n++) = list->field;
1716 }
c906108c
SS
1717 }
1718 }
1719 return (type);
1720}
1721
1722/*
1723
c5aa993b 1724 LOCAL FUNCTION
c906108c 1725
c5aa993b 1726 read_func_scope -- process all dies within a function scope
c906108c 1727
c5aa993b 1728 DESCRIPTION
c906108c 1729
c5aa993b
JM
1730 Process all dies within a given function scope. We are passed
1731 a die information structure pointer DIP for the die which
1732 starts the function scope, and pointers into the raw die data
1733 that define the dies within the function scope.
1734
1735 For now, we ignore lexical block scopes within the function.
1736 The problem is that AT&T cc does not define a DWARF lexical
1737 block scope for the function itself, while gcc defines a
1738 lexical block scope for the function. We need to think about
1739 how to handle this difference, or if it is even a problem.
1740 (FIXME)
c906108c
SS
1741 */
1742
1743static void
fba45db2
KB
1744read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1745 struct objfile *objfile)
c906108c 1746{
b59661bd 1747 struct context_stack *new;
c5aa993b 1748
c906108c
SS
1749 /* AT_name is absent if the function is described with an
1750 AT_abstract_origin tag.
1751 Ignore the function description for now to avoid GDB core dumps.
1752 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1753 if (dip->at_name == NULL)
c906108c 1754 {
23136709
KB
1755 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1756 DIE_ID);
c906108c
SS
1757 return;
1758 }
1759
c5aa993b
JM
1760 if (objfile->ei.entry_point >= dip->at_low_pc &&
1761 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1762 {
c5aa993b
JM
1763 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1764 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1765 }
c5aa993b
JM
1766 new = push_context (0, dip->at_low_pc);
1767 new->name = new_symbol (dip, objfile);
c906108c 1768 list_in_scope = &local_symbols;
c5aa993b 1769 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1770 new = pop_context ();
1771 /* Make a block for the local symbols within. */
c5aa993b
JM
1772 finish_block (new->name, &local_symbols, new->old_blocks,
1773 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1774 list_in_scope = &file_symbols;
1775}
1776
1777
1778/*
1779
c5aa993b 1780 LOCAL FUNCTION
c906108c 1781
c5aa993b 1782 handle_producer -- process the AT_producer attribute
c906108c 1783
c5aa993b 1784 DESCRIPTION
c906108c 1785
c5aa993b
JM
1786 Perform any operations that depend on finding a particular
1787 AT_producer attribute.
c906108c
SS
1788
1789 */
1790
1791static void
fba45db2 1792handle_producer (char *producer)
c906108c
SS
1793{
1794
1795 /* If this compilation unit was compiled with g++ or gcc, then set the
1796 processing_gcc_compilation flag. */
1797
1798 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1799 {
1800 char version = producer[strlen (GCC_PRODUCER)];
1801 processing_gcc_compilation = (version == '2' ? 2 : 1);
1802 }
1803 else
1804 {
1805 processing_gcc_compilation =
db034ac5 1806 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
c906108c
SS
1807 }
1808
1809 /* Select a demangling style if we can identify the producer and if
1810 the current style is auto. We leave the current style alone if it
1811 is not auto. We also leave the demangling style alone if we find a
1812 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1813
1814 if (AUTO_DEMANGLING)
1815 {
1816 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1817 {
8052a17a
JM
1818#if 0
1819 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1820 know whether it will use the old style or v3 mangling. */
c906108c 1821 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1822#endif
c906108c
SS
1823 }
1824 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1825 {
1826 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1827 }
1828 }
1829}
1830
1831
1832/*
1833
c5aa993b 1834 LOCAL FUNCTION
c906108c 1835
c5aa993b 1836 read_file_scope -- process all dies within a file scope
c906108c 1837
c5aa993b
JM
1838 DESCRIPTION
1839
1840 Process all dies within a given file scope. We are passed a
1841 pointer to the die information structure for the die which
1842 starts the file scope, and pointers into the raw die data which
1843 mark the range of dies within the file scope.
c906108c 1844
c5aa993b
JM
1845 When the partial symbol table is built, the file offset for the line
1846 number table for each compilation unit is saved in the partial symbol
1847 table entry for that compilation unit. As the symbols for each
1848 compilation unit are read, the line number table is read into memory
1849 and the variable lnbase is set to point to it. Thus all we have to
1850 do is use lnbase to access the line number table for the current
1851 compilation unit.
c906108c
SS
1852 */
1853
1854static void
fba45db2
KB
1855read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1856 struct objfile *objfile)
c906108c
SS
1857{
1858 struct cleanup *back_to;
1859 struct symtab *symtab;
c5aa993b
JM
1860
1861 if (objfile->ei.entry_point >= dip->at_low_pc &&
1862 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1863 {
c5aa993b
JM
1864 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1865 objfile->ei.entry_file_highpc = dip->at_high_pc;
c906108c
SS
1866 }
1867 set_cu_language (dip);
c5aa993b 1868 if (dip->at_producer != NULL)
c906108c 1869 {
c5aa993b 1870 handle_producer (dip->at_producer);
c906108c
SS
1871 }
1872 numutypes = (enddie - thisdie) / 4;
1873 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1874 back_to = make_cleanup (free_utypes, NULL);
1875 memset (utypes, 0, numutypes * sizeof (struct type *));
1876 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1877 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1878 record_debugformat ("DWARF 1");
1879 decode_line_numbers (lnbase);
c5aa993b 1880 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1881
c5aa993b 1882 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1883 if (symtab != NULL)
1884 {
c5aa993b
JM
1885 symtab->language = cu_language;
1886 }
c906108c
SS
1887 do_cleanups (back_to);
1888}
1889
1890/*
1891
c5aa993b 1892 LOCAL FUNCTION
c906108c 1893
c5aa993b 1894 process_dies -- process a range of DWARF Information Entries
c906108c 1895
c5aa993b 1896 SYNOPSIS
c906108c 1897
c5aa993b
JM
1898 static void process_dies (char *thisdie, char *enddie,
1899 struct objfile *objfile)
c906108c 1900
c5aa993b 1901 DESCRIPTION
c906108c 1902
c5aa993b
JM
1903 Process all DIE's in a specified range. May be (and almost
1904 certainly will be) called recursively.
c906108c
SS
1905 */
1906
1907static void
fba45db2 1908process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1909{
1910 char *nextdie;
1911 struct dieinfo di;
c5aa993b 1912
c906108c
SS
1913 while (thisdie < enddie)
1914 {
1915 basicdieinfo (&di, thisdie, objfile);
1916 if (di.die_length < SIZEOF_DIE_LENGTH)
1917 {
1918 break;
1919 }
1920 else if (di.die_tag == TAG_padding)
1921 {
1922 nextdie = thisdie + di.die_length;
1923 }
1924 else
1925 {
1926 completedieinfo (&di, objfile);
1927 if (di.at_sibling != 0)
1928 {
1929 nextdie = dbbase + di.at_sibling - dbroff;
1930 }
1931 else
1932 {
1933 nextdie = thisdie + di.die_length;
1934 }
c906108c 1935 /* I think that these are always text, not data, addresses. */
181c1381
RE
1936 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1937 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1938 switch (di.die_tag)
1939 {
1940 case TAG_compile_unit:
1941 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1942 unit, we are unable to handle nested compilation units
1943 properly (FIXME). */
c906108c
SS
1944 if (current_subfile == NULL)
1945 read_file_scope (&di, thisdie, nextdie, objfile);
1946 else
1947 nextdie = thisdie + di.die_length;
1948 break;
1949 case TAG_global_subroutine:
1950 case TAG_subroutine:
1951 if (di.has_at_low_pc)
1952 {
1953 read_func_scope (&di, thisdie, nextdie, objfile);
1954 }
1955 break;
1956 case TAG_lexical_block:
1957 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1958 break;
1959 case TAG_class_type:
1960 case TAG_structure_type:
1961 case TAG_union_type:
1962 read_structure_scope (&di, thisdie, nextdie, objfile);
1963 break;
1964 case TAG_enumeration_type:
1965 read_enumeration (&di, thisdie, nextdie, objfile);
1966 break;
1967 case TAG_subroutine_type:
1968 read_subroutine_type (&di, thisdie, nextdie);
1969 break;
1970 case TAG_array_type:
1971 dwarf_read_array_type (&di);
1972 break;
1973 case TAG_pointer_type:
1974 read_tag_pointer_type (&di);
1975 break;
1976 case TAG_string_type:
1977 read_tag_string_type (&di);
1978 break;
1979 default:
1980 new_symbol (&di, objfile);
1981 break;
1982 }
1983 }
1984 thisdie = nextdie;
1985 }
1986}
1987
1988/*
1989
c5aa993b 1990 LOCAL FUNCTION
c906108c 1991
c5aa993b 1992 decode_line_numbers -- decode a line number table fragment
c906108c 1993
c5aa993b 1994 SYNOPSIS
c906108c 1995
c5aa993b
JM
1996 static void decode_line_numbers (char *tblscan, char *tblend,
1997 long length, long base, long line, long pc)
c906108c 1998
c5aa993b 1999 DESCRIPTION
c906108c 2000
c5aa993b 2001 Translate the DWARF line number information to gdb form.
c906108c 2002
c5aa993b
JM
2003 The ".line" section contains one or more line number tables, one for
2004 each ".line" section from the objects that were linked.
c906108c 2005
c5aa993b
JM
2006 The AT_stmt_list attribute for each TAG_source_file entry in the
2007 ".debug" section contains the offset into the ".line" section for the
2008 start of the table for that file.
c906108c 2009
c5aa993b 2010 The table itself has the following structure:
c906108c 2011
c5aa993b
JM
2012 <table length><base address><source statement entry>
2013 4 bytes 4 bytes 10 bytes
c906108c 2014
c5aa993b
JM
2015 The table length is the total size of the table, including the 4 bytes
2016 for the length information.
c906108c 2017
c5aa993b
JM
2018 The base address is the address of the first instruction generated
2019 for the source file.
c906108c 2020
c5aa993b 2021 Each source statement entry has the following structure:
c906108c 2022
c5aa993b
JM
2023 <line number><statement position><address delta>
2024 4 bytes 2 bytes 4 bytes
c906108c 2025
c5aa993b
JM
2026 The line number is relative to the start of the file, starting with
2027 line 1.
c906108c 2028
c5aa993b
JM
2029 The statement position either -1 (0xFFFF) or the number of characters
2030 from the beginning of the line to the beginning of the statement.
c906108c 2031
c5aa993b
JM
2032 The address delta is the difference between the base address and
2033 the address of the first instruction for the statement.
c906108c 2034
c5aa993b
JM
2035 Note that we must copy the bytes from the packed table to our local
2036 variables before attempting to use them, to avoid alignment problems
2037 on some machines, particularly RISC processors.
c906108c 2038
c5aa993b 2039 BUGS
c906108c 2040
c5aa993b
JM
2041 Does gdb expect the line numbers to be sorted? They are now by
2042 chance/luck, but are not required to be. (FIXME)
c906108c 2043
c5aa993b
JM
2044 The line with number 0 is unused, gdb apparently can discover the
2045 span of the last line some other way. How? (FIXME)
c906108c
SS
2046 */
2047
2048static void
fba45db2 2049decode_line_numbers (char *linetable)
c906108c
SS
2050{
2051 char *tblscan;
2052 char *tblend;
2053 unsigned long length;
2054 unsigned long base;
2055 unsigned long line;
2056 unsigned long pc;
c5aa993b 2057
c906108c
SS
2058 if (linetable != NULL)
2059 {
2060 tblscan = tblend = linetable;
2061 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2062 current_objfile);
2063 tblscan += SIZEOF_LINETBL_LENGTH;
2064 tblend += length;
2065 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2066 GET_UNSIGNED, current_objfile);
2067 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2068 base += baseaddr;
2069 while (tblscan < tblend)
2070 {
2071 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2072 current_objfile);
2073 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2074 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2075 current_objfile);
2076 tblscan += SIZEOF_LINETBL_DELTA;
2077 pc += base;
2078 if (line != 0)
2079 {
2080 record_line (current_subfile, line, pc);
2081 }
2082 }
2083 }
2084}
2085
2086/*
2087
c5aa993b 2088 LOCAL FUNCTION
c906108c 2089
c5aa993b 2090 locval -- compute the value of a location attribute
c906108c 2091
c5aa993b 2092 SYNOPSIS
c906108c 2093
c5aa993b 2094 static int locval (struct dieinfo *dip)
c906108c 2095
c5aa993b 2096 DESCRIPTION
c906108c 2097
c5aa993b
JM
2098 Given pointer to a string of bytes that define a location, compute
2099 the location and return the value.
2100 A location description containing no atoms indicates that the
2101 object is optimized out. The optimized_out flag is set for those,
2102 the return value is meaningless.
c906108c 2103
c5aa993b
JM
2104 When computing values involving the current value of the frame pointer,
2105 the value zero is used, which results in a value relative to the frame
2106 pointer, rather than the absolute value. This is what GDB wants
2107 anyway.
c906108c 2108
c5aa993b
JM
2109 When the result is a register number, the isreg flag is set, otherwise
2110 it is cleared. This is a kludge until we figure out a better
2111 way to handle the problem. Gdb's design does not mesh well with the
2112 DWARF notion of a location computing interpreter, which is a shame
2113 because the flexibility goes unused.
2114
2115 NOTES
2116
2117 Note that stack[0] is unused except as a default error return.
2118 Note that stack overflow is not yet handled.
c906108c
SS
2119 */
2120
2121static int
fba45db2 2122locval (struct dieinfo *dip)
c906108c
SS
2123{
2124 unsigned short nbytes;
2125 unsigned short locsize;
2126 auto long stack[64];
2127 int stacki;
2128 char *loc;
2129 char *end;
2130 int loc_atom_code;
2131 int loc_value_size;
c5aa993b
JM
2132
2133 loc = dip->at_location;
c906108c
SS
2134 nbytes = attribute_size (AT_location);
2135 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2136 loc += nbytes;
2137 end = loc + locsize;
2138 stacki = 0;
2139 stack[stacki] = 0;
c5aa993b
JM
2140 dip->isreg = 0;
2141 dip->offreg = 0;
2142 dip->optimized_out = 1;
c906108c
SS
2143 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2144 while (loc < end)
2145 {
c5aa993b 2146 dip->optimized_out = 0;
c906108c
SS
2147 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2148 current_objfile);
2149 loc += SIZEOF_LOC_ATOM_CODE;
2150 switch (loc_atom_code)
2151 {
c5aa993b
JM
2152 case 0:
2153 /* error */
2154 loc = end;
2155 break;
2156 case OP_REG:
2157 /* push register (number) */
2158 stack[++stacki]
2159 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2160 GET_UNSIGNED,
2161 current_objfile));
2162 loc += loc_value_size;
2163 dip->isreg = 1;
2164 break;
2165 case OP_BASEREG:
2166 /* push value of register (number) */
2167 /* Actually, we compute the value as if register has 0, so the
2168 value ends up being the offset from that register. */
2169 dip->offreg = 1;
2170 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2171 current_objfile);
2172 loc += loc_value_size;
2173 stack[++stacki] = 0;
2174 break;
2175 case OP_ADDR:
2176 /* push address (relocated address) */
2177 stack[++stacki] = target_to_host (loc, loc_value_size,
2178 GET_UNSIGNED, current_objfile);
2179 loc += loc_value_size;
2180 break;
2181 case OP_CONST:
2182 /* push constant (number) FIXME: signed or unsigned! */
2183 stack[++stacki] = target_to_host (loc, loc_value_size,
2184 GET_SIGNED, current_objfile);
2185 loc += loc_value_size;
2186 break;
2187 case OP_DEREF2:
2188 /* pop, deref and push 2 bytes (as a long) */
23136709
KB
2189 complaint (&symfile_complaints,
2190 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2191 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2192 break;
2193 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709
KB
2194 complaint (&symfile_complaints,
2195 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2196 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2197 break;
2198 case OP_ADD: /* pop top 2 items, add, push result */
2199 stack[stacki - 1] += stack[stacki];
2200 stacki--;
2201 break;
c906108c
SS
2202 }
2203 }
2204 return (stack[stacki]);
2205}
2206
2207/*
2208
c5aa993b 2209 LOCAL FUNCTION
c906108c 2210
c5aa993b 2211 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2212
c5aa993b 2213 SYNOPSIS
c906108c 2214
c5aa993b 2215 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2216
c5aa993b 2217 DESCRIPTION
c906108c 2218
c5aa993b
JM
2219 When expanding a partial symbol table entry to a full symbol table
2220 entry, this is the function that gets called to read in the symbols
2221 for the compilation unit. A pointer to the newly constructed symtab,
2222 which is now the new first one on the objfile's symtab list, is
2223 stashed in the partial symbol table entry.
c906108c
SS
2224 */
2225
2226static void
fba45db2 2227read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2228{
2229 struct cleanup *back_to;
2230 unsigned long lnsize;
2231 file_ptr foffset;
2232 bfd *abfd;
2233 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2234
c5aa993b
JM
2235 abfd = pst->objfile->obfd;
2236 current_objfile = pst->objfile;
c906108c
SS
2237
2238 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2239 unit, seek to the location in the file, and read in all the DIE's. */
2240
2241 diecount = 0;
2242 dbsize = DBLENGTH (pst);
2243 dbbase = xmalloc (dbsize);
c5aa993b
JM
2244 dbroff = DBROFF (pst);
2245 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2246 base_section_offsets = pst->section_offsets;
2247 baseaddr = ANOFFSET (pst->section_offsets, 0);
2248 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2249 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2250 {
b8c9b27d 2251 xfree (dbbase);
c906108c
SS
2252 error ("can't read DWARF data");
2253 }
b8c9b27d 2254 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2255
2256 /* If there is a line number table associated with this compilation unit
2257 then read the size of this fragment in bytes, from the fragment itself.
2258 Allocate a buffer for the fragment and read it in for future
2259 processing. */
2260
2261 lnbase = NULL;
2262 if (LNFOFF (pst))
2263 {
2264 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2265 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2266 != sizeof (lnsizedata)))
c906108c
SS
2267 {
2268 error ("can't read DWARF line number table size");
2269 }
2270 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2271 GET_UNSIGNED, pst->objfile);
c906108c
SS
2272 lnbase = xmalloc (lnsize);
2273 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2274 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2275 {
b8c9b27d 2276 xfree (lnbase);
c906108c
SS
2277 error ("can't read DWARF line numbers");
2278 }
b8c9b27d 2279 make_cleanup (xfree, lnbase);
c906108c
SS
2280 }
2281
c5aa993b 2282 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2283 do_cleanups (back_to);
2284 current_objfile = NULL;
c5aa993b 2285 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2286}
2287
2288/*
2289
c5aa993b 2290 LOCAL FUNCTION
c906108c 2291
c5aa993b 2292 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2293
c5aa993b 2294 SYNOPSIS
c906108c 2295
c5aa993b 2296 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2297
c5aa993b 2298 DESCRIPTION
c906108c 2299
c5aa993b
JM
2300 Called once for each partial symbol table entry that needs to be
2301 expanded into a full symbol table entry.
c906108c 2302
c5aa993b 2303 */
c906108c
SS
2304
2305static void
fba45db2 2306psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2307{
2308 int i;
2309 struct cleanup *old_chain;
c5aa993b 2310
c906108c
SS
2311 if (pst != NULL)
2312 {
2313 if (pst->readin)
2314 {
2315 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2316 pst->filename);
c906108c
SS
2317 }
2318 else
2319 {
2320 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2321 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2322 {
c5aa993b 2323 if (!pst->dependencies[i]->readin)
c906108c
SS
2324 {
2325 /* Inform about additional files that need to be read in. */
2326 if (info_verbose)
2327 {
2328 fputs_filtered (" ", gdb_stdout);
2329 wrap_here ("");
2330 fputs_filtered ("and ", gdb_stdout);
2331 wrap_here ("");
2332 printf_filtered ("%s...",
c5aa993b 2333 pst->dependencies[i]->filename);
c906108c 2334 wrap_here ("");
c5aa993b 2335 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2336 }
c5aa993b 2337 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2338 }
c5aa993b
JM
2339 }
2340 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2341 {
2342 buildsym_init ();
a0b3c4fd 2343 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2344 read_ofile_symtab (pst);
2345 if (info_verbose)
2346 {
2347 printf_filtered ("%d DIE's, sorting...", diecount);
2348 wrap_here ("");
2349 gdb_flush (gdb_stdout);
2350 }
c906108c
SS
2351 do_cleanups (old_chain);
2352 }
c5aa993b 2353 pst->readin = 1;
c906108c
SS
2354 }
2355 }
2356}
2357
2358/*
2359
c5aa993b 2360 LOCAL FUNCTION
c906108c 2361
c5aa993b 2362 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2363
c5aa993b 2364 SYNOPSIS
c906108c 2365
c5aa993b 2366 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2367
c5aa993b 2368 DESCRIPTION
c906108c 2369
c5aa993b
JM
2370 This is the DWARF support entry point for building a full symbol
2371 table entry from a partial symbol table entry. We are passed a
2372 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2373
c5aa993b 2374 */
c906108c
SS
2375
2376static void
fba45db2 2377dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2378{
2379
2380 if (pst != NULL)
2381 {
c5aa993b 2382 if (pst->readin)
c906108c
SS
2383 {
2384 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2385 pst->filename);
c906108c
SS
2386 }
2387 else
2388 {
c5aa993b 2389 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2390 {
2391 /* Print the message now, before starting serious work, to avoid
c5aa993b 2392 disconcerting pauses. */
c906108c
SS
2393 if (info_verbose)
2394 {
2395 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2396 pst->filename);
c906108c
SS
2397 gdb_flush (gdb_stdout);
2398 }
c5aa993b 2399
c906108c 2400 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2401
2402#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2403 we need to do an equivalent or is this something peculiar to
2404 stabs/a.out format.
2405 Match with global symbols. This only needs to be done once,
2406 after all of the symtabs and dependencies have been read in.
2407 */
2408 scan_file_globals (pst->objfile);
c906108c 2409#endif
c5aa993b 2410
c906108c
SS
2411 /* Finish up the verbose info message. */
2412 if (info_verbose)
2413 {
2414 printf_filtered ("done.\n");
2415 gdb_flush (gdb_stdout);
2416 }
2417 }
2418 }
2419 }
2420}
2421
2422/*
2423
c5aa993b 2424 LOCAL FUNCTION
c906108c 2425
c5aa993b 2426 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2427
c5aa993b 2428 DESCRIPTION
c906108c 2429
c5aa993b
JM
2430 Given pointer to a DIE that is known to be for an enumeration,
2431 extract the symbolic names of the enumeration members and add
2432 partial symbols for them.
2433 */
c906108c
SS
2434
2435static void
fba45db2 2436add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2437{
2438 char *scan;
2439 char *listend;
2440 unsigned short blocksz;
2441 int nbytes;
c5aa993b 2442
b59661bd
AC
2443 scan = dip->at_element_list;
2444 if (scan != NULL)
c906108c 2445 {
c5aa993b 2446 if (dip->short_element_list)
c906108c
SS
2447 {
2448 nbytes = attribute_size (AT_short_element_list);
2449 }
2450 else
2451 {
2452 nbytes = attribute_size (AT_element_list);
2453 }
2454 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2455 scan += nbytes;
2456 listend = scan + blocksz;
2457 while (scan < listend)
2458 {
2459 scan += TARGET_FT_LONG_SIZE (objfile);
176620f1 2460 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
c5aa993b 2461 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2462 objfile);
2463 scan += strlen (scan) + 1;
2464 }
2465 }
2466}
2467
2468/*
2469
c5aa993b 2470 LOCAL FUNCTION
c906108c 2471
c5aa993b 2472 add_partial_symbol -- add symbol to partial symbol table
c906108c 2473
c5aa993b 2474 DESCRIPTION
c906108c 2475
c5aa993b
JM
2476 Given a DIE, if it is one of the types that we want to
2477 add to a partial symbol table, finish filling in the die info
2478 and then add a partial symbol table entry for it.
c906108c 2479
c5aa993b 2480 NOTES
c906108c 2481
c5aa993b
JM
2482 The caller must ensure that the DIE has a valid name attribute.
2483 */
c906108c
SS
2484
2485static void
fba45db2 2486add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2487{
c5aa993b 2488 switch (dip->die_tag)
c906108c
SS
2489 {
2490 case TAG_global_subroutine:
c5aa993b 2491 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2492 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2493 &objfile->global_psymbols,
2494 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2495 break;
2496 case TAG_global_variable:
c5aa993b 2497 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2498 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2499 &objfile->global_psymbols,
c906108c
SS
2500 0, 0, cu_language, objfile);
2501 break;
2502 case TAG_subroutine:
c5aa993b 2503 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2504 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2505 &objfile->static_psymbols,
2506 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2507 break;
2508 case TAG_local_variable:
c5aa993b 2509 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2510 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2511 &objfile->static_psymbols,
c906108c
SS
2512 0, 0, cu_language, objfile);
2513 break;
2514 case TAG_typedef:
c5aa993b 2515 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2516 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2517 &objfile->static_psymbols,
c906108c
SS
2518 0, 0, cu_language, objfile);
2519 break;
2520 case TAG_class_type:
2521 case TAG_structure_type:
2522 case TAG_union_type:
2523 case TAG_enumeration_type:
2524 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2525 if (!dip->has_at_byte_size)
c906108c 2526 break;
c5aa993b 2527 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2528 STRUCT_DOMAIN, LOC_TYPEDEF,
c5aa993b 2529 &objfile->static_psymbols,
c906108c
SS
2530 0, 0, cu_language, objfile);
2531 if (cu_language == language_cplus)
2532 {
2533 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2534 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2535 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2536 &objfile->static_psymbols,
c906108c
SS
2537 0, 0, cu_language, objfile);
2538 }
2539 break;
2540 }
2541}
9846de1b 2542/* *INDENT-OFF* */
c906108c
SS
2543/*
2544
2545LOCAL FUNCTION
2546
2547 scan_partial_symbols -- scan DIE's within a single compilation unit
2548
2549DESCRIPTION
2550
2551 Process the DIE's within a single compilation unit, looking for
2552 interesting DIE's that contribute to the partial symbol table entry
2553 for this compilation unit.
2554
2555NOTES
2556
2557 There are some DIE's that may appear both at file scope and within
2558 the scope of a function. We are only interested in the ones at file
2559 scope, and the only way to tell them apart is to keep track of the
2560 scope. For example, consider the test case:
2561
2562 static int i;
2563 main () { int j; }
2564
2565 for which the relevant DWARF segment has the structure:
2566
2567 0x51:
2568 0x23 global subrtn sibling 0x9b
2569 name main
2570 fund_type FT_integer
2571 low_pc 0x800004cc
2572 high_pc 0x800004d4
2573
2574 0x74:
2575 0x23 local var sibling 0x97
2576 name j
2577 fund_type FT_integer
2578 location OP_BASEREG 0xe
2579 OP_CONST 0xfffffffc
2580 OP_ADD
2581 0x97:
2582 0x4
2583
2584 0x9b:
2585 0x1d local var sibling 0xb8
2586 name i
2587 fund_type FT_integer
2588 location OP_ADDR 0x800025dc
2589
2590 0xb8:
2591 0x4
2592
2593 We want to include the symbol 'i' in the partial symbol table, but
2594 not the symbol 'j'. In essence, we want to skip all the dies within
2595 the scope of a TAG_global_subroutine DIE.
2596
2597 Don't attempt to add anonymous structures or unions since they have
2598 no name. Anonymous enumerations however are processed, because we
2599 want to extract their member names (the check for a tag name is
2600 done later).
2601
2602 Also, for variables and subroutines, check that this is the place
2603 where the actual definition occurs, rather than just a reference
2604 to an external.
2605 */
9846de1b 2606/* *INDENT-ON* */
c906108c 2607
c5aa993b
JM
2608
2609
c906108c 2610static void
fba45db2 2611scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2612{
2613 char *nextdie;
2614 char *temp;
2615 struct dieinfo di;
c5aa993b 2616
c906108c
SS
2617 while (thisdie < enddie)
2618 {
2619 basicdieinfo (&di, thisdie, objfile);
2620 if (di.die_length < SIZEOF_DIE_LENGTH)
2621 {
2622 break;
2623 }
2624 else
2625 {
2626 nextdie = thisdie + di.die_length;
2627 /* To avoid getting complete die information for every die, we
2628 only do it (below) for the cases we are interested in. */
2629 switch (di.die_tag)
2630 {
2631 case TAG_global_subroutine:
2632 case TAG_subroutine:
2633 completedieinfo (&di, objfile);
2634 if (di.at_name && (di.has_at_low_pc || di.at_location))
2635 {
2636 add_partial_symbol (&di, objfile);
2637 /* If there is a sibling attribute, adjust the nextdie
2638 pointer to skip the entire scope of the subroutine.
2639 Apply some sanity checking to make sure we don't
2640 overrun or underrun the range of remaining DIE's */
2641 if (di.at_sibling != 0)
2642 {
2643 temp = dbbase + di.at_sibling - dbroff;
2644 if ((temp < thisdie) || (temp >= enddie))
2645 {
23136709
KB
2646 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2647 di.at_sibling);
c906108c
SS
2648 }
2649 else
2650 {
2651 nextdie = temp;
2652 }
2653 }
2654 }
2655 break;
2656 case TAG_global_variable:
2657 case TAG_local_variable:
2658 completedieinfo (&di, objfile);
2659 if (di.at_name && (di.has_at_low_pc || di.at_location))
2660 {
2661 add_partial_symbol (&di, objfile);
2662 }
2663 break;
2664 case TAG_typedef:
2665 case TAG_class_type:
2666 case TAG_structure_type:
2667 case TAG_union_type:
2668 completedieinfo (&di, objfile);
2669 if (di.at_name)
2670 {
2671 add_partial_symbol (&di, objfile);
2672 }
2673 break;
2674 case TAG_enumeration_type:
2675 completedieinfo (&di, objfile);
2676 if (di.at_name)
2677 {
2678 add_partial_symbol (&di, objfile);
2679 }
2680 add_enum_psymbol (&di, objfile);
2681 break;
2682 }
2683 }
2684 thisdie = nextdie;
2685 }
2686}
2687
2688/*
2689
c5aa993b 2690 LOCAL FUNCTION
c906108c 2691
c5aa993b 2692 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2693
c5aa993b 2694 DESCRIPTION
c906108c 2695
c5aa993b
JM
2696 This is the top level dwarf parsing routine for building partial
2697 symbol tables.
c906108c 2698
c5aa993b
JM
2699 It scans from the beginning of the DWARF table looking for the first
2700 TAG_compile_unit DIE, and then follows the sibling chain to locate
2701 each additional TAG_compile_unit DIE.
2702
2703 For each TAG_compile_unit DIE it creates a partial symtab structure,
2704 calls a subordinate routine to collect all the compilation unit's
2705 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2706 new partial symtab structure into the partial symbol table. It also
2707 records the appropriate information in the partial symbol table entry
2708 to allow the chunk of DIE's and line number table for this compilation
2709 unit to be located and re-read later, to generate a complete symbol
2710 table entry for the compilation unit.
2711
2712 Thus it effectively partitions up a chunk of DIE's for multiple
2713 compilation units into smaller DIE chunks and line number tables,
2714 and associates them with a partial symbol table entry.
2715
2716 NOTES
c906108c 2717
c5aa993b
JM
2718 If any compilation unit has no line number table associated with
2719 it for some reason (a missing at_stmt_list attribute, rather than
2720 just one with a value of zero, which is valid) then we ensure that
2721 the recorded file offset is zero so that the routine which later
2722 reads line number table fragments knows that there is no fragment
2723 to read.
c906108c 2724
c5aa993b 2725 RETURNS
c906108c 2726
c5aa993b 2727 Returns no value.
c906108c
SS
2728
2729 */
2730
2731static void
fba45db2
KB
2732scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2733 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2734{
2735 char *nextdie;
2736 struct dieinfo di;
2737 struct partial_symtab *pst;
2738 int culength;
2739 int curoff;
2740 file_ptr curlnoffset;
2741
2742 while (thisdie < enddie)
2743 {
2744 basicdieinfo (&di, thisdie, objfile);
2745 if (di.die_length < SIZEOF_DIE_LENGTH)
2746 {
2747 break;
2748 }
2749 else if (di.die_tag != TAG_compile_unit)
2750 {
2751 nextdie = thisdie + di.die_length;
2752 }
2753 else
2754 {
2755 completedieinfo (&di, objfile);
2756 set_cu_language (&di);
2757 if (di.at_sibling != 0)
2758 {
2759 nextdie = dbbase + di.at_sibling - dbroff;
2760 }
2761 else
2762 {
2763 nextdie = thisdie + di.die_length;
2764 }
2765 curoff = thisdie - dbbase;
2766 culength = nextdie - thisdie;
2767 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2768
2769 /* First allocate a new partial symbol table structure */
2770
2771 pst = start_psymtab_common (objfile, base_section_offsets,
2772 di.at_name, di.at_low_pc,
c5aa993b
JM
2773 objfile->global_psymbols.next,
2774 objfile->static_psymbols.next);
c906108c 2775
c5aa993b
JM
2776 pst->texthigh = di.at_high_pc;
2777 pst->read_symtab_private = (char *)
2778 obstack_alloc (&objfile->psymbol_obstack,
2779 sizeof (struct dwfinfo));
c906108c
SS
2780 DBFOFF (pst) = dbfoff;
2781 DBROFF (pst) = curoff;
2782 DBLENGTH (pst) = culength;
c5aa993b
JM
2783 LNFOFF (pst) = curlnoffset;
2784 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2785
2786 /* Now look for partial symbols */
2787
2788 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2789
c5aa993b
JM
2790 pst->n_global_syms = objfile->global_psymbols.next -
2791 (objfile->global_psymbols.list + pst->globals_offset);
2792 pst->n_static_syms = objfile->static_psymbols.next -
2793 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2794 sort_pst_symbols (pst);
2795 /* If there is already a psymtab or symtab for a file of this name,
2796 remove it. (If there is a symtab, more drastic things also
2797 happen.) This happens in VxWorks. */
c5aa993b 2798 free_named_symtabs (pst->filename);
c906108c 2799 }
c5aa993b 2800 thisdie = nextdie;
c906108c
SS
2801 }
2802}
2803
2804/*
2805
c5aa993b 2806 LOCAL FUNCTION
c906108c 2807
c5aa993b 2808 new_symbol -- make a symbol table entry for a new symbol
c906108c 2809
c5aa993b 2810 SYNOPSIS
c906108c 2811
c5aa993b
JM
2812 static struct symbol *new_symbol (struct dieinfo *dip,
2813 struct objfile *objfile)
c906108c 2814
c5aa993b 2815 DESCRIPTION
c906108c 2816
c5aa993b
JM
2817 Given a pointer to a DWARF information entry, figure out if we need
2818 to make a symbol table entry for it, and if so, create a new entry
2819 and return a pointer to it.
c906108c
SS
2820 */
2821
2822static struct symbol *
fba45db2 2823new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2824{
2825 struct symbol *sym = NULL;
c5aa993b
JM
2826
2827 if (dip->at_name != NULL)
c906108c 2828 {
c5aa993b 2829 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2830 sizeof (struct symbol));
2831 OBJSTAT (objfile, n_syms++);
2832 memset (sym, 0, sizeof (struct symbol));
c906108c 2833 /* default assumptions */
176620f1 2834 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2835 SYMBOL_CLASS (sym) = LOC_STATIC;
2836 SYMBOL_TYPE (sym) = decode_die_type (dip);
2837
2838 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2839 demangled form for future reference. This is a typical time versus
2840 space tradeoff, that was decided in favor of time because it sped up
2841 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2842
2843 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2844 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2845 switch (dip->die_tag)
c906108c
SS
2846 {
2847 case TAG_label:
c5aa993b 2848 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2849 SYMBOL_CLASS (sym) = LOC_LABEL;
2850 break;
2851 case TAG_global_subroutine:
2852 case TAG_subroutine:
c5aa993b 2853 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2854 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2855 if (dip->at_prototyped)
c906108c
SS
2856 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2857 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2858 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2859 {
2860 add_symbol_to_list (sym, &global_symbols);
2861 }
2862 else
2863 {
2864 add_symbol_to_list (sym, list_in_scope);
2865 }
2866 break;
2867 case TAG_global_variable:
c5aa993b 2868 if (dip->at_location != NULL)
c906108c
SS
2869 {
2870 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2871 add_symbol_to_list (sym, &global_symbols);
2872 SYMBOL_CLASS (sym) = LOC_STATIC;
2873 SYMBOL_VALUE (sym) += baseaddr;
2874 }
2875 break;
2876 case TAG_local_variable:
c5aa993b 2877 if (dip->at_location != NULL)
c906108c
SS
2878 {
2879 int loc = locval (dip);
c5aa993b 2880 if (dip->optimized_out)
c906108c
SS
2881 {
2882 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2883 }
c5aa993b 2884 else if (dip->isreg)
c906108c
SS
2885 {
2886 SYMBOL_CLASS (sym) = LOC_REGISTER;
2887 }
c5aa993b 2888 else if (dip->offreg)
c906108c
SS
2889 {
2890 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2891 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2892 }
2893 else
2894 {
2895 SYMBOL_CLASS (sym) = LOC_STATIC;
2896 SYMBOL_VALUE (sym) += baseaddr;
2897 }
2898 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2899 {
2900 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2901 which may store to a bigger location than SYMBOL_VALUE. */
2902 SYMBOL_VALUE_ADDRESS (sym) = loc;
2903 }
2904 else
2905 {
2906 SYMBOL_VALUE (sym) = loc;
2907 }
2908 add_symbol_to_list (sym, list_in_scope);
2909 }
2910 break;
2911 case TAG_formal_parameter:
c5aa993b 2912 if (dip->at_location != NULL)
c906108c
SS
2913 {
2914 SYMBOL_VALUE (sym) = locval (dip);
2915 }
2916 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2917 if (dip->isreg)
c906108c
SS
2918 {
2919 SYMBOL_CLASS (sym) = LOC_REGPARM;
2920 }
c5aa993b 2921 else if (dip->offreg)
c906108c
SS
2922 {
2923 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2924 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2925 }
2926 else
2927 {
2928 SYMBOL_CLASS (sym) = LOC_ARG;
2929 }
2930 break;
2931 case TAG_unspecified_parameters:
2932 /* From varargs functions; gdb doesn't seem to have any interest in
2933 this information, so just ignore it for now. (FIXME?) */
2934 break;
2935 case TAG_class_type:
2936 case TAG_structure_type:
2937 case TAG_union_type:
2938 case TAG_enumeration_type:
2939 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2940 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c
SS
2941 add_symbol_to_list (sym, list_in_scope);
2942 break;
2943 case TAG_typedef:
2944 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2945 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2946 add_symbol_to_list (sym, list_in_scope);
2947 break;
2948 default:
2949 /* Not a tag we recognize. Hopefully we aren't processing trash
2950 data, but since we must specifically ignore things we don't
2951 recognize, there is nothing else we should do at this point. */
2952 break;
2953 }
2954 }
2955 return (sym);
2956}
2957
2958/*
2959
c5aa993b 2960 LOCAL FUNCTION
c906108c 2961
c5aa993b 2962 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2963
c5aa993b 2964 SYNOPSIS
c906108c 2965
c5aa993b
JM
2966 static void synthesize_typedef (struct dieinfo *dip,
2967 struct objfile *objfile,
2968 struct type *type);
c906108c 2969
c5aa993b 2970 DESCRIPTION
c906108c 2971
c5aa993b
JM
2972 Given a pointer to a DWARF information entry, synthesize a typedef
2973 for the name in the DIE, using the specified type.
c906108c 2974
c5aa993b
JM
2975 This is used for C++ class, structs, unions, and enumerations to
2976 set up the tag name as a type.
c906108c
SS
2977
2978 */
2979
2980static void
fba45db2
KB
2981synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
2982 struct type *type)
c906108c
SS
2983{
2984 struct symbol *sym = NULL;
c5aa993b
JM
2985
2986 if (dip->at_name != NULL)
c906108c
SS
2987 {
2988 sym = (struct symbol *)
c5aa993b 2989 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
2990 OBJSTAT (objfile, n_syms++);
2991 memset (sym, 0, sizeof (struct symbol));
22abf04a 2992 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
2993 &objfile->symbol_obstack);
2994 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
2995 SYMBOL_TYPE (sym) = type;
2996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2997 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2998 add_symbol_to_list (sym, list_in_scope);
2999 }
3000}
3001
3002/*
3003
c5aa993b 3004 LOCAL FUNCTION
c906108c 3005
c5aa993b 3006 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3007
c5aa993b 3008 SYNOPSIS
c906108c 3009
c5aa993b 3010 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3011
c5aa993b 3012 DESCRIPTION
c906108c 3013
c5aa993b
JM
3014 Decode a block of data containing a modified fundamental
3015 type specification. TYPEDATA is a pointer to the block,
3016 which starts with a length containing the size of the rest
3017 of the block. At the end of the block is a fundmental type
3018 code value that gives the fundamental type. Everything
3019 in between are type modifiers.
c906108c 3020
c5aa993b
JM
3021 We simply compute the number of modifiers and call the general
3022 function decode_modified_type to do the actual work.
3023 */
c906108c
SS
3024
3025static struct type *
fba45db2 3026decode_mod_fund_type (char *typedata)
c906108c
SS
3027{
3028 struct type *typep = NULL;
3029 unsigned short modcount;
3030 int nbytes;
c5aa993b 3031
c906108c
SS
3032 /* Get the total size of the block, exclusive of the size itself */
3033
3034 nbytes = attribute_size (AT_mod_fund_type);
3035 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3036 typedata += nbytes;
3037
3038 /* Deduct the size of the fundamental type bytes at the end of the block. */
3039
3040 modcount -= attribute_size (AT_fund_type);
3041
3042 /* Now do the actual decoding */
3043
3044 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3045 return (typep);
3046}
3047
3048/*
3049
c5aa993b 3050 LOCAL FUNCTION
c906108c 3051
c5aa993b 3052 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3053
c5aa993b 3054 SYNOPSIS
c906108c 3055
c5aa993b 3056 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3057
c5aa993b 3058 DESCRIPTION
c906108c 3059
c5aa993b
JM
3060 Decode a block of data containing a modified user defined
3061 type specification. TYPEDATA is a pointer to the block,
3062 which consists of a two byte length, containing the size
3063 of the rest of the block. At the end of the block is a
3064 four byte value that gives a reference to a user defined type.
3065 Everything in between are type modifiers.
c906108c 3066
c5aa993b
JM
3067 We simply compute the number of modifiers and call the general
3068 function decode_modified_type to do the actual work.
3069 */
c906108c
SS
3070
3071static struct type *
fba45db2 3072decode_mod_u_d_type (char *typedata)
c906108c
SS
3073{
3074 struct type *typep = NULL;
3075 unsigned short modcount;
3076 int nbytes;
c5aa993b 3077
c906108c
SS
3078 /* Get the total size of the block, exclusive of the size itself */
3079
3080 nbytes = attribute_size (AT_mod_u_d_type);
3081 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3082 typedata += nbytes;
3083
3084 /* Deduct the size of the reference type bytes at the end of the block. */
3085
3086 modcount -= attribute_size (AT_user_def_type);
3087
3088 /* Now do the actual decoding */
3089
3090 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3091 return (typep);
3092}
3093
3094/*
3095
c5aa993b 3096 LOCAL FUNCTION
c906108c 3097
c5aa993b 3098 decode_modified_type -- decode modified user or fundamental type
c906108c 3099
c5aa993b 3100 SYNOPSIS
c906108c 3101
c5aa993b
JM
3102 static struct type *decode_modified_type (char *modifiers,
3103 unsigned short modcount, int mtype)
c906108c 3104
c5aa993b 3105 DESCRIPTION
c906108c 3106
c5aa993b
JM
3107 Decode a modified type, either a modified fundamental type or
3108 a modified user defined type. MODIFIERS is a pointer to the
3109 block of bytes that define MODCOUNT modifiers. Immediately
3110 following the last modifier is a short containing the fundamental
3111 type or a long containing the reference to the user defined
3112 type. Which one is determined by MTYPE, which is either
3113 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3114 type we are generating.
c906108c 3115
c5aa993b
JM
3116 We call ourself recursively to generate each modified type,`
3117 until MODCOUNT reaches zero, at which point we have consumed
3118 all the modifiers and generate either the fundamental type or
3119 user defined type. When the recursion unwinds, each modifier
3120 is applied in turn to generate the full modified type.
3121
3122 NOTES
c906108c 3123
c5aa993b
JM
3124 If we find a modifier that we don't recognize, and it is not one
3125 of those reserved for application specific use, then we issue a
3126 warning and simply ignore the modifier.
c906108c 3127
c5aa993b 3128 BUGS
c906108c 3129
c5aa993b 3130 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3131
3132 */
3133
3134static struct type *
fba45db2 3135decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3136{
3137 struct type *typep = NULL;
3138 unsigned short fundtype;
3139 DIE_REF die_ref;
3140 char modifier;
3141 int nbytes;
c5aa993b 3142
c906108c
SS
3143 if (modcount == 0)
3144 {
3145 switch (mtype)
3146 {
3147 case AT_mod_fund_type:
3148 nbytes = attribute_size (AT_fund_type);
3149 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3150 current_objfile);
3151 typep = decode_fund_type (fundtype);
3152 break;
3153 case AT_mod_u_d_type:
3154 nbytes = attribute_size (AT_user_def_type);
3155 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3156 current_objfile);
b59661bd
AC
3157 typep = lookup_utype (die_ref);
3158 if (typep == NULL)
c906108c
SS
3159 {
3160 typep = alloc_utype (die_ref, NULL);
3161 }
3162 break;
3163 default:
23136709
KB
3164 complaint (&symfile_complaints,
3165 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3166 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3167 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3168 break;
3169 }
3170 }
3171 else
3172 {
3173 modifier = *modifiers++;
3174 typep = decode_modified_type (modifiers, --modcount, mtype);
3175 switch (modifier)
3176 {
c5aa993b
JM
3177 case MOD_pointer_to:
3178 typep = lookup_pointer_type (typep);
3179 break;
3180 case MOD_reference_to:
3181 typep = lookup_reference_type (typep);
3182 break;
3183 case MOD_const:
23136709
KB
3184 complaint (&symfile_complaints,
3185 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3186 DIE_NAME); /* FIXME */
c5aa993b
JM
3187 break;
3188 case MOD_volatile:
23136709
KB
3189 complaint (&symfile_complaints,
3190 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3191 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3192 break;
3193 default:
3194 if (!(MOD_lo_user <= (unsigned char) modifier
3195 && (unsigned char) modifier <= MOD_hi_user))
3196 {
23136709
KB
3197 complaint (&symfile_complaints,
3198 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3199 DIE_NAME, modifier);
c5aa993b
JM
3200 }
3201 break;
c906108c
SS
3202 }
3203 }
3204 return (typep);
3205}
3206
3207/*
3208
c5aa993b 3209 LOCAL FUNCTION
c906108c 3210
c5aa993b 3211 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3212
c5aa993b 3213 DESCRIPTION
c906108c 3214
c5aa993b
JM
3215 Given an integer that is one of the fundamental DWARF types,
3216 translate it to one of the basic internal gdb types and return
3217 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3218
c5aa993b 3219 NOTES
c906108c 3220
c5aa993b
JM
3221 For robustness, if we are asked to translate a fundamental
3222 type that we are unprepared to deal with, we return int so
3223 callers can always depend upon a valid type being returned,
3224 and so gdb may at least do something reasonable by default.
3225 If the type is not in the range of those types defined as
3226 application specific types, we also issue a warning.
3227 */
c906108c
SS
3228
3229static struct type *
fba45db2 3230decode_fund_type (unsigned int fundtype)
c906108c
SS
3231{
3232 struct type *typep = NULL;
c5aa993b 3233
c906108c
SS
3234 switch (fundtype)
3235 {
3236
3237 case FT_void:
3238 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3239 break;
c5aa993b 3240
c906108c
SS
3241 case FT_boolean: /* Was FT_set in AT&T version */
3242 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3243 break;
3244
3245 case FT_pointer: /* (void *) */
3246 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3247 typep = lookup_pointer_type (typep);
3248 break;
c5aa993b 3249
c906108c
SS
3250 case FT_char:
3251 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3252 break;
c5aa993b 3253
c906108c
SS
3254 case FT_signed_char:
3255 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3256 break;
3257
3258 case FT_unsigned_char:
3259 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3260 break;
c5aa993b 3261
c906108c
SS
3262 case FT_short:
3263 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3264 break;
3265
3266 case FT_signed_short:
3267 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3268 break;
c5aa993b 3269
c906108c
SS
3270 case FT_unsigned_short:
3271 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3272 break;
c5aa993b 3273
c906108c
SS
3274 case FT_integer:
3275 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3276 break;
3277
3278 case FT_signed_integer:
3279 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3280 break;
c5aa993b 3281
c906108c
SS
3282 case FT_unsigned_integer:
3283 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3284 break;
c5aa993b 3285
c906108c
SS
3286 case FT_long:
3287 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3288 break;
3289
3290 case FT_signed_long:
3291 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3292 break;
c5aa993b 3293
c906108c
SS
3294 case FT_unsigned_long:
3295 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3296 break;
c5aa993b 3297
c906108c
SS
3298 case FT_long_long:
3299 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3300 break;
3301
3302 case FT_signed_long_long:
3303 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3304 break;
3305
3306 case FT_unsigned_long_long:
3307 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3308 break;
3309
3310 case FT_float:
3311 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3312 break;
c5aa993b 3313
c906108c
SS
3314 case FT_dbl_prec_float:
3315 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3316 break;
c5aa993b 3317
c906108c
SS
3318 case FT_ext_prec_float:
3319 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3320 break;
c5aa993b 3321
c906108c
SS
3322 case FT_complex:
3323 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3324 break;
c5aa993b 3325
c906108c
SS
3326 case FT_dbl_prec_complex:
3327 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3328 break;
c5aa993b 3329
c906108c
SS
3330 case FT_ext_prec_complex:
3331 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3332 break;
c5aa993b 3333
c906108c
SS
3334 }
3335
3336 if (typep == NULL)
3337 {
3338 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3339 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3340 {
23136709
KB
3341 complaint (&symfile_complaints,
3342 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3343 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3344 }
3345 }
c5aa993b 3346
c906108c
SS
3347 return (typep);
3348}
3349
3350/*
3351
c5aa993b 3352 LOCAL FUNCTION
c906108c 3353
c5aa993b 3354 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3355
c5aa993b 3356 DESCRIPTION
c906108c 3357
c5aa993b
JM
3358 Given a pointer to a string and a pointer to an obstack, allocates
3359 a fresh copy of the string on the specified obstack.
c906108c 3360
c5aa993b 3361 */
c906108c
SS
3362
3363static char *
fba45db2 3364create_name (char *name, struct obstack *obstackp)
c906108c
SS
3365{
3366 int length;
3367 char *newname;
3368
3369 length = strlen (name) + 1;
3370 newname = (char *) obstack_alloc (obstackp, length);
3371 strcpy (newname, name);
3372 return (newname);
3373}
3374
3375/*
3376
c5aa993b 3377 LOCAL FUNCTION
c906108c 3378
c5aa993b 3379 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3380
c5aa993b 3381 SYNOPSIS
c906108c 3382
c5aa993b
JM
3383 void basicdieinfo (char *diep, struct dieinfo *dip,
3384 struct objfile *objfile)
c906108c 3385
c5aa993b 3386 DESCRIPTION
c906108c 3387
c5aa993b
JM
3388 Given a pointer to raw DIE data, and a pointer to an instance of a
3389 die info structure, this function extracts the basic information
3390 from the DIE data required to continue processing this DIE, along
3391 with some bookkeeping information about the DIE.
c906108c 3392
c5aa993b
JM
3393 The information we absolutely must have includes the DIE tag,
3394 and the DIE length. If we need the sibling reference, then we
3395 will have to call completedieinfo() to process all the remaining
3396 DIE information.
c906108c 3397
c5aa993b
JM
3398 Note that since there is no guarantee that the data is properly
3399 aligned in memory for the type of access required (indirection
3400 through anything other than a char pointer), and there is no
3401 guarantee that it is in the same byte order as the gdb host,
3402 we call a function which deals with both alignment and byte
3403 swapping issues. Possibly inefficient, but quite portable.
c906108c 3404
c5aa993b
JM
3405 We also take care of some other basic things at this point, such
3406 as ensuring that the instance of the die info structure starts
3407 out completely zero'd and that curdie is initialized for use
3408 in error reporting if we have a problem with the current die.
c906108c 3409
c5aa993b
JM
3410 NOTES
3411
3412 All DIE's must have at least a valid length, thus the minimum
3413 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3414 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3415 are forced to be TAG_padding DIES.
c906108c 3416
c5aa993b
JM
3417 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3418 that if a padding DIE is used for alignment and the amount needed is
3419 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3420 enough to align to the next alignment boundry.
3421
3422 We do some basic sanity checking here, such as verifying that the
3423 length of the die would not cause it to overrun the recorded end of
3424 the buffer holding the DIE info. If we find a DIE that is either
3425 too small or too large, we force it's length to zero which should
3426 cause the caller to take appropriate action.
c906108c
SS
3427 */
3428
3429static void
fba45db2 3430basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3431{
3432 curdie = dip;
3433 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3434 dip->die = diep;
3435 dip->die_ref = dbroff + (diep - dbbase);
3436 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3437 objfile);
3438 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3439 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3440 {
23136709
KB
3441 complaint (&symfile_complaints,
3442 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3443 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3444 dip->die_length = 0;
c906108c 3445 }
c5aa993b 3446 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3447 {
c5aa993b 3448 dip->die_tag = TAG_padding;
c906108c
SS
3449 }
3450 else
3451 {
3452 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3453 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3454 objfile);
c906108c
SS
3455 }
3456}
3457
3458/*
3459
c5aa993b 3460 LOCAL FUNCTION
c906108c 3461
c5aa993b 3462 completedieinfo -- finish reading the information for a given DIE
c906108c 3463
c5aa993b 3464 SYNOPSIS
c906108c 3465
c5aa993b 3466 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3467
c5aa993b 3468 DESCRIPTION
c906108c 3469
c5aa993b
JM
3470 Given a pointer to an already partially initialized die info structure,
3471 scan the raw DIE data and finish filling in the die info structure
3472 from the various attributes found.
c906108c 3473
c5aa993b
JM
3474 Note that since there is no guarantee that the data is properly
3475 aligned in memory for the type of access required (indirection
3476 through anything other than a char pointer), and there is no
3477 guarantee that it is in the same byte order as the gdb host,
3478 we call a function which deals with both alignment and byte
3479 swapping issues. Possibly inefficient, but quite portable.
c906108c 3480
c5aa993b
JM
3481 NOTES
3482
3483 Each time we are called, we increment the diecount variable, which
3484 keeps an approximate count of the number of dies processed for
3485 each compilation unit. This information is presented to the user
3486 if the info_verbose flag is set.
c906108c
SS
3487
3488 */
3489
3490static void
fba45db2 3491completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3492{
3493 char *diep; /* Current pointer into raw DIE data */
3494 char *end; /* Terminate DIE scan here */
3495 unsigned short attr; /* Current attribute being scanned */
3496 unsigned short form; /* Form of the attribute */
3497 int nbytes; /* Size of next field to read */
c5aa993b 3498
c906108c 3499 diecount++;
c5aa993b
JM
3500 diep = dip->die;
3501 end = diep + dip->die_length;
c906108c
SS
3502 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3503 while (diep < end)
3504 {
3505 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3506 diep += SIZEOF_ATTRIBUTE;
b59661bd
AC
3507 nbytes = attribute_size (attr);
3508 if (nbytes == -1)
c906108c 3509 {
23136709
KB
3510 complaint (&symfile_complaints,
3511 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3512 DIE_ID, DIE_NAME);
c906108c
SS
3513 diep = end;
3514 continue;
3515 }
3516 switch (attr)
3517 {
3518 case AT_fund_type:
c5aa993b
JM
3519 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3520 objfile);
c906108c
SS
3521 break;
3522 case AT_ordering:
c5aa993b
JM
3523 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3524 objfile);
c906108c
SS
3525 break;
3526 case AT_bit_offset:
c5aa993b
JM
3527 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3528 objfile);
c906108c
SS
3529 break;
3530 case AT_sibling:
c5aa993b
JM
3531 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3532 objfile);
c906108c
SS
3533 break;
3534 case AT_stmt_list:
c5aa993b
JM
3535 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3536 objfile);
3537 dip->has_at_stmt_list = 1;
c906108c
SS
3538 break;
3539 case AT_low_pc:
c5aa993b
JM
3540 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3541 objfile);
3542 dip->at_low_pc += baseaddr;
3543 dip->has_at_low_pc = 1;
c906108c
SS
3544 break;
3545 case AT_high_pc:
c5aa993b
JM
3546 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3547 objfile);
3548 dip->at_high_pc += baseaddr;
c906108c
SS
3549 break;
3550 case AT_language:
c5aa993b
JM
3551 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 objfile);
c906108c
SS
3553 break;
3554 case AT_user_def_type:
c5aa993b
JM
3555 dip->at_user_def_type = target_to_host (diep, nbytes,
3556 GET_UNSIGNED, objfile);
c906108c
SS
3557 break;
3558 case AT_byte_size:
c5aa993b
JM
3559 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3560 objfile);
3561 dip->has_at_byte_size = 1;
c906108c
SS
3562 break;
3563 case AT_bit_size:
c5aa993b
JM
3564 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 objfile);
c906108c
SS
3566 break;
3567 case AT_member:
c5aa993b
JM
3568 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 objfile);
c906108c
SS
3570 break;
3571 case AT_discr:
c5aa993b
JM
3572 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3573 objfile);
c906108c
SS
3574 break;
3575 case AT_location:
c5aa993b 3576 dip->at_location = diep;
c906108c
SS
3577 break;
3578 case AT_mod_fund_type:
c5aa993b 3579 dip->at_mod_fund_type = diep;
c906108c
SS
3580 break;
3581 case AT_subscr_data:
c5aa993b 3582 dip->at_subscr_data = diep;
c906108c
SS
3583 break;
3584 case AT_mod_u_d_type:
c5aa993b 3585 dip->at_mod_u_d_type = diep;
c906108c
SS
3586 break;
3587 case AT_element_list:
c5aa993b
JM
3588 dip->at_element_list = diep;
3589 dip->short_element_list = 0;
c906108c
SS
3590 break;
3591 case AT_short_element_list:
c5aa993b
JM
3592 dip->at_element_list = diep;
3593 dip->short_element_list = 1;
c906108c
SS
3594 break;
3595 case AT_discr_value:
c5aa993b 3596 dip->at_discr_value = diep;
c906108c
SS
3597 break;
3598 case AT_string_length:
c5aa993b 3599 dip->at_string_length = diep;
c906108c
SS
3600 break;
3601 case AT_name:
c5aa993b 3602 dip->at_name = diep;
c906108c
SS
3603 break;
3604 case AT_comp_dir:
3605 /* For now, ignore any "hostname:" portion, since gdb doesn't
3606 know how to deal with it. (FIXME). */
c5aa993b
JM
3607 dip->at_comp_dir = strrchr (diep, ':');
3608 if (dip->at_comp_dir != NULL)
c906108c 3609 {
c5aa993b 3610 dip->at_comp_dir++;
c906108c
SS
3611 }
3612 else
3613 {
c5aa993b 3614 dip->at_comp_dir = diep;
c906108c
SS
3615 }
3616 break;
3617 case AT_producer:
c5aa993b 3618 dip->at_producer = diep;
c906108c
SS
3619 break;
3620 case AT_start_scope:
c5aa993b
JM
3621 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3622 objfile);
c906108c
SS
3623 break;
3624 case AT_stride_size:
c5aa993b
JM
3625 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3626 objfile);
c906108c
SS
3627 break;
3628 case AT_src_info:
c5aa993b
JM
3629 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
c906108c
SS
3631 break;
3632 case AT_prototyped:
c5aa993b 3633 dip->at_prototyped = diep;
c906108c
SS
3634 break;
3635 default:
3636 /* Found an attribute that we are unprepared to handle. However
3637 it is specifically one of the design goals of DWARF that
3638 consumers should ignore unknown attributes. As long as the
3639 form is one that we recognize (so we know how to skip it),
3640 we can just ignore the unknown attribute. */
3641 break;
3642 }
3643 form = FORM_FROM_ATTR (attr);
3644 switch (form)
3645 {
3646 case FORM_DATA2:
3647 diep += 2;
3648 break;
3649 case FORM_DATA4:
3650 case FORM_REF:
3651 diep += 4;
3652 break;
3653 case FORM_DATA8:
3654 diep += 8;
3655 break;
3656 case FORM_ADDR:
3657 diep += TARGET_FT_POINTER_SIZE (objfile);
3658 break;
3659 case FORM_BLOCK2:
3660 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3661 break;
3662 case FORM_BLOCK4:
3663 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3664 break;
3665 case FORM_STRING:
3666 diep += strlen (diep) + 1;
3667 break;
3668 default:
23136709 3669 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3670 diep = end;
3671 break;
3672 }
3673 }
3674}
3675
3676/*
3677
c5aa993b 3678 LOCAL FUNCTION
c906108c 3679
c5aa993b 3680 target_to_host -- swap in target data to host
c906108c 3681
c5aa993b 3682 SYNOPSIS
c906108c 3683
c5aa993b
JM
3684 target_to_host (char *from, int nbytes, int signextend,
3685 struct objfile *objfile)
c906108c 3686
c5aa993b 3687 DESCRIPTION
c906108c 3688
c5aa993b
JM
3689 Given pointer to data in target format in FROM, a byte count for
3690 the size of the data in NBYTES, a flag indicating whether or not
3691 the data is signed in SIGNEXTEND, and a pointer to the current
3692 objfile in OBJFILE, convert the data to host format and return
3693 the converted value.
c906108c 3694
c5aa993b 3695 NOTES
c906108c 3696
c5aa993b
JM
3697 FIXME: If we read data that is known to be signed, and expect to
3698 use it as signed data, then we need to explicitly sign extend the
3699 result until the bfd library is able to do this for us.
c906108c 3700
c5aa993b 3701 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3702
3703 */
3704
3705static CORE_ADDR
fba45db2
KB
3706target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3707 struct objfile *objfile)
c906108c
SS
3708{
3709 CORE_ADDR rtnval;
3710
3711 switch (nbytes)
3712 {
c5aa993b
JM
3713 case 8:
3714 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3715 break;
3716 case 4:
3717 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3718 break;
3719 case 2:
3720 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3721 break;
3722 case 1:
3723 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3724 break;
3725 default:
23136709
KB
3726 complaint (&symfile_complaints,
3727 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3728 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3729 rtnval = 0;
3730 break;
c906108c
SS
3731 }
3732 return (rtnval);
3733}
3734
3735/*
3736
c5aa993b 3737 LOCAL FUNCTION
c906108c 3738
c5aa993b 3739 attribute_size -- compute size of data for a DWARF attribute
c906108c 3740
c5aa993b 3741 SYNOPSIS
c906108c 3742
c5aa993b 3743 static int attribute_size (unsigned int attr)
c906108c 3744
c5aa993b 3745 DESCRIPTION
c906108c 3746
c5aa993b
JM
3747 Given a DWARF attribute in ATTR, compute the size of the first
3748 piece of data associated with this attribute and return that
3749 size.
c906108c 3750
c5aa993b 3751 Returns -1 for unrecognized attributes.
c906108c
SS
3752
3753 */
3754
3755static int
fba45db2 3756attribute_size (unsigned int attr)
c906108c
SS
3757{
3758 int nbytes; /* Size of next data for this attribute */
3759 unsigned short form; /* Form of the attribute */
3760
3761 form = FORM_FROM_ATTR (attr);
3762 switch (form)
3763 {
c5aa993b
JM
3764 case FORM_STRING: /* A variable length field is next */
3765 nbytes = 0;
3766 break;
3767 case FORM_DATA2: /* Next 2 byte field is the data itself */
3768 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3769 nbytes = 2;
3770 break;
3771 case FORM_DATA4: /* Next 4 byte field is the data itself */
3772 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3773 case FORM_REF: /* Next 4 byte field is a DIE offset */
3774 nbytes = 4;
3775 break;
3776 case FORM_DATA8: /* Next 8 byte field is the data itself */
3777 nbytes = 8;
3778 break;
3779 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3780 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3781 break;
3782 default:
23136709 3783 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3784 nbytes = -1;
3785 break;
3786 }
c906108c
SS
3787 return (nbytes);
3788}
This page took 0.44825 seconds and 4 git commands to generate.