2000-03-22 Mark Kettenis <kettenis@gnu.org>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c
SS
1/* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/*
24
c5aa993b
JM
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
c906108c 27
c5aa993b
JM
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
c906108c 33
c5aa993b
JM
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
c906108c 36
c5aa993b
JM
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
c906108c 39
c5aa993b 40 */
c906108c
SS
41
42#include "defs.h"
43#include "symtab.h"
44#include "gdbtypes.h"
45#include "symfile.h"
46#include "objfiles.h"
47#include "elf/dwarf.h"
48#include "buildsym.h"
49#include "demangle.h"
c5aa993b 50#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
51#include "language.h"
52#include "complaints.h"
53
54#include <fcntl.h>
55#include "gdb_string.h"
56
57/* Some macros to provide DIE info for complaints. */
58
59#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62/* Complaints that can be issued during DWARF debug info reading. */
63
64struct complaint no_bfd_get_N =
65{
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67};
68
69struct complaint malformed_die =
70{
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72};
73
74struct complaint bad_die_ref =
75{
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77};
78
79struct complaint unknown_attribute_form =
80{
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82};
83
84struct complaint unknown_attribute_length =
85{
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87};
88
89struct complaint unexpected_fund_type =
90{
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92};
93
94struct complaint unknown_type_modifier =
95{
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97};
98
99struct complaint volatile_ignored =
100{
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102};
103
104struct complaint const_ignored =
105{
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107};
108
109struct complaint botched_modified_type =
110{
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112};
113
114struct complaint op_deref2 =
115{
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117};
118
119struct complaint op_deref4 =
120{
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122};
123
124struct complaint basereg_not_handled =
125{
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127};
128
129struct complaint dup_user_type_allocation =
130{
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132};
133
134struct complaint dup_user_type_definition =
135{
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137};
138
139struct complaint missing_tag =
140{
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142};
143
144struct complaint bad_array_element_type =
145{
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147};
148
149struct complaint subscript_data_items =
150{
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152};
153
154struct complaint unhandled_array_subscript_format =
155{
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157};
158
159struct complaint unknown_array_subscript_format =
160{
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162};
163
164struct complaint not_row_major =
165{
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167};
168
169struct complaint missing_at_name =
170{
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172};
173
174typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176#ifndef GCC_PRODUCER
177#define GCC_PRODUCER "GNU C "
178#endif
179
180#ifndef GPLUS_PRODUCER
181#define GPLUS_PRODUCER "GNU C++ "
182#endif
183
184#ifndef LCC_PRODUCER
185#define LCC_PRODUCER "NCR C/C++"
186#endif
187
188#ifndef CHILL_PRODUCER
189#define CHILL_PRODUCER "GNU Chill "
190#endif
191
192/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193#ifndef DWARF_REG_TO_REGNUM
194#define DWARF_REG_TO_REGNUM(num) (num)
195#endif
196
197/* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204#define GET_UNSIGNED 0 /* No sign extension required */
205#define GET_SIGNED 1 /* Sign extension required */
206
207/* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211#define SIZEOF_DIE_LENGTH 4
212#define SIZEOF_DIE_TAG 2
213#define SIZEOF_ATTRIBUTE 2
214#define SIZEOF_FORMAT_SPECIFIER 1
215#define SIZEOF_FMT_FT 2
216#define SIZEOF_LINETBL_LENGTH 4
217#define SIZEOF_LINETBL_LINENO 4
218#define SIZEOF_LINETBL_STMT 2
219#define SIZEOF_LINETBL_DELTA 4
220#define SIZEOF_LOC_ATOM_CODE 1
221
222#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224/* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244#define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246/* External variables referenced. */
247
c5aa993b
JM
248extern int info_verbose; /* From main.c; nonzero => verbose */
249extern char *warning_pre_print; /* From utils.c */
c906108c
SS
250
251/* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
c5aa993b 275
c906108c 276 */
c5aa993b 277
c906108c
SS
278typedef char BLOCK;
279
c5aa993b
JM
280struct dieinfo
281 {
282 char *die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK *at_location;
289 char *at_name;
290 unsigned short at_fund_type;
291 BLOCK *at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK *at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK *at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK *at_element_list;
300 unsigned long at_stmt_list;
301 CORE_ADDR at_low_pc;
302 CORE_ADDR at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK *at_discr_value;
307 BLOCK *at_string_length;
308 char *at_comp_dir;
309 char *at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char *at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318
319 /* Kludge to identify register variables */
320
321 unsigned int isreg;
322
323 /* Kludge to identify optimized out variables */
324
325 unsigned int optimized_out;
326
327 /* Kludge to identify basereg references.
328 Nonzero if we have an offset relative to a basereg. */
329
330 unsigned int offreg;
331
332 /* Kludge to identify which base register is it relative to. */
333
334 unsigned int basereg;
335 };
c906108c 336
c5aa993b 337static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
338static struct dieinfo *curdie; /* For warnings and such */
339
c5aa993b
JM
340static char *dbbase; /* Base pointer to dwarf info */
341static int dbsize; /* Size of dwarf info in bytes */
342static int dbroff; /* Relative offset from start of .debug section */
343static char *lnbase; /* Base pointer to line section */
c906108c
SS
344
345/* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread (once this is done,
347 pass the appropriate section number to end_symtab). */
348static CORE_ADDR baseaddr; /* Add to each symbol value */
349
350/* The section offsets used in the current psymtab or symtab. FIXME,
351 only used to pass one value (baseaddr) at the moment. */
352static struct section_offsets *base_section_offsets;
353
354/* We put a pointer to this structure in the read_symtab_private field
355 of the psymtab. */
356
c5aa993b
JM
357struct dwfinfo
358 {
359 /* Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed. */
361 file_ptr dbfoff;
362 /* Relative offset from the start of the ".debug" section to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion. */
369 int dbroff;
370 /* The size of the chunk of DIE's being examined, in bytes. */
371 int dblength;
372 /* The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit. */
377 file_ptr lnfoff;
378 };
c906108c
SS
379
380#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
385/* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
389
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
393
394struct pending **list_in_scope = &file_symbols;
395
396/* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
421
422static struct type **utypes; /* Pointer to array of user type pointers */
423static int numutypes; /* Max number of user type pointers */
424
425/* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
c5aa993b 435static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
436
437/* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
446
447static enum language cu_language;
448static const struct language_defn *cu_language_defn;
449
450/* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
452
453static void
454free_utypes PARAMS ((PTR));
455
456static int
457attribute_size PARAMS ((unsigned int));
458
459static CORE_ADDR
c5aa993b 460 target_to_host PARAMS ((char *, int, int, struct objfile *));
c906108c
SS
461
462static void
463add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
464
465static void
466handle_producer PARAMS ((char *));
467
468static void
469read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
470
471static void
472read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
473
474static void
475read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
476 struct objfile *));
477
478static void
479scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
480
481static void
482scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
484
485static void
486add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
487
488static void
489basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
490
491static void
492completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
493
494static void
495dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
496
497static void
498psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
499
500static void
501read_ofile_symtab PARAMS ((struct partial_symtab *));
502
503static void
504process_dies PARAMS ((char *, char *, struct objfile *));
505
506static void
507read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
508 struct objfile *));
509
510static struct type *
c5aa993b 511 decode_array_element_type PARAMS ((char *));
c906108c
SS
512
513static struct type *
c5aa993b 514 decode_subscript_data_item PARAMS ((char *, char *));
c906108c
SS
515
516static void
517dwarf_read_array_type PARAMS ((struct dieinfo *));
518
519static void
c5aa993b 520read_tag_pointer_type PARAMS ((struct dieinfo * dip));
c906108c
SS
521
522static void
c5aa993b 523read_tag_string_type PARAMS ((struct dieinfo * dip));
c906108c
SS
524
525static void
526read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
527
528static void
529read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531static struct type *
c5aa993b 532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
c906108c
SS
533
534static struct type *
c5aa993b 535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
c906108c
SS
536
537static void
538decode_line_numbers PARAMS ((char *));
539
540static struct type *
c5aa993b 541 decode_die_type PARAMS ((struct dieinfo *));
c906108c
SS
542
543static struct type *
c5aa993b 544 decode_mod_fund_type PARAMS ((char *));
c906108c
SS
545
546static struct type *
c5aa993b 547 decode_mod_u_d_type PARAMS ((char *));
c906108c
SS
548
549static struct type *
c5aa993b 550 decode_modified_type PARAMS ((char *, unsigned int, int));
c906108c
SS
551
552static struct type *
c5aa993b 553 decode_fund_type PARAMS ((unsigned int));
c906108c
SS
554
555static char *
c5aa993b 556 create_name PARAMS ((char *, struct obstack *));
c906108c
SS
557
558static struct type *
c5aa993b 559 lookup_utype PARAMS ((DIE_REF));
c906108c
SS
560
561static struct type *
c5aa993b 562 alloc_utype PARAMS ((DIE_REF, struct type *));
c906108c
SS
563
564static struct symbol *
c5aa993b 565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
c906108c
SS
566
567static void
568synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
571static int
572locval PARAMS ((struct dieinfo *));
573
574static void
575set_cu_language PARAMS ((struct dieinfo *));
576
577static struct type *
c5aa993b 578 dwarf_fundamental_type PARAMS ((struct objfile *, int));
c906108c
SS
579
580
581/*
582
c5aa993b 583 LOCAL FUNCTION
c906108c 584
c5aa993b 585 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 586
c5aa993b 587 SYNOPSIS
c906108c 588
c5aa993b
JM
589 struct type *
590 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 591
c5aa993b 592 DESCRIPTION
c906108c 593
c5aa993b
JM
594 DWARF version 1 doesn't supply any fundamental type information,
595 so gdb has to construct such types. It has a fixed number of
596 fundamental types that it knows how to construct, which is the
597 union of all types that it knows how to construct for all languages
598 that it knows about. These are enumerated in gdbtypes.h.
c906108c 599
c5aa993b
JM
600 As an example, assume we find a DIE that references a DWARF
601 fundamental type of FT_integer. We first look in the ftypes
602 array to see if we already have such a type, indexed by the
603 gdb internal value of FT_INTEGER. If so, we simply return a
604 pointer to that type. If not, then we ask an appropriate
605 language dependent routine to create a type FT_INTEGER, using
606 defaults reasonable for the current target machine, and install
607 that type in ftypes for future reference.
c906108c 608
c5aa993b 609 RETURNS
c906108c 610
c5aa993b 611 Pointer to a fundamental type.
c906108c 612
c5aa993b 613 */
c906108c
SS
614
615static struct type *
616dwarf_fundamental_type (objfile, typeid)
617 struct objfile *objfile;
618 int typeid;
619{
620 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
621 {
622 error ("internal error - invalid fundamental type id %d", typeid);
623 }
624
625 /* Look for this particular type in the fundamental type vector. If one is
626 not found, create and install one appropriate for the current language
627 and the current target machine. */
628
629 if (ftypes[typeid] == NULL)
630 {
c5aa993b 631 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
632 }
633
634 return (ftypes[typeid]);
635}
636
637/*
638
c5aa993b 639 LOCAL FUNCTION
c906108c 640
c5aa993b 641 set_cu_language -- set local copy of language for compilation unit
c906108c 642
c5aa993b 643 SYNOPSIS
c906108c 644
c5aa993b
JM
645 void
646 set_cu_language (struct dieinfo *dip)
c906108c 647
c5aa993b 648 DESCRIPTION
c906108c 649
c5aa993b
JM
650 Decode the language attribute for a compilation unit DIE and
651 remember what the language was. We use this at various times
652 when processing DIE's for a given compilation unit.
c906108c 653
c5aa993b 654 RETURNS
c906108c 655
c5aa993b 656 No return value.
c906108c
SS
657
658 */
659
660static void
661set_cu_language (dip)
662 struct dieinfo *dip;
663{
c5aa993b 664 switch (dip->at_language)
c906108c 665 {
c5aa993b
JM
666 case LANG_C89:
667 case LANG_C:
668 cu_language = language_c;
669 break;
670 case LANG_C_PLUS_PLUS:
671 cu_language = language_cplus;
672 break;
673 case LANG_CHILL:
674 cu_language = language_chill;
675 break;
676 case LANG_MODULA2:
677 cu_language = language_m2;
678 break;
679 case LANG_FORTRAN77:
680 case LANG_FORTRAN90:
681 cu_language = language_fortran;
682 break;
683 case LANG_ADA83:
684 case LANG_COBOL74:
685 case LANG_COBOL85:
686 case LANG_PASCAL83:
687 /* We don't know anything special about these yet. */
688 cu_language = language_unknown;
689 break;
690 default:
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip->at_name);
693 break;
c906108c
SS
694 }
695 cu_language_defn = language_def (cu_language);
696}
697
698/*
699
c5aa993b 700 GLOBAL FUNCTION
c906108c 701
c5aa993b 702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 703
c5aa993b 704 SYNOPSIS
c906108c 705
c5aa993b 706 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
707 int mainline, file_ptr dbfoff, unsigned int dbfsize,
708 file_ptr lnoffset, unsigned int lnsize)
c906108c 709
c5aa993b 710 DESCRIPTION
c906108c 711
c5aa993b
JM
712 This function is called upon to build partial symtabs from files
713 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 714
c5aa993b
JM
715 It is passed a bfd* containing the DIES
716 and line number information, the corresponding filename for that
717 file, a base address for relocating the symbols, a flag indicating
718 whether or not this debugging information is from a "main symbol
719 table" rather than a shared library or dynamically linked file,
720 and file offset/size pairs for the DIE information and line number
721 information.
c906108c 722
c5aa993b 723 RETURNS
c906108c 724
c5aa993b 725 No return value.
c906108c
SS
726
727 */
728
729void
d4f3574e 730dwarf_build_psymtabs (objfile, mainline, dbfoff, dbfsize,
c906108c
SS
731 lnoffset, lnsize)
732 struct objfile *objfile;
c906108c
SS
733 int mainline;
734 file_ptr dbfoff;
735 unsigned int dbfsize;
736 file_ptr lnoffset;
737 unsigned int lnsize;
738{
739 bfd *abfd = objfile->obfd;
740 struct cleanup *back_to;
c5aa993b 741
c906108c
SS
742 current_objfile = objfile;
743 dbsize = dbfsize;
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
748 {
749 free (dbbase);
750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
751 }
752 back_to = make_cleanup (free, dbbase);
c5aa993b 753
c906108c
SS
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
c5aa993b
JM
757
758 if (mainline || objfile->global_psymbols.size == 0 ||
759 objfile->static_psymbols.size == 0)
c906108c
SS
760 {
761 init_psymbol_list (objfile, 1024);
762 }
c5aa993b 763
c906108c
SS
764 /* Save the relocation factor where everybody can see it. */
765
d4f3574e
SS
766 base_section_offsets = objfile->section_offsets;
767 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
768
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
c5aa993b 772
c906108c 773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 774
c906108c
SS
775 do_cleanups (back_to);
776 current_objfile = NULL;
777}
778
779/*
780
c5aa993b 781 LOCAL FUNCTION
c906108c 782
c5aa993b 783 read_lexical_block_scope -- process all dies in a lexical block
c906108c 784
c5aa993b 785 SYNOPSIS
c906108c 786
c5aa993b
JM
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
c906108c 789
c5aa993b 790 DESCRIPTION
c906108c 791
c5aa993b
JM
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
c906108c
SS
794
795 */
796
797static void
798read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
803{
804 register struct context_stack *new;
805
c5aa993b
JM
806 push_context (0, dip->at_low_pc);
807 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
c5aa993b
JM
811 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
812 dip->at_high_pc, objfile);
c906108c 813 }
c5aa993b 814 local_symbols = new->locals;
c906108c
SS
815}
816
817/*
818
c5aa993b 819 LOCAL FUNCTION
c906108c 820
c5aa993b 821 lookup_utype -- look up a user defined type from die reference
c906108c 822
c5aa993b 823 SYNOPSIS
c906108c 824
c5aa993b 825 static type *lookup_utype (DIE_REF die_ref)
c906108c 826
c5aa993b 827 DESCRIPTION
c906108c 828
c5aa993b
JM
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
c906108c
SS
834 */
835
836static struct type *
837lookup_utype (die_ref)
838 DIE_REF die_ref;
839{
840 struct type *type = NULL;
841 int utypeidx;
c5aa993b 842
c906108c
SS
843 utypeidx = (die_ref - dbroff) / 4;
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853}
854
855
856/*
857
c5aa993b 858 LOCAL FUNCTION
c906108c 859
c5aa993b 860 alloc_utype -- add a user defined type for die reference
c906108c 861
c5aa993b 862 SYNOPSIS
c906108c 863
c5aa993b 864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 865
c5aa993b 866 DESCRIPTION
c906108c 867
c5aa993b
JM
868 Given a die reference DIE_REF, and a possible pointer to a user
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
c906108c 872
c5aa993b
JM
873 We should only be called after calling lookup_utype() to verify that
874 there is not currently a type registered for DIE_REF.
c906108c
SS
875 */
876
877static struct type *
878alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
880 struct type *utypep;
881{
882 struct type **typep;
883 int utypeidx;
c5aa993b 884
c906108c
SS
885 utypeidx = (die_ref - dbroff) / 4;
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
901 utypep = alloc_type (current_objfile);
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906}
907
908/*
909
c5aa993b 910 LOCAL FUNCTION
c906108c 911
c5aa993b 912 free_utypes -- free the utypes array and reset pointer & count
c906108c 913
c5aa993b 914 SYNOPSIS
c906108c 915
c5aa993b 916 static void free_utypes (PTR dummy)
c906108c 917
c5aa993b 918 DESCRIPTION
c906108c 919
c5aa993b
JM
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
c906108c
SS
923 */
924
925static void
926free_utypes (dummy)
927 PTR dummy;
928{
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932}
933
934
935/*
936
c5aa993b 937 LOCAL FUNCTION
c906108c 938
c5aa993b 939 decode_die_type -- return a type for a specified die
c906108c 940
c5aa993b 941 SYNOPSIS
c906108c 942
c5aa993b 943 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 944
c5aa993b 945 DESCRIPTION
c906108c 946
c5aa993b
JM
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
c906108c
SS
950 */
951
952static struct type *
953decode_die_type (dip)
954 struct dieinfo *dip;
955{
956 struct type *type = NULL;
c5aa993b
JM
957
958 if (dip->at_fund_type != 0)
c906108c 959 {
c5aa993b 960 type = decode_fund_type (dip->at_fund_type);
c906108c 961 }
c5aa993b 962 else if (dip->at_mod_fund_type != NULL)
c906108c 963 {
c5aa993b 964 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 965 }
c5aa993b 966 else if (dip->at_user_def_type)
c906108c 967 {
c5aa993b 968 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
c906108c 969 {
c5aa993b 970 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
971 }
972 }
c5aa993b 973 else if (dip->at_mod_u_d_type)
c906108c 974 {
c5aa993b 975 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
976 }
977 else
978 {
979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
980 }
981 return (type);
982}
983
984/*
985
c5aa993b 986 LOCAL FUNCTION
c906108c 987
c5aa993b 988 struct_type -- compute and return the type for a struct or union
c906108c 989
c5aa993b 990 SYNOPSIS
c906108c 991
c5aa993b
JM
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
993 char *enddie, struct objfile *objfile)
c906108c 994
c5aa993b 995 DESCRIPTION
c906108c 996
c5aa993b
JM
997 Given pointer to a die information structure for a die which
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
c906108c
SS
1002 */
1003
1004static struct type *
1005struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
1010{
1011 struct type *type;
c5aa993b
JM
1012 struct nextfield
1013 {
1014 struct nextfield *next;
1015 struct field field;
1016 };
c906108c
SS
1017 struct nextfield *list = NULL;
1018 struct nextfield *new;
1019 int nfields = 0;
1020 int n;
1021 struct dieinfo mbr;
1022 char *nextdie;
1023 int anonymous_size;
c5aa993b
JM
1024
1025 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1026 {
1027 /* No forward references created an empty type, so install one now */
c5aa993b 1028 type = alloc_utype (dip->die_ref, NULL);
c906108c 1029 }
c5aa993b
JM
1030 INIT_CPLUS_SPECIFIC (type);
1031 switch (dip->die_tag)
c906108c 1032 {
c5aa993b
JM
1033 case TAG_class_type:
1034 TYPE_CODE (type) = TYPE_CODE_CLASS;
1035 break;
1036 case TAG_structure_type:
1037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1038 break;
1039 case TAG_union_type:
1040 TYPE_CODE (type) = TYPE_CODE_UNION;
1041 break;
1042 default:
1043 /* Should never happen */
1044 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1045 complain (&missing_tag, DIE_ID, DIE_NAME);
1046 break;
c906108c
SS
1047 }
1048 /* Some compilers try to be helpful by inventing "fake" names for
1049 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1050 Thanks, but no thanks... */
c5aa993b
JM
1051 if (dip->at_name != NULL
1052 && *dip->at_name != '~'
1053 && *dip->at_name != '.')
c906108c 1054 {
c5aa993b
JM
1055 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1056 "", "", dip->at_name);
c906108c
SS
1057 }
1058 /* Use whatever size is known. Zero is a valid size. We might however
1059 wish to check has_at_byte_size to make sure that some byte size was
1060 given explicitly, but DWARF doesn't specify that explicit sizes of
1061 zero have to present, so complaining about missing sizes should
1062 probably not be the default. */
c5aa993b
JM
1063 TYPE_LENGTH (type) = dip->at_byte_size;
1064 thisdie += dip->die_length;
c906108c
SS
1065 while (thisdie < enddie)
1066 {
1067 basicdieinfo (&mbr, thisdie, objfile);
1068 completedieinfo (&mbr, objfile);
1069 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1070 {
1071 break;
1072 }
1073 else if (mbr.at_sibling != 0)
1074 {
1075 nextdie = dbbase + mbr.at_sibling - dbroff;
1076 }
1077 else
1078 {
1079 nextdie = thisdie + mbr.die_length;
1080 }
1081 switch (mbr.die_tag)
1082 {
1083 case TAG_member:
1084 /* Get space to record the next field's data. */
1085 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1086 new->next = list;
c906108c
SS
1087 list = new;
1088 /* Save the data. */
c5aa993b
JM
1089 list->field.name =
1090 obsavestring (mbr.at_name, strlen (mbr.at_name),
1091 &objfile->type_obstack);
c906108c
SS
1092 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1093 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1094 /* Handle bit fields. */
1095 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1096 if (BITS_BIG_ENDIAN)
1097 {
1098 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1099 additional bit offset from the MSB of the containing
1100 anonymous object to the MSB of the field. We don't
1101 have to do anything special since we don't need to
1102 know the size of the anonymous object. */
c906108c
SS
1103 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1104 }
1105 else
1106 {
1107 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1108 at_bit_size, so that we know we are in fact dealing
1109 with a bitfield. Compute the bit offset to the MSB
1110 of the anonymous object, subtract off the number of
1111 bits from the MSB of the field to the MSB of the
1112 object, and then subtract off the number of bits of
1113 the field itself. The result is the bit offset of
1114 the LSB of the field. */
c906108c
SS
1115 if (mbr.at_bit_size > 0)
1116 {
1117 if (mbr.has_at_byte_size)
1118 {
1119 /* The size of the anonymous object containing
c5aa993b
JM
1120 the bit field is explicit, so use the
1121 indicated size (in bytes). */
c906108c
SS
1122 anonymous_size = mbr.at_byte_size;
1123 }
1124 else
1125 {
1126 /* The size of the anonymous object containing
c5aa993b
JM
1127 the bit field matches the size of an object
1128 of the bit field's type. DWARF allows
1129 at_byte_size to be left out in such cases, as
1130 a debug information size optimization. */
1131 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1132 }
1133 FIELD_BITPOS (list->field) +=
1134 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1135 }
1136 }
1137 nfields++;
1138 break;
1139 default:
1140 process_dies (thisdie, nextdie, objfile);
1141 break;
1142 }
1143 thisdie = nextdie;
1144 }
1145 /* Now create the vector of fields, and record how big it is. We may
1146 not even have any fields, if this DIE was generated due to a reference
1147 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1148 set, which clues gdb in to the fact that it needs to search elsewhere
1149 for the full structure definition. */
1150 if (nfields == 0)
1151 {
1152 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1153 }
1154 else
1155 {
1156 TYPE_NFIELDS (type) = nfields;
1157 TYPE_FIELDS (type) = (struct field *)
1158 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1159 /* Copy the saved-up fields into the field vector. */
c5aa993b 1160 for (n = nfields; list; list = list->next)
c906108c 1161 {
c5aa993b
JM
1162 TYPE_FIELD (type, --n) = list->field;
1163 }
c906108c
SS
1164 }
1165 return (type);
1166}
1167
1168/*
1169
c5aa993b 1170 LOCAL FUNCTION
c906108c 1171
c5aa993b 1172 read_structure_scope -- process all dies within struct or union
c906108c 1173
c5aa993b 1174 SYNOPSIS
c906108c 1175
c5aa993b
JM
1176 static void read_structure_scope (struct dieinfo *dip,
1177 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1178
c5aa993b 1179 DESCRIPTION
c906108c 1180
c5aa993b
JM
1181 Called when we find the DIE that starts a structure or union
1182 scope (definition) to process all dies that define the members
1183 of the structure or union. DIP is a pointer to the die info
1184 struct for the DIE that names the structure or union.
c906108c 1185
c5aa993b
JM
1186 NOTES
1187
1188 Note that we need to call struct_type regardless of whether or not
1189 the DIE has an at_name attribute, since it might be an anonymous
1190 structure or union. This gets the type entered into our set of
1191 user defined types.
1192
1193 However, if the structure is incomplete (an opaque struct/union)
1194 then suppress creating a symbol table entry for it since gdb only
1195 wants to find the one with the complete definition. Note that if
1196 it is complete, we just call new_symbol, which does it's own
1197 checking about whether the struct/union is anonymous or not (and
1198 suppresses creating a symbol table entry itself).
c906108c 1199
c906108c
SS
1200 */
1201
1202static void
1203read_structure_scope (dip, thisdie, enddie, objfile)
1204 struct dieinfo *dip;
1205 char *thisdie;
1206 char *enddie;
1207 struct objfile *objfile;
1208{
1209 struct type *type;
1210 struct symbol *sym;
c5aa993b 1211
c906108c
SS
1212 type = struct_type (dip, thisdie, enddie, objfile);
1213 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1214 {
1215 sym = new_symbol (dip, objfile);
1216 if (sym != NULL)
1217 {
1218 SYMBOL_TYPE (sym) = type;
1219 if (cu_language == language_cplus)
1220 {
1221 synthesize_typedef (dip, objfile, type);
1222 }
1223 }
1224 }
1225}
1226
1227/*
1228
c5aa993b 1229 LOCAL FUNCTION
c906108c 1230
c5aa993b 1231 decode_array_element_type -- decode type of the array elements
c906108c 1232
c5aa993b 1233 SYNOPSIS
c906108c 1234
c5aa993b 1235 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1236
c5aa993b 1237 DESCRIPTION
c906108c 1238
c5aa993b
JM
1239 As the last step in decoding the array subscript information for an
1240 array DIE, we need to decode the type of the array elements. We are
1241 passed a pointer to this last part of the subscript information and
1242 must return the appropriate type. If the type attribute is not
1243 recognized, just warn about the problem and return type int.
c906108c
SS
1244 */
1245
1246static struct type *
1247decode_array_element_type (scan)
1248 char *scan;
1249{
1250 struct type *typep;
1251 DIE_REF die_ref;
1252 unsigned short attribute;
1253 unsigned short fundtype;
1254 int nbytes;
c5aa993b 1255
c906108c
SS
1256 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1257 current_objfile);
1258 scan += SIZEOF_ATTRIBUTE;
1259 if ((nbytes = attribute_size (attribute)) == -1)
1260 {
1261 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1262 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1263 }
1264 else
1265 {
1266 switch (attribute)
1267 {
c5aa993b
JM
1268 case AT_fund_type:
1269 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1270 current_objfile);
1271 typep = decode_fund_type (fundtype);
1272 break;
1273 case AT_mod_fund_type:
1274 typep = decode_mod_fund_type (scan);
1275 break;
1276 case AT_user_def_type:
1277 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1278 current_objfile);
1279 if ((typep = lookup_utype (die_ref)) == NULL)
1280 {
1281 typep = alloc_utype (die_ref, NULL);
1282 }
1283 break;
1284 case AT_mod_u_d_type:
1285 typep = decode_mod_u_d_type (scan);
1286 break;
1287 default:
1288 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1290 break;
1291 }
c906108c
SS
1292 }
1293 return (typep);
1294}
1295
1296/*
1297
c5aa993b 1298 LOCAL FUNCTION
c906108c 1299
c5aa993b 1300 decode_subscript_data_item -- decode array subscript item
c906108c 1301
c5aa993b 1302 SYNOPSIS
c906108c 1303
c5aa993b
JM
1304 static struct type *
1305 decode_subscript_data_item (char *scan, char *end)
c906108c 1306
c5aa993b 1307 DESCRIPTION
c906108c 1308
c5aa993b
JM
1309 The array subscripts and the data type of the elements of an
1310 array are described by a list of data items, stored as a block
1311 of contiguous bytes. There is a data item describing each array
1312 dimension, and a final data item describing the element type.
1313 The data items are ordered the same as their appearance in the
1314 source (I.E. leftmost dimension first, next to leftmost second,
1315 etc).
c906108c 1316
c5aa993b
JM
1317 The data items describing each array dimension consist of four
1318 parts: (1) a format specifier, (2) type type of the subscript
1319 index, (3) a description of the low bound of the array dimension,
1320 and (4) a description of the high bound of the array dimension.
c906108c 1321
c5aa993b
JM
1322 The last data item is the description of the type of each of
1323 the array elements.
c906108c 1324
c5aa993b
JM
1325 We are passed a pointer to the start of the block of bytes
1326 containing the remaining data items, and a pointer to the first
1327 byte past the data. This function recursively decodes the
1328 remaining data items and returns a type.
c906108c 1329
c5aa993b
JM
1330 If we somehow fail to decode some data, we complain about it
1331 and return a type "array of int".
c906108c 1332
c5aa993b
JM
1333 BUGS
1334 FIXME: This code only implements the forms currently used
1335 by the AT&T and GNU C compilers.
c906108c 1336
c5aa993b
JM
1337 The end pointer is supplied for error checking, maybe we should
1338 use it for that...
c906108c
SS
1339 */
1340
1341static struct type *
1342decode_subscript_data_item (scan, end)
1343 char *scan;
1344 char *end;
1345{
1346 struct type *typep = NULL; /* Array type we are building */
1347 struct type *nexttype; /* Type of each element (may be array) */
1348 struct type *indextype; /* Type of this index */
1349 struct type *rangetype;
1350 unsigned int format;
1351 unsigned short fundtype;
1352 unsigned long lowbound;
1353 unsigned long highbound;
1354 int nbytes;
c5aa993b 1355
c906108c
SS
1356 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1357 current_objfile);
1358 scan += SIZEOF_FORMAT_SPECIFIER;
1359 switch (format)
1360 {
1361 case FMT_ET:
1362 typep = decode_array_element_type (scan);
1363 break;
1364 case FMT_FT_C_C:
1365 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1366 current_objfile);
1367 indextype = decode_fund_type (fundtype);
1368 scan += SIZEOF_FMT_FT;
1369 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1370 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1371 scan += nbytes;
1372 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1373 scan += nbytes;
1374 nexttype = decode_subscript_data_item (scan, end);
1375 if (nexttype == NULL)
1376 {
1377 /* Munged subscript data or other problem, fake it. */
1378 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1379 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1380 }
1381 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1382 lowbound, highbound);
c906108c
SS
1383 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1384 break;
1385 case FMT_FT_C_X:
1386 case FMT_FT_X_C:
1387 case FMT_FT_X_X:
1388 case FMT_UT_C_C:
1389 case FMT_UT_C_X:
1390 case FMT_UT_X_C:
1391 case FMT_UT_X_X:
1392 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1393 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1394 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1395 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1396 break;
1397 default:
1398 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1399 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1400 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1401 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1402 break;
1403 }
1404 return (typep);
1405}
1406
1407/*
1408
c5aa993b 1409 LOCAL FUNCTION
c906108c 1410
c5aa993b 1411 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1412
c5aa993b 1413 SYNOPSIS
c906108c 1414
c5aa993b 1415 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1416
c5aa993b 1417 DESCRIPTION
c906108c 1418
c5aa993b
JM
1419 Extract all information from a TAG_array_type DIE and add to
1420 the user defined type vector.
c906108c
SS
1421 */
1422
1423static void
1424dwarf_read_array_type (dip)
1425 struct dieinfo *dip;
1426{
1427 struct type *type;
1428 struct type *utype;
1429 char *sub;
1430 char *subend;
1431 unsigned short blocksz;
1432 int nbytes;
c5aa993b
JM
1433
1434 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1435 {
1436 /* FIXME: Can gdb even handle column major arrays? */
1437 complain (&not_row_major, DIE_ID, DIE_NAME);
1438 }
c5aa993b 1439 if ((sub = dip->at_subscr_data) != NULL)
c906108c
SS
1440 {
1441 nbytes = attribute_size (AT_subscr_data);
1442 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1443 subend = sub + nbytes + blocksz;
1444 sub += nbytes;
1445 type = decode_subscript_data_item (sub, subend);
c5aa993b 1446 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1447 {
1448 /* Install user defined type that has not been referenced yet. */
c5aa993b 1449 alloc_utype (dip->die_ref, type);
c906108c
SS
1450 }
1451 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1452 {
1453 /* Ick! A forward ref has already generated a blank type in our
1454 slot, and this type probably already has things pointing to it
1455 (which is what caused it to be created in the first place).
1456 If it's just a place holder we can plop our fully defined type
1457 on top of it. We can't recover the space allocated for our
1458 new type since it might be on an obstack, but we could reuse
1459 it if we kept a list of them, but it might not be worth it
1460 (FIXME). */
1461 *utype = *type;
1462 }
1463 else
1464 {
1465 /* Double ick! Not only is a type already in our slot, but
1466 someone has decorated it. Complain and leave it alone. */
1467 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1468 }
1469 }
1470}
1471
1472/*
1473
c5aa993b 1474 LOCAL FUNCTION
c906108c 1475
c5aa993b 1476 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1477
c5aa993b 1478 SYNOPSIS
c906108c 1479
c5aa993b 1480 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1481
c5aa993b 1482 DESCRIPTION
c906108c 1483
c5aa993b
JM
1484 Extract all information from a TAG_pointer_type DIE and add to
1485 the user defined type vector.
c906108c
SS
1486 */
1487
1488static void
1489read_tag_pointer_type (dip)
1490 struct dieinfo *dip;
1491{
1492 struct type *type;
1493 struct type *utype;
c5aa993b 1494
c906108c 1495 type = decode_die_type (dip);
c5aa993b 1496 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1497 {
1498 utype = lookup_pointer_type (type);
c5aa993b 1499 alloc_utype (dip->die_ref, utype);
c906108c
SS
1500 }
1501 else
1502 {
1503 TYPE_TARGET_TYPE (utype) = type;
1504 TYPE_POINTER_TYPE (type) = utype;
1505
1506 /* We assume the machine has only one representation for pointers! */
1507 /* FIXME: Possably a poor assumption */
c5aa993b 1508 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1509 TYPE_CODE (utype) = TYPE_CODE_PTR;
1510 }
1511}
1512
1513/*
1514
c5aa993b 1515 LOCAL FUNCTION
c906108c 1516
c5aa993b 1517 read_tag_string_type -- read TAG_string_type DIE
c906108c 1518
c5aa993b 1519 SYNOPSIS
c906108c 1520
c5aa993b 1521 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1522
c5aa993b 1523 DESCRIPTION
c906108c 1524
c5aa993b
JM
1525 Extract all information from a TAG_string_type DIE and add to
1526 the user defined type vector. It isn't really a user defined
1527 type, but it behaves like one, with other DIE's using an
1528 AT_user_def_type attribute to reference it.
c906108c
SS
1529 */
1530
1531static void
1532read_tag_string_type (dip)
1533 struct dieinfo *dip;
1534{
1535 struct type *utype;
1536 struct type *indextype;
1537 struct type *rangetype;
1538 unsigned long lowbound = 0;
1539 unsigned long highbound;
1540
c5aa993b 1541 if (dip->has_at_byte_size)
c906108c
SS
1542 {
1543 /* A fixed bounds string */
c5aa993b 1544 highbound = dip->at_byte_size - 1;
c906108c
SS
1545 }
1546 else
1547 {
1548 /* A varying length string. Stub for now. (FIXME) */
1549 highbound = 1;
1550 }
1551 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1552 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1553 highbound);
c5aa993b
JM
1554
1555 utype = lookup_utype (dip->die_ref);
c906108c
SS
1556 if (utype == NULL)
1557 {
1558 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1559 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1560 }
1561 else
1562 {
1563 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1564 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1565 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1566 {
1567 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1568 return;
1569 }
1570 }
1571
1572 /* Create the string type using the blank type we either found or created. */
1573 utype = create_string_type (utype, rangetype);
1574}
1575
1576/*
1577
c5aa993b 1578 LOCAL FUNCTION
c906108c 1579
c5aa993b 1580 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1581
c5aa993b 1582 SYNOPSIS
c906108c 1583
c5aa993b
JM
1584 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1585 char *enddie)
c906108c 1586
c5aa993b 1587 DESCRIPTION
c906108c 1588
c5aa993b 1589 Handle DIES due to C code like:
c906108c 1590
c5aa993b
JM
1591 struct foo {
1592 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1593 int b;
1594 };
c906108c 1595
c5aa993b 1596 NOTES
c906108c 1597
c5aa993b
JM
1598 The parameter DIES are currently ignored. See if gdb has a way to
1599 include this info in it's type system, and decode them if so. Is
1600 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1601 */
1602
1603static void
1604read_subroutine_type (dip, thisdie, enddie)
1605 struct dieinfo *dip;
1606 char *thisdie;
1607 char *enddie;
1608{
1609 struct type *type; /* Type that this function returns */
1610 struct type *ftype; /* Function that returns above type */
c5aa993b 1611
c906108c
SS
1612 /* Decode the type that this subroutine returns */
1613
1614 type = decode_die_type (dip);
1615
1616 /* Check to see if we already have a partially constructed user
1617 defined type for this DIE, from a forward reference. */
1618
c5aa993b 1619 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1620 {
1621 /* This is the first reference to one of these types. Make
c5aa993b 1622 a new one and place it in the user defined types. */
c906108c 1623 ftype = lookup_function_type (type);
c5aa993b 1624 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1625 }
1626 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1627 {
1628 /* We have an existing partially constructed type, so bash it
c5aa993b 1629 into the correct type. */
c906108c
SS
1630 TYPE_TARGET_TYPE (ftype) = type;
1631 TYPE_LENGTH (ftype) = 1;
1632 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1633 }
1634 else
1635 {
1636 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1637 }
1638}
1639
1640/*
1641
c5aa993b 1642 LOCAL FUNCTION
c906108c 1643
c5aa993b 1644 read_enumeration -- process dies which define an enumeration
c906108c 1645
c5aa993b 1646 SYNOPSIS
c906108c 1647
c5aa993b
JM
1648 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1649 char *enddie, struct objfile *objfile)
c906108c 1650
c5aa993b 1651 DESCRIPTION
c906108c 1652
c5aa993b
JM
1653 Given a pointer to a die which begins an enumeration, process all
1654 the dies that define the members of the enumeration.
c906108c 1655
c5aa993b 1656 NOTES
c906108c 1657
c5aa993b
JM
1658 Note that we need to call enum_type regardless of whether or not we
1659 have a symbol, since we might have an enum without a tag name (thus
1660 no symbol for the tagname).
c906108c
SS
1661 */
1662
1663static void
1664read_enumeration (dip, thisdie, enddie, objfile)
1665 struct dieinfo *dip;
1666 char *thisdie;
1667 char *enddie;
1668 struct objfile *objfile;
1669{
1670 struct type *type;
1671 struct symbol *sym;
c5aa993b 1672
c906108c
SS
1673 type = enum_type (dip, objfile);
1674 sym = new_symbol (dip, objfile);
1675 if (sym != NULL)
1676 {
1677 SYMBOL_TYPE (sym) = type;
1678 if (cu_language == language_cplus)
1679 {
1680 synthesize_typedef (dip, objfile, type);
1681 }
1682 }
1683}
1684
1685/*
1686
c5aa993b 1687 LOCAL FUNCTION
c906108c 1688
c5aa993b 1689 enum_type -- decode and return a type for an enumeration
c906108c 1690
c5aa993b 1691 SYNOPSIS
c906108c 1692
c5aa993b 1693 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1694
c5aa993b 1695 DESCRIPTION
c906108c 1696
c5aa993b
JM
1697 Given a pointer to a die information structure for the die which
1698 starts an enumeration, process all the dies that define the members
1699 of the enumeration and return a type pointer for the enumeration.
c906108c 1700
c5aa993b
JM
1701 At the same time, for each member of the enumeration, create a
1702 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1703 and give it the type of the enumeration itself.
c906108c 1704
c5aa993b 1705 NOTES
c906108c 1706
c5aa993b
JM
1707 Note that the DWARF specification explicitly mandates that enum
1708 constants occur in reverse order from the source program order,
1709 for "consistency" and because this ordering is easier for many
1710 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1711 Entries). Because gdb wants to see the enum members in program
1712 source order, we have to ensure that the order gets reversed while
1713 we are processing them.
c906108c
SS
1714 */
1715
1716static struct type *
1717enum_type (dip, objfile)
1718 struct dieinfo *dip;
1719 struct objfile *objfile;
1720{
1721 struct type *type;
c5aa993b
JM
1722 struct nextfield
1723 {
1724 struct nextfield *next;
1725 struct field field;
1726 };
c906108c
SS
1727 struct nextfield *list = NULL;
1728 struct nextfield *new;
1729 int nfields = 0;
1730 int n;
1731 char *scan;
1732 char *listend;
1733 unsigned short blocksz;
1734 struct symbol *sym;
1735 int nbytes;
1736 int unsigned_enum = 1;
c5aa993b
JM
1737
1738 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1739 {
1740 /* No forward references created an empty type, so install one now */
c5aa993b 1741 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1742 }
1743 TYPE_CODE (type) = TYPE_CODE_ENUM;
1744 /* Some compilers try to be helpful by inventing "fake" names for
1745 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1746 Thanks, but no thanks... */
c5aa993b
JM
1747 if (dip->at_name != NULL
1748 && *dip->at_name != '~'
1749 && *dip->at_name != '.')
c906108c 1750 {
c5aa993b
JM
1751 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1752 "", "", dip->at_name);
c906108c 1753 }
c5aa993b 1754 if (dip->at_byte_size != 0)
c906108c 1755 {
c5aa993b 1756 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1757 }
c5aa993b 1758 if ((scan = dip->at_element_list) != NULL)
c906108c 1759 {
c5aa993b 1760 if (dip->short_element_list)
c906108c
SS
1761 {
1762 nbytes = attribute_size (AT_short_element_list);
1763 }
1764 else
1765 {
1766 nbytes = attribute_size (AT_element_list);
1767 }
1768 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1769 listend = scan + nbytes + blocksz;
1770 scan += nbytes;
1771 while (scan < listend)
1772 {
1773 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1774 new->next = list;
c906108c
SS
1775 list = new;
1776 FIELD_TYPE (list->field) = NULL;
1777 FIELD_BITSIZE (list->field) = 0;
1778 FIELD_BITPOS (list->field) =
1779 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1780 objfile);
1781 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1782 list->field.name = obsavestring (scan, strlen (scan),
1783 &objfile->type_obstack);
c906108c
SS
1784 scan += strlen (scan) + 1;
1785 nfields++;
1786 /* Handcraft a new symbol for this enum member. */
1787 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1788 sizeof (struct symbol));
1789 memset (sym, 0, sizeof (struct symbol));
c5aa993b 1790 SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1791 &objfile->symbol_obstack);
1792 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1793 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1794 SYMBOL_CLASS (sym) = LOC_CONST;
1795 SYMBOL_TYPE (sym) = type;
1796 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1797 if (SYMBOL_VALUE (sym) < 0)
1798 unsigned_enum = 0;
1799 add_symbol_to_list (sym, list_in_scope);
1800 }
1801 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1802 where we reverse the order, by pulling the members off the list in
1803 reverse order from how they were inserted. If we have no fields
1804 (this is apparently possible in C++) then skip building a field
1805 vector. */
c906108c
SS
1806 if (nfields > 0)
1807 {
1808 if (unsigned_enum)
1809 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1810 TYPE_NFIELDS (type) = nfields;
1811 TYPE_FIELDS (type) = (struct field *)
1812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1813 /* Copy the saved-up fields into the field vector. */
c5aa993b 1814 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1815 {
c5aa993b
JM
1816 TYPE_FIELD (type, n++) = list->field;
1817 }
c906108c
SS
1818 }
1819 }
1820 return (type);
1821}
1822
1823/*
1824
c5aa993b 1825 LOCAL FUNCTION
c906108c 1826
c5aa993b 1827 read_func_scope -- process all dies within a function scope
c906108c 1828
c5aa993b 1829 DESCRIPTION
c906108c 1830
c5aa993b
JM
1831 Process all dies within a given function scope. We are passed
1832 a die information structure pointer DIP for the die which
1833 starts the function scope, and pointers into the raw die data
1834 that define the dies within the function scope.
1835
1836 For now, we ignore lexical block scopes within the function.
1837 The problem is that AT&T cc does not define a DWARF lexical
1838 block scope for the function itself, while gcc defines a
1839 lexical block scope for the function. We need to think about
1840 how to handle this difference, or if it is even a problem.
1841 (FIXME)
c906108c
SS
1842 */
1843
1844static void
1845read_func_scope (dip, thisdie, enddie, objfile)
1846 struct dieinfo *dip;
1847 char *thisdie;
1848 char *enddie;
1849 struct objfile *objfile;
1850{
1851 register struct context_stack *new;
c5aa993b 1852
c906108c
SS
1853 /* AT_name is absent if the function is described with an
1854 AT_abstract_origin tag.
1855 Ignore the function description for now to avoid GDB core dumps.
1856 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1857 if (dip->at_name == NULL)
c906108c
SS
1858 {
1859 complain (&missing_at_name, DIE_ID);
1860 return;
1861 }
1862
c5aa993b
JM
1863 if (objfile->ei.entry_point >= dip->at_low_pc &&
1864 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1865 {
c5aa993b
JM
1866 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1867 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1868 }
c5aa993b
JM
1869 new = push_context (0, dip->at_low_pc);
1870 new->name = new_symbol (dip, objfile);
c906108c 1871 list_in_scope = &local_symbols;
c5aa993b 1872 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1873 new = pop_context ();
1874 /* Make a block for the local symbols within. */
c5aa993b
JM
1875 finish_block (new->name, &local_symbols, new->old_blocks,
1876 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1877 list_in_scope = &file_symbols;
1878}
1879
1880
1881/*
1882
c5aa993b 1883 LOCAL FUNCTION
c906108c 1884
c5aa993b 1885 handle_producer -- process the AT_producer attribute
c906108c 1886
c5aa993b 1887 DESCRIPTION
c906108c 1888
c5aa993b
JM
1889 Perform any operations that depend on finding a particular
1890 AT_producer attribute.
c906108c
SS
1891
1892 */
1893
1894static void
1895handle_producer (producer)
1896 char *producer;
1897{
1898
1899 /* If this compilation unit was compiled with g++ or gcc, then set the
1900 processing_gcc_compilation flag. */
1901
1902 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1903 {
1904 char version = producer[strlen (GCC_PRODUCER)];
1905 processing_gcc_compilation = (version == '2' ? 2 : 1);
1906 }
1907 else
1908 {
1909 processing_gcc_compilation =
1910 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1911 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1912 }
1913
1914 /* Select a demangling style if we can identify the producer and if
1915 the current style is auto. We leave the current style alone if it
1916 is not auto. We also leave the demangling style alone if we find a
1917 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1918
1919 if (AUTO_DEMANGLING)
1920 {
1921 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1922 {
1923 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1924 }
1925 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1926 {
1927 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1928 }
1929 }
1930}
1931
1932
1933/*
1934
c5aa993b 1935 LOCAL FUNCTION
c906108c 1936
c5aa993b 1937 read_file_scope -- process all dies within a file scope
c906108c 1938
c5aa993b
JM
1939 DESCRIPTION
1940
1941 Process all dies within a given file scope. We are passed a
1942 pointer to the die information structure for the die which
1943 starts the file scope, and pointers into the raw die data which
1944 mark the range of dies within the file scope.
c906108c 1945
c5aa993b
JM
1946 When the partial symbol table is built, the file offset for the line
1947 number table for each compilation unit is saved in the partial symbol
1948 table entry for that compilation unit. As the symbols for each
1949 compilation unit are read, the line number table is read into memory
1950 and the variable lnbase is set to point to it. Thus all we have to
1951 do is use lnbase to access the line number table for the current
1952 compilation unit.
c906108c
SS
1953 */
1954
1955static void
1956read_file_scope (dip, thisdie, enddie, objfile)
1957 struct dieinfo *dip;
1958 char *thisdie;
1959 char *enddie;
1960 struct objfile *objfile;
1961{
1962 struct cleanup *back_to;
1963 struct symtab *symtab;
c5aa993b
JM
1964
1965 if (objfile->ei.entry_point >= dip->at_low_pc &&
1966 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1967 {
c5aa993b
JM
1968 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1969 objfile->ei.entry_file_highpc = dip->at_high_pc;
c906108c
SS
1970 }
1971 set_cu_language (dip);
c5aa993b 1972 if (dip->at_producer != NULL)
c906108c 1973 {
c5aa993b 1974 handle_producer (dip->at_producer);
c906108c
SS
1975 }
1976 numutypes = (enddie - thisdie) / 4;
1977 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1978 back_to = make_cleanup (free_utypes, NULL);
1979 memset (utypes, 0, numutypes * sizeof (struct type *));
1980 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1981 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1982 record_debugformat ("DWARF 1");
1983 decode_line_numbers (lnbase);
c5aa993b 1984 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1985
c5aa993b 1986 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1987 if (symtab != NULL)
1988 {
c5aa993b
JM
1989 symtab->language = cu_language;
1990 }
c906108c
SS
1991 do_cleanups (back_to);
1992}
1993
1994/*
1995
c5aa993b 1996 LOCAL FUNCTION
c906108c 1997
c5aa993b 1998 process_dies -- process a range of DWARF Information Entries
c906108c 1999
c5aa993b 2000 SYNOPSIS
c906108c 2001
c5aa993b
JM
2002 static void process_dies (char *thisdie, char *enddie,
2003 struct objfile *objfile)
c906108c 2004
c5aa993b 2005 DESCRIPTION
c906108c 2006
c5aa993b
JM
2007 Process all DIE's in a specified range. May be (and almost
2008 certainly will be) called recursively.
c906108c
SS
2009 */
2010
2011static void
2012process_dies (thisdie, enddie, objfile)
2013 char *thisdie;
2014 char *enddie;
2015 struct objfile *objfile;
2016{
2017 char *nextdie;
2018 struct dieinfo di;
c5aa993b 2019
c906108c
SS
2020 while (thisdie < enddie)
2021 {
2022 basicdieinfo (&di, thisdie, objfile);
2023 if (di.die_length < SIZEOF_DIE_LENGTH)
2024 {
2025 break;
2026 }
2027 else if (di.die_tag == TAG_padding)
2028 {
2029 nextdie = thisdie + di.die_length;
2030 }
2031 else
2032 {
2033 completedieinfo (&di, objfile);
2034 if (di.at_sibling != 0)
2035 {
2036 nextdie = dbbase + di.at_sibling - dbroff;
2037 }
2038 else
2039 {
2040 nextdie = thisdie + di.die_length;
2041 }
2042#ifdef SMASH_TEXT_ADDRESS
2043 /* I think that these are always text, not data, addresses. */
2044 SMASH_TEXT_ADDRESS (di.at_low_pc);
2045 SMASH_TEXT_ADDRESS (di.at_high_pc);
2046#endif
2047 switch (di.die_tag)
2048 {
2049 case TAG_compile_unit:
2050 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
2051 unit, we are unable to handle nested compilation units
2052 properly (FIXME). */
c906108c
SS
2053 if (current_subfile == NULL)
2054 read_file_scope (&di, thisdie, nextdie, objfile);
2055 else
2056 nextdie = thisdie + di.die_length;
2057 break;
2058 case TAG_global_subroutine:
2059 case TAG_subroutine:
2060 if (di.has_at_low_pc)
2061 {
2062 read_func_scope (&di, thisdie, nextdie, objfile);
2063 }
2064 break;
2065 case TAG_lexical_block:
2066 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2067 break;
2068 case TAG_class_type:
2069 case TAG_structure_type:
2070 case TAG_union_type:
2071 read_structure_scope (&di, thisdie, nextdie, objfile);
2072 break;
2073 case TAG_enumeration_type:
2074 read_enumeration (&di, thisdie, nextdie, objfile);
2075 break;
2076 case TAG_subroutine_type:
2077 read_subroutine_type (&di, thisdie, nextdie);
2078 break;
2079 case TAG_array_type:
2080 dwarf_read_array_type (&di);
2081 break;
2082 case TAG_pointer_type:
2083 read_tag_pointer_type (&di);
2084 break;
2085 case TAG_string_type:
2086 read_tag_string_type (&di);
2087 break;
2088 default:
2089 new_symbol (&di, objfile);
2090 break;
2091 }
2092 }
2093 thisdie = nextdie;
2094 }
2095}
2096
2097/*
2098
c5aa993b 2099 LOCAL FUNCTION
c906108c 2100
c5aa993b 2101 decode_line_numbers -- decode a line number table fragment
c906108c 2102
c5aa993b 2103 SYNOPSIS
c906108c 2104
c5aa993b
JM
2105 static void decode_line_numbers (char *tblscan, char *tblend,
2106 long length, long base, long line, long pc)
c906108c 2107
c5aa993b 2108 DESCRIPTION
c906108c 2109
c5aa993b 2110 Translate the DWARF line number information to gdb form.
c906108c 2111
c5aa993b
JM
2112 The ".line" section contains one or more line number tables, one for
2113 each ".line" section from the objects that were linked.
c906108c 2114
c5aa993b
JM
2115 The AT_stmt_list attribute for each TAG_source_file entry in the
2116 ".debug" section contains the offset into the ".line" section for the
2117 start of the table for that file.
c906108c 2118
c5aa993b 2119 The table itself has the following structure:
c906108c 2120
c5aa993b
JM
2121 <table length><base address><source statement entry>
2122 4 bytes 4 bytes 10 bytes
c906108c 2123
c5aa993b
JM
2124 The table length is the total size of the table, including the 4 bytes
2125 for the length information.
c906108c 2126
c5aa993b
JM
2127 The base address is the address of the first instruction generated
2128 for the source file.
c906108c 2129
c5aa993b 2130 Each source statement entry has the following structure:
c906108c 2131
c5aa993b
JM
2132 <line number><statement position><address delta>
2133 4 bytes 2 bytes 4 bytes
c906108c 2134
c5aa993b
JM
2135 The line number is relative to the start of the file, starting with
2136 line 1.
c906108c 2137
c5aa993b
JM
2138 The statement position either -1 (0xFFFF) or the number of characters
2139 from the beginning of the line to the beginning of the statement.
c906108c 2140
c5aa993b
JM
2141 The address delta is the difference between the base address and
2142 the address of the first instruction for the statement.
c906108c 2143
c5aa993b
JM
2144 Note that we must copy the bytes from the packed table to our local
2145 variables before attempting to use them, to avoid alignment problems
2146 on some machines, particularly RISC processors.
c906108c 2147
c5aa993b 2148 BUGS
c906108c 2149
c5aa993b
JM
2150 Does gdb expect the line numbers to be sorted? They are now by
2151 chance/luck, but are not required to be. (FIXME)
c906108c 2152
c5aa993b
JM
2153 The line with number 0 is unused, gdb apparently can discover the
2154 span of the last line some other way. How? (FIXME)
c906108c
SS
2155 */
2156
2157static void
2158decode_line_numbers (linetable)
2159 char *linetable;
2160{
2161 char *tblscan;
2162 char *tblend;
2163 unsigned long length;
2164 unsigned long base;
2165 unsigned long line;
2166 unsigned long pc;
c5aa993b 2167
c906108c
SS
2168 if (linetable != NULL)
2169 {
2170 tblscan = tblend = linetable;
2171 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2172 current_objfile);
2173 tblscan += SIZEOF_LINETBL_LENGTH;
2174 tblend += length;
2175 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2176 GET_UNSIGNED, current_objfile);
2177 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2178 base += baseaddr;
2179 while (tblscan < tblend)
2180 {
2181 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2182 current_objfile);
2183 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2184 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2185 current_objfile);
2186 tblscan += SIZEOF_LINETBL_DELTA;
2187 pc += base;
2188 if (line != 0)
2189 {
2190 record_line (current_subfile, line, pc);
2191 }
2192 }
2193 }
2194}
2195
2196/*
2197
c5aa993b 2198 LOCAL FUNCTION
c906108c 2199
c5aa993b 2200 locval -- compute the value of a location attribute
c906108c 2201
c5aa993b 2202 SYNOPSIS
c906108c 2203
c5aa993b 2204 static int locval (struct dieinfo *dip)
c906108c 2205
c5aa993b 2206 DESCRIPTION
c906108c 2207
c5aa993b
JM
2208 Given pointer to a string of bytes that define a location, compute
2209 the location and return the value.
2210 A location description containing no atoms indicates that the
2211 object is optimized out. The optimized_out flag is set for those,
2212 the return value is meaningless.
c906108c 2213
c5aa993b
JM
2214 When computing values involving the current value of the frame pointer,
2215 the value zero is used, which results in a value relative to the frame
2216 pointer, rather than the absolute value. This is what GDB wants
2217 anyway.
c906108c 2218
c5aa993b
JM
2219 When the result is a register number, the isreg flag is set, otherwise
2220 it is cleared. This is a kludge until we figure out a better
2221 way to handle the problem. Gdb's design does not mesh well with the
2222 DWARF notion of a location computing interpreter, which is a shame
2223 because the flexibility goes unused.
2224
2225 NOTES
2226
2227 Note that stack[0] is unused except as a default error return.
2228 Note that stack overflow is not yet handled.
c906108c
SS
2229 */
2230
2231static int
2232locval (dip)
2233 struct dieinfo *dip;
2234{
2235 unsigned short nbytes;
2236 unsigned short locsize;
2237 auto long stack[64];
2238 int stacki;
2239 char *loc;
2240 char *end;
2241 int loc_atom_code;
2242 int loc_value_size;
c5aa993b
JM
2243
2244 loc = dip->at_location;
c906108c
SS
2245 nbytes = attribute_size (AT_location);
2246 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2247 loc += nbytes;
2248 end = loc + locsize;
2249 stacki = 0;
2250 stack[stacki] = 0;
c5aa993b
JM
2251 dip->isreg = 0;
2252 dip->offreg = 0;
2253 dip->optimized_out = 1;
c906108c
SS
2254 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2255 while (loc < end)
2256 {
c5aa993b 2257 dip->optimized_out = 0;
c906108c
SS
2258 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2259 current_objfile);
2260 loc += SIZEOF_LOC_ATOM_CODE;
2261 switch (loc_atom_code)
2262 {
c5aa993b
JM
2263 case 0:
2264 /* error */
2265 loc = end;
2266 break;
2267 case OP_REG:
2268 /* push register (number) */
2269 stack[++stacki]
2270 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2271 GET_UNSIGNED,
2272 current_objfile));
2273 loc += loc_value_size;
2274 dip->isreg = 1;
2275 break;
2276 case OP_BASEREG:
2277 /* push value of register (number) */
2278 /* Actually, we compute the value as if register has 0, so the
2279 value ends up being the offset from that register. */
2280 dip->offreg = 1;
2281 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2282 current_objfile);
2283 loc += loc_value_size;
2284 stack[++stacki] = 0;
2285 break;
2286 case OP_ADDR:
2287 /* push address (relocated address) */
2288 stack[++stacki] = target_to_host (loc, loc_value_size,
2289 GET_UNSIGNED, current_objfile);
2290 loc += loc_value_size;
2291 break;
2292 case OP_CONST:
2293 /* push constant (number) FIXME: signed or unsigned! */
2294 stack[++stacki] = target_to_host (loc, loc_value_size,
2295 GET_SIGNED, current_objfile);
2296 loc += loc_value_size;
2297 break;
2298 case OP_DEREF2:
2299 /* pop, deref and push 2 bytes (as a long) */
2300 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2301 break;
2302 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2303 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2304 break;
2305 case OP_ADD: /* pop top 2 items, add, push result */
2306 stack[stacki - 1] += stack[stacki];
2307 stacki--;
2308 break;
c906108c
SS
2309 }
2310 }
2311 return (stack[stacki]);
2312}
2313
2314/*
2315
c5aa993b 2316 LOCAL FUNCTION
c906108c 2317
c5aa993b 2318 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2319
c5aa993b 2320 SYNOPSIS
c906108c 2321
c5aa993b 2322 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2323
c5aa993b 2324 DESCRIPTION
c906108c 2325
c5aa993b
JM
2326 When expanding a partial symbol table entry to a full symbol table
2327 entry, this is the function that gets called to read in the symbols
2328 for the compilation unit. A pointer to the newly constructed symtab,
2329 which is now the new first one on the objfile's symtab list, is
2330 stashed in the partial symbol table entry.
c906108c
SS
2331 */
2332
2333static void
2334read_ofile_symtab (pst)
2335 struct partial_symtab *pst;
2336{
2337 struct cleanup *back_to;
2338 unsigned long lnsize;
2339 file_ptr foffset;
2340 bfd *abfd;
2341 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2342
c5aa993b
JM
2343 abfd = pst->objfile->obfd;
2344 current_objfile = pst->objfile;
c906108c
SS
2345
2346 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2347 unit, seek to the location in the file, and read in all the DIE's. */
2348
2349 diecount = 0;
2350 dbsize = DBLENGTH (pst);
2351 dbbase = xmalloc (dbsize);
c5aa993b
JM
2352 dbroff = DBROFF (pst);
2353 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2354 base_section_offsets = pst->section_offsets;
2355 baseaddr = ANOFFSET (pst->section_offsets, 0);
2356 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2357 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2358 {
2359 free (dbbase);
2360 error ("can't read DWARF data");
2361 }
2362 back_to = make_cleanup (free, dbbase);
2363
2364 /* If there is a line number table associated with this compilation unit
2365 then read the size of this fragment in bytes, from the fragment itself.
2366 Allocate a buffer for the fragment and read it in for future
2367 processing. */
2368
2369 lnbase = NULL;
2370 if (LNFOFF (pst))
2371 {
2372 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2373 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2374 sizeof (lnsizedata)))
2375 {
2376 error ("can't read DWARF line number table size");
2377 }
2378 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2379 GET_UNSIGNED, pst->objfile);
c906108c
SS
2380 lnbase = xmalloc (lnsize);
2381 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2382 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2383 {
2384 free (lnbase);
2385 error ("can't read DWARF line numbers");
2386 }
2387 make_cleanup (free, lnbase);
2388 }
2389
c5aa993b 2390 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2391 do_cleanups (back_to);
2392 current_objfile = NULL;
c5aa993b 2393 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2394}
2395
2396/*
2397
c5aa993b 2398 LOCAL FUNCTION
c906108c 2399
c5aa993b 2400 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2401
c5aa993b 2402 SYNOPSIS
c906108c 2403
c5aa993b 2404 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2405
c5aa993b 2406 DESCRIPTION
c906108c 2407
c5aa993b
JM
2408 Called once for each partial symbol table entry that needs to be
2409 expanded into a full symbol table entry.
c906108c 2410
c5aa993b 2411 */
c906108c
SS
2412
2413static void
2414psymtab_to_symtab_1 (pst)
2415 struct partial_symtab *pst;
2416{
2417 int i;
2418 struct cleanup *old_chain;
c5aa993b 2419
c906108c
SS
2420 if (pst != NULL)
2421 {
2422 if (pst->readin)
2423 {
2424 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2425 pst->filename);
c906108c
SS
2426 }
2427 else
2428 {
2429 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2430 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2431 {
c5aa993b 2432 if (!pst->dependencies[i]->readin)
c906108c
SS
2433 {
2434 /* Inform about additional files that need to be read in. */
2435 if (info_verbose)
2436 {
2437 fputs_filtered (" ", gdb_stdout);
2438 wrap_here ("");
2439 fputs_filtered ("and ", gdb_stdout);
2440 wrap_here ("");
2441 printf_filtered ("%s...",
c5aa993b 2442 pst->dependencies[i]->filename);
c906108c 2443 wrap_here ("");
c5aa993b 2444 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2445 }
c5aa993b 2446 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2447 }
c5aa993b
JM
2448 }
2449 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2450 {
2451 buildsym_init ();
a0b3c4fd 2452 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2453 read_ofile_symtab (pst);
2454 if (info_verbose)
2455 {
2456 printf_filtered ("%d DIE's, sorting...", diecount);
2457 wrap_here ("");
2458 gdb_flush (gdb_stdout);
2459 }
c5aa993b 2460 sort_symtab_syms (pst->symtab);
c906108c
SS
2461 do_cleanups (old_chain);
2462 }
c5aa993b 2463 pst->readin = 1;
c906108c
SS
2464 }
2465 }
2466}
2467
2468/*
2469
c5aa993b 2470 LOCAL FUNCTION
c906108c 2471
c5aa993b 2472 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2473
c5aa993b 2474 SYNOPSIS
c906108c 2475
c5aa993b 2476 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2477
c5aa993b 2478 DESCRIPTION
c906108c 2479
c5aa993b
JM
2480 This is the DWARF support entry point for building a full symbol
2481 table entry from a partial symbol table entry. We are passed a
2482 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2483
c5aa993b 2484 */
c906108c
SS
2485
2486static void
2487dwarf_psymtab_to_symtab (pst)
2488 struct partial_symtab *pst;
2489{
2490
2491 if (pst != NULL)
2492 {
c5aa993b 2493 if (pst->readin)
c906108c
SS
2494 {
2495 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2496 pst->filename);
c906108c
SS
2497 }
2498 else
2499 {
c5aa993b 2500 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2501 {
2502 /* Print the message now, before starting serious work, to avoid
c5aa993b 2503 disconcerting pauses. */
c906108c
SS
2504 if (info_verbose)
2505 {
2506 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2507 pst->filename);
c906108c
SS
2508 gdb_flush (gdb_stdout);
2509 }
c5aa993b 2510
c906108c 2511 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2512
2513#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2514 we need to do an equivalent or is this something peculiar to
2515 stabs/a.out format.
2516 Match with global symbols. This only needs to be done once,
2517 after all of the symtabs and dependencies have been read in.
2518 */
2519 scan_file_globals (pst->objfile);
c906108c 2520#endif
c5aa993b 2521
c906108c
SS
2522 /* Finish up the verbose info message. */
2523 if (info_verbose)
2524 {
2525 printf_filtered ("done.\n");
2526 gdb_flush (gdb_stdout);
2527 }
2528 }
2529 }
2530 }
2531}
2532
2533/*
2534
c5aa993b 2535 LOCAL FUNCTION
c906108c 2536
c5aa993b 2537 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2538
c5aa993b 2539 DESCRIPTION
c906108c 2540
c5aa993b
JM
2541 Given pointer to a DIE that is known to be for an enumeration,
2542 extract the symbolic names of the enumeration members and add
2543 partial symbols for them.
2544 */
c906108c
SS
2545
2546static void
2547add_enum_psymbol (dip, objfile)
2548 struct dieinfo *dip;
2549 struct objfile *objfile;
2550{
2551 char *scan;
2552 char *listend;
2553 unsigned short blocksz;
2554 int nbytes;
c5aa993b
JM
2555
2556 if ((scan = dip->at_element_list) != NULL)
c906108c 2557 {
c5aa993b 2558 if (dip->short_element_list)
c906108c
SS
2559 {
2560 nbytes = attribute_size (AT_short_element_list);
2561 }
2562 else
2563 {
2564 nbytes = attribute_size (AT_element_list);
2565 }
2566 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2567 scan += nbytes;
2568 listend = scan + blocksz;
2569 while (scan < listend)
2570 {
2571 scan += TARGET_FT_LONG_SIZE (objfile);
2572 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
c5aa993b 2573 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2574 objfile);
2575 scan += strlen (scan) + 1;
2576 }
2577 }
2578}
2579
2580/*
2581
c5aa993b 2582 LOCAL FUNCTION
c906108c 2583
c5aa993b 2584 add_partial_symbol -- add symbol to partial symbol table
c906108c 2585
c5aa993b 2586 DESCRIPTION
c906108c 2587
c5aa993b
JM
2588 Given a DIE, if it is one of the types that we want to
2589 add to a partial symbol table, finish filling in the die info
2590 and then add a partial symbol table entry for it.
c906108c 2591
c5aa993b 2592 NOTES
c906108c 2593
c5aa993b
JM
2594 The caller must ensure that the DIE has a valid name attribute.
2595 */
c906108c
SS
2596
2597static void
2598add_partial_symbol (dip, objfile)
2599 struct dieinfo *dip;
2600 struct objfile *objfile;
2601{
c5aa993b 2602 switch (dip->die_tag)
c906108c
SS
2603 {
2604 case TAG_global_subroutine:
c5aa993b
JM
2605 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2606 VAR_NAMESPACE, LOC_BLOCK,
2607 &objfile->global_psymbols,
2608 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2609 break;
2610 case TAG_global_variable:
c5aa993b 2611 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2612 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2613 &objfile->global_psymbols,
c906108c
SS
2614 0, 0, cu_language, objfile);
2615 break;
2616 case TAG_subroutine:
c5aa993b
JM
2617 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2618 VAR_NAMESPACE, LOC_BLOCK,
2619 &objfile->static_psymbols,
2620 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2621 break;
2622 case TAG_local_variable:
c5aa993b 2623 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2624 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2625 &objfile->static_psymbols,
c906108c
SS
2626 0, 0, cu_language, objfile);
2627 break;
2628 case TAG_typedef:
c5aa993b 2629 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2630 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2631 &objfile->static_psymbols,
c906108c
SS
2632 0, 0, cu_language, objfile);
2633 break;
2634 case TAG_class_type:
2635 case TAG_structure_type:
2636 case TAG_union_type:
2637 case TAG_enumeration_type:
2638 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2639 if (!dip->has_at_byte_size)
c906108c 2640 break;
c5aa993b 2641 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2642 STRUCT_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2643 &objfile->static_psymbols,
c906108c
SS
2644 0, 0, cu_language, objfile);
2645 if (cu_language == language_cplus)
2646 {
2647 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2648 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2649 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2650 &objfile->static_psymbols,
c906108c
SS
2651 0, 0, cu_language, objfile);
2652 }
2653 break;
2654 }
2655}
9846de1b 2656/* *INDENT-OFF* */
c906108c
SS
2657/*
2658
2659LOCAL FUNCTION
2660
2661 scan_partial_symbols -- scan DIE's within a single compilation unit
2662
2663DESCRIPTION
2664
2665 Process the DIE's within a single compilation unit, looking for
2666 interesting DIE's that contribute to the partial symbol table entry
2667 for this compilation unit.
2668
2669NOTES
2670
2671 There are some DIE's that may appear both at file scope and within
2672 the scope of a function. We are only interested in the ones at file
2673 scope, and the only way to tell them apart is to keep track of the
2674 scope. For example, consider the test case:
2675
2676 static int i;
2677 main () { int j; }
2678
2679 for which the relevant DWARF segment has the structure:
2680
2681 0x51:
2682 0x23 global subrtn sibling 0x9b
2683 name main
2684 fund_type FT_integer
2685 low_pc 0x800004cc
2686 high_pc 0x800004d4
2687
2688 0x74:
2689 0x23 local var sibling 0x97
2690 name j
2691 fund_type FT_integer
2692 location OP_BASEREG 0xe
2693 OP_CONST 0xfffffffc
2694 OP_ADD
2695 0x97:
2696 0x4
2697
2698 0x9b:
2699 0x1d local var sibling 0xb8
2700 name i
2701 fund_type FT_integer
2702 location OP_ADDR 0x800025dc
2703
2704 0xb8:
2705 0x4
2706
2707 We want to include the symbol 'i' in the partial symbol table, but
2708 not the symbol 'j'. In essence, we want to skip all the dies within
2709 the scope of a TAG_global_subroutine DIE.
2710
2711 Don't attempt to add anonymous structures or unions since they have
2712 no name. Anonymous enumerations however are processed, because we
2713 want to extract their member names (the check for a tag name is
2714 done later).
2715
2716 Also, for variables and subroutines, check that this is the place
2717 where the actual definition occurs, rather than just a reference
2718 to an external.
2719 */
9846de1b 2720/* *INDENT-ON* */
c906108c 2721
c5aa993b
JM
2722
2723
c906108c
SS
2724static void
2725scan_partial_symbols (thisdie, enddie, objfile)
2726 char *thisdie;
2727 char *enddie;
2728 struct objfile *objfile;
2729{
2730 char *nextdie;
2731 char *temp;
2732 struct dieinfo di;
c5aa993b 2733
c906108c
SS
2734 while (thisdie < enddie)
2735 {
2736 basicdieinfo (&di, thisdie, objfile);
2737 if (di.die_length < SIZEOF_DIE_LENGTH)
2738 {
2739 break;
2740 }
2741 else
2742 {
2743 nextdie = thisdie + di.die_length;
2744 /* To avoid getting complete die information for every die, we
2745 only do it (below) for the cases we are interested in. */
2746 switch (di.die_tag)
2747 {
2748 case TAG_global_subroutine:
2749 case TAG_subroutine:
2750 completedieinfo (&di, objfile);
2751 if (di.at_name && (di.has_at_low_pc || di.at_location))
2752 {
2753 add_partial_symbol (&di, objfile);
2754 /* If there is a sibling attribute, adjust the nextdie
2755 pointer to skip the entire scope of the subroutine.
2756 Apply some sanity checking to make sure we don't
2757 overrun or underrun the range of remaining DIE's */
2758 if (di.at_sibling != 0)
2759 {
2760 temp = dbbase + di.at_sibling - dbroff;
2761 if ((temp < thisdie) || (temp >= enddie))
2762 {
2763 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2764 di.at_sibling);
2765 }
2766 else
2767 {
2768 nextdie = temp;
2769 }
2770 }
2771 }
2772 break;
2773 case TAG_global_variable:
2774 case TAG_local_variable:
2775 completedieinfo (&di, objfile);
2776 if (di.at_name && (di.has_at_low_pc || di.at_location))
2777 {
2778 add_partial_symbol (&di, objfile);
2779 }
2780 break;
2781 case TAG_typedef:
2782 case TAG_class_type:
2783 case TAG_structure_type:
2784 case TAG_union_type:
2785 completedieinfo (&di, objfile);
2786 if (di.at_name)
2787 {
2788 add_partial_symbol (&di, objfile);
2789 }
2790 break;
2791 case TAG_enumeration_type:
2792 completedieinfo (&di, objfile);
2793 if (di.at_name)
2794 {
2795 add_partial_symbol (&di, objfile);
2796 }
2797 add_enum_psymbol (&di, objfile);
2798 break;
2799 }
2800 }
2801 thisdie = nextdie;
2802 }
2803}
2804
2805/*
2806
c5aa993b 2807 LOCAL FUNCTION
c906108c 2808
c5aa993b 2809 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2810
c5aa993b 2811 DESCRIPTION
c906108c 2812
c5aa993b
JM
2813 This is the top level dwarf parsing routine for building partial
2814 symbol tables.
c906108c 2815
c5aa993b
JM
2816 It scans from the beginning of the DWARF table looking for the first
2817 TAG_compile_unit DIE, and then follows the sibling chain to locate
2818 each additional TAG_compile_unit DIE.
2819
2820 For each TAG_compile_unit DIE it creates a partial symtab structure,
2821 calls a subordinate routine to collect all the compilation unit's
2822 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2823 new partial symtab structure into the partial symbol table. It also
2824 records the appropriate information in the partial symbol table entry
2825 to allow the chunk of DIE's and line number table for this compilation
2826 unit to be located and re-read later, to generate a complete symbol
2827 table entry for the compilation unit.
2828
2829 Thus it effectively partitions up a chunk of DIE's for multiple
2830 compilation units into smaller DIE chunks and line number tables,
2831 and associates them with a partial symbol table entry.
2832
2833 NOTES
c906108c 2834
c5aa993b
JM
2835 If any compilation unit has no line number table associated with
2836 it for some reason (a missing at_stmt_list attribute, rather than
2837 just one with a value of zero, which is valid) then we ensure that
2838 the recorded file offset is zero so that the routine which later
2839 reads line number table fragments knows that there is no fragment
2840 to read.
c906108c 2841
c5aa993b 2842 RETURNS
c906108c 2843
c5aa993b 2844 Returns no value.
c906108c
SS
2845
2846 */
2847
2848static void
2849scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2850 char *thisdie;
2851 char *enddie;
2852 file_ptr dbfoff;
2853 file_ptr lnoffset;
2854 struct objfile *objfile;
2855{
2856 char *nextdie;
2857 struct dieinfo di;
2858 struct partial_symtab *pst;
2859 int culength;
2860 int curoff;
2861 file_ptr curlnoffset;
2862
2863 while (thisdie < enddie)
2864 {
2865 basicdieinfo (&di, thisdie, objfile);
2866 if (di.die_length < SIZEOF_DIE_LENGTH)
2867 {
2868 break;
2869 }
2870 else if (di.die_tag != TAG_compile_unit)
2871 {
2872 nextdie = thisdie + di.die_length;
2873 }
2874 else
2875 {
2876 completedieinfo (&di, objfile);
2877 set_cu_language (&di);
2878 if (di.at_sibling != 0)
2879 {
2880 nextdie = dbbase + di.at_sibling - dbroff;
2881 }
2882 else
2883 {
2884 nextdie = thisdie + di.die_length;
2885 }
2886 curoff = thisdie - dbbase;
2887 culength = nextdie - thisdie;
2888 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2889
2890 /* First allocate a new partial symbol table structure */
2891
2892 pst = start_psymtab_common (objfile, base_section_offsets,
2893 di.at_name, di.at_low_pc,
c5aa993b
JM
2894 objfile->global_psymbols.next,
2895 objfile->static_psymbols.next);
c906108c 2896
c5aa993b
JM
2897 pst->texthigh = di.at_high_pc;
2898 pst->read_symtab_private = (char *)
2899 obstack_alloc (&objfile->psymbol_obstack,
2900 sizeof (struct dwfinfo));
c906108c
SS
2901 DBFOFF (pst) = dbfoff;
2902 DBROFF (pst) = curoff;
2903 DBLENGTH (pst) = culength;
c5aa993b
JM
2904 LNFOFF (pst) = curlnoffset;
2905 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2906
2907 /* Now look for partial symbols */
2908
2909 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2910
c5aa993b
JM
2911 pst->n_global_syms = objfile->global_psymbols.next -
2912 (objfile->global_psymbols.list + pst->globals_offset);
2913 pst->n_static_syms = objfile->static_psymbols.next -
2914 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2915 sort_pst_symbols (pst);
2916 /* If there is already a psymtab or symtab for a file of this name,
2917 remove it. (If there is a symtab, more drastic things also
2918 happen.) This happens in VxWorks. */
c5aa993b 2919 free_named_symtabs (pst->filename);
c906108c 2920 }
c5aa993b 2921 thisdie = nextdie;
c906108c
SS
2922 }
2923}
2924
2925/*
2926
c5aa993b 2927 LOCAL FUNCTION
c906108c 2928
c5aa993b 2929 new_symbol -- make a symbol table entry for a new symbol
c906108c 2930
c5aa993b 2931 SYNOPSIS
c906108c 2932
c5aa993b
JM
2933 static struct symbol *new_symbol (struct dieinfo *dip,
2934 struct objfile *objfile)
c906108c 2935
c5aa993b 2936 DESCRIPTION
c906108c 2937
c5aa993b
JM
2938 Given a pointer to a DWARF information entry, figure out if we need
2939 to make a symbol table entry for it, and if so, create a new entry
2940 and return a pointer to it.
c906108c
SS
2941 */
2942
2943static struct symbol *
2944new_symbol (dip, objfile)
2945 struct dieinfo *dip;
2946 struct objfile *objfile;
2947{
2948 struct symbol *sym = NULL;
c5aa993b
JM
2949
2950 if (dip->at_name != NULL)
c906108c 2951 {
c5aa993b 2952 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2953 sizeof (struct symbol));
2954 OBJSTAT (objfile, n_syms++);
2955 memset (sym, 0, sizeof (struct symbol));
c5aa993b 2956 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
2957 &objfile->symbol_obstack);
2958 /* default assumptions */
2959 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2960 SYMBOL_CLASS (sym) = LOC_STATIC;
2961 SYMBOL_TYPE (sym) = decode_die_type (dip);
2962
2963 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2964 demangled form for future reference. This is a typical time versus
2965 space tradeoff, that was decided in favor of time because it sped up
2966 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2967
2968 SYMBOL_LANGUAGE (sym) = cu_language;
c5aa993b
JM
2969 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2970 switch (dip->die_tag)
c906108c
SS
2971 {
2972 case TAG_label:
c5aa993b 2973 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2974 SYMBOL_CLASS (sym) = LOC_LABEL;
2975 break;
2976 case TAG_global_subroutine:
2977 case TAG_subroutine:
c5aa993b 2978 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2979 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2980 if (dip->at_prototyped)
c906108c
SS
2981 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2982 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2983 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2984 {
2985 add_symbol_to_list (sym, &global_symbols);
2986 }
2987 else
2988 {
2989 add_symbol_to_list (sym, list_in_scope);
2990 }
2991 break;
2992 case TAG_global_variable:
c5aa993b 2993 if (dip->at_location != NULL)
c906108c
SS
2994 {
2995 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2996 add_symbol_to_list (sym, &global_symbols);
2997 SYMBOL_CLASS (sym) = LOC_STATIC;
2998 SYMBOL_VALUE (sym) += baseaddr;
2999 }
3000 break;
3001 case TAG_local_variable:
c5aa993b 3002 if (dip->at_location != NULL)
c906108c
SS
3003 {
3004 int loc = locval (dip);
c5aa993b 3005 if (dip->optimized_out)
c906108c
SS
3006 {
3007 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3008 }
c5aa993b 3009 else if (dip->isreg)
c906108c
SS
3010 {
3011 SYMBOL_CLASS (sym) = LOC_REGISTER;
3012 }
c5aa993b 3013 else if (dip->offreg)
c906108c
SS
3014 {
3015 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 3016 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
3017 }
3018 else
3019 {
3020 SYMBOL_CLASS (sym) = LOC_STATIC;
3021 SYMBOL_VALUE (sym) += baseaddr;
3022 }
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3024 {
3025 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3026 which may store to a bigger location than SYMBOL_VALUE. */
3027 SYMBOL_VALUE_ADDRESS (sym) = loc;
3028 }
3029 else
3030 {
3031 SYMBOL_VALUE (sym) = loc;
3032 }
3033 add_symbol_to_list (sym, list_in_scope);
3034 }
3035 break;
3036 case TAG_formal_parameter:
c5aa993b 3037 if (dip->at_location != NULL)
c906108c
SS
3038 {
3039 SYMBOL_VALUE (sym) = locval (dip);
3040 }
3041 add_symbol_to_list (sym, list_in_scope);
c5aa993b 3042 if (dip->isreg)
c906108c
SS
3043 {
3044 SYMBOL_CLASS (sym) = LOC_REGPARM;
3045 }
c5aa993b 3046 else if (dip->offreg)
c906108c
SS
3047 {
3048 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 3049 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
3050 }
3051 else
3052 {
3053 SYMBOL_CLASS (sym) = LOC_ARG;
3054 }
3055 break;
3056 case TAG_unspecified_parameters:
3057 /* From varargs functions; gdb doesn't seem to have any interest in
3058 this information, so just ignore it for now. (FIXME?) */
3059 break;
3060 case TAG_class_type:
3061 case TAG_structure_type:
3062 case TAG_union_type:
3063 case TAG_enumeration_type:
3064 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3065 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3066 add_symbol_to_list (sym, list_in_scope);
3067 break;
3068 case TAG_typedef:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3072 break;
3073 default:
3074 /* Not a tag we recognize. Hopefully we aren't processing trash
3075 data, but since we must specifically ignore things we don't
3076 recognize, there is nothing else we should do at this point. */
3077 break;
3078 }
3079 }
3080 return (sym);
3081}
3082
3083/*
3084
c5aa993b 3085 LOCAL FUNCTION
c906108c 3086
c5aa993b 3087 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 3088
c5aa993b 3089 SYNOPSIS
c906108c 3090
c5aa993b
JM
3091 static void synthesize_typedef (struct dieinfo *dip,
3092 struct objfile *objfile,
3093 struct type *type);
c906108c 3094
c5aa993b 3095 DESCRIPTION
c906108c 3096
c5aa993b
JM
3097 Given a pointer to a DWARF information entry, synthesize a typedef
3098 for the name in the DIE, using the specified type.
c906108c 3099
c5aa993b
JM
3100 This is used for C++ class, structs, unions, and enumerations to
3101 set up the tag name as a type.
c906108c
SS
3102
3103 */
3104
3105static void
3106synthesize_typedef (dip, objfile, type)
3107 struct dieinfo *dip;
3108 struct objfile *objfile;
3109 struct type *type;
3110{
3111 struct symbol *sym = NULL;
c5aa993b
JM
3112
3113 if (dip->at_name != NULL)
c906108c
SS
3114 {
3115 sym = (struct symbol *)
c5aa993b 3116 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
3117 OBJSTAT (objfile, n_syms++);
3118 memset (sym, 0, sizeof (struct symbol));
c5aa993b 3119 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
3120 &objfile->symbol_obstack);
3121 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3122 SYMBOL_TYPE (sym) = type;
3123 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3124 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3125 add_symbol_to_list (sym, list_in_scope);
3126 }
3127}
3128
3129/*
3130
c5aa993b 3131 LOCAL FUNCTION
c906108c 3132
c5aa993b 3133 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3134
c5aa993b 3135 SYNOPSIS
c906108c 3136
c5aa993b 3137 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3138
c5aa993b 3139 DESCRIPTION
c906108c 3140
c5aa993b
JM
3141 Decode a block of data containing a modified fundamental
3142 type specification. TYPEDATA is a pointer to the block,
3143 which starts with a length containing the size of the rest
3144 of the block. At the end of the block is a fundmental type
3145 code value that gives the fundamental type. Everything
3146 in between are type modifiers.
c906108c 3147
c5aa993b
JM
3148 We simply compute the number of modifiers and call the general
3149 function decode_modified_type to do the actual work.
3150 */
c906108c
SS
3151
3152static struct type *
3153decode_mod_fund_type (typedata)
3154 char *typedata;
3155{
3156 struct type *typep = NULL;
3157 unsigned short modcount;
3158 int nbytes;
c5aa993b 3159
c906108c
SS
3160 /* Get the total size of the block, exclusive of the size itself */
3161
3162 nbytes = attribute_size (AT_mod_fund_type);
3163 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3164 typedata += nbytes;
3165
3166 /* Deduct the size of the fundamental type bytes at the end of the block. */
3167
3168 modcount -= attribute_size (AT_fund_type);
3169
3170 /* Now do the actual decoding */
3171
3172 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3173 return (typep);
3174}
3175
3176/*
3177
c5aa993b 3178 LOCAL FUNCTION
c906108c 3179
c5aa993b 3180 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3181
c5aa993b 3182 SYNOPSIS
c906108c 3183
c5aa993b 3184 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3185
c5aa993b 3186 DESCRIPTION
c906108c 3187
c5aa993b
JM
3188 Decode a block of data containing a modified user defined
3189 type specification. TYPEDATA is a pointer to the block,
3190 which consists of a two byte length, containing the size
3191 of the rest of the block. At the end of the block is a
3192 four byte value that gives a reference to a user defined type.
3193 Everything in between are type modifiers.
c906108c 3194
c5aa993b
JM
3195 We simply compute the number of modifiers and call the general
3196 function decode_modified_type to do the actual work.
3197 */
c906108c
SS
3198
3199static struct type *
3200decode_mod_u_d_type (typedata)
3201 char *typedata;
3202{
3203 struct type *typep = NULL;
3204 unsigned short modcount;
3205 int nbytes;
c5aa993b 3206
c906108c
SS
3207 /* Get the total size of the block, exclusive of the size itself */
3208
3209 nbytes = attribute_size (AT_mod_u_d_type);
3210 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3211 typedata += nbytes;
3212
3213 /* Deduct the size of the reference type bytes at the end of the block. */
3214
3215 modcount -= attribute_size (AT_user_def_type);
3216
3217 /* Now do the actual decoding */
3218
3219 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3220 return (typep);
3221}
3222
3223/*
3224
c5aa993b 3225 LOCAL FUNCTION
c906108c 3226
c5aa993b 3227 decode_modified_type -- decode modified user or fundamental type
c906108c 3228
c5aa993b 3229 SYNOPSIS
c906108c 3230
c5aa993b
JM
3231 static struct type *decode_modified_type (char *modifiers,
3232 unsigned short modcount, int mtype)
c906108c 3233
c5aa993b 3234 DESCRIPTION
c906108c 3235
c5aa993b
JM
3236 Decode a modified type, either a modified fundamental type or
3237 a modified user defined type. MODIFIERS is a pointer to the
3238 block of bytes that define MODCOUNT modifiers. Immediately
3239 following the last modifier is a short containing the fundamental
3240 type or a long containing the reference to the user defined
3241 type. Which one is determined by MTYPE, which is either
3242 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3243 type we are generating.
c906108c 3244
c5aa993b
JM
3245 We call ourself recursively to generate each modified type,`
3246 until MODCOUNT reaches zero, at which point we have consumed
3247 all the modifiers and generate either the fundamental type or
3248 user defined type. When the recursion unwinds, each modifier
3249 is applied in turn to generate the full modified type.
3250
3251 NOTES
c906108c 3252
c5aa993b
JM
3253 If we find a modifier that we don't recognize, and it is not one
3254 of those reserved for application specific use, then we issue a
3255 warning and simply ignore the modifier.
c906108c 3256
c5aa993b 3257 BUGS
c906108c 3258
c5aa993b 3259 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3260
3261 */
3262
3263static struct type *
3264decode_modified_type (modifiers, modcount, mtype)
3265 char *modifiers;
3266 unsigned int modcount;
3267 int mtype;
3268{
3269 struct type *typep = NULL;
3270 unsigned short fundtype;
3271 DIE_REF die_ref;
3272 char modifier;
3273 int nbytes;
c5aa993b 3274
c906108c
SS
3275 if (modcount == 0)
3276 {
3277 switch (mtype)
3278 {
3279 case AT_mod_fund_type:
3280 nbytes = attribute_size (AT_fund_type);
3281 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3282 current_objfile);
3283 typep = decode_fund_type (fundtype);
3284 break;
3285 case AT_mod_u_d_type:
3286 nbytes = attribute_size (AT_user_def_type);
3287 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3288 current_objfile);
3289 if ((typep = lookup_utype (die_ref)) == NULL)
3290 {
3291 typep = alloc_utype (die_ref, NULL);
3292 }
3293 break;
3294 default:
3295 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3296 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3297 break;
3298 }
3299 }
3300 else
3301 {
3302 modifier = *modifiers++;
3303 typep = decode_modified_type (modifiers, --modcount, mtype);
3304 switch (modifier)
3305 {
c5aa993b
JM
3306 case MOD_pointer_to:
3307 typep = lookup_pointer_type (typep);
3308 break;
3309 case MOD_reference_to:
3310 typep = lookup_reference_type (typep);
3311 break;
3312 case MOD_const:
3313 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3314 break;
3315 case MOD_volatile:
3316 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3317 break;
3318 default:
3319 if (!(MOD_lo_user <= (unsigned char) modifier
3320 && (unsigned char) modifier <= MOD_hi_user))
3321 {
3322 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3323 }
3324 break;
c906108c
SS
3325 }
3326 }
3327 return (typep);
3328}
3329
3330/*
3331
c5aa993b 3332 LOCAL FUNCTION
c906108c 3333
c5aa993b 3334 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3335
c5aa993b 3336 DESCRIPTION
c906108c 3337
c5aa993b
JM
3338 Given an integer that is one of the fundamental DWARF types,
3339 translate it to one of the basic internal gdb types and return
3340 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3341
c5aa993b 3342 NOTES
c906108c 3343
c5aa993b
JM
3344 For robustness, if we are asked to translate a fundamental
3345 type that we are unprepared to deal with, we return int so
3346 callers can always depend upon a valid type being returned,
3347 and so gdb may at least do something reasonable by default.
3348 If the type is not in the range of those types defined as
3349 application specific types, we also issue a warning.
3350 */
c906108c
SS
3351
3352static struct type *
3353decode_fund_type (fundtype)
3354 unsigned int fundtype;
3355{
3356 struct type *typep = NULL;
c5aa993b 3357
c906108c
SS
3358 switch (fundtype)
3359 {
3360
3361 case FT_void:
3362 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3363 break;
c5aa993b 3364
c906108c
SS
3365 case FT_boolean: /* Was FT_set in AT&T version */
3366 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3367 break;
3368
3369 case FT_pointer: /* (void *) */
3370 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3371 typep = lookup_pointer_type (typep);
3372 break;
c5aa993b 3373
c906108c
SS
3374 case FT_char:
3375 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3376 break;
c5aa993b 3377
c906108c
SS
3378 case FT_signed_char:
3379 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3380 break;
3381
3382 case FT_unsigned_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3384 break;
c5aa993b 3385
c906108c
SS
3386 case FT_short:
3387 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3388 break;
3389
3390 case FT_signed_short:
3391 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3392 break;
c5aa993b 3393
c906108c
SS
3394 case FT_unsigned_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3396 break;
c5aa993b 3397
c906108c
SS
3398 case FT_integer:
3399 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3400 break;
3401
3402 case FT_signed_integer:
3403 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3404 break;
c5aa993b 3405
c906108c
SS
3406 case FT_unsigned_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3408 break;
c5aa993b 3409
c906108c
SS
3410 case FT_long:
3411 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3412 break;
3413
3414 case FT_signed_long:
3415 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3416 break;
c5aa993b 3417
c906108c
SS
3418 case FT_unsigned_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3420 break;
c5aa993b 3421
c906108c
SS
3422 case FT_long_long:
3423 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3424 break;
3425
3426 case FT_signed_long_long:
3427 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3428 break;
3429
3430 case FT_unsigned_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3432 break;
3433
3434 case FT_float:
3435 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3436 break;
c5aa993b 3437
c906108c
SS
3438 case FT_dbl_prec_float:
3439 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3440 break;
c5aa993b 3441
c906108c
SS
3442 case FT_ext_prec_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3444 break;
c5aa993b 3445
c906108c
SS
3446 case FT_complex:
3447 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3448 break;
c5aa993b 3449
c906108c
SS
3450 case FT_dbl_prec_complex:
3451 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3452 break;
c5aa993b 3453
c906108c
SS
3454 case FT_ext_prec_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3456 break;
c5aa993b 3457
c906108c
SS
3458 }
3459
3460 if (typep == NULL)
3461 {
3462 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3463 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3464 {
3465 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3466 }
3467 }
c5aa993b 3468
c906108c
SS
3469 return (typep);
3470}
3471
3472/*
3473
c5aa993b 3474 LOCAL FUNCTION
c906108c 3475
c5aa993b 3476 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3477
c5aa993b 3478 DESCRIPTION
c906108c 3479
c5aa993b
JM
3480 Given a pointer to a string and a pointer to an obstack, allocates
3481 a fresh copy of the string on the specified obstack.
c906108c 3482
c5aa993b 3483 */
c906108c
SS
3484
3485static char *
3486create_name (name, obstackp)
3487 char *name;
3488 struct obstack *obstackp;
3489{
3490 int length;
3491 char *newname;
3492
3493 length = strlen (name) + 1;
3494 newname = (char *) obstack_alloc (obstackp, length);
3495 strcpy (newname, name);
3496 return (newname);
3497}
3498
3499/*
3500
c5aa993b 3501 LOCAL FUNCTION
c906108c 3502
c5aa993b 3503 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3504
c5aa993b 3505 SYNOPSIS
c906108c 3506
c5aa993b
JM
3507 void basicdieinfo (char *diep, struct dieinfo *dip,
3508 struct objfile *objfile)
c906108c 3509
c5aa993b 3510 DESCRIPTION
c906108c 3511
c5aa993b
JM
3512 Given a pointer to raw DIE data, and a pointer to an instance of a
3513 die info structure, this function extracts the basic information
3514 from the DIE data required to continue processing this DIE, along
3515 with some bookkeeping information about the DIE.
c906108c 3516
c5aa993b
JM
3517 The information we absolutely must have includes the DIE tag,
3518 and the DIE length. If we need the sibling reference, then we
3519 will have to call completedieinfo() to process all the remaining
3520 DIE information.
c906108c 3521
c5aa993b
JM
3522 Note that since there is no guarantee that the data is properly
3523 aligned in memory for the type of access required (indirection
3524 through anything other than a char pointer), and there is no
3525 guarantee that it is in the same byte order as the gdb host,
3526 we call a function which deals with both alignment and byte
3527 swapping issues. Possibly inefficient, but quite portable.
c906108c 3528
c5aa993b
JM
3529 We also take care of some other basic things at this point, such
3530 as ensuring that the instance of the die info structure starts
3531 out completely zero'd and that curdie is initialized for use
3532 in error reporting if we have a problem with the current die.
c906108c 3533
c5aa993b
JM
3534 NOTES
3535
3536 All DIE's must have at least a valid length, thus the minimum
3537 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3538 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3539 are forced to be TAG_padding DIES.
c906108c 3540
c5aa993b
JM
3541 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3542 that if a padding DIE is used for alignment and the amount needed is
3543 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3544 enough to align to the next alignment boundry.
3545
3546 We do some basic sanity checking here, such as verifying that the
3547 length of the die would not cause it to overrun the recorded end of
3548 the buffer holding the DIE info. If we find a DIE that is either
3549 too small or too large, we force it's length to zero which should
3550 cause the caller to take appropriate action.
c906108c
SS
3551 */
3552
3553static void
3554basicdieinfo (dip, diep, objfile)
3555 struct dieinfo *dip;
3556 char *diep;
3557 struct objfile *objfile;
3558{
3559 curdie = dip;
3560 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3561 dip->die = diep;
3562 dip->die_ref = dbroff + (diep - dbbase);
3563 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3564 objfile);
3565 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3566 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3567 {
c5aa993b
JM
3568 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3569 dip->die_length = 0;
c906108c 3570 }
c5aa993b 3571 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3572 {
c5aa993b 3573 dip->die_tag = TAG_padding;
c906108c
SS
3574 }
3575 else
3576 {
3577 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3578 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3579 objfile);
c906108c
SS
3580 }
3581}
3582
3583/*
3584
c5aa993b 3585 LOCAL FUNCTION
c906108c 3586
c5aa993b 3587 completedieinfo -- finish reading the information for a given DIE
c906108c 3588
c5aa993b 3589 SYNOPSIS
c906108c 3590
c5aa993b 3591 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3592
c5aa993b 3593 DESCRIPTION
c906108c 3594
c5aa993b
JM
3595 Given a pointer to an already partially initialized die info structure,
3596 scan the raw DIE data and finish filling in the die info structure
3597 from the various attributes found.
c906108c 3598
c5aa993b
JM
3599 Note that since there is no guarantee that the data is properly
3600 aligned in memory for the type of access required (indirection
3601 through anything other than a char pointer), and there is no
3602 guarantee that it is in the same byte order as the gdb host,
3603 we call a function which deals with both alignment and byte
3604 swapping issues. Possibly inefficient, but quite portable.
c906108c 3605
c5aa993b
JM
3606 NOTES
3607
3608 Each time we are called, we increment the diecount variable, which
3609 keeps an approximate count of the number of dies processed for
3610 each compilation unit. This information is presented to the user
3611 if the info_verbose flag is set.
c906108c
SS
3612
3613 */
3614
3615static void
3616completedieinfo (dip, objfile)
3617 struct dieinfo *dip;
3618 struct objfile *objfile;
3619{
3620 char *diep; /* Current pointer into raw DIE data */
3621 char *end; /* Terminate DIE scan here */
3622 unsigned short attr; /* Current attribute being scanned */
3623 unsigned short form; /* Form of the attribute */
3624 int nbytes; /* Size of next field to read */
c5aa993b 3625
c906108c 3626 diecount++;
c5aa993b
JM
3627 diep = dip->die;
3628 end = diep + dip->die_length;
c906108c
SS
3629 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3630 while (diep < end)
3631 {
3632 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3633 diep += SIZEOF_ATTRIBUTE;
3634 if ((nbytes = attribute_size (attr)) == -1)
3635 {
3636 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3637 diep = end;
3638 continue;
3639 }
3640 switch (attr)
3641 {
3642 case AT_fund_type:
c5aa993b
JM
3643 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3644 objfile);
c906108c
SS
3645 break;
3646 case AT_ordering:
c5aa993b
JM
3647 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
c906108c
SS
3649 break;
3650 case AT_bit_offset:
c5aa993b
JM
3651 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
c906108c
SS
3653 break;
3654 case AT_sibling:
c5aa993b
JM
3655 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
c906108c
SS
3657 break;
3658 case AT_stmt_list:
c5aa993b
JM
3659 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 dip->has_at_stmt_list = 1;
c906108c
SS
3662 break;
3663 case AT_low_pc:
c5aa993b
JM
3664 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 objfile);
3666 dip->at_low_pc += baseaddr;
3667 dip->has_at_low_pc = 1;
c906108c
SS
3668 break;
3669 case AT_high_pc:
c5aa993b
JM
3670 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3671 objfile);
3672 dip->at_high_pc += baseaddr;
c906108c
SS
3673 break;
3674 case AT_language:
c5aa993b
JM
3675 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 objfile);
c906108c
SS
3677 break;
3678 case AT_user_def_type:
c5aa993b
JM
3679 dip->at_user_def_type = target_to_host (diep, nbytes,
3680 GET_UNSIGNED, objfile);
c906108c
SS
3681 break;
3682 case AT_byte_size:
c5aa993b
JM
3683 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3684 objfile);
3685 dip->has_at_byte_size = 1;
c906108c
SS
3686 break;
3687 case AT_bit_size:
c5aa993b
JM
3688 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3689 objfile);
c906108c
SS
3690 break;
3691 case AT_member:
c5aa993b
JM
3692 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3693 objfile);
c906108c
SS
3694 break;
3695 case AT_discr:
c5aa993b
JM
3696 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3697 objfile);
c906108c
SS
3698 break;
3699 case AT_location:
c5aa993b 3700 dip->at_location = diep;
c906108c
SS
3701 break;
3702 case AT_mod_fund_type:
c5aa993b 3703 dip->at_mod_fund_type = diep;
c906108c
SS
3704 break;
3705 case AT_subscr_data:
c5aa993b 3706 dip->at_subscr_data = diep;
c906108c
SS
3707 break;
3708 case AT_mod_u_d_type:
c5aa993b 3709 dip->at_mod_u_d_type = diep;
c906108c
SS
3710 break;
3711 case AT_element_list:
c5aa993b
JM
3712 dip->at_element_list = diep;
3713 dip->short_element_list = 0;
c906108c
SS
3714 break;
3715 case AT_short_element_list:
c5aa993b
JM
3716 dip->at_element_list = diep;
3717 dip->short_element_list = 1;
c906108c
SS
3718 break;
3719 case AT_discr_value:
c5aa993b 3720 dip->at_discr_value = diep;
c906108c
SS
3721 break;
3722 case AT_string_length:
c5aa993b 3723 dip->at_string_length = diep;
c906108c
SS
3724 break;
3725 case AT_name:
c5aa993b 3726 dip->at_name = diep;
c906108c
SS
3727 break;
3728 case AT_comp_dir:
3729 /* For now, ignore any "hostname:" portion, since gdb doesn't
3730 know how to deal with it. (FIXME). */
c5aa993b
JM
3731 dip->at_comp_dir = strrchr (diep, ':');
3732 if (dip->at_comp_dir != NULL)
c906108c 3733 {
c5aa993b 3734 dip->at_comp_dir++;
c906108c
SS
3735 }
3736 else
3737 {
c5aa993b 3738 dip->at_comp_dir = diep;
c906108c
SS
3739 }
3740 break;
3741 case AT_producer:
c5aa993b 3742 dip->at_producer = diep;
c906108c
SS
3743 break;
3744 case AT_start_scope:
c5aa993b
JM
3745 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3746 objfile);
c906108c
SS
3747 break;
3748 case AT_stride_size:
c5aa993b
JM
3749 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3750 objfile);
c906108c
SS
3751 break;
3752 case AT_src_info:
c5aa993b
JM
3753 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3754 objfile);
c906108c
SS
3755 break;
3756 case AT_prototyped:
c5aa993b 3757 dip->at_prototyped = diep;
c906108c
SS
3758 break;
3759 default:
3760 /* Found an attribute that we are unprepared to handle. However
3761 it is specifically one of the design goals of DWARF that
3762 consumers should ignore unknown attributes. As long as the
3763 form is one that we recognize (so we know how to skip it),
3764 we can just ignore the unknown attribute. */
3765 break;
3766 }
3767 form = FORM_FROM_ATTR (attr);
3768 switch (form)
3769 {
3770 case FORM_DATA2:
3771 diep += 2;
3772 break;
3773 case FORM_DATA4:
3774 case FORM_REF:
3775 diep += 4;
3776 break;
3777 case FORM_DATA8:
3778 diep += 8;
3779 break;
3780 case FORM_ADDR:
3781 diep += TARGET_FT_POINTER_SIZE (objfile);
3782 break;
3783 case FORM_BLOCK2:
3784 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3785 break;
3786 case FORM_BLOCK4:
3787 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3788 break;
3789 case FORM_STRING:
3790 diep += strlen (diep) + 1;
3791 break;
3792 default:
3793 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3794 diep = end;
3795 break;
3796 }
3797 }
3798}
3799
3800/*
3801
c5aa993b 3802 LOCAL FUNCTION
c906108c 3803
c5aa993b 3804 target_to_host -- swap in target data to host
c906108c 3805
c5aa993b 3806 SYNOPSIS
c906108c 3807
c5aa993b
JM
3808 target_to_host (char *from, int nbytes, int signextend,
3809 struct objfile *objfile)
c906108c 3810
c5aa993b 3811 DESCRIPTION
c906108c 3812
c5aa993b
JM
3813 Given pointer to data in target format in FROM, a byte count for
3814 the size of the data in NBYTES, a flag indicating whether or not
3815 the data is signed in SIGNEXTEND, and a pointer to the current
3816 objfile in OBJFILE, convert the data to host format and return
3817 the converted value.
c906108c 3818
c5aa993b 3819 NOTES
c906108c 3820
c5aa993b
JM
3821 FIXME: If we read data that is known to be signed, and expect to
3822 use it as signed data, then we need to explicitly sign extend the
3823 result until the bfd library is able to do this for us.
c906108c 3824
c5aa993b 3825 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3826
3827 */
3828
3829static CORE_ADDR
3830target_to_host (from, nbytes, signextend, objfile)
3831 char *from;
3832 int nbytes;
3833 int signextend; /* FIXME: Unused */
3834 struct objfile *objfile;
3835{
3836 CORE_ADDR rtnval;
3837
3838 switch (nbytes)
3839 {
c5aa993b
JM
3840 case 8:
3841 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3842 break;
3843 case 4:
3844 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3845 break;
3846 case 2:
3847 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3848 break;
3849 case 1:
3850 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3851 break;
3852 default:
3853 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3854 rtnval = 0;
3855 break;
c906108c
SS
3856 }
3857 return (rtnval);
3858}
3859
3860/*
3861
c5aa993b 3862 LOCAL FUNCTION
c906108c 3863
c5aa993b 3864 attribute_size -- compute size of data for a DWARF attribute
c906108c 3865
c5aa993b 3866 SYNOPSIS
c906108c 3867
c5aa993b 3868 static int attribute_size (unsigned int attr)
c906108c 3869
c5aa993b 3870 DESCRIPTION
c906108c 3871
c5aa993b
JM
3872 Given a DWARF attribute in ATTR, compute the size of the first
3873 piece of data associated with this attribute and return that
3874 size.
c906108c 3875
c5aa993b 3876 Returns -1 for unrecognized attributes.
c906108c
SS
3877
3878 */
3879
3880static int
3881attribute_size (attr)
3882 unsigned int attr;
3883{
3884 int nbytes; /* Size of next data for this attribute */
3885 unsigned short form; /* Form of the attribute */
3886
3887 form = FORM_FROM_ATTR (attr);
3888 switch (form)
3889 {
c5aa993b
JM
3890 case FORM_STRING: /* A variable length field is next */
3891 nbytes = 0;
3892 break;
3893 case FORM_DATA2: /* Next 2 byte field is the data itself */
3894 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3895 nbytes = 2;
3896 break;
3897 case FORM_DATA4: /* Next 4 byte field is the data itself */
3898 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3899 case FORM_REF: /* Next 4 byte field is a DIE offset */
3900 nbytes = 4;
3901 break;
3902 case FORM_DATA8: /* Next 8 byte field is the data itself */
3903 nbytes = 8;
3904 break;
3905 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3906 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3907 break;
3908 default:
3909 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3910 nbytes = -1;
3911 break;
3912 }
c906108c
SS
3913 return (nbytes);
3914}
This page took 0.33667 seconds and 4 git commands to generate.