* blockframe.c (inside_main_func): No longer use symbol_lookup()
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b
AC
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c 24
5ae7ca1d
MC
25/*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
28
29 DWARF (also known as DWARF-1) is headed for obsoletion.
30
31 In gcc 3.2.1, these targets prefer dwarf-1:
32
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
36 m88k-dg-dgux* # TD-R2
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
39
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
43
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
45
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
49
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
53
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
57
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
59
60 There may be non-gcc compilers that still emit dwarf-1.
61
62 -- chastain 2003-02-04
63*/
64
c906108c
SS
65/*
66
c5aa993b
JM
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
c906108c 69
c5aa993b
JM
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
74 contents.
c906108c 75
c5aa993b
JM
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
c906108c 78
c5aa993b
JM
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
c906108c 81
c5aa993b 82 */
c906108c
SS
83
84#include "defs.h"
85#include "symtab.h"
86#include "gdbtypes.h"
87#include "symfile.h"
88#include "objfiles.h"
89#include "elf/dwarf.h"
90#include "buildsym.h"
91#include "demangle.h"
c5aa993b 92#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
93#include "language.h"
94#include "complaints.h"
95
96#include <fcntl.h>
97#include "gdb_string.h"
98
99/* Some macros to provide DIE info for complaints. */
100
101#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
103
104/* Complaints that can be issued during DWARF debug info reading. */
105
23136709
KB
106static void
107bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 108{
23136709
KB
109 complaint (&symfile_complaints,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
111 arg1, arg2, arg3);
112}
c906108c 113
23136709
KB
114static void
115unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 116{
23136709
KB
117 complaint (&symfile_complaints,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
119 arg3);
120}
c906108c 121
23136709
KB
122static void
123dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 124{
23136709
KB
125 complaint (&symfile_complaints,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
127 arg1, arg2);
128}
c906108c 129
23136709
KB
130static void
131bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 132{
23136709
KB
133 complaint (&symfile_complaints,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
135 arg2, arg3);
136}
c906108c
SS
137
138typedef unsigned int DIE_REF; /* Reference to a DIE */
139
140#ifndef GCC_PRODUCER
141#define GCC_PRODUCER "GNU C "
142#endif
143
144#ifndef GPLUS_PRODUCER
145#define GPLUS_PRODUCER "GNU C++ "
146#endif
147
148#ifndef LCC_PRODUCER
149#define LCC_PRODUCER "NCR C/C++"
150#endif
151
c906108c
SS
152/* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
157 int. */
158
159#define GET_UNSIGNED 0 /* No sign extension required */
160#define GET_SIGNED 1 /* Sign extension required */
161
162/* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
165
166#define SIZEOF_DIE_LENGTH 4
167#define SIZEOF_DIE_TAG 2
168#define SIZEOF_ATTRIBUTE 2
169#define SIZEOF_FORMAT_SPECIFIER 1
170#define SIZEOF_FMT_FT 2
171#define SIZEOF_LINETBL_LENGTH 4
172#define SIZEOF_LINETBL_LINENO 4
173#define SIZEOF_LINETBL_STMT 2
174#define SIZEOF_LINETBL_DELTA 4
175#define SIZEOF_LOC_ATOM_CODE 1
176
177#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
178
179/* Macros that return the sizes of various types of data in the target
180 environment.
181
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
188
189#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
191
192/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
198
199#define AT_short_element_list (0x00f0|FORM_BLOCK2)
200
c906108c
SS
201/* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
205
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
210
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
215
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
219
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
c5aa993b 225
c906108c 226 */
c5aa993b 227
c906108c
SS
228typedef char BLOCK;
229
c5aa993b
JM
230struct dieinfo
231 {
232 char *die; /* Pointer to the raw DIE data */
233 unsigned long die_length; /* Length of the raw DIE data */
234 DIE_REF die_ref; /* Offset of this DIE */
235 unsigned short die_tag; /* Tag for this DIE */
236 unsigned long at_padding;
237 unsigned long at_sibling;
238 BLOCK *at_location;
239 char *at_name;
240 unsigned short at_fund_type;
241 BLOCK *at_mod_fund_type;
242 unsigned long at_user_def_type;
243 BLOCK *at_mod_u_d_type;
244 unsigned short at_ordering;
245 BLOCK *at_subscr_data;
246 unsigned long at_byte_size;
247 unsigned short at_bit_offset;
248 unsigned long at_bit_size;
249 BLOCK *at_element_list;
250 unsigned long at_stmt_list;
251 CORE_ADDR at_low_pc;
252 CORE_ADDR at_high_pc;
253 unsigned long at_language;
254 unsigned long at_member;
255 unsigned long at_discr;
256 BLOCK *at_discr_value;
257 BLOCK *at_string_length;
258 char *at_comp_dir;
259 char *at_producer;
260 unsigned long at_start_scope;
261 unsigned long at_stride_size;
262 unsigned long at_src_info;
263 char *at_prototyped;
264 unsigned int has_at_low_pc:1;
265 unsigned int has_at_stmt_list:1;
266 unsigned int has_at_byte_size:1;
267 unsigned int short_element_list:1;
268
269 /* Kludge to identify register variables */
270
271 unsigned int isreg;
272
273 /* Kludge to identify optimized out variables */
274
275 unsigned int optimized_out;
276
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
279
280 unsigned int offreg;
281
282 /* Kludge to identify which base register is it relative to. */
283
284 unsigned int basereg;
285 };
c906108c 286
c5aa993b 287static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
288static struct dieinfo *curdie; /* For warnings and such */
289
c5aa993b
JM
290static char *dbbase; /* Base pointer to dwarf info */
291static int dbsize; /* Size of dwarf info in bytes */
292static int dbroff; /* Relative offset from start of .debug section */
293static char *lnbase; /* Base pointer to line section */
c906108c
SS
294
295/* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298static CORE_ADDR baseaddr; /* Add to each symbol value */
299
300/* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302static struct section_offsets *base_section_offsets;
303
304/* We put a pointer to this structure in the read_symtab_private field
305 of the psymtab. */
306
c5aa993b
JM
307struct dwfinfo
308 {
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
311 file_ptr dbfoff;
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
319 int dbroff;
320 /* The size of the chunk of DIE's being examined, in bytes. */
321 int dblength;
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
327 file_ptr lnfoff;
328 };
c906108c
SS
329
330#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
334
335/* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
339
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
343
344struct pending **list_in_scope = &file_symbols;
345
346/* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
349
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
355
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
361
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
370 algorithms. */
371
372static struct type **utypes; /* Pointer to array of user type pointers */
373static int numutypes; /* Max number of user type pointers */
374
375/* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
384
c5aa993b 385static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
386
387/* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
395 types. */
396
397static enum language cu_language;
398static const struct language_defn *cu_language_defn;
399
400/* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
402
4efb68b1 403static void free_utypes (void *);
c906108c 404
a14ed312 405static int attribute_size (unsigned int);
c906108c 406
a14ed312 407static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 408
a14ed312 409static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 410
a14ed312 411static void handle_producer (char *);
c906108c 412
570b8f7c
AC
413static void read_file_scope (struct dieinfo *, char *, char *,
414 struct objfile *);
c906108c 415
570b8f7c
AC
416static void read_func_scope (struct dieinfo *, char *, char *,
417 struct objfile *);
c906108c 418
570b8f7c
AC
419static void read_lexical_block_scope (struct dieinfo *, char *, char *,
420 struct objfile *);
c906108c 421
a14ed312 422static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 423
570b8f7c
AC
424static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
425 struct objfile *);
c906108c 426
a14ed312 427static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 428
a14ed312 429static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 430
a14ed312 431static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 432
a14ed312 433static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 434
a14ed312 435static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 436
a14ed312 437static void read_ofile_symtab (struct partial_symtab *);
c906108c 438
a14ed312 439static void process_dies (char *, char *, struct objfile *);
c906108c 440
570b8f7c
AC
441static void read_structure_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
c906108c 443
a14ed312 444static struct type *decode_array_element_type (char *);
c906108c 445
a14ed312 446static struct type *decode_subscript_data_item (char *, char *);
c906108c 447
a14ed312 448static void dwarf_read_array_type (struct dieinfo *);
c906108c 449
a14ed312 450static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 451
a14ed312 452static void read_tag_string_type (struct dieinfo *dip);
c906108c 453
a14ed312 454static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 455
570b8f7c
AC
456static void read_enumeration (struct dieinfo *, char *, char *,
457 struct objfile *);
c906108c 458
a14ed312
KB
459static struct type *struct_type (struct dieinfo *, char *, char *,
460 struct objfile *);
c906108c 461
a14ed312 462static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 463
a14ed312 464static void decode_line_numbers (char *);
c906108c 465
a14ed312 466static struct type *decode_die_type (struct dieinfo *);
c906108c 467
a14ed312 468static struct type *decode_mod_fund_type (char *);
c906108c 469
a14ed312 470static struct type *decode_mod_u_d_type (char *);
c906108c 471
a14ed312 472static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 473
a14ed312 474static struct type *decode_fund_type (unsigned int);
c906108c 475
a14ed312 476static char *create_name (char *, struct obstack *);
c906108c 477
a14ed312 478static struct type *lookup_utype (DIE_REF);
c906108c 479
a14ed312 480static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 481
a14ed312 482static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 483
570b8f7c
AC
484static void synthesize_typedef (struct dieinfo *, struct objfile *,
485 struct type *);
c906108c 486
a14ed312 487static int locval (struct dieinfo *);
c906108c 488
a14ed312 489static void set_cu_language (struct dieinfo *);
c906108c 490
a14ed312 491static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
492
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b
JM
502 struct type *
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 504
c5aa993b 505 DESCRIPTION
c906108c 506
c5aa993b
JM
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
c906108c 512
c5aa993b
JM
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
c906108c 521
c5aa993b 522 RETURNS
c906108c 523
c5aa993b 524 Pointer to a fundamental type.
c906108c 525
c5aa993b 526 */
c906108c
SS
527
528static struct type *
fba45db2 529dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
530{
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
532 {
533 error ("internal error - invalid fundamental type id %d", typeid);
534 }
535
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
539
540 if (ftypes[typeid] == NULL)
541 {
c5aa993b 542 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
543 }
544
545 return (ftypes[typeid]);
546}
547
548/*
549
c5aa993b 550 LOCAL FUNCTION
c906108c 551
c5aa993b 552 set_cu_language -- set local copy of language for compilation unit
c906108c 553
c5aa993b 554 SYNOPSIS
c906108c 555
c5aa993b
JM
556 void
557 set_cu_language (struct dieinfo *dip)
c906108c 558
c5aa993b 559 DESCRIPTION
c906108c 560
c5aa993b
JM
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
c906108c 564
c5aa993b 565 RETURNS
c906108c 566
c5aa993b 567 No return value.
c906108c
SS
568
569 */
570
571static void
fba45db2 572set_cu_language (struct dieinfo *dip)
c906108c 573{
c5aa993b 574 switch (dip->at_language)
c906108c 575 {
c5aa993b
JM
576 case LANG_C89:
577 case LANG_C:
578 cu_language = language_c;
579 break;
580 case LANG_C_PLUS_PLUS:
581 cu_language = language_cplus;
582 break;
c5aa993b
JM
583 case LANG_MODULA2:
584 cu_language = language_m2;
585 break;
586 case LANG_FORTRAN77:
587 case LANG_FORTRAN90:
588 cu_language = language_fortran;
589 break;
590 case LANG_ADA83:
591 case LANG_COBOL74:
592 case LANG_COBOL85:
593 case LANG_PASCAL83:
594 /* We don't know anything special about these yet. */
595 cu_language = language_unknown;
596 break;
597 default:
598 /* If no at_language, try to deduce one from the filename */
599 cu_language = deduce_language_from_filename (dip->at_name);
600 break;
c906108c
SS
601 }
602 cu_language_defn = language_def (cu_language);
603}
604
605/*
606
c5aa993b 607 GLOBAL FUNCTION
c906108c 608
c5aa993b 609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 610
c5aa993b 611 SYNOPSIS
c906108c 612
c5aa993b 613 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
c906108c 616
c5aa993b 617 DESCRIPTION
c906108c 618
c5aa993b
JM
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 621
c5aa993b
JM
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
628 information.
c906108c 629
c5aa993b 630 RETURNS
c906108c 631
c5aa993b 632 No return value.
c906108c
SS
633
634 */
635
636void
fba45db2
KB
637dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
638 unsigned int dbfsize, file_ptr lnoffset,
639 unsigned int lnsize)
c906108c
SS
640{
641 bfd *abfd = objfile->obfd;
642 struct cleanup *back_to;
c5aa993b 643
c906108c
SS
644 current_objfile = objfile;
645 dbsize = dbfsize;
646 dbbase = xmalloc (dbsize);
647 dbroff = 0;
648 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 649 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 650 {
b8c9b27d 651 xfree (dbbase);
c906108c
SS
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
653 }
b8c9b27d 654 back_to = make_cleanup (xfree, dbbase);
c5aa993b 655
c906108c
SS
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
c5aa993b 659
ef96bde8
EZ
660 if (mainline
661 || (objfile->global_psymbols.size == 0
662 && objfile->static_psymbols.size == 0))
c906108c
SS
663 {
664 init_psymbol_list (objfile, 1024);
665 }
c5aa993b 666
c906108c
SS
667 /* Save the relocation factor where everybody can see it. */
668
d4f3574e
SS
669 base_section_offsets = objfile->section_offsets;
670 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
671
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
c5aa993b 675
c906108c 676 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 677
c906108c
SS
678 do_cleanups (back_to);
679 current_objfile = NULL;
680}
681
682/*
683
c5aa993b 684 LOCAL FUNCTION
c906108c 685
c5aa993b 686 read_lexical_block_scope -- process all dies in a lexical block
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b
JM
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
c906108c 692
c5aa993b 693 DESCRIPTION
c906108c 694
c5aa993b
JM
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
c906108c
SS
697
698 */
699
700static void
fba45db2
KB
701read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
702 struct objfile *objfile)
c906108c 703{
b59661bd 704 struct context_stack *new;
c906108c 705
c5aa993b
JM
706 push_context (0, dip->at_low_pc);
707 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
708 new = pop_context ();
709 if (local_symbols != NULL)
710 {
c5aa993b
JM
711 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
712 dip->at_high_pc, objfile);
c906108c 713 }
c5aa993b 714 local_symbols = new->locals;
c906108c
SS
715}
716
717/*
718
c5aa993b 719 LOCAL FUNCTION
c906108c 720
c5aa993b 721 lookup_utype -- look up a user defined type from die reference
c906108c 722
c5aa993b 723 SYNOPSIS
c906108c 724
c5aa993b 725 static type *lookup_utype (DIE_REF die_ref)
c906108c 726
c5aa993b 727 DESCRIPTION
c906108c 728
c5aa993b
JM
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
c906108c
SS
734 */
735
736static struct type *
fba45db2 737lookup_utype (DIE_REF die_ref)
c906108c
SS
738{
739 struct type *type = NULL;
740 int utypeidx;
c5aa993b 741
c906108c
SS
742 utypeidx = (die_ref - dbroff) / 4;
743 if ((utypeidx < 0) || (utypeidx >= numutypes))
744 {
23136709 745 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
746 }
747 else
748 {
749 type = *(utypes + utypeidx);
750 }
751 return (type);
752}
753
754
755/*
756
c5aa993b 757 LOCAL FUNCTION
c906108c 758
c5aa993b 759 alloc_utype -- add a user defined type for die reference
c906108c 760
c5aa993b 761 SYNOPSIS
c906108c 762
c5aa993b 763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 764
c5aa993b 765 DESCRIPTION
c906108c 766
c5aa993b
JM
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
c906108c 771
c5aa993b
JM
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
c906108c
SS
774 */
775
776static struct type *
fba45db2 777alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
778{
779 struct type **typep;
780 int utypeidx;
c5aa993b 781
c906108c
SS
782 utypeidx = (die_ref - dbroff) / 4;
783 typep = utypes + utypeidx;
784 if ((utypeidx < 0) || (utypeidx >= numutypes))
785 {
786 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 787 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
788 }
789 else if (*typep != NULL)
790 {
791 utypep = *typep;
23136709
KB
792 complaint (&symfile_complaints,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
794 DIE_ID, DIE_NAME);
c906108c
SS
795 }
796 else
797 {
798 if (utypep == NULL)
799 {
800 utypep = alloc_type (current_objfile);
801 }
802 *typep = utypep;
803 }
804 return (utypep);
805}
806
807/*
808
c5aa993b 809 LOCAL FUNCTION
c906108c 810
c5aa993b 811 free_utypes -- free the utypes array and reset pointer & count
c906108c 812
c5aa993b 813 SYNOPSIS
c906108c 814
4efb68b1 815 static void free_utypes (void *dummy)
c906108c 816
c5aa993b 817 DESCRIPTION
c906108c 818
c5aa993b
JM
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
c906108c
SS
822 */
823
824static void
4efb68b1 825free_utypes (void *dummy)
c906108c 826{
b8c9b27d 827 xfree (utypes);
c906108c
SS
828 utypes = NULL;
829 numutypes = 0;
830}
831
832
833/*
834
c5aa993b 835 LOCAL FUNCTION
c906108c 836
c5aa993b 837 decode_die_type -- return a type for a specified die
c906108c 838
c5aa993b 839 SYNOPSIS
c906108c 840
c5aa993b 841 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 842
c5aa993b 843 DESCRIPTION
c906108c 844
c5aa993b
JM
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
c906108c
SS
848 */
849
850static struct type *
fba45db2 851decode_die_type (struct dieinfo *dip)
c906108c
SS
852{
853 struct type *type = NULL;
c5aa993b
JM
854
855 if (dip->at_fund_type != 0)
c906108c 856 {
c5aa993b 857 type = decode_fund_type (dip->at_fund_type);
c906108c 858 }
c5aa993b 859 else if (dip->at_mod_fund_type != NULL)
c906108c 860 {
c5aa993b 861 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 862 }
c5aa993b 863 else if (dip->at_user_def_type)
c906108c 864 {
b59661bd
AC
865 type = lookup_utype (dip->at_user_def_type);
866 if (type == NULL)
c906108c 867 {
c5aa993b 868 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
869 }
870 }
c5aa993b 871 else if (dip->at_mod_u_d_type)
c906108c 872 {
c5aa993b 873 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
874 }
875 else
876 {
877 type = dwarf_fundamental_type (current_objfile, FT_VOID);
878 }
879 return (type);
880}
881
882/*
883
c5aa993b 884 LOCAL FUNCTION
c906108c 885
c5aa993b 886 struct_type -- compute and return the type for a struct or union
c906108c 887
c5aa993b 888 SYNOPSIS
c906108c 889
c5aa993b
JM
890 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
891 char *enddie, struct objfile *objfile)
c906108c 892
c5aa993b 893 DESCRIPTION
c906108c 894
c5aa993b
JM
895 Given pointer to a die information structure for a die which
896 defines a union or structure (and MUST define one or the other),
897 and pointers to the raw die data that define the range of dies which
898 define the members, compute and return the user defined type for the
899 structure or union.
c906108c
SS
900 */
901
902static struct type *
fba45db2
KB
903struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
904 struct objfile *objfile)
c906108c
SS
905{
906 struct type *type;
c5aa993b
JM
907 struct nextfield
908 {
909 struct nextfield *next;
910 struct field field;
911 };
c906108c
SS
912 struct nextfield *list = NULL;
913 struct nextfield *new;
914 int nfields = 0;
915 int n;
916 struct dieinfo mbr;
917 char *nextdie;
918 int anonymous_size;
c5aa993b 919
b59661bd
AC
920 type = lookup_utype (dip->die_ref);
921 if (type == NULL)
c906108c
SS
922 {
923 /* No forward references created an empty type, so install one now */
c5aa993b 924 type = alloc_utype (dip->die_ref, NULL);
c906108c 925 }
c5aa993b
JM
926 INIT_CPLUS_SPECIFIC (type);
927 switch (dip->die_tag)
c906108c 928 {
c5aa993b
JM
929 case TAG_class_type:
930 TYPE_CODE (type) = TYPE_CODE_CLASS;
931 break;
932 case TAG_structure_type:
933 TYPE_CODE (type) = TYPE_CODE_STRUCT;
934 break;
935 case TAG_union_type:
936 TYPE_CODE (type) = TYPE_CODE_UNION;
937 break;
938 default:
939 /* Should never happen */
940 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709
KB
941 complaint (&symfile_complaints,
942 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
943 DIE_ID, DIE_NAME);
c5aa993b 944 break;
c906108c
SS
945 }
946 /* Some compilers try to be helpful by inventing "fake" names for
947 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
948 Thanks, but no thanks... */
c5aa993b
JM
949 if (dip->at_name != NULL
950 && *dip->at_name != '~'
951 && *dip->at_name != '.')
c906108c 952 {
c5aa993b
JM
953 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
954 "", "", dip->at_name);
c906108c
SS
955 }
956 /* Use whatever size is known. Zero is a valid size. We might however
957 wish to check has_at_byte_size to make sure that some byte size was
958 given explicitly, but DWARF doesn't specify that explicit sizes of
959 zero have to present, so complaining about missing sizes should
960 probably not be the default. */
c5aa993b
JM
961 TYPE_LENGTH (type) = dip->at_byte_size;
962 thisdie += dip->die_length;
c906108c
SS
963 while (thisdie < enddie)
964 {
965 basicdieinfo (&mbr, thisdie, objfile);
966 completedieinfo (&mbr, objfile);
967 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
968 {
969 break;
970 }
971 else if (mbr.at_sibling != 0)
972 {
973 nextdie = dbbase + mbr.at_sibling - dbroff;
974 }
975 else
976 {
977 nextdie = thisdie + mbr.die_length;
978 }
979 switch (mbr.die_tag)
980 {
981 case TAG_member:
fba3138e
DJ
982 /* Static fields can be either TAG_global_variable (GCC) or else
983 TAG_member with no location (Diab). We could treat the latter like
984 the former... but since we don't support the former, just avoid
985 crashing on the latter for now. */
986 if (mbr.at_location == NULL)
987 break;
988
c906108c
SS
989 /* Get space to record the next field's data. */
990 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 991 new->next = list;
c906108c
SS
992 list = new;
993 /* Save the data. */
c5aa993b
JM
994 list->field.name =
995 obsavestring (mbr.at_name, strlen (mbr.at_name),
996 &objfile->type_obstack);
c906108c
SS
997 FIELD_TYPE (list->field) = decode_die_type (&mbr);
998 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 999 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1000 /* Handle bit fields. */
1001 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1002 if (BITS_BIG_ENDIAN)
1003 {
1004 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1005 additional bit offset from the MSB of the containing
1006 anonymous object to the MSB of the field. We don't
1007 have to do anything special since we don't need to
1008 know the size of the anonymous object. */
c906108c
SS
1009 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1010 }
1011 else
1012 {
1013 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1014 at_bit_size, so that we know we are in fact dealing
1015 with a bitfield. Compute the bit offset to the MSB
1016 of the anonymous object, subtract off the number of
1017 bits from the MSB of the field to the MSB of the
1018 object, and then subtract off the number of bits of
1019 the field itself. The result is the bit offset of
1020 the LSB of the field. */
c906108c
SS
1021 if (mbr.at_bit_size > 0)
1022 {
1023 if (mbr.has_at_byte_size)
1024 {
1025 /* The size of the anonymous object containing
c5aa993b
JM
1026 the bit field is explicit, so use the
1027 indicated size (in bytes). */
c906108c
SS
1028 anonymous_size = mbr.at_byte_size;
1029 }
1030 else
1031 {
1032 /* The size of the anonymous object containing
c5aa993b
JM
1033 the bit field matches the size of an object
1034 of the bit field's type. DWARF allows
1035 at_byte_size to be left out in such cases, as
1036 a debug information size optimization. */
1037 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1038 }
1039 FIELD_BITPOS (list->field) +=
1040 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1041 }
1042 }
1043 nfields++;
1044 break;
1045 default:
1046 process_dies (thisdie, nextdie, objfile);
1047 break;
1048 }
1049 thisdie = nextdie;
1050 }
1051 /* Now create the vector of fields, and record how big it is. We may
1052 not even have any fields, if this DIE was generated due to a reference
1053 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1054 set, which clues gdb in to the fact that it needs to search elsewhere
1055 for the full structure definition. */
1056 if (nfields == 0)
1057 {
1058 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1059 }
1060 else
1061 {
1062 TYPE_NFIELDS (type) = nfields;
1063 TYPE_FIELDS (type) = (struct field *)
1064 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1065 /* Copy the saved-up fields into the field vector. */
c5aa993b 1066 for (n = nfields; list; list = list->next)
c906108c 1067 {
c5aa993b
JM
1068 TYPE_FIELD (type, --n) = list->field;
1069 }
c906108c
SS
1070 }
1071 return (type);
1072}
1073
1074/*
1075
c5aa993b 1076 LOCAL FUNCTION
c906108c 1077
c5aa993b 1078 read_structure_scope -- process all dies within struct or union
c906108c 1079
c5aa993b 1080 SYNOPSIS
c906108c 1081
c5aa993b
JM
1082 static void read_structure_scope (struct dieinfo *dip,
1083 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1084
c5aa993b 1085 DESCRIPTION
c906108c 1086
c5aa993b
JM
1087 Called when we find the DIE that starts a structure or union
1088 scope (definition) to process all dies that define the members
1089 of the structure or union. DIP is a pointer to the die info
1090 struct for the DIE that names the structure or union.
c906108c 1091
c5aa993b
JM
1092 NOTES
1093
1094 Note that we need to call struct_type regardless of whether or not
1095 the DIE has an at_name attribute, since it might be an anonymous
1096 structure or union. This gets the type entered into our set of
1097 user defined types.
1098
1099 However, if the structure is incomplete (an opaque struct/union)
1100 then suppress creating a symbol table entry for it since gdb only
1101 wants to find the one with the complete definition. Note that if
1102 it is complete, we just call new_symbol, which does it's own
1103 checking about whether the struct/union is anonymous or not (and
1104 suppresses creating a symbol table entry itself).
c906108c 1105
c906108c
SS
1106 */
1107
1108static void
fba45db2
KB
1109read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1110 struct objfile *objfile)
c906108c
SS
1111{
1112 struct type *type;
1113 struct symbol *sym;
c5aa993b 1114
c906108c 1115 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1116 if (!TYPE_STUB (type))
c906108c
SS
1117 {
1118 sym = new_symbol (dip, objfile);
1119 if (sym != NULL)
1120 {
1121 SYMBOL_TYPE (sym) = type;
1122 if (cu_language == language_cplus)
1123 {
1124 synthesize_typedef (dip, objfile, type);
1125 }
1126 }
1127 }
1128}
1129
1130/*
1131
c5aa993b 1132 LOCAL FUNCTION
c906108c 1133
c5aa993b 1134 decode_array_element_type -- decode type of the array elements
c906108c 1135
c5aa993b 1136 SYNOPSIS
c906108c 1137
c5aa993b 1138 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1139
c5aa993b 1140 DESCRIPTION
c906108c 1141
c5aa993b
JM
1142 As the last step in decoding the array subscript information for an
1143 array DIE, we need to decode the type of the array elements. We are
1144 passed a pointer to this last part of the subscript information and
1145 must return the appropriate type. If the type attribute is not
1146 recognized, just warn about the problem and return type int.
c906108c
SS
1147 */
1148
1149static struct type *
fba45db2 1150decode_array_element_type (char *scan)
c906108c
SS
1151{
1152 struct type *typep;
1153 DIE_REF die_ref;
1154 unsigned short attribute;
1155 unsigned short fundtype;
1156 int nbytes;
c5aa993b 1157
c906108c
SS
1158 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1159 current_objfile);
1160 scan += SIZEOF_ATTRIBUTE;
b59661bd
AC
1161 nbytes = attribute_size (attribute);
1162 if (nbytes == -1)
c906108c 1163 {
23136709 1164 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1165 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1166 }
1167 else
1168 {
1169 switch (attribute)
1170 {
c5aa993b
JM
1171 case AT_fund_type:
1172 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1173 current_objfile);
1174 typep = decode_fund_type (fundtype);
1175 break;
1176 case AT_mod_fund_type:
1177 typep = decode_mod_fund_type (scan);
1178 break;
1179 case AT_user_def_type:
1180 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1181 current_objfile);
b59661bd
AC
1182 typep = lookup_utype (die_ref);
1183 if (typep == NULL)
c5aa993b
JM
1184 {
1185 typep = alloc_utype (die_ref, NULL);
1186 }
1187 break;
1188 case AT_mod_u_d_type:
1189 typep = decode_mod_u_d_type (scan);
1190 break;
1191 default:
23136709 1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1194 break;
1195 }
c906108c
SS
1196 }
1197 return (typep);
1198}
1199
1200/*
1201
c5aa993b 1202 LOCAL FUNCTION
c906108c 1203
c5aa993b 1204 decode_subscript_data_item -- decode array subscript item
c906108c 1205
c5aa993b 1206 SYNOPSIS
c906108c 1207
c5aa993b
JM
1208 static struct type *
1209 decode_subscript_data_item (char *scan, char *end)
c906108c 1210
c5aa993b 1211 DESCRIPTION
c906108c 1212
c5aa993b
JM
1213 The array subscripts and the data type of the elements of an
1214 array are described by a list of data items, stored as a block
1215 of contiguous bytes. There is a data item describing each array
1216 dimension, and a final data item describing the element type.
1217 The data items are ordered the same as their appearance in the
1218 source (I.E. leftmost dimension first, next to leftmost second,
1219 etc).
c906108c 1220
c5aa993b
JM
1221 The data items describing each array dimension consist of four
1222 parts: (1) a format specifier, (2) type type of the subscript
1223 index, (3) a description of the low bound of the array dimension,
1224 and (4) a description of the high bound of the array dimension.
c906108c 1225
c5aa993b
JM
1226 The last data item is the description of the type of each of
1227 the array elements.
c906108c 1228
c5aa993b
JM
1229 We are passed a pointer to the start of the block of bytes
1230 containing the remaining data items, and a pointer to the first
1231 byte past the data. This function recursively decodes the
1232 remaining data items and returns a type.
c906108c 1233
c5aa993b
JM
1234 If we somehow fail to decode some data, we complain about it
1235 and return a type "array of int".
c906108c 1236
c5aa993b
JM
1237 BUGS
1238 FIXME: This code only implements the forms currently used
1239 by the AT&T and GNU C compilers.
c906108c 1240
c5aa993b
JM
1241 The end pointer is supplied for error checking, maybe we should
1242 use it for that...
c906108c
SS
1243 */
1244
1245static struct type *
fba45db2 1246decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1247{
1248 struct type *typep = NULL; /* Array type we are building */
1249 struct type *nexttype; /* Type of each element (may be array) */
1250 struct type *indextype; /* Type of this index */
1251 struct type *rangetype;
1252 unsigned int format;
1253 unsigned short fundtype;
1254 unsigned long lowbound;
1255 unsigned long highbound;
1256 int nbytes;
c5aa993b 1257
c906108c
SS
1258 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1259 current_objfile);
1260 scan += SIZEOF_FORMAT_SPECIFIER;
1261 switch (format)
1262 {
1263 case FMT_ET:
1264 typep = decode_array_element_type (scan);
1265 break;
1266 case FMT_FT_C_C:
1267 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1268 current_objfile);
1269 indextype = decode_fund_type (fundtype);
1270 scan += SIZEOF_FMT_FT;
1271 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1272 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1273 scan += nbytes;
1274 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1275 scan += nbytes;
1276 nexttype = decode_subscript_data_item (scan, end);
1277 if (nexttype == NULL)
1278 {
1279 /* Munged subscript data or other problem, fake it. */
23136709
KB
1280 complaint (&symfile_complaints,
1281 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1282 DIE_ID, DIE_NAME);
c906108c
SS
1283 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1284 }
1285 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1286 lowbound, highbound);
c906108c
SS
1287 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1288 break;
1289 case FMT_FT_C_X:
1290 case FMT_FT_X_C:
1291 case FMT_FT_X_X:
1292 case FMT_UT_C_C:
1293 case FMT_UT_C_X:
1294 case FMT_UT_X_C:
1295 case FMT_UT_X_X:
23136709
KB
1296 complaint (&symfile_complaints,
1297 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1298 DIE_ID, DIE_NAME, format);
c906108c
SS
1299 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1300 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1301 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1302 break;
1303 default:
23136709
KB
1304 complaint (&symfile_complaints,
1305 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1306 DIE_NAME, format);
c906108c
SS
1307 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1308 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1309 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1310 break;
1311 }
1312 return (typep);
1313}
1314
1315/*
1316
c5aa993b 1317 LOCAL FUNCTION
c906108c 1318
c5aa993b 1319 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1320
c5aa993b 1321 SYNOPSIS
c906108c 1322
c5aa993b 1323 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1324
c5aa993b 1325 DESCRIPTION
c906108c 1326
c5aa993b
JM
1327 Extract all information from a TAG_array_type DIE and add to
1328 the user defined type vector.
c906108c
SS
1329 */
1330
1331static void
fba45db2 1332dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1333{
1334 struct type *type;
1335 struct type *utype;
1336 char *sub;
1337 char *subend;
1338 unsigned short blocksz;
1339 int nbytes;
c5aa993b
JM
1340
1341 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1342 {
1343 /* FIXME: Can gdb even handle column major arrays? */
23136709
KB
1344 complaint (&symfile_complaints,
1345 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1346 DIE_ID, DIE_NAME);
c906108c 1347 }
b59661bd
AC
1348 sub = dip->at_subscr_data;
1349 if (sub != NULL)
c906108c
SS
1350 {
1351 nbytes = attribute_size (AT_subscr_data);
1352 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1353 subend = sub + nbytes + blocksz;
1354 sub += nbytes;
1355 type = decode_subscript_data_item (sub, subend);
b59661bd
AC
1356 utype = lookup_utype (dip->die_ref);
1357 if (utype == NULL)
c906108c
SS
1358 {
1359 /* Install user defined type that has not been referenced yet. */
c5aa993b 1360 alloc_utype (dip->die_ref, type);
c906108c
SS
1361 }
1362 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1363 {
1364 /* Ick! A forward ref has already generated a blank type in our
1365 slot, and this type probably already has things pointing to it
1366 (which is what caused it to be created in the first place).
1367 If it's just a place holder we can plop our fully defined type
1368 on top of it. We can't recover the space allocated for our
1369 new type since it might be on an obstack, but we could reuse
1370 it if we kept a list of them, but it might not be worth it
1371 (FIXME). */
1372 *utype = *type;
1373 }
1374 else
1375 {
1376 /* Double ick! Not only is a type already in our slot, but
1377 someone has decorated it. Complain and leave it alone. */
23136709 1378 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1379 }
1380 }
1381}
1382
1383/*
1384
c5aa993b 1385 LOCAL FUNCTION
c906108c 1386
c5aa993b 1387 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1388
c5aa993b 1389 SYNOPSIS
c906108c 1390
c5aa993b 1391 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1392
c5aa993b 1393 DESCRIPTION
c906108c 1394
c5aa993b
JM
1395 Extract all information from a TAG_pointer_type DIE and add to
1396 the user defined type vector.
c906108c
SS
1397 */
1398
1399static void
fba45db2 1400read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1401{
1402 struct type *type;
1403 struct type *utype;
c5aa993b 1404
c906108c 1405 type = decode_die_type (dip);
b59661bd
AC
1406 utype = lookup_utype (dip->die_ref);
1407 if (utype == NULL)
c906108c
SS
1408 {
1409 utype = lookup_pointer_type (type);
c5aa993b 1410 alloc_utype (dip->die_ref, utype);
c906108c
SS
1411 }
1412 else
1413 {
1414 TYPE_TARGET_TYPE (utype) = type;
1415 TYPE_POINTER_TYPE (type) = utype;
1416
1417 /* We assume the machine has only one representation for pointers! */
1418 /* FIXME: Possably a poor assumption */
c5aa993b 1419 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1420 TYPE_CODE (utype) = TYPE_CODE_PTR;
1421 }
1422}
1423
1424/*
1425
c5aa993b 1426 LOCAL FUNCTION
c906108c 1427
c5aa993b 1428 read_tag_string_type -- read TAG_string_type DIE
c906108c 1429
c5aa993b 1430 SYNOPSIS
c906108c 1431
c5aa993b 1432 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1433
c5aa993b 1434 DESCRIPTION
c906108c 1435
c5aa993b
JM
1436 Extract all information from a TAG_string_type DIE and add to
1437 the user defined type vector. It isn't really a user defined
1438 type, but it behaves like one, with other DIE's using an
1439 AT_user_def_type attribute to reference it.
c906108c
SS
1440 */
1441
1442static void
fba45db2 1443read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1444{
1445 struct type *utype;
1446 struct type *indextype;
1447 struct type *rangetype;
1448 unsigned long lowbound = 0;
1449 unsigned long highbound;
1450
c5aa993b 1451 if (dip->has_at_byte_size)
c906108c
SS
1452 {
1453 /* A fixed bounds string */
c5aa993b 1454 highbound = dip->at_byte_size - 1;
c906108c
SS
1455 }
1456 else
1457 {
1458 /* A varying length string. Stub for now. (FIXME) */
1459 highbound = 1;
1460 }
1461 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1462 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1463 highbound);
c5aa993b
JM
1464
1465 utype = lookup_utype (dip->die_ref);
c906108c
SS
1466 if (utype == NULL)
1467 {
1468 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1469 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1470 }
1471 else
1472 {
1473 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1474 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1475 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1476 {
23136709 1477 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1478 return;
1479 }
1480 }
1481
1482 /* Create the string type using the blank type we either found or created. */
1483 utype = create_string_type (utype, rangetype);
1484}
1485
1486/*
1487
c5aa993b 1488 LOCAL FUNCTION
c906108c 1489
c5aa993b 1490 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1491
c5aa993b 1492 SYNOPSIS
c906108c 1493
c5aa993b
JM
1494 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1495 char *enddie)
c906108c 1496
c5aa993b 1497 DESCRIPTION
c906108c 1498
c5aa993b 1499 Handle DIES due to C code like:
c906108c 1500
c5aa993b
JM
1501 struct foo {
1502 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1503 int b;
1504 };
c906108c 1505
c5aa993b 1506 NOTES
c906108c 1507
c5aa993b
JM
1508 The parameter DIES are currently ignored. See if gdb has a way to
1509 include this info in it's type system, and decode them if so. Is
1510 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1511 */
1512
1513static void
fba45db2 1514read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1515{
1516 struct type *type; /* Type that this function returns */
1517 struct type *ftype; /* Function that returns above type */
c5aa993b 1518
c906108c
SS
1519 /* Decode the type that this subroutine returns */
1520
1521 type = decode_die_type (dip);
1522
1523 /* Check to see if we already have a partially constructed user
1524 defined type for this DIE, from a forward reference. */
1525
b59661bd
AC
1526 ftype = lookup_utype (dip->die_ref);
1527 if (ftype == NULL)
c906108c
SS
1528 {
1529 /* This is the first reference to one of these types. Make
c5aa993b 1530 a new one and place it in the user defined types. */
c906108c 1531 ftype = lookup_function_type (type);
c5aa993b 1532 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1533 }
1534 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1535 {
1536 /* We have an existing partially constructed type, so bash it
c5aa993b 1537 into the correct type. */
c906108c
SS
1538 TYPE_TARGET_TYPE (ftype) = type;
1539 TYPE_LENGTH (ftype) = 1;
1540 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1541 }
1542 else
1543 {
23136709 1544 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1545 }
1546}
1547
1548/*
1549
c5aa993b 1550 LOCAL FUNCTION
c906108c 1551
c5aa993b 1552 read_enumeration -- process dies which define an enumeration
c906108c 1553
c5aa993b 1554 SYNOPSIS
c906108c 1555
c5aa993b
JM
1556 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1557 char *enddie, struct objfile *objfile)
c906108c 1558
c5aa993b 1559 DESCRIPTION
c906108c 1560
c5aa993b
JM
1561 Given a pointer to a die which begins an enumeration, process all
1562 the dies that define the members of the enumeration.
c906108c 1563
c5aa993b 1564 NOTES
c906108c 1565
c5aa993b
JM
1566 Note that we need to call enum_type regardless of whether or not we
1567 have a symbol, since we might have an enum without a tag name (thus
1568 no symbol for the tagname).
c906108c
SS
1569 */
1570
1571static void
fba45db2
KB
1572read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1573 struct objfile *objfile)
c906108c
SS
1574{
1575 struct type *type;
1576 struct symbol *sym;
c5aa993b 1577
c906108c
SS
1578 type = enum_type (dip, objfile);
1579 sym = new_symbol (dip, objfile);
1580 if (sym != NULL)
1581 {
1582 SYMBOL_TYPE (sym) = type;
1583 if (cu_language == language_cplus)
1584 {
1585 synthesize_typedef (dip, objfile, type);
1586 }
1587 }
1588}
1589
1590/*
1591
c5aa993b 1592 LOCAL FUNCTION
c906108c 1593
c5aa993b 1594 enum_type -- decode and return a type for an enumeration
c906108c 1595
c5aa993b 1596 SYNOPSIS
c906108c 1597
c5aa993b 1598 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1599
c5aa993b 1600 DESCRIPTION
c906108c 1601
c5aa993b
JM
1602 Given a pointer to a die information structure for the die which
1603 starts an enumeration, process all the dies that define the members
1604 of the enumeration and return a type pointer for the enumeration.
c906108c 1605
c5aa993b 1606 At the same time, for each member of the enumeration, create a
176620f1 1607 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
c5aa993b 1608 and give it the type of the enumeration itself.
c906108c 1609
c5aa993b 1610 NOTES
c906108c 1611
c5aa993b
JM
1612 Note that the DWARF specification explicitly mandates that enum
1613 constants occur in reverse order from the source program order,
1614 for "consistency" and because this ordering is easier for many
1615 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1616 Entries). Because gdb wants to see the enum members in program
1617 source order, we have to ensure that the order gets reversed while
1618 we are processing them.
c906108c
SS
1619 */
1620
1621static struct type *
fba45db2 1622enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1623{
1624 struct type *type;
c5aa993b
JM
1625 struct nextfield
1626 {
1627 struct nextfield *next;
1628 struct field field;
1629 };
c906108c
SS
1630 struct nextfield *list = NULL;
1631 struct nextfield *new;
1632 int nfields = 0;
1633 int n;
1634 char *scan;
1635 char *listend;
1636 unsigned short blocksz;
1637 struct symbol *sym;
1638 int nbytes;
1639 int unsigned_enum = 1;
c5aa993b 1640
b59661bd
AC
1641 type = lookup_utype (dip->die_ref);
1642 if (type == NULL)
c906108c
SS
1643 {
1644 /* No forward references created an empty type, so install one now */
c5aa993b 1645 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1646 }
1647 TYPE_CODE (type) = TYPE_CODE_ENUM;
1648 /* Some compilers try to be helpful by inventing "fake" names for
1649 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1650 Thanks, but no thanks... */
c5aa993b
JM
1651 if (dip->at_name != NULL
1652 && *dip->at_name != '~'
1653 && *dip->at_name != '.')
c906108c 1654 {
c5aa993b
JM
1655 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1656 "", "", dip->at_name);
c906108c 1657 }
c5aa993b 1658 if (dip->at_byte_size != 0)
c906108c 1659 {
c5aa993b 1660 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1661 }
b59661bd
AC
1662 scan = dip->at_element_list;
1663 if (scan != NULL)
c906108c 1664 {
c5aa993b 1665 if (dip->short_element_list)
c906108c
SS
1666 {
1667 nbytes = attribute_size (AT_short_element_list);
1668 }
1669 else
1670 {
1671 nbytes = attribute_size (AT_element_list);
1672 }
1673 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1674 listend = scan + nbytes + blocksz;
1675 scan += nbytes;
1676 while (scan < listend)
1677 {
1678 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1679 new->next = list;
c906108c
SS
1680 list = new;
1681 FIELD_TYPE (list->field) = NULL;
1682 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1683 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1684 FIELD_BITPOS (list->field) =
1685 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1686 objfile);
1687 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1688 list->field.name = obsavestring (scan, strlen (scan),
1689 &objfile->type_obstack);
c906108c
SS
1690 scan += strlen (scan) + 1;
1691 nfields++;
1692 /* Handcraft a new symbol for this enum member. */
1693 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1694 sizeof (struct symbol));
1695 memset (sym, 0, sizeof (struct symbol));
22abf04a 1696 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1697 &objfile->symbol_obstack);
1698 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
176620f1 1699 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1700 SYMBOL_CLASS (sym) = LOC_CONST;
1701 SYMBOL_TYPE (sym) = type;
1702 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1703 if (SYMBOL_VALUE (sym) < 0)
1704 unsigned_enum = 0;
1705 add_symbol_to_list (sym, list_in_scope);
1706 }
1707 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1708 where we reverse the order, by pulling the members off the list in
1709 reverse order from how they were inserted. If we have no fields
1710 (this is apparently possible in C++) then skip building a field
1711 vector. */
c906108c
SS
1712 if (nfields > 0)
1713 {
1714 if (unsigned_enum)
1715 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1716 TYPE_NFIELDS (type) = nfields;
1717 TYPE_FIELDS (type) = (struct field *)
1718 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1719 /* Copy the saved-up fields into the field vector. */
c5aa993b 1720 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1721 {
c5aa993b
JM
1722 TYPE_FIELD (type, n++) = list->field;
1723 }
c906108c
SS
1724 }
1725 }
1726 return (type);
1727}
1728
1729/*
1730
c5aa993b 1731 LOCAL FUNCTION
c906108c 1732
c5aa993b 1733 read_func_scope -- process all dies within a function scope
c906108c 1734
c5aa993b 1735 DESCRIPTION
c906108c 1736
c5aa993b
JM
1737 Process all dies within a given function scope. We are passed
1738 a die information structure pointer DIP for the die which
1739 starts the function scope, and pointers into the raw die data
1740 that define the dies within the function scope.
1741
1742 For now, we ignore lexical block scopes within the function.
1743 The problem is that AT&T cc does not define a DWARF lexical
1744 block scope for the function itself, while gcc defines a
1745 lexical block scope for the function. We need to think about
1746 how to handle this difference, or if it is even a problem.
1747 (FIXME)
c906108c
SS
1748 */
1749
1750static void
fba45db2
KB
1751read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1752 struct objfile *objfile)
c906108c 1753{
b59661bd 1754 struct context_stack *new;
c5aa993b 1755
c906108c
SS
1756 /* AT_name is absent if the function is described with an
1757 AT_abstract_origin tag.
1758 Ignore the function description for now to avoid GDB core dumps.
1759 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1760 if (dip->at_name == NULL)
c906108c 1761 {
23136709
KB
1762 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1763 DIE_ID);
c906108c
SS
1764 return;
1765 }
1766
c5aa993b
JM
1767 if (objfile->ei.entry_point >= dip->at_low_pc &&
1768 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1769 {
c5aa993b
JM
1770 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1771 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1772 }
c5aa993b
JM
1773 new = push_context (0, dip->at_low_pc);
1774 new->name = new_symbol (dip, objfile);
c906108c 1775 list_in_scope = &local_symbols;
c5aa993b 1776 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1777 new = pop_context ();
1778 /* Make a block for the local symbols within. */
c5aa993b
JM
1779 finish_block (new->name, &local_symbols, new->old_blocks,
1780 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1781 list_in_scope = &file_symbols;
1782}
1783
1784
1785/*
1786
c5aa993b 1787 LOCAL FUNCTION
c906108c 1788
c5aa993b 1789 handle_producer -- process the AT_producer attribute
c906108c 1790
c5aa993b 1791 DESCRIPTION
c906108c 1792
c5aa993b
JM
1793 Perform any operations that depend on finding a particular
1794 AT_producer attribute.
c906108c
SS
1795
1796 */
1797
1798static void
fba45db2 1799handle_producer (char *producer)
c906108c
SS
1800{
1801
1802 /* If this compilation unit was compiled with g++ or gcc, then set the
1803 processing_gcc_compilation flag. */
1804
1805 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1806 {
1807 char version = producer[strlen (GCC_PRODUCER)];
1808 processing_gcc_compilation = (version == '2' ? 2 : 1);
1809 }
1810 else
1811 {
1812 processing_gcc_compilation =
db034ac5 1813 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
c906108c
SS
1814 }
1815
1816 /* Select a demangling style if we can identify the producer and if
1817 the current style is auto. We leave the current style alone if it
1818 is not auto. We also leave the demangling style alone if we find a
1819 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1820
1821 if (AUTO_DEMANGLING)
1822 {
1823 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1824 {
8052a17a
JM
1825#if 0
1826 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1827 know whether it will use the old style or v3 mangling. */
c906108c 1828 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1829#endif
c906108c
SS
1830 }
1831 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1832 {
1833 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1834 }
1835 }
1836}
1837
1838
1839/*
1840
c5aa993b 1841 LOCAL FUNCTION
c906108c 1842
c5aa993b 1843 read_file_scope -- process all dies within a file scope
c906108c 1844
c5aa993b
JM
1845 DESCRIPTION
1846
1847 Process all dies within a given file scope. We are passed a
1848 pointer to the die information structure for the die which
1849 starts the file scope, and pointers into the raw die data which
1850 mark the range of dies within the file scope.
c906108c 1851
c5aa993b
JM
1852 When the partial symbol table is built, the file offset for the line
1853 number table for each compilation unit is saved in the partial symbol
1854 table entry for that compilation unit. As the symbols for each
1855 compilation unit are read, the line number table is read into memory
1856 and the variable lnbase is set to point to it. Thus all we have to
1857 do is use lnbase to access the line number table for the current
1858 compilation unit.
c906108c
SS
1859 */
1860
1861static void
fba45db2
KB
1862read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1863 struct objfile *objfile)
c906108c
SS
1864{
1865 struct cleanup *back_to;
1866 struct symtab *symtab;
c5aa993b
JM
1867
1868 if (objfile->ei.entry_point >= dip->at_low_pc &&
1869 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1870 {
627b3ba2
AC
1871 objfile->ei.deprecated_entry_file_lowpc = dip->at_low_pc;
1872 objfile->ei.deprecated_entry_file_highpc = dip->at_high_pc;
c906108c
SS
1873 }
1874 set_cu_language (dip);
c5aa993b 1875 if (dip->at_producer != NULL)
c906108c 1876 {
c5aa993b 1877 handle_producer (dip->at_producer);
c906108c
SS
1878 }
1879 numutypes = (enddie - thisdie) / 4;
1880 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1881 back_to = make_cleanup (free_utypes, NULL);
1882 memset (utypes, 0, numutypes * sizeof (struct type *));
1883 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1884 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1885 record_debugformat ("DWARF 1");
1886 decode_line_numbers (lnbase);
c5aa993b 1887 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1888
c5aa993b 1889 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1890 if (symtab != NULL)
1891 {
c5aa993b
JM
1892 symtab->language = cu_language;
1893 }
c906108c
SS
1894 do_cleanups (back_to);
1895}
1896
1897/*
1898
c5aa993b 1899 LOCAL FUNCTION
c906108c 1900
c5aa993b 1901 process_dies -- process a range of DWARF Information Entries
c906108c 1902
c5aa993b 1903 SYNOPSIS
c906108c 1904
c5aa993b
JM
1905 static void process_dies (char *thisdie, char *enddie,
1906 struct objfile *objfile)
c906108c 1907
c5aa993b 1908 DESCRIPTION
c906108c 1909
c5aa993b
JM
1910 Process all DIE's in a specified range. May be (and almost
1911 certainly will be) called recursively.
c906108c
SS
1912 */
1913
1914static void
fba45db2 1915process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1916{
1917 char *nextdie;
1918 struct dieinfo di;
c5aa993b 1919
c906108c
SS
1920 while (thisdie < enddie)
1921 {
1922 basicdieinfo (&di, thisdie, objfile);
1923 if (di.die_length < SIZEOF_DIE_LENGTH)
1924 {
1925 break;
1926 }
1927 else if (di.die_tag == TAG_padding)
1928 {
1929 nextdie = thisdie + di.die_length;
1930 }
1931 else
1932 {
1933 completedieinfo (&di, objfile);
1934 if (di.at_sibling != 0)
1935 {
1936 nextdie = dbbase + di.at_sibling - dbroff;
1937 }
1938 else
1939 {
1940 nextdie = thisdie + di.die_length;
1941 }
c906108c 1942 /* I think that these are always text, not data, addresses. */
181c1381
RE
1943 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1944 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1945 switch (di.die_tag)
1946 {
1947 case TAG_compile_unit:
1948 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1949 unit, we are unable to handle nested compilation units
1950 properly (FIXME). */
c906108c
SS
1951 if (current_subfile == NULL)
1952 read_file_scope (&di, thisdie, nextdie, objfile);
1953 else
1954 nextdie = thisdie + di.die_length;
1955 break;
1956 case TAG_global_subroutine:
1957 case TAG_subroutine:
1958 if (di.has_at_low_pc)
1959 {
1960 read_func_scope (&di, thisdie, nextdie, objfile);
1961 }
1962 break;
1963 case TAG_lexical_block:
1964 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1965 break;
1966 case TAG_class_type:
1967 case TAG_structure_type:
1968 case TAG_union_type:
1969 read_structure_scope (&di, thisdie, nextdie, objfile);
1970 break;
1971 case TAG_enumeration_type:
1972 read_enumeration (&di, thisdie, nextdie, objfile);
1973 break;
1974 case TAG_subroutine_type:
1975 read_subroutine_type (&di, thisdie, nextdie);
1976 break;
1977 case TAG_array_type:
1978 dwarf_read_array_type (&di);
1979 break;
1980 case TAG_pointer_type:
1981 read_tag_pointer_type (&di);
1982 break;
1983 case TAG_string_type:
1984 read_tag_string_type (&di);
1985 break;
1986 default:
1987 new_symbol (&di, objfile);
1988 break;
1989 }
1990 }
1991 thisdie = nextdie;
1992 }
1993}
1994
1995/*
1996
c5aa993b 1997 LOCAL FUNCTION
c906108c 1998
c5aa993b 1999 decode_line_numbers -- decode a line number table fragment
c906108c 2000
c5aa993b 2001 SYNOPSIS
c906108c 2002
c5aa993b
JM
2003 static void decode_line_numbers (char *tblscan, char *tblend,
2004 long length, long base, long line, long pc)
c906108c 2005
c5aa993b 2006 DESCRIPTION
c906108c 2007
c5aa993b 2008 Translate the DWARF line number information to gdb form.
c906108c 2009
c5aa993b
JM
2010 The ".line" section contains one or more line number tables, one for
2011 each ".line" section from the objects that were linked.
c906108c 2012
c5aa993b
JM
2013 The AT_stmt_list attribute for each TAG_source_file entry in the
2014 ".debug" section contains the offset into the ".line" section for the
2015 start of the table for that file.
c906108c 2016
c5aa993b 2017 The table itself has the following structure:
c906108c 2018
c5aa993b
JM
2019 <table length><base address><source statement entry>
2020 4 bytes 4 bytes 10 bytes
c906108c 2021
c5aa993b
JM
2022 The table length is the total size of the table, including the 4 bytes
2023 for the length information.
c906108c 2024
c5aa993b
JM
2025 The base address is the address of the first instruction generated
2026 for the source file.
c906108c 2027
c5aa993b 2028 Each source statement entry has the following structure:
c906108c 2029
c5aa993b
JM
2030 <line number><statement position><address delta>
2031 4 bytes 2 bytes 4 bytes
c906108c 2032
c5aa993b
JM
2033 The line number is relative to the start of the file, starting with
2034 line 1.
c906108c 2035
c5aa993b
JM
2036 The statement position either -1 (0xFFFF) or the number of characters
2037 from the beginning of the line to the beginning of the statement.
c906108c 2038
c5aa993b
JM
2039 The address delta is the difference between the base address and
2040 the address of the first instruction for the statement.
c906108c 2041
c5aa993b
JM
2042 Note that we must copy the bytes from the packed table to our local
2043 variables before attempting to use them, to avoid alignment problems
2044 on some machines, particularly RISC processors.
c906108c 2045
c5aa993b 2046 BUGS
c906108c 2047
c5aa993b
JM
2048 Does gdb expect the line numbers to be sorted? They are now by
2049 chance/luck, but are not required to be. (FIXME)
c906108c 2050
c5aa993b
JM
2051 The line with number 0 is unused, gdb apparently can discover the
2052 span of the last line some other way. How? (FIXME)
c906108c
SS
2053 */
2054
2055static void
fba45db2 2056decode_line_numbers (char *linetable)
c906108c
SS
2057{
2058 char *tblscan;
2059 char *tblend;
2060 unsigned long length;
2061 unsigned long base;
2062 unsigned long line;
2063 unsigned long pc;
c5aa993b 2064
c906108c
SS
2065 if (linetable != NULL)
2066 {
2067 tblscan = tblend = linetable;
2068 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2069 current_objfile);
2070 tblscan += SIZEOF_LINETBL_LENGTH;
2071 tblend += length;
2072 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2073 GET_UNSIGNED, current_objfile);
2074 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2075 base += baseaddr;
2076 while (tblscan < tblend)
2077 {
2078 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2079 current_objfile);
2080 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2081 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2082 current_objfile);
2083 tblscan += SIZEOF_LINETBL_DELTA;
2084 pc += base;
2085 if (line != 0)
2086 {
2087 record_line (current_subfile, line, pc);
2088 }
2089 }
2090 }
2091}
2092
2093/*
2094
c5aa993b 2095 LOCAL FUNCTION
c906108c 2096
c5aa993b 2097 locval -- compute the value of a location attribute
c906108c 2098
c5aa993b 2099 SYNOPSIS
c906108c 2100
c5aa993b 2101 static int locval (struct dieinfo *dip)
c906108c 2102
c5aa993b 2103 DESCRIPTION
c906108c 2104
c5aa993b
JM
2105 Given pointer to a string of bytes that define a location, compute
2106 the location and return the value.
2107 A location description containing no atoms indicates that the
2108 object is optimized out. The optimized_out flag is set for those,
2109 the return value is meaningless.
c906108c 2110
c5aa993b
JM
2111 When computing values involving the current value of the frame pointer,
2112 the value zero is used, which results in a value relative to the frame
2113 pointer, rather than the absolute value. This is what GDB wants
2114 anyway.
c906108c 2115
c5aa993b
JM
2116 When the result is a register number, the isreg flag is set, otherwise
2117 it is cleared. This is a kludge until we figure out a better
2118 way to handle the problem. Gdb's design does not mesh well with the
2119 DWARF notion of a location computing interpreter, which is a shame
2120 because the flexibility goes unused.
2121
2122 NOTES
2123
2124 Note that stack[0] is unused except as a default error return.
2125 Note that stack overflow is not yet handled.
c906108c
SS
2126 */
2127
2128static int
fba45db2 2129locval (struct dieinfo *dip)
c906108c
SS
2130{
2131 unsigned short nbytes;
2132 unsigned short locsize;
2133 auto long stack[64];
2134 int stacki;
2135 char *loc;
2136 char *end;
2137 int loc_atom_code;
2138 int loc_value_size;
c5aa993b
JM
2139
2140 loc = dip->at_location;
c906108c
SS
2141 nbytes = attribute_size (AT_location);
2142 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2143 loc += nbytes;
2144 end = loc + locsize;
2145 stacki = 0;
2146 stack[stacki] = 0;
c5aa993b
JM
2147 dip->isreg = 0;
2148 dip->offreg = 0;
2149 dip->optimized_out = 1;
c906108c
SS
2150 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2151 while (loc < end)
2152 {
c5aa993b 2153 dip->optimized_out = 0;
c906108c
SS
2154 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2155 current_objfile);
2156 loc += SIZEOF_LOC_ATOM_CODE;
2157 switch (loc_atom_code)
2158 {
c5aa993b
JM
2159 case 0:
2160 /* error */
2161 loc = end;
2162 break;
2163 case OP_REG:
2164 /* push register (number) */
2165 stack[++stacki]
2166 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2167 GET_UNSIGNED,
2168 current_objfile));
2169 loc += loc_value_size;
2170 dip->isreg = 1;
2171 break;
2172 case OP_BASEREG:
2173 /* push value of register (number) */
2174 /* Actually, we compute the value as if register has 0, so the
2175 value ends up being the offset from that register. */
2176 dip->offreg = 1;
2177 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2178 current_objfile);
2179 loc += loc_value_size;
2180 stack[++stacki] = 0;
2181 break;
2182 case OP_ADDR:
2183 /* push address (relocated address) */
2184 stack[++stacki] = target_to_host (loc, loc_value_size,
2185 GET_UNSIGNED, current_objfile);
2186 loc += loc_value_size;
2187 break;
2188 case OP_CONST:
2189 /* push constant (number) FIXME: signed or unsigned! */
2190 stack[++stacki] = target_to_host (loc, loc_value_size,
2191 GET_SIGNED, current_objfile);
2192 loc += loc_value_size;
2193 break;
2194 case OP_DEREF2:
2195 /* pop, deref and push 2 bytes (as a long) */
23136709
KB
2196 complaint (&symfile_complaints,
2197 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2198 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2199 break;
2200 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709
KB
2201 complaint (&symfile_complaints,
2202 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2203 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2204 break;
2205 case OP_ADD: /* pop top 2 items, add, push result */
2206 stack[stacki - 1] += stack[stacki];
2207 stacki--;
2208 break;
c906108c
SS
2209 }
2210 }
2211 return (stack[stacki]);
2212}
2213
2214/*
2215
c5aa993b 2216 LOCAL FUNCTION
c906108c 2217
c5aa993b 2218 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2219
c5aa993b 2220 SYNOPSIS
c906108c 2221
c5aa993b 2222 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2223
c5aa993b 2224 DESCRIPTION
c906108c 2225
c5aa993b
JM
2226 When expanding a partial symbol table entry to a full symbol table
2227 entry, this is the function that gets called to read in the symbols
2228 for the compilation unit. A pointer to the newly constructed symtab,
2229 which is now the new first one on the objfile's symtab list, is
2230 stashed in the partial symbol table entry.
c906108c
SS
2231 */
2232
2233static void
fba45db2 2234read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2235{
2236 struct cleanup *back_to;
2237 unsigned long lnsize;
2238 file_ptr foffset;
2239 bfd *abfd;
2240 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2241
c5aa993b
JM
2242 abfd = pst->objfile->obfd;
2243 current_objfile = pst->objfile;
c906108c
SS
2244
2245 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2246 unit, seek to the location in the file, and read in all the DIE's. */
2247
2248 diecount = 0;
2249 dbsize = DBLENGTH (pst);
2250 dbbase = xmalloc (dbsize);
c5aa993b
JM
2251 dbroff = DBROFF (pst);
2252 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2253 base_section_offsets = pst->section_offsets;
2254 baseaddr = ANOFFSET (pst->section_offsets, 0);
2255 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2256 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2257 {
b8c9b27d 2258 xfree (dbbase);
c906108c
SS
2259 error ("can't read DWARF data");
2260 }
b8c9b27d 2261 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2262
2263 /* If there is a line number table associated with this compilation unit
2264 then read the size of this fragment in bytes, from the fragment itself.
2265 Allocate a buffer for the fragment and read it in for future
2266 processing. */
2267
2268 lnbase = NULL;
2269 if (LNFOFF (pst))
2270 {
2271 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2272 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2273 != sizeof (lnsizedata)))
c906108c
SS
2274 {
2275 error ("can't read DWARF line number table size");
2276 }
2277 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2278 GET_UNSIGNED, pst->objfile);
c906108c
SS
2279 lnbase = xmalloc (lnsize);
2280 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2281 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2282 {
b8c9b27d 2283 xfree (lnbase);
c906108c
SS
2284 error ("can't read DWARF line numbers");
2285 }
b8c9b27d 2286 make_cleanup (xfree, lnbase);
c906108c
SS
2287 }
2288
c5aa993b 2289 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2290 do_cleanups (back_to);
2291 current_objfile = NULL;
c5aa993b 2292 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2293}
2294
2295/*
2296
c5aa993b 2297 LOCAL FUNCTION
c906108c 2298
c5aa993b 2299 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2300
c5aa993b 2301 SYNOPSIS
c906108c 2302
c5aa993b 2303 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2304
c5aa993b 2305 DESCRIPTION
c906108c 2306
c5aa993b
JM
2307 Called once for each partial symbol table entry that needs to be
2308 expanded into a full symbol table entry.
c906108c 2309
c5aa993b 2310 */
c906108c
SS
2311
2312static void
fba45db2 2313psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2314{
2315 int i;
2316 struct cleanup *old_chain;
c5aa993b 2317
c906108c
SS
2318 if (pst != NULL)
2319 {
2320 if (pst->readin)
2321 {
2322 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2323 pst->filename);
c906108c
SS
2324 }
2325 else
2326 {
2327 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2328 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2329 {
c5aa993b 2330 if (!pst->dependencies[i]->readin)
c906108c
SS
2331 {
2332 /* Inform about additional files that need to be read in. */
2333 if (info_verbose)
2334 {
2335 fputs_filtered (" ", gdb_stdout);
2336 wrap_here ("");
2337 fputs_filtered ("and ", gdb_stdout);
2338 wrap_here ("");
2339 printf_filtered ("%s...",
c5aa993b 2340 pst->dependencies[i]->filename);
c906108c 2341 wrap_here ("");
c5aa993b 2342 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2343 }
c5aa993b 2344 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2345 }
c5aa993b
JM
2346 }
2347 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2348 {
2349 buildsym_init ();
a0b3c4fd 2350 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2351 read_ofile_symtab (pst);
2352 if (info_verbose)
2353 {
2354 printf_filtered ("%d DIE's, sorting...", diecount);
2355 wrap_here ("");
2356 gdb_flush (gdb_stdout);
2357 }
c906108c
SS
2358 do_cleanups (old_chain);
2359 }
c5aa993b 2360 pst->readin = 1;
c906108c
SS
2361 }
2362 }
2363}
2364
2365/*
2366
c5aa993b 2367 LOCAL FUNCTION
c906108c 2368
c5aa993b 2369 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2370
c5aa993b 2371 SYNOPSIS
c906108c 2372
c5aa993b 2373 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2374
c5aa993b 2375 DESCRIPTION
c906108c 2376
c5aa993b
JM
2377 This is the DWARF support entry point for building a full symbol
2378 table entry from a partial symbol table entry. We are passed a
2379 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2380
c5aa993b 2381 */
c906108c
SS
2382
2383static void
fba45db2 2384dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2385{
2386
2387 if (pst != NULL)
2388 {
c5aa993b 2389 if (pst->readin)
c906108c
SS
2390 {
2391 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2392 pst->filename);
c906108c
SS
2393 }
2394 else
2395 {
c5aa993b 2396 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2397 {
2398 /* Print the message now, before starting serious work, to avoid
c5aa993b 2399 disconcerting pauses. */
c906108c
SS
2400 if (info_verbose)
2401 {
2402 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2403 pst->filename);
c906108c
SS
2404 gdb_flush (gdb_stdout);
2405 }
c5aa993b 2406
c906108c 2407 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2408
2409#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2410 we need to do an equivalent or is this something peculiar to
2411 stabs/a.out format.
2412 Match with global symbols. This only needs to be done once,
2413 after all of the symtabs and dependencies have been read in.
2414 */
2415 scan_file_globals (pst->objfile);
c906108c 2416#endif
c5aa993b 2417
c906108c
SS
2418 /* Finish up the verbose info message. */
2419 if (info_verbose)
2420 {
2421 printf_filtered ("done.\n");
2422 gdb_flush (gdb_stdout);
2423 }
2424 }
2425 }
2426 }
2427}
2428
2429/*
2430
c5aa993b 2431 LOCAL FUNCTION
c906108c 2432
c5aa993b 2433 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2434
c5aa993b 2435 DESCRIPTION
c906108c 2436
c5aa993b
JM
2437 Given pointer to a DIE that is known to be for an enumeration,
2438 extract the symbolic names of the enumeration members and add
2439 partial symbols for them.
2440 */
c906108c
SS
2441
2442static void
fba45db2 2443add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2444{
2445 char *scan;
2446 char *listend;
2447 unsigned short blocksz;
2448 int nbytes;
c5aa993b 2449
b59661bd
AC
2450 scan = dip->at_element_list;
2451 if (scan != NULL)
c906108c 2452 {
c5aa993b 2453 if (dip->short_element_list)
c906108c
SS
2454 {
2455 nbytes = attribute_size (AT_short_element_list);
2456 }
2457 else
2458 {
2459 nbytes = attribute_size (AT_element_list);
2460 }
2461 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2462 scan += nbytes;
2463 listend = scan + blocksz;
2464 while (scan < listend)
2465 {
2466 scan += TARGET_FT_LONG_SIZE (objfile);
176620f1 2467 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
c5aa993b 2468 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2469 objfile);
2470 scan += strlen (scan) + 1;
2471 }
2472 }
2473}
2474
2475/*
2476
c5aa993b 2477 LOCAL FUNCTION
c906108c 2478
c5aa993b 2479 add_partial_symbol -- add symbol to partial symbol table
c906108c 2480
c5aa993b 2481 DESCRIPTION
c906108c 2482
c5aa993b
JM
2483 Given a DIE, if it is one of the types that we want to
2484 add to a partial symbol table, finish filling in the die info
2485 and then add a partial symbol table entry for it.
c906108c 2486
c5aa993b 2487 NOTES
c906108c 2488
c5aa993b
JM
2489 The caller must ensure that the DIE has a valid name attribute.
2490 */
c906108c
SS
2491
2492static void
fba45db2 2493add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2494{
c5aa993b 2495 switch (dip->die_tag)
c906108c
SS
2496 {
2497 case TAG_global_subroutine:
c5aa993b 2498 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2499 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2500 &objfile->global_psymbols,
2501 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2502 break;
2503 case TAG_global_variable:
c5aa993b 2504 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2505 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2506 &objfile->global_psymbols,
c906108c
SS
2507 0, 0, cu_language, objfile);
2508 break;
2509 case TAG_subroutine:
c5aa993b 2510 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2511 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2512 &objfile->static_psymbols,
2513 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2514 break;
2515 case TAG_local_variable:
c5aa993b 2516 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2517 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2518 &objfile->static_psymbols,
c906108c
SS
2519 0, 0, cu_language, objfile);
2520 break;
2521 case TAG_typedef:
c5aa993b 2522 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2523 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2524 &objfile->static_psymbols,
c906108c
SS
2525 0, 0, cu_language, objfile);
2526 break;
2527 case TAG_class_type:
2528 case TAG_structure_type:
2529 case TAG_union_type:
2530 case TAG_enumeration_type:
2531 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2532 if (!dip->has_at_byte_size)
c906108c 2533 break;
c5aa993b 2534 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2535 STRUCT_DOMAIN, LOC_TYPEDEF,
c5aa993b 2536 &objfile->static_psymbols,
c906108c
SS
2537 0, 0, cu_language, objfile);
2538 if (cu_language == language_cplus)
2539 {
2540 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2541 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2542 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2543 &objfile->static_psymbols,
c906108c
SS
2544 0, 0, cu_language, objfile);
2545 }
2546 break;
2547 }
2548}
9846de1b 2549/* *INDENT-OFF* */
c906108c
SS
2550/*
2551
2552LOCAL FUNCTION
2553
2554 scan_partial_symbols -- scan DIE's within a single compilation unit
2555
2556DESCRIPTION
2557
2558 Process the DIE's within a single compilation unit, looking for
2559 interesting DIE's that contribute to the partial symbol table entry
2560 for this compilation unit.
2561
2562NOTES
2563
2564 There are some DIE's that may appear both at file scope and within
2565 the scope of a function. We are only interested in the ones at file
2566 scope, and the only way to tell them apart is to keep track of the
2567 scope. For example, consider the test case:
2568
2569 static int i;
2570 main () { int j; }
2571
2572 for which the relevant DWARF segment has the structure:
2573
2574 0x51:
2575 0x23 global subrtn sibling 0x9b
2576 name main
2577 fund_type FT_integer
2578 low_pc 0x800004cc
2579 high_pc 0x800004d4
2580
2581 0x74:
2582 0x23 local var sibling 0x97
2583 name j
2584 fund_type FT_integer
2585 location OP_BASEREG 0xe
2586 OP_CONST 0xfffffffc
2587 OP_ADD
2588 0x97:
2589 0x4
2590
2591 0x9b:
2592 0x1d local var sibling 0xb8
2593 name i
2594 fund_type FT_integer
2595 location OP_ADDR 0x800025dc
2596
2597 0xb8:
2598 0x4
2599
2600 We want to include the symbol 'i' in the partial symbol table, but
2601 not the symbol 'j'. In essence, we want to skip all the dies within
2602 the scope of a TAG_global_subroutine DIE.
2603
2604 Don't attempt to add anonymous structures or unions since they have
2605 no name. Anonymous enumerations however are processed, because we
2606 want to extract their member names (the check for a tag name is
2607 done later).
2608
2609 Also, for variables and subroutines, check that this is the place
2610 where the actual definition occurs, rather than just a reference
2611 to an external.
2612 */
9846de1b 2613/* *INDENT-ON* */
c906108c 2614
c5aa993b
JM
2615
2616
c906108c 2617static void
fba45db2 2618scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2619{
2620 char *nextdie;
2621 char *temp;
2622 struct dieinfo di;
c5aa993b 2623
c906108c
SS
2624 while (thisdie < enddie)
2625 {
2626 basicdieinfo (&di, thisdie, objfile);
2627 if (di.die_length < SIZEOF_DIE_LENGTH)
2628 {
2629 break;
2630 }
2631 else
2632 {
2633 nextdie = thisdie + di.die_length;
2634 /* To avoid getting complete die information for every die, we
2635 only do it (below) for the cases we are interested in. */
2636 switch (di.die_tag)
2637 {
2638 case TAG_global_subroutine:
2639 case TAG_subroutine:
2640 completedieinfo (&di, objfile);
2641 if (di.at_name && (di.has_at_low_pc || di.at_location))
2642 {
2643 add_partial_symbol (&di, objfile);
2644 /* If there is a sibling attribute, adjust the nextdie
2645 pointer to skip the entire scope of the subroutine.
2646 Apply some sanity checking to make sure we don't
2647 overrun or underrun the range of remaining DIE's */
2648 if (di.at_sibling != 0)
2649 {
2650 temp = dbbase + di.at_sibling - dbroff;
2651 if ((temp < thisdie) || (temp >= enddie))
2652 {
23136709
KB
2653 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2654 di.at_sibling);
c906108c
SS
2655 }
2656 else
2657 {
2658 nextdie = temp;
2659 }
2660 }
2661 }
2662 break;
2663 case TAG_global_variable:
2664 case TAG_local_variable:
2665 completedieinfo (&di, objfile);
2666 if (di.at_name && (di.has_at_low_pc || di.at_location))
2667 {
2668 add_partial_symbol (&di, objfile);
2669 }
2670 break;
2671 case TAG_typedef:
2672 case TAG_class_type:
2673 case TAG_structure_type:
2674 case TAG_union_type:
2675 completedieinfo (&di, objfile);
2676 if (di.at_name)
2677 {
2678 add_partial_symbol (&di, objfile);
2679 }
2680 break;
2681 case TAG_enumeration_type:
2682 completedieinfo (&di, objfile);
2683 if (di.at_name)
2684 {
2685 add_partial_symbol (&di, objfile);
2686 }
2687 add_enum_psymbol (&di, objfile);
2688 break;
2689 }
2690 }
2691 thisdie = nextdie;
2692 }
2693}
2694
2695/*
2696
c5aa993b 2697 LOCAL FUNCTION
c906108c 2698
c5aa993b 2699 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2700
c5aa993b 2701 DESCRIPTION
c906108c 2702
c5aa993b
JM
2703 This is the top level dwarf parsing routine for building partial
2704 symbol tables.
c906108c 2705
c5aa993b
JM
2706 It scans from the beginning of the DWARF table looking for the first
2707 TAG_compile_unit DIE, and then follows the sibling chain to locate
2708 each additional TAG_compile_unit DIE.
2709
2710 For each TAG_compile_unit DIE it creates a partial symtab structure,
2711 calls a subordinate routine to collect all the compilation unit's
2712 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2713 new partial symtab structure into the partial symbol table. It also
2714 records the appropriate information in the partial symbol table entry
2715 to allow the chunk of DIE's and line number table for this compilation
2716 unit to be located and re-read later, to generate a complete symbol
2717 table entry for the compilation unit.
2718
2719 Thus it effectively partitions up a chunk of DIE's for multiple
2720 compilation units into smaller DIE chunks and line number tables,
2721 and associates them with a partial symbol table entry.
2722
2723 NOTES
c906108c 2724
c5aa993b
JM
2725 If any compilation unit has no line number table associated with
2726 it for some reason (a missing at_stmt_list attribute, rather than
2727 just one with a value of zero, which is valid) then we ensure that
2728 the recorded file offset is zero so that the routine which later
2729 reads line number table fragments knows that there is no fragment
2730 to read.
c906108c 2731
c5aa993b 2732 RETURNS
c906108c 2733
c5aa993b 2734 Returns no value.
c906108c
SS
2735
2736 */
2737
2738static void
fba45db2
KB
2739scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2740 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2741{
2742 char *nextdie;
2743 struct dieinfo di;
2744 struct partial_symtab *pst;
2745 int culength;
2746 int curoff;
2747 file_ptr curlnoffset;
2748
2749 while (thisdie < enddie)
2750 {
2751 basicdieinfo (&di, thisdie, objfile);
2752 if (di.die_length < SIZEOF_DIE_LENGTH)
2753 {
2754 break;
2755 }
2756 else if (di.die_tag != TAG_compile_unit)
2757 {
2758 nextdie = thisdie + di.die_length;
2759 }
2760 else
2761 {
2762 completedieinfo (&di, objfile);
2763 set_cu_language (&di);
2764 if (di.at_sibling != 0)
2765 {
2766 nextdie = dbbase + di.at_sibling - dbroff;
2767 }
2768 else
2769 {
2770 nextdie = thisdie + di.die_length;
2771 }
2772 curoff = thisdie - dbbase;
2773 culength = nextdie - thisdie;
2774 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2775
2776 /* First allocate a new partial symbol table structure */
2777
2778 pst = start_psymtab_common (objfile, base_section_offsets,
2779 di.at_name, di.at_low_pc,
c5aa993b
JM
2780 objfile->global_psymbols.next,
2781 objfile->static_psymbols.next);
c906108c 2782
c5aa993b
JM
2783 pst->texthigh = di.at_high_pc;
2784 pst->read_symtab_private = (char *)
2785 obstack_alloc (&objfile->psymbol_obstack,
2786 sizeof (struct dwfinfo));
c906108c
SS
2787 DBFOFF (pst) = dbfoff;
2788 DBROFF (pst) = curoff;
2789 DBLENGTH (pst) = culength;
c5aa993b
JM
2790 LNFOFF (pst) = curlnoffset;
2791 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2792
2793 /* Now look for partial symbols */
2794
2795 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2796
c5aa993b
JM
2797 pst->n_global_syms = objfile->global_psymbols.next -
2798 (objfile->global_psymbols.list + pst->globals_offset);
2799 pst->n_static_syms = objfile->static_psymbols.next -
2800 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2801 sort_pst_symbols (pst);
2802 /* If there is already a psymtab or symtab for a file of this name,
2803 remove it. (If there is a symtab, more drastic things also
2804 happen.) This happens in VxWorks. */
c5aa993b 2805 free_named_symtabs (pst->filename);
c906108c 2806 }
c5aa993b 2807 thisdie = nextdie;
c906108c
SS
2808 }
2809}
2810
2811/*
2812
c5aa993b 2813 LOCAL FUNCTION
c906108c 2814
c5aa993b 2815 new_symbol -- make a symbol table entry for a new symbol
c906108c 2816
c5aa993b 2817 SYNOPSIS
c906108c 2818
c5aa993b
JM
2819 static struct symbol *new_symbol (struct dieinfo *dip,
2820 struct objfile *objfile)
c906108c 2821
c5aa993b 2822 DESCRIPTION
c906108c 2823
c5aa993b
JM
2824 Given a pointer to a DWARF information entry, figure out if we need
2825 to make a symbol table entry for it, and if so, create a new entry
2826 and return a pointer to it.
c906108c
SS
2827 */
2828
2829static struct symbol *
fba45db2 2830new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2831{
2832 struct symbol *sym = NULL;
c5aa993b
JM
2833
2834 if (dip->at_name != NULL)
c906108c 2835 {
c5aa993b 2836 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2837 sizeof (struct symbol));
2838 OBJSTAT (objfile, n_syms++);
2839 memset (sym, 0, sizeof (struct symbol));
c906108c 2840 /* default assumptions */
176620f1 2841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2842 SYMBOL_CLASS (sym) = LOC_STATIC;
2843 SYMBOL_TYPE (sym) = decode_die_type (dip);
2844
2845 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2846 demangled form for future reference. This is a typical time versus
2847 space tradeoff, that was decided in favor of time because it sped up
2848 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2849
2850 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2851 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2852 switch (dip->die_tag)
c906108c
SS
2853 {
2854 case TAG_label:
c5aa993b 2855 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2856 SYMBOL_CLASS (sym) = LOC_LABEL;
2857 break;
2858 case TAG_global_subroutine:
2859 case TAG_subroutine:
c5aa993b 2860 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2861 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2862 if (dip->at_prototyped)
c906108c
SS
2863 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2864 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2865 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2866 {
2867 add_symbol_to_list (sym, &global_symbols);
2868 }
2869 else
2870 {
2871 add_symbol_to_list (sym, list_in_scope);
2872 }
2873 break;
2874 case TAG_global_variable:
c5aa993b 2875 if (dip->at_location != NULL)
c906108c
SS
2876 {
2877 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2878 add_symbol_to_list (sym, &global_symbols);
2879 SYMBOL_CLASS (sym) = LOC_STATIC;
2880 SYMBOL_VALUE (sym) += baseaddr;
2881 }
2882 break;
2883 case TAG_local_variable:
c5aa993b 2884 if (dip->at_location != NULL)
c906108c
SS
2885 {
2886 int loc = locval (dip);
c5aa993b 2887 if (dip->optimized_out)
c906108c
SS
2888 {
2889 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2890 }
c5aa993b 2891 else if (dip->isreg)
c906108c
SS
2892 {
2893 SYMBOL_CLASS (sym) = LOC_REGISTER;
2894 }
c5aa993b 2895 else if (dip->offreg)
c906108c
SS
2896 {
2897 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2898 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2899 }
2900 else
2901 {
2902 SYMBOL_CLASS (sym) = LOC_STATIC;
2903 SYMBOL_VALUE (sym) += baseaddr;
2904 }
2905 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2906 {
2907 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2908 which may store to a bigger location than SYMBOL_VALUE. */
2909 SYMBOL_VALUE_ADDRESS (sym) = loc;
2910 }
2911 else
2912 {
2913 SYMBOL_VALUE (sym) = loc;
2914 }
2915 add_symbol_to_list (sym, list_in_scope);
2916 }
2917 break;
2918 case TAG_formal_parameter:
c5aa993b 2919 if (dip->at_location != NULL)
c906108c
SS
2920 {
2921 SYMBOL_VALUE (sym) = locval (dip);
2922 }
2923 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2924 if (dip->isreg)
c906108c
SS
2925 {
2926 SYMBOL_CLASS (sym) = LOC_REGPARM;
2927 }
c5aa993b 2928 else if (dip->offreg)
c906108c
SS
2929 {
2930 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2931 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2932 }
2933 else
2934 {
2935 SYMBOL_CLASS (sym) = LOC_ARG;
2936 }
2937 break;
2938 case TAG_unspecified_parameters:
2939 /* From varargs functions; gdb doesn't seem to have any interest in
2940 this information, so just ignore it for now. (FIXME?) */
2941 break;
2942 case TAG_class_type:
2943 case TAG_structure_type:
2944 case TAG_union_type:
2945 case TAG_enumeration_type:
2946 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2947 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c
SS
2948 add_symbol_to_list (sym, list_in_scope);
2949 break;
2950 case TAG_typedef:
2951 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2953 add_symbol_to_list (sym, list_in_scope);
2954 break;
2955 default:
2956 /* Not a tag we recognize. Hopefully we aren't processing trash
2957 data, but since we must specifically ignore things we don't
2958 recognize, there is nothing else we should do at this point. */
2959 break;
2960 }
2961 }
2962 return (sym);
2963}
2964
2965/*
2966
c5aa993b 2967 LOCAL FUNCTION
c906108c 2968
c5aa993b 2969 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2970
c5aa993b 2971 SYNOPSIS
c906108c 2972
c5aa993b
JM
2973 static void synthesize_typedef (struct dieinfo *dip,
2974 struct objfile *objfile,
2975 struct type *type);
c906108c 2976
c5aa993b 2977 DESCRIPTION
c906108c 2978
c5aa993b
JM
2979 Given a pointer to a DWARF information entry, synthesize a typedef
2980 for the name in the DIE, using the specified type.
c906108c 2981
c5aa993b
JM
2982 This is used for C++ class, structs, unions, and enumerations to
2983 set up the tag name as a type.
c906108c
SS
2984
2985 */
2986
2987static void
fba45db2
KB
2988synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
2989 struct type *type)
c906108c
SS
2990{
2991 struct symbol *sym = NULL;
c5aa993b
JM
2992
2993 if (dip->at_name != NULL)
c906108c
SS
2994 {
2995 sym = (struct symbol *)
c5aa993b 2996 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
2997 OBJSTAT (objfile, n_syms++);
2998 memset (sym, 0, sizeof (struct symbol));
22abf04a 2999 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
3000 &objfile->symbol_obstack);
3001 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3002 SYMBOL_TYPE (sym) = type;
3003 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 3004 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3005 add_symbol_to_list (sym, list_in_scope);
3006 }
3007}
3008
3009/*
3010
c5aa993b 3011 LOCAL FUNCTION
c906108c 3012
c5aa993b 3013 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3014
c5aa993b 3015 SYNOPSIS
c906108c 3016
c5aa993b 3017 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3018
c5aa993b 3019 DESCRIPTION
c906108c 3020
c5aa993b
JM
3021 Decode a block of data containing a modified fundamental
3022 type specification. TYPEDATA is a pointer to the block,
3023 which starts with a length containing the size of the rest
3024 of the block. At the end of the block is a fundmental type
3025 code value that gives the fundamental type. Everything
3026 in between are type modifiers.
c906108c 3027
c5aa993b
JM
3028 We simply compute the number of modifiers and call the general
3029 function decode_modified_type to do the actual work.
3030 */
c906108c
SS
3031
3032static struct type *
fba45db2 3033decode_mod_fund_type (char *typedata)
c906108c
SS
3034{
3035 struct type *typep = NULL;
3036 unsigned short modcount;
3037 int nbytes;
c5aa993b 3038
c906108c
SS
3039 /* Get the total size of the block, exclusive of the size itself */
3040
3041 nbytes = attribute_size (AT_mod_fund_type);
3042 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3043 typedata += nbytes;
3044
3045 /* Deduct the size of the fundamental type bytes at the end of the block. */
3046
3047 modcount -= attribute_size (AT_fund_type);
3048
3049 /* Now do the actual decoding */
3050
3051 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3052 return (typep);
3053}
3054
3055/*
3056
c5aa993b 3057 LOCAL FUNCTION
c906108c 3058
c5aa993b 3059 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3060
c5aa993b 3061 SYNOPSIS
c906108c 3062
c5aa993b 3063 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3064
c5aa993b 3065 DESCRIPTION
c906108c 3066
c5aa993b
JM
3067 Decode a block of data containing a modified user defined
3068 type specification. TYPEDATA is a pointer to the block,
3069 which consists of a two byte length, containing the size
3070 of the rest of the block. At the end of the block is a
3071 four byte value that gives a reference to a user defined type.
3072 Everything in between are type modifiers.
c906108c 3073
c5aa993b
JM
3074 We simply compute the number of modifiers and call the general
3075 function decode_modified_type to do the actual work.
3076 */
c906108c
SS
3077
3078static struct type *
fba45db2 3079decode_mod_u_d_type (char *typedata)
c906108c
SS
3080{
3081 struct type *typep = NULL;
3082 unsigned short modcount;
3083 int nbytes;
c5aa993b 3084
c906108c
SS
3085 /* Get the total size of the block, exclusive of the size itself */
3086
3087 nbytes = attribute_size (AT_mod_u_d_type);
3088 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3089 typedata += nbytes;
3090
3091 /* Deduct the size of the reference type bytes at the end of the block. */
3092
3093 modcount -= attribute_size (AT_user_def_type);
3094
3095 /* Now do the actual decoding */
3096
3097 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3098 return (typep);
3099}
3100
3101/*
3102
c5aa993b 3103 LOCAL FUNCTION
c906108c 3104
c5aa993b 3105 decode_modified_type -- decode modified user or fundamental type
c906108c 3106
c5aa993b 3107 SYNOPSIS
c906108c 3108
c5aa993b
JM
3109 static struct type *decode_modified_type (char *modifiers,
3110 unsigned short modcount, int mtype)
c906108c 3111
c5aa993b 3112 DESCRIPTION
c906108c 3113
c5aa993b
JM
3114 Decode a modified type, either a modified fundamental type or
3115 a modified user defined type. MODIFIERS is a pointer to the
3116 block of bytes that define MODCOUNT modifiers. Immediately
3117 following the last modifier is a short containing the fundamental
3118 type or a long containing the reference to the user defined
3119 type. Which one is determined by MTYPE, which is either
3120 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3121 type we are generating.
c906108c 3122
c5aa993b
JM
3123 We call ourself recursively to generate each modified type,`
3124 until MODCOUNT reaches zero, at which point we have consumed
3125 all the modifiers and generate either the fundamental type or
3126 user defined type. When the recursion unwinds, each modifier
3127 is applied in turn to generate the full modified type.
3128
3129 NOTES
c906108c 3130
c5aa993b
JM
3131 If we find a modifier that we don't recognize, and it is not one
3132 of those reserved for application specific use, then we issue a
3133 warning and simply ignore the modifier.
c906108c 3134
c5aa993b 3135 BUGS
c906108c 3136
c5aa993b 3137 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3138
3139 */
3140
3141static struct type *
fba45db2 3142decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3143{
3144 struct type *typep = NULL;
3145 unsigned short fundtype;
3146 DIE_REF die_ref;
3147 char modifier;
3148 int nbytes;
c5aa993b 3149
c906108c
SS
3150 if (modcount == 0)
3151 {
3152 switch (mtype)
3153 {
3154 case AT_mod_fund_type:
3155 nbytes = attribute_size (AT_fund_type);
3156 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3157 current_objfile);
3158 typep = decode_fund_type (fundtype);
3159 break;
3160 case AT_mod_u_d_type:
3161 nbytes = attribute_size (AT_user_def_type);
3162 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3163 current_objfile);
b59661bd
AC
3164 typep = lookup_utype (die_ref);
3165 if (typep == NULL)
c906108c
SS
3166 {
3167 typep = alloc_utype (die_ref, NULL);
3168 }
3169 break;
3170 default:
23136709
KB
3171 complaint (&symfile_complaints,
3172 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3173 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3174 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3175 break;
3176 }
3177 }
3178 else
3179 {
3180 modifier = *modifiers++;
3181 typep = decode_modified_type (modifiers, --modcount, mtype);
3182 switch (modifier)
3183 {
c5aa993b
JM
3184 case MOD_pointer_to:
3185 typep = lookup_pointer_type (typep);
3186 break;
3187 case MOD_reference_to:
3188 typep = lookup_reference_type (typep);
3189 break;
3190 case MOD_const:
23136709
KB
3191 complaint (&symfile_complaints,
3192 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3193 DIE_NAME); /* FIXME */
c5aa993b
JM
3194 break;
3195 case MOD_volatile:
23136709
KB
3196 complaint (&symfile_complaints,
3197 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3198 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3199 break;
3200 default:
3cb3398d
EZ
3201 if (!(MOD_lo_user <= (unsigned char) modifier))
3202#if 0
3203/* This part of the test would always be true, and it triggers a compiler
3204 warning. */
c5aa993b 3205 && (unsigned char) modifier <= MOD_hi_user))
3cb3398d 3206#endif
c5aa993b 3207 {
23136709
KB
3208 complaint (&symfile_complaints,
3209 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3210 DIE_NAME, modifier);
c5aa993b
JM
3211 }
3212 break;
c906108c
SS
3213 }
3214 }
3215 return (typep);
3216}
3217
3218/*
3219
c5aa993b 3220 LOCAL FUNCTION
c906108c 3221
c5aa993b 3222 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3223
c5aa993b 3224 DESCRIPTION
c906108c 3225
c5aa993b
JM
3226 Given an integer that is one of the fundamental DWARF types,
3227 translate it to one of the basic internal gdb types and return
3228 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3229
c5aa993b 3230 NOTES
c906108c 3231
c5aa993b
JM
3232 For robustness, if we are asked to translate a fundamental
3233 type that we are unprepared to deal with, we return int so
3234 callers can always depend upon a valid type being returned,
3235 and so gdb may at least do something reasonable by default.
3236 If the type is not in the range of those types defined as
3237 application specific types, we also issue a warning.
3238 */
c906108c
SS
3239
3240static struct type *
fba45db2 3241decode_fund_type (unsigned int fundtype)
c906108c
SS
3242{
3243 struct type *typep = NULL;
c5aa993b 3244
c906108c
SS
3245 switch (fundtype)
3246 {
3247
3248 case FT_void:
3249 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3250 break;
c5aa993b 3251
c906108c
SS
3252 case FT_boolean: /* Was FT_set in AT&T version */
3253 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3254 break;
3255
3256 case FT_pointer: /* (void *) */
3257 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3258 typep = lookup_pointer_type (typep);
3259 break;
c5aa993b 3260
c906108c
SS
3261 case FT_char:
3262 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3263 break;
c5aa993b 3264
c906108c
SS
3265 case FT_signed_char:
3266 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3267 break;
3268
3269 case FT_unsigned_char:
3270 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3271 break;
c5aa993b 3272
c906108c
SS
3273 case FT_short:
3274 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3275 break;
3276
3277 case FT_signed_short:
3278 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3279 break;
c5aa993b 3280
c906108c
SS
3281 case FT_unsigned_short:
3282 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3283 break;
c5aa993b 3284
c906108c
SS
3285 case FT_integer:
3286 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3287 break;
3288
3289 case FT_signed_integer:
3290 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3291 break;
c5aa993b 3292
c906108c
SS
3293 case FT_unsigned_integer:
3294 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3295 break;
c5aa993b 3296
c906108c
SS
3297 case FT_long:
3298 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3299 break;
3300
3301 case FT_signed_long:
3302 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3303 break;
c5aa993b 3304
c906108c
SS
3305 case FT_unsigned_long:
3306 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3307 break;
c5aa993b 3308
c906108c
SS
3309 case FT_long_long:
3310 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3311 break;
3312
3313 case FT_signed_long_long:
3314 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3315 break;
3316
3317 case FT_unsigned_long_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3319 break;
3320
3321 case FT_float:
3322 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3323 break;
c5aa993b 3324
c906108c
SS
3325 case FT_dbl_prec_float:
3326 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3327 break;
c5aa993b 3328
c906108c
SS
3329 case FT_ext_prec_float:
3330 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3331 break;
c5aa993b 3332
c906108c
SS
3333 case FT_complex:
3334 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3335 break;
c5aa993b 3336
c906108c
SS
3337 case FT_dbl_prec_complex:
3338 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3339 break;
c5aa993b 3340
c906108c
SS
3341 case FT_ext_prec_complex:
3342 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3343 break;
c5aa993b 3344
c906108c
SS
3345 }
3346
3347 if (typep == NULL)
3348 {
3349 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3350 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3351 {
23136709
KB
3352 complaint (&symfile_complaints,
3353 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3354 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3355 }
3356 }
c5aa993b 3357
c906108c
SS
3358 return (typep);
3359}
3360
3361/*
3362
c5aa993b 3363 LOCAL FUNCTION
c906108c 3364
c5aa993b 3365 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3366
c5aa993b 3367 DESCRIPTION
c906108c 3368
c5aa993b
JM
3369 Given a pointer to a string and a pointer to an obstack, allocates
3370 a fresh copy of the string on the specified obstack.
c906108c 3371
c5aa993b 3372 */
c906108c
SS
3373
3374static char *
fba45db2 3375create_name (char *name, struct obstack *obstackp)
c906108c
SS
3376{
3377 int length;
3378 char *newname;
3379
3380 length = strlen (name) + 1;
3381 newname = (char *) obstack_alloc (obstackp, length);
3382 strcpy (newname, name);
3383 return (newname);
3384}
3385
3386/*
3387
c5aa993b 3388 LOCAL FUNCTION
c906108c 3389
c5aa993b 3390 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3391
c5aa993b 3392 SYNOPSIS
c906108c 3393
c5aa993b
JM
3394 void basicdieinfo (char *diep, struct dieinfo *dip,
3395 struct objfile *objfile)
c906108c 3396
c5aa993b 3397 DESCRIPTION
c906108c 3398
c5aa993b
JM
3399 Given a pointer to raw DIE data, and a pointer to an instance of a
3400 die info structure, this function extracts the basic information
3401 from the DIE data required to continue processing this DIE, along
3402 with some bookkeeping information about the DIE.
c906108c 3403
c5aa993b
JM
3404 The information we absolutely must have includes the DIE tag,
3405 and the DIE length. If we need the sibling reference, then we
3406 will have to call completedieinfo() to process all the remaining
3407 DIE information.
c906108c 3408
c5aa993b
JM
3409 Note that since there is no guarantee that the data is properly
3410 aligned in memory for the type of access required (indirection
3411 through anything other than a char pointer), and there is no
3412 guarantee that it is in the same byte order as the gdb host,
3413 we call a function which deals with both alignment and byte
3414 swapping issues. Possibly inefficient, but quite portable.
c906108c 3415
c5aa993b
JM
3416 We also take care of some other basic things at this point, such
3417 as ensuring that the instance of the die info structure starts
3418 out completely zero'd and that curdie is initialized for use
3419 in error reporting if we have a problem with the current die.
c906108c 3420
c5aa993b
JM
3421 NOTES
3422
3423 All DIE's must have at least a valid length, thus the minimum
3424 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3425 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3426 are forced to be TAG_padding DIES.
c906108c 3427
c5aa993b
JM
3428 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3429 that if a padding DIE is used for alignment and the amount needed is
3430 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3431 enough to align to the next alignment boundry.
3432
3433 We do some basic sanity checking here, such as verifying that the
3434 length of the die would not cause it to overrun the recorded end of
3435 the buffer holding the DIE info. If we find a DIE that is either
3436 too small or too large, we force it's length to zero which should
3437 cause the caller to take appropriate action.
c906108c
SS
3438 */
3439
3440static void
fba45db2 3441basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3442{
3443 curdie = dip;
3444 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3445 dip->die = diep;
3446 dip->die_ref = dbroff + (diep - dbbase);
3447 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3448 objfile);
3449 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3450 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3451 {
23136709
KB
3452 complaint (&symfile_complaints,
3453 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3454 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3455 dip->die_length = 0;
c906108c 3456 }
c5aa993b 3457 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3458 {
c5aa993b 3459 dip->die_tag = TAG_padding;
c906108c
SS
3460 }
3461 else
3462 {
3463 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3464 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3465 objfile);
c906108c
SS
3466 }
3467}
3468
3469/*
3470
c5aa993b 3471 LOCAL FUNCTION
c906108c 3472
c5aa993b 3473 completedieinfo -- finish reading the information for a given DIE
c906108c 3474
c5aa993b 3475 SYNOPSIS
c906108c 3476
c5aa993b 3477 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3478
c5aa993b 3479 DESCRIPTION
c906108c 3480
c5aa993b
JM
3481 Given a pointer to an already partially initialized die info structure,
3482 scan the raw DIE data and finish filling in the die info structure
3483 from the various attributes found.
c906108c 3484
c5aa993b
JM
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
c906108c 3491
c5aa993b
JM
3492 NOTES
3493
3494 Each time we are called, we increment the diecount variable, which
3495 keeps an approximate count of the number of dies processed for
3496 each compilation unit. This information is presented to the user
3497 if the info_verbose flag is set.
c906108c
SS
3498
3499 */
3500
3501static void
fba45db2 3502completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3503{
3504 char *diep; /* Current pointer into raw DIE data */
3505 char *end; /* Terminate DIE scan here */
3506 unsigned short attr; /* Current attribute being scanned */
3507 unsigned short form; /* Form of the attribute */
3508 int nbytes; /* Size of next field to read */
c5aa993b 3509
c906108c 3510 diecount++;
c5aa993b
JM
3511 diep = dip->die;
3512 end = diep + dip->die_length;
c906108c
SS
3513 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3514 while (diep < end)
3515 {
3516 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3517 diep += SIZEOF_ATTRIBUTE;
b59661bd
AC
3518 nbytes = attribute_size (attr);
3519 if (nbytes == -1)
c906108c 3520 {
23136709
KB
3521 complaint (&symfile_complaints,
3522 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3523 DIE_ID, DIE_NAME);
c906108c
SS
3524 diep = end;
3525 continue;
3526 }
3527 switch (attr)
3528 {
3529 case AT_fund_type:
c5aa993b
JM
3530 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3531 objfile);
c906108c
SS
3532 break;
3533 case AT_ordering:
c5aa993b
JM
3534 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 objfile);
c906108c
SS
3536 break;
3537 case AT_bit_offset:
c5aa993b
JM
3538 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3539 objfile);
c906108c
SS
3540 break;
3541 case AT_sibling:
c5aa993b
JM
3542 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3543 objfile);
c906108c
SS
3544 break;
3545 case AT_stmt_list:
c5aa993b
JM
3546 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3547 objfile);
3548 dip->has_at_stmt_list = 1;
c906108c
SS
3549 break;
3550 case AT_low_pc:
c5aa993b
JM
3551 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 objfile);
3553 dip->at_low_pc += baseaddr;
3554 dip->has_at_low_pc = 1;
c906108c
SS
3555 break;
3556 case AT_high_pc:
c5aa993b
JM
3557 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3558 objfile);
3559 dip->at_high_pc += baseaddr;
c906108c
SS
3560 break;
3561 case AT_language:
c5aa993b
JM
3562 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3563 objfile);
c906108c
SS
3564 break;
3565 case AT_user_def_type:
c5aa993b
JM
3566 dip->at_user_def_type = target_to_host (diep, nbytes,
3567 GET_UNSIGNED, objfile);
c906108c
SS
3568 break;
3569 case AT_byte_size:
c5aa993b
JM
3570 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 objfile);
3572 dip->has_at_byte_size = 1;
c906108c
SS
3573 break;
3574 case AT_bit_size:
c5aa993b
JM
3575 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 objfile);
c906108c
SS
3577 break;
3578 case AT_member:
c5aa993b
JM
3579 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
c906108c
SS
3581 break;
3582 case AT_discr:
c5aa993b
JM
3583 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3584 objfile);
c906108c
SS
3585 break;
3586 case AT_location:
c5aa993b 3587 dip->at_location = diep;
c906108c
SS
3588 break;
3589 case AT_mod_fund_type:
c5aa993b 3590 dip->at_mod_fund_type = diep;
c906108c
SS
3591 break;
3592 case AT_subscr_data:
c5aa993b 3593 dip->at_subscr_data = diep;
c906108c
SS
3594 break;
3595 case AT_mod_u_d_type:
c5aa993b 3596 dip->at_mod_u_d_type = diep;
c906108c
SS
3597 break;
3598 case AT_element_list:
c5aa993b
JM
3599 dip->at_element_list = diep;
3600 dip->short_element_list = 0;
c906108c
SS
3601 break;
3602 case AT_short_element_list:
c5aa993b
JM
3603 dip->at_element_list = diep;
3604 dip->short_element_list = 1;
c906108c
SS
3605 break;
3606 case AT_discr_value:
c5aa993b 3607 dip->at_discr_value = diep;
c906108c
SS
3608 break;
3609 case AT_string_length:
c5aa993b 3610 dip->at_string_length = diep;
c906108c
SS
3611 break;
3612 case AT_name:
c5aa993b 3613 dip->at_name = diep;
c906108c
SS
3614 break;
3615 case AT_comp_dir:
3616 /* For now, ignore any "hostname:" portion, since gdb doesn't
3617 know how to deal with it. (FIXME). */
c5aa993b
JM
3618 dip->at_comp_dir = strrchr (diep, ':');
3619 if (dip->at_comp_dir != NULL)
c906108c 3620 {
c5aa993b 3621 dip->at_comp_dir++;
c906108c
SS
3622 }
3623 else
3624 {
c5aa993b 3625 dip->at_comp_dir = diep;
c906108c
SS
3626 }
3627 break;
3628 case AT_producer:
c5aa993b 3629 dip->at_producer = diep;
c906108c
SS
3630 break;
3631 case AT_start_scope:
c5aa993b
JM
3632 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3633 objfile);
c906108c
SS
3634 break;
3635 case AT_stride_size:
c5aa993b
JM
3636 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
c906108c
SS
3638 break;
3639 case AT_src_info:
c5aa993b
JM
3640 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 objfile);
c906108c
SS
3642 break;
3643 case AT_prototyped:
c5aa993b 3644 dip->at_prototyped = diep;
c906108c
SS
3645 break;
3646 default:
3647 /* Found an attribute that we are unprepared to handle. However
3648 it is specifically one of the design goals of DWARF that
3649 consumers should ignore unknown attributes. As long as the
3650 form is one that we recognize (so we know how to skip it),
3651 we can just ignore the unknown attribute. */
3652 break;
3653 }
3654 form = FORM_FROM_ATTR (attr);
3655 switch (form)
3656 {
3657 case FORM_DATA2:
3658 diep += 2;
3659 break;
3660 case FORM_DATA4:
3661 case FORM_REF:
3662 diep += 4;
3663 break;
3664 case FORM_DATA8:
3665 diep += 8;
3666 break;
3667 case FORM_ADDR:
3668 diep += TARGET_FT_POINTER_SIZE (objfile);
3669 break;
3670 case FORM_BLOCK2:
3671 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3672 break;
3673 case FORM_BLOCK4:
3674 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3675 break;
3676 case FORM_STRING:
3677 diep += strlen (diep) + 1;
3678 break;
3679 default:
23136709 3680 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3681 diep = end;
3682 break;
3683 }
3684 }
3685}
3686
3687/*
3688
c5aa993b 3689 LOCAL FUNCTION
c906108c 3690
c5aa993b 3691 target_to_host -- swap in target data to host
c906108c 3692
c5aa993b 3693 SYNOPSIS
c906108c 3694
c5aa993b
JM
3695 target_to_host (char *from, int nbytes, int signextend,
3696 struct objfile *objfile)
c906108c 3697
c5aa993b 3698 DESCRIPTION
c906108c 3699
c5aa993b
JM
3700 Given pointer to data in target format in FROM, a byte count for
3701 the size of the data in NBYTES, a flag indicating whether or not
3702 the data is signed in SIGNEXTEND, and a pointer to the current
3703 objfile in OBJFILE, convert the data to host format and return
3704 the converted value.
c906108c 3705
c5aa993b 3706 NOTES
c906108c 3707
c5aa993b
JM
3708 FIXME: If we read data that is known to be signed, and expect to
3709 use it as signed data, then we need to explicitly sign extend the
3710 result until the bfd library is able to do this for us.
c906108c 3711
c5aa993b 3712 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3713
3714 */
3715
3716static CORE_ADDR
fba45db2
KB
3717target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3718 struct objfile *objfile)
c906108c
SS
3719{
3720 CORE_ADDR rtnval;
3721
3722 switch (nbytes)
3723 {
c5aa993b
JM
3724 case 8:
3725 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3726 break;
3727 case 4:
3728 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3729 break;
3730 case 2:
3731 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3732 break;
3733 case 1:
3734 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3735 break;
3736 default:
23136709
KB
3737 complaint (&symfile_complaints,
3738 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3739 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3740 rtnval = 0;
3741 break;
c906108c
SS
3742 }
3743 return (rtnval);
3744}
3745
3746/*
3747
c5aa993b 3748 LOCAL FUNCTION
c906108c 3749
c5aa993b 3750 attribute_size -- compute size of data for a DWARF attribute
c906108c 3751
c5aa993b 3752 SYNOPSIS
c906108c 3753
c5aa993b 3754 static int attribute_size (unsigned int attr)
c906108c 3755
c5aa993b 3756 DESCRIPTION
c906108c 3757
c5aa993b
JM
3758 Given a DWARF attribute in ATTR, compute the size of the first
3759 piece of data associated with this attribute and return that
3760 size.
c906108c 3761
c5aa993b 3762 Returns -1 for unrecognized attributes.
c906108c
SS
3763
3764 */
3765
3766static int
fba45db2 3767attribute_size (unsigned int attr)
c906108c
SS
3768{
3769 int nbytes; /* Size of next data for this attribute */
3770 unsigned short form; /* Form of the attribute */
3771
3772 form = FORM_FROM_ATTR (attr);
3773 switch (form)
3774 {
c5aa993b
JM
3775 case FORM_STRING: /* A variable length field is next */
3776 nbytes = 0;
3777 break;
3778 case FORM_DATA2: /* Next 2 byte field is the data itself */
3779 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3780 nbytes = 2;
3781 break;
3782 case FORM_DATA4: /* Next 4 byte field is the data itself */
3783 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3784 case FORM_REF: /* Next 4 byte field is a DIE offset */
3785 nbytes = 4;
3786 break;
3787 case FORM_DATA8: /* Next 8 byte field is the data itself */
3788 nbytes = 8;
3789 break;
3790 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3791 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3792 break;
3793 default:
23136709 3794 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3795 nbytes = -1;
3796 break;
3797 }
c906108c
SS
3798 return (nbytes);
3799}
This page took 0.451551 seconds and 4 git commands to generate.