* gdb.base/help.exp: Allow Win32 child process.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b
AC
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c 24
5ae7ca1d
MC
25/*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
28
29 DWARF (also known as DWARF-1) is headed for obsoletion.
30
31 In gcc 3.2.1, these targets prefer dwarf-1:
32
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
36 m88k-dg-dgux* # TD-R2
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
39
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
43
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
45
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
49
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
53
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
57
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
59
60 There may be non-gcc compilers that still emit dwarf-1.
61
62 -- chastain 2003-02-04
63*/
64
c906108c
SS
65/*
66
c5aa993b
JM
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
c906108c 69
c5aa993b
JM
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
74 contents.
c906108c 75
c5aa993b
JM
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
c906108c 78
c5aa993b
JM
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
c906108c 81
c5aa993b 82 */
c906108c
SS
83
84#include "defs.h"
85#include "symtab.h"
86#include "gdbtypes.h"
87#include "symfile.h"
88#include "objfiles.h"
89#include "elf/dwarf.h"
90#include "buildsym.h"
91#include "demangle.h"
c5aa993b 92#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
93#include "language.h"
94#include "complaints.h"
95
96#include <fcntl.h>
97#include "gdb_string.h"
98
99/* Some macros to provide DIE info for complaints. */
100
101#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
103
104/* Complaints that can be issued during DWARF debug info reading. */
105
23136709
KB
106static void
107bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 108{
23136709
KB
109 complaint (&symfile_complaints,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
111 arg1, arg2, arg3);
112}
c906108c 113
23136709
KB
114static void
115unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 116{
23136709
KB
117 complaint (&symfile_complaints,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
119 arg3);
120}
c906108c 121
23136709
KB
122static void
123dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 124{
23136709
KB
125 complaint (&symfile_complaints,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
127 arg1, arg2);
128}
c906108c 129
23136709
KB
130static void
131bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 132{
23136709
KB
133 complaint (&symfile_complaints,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
135 arg2, arg3);
136}
c906108c
SS
137
138typedef unsigned int DIE_REF; /* Reference to a DIE */
139
140#ifndef GCC_PRODUCER
141#define GCC_PRODUCER "GNU C "
142#endif
143
144#ifndef GPLUS_PRODUCER
145#define GPLUS_PRODUCER "GNU C++ "
146#endif
147
148#ifndef LCC_PRODUCER
149#define LCC_PRODUCER "NCR C/C++"
150#endif
151
c906108c
SS
152/* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
157 int. */
158
159#define GET_UNSIGNED 0 /* No sign extension required */
160#define GET_SIGNED 1 /* Sign extension required */
161
162/* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
165
166#define SIZEOF_DIE_LENGTH 4
167#define SIZEOF_DIE_TAG 2
168#define SIZEOF_ATTRIBUTE 2
169#define SIZEOF_FORMAT_SPECIFIER 1
170#define SIZEOF_FMT_FT 2
171#define SIZEOF_LINETBL_LENGTH 4
172#define SIZEOF_LINETBL_LINENO 4
173#define SIZEOF_LINETBL_STMT 2
174#define SIZEOF_LINETBL_DELTA 4
175#define SIZEOF_LOC_ATOM_CODE 1
176
177#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
178
179/* Macros that return the sizes of various types of data in the target
180 environment.
181
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
188
189#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
191
192/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
198
199#define AT_short_element_list (0x00f0|FORM_BLOCK2)
200
c906108c
SS
201/* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
205
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
210
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
215
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
219
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
c5aa993b 225
c906108c 226 */
c5aa993b 227
c906108c
SS
228typedef char BLOCK;
229
c5aa993b
JM
230struct dieinfo
231 {
232 char *die; /* Pointer to the raw DIE data */
233 unsigned long die_length; /* Length of the raw DIE data */
234 DIE_REF die_ref; /* Offset of this DIE */
235 unsigned short die_tag; /* Tag for this DIE */
236 unsigned long at_padding;
237 unsigned long at_sibling;
238 BLOCK *at_location;
239 char *at_name;
240 unsigned short at_fund_type;
241 BLOCK *at_mod_fund_type;
242 unsigned long at_user_def_type;
243 BLOCK *at_mod_u_d_type;
244 unsigned short at_ordering;
245 BLOCK *at_subscr_data;
246 unsigned long at_byte_size;
247 unsigned short at_bit_offset;
248 unsigned long at_bit_size;
249 BLOCK *at_element_list;
250 unsigned long at_stmt_list;
251 CORE_ADDR at_low_pc;
252 CORE_ADDR at_high_pc;
253 unsigned long at_language;
254 unsigned long at_member;
255 unsigned long at_discr;
256 BLOCK *at_discr_value;
257 BLOCK *at_string_length;
258 char *at_comp_dir;
259 char *at_producer;
260 unsigned long at_start_scope;
261 unsigned long at_stride_size;
262 unsigned long at_src_info;
263 char *at_prototyped;
264 unsigned int has_at_low_pc:1;
265 unsigned int has_at_stmt_list:1;
266 unsigned int has_at_byte_size:1;
267 unsigned int short_element_list:1;
268
269 /* Kludge to identify register variables */
270
271 unsigned int isreg;
272
273 /* Kludge to identify optimized out variables */
274
275 unsigned int optimized_out;
276
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
279
280 unsigned int offreg;
281
282 /* Kludge to identify which base register is it relative to. */
283
284 unsigned int basereg;
285 };
c906108c 286
c5aa993b 287static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
288static struct dieinfo *curdie; /* For warnings and such */
289
c5aa993b
JM
290static char *dbbase; /* Base pointer to dwarf info */
291static int dbsize; /* Size of dwarf info in bytes */
292static int dbroff; /* Relative offset from start of .debug section */
293static char *lnbase; /* Base pointer to line section */
c906108c
SS
294
295/* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298static CORE_ADDR baseaddr; /* Add to each symbol value */
299
300/* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302static struct section_offsets *base_section_offsets;
303
304/* We put a pointer to this structure in the read_symtab_private field
305 of the psymtab. */
306
c5aa993b
JM
307struct dwfinfo
308 {
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
311 file_ptr dbfoff;
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
319 int dbroff;
320 /* The size of the chunk of DIE's being examined, in bytes. */
321 int dblength;
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
327 file_ptr lnfoff;
328 };
c906108c
SS
329
330#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
334
335/* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
339
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
343
344struct pending **list_in_scope = &file_symbols;
345
346/* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
349
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
355
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
361
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
370 algorithms. */
371
372static struct type **utypes; /* Pointer to array of user type pointers */
373static int numutypes; /* Max number of user type pointers */
374
375/* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
384
c5aa993b 385static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
386
387/* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
395 types. */
396
397static enum language cu_language;
398static const struct language_defn *cu_language_defn;
399
400/* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
402
4efb68b1 403static void free_utypes (void *);
c906108c 404
a14ed312 405static int attribute_size (unsigned int);
c906108c 406
a14ed312 407static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 408
a14ed312 409static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 410
a14ed312 411static void handle_producer (char *);
c906108c 412
570b8f7c
AC
413static void read_file_scope (struct dieinfo *, char *, char *,
414 struct objfile *);
c906108c 415
570b8f7c
AC
416static void read_func_scope (struct dieinfo *, char *, char *,
417 struct objfile *);
c906108c 418
570b8f7c
AC
419static void read_lexical_block_scope (struct dieinfo *, char *, char *,
420 struct objfile *);
c906108c 421
a14ed312 422static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 423
570b8f7c
AC
424static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
425 struct objfile *);
c906108c 426
a14ed312 427static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 428
a14ed312 429static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 430
a14ed312 431static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 432
a14ed312 433static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 434
a14ed312 435static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 436
a14ed312 437static void read_ofile_symtab (struct partial_symtab *);
c906108c 438
a14ed312 439static void process_dies (char *, char *, struct objfile *);
c906108c 440
570b8f7c
AC
441static void read_structure_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
c906108c 443
a14ed312 444static struct type *decode_array_element_type (char *);
c906108c 445
a14ed312 446static struct type *decode_subscript_data_item (char *, char *);
c906108c 447
a14ed312 448static void dwarf_read_array_type (struct dieinfo *);
c906108c 449
a14ed312 450static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 451
a14ed312 452static void read_tag_string_type (struct dieinfo *dip);
c906108c 453
a14ed312 454static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 455
570b8f7c
AC
456static void read_enumeration (struct dieinfo *, char *, char *,
457 struct objfile *);
c906108c 458
a14ed312
KB
459static struct type *struct_type (struct dieinfo *, char *, char *,
460 struct objfile *);
c906108c 461
a14ed312 462static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 463
a14ed312 464static void decode_line_numbers (char *);
c906108c 465
a14ed312 466static struct type *decode_die_type (struct dieinfo *);
c906108c 467
a14ed312 468static struct type *decode_mod_fund_type (char *);
c906108c 469
a14ed312 470static struct type *decode_mod_u_d_type (char *);
c906108c 471
a14ed312 472static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 473
a14ed312 474static struct type *decode_fund_type (unsigned int);
c906108c 475
a14ed312 476static char *create_name (char *, struct obstack *);
c906108c 477
a14ed312 478static struct type *lookup_utype (DIE_REF);
c906108c 479
a14ed312 480static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 481
a14ed312 482static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 483
570b8f7c
AC
484static void synthesize_typedef (struct dieinfo *, struct objfile *,
485 struct type *);
c906108c 486
a14ed312 487static int locval (struct dieinfo *);
c906108c 488
a14ed312 489static void set_cu_language (struct dieinfo *);
c906108c 490
a14ed312 491static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
492
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b
JM
502 struct type *
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 504
c5aa993b 505 DESCRIPTION
c906108c 506
c5aa993b
JM
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
c906108c 512
c5aa993b
JM
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
c906108c 521
c5aa993b 522 RETURNS
c906108c 523
c5aa993b 524 Pointer to a fundamental type.
c906108c 525
c5aa993b 526 */
c906108c
SS
527
528static struct type *
fba45db2 529dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
530{
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
532 {
533 error ("internal error - invalid fundamental type id %d", typeid);
534 }
535
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
539
540 if (ftypes[typeid] == NULL)
541 {
c5aa993b 542 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
543 }
544
545 return (ftypes[typeid]);
546}
547
548/*
549
c5aa993b 550 LOCAL FUNCTION
c906108c 551
c5aa993b 552 set_cu_language -- set local copy of language for compilation unit
c906108c 553
c5aa993b 554 SYNOPSIS
c906108c 555
c5aa993b
JM
556 void
557 set_cu_language (struct dieinfo *dip)
c906108c 558
c5aa993b 559 DESCRIPTION
c906108c 560
c5aa993b
JM
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
c906108c 564
c5aa993b 565 RETURNS
c906108c 566
c5aa993b 567 No return value.
c906108c
SS
568
569 */
570
571static void
fba45db2 572set_cu_language (struct dieinfo *dip)
c906108c 573{
c5aa993b 574 switch (dip->at_language)
c906108c 575 {
c5aa993b
JM
576 case LANG_C89:
577 case LANG_C:
578 cu_language = language_c;
579 break;
580 case LANG_C_PLUS_PLUS:
581 cu_language = language_cplus;
582 break;
c5aa993b
JM
583 case LANG_MODULA2:
584 cu_language = language_m2;
585 break;
586 case LANG_FORTRAN77:
587 case LANG_FORTRAN90:
588 cu_language = language_fortran;
589 break;
590 case LANG_ADA83:
591 case LANG_COBOL74:
592 case LANG_COBOL85:
593 case LANG_PASCAL83:
594 /* We don't know anything special about these yet. */
595 cu_language = language_unknown;
596 break;
597 default:
598 /* If no at_language, try to deduce one from the filename */
599 cu_language = deduce_language_from_filename (dip->at_name);
600 break;
c906108c
SS
601 }
602 cu_language_defn = language_def (cu_language);
603}
604
605/*
606
c5aa993b 607 GLOBAL FUNCTION
c906108c 608
c5aa993b 609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 610
c5aa993b 611 SYNOPSIS
c906108c 612
c5aa993b 613 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
c906108c 616
c5aa993b 617 DESCRIPTION
c906108c 618
c5aa993b
JM
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 621
c5aa993b
JM
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
628 information.
c906108c 629
c5aa993b 630 RETURNS
c906108c 631
c5aa993b 632 No return value.
c906108c
SS
633
634 */
635
636void
fba45db2
KB
637dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
638 unsigned int dbfsize, file_ptr lnoffset,
639 unsigned int lnsize)
c906108c
SS
640{
641 bfd *abfd = objfile->obfd;
642 struct cleanup *back_to;
c5aa993b 643
c906108c
SS
644 current_objfile = objfile;
645 dbsize = dbfsize;
646 dbbase = xmalloc (dbsize);
647 dbroff = 0;
648 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 649 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 650 {
b8c9b27d 651 xfree (dbbase);
c906108c
SS
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
653 }
b8c9b27d 654 back_to = make_cleanup (xfree, dbbase);
c5aa993b 655
c906108c
SS
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
c5aa993b 659
ef96bde8
EZ
660 if (mainline
661 || (objfile->global_psymbols.size == 0
662 && objfile->static_psymbols.size == 0))
c906108c
SS
663 {
664 init_psymbol_list (objfile, 1024);
665 }
c5aa993b 666
c906108c
SS
667 /* Save the relocation factor where everybody can see it. */
668
d4f3574e
SS
669 base_section_offsets = objfile->section_offsets;
670 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
671
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
c5aa993b 675
c906108c 676 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 677
c906108c
SS
678 do_cleanups (back_to);
679 current_objfile = NULL;
680}
681
682/*
683
c5aa993b 684 LOCAL FUNCTION
c906108c 685
c5aa993b 686 read_lexical_block_scope -- process all dies in a lexical block
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b
JM
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
c906108c 692
c5aa993b 693 DESCRIPTION
c906108c 694
c5aa993b
JM
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
c906108c
SS
697
698 */
699
700static void
fba45db2
KB
701read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
702 struct objfile *objfile)
c906108c
SS
703{
704 register struct context_stack *new;
705
c5aa993b
JM
706 push_context (0, dip->at_low_pc);
707 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
708 new = pop_context ();
709 if (local_symbols != NULL)
710 {
c5aa993b
JM
711 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
712 dip->at_high_pc, objfile);
c906108c 713 }
c5aa993b 714 local_symbols = new->locals;
c906108c
SS
715}
716
717/*
718
c5aa993b 719 LOCAL FUNCTION
c906108c 720
c5aa993b 721 lookup_utype -- look up a user defined type from die reference
c906108c 722
c5aa993b 723 SYNOPSIS
c906108c 724
c5aa993b 725 static type *lookup_utype (DIE_REF die_ref)
c906108c 726
c5aa993b 727 DESCRIPTION
c906108c 728
c5aa993b
JM
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
c906108c
SS
734 */
735
736static struct type *
fba45db2 737lookup_utype (DIE_REF die_ref)
c906108c
SS
738{
739 struct type *type = NULL;
740 int utypeidx;
c5aa993b 741
c906108c
SS
742 utypeidx = (die_ref - dbroff) / 4;
743 if ((utypeidx < 0) || (utypeidx >= numutypes))
744 {
23136709 745 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
746 }
747 else
748 {
749 type = *(utypes + utypeidx);
750 }
751 return (type);
752}
753
754
755/*
756
c5aa993b 757 LOCAL FUNCTION
c906108c 758
c5aa993b 759 alloc_utype -- add a user defined type for die reference
c906108c 760
c5aa993b 761 SYNOPSIS
c906108c 762
c5aa993b 763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 764
c5aa993b 765 DESCRIPTION
c906108c 766
c5aa993b
JM
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
c906108c 771
c5aa993b
JM
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
c906108c
SS
774 */
775
776static struct type *
fba45db2 777alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
778{
779 struct type **typep;
780 int utypeidx;
c5aa993b 781
c906108c
SS
782 utypeidx = (die_ref - dbroff) / 4;
783 typep = utypes + utypeidx;
784 if ((utypeidx < 0) || (utypeidx >= numutypes))
785 {
786 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 787 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
788 }
789 else if (*typep != NULL)
790 {
791 utypep = *typep;
23136709
KB
792 complaint (&symfile_complaints,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
794 DIE_ID, DIE_NAME);
c906108c
SS
795 }
796 else
797 {
798 if (utypep == NULL)
799 {
800 utypep = alloc_type (current_objfile);
801 }
802 *typep = utypep;
803 }
804 return (utypep);
805}
806
807/*
808
c5aa993b 809 LOCAL FUNCTION
c906108c 810
c5aa993b 811 free_utypes -- free the utypes array and reset pointer & count
c906108c 812
c5aa993b 813 SYNOPSIS
c906108c 814
4efb68b1 815 static void free_utypes (void *dummy)
c906108c 816
c5aa993b 817 DESCRIPTION
c906108c 818
c5aa993b
JM
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
c906108c
SS
822 */
823
824static void
4efb68b1 825free_utypes (void *dummy)
c906108c 826{
b8c9b27d 827 xfree (utypes);
c906108c
SS
828 utypes = NULL;
829 numutypes = 0;
830}
831
832
833/*
834
c5aa993b 835 LOCAL FUNCTION
c906108c 836
c5aa993b 837 decode_die_type -- return a type for a specified die
c906108c 838
c5aa993b 839 SYNOPSIS
c906108c 840
c5aa993b 841 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 842
c5aa993b 843 DESCRIPTION
c906108c 844
c5aa993b
JM
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
c906108c
SS
848 */
849
850static struct type *
fba45db2 851decode_die_type (struct dieinfo *dip)
c906108c
SS
852{
853 struct type *type = NULL;
c5aa993b
JM
854
855 if (dip->at_fund_type != 0)
c906108c 856 {
c5aa993b 857 type = decode_fund_type (dip->at_fund_type);
c906108c 858 }
c5aa993b 859 else if (dip->at_mod_fund_type != NULL)
c906108c 860 {
c5aa993b 861 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 862 }
c5aa993b 863 else if (dip->at_user_def_type)
c906108c 864 {
c5aa993b 865 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
c906108c 866 {
c5aa993b 867 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
868 }
869 }
c5aa993b 870 else if (dip->at_mod_u_d_type)
c906108c 871 {
c5aa993b 872 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
873 }
874 else
875 {
876 type = dwarf_fundamental_type (current_objfile, FT_VOID);
877 }
878 return (type);
879}
880
881/*
882
c5aa993b 883 LOCAL FUNCTION
c906108c 884
c5aa993b 885 struct_type -- compute and return the type for a struct or union
c906108c 886
c5aa993b 887 SYNOPSIS
c906108c 888
c5aa993b
JM
889 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
890 char *enddie, struct objfile *objfile)
c906108c 891
c5aa993b 892 DESCRIPTION
c906108c 893
c5aa993b
JM
894 Given pointer to a die information structure for a die which
895 defines a union or structure (and MUST define one or the other),
896 and pointers to the raw die data that define the range of dies which
897 define the members, compute and return the user defined type for the
898 structure or union.
c906108c
SS
899 */
900
901static struct type *
fba45db2
KB
902struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
903 struct objfile *objfile)
c906108c
SS
904{
905 struct type *type;
c5aa993b
JM
906 struct nextfield
907 {
908 struct nextfield *next;
909 struct field field;
910 };
c906108c
SS
911 struct nextfield *list = NULL;
912 struct nextfield *new;
913 int nfields = 0;
914 int n;
915 struct dieinfo mbr;
916 char *nextdie;
917 int anonymous_size;
c5aa993b
JM
918
919 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
920 {
921 /* No forward references created an empty type, so install one now */
c5aa993b 922 type = alloc_utype (dip->die_ref, NULL);
c906108c 923 }
c5aa993b
JM
924 INIT_CPLUS_SPECIFIC (type);
925 switch (dip->die_tag)
c906108c 926 {
c5aa993b
JM
927 case TAG_class_type:
928 TYPE_CODE (type) = TYPE_CODE_CLASS;
929 break;
930 case TAG_structure_type:
931 TYPE_CODE (type) = TYPE_CODE_STRUCT;
932 break;
933 case TAG_union_type:
934 TYPE_CODE (type) = TYPE_CODE_UNION;
935 break;
936 default:
937 /* Should never happen */
938 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709
KB
939 complaint (&symfile_complaints,
940 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
941 DIE_ID, DIE_NAME);
c5aa993b 942 break;
c906108c
SS
943 }
944 /* Some compilers try to be helpful by inventing "fake" names for
945 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
946 Thanks, but no thanks... */
c5aa993b
JM
947 if (dip->at_name != NULL
948 && *dip->at_name != '~'
949 && *dip->at_name != '.')
c906108c 950 {
c5aa993b
JM
951 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
952 "", "", dip->at_name);
c906108c
SS
953 }
954 /* Use whatever size is known. Zero is a valid size. We might however
955 wish to check has_at_byte_size to make sure that some byte size was
956 given explicitly, but DWARF doesn't specify that explicit sizes of
957 zero have to present, so complaining about missing sizes should
958 probably not be the default. */
c5aa993b
JM
959 TYPE_LENGTH (type) = dip->at_byte_size;
960 thisdie += dip->die_length;
c906108c
SS
961 while (thisdie < enddie)
962 {
963 basicdieinfo (&mbr, thisdie, objfile);
964 completedieinfo (&mbr, objfile);
965 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
966 {
967 break;
968 }
969 else if (mbr.at_sibling != 0)
970 {
971 nextdie = dbbase + mbr.at_sibling - dbroff;
972 }
973 else
974 {
975 nextdie = thisdie + mbr.die_length;
976 }
977 switch (mbr.die_tag)
978 {
979 case TAG_member:
980 /* Get space to record the next field's data. */
981 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 982 new->next = list;
c906108c
SS
983 list = new;
984 /* Save the data. */
c5aa993b
JM
985 list->field.name =
986 obsavestring (mbr.at_name, strlen (mbr.at_name),
987 &objfile->type_obstack);
c906108c
SS
988 FIELD_TYPE (list->field) = decode_die_type (&mbr);
989 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 990 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
991 /* Handle bit fields. */
992 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
993 if (BITS_BIG_ENDIAN)
994 {
995 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
996 additional bit offset from the MSB of the containing
997 anonymous object to the MSB of the field. We don't
998 have to do anything special since we don't need to
999 know the size of the anonymous object. */
c906108c
SS
1000 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1001 }
1002 else
1003 {
1004 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1005 at_bit_size, so that we know we are in fact dealing
1006 with a bitfield. Compute the bit offset to the MSB
1007 of the anonymous object, subtract off the number of
1008 bits from the MSB of the field to the MSB of the
1009 object, and then subtract off the number of bits of
1010 the field itself. The result is the bit offset of
1011 the LSB of the field. */
c906108c
SS
1012 if (mbr.at_bit_size > 0)
1013 {
1014 if (mbr.has_at_byte_size)
1015 {
1016 /* The size of the anonymous object containing
c5aa993b
JM
1017 the bit field is explicit, so use the
1018 indicated size (in bytes). */
c906108c
SS
1019 anonymous_size = mbr.at_byte_size;
1020 }
1021 else
1022 {
1023 /* The size of the anonymous object containing
c5aa993b
JM
1024 the bit field matches the size of an object
1025 of the bit field's type. DWARF allows
1026 at_byte_size to be left out in such cases, as
1027 a debug information size optimization. */
1028 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1029 }
1030 FIELD_BITPOS (list->field) +=
1031 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1032 }
1033 }
1034 nfields++;
1035 break;
1036 default:
1037 process_dies (thisdie, nextdie, objfile);
1038 break;
1039 }
1040 thisdie = nextdie;
1041 }
1042 /* Now create the vector of fields, and record how big it is. We may
1043 not even have any fields, if this DIE was generated due to a reference
1044 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1045 set, which clues gdb in to the fact that it needs to search elsewhere
1046 for the full structure definition. */
1047 if (nfields == 0)
1048 {
1049 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1050 }
1051 else
1052 {
1053 TYPE_NFIELDS (type) = nfields;
1054 TYPE_FIELDS (type) = (struct field *)
1055 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1056 /* Copy the saved-up fields into the field vector. */
c5aa993b 1057 for (n = nfields; list; list = list->next)
c906108c 1058 {
c5aa993b
JM
1059 TYPE_FIELD (type, --n) = list->field;
1060 }
c906108c
SS
1061 }
1062 return (type);
1063}
1064
1065/*
1066
c5aa993b 1067 LOCAL FUNCTION
c906108c 1068
c5aa993b 1069 read_structure_scope -- process all dies within struct or union
c906108c 1070
c5aa993b 1071 SYNOPSIS
c906108c 1072
c5aa993b
JM
1073 static void read_structure_scope (struct dieinfo *dip,
1074 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1075
c5aa993b 1076 DESCRIPTION
c906108c 1077
c5aa993b
JM
1078 Called when we find the DIE that starts a structure or union
1079 scope (definition) to process all dies that define the members
1080 of the structure or union. DIP is a pointer to the die info
1081 struct for the DIE that names the structure or union.
c906108c 1082
c5aa993b
JM
1083 NOTES
1084
1085 Note that we need to call struct_type regardless of whether or not
1086 the DIE has an at_name attribute, since it might be an anonymous
1087 structure or union. This gets the type entered into our set of
1088 user defined types.
1089
1090 However, if the structure is incomplete (an opaque struct/union)
1091 then suppress creating a symbol table entry for it since gdb only
1092 wants to find the one with the complete definition. Note that if
1093 it is complete, we just call new_symbol, which does it's own
1094 checking about whether the struct/union is anonymous or not (and
1095 suppresses creating a symbol table entry itself).
c906108c 1096
c906108c
SS
1097 */
1098
1099static void
fba45db2
KB
1100read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1101 struct objfile *objfile)
c906108c
SS
1102{
1103 struct type *type;
1104 struct symbol *sym;
c5aa993b 1105
c906108c 1106 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1107 if (!TYPE_STUB (type))
c906108c
SS
1108 {
1109 sym = new_symbol (dip, objfile);
1110 if (sym != NULL)
1111 {
1112 SYMBOL_TYPE (sym) = type;
1113 if (cu_language == language_cplus)
1114 {
1115 synthesize_typedef (dip, objfile, type);
1116 }
1117 }
1118 }
1119}
1120
1121/*
1122
c5aa993b 1123 LOCAL FUNCTION
c906108c 1124
c5aa993b 1125 decode_array_element_type -- decode type of the array elements
c906108c 1126
c5aa993b 1127 SYNOPSIS
c906108c 1128
c5aa993b 1129 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1130
c5aa993b 1131 DESCRIPTION
c906108c 1132
c5aa993b
JM
1133 As the last step in decoding the array subscript information for an
1134 array DIE, we need to decode the type of the array elements. We are
1135 passed a pointer to this last part of the subscript information and
1136 must return the appropriate type. If the type attribute is not
1137 recognized, just warn about the problem and return type int.
c906108c
SS
1138 */
1139
1140static struct type *
fba45db2 1141decode_array_element_type (char *scan)
c906108c
SS
1142{
1143 struct type *typep;
1144 DIE_REF die_ref;
1145 unsigned short attribute;
1146 unsigned short fundtype;
1147 int nbytes;
c5aa993b 1148
c906108c
SS
1149 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1150 current_objfile);
1151 scan += SIZEOF_ATTRIBUTE;
1152 if ((nbytes = attribute_size (attribute)) == -1)
1153 {
23136709 1154 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1155 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1156 }
1157 else
1158 {
1159 switch (attribute)
1160 {
c5aa993b
JM
1161 case AT_fund_type:
1162 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1163 current_objfile);
1164 typep = decode_fund_type (fundtype);
1165 break;
1166 case AT_mod_fund_type:
1167 typep = decode_mod_fund_type (scan);
1168 break;
1169 case AT_user_def_type:
1170 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1171 current_objfile);
1172 if ((typep = lookup_utype (die_ref)) == NULL)
1173 {
1174 typep = alloc_utype (die_ref, NULL);
1175 }
1176 break;
1177 case AT_mod_u_d_type:
1178 typep = decode_mod_u_d_type (scan);
1179 break;
1180 default:
23136709 1181 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1182 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1183 break;
1184 }
c906108c
SS
1185 }
1186 return (typep);
1187}
1188
1189/*
1190
c5aa993b 1191 LOCAL FUNCTION
c906108c 1192
c5aa993b 1193 decode_subscript_data_item -- decode array subscript item
c906108c 1194
c5aa993b 1195 SYNOPSIS
c906108c 1196
c5aa993b
JM
1197 static struct type *
1198 decode_subscript_data_item (char *scan, char *end)
c906108c 1199
c5aa993b 1200 DESCRIPTION
c906108c 1201
c5aa993b
JM
1202 The array subscripts and the data type of the elements of an
1203 array are described by a list of data items, stored as a block
1204 of contiguous bytes. There is a data item describing each array
1205 dimension, and a final data item describing the element type.
1206 The data items are ordered the same as their appearance in the
1207 source (I.E. leftmost dimension first, next to leftmost second,
1208 etc).
c906108c 1209
c5aa993b
JM
1210 The data items describing each array dimension consist of four
1211 parts: (1) a format specifier, (2) type type of the subscript
1212 index, (3) a description of the low bound of the array dimension,
1213 and (4) a description of the high bound of the array dimension.
c906108c 1214
c5aa993b
JM
1215 The last data item is the description of the type of each of
1216 the array elements.
c906108c 1217
c5aa993b
JM
1218 We are passed a pointer to the start of the block of bytes
1219 containing the remaining data items, and a pointer to the first
1220 byte past the data. This function recursively decodes the
1221 remaining data items and returns a type.
c906108c 1222
c5aa993b
JM
1223 If we somehow fail to decode some data, we complain about it
1224 and return a type "array of int".
c906108c 1225
c5aa993b
JM
1226 BUGS
1227 FIXME: This code only implements the forms currently used
1228 by the AT&T and GNU C compilers.
c906108c 1229
c5aa993b
JM
1230 The end pointer is supplied for error checking, maybe we should
1231 use it for that...
c906108c
SS
1232 */
1233
1234static struct type *
fba45db2 1235decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1236{
1237 struct type *typep = NULL; /* Array type we are building */
1238 struct type *nexttype; /* Type of each element (may be array) */
1239 struct type *indextype; /* Type of this index */
1240 struct type *rangetype;
1241 unsigned int format;
1242 unsigned short fundtype;
1243 unsigned long lowbound;
1244 unsigned long highbound;
1245 int nbytes;
c5aa993b 1246
c906108c
SS
1247 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1248 current_objfile);
1249 scan += SIZEOF_FORMAT_SPECIFIER;
1250 switch (format)
1251 {
1252 case FMT_ET:
1253 typep = decode_array_element_type (scan);
1254 break;
1255 case FMT_FT_C_C:
1256 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1257 current_objfile);
1258 indextype = decode_fund_type (fundtype);
1259 scan += SIZEOF_FMT_FT;
1260 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1261 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1262 scan += nbytes;
1263 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1264 scan += nbytes;
1265 nexttype = decode_subscript_data_item (scan, end);
1266 if (nexttype == NULL)
1267 {
1268 /* Munged subscript data or other problem, fake it. */
23136709
KB
1269 complaint (&symfile_complaints,
1270 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1271 DIE_ID, DIE_NAME);
c906108c
SS
1272 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1273 }
1274 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1275 lowbound, highbound);
c906108c
SS
1276 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1277 break;
1278 case FMT_FT_C_X:
1279 case FMT_FT_X_C:
1280 case FMT_FT_X_X:
1281 case FMT_UT_C_C:
1282 case FMT_UT_C_X:
1283 case FMT_UT_X_C:
1284 case FMT_UT_X_X:
23136709
KB
1285 complaint (&symfile_complaints,
1286 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1287 DIE_ID, DIE_NAME, format);
c906108c
SS
1288 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1289 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1290 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1291 break;
1292 default:
23136709
KB
1293 complaint (&symfile_complaints,
1294 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1295 DIE_NAME, format);
c906108c
SS
1296 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1297 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1298 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1299 break;
1300 }
1301 return (typep);
1302}
1303
1304/*
1305
c5aa993b 1306 LOCAL FUNCTION
c906108c 1307
c5aa993b 1308 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1309
c5aa993b 1310 SYNOPSIS
c906108c 1311
c5aa993b 1312 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1313
c5aa993b 1314 DESCRIPTION
c906108c 1315
c5aa993b
JM
1316 Extract all information from a TAG_array_type DIE and add to
1317 the user defined type vector.
c906108c
SS
1318 */
1319
1320static void
fba45db2 1321dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1322{
1323 struct type *type;
1324 struct type *utype;
1325 char *sub;
1326 char *subend;
1327 unsigned short blocksz;
1328 int nbytes;
c5aa993b
JM
1329
1330 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1331 {
1332 /* FIXME: Can gdb even handle column major arrays? */
23136709
KB
1333 complaint (&symfile_complaints,
1334 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1335 DIE_ID, DIE_NAME);
c906108c 1336 }
c5aa993b 1337 if ((sub = dip->at_subscr_data) != NULL)
c906108c
SS
1338 {
1339 nbytes = attribute_size (AT_subscr_data);
1340 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1341 subend = sub + nbytes + blocksz;
1342 sub += nbytes;
1343 type = decode_subscript_data_item (sub, subend);
c5aa993b 1344 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1345 {
1346 /* Install user defined type that has not been referenced yet. */
c5aa993b 1347 alloc_utype (dip->die_ref, type);
c906108c
SS
1348 }
1349 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1350 {
1351 /* Ick! A forward ref has already generated a blank type in our
1352 slot, and this type probably already has things pointing to it
1353 (which is what caused it to be created in the first place).
1354 If it's just a place holder we can plop our fully defined type
1355 on top of it. We can't recover the space allocated for our
1356 new type since it might be on an obstack, but we could reuse
1357 it if we kept a list of them, but it might not be worth it
1358 (FIXME). */
1359 *utype = *type;
1360 }
1361 else
1362 {
1363 /* Double ick! Not only is a type already in our slot, but
1364 someone has decorated it. Complain and leave it alone. */
23136709 1365 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1366 }
1367 }
1368}
1369
1370/*
1371
c5aa993b 1372 LOCAL FUNCTION
c906108c 1373
c5aa993b 1374 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1375
c5aa993b 1376 SYNOPSIS
c906108c 1377
c5aa993b 1378 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1379
c5aa993b 1380 DESCRIPTION
c906108c 1381
c5aa993b
JM
1382 Extract all information from a TAG_pointer_type DIE and add to
1383 the user defined type vector.
c906108c
SS
1384 */
1385
1386static void
fba45db2 1387read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1388{
1389 struct type *type;
1390 struct type *utype;
c5aa993b 1391
c906108c 1392 type = decode_die_type (dip);
c5aa993b 1393 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1394 {
1395 utype = lookup_pointer_type (type);
c5aa993b 1396 alloc_utype (dip->die_ref, utype);
c906108c
SS
1397 }
1398 else
1399 {
1400 TYPE_TARGET_TYPE (utype) = type;
1401 TYPE_POINTER_TYPE (type) = utype;
1402
1403 /* We assume the machine has only one representation for pointers! */
1404 /* FIXME: Possably a poor assumption */
c5aa993b 1405 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1406 TYPE_CODE (utype) = TYPE_CODE_PTR;
1407 }
1408}
1409
1410/*
1411
c5aa993b 1412 LOCAL FUNCTION
c906108c 1413
c5aa993b 1414 read_tag_string_type -- read TAG_string_type DIE
c906108c 1415
c5aa993b 1416 SYNOPSIS
c906108c 1417
c5aa993b 1418 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1419
c5aa993b 1420 DESCRIPTION
c906108c 1421
c5aa993b
JM
1422 Extract all information from a TAG_string_type DIE and add to
1423 the user defined type vector. It isn't really a user defined
1424 type, but it behaves like one, with other DIE's using an
1425 AT_user_def_type attribute to reference it.
c906108c
SS
1426 */
1427
1428static void
fba45db2 1429read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1430{
1431 struct type *utype;
1432 struct type *indextype;
1433 struct type *rangetype;
1434 unsigned long lowbound = 0;
1435 unsigned long highbound;
1436
c5aa993b 1437 if (dip->has_at_byte_size)
c906108c
SS
1438 {
1439 /* A fixed bounds string */
c5aa993b 1440 highbound = dip->at_byte_size - 1;
c906108c
SS
1441 }
1442 else
1443 {
1444 /* A varying length string. Stub for now. (FIXME) */
1445 highbound = 1;
1446 }
1447 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1448 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1449 highbound);
c5aa993b
JM
1450
1451 utype = lookup_utype (dip->die_ref);
c906108c
SS
1452 if (utype == NULL)
1453 {
1454 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1455 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1456 }
1457 else
1458 {
1459 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1460 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1461 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1462 {
23136709 1463 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1464 return;
1465 }
1466 }
1467
1468 /* Create the string type using the blank type we either found or created. */
1469 utype = create_string_type (utype, rangetype);
1470}
1471
1472/*
1473
c5aa993b 1474 LOCAL FUNCTION
c906108c 1475
c5aa993b 1476 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1477
c5aa993b 1478 SYNOPSIS
c906108c 1479
c5aa993b
JM
1480 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1481 char *enddie)
c906108c 1482
c5aa993b 1483 DESCRIPTION
c906108c 1484
c5aa993b 1485 Handle DIES due to C code like:
c906108c 1486
c5aa993b
JM
1487 struct foo {
1488 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1489 int b;
1490 };
c906108c 1491
c5aa993b 1492 NOTES
c906108c 1493
c5aa993b
JM
1494 The parameter DIES are currently ignored. See if gdb has a way to
1495 include this info in it's type system, and decode them if so. Is
1496 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1497 */
1498
1499static void
fba45db2 1500read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1501{
1502 struct type *type; /* Type that this function returns */
1503 struct type *ftype; /* Function that returns above type */
c5aa993b 1504
c906108c
SS
1505 /* Decode the type that this subroutine returns */
1506
1507 type = decode_die_type (dip);
1508
1509 /* Check to see if we already have a partially constructed user
1510 defined type for this DIE, from a forward reference. */
1511
c5aa993b 1512 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1513 {
1514 /* This is the first reference to one of these types. Make
c5aa993b 1515 a new one and place it in the user defined types. */
c906108c 1516 ftype = lookup_function_type (type);
c5aa993b 1517 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1518 }
1519 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1520 {
1521 /* We have an existing partially constructed type, so bash it
c5aa993b 1522 into the correct type. */
c906108c
SS
1523 TYPE_TARGET_TYPE (ftype) = type;
1524 TYPE_LENGTH (ftype) = 1;
1525 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1526 }
1527 else
1528 {
23136709 1529 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1530 }
1531}
1532
1533/*
1534
c5aa993b 1535 LOCAL FUNCTION
c906108c 1536
c5aa993b 1537 read_enumeration -- process dies which define an enumeration
c906108c 1538
c5aa993b 1539 SYNOPSIS
c906108c 1540
c5aa993b
JM
1541 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1542 char *enddie, struct objfile *objfile)
c906108c 1543
c5aa993b 1544 DESCRIPTION
c906108c 1545
c5aa993b
JM
1546 Given a pointer to a die which begins an enumeration, process all
1547 the dies that define the members of the enumeration.
c906108c 1548
c5aa993b 1549 NOTES
c906108c 1550
c5aa993b
JM
1551 Note that we need to call enum_type regardless of whether or not we
1552 have a symbol, since we might have an enum without a tag name (thus
1553 no symbol for the tagname).
c906108c
SS
1554 */
1555
1556static void
fba45db2
KB
1557read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1558 struct objfile *objfile)
c906108c
SS
1559{
1560 struct type *type;
1561 struct symbol *sym;
c5aa993b 1562
c906108c
SS
1563 type = enum_type (dip, objfile);
1564 sym = new_symbol (dip, objfile);
1565 if (sym != NULL)
1566 {
1567 SYMBOL_TYPE (sym) = type;
1568 if (cu_language == language_cplus)
1569 {
1570 synthesize_typedef (dip, objfile, type);
1571 }
1572 }
1573}
1574
1575/*
1576
c5aa993b 1577 LOCAL FUNCTION
c906108c 1578
c5aa993b 1579 enum_type -- decode and return a type for an enumeration
c906108c 1580
c5aa993b 1581 SYNOPSIS
c906108c 1582
c5aa993b 1583 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1584
c5aa993b 1585 DESCRIPTION
c906108c 1586
c5aa993b
JM
1587 Given a pointer to a die information structure for the die which
1588 starts an enumeration, process all the dies that define the members
1589 of the enumeration and return a type pointer for the enumeration.
c906108c 1590
c5aa993b
JM
1591 At the same time, for each member of the enumeration, create a
1592 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1593 and give it the type of the enumeration itself.
c906108c 1594
c5aa993b 1595 NOTES
c906108c 1596
c5aa993b
JM
1597 Note that the DWARF specification explicitly mandates that enum
1598 constants occur in reverse order from the source program order,
1599 for "consistency" and because this ordering is easier for many
1600 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1601 Entries). Because gdb wants to see the enum members in program
1602 source order, we have to ensure that the order gets reversed while
1603 we are processing them.
c906108c
SS
1604 */
1605
1606static struct type *
fba45db2 1607enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1608{
1609 struct type *type;
c5aa993b
JM
1610 struct nextfield
1611 {
1612 struct nextfield *next;
1613 struct field field;
1614 };
c906108c
SS
1615 struct nextfield *list = NULL;
1616 struct nextfield *new;
1617 int nfields = 0;
1618 int n;
1619 char *scan;
1620 char *listend;
1621 unsigned short blocksz;
1622 struct symbol *sym;
1623 int nbytes;
1624 int unsigned_enum = 1;
c5aa993b
JM
1625
1626 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1627 {
1628 /* No forward references created an empty type, so install one now */
c5aa993b 1629 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1630 }
1631 TYPE_CODE (type) = TYPE_CODE_ENUM;
1632 /* Some compilers try to be helpful by inventing "fake" names for
1633 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1634 Thanks, but no thanks... */
c5aa993b
JM
1635 if (dip->at_name != NULL
1636 && *dip->at_name != '~'
1637 && *dip->at_name != '.')
c906108c 1638 {
c5aa993b
JM
1639 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1640 "", "", dip->at_name);
c906108c 1641 }
c5aa993b 1642 if (dip->at_byte_size != 0)
c906108c 1643 {
c5aa993b 1644 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1645 }
c5aa993b 1646 if ((scan = dip->at_element_list) != NULL)
c906108c 1647 {
c5aa993b 1648 if (dip->short_element_list)
c906108c
SS
1649 {
1650 nbytes = attribute_size (AT_short_element_list);
1651 }
1652 else
1653 {
1654 nbytes = attribute_size (AT_element_list);
1655 }
1656 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1657 listend = scan + nbytes + blocksz;
1658 scan += nbytes;
1659 while (scan < listend)
1660 {
1661 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1662 new->next = list;
c906108c
SS
1663 list = new;
1664 FIELD_TYPE (list->field) = NULL;
1665 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1666 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1667 FIELD_BITPOS (list->field) =
1668 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1669 objfile);
1670 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1671 list->field.name = obsavestring (scan, strlen (scan),
1672 &objfile->type_obstack);
c906108c
SS
1673 scan += strlen (scan) + 1;
1674 nfields++;
1675 /* Handcraft a new symbol for this enum member. */
1676 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1677 sizeof (struct symbol));
1678 memset (sym, 0, sizeof (struct symbol));
22abf04a 1679 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1680 &objfile->symbol_obstack);
1681 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1682 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1683 SYMBOL_CLASS (sym) = LOC_CONST;
1684 SYMBOL_TYPE (sym) = type;
1685 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1686 if (SYMBOL_VALUE (sym) < 0)
1687 unsigned_enum = 0;
1688 add_symbol_to_list (sym, list_in_scope);
1689 }
1690 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1691 where we reverse the order, by pulling the members off the list in
1692 reverse order from how they were inserted. If we have no fields
1693 (this is apparently possible in C++) then skip building a field
1694 vector. */
c906108c
SS
1695 if (nfields > 0)
1696 {
1697 if (unsigned_enum)
1698 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1699 TYPE_NFIELDS (type) = nfields;
1700 TYPE_FIELDS (type) = (struct field *)
1701 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1702 /* Copy the saved-up fields into the field vector. */
c5aa993b 1703 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1704 {
c5aa993b
JM
1705 TYPE_FIELD (type, n++) = list->field;
1706 }
c906108c
SS
1707 }
1708 }
1709 return (type);
1710}
1711
1712/*
1713
c5aa993b 1714 LOCAL FUNCTION
c906108c 1715
c5aa993b 1716 read_func_scope -- process all dies within a function scope
c906108c 1717
c5aa993b 1718 DESCRIPTION
c906108c 1719
c5aa993b
JM
1720 Process all dies within a given function scope. We are passed
1721 a die information structure pointer DIP for the die which
1722 starts the function scope, and pointers into the raw die data
1723 that define the dies within the function scope.
1724
1725 For now, we ignore lexical block scopes within the function.
1726 The problem is that AT&T cc does not define a DWARF lexical
1727 block scope for the function itself, while gcc defines a
1728 lexical block scope for the function. We need to think about
1729 how to handle this difference, or if it is even a problem.
1730 (FIXME)
c906108c
SS
1731 */
1732
1733static void
fba45db2
KB
1734read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1735 struct objfile *objfile)
c906108c
SS
1736{
1737 register struct context_stack *new;
c5aa993b 1738
c906108c
SS
1739 /* AT_name is absent if the function is described with an
1740 AT_abstract_origin tag.
1741 Ignore the function description for now to avoid GDB core dumps.
1742 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1743 if (dip->at_name == NULL)
c906108c 1744 {
23136709
KB
1745 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1746 DIE_ID);
c906108c
SS
1747 return;
1748 }
1749
c5aa993b
JM
1750 if (objfile->ei.entry_point >= dip->at_low_pc &&
1751 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1752 {
c5aa993b
JM
1753 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1754 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1755 }
c5aa993b
JM
1756 new = push_context (0, dip->at_low_pc);
1757 new->name = new_symbol (dip, objfile);
c906108c 1758 list_in_scope = &local_symbols;
c5aa993b 1759 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1760 new = pop_context ();
1761 /* Make a block for the local symbols within. */
c5aa993b
JM
1762 finish_block (new->name, &local_symbols, new->old_blocks,
1763 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1764 list_in_scope = &file_symbols;
1765}
1766
1767
1768/*
1769
c5aa993b 1770 LOCAL FUNCTION
c906108c 1771
c5aa993b 1772 handle_producer -- process the AT_producer attribute
c906108c 1773
c5aa993b 1774 DESCRIPTION
c906108c 1775
c5aa993b
JM
1776 Perform any operations that depend on finding a particular
1777 AT_producer attribute.
c906108c
SS
1778
1779 */
1780
1781static void
fba45db2 1782handle_producer (char *producer)
c906108c
SS
1783{
1784
1785 /* If this compilation unit was compiled with g++ or gcc, then set the
1786 processing_gcc_compilation flag. */
1787
1788 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1789 {
1790 char version = producer[strlen (GCC_PRODUCER)];
1791 processing_gcc_compilation = (version == '2' ? 2 : 1);
1792 }
1793 else
1794 {
1795 processing_gcc_compilation =
db034ac5 1796 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
c906108c
SS
1797 }
1798
1799 /* Select a demangling style if we can identify the producer and if
1800 the current style is auto. We leave the current style alone if it
1801 is not auto. We also leave the demangling style alone if we find a
1802 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1803
1804 if (AUTO_DEMANGLING)
1805 {
1806 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1807 {
8052a17a
JM
1808#if 0
1809 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1810 know whether it will use the old style or v3 mangling. */
c906108c 1811 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1812#endif
c906108c
SS
1813 }
1814 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1815 {
1816 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1817 }
1818 }
1819}
1820
1821
1822/*
1823
c5aa993b 1824 LOCAL FUNCTION
c906108c 1825
c5aa993b 1826 read_file_scope -- process all dies within a file scope
c906108c 1827
c5aa993b
JM
1828 DESCRIPTION
1829
1830 Process all dies within a given file scope. We are passed a
1831 pointer to the die information structure for the die which
1832 starts the file scope, and pointers into the raw die data which
1833 mark the range of dies within the file scope.
c906108c 1834
c5aa993b
JM
1835 When the partial symbol table is built, the file offset for the line
1836 number table for each compilation unit is saved in the partial symbol
1837 table entry for that compilation unit. As the symbols for each
1838 compilation unit are read, the line number table is read into memory
1839 and the variable lnbase is set to point to it. Thus all we have to
1840 do is use lnbase to access the line number table for the current
1841 compilation unit.
c906108c
SS
1842 */
1843
1844static void
fba45db2
KB
1845read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1846 struct objfile *objfile)
c906108c
SS
1847{
1848 struct cleanup *back_to;
1849 struct symtab *symtab;
c5aa993b
JM
1850
1851 if (objfile->ei.entry_point >= dip->at_low_pc &&
1852 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1853 {
c5aa993b
JM
1854 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1855 objfile->ei.entry_file_highpc = dip->at_high_pc;
c906108c
SS
1856 }
1857 set_cu_language (dip);
c5aa993b 1858 if (dip->at_producer != NULL)
c906108c 1859 {
c5aa993b 1860 handle_producer (dip->at_producer);
c906108c
SS
1861 }
1862 numutypes = (enddie - thisdie) / 4;
1863 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1864 back_to = make_cleanup (free_utypes, NULL);
1865 memset (utypes, 0, numutypes * sizeof (struct type *));
1866 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1867 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1868 record_debugformat ("DWARF 1");
1869 decode_line_numbers (lnbase);
c5aa993b 1870 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1871
c5aa993b 1872 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1873 if (symtab != NULL)
1874 {
c5aa993b
JM
1875 symtab->language = cu_language;
1876 }
c906108c
SS
1877 do_cleanups (back_to);
1878}
1879
1880/*
1881
c5aa993b 1882 LOCAL FUNCTION
c906108c 1883
c5aa993b 1884 process_dies -- process a range of DWARF Information Entries
c906108c 1885
c5aa993b 1886 SYNOPSIS
c906108c 1887
c5aa993b
JM
1888 static void process_dies (char *thisdie, char *enddie,
1889 struct objfile *objfile)
c906108c 1890
c5aa993b 1891 DESCRIPTION
c906108c 1892
c5aa993b
JM
1893 Process all DIE's in a specified range. May be (and almost
1894 certainly will be) called recursively.
c906108c
SS
1895 */
1896
1897static void
fba45db2 1898process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1899{
1900 char *nextdie;
1901 struct dieinfo di;
c5aa993b 1902
c906108c
SS
1903 while (thisdie < enddie)
1904 {
1905 basicdieinfo (&di, thisdie, objfile);
1906 if (di.die_length < SIZEOF_DIE_LENGTH)
1907 {
1908 break;
1909 }
1910 else if (di.die_tag == TAG_padding)
1911 {
1912 nextdie = thisdie + di.die_length;
1913 }
1914 else
1915 {
1916 completedieinfo (&di, objfile);
1917 if (di.at_sibling != 0)
1918 {
1919 nextdie = dbbase + di.at_sibling - dbroff;
1920 }
1921 else
1922 {
1923 nextdie = thisdie + di.die_length;
1924 }
c906108c 1925 /* I think that these are always text, not data, addresses. */
181c1381
RE
1926 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1927 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1928 switch (di.die_tag)
1929 {
1930 case TAG_compile_unit:
1931 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1932 unit, we are unable to handle nested compilation units
1933 properly (FIXME). */
c906108c
SS
1934 if (current_subfile == NULL)
1935 read_file_scope (&di, thisdie, nextdie, objfile);
1936 else
1937 nextdie = thisdie + di.die_length;
1938 break;
1939 case TAG_global_subroutine:
1940 case TAG_subroutine:
1941 if (di.has_at_low_pc)
1942 {
1943 read_func_scope (&di, thisdie, nextdie, objfile);
1944 }
1945 break;
1946 case TAG_lexical_block:
1947 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1948 break;
1949 case TAG_class_type:
1950 case TAG_structure_type:
1951 case TAG_union_type:
1952 read_structure_scope (&di, thisdie, nextdie, objfile);
1953 break;
1954 case TAG_enumeration_type:
1955 read_enumeration (&di, thisdie, nextdie, objfile);
1956 break;
1957 case TAG_subroutine_type:
1958 read_subroutine_type (&di, thisdie, nextdie);
1959 break;
1960 case TAG_array_type:
1961 dwarf_read_array_type (&di);
1962 break;
1963 case TAG_pointer_type:
1964 read_tag_pointer_type (&di);
1965 break;
1966 case TAG_string_type:
1967 read_tag_string_type (&di);
1968 break;
1969 default:
1970 new_symbol (&di, objfile);
1971 break;
1972 }
1973 }
1974 thisdie = nextdie;
1975 }
1976}
1977
1978/*
1979
c5aa993b 1980 LOCAL FUNCTION
c906108c 1981
c5aa993b 1982 decode_line_numbers -- decode a line number table fragment
c906108c 1983
c5aa993b 1984 SYNOPSIS
c906108c 1985
c5aa993b
JM
1986 static void decode_line_numbers (char *tblscan, char *tblend,
1987 long length, long base, long line, long pc)
c906108c 1988
c5aa993b 1989 DESCRIPTION
c906108c 1990
c5aa993b 1991 Translate the DWARF line number information to gdb form.
c906108c 1992
c5aa993b
JM
1993 The ".line" section contains one or more line number tables, one for
1994 each ".line" section from the objects that were linked.
c906108c 1995
c5aa993b
JM
1996 The AT_stmt_list attribute for each TAG_source_file entry in the
1997 ".debug" section contains the offset into the ".line" section for the
1998 start of the table for that file.
c906108c 1999
c5aa993b 2000 The table itself has the following structure:
c906108c 2001
c5aa993b
JM
2002 <table length><base address><source statement entry>
2003 4 bytes 4 bytes 10 bytes
c906108c 2004
c5aa993b
JM
2005 The table length is the total size of the table, including the 4 bytes
2006 for the length information.
c906108c 2007
c5aa993b
JM
2008 The base address is the address of the first instruction generated
2009 for the source file.
c906108c 2010
c5aa993b 2011 Each source statement entry has the following structure:
c906108c 2012
c5aa993b
JM
2013 <line number><statement position><address delta>
2014 4 bytes 2 bytes 4 bytes
c906108c 2015
c5aa993b
JM
2016 The line number is relative to the start of the file, starting with
2017 line 1.
c906108c 2018
c5aa993b
JM
2019 The statement position either -1 (0xFFFF) or the number of characters
2020 from the beginning of the line to the beginning of the statement.
c906108c 2021
c5aa993b
JM
2022 The address delta is the difference between the base address and
2023 the address of the first instruction for the statement.
c906108c 2024
c5aa993b
JM
2025 Note that we must copy the bytes from the packed table to our local
2026 variables before attempting to use them, to avoid alignment problems
2027 on some machines, particularly RISC processors.
c906108c 2028
c5aa993b 2029 BUGS
c906108c 2030
c5aa993b
JM
2031 Does gdb expect the line numbers to be sorted? They are now by
2032 chance/luck, but are not required to be. (FIXME)
c906108c 2033
c5aa993b
JM
2034 The line with number 0 is unused, gdb apparently can discover the
2035 span of the last line some other way. How? (FIXME)
c906108c
SS
2036 */
2037
2038static void
fba45db2 2039decode_line_numbers (char *linetable)
c906108c
SS
2040{
2041 char *tblscan;
2042 char *tblend;
2043 unsigned long length;
2044 unsigned long base;
2045 unsigned long line;
2046 unsigned long pc;
c5aa993b 2047
c906108c
SS
2048 if (linetable != NULL)
2049 {
2050 tblscan = tblend = linetable;
2051 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2052 current_objfile);
2053 tblscan += SIZEOF_LINETBL_LENGTH;
2054 tblend += length;
2055 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2056 GET_UNSIGNED, current_objfile);
2057 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2058 base += baseaddr;
2059 while (tblscan < tblend)
2060 {
2061 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2062 current_objfile);
2063 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2064 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2065 current_objfile);
2066 tblscan += SIZEOF_LINETBL_DELTA;
2067 pc += base;
2068 if (line != 0)
2069 {
2070 record_line (current_subfile, line, pc);
2071 }
2072 }
2073 }
2074}
2075
2076/*
2077
c5aa993b 2078 LOCAL FUNCTION
c906108c 2079
c5aa993b 2080 locval -- compute the value of a location attribute
c906108c 2081
c5aa993b 2082 SYNOPSIS
c906108c 2083
c5aa993b 2084 static int locval (struct dieinfo *dip)
c906108c 2085
c5aa993b 2086 DESCRIPTION
c906108c 2087
c5aa993b
JM
2088 Given pointer to a string of bytes that define a location, compute
2089 the location and return the value.
2090 A location description containing no atoms indicates that the
2091 object is optimized out. The optimized_out flag is set for those,
2092 the return value is meaningless.
c906108c 2093
c5aa993b
JM
2094 When computing values involving the current value of the frame pointer,
2095 the value zero is used, which results in a value relative to the frame
2096 pointer, rather than the absolute value. This is what GDB wants
2097 anyway.
c906108c 2098
c5aa993b
JM
2099 When the result is a register number, the isreg flag is set, otherwise
2100 it is cleared. This is a kludge until we figure out a better
2101 way to handle the problem. Gdb's design does not mesh well with the
2102 DWARF notion of a location computing interpreter, which is a shame
2103 because the flexibility goes unused.
2104
2105 NOTES
2106
2107 Note that stack[0] is unused except as a default error return.
2108 Note that stack overflow is not yet handled.
c906108c
SS
2109 */
2110
2111static int
fba45db2 2112locval (struct dieinfo *dip)
c906108c
SS
2113{
2114 unsigned short nbytes;
2115 unsigned short locsize;
2116 auto long stack[64];
2117 int stacki;
2118 char *loc;
2119 char *end;
2120 int loc_atom_code;
2121 int loc_value_size;
c5aa993b
JM
2122
2123 loc = dip->at_location;
c906108c
SS
2124 nbytes = attribute_size (AT_location);
2125 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2126 loc += nbytes;
2127 end = loc + locsize;
2128 stacki = 0;
2129 stack[stacki] = 0;
c5aa993b
JM
2130 dip->isreg = 0;
2131 dip->offreg = 0;
2132 dip->optimized_out = 1;
c906108c
SS
2133 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2134 while (loc < end)
2135 {
c5aa993b 2136 dip->optimized_out = 0;
c906108c
SS
2137 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2138 current_objfile);
2139 loc += SIZEOF_LOC_ATOM_CODE;
2140 switch (loc_atom_code)
2141 {
c5aa993b
JM
2142 case 0:
2143 /* error */
2144 loc = end;
2145 break;
2146 case OP_REG:
2147 /* push register (number) */
2148 stack[++stacki]
2149 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2150 GET_UNSIGNED,
2151 current_objfile));
2152 loc += loc_value_size;
2153 dip->isreg = 1;
2154 break;
2155 case OP_BASEREG:
2156 /* push value of register (number) */
2157 /* Actually, we compute the value as if register has 0, so the
2158 value ends up being the offset from that register. */
2159 dip->offreg = 1;
2160 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2161 current_objfile);
2162 loc += loc_value_size;
2163 stack[++stacki] = 0;
2164 break;
2165 case OP_ADDR:
2166 /* push address (relocated address) */
2167 stack[++stacki] = target_to_host (loc, loc_value_size,
2168 GET_UNSIGNED, current_objfile);
2169 loc += loc_value_size;
2170 break;
2171 case OP_CONST:
2172 /* push constant (number) FIXME: signed or unsigned! */
2173 stack[++stacki] = target_to_host (loc, loc_value_size,
2174 GET_SIGNED, current_objfile);
2175 loc += loc_value_size;
2176 break;
2177 case OP_DEREF2:
2178 /* pop, deref and push 2 bytes (as a long) */
23136709
KB
2179 complaint (&symfile_complaints,
2180 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2181 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2182 break;
2183 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709
KB
2184 complaint (&symfile_complaints,
2185 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2186 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2187 break;
2188 case OP_ADD: /* pop top 2 items, add, push result */
2189 stack[stacki - 1] += stack[stacki];
2190 stacki--;
2191 break;
c906108c
SS
2192 }
2193 }
2194 return (stack[stacki]);
2195}
2196
2197/*
2198
c5aa993b 2199 LOCAL FUNCTION
c906108c 2200
c5aa993b 2201 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2202
c5aa993b 2203 SYNOPSIS
c906108c 2204
c5aa993b 2205 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2206
c5aa993b 2207 DESCRIPTION
c906108c 2208
c5aa993b
JM
2209 When expanding a partial symbol table entry to a full symbol table
2210 entry, this is the function that gets called to read in the symbols
2211 for the compilation unit. A pointer to the newly constructed symtab,
2212 which is now the new first one on the objfile's symtab list, is
2213 stashed in the partial symbol table entry.
c906108c
SS
2214 */
2215
2216static void
fba45db2 2217read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2218{
2219 struct cleanup *back_to;
2220 unsigned long lnsize;
2221 file_ptr foffset;
2222 bfd *abfd;
2223 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2224
c5aa993b
JM
2225 abfd = pst->objfile->obfd;
2226 current_objfile = pst->objfile;
c906108c
SS
2227
2228 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2229 unit, seek to the location in the file, and read in all the DIE's. */
2230
2231 diecount = 0;
2232 dbsize = DBLENGTH (pst);
2233 dbbase = xmalloc (dbsize);
c5aa993b
JM
2234 dbroff = DBROFF (pst);
2235 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2236 base_section_offsets = pst->section_offsets;
2237 baseaddr = ANOFFSET (pst->section_offsets, 0);
2238 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2239 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2240 {
b8c9b27d 2241 xfree (dbbase);
c906108c
SS
2242 error ("can't read DWARF data");
2243 }
b8c9b27d 2244 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2245
2246 /* If there is a line number table associated with this compilation unit
2247 then read the size of this fragment in bytes, from the fragment itself.
2248 Allocate a buffer for the fragment and read it in for future
2249 processing. */
2250
2251 lnbase = NULL;
2252 if (LNFOFF (pst))
2253 {
2254 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2255 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2256 != sizeof (lnsizedata)))
c906108c
SS
2257 {
2258 error ("can't read DWARF line number table size");
2259 }
2260 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2261 GET_UNSIGNED, pst->objfile);
c906108c
SS
2262 lnbase = xmalloc (lnsize);
2263 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2264 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2265 {
b8c9b27d 2266 xfree (lnbase);
c906108c
SS
2267 error ("can't read DWARF line numbers");
2268 }
b8c9b27d 2269 make_cleanup (xfree, lnbase);
c906108c
SS
2270 }
2271
c5aa993b 2272 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2273 do_cleanups (back_to);
2274 current_objfile = NULL;
c5aa993b 2275 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2276}
2277
2278/*
2279
c5aa993b 2280 LOCAL FUNCTION
c906108c 2281
c5aa993b 2282 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2283
c5aa993b 2284 SYNOPSIS
c906108c 2285
c5aa993b 2286 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2287
c5aa993b 2288 DESCRIPTION
c906108c 2289
c5aa993b
JM
2290 Called once for each partial symbol table entry that needs to be
2291 expanded into a full symbol table entry.
c906108c 2292
c5aa993b 2293 */
c906108c
SS
2294
2295static void
fba45db2 2296psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2297{
2298 int i;
2299 struct cleanup *old_chain;
c5aa993b 2300
c906108c
SS
2301 if (pst != NULL)
2302 {
2303 if (pst->readin)
2304 {
2305 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2306 pst->filename);
c906108c
SS
2307 }
2308 else
2309 {
2310 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2311 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2312 {
c5aa993b 2313 if (!pst->dependencies[i]->readin)
c906108c
SS
2314 {
2315 /* Inform about additional files that need to be read in. */
2316 if (info_verbose)
2317 {
2318 fputs_filtered (" ", gdb_stdout);
2319 wrap_here ("");
2320 fputs_filtered ("and ", gdb_stdout);
2321 wrap_here ("");
2322 printf_filtered ("%s...",
c5aa993b 2323 pst->dependencies[i]->filename);
c906108c 2324 wrap_here ("");
c5aa993b 2325 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2326 }
c5aa993b 2327 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2328 }
c5aa993b
JM
2329 }
2330 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2331 {
2332 buildsym_init ();
a0b3c4fd 2333 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2334 read_ofile_symtab (pst);
2335 if (info_verbose)
2336 {
2337 printf_filtered ("%d DIE's, sorting...", diecount);
2338 wrap_here ("");
2339 gdb_flush (gdb_stdout);
2340 }
c5aa993b 2341 sort_symtab_syms (pst->symtab);
c906108c
SS
2342 do_cleanups (old_chain);
2343 }
c5aa993b 2344 pst->readin = 1;
c906108c
SS
2345 }
2346 }
2347}
2348
2349/*
2350
c5aa993b 2351 LOCAL FUNCTION
c906108c 2352
c5aa993b 2353 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2354
c5aa993b 2355 SYNOPSIS
c906108c 2356
c5aa993b 2357 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2358
c5aa993b 2359 DESCRIPTION
c906108c 2360
c5aa993b
JM
2361 This is the DWARF support entry point for building a full symbol
2362 table entry from a partial symbol table entry. We are passed a
2363 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2364
c5aa993b 2365 */
c906108c
SS
2366
2367static void
fba45db2 2368dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2369{
2370
2371 if (pst != NULL)
2372 {
c5aa993b 2373 if (pst->readin)
c906108c
SS
2374 {
2375 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2376 pst->filename);
c906108c
SS
2377 }
2378 else
2379 {
c5aa993b 2380 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2381 {
2382 /* Print the message now, before starting serious work, to avoid
c5aa993b 2383 disconcerting pauses. */
c906108c
SS
2384 if (info_verbose)
2385 {
2386 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2387 pst->filename);
c906108c
SS
2388 gdb_flush (gdb_stdout);
2389 }
c5aa993b 2390
c906108c 2391 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2392
2393#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2394 we need to do an equivalent or is this something peculiar to
2395 stabs/a.out format.
2396 Match with global symbols. This only needs to be done once,
2397 after all of the symtabs and dependencies have been read in.
2398 */
2399 scan_file_globals (pst->objfile);
c906108c 2400#endif
c5aa993b 2401
c906108c
SS
2402 /* Finish up the verbose info message. */
2403 if (info_verbose)
2404 {
2405 printf_filtered ("done.\n");
2406 gdb_flush (gdb_stdout);
2407 }
2408 }
2409 }
2410 }
2411}
2412
2413/*
2414
c5aa993b 2415 LOCAL FUNCTION
c906108c 2416
c5aa993b 2417 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2418
c5aa993b 2419 DESCRIPTION
c906108c 2420
c5aa993b
JM
2421 Given pointer to a DIE that is known to be for an enumeration,
2422 extract the symbolic names of the enumeration members and add
2423 partial symbols for them.
2424 */
c906108c
SS
2425
2426static void
fba45db2 2427add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2428{
2429 char *scan;
2430 char *listend;
2431 unsigned short blocksz;
2432 int nbytes;
c5aa993b
JM
2433
2434 if ((scan = dip->at_element_list) != NULL)
c906108c 2435 {
c5aa993b 2436 if (dip->short_element_list)
c906108c
SS
2437 {
2438 nbytes = attribute_size (AT_short_element_list);
2439 }
2440 else
2441 {
2442 nbytes = attribute_size (AT_element_list);
2443 }
2444 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2445 scan += nbytes;
2446 listend = scan + blocksz;
2447 while (scan < listend)
2448 {
2449 scan += TARGET_FT_LONG_SIZE (objfile);
2450 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
c5aa993b 2451 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2452 objfile);
2453 scan += strlen (scan) + 1;
2454 }
2455 }
2456}
2457
2458/*
2459
c5aa993b 2460 LOCAL FUNCTION
c906108c 2461
c5aa993b 2462 add_partial_symbol -- add symbol to partial symbol table
c906108c 2463
c5aa993b 2464 DESCRIPTION
c906108c 2465
c5aa993b
JM
2466 Given a DIE, if it is one of the types that we want to
2467 add to a partial symbol table, finish filling in the die info
2468 and then add a partial symbol table entry for it.
c906108c 2469
c5aa993b 2470 NOTES
c906108c 2471
c5aa993b
JM
2472 The caller must ensure that the DIE has a valid name attribute.
2473 */
c906108c
SS
2474
2475static void
fba45db2 2476add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2477{
c5aa993b 2478 switch (dip->die_tag)
c906108c
SS
2479 {
2480 case TAG_global_subroutine:
c5aa993b
JM
2481 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2482 VAR_NAMESPACE, LOC_BLOCK,
2483 &objfile->global_psymbols,
2484 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2485 break;
2486 case TAG_global_variable:
c5aa993b 2487 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2488 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2489 &objfile->global_psymbols,
c906108c
SS
2490 0, 0, cu_language, objfile);
2491 break;
2492 case TAG_subroutine:
c5aa993b
JM
2493 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2494 VAR_NAMESPACE, LOC_BLOCK,
2495 &objfile->static_psymbols,
2496 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2497 break;
2498 case TAG_local_variable:
c5aa993b 2499 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2500 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2501 &objfile->static_psymbols,
c906108c
SS
2502 0, 0, cu_language, objfile);
2503 break;
2504 case TAG_typedef:
c5aa993b 2505 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2506 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2507 &objfile->static_psymbols,
c906108c
SS
2508 0, 0, cu_language, objfile);
2509 break;
2510 case TAG_class_type:
2511 case TAG_structure_type:
2512 case TAG_union_type:
2513 case TAG_enumeration_type:
2514 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2515 if (!dip->has_at_byte_size)
c906108c 2516 break;
c5aa993b 2517 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2518 STRUCT_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2519 &objfile->static_psymbols,
c906108c
SS
2520 0, 0, cu_language, objfile);
2521 if (cu_language == language_cplus)
2522 {
2523 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2524 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2525 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2526 &objfile->static_psymbols,
c906108c
SS
2527 0, 0, cu_language, objfile);
2528 }
2529 break;
2530 }
2531}
9846de1b 2532/* *INDENT-OFF* */
c906108c
SS
2533/*
2534
2535LOCAL FUNCTION
2536
2537 scan_partial_symbols -- scan DIE's within a single compilation unit
2538
2539DESCRIPTION
2540
2541 Process the DIE's within a single compilation unit, looking for
2542 interesting DIE's that contribute to the partial symbol table entry
2543 for this compilation unit.
2544
2545NOTES
2546
2547 There are some DIE's that may appear both at file scope and within
2548 the scope of a function. We are only interested in the ones at file
2549 scope, and the only way to tell them apart is to keep track of the
2550 scope. For example, consider the test case:
2551
2552 static int i;
2553 main () { int j; }
2554
2555 for which the relevant DWARF segment has the structure:
2556
2557 0x51:
2558 0x23 global subrtn sibling 0x9b
2559 name main
2560 fund_type FT_integer
2561 low_pc 0x800004cc
2562 high_pc 0x800004d4
2563
2564 0x74:
2565 0x23 local var sibling 0x97
2566 name j
2567 fund_type FT_integer
2568 location OP_BASEREG 0xe
2569 OP_CONST 0xfffffffc
2570 OP_ADD
2571 0x97:
2572 0x4
2573
2574 0x9b:
2575 0x1d local var sibling 0xb8
2576 name i
2577 fund_type FT_integer
2578 location OP_ADDR 0x800025dc
2579
2580 0xb8:
2581 0x4
2582
2583 We want to include the symbol 'i' in the partial symbol table, but
2584 not the symbol 'j'. In essence, we want to skip all the dies within
2585 the scope of a TAG_global_subroutine DIE.
2586
2587 Don't attempt to add anonymous structures or unions since they have
2588 no name. Anonymous enumerations however are processed, because we
2589 want to extract their member names (the check for a tag name is
2590 done later).
2591
2592 Also, for variables and subroutines, check that this is the place
2593 where the actual definition occurs, rather than just a reference
2594 to an external.
2595 */
9846de1b 2596/* *INDENT-ON* */
c906108c 2597
c5aa993b
JM
2598
2599
c906108c 2600static void
fba45db2 2601scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2602{
2603 char *nextdie;
2604 char *temp;
2605 struct dieinfo di;
c5aa993b 2606
c906108c
SS
2607 while (thisdie < enddie)
2608 {
2609 basicdieinfo (&di, thisdie, objfile);
2610 if (di.die_length < SIZEOF_DIE_LENGTH)
2611 {
2612 break;
2613 }
2614 else
2615 {
2616 nextdie = thisdie + di.die_length;
2617 /* To avoid getting complete die information for every die, we
2618 only do it (below) for the cases we are interested in. */
2619 switch (di.die_tag)
2620 {
2621 case TAG_global_subroutine:
2622 case TAG_subroutine:
2623 completedieinfo (&di, objfile);
2624 if (di.at_name && (di.has_at_low_pc || di.at_location))
2625 {
2626 add_partial_symbol (&di, objfile);
2627 /* If there is a sibling attribute, adjust the nextdie
2628 pointer to skip the entire scope of the subroutine.
2629 Apply some sanity checking to make sure we don't
2630 overrun or underrun the range of remaining DIE's */
2631 if (di.at_sibling != 0)
2632 {
2633 temp = dbbase + di.at_sibling - dbroff;
2634 if ((temp < thisdie) || (temp >= enddie))
2635 {
23136709
KB
2636 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2637 di.at_sibling);
c906108c
SS
2638 }
2639 else
2640 {
2641 nextdie = temp;
2642 }
2643 }
2644 }
2645 break;
2646 case TAG_global_variable:
2647 case TAG_local_variable:
2648 completedieinfo (&di, objfile);
2649 if (di.at_name && (di.has_at_low_pc || di.at_location))
2650 {
2651 add_partial_symbol (&di, objfile);
2652 }
2653 break;
2654 case TAG_typedef:
2655 case TAG_class_type:
2656 case TAG_structure_type:
2657 case TAG_union_type:
2658 completedieinfo (&di, objfile);
2659 if (di.at_name)
2660 {
2661 add_partial_symbol (&di, objfile);
2662 }
2663 break;
2664 case TAG_enumeration_type:
2665 completedieinfo (&di, objfile);
2666 if (di.at_name)
2667 {
2668 add_partial_symbol (&di, objfile);
2669 }
2670 add_enum_psymbol (&di, objfile);
2671 break;
2672 }
2673 }
2674 thisdie = nextdie;
2675 }
2676}
2677
2678/*
2679
c5aa993b 2680 LOCAL FUNCTION
c906108c 2681
c5aa993b 2682 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2683
c5aa993b 2684 DESCRIPTION
c906108c 2685
c5aa993b
JM
2686 This is the top level dwarf parsing routine for building partial
2687 symbol tables.
c906108c 2688
c5aa993b
JM
2689 It scans from the beginning of the DWARF table looking for the first
2690 TAG_compile_unit DIE, and then follows the sibling chain to locate
2691 each additional TAG_compile_unit DIE.
2692
2693 For each TAG_compile_unit DIE it creates a partial symtab structure,
2694 calls a subordinate routine to collect all the compilation unit's
2695 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2696 new partial symtab structure into the partial symbol table. It also
2697 records the appropriate information in the partial symbol table entry
2698 to allow the chunk of DIE's and line number table for this compilation
2699 unit to be located and re-read later, to generate a complete symbol
2700 table entry for the compilation unit.
2701
2702 Thus it effectively partitions up a chunk of DIE's for multiple
2703 compilation units into smaller DIE chunks and line number tables,
2704 and associates them with a partial symbol table entry.
2705
2706 NOTES
c906108c 2707
c5aa993b
JM
2708 If any compilation unit has no line number table associated with
2709 it for some reason (a missing at_stmt_list attribute, rather than
2710 just one with a value of zero, which is valid) then we ensure that
2711 the recorded file offset is zero so that the routine which later
2712 reads line number table fragments knows that there is no fragment
2713 to read.
c906108c 2714
c5aa993b 2715 RETURNS
c906108c 2716
c5aa993b 2717 Returns no value.
c906108c
SS
2718
2719 */
2720
2721static void
fba45db2
KB
2722scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2723 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2724{
2725 char *nextdie;
2726 struct dieinfo di;
2727 struct partial_symtab *pst;
2728 int culength;
2729 int curoff;
2730 file_ptr curlnoffset;
2731
2732 while (thisdie < enddie)
2733 {
2734 basicdieinfo (&di, thisdie, objfile);
2735 if (di.die_length < SIZEOF_DIE_LENGTH)
2736 {
2737 break;
2738 }
2739 else if (di.die_tag != TAG_compile_unit)
2740 {
2741 nextdie = thisdie + di.die_length;
2742 }
2743 else
2744 {
2745 completedieinfo (&di, objfile);
2746 set_cu_language (&di);
2747 if (di.at_sibling != 0)
2748 {
2749 nextdie = dbbase + di.at_sibling - dbroff;
2750 }
2751 else
2752 {
2753 nextdie = thisdie + di.die_length;
2754 }
2755 curoff = thisdie - dbbase;
2756 culength = nextdie - thisdie;
2757 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2758
2759 /* First allocate a new partial symbol table structure */
2760
2761 pst = start_psymtab_common (objfile, base_section_offsets,
2762 di.at_name, di.at_low_pc,
c5aa993b
JM
2763 objfile->global_psymbols.next,
2764 objfile->static_psymbols.next);
c906108c 2765
c5aa993b
JM
2766 pst->texthigh = di.at_high_pc;
2767 pst->read_symtab_private = (char *)
2768 obstack_alloc (&objfile->psymbol_obstack,
2769 sizeof (struct dwfinfo));
c906108c
SS
2770 DBFOFF (pst) = dbfoff;
2771 DBROFF (pst) = curoff;
2772 DBLENGTH (pst) = culength;
c5aa993b
JM
2773 LNFOFF (pst) = curlnoffset;
2774 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2775
2776 /* Now look for partial symbols */
2777
2778 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2779
c5aa993b
JM
2780 pst->n_global_syms = objfile->global_psymbols.next -
2781 (objfile->global_psymbols.list + pst->globals_offset);
2782 pst->n_static_syms = objfile->static_psymbols.next -
2783 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2784 sort_pst_symbols (pst);
2785 /* If there is already a psymtab or symtab for a file of this name,
2786 remove it. (If there is a symtab, more drastic things also
2787 happen.) This happens in VxWorks. */
c5aa993b 2788 free_named_symtabs (pst->filename);
c906108c 2789 }
c5aa993b 2790 thisdie = nextdie;
c906108c
SS
2791 }
2792}
2793
2794/*
2795
c5aa993b 2796 LOCAL FUNCTION
c906108c 2797
c5aa993b 2798 new_symbol -- make a symbol table entry for a new symbol
c906108c 2799
c5aa993b 2800 SYNOPSIS
c906108c 2801
c5aa993b
JM
2802 static struct symbol *new_symbol (struct dieinfo *dip,
2803 struct objfile *objfile)
c906108c 2804
c5aa993b 2805 DESCRIPTION
c906108c 2806
c5aa993b
JM
2807 Given a pointer to a DWARF information entry, figure out if we need
2808 to make a symbol table entry for it, and if so, create a new entry
2809 and return a pointer to it.
c906108c
SS
2810 */
2811
2812static struct symbol *
fba45db2 2813new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2814{
2815 struct symbol *sym = NULL;
c5aa993b
JM
2816
2817 if (dip->at_name != NULL)
c906108c 2818 {
c5aa993b 2819 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2820 sizeof (struct symbol));
2821 OBJSTAT (objfile, n_syms++);
2822 memset (sym, 0, sizeof (struct symbol));
c906108c
SS
2823 /* default assumptions */
2824 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2825 SYMBOL_CLASS (sym) = LOC_STATIC;
2826 SYMBOL_TYPE (sym) = decode_die_type (dip);
2827
2828 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2829 demangled form for future reference. This is a typical time versus
2830 space tradeoff, that was decided in favor of time because it sped up
2831 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2832
2833 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2834 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2835 switch (dip->die_tag)
c906108c
SS
2836 {
2837 case TAG_label:
c5aa993b 2838 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2839 SYMBOL_CLASS (sym) = LOC_LABEL;
2840 break;
2841 case TAG_global_subroutine:
2842 case TAG_subroutine:
c5aa993b 2843 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2844 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2845 if (dip->at_prototyped)
c906108c
SS
2846 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2847 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2848 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2849 {
2850 add_symbol_to_list (sym, &global_symbols);
2851 }
2852 else
2853 {
2854 add_symbol_to_list (sym, list_in_scope);
2855 }
2856 break;
2857 case TAG_global_variable:
c5aa993b 2858 if (dip->at_location != NULL)
c906108c
SS
2859 {
2860 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2861 add_symbol_to_list (sym, &global_symbols);
2862 SYMBOL_CLASS (sym) = LOC_STATIC;
2863 SYMBOL_VALUE (sym) += baseaddr;
2864 }
2865 break;
2866 case TAG_local_variable:
c5aa993b 2867 if (dip->at_location != NULL)
c906108c
SS
2868 {
2869 int loc = locval (dip);
c5aa993b 2870 if (dip->optimized_out)
c906108c
SS
2871 {
2872 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2873 }
c5aa993b 2874 else if (dip->isreg)
c906108c
SS
2875 {
2876 SYMBOL_CLASS (sym) = LOC_REGISTER;
2877 }
c5aa993b 2878 else if (dip->offreg)
c906108c
SS
2879 {
2880 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2881 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2882 }
2883 else
2884 {
2885 SYMBOL_CLASS (sym) = LOC_STATIC;
2886 SYMBOL_VALUE (sym) += baseaddr;
2887 }
2888 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2889 {
2890 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2891 which may store to a bigger location than SYMBOL_VALUE. */
2892 SYMBOL_VALUE_ADDRESS (sym) = loc;
2893 }
2894 else
2895 {
2896 SYMBOL_VALUE (sym) = loc;
2897 }
2898 add_symbol_to_list (sym, list_in_scope);
2899 }
2900 break;
2901 case TAG_formal_parameter:
c5aa993b 2902 if (dip->at_location != NULL)
c906108c
SS
2903 {
2904 SYMBOL_VALUE (sym) = locval (dip);
2905 }
2906 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2907 if (dip->isreg)
c906108c
SS
2908 {
2909 SYMBOL_CLASS (sym) = LOC_REGPARM;
2910 }
c5aa993b 2911 else if (dip->offreg)
c906108c
SS
2912 {
2913 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2914 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2915 }
2916 else
2917 {
2918 SYMBOL_CLASS (sym) = LOC_ARG;
2919 }
2920 break;
2921 case TAG_unspecified_parameters:
2922 /* From varargs functions; gdb doesn't seem to have any interest in
2923 this information, so just ignore it for now. (FIXME?) */
2924 break;
2925 case TAG_class_type:
2926 case TAG_structure_type:
2927 case TAG_union_type:
2928 case TAG_enumeration_type:
2929 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2930 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2931 add_symbol_to_list (sym, list_in_scope);
2932 break;
2933 case TAG_typedef:
2934 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2936 add_symbol_to_list (sym, list_in_scope);
2937 break;
2938 default:
2939 /* Not a tag we recognize. Hopefully we aren't processing trash
2940 data, but since we must specifically ignore things we don't
2941 recognize, there is nothing else we should do at this point. */
2942 break;
2943 }
2944 }
2945 return (sym);
2946}
2947
2948/*
2949
c5aa993b 2950 LOCAL FUNCTION
c906108c 2951
c5aa993b 2952 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2953
c5aa993b 2954 SYNOPSIS
c906108c 2955
c5aa993b
JM
2956 static void synthesize_typedef (struct dieinfo *dip,
2957 struct objfile *objfile,
2958 struct type *type);
c906108c 2959
c5aa993b 2960 DESCRIPTION
c906108c 2961
c5aa993b
JM
2962 Given a pointer to a DWARF information entry, synthesize a typedef
2963 for the name in the DIE, using the specified type.
c906108c 2964
c5aa993b
JM
2965 This is used for C++ class, structs, unions, and enumerations to
2966 set up the tag name as a type.
c906108c
SS
2967
2968 */
2969
2970static void
fba45db2
KB
2971synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
2972 struct type *type)
c906108c
SS
2973{
2974 struct symbol *sym = NULL;
c5aa993b
JM
2975
2976 if (dip->at_name != NULL)
c906108c
SS
2977 {
2978 sym = (struct symbol *)
c5aa993b 2979 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
2980 OBJSTAT (objfile, n_syms++);
2981 memset (sym, 0, sizeof (struct symbol));
22abf04a 2982 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
2983 &objfile->symbol_obstack);
2984 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
2985 SYMBOL_TYPE (sym) = type;
2986 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2987 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2988 add_symbol_to_list (sym, list_in_scope);
2989 }
2990}
2991
2992/*
2993
c5aa993b 2994 LOCAL FUNCTION
c906108c 2995
c5aa993b 2996 decode_mod_fund_type -- decode a modified fundamental type
c906108c 2997
c5aa993b 2998 SYNOPSIS
c906108c 2999
c5aa993b 3000 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3001
c5aa993b 3002 DESCRIPTION
c906108c 3003
c5aa993b
JM
3004 Decode a block of data containing a modified fundamental
3005 type specification. TYPEDATA is a pointer to the block,
3006 which starts with a length containing the size of the rest
3007 of the block. At the end of the block is a fundmental type
3008 code value that gives the fundamental type. Everything
3009 in between are type modifiers.
c906108c 3010
c5aa993b
JM
3011 We simply compute the number of modifiers and call the general
3012 function decode_modified_type to do the actual work.
3013 */
c906108c
SS
3014
3015static struct type *
fba45db2 3016decode_mod_fund_type (char *typedata)
c906108c
SS
3017{
3018 struct type *typep = NULL;
3019 unsigned short modcount;
3020 int nbytes;
c5aa993b 3021
c906108c
SS
3022 /* Get the total size of the block, exclusive of the size itself */
3023
3024 nbytes = attribute_size (AT_mod_fund_type);
3025 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3026 typedata += nbytes;
3027
3028 /* Deduct the size of the fundamental type bytes at the end of the block. */
3029
3030 modcount -= attribute_size (AT_fund_type);
3031
3032 /* Now do the actual decoding */
3033
3034 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3035 return (typep);
3036}
3037
3038/*
3039
c5aa993b 3040 LOCAL FUNCTION
c906108c 3041
c5aa993b 3042 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3043
c5aa993b 3044 SYNOPSIS
c906108c 3045
c5aa993b 3046 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3047
c5aa993b 3048 DESCRIPTION
c906108c 3049
c5aa993b
JM
3050 Decode a block of data containing a modified user defined
3051 type specification. TYPEDATA is a pointer to the block,
3052 which consists of a two byte length, containing the size
3053 of the rest of the block. At the end of the block is a
3054 four byte value that gives a reference to a user defined type.
3055 Everything in between are type modifiers.
c906108c 3056
c5aa993b
JM
3057 We simply compute the number of modifiers and call the general
3058 function decode_modified_type to do the actual work.
3059 */
c906108c
SS
3060
3061static struct type *
fba45db2 3062decode_mod_u_d_type (char *typedata)
c906108c
SS
3063{
3064 struct type *typep = NULL;
3065 unsigned short modcount;
3066 int nbytes;
c5aa993b 3067
c906108c
SS
3068 /* Get the total size of the block, exclusive of the size itself */
3069
3070 nbytes = attribute_size (AT_mod_u_d_type);
3071 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3072 typedata += nbytes;
3073
3074 /* Deduct the size of the reference type bytes at the end of the block. */
3075
3076 modcount -= attribute_size (AT_user_def_type);
3077
3078 /* Now do the actual decoding */
3079
3080 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3081 return (typep);
3082}
3083
3084/*
3085
c5aa993b 3086 LOCAL FUNCTION
c906108c 3087
c5aa993b 3088 decode_modified_type -- decode modified user or fundamental type
c906108c 3089
c5aa993b 3090 SYNOPSIS
c906108c 3091
c5aa993b
JM
3092 static struct type *decode_modified_type (char *modifiers,
3093 unsigned short modcount, int mtype)
c906108c 3094
c5aa993b 3095 DESCRIPTION
c906108c 3096
c5aa993b
JM
3097 Decode a modified type, either a modified fundamental type or
3098 a modified user defined type. MODIFIERS is a pointer to the
3099 block of bytes that define MODCOUNT modifiers. Immediately
3100 following the last modifier is a short containing the fundamental
3101 type or a long containing the reference to the user defined
3102 type. Which one is determined by MTYPE, which is either
3103 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3104 type we are generating.
c906108c 3105
c5aa993b
JM
3106 We call ourself recursively to generate each modified type,`
3107 until MODCOUNT reaches zero, at which point we have consumed
3108 all the modifiers and generate either the fundamental type or
3109 user defined type. When the recursion unwinds, each modifier
3110 is applied in turn to generate the full modified type.
3111
3112 NOTES
c906108c 3113
c5aa993b
JM
3114 If we find a modifier that we don't recognize, and it is not one
3115 of those reserved for application specific use, then we issue a
3116 warning and simply ignore the modifier.
c906108c 3117
c5aa993b 3118 BUGS
c906108c 3119
c5aa993b 3120 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3121
3122 */
3123
3124static struct type *
fba45db2 3125decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3126{
3127 struct type *typep = NULL;
3128 unsigned short fundtype;
3129 DIE_REF die_ref;
3130 char modifier;
3131 int nbytes;
c5aa993b 3132
c906108c
SS
3133 if (modcount == 0)
3134 {
3135 switch (mtype)
3136 {
3137 case AT_mod_fund_type:
3138 nbytes = attribute_size (AT_fund_type);
3139 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3140 current_objfile);
3141 typep = decode_fund_type (fundtype);
3142 break;
3143 case AT_mod_u_d_type:
3144 nbytes = attribute_size (AT_user_def_type);
3145 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3146 current_objfile);
3147 if ((typep = lookup_utype (die_ref)) == NULL)
3148 {
3149 typep = alloc_utype (die_ref, NULL);
3150 }
3151 break;
3152 default:
23136709
KB
3153 complaint (&symfile_complaints,
3154 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3155 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3156 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3157 break;
3158 }
3159 }
3160 else
3161 {
3162 modifier = *modifiers++;
3163 typep = decode_modified_type (modifiers, --modcount, mtype);
3164 switch (modifier)
3165 {
c5aa993b
JM
3166 case MOD_pointer_to:
3167 typep = lookup_pointer_type (typep);
3168 break;
3169 case MOD_reference_to:
3170 typep = lookup_reference_type (typep);
3171 break;
3172 case MOD_const:
23136709
KB
3173 complaint (&symfile_complaints,
3174 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3175 DIE_NAME); /* FIXME */
c5aa993b
JM
3176 break;
3177 case MOD_volatile:
23136709
KB
3178 complaint (&symfile_complaints,
3179 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3180 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3181 break;
3182 default:
3183 if (!(MOD_lo_user <= (unsigned char) modifier
3184 && (unsigned char) modifier <= MOD_hi_user))
3185 {
23136709
KB
3186 complaint (&symfile_complaints,
3187 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3188 DIE_NAME, modifier);
c5aa993b
JM
3189 }
3190 break;
c906108c
SS
3191 }
3192 }
3193 return (typep);
3194}
3195
3196/*
3197
c5aa993b 3198 LOCAL FUNCTION
c906108c 3199
c5aa993b 3200 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3201
c5aa993b 3202 DESCRIPTION
c906108c 3203
c5aa993b
JM
3204 Given an integer that is one of the fundamental DWARF types,
3205 translate it to one of the basic internal gdb types and return
3206 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3207
c5aa993b 3208 NOTES
c906108c 3209
c5aa993b
JM
3210 For robustness, if we are asked to translate a fundamental
3211 type that we are unprepared to deal with, we return int so
3212 callers can always depend upon a valid type being returned,
3213 and so gdb may at least do something reasonable by default.
3214 If the type is not in the range of those types defined as
3215 application specific types, we also issue a warning.
3216 */
c906108c
SS
3217
3218static struct type *
fba45db2 3219decode_fund_type (unsigned int fundtype)
c906108c
SS
3220{
3221 struct type *typep = NULL;
c5aa993b 3222
c906108c
SS
3223 switch (fundtype)
3224 {
3225
3226 case FT_void:
3227 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3228 break;
c5aa993b 3229
c906108c
SS
3230 case FT_boolean: /* Was FT_set in AT&T version */
3231 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3232 break;
3233
3234 case FT_pointer: /* (void *) */
3235 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3236 typep = lookup_pointer_type (typep);
3237 break;
c5aa993b 3238
c906108c
SS
3239 case FT_char:
3240 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3241 break;
c5aa993b 3242
c906108c
SS
3243 case FT_signed_char:
3244 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3245 break;
3246
3247 case FT_unsigned_char:
3248 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3249 break;
c5aa993b 3250
c906108c
SS
3251 case FT_short:
3252 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3253 break;
3254
3255 case FT_signed_short:
3256 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3257 break;
c5aa993b 3258
c906108c
SS
3259 case FT_unsigned_short:
3260 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3261 break;
c5aa993b 3262
c906108c
SS
3263 case FT_integer:
3264 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3265 break;
3266
3267 case FT_signed_integer:
3268 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3269 break;
c5aa993b 3270
c906108c
SS
3271 case FT_unsigned_integer:
3272 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3273 break;
c5aa993b 3274
c906108c
SS
3275 case FT_long:
3276 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3277 break;
3278
3279 case FT_signed_long:
3280 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3281 break;
c5aa993b 3282
c906108c
SS
3283 case FT_unsigned_long:
3284 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3285 break;
c5aa993b 3286
c906108c
SS
3287 case FT_long_long:
3288 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3289 break;
3290
3291 case FT_signed_long_long:
3292 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3293 break;
3294
3295 case FT_unsigned_long_long:
3296 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3297 break;
3298
3299 case FT_float:
3300 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3301 break;
c5aa993b 3302
c906108c
SS
3303 case FT_dbl_prec_float:
3304 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3305 break;
c5aa993b 3306
c906108c
SS
3307 case FT_ext_prec_float:
3308 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3309 break;
c5aa993b 3310
c906108c
SS
3311 case FT_complex:
3312 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3313 break;
c5aa993b 3314
c906108c
SS
3315 case FT_dbl_prec_complex:
3316 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3317 break;
c5aa993b 3318
c906108c
SS
3319 case FT_ext_prec_complex:
3320 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3321 break;
c5aa993b 3322
c906108c
SS
3323 }
3324
3325 if (typep == NULL)
3326 {
3327 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3328 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3329 {
23136709
KB
3330 complaint (&symfile_complaints,
3331 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3332 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3333 }
3334 }
c5aa993b 3335
c906108c
SS
3336 return (typep);
3337}
3338
3339/*
3340
c5aa993b 3341 LOCAL FUNCTION
c906108c 3342
c5aa993b 3343 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3344
c5aa993b 3345 DESCRIPTION
c906108c 3346
c5aa993b
JM
3347 Given a pointer to a string and a pointer to an obstack, allocates
3348 a fresh copy of the string on the specified obstack.
c906108c 3349
c5aa993b 3350 */
c906108c
SS
3351
3352static char *
fba45db2 3353create_name (char *name, struct obstack *obstackp)
c906108c
SS
3354{
3355 int length;
3356 char *newname;
3357
3358 length = strlen (name) + 1;
3359 newname = (char *) obstack_alloc (obstackp, length);
3360 strcpy (newname, name);
3361 return (newname);
3362}
3363
3364/*
3365
c5aa993b 3366 LOCAL FUNCTION
c906108c 3367
c5aa993b 3368 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3369
c5aa993b 3370 SYNOPSIS
c906108c 3371
c5aa993b
JM
3372 void basicdieinfo (char *diep, struct dieinfo *dip,
3373 struct objfile *objfile)
c906108c 3374
c5aa993b 3375 DESCRIPTION
c906108c 3376
c5aa993b
JM
3377 Given a pointer to raw DIE data, and a pointer to an instance of a
3378 die info structure, this function extracts the basic information
3379 from the DIE data required to continue processing this DIE, along
3380 with some bookkeeping information about the DIE.
c906108c 3381
c5aa993b
JM
3382 The information we absolutely must have includes the DIE tag,
3383 and the DIE length. If we need the sibling reference, then we
3384 will have to call completedieinfo() to process all the remaining
3385 DIE information.
c906108c 3386
c5aa993b
JM
3387 Note that since there is no guarantee that the data is properly
3388 aligned in memory for the type of access required (indirection
3389 through anything other than a char pointer), and there is no
3390 guarantee that it is in the same byte order as the gdb host,
3391 we call a function which deals with both alignment and byte
3392 swapping issues. Possibly inefficient, but quite portable.
c906108c 3393
c5aa993b
JM
3394 We also take care of some other basic things at this point, such
3395 as ensuring that the instance of the die info structure starts
3396 out completely zero'd and that curdie is initialized for use
3397 in error reporting if we have a problem with the current die.
c906108c 3398
c5aa993b
JM
3399 NOTES
3400
3401 All DIE's must have at least a valid length, thus the minimum
3402 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3403 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3404 are forced to be TAG_padding DIES.
c906108c 3405
c5aa993b
JM
3406 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3407 that if a padding DIE is used for alignment and the amount needed is
3408 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3409 enough to align to the next alignment boundry.
3410
3411 We do some basic sanity checking here, such as verifying that the
3412 length of the die would not cause it to overrun the recorded end of
3413 the buffer holding the DIE info. If we find a DIE that is either
3414 too small or too large, we force it's length to zero which should
3415 cause the caller to take appropriate action.
c906108c
SS
3416 */
3417
3418static void
fba45db2 3419basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3420{
3421 curdie = dip;
3422 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3423 dip->die = diep;
3424 dip->die_ref = dbroff + (diep - dbbase);
3425 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3426 objfile);
3427 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3428 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3429 {
23136709
KB
3430 complaint (&symfile_complaints,
3431 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3432 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3433 dip->die_length = 0;
c906108c 3434 }
c5aa993b 3435 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3436 {
c5aa993b 3437 dip->die_tag = TAG_padding;
c906108c
SS
3438 }
3439 else
3440 {
3441 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3442 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3443 objfile);
c906108c
SS
3444 }
3445}
3446
3447/*
3448
c5aa993b 3449 LOCAL FUNCTION
c906108c 3450
c5aa993b 3451 completedieinfo -- finish reading the information for a given DIE
c906108c 3452
c5aa993b 3453 SYNOPSIS
c906108c 3454
c5aa993b 3455 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3456
c5aa993b 3457 DESCRIPTION
c906108c 3458
c5aa993b
JM
3459 Given a pointer to an already partially initialized die info structure,
3460 scan the raw DIE data and finish filling in the die info structure
3461 from the various attributes found.
c906108c 3462
c5aa993b
JM
3463 Note that since there is no guarantee that the data is properly
3464 aligned in memory for the type of access required (indirection
3465 through anything other than a char pointer), and there is no
3466 guarantee that it is in the same byte order as the gdb host,
3467 we call a function which deals with both alignment and byte
3468 swapping issues. Possibly inefficient, but quite portable.
c906108c 3469
c5aa993b
JM
3470 NOTES
3471
3472 Each time we are called, we increment the diecount variable, which
3473 keeps an approximate count of the number of dies processed for
3474 each compilation unit. This information is presented to the user
3475 if the info_verbose flag is set.
c906108c
SS
3476
3477 */
3478
3479static void
fba45db2 3480completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3481{
3482 char *diep; /* Current pointer into raw DIE data */
3483 char *end; /* Terminate DIE scan here */
3484 unsigned short attr; /* Current attribute being scanned */
3485 unsigned short form; /* Form of the attribute */
3486 int nbytes; /* Size of next field to read */
c5aa993b 3487
c906108c 3488 diecount++;
c5aa993b
JM
3489 diep = dip->die;
3490 end = diep + dip->die_length;
c906108c
SS
3491 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3492 while (diep < end)
3493 {
3494 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3495 diep += SIZEOF_ATTRIBUTE;
3496 if ((nbytes = attribute_size (attr)) == -1)
3497 {
23136709
KB
3498 complaint (&symfile_complaints,
3499 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3500 DIE_ID, DIE_NAME);
c906108c
SS
3501 diep = end;
3502 continue;
3503 }
3504 switch (attr)
3505 {
3506 case AT_fund_type:
c5aa993b
JM
3507 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3508 objfile);
c906108c
SS
3509 break;
3510 case AT_ordering:
c5aa993b
JM
3511 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3512 objfile);
c906108c
SS
3513 break;
3514 case AT_bit_offset:
c5aa993b
JM
3515 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3516 objfile);
c906108c
SS
3517 break;
3518 case AT_sibling:
c5aa993b
JM
3519 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3520 objfile);
c906108c
SS
3521 break;
3522 case AT_stmt_list:
c5aa993b
JM
3523 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3524 objfile);
3525 dip->has_at_stmt_list = 1;
c906108c
SS
3526 break;
3527 case AT_low_pc:
c5aa993b
JM
3528 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3529 objfile);
3530 dip->at_low_pc += baseaddr;
3531 dip->has_at_low_pc = 1;
c906108c
SS
3532 break;
3533 case AT_high_pc:
c5aa993b
JM
3534 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 objfile);
3536 dip->at_high_pc += baseaddr;
c906108c
SS
3537 break;
3538 case AT_language:
c5aa993b
JM
3539 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3540 objfile);
c906108c
SS
3541 break;
3542 case AT_user_def_type:
c5aa993b
JM
3543 dip->at_user_def_type = target_to_host (diep, nbytes,
3544 GET_UNSIGNED, objfile);
c906108c
SS
3545 break;
3546 case AT_byte_size:
c5aa993b
JM
3547 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3548 objfile);
3549 dip->has_at_byte_size = 1;
c906108c
SS
3550 break;
3551 case AT_bit_size:
c5aa993b
JM
3552 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3553 objfile);
c906108c
SS
3554 break;
3555 case AT_member:
c5aa993b
JM
3556 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3557 objfile);
c906108c
SS
3558 break;
3559 case AT_discr:
c5aa993b
JM
3560 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3561 objfile);
c906108c
SS
3562 break;
3563 case AT_location:
c5aa993b 3564 dip->at_location = diep;
c906108c
SS
3565 break;
3566 case AT_mod_fund_type:
c5aa993b 3567 dip->at_mod_fund_type = diep;
c906108c
SS
3568 break;
3569 case AT_subscr_data:
c5aa993b 3570 dip->at_subscr_data = diep;
c906108c
SS
3571 break;
3572 case AT_mod_u_d_type:
c5aa993b 3573 dip->at_mod_u_d_type = diep;
c906108c
SS
3574 break;
3575 case AT_element_list:
c5aa993b
JM
3576 dip->at_element_list = diep;
3577 dip->short_element_list = 0;
c906108c
SS
3578 break;
3579 case AT_short_element_list:
c5aa993b
JM
3580 dip->at_element_list = diep;
3581 dip->short_element_list = 1;
c906108c
SS
3582 break;
3583 case AT_discr_value:
c5aa993b 3584 dip->at_discr_value = diep;
c906108c
SS
3585 break;
3586 case AT_string_length:
c5aa993b 3587 dip->at_string_length = diep;
c906108c
SS
3588 break;
3589 case AT_name:
c5aa993b 3590 dip->at_name = diep;
c906108c
SS
3591 break;
3592 case AT_comp_dir:
3593 /* For now, ignore any "hostname:" portion, since gdb doesn't
3594 know how to deal with it. (FIXME). */
c5aa993b
JM
3595 dip->at_comp_dir = strrchr (diep, ':');
3596 if (dip->at_comp_dir != NULL)
c906108c 3597 {
c5aa993b 3598 dip->at_comp_dir++;
c906108c
SS
3599 }
3600 else
3601 {
c5aa993b 3602 dip->at_comp_dir = diep;
c906108c
SS
3603 }
3604 break;
3605 case AT_producer:
c5aa993b 3606 dip->at_producer = diep;
c906108c
SS
3607 break;
3608 case AT_start_scope:
c5aa993b
JM
3609 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
c906108c
SS
3611 break;
3612 case AT_stride_size:
c5aa993b
JM
3613 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
c906108c
SS
3615 break;
3616 case AT_src_info:
c5aa993b
JM
3617 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 objfile);
c906108c
SS
3619 break;
3620 case AT_prototyped:
c5aa993b 3621 dip->at_prototyped = diep;
c906108c
SS
3622 break;
3623 default:
3624 /* Found an attribute that we are unprepared to handle. However
3625 it is specifically one of the design goals of DWARF that
3626 consumers should ignore unknown attributes. As long as the
3627 form is one that we recognize (so we know how to skip it),
3628 we can just ignore the unknown attribute. */
3629 break;
3630 }
3631 form = FORM_FROM_ATTR (attr);
3632 switch (form)
3633 {
3634 case FORM_DATA2:
3635 diep += 2;
3636 break;
3637 case FORM_DATA4:
3638 case FORM_REF:
3639 diep += 4;
3640 break;
3641 case FORM_DATA8:
3642 diep += 8;
3643 break;
3644 case FORM_ADDR:
3645 diep += TARGET_FT_POINTER_SIZE (objfile);
3646 break;
3647 case FORM_BLOCK2:
3648 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3649 break;
3650 case FORM_BLOCK4:
3651 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3652 break;
3653 case FORM_STRING:
3654 diep += strlen (diep) + 1;
3655 break;
3656 default:
23136709 3657 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3658 diep = end;
3659 break;
3660 }
3661 }
3662}
3663
3664/*
3665
c5aa993b 3666 LOCAL FUNCTION
c906108c 3667
c5aa993b 3668 target_to_host -- swap in target data to host
c906108c 3669
c5aa993b 3670 SYNOPSIS
c906108c 3671
c5aa993b
JM
3672 target_to_host (char *from, int nbytes, int signextend,
3673 struct objfile *objfile)
c906108c 3674
c5aa993b 3675 DESCRIPTION
c906108c 3676
c5aa993b
JM
3677 Given pointer to data in target format in FROM, a byte count for
3678 the size of the data in NBYTES, a flag indicating whether or not
3679 the data is signed in SIGNEXTEND, and a pointer to the current
3680 objfile in OBJFILE, convert the data to host format and return
3681 the converted value.
c906108c 3682
c5aa993b 3683 NOTES
c906108c 3684
c5aa993b
JM
3685 FIXME: If we read data that is known to be signed, and expect to
3686 use it as signed data, then we need to explicitly sign extend the
3687 result until the bfd library is able to do this for us.
c906108c 3688
c5aa993b 3689 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3690
3691 */
3692
3693static CORE_ADDR
fba45db2
KB
3694target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3695 struct objfile *objfile)
c906108c
SS
3696{
3697 CORE_ADDR rtnval;
3698
3699 switch (nbytes)
3700 {
c5aa993b
JM
3701 case 8:
3702 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3703 break;
3704 case 4:
3705 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3706 break;
3707 case 2:
3708 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3709 break;
3710 case 1:
3711 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3712 break;
3713 default:
23136709
KB
3714 complaint (&symfile_complaints,
3715 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3716 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3717 rtnval = 0;
3718 break;
c906108c
SS
3719 }
3720 return (rtnval);
3721}
3722
3723/*
3724
c5aa993b 3725 LOCAL FUNCTION
c906108c 3726
c5aa993b 3727 attribute_size -- compute size of data for a DWARF attribute
c906108c 3728
c5aa993b 3729 SYNOPSIS
c906108c 3730
c5aa993b 3731 static int attribute_size (unsigned int attr)
c906108c 3732
c5aa993b 3733 DESCRIPTION
c906108c 3734
c5aa993b
JM
3735 Given a DWARF attribute in ATTR, compute the size of the first
3736 piece of data associated with this attribute and return that
3737 size.
c906108c 3738
c5aa993b 3739 Returns -1 for unrecognized attributes.
c906108c
SS
3740
3741 */
3742
3743static int
fba45db2 3744attribute_size (unsigned int attr)
c906108c
SS
3745{
3746 int nbytes; /* Size of next data for this attribute */
3747 unsigned short form; /* Form of the attribute */
3748
3749 form = FORM_FROM_ATTR (attr);
3750 switch (form)
3751 {
c5aa993b
JM
3752 case FORM_STRING: /* A variable length field is next */
3753 nbytes = 0;
3754 break;
3755 case FORM_DATA2: /* Next 2 byte field is the data itself */
3756 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3757 nbytes = 2;
3758 break;
3759 case FORM_DATA4: /* Next 4 byte field is the data itself */
3760 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3761 case FORM_REF: /* Next 4 byte field is a DIE offset */
3762 nbytes = 4;
3763 break;
3764 case FORM_DATA8: /* Next 8 byte field is the data itself */
3765 nbytes = 8;
3766 break;
3767 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3768 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3769 break;
3770 default:
23136709 3771 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3772 nbytes = -1;
3773 break;
3774 }
c906108c
SS
3775 return (nbytes);
3776}
This page took 0.611235 seconds and 4 git commands to generate.