* config/i386/*aix*: New files.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
1ab3bf1b
JG
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
24FIXME: Figure out how to get the frame pointer register number in the
25execution environment of the target. Remove R_FP kludge
26
9745ba07
JK
27FIXME: Do we need to generate dependencies in partial symtabs?
28(Perhaps we don't need to).
35f5886e 29
35f5886e
FF
30FIXME: Resolve minor differences between what information we put in the
31partial symbol table and what dbxread puts in. For example, we don't yet
32put enum constants there. And dbxread seems to invent a lot of typedefs
33we never see. Use the new printpsym command to see the partial symbol table
34contents.
35
35f5886e
FF
36FIXME: Figure out a better way to tell gdb about the name of the function
37contain the user's entry point (I.E. main())
38
35f5886e
FF
39FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
40other things to work on, if you get bored. :-)
41
42*/
4d315a07 43
d747e0af 44#include "defs.h"
35f5886e
FF
45#include "bfd.h"
46#include "symtab.h"
1ab3bf1b 47#include "gdbtypes.h"
35f5886e 48#include "symfile.h"
5e2e79f8 49#include "objfiles.h"
13b5a7ff 50#include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
f5f0679a 51#include "elf/dwarf.h"
4d315a07 52#include "buildsym.h"
2dbde378 53#include "demangle.h"
bf229b4e
FF
54#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
55#include "language.h"
51b80b00 56#include "complaints.h"
35f5886e 57
d5931d79
JG
58#include <fcntl.h>
59#include <string.h>
603900c7 60#include <sys/types.h>
51b80b00 61
d5931d79
JG
62#ifndef NO_SYS_FILE
63#include <sys/file.h>
64#endif
65
66/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
67#ifndef L_SET
68#define L_SET 0
69#endif
70
51b80b00
FF
71/* Some macros to provide DIE info for complaints. */
72
73#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
74#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
75
76/* Complaints that can be issued during DWARF debug info reading. */
77
78struct complaint no_bfd_get_N =
79{
80 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
81};
82
83struct complaint malformed_die =
84{
85 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
86};
87
88struct complaint bad_die_ref =
89{
90 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
91};
92
93struct complaint unknown_attribute_form =
94{
95 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
96};
97
98struct complaint unknown_attribute_length =
99{
100 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
101};
102
103struct complaint unexpected_fund_type =
104{
105 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
106};
107
108struct complaint unknown_type_modifier =
109{
110 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
111};
112
113struct complaint volatile_ignored =
114{
115 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
116};
117
118struct complaint const_ignored =
119{
120 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
121};
122
123struct complaint botched_modified_type =
124{
125 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
126};
127
128struct complaint op_deref2 =
129{
130 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
131};
132
133struct complaint op_deref4 =
134{
135 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
136};
137
138struct complaint basereg_not_handled =
139{
140 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
141};
142
143struct complaint dup_user_type_allocation =
144{
145 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
146};
147
148struct complaint dup_user_type_definition =
149{
150 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
151};
152
153struct complaint missing_tag =
154{
155 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
156};
157
158struct complaint bad_array_element_type =
159{
160 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
161};
162
163struct complaint subscript_data_items =
164{
165 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
166};
167
168struct complaint unhandled_array_subscript_format =
169{
170 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
171};
172
173struct complaint unknown_array_subscript_format =
174{
175 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
176};
177
178struct complaint not_row_major =
179{
180 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
181};
35f5886e
FF
182
183#ifndef R_FP /* FIXME */
184#define R_FP 14 /* Kludge to get frame pointer register number */
185#endif
186
13b5a7ff 187typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 188
4d315a07
FF
189#ifndef GCC_PRODUCER
190#define GCC_PRODUCER "GNU C "
191#endif
35f5886e 192
2dbde378
FF
193#ifndef GPLUS_PRODUCER
194#define GPLUS_PRODUCER "GNU C++ "
195#endif
196
197#ifndef LCC_PRODUCER
3dc755fb 198#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
199#endif
200
93bb6e65
FF
201#ifndef CHILL_PRODUCER
202#define CHILL_PRODUCER "GNU Chill "
203#endif
93bb6e65 204
13b5a7ff
FF
205/* Flags to target_to_host() that tell whether or not the data object is
206 expected to be signed. Used, for example, when fetching a signed
207 integer in the target environment which is used as a signed integer
208 in the host environment, and the two environments have different sized
209 ints. In this case, *somebody* has to sign extend the smaller sized
210 int. */
211
212#define GET_UNSIGNED 0 /* No sign extension required */
213#define GET_SIGNED 1 /* Sign extension required */
214
215/* Defines for things which are specified in the document "DWARF Debugging
216 Information Format" published by UNIX International, Programming Languages
217 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
218
219#define SIZEOF_DIE_LENGTH 4
220#define SIZEOF_DIE_TAG 2
221#define SIZEOF_ATTRIBUTE 2
222#define SIZEOF_FORMAT_SPECIFIER 1
223#define SIZEOF_FMT_FT 2
224#define SIZEOF_LINETBL_LENGTH 4
225#define SIZEOF_LINETBL_LINENO 4
226#define SIZEOF_LINETBL_STMT 2
227#define SIZEOF_LINETBL_DELTA 4
228#define SIZEOF_LOC_ATOM_CODE 1
229
230#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
231
232/* Macros that return the sizes of various types of data in the target
233 environment.
234
2d6d969c
FF
235 FIXME: Currently these are just compile time constants (as they are in
236 other parts of gdb as well). They need to be able to get the right size
237 either from the bfd or possibly from the DWARF info. It would be nice if
238 the DWARF producer inserted DIES that describe the fundamental types in
239 the target environment into the DWARF info, similar to the way dbx stabs
240 producers produce information about their fundamental types. */
241
242#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
243#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 244
768be6e1
FF
245/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
246 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
247 However, the Issue 2 DWARF specification from AT&T defines it as
248 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
249 For backwards compatibility with the AT&T compiler produced executables
250 we define AT_short_element_list for this variant. */
251
252#define AT_short_element_list (0x00f0|FORM_BLOCK2)
253
254/* External variables referenced. */
255
35f5886e 256extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 257extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
258
259/* The DWARF debugging information consists of two major pieces,
260 one is a block of DWARF Information Entries (DIE's) and the other
261 is a line number table. The "struct dieinfo" structure contains
262 the information for a single DIE, the one currently being processed.
263
264 In order to make it easier to randomly access the attribute fields
13b5a7ff 265 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
266 each DIE is scanned and an instance of the "struct dieinfo"
267 structure is initialized.
268
269 Initialization is done in two levels. The first, done by basicdieinfo(),
270 just initializes those fields that are vital to deciding whether or not
271 to use this DIE, how to skip past it, etc. The second, done by the
272 function completedieinfo(), fills in the rest of the information.
273
274 Attributes which have block forms are not interpreted at the time
275 the DIE is scanned, instead we just save pointers to the start
276 of their value fields.
277
278 Some fields have a flag <name>_p that is set when the value of the
279 field is valid (I.E. we found a matching attribute in the DIE). Since
280 we may want to test for the presence of some attributes in the DIE,
2d6186f4 281 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
282 we need someway to note that we found such an attribute.
283
284 */
285
286typedef char BLOCK;
287
288struct dieinfo {
13b5a7ff
FF
289 char * die; /* Pointer to the raw DIE data */
290 unsigned long die_length; /* Length of the raw DIE data */
291 DIE_REF die_ref; /* Offset of this DIE */
292 unsigned short die_tag; /* Tag for this DIE */
293 unsigned long at_padding;
294 unsigned long at_sibling;
295 BLOCK * at_location;
296 char * at_name;
297 unsigned short at_fund_type;
298 BLOCK * at_mod_fund_type;
299 unsigned long at_user_def_type;
300 BLOCK * at_mod_u_d_type;
301 unsigned short at_ordering;
302 BLOCK * at_subscr_data;
303 unsigned long at_byte_size;
304 unsigned short at_bit_offset;
305 unsigned long at_bit_size;
306 BLOCK * at_element_list;
307 unsigned long at_stmt_list;
308 unsigned long at_low_pc;
309 unsigned long at_high_pc;
310 unsigned long at_language;
311 unsigned long at_member;
312 unsigned long at_discr;
313 BLOCK * at_discr_value;
13b5a7ff
FF
314 BLOCK * at_string_length;
315 char * at_comp_dir;
316 char * at_producer;
13b5a7ff
FF
317 unsigned long at_start_scope;
318 unsigned long at_stride_size;
319 unsigned long at_src_info;
320 char * at_prototyped;
321 unsigned int has_at_low_pc:1;
322 unsigned int has_at_stmt_list:1;
50055e94 323 unsigned int has_at_byte_size:1;
13b5a7ff 324 unsigned int short_element_list:1;
35f5886e
FF
325};
326
327static int diecount; /* Approximate count of dies for compilation unit */
328static struct dieinfo *curdie; /* For warnings and such */
329
330static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 331static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
332static int dbroff; /* Relative offset from start of .debug section */
333static char *lnbase; /* Base pointer to line section */
334static int isreg; /* Kludge to identify register variables */
a5bd5ba6 335static int offreg; /* Kludge to identify basereg references */
35f5886e 336
2670f34d 337/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
338 the section_offsets structure used by dbxread (once this is done,
339 pass the appropriate section number to end_symtab). */
35f5886e
FF
340static CORE_ADDR baseaddr; /* Add to each symbol value */
341
2670f34d
JG
342/* The section offsets used in the current psymtab or symtab. FIXME,
343 only used to pass one value (baseaddr) at the moment. */
344static struct section_offsets *base_section_offsets;
345
35f5886e
FF
346/* Each partial symbol table entry contains a pointer to private data for the
347 read_symtab() function to use when expanding a partial symbol table entry
348 to a full symbol table entry. For DWARF debugging info, this data is
349 contained in the following structure and macros are provided for easy
350 access to the members given a pointer to a partial symbol table entry.
351
352 dbfoff Always the absolute file offset to the start of the ".debug"
353 section for the file containing the DIE's being accessed.
354
355 dbroff Relative offset from the start of the ".debug" access to the
356 first DIE to be accessed. When building the partial symbol
357 table, this value will be zero since we are accessing the
358 entire ".debug" section. When expanding a partial symbol
359 table entry, this value will be the offset to the first
360 DIE for the compilation unit containing the symbol that
361 triggers the expansion.
362
363 dblength The size of the chunk of DIE's being examined, in bytes.
364
365 lnfoff The absolute file offset to the line table fragment. Ignored
366 when building partial symbol tables, but used when expanding
367 them, and contains the absolute file offset to the fragment
368 of the ".line" section containing the line numbers for the
369 current compilation unit.
370 */
371
372struct dwfinfo {
d5931d79 373 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
374 int dbroff; /* Relative offset from start of .debug section */
375 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 376 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
377};
378
379#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
380#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
381#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
382#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
383
4d315a07
FF
384/* The generic symbol table building routines have separate lists for
385 file scope symbols and all all other scopes (local scopes). So
386 we need to select the right one to pass to add_symbol_to_list().
387 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 388
4d315a07
FF
389 FIXME: The original dwarf code just treated the file scope as the first
390 local scope, and all other local scopes as nested local scopes, and worked
391 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 392
99140c31 393struct pending **list_in_scope = &file_symbols;
35f5886e
FF
394
395/* DIES which have user defined types or modified user defined types refer to
396 other DIES for the type information. Thus we need to associate the offset
397 of a DIE for a user defined type with a pointer to the type information.
398
399 Originally this was done using a simple but expensive algorithm, with an
400 array of unsorted structures, each containing an offset/type-pointer pair.
401 This array was scanned linearly each time a lookup was done. The result
402 was that gdb was spending over half it's startup time munging through this
403 array of pointers looking for a structure that had the right offset member.
404
405 The second attempt used the same array of structures, but the array was
406 sorted using qsort each time a new offset/type was recorded, and a binary
407 search was used to find the type pointer for a given DIE offset. This was
408 even slower, due to the overhead of sorting the array each time a new
409 offset/type pair was entered.
410
411 The third attempt uses a fixed size array of type pointers, indexed by a
412 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
413 we can divide any DIE offset by 4 to obtain a unique index into this fixed
414 size array. Since each element is a 4 byte pointer, it takes exactly as
415 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
416 compilation unit. But it gets freed as soon as we are done with it.
417 This has worked well in practice, as a reasonable tradeoff between memory
418 consumption and speed, without having to resort to much more complicated
419 algorithms. */
35f5886e
FF
420
421static struct type **utypes; /* Pointer to array of user type pointers */
422static int numutypes; /* Max number of user type pointers */
423
bf229b4e
FF
424/* Maintain an array of referenced fundamental types for the current
425 compilation unit being read. For DWARF version 1, we have to construct
426 the fundamental types on the fly, since no information about the
427 fundamental types is supplied. Each such fundamental type is created by
428 calling a language dependent routine to create the type, and then a
429 pointer to that type is then placed in the array at the index specified
430 by it's FT_<TYPENAME> value. The array has a fixed size set by the
431 FT_NUM_MEMBERS compile time constant, which is the number of predefined
432 fundamental types gdb knows how to construct. */
433
434static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
435
95ff889e
FF
436/* Record the language for the compilation unit which is currently being
437 processed. We know it once we have seen the TAG_compile_unit DIE,
438 and we need it while processing the DIE's for that compilation unit.
439 It is eventually saved in the symtab structure, but we don't finalize
440 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
441 compilation unit. We also need to get and save a pointer to the
442 language struct for this language, so we can call the language
443 dependent routines for doing things such as creating fundamental
444 types. */
95ff889e
FF
445
446static enum language cu_language;
bf229b4e 447static const struct language_defn *cu_language_defn;
95ff889e 448
35f5886e 449/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
450 about ordering within this file. */
451
13b5a7ff
FF
452static int
453attribute_size PARAMS ((unsigned int));
454
455static unsigned long
456target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 457
1ab3bf1b
JG
458static void
459add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
460
2dbde378
FF
461static void
462handle_producer PARAMS ((char *));
463
1ab3bf1b
JG
464static void
465read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 466
58050209 467static void
1ab3bf1b 468read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
469
470static void
1ab3bf1b
JG
471read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
472 struct objfile *));
35f5886e 473
35f5886e 474static void
1ab3bf1b 475scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 476
35f5886e 477static void
d5931d79
JG
478scan_compilation_units PARAMS ((char *, char *, file_ptr,
479 file_ptr, struct objfile *));
35f5886e
FF
480
481static void
1ab3bf1b 482add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
483
484static void
1ab3bf1b 485init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
486
487static void
95967e73 488basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
489
490static void
95967e73 491completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
492
493static void
494dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
495
496static void
497psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 498
c701c14c 499static void
1ab3bf1b 500read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
501
502static void
1ab3bf1b 503process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
504
505static void
1ab3bf1b
JG
506read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
507 struct objfile *));
35f5886e
FF
508
509static struct type *
84ffdec2 510decode_array_element_type PARAMS ((char *));
35f5886e
FF
511
512static struct type *
85f0a848 513decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
514
515static void
1ab3bf1b 516dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 517
9e4c1921 518static void
1ab3bf1b 519read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 520
ec16f701
FF
521static void
522read_tag_string_type PARAMS ((struct dieinfo *dip));
523
35f5886e 524static void
1ab3bf1b 525read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
526
527static void
1ab3bf1b 528read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
529
530static struct type *
1ab3bf1b 531struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
532
533static struct type *
1ab3bf1b 534enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 535
35f5886e 536static void
1ab3bf1b 537decode_line_numbers PARAMS ((char *));
35f5886e
FF
538
539static struct type *
1ab3bf1b 540decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
541
542static struct type *
1ab3bf1b 543decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
544
545static struct type *
1ab3bf1b 546decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
547
548static struct type *
1c92ca6f 549decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
550
551static struct type *
1ab3bf1b 552decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
553
554static char *
1ab3bf1b 555create_name PARAMS ((char *, struct obstack *));
35f5886e 556
35f5886e 557static struct type *
13b5a7ff 558lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
559
560static struct type *
13b5a7ff 561alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
562
563static struct symbol *
1ab3bf1b 564new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 565
95ff889e
FF
566static void
567synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
568 struct type *));
569
35f5886e 570static int
1ab3bf1b 571locval PARAMS ((char *));
35f5886e
FF
572
573static void
1ab3bf1b
JG
574record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
575 struct objfile *));
35f5886e 576
95ff889e
FF
577static void
578set_cu_language PARAMS ((struct dieinfo *));
579
bf229b4e
FF
580static struct type *
581dwarf_fundamental_type PARAMS ((struct objfile *, int));
582
583
584/*
585
586LOCAL FUNCTION
587
588 dwarf_fundamental_type -- lookup or create a fundamental type
589
590SYNOPSIS
591
592 struct type *
593 dwarf_fundamental_type (struct objfile *objfile, int typeid)
594
595DESCRIPTION
596
597 DWARF version 1 doesn't supply any fundamental type information,
598 so gdb has to construct such types. It has a fixed number of
599 fundamental types that it knows how to construct, which is the
600 union of all types that it knows how to construct for all languages
601 that it knows about. These are enumerated in gdbtypes.h.
602
603 As an example, assume we find a DIE that references a DWARF
604 fundamental type of FT_integer. We first look in the ftypes
605 array to see if we already have such a type, indexed by the
606 gdb internal value of FT_INTEGER. If so, we simply return a
607 pointer to that type. If not, then we ask an appropriate
608 language dependent routine to create a type FT_INTEGER, using
609 defaults reasonable for the current target machine, and install
610 that type in ftypes for future reference.
611
612RETURNS
613
614 Pointer to a fundamental type.
615
616*/
617
618static struct type *
619dwarf_fundamental_type (objfile, typeid)
620 struct objfile *objfile;
621 int typeid;
622{
623 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
624 {
625 error ("internal error - invalid fundamental type id %d", typeid);
626 }
627
628 /* Look for this particular type in the fundamental type vector. If one is
629 not found, create and install one appropriate for the current language
630 and the current target machine. */
631
632 if (ftypes[typeid] == NULL)
633 {
634 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
635 }
636
637 return (ftypes[typeid]);
638}
639
95ff889e
FF
640/*
641
642LOCAL FUNCTION
643
644 set_cu_language -- set local copy of language for compilation unit
645
646SYNOPSIS
647
648 void
649 set_cu_language (struct dieinfo *dip)
650
651DESCRIPTION
652
653 Decode the language attribute for a compilation unit DIE and
654 remember what the language was. We use this at various times
655 when processing DIE's for a given compilation unit.
656
657RETURNS
658
659 No return value.
660
661 */
662
663static void
664set_cu_language (dip)
665 struct dieinfo *dip;
666{
667 switch (dip -> at_language)
668 {
669 case LANG_C89:
670 case LANG_C:
671 cu_language = language_c;
672 break;
673 case LANG_C_PLUS_PLUS:
674 cu_language = language_cplus;
675 break;
e58de8a2
FF
676 case LANG_CHILL:
677 cu_language = language_chill;
678 break;
679 case LANG_MODULA2:
680 cu_language = language_m2;
681 break;
95ff889e
FF
682 case LANG_ADA83:
683 case LANG_COBOL74:
684 case LANG_COBOL85:
685 case LANG_FORTRAN77:
686 case LANG_FORTRAN90:
687 case LANG_PASCAL83:
2e4964ad 688 /* We don't know anything special about these yet. */
95ff889e
FF
689 cu_language = language_unknown;
690 break;
2e4964ad
FF
691 default:
692 /* If no at_language, try to deduce one from the filename */
693 cu_language = deduce_language_from_filename (dip -> at_name);
694 break;
95ff889e 695 }
bf229b4e 696 cu_language_defn = language_def (cu_language);
95ff889e
FF
697}
698
35f5886e
FF
699/*
700
701GLOBAL FUNCTION
702
703 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
704
705SYNOPSIS
706
d5931d79 707 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 708 struct section_offsets *section_offsets,
d5931d79
JG
709 int mainline, file_ptr dbfoff, unsigned int dbfsize,
710 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
711
712DESCRIPTION
713
714 This function is called upon to build partial symtabs from files
715 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
716
d5931d79 717 It is passed a bfd* containing the DIES
35f5886e
FF
718 and line number information, the corresponding filename for that
719 file, a base address for relocating the symbols, a flag indicating
720 whether or not this debugging information is from a "main symbol
721 table" rather than a shared library or dynamically linked file,
722 and file offset/size pairs for the DIE information and line number
723 information.
724
725RETURNS
726
727 No return value.
728
729 */
730
731void
d5931d79
JG
732dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
733 lnoffset, lnsize)
734 struct objfile *objfile;
2670f34d 735 struct section_offsets *section_offsets;
1ab3bf1b 736 int mainline;
d5931d79 737 file_ptr dbfoff;
4090fe1c 738 unsigned int dbfsize;
d5931d79 739 file_ptr lnoffset;
1ab3bf1b 740 unsigned int lnsize;
35f5886e 741{
d5931d79 742 bfd *abfd = objfile->obfd;
35f5886e
FF
743 struct cleanup *back_to;
744
95967e73 745 current_objfile = objfile;
4090fe1c 746 dbsize = dbfsize;
35f5886e
FF
747 dbbase = xmalloc (dbsize);
748 dbroff = 0;
d5931d79
JG
749 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
750 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
751 {
752 free (dbbase);
d5931d79 753 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
754 }
755 back_to = make_cleanup (free, dbbase);
756
757 /* If we are reinitializing, or if we have never loaded syms yet, init.
758 Since we have no idea how many DIES we are looking at, we just guess
759 some arbitrary value. */
760
13b5a7ff
FF
761 if (mainline || objfile -> global_psymbols.size == 0 ||
762 objfile -> static_psymbols.size == 0)
35f5886e 763 {
1ab3bf1b 764 init_psymbol_list (objfile, 1024);
35f5886e
FF
765 }
766
84ffdec2 767 /* Save the relocation factor where everybody can see it. */
f8b76e70 768
2670f34d
JG
769 base_section_offsets = section_offsets;
770 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 771
35f5886e
FF
772 /* Follow the compilation unit sibling chain, building a partial symbol
773 table entry for each one. Save enough information about each compilation
774 unit to locate the full DWARF information later. */
775
d5931d79 776 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 777
35f5886e 778 do_cleanups (back_to);
95967e73 779 current_objfile = NULL;
35f5886e
FF
780}
781
782
783/*
784
785LOCAL FUNCTION
786
1ab3bf1b 787 record_minimal_symbol -- add entry to gdb's minimal symbol table
35f5886e
FF
788
789SYNOPSIS
790
1ab3bf1b
JG
791 static void record_minimal_symbol (char *name, CORE_ADDR address,
792 enum minimal_symbol_type ms_type,
793 struct objfile *objfile)
35f5886e
FF
794
795DESCRIPTION
796
797 Given a pointer to the name of a symbol that should be added to the
1ab3bf1b 798 minimal symbol table, and the address associated with that
35f5886e 799 symbol, records this information for later use in building the
1ab3bf1b 800 minimal symbol table.
35f5886e 801
35f5886e
FF
802 */
803
804static void
1ab3bf1b
JG
805record_minimal_symbol (name, address, ms_type, objfile)
806 char *name;
807 CORE_ADDR address;
808 enum minimal_symbol_type ms_type;
809 struct objfile *objfile;
35f5886e 810{
1ab3bf1b
JG
811 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
812 prim_record_minimal_symbol (name, address, ms_type);
35f5886e
FF
813}
814
815/*
816
35f5886e
FF
817LOCAL FUNCTION
818
819 read_lexical_block_scope -- process all dies in a lexical block
820
821SYNOPSIS
822
823 static void read_lexical_block_scope (struct dieinfo *dip,
824 char *thisdie, char *enddie)
825
826DESCRIPTION
827
828 Process all the DIES contained within a lexical block scope.
829 Start a new scope, process the dies, and then close the scope.
830
831 */
832
833static void
1ab3bf1b
JG
834read_lexical_block_scope (dip, thisdie, enddie, objfile)
835 struct dieinfo *dip;
836 char *thisdie;
837 char *enddie;
838 struct objfile *objfile;
35f5886e 839{
4d315a07
FF
840 register struct context_stack *new;
841
4ed3a9ea 842 push_context (0, dip -> at_low_pc);
13b5a7ff 843 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
844 new = pop_context ();
845 if (local_symbols != NULL)
846 {
847 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 848 dip -> at_high_pc, objfile);
4d315a07
FF
849 }
850 local_symbols = new -> locals;
35f5886e
FF
851}
852
853/*
854
855LOCAL FUNCTION
856
857 lookup_utype -- look up a user defined type from die reference
858
859SYNOPSIS
860
13b5a7ff 861 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
862
863DESCRIPTION
864
865 Given a DIE reference, lookup the user defined type associated with
866 that DIE, if it has been registered already. If not registered, then
867 return NULL. Alloc_utype() can be called to register an empty
868 type for this reference, which will be filled in later when the
869 actual referenced DIE is processed.
870 */
871
872static struct type *
13b5a7ff
FF
873lookup_utype (die_ref)
874 DIE_REF die_ref;
35f5886e
FF
875{
876 struct type *type = NULL;
877 int utypeidx;
878
13b5a7ff 879 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
881 {
51b80b00 882 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
883 }
884 else
885 {
886 type = *(utypes + utypeidx);
887 }
888 return (type);
889}
890
891
892/*
893
894LOCAL FUNCTION
895
896 alloc_utype -- add a user defined type for die reference
897
898SYNOPSIS
899
13b5a7ff 900 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
901
902DESCRIPTION
903
13b5a7ff 904 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
905 defined type UTYPEP, register that this reference has a user
906 defined type and either use the specified type in UTYPEP or
907 make a new empty type that will be filled in later.
908
909 We should only be called after calling lookup_utype() to verify that
13b5a7ff 910 there is not currently a type registered for DIE_REF.
35f5886e
FF
911 */
912
913static struct type *
13b5a7ff
FF
914alloc_utype (die_ref, utypep)
915 DIE_REF die_ref;
1ab3bf1b 916 struct type *utypep;
35f5886e
FF
917{
918 struct type **typep;
919 int utypeidx;
920
13b5a7ff 921 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
922 typep = utypes + utypeidx;
923 if ((utypeidx < 0) || (utypeidx >= numutypes))
924 {
bf229b4e 925 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 926 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
927 }
928 else if (*typep != NULL)
929 {
930 utypep = *typep;
51b80b00 931 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
932 }
933 else
934 {
935 if (utypep == NULL)
936 {
8050a57b 937 utypep = alloc_type (current_objfile);
35f5886e
FF
938 }
939 *typep = utypep;
940 }
941 return (utypep);
942}
943
944/*
945
946LOCAL FUNCTION
947
948 decode_die_type -- return a type for a specified die
949
950SYNOPSIS
951
952 static struct type *decode_die_type (struct dieinfo *dip)
953
954DESCRIPTION
955
956 Given a pointer to a die information structure DIP, decode the
957 type of the die and return a pointer to the decoded type. All
958 dies without specific types default to type int.
959 */
960
961static struct type *
1ab3bf1b
JG
962decode_die_type (dip)
963 struct dieinfo *dip;
35f5886e
FF
964{
965 struct type *type = NULL;
966
967 if (dip -> at_fund_type != 0)
968 {
969 type = decode_fund_type (dip -> at_fund_type);
970 }
971 else if (dip -> at_mod_fund_type != NULL)
972 {
973 type = decode_mod_fund_type (dip -> at_mod_fund_type);
974 }
975 else if (dip -> at_user_def_type)
976 {
977 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
978 {
979 type = alloc_utype (dip -> at_user_def_type, NULL);
980 }
981 }
982 else if (dip -> at_mod_u_d_type)
983 {
984 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
985 }
986 else
987 {
bf229b4e 988 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
989 }
990 return (type);
991}
992
993/*
994
995LOCAL FUNCTION
996
997 struct_type -- compute and return the type for a struct or union
998
999SYNOPSIS
1000
1001 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 1002 char *enddie, struct objfile *objfile)
35f5886e
FF
1003
1004DESCRIPTION
1005
1006 Given pointer to a die information structure for a die which
715cafcb
FF
1007 defines a union or structure (and MUST define one or the other),
1008 and pointers to the raw die data that define the range of dies which
1009 define the members, compute and return the user defined type for the
1010 structure or union.
35f5886e
FF
1011 */
1012
1013static struct type *
1ab3bf1b
JG
1014struct_type (dip, thisdie, enddie, objfile)
1015 struct dieinfo *dip;
1016 char *thisdie;
1017 char *enddie;
1018 struct objfile *objfile;
35f5886e
FF
1019{
1020 struct type *type;
1021 struct nextfield {
1022 struct nextfield *next;
1023 struct field field;
1024 };
1025 struct nextfield *list = NULL;
1026 struct nextfield *new;
1027 int nfields = 0;
1028 int n;
1029 char *tpart1;
35f5886e 1030 struct dieinfo mbr;
8b5b6fae 1031 char *nextdie;
a8a69e63 1032#if !BITS_BIG_ENDIAN
50055e94 1033 int anonymous_size;
a8a69e63 1034#endif
35f5886e 1035
13b5a7ff 1036 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1037 {
5edf98d7 1038 /* No forward references created an empty type, so install one now */
13b5a7ff 1039 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1040 }
a3723a43 1041 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1042 switch (dip -> die_tag)
35f5886e 1043 {
95ff889e
FF
1044 case TAG_class_type:
1045 TYPE_CODE (type) = TYPE_CODE_CLASS;
1046 tpart1 = "class";
1047 break;
715cafcb 1048 case TAG_structure_type:
5edf98d7 1049 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1050 tpart1 = "struct";
1051 break;
1052 case TAG_union_type:
1053 TYPE_CODE (type) = TYPE_CODE_UNION;
1054 tpart1 = "union";
1055 break;
1056 default:
1057 /* Should never happen */
1058 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1059 tpart1 = "???";
51b80b00 1060 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1061 break;
35f5886e 1062 }
5edf98d7
FF
1063 /* Some compilers try to be helpful by inventing "fake" names for
1064 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1065 Thanks, but no thanks... */
715cafcb
FF
1066 if (dip -> at_name != NULL
1067 && *dip -> at_name != '~'
1068 && *dip -> at_name != '.')
35f5886e 1069 {
95967e73 1070 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1ab3bf1b 1071 tpart1, " ", dip -> at_name);
35f5886e 1072 }
50055e94
FF
1073 /* Use whatever size is known. Zero is a valid size. We might however
1074 wish to check has_at_byte_size to make sure that some byte size was
1075 given explicitly, but DWARF doesn't specify that explicit sizes of
1076 zero have to present, so complaining about missing sizes should
1077 probably not be the default. */
1078 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1079 thisdie += dip -> die_length;
35f5886e
FF
1080 while (thisdie < enddie)
1081 {
95967e73
FF
1082 basicdieinfo (&mbr, thisdie, objfile);
1083 completedieinfo (&mbr, objfile);
13b5a7ff 1084 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1085 {
1086 break;
1087 }
8b5b6fae
FF
1088 else if (mbr.at_sibling != 0)
1089 {
1090 nextdie = dbbase + mbr.at_sibling - dbroff;
1091 }
1092 else
1093 {
13b5a7ff 1094 nextdie = thisdie + mbr.die_length;
8b5b6fae 1095 }
13b5a7ff 1096 switch (mbr.die_tag)
35f5886e
FF
1097 {
1098 case TAG_member:
1099 /* Get space to record the next field's data. */
1100 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1101 new -> next = list;
1102 list = new;
1103 /* Save the data. */
50e0dc41
FF
1104 list -> field.name =
1105 obsavestring (mbr.at_name, strlen (mbr.at_name),
1106 &objfile -> type_obstack);
35f5886e
FF
1107 list -> field.type = decode_die_type (&mbr);
1108 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1109 /* Handle bit fields. */
1110 list -> field.bitsize = mbr.at_bit_size;
1111#if BITS_BIG_ENDIAN
1112 /* For big endian bits, the at_bit_offset gives the additional
1113 bit offset from the MSB of the containing anonymous object to
1114 the MSB of the field. We don't have to do anything special
1115 since we don't need to know the size of the anonymous object. */
1116 list -> field.bitpos += mbr.at_bit_offset;
1117#else
1118 /* For little endian bits, we need to have a non-zero at_bit_size,
1119 so that we know we are in fact dealing with a bitfield. Compute
1120 the bit offset to the MSB of the anonymous object, subtract off
1121 the number of bits from the MSB of the field to the MSB of the
1122 object, and then subtract off the number of bits of the field
1123 itself. The result is the bit offset of the LSB of the field. */
1124 if (mbr.at_bit_size > 0)
1125 {
50055e94
FF
1126 if (mbr.has_at_byte_size)
1127 {
1128 /* The size of the anonymous object containing the bit field
1129 is explicit, so use the indicated size (in bytes). */
1130 anonymous_size = mbr.at_byte_size;
1131 }
1132 else
1133 {
1134 /* The size of the anonymous object containing the bit field
1135 matches the size of an object of the bit field's type.
1136 DWARF allows at_byte_size to be left out in such cases,
1137 as a debug information size optimization. */
1138 anonymous_size = TYPE_LENGTH (list -> field.type);
1139 }
4db8e515 1140 list -> field.bitpos +=
50055e94 1141 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
4db8e515
FF
1142 }
1143#endif
35f5886e
FF
1144 nfields++;
1145 break;
1146 default:
8b5b6fae 1147 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1148 break;
1149 }
8b5b6fae 1150 thisdie = nextdie;
35f5886e 1151 }
5edf98d7
FF
1152 /* Now create the vector of fields, and record how big it is. We may
1153 not even have any fields, if this DIE was generated due to a reference
1154 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1155 set, which clues gdb in to the fact that it needs to search elsewhere
1156 for the full structure definition. */
1157 if (nfields == 0)
35f5886e 1158 {
5edf98d7
FF
1159 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1160 }
1161 else
1162 {
1163 TYPE_NFIELDS (type) = nfields;
1164 TYPE_FIELDS (type) = (struct field *)
dac9734e 1165 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1166 /* Copy the saved-up fields into the field vector. */
1167 for (n = nfields; list; list = list -> next)
1168 {
1169 TYPE_FIELD (type, --n) = list -> field;
1170 }
1171 }
35f5886e
FF
1172 return (type);
1173}
1174
1175/*
1176
1177LOCAL FUNCTION
1178
1179 read_structure_scope -- process all dies within struct or union
1180
1181SYNOPSIS
1182
1183 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1184 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1185
1186DESCRIPTION
1187
1188 Called when we find the DIE that starts a structure or union
1189 scope (definition) to process all dies that define the members
1190 of the structure or union. DIP is a pointer to the die info
1191 struct for the DIE that names the structure or union.
1192
1193NOTES
1194
1195 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1196 the DIE has an at_name attribute, since it might be an anonymous
1197 structure or union. This gets the type entered into our set of
1198 user defined types.
1199
1200 However, if the structure is incomplete (an opaque struct/union)
1201 then suppress creating a symbol table entry for it since gdb only
1202 wants to find the one with the complete definition. Note that if
1203 it is complete, we just call new_symbol, which does it's own
1204 checking about whether the struct/union is anonymous or not (and
1205 suppresses creating a symbol table entry itself).
1206
35f5886e
FF
1207 */
1208
1209static void
1ab3bf1b
JG
1210read_structure_scope (dip, thisdie, enddie, objfile)
1211 struct dieinfo *dip;
1212 char *thisdie;
1213 char *enddie;
1214 struct objfile *objfile;
35f5886e
FF
1215{
1216 struct type *type;
1217 struct symbol *sym;
1218
8b5b6fae 1219 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1220 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1221 {
95ff889e
FF
1222 sym = new_symbol (dip, objfile);
1223 if (sym != NULL)
84ce6717
FF
1224 {
1225 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1226 if (cu_language == language_cplus)
1227 {
1228 synthesize_typedef (dip, objfile, type);
1229 }
84ce6717 1230 }
35f5886e
FF
1231 }
1232}
1233
1234/*
1235
1236LOCAL FUNCTION
1237
1238 decode_array_element_type -- decode type of the array elements
1239
1240SYNOPSIS
1241
1242 static struct type *decode_array_element_type (char *scan, char *end)
1243
1244DESCRIPTION
1245
1246 As the last step in decoding the array subscript information for an
1247 array DIE, we need to decode the type of the array elements. We are
1248 passed a pointer to this last part of the subscript information and
1249 must return the appropriate type. If the type attribute is not
1250 recognized, just warn about the problem and return type int.
1251 */
1252
1253static struct type *
84ffdec2 1254decode_array_element_type (scan)
1ab3bf1b 1255 char *scan;
35f5886e
FF
1256{
1257 struct type *typep;
13b5a7ff
FF
1258 DIE_REF die_ref;
1259 unsigned short attribute;
35f5886e 1260 unsigned short fundtype;
13b5a7ff 1261 int nbytes;
35f5886e 1262
13b5a7ff
FF
1263 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1264 current_objfile);
1265 scan += SIZEOF_ATTRIBUTE;
1266 if ((nbytes = attribute_size (attribute)) == -1)
1267 {
51b80b00 1268 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1269 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1270 }
1271 else
1272 {
1273 switch (attribute)
1274 {
1275 case AT_fund_type:
1276 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1277 current_objfile);
1278 typep = decode_fund_type (fundtype);
1279 break;
1280 case AT_mod_fund_type:
1281 typep = decode_mod_fund_type (scan);
1282 break;
1283 case AT_user_def_type:
1284 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1285 current_objfile);
1286 if ((typep = lookup_utype (die_ref)) == NULL)
1287 {
1288 typep = alloc_utype (die_ref, NULL);
1289 }
1290 break;
1291 case AT_mod_u_d_type:
1292 typep = decode_mod_u_d_type (scan);
1293 break;
1294 default:
51b80b00 1295 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1296 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1297 break;
1298 }
35f5886e
FF
1299 }
1300 return (typep);
1301}
1302
1303/*
1304
1305LOCAL FUNCTION
1306
85f0a848 1307 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1308
1309SYNOPSIS
1310
85f0a848
FF
1311 static struct type *
1312 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1313
1314DESCRIPTION
1315
1316 The array subscripts and the data type of the elements of an
1317 array are described by a list of data items, stored as a block
1318 of contiguous bytes. There is a data item describing each array
1319 dimension, and a final data item describing the element type.
1320 The data items are ordered the same as their appearance in the
1321 source (I.E. leftmost dimension first, next to leftmost second,
1322 etc).
1323
85f0a848
FF
1324 The data items describing each array dimension consist of four
1325 parts: (1) a format specifier, (2) type type of the subscript
1326 index, (3) a description of the low bound of the array dimension,
1327 and (4) a description of the high bound of the array dimension.
1328
1329 The last data item is the description of the type of each of
1330 the array elements.
1331
35f5886e 1332 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1333 containing the remaining data items, and a pointer to the first
1334 byte past the data. This function recursively decodes the
1335 remaining data items and returns a type.
1336
1337 If we somehow fail to decode some data, we complain about it
1338 and return a type "array of int".
35f5886e
FF
1339
1340BUGS
1341 FIXME: This code only implements the forms currently used
1342 by the AT&T and GNU C compilers.
1343
1344 The end pointer is supplied for error checking, maybe we should
1345 use it for that...
1346 */
1347
1348static struct type *
85f0a848 1349decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1350 char *scan;
1351 char *end;
35f5886e 1352{
85f0a848
FF
1353 struct type *typep = NULL; /* Array type we are building */
1354 struct type *nexttype; /* Type of each element (may be array) */
1355 struct type *indextype; /* Type of this index */
a8a69e63 1356 struct type *rangetype;
13b5a7ff
FF
1357 unsigned int format;
1358 unsigned short fundtype;
1359 unsigned long lowbound;
1360 unsigned long highbound;
1361 int nbytes;
35f5886e 1362
13b5a7ff
FF
1363 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1364 current_objfile);
1365 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1366 switch (format)
1367 {
1368 case FMT_ET:
84ffdec2 1369 typep = decode_array_element_type (scan);
35f5886e
FF
1370 break;
1371 case FMT_FT_C_C:
13b5a7ff
FF
1372 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1373 current_objfile);
85f0a848 1374 indextype = decode_fund_type (fundtype);
13b5a7ff 1375 scan += SIZEOF_FMT_FT;
160be0de
FF
1376 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1377 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1378 scan += nbytes;
1379 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1380 scan += nbytes;
85f0a848
FF
1381 nexttype = decode_subscript_data_item (scan, end);
1382 if (nexttype == NULL)
35f5886e 1383 {
85f0a848 1384 /* Munged subscript data or other problem, fake it. */
51b80b00 1385 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1386 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1387 }
a8a69e63
FF
1388 rangetype = create_range_type ((struct type *) NULL, indextype,
1389 lowbound, highbound);
1390 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1391 break;
1392 case FMT_FT_C_X:
1393 case FMT_FT_X_C:
1394 case FMT_FT_X_X:
1395 case FMT_UT_C_C:
1396 case FMT_UT_C_X:
1397 case FMT_UT_X_C:
1398 case FMT_UT_X_X:
51b80b00 1399 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1400 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1401 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1402 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1403 break;
1404 default:
51b80b00 1405 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1406 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1407 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1408 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1409 break;
1410 }
1411 return (typep);
1412}
1413
1414/*
1415
1416LOCAL FUNCTION
1417
4d315a07 1418 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1419
1420SYNOPSIS
1421
4d315a07 1422 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1423
1424DESCRIPTION
1425
1426 Extract all information from a TAG_array_type DIE and add to
1427 the user defined type vector.
1428 */
1429
1430static void
1ab3bf1b
JG
1431dwarf_read_array_type (dip)
1432 struct dieinfo *dip;
35f5886e
FF
1433{
1434 struct type *type;
af213624 1435 struct type *utype;
35f5886e
FF
1436 char *sub;
1437 char *subend;
13b5a7ff
FF
1438 unsigned short blocksz;
1439 int nbytes;
35f5886e
FF
1440
1441 if (dip -> at_ordering != ORD_row_major)
1442 {
1443 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1444 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1445 }
1446 if ((sub = dip -> at_subscr_data) != NULL)
1447 {
13b5a7ff
FF
1448 nbytes = attribute_size (AT_subscr_data);
1449 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1450 subend = sub + nbytes + blocksz;
1451 sub += nbytes;
85f0a848
FF
1452 type = decode_subscript_data_item (sub, subend);
1453 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1454 {
85f0a848
FF
1455 /* Install user defined type that has not been referenced yet. */
1456 alloc_utype (dip -> die_ref, type);
1457 }
1458 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1459 {
1460 /* Ick! A forward ref has already generated a blank type in our
1461 slot, and this type probably already has things pointing to it
1462 (which is what caused it to be created in the first place).
1463 If it's just a place holder we can plop our fully defined type
1464 on top of it. We can't recover the space allocated for our
1465 new type since it might be on an obstack, but we could reuse
1466 it if we kept a list of them, but it might not be worth it
1467 (FIXME). */
1468 *utype = *type;
35f5886e
FF
1469 }
1470 else
1471 {
85f0a848
FF
1472 /* Double ick! Not only is a type already in our slot, but
1473 someone has decorated it. Complain and leave it alone. */
51b80b00 1474 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1475 }
1476 }
1477}
1478
1479/*
1480
9e4c1921
FF
1481LOCAL FUNCTION
1482
1483 read_tag_pointer_type -- read TAG_pointer_type DIE
1484
1485SYNOPSIS
1486
1487 static void read_tag_pointer_type (struct dieinfo *dip)
1488
1489DESCRIPTION
1490
1491 Extract all information from a TAG_pointer_type DIE and add to
1492 the user defined type vector.
1493 */
1494
1495static void
1ab3bf1b
JG
1496read_tag_pointer_type (dip)
1497 struct dieinfo *dip;
9e4c1921
FF
1498{
1499 struct type *type;
1500 struct type *utype;
9e4c1921
FF
1501
1502 type = decode_die_type (dip);
13b5a7ff 1503 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1504 {
1505 utype = lookup_pointer_type (type);
4ed3a9ea 1506 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1507 }
1508 else
1509 {
1510 TYPE_TARGET_TYPE (utype) = type;
1511 TYPE_POINTER_TYPE (type) = utype;
1512
1513 /* We assume the machine has only one representation for pointers! */
1514 /* FIXME: This confuses host<->target data representations, and is a
1515 poor assumption besides. */
1516
1517 TYPE_LENGTH (utype) = sizeof (char *);
1518 TYPE_CODE (utype) = TYPE_CODE_PTR;
1519 }
1520}
1521
1522/*
1523
ec16f701
FF
1524LOCAL FUNCTION
1525
1526 read_tag_string_type -- read TAG_string_type DIE
1527
1528SYNOPSIS
1529
1530 static void read_tag_string_type (struct dieinfo *dip)
1531
1532DESCRIPTION
1533
1534 Extract all information from a TAG_string_type DIE and add to
1535 the user defined type vector. It isn't really a user defined
1536 type, but it behaves like one, with other DIE's using an
1537 AT_user_def_type attribute to reference it.
1538 */
1539
1540static void
1541read_tag_string_type (dip)
1542 struct dieinfo *dip;
1543{
1544 struct type *utype;
1545 struct type *indextype;
1546 struct type *rangetype;
1547 unsigned long lowbound = 0;
1548 unsigned long highbound;
1549
b6236d6e 1550 if (dip -> has_at_byte_size)
ec16f701 1551 {
b6236d6e
FF
1552 /* A fixed bounds string */
1553 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1554 }
1555 else
1556 {
b6236d6e
FF
1557 /* A varying length string. Stub for now. (FIXME) */
1558 highbound = 1;
1559 }
1560 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1561 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1562 highbound);
1563
1564 utype = lookup_utype (dip -> die_ref);
1565 if (utype == NULL)
1566 {
1567 /* No type defined, go ahead and create a blank one to use. */
1568 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1569 }
1570 else
1571 {
1572 /* Already a type in our slot due to a forward reference. Make sure it
1573 is a blank one. If not, complain and leave it alone. */
1574 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1575 {
b6236d6e
FF
1576 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1577 return;
ec16f701 1578 }
ec16f701 1579 }
b6236d6e
FF
1580
1581 /* Create the string type using the blank type we either found or created. */
1582 utype = create_string_type (utype, rangetype);
ec16f701
FF
1583}
1584
1585/*
1586
35f5886e
FF
1587LOCAL FUNCTION
1588
1589 read_subroutine_type -- process TAG_subroutine_type dies
1590
1591SYNOPSIS
1592
1593 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1594 char *enddie)
1595
1596DESCRIPTION
1597
1598 Handle DIES due to C code like:
1599
1600 struct foo {
1601 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1602 int b;
1603 };
1604
1605NOTES
1606
1607 The parameter DIES are currently ignored. See if gdb has a way to
1608 include this info in it's type system, and decode them if so. Is
1609 this what the type structure's "arg_types" field is for? (FIXME)
1610 */
1611
1612static void
1ab3bf1b
JG
1613read_subroutine_type (dip, thisdie, enddie)
1614 struct dieinfo *dip;
1615 char *thisdie;
1616 char *enddie;
35f5886e 1617{
af213624
FF
1618 struct type *type; /* Type that this function returns */
1619 struct type *ftype; /* Function that returns above type */
35f5886e 1620
af213624
FF
1621 /* Decode the type that this subroutine returns */
1622
35f5886e 1623 type = decode_die_type (dip);
af213624
FF
1624
1625 /* Check to see if we already have a partially constructed user
1626 defined type for this DIE, from a forward reference. */
1627
13b5a7ff 1628 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1629 {
1630 /* This is the first reference to one of these types. Make
1631 a new one and place it in the user defined types. */
1632 ftype = lookup_function_type (type);
4ed3a9ea 1633 alloc_utype (dip -> die_ref, ftype);
af213624 1634 }
85f0a848 1635 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1636 {
1637 /* We have an existing partially constructed type, so bash it
1638 into the correct type. */
1639 TYPE_TARGET_TYPE (ftype) = type;
1640 TYPE_FUNCTION_TYPE (type) = ftype;
1641 TYPE_LENGTH (ftype) = 1;
1642 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1643 }
85f0a848
FF
1644 else
1645 {
51b80b00 1646 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1647 }
35f5886e
FF
1648}
1649
1650/*
1651
1652LOCAL FUNCTION
1653
1654 read_enumeration -- process dies which define an enumeration
1655
1656SYNOPSIS
1657
1658 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1659 char *enddie, struct objfile *objfile)
35f5886e
FF
1660
1661DESCRIPTION
1662
1663 Given a pointer to a die which begins an enumeration, process all
1664 the dies that define the members of the enumeration.
1665
1666NOTES
1667
1668 Note that we need to call enum_type regardless of whether or not we
1669 have a symbol, since we might have an enum without a tag name (thus
1670 no symbol for the tagname).
1671 */
1672
1673static void
1ab3bf1b
JG
1674read_enumeration (dip, thisdie, enddie, objfile)
1675 struct dieinfo *dip;
1676 char *thisdie;
1677 char *enddie;
1678 struct objfile *objfile;
35f5886e
FF
1679{
1680 struct type *type;
1681 struct symbol *sym;
1682
1ab3bf1b 1683 type = enum_type (dip, objfile);
95ff889e
FF
1684 sym = new_symbol (dip, objfile);
1685 if (sym != NULL)
35f5886e
FF
1686 {
1687 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1688 if (cu_language == language_cplus)
1689 {
1690 synthesize_typedef (dip, objfile, type);
1691 }
35f5886e
FF
1692 }
1693}
1694
1695/*
1696
1697LOCAL FUNCTION
1698
1699 enum_type -- decode and return a type for an enumeration
1700
1701SYNOPSIS
1702
1ab3bf1b 1703 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1704
1705DESCRIPTION
1706
1707 Given a pointer to a die information structure for the die which
1708 starts an enumeration, process all the dies that define the members
1709 of the enumeration and return a type pointer for the enumeration.
98618bf7 1710
715cafcb
FF
1711 At the same time, for each member of the enumeration, create a
1712 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1713 and give it the type of the enumeration itself.
1714
1715NOTES
1716
98618bf7
FF
1717 Note that the DWARF specification explicitly mandates that enum
1718 constants occur in reverse order from the source program order,
1719 for "consistency" and because this ordering is easier for many
1ab3bf1b 1720 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1721 Entries). Because gdb wants to see the enum members in program
1722 source order, we have to ensure that the order gets reversed while
98618bf7 1723 we are processing them.
35f5886e
FF
1724 */
1725
1726static struct type *
1ab3bf1b
JG
1727enum_type (dip, objfile)
1728 struct dieinfo *dip;
1729 struct objfile *objfile;
35f5886e
FF
1730{
1731 struct type *type;
1732 struct nextfield {
1733 struct nextfield *next;
1734 struct field field;
1735 };
1736 struct nextfield *list = NULL;
1737 struct nextfield *new;
1738 int nfields = 0;
1739 int n;
35f5886e
FF
1740 char *scan;
1741 char *listend;
13b5a7ff 1742 unsigned short blocksz;
715cafcb 1743 struct symbol *sym;
13b5a7ff 1744 int nbytes;
35f5886e 1745
13b5a7ff 1746 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1747 {
84ce6717 1748 /* No forward references created an empty type, so install one now */
13b5a7ff 1749 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1750 }
1751 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1752 /* Some compilers try to be helpful by inventing "fake" names for
1753 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1754 Thanks, but no thanks... */
715cafcb
FF
1755 if (dip -> at_name != NULL
1756 && *dip -> at_name != '~'
1757 && *dip -> at_name != '.')
35f5886e 1758 {
95967e73 1759 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1ab3bf1b 1760 " ", dip -> at_name);
35f5886e 1761 }
715cafcb 1762 if (dip -> at_byte_size != 0)
35f5886e
FF
1763 {
1764 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1765 }
35f5886e
FF
1766 if ((scan = dip -> at_element_list) != NULL)
1767 {
768be6e1
FF
1768 if (dip -> short_element_list)
1769 {
13b5a7ff 1770 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1771 }
1772 else
1773 {
13b5a7ff 1774 nbytes = attribute_size (AT_element_list);
768be6e1 1775 }
13b5a7ff
FF
1776 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1777 listend = scan + nbytes + blocksz;
1778 scan += nbytes;
35f5886e
FF
1779 while (scan < listend)
1780 {
1781 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1782 new -> next = list;
1783 list = new;
1784 list -> field.type = NULL;
1785 list -> field.bitsize = 0;
13b5a7ff
FF
1786 list -> field.bitpos =
1787 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1788 objfile);
1789 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1790 list -> field.name = obsavestring (scan, strlen (scan),
1791 &objfile -> type_obstack);
35f5886e
FF
1792 scan += strlen (scan) + 1;
1793 nfields++;
715cafcb 1794 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1795 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1796 sizeof (struct symbol));
4ed3a9ea 1797 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1798 SYMBOL_NAME (sym) = create_name (list -> field.name,
1799 &objfile->symbol_obstack);
7532cf10 1800 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1801 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1802 SYMBOL_CLASS (sym) = LOC_CONST;
1803 SYMBOL_TYPE (sym) = type;
1804 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1805 add_symbol_to_list (sym, list_in_scope);
35f5886e 1806 }
84ce6717 1807 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1808 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1809 reverse order from how they were inserted. If we have no fields
1810 (this is apparently possible in C++) then skip building a field
1811 vector. */
1812 if (nfields > 0)
1813 {
1814 TYPE_NFIELDS (type) = nfields;
1815 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1816 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1817 /* Copy the saved-up fields into the field vector. */
1818 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1819 {
1820 TYPE_FIELD (type, n++) = list -> field;
1821 }
1822 }
35f5886e 1823 }
35f5886e
FF
1824 return (type);
1825}
1826
1827/*
1828
1829LOCAL FUNCTION
1830
1831 read_func_scope -- process all dies within a function scope
1832
35f5886e
FF
1833DESCRIPTION
1834
1835 Process all dies within a given function scope. We are passed
1836 a die information structure pointer DIP for the die which
1837 starts the function scope, and pointers into the raw die data
1838 that define the dies within the function scope.
1839
1840 For now, we ignore lexical block scopes within the function.
1841 The problem is that AT&T cc does not define a DWARF lexical
1842 block scope for the function itself, while gcc defines a
1843 lexical block scope for the function. We need to think about
1844 how to handle this difference, or if it is even a problem.
1845 (FIXME)
1846 */
1847
1848static void
1ab3bf1b
JG
1849read_func_scope (dip, thisdie, enddie, objfile)
1850 struct dieinfo *dip;
1851 char *thisdie;
1852 char *enddie;
1853 struct objfile *objfile;
35f5886e 1854{
4d315a07 1855 register struct context_stack *new;
35f5886e 1856
5e2e79f8
FF
1857 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1858 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1859 {
5e2e79f8
FF
1860 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1861 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1862 }
4d315a07 1863 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1864 {
5e2e79f8
FF
1865 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1866 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1867 }
4d315a07 1868 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1869 new -> name = new_symbol (dip, objfile);
4d315a07 1870 list_in_scope = &local_symbols;
13b5a7ff 1871 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1872 new = pop_context ();
1873 /* Make a block for the local symbols within. */
1874 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1875 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1876 list_in_scope = &file_symbols;
35f5886e
FF
1877}
1878
2dbde378
FF
1879
1880/*
1881
1882LOCAL FUNCTION
1883
1884 handle_producer -- process the AT_producer attribute
1885
1886DESCRIPTION
1887
1888 Perform any operations that depend on finding a particular
1889 AT_producer attribute.
1890
1891 */
1892
1893static void
1894handle_producer (producer)
1895 char *producer;
1896{
1897
1898 /* If this compilation unit was compiled with g++ or gcc, then set the
1899 processing_gcc_compilation flag. */
1900
1901 processing_gcc_compilation =
1902 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1903 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1904 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1905
1906 /* Select a demangling style if we can identify the producer and if
1907 the current style is auto. We leave the current style alone if it
1908 is not auto. We also leave the demangling style alone if we find a
1909 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1910
3dc755fb 1911 if (AUTO_DEMANGLING)
2dbde378
FF
1912 {
1913 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1914 {
1915 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1916 }
1917 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1918 {
1919 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1920 }
2dbde378 1921 }
2dbde378
FF
1922}
1923
1924
35f5886e
FF
1925/*
1926
1927LOCAL FUNCTION
1928
1929 read_file_scope -- process all dies within a file scope
1930
35f5886e
FF
1931DESCRIPTION
1932
1933 Process all dies within a given file scope. We are passed a
1934 pointer to the die information structure for the die which
1935 starts the file scope, and pointers into the raw die data which
1936 mark the range of dies within the file scope.
1937
1938 When the partial symbol table is built, the file offset for the line
1939 number table for each compilation unit is saved in the partial symbol
1940 table entry for that compilation unit. As the symbols for each
1941 compilation unit are read, the line number table is read into memory
1942 and the variable lnbase is set to point to it. Thus all we have to
1943 do is use lnbase to access the line number table for the current
1944 compilation unit.
1945 */
1946
1947static void
1ab3bf1b
JG
1948read_file_scope (dip, thisdie, enddie, objfile)
1949 struct dieinfo *dip;
1950 char *thisdie;
1951 char *enddie;
1952 struct objfile *objfile;
35f5886e
FF
1953{
1954 struct cleanup *back_to;
4d315a07 1955 struct symtab *symtab;
35f5886e 1956
5e2e79f8
FF
1957 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1958 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1959 {
5e2e79f8
FF
1960 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1961 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1962 }
95ff889e 1963 set_cu_language (dip);
4d315a07
FF
1964 if (dip -> at_producer != NULL)
1965 {
2dbde378 1966 handle_producer (dip -> at_producer);
4d315a07 1967 }
35f5886e
FF
1968 numutypes = (enddie - thisdie) / 4;
1969 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1970 back_to = make_cleanup (free, utypes);
4ed3a9ea 1971 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1972 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1973 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1974 decode_line_numbers (lnbase);
13b5a7ff 1975 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1976
1977 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1978 if (symtab != NULL)
4d315a07 1979 {
95ff889e 1980 symtab -> language = cu_language;
7b5d9650 1981 }
35f5886e
FF
1982 do_cleanups (back_to);
1983 utypes = NULL;
1984 numutypes = 0;
1985}
1986
1987/*
1988
35f5886e
FF
1989LOCAL FUNCTION
1990
1991 process_dies -- process a range of DWARF Information Entries
1992
1993SYNOPSIS
1994
8b5b6fae
FF
1995 static void process_dies (char *thisdie, char *enddie,
1996 struct objfile *objfile)
35f5886e
FF
1997
1998DESCRIPTION
1999
2000 Process all DIE's in a specified range. May be (and almost
2001 certainly will be) called recursively.
2002 */
2003
2004static void
1ab3bf1b
JG
2005process_dies (thisdie, enddie, objfile)
2006 char *thisdie;
2007 char *enddie;
2008 struct objfile *objfile;
35f5886e
FF
2009{
2010 char *nextdie;
2011 struct dieinfo di;
2012
2013 while (thisdie < enddie)
2014 {
95967e73 2015 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2016 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2017 {
2018 break;
2019 }
13b5a7ff 2020 else if (di.die_tag == TAG_padding)
35f5886e 2021 {
13b5a7ff 2022 nextdie = thisdie + di.die_length;
35f5886e
FF
2023 }
2024 else
2025 {
95967e73 2026 completedieinfo (&di, objfile);
35f5886e
FF
2027 if (di.at_sibling != 0)
2028 {
2029 nextdie = dbbase + di.at_sibling - dbroff;
2030 }
2031 else
2032 {
13b5a7ff 2033 nextdie = thisdie + di.die_length;
35f5886e 2034 }
13b5a7ff 2035 switch (di.die_tag)
35f5886e
FF
2036 {
2037 case TAG_compile_unit:
a048c8f5 2038 read_file_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2039 break;
2040 case TAG_global_subroutine:
2041 case TAG_subroutine:
2d6186f4 2042 if (di.has_at_low_pc)
35f5886e 2043 {
a048c8f5 2044 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2045 }
2046 break;
2047 case TAG_lexical_block:
a048c8f5 2048 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2049 break;
95ff889e 2050 case TAG_class_type:
35f5886e
FF
2051 case TAG_structure_type:
2052 case TAG_union_type:
8b5b6fae 2053 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2054 break;
2055 case TAG_enumeration_type:
1ab3bf1b 2056 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2057 break;
2058 case TAG_subroutine_type:
2059 read_subroutine_type (&di, thisdie, nextdie);
2060 break;
2061 case TAG_array_type:
4d315a07 2062 dwarf_read_array_type (&di);
35f5886e 2063 break;
9e4c1921
FF
2064 case TAG_pointer_type:
2065 read_tag_pointer_type (&di);
2066 break;
ec16f701
FF
2067 case TAG_string_type:
2068 read_tag_string_type (&di);
2069 break;
35f5886e 2070 default:
4ed3a9ea 2071 new_symbol (&di, objfile);
35f5886e
FF
2072 break;
2073 }
2074 }
2075 thisdie = nextdie;
2076 }
2077}
2078
2079/*
2080
35f5886e
FF
2081LOCAL FUNCTION
2082
2083 decode_line_numbers -- decode a line number table fragment
2084
2085SYNOPSIS
2086
2087 static void decode_line_numbers (char *tblscan, char *tblend,
2088 long length, long base, long line, long pc)
2089
2090DESCRIPTION
2091
2092 Translate the DWARF line number information to gdb form.
2093
2094 The ".line" section contains one or more line number tables, one for
2095 each ".line" section from the objects that were linked.
2096
2097 The AT_stmt_list attribute for each TAG_source_file entry in the
2098 ".debug" section contains the offset into the ".line" section for the
2099 start of the table for that file.
2100
2101 The table itself has the following structure:
2102
2103 <table length><base address><source statement entry>
2104 4 bytes 4 bytes 10 bytes
2105
2106 The table length is the total size of the table, including the 4 bytes
2107 for the length information.
2108
2109 The base address is the address of the first instruction generated
2110 for the source file.
2111
2112 Each source statement entry has the following structure:
2113
2114 <line number><statement position><address delta>
2115 4 bytes 2 bytes 4 bytes
2116
2117 The line number is relative to the start of the file, starting with
2118 line 1.
2119
2120 The statement position either -1 (0xFFFF) or the number of characters
2121 from the beginning of the line to the beginning of the statement.
2122
2123 The address delta is the difference between the base address and
2124 the address of the first instruction for the statement.
2125
2126 Note that we must copy the bytes from the packed table to our local
2127 variables before attempting to use them, to avoid alignment problems
2128 on some machines, particularly RISC processors.
2129
2130BUGS
2131
2132 Does gdb expect the line numbers to be sorted? They are now by
2133 chance/luck, but are not required to be. (FIXME)
2134
2135 The line with number 0 is unused, gdb apparently can discover the
2136 span of the last line some other way. How? (FIXME)
2137 */
2138
2139static void
1ab3bf1b
JG
2140decode_line_numbers (linetable)
2141 char *linetable;
35f5886e
FF
2142{
2143 char *tblscan;
2144 char *tblend;
13b5a7ff
FF
2145 unsigned long length;
2146 unsigned long base;
2147 unsigned long line;
2148 unsigned long pc;
35f5886e
FF
2149
2150 if (linetable != NULL)
2151 {
2152 tblscan = tblend = linetable;
13b5a7ff
FF
2153 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2154 current_objfile);
2155 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2156 tblend += length;
13b5a7ff
FF
2157 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2158 GET_UNSIGNED, current_objfile);
2159 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2160 base += baseaddr;
35f5886e
FF
2161 while (tblscan < tblend)
2162 {
13b5a7ff
FF
2163 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2164 current_objfile);
2165 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2166 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2167 current_objfile);
2168 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2169 pc += base;
13b5a7ff 2170 if (line != 0)
35f5886e 2171 {
4d315a07 2172 record_line (current_subfile, line, pc);
35f5886e
FF
2173 }
2174 }
2175 }
2176}
2177
2178/*
2179
35f5886e
FF
2180LOCAL FUNCTION
2181
2182 locval -- compute the value of a location attribute
2183
2184SYNOPSIS
2185
2186 static int locval (char *loc)
2187
2188DESCRIPTION
2189
2190 Given pointer to a string of bytes that define a location, compute
2191 the location and return the value.
2192
2193 When computing values involving the current value of the frame pointer,
2194 the value zero is used, which results in a value relative to the frame
2195 pointer, rather than the absolute value. This is what GDB wants
2196 anyway.
2197
2198 When the result is a register number, the global isreg flag is set,
2199 otherwise it is cleared. This is a kludge until we figure out a better
2200 way to handle the problem. Gdb's design does not mesh well with the
2201 DWARF notion of a location computing interpreter, which is a shame
2202 because the flexibility goes unused.
2203
2204NOTES
2205
2206 Note that stack[0] is unused except as a default error return.
2207 Note that stack overflow is not yet handled.
2208 */
2209
2210static int
1ab3bf1b
JG
2211locval (loc)
2212 char *loc;
35f5886e
FF
2213{
2214 unsigned short nbytes;
13b5a7ff
FF
2215 unsigned short locsize;
2216 auto long stack[64];
35f5886e
FF
2217 int stacki;
2218 char *end;
2219 long regno;
13b5a7ff
FF
2220 int loc_atom_code;
2221 int loc_value_size;
35f5886e 2222
13b5a7ff
FF
2223 nbytes = attribute_size (AT_location);
2224 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2225 loc += nbytes;
2226 end = loc + locsize;
35f5886e
FF
2227 stacki = 0;
2228 stack[stacki] = 0;
2229 isreg = 0;
a5bd5ba6 2230 offreg = 0;
13b5a7ff
FF
2231 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2232 while (loc < end)
35f5886e 2233 {
13b5a7ff
FF
2234 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2235 current_objfile);
2236 loc += SIZEOF_LOC_ATOM_CODE;
2237 switch (loc_atom_code)
2238 {
2239 case 0:
2240 /* error */
2241 loc = end;
2242 break;
2243 case OP_REG:
2244 /* push register (number) */
2245 stack[++stacki] = target_to_host (loc, loc_value_size,
2246 GET_UNSIGNED, current_objfile);
2247 loc += loc_value_size;
2248 isreg = 1;
2249 break;
2250 case OP_BASEREG:
2251 /* push value of register (number) */
2252 /* Actually, we compute the value as if register has 0 */
2253 offreg = 1;
2254 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2255 current_objfile);
2256 loc += loc_value_size;
2257 if (regno == R_FP)
2258 {
2259 stack[++stacki] = 0;
2260 }
2261 else
2262 {
2263 stack[++stacki] = 0;
51b80b00
FF
2264
2265 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
13b5a7ff
FF
2266 }
2267 break;
2268 case OP_ADDR:
2269 /* push address (relocated address) */
2270 stack[++stacki] = target_to_host (loc, loc_value_size,
2271 GET_UNSIGNED, current_objfile);
2272 loc += loc_value_size;
2273 break;
2274 case OP_CONST:
2275 /* push constant (number) FIXME: signed or unsigned! */
2276 stack[++stacki] = target_to_host (loc, loc_value_size,
2277 GET_SIGNED, current_objfile);
2278 loc += loc_value_size;
2279 break;
2280 case OP_DEREF2:
2281 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2282 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2283 break;
2284 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2285 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2286 break;
2287 case OP_ADD: /* pop top 2 items, add, push result */
2288 stack[stacki - 1] += stack[stacki];
2289 stacki--;
2290 break;
2291 }
35f5886e
FF
2292 }
2293 return (stack[stacki]);
2294}
2295
2296/*
2297
2298LOCAL FUNCTION
2299
2300 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2301
2302SYNOPSIS
2303
c701c14c 2304 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2305
2306DESCRIPTION
2307
1ab3bf1b
JG
2308 When expanding a partial symbol table entry to a full symbol table
2309 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2310 for the compilation unit. A pointer to the newly constructed symtab,
2311 which is now the new first one on the objfile's symtab list, is
2312 stashed in the partial symbol table entry.
35f5886e
FF
2313 */
2314
c701c14c 2315static void
1ab3bf1b
JG
2316read_ofile_symtab (pst)
2317 struct partial_symtab *pst;
35f5886e
FF
2318{
2319 struct cleanup *back_to;
13b5a7ff 2320 unsigned long lnsize;
d5931d79 2321 file_ptr foffset;
1ab3bf1b 2322 bfd *abfd;
13b5a7ff 2323 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2324
2325 abfd = pst -> objfile -> obfd;
2326 current_objfile = pst -> objfile;
2327
35f5886e
FF
2328 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2329 unit, seek to the location in the file, and read in all the DIE's. */
2330
2331 diecount = 0;
4090fe1c
FF
2332 dbsize = DBLENGTH (pst);
2333 dbbase = xmalloc (dbsize);
35f5886e
FF
2334 dbroff = DBROFF(pst);
2335 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2336 base_section_offsets = pst->section_offsets;
2337 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2338 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2339 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2340 {
2341 free (dbbase);
2342 error ("can't read DWARF data");
2343 }
2344 back_to = make_cleanup (free, dbbase);
2345
2346 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2347 then read the size of this fragment in bytes, from the fragment itself.
2348 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2349 processing. */
2350
2351 lnbase = NULL;
2352 if (LNFOFF (pst))
2353 {
d5931d79 2354 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2355 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2356 sizeof (lnsizedata)))
35f5886e
FF
2357 {
2358 error ("can't read DWARF line number table size");
2359 }
13b5a7ff
FF
2360 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2361 GET_UNSIGNED, pst -> objfile);
35f5886e 2362 lnbase = xmalloc (lnsize);
d5931d79 2363 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2364 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2365 {
2366 free (lnbase);
2367 error ("can't read DWARF line numbers");
2368 }
2369 make_cleanup (free, lnbase);
2370 }
2371
4090fe1c 2372 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2373 do_cleanups (back_to);
1ab3bf1b 2374 current_objfile = NULL;
c701c14c 2375 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2376}
2377
2378/*
2379
2380LOCAL FUNCTION
2381
2382 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2383
2384SYNOPSIS
2385
a048c8f5 2386 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2387
2388DESCRIPTION
2389
2390 Called once for each partial symbol table entry that needs to be
2391 expanded into a full symbol table entry.
2392
2393*/
2394
2395static void
1ab3bf1b
JG
2396psymtab_to_symtab_1 (pst)
2397 struct partial_symtab *pst;
35f5886e
FF
2398{
2399 int i;
d07734e3 2400 struct cleanup *old_chain;
35f5886e 2401
1ab3bf1b 2402 if (pst != NULL)
35f5886e 2403 {
1ab3bf1b 2404 if (pst->readin)
35f5886e 2405 {
318bf84f 2406 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2407 pst -> filename);
2408 }
2409 else
2410 {
2411 /* Read in all partial symtabs on which this one is dependent */
2412 for (i = 0; i < pst -> number_of_dependencies; i++)
2413 {
2414 if (!pst -> dependencies[i] -> readin)
2415 {
2416 /* Inform about additional files that need to be read in. */
2417 if (info_verbose)
2418 {
2419 fputs_filtered (" ", stdout);
2420 wrap_here ("");
2421 fputs_filtered ("and ", stdout);
2422 wrap_here ("");
2423 printf_filtered ("%s...",
2424 pst -> dependencies[i] -> filename);
2425 wrap_here ("");
2426 fflush (stdout); /* Flush output */
2427 }
2428 psymtab_to_symtab_1 (pst -> dependencies[i]);
2429 }
2430 }
2431 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2432 {
d07734e3
FF
2433 buildsym_init ();
2434 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2435 read_ofile_symtab (pst);
1ab3bf1b
JG
2436 if (info_verbose)
2437 {
2438 printf_filtered ("%d DIE's, sorting...", diecount);
2439 wrap_here ("");
2440 fflush (stdout);
2441 }
2442 sort_symtab_syms (pst -> symtab);
d07734e3 2443 do_cleanups (old_chain);
1ab3bf1b
JG
2444 }
2445 pst -> readin = 1;
35f5886e 2446 }
35f5886e 2447 }
35f5886e
FF
2448}
2449
2450/*
2451
2452LOCAL FUNCTION
2453
2454 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2455
2456SYNOPSIS
2457
2458 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2459
2460DESCRIPTION
2461
2462 This is the DWARF support entry point for building a full symbol
2463 table entry from a partial symbol table entry. We are passed a
2464 pointer to the partial symbol table entry that needs to be expanded.
2465
2466*/
2467
2468static void
1ab3bf1b
JG
2469dwarf_psymtab_to_symtab (pst)
2470 struct partial_symtab *pst;
35f5886e 2471{
7d9884b9 2472
1ab3bf1b 2473 if (pst != NULL)
35f5886e 2474 {
1ab3bf1b 2475 if (pst -> readin)
35f5886e 2476 {
318bf84f 2477 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2478 pst -> filename);
35f5886e 2479 }
1ab3bf1b 2480 else
35f5886e 2481 {
1ab3bf1b
JG
2482 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2483 {
2484 /* Print the message now, before starting serious work, to avoid
2485 disconcerting pauses. */
2486 if (info_verbose)
2487 {
2488 printf_filtered ("Reading in symbols for %s...",
2489 pst -> filename);
2490 fflush (stdout);
2491 }
2492
2493 psymtab_to_symtab_1 (pst);
2494
2495#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2496 we need to do an equivalent or is this something peculiar to
2497 stabs/a.out format.
2498 Match with global symbols. This only needs to be done once,
2499 after all of the symtabs and dependencies have been read in.
2500 */
2501 scan_file_globals (pst -> objfile);
2502#endif
2503
2504 /* Finish up the verbose info message. */
2505 if (info_verbose)
2506 {
2507 printf_filtered ("done.\n");
2508 fflush (stdout);
2509 }
2510 }
35f5886e
FF
2511 }
2512 }
2513}
2514
2515/*
2516
2517LOCAL FUNCTION
2518
2519 init_psymbol_list -- initialize storage for partial symbols
2520
2521SYNOPSIS
2522
1ab3bf1b 2523 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2524
2525DESCRIPTION
2526
2527 Initializes storage for all of the partial symbols that will be
2528 created by dwarf_build_psymtabs and subsidiaries.
2529 */
2530
2531static void
1ab3bf1b
JG
2532init_psymbol_list (objfile, total_symbols)
2533 struct objfile *objfile;
2534 int total_symbols;
35f5886e
FF
2535{
2536 /* Free any previously allocated psymbol lists. */
2537
1ab3bf1b 2538 if (objfile -> global_psymbols.list)
35f5886e 2539 {
84ffdec2 2540 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2541 }
1ab3bf1b 2542 if (objfile -> static_psymbols.list)
35f5886e 2543 {
84ffdec2 2544 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2545 }
2546
2547 /* Current best guess is that there are approximately a twentieth
2548 of the total symbols (in a debugging file) are global or static
2549 oriented symbols */
2550
1ab3bf1b
JG
2551 objfile -> global_psymbols.size = total_symbols / 10;
2552 objfile -> static_psymbols.size = total_symbols / 10;
2553 objfile -> global_psymbols.next =
2554 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2555 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2556 * sizeof (struct partial_symbol));
2557 objfile -> static_psymbols.next =
2558 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2559 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2560 * sizeof (struct partial_symbol));
35f5886e
FF
2561}
2562
35f5886e
FF
2563/*
2564
715cafcb
FF
2565LOCAL FUNCTION
2566
2567 add_enum_psymbol -- add enumeration members to partial symbol table
2568
2569DESCRIPTION
2570
2571 Given pointer to a DIE that is known to be for an enumeration,
2572 extract the symbolic names of the enumeration members and add
2573 partial symbols for them.
2574*/
2575
2576static void
1ab3bf1b
JG
2577add_enum_psymbol (dip, objfile)
2578 struct dieinfo *dip;
2579 struct objfile *objfile;
715cafcb
FF
2580{
2581 char *scan;
2582 char *listend;
13b5a7ff
FF
2583 unsigned short blocksz;
2584 int nbytes;
715cafcb
FF
2585
2586 if ((scan = dip -> at_element_list) != NULL)
2587 {
2588 if (dip -> short_element_list)
2589 {
13b5a7ff 2590 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2591 }
2592 else
2593 {
13b5a7ff 2594 nbytes = attribute_size (AT_element_list);
715cafcb 2595 }
13b5a7ff
FF
2596 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2597 scan += nbytes;
2598 listend = scan + blocksz;
715cafcb
FF
2599 while (scan < listend)
2600 {
13b5a7ff 2601 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2602 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2603 objfile -> static_psymbols, 0, cu_language,
2604 objfile);
715cafcb
FF
2605 scan += strlen (scan) + 1;
2606 }
2607 }
2608}
2609
2610/*
2611
35f5886e
FF
2612LOCAL FUNCTION
2613
2614 add_partial_symbol -- add symbol to partial symbol table
2615
2616DESCRIPTION
2617
2618 Given a DIE, if it is one of the types that we want to
2619 add to a partial symbol table, finish filling in the die info
2620 and then add a partial symbol table entry for it.
2621
95ff889e
FF
2622NOTES
2623
2624 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2625*/
2626
2627static void
1ab3bf1b
JG
2628add_partial_symbol (dip, objfile)
2629 struct dieinfo *dip;
2630 struct objfile *objfile;
35f5886e 2631{
13b5a7ff 2632 switch (dip -> die_tag)
35f5886e
FF
2633 {
2634 case TAG_global_subroutine:
1ab3bf1b
JG
2635 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2636 objfile);
b440b1e9 2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2638 VAR_NAMESPACE, LOC_BLOCK,
2639 objfile -> global_psymbols,
2e4964ad 2640 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2641 break;
2642 case TAG_global_variable:
1ab3bf1b
JG
2643 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2644 mst_data, objfile);
b440b1e9 2645 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2646 VAR_NAMESPACE, LOC_STATIC,
2647 objfile -> global_psymbols,
2e4964ad 2648 0, cu_language, objfile);
35f5886e
FF
2649 break;
2650 case TAG_subroutine:
b440b1e9 2651 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2652 VAR_NAMESPACE, LOC_BLOCK,
2653 objfile -> static_psymbols,
2e4964ad 2654 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2655 break;
2656 case TAG_local_variable:
b440b1e9 2657 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2658 VAR_NAMESPACE, LOC_STATIC,
2659 objfile -> static_psymbols,
2e4964ad 2660 0, cu_language, objfile);
35f5886e
FF
2661 break;
2662 case TAG_typedef:
b440b1e9 2663 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2664 VAR_NAMESPACE, LOC_TYPEDEF,
2665 objfile -> static_psymbols,
2e4964ad 2666 0, cu_language, objfile);
35f5886e 2667 break;
95ff889e 2668 case TAG_class_type:
35f5886e
FF
2669 case TAG_structure_type:
2670 case TAG_union_type:
95ff889e 2671 case TAG_enumeration_type:
b440b1e9 2672 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2673 STRUCT_NAMESPACE, LOC_TYPEDEF,
2674 objfile -> static_psymbols,
2e4964ad 2675 0, cu_language, objfile);
95ff889e 2676 if (cu_language == language_cplus)
715cafcb 2677 {
95ff889e 2678 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2679 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2680 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2681 objfile -> static_psymbols,
2e4964ad 2682 0, cu_language, objfile);
715cafcb 2683 }
715cafcb 2684 break;
35f5886e
FF
2685 }
2686}
2687
2688/*
2689
2690LOCAL FUNCTION
2691
2692 scan_partial_symbols -- scan DIE's within a single compilation unit
2693
2694DESCRIPTION
2695
2696 Process the DIE's within a single compilation unit, looking for
2697 interesting DIE's that contribute to the partial symbol table entry
a679650f 2698 for this compilation unit.
35f5886e 2699
2d6186f4
FF
2700NOTES
2701
a679650f
FF
2702 There are some DIE's that may appear both at file scope and within
2703 the scope of a function. We are only interested in the ones at file
2704 scope, and the only way to tell them apart is to keep track of the
2705 scope. For example, consider the test case:
2706
2707 static int i;
2708 main () { int j; }
2709
2710 for which the relevant DWARF segment has the structure:
2711
2712 0x51:
2713 0x23 global subrtn sibling 0x9b
2714 name main
2715 fund_type FT_integer
2716 low_pc 0x800004cc
2717 high_pc 0x800004d4
2718
2719 0x74:
2720 0x23 local var sibling 0x97
2721 name j
2722 fund_type FT_integer
2723 location OP_BASEREG 0xe
2724 OP_CONST 0xfffffffc
2725 OP_ADD
2726 0x97:
2727 0x4
2728
2729 0x9b:
2730 0x1d local var sibling 0xb8
2731 name i
2732 fund_type FT_integer
2733 location OP_ADDR 0x800025dc
2734
2735 0xb8:
2736 0x4
2737
2738 We want to include the symbol 'i' in the partial symbol table, but
2739 not the symbol 'j'. In essence, we want to skip all the dies within
2740 the scope of a TAG_global_subroutine DIE.
2741
715cafcb
FF
2742 Don't attempt to add anonymous structures or unions since they have
2743 no name. Anonymous enumerations however are processed, because we
2744 want to extract their member names (the check for a tag name is
2745 done later).
2d6186f4 2746
715cafcb
FF
2747 Also, for variables and subroutines, check that this is the place
2748 where the actual definition occurs, rather than just a reference
2749 to an external.
35f5886e
FF
2750 */
2751
2752static void
1ab3bf1b
JG
2753scan_partial_symbols (thisdie, enddie, objfile)
2754 char *thisdie;
2755 char *enddie;
2756 struct objfile *objfile;
35f5886e
FF
2757{
2758 char *nextdie;
a679650f 2759 char *temp;
35f5886e
FF
2760 struct dieinfo di;
2761
2762 while (thisdie < enddie)
2763 {
95967e73 2764 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2765 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2766 {
2767 break;
2768 }
2769 else
2770 {
13b5a7ff 2771 nextdie = thisdie + di.die_length;
715cafcb
FF
2772 /* To avoid getting complete die information for every die, we
2773 only do it (below) for the cases we are interested in. */
13b5a7ff 2774 switch (di.die_tag)
35f5886e
FF
2775 {
2776 case TAG_global_subroutine:
35f5886e 2777 case TAG_subroutine:
a679650f
FF
2778 completedieinfo (&di, objfile);
2779 if (di.at_name && (di.has_at_low_pc || di.at_location))
2780 {
2781 add_partial_symbol (&di, objfile);
2782 /* If there is a sibling attribute, adjust the nextdie
2783 pointer to skip the entire scope of the subroutine.
2784 Apply some sanity checking to make sure we don't
2785 overrun or underrun the range of remaining DIE's */
2786 if (di.at_sibling != 0)
2787 {
2788 temp = dbbase + di.at_sibling - dbroff;
2789 if ((temp < thisdie) || (temp >= enddie))
2790 {
51b80b00
FF
2791 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2792 di.at_sibling);
a679650f
FF
2793 }
2794 else
2795 {
2796 nextdie = temp;
2797 }
2798 }
2799 }
2800 break;
2d6186f4 2801 case TAG_global_variable:
35f5886e 2802 case TAG_local_variable:
95967e73 2803 completedieinfo (&di, objfile);
2d6186f4
FF
2804 if (di.at_name && (di.has_at_low_pc || di.at_location))
2805 {
1ab3bf1b 2806 add_partial_symbol (&di, objfile);
2d6186f4
FF
2807 }
2808 break;
35f5886e 2809 case TAG_typedef:
95ff889e 2810 case TAG_class_type:
35f5886e
FF
2811 case TAG_structure_type:
2812 case TAG_union_type:
95967e73 2813 completedieinfo (&di, objfile);
2d6186f4 2814 if (di.at_name)
35f5886e 2815 {
1ab3bf1b 2816 add_partial_symbol (&di, objfile);
35f5886e
FF
2817 }
2818 break;
715cafcb 2819 case TAG_enumeration_type:
95967e73 2820 completedieinfo (&di, objfile);
95ff889e
FF
2821 if (di.at_name)
2822 {
2823 add_partial_symbol (&di, objfile);
2824 }
2825 add_enum_psymbol (&di, objfile);
715cafcb 2826 break;
35f5886e
FF
2827 }
2828 }
2829 thisdie = nextdie;
2830 }
2831}
2832
2833/*
2834
2835LOCAL FUNCTION
2836
2837 scan_compilation_units -- build a psymtab entry for each compilation
2838
2839DESCRIPTION
2840
2841 This is the top level dwarf parsing routine for building partial
2842 symbol tables.
2843
2844 It scans from the beginning of the DWARF table looking for the first
2845 TAG_compile_unit DIE, and then follows the sibling chain to locate
2846 each additional TAG_compile_unit DIE.
2847
2848 For each TAG_compile_unit DIE it creates a partial symtab structure,
2849 calls a subordinate routine to collect all the compilation unit's
2850 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2851 new partial symtab structure into the partial symbol table. It also
2852 records the appropriate information in the partial symbol table entry
2853 to allow the chunk of DIE's and line number table for this compilation
2854 unit to be located and re-read later, to generate a complete symbol
2855 table entry for the compilation unit.
2856
2857 Thus it effectively partitions up a chunk of DIE's for multiple
2858 compilation units into smaller DIE chunks and line number tables,
2859 and associates them with a partial symbol table entry.
2860
2861NOTES
2862
2863 If any compilation unit has no line number table associated with
2864 it for some reason (a missing at_stmt_list attribute, rather than
2865 just one with a value of zero, which is valid) then we ensure that
2866 the recorded file offset is zero so that the routine which later
2867 reads line number table fragments knows that there is no fragment
2868 to read.
2869
2870RETURNS
2871
2872 Returns no value.
2873
2874 */
2875
2876static void
d5931d79 2877scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2878 char *thisdie;
2879 char *enddie;
d5931d79
JG
2880 file_ptr dbfoff;
2881 file_ptr lnoffset;
1ab3bf1b 2882 struct objfile *objfile;
35f5886e
FF
2883{
2884 char *nextdie;
2885 struct dieinfo di;
2886 struct partial_symtab *pst;
2887 int culength;
2888 int curoff;
d5931d79 2889 file_ptr curlnoffset;
35f5886e
FF
2890
2891 while (thisdie < enddie)
2892 {
95967e73 2893 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2894 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2895 {
2896 break;
2897 }
13b5a7ff 2898 else if (di.die_tag != TAG_compile_unit)
35f5886e 2899 {
13b5a7ff 2900 nextdie = thisdie + di.die_length;
35f5886e
FF
2901 }
2902 else
2903 {
95967e73 2904 completedieinfo (&di, objfile);
95ff889e 2905 set_cu_language (&di);
35f5886e
FF
2906 if (di.at_sibling != 0)
2907 {
2908 nextdie = dbbase + di.at_sibling - dbroff;
2909 }
2910 else
2911 {
13b5a7ff 2912 nextdie = thisdie + di.die_length;
35f5886e
FF
2913 }
2914 curoff = thisdie - dbbase;
2915 culength = nextdie - thisdie;
2d6186f4 2916 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2917
2918 /* First allocate a new partial symbol table structure */
2919
95ff889e
FF
2920 pst = start_psymtab_common (objfile, base_section_offsets,
2921 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2922 objfile -> global_psymbols.next,
2923 objfile -> static_psymbols.next);
2924
2925 pst -> texthigh = di.at_high_pc;
2926 pst -> read_symtab_private = (char *)
2927 obstack_alloc (&objfile -> psymbol_obstack,
2928 sizeof (struct dwfinfo));
2929 DBFOFF (pst) = dbfoff;
2930 DBROFF (pst) = curoff;
2931 DBLENGTH (pst) = culength;
2932 LNFOFF (pst) = curlnoffset;
2933 pst -> read_symtab = dwarf_psymtab_to_symtab;
2934
2935 /* Now look for partial symbols */
2936
13b5a7ff 2937 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2938
2939 pst -> n_global_syms = objfile -> global_psymbols.next -
2940 (objfile -> global_psymbols.list + pst -> globals_offset);
2941 pst -> n_static_syms = objfile -> static_psymbols.next -
2942 (objfile -> static_psymbols.list + pst -> statics_offset);
2943 sort_pst_symbols (pst);
35f5886e
FF
2944 /* If there is already a psymtab or symtab for a file of this name,
2945 remove it. (If there is a symtab, more drastic things also
2946 happen.) This happens in VxWorks. */
2947 free_named_symtabs (pst -> filename);
35f5886e
FF
2948 }
2949 thisdie = nextdie;
2950 }
2951}
2952
2953/*
2954
2955LOCAL FUNCTION
2956
2957 new_symbol -- make a symbol table entry for a new symbol
2958
2959SYNOPSIS
2960
1ab3bf1b
JG
2961 static struct symbol *new_symbol (struct dieinfo *dip,
2962 struct objfile *objfile)
35f5886e
FF
2963
2964DESCRIPTION
2965
2966 Given a pointer to a DWARF information entry, figure out if we need
2967 to make a symbol table entry for it, and if so, create a new entry
2968 and return a pointer to it.
2969 */
2970
2971static struct symbol *
1ab3bf1b
JG
2972new_symbol (dip, objfile)
2973 struct dieinfo *dip;
2974 struct objfile *objfile;
35f5886e
FF
2975{
2976 struct symbol *sym = NULL;
2977
2978 if (dip -> at_name != NULL)
2979 {
1ab3bf1b 2980 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2981 sizeof (struct symbol));
4ed3a9ea 2982 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2983 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2984 &objfile->symbol_obstack);
35f5886e
FF
2985 /* default assumptions */
2986 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2987 SYMBOL_CLASS (sym) = LOC_STATIC;
2988 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2989
2990 /* If this symbol is from a C++ compilation, then attempt to cache the
2991 demangled form for future reference. This is a typical time versus
2992 space tradeoff, that was decided in favor of time because it sped up
2993 C++ symbol lookups by a factor of about 20. */
2994
2995 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2996 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2997 switch (dip -> die_tag)
35f5886e
FF
2998 {
2999 case TAG_label:
4d315a07 3000 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
3001 SYMBOL_CLASS (sym) = LOC_LABEL;
3002 break;
3003 case TAG_global_subroutine:
3004 case TAG_subroutine:
4d315a07 3005 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
3006 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3007 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 3008 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
3009 {
3010 add_symbol_to_list (sym, &global_symbols);
3011 }
3012 else
3013 {
4d315a07 3014 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3015 }
3016 break;
3017 case TAG_global_variable:
35f5886e
FF
3018 if (dip -> at_location != NULL)
3019 {
3020 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
3021 add_symbol_to_list (sym, &global_symbols);
3022 SYMBOL_CLASS (sym) = LOC_STATIC;
3023 SYMBOL_VALUE (sym) += baseaddr;
3024 }
a5bd5ba6
FF
3025 break;
3026 case TAG_local_variable:
3027 if (dip -> at_location != NULL)
35f5886e 3028 {
a5bd5ba6 3029 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 3030 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
3031 if (isreg)
3032 {
3033 SYMBOL_CLASS (sym) = LOC_REGISTER;
3034 }
3035 else if (offreg)
35f5886e 3036 {
a5bd5ba6 3037 SYMBOL_CLASS (sym) = LOC_LOCAL;
35f5886e
FF
3038 }
3039 else
3040 {
3041 SYMBOL_CLASS (sym) = LOC_STATIC;
3042 SYMBOL_VALUE (sym) += baseaddr;
3043 }
3044 }
3045 break;
3046 case TAG_formal_parameter:
3047 if (dip -> at_location != NULL)
3048 {
3049 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3050 }
4d315a07 3051 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3052 if (isreg)
3053 {
3054 SYMBOL_CLASS (sym) = LOC_REGPARM;
3055 }
3056 else
3057 {
3058 SYMBOL_CLASS (sym) = LOC_ARG;
3059 }
3060 break;
3061 case TAG_unspecified_parameters:
3062 /* From varargs functions; gdb doesn't seem to have any interest in
3063 this information, so just ignore it for now. (FIXME?) */
3064 break;
95ff889e 3065 case TAG_class_type:
35f5886e
FF
3066 case TAG_structure_type:
3067 case TAG_union_type:
3068 case TAG_enumeration_type:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3071 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3072 break;
3073 case TAG_typedef:
3074 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3075 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3076 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3077 break;
3078 default:
3079 /* Not a tag we recognize. Hopefully we aren't processing trash
3080 data, but since we must specifically ignore things we don't
3081 recognize, there is nothing else we should do at this point. */
3082 break;
3083 }
3084 }
3085 return (sym);
3086}
3087
3088/*
3089
95ff889e
FF
3090LOCAL FUNCTION
3091
3092 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3093
3094SYNOPSIS
3095
3096 static void synthesize_typedef (struct dieinfo *dip,
3097 struct objfile *objfile,
3098 struct type *type);
3099
3100DESCRIPTION
3101
3102 Given a pointer to a DWARF information entry, synthesize a typedef
3103 for the name in the DIE, using the specified type.
3104
3105 This is used for C++ class, structs, unions, and enumerations to
3106 set up the tag name as a type.
3107
3108 */
3109
3110static void
3111synthesize_typedef (dip, objfile, type)
3112 struct dieinfo *dip;
3113 struct objfile *objfile;
3114 struct type *type;
3115{
3116 struct symbol *sym = NULL;
3117
3118 if (dip -> at_name != NULL)
3119 {
3120 sym = (struct symbol *)
3121 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3122 memset (sym, 0, sizeof (struct symbol));
3123 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3124 &objfile->symbol_obstack);
7532cf10 3125 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3126 SYMBOL_TYPE (sym) = type;
3127 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3128 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3129 add_symbol_to_list (sym, list_in_scope);
3130 }
3131}
3132
3133/*
3134
35f5886e
FF
3135LOCAL FUNCTION
3136
3137 decode_mod_fund_type -- decode a modified fundamental type
3138
3139SYNOPSIS
3140
3141 static struct type *decode_mod_fund_type (char *typedata)
3142
3143DESCRIPTION
3144
3145 Decode a block of data containing a modified fundamental
3146 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3147 which starts with a length containing the size of the rest
3148 of the block. At the end of the block is a fundmental type
3149 code value that gives the fundamental type. Everything
35f5886e
FF
3150 in between are type modifiers.
3151
3152 We simply compute the number of modifiers and call the general
3153 function decode_modified_type to do the actual work.
3154*/
3155
3156static struct type *
1ab3bf1b
JG
3157decode_mod_fund_type (typedata)
3158 char *typedata;
35f5886e
FF
3159{
3160 struct type *typep = NULL;
3161 unsigned short modcount;
13b5a7ff 3162 int nbytes;
35f5886e
FF
3163
3164 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3165
3166 nbytes = attribute_size (AT_mod_fund_type);
3167 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3168 typedata += nbytes;
3169
35f5886e 3170 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3171
3172 modcount -= attribute_size (AT_fund_type);
3173
35f5886e 3174 /* Now do the actual decoding */
13b5a7ff
FF
3175
3176 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3177 return (typep);
3178}
3179
3180/*
3181
3182LOCAL FUNCTION
3183
3184 decode_mod_u_d_type -- decode a modified user defined type
3185
3186SYNOPSIS
3187
3188 static struct type *decode_mod_u_d_type (char *typedata)
3189
3190DESCRIPTION
3191
3192 Decode a block of data containing a modified user defined
3193 type specification. TYPEDATA is a pointer to the block,
3194 which consists of a two byte length, containing the size
3195 of the rest of the block. At the end of the block is a
3196 four byte value that gives a reference to a user defined type.
3197 Everything in between are type modifiers.
3198
3199 We simply compute the number of modifiers and call the general
3200 function decode_modified_type to do the actual work.
3201*/
3202
3203static struct type *
1ab3bf1b
JG
3204decode_mod_u_d_type (typedata)
3205 char *typedata;
35f5886e
FF
3206{
3207 struct type *typep = NULL;
3208 unsigned short modcount;
13b5a7ff 3209 int nbytes;
35f5886e
FF
3210
3211 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3212
3213 nbytes = attribute_size (AT_mod_u_d_type);
3214 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3215 typedata += nbytes;
3216
35f5886e 3217 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3218
3219 modcount -= attribute_size (AT_user_def_type);
3220
35f5886e 3221 /* Now do the actual decoding */
13b5a7ff
FF
3222
3223 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3224 return (typep);
3225}
3226
3227/*
3228
3229LOCAL FUNCTION
3230
3231 decode_modified_type -- decode modified user or fundamental type
3232
3233SYNOPSIS
3234
1c92ca6f 3235 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3236 unsigned short modcount, int mtype)
3237
3238DESCRIPTION
3239
3240 Decode a modified type, either a modified fundamental type or
3241 a modified user defined type. MODIFIERS is a pointer to the
3242 block of bytes that define MODCOUNT modifiers. Immediately
3243 following the last modifier is a short containing the fundamental
3244 type or a long containing the reference to the user defined
3245 type. Which one is determined by MTYPE, which is either
3246 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3247 type we are generating.
3248
3249 We call ourself recursively to generate each modified type,`
3250 until MODCOUNT reaches zero, at which point we have consumed
3251 all the modifiers and generate either the fundamental type or
3252 user defined type. When the recursion unwinds, each modifier
3253 is applied in turn to generate the full modified type.
3254
3255NOTES
3256
3257 If we find a modifier that we don't recognize, and it is not one
3258 of those reserved for application specific use, then we issue a
3259 warning and simply ignore the modifier.
3260
3261BUGS
3262
3263 We currently ignore MOD_const and MOD_volatile. (FIXME)
3264
3265 */
3266
3267static struct type *
1ab3bf1b 3268decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3269 char *modifiers;
1ab3bf1b
JG
3270 unsigned int modcount;
3271 int mtype;
35f5886e
FF
3272{
3273 struct type *typep = NULL;
3274 unsigned short fundtype;
13b5a7ff 3275 DIE_REF die_ref;
1c92ca6f 3276 char modifier;
13b5a7ff 3277 int nbytes;
35f5886e
FF
3278
3279 if (modcount == 0)
3280 {
3281 switch (mtype)
3282 {
3283 case AT_mod_fund_type:
13b5a7ff
FF
3284 nbytes = attribute_size (AT_fund_type);
3285 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3286 current_objfile);
35f5886e
FF
3287 typep = decode_fund_type (fundtype);
3288 break;
3289 case AT_mod_u_d_type:
13b5a7ff
FF
3290 nbytes = attribute_size (AT_user_def_type);
3291 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3292 current_objfile);
3293 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3294 {
13b5a7ff 3295 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3296 }
3297 break;
3298 default:
51b80b00 3299 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3300 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3301 break;
3302 }
3303 }
3304 else
3305 {
3306 modifier = *modifiers++;
3307 typep = decode_modified_type (modifiers, --modcount, mtype);
3308 switch (modifier)
3309 {
13b5a7ff
FF
3310 case MOD_pointer_to:
3311 typep = lookup_pointer_type (typep);
3312 break;
3313 case MOD_reference_to:
3314 typep = lookup_reference_type (typep);
3315 break;
3316 case MOD_const:
51b80b00 3317 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3318 break;
3319 case MOD_volatile:
51b80b00 3320 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3321 break;
3322 default:
1c92ca6f
FF
3323 if (!(MOD_lo_user <= (unsigned char) modifier
3324 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3325 {
51b80b00 3326 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3327 }
3328 break;
35f5886e
FF
3329 }
3330 }
3331 return (typep);
3332}
3333
3334/*
3335
3336LOCAL FUNCTION
3337
3338 decode_fund_type -- translate basic DWARF type to gdb base type
3339
3340DESCRIPTION
3341
3342 Given an integer that is one of the fundamental DWARF types,
3343 translate it to one of the basic internal gdb types and return
3344 a pointer to the appropriate gdb type (a "struct type *").
3345
3346NOTES
3347
85f0a848
FF
3348 For robustness, if we are asked to translate a fundamental
3349 type that we are unprepared to deal with, we return int so
3350 callers can always depend upon a valid type being returned,
3351 and so gdb may at least do something reasonable by default.
3352 If the type is not in the range of those types defined as
3353 application specific types, we also issue a warning.
35f5886e
FF
3354*/
3355
3356static struct type *
1ab3bf1b
JG
3357decode_fund_type (fundtype)
3358 unsigned int fundtype;
35f5886e
FF
3359{
3360 struct type *typep = NULL;
3361
3362 switch (fundtype)
3363 {
3364
3365 case FT_void:
bf229b4e 3366 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3367 break;
3368
1ab3bf1b 3369 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3370 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3371 break;
3372
35f5886e 3373 case FT_pointer: /* (void *) */
bf229b4e 3374 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3375 typep = lookup_pointer_type (typep);
35f5886e
FF
3376 break;
3377
3378 case FT_char:
bf229b4e 3379 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3380 break;
3381
35f5886e 3382 case FT_signed_char:
bf229b4e 3383 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3384 break;
3385
3386 case FT_unsigned_char:
bf229b4e 3387 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3388 break;
3389
3390 case FT_short:
bf229b4e 3391 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3392 break;
3393
35f5886e 3394 case FT_signed_short:
bf229b4e 3395 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3396 break;
3397
3398 case FT_unsigned_short:
bf229b4e 3399 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3400 break;
3401
3402 case FT_integer:
bf229b4e 3403 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3404 break;
3405
35f5886e 3406 case FT_signed_integer:
bf229b4e 3407 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3408 break;
3409
3410 case FT_unsigned_integer:
bf229b4e 3411 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3412 break;
3413
3414 case FT_long:
bf229b4e 3415 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3416 break;
3417
35f5886e 3418 case FT_signed_long:
bf229b4e 3419 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3420 break;
3421
1ab3bf1b 3422 case FT_unsigned_long:
bf229b4e 3423 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3424 break;
3425
1ab3bf1b 3426 case FT_long_long:
bf229b4e 3427 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3428 break;
1ab3bf1b
JG
3429
3430 case FT_signed_long_long:
bf229b4e 3431 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3432 break;
1ab3bf1b
JG
3433
3434 case FT_unsigned_long_long:
bf229b4e 3435 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3436 break;
1ab3bf1b
JG
3437
3438 case FT_float:
bf229b4e 3439 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3440 break;
3441
1ab3bf1b 3442 case FT_dbl_prec_float:
bf229b4e 3443 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3444 break;
3445
3446 case FT_ext_prec_float:
bf229b4e 3447 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3448 break;
3449
3450 case FT_complex:
bf229b4e 3451 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3452 break;
3453
3454 case FT_dbl_prec_complex:
bf229b4e 3455 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3456 break;
3457
1ab3bf1b 3458 case FT_ext_prec_complex:
bf229b4e 3459 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3460 break;
1ab3bf1b 3461
35f5886e
FF
3462 }
3463
85f0a848 3464 if (typep == NULL)
35f5886e 3465 {
85f0a848
FF
3466 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3467 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3468 {
51b80b00 3469 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3470 }
35f5886e
FF
3471 }
3472
3473 return (typep);
3474}
3475
3476/*
3477
3478LOCAL FUNCTION
3479
3480 create_name -- allocate a fresh copy of a string on an obstack
3481
3482DESCRIPTION
3483
3484 Given a pointer to a string and a pointer to an obstack, allocates
3485 a fresh copy of the string on the specified obstack.
3486
3487*/
3488
3489static char *
1ab3bf1b
JG
3490create_name (name, obstackp)
3491 char *name;
3492 struct obstack *obstackp;
35f5886e
FF
3493{
3494 int length;
3495 char *newname;
3496
3497 length = strlen (name) + 1;
3498 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3499 strcpy (newname, name);
35f5886e
FF
3500 return (newname);
3501}
3502
3503/*
3504
3505LOCAL FUNCTION
3506
3507 basicdieinfo -- extract the minimal die info from raw die data
3508
3509SYNOPSIS
3510
95967e73
FF
3511 void basicdieinfo (char *diep, struct dieinfo *dip,
3512 struct objfile *objfile)
35f5886e
FF
3513
3514DESCRIPTION
3515
3516 Given a pointer to raw DIE data, and a pointer to an instance of a
3517 die info structure, this function extracts the basic information
3518 from the DIE data required to continue processing this DIE, along
3519 with some bookkeeping information about the DIE.
3520
3521 The information we absolutely must have includes the DIE tag,
3522 and the DIE length. If we need the sibling reference, then we
3523 will have to call completedieinfo() to process all the remaining
3524 DIE information.
3525
3526 Note that since there is no guarantee that the data is properly
3527 aligned in memory for the type of access required (indirection
95967e73
FF
3528 through anything other than a char pointer), and there is no
3529 guarantee that it is in the same byte order as the gdb host,
3530 we call a function which deals with both alignment and byte
3531 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3532
3533 We also take care of some other basic things at this point, such
3534 as ensuring that the instance of the die info structure starts
3535 out completely zero'd and that curdie is initialized for use
3536 in error reporting if we have a problem with the current die.
3537
3538NOTES
3539
3540 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3541 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3542 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3543 are forced to be TAG_padding DIES.
3544
13b5a7ff
FF
3545 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3546 that if a padding DIE is used for alignment and the amount needed is
3547 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3548 enough to align to the next alignment boundry.
4090fe1c
FF
3549
3550 We do some basic sanity checking here, such as verifying that the
3551 length of the die would not cause it to overrun the recorded end of
3552 the buffer holding the DIE info. If we find a DIE that is either
3553 too small or too large, we force it's length to zero which should
3554 cause the caller to take appropriate action.
35f5886e
FF
3555 */
3556
3557static void
95967e73 3558basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3559 struct dieinfo *dip;
3560 char *diep;
95967e73 3561 struct objfile *objfile;
35f5886e
FF
3562{
3563 curdie = dip;
4ed3a9ea 3564 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3565 dip -> die = diep;
13b5a7ff
FF
3566 dip -> die_ref = dbroff + (diep - dbbase);
3567 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3568 objfile);
4090fe1c
FF
3569 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3570 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3571 {
51b80b00 3572 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3573 dip -> die_length = 0;
35f5886e 3574 }
13b5a7ff 3575 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3576 {
13b5a7ff 3577 dip -> die_tag = TAG_padding;
35f5886e
FF
3578 }
3579 else
3580 {
13b5a7ff
FF
3581 diep += SIZEOF_DIE_LENGTH;
3582 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3583 objfile);
35f5886e
FF
3584 }
3585}
3586
3587/*
3588
3589LOCAL FUNCTION
3590
3591 completedieinfo -- finish reading the information for a given DIE
3592
3593SYNOPSIS
3594
95967e73 3595 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3596
3597DESCRIPTION
3598
3599 Given a pointer to an already partially initialized die info structure,
3600 scan the raw DIE data and finish filling in the die info structure
3601 from the various attributes found.
3602
3603 Note that since there is no guarantee that the data is properly
3604 aligned in memory for the type of access required (indirection
95967e73
FF
3605 through anything other than a char pointer), and there is no
3606 guarantee that it is in the same byte order as the gdb host,
3607 we call a function which deals with both alignment and byte
3608 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3609
3610NOTES
3611
3612 Each time we are called, we increment the diecount variable, which
3613 keeps an approximate count of the number of dies processed for
3614 each compilation unit. This information is presented to the user
3615 if the info_verbose flag is set.
3616
3617 */
3618
3619static void
95967e73 3620completedieinfo (dip, objfile)
1ab3bf1b 3621 struct dieinfo *dip;
95967e73 3622 struct objfile *objfile;
35f5886e
FF
3623{
3624 char *diep; /* Current pointer into raw DIE data */
3625 char *end; /* Terminate DIE scan here */
3626 unsigned short attr; /* Current attribute being scanned */
3627 unsigned short form; /* Form of the attribute */
13b5a7ff 3628 int nbytes; /* Size of next field to read */
35f5886e
FF
3629
3630 diecount++;
3631 diep = dip -> die;
13b5a7ff
FF
3632 end = diep + dip -> die_length;
3633 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3634 while (diep < end)
3635 {
13b5a7ff
FF
3636 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3637 diep += SIZEOF_ATTRIBUTE;
3638 if ((nbytes = attribute_size (attr)) == -1)
3639 {
51b80b00 3640 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3641 diep = end;
3642 continue;
3643 }
35f5886e
FF
3644 switch (attr)
3645 {
3646 case AT_fund_type:
13b5a7ff
FF
3647 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
35f5886e
FF
3649 break;
3650 case AT_ordering:
13b5a7ff
FF
3651 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
35f5886e
FF
3653 break;
3654 case AT_bit_offset:
13b5a7ff
FF
3655 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
35f5886e 3657 break;
35f5886e 3658 case AT_sibling:
13b5a7ff
FF
3659 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
35f5886e
FF
3661 break;
3662 case AT_stmt_list:
13b5a7ff
FF
3663 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
2d6186f4 3665 dip -> has_at_stmt_list = 1;
35f5886e
FF
3666 break;
3667 case AT_low_pc:
13b5a7ff
FF
3668 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
4d315a07 3670 dip -> at_low_pc += baseaddr;
2d6186f4 3671 dip -> has_at_low_pc = 1;
35f5886e
FF
3672 break;
3673 case AT_high_pc:
13b5a7ff
FF
3674 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3675 objfile);
4d315a07 3676 dip -> at_high_pc += baseaddr;
35f5886e
FF
3677 break;
3678 case AT_language:
13b5a7ff
FF
3679 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3680 objfile);
35f5886e
FF
3681 break;
3682 case AT_user_def_type:
13b5a7ff
FF
3683 dip -> at_user_def_type = target_to_host (diep, nbytes,
3684 GET_UNSIGNED, objfile);
35f5886e
FF
3685 break;
3686 case AT_byte_size:
13b5a7ff
FF
3687 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3688 objfile);
50055e94 3689 dip -> has_at_byte_size = 1;
35f5886e
FF
3690 break;
3691 case AT_bit_size:
13b5a7ff
FF
3692 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3693 objfile);
35f5886e
FF
3694 break;
3695 case AT_member:
13b5a7ff
FF
3696 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3697 objfile);
35f5886e
FF
3698 break;
3699 case AT_discr:
13b5a7ff
FF
3700 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3701 objfile);
35f5886e 3702 break;
35f5886e
FF
3703 case AT_location:
3704 dip -> at_location = diep;
3705 break;
3706 case AT_mod_fund_type:
3707 dip -> at_mod_fund_type = diep;
3708 break;
3709 case AT_subscr_data:
3710 dip -> at_subscr_data = diep;
3711 break;
3712 case AT_mod_u_d_type:
3713 dip -> at_mod_u_d_type = diep;
3714 break;
35f5886e
FF
3715 case AT_element_list:
3716 dip -> at_element_list = diep;
768be6e1
FF
3717 dip -> short_element_list = 0;
3718 break;
3719 case AT_short_element_list:
3720 dip -> at_element_list = diep;
3721 dip -> short_element_list = 1;
35f5886e
FF
3722 break;
3723 case AT_discr_value:
3724 dip -> at_discr_value = diep;
3725 break;
3726 case AT_string_length:
3727 dip -> at_string_length = diep;
3728 break;
3729 case AT_name:
3730 dip -> at_name = diep;
3731 break;
3732 case AT_comp_dir:
d4902ab0
FF
3733 /* For now, ignore any "hostname:" portion, since gdb doesn't
3734 know how to deal with it. (FIXME). */
3735 dip -> at_comp_dir = strrchr (diep, ':');
3736 if (dip -> at_comp_dir != NULL)
3737 {
3738 dip -> at_comp_dir++;
3739 }
3740 else
3741 {
3742 dip -> at_comp_dir = diep;
3743 }
35f5886e
FF
3744 break;
3745 case AT_producer:
3746 dip -> at_producer = diep;
3747 break;
35f5886e 3748 case AT_start_scope:
13b5a7ff
FF
3749 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3750 objfile);
35f5886e
FF
3751 break;
3752 case AT_stride_size:
13b5a7ff
FF
3753 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3754 objfile);
35f5886e
FF
3755 break;
3756 case AT_src_info:
13b5a7ff
FF
3757 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3758 objfile);
35f5886e
FF
3759 break;
3760 case AT_prototyped:
13b5a7ff 3761 dip -> at_prototyped = diep;
35f5886e 3762 break;
35f5886e
FF
3763 default:
3764 /* Found an attribute that we are unprepared to handle. However
3765 it is specifically one of the design goals of DWARF that
3766 consumers should ignore unknown attributes. As long as the
3767 form is one that we recognize (so we know how to skip it),
3768 we can just ignore the unknown attribute. */
3769 break;
3770 }
13b5a7ff 3771 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3772 switch (form)
3773 {
3774 case FORM_DATA2:
13b5a7ff 3775 diep += 2;
35f5886e
FF
3776 break;
3777 case FORM_DATA4:
13b5a7ff
FF
3778 case FORM_REF:
3779 diep += 4;
35f5886e
FF
3780 break;
3781 case FORM_DATA8:
13b5a7ff 3782 diep += 8;
35f5886e
FF
3783 break;
3784 case FORM_ADDR:
13b5a7ff 3785 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3786 break;
3787 case FORM_BLOCK2:
13b5a7ff 3788 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3789 break;
3790 case FORM_BLOCK4:
13b5a7ff 3791 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3792 break;
3793 case FORM_STRING:
3794 diep += strlen (diep) + 1;
3795 break;
3796 default:
51b80b00 3797 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3798 diep = end;
3799 break;
3800 }
3801 }
3802}
95967e73 3803
13b5a7ff 3804/*
95967e73 3805
13b5a7ff
FF
3806LOCAL FUNCTION
3807
3808 target_to_host -- swap in target data to host
3809
3810SYNOPSIS
3811
3812 target_to_host (char *from, int nbytes, int signextend,
3813 struct objfile *objfile)
3814
3815DESCRIPTION
3816
3817 Given pointer to data in target format in FROM, a byte count for
3818 the size of the data in NBYTES, a flag indicating whether or not
3819 the data is signed in SIGNEXTEND, and a pointer to the current
3820 objfile in OBJFILE, convert the data to host format and return
3821 the converted value.
3822
3823NOTES
3824
3825 FIXME: If we read data that is known to be signed, and expect to
3826 use it as signed data, then we need to explicitly sign extend the
3827 result until the bfd library is able to do this for us.
3828
3829 */
3830
3831static unsigned long
3832target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3833 char *from;
3834 int nbytes;
13b5a7ff 3835 int signextend; /* FIXME: Unused */
95967e73
FF
3836 struct objfile *objfile;
3837{
13b5a7ff 3838 unsigned long rtnval;
95967e73
FF
3839
3840 switch (nbytes)
3841 {
95967e73 3842 case 8:
13b5a7ff 3843 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3844 break;
95967e73 3845 case 4:
13b5a7ff 3846 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3847 break;
3848 case 2:
13b5a7ff 3849 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3850 break;
3851 case 1:
13b5a7ff 3852 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3853 break;
3854 default:
51b80b00 3855 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3856 rtnval = 0;
95967e73
FF
3857 break;
3858 }
13b5a7ff 3859 return (rtnval);
95967e73
FF
3860}
3861
13b5a7ff
FF
3862/*
3863
3864LOCAL FUNCTION
3865
3866 attribute_size -- compute size of data for a DWARF attribute
3867
3868SYNOPSIS
3869
3870 static int attribute_size (unsigned int attr)
3871
3872DESCRIPTION
3873
3874 Given a DWARF attribute in ATTR, compute the size of the first
3875 piece of data associated with this attribute and return that
3876 size.
3877
3878 Returns -1 for unrecognized attributes.
3879
3880 */
3881
3882static int
3883attribute_size (attr)
3884 unsigned int attr;
3885{
3886 int nbytes; /* Size of next data for this attribute */
3887 unsigned short form; /* Form of the attribute */
3888
3889 form = FORM_FROM_ATTR (attr);
3890 switch (form)
3891 {
3892 case FORM_STRING: /* A variable length field is next */
3893 nbytes = 0;
3894 break;
3895 case FORM_DATA2: /* Next 2 byte field is the data itself */
3896 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3897 nbytes = 2;
3898 break;
3899 case FORM_DATA4: /* Next 4 byte field is the data itself */
3900 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3901 case FORM_REF: /* Next 4 byte field is a DIE offset */
3902 nbytes = 4;
3903 break;
3904 case FORM_DATA8: /* Next 8 byte field is the data itself */
3905 nbytes = 8;
3906 break;
3907 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3908 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3909 break;
3910 default:
51b80b00 3911 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3912 nbytes = -1;
3913 break;
3914 }
3915 return (nbytes);
3916}
This page took 0.27995 seconds and 4 git commands to generate.