* config/tc-dvp.c (VU_LABEL_PREFIX): New macro.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
436d4143
JL
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
1ab3bf1b 4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7This file is part of GDB.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
6c9638b4 21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
35f5886e
FF
22
23/*
24
9745ba07
JK
25FIXME: Do we need to generate dependencies in partial symtabs?
26(Perhaps we don't need to).
35f5886e 27
35f5886e
FF
28FIXME: Resolve minor differences between what information we put in the
29partial symbol table and what dbxread puts in. For example, we don't yet
30put enum constants there. And dbxread seems to invent a lot of typedefs
31we never see. Use the new printpsym command to see the partial symbol table
32contents.
33
35f5886e
FF
34FIXME: Figure out a better way to tell gdb about the name of the function
35contain the user's entry point (I.E. main())
36
35f5886e
FF
37FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38other things to work on, if you get bored. :-)
39
40*/
4d315a07 41
d747e0af 42#include "defs.h"
35f5886e 43#include "symtab.h"
1ab3bf1b 44#include "gdbtypes.h"
35f5886e 45#include "symfile.h"
5e2e79f8 46#include "objfiles.h"
f5f0679a 47#include "elf/dwarf.h"
4d315a07 48#include "buildsym.h"
2dbde378 49#include "demangle.h"
bf229b4e
FF
50#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51#include "language.h"
51b80b00 52#include "complaints.h"
35f5886e 53
d5931d79 54#include <fcntl.h>
2b576293 55#include "gdb_string.h"
51b80b00 56
51b80b00
FF
57/* Some macros to provide DIE info for complaints. */
58
59#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62/* Complaints that can be issued during DWARF debug info reading. */
63
64struct complaint no_bfd_get_N =
65{
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67};
68
69struct complaint malformed_die =
70{
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72};
73
74struct complaint bad_die_ref =
75{
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77};
78
79struct complaint unknown_attribute_form =
80{
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82};
83
84struct complaint unknown_attribute_length =
85{
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87};
88
89struct complaint unexpected_fund_type =
90{
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92};
93
94struct complaint unknown_type_modifier =
95{
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97};
98
99struct complaint volatile_ignored =
100{
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102};
103
104struct complaint const_ignored =
105{
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107};
108
109struct complaint botched_modified_type =
110{
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112};
113
114struct complaint op_deref2 =
115{
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117};
118
119struct complaint op_deref4 =
120{
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122};
123
124struct complaint basereg_not_handled =
125{
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127};
128
129struct complaint dup_user_type_allocation =
130{
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132};
133
134struct complaint dup_user_type_definition =
135{
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137};
138
139struct complaint missing_tag =
140{
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142};
143
144struct complaint bad_array_element_type =
145{
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147};
148
149struct complaint subscript_data_items =
150{
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152};
153
154struct complaint unhandled_array_subscript_format =
155{
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157};
158
159struct complaint unknown_array_subscript_format =
160{
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162};
163
164struct complaint not_row_major =
165{
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167};
35f5886e 168
255181a9
PS
169struct complaint missing_at_name =
170{
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172};
173
13b5a7ff 174typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 175
4d315a07
FF
176#ifndef GCC_PRODUCER
177#define GCC_PRODUCER "GNU C "
178#endif
35f5886e 179
2dbde378
FF
180#ifndef GPLUS_PRODUCER
181#define GPLUS_PRODUCER "GNU C++ "
182#endif
183
184#ifndef LCC_PRODUCER
3dc755fb 185#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
186#endif
187
93bb6e65
FF
188#ifndef CHILL_PRODUCER
189#define CHILL_PRODUCER "GNU Chill "
190#endif
93bb6e65 191
84bdfea6
PS
192/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193#ifndef DWARF_REG_TO_REGNUM
194#define DWARF_REG_TO_REGNUM(num) (num)
195#endif
196
13b5a7ff
FF
197/* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204#define GET_UNSIGNED 0 /* No sign extension required */
205#define GET_SIGNED 1 /* Sign extension required */
206
207/* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211#define SIZEOF_DIE_LENGTH 4
212#define SIZEOF_DIE_TAG 2
213#define SIZEOF_ATTRIBUTE 2
214#define SIZEOF_FORMAT_SPECIFIER 1
215#define SIZEOF_FMT_FT 2
216#define SIZEOF_LINETBL_LENGTH 4
217#define SIZEOF_LINETBL_LINENO 4
218#define SIZEOF_LINETBL_STMT 2
219#define SIZEOF_LINETBL_DELTA 4
220#define SIZEOF_LOC_ATOM_CODE 1
221
222#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224/* Macros that return the sizes of various types of data in the target
225 environment.
226
2d6d969c
FF
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 236
768be6e1
FF
237/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244#define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246/* External variables referenced. */
247
35f5886e 248extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 249extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
250
251/* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
13b5a7ff 257 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
2d6186f4 273 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
274 we need someway to note that we found such an attribute.
275
276 */
277
278typedef char BLOCK;
279
280struct dieinfo {
13b5a7ff
FF
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
287 BLOCK * at_location;
288 char * at_name;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
306d27ca
DE
300 CORE_ADDR at_low_pc;
301 CORE_ADDR at_high_pc;
13b5a7ff
FF
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
13b5a7ff
FF
306 BLOCK * at_string_length;
307 char * at_comp_dir;
308 char * at_producer;
13b5a7ff
FF
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
50055e94 315 unsigned int has_at_byte_size:1;
13b5a7ff 316 unsigned int short_element_list:1;
705ebd92
FF
317
318 /* Kludge to identify register variables */
319
320 unsigned int isreg;
321
322 /* Kludge to identify optimized out variables */
323
324 unsigned int optimized_out;
325
326 /* Kludge to identify basereg references.
327 Nonzero if we have an offset relative to a basereg. */
328
329 unsigned int offreg;
330
331 /* Kludge to identify which base register is it relative to. */
332
333 unsigned int basereg;
35f5886e
FF
334};
335
336static int diecount; /* Approximate count of dies for compilation unit */
337static struct dieinfo *curdie; /* For warnings and such */
338
339static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 340static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
341static int dbroff; /* Relative offset from start of .debug section */
342static char *lnbase; /* Base pointer to line section */
35f5886e 343
2670f34d 344/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
345 the section_offsets structure used by dbxread (once this is done,
346 pass the appropriate section number to end_symtab). */
35f5886e
FF
347static CORE_ADDR baseaddr; /* Add to each symbol value */
348
2670f34d
JG
349/* The section offsets used in the current psymtab or symtab. FIXME,
350 only used to pass one value (baseaddr) at the moment. */
351static struct section_offsets *base_section_offsets;
352
f133a597
JK
353/* We put a pointer to this structure in the read_symtab_private field
354 of the psymtab. */
35f5886e
FF
355
356struct dwfinfo {
989d9cba
JK
357 /* Always the absolute file offset to the start of the ".debug"
358 section for the file containing the DIE's being accessed. */
359 file_ptr dbfoff;
360 /* Relative offset from the start of the ".debug" section to the
361 first DIE to be accessed. When building the partial symbol
362 table, this value will be zero since we are accessing the
363 entire ".debug" section. When expanding a partial symbol
364 table entry, this value will be the offset to the first
365 DIE for the compilation unit containing the symbol that
366 triggers the expansion. */
367 int dbroff;
368 /* The size of the chunk of DIE's being examined, in bytes. */
369 int dblength;
370 /* The absolute file offset to the line table fragment. Ignored
371 when building partial symbol tables, but used when expanding
372 them, and contains the absolute file offset to the fragment
373 of the ".line" section containing the line numbers for the
374 current compilation unit. */
375 file_ptr lnfoff;
35f5886e
FF
376};
377
378#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
4d315a07
FF
383/* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 387
4d315a07
FF
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 391
99140c31 392struct pending **list_in_scope = &file_symbols;
35f5886e
FF
393
394/* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
35f5886e
FF
419
420static struct type **utypes; /* Pointer to array of user type pointers */
421static int numutypes; /* Max number of user type pointers */
422
bf229b4e
FF
423/* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
95ff889e
FF
435/* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
95ff889e
FF
444
445static enum language cu_language;
bf229b4e 446static const struct language_defn *cu_language_defn;
95ff889e 447
35f5886e 448/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
449 about ordering within this file. */
450
b607efe7
FF
451static void
452free_utypes PARAMS ((PTR));
453
13b5a7ff
FF
454static int
455attribute_size PARAMS ((unsigned int));
456
306d27ca 457static CORE_ADDR
13b5a7ff 458target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 459
1ab3bf1b
JG
460static void
461add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
462
2dbde378
FF
463static void
464handle_producer PARAMS ((char *));
465
1ab3bf1b
JG
466static void
467read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 468
58050209 469static void
1ab3bf1b 470read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
471
472static void
1ab3bf1b
JG
473read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
474 struct objfile *));
35f5886e 475
35f5886e 476static void
1ab3bf1b 477scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 478
35f5886e 479static void
d5931d79
JG
480scan_compilation_units PARAMS ((char *, char *, file_ptr,
481 file_ptr, struct objfile *));
35f5886e
FF
482
483static void
1ab3bf1b 484add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 485
35f5886e 486static void
95967e73 487basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
488
489static void
95967e73 490completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
491
492static void
493dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495static void
496psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 497
c701c14c 498static void
1ab3bf1b 499read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
500
501static void
1ab3bf1b 502process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
503
504static void
1ab3bf1b
JG
505read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
35f5886e
FF
507
508static struct type *
84ffdec2 509decode_array_element_type PARAMS ((char *));
35f5886e
FF
510
511static struct type *
85f0a848 512decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
513
514static void
1ab3bf1b 515dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 516
9e4c1921 517static void
1ab3bf1b 518read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 519
ec16f701
FF
520static void
521read_tag_string_type PARAMS ((struct dieinfo *dip));
522
35f5886e 523static void
1ab3bf1b 524read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
525
526static void
1ab3bf1b 527read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
528
529static struct type *
1ab3bf1b 530struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
531
532static struct type *
1ab3bf1b 533enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 534
35f5886e 535static void
1ab3bf1b 536decode_line_numbers PARAMS ((char *));
35f5886e
FF
537
538static struct type *
1ab3bf1b 539decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
540
541static struct type *
1ab3bf1b 542decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
543
544static struct type *
1ab3bf1b 545decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
546
547static struct type *
1c92ca6f 548decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
549
550static struct type *
1ab3bf1b 551decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
552
553static char *
1ab3bf1b 554create_name PARAMS ((char *, struct obstack *));
35f5886e 555
35f5886e 556static struct type *
13b5a7ff 557lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
558
559static struct type *
13b5a7ff 560alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
561
562static struct symbol *
1ab3bf1b 563new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 564
95ff889e
FF
565static void
566synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
35f5886e 569static int
705ebd92 570locval PARAMS ((struct dieinfo *));
35f5886e 571
95ff889e
FF
572static void
573set_cu_language PARAMS ((struct dieinfo *));
574
bf229b4e
FF
575static struct type *
576dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579/*
580
581LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607RETURNS
608
609 Pointer to a fundamental type.
610
611*/
612
613static struct type *
614dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617{
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633}
634
95ff889e
FF
635/*
636
637LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652RETURNS
653
654 No return value.
655
656 */
657
658static void
659set_cu_language (dip)
660 struct dieinfo *dip;
661{
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
e58de8a2
FF
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
7074cd4e
SS
677 case LANG_FORTRAN77:
678 case LANG_FORTRAN90:
679 cu_language = language_fortran;
680 break;
95ff889e
FF
681 case LANG_ADA83:
682 case LANG_COBOL74:
683 case LANG_COBOL85:
95ff889e 684 case LANG_PASCAL83:
2e4964ad 685 /* We don't know anything special about these yet. */
95ff889e
FF
686 cu_language = language_unknown;
687 break;
2e4964ad
FF
688 default:
689 /* If no at_language, try to deduce one from the filename */
690 cu_language = deduce_language_from_filename (dip -> at_name);
691 break;
95ff889e 692 }
bf229b4e 693 cu_language_defn = language_def (cu_language);
95ff889e
FF
694}
695
35f5886e
FF
696/*
697
698GLOBAL FUNCTION
699
700 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
701
702SYNOPSIS
703
d5931d79 704 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 705 struct section_offsets *section_offsets,
d5931d79
JG
706 int mainline, file_ptr dbfoff, unsigned int dbfsize,
707 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
708
709DESCRIPTION
710
711 This function is called upon to build partial symtabs from files
712 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
713
d5931d79 714 It is passed a bfd* containing the DIES
35f5886e
FF
715 and line number information, the corresponding filename for that
716 file, a base address for relocating the symbols, a flag indicating
717 whether or not this debugging information is from a "main symbol
718 table" rather than a shared library or dynamically linked file,
719 and file offset/size pairs for the DIE information and line number
720 information.
721
722RETURNS
723
724 No return value.
725
726 */
727
728void
d5931d79
JG
729dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
730 lnoffset, lnsize)
731 struct objfile *objfile;
2670f34d 732 struct section_offsets *section_offsets;
1ab3bf1b 733 int mainline;
d5931d79 734 file_ptr dbfoff;
4090fe1c 735 unsigned int dbfsize;
d5931d79 736 file_ptr lnoffset;
1ab3bf1b 737 unsigned int lnsize;
35f5886e 738{
d5931d79 739 bfd *abfd = objfile->obfd;
35f5886e
FF
740 struct cleanup *back_to;
741
95967e73 742 current_objfile = objfile;
4090fe1c 743 dbsize = dbfsize;
35f5886e
FF
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
987622b5 746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
d5931d79 747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
748 {
749 free (dbbase);
d5931d79 750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
751 }
752 back_to = make_cleanup (free, dbbase);
753
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
757
13b5a7ff
FF
758 if (mainline || objfile -> global_psymbols.size == 0 ||
759 objfile -> static_psymbols.size == 0)
35f5886e 760 {
1ab3bf1b 761 init_psymbol_list (objfile, 1024);
35f5886e
FF
762 }
763
84ffdec2 764 /* Save the relocation factor where everybody can see it. */
f8b76e70 765
2670f34d
JG
766 base_section_offsets = section_offsets;
767 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 768
35f5886e
FF
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
772
d5931d79 773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 774
35f5886e 775 do_cleanups (back_to);
95967e73 776 current_objfile = NULL;
35f5886e
FF
777}
778
35f5886e
FF
779/*
780
35f5886e
FF
781LOCAL FUNCTION
782
783 read_lexical_block_scope -- process all dies in a lexical block
784
785SYNOPSIS
786
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
789
790DESCRIPTION
791
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
794
795 */
796
797static void
1ab3bf1b
JG
798read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
35f5886e 803{
4d315a07
FF
804 register struct context_stack *new;
805
4ed3a9ea 806 push_context (0, dip -> at_low_pc);
13b5a7ff 807 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
811 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 812 dip -> at_high_pc, objfile);
4d315a07
FF
813 }
814 local_symbols = new -> locals;
35f5886e
FF
815}
816
817/*
818
819LOCAL FUNCTION
820
821 lookup_utype -- look up a user defined type from die reference
822
823SYNOPSIS
824
13b5a7ff 825 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
826
827DESCRIPTION
828
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
834 */
835
836static struct type *
13b5a7ff
FF
837lookup_utype (die_ref)
838 DIE_REF die_ref;
35f5886e
FF
839{
840 struct type *type = NULL;
841 int utypeidx;
842
13b5a7ff 843 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
51b80b00 846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853}
854
855
856/*
857
858LOCAL FUNCTION
859
860 alloc_utype -- add a user defined type for die reference
861
862SYNOPSIS
863
13b5a7ff 864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
865
866DESCRIPTION
867
13b5a7ff 868 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
872
873 We should only be called after calling lookup_utype() to verify that
13b5a7ff 874 there is not currently a type registered for DIE_REF.
35f5886e
FF
875 */
876
877static struct type *
13b5a7ff
FF
878alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
1ab3bf1b 880 struct type *utypep;
35f5886e
FF
881{
882 struct type **typep;
883 int utypeidx;
884
13b5a7ff 885 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
bf229b4e 889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
51b80b00 895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
8050a57b 901 utypep = alloc_type (current_objfile);
35f5886e
FF
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906}
907
4a1d2ce2
FF
908/*
909
910LOCAL FUNCTION
911
912 free_utypes -- free the utypes array and reset pointer & count
913
914SYNOPSIS
915
916 static void free_utypes (PTR dummy)
917
918DESCRIPTION
919
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
923 */
924
925static void
926free_utypes (dummy)
927 PTR dummy;
928{
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932}
933
934
35f5886e
FF
935/*
936
937LOCAL FUNCTION
938
939 decode_die_type -- return a type for a specified die
940
941SYNOPSIS
942
943 static struct type *decode_die_type (struct dieinfo *dip)
944
945DESCRIPTION
946
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
950 */
951
952static struct type *
1ab3bf1b
JG
953decode_die_type (dip)
954 struct dieinfo *dip;
35f5886e
FF
955{
956 struct type *type = NULL;
957
958 if (dip -> at_fund_type != 0)
959 {
960 type = decode_fund_type (dip -> at_fund_type);
961 }
962 else if (dip -> at_mod_fund_type != NULL)
963 {
964 type = decode_mod_fund_type (dip -> at_mod_fund_type);
965 }
966 else if (dip -> at_user_def_type)
967 {
968 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
969 {
970 type = alloc_utype (dip -> at_user_def_type, NULL);
971 }
972 }
973 else if (dip -> at_mod_u_d_type)
974 {
975 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
976 }
977 else
978 {
ac954805 979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
980 }
981 return (type);
982}
983
984/*
985
986LOCAL FUNCTION
987
988 struct_type -- compute and return the type for a struct or union
989
990SYNOPSIS
991
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 993 char *enddie, struct objfile *objfile)
35f5886e
FF
994
995DESCRIPTION
996
997 Given pointer to a die information structure for a die which
715cafcb
FF
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
35f5886e
FF
1002 */
1003
1004static struct type *
1ab3bf1b
JG
1005struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
35f5886e
FF
1010{
1011 struct type *type;
1012 struct nextfield {
1013 struct nextfield *next;
1014 struct field field;
1015 };
1016 struct nextfield *list = NULL;
1017 struct nextfield *new;
1018 int nfields = 0;
1019 int n;
35f5886e 1020 struct dieinfo mbr;
8b5b6fae 1021 char *nextdie;
50055e94 1022 int anonymous_size;
35f5886e 1023
13b5a7ff 1024 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1025 {
5edf98d7 1026 /* No forward references created an empty type, so install one now */
13b5a7ff 1027 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1028 }
a3723a43 1029 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1030 switch (dip -> die_tag)
35f5886e 1031 {
95ff889e
FF
1032 case TAG_class_type:
1033 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1034 break;
715cafcb 1035 case TAG_structure_type:
5edf98d7 1036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1037 break;
1038 case TAG_union_type:
1039 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1040 break;
1041 default:
1042 /* Should never happen */
1043 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1044 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1045 break;
35f5886e 1046 }
5edf98d7
FF
1047 /* Some compilers try to be helpful by inventing "fake" names for
1048 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1049 Thanks, but no thanks... */
715cafcb
FF
1050 if (dip -> at_name != NULL
1051 && *dip -> at_name != '~'
1052 && *dip -> at_name != '.')
35f5886e 1053 {
b2bebdb0
JK
1054 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1055 "", "", dip -> at_name);
35f5886e 1056 }
50055e94
FF
1057 /* Use whatever size is known. Zero is a valid size. We might however
1058 wish to check has_at_byte_size to make sure that some byte size was
1059 given explicitly, but DWARF doesn't specify that explicit sizes of
1060 zero have to present, so complaining about missing sizes should
1061 probably not be the default. */
1062 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1063 thisdie += dip -> die_length;
35f5886e
FF
1064 while (thisdie < enddie)
1065 {
95967e73
FF
1066 basicdieinfo (&mbr, thisdie, objfile);
1067 completedieinfo (&mbr, objfile);
13b5a7ff 1068 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1069 {
1070 break;
1071 }
8b5b6fae
FF
1072 else if (mbr.at_sibling != 0)
1073 {
1074 nextdie = dbbase + mbr.at_sibling - dbroff;
1075 }
1076 else
1077 {
13b5a7ff 1078 nextdie = thisdie + mbr.die_length;
8b5b6fae 1079 }
13b5a7ff 1080 switch (mbr.die_tag)
35f5886e
FF
1081 {
1082 case TAG_member:
1083 /* Get space to record the next field's data. */
1084 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1085 new -> next = list;
1086 list = new;
1087 /* Save the data. */
50e0dc41
FF
1088 list -> field.name =
1089 obsavestring (mbr.at_name, strlen (mbr.at_name),
1090 &objfile -> type_obstack);
f7f37388
PB
1091 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1092 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
4db8e515 1093 /* Handle bit fields. */
f7f37388 1094 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
b8176214 1095 if (BITS_BIG_ENDIAN)
4db8e515 1096 {
b8176214
ILT
1097 /* For big endian bits, the at_bit_offset gives the
1098 additional bit offset from the MSB of the containing
1099 anonymous object to the MSB of the field. We don't
1100 have to do anything special since we don't need to
1101 know the size of the anonymous object. */
f7f37388 1102 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
b8176214
ILT
1103 }
1104 else
1105 {
1106 /* For little endian bits, we need to have a non-zero
1107 at_bit_size, so that we know we are in fact dealing
1108 with a bitfield. Compute the bit offset to the MSB
1109 of the anonymous object, subtract off the number of
1110 bits from the MSB of the field to the MSB of the
1111 object, and then subtract off the number of bits of
1112 the field itself. The result is the bit offset of
1113 the LSB of the field. */
1114 if (mbr.at_bit_size > 0)
50055e94 1115 {
b8176214
ILT
1116 if (mbr.has_at_byte_size)
1117 {
1118 /* The size of the anonymous object containing
1119 the bit field is explicit, so use the
1120 indicated size (in bytes). */
1121 anonymous_size = mbr.at_byte_size;
1122 }
1123 else
1124 {
1125 /* The size of the anonymous object containing
1126 the bit field matches the size of an object
1127 of the bit field's type. DWARF allows
1128 at_byte_size to be left out in such cases, as
1129 a debug information size optimization. */
1130 anonymous_size = TYPE_LENGTH (list -> field.type);
1131 }
f7f37388 1132 FIELD_BITPOS (list->field) +=
b8176214 1133 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
50055e94 1134 }
4db8e515 1135 }
35f5886e
FF
1136 nfields++;
1137 break;
1138 default:
8b5b6fae 1139 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1140 break;
1141 }
8b5b6fae 1142 thisdie = nextdie;
35f5886e 1143 }
5edf98d7
FF
1144 /* Now create the vector of fields, and record how big it is. We may
1145 not even have any fields, if this DIE was generated due to a reference
1146 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1147 set, which clues gdb in to the fact that it needs to search elsewhere
1148 for the full structure definition. */
1149 if (nfields == 0)
35f5886e 1150 {
5edf98d7
FF
1151 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1152 }
1153 else
1154 {
1155 TYPE_NFIELDS (type) = nfields;
1156 TYPE_FIELDS (type) = (struct field *)
dac9734e 1157 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1158 /* Copy the saved-up fields into the field vector. */
1159 for (n = nfields; list; list = list -> next)
1160 {
1161 TYPE_FIELD (type, --n) = list -> field;
1162 }
1163 }
35f5886e
FF
1164 return (type);
1165}
1166
1167/*
1168
1169LOCAL FUNCTION
1170
1171 read_structure_scope -- process all dies within struct or union
1172
1173SYNOPSIS
1174
1175 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1176 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1177
1178DESCRIPTION
1179
1180 Called when we find the DIE that starts a structure or union
1181 scope (definition) to process all dies that define the members
1182 of the structure or union. DIP is a pointer to the die info
1183 struct for the DIE that names the structure or union.
1184
1185NOTES
1186
1187 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1188 the DIE has an at_name attribute, since it might be an anonymous
1189 structure or union. This gets the type entered into our set of
1190 user defined types.
1191
1192 However, if the structure is incomplete (an opaque struct/union)
1193 then suppress creating a symbol table entry for it since gdb only
1194 wants to find the one with the complete definition. Note that if
1195 it is complete, we just call new_symbol, which does it's own
1196 checking about whether the struct/union is anonymous or not (and
1197 suppresses creating a symbol table entry itself).
1198
35f5886e
FF
1199 */
1200
1201static void
1ab3bf1b
JG
1202read_structure_scope (dip, thisdie, enddie, objfile)
1203 struct dieinfo *dip;
1204 char *thisdie;
1205 char *enddie;
1206 struct objfile *objfile;
35f5886e
FF
1207{
1208 struct type *type;
1209 struct symbol *sym;
1210
8b5b6fae 1211 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1212 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1213 {
95ff889e
FF
1214 sym = new_symbol (dip, objfile);
1215 if (sym != NULL)
84ce6717
FF
1216 {
1217 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1218 if (cu_language == language_cplus)
1219 {
1220 synthesize_typedef (dip, objfile, type);
1221 }
84ce6717 1222 }
35f5886e
FF
1223 }
1224}
1225
1226/*
1227
1228LOCAL FUNCTION
1229
1230 decode_array_element_type -- decode type of the array elements
1231
1232SYNOPSIS
1233
1234 static struct type *decode_array_element_type (char *scan, char *end)
1235
1236DESCRIPTION
1237
1238 As the last step in decoding the array subscript information for an
1239 array DIE, we need to decode the type of the array elements. We are
1240 passed a pointer to this last part of the subscript information and
1241 must return the appropriate type. If the type attribute is not
1242 recognized, just warn about the problem and return type int.
1243 */
1244
1245static struct type *
84ffdec2 1246decode_array_element_type (scan)
1ab3bf1b 1247 char *scan;
35f5886e
FF
1248{
1249 struct type *typep;
13b5a7ff
FF
1250 DIE_REF die_ref;
1251 unsigned short attribute;
35f5886e 1252 unsigned short fundtype;
13b5a7ff 1253 int nbytes;
35f5886e 1254
13b5a7ff
FF
1255 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1256 current_objfile);
1257 scan += SIZEOF_ATTRIBUTE;
1258 if ((nbytes = attribute_size (attribute)) == -1)
1259 {
51b80b00 1260 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1261 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1262 }
1263 else
1264 {
1265 switch (attribute)
1266 {
1267 case AT_fund_type:
1268 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1269 current_objfile);
1270 typep = decode_fund_type (fundtype);
1271 break;
1272 case AT_mod_fund_type:
1273 typep = decode_mod_fund_type (scan);
1274 break;
1275 case AT_user_def_type:
1276 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1277 current_objfile);
1278 if ((typep = lookup_utype (die_ref)) == NULL)
1279 {
1280 typep = alloc_utype (die_ref, NULL);
1281 }
1282 break;
1283 case AT_mod_u_d_type:
1284 typep = decode_mod_u_d_type (scan);
1285 break;
1286 default:
51b80b00 1287 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1288 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1289 break;
1290 }
35f5886e
FF
1291 }
1292 return (typep);
1293}
1294
1295/*
1296
1297LOCAL FUNCTION
1298
85f0a848 1299 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1300
1301SYNOPSIS
1302
85f0a848
FF
1303 static struct type *
1304 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1305
1306DESCRIPTION
1307
1308 The array subscripts and the data type of the elements of an
1309 array are described by a list of data items, stored as a block
1310 of contiguous bytes. There is a data item describing each array
1311 dimension, and a final data item describing the element type.
1312 The data items are ordered the same as their appearance in the
1313 source (I.E. leftmost dimension first, next to leftmost second,
1314 etc).
1315
85f0a848
FF
1316 The data items describing each array dimension consist of four
1317 parts: (1) a format specifier, (2) type type of the subscript
1318 index, (3) a description of the low bound of the array dimension,
1319 and (4) a description of the high bound of the array dimension.
1320
1321 The last data item is the description of the type of each of
1322 the array elements.
1323
35f5886e 1324 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1325 containing the remaining data items, and a pointer to the first
1326 byte past the data. This function recursively decodes the
1327 remaining data items and returns a type.
1328
1329 If we somehow fail to decode some data, we complain about it
1330 and return a type "array of int".
35f5886e
FF
1331
1332BUGS
1333 FIXME: This code only implements the forms currently used
1334 by the AT&T and GNU C compilers.
1335
1336 The end pointer is supplied for error checking, maybe we should
1337 use it for that...
1338 */
1339
1340static struct type *
85f0a848 1341decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1342 char *scan;
1343 char *end;
35f5886e 1344{
85f0a848
FF
1345 struct type *typep = NULL; /* Array type we are building */
1346 struct type *nexttype; /* Type of each element (may be array) */
1347 struct type *indextype; /* Type of this index */
a8a69e63 1348 struct type *rangetype;
13b5a7ff
FF
1349 unsigned int format;
1350 unsigned short fundtype;
1351 unsigned long lowbound;
1352 unsigned long highbound;
1353 int nbytes;
35f5886e 1354
13b5a7ff
FF
1355 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1356 current_objfile);
1357 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1358 switch (format)
1359 {
1360 case FMT_ET:
84ffdec2 1361 typep = decode_array_element_type (scan);
35f5886e
FF
1362 break;
1363 case FMT_FT_C_C:
13b5a7ff
FF
1364 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1365 current_objfile);
85f0a848 1366 indextype = decode_fund_type (fundtype);
13b5a7ff 1367 scan += SIZEOF_FMT_FT;
160be0de
FF
1368 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1369 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1370 scan += nbytes;
1371 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1372 scan += nbytes;
85f0a848
FF
1373 nexttype = decode_subscript_data_item (scan, end);
1374 if (nexttype == NULL)
35f5886e 1375 {
85f0a848 1376 /* Munged subscript data or other problem, fake it. */
51b80b00 1377 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1378 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1379 }
a8a69e63
FF
1380 rangetype = create_range_type ((struct type *) NULL, indextype,
1381 lowbound, highbound);
1382 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1383 break;
1384 case FMT_FT_C_X:
1385 case FMT_FT_X_C:
1386 case FMT_FT_X_X:
1387 case FMT_UT_C_C:
1388 case FMT_UT_C_X:
1389 case FMT_UT_X_C:
1390 case FMT_UT_X_X:
51b80b00 1391 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1392 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1393 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1394 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1395 break;
1396 default:
51b80b00 1397 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1398 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1399 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1400 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1401 break;
1402 }
1403 return (typep);
1404}
1405
1406/*
1407
1408LOCAL FUNCTION
1409
4d315a07 1410 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1411
1412SYNOPSIS
1413
4d315a07 1414 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1415
1416DESCRIPTION
1417
1418 Extract all information from a TAG_array_type DIE and add to
1419 the user defined type vector.
1420 */
1421
1422static void
1ab3bf1b
JG
1423dwarf_read_array_type (dip)
1424 struct dieinfo *dip;
35f5886e
FF
1425{
1426 struct type *type;
af213624 1427 struct type *utype;
35f5886e
FF
1428 char *sub;
1429 char *subend;
13b5a7ff
FF
1430 unsigned short blocksz;
1431 int nbytes;
35f5886e
FF
1432
1433 if (dip -> at_ordering != ORD_row_major)
1434 {
1435 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1436 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1437 }
1438 if ((sub = dip -> at_subscr_data) != NULL)
1439 {
13b5a7ff
FF
1440 nbytes = attribute_size (AT_subscr_data);
1441 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1442 subend = sub + nbytes + blocksz;
1443 sub += nbytes;
85f0a848
FF
1444 type = decode_subscript_data_item (sub, subend);
1445 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1446 {
85f0a848
FF
1447 /* Install user defined type that has not been referenced yet. */
1448 alloc_utype (dip -> die_ref, type);
1449 }
1450 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1451 {
1452 /* Ick! A forward ref has already generated a blank type in our
1453 slot, and this type probably already has things pointing to it
1454 (which is what caused it to be created in the first place).
1455 If it's just a place holder we can plop our fully defined type
1456 on top of it. We can't recover the space allocated for our
1457 new type since it might be on an obstack, but we could reuse
1458 it if we kept a list of them, but it might not be worth it
1459 (FIXME). */
1460 *utype = *type;
35f5886e
FF
1461 }
1462 else
1463 {
85f0a848
FF
1464 /* Double ick! Not only is a type already in our slot, but
1465 someone has decorated it. Complain and leave it alone. */
51b80b00 1466 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1467 }
1468 }
1469}
1470
1471/*
1472
9e4c1921
FF
1473LOCAL FUNCTION
1474
1475 read_tag_pointer_type -- read TAG_pointer_type DIE
1476
1477SYNOPSIS
1478
1479 static void read_tag_pointer_type (struct dieinfo *dip)
1480
1481DESCRIPTION
1482
1483 Extract all information from a TAG_pointer_type DIE and add to
1484 the user defined type vector.
1485 */
1486
1487static void
1ab3bf1b
JG
1488read_tag_pointer_type (dip)
1489 struct dieinfo *dip;
9e4c1921
FF
1490{
1491 struct type *type;
1492 struct type *utype;
9e4c1921
FF
1493
1494 type = decode_die_type (dip);
13b5a7ff 1495 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1496 {
1497 utype = lookup_pointer_type (type);
4ed3a9ea 1498 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1499 }
1500 else
1501 {
1502 TYPE_TARGET_TYPE (utype) = type;
1503 TYPE_POINTER_TYPE (type) = utype;
1504
1505 /* We assume the machine has only one representation for pointers! */
67359871
JM
1506 /* FIXME: Possably a poor assumption */
1507 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT ;
9e4c1921
FF
1508 TYPE_CODE (utype) = TYPE_CODE_PTR;
1509 }
1510}
1511
1512/*
1513
ec16f701
FF
1514LOCAL FUNCTION
1515
1516 read_tag_string_type -- read TAG_string_type DIE
1517
1518SYNOPSIS
1519
1520 static void read_tag_string_type (struct dieinfo *dip)
1521
1522DESCRIPTION
1523
1524 Extract all information from a TAG_string_type DIE and add to
1525 the user defined type vector. It isn't really a user defined
1526 type, but it behaves like one, with other DIE's using an
1527 AT_user_def_type attribute to reference it.
1528 */
1529
1530static void
1531read_tag_string_type (dip)
1532 struct dieinfo *dip;
1533{
1534 struct type *utype;
1535 struct type *indextype;
1536 struct type *rangetype;
1537 unsigned long lowbound = 0;
1538 unsigned long highbound;
1539
b6236d6e 1540 if (dip -> has_at_byte_size)
ec16f701 1541 {
b6236d6e
FF
1542 /* A fixed bounds string */
1543 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1544 }
1545 else
1546 {
b6236d6e
FF
1547 /* A varying length string. Stub for now. (FIXME) */
1548 highbound = 1;
1549 }
1550 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1551 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1552 highbound);
1553
1554 utype = lookup_utype (dip -> die_ref);
1555 if (utype == NULL)
1556 {
1557 /* No type defined, go ahead and create a blank one to use. */
1558 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1559 }
1560 else
1561 {
1562 /* Already a type in our slot due to a forward reference. Make sure it
1563 is a blank one. If not, complain and leave it alone. */
1564 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1565 {
b6236d6e
FF
1566 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1567 return;
ec16f701 1568 }
ec16f701 1569 }
b6236d6e
FF
1570
1571 /* Create the string type using the blank type we either found or created. */
1572 utype = create_string_type (utype, rangetype);
ec16f701
FF
1573}
1574
1575/*
1576
35f5886e
FF
1577LOCAL FUNCTION
1578
1579 read_subroutine_type -- process TAG_subroutine_type dies
1580
1581SYNOPSIS
1582
1583 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1584 char *enddie)
1585
1586DESCRIPTION
1587
1588 Handle DIES due to C code like:
1589
1590 struct foo {
1591 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1592 int b;
1593 };
1594
1595NOTES
1596
1597 The parameter DIES are currently ignored. See if gdb has a way to
1598 include this info in it's type system, and decode them if so. Is
1599 this what the type structure's "arg_types" field is for? (FIXME)
1600 */
1601
1602static void
1ab3bf1b
JG
1603read_subroutine_type (dip, thisdie, enddie)
1604 struct dieinfo *dip;
1605 char *thisdie;
1606 char *enddie;
35f5886e 1607{
af213624
FF
1608 struct type *type; /* Type that this function returns */
1609 struct type *ftype; /* Function that returns above type */
35f5886e 1610
af213624
FF
1611 /* Decode the type that this subroutine returns */
1612
35f5886e 1613 type = decode_die_type (dip);
af213624
FF
1614
1615 /* Check to see if we already have a partially constructed user
1616 defined type for this DIE, from a forward reference. */
1617
13b5a7ff 1618 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1619 {
1620 /* This is the first reference to one of these types. Make
1621 a new one and place it in the user defined types. */
1622 ftype = lookup_function_type (type);
4ed3a9ea 1623 alloc_utype (dip -> die_ref, ftype);
af213624 1624 }
85f0a848 1625 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1626 {
1627 /* We have an existing partially constructed type, so bash it
1628 into the correct type. */
1629 TYPE_TARGET_TYPE (ftype) = type;
af213624
FF
1630 TYPE_LENGTH (ftype) = 1;
1631 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1632 }
85f0a848
FF
1633 else
1634 {
51b80b00 1635 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1636 }
35f5886e
FF
1637}
1638
1639/*
1640
1641LOCAL FUNCTION
1642
1643 read_enumeration -- process dies which define an enumeration
1644
1645SYNOPSIS
1646
1647 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1648 char *enddie, struct objfile *objfile)
35f5886e
FF
1649
1650DESCRIPTION
1651
1652 Given a pointer to a die which begins an enumeration, process all
1653 the dies that define the members of the enumeration.
1654
1655NOTES
1656
1657 Note that we need to call enum_type regardless of whether or not we
1658 have a symbol, since we might have an enum without a tag name (thus
1659 no symbol for the tagname).
1660 */
1661
1662static void
1ab3bf1b
JG
1663read_enumeration (dip, thisdie, enddie, objfile)
1664 struct dieinfo *dip;
1665 char *thisdie;
1666 char *enddie;
1667 struct objfile *objfile;
35f5886e
FF
1668{
1669 struct type *type;
1670 struct symbol *sym;
1671
1ab3bf1b 1672 type = enum_type (dip, objfile);
95ff889e
FF
1673 sym = new_symbol (dip, objfile);
1674 if (sym != NULL)
35f5886e
FF
1675 {
1676 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1677 if (cu_language == language_cplus)
1678 {
1679 synthesize_typedef (dip, objfile, type);
1680 }
35f5886e
FF
1681 }
1682}
1683
1684/*
1685
1686LOCAL FUNCTION
1687
1688 enum_type -- decode and return a type for an enumeration
1689
1690SYNOPSIS
1691
1ab3bf1b 1692 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1693
1694DESCRIPTION
1695
1696 Given a pointer to a die information structure for the die which
1697 starts an enumeration, process all the dies that define the members
1698 of the enumeration and return a type pointer for the enumeration.
98618bf7 1699
715cafcb
FF
1700 At the same time, for each member of the enumeration, create a
1701 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1702 and give it the type of the enumeration itself.
1703
1704NOTES
1705
98618bf7
FF
1706 Note that the DWARF specification explicitly mandates that enum
1707 constants occur in reverse order from the source program order,
1708 for "consistency" and because this ordering is easier for many
1ab3bf1b 1709 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1710 Entries). Because gdb wants to see the enum members in program
1711 source order, we have to ensure that the order gets reversed while
98618bf7 1712 we are processing them.
35f5886e
FF
1713 */
1714
1715static struct type *
1ab3bf1b
JG
1716enum_type (dip, objfile)
1717 struct dieinfo *dip;
1718 struct objfile *objfile;
35f5886e
FF
1719{
1720 struct type *type;
1721 struct nextfield {
1722 struct nextfield *next;
1723 struct field field;
1724 };
1725 struct nextfield *list = NULL;
1726 struct nextfield *new;
1727 int nfields = 0;
1728 int n;
35f5886e
FF
1729 char *scan;
1730 char *listend;
13b5a7ff 1731 unsigned short blocksz;
715cafcb 1732 struct symbol *sym;
13b5a7ff 1733 int nbytes;
09af5868 1734 int unsigned_enum = 1;
35f5886e 1735
13b5a7ff 1736 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1737 {
84ce6717 1738 /* No forward references created an empty type, so install one now */
13b5a7ff 1739 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1740 }
1741 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1742 /* Some compilers try to be helpful by inventing "fake" names for
1743 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1744 Thanks, but no thanks... */
715cafcb
FF
1745 if (dip -> at_name != NULL
1746 && *dip -> at_name != '~'
1747 && *dip -> at_name != '.')
35f5886e 1748 {
b2bebdb0
JK
1749 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1750 "", "", dip -> at_name);
35f5886e 1751 }
715cafcb 1752 if (dip -> at_byte_size != 0)
35f5886e
FF
1753 {
1754 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1755 }
35f5886e
FF
1756 if ((scan = dip -> at_element_list) != NULL)
1757 {
768be6e1
FF
1758 if (dip -> short_element_list)
1759 {
13b5a7ff 1760 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1761 }
1762 else
1763 {
13b5a7ff 1764 nbytes = attribute_size (AT_element_list);
768be6e1 1765 }
13b5a7ff
FF
1766 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1767 listend = scan + nbytes + blocksz;
1768 scan += nbytes;
35f5886e
FF
1769 while (scan < listend)
1770 {
1771 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1772 new -> next = list;
1773 list = new;
f7f37388
PB
1774 FIELD_TYPE (list->field) = NULL;
1775 FIELD_BITSIZE (list->field) = 0;
1776 FIELD_BITPOS (list->field) =
13b5a7ff
FF
1777 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1778 objfile);
1779 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1780 list -> field.name = obsavestring (scan, strlen (scan),
1781 &objfile -> type_obstack);
35f5886e
FF
1782 scan += strlen (scan) + 1;
1783 nfields++;
715cafcb 1784 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1785 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1786 sizeof (struct symbol));
4ed3a9ea 1787 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1788 SYMBOL_NAME (sym) = create_name (list -> field.name,
1789 &objfile->symbol_obstack);
7532cf10 1790 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1791 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1792 SYMBOL_CLASS (sym) = LOC_CONST;
1793 SYMBOL_TYPE (sym) = type;
f7f37388 1794 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
09af5868
PS
1795 if (SYMBOL_VALUE (sym) < 0)
1796 unsigned_enum = 0;
4d315a07 1797 add_symbol_to_list (sym, list_in_scope);
35f5886e 1798 }
84ce6717 1799 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1800 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1801 reverse order from how they were inserted. If we have no fields
1802 (this is apparently possible in C++) then skip building a field
1803 vector. */
1804 if (nfields > 0)
1805 {
09af5868
PS
1806 if (unsigned_enum)
1807 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
84ce6717
FF
1808 TYPE_NFIELDS (type) = nfields;
1809 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1810 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1811 /* Copy the saved-up fields into the field vector. */
1812 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1813 {
1814 TYPE_FIELD (type, n++) = list -> field;
1815 }
1816 }
35f5886e 1817 }
35f5886e
FF
1818 return (type);
1819}
1820
1821/*
1822
1823LOCAL FUNCTION
1824
1825 read_func_scope -- process all dies within a function scope
1826
35f5886e
FF
1827DESCRIPTION
1828
1829 Process all dies within a given function scope. We are passed
1830 a die information structure pointer DIP for the die which
1831 starts the function scope, and pointers into the raw die data
1832 that define the dies within the function scope.
1833
1834 For now, we ignore lexical block scopes within the function.
1835 The problem is that AT&T cc does not define a DWARF lexical
1836 block scope for the function itself, while gcc defines a
1837 lexical block scope for the function. We need to think about
1838 how to handle this difference, or if it is even a problem.
1839 (FIXME)
1840 */
1841
1842static void
1ab3bf1b
JG
1843read_func_scope (dip, thisdie, enddie, objfile)
1844 struct dieinfo *dip;
1845 char *thisdie;
1846 char *enddie;
1847 struct objfile *objfile;
35f5886e 1848{
4d315a07 1849 register struct context_stack *new;
35f5886e 1850
255181a9
PS
1851 /* AT_name is absent if the function is described with an
1852 AT_abstract_origin tag.
1853 Ignore the function description for now to avoid GDB core dumps.
1854 FIXME: Add code to handle AT_abstract_origin tags properly. */
1855 if (dip -> at_name == NULL)
1856 {
1857 complain (&missing_at_name, DIE_ID);
1858 return;
1859 }
1860
5e2e79f8
FF
1861 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1862 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1863 {
5e2e79f8
FF
1864 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1865 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1866 }
4d315a07 1867 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1868 {
5e2e79f8
FF
1869 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1870 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1871 }
4d315a07 1872 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1873 new -> name = new_symbol (dip, objfile);
4d315a07 1874 list_in_scope = &local_symbols;
13b5a7ff 1875 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1876 new = pop_context ();
1877 /* Make a block for the local symbols within. */
1878 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1879 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1880 list_in_scope = &file_symbols;
35f5886e
FF
1881}
1882
2dbde378
FF
1883
1884/*
1885
1886LOCAL FUNCTION
1887
1888 handle_producer -- process the AT_producer attribute
1889
1890DESCRIPTION
1891
1892 Perform any operations that depend on finding a particular
1893 AT_producer attribute.
1894
1895 */
1896
1897static void
1898handle_producer (producer)
1899 char *producer;
1900{
1901
1902 /* If this compilation unit was compiled with g++ or gcc, then set the
1903 processing_gcc_compilation flag. */
1904
1905 processing_gcc_compilation =
1906 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1907 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1908 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1909
1910 /* Select a demangling style if we can identify the producer and if
1911 the current style is auto. We leave the current style alone if it
1912 is not auto. We also leave the demangling style alone if we find a
1913 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1914
3dc755fb 1915 if (AUTO_DEMANGLING)
2dbde378
FF
1916 {
1917 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1918 {
1919 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1920 }
1921 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1922 {
1923 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1924 }
2dbde378 1925 }
2dbde378
FF
1926}
1927
1928
35f5886e
FF
1929/*
1930
1931LOCAL FUNCTION
1932
1933 read_file_scope -- process all dies within a file scope
1934
35f5886e
FF
1935DESCRIPTION
1936
1937 Process all dies within a given file scope. We are passed a
1938 pointer to the die information structure for the die which
1939 starts the file scope, and pointers into the raw die data which
1940 mark the range of dies within the file scope.
1941
1942 When the partial symbol table is built, the file offset for the line
1943 number table for each compilation unit is saved in the partial symbol
1944 table entry for that compilation unit. As the symbols for each
1945 compilation unit are read, the line number table is read into memory
1946 and the variable lnbase is set to point to it. Thus all we have to
1947 do is use lnbase to access the line number table for the current
1948 compilation unit.
1949 */
1950
1951static void
1ab3bf1b
JG
1952read_file_scope (dip, thisdie, enddie, objfile)
1953 struct dieinfo *dip;
1954 char *thisdie;
1955 char *enddie;
1956 struct objfile *objfile;
35f5886e
FF
1957{
1958 struct cleanup *back_to;
4d315a07 1959 struct symtab *symtab;
35f5886e 1960
5e2e79f8
FF
1961 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1962 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1963 {
5e2e79f8
FF
1964 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1965 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1966 }
95ff889e 1967 set_cu_language (dip);
4d315a07
FF
1968 if (dip -> at_producer != NULL)
1969 {
2dbde378 1970 handle_producer (dip -> at_producer);
4d315a07 1971 }
35f5886e
FF
1972 numutypes = (enddie - thisdie) / 4;
1973 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
4a1d2ce2 1974 back_to = make_cleanup (free_utypes, NULL);
4ed3a9ea 1975 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1976 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1977 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
609fd033 1978 record_debugformat ("DWARF 1");
35f5886e 1979 decode_line_numbers (lnbase);
13b5a7ff 1980 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b 1981
436d4143 1982 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
7b5d9650 1983 if (symtab != NULL)
4d315a07 1984 {
95ff889e 1985 symtab -> language = cu_language;
7b5d9650 1986 }
35f5886e 1987 do_cleanups (back_to);
35f5886e
FF
1988}
1989
1990/*
1991
35f5886e
FF
1992LOCAL FUNCTION
1993
1994 process_dies -- process a range of DWARF Information Entries
1995
1996SYNOPSIS
1997
8b5b6fae
FF
1998 static void process_dies (char *thisdie, char *enddie,
1999 struct objfile *objfile)
35f5886e
FF
2000
2001DESCRIPTION
2002
2003 Process all DIE's in a specified range. May be (and almost
2004 certainly will be) called recursively.
2005 */
2006
2007static void
1ab3bf1b
JG
2008process_dies (thisdie, enddie, objfile)
2009 char *thisdie;
2010 char *enddie;
2011 struct objfile *objfile;
35f5886e
FF
2012{
2013 char *nextdie;
2014 struct dieinfo di;
2015
2016 while (thisdie < enddie)
2017 {
95967e73 2018 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2019 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2020 {
2021 break;
2022 }
13b5a7ff 2023 else if (di.die_tag == TAG_padding)
35f5886e 2024 {
13b5a7ff 2025 nextdie = thisdie + di.die_length;
35f5886e
FF
2026 }
2027 else
2028 {
95967e73 2029 completedieinfo (&di, objfile);
35f5886e
FF
2030 if (di.at_sibling != 0)
2031 {
2032 nextdie = dbbase + di.at_sibling - dbroff;
2033 }
2034 else
2035 {
13b5a7ff 2036 nextdie = thisdie + di.die_length;
35f5886e 2037 }
9fdb3f7a
JK
2038#ifdef SMASH_TEXT_ADDRESS
2039 /* I think that these are always text, not data, addresses. */
2040 SMASH_TEXT_ADDRESS (di.at_low_pc);
2041 SMASH_TEXT_ADDRESS (di.at_high_pc);
2042#endif
13b5a7ff 2043 switch (di.die_tag)
35f5886e
FF
2044 {
2045 case TAG_compile_unit:
4386eff2
PS
2046 /* Skip Tag_compile_unit if we are already inside a compilation
2047 unit, we are unable to handle nested compilation units
2048 properly (FIXME). */
2049 if (current_subfile == NULL)
2050 read_file_scope (&di, thisdie, nextdie, objfile);
2051 else
2052 nextdie = thisdie + di.die_length;
35f5886e
FF
2053 break;
2054 case TAG_global_subroutine:
2055 case TAG_subroutine:
2d6186f4 2056 if (di.has_at_low_pc)
35f5886e 2057 {
a048c8f5 2058 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2059 }
2060 break;
2061 case TAG_lexical_block:
a048c8f5 2062 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2063 break;
95ff889e 2064 case TAG_class_type:
35f5886e
FF
2065 case TAG_structure_type:
2066 case TAG_union_type:
8b5b6fae 2067 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2068 break;
2069 case TAG_enumeration_type:
1ab3bf1b 2070 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2071 break;
2072 case TAG_subroutine_type:
2073 read_subroutine_type (&di, thisdie, nextdie);
2074 break;
2075 case TAG_array_type:
4d315a07 2076 dwarf_read_array_type (&di);
35f5886e 2077 break;
9e4c1921
FF
2078 case TAG_pointer_type:
2079 read_tag_pointer_type (&di);
2080 break;
ec16f701
FF
2081 case TAG_string_type:
2082 read_tag_string_type (&di);
2083 break;
35f5886e 2084 default:
4ed3a9ea 2085 new_symbol (&di, objfile);
35f5886e
FF
2086 break;
2087 }
2088 }
2089 thisdie = nextdie;
2090 }
2091}
2092
2093/*
2094
35f5886e
FF
2095LOCAL FUNCTION
2096
2097 decode_line_numbers -- decode a line number table fragment
2098
2099SYNOPSIS
2100
2101 static void decode_line_numbers (char *tblscan, char *tblend,
2102 long length, long base, long line, long pc)
2103
2104DESCRIPTION
2105
2106 Translate the DWARF line number information to gdb form.
2107
2108 The ".line" section contains one or more line number tables, one for
2109 each ".line" section from the objects that were linked.
2110
2111 The AT_stmt_list attribute for each TAG_source_file entry in the
2112 ".debug" section contains the offset into the ".line" section for the
2113 start of the table for that file.
2114
2115 The table itself has the following structure:
2116
2117 <table length><base address><source statement entry>
2118 4 bytes 4 bytes 10 bytes
2119
2120 The table length is the total size of the table, including the 4 bytes
2121 for the length information.
2122
2123 The base address is the address of the first instruction generated
2124 for the source file.
2125
2126 Each source statement entry has the following structure:
2127
2128 <line number><statement position><address delta>
2129 4 bytes 2 bytes 4 bytes
2130
2131 The line number is relative to the start of the file, starting with
2132 line 1.
2133
2134 The statement position either -1 (0xFFFF) or the number of characters
2135 from the beginning of the line to the beginning of the statement.
2136
2137 The address delta is the difference between the base address and
2138 the address of the first instruction for the statement.
2139
2140 Note that we must copy the bytes from the packed table to our local
2141 variables before attempting to use them, to avoid alignment problems
2142 on some machines, particularly RISC processors.
2143
2144BUGS
2145
2146 Does gdb expect the line numbers to be sorted? They are now by
2147 chance/luck, but are not required to be. (FIXME)
2148
2149 The line with number 0 is unused, gdb apparently can discover the
2150 span of the last line some other way. How? (FIXME)
2151 */
2152
2153static void
1ab3bf1b
JG
2154decode_line_numbers (linetable)
2155 char *linetable;
35f5886e
FF
2156{
2157 char *tblscan;
2158 char *tblend;
13b5a7ff
FF
2159 unsigned long length;
2160 unsigned long base;
2161 unsigned long line;
2162 unsigned long pc;
35f5886e
FF
2163
2164 if (linetable != NULL)
2165 {
2166 tblscan = tblend = linetable;
13b5a7ff
FF
2167 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2168 current_objfile);
2169 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2170 tblend += length;
13b5a7ff
FF
2171 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2172 GET_UNSIGNED, current_objfile);
2173 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2174 base += baseaddr;
35f5886e
FF
2175 while (tblscan < tblend)
2176 {
13b5a7ff
FF
2177 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2178 current_objfile);
2179 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2180 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2181 current_objfile);
2182 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2183 pc += base;
13b5a7ff 2184 if (line != 0)
35f5886e 2185 {
4d315a07 2186 record_line (current_subfile, line, pc);
35f5886e
FF
2187 }
2188 }
2189 }
2190}
2191
2192/*
2193
35f5886e
FF
2194LOCAL FUNCTION
2195
2196 locval -- compute the value of a location attribute
2197
2198SYNOPSIS
2199
705ebd92 2200 static int locval (struct dieinfo *dip)
35f5886e
FF
2201
2202DESCRIPTION
2203
2204 Given pointer to a string of bytes that define a location, compute
2205 the location and return the value.
bbcc95bd 2206 A location description containing no atoms indicates that the
705ebd92
FF
2207 object is optimized out. The optimized_out flag is set for those,
2208 the return value is meaningless.
35f5886e
FF
2209
2210 When computing values involving the current value of the frame pointer,
2211 the value zero is used, which results in a value relative to the frame
2212 pointer, rather than the absolute value. This is what GDB wants
2213 anyway.
2214
705ebd92
FF
2215 When the result is a register number, the isreg flag is set, otherwise
2216 it is cleared. This is a kludge until we figure out a better
35f5886e
FF
2217 way to handle the problem. Gdb's design does not mesh well with the
2218 DWARF notion of a location computing interpreter, which is a shame
2219 because the flexibility goes unused.
2220
2221NOTES
2222
2223 Note that stack[0] is unused except as a default error return.
2224 Note that stack overflow is not yet handled.
2225 */
2226
2227static int
705ebd92
FF
2228locval (dip)
2229 struct dieinfo *dip;
35f5886e
FF
2230{
2231 unsigned short nbytes;
13b5a7ff
FF
2232 unsigned short locsize;
2233 auto long stack[64];
35f5886e 2234 int stacki;
705ebd92 2235 char *loc;
35f5886e 2236 char *end;
13b5a7ff
FF
2237 int loc_atom_code;
2238 int loc_value_size;
35f5886e 2239
705ebd92 2240 loc = dip -> at_location;
13b5a7ff
FF
2241 nbytes = attribute_size (AT_location);
2242 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2243 loc += nbytes;
2244 end = loc + locsize;
35f5886e
FF
2245 stacki = 0;
2246 stack[stacki] = 0;
705ebd92
FF
2247 dip -> isreg = 0;
2248 dip -> offreg = 0;
2249 dip -> optimized_out = 1;
13b5a7ff
FF
2250 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2251 while (loc < end)
35f5886e 2252 {
705ebd92 2253 dip -> optimized_out = 0;
13b5a7ff
FF
2254 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2255 current_objfile);
2256 loc += SIZEOF_LOC_ATOM_CODE;
2257 switch (loc_atom_code)
2258 {
2259 case 0:
2260 /* error */
2261 loc = end;
2262 break;
2263 case OP_REG:
2264 /* push register (number) */
84bdfea6
PS
2265 stack[++stacki]
2266 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2267 GET_UNSIGNED,
2268 current_objfile));
13b5a7ff 2269 loc += loc_value_size;
705ebd92 2270 dip -> isreg = 1;
13b5a7ff
FF
2271 break;
2272 case OP_BASEREG:
2273 /* push value of register (number) */
a1c8d76e
JK
2274 /* Actually, we compute the value as if register has 0, so the
2275 value ends up being the offset from that register. */
705ebd92
FF
2276 dip -> offreg = 1;
2277 dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2278 current_objfile);
13b5a7ff 2279 loc += loc_value_size;
a1c8d76e 2280 stack[++stacki] = 0;
13b5a7ff
FF
2281 break;
2282 case OP_ADDR:
2283 /* push address (relocated address) */
2284 stack[++stacki] = target_to_host (loc, loc_value_size,
2285 GET_UNSIGNED, current_objfile);
2286 loc += loc_value_size;
2287 break;
2288 case OP_CONST:
2289 /* push constant (number) FIXME: signed or unsigned! */
2290 stack[++stacki] = target_to_host (loc, loc_value_size,
2291 GET_SIGNED, current_objfile);
2292 loc += loc_value_size;
2293 break;
2294 case OP_DEREF2:
2295 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2296 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2297 break;
2298 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2299 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2300 break;
2301 case OP_ADD: /* pop top 2 items, add, push result */
2302 stack[stacki - 1] += stack[stacki];
2303 stacki--;
2304 break;
2305 }
35f5886e
FF
2306 }
2307 return (stack[stacki]);
2308}
2309
2310/*
2311
2312LOCAL FUNCTION
2313
2314 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2315
2316SYNOPSIS
2317
c701c14c 2318 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2319
2320DESCRIPTION
2321
1ab3bf1b
JG
2322 When expanding a partial symbol table entry to a full symbol table
2323 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2324 for the compilation unit. A pointer to the newly constructed symtab,
2325 which is now the new first one on the objfile's symtab list, is
2326 stashed in the partial symbol table entry.
35f5886e
FF
2327 */
2328
c701c14c 2329static void
1ab3bf1b
JG
2330read_ofile_symtab (pst)
2331 struct partial_symtab *pst;
35f5886e
FF
2332{
2333 struct cleanup *back_to;
13b5a7ff 2334 unsigned long lnsize;
d5931d79 2335 file_ptr foffset;
1ab3bf1b 2336 bfd *abfd;
13b5a7ff 2337 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2338
2339 abfd = pst -> objfile -> obfd;
2340 current_objfile = pst -> objfile;
2341
35f5886e
FF
2342 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2343 unit, seek to the location in the file, and read in all the DIE's. */
2344
2345 diecount = 0;
4090fe1c
FF
2346 dbsize = DBLENGTH (pst);
2347 dbbase = xmalloc (dbsize);
35f5886e
FF
2348 dbroff = DBROFF(pst);
2349 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2350 base_section_offsets = pst->section_offsets;
2351 baseaddr = ANOFFSET (pst->section_offsets, 0);
987622b5 2352 if (bfd_seek (abfd, foffset, SEEK_SET) ||
4090fe1c 2353 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2354 {
2355 free (dbbase);
2356 error ("can't read DWARF data");
2357 }
2358 back_to = make_cleanup (free, dbbase);
2359
2360 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2361 then read the size of this fragment in bytes, from the fragment itself.
2362 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2363 processing. */
2364
2365 lnbase = NULL;
2366 if (LNFOFF (pst))
2367 {
987622b5 2368 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
13b5a7ff
FF
2369 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2370 sizeof (lnsizedata)))
35f5886e
FF
2371 {
2372 error ("can't read DWARF line number table size");
2373 }
13b5a7ff
FF
2374 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2375 GET_UNSIGNED, pst -> objfile);
35f5886e 2376 lnbase = xmalloc (lnsize);
987622b5 2377 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
a048c8f5 2378 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2379 {
2380 free (lnbase);
2381 error ("can't read DWARF line numbers");
2382 }
2383 make_cleanup (free, lnbase);
2384 }
2385
4090fe1c 2386 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2387 do_cleanups (back_to);
1ab3bf1b 2388 current_objfile = NULL;
c701c14c 2389 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2390}
2391
2392/*
2393
2394LOCAL FUNCTION
2395
2396 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2397
2398SYNOPSIS
2399
a048c8f5 2400 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2401
2402DESCRIPTION
2403
2404 Called once for each partial symbol table entry that needs to be
2405 expanded into a full symbol table entry.
2406
2407*/
2408
2409static void
1ab3bf1b
JG
2410psymtab_to_symtab_1 (pst)
2411 struct partial_symtab *pst;
35f5886e
FF
2412{
2413 int i;
d07734e3 2414 struct cleanup *old_chain;
35f5886e 2415
1ab3bf1b 2416 if (pst != NULL)
35f5886e 2417 {
1ab3bf1b 2418 if (pst->readin)
35f5886e 2419 {
318bf84f 2420 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2421 pst -> filename);
2422 }
2423 else
2424 {
2425 /* Read in all partial symtabs on which this one is dependent */
2426 for (i = 0; i < pst -> number_of_dependencies; i++)
2427 {
2428 if (!pst -> dependencies[i] -> readin)
2429 {
2430 /* Inform about additional files that need to be read in. */
2431 if (info_verbose)
2432 {
199b2450 2433 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2434 wrap_here ("");
199b2450 2435 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2436 wrap_here ("");
2437 printf_filtered ("%s...",
2438 pst -> dependencies[i] -> filename);
2439 wrap_here ("");
199b2450 2440 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2441 }
2442 psymtab_to_symtab_1 (pst -> dependencies[i]);
2443 }
2444 }
2445 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2446 {
d07734e3
FF
2447 buildsym_init ();
2448 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2449 read_ofile_symtab (pst);
1ab3bf1b
JG
2450 if (info_verbose)
2451 {
2452 printf_filtered ("%d DIE's, sorting...", diecount);
2453 wrap_here ("");
199b2450 2454 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2455 }
2456 sort_symtab_syms (pst -> symtab);
d07734e3 2457 do_cleanups (old_chain);
1ab3bf1b
JG
2458 }
2459 pst -> readin = 1;
35f5886e 2460 }
35f5886e 2461 }
35f5886e
FF
2462}
2463
2464/*
2465
2466LOCAL FUNCTION
2467
2468 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2469
2470SYNOPSIS
2471
2472 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2473
2474DESCRIPTION
2475
2476 This is the DWARF support entry point for building a full symbol
2477 table entry from a partial symbol table entry. We are passed a
2478 pointer to the partial symbol table entry that needs to be expanded.
2479
2480*/
2481
2482static void
1ab3bf1b
JG
2483dwarf_psymtab_to_symtab (pst)
2484 struct partial_symtab *pst;
35f5886e 2485{
7d9884b9 2486
1ab3bf1b 2487 if (pst != NULL)
35f5886e 2488 {
1ab3bf1b 2489 if (pst -> readin)
35f5886e 2490 {
318bf84f 2491 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2492 pst -> filename);
35f5886e 2493 }
1ab3bf1b 2494 else
35f5886e 2495 {
1ab3bf1b
JG
2496 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2497 {
2498 /* Print the message now, before starting serious work, to avoid
2499 disconcerting pauses. */
2500 if (info_verbose)
2501 {
2502 printf_filtered ("Reading in symbols for %s...",
2503 pst -> filename);
199b2450 2504 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2505 }
2506
2507 psymtab_to_symtab_1 (pst);
2508
2509#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2510 we need to do an equivalent or is this something peculiar to
2511 stabs/a.out format.
2512 Match with global symbols. This only needs to be done once,
2513 after all of the symtabs and dependencies have been read in.
2514 */
2515 scan_file_globals (pst -> objfile);
2516#endif
2517
2518 /* Finish up the verbose info message. */
2519 if (info_verbose)
2520 {
2521 printf_filtered ("done.\n");
199b2450 2522 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2523 }
2524 }
35f5886e
FF
2525 }
2526 }
2527}
2528
2529/*
2530
715cafcb
FF
2531LOCAL FUNCTION
2532
2533 add_enum_psymbol -- add enumeration members to partial symbol table
2534
2535DESCRIPTION
2536
2537 Given pointer to a DIE that is known to be for an enumeration,
2538 extract the symbolic names of the enumeration members and add
2539 partial symbols for them.
2540*/
2541
2542static void
1ab3bf1b
JG
2543add_enum_psymbol (dip, objfile)
2544 struct dieinfo *dip;
2545 struct objfile *objfile;
715cafcb
FF
2546{
2547 char *scan;
2548 char *listend;
13b5a7ff
FF
2549 unsigned short blocksz;
2550 int nbytes;
715cafcb
FF
2551
2552 if ((scan = dip -> at_element_list) != NULL)
2553 {
2554 if (dip -> short_element_list)
2555 {
13b5a7ff 2556 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2557 }
2558 else
2559 {
13b5a7ff 2560 nbytes = attribute_size (AT_element_list);
715cafcb 2561 }
13b5a7ff
FF
2562 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2563 scan += nbytes;
2564 listend = scan + blocksz;
715cafcb
FF
2565 while (scan < listend)
2566 {
13b5a7ff 2567 scan += TARGET_FT_LONG_SIZE (objfile);
eae8aa30
FF
2568 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2569 &objfile -> static_psymbols, 0, 0, cu_language,
2e4964ad 2570 objfile);
715cafcb
FF
2571 scan += strlen (scan) + 1;
2572 }
2573 }
2574}
2575
2576/*
2577
35f5886e
FF
2578LOCAL FUNCTION
2579
2580 add_partial_symbol -- add symbol to partial symbol table
2581
2582DESCRIPTION
2583
2584 Given a DIE, if it is one of the types that we want to
2585 add to a partial symbol table, finish filling in the die info
2586 and then add a partial symbol table entry for it.
2587
95ff889e
FF
2588NOTES
2589
2590 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2591*/
2592
2593static void
1ab3bf1b
JG
2594add_partial_symbol (dip, objfile)
2595 struct dieinfo *dip;
2596 struct objfile *objfile;
35f5886e 2597{
13b5a7ff 2598 switch (dip -> die_tag)
35f5886e
FF
2599 {
2600 case TAG_global_subroutine:
eae8aa30 2601 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
0708e99f 2602 VAR_NAMESPACE, LOC_BLOCK,
eae8aa30
FF
2603 &objfile -> global_psymbols,
2604 0, dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2605 break;
2606 case TAG_global_variable:
eae8aa30 2607 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2608 VAR_NAMESPACE, LOC_STATIC,
eae8aa30
FF
2609 &objfile -> global_psymbols,
2610 0, 0, cu_language, objfile);
35f5886e
FF
2611 break;
2612 case TAG_subroutine:
eae8aa30 2613 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
0708e99f 2614 VAR_NAMESPACE, LOC_BLOCK,
eae8aa30
FF
2615 &objfile -> static_psymbols,
2616 0, dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2617 break;
2618 case TAG_local_variable:
eae8aa30 2619 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2620 VAR_NAMESPACE, LOC_STATIC,
eae8aa30
FF
2621 &objfile -> static_psymbols,
2622 0, 0, cu_language, objfile);
35f5886e
FF
2623 break;
2624 case TAG_typedef:
eae8aa30 2625 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2626 VAR_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2627 &objfile -> static_psymbols,
2628 0, 0, cu_language, objfile);
35f5886e 2629 break;
95ff889e 2630 case TAG_class_type:
35f5886e
FF
2631 case TAG_structure_type:
2632 case TAG_union_type:
95ff889e 2633 case TAG_enumeration_type:
4386eff2
PS
2634 /* Do not add opaque aggregate definitions to the psymtab. */
2635 if (!dip -> has_at_byte_size)
2636 break;
eae8aa30 2637 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2638 STRUCT_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2639 &objfile -> static_psymbols,
2640 0, 0, cu_language, objfile);
95ff889e 2641 if (cu_language == language_cplus)
715cafcb 2642 {
95ff889e 2643 /* For C++, these implicitly act as typedefs as well. */
eae8aa30 2644 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
95ff889e 2645 VAR_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2646 &objfile -> static_psymbols,
2647 0, 0, cu_language, objfile);
715cafcb 2648 }
715cafcb 2649 break;
35f5886e
FF
2650 }
2651}
2652
2653/*
2654
2655LOCAL FUNCTION
2656
2657 scan_partial_symbols -- scan DIE's within a single compilation unit
2658
2659DESCRIPTION
2660
2661 Process the DIE's within a single compilation unit, looking for
2662 interesting DIE's that contribute to the partial symbol table entry
a679650f 2663 for this compilation unit.
35f5886e 2664
2d6186f4
FF
2665NOTES
2666
a679650f
FF
2667 There are some DIE's that may appear both at file scope and within
2668 the scope of a function. We are only interested in the ones at file
2669 scope, and the only way to tell them apart is to keep track of the
2670 scope. For example, consider the test case:
2671
2672 static int i;
2673 main () { int j; }
2674
2675 for which the relevant DWARF segment has the structure:
2676
2677 0x51:
2678 0x23 global subrtn sibling 0x9b
2679 name main
2680 fund_type FT_integer
2681 low_pc 0x800004cc
2682 high_pc 0x800004d4
2683
2684 0x74:
2685 0x23 local var sibling 0x97
2686 name j
2687 fund_type FT_integer
2688 location OP_BASEREG 0xe
2689 OP_CONST 0xfffffffc
2690 OP_ADD
2691 0x97:
2692 0x4
2693
2694 0x9b:
2695 0x1d local var sibling 0xb8
2696 name i
2697 fund_type FT_integer
2698 location OP_ADDR 0x800025dc
2699
2700 0xb8:
2701 0x4
2702
2703 We want to include the symbol 'i' in the partial symbol table, but
2704 not the symbol 'j'. In essence, we want to skip all the dies within
2705 the scope of a TAG_global_subroutine DIE.
2706
715cafcb
FF
2707 Don't attempt to add anonymous structures or unions since they have
2708 no name. Anonymous enumerations however are processed, because we
2709 want to extract their member names (the check for a tag name is
2710 done later).
2d6186f4 2711
715cafcb
FF
2712 Also, for variables and subroutines, check that this is the place
2713 where the actual definition occurs, rather than just a reference
2714 to an external.
35f5886e
FF
2715 */
2716
2717static void
1ab3bf1b
JG
2718scan_partial_symbols (thisdie, enddie, objfile)
2719 char *thisdie;
2720 char *enddie;
2721 struct objfile *objfile;
35f5886e
FF
2722{
2723 char *nextdie;
a679650f 2724 char *temp;
35f5886e
FF
2725 struct dieinfo di;
2726
2727 while (thisdie < enddie)
2728 {
95967e73 2729 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2730 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2731 {
2732 break;
2733 }
2734 else
2735 {
13b5a7ff 2736 nextdie = thisdie + di.die_length;
715cafcb
FF
2737 /* To avoid getting complete die information for every die, we
2738 only do it (below) for the cases we are interested in. */
13b5a7ff 2739 switch (di.die_tag)
35f5886e
FF
2740 {
2741 case TAG_global_subroutine:
35f5886e 2742 case TAG_subroutine:
a679650f
FF
2743 completedieinfo (&di, objfile);
2744 if (di.at_name && (di.has_at_low_pc || di.at_location))
2745 {
2746 add_partial_symbol (&di, objfile);
2747 /* If there is a sibling attribute, adjust the nextdie
2748 pointer to skip the entire scope of the subroutine.
2749 Apply some sanity checking to make sure we don't
2750 overrun or underrun the range of remaining DIE's */
2751 if (di.at_sibling != 0)
2752 {
2753 temp = dbbase + di.at_sibling - dbroff;
2754 if ((temp < thisdie) || (temp >= enddie))
2755 {
51b80b00
FF
2756 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2757 di.at_sibling);
a679650f
FF
2758 }
2759 else
2760 {
2761 nextdie = temp;
2762 }
2763 }
2764 }
2765 break;
2d6186f4 2766 case TAG_global_variable:
35f5886e 2767 case TAG_local_variable:
95967e73 2768 completedieinfo (&di, objfile);
2d6186f4
FF
2769 if (di.at_name && (di.has_at_low_pc || di.at_location))
2770 {
1ab3bf1b 2771 add_partial_symbol (&di, objfile);
2d6186f4
FF
2772 }
2773 break;
35f5886e 2774 case TAG_typedef:
95ff889e 2775 case TAG_class_type:
35f5886e
FF
2776 case TAG_structure_type:
2777 case TAG_union_type:
95967e73 2778 completedieinfo (&di, objfile);
2d6186f4 2779 if (di.at_name)
35f5886e 2780 {
1ab3bf1b 2781 add_partial_symbol (&di, objfile);
35f5886e
FF
2782 }
2783 break;
715cafcb 2784 case TAG_enumeration_type:
95967e73 2785 completedieinfo (&di, objfile);
95ff889e
FF
2786 if (di.at_name)
2787 {
2788 add_partial_symbol (&di, objfile);
2789 }
2790 add_enum_psymbol (&di, objfile);
715cafcb 2791 break;
35f5886e
FF
2792 }
2793 }
2794 thisdie = nextdie;
2795 }
2796}
2797
2798/*
2799
2800LOCAL FUNCTION
2801
2802 scan_compilation_units -- build a psymtab entry for each compilation
2803
2804DESCRIPTION
2805
2806 This is the top level dwarf parsing routine for building partial
2807 symbol tables.
2808
2809 It scans from the beginning of the DWARF table looking for the first
2810 TAG_compile_unit DIE, and then follows the sibling chain to locate
2811 each additional TAG_compile_unit DIE.
2812
2813 For each TAG_compile_unit DIE it creates a partial symtab structure,
2814 calls a subordinate routine to collect all the compilation unit's
2815 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2816 new partial symtab structure into the partial symbol table. It also
2817 records the appropriate information in the partial symbol table entry
2818 to allow the chunk of DIE's and line number table for this compilation
2819 unit to be located and re-read later, to generate a complete symbol
2820 table entry for the compilation unit.
2821
2822 Thus it effectively partitions up a chunk of DIE's for multiple
2823 compilation units into smaller DIE chunks and line number tables,
2824 and associates them with a partial symbol table entry.
2825
2826NOTES
2827
2828 If any compilation unit has no line number table associated with
2829 it for some reason (a missing at_stmt_list attribute, rather than
2830 just one with a value of zero, which is valid) then we ensure that
2831 the recorded file offset is zero so that the routine which later
2832 reads line number table fragments knows that there is no fragment
2833 to read.
2834
2835RETURNS
2836
2837 Returns no value.
2838
2839 */
2840
2841static void
d5931d79 2842scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2843 char *thisdie;
2844 char *enddie;
d5931d79
JG
2845 file_ptr dbfoff;
2846 file_ptr lnoffset;
1ab3bf1b 2847 struct objfile *objfile;
35f5886e
FF
2848{
2849 char *nextdie;
2850 struct dieinfo di;
2851 struct partial_symtab *pst;
2852 int culength;
2853 int curoff;
d5931d79 2854 file_ptr curlnoffset;
35f5886e
FF
2855
2856 while (thisdie < enddie)
2857 {
95967e73 2858 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2859 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2860 {
2861 break;
2862 }
13b5a7ff 2863 else if (di.die_tag != TAG_compile_unit)
35f5886e 2864 {
13b5a7ff 2865 nextdie = thisdie + di.die_length;
35f5886e
FF
2866 }
2867 else
2868 {
95967e73 2869 completedieinfo (&di, objfile);
95ff889e 2870 set_cu_language (&di);
35f5886e
FF
2871 if (di.at_sibling != 0)
2872 {
2873 nextdie = dbbase + di.at_sibling - dbroff;
2874 }
2875 else
2876 {
13b5a7ff 2877 nextdie = thisdie + di.die_length;
35f5886e
FF
2878 }
2879 curoff = thisdie - dbbase;
2880 culength = nextdie - thisdie;
2d6186f4 2881 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2882
2883 /* First allocate a new partial symbol table structure */
2884
95ff889e
FF
2885 pst = start_psymtab_common (objfile, base_section_offsets,
2886 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2887 objfile -> global_psymbols.next,
2888 objfile -> static_psymbols.next);
2889
2890 pst -> texthigh = di.at_high_pc;
2891 pst -> read_symtab_private = (char *)
2892 obstack_alloc (&objfile -> psymbol_obstack,
2893 sizeof (struct dwfinfo));
2894 DBFOFF (pst) = dbfoff;
2895 DBROFF (pst) = curoff;
2896 DBLENGTH (pst) = culength;
2897 LNFOFF (pst) = curlnoffset;
2898 pst -> read_symtab = dwarf_psymtab_to_symtab;
2899
2900 /* Now look for partial symbols */
2901
13b5a7ff 2902 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2903
2904 pst -> n_global_syms = objfile -> global_psymbols.next -
2905 (objfile -> global_psymbols.list + pst -> globals_offset);
2906 pst -> n_static_syms = objfile -> static_psymbols.next -
2907 (objfile -> static_psymbols.list + pst -> statics_offset);
2908 sort_pst_symbols (pst);
35f5886e
FF
2909 /* If there is already a psymtab or symtab for a file of this name,
2910 remove it. (If there is a symtab, more drastic things also
2911 happen.) This happens in VxWorks. */
2912 free_named_symtabs (pst -> filename);
35f5886e
FF
2913 }
2914 thisdie = nextdie;
2915 }
2916}
2917
2918/*
2919
2920LOCAL FUNCTION
2921
2922 new_symbol -- make a symbol table entry for a new symbol
2923
2924SYNOPSIS
2925
1ab3bf1b
JG
2926 static struct symbol *new_symbol (struct dieinfo *dip,
2927 struct objfile *objfile)
35f5886e
FF
2928
2929DESCRIPTION
2930
2931 Given a pointer to a DWARF information entry, figure out if we need
2932 to make a symbol table entry for it, and if so, create a new entry
2933 and return a pointer to it.
2934 */
2935
2936static struct symbol *
1ab3bf1b
JG
2937new_symbol (dip, objfile)
2938 struct dieinfo *dip;
2939 struct objfile *objfile;
35f5886e
FF
2940{
2941 struct symbol *sym = NULL;
2942
2943 if (dip -> at_name != NULL)
2944 {
1ab3bf1b 2945 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2946 sizeof (struct symbol));
2dd30c72 2947 OBJSTAT (objfile, n_syms++);
4ed3a9ea 2948 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2949 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2950 &objfile->symbol_obstack);
35f5886e
FF
2951 /* default assumptions */
2952 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2953 SYMBOL_CLASS (sym) = LOC_STATIC;
2954 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2955
2956 /* If this symbol is from a C++ compilation, then attempt to cache the
2957 demangled form for future reference. This is a typical time versus
2958 space tradeoff, that was decided in favor of time because it sped up
2959 C++ symbol lookups by a factor of about 20. */
2960
2961 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2962 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2963 switch (dip -> die_tag)
35f5886e
FF
2964 {
2965 case TAG_label:
0708e99f 2966 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
35f5886e
FF
2967 SYMBOL_CLASS (sym) = LOC_LABEL;
2968 break;
2969 case TAG_global_subroutine:
2970 case TAG_subroutine:
0708e99f 2971 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
35f5886e 2972 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
ac954805
SG
2973 if (dip -> at_prototyped)
2974 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
35f5886e 2975 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2976 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2977 {
2978 add_symbol_to_list (sym, &global_symbols);
2979 }
2980 else
2981 {
4d315a07 2982 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2983 }
2984 break;
2985 case TAG_global_variable:
35f5886e
FF
2986 if (dip -> at_location != NULL)
2987 {
705ebd92 2988 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
35f5886e
FF
2989 add_symbol_to_list (sym, &global_symbols);
2990 SYMBOL_CLASS (sym) = LOC_STATIC;
2991 SYMBOL_VALUE (sym) += baseaddr;
2992 }
a5bd5ba6
FF
2993 break;
2994 case TAG_local_variable:
2995 if (dip -> at_location != NULL)
35f5886e 2996 {
705ebd92
FF
2997 int loc = locval (dip);
2998 if (dip -> optimized_out)
bbcc95bd
PS
2999 {
3000 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3001 }
705ebd92 3002 else if (dip -> isreg)
a5bd5ba6
FF
3003 {
3004 SYMBOL_CLASS (sym) = LOC_REGISTER;
3005 }
705ebd92 3006 else if (dip -> offreg)
35f5886e 3007 {
a1c8d76e 3008 SYMBOL_CLASS (sym) = LOC_BASEREG;
705ebd92 3009 SYMBOL_BASEREG (sym) = dip -> basereg;
35f5886e
FF
3010 }
3011 else
3012 {
3013 SYMBOL_CLASS (sym) = LOC_STATIC;
3014 SYMBOL_VALUE (sym) += baseaddr;
3015 }
015e113c
FF
3016 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3017 {
3018 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3019 which may store to a bigger location than SYMBOL_VALUE. */
705ebd92 3020 SYMBOL_VALUE_ADDRESS (sym) = loc;
015e113c
FF
3021 }
3022 else
3023 {
705ebd92 3024 SYMBOL_VALUE (sym) = loc;
015e113c
FF
3025 }
3026 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3027 }
3028 break;
3029 case TAG_formal_parameter:
3030 if (dip -> at_location != NULL)
3031 {
705ebd92 3032 SYMBOL_VALUE (sym) = locval (dip);
35f5886e 3033 }
4d315a07 3034 add_symbol_to_list (sym, list_in_scope);
705ebd92 3035 if (dip -> isreg)
35f5886e
FF
3036 {
3037 SYMBOL_CLASS (sym) = LOC_REGPARM;
3038 }
705ebd92 3039 else if (dip -> offreg)
a1c8d76e
JK
3040 {
3041 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
705ebd92 3042 SYMBOL_BASEREG (sym) = dip -> basereg;
a1c8d76e 3043 }
35f5886e
FF
3044 else
3045 {
3046 SYMBOL_CLASS (sym) = LOC_ARG;
3047 }
3048 break;
3049 case TAG_unspecified_parameters:
3050 /* From varargs functions; gdb doesn't seem to have any interest in
3051 this information, so just ignore it for now. (FIXME?) */
3052 break;
95ff889e 3053 case TAG_class_type:
35f5886e
FF
3054 case TAG_structure_type:
3055 case TAG_union_type:
3056 case TAG_enumeration_type:
3057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3058 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3059 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3060 break;
3061 case TAG_typedef:
3062 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3063 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3064 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3065 break;
3066 default:
3067 /* Not a tag we recognize. Hopefully we aren't processing trash
3068 data, but since we must specifically ignore things we don't
3069 recognize, there is nothing else we should do at this point. */
3070 break;
3071 }
3072 }
3073 return (sym);
3074}
3075
3076/*
3077
95ff889e
FF
3078LOCAL FUNCTION
3079
3080 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3081
3082SYNOPSIS
3083
3084 static void synthesize_typedef (struct dieinfo *dip,
3085 struct objfile *objfile,
3086 struct type *type);
3087
3088DESCRIPTION
3089
3090 Given a pointer to a DWARF information entry, synthesize a typedef
3091 for the name in the DIE, using the specified type.
3092
3093 This is used for C++ class, structs, unions, and enumerations to
3094 set up the tag name as a type.
3095
3096 */
3097
3098static void
3099synthesize_typedef (dip, objfile, type)
3100 struct dieinfo *dip;
3101 struct objfile *objfile;
3102 struct type *type;
3103{
3104 struct symbol *sym = NULL;
3105
3106 if (dip -> at_name != NULL)
3107 {
3108 sym = (struct symbol *)
3109 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2dd30c72 3110 OBJSTAT (objfile, n_syms++);
95ff889e
FF
3111 memset (sym, 0, sizeof (struct symbol));
3112 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3113 &objfile->symbol_obstack);
7532cf10 3114 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3115 SYMBOL_TYPE (sym) = type;
3116 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3117 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3118 add_symbol_to_list (sym, list_in_scope);
3119 }
3120}
3121
3122/*
3123
35f5886e
FF
3124LOCAL FUNCTION
3125
3126 decode_mod_fund_type -- decode a modified fundamental type
3127
3128SYNOPSIS
3129
3130 static struct type *decode_mod_fund_type (char *typedata)
3131
3132DESCRIPTION
3133
3134 Decode a block of data containing a modified fundamental
3135 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3136 which starts with a length containing the size of the rest
3137 of the block. At the end of the block is a fundmental type
3138 code value that gives the fundamental type. Everything
35f5886e
FF
3139 in between are type modifiers.
3140
3141 We simply compute the number of modifiers and call the general
3142 function decode_modified_type to do the actual work.
3143*/
3144
3145static struct type *
1ab3bf1b
JG
3146decode_mod_fund_type (typedata)
3147 char *typedata;
35f5886e
FF
3148{
3149 struct type *typep = NULL;
3150 unsigned short modcount;
13b5a7ff 3151 int nbytes;
35f5886e
FF
3152
3153 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3154
3155 nbytes = attribute_size (AT_mod_fund_type);
3156 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3157 typedata += nbytes;
3158
35f5886e 3159 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3160
3161 modcount -= attribute_size (AT_fund_type);
3162
35f5886e 3163 /* Now do the actual decoding */
13b5a7ff
FF
3164
3165 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3166 return (typep);
3167}
3168
3169/*
3170
3171LOCAL FUNCTION
3172
3173 decode_mod_u_d_type -- decode a modified user defined type
3174
3175SYNOPSIS
3176
3177 static struct type *decode_mod_u_d_type (char *typedata)
3178
3179DESCRIPTION
3180
3181 Decode a block of data containing a modified user defined
3182 type specification. TYPEDATA is a pointer to the block,
3183 which consists of a two byte length, containing the size
3184 of the rest of the block. At the end of the block is a
3185 four byte value that gives a reference to a user defined type.
3186 Everything in between are type modifiers.
3187
3188 We simply compute the number of modifiers and call the general
3189 function decode_modified_type to do the actual work.
3190*/
3191
3192static struct type *
1ab3bf1b
JG
3193decode_mod_u_d_type (typedata)
3194 char *typedata;
35f5886e
FF
3195{
3196 struct type *typep = NULL;
3197 unsigned short modcount;
13b5a7ff 3198 int nbytes;
35f5886e
FF
3199
3200 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3201
3202 nbytes = attribute_size (AT_mod_u_d_type);
3203 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3204 typedata += nbytes;
3205
35f5886e 3206 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3207
3208 modcount -= attribute_size (AT_user_def_type);
3209
35f5886e 3210 /* Now do the actual decoding */
13b5a7ff
FF
3211
3212 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3213 return (typep);
3214}
3215
3216/*
3217
3218LOCAL FUNCTION
3219
3220 decode_modified_type -- decode modified user or fundamental type
3221
3222SYNOPSIS
3223
1c92ca6f 3224 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3225 unsigned short modcount, int mtype)
3226
3227DESCRIPTION
3228
3229 Decode a modified type, either a modified fundamental type or
3230 a modified user defined type. MODIFIERS is a pointer to the
3231 block of bytes that define MODCOUNT modifiers. Immediately
3232 following the last modifier is a short containing the fundamental
3233 type or a long containing the reference to the user defined
3234 type. Which one is determined by MTYPE, which is either
3235 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3236 type we are generating.
3237
3238 We call ourself recursively to generate each modified type,`
3239 until MODCOUNT reaches zero, at which point we have consumed
3240 all the modifiers and generate either the fundamental type or
3241 user defined type. When the recursion unwinds, each modifier
3242 is applied in turn to generate the full modified type.
3243
3244NOTES
3245
3246 If we find a modifier that we don't recognize, and it is not one
3247 of those reserved for application specific use, then we issue a
3248 warning and simply ignore the modifier.
3249
3250BUGS
3251
3252 We currently ignore MOD_const and MOD_volatile. (FIXME)
3253
3254 */
3255
3256static struct type *
1ab3bf1b 3257decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3258 char *modifiers;
1ab3bf1b
JG
3259 unsigned int modcount;
3260 int mtype;
35f5886e
FF
3261{
3262 struct type *typep = NULL;
3263 unsigned short fundtype;
13b5a7ff 3264 DIE_REF die_ref;
1c92ca6f 3265 char modifier;
13b5a7ff 3266 int nbytes;
35f5886e
FF
3267
3268 if (modcount == 0)
3269 {
3270 switch (mtype)
3271 {
3272 case AT_mod_fund_type:
13b5a7ff
FF
3273 nbytes = attribute_size (AT_fund_type);
3274 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3275 current_objfile);
35f5886e
FF
3276 typep = decode_fund_type (fundtype);
3277 break;
3278 case AT_mod_u_d_type:
13b5a7ff
FF
3279 nbytes = attribute_size (AT_user_def_type);
3280 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3281 current_objfile);
3282 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3283 {
13b5a7ff 3284 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3285 }
3286 break;
3287 default:
51b80b00 3288 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3290 break;
3291 }
3292 }
3293 else
3294 {
3295 modifier = *modifiers++;
3296 typep = decode_modified_type (modifiers, --modcount, mtype);
3297 switch (modifier)
3298 {
13b5a7ff
FF
3299 case MOD_pointer_to:
3300 typep = lookup_pointer_type (typep);
3301 break;
3302 case MOD_reference_to:
3303 typep = lookup_reference_type (typep);
3304 break;
3305 case MOD_const:
51b80b00 3306 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3307 break;
3308 case MOD_volatile:
51b80b00 3309 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3310 break;
3311 default:
1c92ca6f
FF
3312 if (!(MOD_lo_user <= (unsigned char) modifier
3313 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3314 {
51b80b00 3315 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3316 }
3317 break;
35f5886e
FF
3318 }
3319 }
3320 return (typep);
3321}
3322
3323/*
3324
3325LOCAL FUNCTION
3326
3327 decode_fund_type -- translate basic DWARF type to gdb base type
3328
3329DESCRIPTION
3330
3331 Given an integer that is one of the fundamental DWARF types,
3332 translate it to one of the basic internal gdb types and return
3333 a pointer to the appropriate gdb type (a "struct type *").
3334
3335NOTES
3336
85f0a848
FF
3337 For robustness, if we are asked to translate a fundamental
3338 type that we are unprepared to deal with, we return int so
3339 callers can always depend upon a valid type being returned,
3340 and so gdb may at least do something reasonable by default.
3341 If the type is not in the range of those types defined as
3342 application specific types, we also issue a warning.
35f5886e
FF
3343*/
3344
3345static struct type *
1ab3bf1b
JG
3346decode_fund_type (fundtype)
3347 unsigned int fundtype;
35f5886e
FF
3348{
3349 struct type *typep = NULL;
3350
3351 switch (fundtype)
3352 {
3353
3354 case FT_void:
bf229b4e 3355 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3356 break;
3357
1ab3bf1b 3358 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3359 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3360 break;
3361
35f5886e 3362 case FT_pointer: /* (void *) */
bf229b4e 3363 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3364 typep = lookup_pointer_type (typep);
35f5886e
FF
3365 break;
3366
3367 case FT_char:
bf229b4e 3368 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3369 break;
3370
35f5886e 3371 case FT_signed_char:
bf229b4e 3372 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3373 break;
3374
3375 case FT_unsigned_char:
bf229b4e 3376 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3377 break;
3378
3379 case FT_short:
bf229b4e 3380 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3381 break;
3382
35f5886e 3383 case FT_signed_short:
bf229b4e 3384 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3385 break;
3386
3387 case FT_unsigned_short:
bf229b4e 3388 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3389 break;
3390
3391 case FT_integer:
bf229b4e 3392 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3393 break;
3394
35f5886e 3395 case FT_signed_integer:
bf229b4e 3396 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3397 break;
3398
3399 case FT_unsigned_integer:
bf229b4e 3400 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3401 break;
3402
3403 case FT_long:
bf229b4e 3404 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3405 break;
3406
35f5886e 3407 case FT_signed_long:
bf229b4e 3408 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3409 break;
3410
1ab3bf1b 3411 case FT_unsigned_long:
bf229b4e 3412 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3413 break;
3414
1ab3bf1b 3415 case FT_long_long:
bf229b4e 3416 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3417 break;
1ab3bf1b
JG
3418
3419 case FT_signed_long_long:
bf229b4e 3420 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3421 break;
1ab3bf1b
JG
3422
3423 case FT_unsigned_long_long:
bf229b4e 3424 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3425 break;
1ab3bf1b
JG
3426
3427 case FT_float:
bf229b4e 3428 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3429 break;
3430
1ab3bf1b 3431 case FT_dbl_prec_float:
bf229b4e 3432 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3433 break;
3434
3435 case FT_ext_prec_float:
bf229b4e 3436 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3437 break;
3438
3439 case FT_complex:
bf229b4e 3440 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3441 break;
3442
3443 case FT_dbl_prec_complex:
bf229b4e 3444 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3445 break;
3446
1ab3bf1b 3447 case FT_ext_prec_complex:
bf229b4e 3448 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3449 break;
1ab3bf1b 3450
35f5886e
FF
3451 }
3452
85f0a848 3453 if (typep == NULL)
35f5886e 3454 {
85f0a848
FF
3455 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3456 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3457 {
51b80b00 3458 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3459 }
35f5886e
FF
3460 }
3461
3462 return (typep);
3463}
3464
3465/*
3466
3467LOCAL FUNCTION
3468
3469 create_name -- allocate a fresh copy of a string on an obstack
3470
3471DESCRIPTION
3472
3473 Given a pointer to a string and a pointer to an obstack, allocates
3474 a fresh copy of the string on the specified obstack.
3475
3476*/
3477
3478static char *
1ab3bf1b
JG
3479create_name (name, obstackp)
3480 char *name;
3481 struct obstack *obstackp;
35f5886e
FF
3482{
3483 int length;
3484 char *newname;
3485
3486 length = strlen (name) + 1;
3487 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3488 strcpy (newname, name);
35f5886e
FF
3489 return (newname);
3490}
3491
3492/*
3493
3494LOCAL FUNCTION
3495
3496 basicdieinfo -- extract the minimal die info from raw die data
3497
3498SYNOPSIS
3499
95967e73
FF
3500 void basicdieinfo (char *diep, struct dieinfo *dip,
3501 struct objfile *objfile)
35f5886e
FF
3502
3503DESCRIPTION
3504
3505 Given a pointer to raw DIE data, and a pointer to an instance of a
3506 die info structure, this function extracts the basic information
3507 from the DIE data required to continue processing this DIE, along
3508 with some bookkeeping information about the DIE.
3509
3510 The information we absolutely must have includes the DIE tag,
3511 and the DIE length. If we need the sibling reference, then we
3512 will have to call completedieinfo() to process all the remaining
3513 DIE information.
3514
3515 Note that since there is no guarantee that the data is properly
3516 aligned in memory for the type of access required (indirection
95967e73
FF
3517 through anything other than a char pointer), and there is no
3518 guarantee that it is in the same byte order as the gdb host,
3519 we call a function which deals with both alignment and byte
3520 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3521
3522 We also take care of some other basic things at this point, such
3523 as ensuring that the instance of the die info structure starts
3524 out completely zero'd and that curdie is initialized for use
3525 in error reporting if we have a problem with the current die.
3526
3527NOTES
3528
3529 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3530 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3531 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3532 are forced to be TAG_padding DIES.
3533
13b5a7ff
FF
3534 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3535 that if a padding DIE is used for alignment and the amount needed is
3536 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3537 enough to align to the next alignment boundry.
4090fe1c
FF
3538
3539 We do some basic sanity checking here, such as verifying that the
3540 length of the die would not cause it to overrun the recorded end of
3541 the buffer holding the DIE info. If we find a DIE that is either
3542 too small or too large, we force it's length to zero which should
3543 cause the caller to take appropriate action.
35f5886e
FF
3544 */
3545
3546static void
95967e73 3547basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3548 struct dieinfo *dip;
3549 char *diep;
95967e73 3550 struct objfile *objfile;
35f5886e
FF
3551{
3552 curdie = dip;
4ed3a9ea 3553 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3554 dip -> die = diep;
13b5a7ff
FF
3555 dip -> die_ref = dbroff + (diep - dbbase);
3556 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3557 objfile);
4090fe1c
FF
3558 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3559 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3560 {
51b80b00 3561 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3562 dip -> die_length = 0;
35f5886e 3563 }
13b5a7ff 3564 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3565 {
13b5a7ff 3566 dip -> die_tag = TAG_padding;
35f5886e
FF
3567 }
3568 else
3569 {
13b5a7ff
FF
3570 diep += SIZEOF_DIE_LENGTH;
3571 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3572 objfile);
35f5886e
FF
3573 }
3574}
3575
3576/*
3577
3578LOCAL FUNCTION
3579
3580 completedieinfo -- finish reading the information for a given DIE
3581
3582SYNOPSIS
3583
95967e73 3584 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3585
3586DESCRIPTION
3587
3588 Given a pointer to an already partially initialized die info structure,
3589 scan the raw DIE data and finish filling in the die info structure
3590 from the various attributes found.
3591
3592 Note that since there is no guarantee that the data is properly
3593 aligned in memory for the type of access required (indirection
95967e73
FF
3594 through anything other than a char pointer), and there is no
3595 guarantee that it is in the same byte order as the gdb host,
3596 we call a function which deals with both alignment and byte
3597 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3598
3599NOTES
3600
3601 Each time we are called, we increment the diecount variable, which
3602 keeps an approximate count of the number of dies processed for
3603 each compilation unit. This information is presented to the user
3604 if the info_verbose flag is set.
3605
3606 */
3607
3608static void
95967e73 3609completedieinfo (dip, objfile)
1ab3bf1b 3610 struct dieinfo *dip;
95967e73 3611 struct objfile *objfile;
35f5886e
FF
3612{
3613 char *diep; /* Current pointer into raw DIE data */
3614 char *end; /* Terminate DIE scan here */
3615 unsigned short attr; /* Current attribute being scanned */
3616 unsigned short form; /* Form of the attribute */
13b5a7ff 3617 int nbytes; /* Size of next field to read */
35f5886e
FF
3618
3619 diecount++;
3620 diep = dip -> die;
13b5a7ff
FF
3621 end = diep + dip -> die_length;
3622 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3623 while (diep < end)
3624 {
13b5a7ff
FF
3625 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3626 diep += SIZEOF_ATTRIBUTE;
3627 if ((nbytes = attribute_size (attr)) == -1)
3628 {
51b80b00 3629 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3630 diep = end;
3631 continue;
3632 }
35f5886e
FF
3633 switch (attr)
3634 {
3635 case AT_fund_type:
13b5a7ff
FF
3636 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
35f5886e
FF
3638 break;
3639 case AT_ordering:
13b5a7ff
FF
3640 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 objfile);
35f5886e
FF
3642 break;
3643 case AT_bit_offset:
13b5a7ff
FF
3644 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3645 objfile);
35f5886e 3646 break;
35f5886e 3647 case AT_sibling:
13b5a7ff
FF
3648 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3649 objfile);
35f5886e
FF
3650 break;
3651 case AT_stmt_list:
13b5a7ff
FF
3652 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
2d6186f4 3654 dip -> has_at_stmt_list = 1;
35f5886e
FF
3655 break;
3656 case AT_low_pc:
13b5a7ff
FF
3657 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
4d315a07 3659 dip -> at_low_pc += baseaddr;
2d6186f4 3660 dip -> has_at_low_pc = 1;
35f5886e
FF
3661 break;
3662 case AT_high_pc:
13b5a7ff
FF
3663 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
4d315a07 3665 dip -> at_high_pc += baseaddr;
35f5886e
FF
3666 break;
3667 case AT_language:
13b5a7ff
FF
3668 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
35f5886e
FF
3670 break;
3671 case AT_user_def_type:
13b5a7ff
FF
3672 dip -> at_user_def_type = target_to_host (diep, nbytes,
3673 GET_UNSIGNED, objfile);
35f5886e
FF
3674 break;
3675 case AT_byte_size:
13b5a7ff
FF
3676 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3677 objfile);
50055e94 3678 dip -> has_at_byte_size = 1;
35f5886e
FF
3679 break;
3680 case AT_bit_size:
13b5a7ff
FF
3681 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3682 objfile);
35f5886e
FF
3683 break;
3684 case AT_member:
13b5a7ff
FF
3685 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3686 objfile);
35f5886e
FF
3687 break;
3688 case AT_discr:
13b5a7ff
FF
3689 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3690 objfile);
35f5886e 3691 break;
35f5886e
FF
3692 case AT_location:
3693 dip -> at_location = diep;
3694 break;
3695 case AT_mod_fund_type:
3696 dip -> at_mod_fund_type = diep;
3697 break;
3698 case AT_subscr_data:
3699 dip -> at_subscr_data = diep;
3700 break;
3701 case AT_mod_u_d_type:
3702 dip -> at_mod_u_d_type = diep;
3703 break;
35f5886e
FF
3704 case AT_element_list:
3705 dip -> at_element_list = diep;
768be6e1
FF
3706 dip -> short_element_list = 0;
3707 break;
3708 case AT_short_element_list:
3709 dip -> at_element_list = diep;
3710 dip -> short_element_list = 1;
35f5886e
FF
3711 break;
3712 case AT_discr_value:
3713 dip -> at_discr_value = diep;
3714 break;
3715 case AT_string_length:
3716 dip -> at_string_length = diep;
3717 break;
3718 case AT_name:
3719 dip -> at_name = diep;
3720 break;
3721 case AT_comp_dir:
d4902ab0
FF
3722 /* For now, ignore any "hostname:" portion, since gdb doesn't
3723 know how to deal with it. (FIXME). */
3724 dip -> at_comp_dir = strrchr (diep, ':');
3725 if (dip -> at_comp_dir != NULL)
3726 {
3727 dip -> at_comp_dir++;
3728 }
3729 else
3730 {
3731 dip -> at_comp_dir = diep;
3732 }
35f5886e
FF
3733 break;
3734 case AT_producer:
3735 dip -> at_producer = diep;
3736 break;
35f5886e 3737 case AT_start_scope:
13b5a7ff
FF
3738 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3739 objfile);
35f5886e
FF
3740 break;
3741 case AT_stride_size:
13b5a7ff
FF
3742 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3743 objfile);
35f5886e
FF
3744 break;
3745 case AT_src_info:
13b5a7ff
FF
3746 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3747 objfile);
35f5886e
FF
3748 break;
3749 case AT_prototyped:
13b5a7ff 3750 dip -> at_prototyped = diep;
35f5886e 3751 break;
35f5886e
FF
3752 default:
3753 /* Found an attribute that we are unprepared to handle. However
3754 it is specifically one of the design goals of DWARF that
3755 consumers should ignore unknown attributes. As long as the
3756 form is one that we recognize (so we know how to skip it),
3757 we can just ignore the unknown attribute. */
3758 break;
3759 }
13b5a7ff 3760 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3761 switch (form)
3762 {
3763 case FORM_DATA2:
13b5a7ff 3764 diep += 2;
35f5886e
FF
3765 break;
3766 case FORM_DATA4:
13b5a7ff
FF
3767 case FORM_REF:
3768 diep += 4;
35f5886e
FF
3769 break;
3770 case FORM_DATA8:
13b5a7ff 3771 diep += 8;
35f5886e
FF
3772 break;
3773 case FORM_ADDR:
13b5a7ff 3774 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3775 break;
3776 case FORM_BLOCK2:
13b5a7ff 3777 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3778 break;
3779 case FORM_BLOCK4:
13b5a7ff 3780 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3781 break;
3782 case FORM_STRING:
3783 diep += strlen (diep) + 1;
3784 break;
3785 default:
51b80b00 3786 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3787 diep = end;
3788 break;
3789 }
3790 }
3791}
95967e73 3792
13b5a7ff 3793/*
95967e73 3794
13b5a7ff
FF
3795LOCAL FUNCTION
3796
3797 target_to_host -- swap in target data to host
3798
3799SYNOPSIS
3800
3801 target_to_host (char *from, int nbytes, int signextend,
3802 struct objfile *objfile)
3803
3804DESCRIPTION
3805
3806 Given pointer to data in target format in FROM, a byte count for
3807 the size of the data in NBYTES, a flag indicating whether or not
3808 the data is signed in SIGNEXTEND, and a pointer to the current
3809 objfile in OBJFILE, convert the data to host format and return
3810 the converted value.
3811
3812NOTES
3813
3814 FIXME: If we read data that is known to be signed, and expect to
3815 use it as signed data, then we need to explicitly sign extend the
3816 result until the bfd library is able to do this for us.
3817
306d27ca
DE
3818 FIXME: Would a 32 bit target ever need an 8 byte result?
3819
13b5a7ff
FF
3820 */
3821
306d27ca 3822static CORE_ADDR
13b5a7ff 3823target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3824 char *from;
3825 int nbytes;
13b5a7ff 3826 int signextend; /* FIXME: Unused */
95967e73
FF
3827 struct objfile *objfile;
3828{
306d27ca 3829 CORE_ADDR rtnval;
95967e73
FF
3830
3831 switch (nbytes)
3832 {
95967e73 3833 case 8:
13b5a7ff 3834 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3835 break;
95967e73 3836 case 4:
13b5a7ff 3837 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3838 break;
3839 case 2:
13b5a7ff 3840 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3841 break;
3842 case 1:
13b5a7ff 3843 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3844 break;
3845 default:
51b80b00 3846 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3847 rtnval = 0;
95967e73
FF
3848 break;
3849 }
13b5a7ff 3850 return (rtnval);
95967e73
FF
3851}
3852
13b5a7ff
FF
3853/*
3854
3855LOCAL FUNCTION
3856
3857 attribute_size -- compute size of data for a DWARF attribute
3858
3859SYNOPSIS
3860
3861 static int attribute_size (unsigned int attr)
3862
3863DESCRIPTION
3864
3865 Given a DWARF attribute in ATTR, compute the size of the first
3866 piece of data associated with this attribute and return that
3867 size.
3868
3869 Returns -1 for unrecognized attributes.
3870
3871 */
3872
3873static int
3874attribute_size (attr)
3875 unsigned int attr;
3876{
3877 int nbytes; /* Size of next data for this attribute */
3878 unsigned short form; /* Form of the attribute */
3879
3880 form = FORM_FROM_ATTR (attr);
3881 switch (form)
3882 {
3883 case FORM_STRING: /* A variable length field is next */
3884 nbytes = 0;
3885 break;
3886 case FORM_DATA2: /* Next 2 byte field is the data itself */
3887 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3888 nbytes = 2;
3889 break;
3890 case FORM_DATA4: /* Next 4 byte field is the data itself */
3891 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3892 case FORM_REF: /* Next 4 byte field is a DIE offset */
3893 nbytes = 4;
3894 break;
3895 case FORM_DATA8: /* Next 8 byte field is the data itself */
3896 nbytes = 8;
3897 break;
3898 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3899 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3900 break;
3901 default:
51b80b00 3902 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3903 nbytes = -1;
3904 break;
3905 }
3906 return (nbytes);
3907}
This page took 0.560956 seconds and 4 git commands to generate.