Commit | Line | Data |
---|---|---|
c906108c | 1 | /* DWARF debugging format support for GDB. |
1bac305b AC |
2 | |
3 | Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, | |
b99607ea | 4 | 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. |
1bac305b | 5 | |
c906108c SS |
6 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, |
7 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
c906108c | 24 | |
5ae7ca1d MC |
25 | /* |
26 | If you are looking for DWARF-2 support, you are in the wrong file. | |
013be872 MC |
27 | Go look in dwarf2read.c. This file is for the original DWARF, |
28 | also known as DWARF-1. | |
29 | ||
30 | DWARF-1 is slowly headed for obsoletion. | |
31 | ||
b2a871dd | 32 | In gcc 3.4.0, support for dwarf-1 has been removed. |
013be872 MC |
33 | |
34 | In gcc 3.3.2, these targets prefer dwarf-1: | |
35 | ||
36 | i[34567]86-sequent-ptx4* | |
37 | i[34567]86-sequent-sysv4* | |
38 | mips-sni-sysv4 | |
39 | sparc-hal-solaris2* | |
40 | ||
41 | In gcc 3.2.2, these targets prefer dwarf-1: | |
42 | ||
43 | i[34567]86-dg-dgux* | |
44 | i[34567]86-sequent-ptx4* | |
45 | i[34567]86-sequent-sysv4* | |
46 | m88k-dg-dgux* | |
47 | mips-sni-sysv4 | |
48 | sparc-hal-solaris2* | |
49 | ||
50 | In gcc 2.95.3, these targets prefer dwarf-1: | |
51 | ||
52 | i[34567]86-dg-dgux* | |
53 | i[34567]86-ncr-sysv4* | |
54 | i[34567]86-sequent-ptx4* | |
55 | i[34567]86-sequent-sysv4* | |
56 | i[34567]86-*-osf1* | |
57 | i[34567]86-*-sco3.2v5* | |
58 | i[34567]86-*-sysv4* | |
59 | i860-alliant-* | |
60 | i860-*-sysv4* | |
61 | m68k-atari-sysv4* | |
62 | m68k-cbm-sysv4* | |
63 | m68k-*-sysv4* | |
64 | m88k-dg-dgux* | |
65 | m88k-*-sysv4* | |
66 | mips-sni-sysv4 | |
67 | mips-*-gnu* | |
68 | sh-*-elf* | |
69 | sh-*-rtemself* | |
70 | sparc-hal-solaris2* | |
71 | sparc-*-sysv4* | |
72 | ||
73 | Some non-gcc compilers produce dwarf-1: | |
74 | ||
75 | PR gdb/1179 was from a user with Diab C++ 4.3. | |
b2a871dd MC |
76 | On 2003-07-25 the gdb list received a report from a user |
77 | with Diab Compiler 4.4b. | |
013be872 | 78 | Other users have also reported using Diab compilers with dwarf-1. |
b2a871dd MC |
79 | |
80 | Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++. | |
81 | (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00, | |
82 | Wind River Systems, 2002-07-31). | |
83 | ||
013be872 MC |
84 | On 2003-06-09 the gdb list received a report from a user |
85 | with Absoft ProFortran f77 which is dwarf-1. | |
86 | ||
9cbc6ef0 | 87 | Absoft ProFortran Linux[sic] Fortran User Guide (no version, |
b2a871dd MC |
88 | but copyright dates are 1991-2001) says that Absoft ProFortran |
89 | supports -gdwarf1 and -gdwarf2. | |
90 | ||
91 | -- chastain 2004-04-24 | |
5ae7ca1d MC |
92 | */ |
93 | ||
c906108c SS |
94 | /* |
95 | ||
c5aa993b JM |
96 | FIXME: Do we need to generate dependencies in partial symtabs? |
97 | (Perhaps we don't need to). | |
c906108c | 98 | |
c5aa993b JM |
99 | FIXME: Resolve minor differences between what information we put in the |
100 | partial symbol table and what dbxread puts in. For example, we don't yet | |
101 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
102 | we never see. Use the new printpsym command to see the partial symbol table | |
103 | contents. | |
c906108c | 104 | |
c5aa993b JM |
105 | FIXME: Figure out a better way to tell gdb about the name of the function |
106 | contain the user's entry point (I.E. main()) | |
c906108c | 107 | |
c5aa993b JM |
108 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for |
109 | other things to work on, if you get bored. :-) | |
c906108c | 110 | |
c5aa993b | 111 | */ |
c906108c SS |
112 | |
113 | #include "defs.h" | |
114 | #include "symtab.h" | |
115 | #include "gdbtypes.h" | |
c906108c SS |
116 | #include "objfiles.h" |
117 | #include "elf/dwarf.h" | |
118 | #include "buildsym.h" | |
119 | #include "demangle.h" | |
c5aa993b | 120 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ |
c906108c SS |
121 | #include "language.h" |
122 | #include "complaints.h" | |
123 | ||
124 | #include <fcntl.h> | |
125 | #include "gdb_string.h" | |
126 | ||
127 | /* Some macros to provide DIE info for complaints. */ | |
128 | ||
129 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) | |
130 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" | |
131 | ||
132 | /* Complaints that can be issued during DWARF debug info reading. */ | |
133 | ||
23136709 KB |
134 | static void |
135 | bad_die_ref_complaint (int arg1, const char *arg2, int arg3) | |
c906108c | 136 | { |
23136709 | 137 | complaint (&symfile_complaints, |
e2e0b3e5 | 138 | _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"), |
23136709 KB |
139 | arg1, arg2, arg3); |
140 | } | |
c906108c | 141 | |
23136709 KB |
142 | static void |
143 | unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3) | |
c906108c | 144 | { |
23136709 | 145 | complaint (&symfile_complaints, |
e2e0b3e5 | 146 | _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1, arg2, |
23136709 KB |
147 | arg3); |
148 | } | |
c906108c | 149 | |
23136709 KB |
150 | static void |
151 | dup_user_type_definition_complaint (int arg1, const char *arg2) | |
c906108c | 152 | { |
23136709 | 153 | complaint (&symfile_complaints, |
e2e0b3e5 | 154 | _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"), |
23136709 KB |
155 | arg1, arg2); |
156 | } | |
c906108c | 157 | |
23136709 KB |
158 | static void |
159 | bad_array_element_type_complaint (int arg1, const char *arg2, int arg3) | |
c906108c | 160 | { |
23136709 | 161 | complaint (&symfile_complaints, |
e2e0b3e5 | 162 | _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1, |
23136709 KB |
163 | arg2, arg3); |
164 | } | |
c906108c SS |
165 | |
166 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |
167 | ||
168 | #ifndef GCC_PRODUCER | |
169 | #define GCC_PRODUCER "GNU C " | |
170 | #endif | |
171 | ||
172 | #ifndef GPLUS_PRODUCER | |
173 | #define GPLUS_PRODUCER "GNU C++ " | |
174 | #endif | |
175 | ||
176 | #ifndef LCC_PRODUCER | |
177 | #define LCC_PRODUCER "NCR C/C++" | |
178 | #endif | |
179 | ||
c906108c SS |
180 | /* Flags to target_to_host() that tell whether or not the data object is |
181 | expected to be signed. Used, for example, when fetching a signed | |
182 | integer in the target environment which is used as a signed integer | |
183 | in the host environment, and the two environments have different sized | |
184 | ints. In this case, *somebody* has to sign extend the smaller sized | |
185 | int. */ | |
186 | ||
187 | #define GET_UNSIGNED 0 /* No sign extension required */ | |
188 | #define GET_SIGNED 1 /* Sign extension required */ | |
189 | ||
190 | /* Defines for things which are specified in the document "DWARF Debugging | |
191 | Information Format" published by UNIX International, Programming Languages | |
192 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |
193 | ||
194 | #define SIZEOF_DIE_LENGTH 4 | |
195 | #define SIZEOF_DIE_TAG 2 | |
196 | #define SIZEOF_ATTRIBUTE 2 | |
197 | #define SIZEOF_FORMAT_SPECIFIER 1 | |
198 | #define SIZEOF_FMT_FT 2 | |
199 | #define SIZEOF_LINETBL_LENGTH 4 | |
200 | #define SIZEOF_LINETBL_LINENO 4 | |
201 | #define SIZEOF_LINETBL_STMT 2 | |
202 | #define SIZEOF_LINETBL_DELTA 4 | |
203 | #define SIZEOF_LOC_ATOM_CODE 1 | |
204 | ||
205 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ | |
206 | ||
207 | /* Macros that return the sizes of various types of data in the target | |
208 | environment. | |
209 | ||
210 | FIXME: Currently these are just compile time constants (as they are in | |
211 | other parts of gdb as well). They need to be able to get the right size | |
212 | either from the bfd or possibly from the DWARF info. It would be nice if | |
213 | the DWARF producer inserted DIES that describe the fundamental types in | |
214 | the target environment into the DWARF info, similar to the way dbx stabs | |
215 | producers produce information about their fundamental types. */ | |
216 | ||
217 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) | |
218 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
219 | ||
220 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |
221 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |
222 | However, the Issue 2 DWARF specification from AT&T defines it as | |
223 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |
224 | For backwards compatibility with the AT&T compiler produced executables | |
225 | we define AT_short_element_list for this variant. */ | |
226 | ||
227 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) | |
228 | ||
c906108c SS |
229 | /* The DWARF debugging information consists of two major pieces, |
230 | one is a block of DWARF Information Entries (DIE's) and the other | |
231 | is a line number table. The "struct dieinfo" structure contains | |
232 | the information for a single DIE, the one currently being processed. | |
233 | ||
234 | In order to make it easier to randomly access the attribute fields | |
235 | of the current DIE, which are specifically unordered within the DIE, | |
236 | each DIE is scanned and an instance of the "struct dieinfo" | |
237 | structure is initialized. | |
238 | ||
239 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
240 | just initializes those fields that are vital to deciding whether or not | |
241 | to use this DIE, how to skip past it, etc. The second, done by the | |
242 | function completedieinfo(), fills in the rest of the information. | |
243 | ||
244 | Attributes which have block forms are not interpreted at the time | |
245 | the DIE is scanned, instead we just save pointers to the start | |
246 | of their value fields. | |
247 | ||
248 | Some fields have a flag <name>_p that is set when the value of the | |
249 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
250 | we may want to test for the presence of some attributes in the DIE, | |
251 | such as AT_low_pc, without restricting the values of the field, | |
252 | we need someway to note that we found such an attribute. | |
c5aa993b | 253 | |
c906108c | 254 | */ |
c5aa993b | 255 | |
c906108c SS |
256 | typedef char BLOCK; |
257 | ||
c5aa993b JM |
258 | struct dieinfo |
259 | { | |
260 | char *die; /* Pointer to the raw DIE data */ | |
261 | unsigned long die_length; /* Length of the raw DIE data */ | |
262 | DIE_REF die_ref; /* Offset of this DIE */ | |
263 | unsigned short die_tag; /* Tag for this DIE */ | |
264 | unsigned long at_padding; | |
265 | unsigned long at_sibling; | |
266 | BLOCK *at_location; | |
267 | char *at_name; | |
268 | unsigned short at_fund_type; | |
269 | BLOCK *at_mod_fund_type; | |
270 | unsigned long at_user_def_type; | |
271 | BLOCK *at_mod_u_d_type; | |
272 | unsigned short at_ordering; | |
273 | BLOCK *at_subscr_data; | |
274 | unsigned long at_byte_size; | |
275 | unsigned short at_bit_offset; | |
276 | unsigned long at_bit_size; | |
277 | BLOCK *at_element_list; | |
278 | unsigned long at_stmt_list; | |
279 | CORE_ADDR at_low_pc; | |
280 | CORE_ADDR at_high_pc; | |
281 | unsigned long at_language; | |
282 | unsigned long at_member; | |
283 | unsigned long at_discr; | |
284 | BLOCK *at_discr_value; | |
285 | BLOCK *at_string_length; | |
286 | char *at_comp_dir; | |
287 | char *at_producer; | |
288 | unsigned long at_start_scope; | |
289 | unsigned long at_stride_size; | |
290 | unsigned long at_src_info; | |
291 | char *at_prototyped; | |
292 | unsigned int has_at_low_pc:1; | |
293 | unsigned int has_at_stmt_list:1; | |
294 | unsigned int has_at_byte_size:1; | |
295 | unsigned int short_element_list:1; | |
296 | ||
297 | /* Kludge to identify register variables */ | |
298 | ||
299 | unsigned int isreg; | |
300 | ||
301 | /* Kludge to identify optimized out variables */ | |
302 | ||
303 | unsigned int optimized_out; | |
304 | ||
305 | /* Kludge to identify basereg references. | |
306 | Nonzero if we have an offset relative to a basereg. */ | |
307 | ||
308 | unsigned int offreg; | |
309 | ||
310 | /* Kludge to identify which base register is it relative to. */ | |
311 | ||
312 | unsigned int basereg; | |
313 | }; | |
c906108c | 314 | |
c5aa993b | 315 | static int diecount; /* Approximate count of dies for compilation unit */ |
c906108c SS |
316 | static struct dieinfo *curdie; /* For warnings and such */ |
317 | ||
c5aa993b JM |
318 | static char *dbbase; /* Base pointer to dwarf info */ |
319 | static int dbsize; /* Size of dwarf info in bytes */ | |
320 | static int dbroff; /* Relative offset from start of .debug section */ | |
321 | static char *lnbase; /* Base pointer to line section */ | |
c906108c SS |
322 | |
323 | /* This value is added to each symbol value. FIXME: Generalize to | |
324 | the section_offsets structure used by dbxread (once this is done, | |
325 | pass the appropriate section number to end_symtab). */ | |
326 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
327 | ||
328 | /* The section offsets used in the current psymtab or symtab. FIXME, | |
329 | only used to pass one value (baseaddr) at the moment. */ | |
330 | static struct section_offsets *base_section_offsets; | |
331 | ||
332 | /* We put a pointer to this structure in the read_symtab_private field | |
333 | of the psymtab. */ | |
334 | ||
c5aa993b JM |
335 | struct dwfinfo |
336 | { | |
337 | /* Always the absolute file offset to the start of the ".debug" | |
338 | section for the file containing the DIE's being accessed. */ | |
339 | file_ptr dbfoff; | |
340 | /* Relative offset from the start of the ".debug" section to the | |
341 | first DIE to be accessed. When building the partial symbol | |
342 | table, this value will be zero since we are accessing the | |
343 | entire ".debug" section. When expanding a partial symbol | |
344 | table entry, this value will be the offset to the first | |
345 | DIE for the compilation unit containing the symbol that | |
346 | triggers the expansion. */ | |
347 | int dbroff; | |
348 | /* The size of the chunk of DIE's being examined, in bytes. */ | |
349 | int dblength; | |
350 | /* The absolute file offset to the line table fragment. Ignored | |
351 | when building partial symbol tables, but used when expanding | |
352 | them, and contains the absolute file offset to the fragment | |
353 | of the ".line" section containing the line numbers for the | |
354 | current compilation unit. */ | |
355 | file_ptr lnfoff; | |
356 | }; | |
c906108c SS |
357 | |
358 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
359 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
360 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
361 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
362 | ||
363 | /* The generic symbol table building routines have separate lists for | |
364 | file scope symbols and all all other scopes (local scopes). So | |
365 | we need to select the right one to pass to add_symbol_to_list(). | |
366 | We do it by keeping a pointer to the correct list in list_in_scope. | |
367 | ||
368 | FIXME: The original dwarf code just treated the file scope as the first | |
369 | local scope, and all other local scopes as nested local scopes, and worked | |
370 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |
371 | ||
372 | struct pending **list_in_scope = &file_symbols; | |
373 | ||
374 | /* DIES which have user defined types or modified user defined types refer to | |
375 | other DIES for the type information. Thus we need to associate the offset | |
376 | of a DIE for a user defined type with a pointer to the type information. | |
377 | ||
378 | Originally this was done using a simple but expensive algorithm, with an | |
379 | array of unsorted structures, each containing an offset/type-pointer pair. | |
380 | This array was scanned linearly each time a lookup was done. The result | |
381 | was that gdb was spending over half it's startup time munging through this | |
382 | array of pointers looking for a structure that had the right offset member. | |
383 | ||
384 | The second attempt used the same array of structures, but the array was | |
385 | sorted using qsort each time a new offset/type was recorded, and a binary | |
386 | search was used to find the type pointer for a given DIE offset. This was | |
387 | even slower, due to the overhead of sorting the array each time a new | |
388 | offset/type pair was entered. | |
389 | ||
390 | The third attempt uses a fixed size array of type pointers, indexed by a | |
391 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
392 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
393 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
394 | much memory to hold this array as to hold the DWARF info for a given | |
395 | compilation unit. But it gets freed as soon as we are done with it. | |
396 | This has worked well in practice, as a reasonable tradeoff between memory | |
397 | consumption and speed, without having to resort to much more complicated | |
398 | algorithms. */ | |
399 | ||
400 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
401 | static int numutypes; /* Max number of user type pointers */ | |
402 | ||
403 | /* Maintain an array of referenced fundamental types for the current | |
404 | compilation unit being read. For DWARF version 1, we have to construct | |
405 | the fundamental types on the fly, since no information about the | |
406 | fundamental types is supplied. Each such fundamental type is created by | |
407 | calling a language dependent routine to create the type, and then a | |
408 | pointer to that type is then placed in the array at the index specified | |
409 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |
410 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |
411 | fundamental types gdb knows how to construct. */ | |
412 | ||
c5aa993b | 413 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ |
c906108c SS |
414 | |
415 | /* Record the language for the compilation unit which is currently being | |
416 | processed. We know it once we have seen the TAG_compile_unit DIE, | |
417 | and we need it while processing the DIE's for that compilation unit. | |
418 | It is eventually saved in the symtab structure, but we don't finalize | |
419 | the symtab struct until we have processed all the DIE's for the | |
420 | compilation unit. We also need to get and save a pointer to the | |
421 | language struct for this language, so we can call the language | |
422 | dependent routines for doing things such as creating fundamental | |
423 | types. */ | |
424 | ||
425 | static enum language cu_language; | |
426 | static const struct language_defn *cu_language_defn; | |
427 | ||
428 | /* Forward declarations of static functions so we don't have to worry | |
429 | about ordering within this file. */ | |
430 | ||
4efb68b1 | 431 | static void free_utypes (void *); |
c906108c | 432 | |
a14ed312 | 433 | static int attribute_size (unsigned int); |
c906108c | 434 | |
a14ed312 | 435 | static CORE_ADDR target_to_host (char *, int, int, struct objfile *); |
c906108c | 436 | |
a14ed312 | 437 | static void add_enum_psymbol (struct dieinfo *, struct objfile *); |
c906108c | 438 | |
a14ed312 | 439 | static void handle_producer (char *); |
c906108c | 440 | |
570b8f7c AC |
441 | static void read_file_scope (struct dieinfo *, char *, char *, |
442 | struct objfile *); | |
c906108c | 443 | |
570b8f7c AC |
444 | static void read_func_scope (struct dieinfo *, char *, char *, |
445 | struct objfile *); | |
c906108c | 446 | |
570b8f7c AC |
447 | static void read_lexical_block_scope (struct dieinfo *, char *, char *, |
448 | struct objfile *); | |
c906108c | 449 | |
a14ed312 | 450 | static void scan_partial_symbols (char *, char *, struct objfile *); |
c906108c | 451 | |
570b8f7c AC |
452 | static void scan_compilation_units (char *, char *, file_ptr, file_ptr, |
453 | struct objfile *); | |
c906108c | 454 | |
a14ed312 | 455 | static void add_partial_symbol (struct dieinfo *, struct objfile *); |
c906108c | 456 | |
a14ed312 | 457 | static void basicdieinfo (struct dieinfo *, char *, struct objfile *); |
c906108c | 458 | |
a14ed312 | 459 | static void completedieinfo (struct dieinfo *, struct objfile *); |
c906108c | 460 | |
a14ed312 | 461 | static void dwarf_psymtab_to_symtab (struct partial_symtab *); |
c906108c | 462 | |
a14ed312 | 463 | static void psymtab_to_symtab_1 (struct partial_symtab *); |
c906108c | 464 | |
a14ed312 | 465 | static void read_ofile_symtab (struct partial_symtab *); |
c906108c | 466 | |
a14ed312 | 467 | static void process_dies (char *, char *, struct objfile *); |
c906108c | 468 | |
570b8f7c AC |
469 | static void read_structure_scope (struct dieinfo *, char *, char *, |
470 | struct objfile *); | |
c906108c | 471 | |
a14ed312 | 472 | static struct type *decode_array_element_type (char *); |
c906108c | 473 | |
a14ed312 | 474 | static struct type *decode_subscript_data_item (char *, char *); |
c906108c | 475 | |
a14ed312 | 476 | static void dwarf_read_array_type (struct dieinfo *); |
c906108c | 477 | |
a14ed312 | 478 | static void read_tag_pointer_type (struct dieinfo *dip); |
c906108c | 479 | |
a14ed312 | 480 | static void read_tag_string_type (struct dieinfo *dip); |
c906108c | 481 | |
a14ed312 | 482 | static void read_subroutine_type (struct dieinfo *, char *, char *); |
c906108c | 483 | |
570b8f7c AC |
484 | static void read_enumeration (struct dieinfo *, char *, char *, |
485 | struct objfile *); | |
c906108c | 486 | |
a14ed312 KB |
487 | static struct type *struct_type (struct dieinfo *, char *, char *, |
488 | struct objfile *); | |
c906108c | 489 | |
a14ed312 | 490 | static struct type *enum_type (struct dieinfo *, struct objfile *); |
c906108c | 491 | |
a14ed312 | 492 | static void decode_line_numbers (char *); |
c906108c | 493 | |
a14ed312 | 494 | static struct type *decode_die_type (struct dieinfo *); |
c906108c | 495 | |
a14ed312 | 496 | static struct type *decode_mod_fund_type (char *); |
c906108c | 497 | |
a14ed312 | 498 | static struct type *decode_mod_u_d_type (char *); |
c906108c | 499 | |
a14ed312 | 500 | static struct type *decode_modified_type (char *, unsigned int, int); |
c906108c | 501 | |
a14ed312 | 502 | static struct type *decode_fund_type (unsigned int); |
c906108c | 503 | |
a14ed312 | 504 | static char *create_name (char *, struct obstack *); |
c906108c | 505 | |
a14ed312 | 506 | static struct type *lookup_utype (DIE_REF); |
c906108c | 507 | |
a14ed312 | 508 | static struct type *alloc_utype (DIE_REF, struct type *); |
c906108c | 509 | |
a14ed312 | 510 | static struct symbol *new_symbol (struct dieinfo *, struct objfile *); |
c906108c | 511 | |
570b8f7c AC |
512 | static void synthesize_typedef (struct dieinfo *, struct objfile *, |
513 | struct type *); | |
c906108c | 514 | |
a14ed312 | 515 | static int locval (struct dieinfo *); |
c906108c | 516 | |
a14ed312 | 517 | static void set_cu_language (struct dieinfo *); |
c906108c | 518 | |
a14ed312 | 519 | static struct type *dwarf_fundamental_type (struct objfile *, int); |
c906108c SS |
520 | |
521 | ||
522 | /* | |
523 | ||
c5aa993b | 524 | LOCAL FUNCTION |
c906108c | 525 | |
c5aa993b | 526 | dwarf_fundamental_type -- lookup or create a fundamental type |
c906108c | 527 | |
c5aa993b | 528 | SYNOPSIS |
c906108c | 529 | |
c5aa993b JM |
530 | struct type * |
531 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |
c906108c | 532 | |
c5aa993b | 533 | DESCRIPTION |
c906108c | 534 | |
c5aa993b JM |
535 | DWARF version 1 doesn't supply any fundamental type information, |
536 | so gdb has to construct such types. It has a fixed number of | |
537 | fundamental types that it knows how to construct, which is the | |
538 | union of all types that it knows how to construct for all languages | |
539 | that it knows about. These are enumerated in gdbtypes.h. | |
c906108c | 540 | |
c5aa993b JM |
541 | As an example, assume we find a DIE that references a DWARF |
542 | fundamental type of FT_integer. We first look in the ftypes | |
543 | array to see if we already have such a type, indexed by the | |
544 | gdb internal value of FT_INTEGER. If so, we simply return a | |
545 | pointer to that type. If not, then we ask an appropriate | |
546 | language dependent routine to create a type FT_INTEGER, using | |
547 | defaults reasonable for the current target machine, and install | |
548 | that type in ftypes for future reference. | |
c906108c | 549 | |
c5aa993b | 550 | RETURNS |
c906108c | 551 | |
c5aa993b | 552 | Pointer to a fundamental type. |
c906108c | 553 | |
c5aa993b | 554 | */ |
c906108c SS |
555 | |
556 | static struct type * | |
fba45db2 | 557 | dwarf_fundamental_type (struct objfile *objfile, int typeid) |
c906108c SS |
558 | { |
559 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
560 | { | |
8a3fe4f8 | 561 | error (_("internal error - invalid fundamental type id %d"), typeid); |
c906108c SS |
562 | } |
563 | ||
564 | /* Look for this particular type in the fundamental type vector. If one is | |
565 | not found, create and install one appropriate for the current language | |
566 | and the current target machine. */ | |
567 | ||
568 | if (ftypes[typeid] == NULL) | |
569 | { | |
c5aa993b | 570 | ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); |
c906108c SS |
571 | } |
572 | ||
573 | return (ftypes[typeid]); | |
574 | } | |
575 | ||
576 | /* | |
577 | ||
c5aa993b | 578 | LOCAL FUNCTION |
c906108c | 579 | |
c5aa993b | 580 | set_cu_language -- set local copy of language for compilation unit |
c906108c | 581 | |
c5aa993b | 582 | SYNOPSIS |
c906108c | 583 | |
c5aa993b JM |
584 | void |
585 | set_cu_language (struct dieinfo *dip) | |
c906108c | 586 | |
c5aa993b | 587 | DESCRIPTION |
c906108c | 588 | |
c5aa993b JM |
589 | Decode the language attribute for a compilation unit DIE and |
590 | remember what the language was. We use this at various times | |
591 | when processing DIE's for a given compilation unit. | |
c906108c | 592 | |
c5aa993b | 593 | RETURNS |
c906108c | 594 | |
c5aa993b | 595 | No return value. |
c906108c SS |
596 | |
597 | */ | |
598 | ||
599 | static void | |
fba45db2 | 600 | set_cu_language (struct dieinfo *dip) |
c906108c | 601 | { |
c5aa993b | 602 | switch (dip->at_language) |
c906108c | 603 | { |
c5aa993b JM |
604 | case LANG_C89: |
605 | case LANG_C: | |
606 | cu_language = language_c; | |
607 | break; | |
608 | case LANG_C_PLUS_PLUS: | |
609 | cu_language = language_cplus; | |
610 | break; | |
c5aa993b JM |
611 | case LANG_MODULA2: |
612 | cu_language = language_m2; | |
613 | break; | |
614 | case LANG_FORTRAN77: | |
615 | case LANG_FORTRAN90: | |
616 | cu_language = language_fortran; | |
617 | break; | |
618 | case LANG_ADA83: | |
619 | case LANG_COBOL74: | |
620 | case LANG_COBOL85: | |
621 | case LANG_PASCAL83: | |
622 | /* We don't know anything special about these yet. */ | |
623 | cu_language = language_unknown; | |
624 | break; | |
625 | default: | |
626 | /* If no at_language, try to deduce one from the filename */ | |
627 | cu_language = deduce_language_from_filename (dip->at_name); | |
628 | break; | |
c906108c SS |
629 | } |
630 | cu_language_defn = language_def (cu_language); | |
631 | } | |
632 | ||
633 | /* | |
634 | ||
c5aa993b | 635 | GLOBAL FUNCTION |
c906108c | 636 | |
c5aa993b | 637 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info |
c906108c | 638 | |
c5aa993b | 639 | SYNOPSIS |
c906108c | 640 | |
c5aa993b | 641 | void dwarf_build_psymtabs (struct objfile *objfile, |
c5aa993b JM |
642 | int mainline, file_ptr dbfoff, unsigned int dbfsize, |
643 | file_ptr lnoffset, unsigned int lnsize) | |
c906108c | 644 | |
c5aa993b | 645 | DESCRIPTION |
c906108c | 646 | |
c5aa993b JM |
647 | This function is called upon to build partial symtabs from files |
648 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
c906108c | 649 | |
c5aa993b JM |
650 | It is passed a bfd* containing the DIES |
651 | and line number information, the corresponding filename for that | |
652 | file, a base address for relocating the symbols, a flag indicating | |
653 | whether or not this debugging information is from a "main symbol | |
654 | table" rather than a shared library or dynamically linked file, | |
655 | and file offset/size pairs for the DIE information and line number | |
656 | information. | |
c906108c | 657 | |
c5aa993b | 658 | RETURNS |
c906108c | 659 | |
c5aa993b | 660 | No return value. |
c906108c SS |
661 | |
662 | */ | |
663 | ||
664 | void | |
fba45db2 KB |
665 | dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff, |
666 | unsigned int dbfsize, file_ptr lnoffset, | |
667 | unsigned int lnsize) | |
c906108c SS |
668 | { |
669 | bfd *abfd = objfile->obfd; | |
670 | struct cleanup *back_to; | |
c5aa993b | 671 | |
c906108c SS |
672 | current_objfile = objfile; |
673 | dbsize = dbfsize; | |
674 | dbbase = xmalloc (dbsize); | |
675 | dbroff = 0; | |
676 | if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || | |
3a42e9d0 | 677 | (bfd_bread (dbbase, dbsize, abfd) != dbsize)) |
c906108c | 678 | { |
b8c9b27d | 679 | xfree (dbbase); |
8a3fe4f8 | 680 | error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd)); |
c906108c | 681 | } |
b8c9b27d | 682 | back_to = make_cleanup (xfree, dbbase); |
c5aa993b | 683 | |
c906108c SS |
684 | /* If we are reinitializing, or if we have never loaded syms yet, init. |
685 | Since we have no idea how many DIES we are looking at, we just guess | |
686 | some arbitrary value. */ | |
c5aa993b | 687 | |
ef96bde8 EZ |
688 | if (mainline |
689 | || (objfile->global_psymbols.size == 0 | |
690 | && objfile->static_psymbols.size == 0)) | |
c906108c SS |
691 | { |
692 | init_psymbol_list (objfile, 1024); | |
693 | } | |
c5aa993b | 694 | |
c906108c SS |
695 | /* Save the relocation factor where everybody can see it. */ |
696 | ||
d4f3574e SS |
697 | base_section_offsets = objfile->section_offsets; |
698 | baseaddr = ANOFFSET (objfile->section_offsets, 0); | |
c906108c SS |
699 | |
700 | /* Follow the compilation unit sibling chain, building a partial symbol | |
701 | table entry for each one. Save enough information about each compilation | |
702 | unit to locate the full DWARF information later. */ | |
c5aa993b | 703 | |
c906108c | 704 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); |
c5aa993b | 705 | |
c906108c SS |
706 | do_cleanups (back_to); |
707 | current_objfile = NULL; | |
708 | } | |
709 | ||
710 | /* | |
711 | ||
c5aa993b | 712 | LOCAL FUNCTION |
c906108c | 713 | |
c5aa993b | 714 | read_lexical_block_scope -- process all dies in a lexical block |
c906108c | 715 | |
c5aa993b | 716 | SYNOPSIS |
c906108c | 717 | |
c5aa993b JM |
718 | static void read_lexical_block_scope (struct dieinfo *dip, |
719 | char *thisdie, char *enddie) | |
c906108c | 720 | |
c5aa993b | 721 | DESCRIPTION |
c906108c | 722 | |
c5aa993b JM |
723 | Process all the DIES contained within a lexical block scope. |
724 | Start a new scope, process the dies, and then close the scope. | |
c906108c SS |
725 | |
726 | */ | |
727 | ||
728 | static void | |
fba45db2 KB |
729 | read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
730 | struct objfile *objfile) | |
c906108c | 731 | { |
b59661bd | 732 | struct context_stack *new; |
c906108c | 733 | |
c5aa993b JM |
734 | push_context (0, dip->at_low_pc); |
735 | process_dies (thisdie + dip->die_length, enddie, objfile); | |
c906108c SS |
736 | new = pop_context (); |
737 | if (local_symbols != NULL) | |
738 | { | |
c5aa993b JM |
739 | finish_block (0, &local_symbols, new->old_blocks, new->start_addr, |
740 | dip->at_high_pc, objfile); | |
c906108c | 741 | } |
c5aa993b | 742 | local_symbols = new->locals; |
c906108c SS |
743 | } |
744 | ||
745 | /* | |
746 | ||
c5aa993b | 747 | LOCAL FUNCTION |
c906108c | 748 | |
c5aa993b | 749 | lookup_utype -- look up a user defined type from die reference |
c906108c | 750 | |
c5aa993b | 751 | SYNOPSIS |
c906108c | 752 | |
c5aa993b | 753 | static type *lookup_utype (DIE_REF die_ref) |
c906108c | 754 | |
c5aa993b | 755 | DESCRIPTION |
c906108c | 756 | |
c5aa993b JM |
757 | Given a DIE reference, lookup the user defined type associated with |
758 | that DIE, if it has been registered already. If not registered, then | |
759 | return NULL. Alloc_utype() can be called to register an empty | |
760 | type for this reference, which will be filled in later when the | |
761 | actual referenced DIE is processed. | |
c906108c SS |
762 | */ |
763 | ||
764 | static struct type * | |
fba45db2 | 765 | lookup_utype (DIE_REF die_ref) |
c906108c SS |
766 | { |
767 | struct type *type = NULL; | |
768 | int utypeidx; | |
c5aa993b | 769 | |
c906108c SS |
770 | utypeidx = (die_ref - dbroff) / 4; |
771 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
772 | { | |
23136709 | 773 | bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref); |
c906108c SS |
774 | } |
775 | else | |
776 | { | |
777 | type = *(utypes + utypeidx); | |
778 | } | |
779 | return (type); | |
780 | } | |
781 | ||
782 | ||
783 | /* | |
784 | ||
c5aa993b | 785 | LOCAL FUNCTION |
c906108c | 786 | |
c5aa993b | 787 | alloc_utype -- add a user defined type for die reference |
c906108c | 788 | |
c5aa993b | 789 | SYNOPSIS |
c906108c | 790 | |
c5aa993b | 791 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c | 792 | |
c5aa993b | 793 | DESCRIPTION |
c906108c | 794 | |
c5aa993b JM |
795 | Given a die reference DIE_REF, and a possible pointer to a user |
796 | defined type UTYPEP, register that this reference has a user | |
797 | defined type and either use the specified type in UTYPEP or | |
798 | make a new empty type that will be filled in later. | |
c906108c | 799 | |
c5aa993b JM |
800 | We should only be called after calling lookup_utype() to verify that |
801 | there is not currently a type registered for DIE_REF. | |
c906108c SS |
802 | */ |
803 | ||
804 | static struct type * | |
fba45db2 | 805 | alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c SS |
806 | { |
807 | struct type **typep; | |
808 | int utypeidx; | |
c5aa993b | 809 | |
c906108c SS |
810 | utypeidx = (die_ref - dbroff) / 4; |
811 | typep = utypes + utypeidx; | |
812 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
813 | { | |
814 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
23136709 | 815 | bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref); |
c906108c SS |
816 | } |
817 | else if (*typep != NULL) | |
818 | { | |
819 | utypep = *typep; | |
23136709 | 820 | complaint (&symfile_complaints, |
e2e0b3e5 | 821 | _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"), |
23136709 | 822 | DIE_ID, DIE_NAME); |
c906108c SS |
823 | } |
824 | else | |
825 | { | |
826 | if (utypep == NULL) | |
827 | { | |
828 | utypep = alloc_type (current_objfile); | |
829 | } | |
830 | *typep = utypep; | |
831 | } | |
832 | return (utypep); | |
833 | } | |
834 | ||
835 | /* | |
836 | ||
c5aa993b | 837 | LOCAL FUNCTION |
c906108c | 838 | |
c5aa993b | 839 | free_utypes -- free the utypes array and reset pointer & count |
c906108c | 840 | |
c5aa993b | 841 | SYNOPSIS |
c906108c | 842 | |
4efb68b1 | 843 | static void free_utypes (void *dummy) |
c906108c | 844 | |
c5aa993b | 845 | DESCRIPTION |
c906108c | 846 | |
c5aa993b JM |
847 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, |
848 | and set numutypes back to zero. This ensures that the utypes does not get | |
849 | referenced after being freed. | |
c906108c SS |
850 | */ |
851 | ||
852 | static void | |
4efb68b1 | 853 | free_utypes (void *dummy) |
c906108c | 854 | { |
b8c9b27d | 855 | xfree (utypes); |
c906108c SS |
856 | utypes = NULL; |
857 | numutypes = 0; | |
858 | } | |
859 | ||
860 | ||
861 | /* | |
862 | ||
c5aa993b | 863 | LOCAL FUNCTION |
c906108c | 864 | |
c5aa993b | 865 | decode_die_type -- return a type for a specified die |
c906108c | 866 | |
c5aa993b | 867 | SYNOPSIS |
c906108c | 868 | |
c5aa993b | 869 | static struct type *decode_die_type (struct dieinfo *dip) |
c906108c | 870 | |
c5aa993b | 871 | DESCRIPTION |
c906108c | 872 | |
c5aa993b JM |
873 | Given a pointer to a die information structure DIP, decode the |
874 | type of the die and return a pointer to the decoded type. All | |
875 | dies without specific types default to type int. | |
c906108c SS |
876 | */ |
877 | ||
878 | static struct type * | |
fba45db2 | 879 | decode_die_type (struct dieinfo *dip) |
c906108c SS |
880 | { |
881 | struct type *type = NULL; | |
c5aa993b JM |
882 | |
883 | if (dip->at_fund_type != 0) | |
c906108c | 884 | { |
c5aa993b | 885 | type = decode_fund_type (dip->at_fund_type); |
c906108c | 886 | } |
c5aa993b | 887 | else if (dip->at_mod_fund_type != NULL) |
c906108c | 888 | { |
c5aa993b | 889 | type = decode_mod_fund_type (dip->at_mod_fund_type); |
c906108c | 890 | } |
c5aa993b | 891 | else if (dip->at_user_def_type) |
c906108c | 892 | { |
b59661bd AC |
893 | type = lookup_utype (dip->at_user_def_type); |
894 | if (type == NULL) | |
c906108c | 895 | { |
c5aa993b | 896 | type = alloc_utype (dip->at_user_def_type, NULL); |
c906108c SS |
897 | } |
898 | } | |
c5aa993b | 899 | else if (dip->at_mod_u_d_type) |
c906108c | 900 | { |
c5aa993b | 901 | type = decode_mod_u_d_type (dip->at_mod_u_d_type); |
c906108c SS |
902 | } |
903 | else | |
904 | { | |
905 | type = dwarf_fundamental_type (current_objfile, FT_VOID); | |
906 | } | |
907 | return (type); | |
908 | } | |
909 | ||
910 | /* | |
911 | ||
c5aa993b | 912 | LOCAL FUNCTION |
c906108c | 913 | |
c5aa993b | 914 | struct_type -- compute and return the type for a struct or union |
c906108c | 915 | |
c5aa993b | 916 | SYNOPSIS |
c906108c | 917 | |
c5aa993b JM |
918 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, |
919 | char *enddie, struct objfile *objfile) | |
c906108c | 920 | |
c5aa993b | 921 | DESCRIPTION |
c906108c | 922 | |
c5aa993b JM |
923 | Given pointer to a die information structure for a die which |
924 | defines a union or structure (and MUST define one or the other), | |
925 | and pointers to the raw die data that define the range of dies which | |
926 | define the members, compute and return the user defined type for the | |
927 | structure or union. | |
c906108c SS |
928 | */ |
929 | ||
930 | static struct type * | |
fba45db2 KB |
931 | struct_type (struct dieinfo *dip, char *thisdie, char *enddie, |
932 | struct objfile *objfile) | |
c906108c SS |
933 | { |
934 | struct type *type; | |
c5aa993b JM |
935 | struct nextfield |
936 | { | |
937 | struct nextfield *next; | |
938 | struct field field; | |
939 | }; | |
c906108c SS |
940 | struct nextfield *list = NULL; |
941 | struct nextfield *new; | |
942 | int nfields = 0; | |
943 | int n; | |
944 | struct dieinfo mbr; | |
945 | char *nextdie; | |
946 | int anonymous_size; | |
c5aa993b | 947 | |
b59661bd AC |
948 | type = lookup_utype (dip->die_ref); |
949 | if (type == NULL) | |
c906108c SS |
950 | { |
951 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 952 | type = alloc_utype (dip->die_ref, NULL); |
c906108c | 953 | } |
c5aa993b JM |
954 | INIT_CPLUS_SPECIFIC (type); |
955 | switch (dip->die_tag) | |
c906108c | 956 | { |
c5aa993b JM |
957 | case TAG_class_type: |
958 | TYPE_CODE (type) = TYPE_CODE_CLASS; | |
959 | break; | |
960 | case TAG_structure_type: | |
961 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
962 | break; | |
963 | case TAG_union_type: | |
964 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
965 | break; | |
966 | default: | |
967 | /* Should never happen */ | |
968 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
23136709 | 969 | complaint (&symfile_complaints, |
e2e0b3e5 | 970 | _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"), |
23136709 | 971 | DIE_ID, DIE_NAME); |
c5aa993b | 972 | break; |
c906108c SS |
973 | } |
974 | /* Some compilers try to be helpful by inventing "fake" names for | |
975 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
976 | Thanks, but no thanks... */ | |
c5aa993b JM |
977 | if (dip->at_name != NULL |
978 | && *dip->at_name != '~' | |
979 | && *dip->at_name != '.') | |
c906108c | 980 | { |
b99607ea | 981 | TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack, |
c5aa993b | 982 | "", "", dip->at_name); |
c906108c SS |
983 | } |
984 | /* Use whatever size is known. Zero is a valid size. We might however | |
985 | wish to check has_at_byte_size to make sure that some byte size was | |
986 | given explicitly, but DWARF doesn't specify that explicit sizes of | |
987 | zero have to present, so complaining about missing sizes should | |
988 | probably not be the default. */ | |
c5aa993b JM |
989 | TYPE_LENGTH (type) = dip->at_byte_size; |
990 | thisdie += dip->die_length; | |
c906108c SS |
991 | while (thisdie < enddie) |
992 | { | |
993 | basicdieinfo (&mbr, thisdie, objfile); | |
994 | completedieinfo (&mbr, objfile); | |
995 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) | |
996 | { | |
997 | break; | |
998 | } | |
999 | else if (mbr.at_sibling != 0) | |
1000 | { | |
1001 | nextdie = dbbase + mbr.at_sibling - dbroff; | |
1002 | } | |
1003 | else | |
1004 | { | |
1005 | nextdie = thisdie + mbr.die_length; | |
1006 | } | |
1007 | switch (mbr.die_tag) | |
1008 | { | |
1009 | case TAG_member: | |
fba3138e DJ |
1010 | /* Static fields can be either TAG_global_variable (GCC) or else |
1011 | TAG_member with no location (Diab). We could treat the latter like | |
1012 | the former... but since we don't support the former, just avoid | |
1013 | crashing on the latter for now. */ | |
1014 | if (mbr.at_location == NULL) | |
1015 | break; | |
1016 | ||
c906108c SS |
1017 | /* Get space to record the next field's data. */ |
1018 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1019 | new->next = list; |
c906108c SS |
1020 | list = new; |
1021 | /* Save the data. */ | |
c5aa993b JM |
1022 | list->field.name = |
1023 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |
b99607ea | 1024 | &objfile->objfile_obstack); |
c906108c SS |
1025 | FIELD_TYPE (list->field) = decode_die_type (&mbr); |
1026 | FIELD_BITPOS (list->field) = 8 * locval (&mbr); | |
01ad7f36 | 1027 | FIELD_STATIC_KIND (list->field) = 0; |
c906108c SS |
1028 | /* Handle bit fields. */ |
1029 | FIELD_BITSIZE (list->field) = mbr.at_bit_size; | |
1030 | if (BITS_BIG_ENDIAN) | |
1031 | { | |
1032 | /* For big endian bits, the at_bit_offset gives the | |
c5aa993b JM |
1033 | additional bit offset from the MSB of the containing |
1034 | anonymous object to the MSB of the field. We don't | |
1035 | have to do anything special since we don't need to | |
1036 | know the size of the anonymous object. */ | |
c906108c SS |
1037 | FIELD_BITPOS (list->field) += mbr.at_bit_offset; |
1038 | } | |
1039 | else | |
1040 | { | |
1041 | /* For little endian bits, we need to have a non-zero | |
c5aa993b JM |
1042 | at_bit_size, so that we know we are in fact dealing |
1043 | with a bitfield. Compute the bit offset to the MSB | |
1044 | of the anonymous object, subtract off the number of | |
1045 | bits from the MSB of the field to the MSB of the | |
1046 | object, and then subtract off the number of bits of | |
1047 | the field itself. The result is the bit offset of | |
1048 | the LSB of the field. */ | |
c906108c SS |
1049 | if (mbr.at_bit_size > 0) |
1050 | { | |
1051 | if (mbr.has_at_byte_size) | |
1052 | { | |
1053 | /* The size of the anonymous object containing | |
c5aa993b JM |
1054 | the bit field is explicit, so use the |
1055 | indicated size (in bytes). */ | |
c906108c SS |
1056 | anonymous_size = mbr.at_byte_size; |
1057 | } | |
1058 | else | |
1059 | { | |
1060 | /* The size of the anonymous object containing | |
c5aa993b JM |
1061 | the bit field matches the size of an object |
1062 | of the bit field's type. DWARF allows | |
1063 | at_byte_size to be left out in such cases, as | |
1064 | a debug information size optimization. */ | |
1065 | anonymous_size = TYPE_LENGTH (list->field.type); | |
c906108c SS |
1066 | } |
1067 | FIELD_BITPOS (list->field) += | |
1068 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |
1069 | } | |
1070 | } | |
1071 | nfields++; | |
1072 | break; | |
1073 | default: | |
1074 | process_dies (thisdie, nextdie, objfile); | |
1075 | break; | |
1076 | } | |
1077 | thisdie = nextdie; | |
1078 | } | |
1079 | /* Now create the vector of fields, and record how big it is. We may | |
1080 | not even have any fields, if this DIE was generated due to a reference | |
1081 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |
1082 | set, which clues gdb in to the fact that it needs to search elsewhere | |
1083 | for the full structure definition. */ | |
1084 | if (nfields == 0) | |
1085 | { | |
1086 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1087 | } | |
1088 | else | |
1089 | { | |
1090 | TYPE_NFIELDS (type) = nfields; | |
1091 | TYPE_FIELDS (type) = (struct field *) | |
1092 | TYPE_ALLOC (type, sizeof (struct field) * nfields); | |
1093 | /* Copy the saved-up fields into the field vector. */ | |
c5aa993b | 1094 | for (n = nfields; list; list = list->next) |
c906108c | 1095 | { |
c5aa993b JM |
1096 | TYPE_FIELD (type, --n) = list->field; |
1097 | } | |
c906108c SS |
1098 | } |
1099 | return (type); | |
1100 | } | |
1101 | ||
1102 | /* | |
1103 | ||
c5aa993b | 1104 | LOCAL FUNCTION |
c906108c | 1105 | |
c5aa993b | 1106 | read_structure_scope -- process all dies within struct or union |
c906108c | 1107 | |
c5aa993b | 1108 | SYNOPSIS |
c906108c | 1109 | |
c5aa993b JM |
1110 | static void read_structure_scope (struct dieinfo *dip, |
1111 | char *thisdie, char *enddie, struct objfile *objfile) | |
c906108c | 1112 | |
c5aa993b | 1113 | DESCRIPTION |
c906108c | 1114 | |
c5aa993b JM |
1115 | Called when we find the DIE that starts a structure or union |
1116 | scope (definition) to process all dies that define the members | |
1117 | of the structure or union. DIP is a pointer to the die info | |
1118 | struct for the DIE that names the structure or union. | |
c906108c | 1119 | |
c5aa993b JM |
1120 | NOTES |
1121 | ||
1122 | Note that we need to call struct_type regardless of whether or not | |
1123 | the DIE has an at_name attribute, since it might be an anonymous | |
1124 | structure or union. This gets the type entered into our set of | |
1125 | user defined types. | |
1126 | ||
1127 | However, if the structure is incomplete (an opaque struct/union) | |
1128 | then suppress creating a symbol table entry for it since gdb only | |
1129 | wants to find the one with the complete definition. Note that if | |
1130 | it is complete, we just call new_symbol, which does it's own | |
1131 | checking about whether the struct/union is anonymous or not (and | |
1132 | suppresses creating a symbol table entry itself). | |
c906108c | 1133 | |
c906108c SS |
1134 | */ |
1135 | ||
1136 | static void | |
fba45db2 KB |
1137 | read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1138 | struct objfile *objfile) | |
c906108c SS |
1139 | { |
1140 | struct type *type; | |
1141 | struct symbol *sym; | |
c5aa993b | 1142 | |
c906108c | 1143 | type = struct_type (dip, thisdie, enddie, objfile); |
74a9bb82 | 1144 | if (!TYPE_STUB (type)) |
c906108c SS |
1145 | { |
1146 | sym = new_symbol (dip, objfile); | |
1147 | if (sym != NULL) | |
1148 | { | |
1149 | SYMBOL_TYPE (sym) = type; | |
1150 | if (cu_language == language_cplus) | |
1151 | { | |
1152 | synthesize_typedef (dip, objfile, type); | |
1153 | } | |
1154 | } | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | /* | |
1159 | ||
c5aa993b | 1160 | LOCAL FUNCTION |
c906108c | 1161 | |
c5aa993b | 1162 | decode_array_element_type -- decode type of the array elements |
c906108c | 1163 | |
c5aa993b | 1164 | SYNOPSIS |
c906108c | 1165 | |
c5aa993b | 1166 | static struct type *decode_array_element_type (char *scan, char *end) |
c906108c | 1167 | |
c5aa993b | 1168 | DESCRIPTION |
c906108c | 1169 | |
c5aa993b JM |
1170 | As the last step in decoding the array subscript information for an |
1171 | array DIE, we need to decode the type of the array elements. We are | |
1172 | passed a pointer to this last part of the subscript information and | |
1173 | must return the appropriate type. If the type attribute is not | |
1174 | recognized, just warn about the problem and return type int. | |
c906108c SS |
1175 | */ |
1176 | ||
1177 | static struct type * | |
fba45db2 | 1178 | decode_array_element_type (char *scan) |
c906108c SS |
1179 | { |
1180 | struct type *typep; | |
1181 | DIE_REF die_ref; | |
1182 | unsigned short attribute; | |
1183 | unsigned short fundtype; | |
1184 | int nbytes; | |
c5aa993b | 1185 | |
c906108c SS |
1186 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, |
1187 | current_objfile); | |
1188 | scan += SIZEOF_ATTRIBUTE; | |
b59661bd AC |
1189 | nbytes = attribute_size (attribute); |
1190 | if (nbytes == -1) | |
c906108c | 1191 | { |
23136709 | 1192 | bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute); |
c906108c SS |
1193 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1194 | } | |
1195 | else | |
1196 | { | |
1197 | switch (attribute) | |
1198 | { | |
c5aa993b JM |
1199 | case AT_fund_type: |
1200 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1201 | current_objfile); | |
1202 | typep = decode_fund_type (fundtype); | |
1203 | break; | |
1204 | case AT_mod_fund_type: | |
1205 | typep = decode_mod_fund_type (scan); | |
1206 | break; | |
1207 | case AT_user_def_type: | |
1208 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1209 | current_objfile); | |
b59661bd AC |
1210 | typep = lookup_utype (die_ref); |
1211 | if (typep == NULL) | |
c5aa993b JM |
1212 | { |
1213 | typep = alloc_utype (die_ref, NULL); | |
1214 | } | |
1215 | break; | |
1216 | case AT_mod_u_d_type: | |
1217 | typep = decode_mod_u_d_type (scan); | |
1218 | break; | |
1219 | default: | |
23136709 | 1220 | bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute); |
c5aa993b JM |
1221 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1222 | break; | |
1223 | } | |
c906108c SS |
1224 | } |
1225 | return (typep); | |
1226 | } | |
1227 | ||
1228 | /* | |
1229 | ||
c5aa993b | 1230 | LOCAL FUNCTION |
c906108c | 1231 | |
c5aa993b | 1232 | decode_subscript_data_item -- decode array subscript item |
c906108c | 1233 | |
c5aa993b | 1234 | SYNOPSIS |
c906108c | 1235 | |
c5aa993b JM |
1236 | static struct type * |
1237 | decode_subscript_data_item (char *scan, char *end) | |
c906108c | 1238 | |
c5aa993b | 1239 | DESCRIPTION |
c906108c | 1240 | |
c5aa993b JM |
1241 | The array subscripts and the data type of the elements of an |
1242 | array are described by a list of data items, stored as a block | |
1243 | of contiguous bytes. There is a data item describing each array | |
1244 | dimension, and a final data item describing the element type. | |
1245 | The data items are ordered the same as their appearance in the | |
1246 | source (I.E. leftmost dimension first, next to leftmost second, | |
1247 | etc). | |
c906108c | 1248 | |
c5aa993b JM |
1249 | The data items describing each array dimension consist of four |
1250 | parts: (1) a format specifier, (2) type type of the subscript | |
1251 | index, (3) a description of the low bound of the array dimension, | |
1252 | and (4) a description of the high bound of the array dimension. | |
c906108c | 1253 | |
c5aa993b JM |
1254 | The last data item is the description of the type of each of |
1255 | the array elements. | |
c906108c | 1256 | |
c5aa993b JM |
1257 | We are passed a pointer to the start of the block of bytes |
1258 | containing the remaining data items, and a pointer to the first | |
1259 | byte past the data. This function recursively decodes the | |
1260 | remaining data items and returns a type. | |
c906108c | 1261 | |
c5aa993b JM |
1262 | If we somehow fail to decode some data, we complain about it |
1263 | and return a type "array of int". | |
c906108c | 1264 | |
c5aa993b JM |
1265 | BUGS |
1266 | FIXME: This code only implements the forms currently used | |
1267 | by the AT&T and GNU C compilers. | |
c906108c | 1268 | |
c5aa993b JM |
1269 | The end pointer is supplied for error checking, maybe we should |
1270 | use it for that... | |
c906108c SS |
1271 | */ |
1272 | ||
1273 | static struct type * | |
fba45db2 | 1274 | decode_subscript_data_item (char *scan, char *end) |
c906108c SS |
1275 | { |
1276 | struct type *typep = NULL; /* Array type we are building */ | |
1277 | struct type *nexttype; /* Type of each element (may be array) */ | |
1278 | struct type *indextype; /* Type of this index */ | |
1279 | struct type *rangetype; | |
1280 | unsigned int format; | |
1281 | unsigned short fundtype; | |
1282 | unsigned long lowbound; | |
1283 | unsigned long highbound; | |
1284 | int nbytes; | |
c5aa993b | 1285 | |
c906108c SS |
1286 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, |
1287 | current_objfile); | |
1288 | scan += SIZEOF_FORMAT_SPECIFIER; | |
1289 | switch (format) | |
1290 | { | |
1291 | case FMT_ET: | |
1292 | typep = decode_array_element_type (scan); | |
1293 | break; | |
1294 | case FMT_FT_C_C: | |
1295 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, | |
1296 | current_objfile); | |
1297 | indextype = decode_fund_type (fundtype); | |
1298 | scan += SIZEOF_FMT_FT; | |
1299 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); | |
1300 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1301 | scan += nbytes; | |
1302 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1303 | scan += nbytes; | |
1304 | nexttype = decode_subscript_data_item (scan, end); | |
1305 | if (nexttype == NULL) | |
1306 | { | |
1307 | /* Munged subscript data or other problem, fake it. */ | |
23136709 | 1308 | complaint (&symfile_complaints, |
e2e0b3e5 | 1309 | _("DIE @ 0x%x \"%s\", can't decode subscript data items"), |
23136709 | 1310 | DIE_ID, DIE_NAME); |
c906108c SS |
1311 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1312 | } | |
1313 | rangetype = create_range_type ((struct type *) NULL, indextype, | |
c5aa993b | 1314 | lowbound, highbound); |
c906108c SS |
1315 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
1316 | break; | |
1317 | case FMT_FT_C_X: | |
1318 | case FMT_FT_X_C: | |
1319 | case FMT_FT_X_X: | |
1320 | case FMT_UT_C_C: | |
1321 | case FMT_UT_C_X: | |
1322 | case FMT_UT_X_C: | |
1323 | case FMT_UT_X_X: | |
23136709 | 1324 | complaint (&symfile_complaints, |
e2e0b3e5 | 1325 | _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"), |
23136709 | 1326 | DIE_ID, DIE_NAME, format); |
c906108c SS |
1327 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1328 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1329 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1330 | break; | |
1331 | default: | |
23136709 | 1332 | complaint (&symfile_complaints, |
e2e0b3e5 | 1333 | _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID, |
23136709 | 1334 | DIE_NAME, format); |
c906108c SS |
1335 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1336 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1337 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1338 | break; | |
1339 | } | |
1340 | return (typep); | |
1341 | } | |
1342 | ||
1343 | /* | |
1344 | ||
c5aa993b | 1345 | LOCAL FUNCTION |
c906108c | 1346 | |
c5aa993b | 1347 | dwarf_read_array_type -- read TAG_array_type DIE |
c906108c | 1348 | |
c5aa993b | 1349 | SYNOPSIS |
c906108c | 1350 | |
c5aa993b | 1351 | static void dwarf_read_array_type (struct dieinfo *dip) |
c906108c | 1352 | |
c5aa993b | 1353 | DESCRIPTION |
c906108c | 1354 | |
c5aa993b JM |
1355 | Extract all information from a TAG_array_type DIE and add to |
1356 | the user defined type vector. | |
c906108c SS |
1357 | */ |
1358 | ||
1359 | static void | |
fba45db2 | 1360 | dwarf_read_array_type (struct dieinfo *dip) |
c906108c SS |
1361 | { |
1362 | struct type *type; | |
1363 | struct type *utype; | |
1364 | char *sub; | |
1365 | char *subend; | |
1366 | unsigned short blocksz; | |
1367 | int nbytes; | |
c5aa993b JM |
1368 | |
1369 | if (dip->at_ordering != ORD_row_major) | |
c906108c SS |
1370 | { |
1371 | /* FIXME: Can gdb even handle column major arrays? */ | |
23136709 | 1372 | complaint (&symfile_complaints, |
e2e0b3e5 | 1373 | _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"), |
23136709 | 1374 | DIE_ID, DIE_NAME); |
c906108c | 1375 | } |
b59661bd AC |
1376 | sub = dip->at_subscr_data; |
1377 | if (sub != NULL) | |
c906108c SS |
1378 | { |
1379 | nbytes = attribute_size (AT_subscr_data); | |
1380 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); | |
1381 | subend = sub + nbytes + blocksz; | |
1382 | sub += nbytes; | |
1383 | type = decode_subscript_data_item (sub, subend); | |
b59661bd AC |
1384 | utype = lookup_utype (dip->die_ref); |
1385 | if (utype == NULL) | |
c906108c SS |
1386 | { |
1387 | /* Install user defined type that has not been referenced yet. */ | |
c5aa993b | 1388 | alloc_utype (dip->die_ref, type); |
c906108c SS |
1389 | } |
1390 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) | |
1391 | { | |
1392 | /* Ick! A forward ref has already generated a blank type in our | |
1393 | slot, and this type probably already has things pointing to it | |
1394 | (which is what caused it to be created in the first place). | |
1395 | If it's just a place holder we can plop our fully defined type | |
1396 | on top of it. We can't recover the space allocated for our | |
1397 | new type since it might be on an obstack, but we could reuse | |
1398 | it if we kept a list of them, but it might not be worth it | |
1399 | (FIXME). */ | |
1400 | *utype = *type; | |
1401 | } | |
1402 | else | |
1403 | { | |
1404 | /* Double ick! Not only is a type already in our slot, but | |
1405 | someone has decorated it. Complain and leave it alone. */ | |
23136709 | 1406 | dup_user_type_definition_complaint (DIE_ID, DIE_NAME); |
c906108c SS |
1407 | } |
1408 | } | |
1409 | } | |
1410 | ||
1411 | /* | |
1412 | ||
c5aa993b | 1413 | LOCAL FUNCTION |
c906108c | 1414 | |
c5aa993b | 1415 | read_tag_pointer_type -- read TAG_pointer_type DIE |
c906108c | 1416 | |
c5aa993b | 1417 | SYNOPSIS |
c906108c | 1418 | |
c5aa993b | 1419 | static void read_tag_pointer_type (struct dieinfo *dip) |
c906108c | 1420 | |
c5aa993b | 1421 | DESCRIPTION |
c906108c | 1422 | |
c5aa993b JM |
1423 | Extract all information from a TAG_pointer_type DIE and add to |
1424 | the user defined type vector. | |
c906108c SS |
1425 | */ |
1426 | ||
1427 | static void | |
fba45db2 | 1428 | read_tag_pointer_type (struct dieinfo *dip) |
c906108c SS |
1429 | { |
1430 | struct type *type; | |
1431 | struct type *utype; | |
c5aa993b | 1432 | |
c906108c | 1433 | type = decode_die_type (dip); |
b59661bd AC |
1434 | utype = lookup_utype (dip->die_ref); |
1435 | if (utype == NULL) | |
c906108c SS |
1436 | { |
1437 | utype = lookup_pointer_type (type); | |
c5aa993b | 1438 | alloc_utype (dip->die_ref, utype); |
c906108c SS |
1439 | } |
1440 | else | |
1441 | { | |
1442 | TYPE_TARGET_TYPE (utype) = type; | |
1443 | TYPE_POINTER_TYPE (type) = utype; | |
1444 | ||
1445 | /* We assume the machine has only one representation for pointers! */ | |
1446 | /* FIXME: Possably a poor assumption */ | |
c5aa993b | 1447 | TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; |
c906108c SS |
1448 | TYPE_CODE (utype) = TYPE_CODE_PTR; |
1449 | } | |
1450 | } | |
1451 | ||
1452 | /* | |
1453 | ||
c5aa993b | 1454 | LOCAL FUNCTION |
c906108c | 1455 | |
c5aa993b | 1456 | read_tag_string_type -- read TAG_string_type DIE |
c906108c | 1457 | |
c5aa993b | 1458 | SYNOPSIS |
c906108c | 1459 | |
c5aa993b | 1460 | static void read_tag_string_type (struct dieinfo *dip) |
c906108c | 1461 | |
c5aa993b | 1462 | DESCRIPTION |
c906108c | 1463 | |
c5aa993b JM |
1464 | Extract all information from a TAG_string_type DIE and add to |
1465 | the user defined type vector. It isn't really a user defined | |
1466 | type, but it behaves like one, with other DIE's using an | |
1467 | AT_user_def_type attribute to reference it. | |
c906108c SS |
1468 | */ |
1469 | ||
1470 | static void | |
fba45db2 | 1471 | read_tag_string_type (struct dieinfo *dip) |
c906108c SS |
1472 | { |
1473 | struct type *utype; | |
1474 | struct type *indextype; | |
1475 | struct type *rangetype; | |
1476 | unsigned long lowbound = 0; | |
1477 | unsigned long highbound; | |
1478 | ||
c5aa993b | 1479 | if (dip->has_at_byte_size) |
c906108c SS |
1480 | { |
1481 | /* A fixed bounds string */ | |
c5aa993b | 1482 | highbound = dip->at_byte_size - 1; |
c906108c SS |
1483 | } |
1484 | else | |
1485 | { | |
1486 | /* A varying length string. Stub for now. (FIXME) */ | |
1487 | highbound = 1; | |
1488 | } | |
1489 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1490 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, | |
1491 | highbound); | |
c5aa993b JM |
1492 | |
1493 | utype = lookup_utype (dip->die_ref); | |
c906108c SS |
1494 | if (utype == NULL) |
1495 | { | |
1496 | /* No type defined, go ahead and create a blank one to use. */ | |
c5aa993b | 1497 | utype = alloc_utype (dip->die_ref, (struct type *) NULL); |
c906108c SS |
1498 | } |
1499 | else | |
1500 | { | |
1501 | /* Already a type in our slot due to a forward reference. Make sure it | |
c5aa993b | 1502 | is a blank one. If not, complain and leave it alone. */ |
c906108c SS |
1503 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) |
1504 | { | |
23136709 | 1505 | dup_user_type_definition_complaint (DIE_ID, DIE_NAME); |
c906108c SS |
1506 | return; |
1507 | } | |
1508 | } | |
1509 | ||
1510 | /* Create the string type using the blank type we either found or created. */ | |
1511 | utype = create_string_type (utype, rangetype); | |
1512 | } | |
1513 | ||
1514 | /* | |
1515 | ||
c5aa993b | 1516 | LOCAL FUNCTION |
c906108c | 1517 | |
c5aa993b | 1518 | read_subroutine_type -- process TAG_subroutine_type dies |
c906108c | 1519 | |
c5aa993b | 1520 | SYNOPSIS |
c906108c | 1521 | |
c5aa993b JM |
1522 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, |
1523 | char *enddie) | |
c906108c | 1524 | |
c5aa993b | 1525 | DESCRIPTION |
c906108c | 1526 | |
c5aa993b | 1527 | Handle DIES due to C code like: |
c906108c | 1528 | |
c5aa993b JM |
1529 | struct foo { |
1530 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1531 | int b; | |
1532 | }; | |
c906108c | 1533 | |
c5aa993b | 1534 | NOTES |
c906108c | 1535 | |
c5aa993b JM |
1536 | The parameter DIES are currently ignored. See if gdb has a way to |
1537 | include this info in it's type system, and decode them if so. Is | |
1538 | this what the type structure's "arg_types" field is for? (FIXME) | |
c906108c SS |
1539 | */ |
1540 | ||
1541 | static void | |
fba45db2 | 1542 | read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie) |
c906108c SS |
1543 | { |
1544 | struct type *type; /* Type that this function returns */ | |
1545 | struct type *ftype; /* Function that returns above type */ | |
c5aa993b | 1546 | |
c906108c SS |
1547 | /* Decode the type that this subroutine returns */ |
1548 | ||
1549 | type = decode_die_type (dip); | |
1550 | ||
1551 | /* Check to see if we already have a partially constructed user | |
1552 | defined type for this DIE, from a forward reference. */ | |
1553 | ||
b59661bd AC |
1554 | ftype = lookup_utype (dip->die_ref); |
1555 | if (ftype == NULL) | |
c906108c SS |
1556 | { |
1557 | /* This is the first reference to one of these types. Make | |
c5aa993b | 1558 | a new one and place it in the user defined types. */ |
c906108c | 1559 | ftype = lookup_function_type (type); |
c5aa993b | 1560 | alloc_utype (dip->die_ref, ftype); |
c906108c SS |
1561 | } |
1562 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) | |
1563 | { | |
1564 | /* We have an existing partially constructed type, so bash it | |
c5aa993b | 1565 | into the correct type. */ |
c906108c SS |
1566 | TYPE_TARGET_TYPE (ftype) = type; |
1567 | TYPE_LENGTH (ftype) = 1; | |
1568 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; | |
1569 | } | |
1570 | else | |
1571 | { | |
23136709 | 1572 | dup_user_type_definition_complaint (DIE_ID, DIE_NAME); |
c906108c SS |
1573 | } |
1574 | } | |
1575 | ||
1576 | /* | |
1577 | ||
c5aa993b | 1578 | LOCAL FUNCTION |
c906108c | 1579 | |
c5aa993b | 1580 | read_enumeration -- process dies which define an enumeration |
c906108c | 1581 | |
c5aa993b | 1582 | SYNOPSIS |
c906108c | 1583 | |
c5aa993b JM |
1584 | static void read_enumeration (struct dieinfo *dip, char *thisdie, |
1585 | char *enddie, struct objfile *objfile) | |
c906108c | 1586 | |
c5aa993b | 1587 | DESCRIPTION |
c906108c | 1588 | |
c5aa993b JM |
1589 | Given a pointer to a die which begins an enumeration, process all |
1590 | the dies that define the members of the enumeration. | |
c906108c | 1591 | |
c5aa993b | 1592 | NOTES |
c906108c | 1593 | |
c5aa993b JM |
1594 | Note that we need to call enum_type regardless of whether or not we |
1595 | have a symbol, since we might have an enum without a tag name (thus | |
1596 | no symbol for the tagname). | |
c906108c SS |
1597 | */ |
1598 | ||
1599 | static void | |
fba45db2 KB |
1600 | read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie, |
1601 | struct objfile *objfile) | |
c906108c SS |
1602 | { |
1603 | struct type *type; | |
1604 | struct symbol *sym; | |
c5aa993b | 1605 | |
c906108c SS |
1606 | type = enum_type (dip, objfile); |
1607 | sym = new_symbol (dip, objfile); | |
1608 | if (sym != NULL) | |
1609 | { | |
1610 | SYMBOL_TYPE (sym) = type; | |
1611 | if (cu_language == language_cplus) | |
1612 | { | |
1613 | synthesize_typedef (dip, objfile, type); | |
1614 | } | |
1615 | } | |
1616 | } | |
1617 | ||
1618 | /* | |
1619 | ||
c5aa993b | 1620 | LOCAL FUNCTION |
c906108c | 1621 | |
c5aa993b | 1622 | enum_type -- decode and return a type for an enumeration |
c906108c | 1623 | |
c5aa993b | 1624 | SYNOPSIS |
c906108c | 1625 | |
c5aa993b | 1626 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 1627 | |
c5aa993b | 1628 | DESCRIPTION |
c906108c | 1629 | |
c5aa993b JM |
1630 | Given a pointer to a die information structure for the die which |
1631 | starts an enumeration, process all the dies that define the members | |
1632 | of the enumeration and return a type pointer for the enumeration. | |
c906108c | 1633 | |
c5aa993b | 1634 | At the same time, for each member of the enumeration, create a |
176620f1 | 1635 | symbol for it with domain VAR_DOMAIN and class LOC_CONST, |
c5aa993b | 1636 | and give it the type of the enumeration itself. |
c906108c | 1637 | |
c5aa993b | 1638 | NOTES |
c906108c | 1639 | |
c5aa993b JM |
1640 | Note that the DWARF specification explicitly mandates that enum |
1641 | constants occur in reverse order from the source program order, | |
1642 | for "consistency" and because this ordering is easier for many | |
1643 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |
1644 | Entries). Because gdb wants to see the enum members in program | |
1645 | source order, we have to ensure that the order gets reversed while | |
1646 | we are processing them. | |
c906108c SS |
1647 | */ |
1648 | ||
1649 | static struct type * | |
fba45db2 | 1650 | enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
1651 | { |
1652 | struct type *type; | |
c5aa993b JM |
1653 | struct nextfield |
1654 | { | |
1655 | struct nextfield *next; | |
1656 | struct field field; | |
1657 | }; | |
c906108c SS |
1658 | struct nextfield *list = NULL; |
1659 | struct nextfield *new; | |
1660 | int nfields = 0; | |
1661 | int n; | |
1662 | char *scan; | |
1663 | char *listend; | |
1664 | unsigned short blocksz; | |
1665 | struct symbol *sym; | |
1666 | int nbytes; | |
1667 | int unsigned_enum = 1; | |
c5aa993b | 1668 | |
b59661bd AC |
1669 | type = lookup_utype (dip->die_ref); |
1670 | if (type == NULL) | |
c906108c SS |
1671 | { |
1672 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 1673 | type = alloc_utype (dip->die_ref, NULL); |
c906108c SS |
1674 | } |
1675 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1676 | /* Some compilers try to be helpful by inventing "fake" names for | |
1677 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1678 | Thanks, but no thanks... */ | |
c5aa993b JM |
1679 | if (dip->at_name != NULL |
1680 | && *dip->at_name != '~' | |
1681 | && *dip->at_name != '.') | |
c906108c | 1682 | { |
b99607ea | 1683 | TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack, |
c5aa993b | 1684 | "", "", dip->at_name); |
c906108c | 1685 | } |
c5aa993b | 1686 | if (dip->at_byte_size != 0) |
c906108c | 1687 | { |
c5aa993b | 1688 | TYPE_LENGTH (type) = dip->at_byte_size; |
c906108c | 1689 | } |
b59661bd AC |
1690 | scan = dip->at_element_list; |
1691 | if (scan != NULL) | |
c906108c | 1692 | { |
c5aa993b | 1693 | if (dip->short_element_list) |
c906108c SS |
1694 | { |
1695 | nbytes = attribute_size (AT_short_element_list); | |
1696 | } | |
1697 | else | |
1698 | { | |
1699 | nbytes = attribute_size (AT_element_list); | |
1700 | } | |
1701 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
1702 | listend = scan + nbytes + blocksz; | |
1703 | scan += nbytes; | |
1704 | while (scan < listend) | |
1705 | { | |
1706 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1707 | new->next = list; |
c906108c SS |
1708 | list = new; |
1709 | FIELD_TYPE (list->field) = NULL; | |
1710 | FIELD_BITSIZE (list->field) = 0; | |
01ad7f36 | 1711 | FIELD_STATIC_KIND (list->field) = 0; |
c906108c SS |
1712 | FIELD_BITPOS (list->field) = |
1713 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, | |
1714 | objfile); | |
1715 | scan += TARGET_FT_LONG_SIZE (objfile); | |
c5aa993b | 1716 | list->field.name = obsavestring (scan, strlen (scan), |
b99607ea | 1717 | &objfile->objfile_obstack); |
c906108c SS |
1718 | scan += strlen (scan) + 1; |
1719 | nfields++; | |
1720 | /* Handcraft a new symbol for this enum member. */ | |
4a146b47 | 1721 | sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, |
c906108c SS |
1722 | sizeof (struct symbol)); |
1723 | memset (sym, 0, sizeof (struct symbol)); | |
22abf04a | 1724 | DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name, |
4a146b47 | 1725 | &objfile->objfile_obstack); |
c906108c | 1726 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); |
176620f1 | 1727 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
1728 | SYMBOL_CLASS (sym) = LOC_CONST; |
1729 | SYMBOL_TYPE (sym) = type; | |
1730 | SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); | |
1731 | if (SYMBOL_VALUE (sym) < 0) | |
1732 | unsigned_enum = 0; | |
1733 | add_symbol_to_list (sym, list_in_scope); | |
1734 | } | |
1735 | /* Now create the vector of fields, and record how big it is. This is | |
c5aa993b JM |
1736 | where we reverse the order, by pulling the members off the list in |
1737 | reverse order from how they were inserted. If we have no fields | |
1738 | (this is apparently possible in C++) then skip building a field | |
1739 | vector. */ | |
c906108c SS |
1740 | if (nfields > 0) |
1741 | { | |
1742 | if (unsigned_enum) | |
1743 | TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; | |
1744 | TYPE_NFIELDS (type) = nfields; | |
1745 | TYPE_FIELDS (type) = (struct field *) | |
4a146b47 | 1746 | obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields); |
c906108c | 1747 | /* Copy the saved-up fields into the field vector. */ |
c5aa993b | 1748 | for (n = 0; (n < nfields) && (list != NULL); list = list->next) |
c906108c | 1749 | { |
c5aa993b JM |
1750 | TYPE_FIELD (type, n++) = list->field; |
1751 | } | |
c906108c SS |
1752 | } |
1753 | } | |
1754 | return (type); | |
1755 | } | |
1756 | ||
1757 | /* | |
1758 | ||
c5aa993b | 1759 | LOCAL FUNCTION |
c906108c | 1760 | |
c5aa993b | 1761 | read_func_scope -- process all dies within a function scope |
c906108c | 1762 | |
c5aa993b | 1763 | DESCRIPTION |
c906108c | 1764 | |
c5aa993b JM |
1765 | Process all dies within a given function scope. We are passed |
1766 | a die information structure pointer DIP for the die which | |
1767 | starts the function scope, and pointers into the raw die data | |
1768 | that define the dies within the function scope. | |
1769 | ||
1770 | For now, we ignore lexical block scopes within the function. | |
1771 | The problem is that AT&T cc does not define a DWARF lexical | |
1772 | block scope for the function itself, while gcc defines a | |
1773 | lexical block scope for the function. We need to think about | |
1774 | how to handle this difference, or if it is even a problem. | |
1775 | (FIXME) | |
c906108c SS |
1776 | */ |
1777 | ||
1778 | static void | |
fba45db2 KB |
1779 | read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1780 | struct objfile *objfile) | |
c906108c | 1781 | { |
b59661bd | 1782 | struct context_stack *new; |
c5aa993b | 1783 | |
c906108c SS |
1784 | /* AT_name is absent if the function is described with an |
1785 | AT_abstract_origin tag. | |
1786 | Ignore the function description for now to avoid GDB core dumps. | |
1787 | FIXME: Add code to handle AT_abstract_origin tags properly. */ | |
c5aa993b | 1788 | if (dip->at_name == NULL) |
c906108c | 1789 | { |
e2e0b3e5 | 1790 | complaint (&symfile_complaints, _("DIE @ 0x%x, AT_name tag missing"), |
23136709 | 1791 | DIE_ID); |
c906108c SS |
1792 | return; |
1793 | } | |
1794 | ||
c5aa993b JM |
1795 | new = push_context (0, dip->at_low_pc); |
1796 | new->name = new_symbol (dip, objfile); | |
c906108c | 1797 | list_in_scope = &local_symbols; |
c5aa993b | 1798 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c SS |
1799 | new = pop_context (); |
1800 | /* Make a block for the local symbols within. */ | |
c5aa993b JM |
1801 | finish_block (new->name, &local_symbols, new->old_blocks, |
1802 | new->start_addr, dip->at_high_pc, objfile); | |
c906108c SS |
1803 | list_in_scope = &file_symbols; |
1804 | } | |
1805 | ||
1806 | ||
1807 | /* | |
1808 | ||
c5aa993b | 1809 | LOCAL FUNCTION |
c906108c | 1810 | |
c5aa993b | 1811 | handle_producer -- process the AT_producer attribute |
c906108c | 1812 | |
c5aa993b | 1813 | DESCRIPTION |
c906108c | 1814 | |
c5aa993b JM |
1815 | Perform any operations that depend on finding a particular |
1816 | AT_producer attribute. | |
c906108c SS |
1817 | |
1818 | */ | |
1819 | ||
1820 | static void | |
fba45db2 | 1821 | handle_producer (char *producer) |
c906108c SS |
1822 | { |
1823 | ||
1824 | /* If this compilation unit was compiled with g++ or gcc, then set the | |
1825 | processing_gcc_compilation flag. */ | |
1826 | ||
cb137aa5 | 1827 | if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) |
c906108c SS |
1828 | { |
1829 | char version = producer[strlen (GCC_PRODUCER)]; | |
1830 | processing_gcc_compilation = (version == '2' ? 2 : 1); | |
1831 | } | |
1832 | else | |
1833 | { | |
1834 | processing_gcc_compilation = | |
bf896cb0 | 1835 | strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0; |
c906108c SS |
1836 | } |
1837 | ||
1838 | /* Select a demangling style if we can identify the producer and if | |
1839 | the current style is auto. We leave the current style alone if it | |
1840 | is not auto. We also leave the demangling style alone if we find a | |
1841 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |
1842 | ||
1843 | if (AUTO_DEMANGLING) | |
1844 | { | |
cb137aa5 | 1845 | if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) |
c906108c | 1846 | { |
8052a17a JM |
1847 | #if 0 |
1848 | /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't | |
1849 | know whether it will use the old style or v3 mangling. */ | |
c906108c | 1850 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); |
8052a17a | 1851 | #endif |
c906108c | 1852 | } |
cb137aa5 | 1853 | else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) |
c906108c SS |
1854 | { |
1855 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); | |
1856 | } | |
1857 | } | |
1858 | } | |
1859 | ||
1860 | ||
1861 | /* | |
1862 | ||
c5aa993b | 1863 | LOCAL FUNCTION |
c906108c | 1864 | |
c5aa993b | 1865 | read_file_scope -- process all dies within a file scope |
c906108c | 1866 | |
c5aa993b JM |
1867 | DESCRIPTION |
1868 | ||
1869 | Process all dies within a given file scope. We are passed a | |
1870 | pointer to the die information structure for the die which | |
1871 | starts the file scope, and pointers into the raw die data which | |
1872 | mark the range of dies within the file scope. | |
c906108c | 1873 | |
c5aa993b JM |
1874 | When the partial symbol table is built, the file offset for the line |
1875 | number table for each compilation unit is saved in the partial symbol | |
1876 | table entry for that compilation unit. As the symbols for each | |
1877 | compilation unit are read, the line number table is read into memory | |
1878 | and the variable lnbase is set to point to it. Thus all we have to | |
1879 | do is use lnbase to access the line number table for the current | |
1880 | compilation unit. | |
c906108c SS |
1881 | */ |
1882 | ||
1883 | static void | |
fba45db2 KB |
1884 | read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1885 | struct objfile *objfile) | |
c906108c SS |
1886 | { |
1887 | struct cleanup *back_to; | |
1888 | struct symtab *symtab; | |
c5aa993b | 1889 | |
c906108c | 1890 | set_cu_language (dip); |
c5aa993b | 1891 | if (dip->at_producer != NULL) |
c906108c | 1892 | { |
c5aa993b | 1893 | handle_producer (dip->at_producer); |
c906108c SS |
1894 | } |
1895 | numutypes = (enddie - thisdie) / 4; | |
1896 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1897 | back_to = make_cleanup (free_utypes, NULL); | |
1898 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1899 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); | |
c5aa993b | 1900 | start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); |
c906108c SS |
1901 | record_debugformat ("DWARF 1"); |
1902 | decode_line_numbers (lnbase); | |
c5aa993b | 1903 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c | 1904 | |
c5aa993b | 1905 | symtab = end_symtab (dip->at_high_pc, objfile, 0); |
c906108c SS |
1906 | if (symtab != NULL) |
1907 | { | |
c5aa993b JM |
1908 | symtab->language = cu_language; |
1909 | } | |
c906108c SS |
1910 | do_cleanups (back_to); |
1911 | } | |
1912 | ||
1913 | /* | |
1914 | ||
c5aa993b | 1915 | LOCAL FUNCTION |
c906108c | 1916 | |
c5aa993b | 1917 | process_dies -- process a range of DWARF Information Entries |
c906108c | 1918 | |
c5aa993b | 1919 | SYNOPSIS |
c906108c | 1920 | |
c5aa993b JM |
1921 | static void process_dies (char *thisdie, char *enddie, |
1922 | struct objfile *objfile) | |
c906108c | 1923 | |
c5aa993b | 1924 | DESCRIPTION |
c906108c | 1925 | |
c5aa993b JM |
1926 | Process all DIE's in a specified range. May be (and almost |
1927 | certainly will be) called recursively. | |
c906108c SS |
1928 | */ |
1929 | ||
1930 | static void | |
fba45db2 | 1931 | process_dies (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
1932 | { |
1933 | char *nextdie; | |
1934 | struct dieinfo di; | |
c5aa993b | 1935 | |
c906108c SS |
1936 | while (thisdie < enddie) |
1937 | { | |
1938 | basicdieinfo (&di, thisdie, objfile); | |
1939 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
1940 | { | |
1941 | break; | |
1942 | } | |
1943 | else if (di.die_tag == TAG_padding) | |
1944 | { | |
1945 | nextdie = thisdie + di.die_length; | |
1946 | } | |
1947 | else | |
1948 | { | |
1949 | completedieinfo (&di, objfile); | |
1950 | if (di.at_sibling != 0) | |
1951 | { | |
1952 | nextdie = dbbase + di.at_sibling - dbroff; | |
1953 | } | |
1954 | else | |
1955 | { | |
1956 | nextdie = thisdie + di.die_length; | |
1957 | } | |
c906108c | 1958 | /* I think that these are always text, not data, addresses. */ |
181c1381 RE |
1959 | di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc); |
1960 | di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc); | |
c906108c SS |
1961 | switch (di.die_tag) |
1962 | { | |
1963 | case TAG_compile_unit: | |
1964 | /* Skip Tag_compile_unit if we are already inside a compilation | |
c5aa993b JM |
1965 | unit, we are unable to handle nested compilation units |
1966 | properly (FIXME). */ | |
c906108c SS |
1967 | if (current_subfile == NULL) |
1968 | read_file_scope (&di, thisdie, nextdie, objfile); | |
1969 | else | |
1970 | nextdie = thisdie + di.die_length; | |
1971 | break; | |
1972 | case TAG_global_subroutine: | |
1973 | case TAG_subroutine: | |
1974 | if (di.has_at_low_pc) | |
1975 | { | |
1976 | read_func_scope (&di, thisdie, nextdie, objfile); | |
1977 | } | |
1978 | break; | |
1979 | case TAG_lexical_block: | |
1980 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |
1981 | break; | |
1982 | case TAG_class_type: | |
1983 | case TAG_structure_type: | |
1984 | case TAG_union_type: | |
1985 | read_structure_scope (&di, thisdie, nextdie, objfile); | |
1986 | break; | |
1987 | case TAG_enumeration_type: | |
1988 | read_enumeration (&di, thisdie, nextdie, objfile); | |
1989 | break; | |
1990 | case TAG_subroutine_type: | |
1991 | read_subroutine_type (&di, thisdie, nextdie); | |
1992 | break; | |
1993 | case TAG_array_type: | |
1994 | dwarf_read_array_type (&di); | |
1995 | break; | |
1996 | case TAG_pointer_type: | |
1997 | read_tag_pointer_type (&di); | |
1998 | break; | |
1999 | case TAG_string_type: | |
2000 | read_tag_string_type (&di); | |
2001 | break; | |
2002 | default: | |
2003 | new_symbol (&di, objfile); | |
2004 | break; | |
2005 | } | |
2006 | } | |
2007 | thisdie = nextdie; | |
2008 | } | |
2009 | } | |
2010 | ||
2011 | /* | |
2012 | ||
c5aa993b | 2013 | LOCAL FUNCTION |
c906108c | 2014 | |
c5aa993b | 2015 | decode_line_numbers -- decode a line number table fragment |
c906108c | 2016 | |
c5aa993b | 2017 | SYNOPSIS |
c906108c | 2018 | |
c5aa993b JM |
2019 | static void decode_line_numbers (char *tblscan, char *tblend, |
2020 | long length, long base, long line, long pc) | |
c906108c | 2021 | |
c5aa993b | 2022 | DESCRIPTION |
c906108c | 2023 | |
c5aa993b | 2024 | Translate the DWARF line number information to gdb form. |
c906108c | 2025 | |
c5aa993b JM |
2026 | The ".line" section contains one or more line number tables, one for |
2027 | each ".line" section from the objects that were linked. | |
c906108c | 2028 | |
c5aa993b JM |
2029 | The AT_stmt_list attribute for each TAG_source_file entry in the |
2030 | ".debug" section contains the offset into the ".line" section for the | |
2031 | start of the table for that file. | |
c906108c | 2032 | |
c5aa993b | 2033 | The table itself has the following structure: |
c906108c | 2034 | |
c5aa993b JM |
2035 | <table length><base address><source statement entry> |
2036 | 4 bytes 4 bytes 10 bytes | |
c906108c | 2037 | |
c5aa993b JM |
2038 | The table length is the total size of the table, including the 4 bytes |
2039 | for the length information. | |
c906108c | 2040 | |
c5aa993b JM |
2041 | The base address is the address of the first instruction generated |
2042 | for the source file. | |
c906108c | 2043 | |
c5aa993b | 2044 | Each source statement entry has the following structure: |
c906108c | 2045 | |
c5aa993b JM |
2046 | <line number><statement position><address delta> |
2047 | 4 bytes 2 bytes 4 bytes | |
c906108c | 2048 | |
c5aa993b JM |
2049 | The line number is relative to the start of the file, starting with |
2050 | line 1. | |
c906108c | 2051 | |
c5aa993b JM |
2052 | The statement position either -1 (0xFFFF) or the number of characters |
2053 | from the beginning of the line to the beginning of the statement. | |
c906108c | 2054 | |
c5aa993b JM |
2055 | The address delta is the difference between the base address and |
2056 | the address of the first instruction for the statement. | |
c906108c | 2057 | |
c5aa993b JM |
2058 | Note that we must copy the bytes from the packed table to our local |
2059 | variables before attempting to use them, to avoid alignment problems | |
2060 | on some machines, particularly RISC processors. | |
c906108c | 2061 | |
c5aa993b | 2062 | BUGS |
c906108c | 2063 | |
c5aa993b JM |
2064 | Does gdb expect the line numbers to be sorted? They are now by |
2065 | chance/luck, but are not required to be. (FIXME) | |
c906108c | 2066 | |
c5aa993b JM |
2067 | The line with number 0 is unused, gdb apparently can discover the |
2068 | span of the last line some other way. How? (FIXME) | |
c906108c SS |
2069 | */ |
2070 | ||
2071 | static void | |
fba45db2 | 2072 | decode_line_numbers (char *linetable) |
c906108c SS |
2073 | { |
2074 | char *tblscan; | |
2075 | char *tblend; | |
2076 | unsigned long length; | |
2077 | unsigned long base; | |
2078 | unsigned long line; | |
2079 | unsigned long pc; | |
c5aa993b | 2080 | |
c906108c SS |
2081 | if (linetable != NULL) |
2082 | { | |
2083 | tblscan = tblend = linetable; | |
2084 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, | |
2085 | current_objfile); | |
2086 | tblscan += SIZEOF_LINETBL_LENGTH; | |
2087 | tblend += length; | |
2088 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), | |
2089 | GET_UNSIGNED, current_objfile); | |
2090 | tblscan += TARGET_FT_POINTER_SIZE (objfile); | |
2091 | base += baseaddr; | |
2092 | while (tblscan < tblend) | |
2093 | { | |
2094 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, | |
2095 | current_objfile); | |
2096 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; | |
2097 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, | |
2098 | current_objfile); | |
2099 | tblscan += SIZEOF_LINETBL_DELTA; | |
2100 | pc += base; | |
2101 | if (line != 0) | |
2102 | { | |
2103 | record_line (current_subfile, line, pc); | |
2104 | } | |
2105 | } | |
2106 | } | |
2107 | } | |
2108 | ||
2109 | /* | |
2110 | ||
c5aa993b | 2111 | LOCAL FUNCTION |
c906108c | 2112 | |
c5aa993b | 2113 | locval -- compute the value of a location attribute |
c906108c | 2114 | |
c5aa993b | 2115 | SYNOPSIS |
c906108c | 2116 | |
c5aa993b | 2117 | static int locval (struct dieinfo *dip) |
c906108c | 2118 | |
c5aa993b | 2119 | DESCRIPTION |
c906108c | 2120 | |
c5aa993b JM |
2121 | Given pointer to a string of bytes that define a location, compute |
2122 | the location and return the value. | |
2123 | A location description containing no atoms indicates that the | |
2124 | object is optimized out. The optimized_out flag is set for those, | |
2125 | the return value is meaningless. | |
c906108c | 2126 | |
c5aa993b JM |
2127 | When computing values involving the current value of the frame pointer, |
2128 | the value zero is used, which results in a value relative to the frame | |
2129 | pointer, rather than the absolute value. This is what GDB wants | |
2130 | anyway. | |
c906108c | 2131 | |
c5aa993b JM |
2132 | When the result is a register number, the isreg flag is set, otherwise |
2133 | it is cleared. This is a kludge until we figure out a better | |
2134 | way to handle the problem. Gdb's design does not mesh well with the | |
2135 | DWARF notion of a location computing interpreter, which is a shame | |
2136 | because the flexibility goes unused. | |
2137 | ||
2138 | NOTES | |
2139 | ||
2140 | Note that stack[0] is unused except as a default error return. | |
2141 | Note that stack overflow is not yet handled. | |
c906108c SS |
2142 | */ |
2143 | ||
2144 | static int | |
fba45db2 | 2145 | locval (struct dieinfo *dip) |
c906108c SS |
2146 | { |
2147 | unsigned short nbytes; | |
2148 | unsigned short locsize; | |
2149 | auto long stack[64]; | |
2150 | int stacki; | |
2151 | char *loc; | |
2152 | char *end; | |
2153 | int loc_atom_code; | |
2154 | int loc_value_size; | |
c5aa993b JM |
2155 | |
2156 | loc = dip->at_location; | |
c906108c SS |
2157 | nbytes = attribute_size (AT_location); |
2158 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); | |
2159 | loc += nbytes; | |
2160 | end = loc + locsize; | |
2161 | stacki = 0; | |
2162 | stack[stacki] = 0; | |
c5aa993b JM |
2163 | dip->isreg = 0; |
2164 | dip->offreg = 0; | |
2165 | dip->optimized_out = 1; | |
c906108c SS |
2166 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); |
2167 | while (loc < end) | |
2168 | { | |
c5aa993b | 2169 | dip->optimized_out = 0; |
c906108c SS |
2170 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, |
2171 | current_objfile); | |
2172 | loc += SIZEOF_LOC_ATOM_CODE; | |
2173 | switch (loc_atom_code) | |
2174 | { | |
c5aa993b JM |
2175 | case 0: |
2176 | /* error */ | |
2177 | loc = end; | |
2178 | break; | |
2179 | case OP_REG: | |
2180 | /* push register (number) */ | |
2181 | stack[++stacki] | |
2182 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, | |
2183 | GET_UNSIGNED, | |
2184 | current_objfile)); | |
2185 | loc += loc_value_size; | |
2186 | dip->isreg = 1; | |
2187 | break; | |
2188 | case OP_BASEREG: | |
2189 | /* push value of register (number) */ | |
2190 | /* Actually, we compute the value as if register has 0, so the | |
2191 | value ends up being the offset from that register. */ | |
2192 | dip->offreg = 1; | |
2193 | dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, | |
2194 | current_objfile); | |
2195 | loc += loc_value_size; | |
2196 | stack[++stacki] = 0; | |
2197 | break; | |
2198 | case OP_ADDR: | |
2199 | /* push address (relocated address) */ | |
2200 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2201 | GET_UNSIGNED, current_objfile); | |
2202 | loc += loc_value_size; | |
2203 | break; | |
2204 | case OP_CONST: | |
2205 | /* push constant (number) FIXME: signed or unsigned! */ | |
2206 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2207 | GET_SIGNED, current_objfile); | |
2208 | loc += loc_value_size; | |
2209 | break; | |
2210 | case OP_DEREF2: | |
2211 | /* pop, deref and push 2 bytes (as a long) */ | |
23136709 | 2212 | complaint (&symfile_complaints, |
e2e0b3e5 | 2213 | _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"), |
23136709 | 2214 | DIE_ID, DIE_NAME, stack[stacki]); |
c5aa993b JM |
2215 | break; |
2216 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
23136709 | 2217 | complaint (&symfile_complaints, |
e2e0b3e5 | 2218 | _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"), |
23136709 | 2219 | DIE_ID, DIE_NAME, stack[stacki]); |
c5aa993b JM |
2220 | break; |
2221 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2222 | stack[stacki - 1] += stack[stacki]; | |
2223 | stacki--; | |
2224 | break; | |
c906108c SS |
2225 | } |
2226 | } | |
2227 | return (stack[stacki]); | |
2228 | } | |
2229 | ||
2230 | /* | |
2231 | ||
c5aa993b | 2232 | LOCAL FUNCTION |
c906108c | 2233 | |
c5aa993b | 2234 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's |
c906108c | 2235 | |
c5aa993b | 2236 | SYNOPSIS |
c906108c | 2237 | |
c5aa993b | 2238 | static void read_ofile_symtab (struct partial_symtab *pst) |
c906108c | 2239 | |
c5aa993b | 2240 | DESCRIPTION |
c906108c | 2241 | |
c5aa993b JM |
2242 | When expanding a partial symbol table entry to a full symbol table |
2243 | entry, this is the function that gets called to read in the symbols | |
2244 | for the compilation unit. A pointer to the newly constructed symtab, | |
2245 | which is now the new first one on the objfile's symtab list, is | |
2246 | stashed in the partial symbol table entry. | |
c906108c SS |
2247 | */ |
2248 | ||
2249 | static void | |
fba45db2 | 2250 | read_ofile_symtab (struct partial_symtab *pst) |
c906108c SS |
2251 | { |
2252 | struct cleanup *back_to; | |
2253 | unsigned long lnsize; | |
2254 | file_ptr foffset; | |
2255 | bfd *abfd; | |
2256 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; | |
2257 | ||
c5aa993b JM |
2258 | abfd = pst->objfile->obfd; |
2259 | current_objfile = pst->objfile; | |
c906108c SS |
2260 | |
2261 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2262 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2263 | ||
2264 | diecount = 0; | |
2265 | dbsize = DBLENGTH (pst); | |
2266 | dbbase = xmalloc (dbsize); | |
c5aa993b JM |
2267 | dbroff = DBROFF (pst); |
2268 | foffset = DBFOFF (pst) + dbroff; | |
c906108c SS |
2269 | base_section_offsets = pst->section_offsets; |
2270 | baseaddr = ANOFFSET (pst->section_offsets, 0); | |
2271 | if (bfd_seek (abfd, foffset, SEEK_SET) || | |
3a42e9d0 | 2272 | (bfd_bread (dbbase, dbsize, abfd) != dbsize)) |
c906108c | 2273 | { |
b8c9b27d | 2274 | xfree (dbbase); |
8a3fe4f8 | 2275 | error (_("can't read DWARF data")); |
c906108c | 2276 | } |
b8c9b27d | 2277 | back_to = make_cleanup (xfree, dbbase); |
c906108c SS |
2278 | |
2279 | /* If there is a line number table associated with this compilation unit | |
2280 | then read the size of this fragment in bytes, from the fragment itself. | |
2281 | Allocate a buffer for the fragment and read it in for future | |
2282 | processing. */ | |
2283 | ||
2284 | lnbase = NULL; | |
2285 | if (LNFOFF (pst)) | |
2286 | { | |
2287 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
4efb68b1 | 2288 | (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd) |
3a42e9d0 | 2289 | != sizeof (lnsizedata))) |
c906108c | 2290 | { |
8a3fe4f8 | 2291 | error (_("can't read DWARF line number table size")); |
c906108c SS |
2292 | } |
2293 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, | |
c5aa993b | 2294 | GET_UNSIGNED, pst->objfile); |
c906108c SS |
2295 | lnbase = xmalloc (lnsize); |
2296 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
3a42e9d0 | 2297 | (bfd_bread (lnbase, lnsize, abfd) != lnsize)) |
c906108c | 2298 | { |
b8c9b27d | 2299 | xfree (lnbase); |
8a3fe4f8 | 2300 | error (_("can't read DWARF line numbers")); |
c906108c | 2301 | } |
b8c9b27d | 2302 | make_cleanup (xfree, lnbase); |
c906108c SS |
2303 | } |
2304 | ||
c5aa993b | 2305 | process_dies (dbbase, dbbase + dbsize, pst->objfile); |
c906108c SS |
2306 | do_cleanups (back_to); |
2307 | current_objfile = NULL; | |
c5aa993b | 2308 | pst->symtab = pst->objfile->symtabs; |
c906108c SS |
2309 | } |
2310 | ||
2311 | /* | |
2312 | ||
c5aa993b | 2313 | LOCAL FUNCTION |
c906108c | 2314 | |
c5aa993b | 2315 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry |
c906108c | 2316 | |
c5aa993b | 2317 | SYNOPSIS |
c906108c | 2318 | |
c5aa993b | 2319 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c | 2320 | |
c5aa993b | 2321 | DESCRIPTION |
c906108c | 2322 | |
c5aa993b JM |
2323 | Called once for each partial symbol table entry that needs to be |
2324 | expanded into a full symbol table entry. | |
c906108c | 2325 | |
c5aa993b | 2326 | */ |
c906108c SS |
2327 | |
2328 | static void | |
fba45db2 | 2329 | psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c SS |
2330 | { |
2331 | int i; | |
2332 | struct cleanup *old_chain; | |
c5aa993b | 2333 | |
c906108c SS |
2334 | if (pst != NULL) |
2335 | { | |
2336 | if (pst->readin) | |
2337 | { | |
8a3fe4f8 | 2338 | warning (_("psymtab for %s already read in. Shouldn't happen."), |
c5aa993b | 2339 | pst->filename); |
c906108c SS |
2340 | } |
2341 | else | |
2342 | { | |
2343 | /* Read in all partial symtabs on which this one is dependent */ | |
c5aa993b | 2344 | for (i = 0; i < pst->number_of_dependencies; i++) |
c906108c | 2345 | { |
c5aa993b | 2346 | if (!pst->dependencies[i]->readin) |
c906108c SS |
2347 | { |
2348 | /* Inform about additional files that need to be read in. */ | |
2349 | if (info_verbose) | |
2350 | { | |
a3f17187 AC |
2351 | /* FIXME: i18n: Need to make this a single |
2352 | string. */ | |
c906108c SS |
2353 | fputs_filtered (" ", gdb_stdout); |
2354 | wrap_here (""); | |
2355 | fputs_filtered ("and ", gdb_stdout); | |
2356 | wrap_here (""); | |
2357 | printf_filtered ("%s...", | |
c5aa993b | 2358 | pst->dependencies[i]->filename); |
c906108c | 2359 | wrap_here (""); |
c5aa993b | 2360 | gdb_flush (gdb_stdout); /* Flush output */ |
c906108c | 2361 | } |
c5aa993b | 2362 | psymtab_to_symtab_1 (pst->dependencies[i]); |
c906108c | 2363 | } |
c5aa993b JM |
2364 | } |
2365 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ | |
c906108c SS |
2366 | { |
2367 | buildsym_init (); | |
a0b3c4fd | 2368 | old_chain = make_cleanup (really_free_pendings, 0); |
c906108c SS |
2369 | read_ofile_symtab (pst); |
2370 | if (info_verbose) | |
2371 | { | |
a3f17187 | 2372 | printf_filtered (_("%d DIE's, sorting..."), diecount); |
c906108c SS |
2373 | wrap_here (""); |
2374 | gdb_flush (gdb_stdout); | |
2375 | } | |
c906108c SS |
2376 | do_cleanups (old_chain); |
2377 | } | |
c5aa993b | 2378 | pst->readin = 1; |
c906108c SS |
2379 | } |
2380 | } | |
2381 | } | |
2382 | ||
2383 | /* | |
2384 | ||
c5aa993b | 2385 | LOCAL FUNCTION |
c906108c | 2386 | |
c5aa993b | 2387 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one |
c906108c | 2388 | |
c5aa993b | 2389 | SYNOPSIS |
c906108c | 2390 | |
c5aa993b | 2391 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c | 2392 | |
c5aa993b | 2393 | DESCRIPTION |
c906108c | 2394 | |
c5aa993b JM |
2395 | This is the DWARF support entry point for building a full symbol |
2396 | table entry from a partial symbol table entry. We are passed a | |
2397 | pointer to the partial symbol table entry that needs to be expanded. | |
c906108c | 2398 | |
c5aa993b | 2399 | */ |
c906108c SS |
2400 | |
2401 | static void | |
fba45db2 | 2402 | dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c SS |
2403 | { |
2404 | ||
2405 | if (pst != NULL) | |
2406 | { | |
c5aa993b | 2407 | if (pst->readin) |
c906108c | 2408 | { |
8a3fe4f8 | 2409 | warning (_("psymtab for %s already read in. Shouldn't happen."), |
c5aa993b | 2410 | pst->filename); |
c906108c SS |
2411 | } |
2412 | else | |
2413 | { | |
c5aa993b | 2414 | if (DBLENGTH (pst) || pst->number_of_dependencies) |
c906108c SS |
2415 | { |
2416 | /* Print the message now, before starting serious work, to avoid | |
c5aa993b | 2417 | disconcerting pauses. */ |
c906108c SS |
2418 | if (info_verbose) |
2419 | { | |
a3f17187 | 2420 | printf_filtered (_("Reading in symbols for %s..."), |
c5aa993b | 2421 | pst->filename); |
c906108c SS |
2422 | gdb_flush (gdb_stdout); |
2423 | } | |
c5aa993b | 2424 | |
c906108c | 2425 | psymtab_to_symtab_1 (pst); |
c5aa993b JM |
2426 | |
2427 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2428 | we need to do an equivalent or is this something peculiar to | |
2429 | stabs/a.out format. | |
2430 | Match with global symbols. This only needs to be done once, | |
2431 | after all of the symtabs and dependencies have been read in. | |
2432 | */ | |
2433 | scan_file_globals (pst->objfile); | |
c906108c | 2434 | #endif |
c5aa993b | 2435 | |
c906108c SS |
2436 | /* Finish up the verbose info message. */ |
2437 | if (info_verbose) | |
2438 | { | |
a3f17187 | 2439 | printf_filtered (_("done.\n")); |
c906108c SS |
2440 | gdb_flush (gdb_stdout); |
2441 | } | |
2442 | } | |
2443 | } | |
2444 | } | |
2445 | } | |
2446 | ||
2447 | /* | |
2448 | ||
c5aa993b | 2449 | LOCAL FUNCTION |
c906108c | 2450 | |
c5aa993b | 2451 | add_enum_psymbol -- add enumeration members to partial symbol table |
c906108c | 2452 | |
c5aa993b | 2453 | DESCRIPTION |
c906108c | 2454 | |
c5aa993b JM |
2455 | Given pointer to a DIE that is known to be for an enumeration, |
2456 | extract the symbolic names of the enumeration members and add | |
2457 | partial symbols for them. | |
2458 | */ | |
c906108c SS |
2459 | |
2460 | static void | |
fba45db2 | 2461 | add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2462 | { |
2463 | char *scan; | |
2464 | char *listend; | |
2465 | unsigned short blocksz; | |
2466 | int nbytes; | |
c5aa993b | 2467 | |
b59661bd AC |
2468 | scan = dip->at_element_list; |
2469 | if (scan != NULL) | |
c906108c | 2470 | { |
c5aa993b | 2471 | if (dip->short_element_list) |
c906108c SS |
2472 | { |
2473 | nbytes = attribute_size (AT_short_element_list); | |
2474 | } | |
2475 | else | |
2476 | { | |
2477 | nbytes = attribute_size (AT_element_list); | |
2478 | } | |
2479 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
2480 | scan += nbytes; | |
2481 | listend = scan + blocksz; | |
2482 | while (scan < listend) | |
2483 | { | |
2484 | scan += TARGET_FT_LONG_SIZE (objfile); | |
176620f1 | 2485 | add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST, |
c5aa993b | 2486 | &objfile->static_psymbols, 0, 0, cu_language, |
c906108c SS |
2487 | objfile); |
2488 | scan += strlen (scan) + 1; | |
2489 | } | |
2490 | } | |
2491 | } | |
2492 | ||
2493 | /* | |
2494 | ||
c5aa993b | 2495 | LOCAL FUNCTION |
c906108c | 2496 | |
c5aa993b | 2497 | add_partial_symbol -- add symbol to partial symbol table |
c906108c | 2498 | |
c5aa993b | 2499 | DESCRIPTION |
c906108c | 2500 | |
c5aa993b JM |
2501 | Given a DIE, if it is one of the types that we want to |
2502 | add to a partial symbol table, finish filling in the die info | |
2503 | and then add a partial symbol table entry for it. | |
c906108c | 2504 | |
c5aa993b | 2505 | NOTES |
c906108c | 2506 | |
c5aa993b JM |
2507 | The caller must ensure that the DIE has a valid name attribute. |
2508 | */ | |
c906108c SS |
2509 | |
2510 | static void | |
fba45db2 | 2511 | add_partial_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 2512 | { |
c5aa993b | 2513 | switch (dip->die_tag) |
c906108c SS |
2514 | { |
2515 | case TAG_global_subroutine: | |
c5aa993b | 2516 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2517 | VAR_DOMAIN, LOC_BLOCK, |
c5aa993b JM |
2518 | &objfile->global_psymbols, |
2519 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2520 | break; |
2521 | case TAG_global_variable: | |
c5aa993b | 2522 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2523 | VAR_DOMAIN, LOC_STATIC, |
c5aa993b | 2524 | &objfile->global_psymbols, |
c906108c SS |
2525 | 0, 0, cu_language, objfile); |
2526 | break; | |
2527 | case TAG_subroutine: | |
c5aa993b | 2528 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2529 | VAR_DOMAIN, LOC_BLOCK, |
c5aa993b JM |
2530 | &objfile->static_psymbols, |
2531 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2532 | break; |
2533 | case TAG_local_variable: | |
c5aa993b | 2534 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2535 | VAR_DOMAIN, LOC_STATIC, |
c5aa993b | 2536 | &objfile->static_psymbols, |
c906108c SS |
2537 | 0, 0, cu_language, objfile); |
2538 | break; | |
2539 | case TAG_typedef: | |
c5aa993b | 2540 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2541 | VAR_DOMAIN, LOC_TYPEDEF, |
c5aa993b | 2542 | &objfile->static_psymbols, |
c906108c SS |
2543 | 0, 0, cu_language, objfile); |
2544 | break; | |
2545 | case TAG_class_type: | |
2546 | case TAG_structure_type: | |
2547 | case TAG_union_type: | |
2548 | case TAG_enumeration_type: | |
2549 | /* Do not add opaque aggregate definitions to the psymtab. */ | |
c5aa993b | 2550 | if (!dip->has_at_byte_size) |
c906108c | 2551 | break; |
c5aa993b | 2552 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2553 | STRUCT_DOMAIN, LOC_TYPEDEF, |
c5aa993b | 2554 | &objfile->static_psymbols, |
c906108c SS |
2555 | 0, 0, cu_language, objfile); |
2556 | if (cu_language == language_cplus) | |
2557 | { | |
2558 | /* For C++, these implicitly act as typedefs as well. */ | |
c5aa993b | 2559 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2560 | VAR_DOMAIN, LOC_TYPEDEF, |
c5aa993b | 2561 | &objfile->static_psymbols, |
c906108c SS |
2562 | 0, 0, cu_language, objfile); |
2563 | } | |
2564 | break; | |
2565 | } | |
2566 | } | |
9846de1b | 2567 | /* *INDENT-OFF* */ |
c906108c SS |
2568 | /* |
2569 | ||
2570 | LOCAL FUNCTION | |
2571 | ||
2572 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2573 | ||
2574 | DESCRIPTION | |
2575 | ||
2576 | Process the DIE's within a single compilation unit, looking for | |
2577 | interesting DIE's that contribute to the partial symbol table entry | |
2578 | for this compilation unit. | |
2579 | ||
2580 | NOTES | |
2581 | ||
2582 | There are some DIE's that may appear both at file scope and within | |
2583 | the scope of a function. We are only interested in the ones at file | |
2584 | scope, and the only way to tell them apart is to keep track of the | |
2585 | scope. For example, consider the test case: | |
2586 | ||
2587 | static int i; | |
2588 | main () { int j; } | |
2589 | ||
2590 | for which the relevant DWARF segment has the structure: | |
2591 | ||
2592 | 0x51: | |
2593 | 0x23 global subrtn sibling 0x9b | |
2594 | name main | |
2595 | fund_type FT_integer | |
2596 | low_pc 0x800004cc | |
2597 | high_pc 0x800004d4 | |
2598 | ||
2599 | 0x74: | |
2600 | 0x23 local var sibling 0x97 | |
2601 | name j | |
2602 | fund_type FT_integer | |
2603 | location OP_BASEREG 0xe | |
2604 | OP_CONST 0xfffffffc | |
2605 | OP_ADD | |
2606 | 0x97: | |
2607 | 0x4 | |
2608 | ||
2609 | 0x9b: | |
2610 | 0x1d local var sibling 0xb8 | |
2611 | name i | |
2612 | fund_type FT_integer | |
2613 | location OP_ADDR 0x800025dc | |
2614 | ||
2615 | 0xb8: | |
2616 | 0x4 | |
2617 | ||
2618 | We want to include the symbol 'i' in the partial symbol table, but | |
2619 | not the symbol 'j'. In essence, we want to skip all the dies within | |
2620 | the scope of a TAG_global_subroutine DIE. | |
2621 | ||
2622 | Don't attempt to add anonymous structures or unions since they have | |
2623 | no name. Anonymous enumerations however are processed, because we | |
2624 | want to extract their member names (the check for a tag name is | |
2625 | done later). | |
2626 | ||
2627 | Also, for variables and subroutines, check that this is the place | |
2628 | where the actual definition occurs, rather than just a reference | |
2629 | to an external. | |
2630 | */ | |
9846de1b | 2631 | /* *INDENT-ON* */ |
c906108c | 2632 | |
c5aa993b JM |
2633 | |
2634 | ||
c906108c | 2635 | static void |
fba45db2 | 2636 | scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
2637 | { |
2638 | char *nextdie; | |
2639 | char *temp; | |
2640 | struct dieinfo di; | |
c5aa993b | 2641 | |
c906108c SS |
2642 | while (thisdie < enddie) |
2643 | { | |
2644 | basicdieinfo (&di, thisdie, objfile); | |
2645 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2646 | { | |
2647 | break; | |
2648 | } | |
2649 | else | |
2650 | { | |
2651 | nextdie = thisdie + di.die_length; | |
2652 | /* To avoid getting complete die information for every die, we | |
2653 | only do it (below) for the cases we are interested in. */ | |
2654 | switch (di.die_tag) | |
2655 | { | |
2656 | case TAG_global_subroutine: | |
2657 | case TAG_subroutine: | |
2658 | completedieinfo (&di, objfile); | |
2659 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2660 | { | |
2661 | add_partial_symbol (&di, objfile); | |
2662 | /* If there is a sibling attribute, adjust the nextdie | |
2663 | pointer to skip the entire scope of the subroutine. | |
2664 | Apply some sanity checking to make sure we don't | |
2665 | overrun or underrun the range of remaining DIE's */ | |
2666 | if (di.at_sibling != 0) | |
2667 | { | |
2668 | temp = dbbase + di.at_sibling - dbroff; | |
2669 | if ((temp < thisdie) || (temp >= enddie)) | |
2670 | { | |
23136709 KB |
2671 | bad_die_ref_complaint (DIE_ID, DIE_NAME, |
2672 | di.at_sibling); | |
c906108c SS |
2673 | } |
2674 | else | |
2675 | { | |
2676 | nextdie = temp; | |
2677 | } | |
2678 | } | |
2679 | } | |
2680 | break; | |
2681 | case TAG_global_variable: | |
2682 | case TAG_local_variable: | |
2683 | completedieinfo (&di, objfile); | |
2684 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2685 | { | |
2686 | add_partial_symbol (&di, objfile); | |
2687 | } | |
2688 | break; | |
2689 | case TAG_typedef: | |
2690 | case TAG_class_type: | |
2691 | case TAG_structure_type: | |
2692 | case TAG_union_type: | |
2693 | completedieinfo (&di, objfile); | |
2694 | if (di.at_name) | |
2695 | { | |
2696 | add_partial_symbol (&di, objfile); | |
2697 | } | |
2698 | break; | |
2699 | case TAG_enumeration_type: | |
2700 | completedieinfo (&di, objfile); | |
2701 | if (di.at_name) | |
2702 | { | |
2703 | add_partial_symbol (&di, objfile); | |
2704 | } | |
2705 | add_enum_psymbol (&di, objfile); | |
2706 | break; | |
2707 | } | |
2708 | } | |
2709 | thisdie = nextdie; | |
2710 | } | |
2711 | } | |
2712 | ||
2713 | /* | |
2714 | ||
c5aa993b | 2715 | LOCAL FUNCTION |
c906108c | 2716 | |
c5aa993b | 2717 | scan_compilation_units -- build a psymtab entry for each compilation |
c906108c | 2718 | |
c5aa993b | 2719 | DESCRIPTION |
c906108c | 2720 | |
c5aa993b JM |
2721 | This is the top level dwarf parsing routine for building partial |
2722 | symbol tables. | |
c906108c | 2723 | |
c5aa993b JM |
2724 | It scans from the beginning of the DWARF table looking for the first |
2725 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2726 | each additional TAG_compile_unit DIE. | |
2727 | ||
2728 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2729 | calls a subordinate routine to collect all the compilation unit's | |
2730 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2731 | new partial symtab structure into the partial symbol table. It also | |
2732 | records the appropriate information in the partial symbol table entry | |
2733 | to allow the chunk of DIE's and line number table for this compilation | |
2734 | unit to be located and re-read later, to generate a complete symbol | |
2735 | table entry for the compilation unit. | |
2736 | ||
2737 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2738 | compilation units into smaller DIE chunks and line number tables, | |
2739 | and associates them with a partial symbol table entry. | |
2740 | ||
2741 | NOTES | |
c906108c | 2742 | |
c5aa993b JM |
2743 | If any compilation unit has no line number table associated with |
2744 | it for some reason (a missing at_stmt_list attribute, rather than | |
2745 | just one with a value of zero, which is valid) then we ensure that | |
2746 | the recorded file offset is zero so that the routine which later | |
2747 | reads line number table fragments knows that there is no fragment | |
2748 | to read. | |
c906108c | 2749 | |
c5aa993b | 2750 | RETURNS |
c906108c | 2751 | |
c5aa993b | 2752 | Returns no value. |
c906108c SS |
2753 | |
2754 | */ | |
2755 | ||
2756 | static void | |
fba45db2 KB |
2757 | scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff, |
2758 | file_ptr lnoffset, struct objfile *objfile) | |
c906108c SS |
2759 | { |
2760 | char *nextdie; | |
2761 | struct dieinfo di; | |
2762 | struct partial_symtab *pst; | |
2763 | int culength; | |
2764 | int curoff; | |
2765 | file_ptr curlnoffset; | |
2766 | ||
2767 | while (thisdie < enddie) | |
2768 | { | |
2769 | basicdieinfo (&di, thisdie, objfile); | |
2770 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2771 | { | |
2772 | break; | |
2773 | } | |
2774 | else if (di.die_tag != TAG_compile_unit) | |
2775 | { | |
2776 | nextdie = thisdie + di.die_length; | |
2777 | } | |
2778 | else | |
2779 | { | |
2780 | completedieinfo (&di, objfile); | |
2781 | set_cu_language (&di); | |
2782 | if (di.at_sibling != 0) | |
2783 | { | |
2784 | nextdie = dbbase + di.at_sibling - dbroff; | |
2785 | } | |
2786 | else | |
2787 | { | |
2788 | nextdie = thisdie + di.die_length; | |
2789 | } | |
2790 | curoff = thisdie - dbbase; | |
2791 | culength = nextdie - thisdie; | |
2792 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |
2793 | ||
2794 | /* First allocate a new partial symbol table structure */ | |
2795 | ||
2796 | pst = start_psymtab_common (objfile, base_section_offsets, | |
2797 | di.at_name, di.at_low_pc, | |
c5aa993b JM |
2798 | objfile->global_psymbols.next, |
2799 | objfile->static_psymbols.next); | |
c906108c | 2800 | |
c5aa993b JM |
2801 | pst->texthigh = di.at_high_pc; |
2802 | pst->read_symtab_private = (char *) | |
8b92e4d5 | 2803 | obstack_alloc (&objfile->objfile_obstack, |
c5aa993b | 2804 | sizeof (struct dwfinfo)); |
c906108c SS |
2805 | DBFOFF (pst) = dbfoff; |
2806 | DBROFF (pst) = curoff; | |
2807 | DBLENGTH (pst) = culength; | |
c5aa993b JM |
2808 | LNFOFF (pst) = curlnoffset; |
2809 | pst->read_symtab = dwarf_psymtab_to_symtab; | |
c906108c SS |
2810 | |
2811 | /* Now look for partial symbols */ | |
2812 | ||
2813 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |
2814 | ||
c5aa993b JM |
2815 | pst->n_global_syms = objfile->global_psymbols.next - |
2816 | (objfile->global_psymbols.list + pst->globals_offset); | |
2817 | pst->n_static_syms = objfile->static_psymbols.next - | |
2818 | (objfile->static_psymbols.list + pst->statics_offset); | |
c906108c SS |
2819 | sort_pst_symbols (pst); |
2820 | /* If there is already a psymtab or symtab for a file of this name, | |
2821 | remove it. (If there is a symtab, more drastic things also | |
2822 | happen.) This happens in VxWorks. */ | |
c5aa993b | 2823 | free_named_symtabs (pst->filename); |
c906108c | 2824 | } |
c5aa993b | 2825 | thisdie = nextdie; |
c906108c SS |
2826 | } |
2827 | } | |
2828 | ||
2829 | /* | |
2830 | ||
c5aa993b | 2831 | LOCAL FUNCTION |
c906108c | 2832 | |
c5aa993b | 2833 | new_symbol -- make a symbol table entry for a new symbol |
c906108c | 2834 | |
c5aa993b | 2835 | SYNOPSIS |
c906108c | 2836 | |
c5aa993b JM |
2837 | static struct symbol *new_symbol (struct dieinfo *dip, |
2838 | struct objfile *objfile) | |
c906108c | 2839 | |
c5aa993b | 2840 | DESCRIPTION |
c906108c | 2841 | |
c5aa993b JM |
2842 | Given a pointer to a DWARF information entry, figure out if we need |
2843 | to make a symbol table entry for it, and if so, create a new entry | |
2844 | and return a pointer to it. | |
c906108c SS |
2845 | */ |
2846 | ||
2847 | static struct symbol * | |
fba45db2 | 2848 | new_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2849 | { |
2850 | struct symbol *sym = NULL; | |
c5aa993b JM |
2851 | |
2852 | if (dip->at_name != NULL) | |
c906108c | 2853 | { |
4a146b47 | 2854 | sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, |
c906108c SS |
2855 | sizeof (struct symbol)); |
2856 | OBJSTAT (objfile, n_syms++); | |
2857 | memset (sym, 0, sizeof (struct symbol)); | |
c906108c | 2858 | /* default assumptions */ |
176620f1 | 2859 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
2860 | SYMBOL_CLASS (sym) = LOC_STATIC; |
2861 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2862 | ||
2863 | /* If this symbol is from a C++ compilation, then attempt to cache the | |
c5aa993b JM |
2864 | demangled form for future reference. This is a typical time versus |
2865 | space tradeoff, that was decided in favor of time because it sped up | |
2866 | C++ symbol lookups by a factor of about 20. */ | |
c906108c SS |
2867 | |
2868 | SYMBOL_LANGUAGE (sym) = cu_language; | |
2de7ced7 | 2869 | SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile); |
c5aa993b | 2870 | switch (dip->die_tag) |
c906108c SS |
2871 | { |
2872 | case TAG_label: | |
c5aa993b | 2873 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c SS |
2874 | SYMBOL_CLASS (sym) = LOC_LABEL; |
2875 | break; | |
2876 | case TAG_global_subroutine: | |
2877 | case TAG_subroutine: | |
c5aa993b | 2878 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c | 2879 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); |
c5aa993b | 2880 | if (dip->at_prototyped) |
c906108c SS |
2881 | TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; |
2882 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
c5aa993b | 2883 | if (dip->die_tag == TAG_global_subroutine) |
c906108c SS |
2884 | { |
2885 | add_symbol_to_list (sym, &global_symbols); | |
2886 | } | |
2887 | else | |
2888 | { | |
2889 | add_symbol_to_list (sym, list_in_scope); | |
2890 | } | |
2891 | break; | |
2892 | case TAG_global_variable: | |
c5aa993b | 2893 | if (dip->at_location != NULL) |
c906108c SS |
2894 | { |
2895 | SYMBOL_VALUE_ADDRESS (sym) = locval (dip); | |
2896 | add_symbol_to_list (sym, &global_symbols); | |
2897 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2898 | SYMBOL_VALUE (sym) += baseaddr; | |
2899 | } | |
2900 | break; | |
2901 | case TAG_local_variable: | |
c5aa993b | 2902 | if (dip->at_location != NULL) |
c906108c SS |
2903 | { |
2904 | int loc = locval (dip); | |
c5aa993b | 2905 | if (dip->optimized_out) |
c906108c SS |
2906 | { |
2907 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; | |
2908 | } | |
c5aa993b | 2909 | else if (dip->isreg) |
c906108c SS |
2910 | { |
2911 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2912 | } | |
c5aa993b | 2913 | else if (dip->offreg) |
c906108c SS |
2914 | { |
2915 | SYMBOL_CLASS (sym) = LOC_BASEREG; | |
c5aa993b | 2916 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2917 | } |
2918 | else | |
2919 | { | |
2920 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2921 | SYMBOL_VALUE (sym) += baseaddr; | |
2922 | } | |
2923 | if (SYMBOL_CLASS (sym) == LOC_STATIC) | |
2924 | { | |
2925 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, | |
2926 | which may store to a bigger location than SYMBOL_VALUE. */ | |
2927 | SYMBOL_VALUE_ADDRESS (sym) = loc; | |
2928 | } | |
2929 | else | |
2930 | { | |
2931 | SYMBOL_VALUE (sym) = loc; | |
2932 | } | |
2933 | add_symbol_to_list (sym, list_in_scope); | |
2934 | } | |
2935 | break; | |
2936 | case TAG_formal_parameter: | |
c5aa993b | 2937 | if (dip->at_location != NULL) |
c906108c SS |
2938 | { |
2939 | SYMBOL_VALUE (sym) = locval (dip); | |
2940 | } | |
2941 | add_symbol_to_list (sym, list_in_scope); | |
c5aa993b | 2942 | if (dip->isreg) |
c906108c SS |
2943 | { |
2944 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2945 | } | |
c5aa993b | 2946 | else if (dip->offreg) |
c906108c SS |
2947 | { |
2948 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; | |
c5aa993b | 2949 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2950 | } |
2951 | else | |
2952 | { | |
2953 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2954 | } | |
2955 | break; | |
2956 | case TAG_unspecified_parameters: | |
2957 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2958 | this information, so just ignore it for now. (FIXME?) */ | |
2959 | break; | |
2960 | case TAG_class_type: | |
2961 | case TAG_structure_type: | |
2962 | case TAG_union_type: | |
2963 | case TAG_enumeration_type: | |
2964 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
176620f1 | 2965 | SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; |
c906108c SS |
2966 | add_symbol_to_list (sym, list_in_scope); |
2967 | break; | |
2968 | case TAG_typedef: | |
2969 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
176620f1 | 2970 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
2971 | add_symbol_to_list (sym, list_in_scope); |
2972 | break; | |
2973 | default: | |
2974 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
2975 | data, but since we must specifically ignore things we don't | |
2976 | recognize, there is nothing else we should do at this point. */ | |
2977 | break; | |
2978 | } | |
2979 | } | |
2980 | return (sym); | |
2981 | } | |
2982 | ||
2983 | /* | |
2984 | ||
c5aa993b | 2985 | LOCAL FUNCTION |
c906108c | 2986 | |
c5aa993b | 2987 | synthesize_typedef -- make a symbol table entry for a "fake" typedef |
c906108c | 2988 | |
c5aa993b | 2989 | SYNOPSIS |
c906108c | 2990 | |
c5aa993b JM |
2991 | static void synthesize_typedef (struct dieinfo *dip, |
2992 | struct objfile *objfile, | |
2993 | struct type *type); | |
c906108c | 2994 | |
c5aa993b | 2995 | DESCRIPTION |
c906108c | 2996 | |
c5aa993b JM |
2997 | Given a pointer to a DWARF information entry, synthesize a typedef |
2998 | for the name in the DIE, using the specified type. | |
c906108c | 2999 | |
c5aa993b JM |
3000 | This is used for C++ class, structs, unions, and enumerations to |
3001 | set up the tag name as a type. | |
c906108c SS |
3002 | |
3003 | */ | |
3004 | ||
3005 | static void | |
fba45db2 KB |
3006 | synthesize_typedef (struct dieinfo *dip, struct objfile *objfile, |
3007 | struct type *type) | |
c906108c SS |
3008 | { |
3009 | struct symbol *sym = NULL; | |
c5aa993b JM |
3010 | |
3011 | if (dip->at_name != NULL) | |
c906108c SS |
3012 | { |
3013 | sym = (struct symbol *) | |
4a146b47 | 3014 | obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol)); |
c906108c SS |
3015 | OBJSTAT (objfile, n_syms++); |
3016 | memset (sym, 0, sizeof (struct symbol)); | |
22abf04a | 3017 | DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name, |
4a146b47 | 3018 | &objfile->objfile_obstack); |
c906108c SS |
3019 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); |
3020 | SYMBOL_TYPE (sym) = type; | |
3021 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
176620f1 | 3022 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
3023 | add_symbol_to_list (sym, list_in_scope); |
3024 | } | |
3025 | } | |
3026 | ||
3027 | /* | |
3028 | ||
c5aa993b | 3029 | LOCAL FUNCTION |
c906108c | 3030 | |
c5aa993b | 3031 | decode_mod_fund_type -- decode a modified fundamental type |
c906108c | 3032 | |
c5aa993b | 3033 | SYNOPSIS |
c906108c | 3034 | |
c5aa993b | 3035 | static struct type *decode_mod_fund_type (char *typedata) |
c906108c | 3036 | |
c5aa993b | 3037 | DESCRIPTION |
c906108c | 3038 | |
c5aa993b JM |
3039 | Decode a block of data containing a modified fundamental |
3040 | type specification. TYPEDATA is a pointer to the block, | |
3041 | which starts with a length containing the size of the rest | |
3042 | of the block. At the end of the block is a fundmental type | |
3043 | code value that gives the fundamental type. Everything | |
3044 | in between are type modifiers. | |
c906108c | 3045 | |
c5aa993b JM |
3046 | We simply compute the number of modifiers and call the general |
3047 | function decode_modified_type to do the actual work. | |
3048 | */ | |
c906108c SS |
3049 | |
3050 | static struct type * | |
fba45db2 | 3051 | decode_mod_fund_type (char *typedata) |
c906108c SS |
3052 | { |
3053 | struct type *typep = NULL; | |
3054 | unsigned short modcount; | |
3055 | int nbytes; | |
c5aa993b | 3056 | |
c906108c SS |
3057 | /* Get the total size of the block, exclusive of the size itself */ |
3058 | ||
3059 | nbytes = attribute_size (AT_mod_fund_type); | |
3060 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3061 | typedata += nbytes; | |
3062 | ||
3063 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3064 | ||
3065 | modcount -= attribute_size (AT_fund_type); | |
3066 | ||
3067 | /* Now do the actual decoding */ | |
3068 | ||
3069 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |
3070 | return (typep); | |
3071 | } | |
3072 | ||
3073 | /* | |
3074 | ||
c5aa993b | 3075 | LOCAL FUNCTION |
c906108c | 3076 | |
c5aa993b | 3077 | decode_mod_u_d_type -- decode a modified user defined type |
c906108c | 3078 | |
c5aa993b | 3079 | SYNOPSIS |
c906108c | 3080 | |
c5aa993b | 3081 | static struct type *decode_mod_u_d_type (char *typedata) |
c906108c | 3082 | |
c5aa993b | 3083 | DESCRIPTION |
c906108c | 3084 | |
c5aa993b JM |
3085 | Decode a block of data containing a modified user defined |
3086 | type specification. TYPEDATA is a pointer to the block, | |
3087 | which consists of a two byte length, containing the size | |
3088 | of the rest of the block. At the end of the block is a | |
3089 | four byte value that gives a reference to a user defined type. | |
3090 | Everything in between are type modifiers. | |
c906108c | 3091 | |
c5aa993b JM |
3092 | We simply compute the number of modifiers and call the general |
3093 | function decode_modified_type to do the actual work. | |
3094 | */ | |
c906108c SS |
3095 | |
3096 | static struct type * | |
fba45db2 | 3097 | decode_mod_u_d_type (char *typedata) |
c906108c SS |
3098 | { |
3099 | struct type *typep = NULL; | |
3100 | unsigned short modcount; | |
3101 | int nbytes; | |
c5aa993b | 3102 | |
c906108c SS |
3103 | /* Get the total size of the block, exclusive of the size itself */ |
3104 | ||
3105 | nbytes = attribute_size (AT_mod_u_d_type); | |
3106 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3107 | typedata += nbytes; | |
3108 | ||
3109 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3110 | ||
3111 | modcount -= attribute_size (AT_user_def_type); | |
3112 | ||
3113 | /* Now do the actual decoding */ | |
3114 | ||
3115 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |
3116 | return (typep); | |
3117 | } | |
3118 | ||
3119 | /* | |
3120 | ||
c5aa993b | 3121 | LOCAL FUNCTION |
c906108c | 3122 | |
c5aa993b | 3123 | decode_modified_type -- decode modified user or fundamental type |
c906108c | 3124 | |
c5aa993b | 3125 | SYNOPSIS |
c906108c | 3126 | |
c5aa993b JM |
3127 | static struct type *decode_modified_type (char *modifiers, |
3128 | unsigned short modcount, int mtype) | |
c906108c | 3129 | |
c5aa993b | 3130 | DESCRIPTION |
c906108c | 3131 | |
c5aa993b JM |
3132 | Decode a modified type, either a modified fundamental type or |
3133 | a modified user defined type. MODIFIERS is a pointer to the | |
3134 | block of bytes that define MODCOUNT modifiers. Immediately | |
3135 | following the last modifier is a short containing the fundamental | |
3136 | type or a long containing the reference to the user defined | |
3137 | type. Which one is determined by MTYPE, which is either | |
3138 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3139 | type we are generating. | |
c906108c | 3140 | |
c5aa993b JM |
3141 | We call ourself recursively to generate each modified type,` |
3142 | until MODCOUNT reaches zero, at which point we have consumed | |
3143 | all the modifiers and generate either the fundamental type or | |
3144 | user defined type. When the recursion unwinds, each modifier | |
3145 | is applied in turn to generate the full modified type. | |
3146 | ||
3147 | NOTES | |
c906108c | 3148 | |
c5aa993b JM |
3149 | If we find a modifier that we don't recognize, and it is not one |
3150 | of those reserved for application specific use, then we issue a | |
3151 | warning and simply ignore the modifier. | |
c906108c | 3152 | |
c5aa993b | 3153 | BUGS |
c906108c | 3154 | |
c5aa993b | 3155 | We currently ignore MOD_const and MOD_volatile. (FIXME) |
c906108c SS |
3156 | |
3157 | */ | |
3158 | ||
3159 | static struct type * | |
fba45db2 | 3160 | decode_modified_type (char *modifiers, unsigned int modcount, int mtype) |
c906108c SS |
3161 | { |
3162 | struct type *typep = NULL; | |
3163 | unsigned short fundtype; | |
3164 | DIE_REF die_ref; | |
3165 | char modifier; | |
3166 | int nbytes; | |
c5aa993b | 3167 | |
c906108c SS |
3168 | if (modcount == 0) |
3169 | { | |
3170 | switch (mtype) | |
3171 | { | |
3172 | case AT_mod_fund_type: | |
3173 | nbytes = attribute_size (AT_fund_type); | |
3174 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3175 | current_objfile); | |
3176 | typep = decode_fund_type (fundtype); | |
3177 | break; | |
3178 | case AT_mod_u_d_type: | |
3179 | nbytes = attribute_size (AT_user_def_type); | |
3180 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3181 | current_objfile); | |
b59661bd AC |
3182 | typep = lookup_utype (die_ref); |
3183 | if (typep == NULL) | |
c906108c SS |
3184 | { |
3185 | typep = alloc_utype (die_ref, NULL); | |
3186 | } | |
3187 | break; | |
3188 | default: | |
23136709 | 3189 | complaint (&symfile_complaints, |
e2e0b3e5 | 3190 | _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"), |
23136709 | 3191 | DIE_ID, DIE_NAME, mtype); |
c906108c SS |
3192 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
3193 | break; | |
3194 | } | |
3195 | } | |
3196 | else | |
3197 | { | |
3198 | modifier = *modifiers++; | |
3199 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3200 | switch (modifier) | |
3201 | { | |
c5aa993b JM |
3202 | case MOD_pointer_to: |
3203 | typep = lookup_pointer_type (typep); | |
3204 | break; | |
3205 | case MOD_reference_to: | |
3206 | typep = lookup_reference_type (typep); | |
3207 | break; | |
3208 | case MOD_const: | |
23136709 | 3209 | complaint (&symfile_complaints, |
e2e0b3e5 | 3210 | _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID, |
23136709 | 3211 | DIE_NAME); /* FIXME */ |
c5aa993b JM |
3212 | break; |
3213 | case MOD_volatile: | |
23136709 | 3214 | complaint (&symfile_complaints, |
e2e0b3e5 | 3215 | _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"), |
23136709 | 3216 | DIE_ID, DIE_NAME); /* FIXME */ |
c5aa993b JM |
3217 | break; |
3218 | default: | |
3cb3398d EZ |
3219 | if (!(MOD_lo_user <= (unsigned char) modifier)) |
3220 | #if 0 | |
3221 | /* This part of the test would always be true, and it triggers a compiler | |
3222 | warning. */ | |
c5aa993b | 3223 | && (unsigned char) modifier <= MOD_hi_user)) |
3cb3398d | 3224 | #endif |
c5aa993b | 3225 | { |
23136709 | 3226 | complaint (&symfile_complaints, |
e2e0b3e5 | 3227 | _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID, |
23136709 | 3228 | DIE_NAME, modifier); |
c5aa993b JM |
3229 | } |
3230 | break; | |
c906108c SS |
3231 | } |
3232 | } | |
3233 | return (typep); | |
3234 | } | |
3235 | ||
3236 | /* | |
3237 | ||
c5aa993b | 3238 | LOCAL FUNCTION |
c906108c | 3239 | |
c5aa993b | 3240 | decode_fund_type -- translate basic DWARF type to gdb base type |
c906108c | 3241 | |
c5aa993b | 3242 | DESCRIPTION |
c906108c | 3243 | |
c5aa993b JM |
3244 | Given an integer that is one of the fundamental DWARF types, |
3245 | translate it to one of the basic internal gdb types and return | |
3246 | a pointer to the appropriate gdb type (a "struct type *"). | |
c906108c | 3247 | |
c5aa993b | 3248 | NOTES |
c906108c | 3249 | |
c5aa993b JM |
3250 | For robustness, if we are asked to translate a fundamental |
3251 | type that we are unprepared to deal with, we return int so | |
3252 | callers can always depend upon a valid type being returned, | |
3253 | and so gdb may at least do something reasonable by default. | |
3254 | If the type is not in the range of those types defined as | |
3255 | application specific types, we also issue a warning. | |
3256 | */ | |
c906108c SS |
3257 | |
3258 | static struct type * | |
fba45db2 | 3259 | decode_fund_type (unsigned int fundtype) |
c906108c SS |
3260 | { |
3261 | struct type *typep = NULL; | |
c5aa993b | 3262 | |
c906108c SS |
3263 | switch (fundtype) |
3264 | { | |
3265 | ||
3266 | case FT_void: | |
3267 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3268 | break; | |
c5aa993b | 3269 | |
c906108c SS |
3270 | case FT_boolean: /* Was FT_set in AT&T version */ |
3271 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); | |
3272 | break; | |
3273 | ||
3274 | case FT_pointer: /* (void *) */ | |
3275 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3276 | typep = lookup_pointer_type (typep); | |
3277 | break; | |
c5aa993b | 3278 | |
c906108c SS |
3279 | case FT_char: |
3280 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); | |
3281 | break; | |
c5aa993b | 3282 | |
c906108c SS |
3283 | case FT_signed_char: |
3284 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); | |
3285 | break; | |
3286 | ||
3287 | case FT_unsigned_char: | |
3288 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); | |
3289 | break; | |
c5aa993b | 3290 | |
c906108c SS |
3291 | case FT_short: |
3292 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); | |
3293 | break; | |
3294 | ||
3295 | case FT_signed_short: | |
3296 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); | |
3297 | break; | |
c5aa993b | 3298 | |
c906108c SS |
3299 | case FT_unsigned_short: |
3300 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); | |
3301 | break; | |
c5aa993b | 3302 | |
c906108c SS |
3303 | case FT_integer: |
3304 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3305 | break; | |
3306 | ||
3307 | case FT_signed_integer: | |
3308 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); | |
3309 | break; | |
c5aa993b | 3310 | |
c906108c SS |
3311 | case FT_unsigned_integer: |
3312 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); | |
3313 | break; | |
c5aa993b | 3314 | |
c906108c SS |
3315 | case FT_long: |
3316 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); | |
3317 | break; | |
3318 | ||
3319 | case FT_signed_long: | |
3320 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); | |
3321 | break; | |
c5aa993b | 3322 | |
c906108c SS |
3323 | case FT_unsigned_long: |
3324 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); | |
3325 | break; | |
c5aa993b | 3326 | |
c906108c SS |
3327 | case FT_long_long: |
3328 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); | |
3329 | break; | |
3330 | ||
3331 | case FT_signed_long_long: | |
3332 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); | |
3333 | break; | |
3334 | ||
3335 | case FT_unsigned_long_long: | |
3336 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); | |
3337 | break; | |
3338 | ||
3339 | case FT_float: | |
3340 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); | |
3341 | break; | |
c5aa993b | 3342 | |
c906108c SS |
3343 | case FT_dbl_prec_float: |
3344 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); | |
3345 | break; | |
c5aa993b | 3346 | |
c906108c SS |
3347 | case FT_ext_prec_float: |
3348 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); | |
3349 | break; | |
c5aa993b | 3350 | |
c906108c SS |
3351 | case FT_complex: |
3352 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); | |
3353 | break; | |
c5aa993b | 3354 | |
c906108c SS |
3355 | case FT_dbl_prec_complex: |
3356 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); | |
3357 | break; | |
c5aa993b | 3358 | |
c906108c SS |
3359 | case FT_ext_prec_complex: |
3360 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); | |
3361 | break; | |
c5aa993b | 3362 | |
c906108c SS |
3363 | } |
3364 | ||
3365 | if (typep == NULL) | |
3366 | { | |
3367 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3368 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3369 | { | |
23136709 | 3370 | complaint (&symfile_complaints, |
e2e0b3e5 | 3371 | _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"), |
23136709 | 3372 | DIE_ID, DIE_NAME, fundtype); |
c906108c SS |
3373 | } |
3374 | } | |
c5aa993b | 3375 | |
c906108c SS |
3376 | return (typep); |
3377 | } | |
3378 | ||
3379 | /* | |
3380 | ||
c5aa993b | 3381 | LOCAL FUNCTION |
c906108c | 3382 | |
c5aa993b | 3383 | create_name -- allocate a fresh copy of a string on an obstack |
c906108c | 3384 | |
c5aa993b | 3385 | DESCRIPTION |
c906108c | 3386 | |
c5aa993b JM |
3387 | Given a pointer to a string and a pointer to an obstack, allocates |
3388 | a fresh copy of the string on the specified obstack. | |
c906108c | 3389 | |
c5aa993b | 3390 | */ |
c906108c SS |
3391 | |
3392 | static char * | |
fba45db2 | 3393 | create_name (char *name, struct obstack *obstackp) |
c906108c SS |
3394 | { |
3395 | int length; | |
3396 | char *newname; | |
3397 | ||
3398 | length = strlen (name) + 1; | |
3399 | newname = (char *) obstack_alloc (obstackp, length); | |
3400 | strcpy (newname, name); | |
3401 | return (newname); | |
3402 | } | |
3403 | ||
3404 | /* | |
3405 | ||
c5aa993b | 3406 | LOCAL FUNCTION |
c906108c | 3407 | |
c5aa993b | 3408 | basicdieinfo -- extract the minimal die info from raw die data |
c906108c | 3409 | |
c5aa993b | 3410 | SYNOPSIS |
c906108c | 3411 | |
c5aa993b JM |
3412 | void basicdieinfo (char *diep, struct dieinfo *dip, |
3413 | struct objfile *objfile) | |
c906108c | 3414 | |
c5aa993b | 3415 | DESCRIPTION |
c906108c | 3416 | |
c5aa993b JM |
3417 | Given a pointer to raw DIE data, and a pointer to an instance of a |
3418 | die info structure, this function extracts the basic information | |
3419 | from the DIE data required to continue processing this DIE, along | |
3420 | with some bookkeeping information about the DIE. | |
c906108c | 3421 | |
c5aa993b JM |
3422 | The information we absolutely must have includes the DIE tag, |
3423 | and the DIE length. If we need the sibling reference, then we | |
3424 | will have to call completedieinfo() to process all the remaining | |
3425 | DIE information. | |
c906108c | 3426 | |
c5aa993b JM |
3427 | Note that since there is no guarantee that the data is properly |
3428 | aligned in memory for the type of access required (indirection | |
3429 | through anything other than a char pointer), and there is no | |
3430 | guarantee that it is in the same byte order as the gdb host, | |
3431 | we call a function which deals with both alignment and byte | |
3432 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3433 | |
c5aa993b JM |
3434 | We also take care of some other basic things at this point, such |
3435 | as ensuring that the instance of the die info structure starts | |
3436 | out completely zero'd and that curdie is initialized for use | |
3437 | in error reporting if we have a problem with the current die. | |
c906108c | 3438 | |
c5aa993b JM |
3439 | NOTES |
3440 | ||
3441 | All DIE's must have at least a valid length, thus the minimum | |
3442 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |
3443 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |
3444 | are forced to be TAG_padding DIES. | |
c906108c | 3445 | |
c5aa993b JM |
3446 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying |
3447 | that if a padding DIE is used for alignment and the amount needed is | |
3448 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |
3449 | enough to align to the next alignment boundry. | |
3450 | ||
3451 | We do some basic sanity checking here, such as verifying that the | |
3452 | length of the die would not cause it to overrun the recorded end of | |
3453 | the buffer holding the DIE info. If we find a DIE that is either | |
3454 | too small or too large, we force it's length to zero which should | |
3455 | cause the caller to take appropriate action. | |
c906108c SS |
3456 | */ |
3457 | ||
3458 | static void | |
fba45db2 | 3459 | basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile) |
c906108c SS |
3460 | { |
3461 | curdie = dip; | |
3462 | memset (dip, 0, sizeof (struct dieinfo)); | |
c5aa993b JM |
3463 | dip->die = diep; |
3464 | dip->die_ref = dbroff + (diep - dbbase); | |
3465 | dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, | |
3466 | objfile); | |
3467 | if ((dip->die_length < SIZEOF_DIE_LENGTH) || | |
3468 | ((diep + dip->die_length) > (dbbase + dbsize))) | |
c906108c | 3469 | { |
23136709 | 3470 | complaint (&symfile_complaints, |
e2e0b3e5 | 3471 | _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"), |
23136709 | 3472 | DIE_ID, DIE_NAME, dip->die_length); |
c5aa993b | 3473 | dip->die_length = 0; |
c906108c | 3474 | } |
c5aa993b | 3475 | else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) |
c906108c | 3476 | { |
c5aa993b | 3477 | dip->die_tag = TAG_padding; |
c906108c SS |
3478 | } |
3479 | else | |
3480 | { | |
3481 | diep += SIZEOF_DIE_LENGTH; | |
c5aa993b JM |
3482 | dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, |
3483 | objfile); | |
c906108c SS |
3484 | } |
3485 | } | |
3486 | ||
3487 | /* | |
3488 | ||
c5aa993b | 3489 | LOCAL FUNCTION |
c906108c | 3490 | |
c5aa993b | 3491 | completedieinfo -- finish reading the information for a given DIE |
c906108c | 3492 | |
c5aa993b | 3493 | SYNOPSIS |
c906108c | 3494 | |
c5aa993b | 3495 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 3496 | |
c5aa993b | 3497 | DESCRIPTION |
c906108c | 3498 | |
c5aa993b JM |
3499 | Given a pointer to an already partially initialized die info structure, |
3500 | scan the raw DIE data and finish filling in the die info structure | |
3501 | from the various attributes found. | |
c906108c | 3502 | |
c5aa993b JM |
3503 | Note that since there is no guarantee that the data is properly |
3504 | aligned in memory for the type of access required (indirection | |
3505 | through anything other than a char pointer), and there is no | |
3506 | guarantee that it is in the same byte order as the gdb host, | |
3507 | we call a function which deals with both alignment and byte | |
3508 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3509 | |
c5aa993b JM |
3510 | NOTES |
3511 | ||
3512 | Each time we are called, we increment the diecount variable, which | |
3513 | keeps an approximate count of the number of dies processed for | |
3514 | each compilation unit. This information is presented to the user | |
3515 | if the info_verbose flag is set. | |
c906108c SS |
3516 | |
3517 | */ | |
3518 | ||
3519 | static void | |
fba45db2 | 3520 | completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
3521 | { |
3522 | char *diep; /* Current pointer into raw DIE data */ | |
3523 | char *end; /* Terminate DIE scan here */ | |
3524 | unsigned short attr; /* Current attribute being scanned */ | |
3525 | unsigned short form; /* Form of the attribute */ | |
3526 | int nbytes; /* Size of next field to read */ | |
c5aa993b | 3527 | |
c906108c | 3528 | diecount++; |
c5aa993b JM |
3529 | diep = dip->die; |
3530 | end = diep + dip->die_length; | |
c906108c SS |
3531 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; |
3532 | while (diep < end) | |
3533 | { | |
3534 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); | |
3535 | diep += SIZEOF_ATTRIBUTE; | |
b59661bd AC |
3536 | nbytes = attribute_size (attr); |
3537 | if (nbytes == -1) | |
c906108c | 3538 | { |
23136709 | 3539 | complaint (&symfile_complaints, |
e2e0b3e5 | 3540 | _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"), |
23136709 | 3541 | DIE_ID, DIE_NAME); |
c906108c SS |
3542 | diep = end; |
3543 | continue; | |
3544 | } | |
3545 | switch (attr) | |
3546 | { | |
3547 | case AT_fund_type: | |
c5aa993b JM |
3548 | dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, |
3549 | objfile); | |
c906108c SS |
3550 | break; |
3551 | case AT_ordering: | |
c5aa993b JM |
3552 | dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, |
3553 | objfile); | |
c906108c SS |
3554 | break; |
3555 | case AT_bit_offset: | |
c5aa993b JM |
3556 | dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, |
3557 | objfile); | |
c906108c SS |
3558 | break; |
3559 | case AT_sibling: | |
c5aa993b JM |
3560 | dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, |
3561 | objfile); | |
c906108c SS |
3562 | break; |
3563 | case AT_stmt_list: | |
c5aa993b JM |
3564 | dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, |
3565 | objfile); | |
3566 | dip->has_at_stmt_list = 1; | |
c906108c SS |
3567 | break; |
3568 | case AT_low_pc: | |
c5aa993b JM |
3569 | dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3570 | objfile); | |
3571 | dip->at_low_pc += baseaddr; | |
3572 | dip->has_at_low_pc = 1; | |
c906108c SS |
3573 | break; |
3574 | case AT_high_pc: | |
c5aa993b JM |
3575 | dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3576 | objfile); | |
3577 | dip->at_high_pc += baseaddr; | |
c906108c SS |
3578 | break; |
3579 | case AT_language: | |
c5aa993b JM |
3580 | dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED, |
3581 | objfile); | |
c906108c SS |
3582 | break; |
3583 | case AT_user_def_type: | |
c5aa993b JM |
3584 | dip->at_user_def_type = target_to_host (diep, nbytes, |
3585 | GET_UNSIGNED, objfile); | |
c906108c SS |
3586 | break; |
3587 | case AT_byte_size: | |
c5aa993b JM |
3588 | dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3589 | objfile); | |
3590 | dip->has_at_byte_size = 1; | |
c906108c SS |
3591 | break; |
3592 | case AT_bit_size: | |
c5aa993b JM |
3593 | dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3594 | objfile); | |
c906108c SS |
3595 | break; |
3596 | case AT_member: | |
c5aa993b JM |
3597 | dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED, |
3598 | objfile); | |
c906108c SS |
3599 | break; |
3600 | case AT_discr: | |
c5aa993b JM |
3601 | dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, |
3602 | objfile); | |
c906108c SS |
3603 | break; |
3604 | case AT_location: | |
c5aa993b | 3605 | dip->at_location = diep; |
c906108c SS |
3606 | break; |
3607 | case AT_mod_fund_type: | |
c5aa993b | 3608 | dip->at_mod_fund_type = diep; |
c906108c SS |
3609 | break; |
3610 | case AT_subscr_data: | |
c5aa993b | 3611 | dip->at_subscr_data = diep; |
c906108c SS |
3612 | break; |
3613 | case AT_mod_u_d_type: | |
c5aa993b | 3614 | dip->at_mod_u_d_type = diep; |
c906108c SS |
3615 | break; |
3616 | case AT_element_list: | |
c5aa993b JM |
3617 | dip->at_element_list = diep; |
3618 | dip->short_element_list = 0; | |
c906108c SS |
3619 | break; |
3620 | case AT_short_element_list: | |
c5aa993b JM |
3621 | dip->at_element_list = diep; |
3622 | dip->short_element_list = 1; | |
c906108c SS |
3623 | break; |
3624 | case AT_discr_value: | |
c5aa993b | 3625 | dip->at_discr_value = diep; |
c906108c SS |
3626 | break; |
3627 | case AT_string_length: | |
c5aa993b | 3628 | dip->at_string_length = diep; |
c906108c SS |
3629 | break; |
3630 | case AT_name: | |
c5aa993b | 3631 | dip->at_name = diep; |
c906108c SS |
3632 | break; |
3633 | case AT_comp_dir: | |
3634 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |
3635 | know how to deal with it. (FIXME). */ | |
c5aa993b JM |
3636 | dip->at_comp_dir = strrchr (diep, ':'); |
3637 | if (dip->at_comp_dir != NULL) | |
c906108c | 3638 | { |
c5aa993b | 3639 | dip->at_comp_dir++; |
c906108c SS |
3640 | } |
3641 | else | |
3642 | { | |
c5aa993b | 3643 | dip->at_comp_dir = diep; |
c906108c SS |
3644 | } |
3645 | break; | |
3646 | case AT_producer: | |
c5aa993b | 3647 | dip->at_producer = diep; |
c906108c SS |
3648 | break; |
3649 | case AT_start_scope: | |
c5aa993b JM |
3650 | dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, |
3651 | objfile); | |
c906108c SS |
3652 | break; |
3653 | case AT_stride_size: | |
c5aa993b JM |
3654 | dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3655 | objfile); | |
c906108c SS |
3656 | break; |
3657 | case AT_src_info: | |
c5aa993b JM |
3658 | dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, |
3659 | objfile); | |
c906108c SS |
3660 | break; |
3661 | case AT_prototyped: | |
c5aa993b | 3662 | dip->at_prototyped = diep; |
c906108c SS |
3663 | break; |
3664 | default: | |
3665 | /* Found an attribute that we are unprepared to handle. However | |
3666 | it is specifically one of the design goals of DWARF that | |
3667 | consumers should ignore unknown attributes. As long as the | |
3668 | form is one that we recognize (so we know how to skip it), | |
3669 | we can just ignore the unknown attribute. */ | |
3670 | break; | |
3671 | } | |
3672 | form = FORM_FROM_ATTR (attr); | |
3673 | switch (form) | |
3674 | { | |
3675 | case FORM_DATA2: | |
3676 | diep += 2; | |
3677 | break; | |
3678 | case FORM_DATA4: | |
3679 | case FORM_REF: | |
3680 | diep += 4; | |
3681 | break; | |
3682 | case FORM_DATA8: | |
3683 | diep += 8; | |
3684 | break; | |
3685 | case FORM_ADDR: | |
3686 | diep += TARGET_FT_POINTER_SIZE (objfile); | |
3687 | break; | |
3688 | case FORM_BLOCK2: | |
3689 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3690 | break; | |
3691 | case FORM_BLOCK4: | |
3692 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3693 | break; | |
3694 | case FORM_STRING: | |
3695 | diep += strlen (diep) + 1; | |
3696 | break; | |
3697 | default: | |
23136709 | 3698 | unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form); |
c906108c SS |
3699 | diep = end; |
3700 | break; | |
3701 | } | |
3702 | } | |
3703 | } | |
3704 | ||
3705 | /* | |
3706 | ||
c5aa993b | 3707 | LOCAL FUNCTION |
c906108c | 3708 | |
c5aa993b | 3709 | target_to_host -- swap in target data to host |
c906108c | 3710 | |
c5aa993b | 3711 | SYNOPSIS |
c906108c | 3712 | |
c5aa993b JM |
3713 | target_to_host (char *from, int nbytes, int signextend, |
3714 | struct objfile *objfile) | |
c906108c | 3715 | |
c5aa993b | 3716 | DESCRIPTION |
c906108c | 3717 | |
c5aa993b JM |
3718 | Given pointer to data in target format in FROM, a byte count for |
3719 | the size of the data in NBYTES, a flag indicating whether or not | |
3720 | the data is signed in SIGNEXTEND, and a pointer to the current | |
3721 | objfile in OBJFILE, convert the data to host format and return | |
3722 | the converted value. | |
c906108c | 3723 | |
c5aa993b | 3724 | NOTES |
c906108c | 3725 | |
c5aa993b JM |
3726 | FIXME: If we read data that is known to be signed, and expect to |
3727 | use it as signed data, then we need to explicitly sign extend the | |
3728 | result until the bfd library is able to do this for us. | |
c906108c | 3729 | |
c5aa993b | 3730 | FIXME: Would a 32 bit target ever need an 8 byte result? |
c906108c SS |
3731 | |
3732 | */ | |
3733 | ||
3734 | static CORE_ADDR | |
fba45db2 KB |
3735 | target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */ |
3736 | struct objfile *objfile) | |
c906108c SS |
3737 | { |
3738 | CORE_ADDR rtnval; | |
3739 | ||
3740 | switch (nbytes) | |
3741 | { | |
c5aa993b JM |
3742 | case 8: |
3743 | rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from); | |
3744 | break; | |
3745 | case 4: | |
3746 | rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from); | |
3747 | break; | |
3748 | case 2: | |
3749 | rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from); | |
3750 | break; | |
3751 | case 1: | |
3752 | rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from); | |
3753 | break; | |
3754 | default: | |
23136709 | 3755 | complaint (&symfile_complaints, |
e2e0b3e5 | 3756 | _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"), |
23136709 | 3757 | DIE_ID, DIE_NAME, nbytes); |
c5aa993b JM |
3758 | rtnval = 0; |
3759 | break; | |
c906108c SS |
3760 | } |
3761 | return (rtnval); | |
3762 | } | |
3763 | ||
3764 | /* | |
3765 | ||
c5aa993b | 3766 | LOCAL FUNCTION |
c906108c | 3767 | |
c5aa993b | 3768 | attribute_size -- compute size of data for a DWARF attribute |
c906108c | 3769 | |
c5aa993b | 3770 | SYNOPSIS |
c906108c | 3771 | |
c5aa993b | 3772 | static int attribute_size (unsigned int attr) |
c906108c | 3773 | |
c5aa993b | 3774 | DESCRIPTION |
c906108c | 3775 | |
c5aa993b JM |
3776 | Given a DWARF attribute in ATTR, compute the size of the first |
3777 | piece of data associated with this attribute and return that | |
3778 | size. | |
c906108c | 3779 | |
c5aa993b | 3780 | Returns -1 for unrecognized attributes. |
c906108c SS |
3781 | |
3782 | */ | |
3783 | ||
3784 | static int | |
fba45db2 | 3785 | attribute_size (unsigned int attr) |
c906108c SS |
3786 | { |
3787 | int nbytes; /* Size of next data for this attribute */ | |
3788 | unsigned short form; /* Form of the attribute */ | |
3789 | ||
3790 | form = FORM_FROM_ATTR (attr); | |
3791 | switch (form) | |
3792 | { | |
c5aa993b JM |
3793 | case FORM_STRING: /* A variable length field is next */ |
3794 | nbytes = 0; | |
3795 | break; | |
3796 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |
3797 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |
3798 | nbytes = 2; | |
3799 | break; | |
3800 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |
3801 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |
3802 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |
3803 | nbytes = 4; | |
3804 | break; | |
3805 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |
3806 | nbytes = 8; | |
3807 | break; | |
3808 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |
3809 | nbytes = TARGET_FT_POINTER_SIZE (objfile); | |
3810 | break; | |
3811 | default: | |
23136709 | 3812 | unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form); |
c5aa993b JM |
3813 | nbytes = -1; |
3814 | break; | |
3815 | } | |
c906108c SS |
3816 | return (nbytes); |
3817 | } |