Commit | Line | Data |
---|---|---|
c906108c | 1 | /* DWARF debugging format support for GDB. |
1bac305b | 2 | |
197e01b6 | 3 | Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, |
b99607ea | 4 | 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. |
1bac305b | 5 | |
c906108c SS |
6 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, |
7 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
23 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
24 | Boston, MA 02110-1301, USA. */ | |
c906108c | 25 | |
5ae7ca1d MC |
26 | /* |
27 | If you are looking for DWARF-2 support, you are in the wrong file. | |
013be872 MC |
28 | Go look in dwarf2read.c. This file is for the original DWARF, |
29 | also known as DWARF-1. | |
30 | ||
31 | DWARF-1 is slowly headed for obsoletion. | |
32 | ||
b2a871dd | 33 | In gcc 3.4.0, support for dwarf-1 has been removed. |
013be872 MC |
34 | |
35 | In gcc 3.3.2, these targets prefer dwarf-1: | |
36 | ||
37 | i[34567]86-sequent-ptx4* | |
38 | i[34567]86-sequent-sysv4* | |
39 | mips-sni-sysv4 | |
40 | sparc-hal-solaris2* | |
41 | ||
42 | In gcc 3.2.2, these targets prefer dwarf-1: | |
43 | ||
44 | i[34567]86-dg-dgux* | |
45 | i[34567]86-sequent-ptx4* | |
46 | i[34567]86-sequent-sysv4* | |
47 | m88k-dg-dgux* | |
48 | mips-sni-sysv4 | |
49 | sparc-hal-solaris2* | |
50 | ||
51 | In gcc 2.95.3, these targets prefer dwarf-1: | |
52 | ||
53 | i[34567]86-dg-dgux* | |
54 | i[34567]86-ncr-sysv4* | |
55 | i[34567]86-sequent-ptx4* | |
56 | i[34567]86-sequent-sysv4* | |
57 | i[34567]86-*-osf1* | |
58 | i[34567]86-*-sco3.2v5* | |
59 | i[34567]86-*-sysv4* | |
60 | i860-alliant-* | |
61 | i860-*-sysv4* | |
62 | m68k-atari-sysv4* | |
63 | m68k-cbm-sysv4* | |
64 | m68k-*-sysv4* | |
65 | m88k-dg-dgux* | |
66 | m88k-*-sysv4* | |
67 | mips-sni-sysv4 | |
68 | mips-*-gnu* | |
69 | sh-*-elf* | |
70 | sh-*-rtemself* | |
71 | sparc-hal-solaris2* | |
72 | sparc-*-sysv4* | |
73 | ||
74 | Some non-gcc compilers produce dwarf-1: | |
75 | ||
76 | PR gdb/1179 was from a user with Diab C++ 4.3. | |
b2a871dd MC |
77 | On 2003-07-25 the gdb list received a report from a user |
78 | with Diab Compiler 4.4b. | |
013be872 | 79 | Other users have also reported using Diab compilers with dwarf-1. |
b2a871dd MC |
80 | |
81 | Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++. | |
82 | (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00, | |
83 | Wind River Systems, 2002-07-31). | |
84 | ||
013be872 MC |
85 | On 2003-06-09 the gdb list received a report from a user |
86 | with Absoft ProFortran f77 which is dwarf-1. | |
87 | ||
9cbc6ef0 | 88 | Absoft ProFortran Linux[sic] Fortran User Guide (no version, |
b2a871dd MC |
89 | but copyright dates are 1991-2001) says that Absoft ProFortran |
90 | supports -gdwarf1 and -gdwarf2. | |
91 | ||
92 | -- chastain 2004-04-24 | |
5ae7ca1d MC |
93 | */ |
94 | ||
c906108c SS |
95 | /* |
96 | ||
c5aa993b JM |
97 | FIXME: Do we need to generate dependencies in partial symtabs? |
98 | (Perhaps we don't need to). | |
c906108c | 99 | |
c5aa993b JM |
100 | FIXME: Resolve minor differences between what information we put in the |
101 | partial symbol table and what dbxread puts in. For example, we don't yet | |
102 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
103 | we never see. Use the new printpsym command to see the partial symbol table | |
104 | contents. | |
c906108c | 105 | |
c5aa993b JM |
106 | FIXME: Figure out a better way to tell gdb about the name of the function |
107 | contain the user's entry point (I.E. main()) | |
c906108c | 108 | |
c5aa993b JM |
109 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for |
110 | other things to work on, if you get bored. :-) | |
c906108c | 111 | |
c5aa993b | 112 | */ |
c906108c SS |
113 | |
114 | #include "defs.h" | |
115 | #include "symtab.h" | |
116 | #include "gdbtypes.h" | |
c906108c SS |
117 | #include "objfiles.h" |
118 | #include "elf/dwarf.h" | |
119 | #include "buildsym.h" | |
120 | #include "demangle.h" | |
c5aa993b | 121 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ |
c906108c SS |
122 | #include "language.h" |
123 | #include "complaints.h" | |
124 | ||
125 | #include <fcntl.h> | |
126 | #include "gdb_string.h" | |
127 | ||
128 | /* Some macros to provide DIE info for complaints. */ | |
129 | ||
130 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) | |
131 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" | |
132 | ||
133 | /* Complaints that can be issued during DWARF debug info reading. */ | |
134 | ||
23136709 KB |
135 | static void |
136 | bad_die_ref_complaint (int arg1, const char *arg2, int arg3) | |
c906108c | 137 | { |
23136709 | 138 | complaint (&symfile_complaints, |
e2e0b3e5 | 139 | _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"), |
23136709 KB |
140 | arg1, arg2, arg3); |
141 | } | |
c906108c | 142 | |
23136709 KB |
143 | static void |
144 | unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3) | |
c906108c | 145 | { |
23136709 | 146 | complaint (&symfile_complaints, |
e2e0b3e5 | 147 | _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1, arg2, |
23136709 KB |
148 | arg3); |
149 | } | |
c906108c | 150 | |
23136709 KB |
151 | static void |
152 | dup_user_type_definition_complaint (int arg1, const char *arg2) | |
c906108c | 153 | { |
23136709 | 154 | complaint (&symfile_complaints, |
e2e0b3e5 | 155 | _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"), |
23136709 KB |
156 | arg1, arg2); |
157 | } | |
c906108c | 158 | |
23136709 KB |
159 | static void |
160 | bad_array_element_type_complaint (int arg1, const char *arg2, int arg3) | |
c906108c | 161 | { |
23136709 | 162 | complaint (&symfile_complaints, |
e2e0b3e5 | 163 | _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1, |
23136709 KB |
164 | arg2, arg3); |
165 | } | |
c906108c SS |
166 | |
167 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |
168 | ||
169 | #ifndef GCC_PRODUCER | |
170 | #define GCC_PRODUCER "GNU C " | |
171 | #endif | |
172 | ||
173 | #ifndef GPLUS_PRODUCER | |
174 | #define GPLUS_PRODUCER "GNU C++ " | |
175 | #endif | |
176 | ||
177 | #ifndef LCC_PRODUCER | |
178 | #define LCC_PRODUCER "NCR C/C++" | |
179 | #endif | |
180 | ||
c906108c SS |
181 | /* Flags to target_to_host() that tell whether or not the data object is |
182 | expected to be signed. Used, for example, when fetching a signed | |
183 | integer in the target environment which is used as a signed integer | |
184 | in the host environment, and the two environments have different sized | |
185 | ints. In this case, *somebody* has to sign extend the smaller sized | |
186 | int. */ | |
187 | ||
188 | #define GET_UNSIGNED 0 /* No sign extension required */ | |
189 | #define GET_SIGNED 1 /* Sign extension required */ | |
190 | ||
191 | /* Defines for things which are specified in the document "DWARF Debugging | |
192 | Information Format" published by UNIX International, Programming Languages | |
193 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |
194 | ||
195 | #define SIZEOF_DIE_LENGTH 4 | |
196 | #define SIZEOF_DIE_TAG 2 | |
197 | #define SIZEOF_ATTRIBUTE 2 | |
198 | #define SIZEOF_FORMAT_SPECIFIER 1 | |
199 | #define SIZEOF_FMT_FT 2 | |
200 | #define SIZEOF_LINETBL_LENGTH 4 | |
201 | #define SIZEOF_LINETBL_LINENO 4 | |
202 | #define SIZEOF_LINETBL_STMT 2 | |
203 | #define SIZEOF_LINETBL_DELTA 4 | |
204 | #define SIZEOF_LOC_ATOM_CODE 1 | |
205 | ||
206 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ | |
207 | ||
208 | /* Macros that return the sizes of various types of data in the target | |
209 | environment. | |
210 | ||
211 | FIXME: Currently these are just compile time constants (as they are in | |
212 | other parts of gdb as well). They need to be able to get the right size | |
213 | either from the bfd or possibly from the DWARF info. It would be nice if | |
214 | the DWARF producer inserted DIES that describe the fundamental types in | |
215 | the target environment into the DWARF info, similar to the way dbx stabs | |
216 | producers produce information about their fundamental types. */ | |
217 | ||
218 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) | |
219 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
220 | ||
221 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |
222 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |
223 | However, the Issue 2 DWARF specification from AT&T defines it as | |
224 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |
225 | For backwards compatibility with the AT&T compiler produced executables | |
226 | we define AT_short_element_list for this variant. */ | |
227 | ||
228 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) | |
229 | ||
c906108c SS |
230 | /* The DWARF debugging information consists of two major pieces, |
231 | one is a block of DWARF Information Entries (DIE's) and the other | |
232 | is a line number table. The "struct dieinfo" structure contains | |
233 | the information for a single DIE, the one currently being processed. | |
234 | ||
235 | In order to make it easier to randomly access the attribute fields | |
236 | of the current DIE, which are specifically unordered within the DIE, | |
237 | each DIE is scanned and an instance of the "struct dieinfo" | |
238 | structure is initialized. | |
239 | ||
240 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
241 | just initializes those fields that are vital to deciding whether or not | |
242 | to use this DIE, how to skip past it, etc. The second, done by the | |
243 | function completedieinfo(), fills in the rest of the information. | |
244 | ||
245 | Attributes which have block forms are not interpreted at the time | |
246 | the DIE is scanned, instead we just save pointers to the start | |
247 | of their value fields. | |
248 | ||
249 | Some fields have a flag <name>_p that is set when the value of the | |
250 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
251 | we may want to test for the presence of some attributes in the DIE, | |
252 | such as AT_low_pc, without restricting the values of the field, | |
253 | we need someway to note that we found such an attribute. | |
c5aa993b | 254 | |
c906108c | 255 | */ |
c5aa993b | 256 | |
c906108c SS |
257 | typedef char BLOCK; |
258 | ||
c5aa993b JM |
259 | struct dieinfo |
260 | { | |
261 | char *die; /* Pointer to the raw DIE data */ | |
262 | unsigned long die_length; /* Length of the raw DIE data */ | |
263 | DIE_REF die_ref; /* Offset of this DIE */ | |
264 | unsigned short die_tag; /* Tag for this DIE */ | |
265 | unsigned long at_padding; | |
266 | unsigned long at_sibling; | |
267 | BLOCK *at_location; | |
268 | char *at_name; | |
269 | unsigned short at_fund_type; | |
270 | BLOCK *at_mod_fund_type; | |
271 | unsigned long at_user_def_type; | |
272 | BLOCK *at_mod_u_d_type; | |
273 | unsigned short at_ordering; | |
274 | BLOCK *at_subscr_data; | |
275 | unsigned long at_byte_size; | |
276 | unsigned short at_bit_offset; | |
277 | unsigned long at_bit_size; | |
278 | BLOCK *at_element_list; | |
279 | unsigned long at_stmt_list; | |
280 | CORE_ADDR at_low_pc; | |
281 | CORE_ADDR at_high_pc; | |
282 | unsigned long at_language; | |
283 | unsigned long at_member; | |
284 | unsigned long at_discr; | |
285 | BLOCK *at_discr_value; | |
286 | BLOCK *at_string_length; | |
287 | char *at_comp_dir; | |
288 | char *at_producer; | |
289 | unsigned long at_start_scope; | |
290 | unsigned long at_stride_size; | |
291 | unsigned long at_src_info; | |
292 | char *at_prototyped; | |
293 | unsigned int has_at_low_pc:1; | |
294 | unsigned int has_at_stmt_list:1; | |
295 | unsigned int has_at_byte_size:1; | |
296 | unsigned int short_element_list:1; | |
297 | ||
298 | /* Kludge to identify register variables */ | |
299 | ||
300 | unsigned int isreg; | |
301 | ||
302 | /* Kludge to identify optimized out variables */ | |
303 | ||
304 | unsigned int optimized_out; | |
305 | ||
306 | /* Kludge to identify basereg references. | |
307 | Nonzero if we have an offset relative to a basereg. */ | |
308 | ||
309 | unsigned int offreg; | |
310 | ||
311 | /* Kludge to identify which base register is it relative to. */ | |
312 | ||
313 | unsigned int basereg; | |
314 | }; | |
c906108c | 315 | |
c5aa993b | 316 | static int diecount; /* Approximate count of dies for compilation unit */ |
c906108c SS |
317 | static struct dieinfo *curdie; /* For warnings and such */ |
318 | ||
c5aa993b JM |
319 | static char *dbbase; /* Base pointer to dwarf info */ |
320 | static int dbsize; /* Size of dwarf info in bytes */ | |
321 | static int dbroff; /* Relative offset from start of .debug section */ | |
322 | static char *lnbase; /* Base pointer to line section */ | |
c906108c SS |
323 | |
324 | /* This value is added to each symbol value. FIXME: Generalize to | |
325 | the section_offsets structure used by dbxread (once this is done, | |
326 | pass the appropriate section number to end_symtab). */ | |
327 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
328 | ||
329 | /* The section offsets used in the current psymtab or symtab. FIXME, | |
330 | only used to pass one value (baseaddr) at the moment. */ | |
331 | static struct section_offsets *base_section_offsets; | |
332 | ||
333 | /* We put a pointer to this structure in the read_symtab_private field | |
334 | of the psymtab. */ | |
335 | ||
c5aa993b JM |
336 | struct dwfinfo |
337 | { | |
338 | /* Always the absolute file offset to the start of the ".debug" | |
339 | section for the file containing the DIE's being accessed. */ | |
340 | file_ptr dbfoff; | |
341 | /* Relative offset from the start of the ".debug" section to the | |
342 | first DIE to be accessed. When building the partial symbol | |
343 | table, this value will be zero since we are accessing the | |
344 | entire ".debug" section. When expanding a partial symbol | |
345 | table entry, this value will be the offset to the first | |
346 | DIE for the compilation unit containing the symbol that | |
347 | triggers the expansion. */ | |
348 | int dbroff; | |
349 | /* The size of the chunk of DIE's being examined, in bytes. */ | |
350 | int dblength; | |
351 | /* The absolute file offset to the line table fragment. Ignored | |
352 | when building partial symbol tables, but used when expanding | |
353 | them, and contains the absolute file offset to the fragment | |
354 | of the ".line" section containing the line numbers for the | |
355 | current compilation unit. */ | |
356 | file_ptr lnfoff; | |
357 | }; | |
c906108c SS |
358 | |
359 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
360 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
361 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
362 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
363 | ||
364 | /* The generic symbol table building routines have separate lists for | |
365 | file scope symbols and all all other scopes (local scopes). So | |
366 | we need to select the right one to pass to add_symbol_to_list(). | |
367 | We do it by keeping a pointer to the correct list in list_in_scope. | |
368 | ||
369 | FIXME: The original dwarf code just treated the file scope as the first | |
370 | local scope, and all other local scopes as nested local scopes, and worked | |
371 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |
372 | ||
373 | struct pending **list_in_scope = &file_symbols; | |
374 | ||
375 | /* DIES which have user defined types or modified user defined types refer to | |
376 | other DIES for the type information. Thus we need to associate the offset | |
377 | of a DIE for a user defined type with a pointer to the type information. | |
378 | ||
379 | Originally this was done using a simple but expensive algorithm, with an | |
380 | array of unsorted structures, each containing an offset/type-pointer pair. | |
381 | This array was scanned linearly each time a lookup was done. The result | |
382 | was that gdb was spending over half it's startup time munging through this | |
383 | array of pointers looking for a structure that had the right offset member. | |
384 | ||
385 | The second attempt used the same array of structures, but the array was | |
386 | sorted using qsort each time a new offset/type was recorded, and a binary | |
387 | search was used to find the type pointer for a given DIE offset. This was | |
388 | even slower, due to the overhead of sorting the array each time a new | |
389 | offset/type pair was entered. | |
390 | ||
391 | The third attempt uses a fixed size array of type pointers, indexed by a | |
392 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
393 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
394 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
395 | much memory to hold this array as to hold the DWARF info for a given | |
396 | compilation unit. But it gets freed as soon as we are done with it. | |
397 | This has worked well in practice, as a reasonable tradeoff between memory | |
398 | consumption and speed, without having to resort to much more complicated | |
399 | algorithms. */ | |
400 | ||
401 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
402 | static int numutypes; /* Max number of user type pointers */ | |
403 | ||
404 | /* Maintain an array of referenced fundamental types for the current | |
405 | compilation unit being read. For DWARF version 1, we have to construct | |
406 | the fundamental types on the fly, since no information about the | |
407 | fundamental types is supplied. Each such fundamental type is created by | |
408 | calling a language dependent routine to create the type, and then a | |
409 | pointer to that type is then placed in the array at the index specified | |
410 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |
411 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |
412 | fundamental types gdb knows how to construct. */ | |
413 | ||
c5aa993b | 414 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ |
c906108c SS |
415 | |
416 | /* Record the language for the compilation unit which is currently being | |
417 | processed. We know it once we have seen the TAG_compile_unit DIE, | |
418 | and we need it while processing the DIE's for that compilation unit. | |
419 | It is eventually saved in the symtab structure, but we don't finalize | |
420 | the symtab struct until we have processed all the DIE's for the | |
421 | compilation unit. We also need to get and save a pointer to the | |
422 | language struct for this language, so we can call the language | |
423 | dependent routines for doing things such as creating fundamental | |
424 | types. */ | |
425 | ||
426 | static enum language cu_language; | |
427 | static const struct language_defn *cu_language_defn; | |
428 | ||
429 | /* Forward declarations of static functions so we don't have to worry | |
430 | about ordering within this file. */ | |
431 | ||
4efb68b1 | 432 | static void free_utypes (void *); |
c906108c | 433 | |
a14ed312 | 434 | static int attribute_size (unsigned int); |
c906108c | 435 | |
a14ed312 | 436 | static CORE_ADDR target_to_host (char *, int, int, struct objfile *); |
c906108c | 437 | |
a14ed312 | 438 | static void add_enum_psymbol (struct dieinfo *, struct objfile *); |
c906108c | 439 | |
a14ed312 | 440 | static void handle_producer (char *); |
c906108c | 441 | |
570b8f7c AC |
442 | static void read_file_scope (struct dieinfo *, char *, char *, |
443 | struct objfile *); | |
c906108c | 444 | |
570b8f7c AC |
445 | static void read_func_scope (struct dieinfo *, char *, char *, |
446 | struct objfile *); | |
c906108c | 447 | |
570b8f7c AC |
448 | static void read_lexical_block_scope (struct dieinfo *, char *, char *, |
449 | struct objfile *); | |
c906108c | 450 | |
a14ed312 | 451 | static void scan_partial_symbols (char *, char *, struct objfile *); |
c906108c | 452 | |
570b8f7c AC |
453 | static void scan_compilation_units (char *, char *, file_ptr, file_ptr, |
454 | struct objfile *); | |
c906108c | 455 | |
a14ed312 | 456 | static void add_partial_symbol (struct dieinfo *, struct objfile *); |
c906108c | 457 | |
a14ed312 | 458 | static void basicdieinfo (struct dieinfo *, char *, struct objfile *); |
c906108c | 459 | |
a14ed312 | 460 | static void completedieinfo (struct dieinfo *, struct objfile *); |
c906108c | 461 | |
a14ed312 | 462 | static void dwarf_psymtab_to_symtab (struct partial_symtab *); |
c906108c | 463 | |
a14ed312 | 464 | static void psymtab_to_symtab_1 (struct partial_symtab *); |
c906108c | 465 | |
a14ed312 | 466 | static void read_ofile_symtab (struct partial_symtab *); |
c906108c | 467 | |
a14ed312 | 468 | static void process_dies (char *, char *, struct objfile *); |
c906108c | 469 | |
570b8f7c AC |
470 | static void read_structure_scope (struct dieinfo *, char *, char *, |
471 | struct objfile *); | |
c906108c | 472 | |
a14ed312 | 473 | static struct type *decode_array_element_type (char *); |
c906108c | 474 | |
a14ed312 | 475 | static struct type *decode_subscript_data_item (char *, char *); |
c906108c | 476 | |
a14ed312 | 477 | static void dwarf_read_array_type (struct dieinfo *); |
c906108c | 478 | |
a14ed312 | 479 | static void read_tag_pointer_type (struct dieinfo *dip); |
c906108c | 480 | |
a14ed312 | 481 | static void read_tag_string_type (struct dieinfo *dip); |
c906108c | 482 | |
a14ed312 | 483 | static void read_subroutine_type (struct dieinfo *, char *, char *); |
c906108c | 484 | |
570b8f7c AC |
485 | static void read_enumeration (struct dieinfo *, char *, char *, |
486 | struct objfile *); | |
c906108c | 487 | |
a14ed312 KB |
488 | static struct type *struct_type (struct dieinfo *, char *, char *, |
489 | struct objfile *); | |
c906108c | 490 | |
a14ed312 | 491 | static struct type *enum_type (struct dieinfo *, struct objfile *); |
c906108c | 492 | |
a14ed312 | 493 | static void decode_line_numbers (char *); |
c906108c | 494 | |
a14ed312 | 495 | static struct type *decode_die_type (struct dieinfo *); |
c906108c | 496 | |
a14ed312 | 497 | static struct type *decode_mod_fund_type (char *); |
c906108c | 498 | |
a14ed312 | 499 | static struct type *decode_mod_u_d_type (char *); |
c906108c | 500 | |
a14ed312 | 501 | static struct type *decode_modified_type (char *, unsigned int, int); |
c906108c | 502 | |
a14ed312 | 503 | static struct type *decode_fund_type (unsigned int); |
c906108c | 504 | |
a14ed312 | 505 | static char *create_name (char *, struct obstack *); |
c906108c | 506 | |
a14ed312 | 507 | static struct type *lookup_utype (DIE_REF); |
c906108c | 508 | |
a14ed312 | 509 | static struct type *alloc_utype (DIE_REF, struct type *); |
c906108c | 510 | |
a14ed312 | 511 | static struct symbol *new_symbol (struct dieinfo *, struct objfile *); |
c906108c | 512 | |
570b8f7c AC |
513 | static void synthesize_typedef (struct dieinfo *, struct objfile *, |
514 | struct type *); | |
c906108c | 515 | |
a14ed312 | 516 | static int locval (struct dieinfo *); |
c906108c | 517 | |
a14ed312 | 518 | static void set_cu_language (struct dieinfo *); |
c906108c | 519 | |
a14ed312 | 520 | static struct type *dwarf_fundamental_type (struct objfile *, int); |
c906108c SS |
521 | |
522 | ||
523 | /* | |
524 | ||
c5aa993b | 525 | LOCAL FUNCTION |
c906108c | 526 | |
c5aa993b | 527 | dwarf_fundamental_type -- lookup or create a fundamental type |
c906108c | 528 | |
c5aa993b | 529 | SYNOPSIS |
c906108c | 530 | |
c5aa993b JM |
531 | struct type * |
532 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |
c906108c | 533 | |
c5aa993b | 534 | DESCRIPTION |
c906108c | 535 | |
c5aa993b JM |
536 | DWARF version 1 doesn't supply any fundamental type information, |
537 | so gdb has to construct such types. It has a fixed number of | |
538 | fundamental types that it knows how to construct, which is the | |
539 | union of all types that it knows how to construct for all languages | |
540 | that it knows about. These are enumerated in gdbtypes.h. | |
c906108c | 541 | |
c5aa993b JM |
542 | As an example, assume we find a DIE that references a DWARF |
543 | fundamental type of FT_integer. We first look in the ftypes | |
544 | array to see if we already have such a type, indexed by the | |
545 | gdb internal value of FT_INTEGER. If so, we simply return a | |
546 | pointer to that type. If not, then we ask an appropriate | |
547 | language dependent routine to create a type FT_INTEGER, using | |
548 | defaults reasonable for the current target machine, and install | |
549 | that type in ftypes for future reference. | |
c906108c | 550 | |
c5aa993b | 551 | RETURNS |
c906108c | 552 | |
c5aa993b | 553 | Pointer to a fundamental type. |
c906108c | 554 | |
c5aa993b | 555 | */ |
c906108c SS |
556 | |
557 | static struct type * | |
fba45db2 | 558 | dwarf_fundamental_type (struct objfile *objfile, int typeid) |
c906108c SS |
559 | { |
560 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
561 | { | |
8a3fe4f8 | 562 | error (_("internal error - invalid fundamental type id %d"), typeid); |
c906108c SS |
563 | } |
564 | ||
565 | /* Look for this particular type in the fundamental type vector. If one is | |
566 | not found, create and install one appropriate for the current language | |
567 | and the current target machine. */ | |
568 | ||
569 | if (ftypes[typeid] == NULL) | |
570 | { | |
c5aa993b | 571 | ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); |
c906108c SS |
572 | } |
573 | ||
574 | return (ftypes[typeid]); | |
575 | } | |
576 | ||
577 | /* | |
578 | ||
c5aa993b | 579 | LOCAL FUNCTION |
c906108c | 580 | |
c5aa993b | 581 | set_cu_language -- set local copy of language for compilation unit |
c906108c | 582 | |
c5aa993b | 583 | SYNOPSIS |
c906108c | 584 | |
c5aa993b JM |
585 | void |
586 | set_cu_language (struct dieinfo *dip) | |
c906108c | 587 | |
c5aa993b | 588 | DESCRIPTION |
c906108c | 589 | |
c5aa993b JM |
590 | Decode the language attribute for a compilation unit DIE and |
591 | remember what the language was. We use this at various times | |
592 | when processing DIE's for a given compilation unit. | |
c906108c | 593 | |
c5aa993b | 594 | RETURNS |
c906108c | 595 | |
c5aa993b | 596 | No return value. |
c906108c SS |
597 | |
598 | */ | |
599 | ||
600 | static void | |
fba45db2 | 601 | set_cu_language (struct dieinfo *dip) |
c906108c | 602 | { |
c5aa993b | 603 | switch (dip->at_language) |
c906108c | 604 | { |
c5aa993b JM |
605 | case LANG_C89: |
606 | case LANG_C: | |
607 | cu_language = language_c; | |
608 | break; | |
609 | case LANG_C_PLUS_PLUS: | |
610 | cu_language = language_cplus; | |
611 | break; | |
c5aa993b JM |
612 | case LANG_MODULA2: |
613 | cu_language = language_m2; | |
614 | break; | |
615 | case LANG_FORTRAN77: | |
616 | case LANG_FORTRAN90: | |
617 | cu_language = language_fortran; | |
618 | break; | |
619 | case LANG_ADA83: | |
620 | case LANG_COBOL74: | |
621 | case LANG_COBOL85: | |
622 | case LANG_PASCAL83: | |
623 | /* We don't know anything special about these yet. */ | |
624 | cu_language = language_unknown; | |
625 | break; | |
626 | default: | |
627 | /* If no at_language, try to deduce one from the filename */ | |
628 | cu_language = deduce_language_from_filename (dip->at_name); | |
629 | break; | |
c906108c SS |
630 | } |
631 | cu_language_defn = language_def (cu_language); | |
632 | } | |
633 | ||
634 | /* | |
635 | ||
c5aa993b | 636 | GLOBAL FUNCTION |
c906108c | 637 | |
c5aa993b | 638 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info |
c906108c | 639 | |
c5aa993b | 640 | SYNOPSIS |
c906108c | 641 | |
c5aa993b | 642 | void dwarf_build_psymtabs (struct objfile *objfile, |
c5aa993b JM |
643 | int mainline, file_ptr dbfoff, unsigned int dbfsize, |
644 | file_ptr lnoffset, unsigned int lnsize) | |
c906108c | 645 | |
c5aa993b | 646 | DESCRIPTION |
c906108c | 647 | |
c5aa993b JM |
648 | This function is called upon to build partial symtabs from files |
649 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
c906108c | 650 | |
c5aa993b JM |
651 | It is passed a bfd* containing the DIES |
652 | and line number information, the corresponding filename for that | |
653 | file, a base address for relocating the symbols, a flag indicating | |
654 | whether or not this debugging information is from a "main symbol | |
655 | table" rather than a shared library or dynamically linked file, | |
656 | and file offset/size pairs for the DIE information and line number | |
657 | information. | |
c906108c | 658 | |
c5aa993b | 659 | RETURNS |
c906108c | 660 | |
c5aa993b | 661 | No return value. |
c906108c SS |
662 | |
663 | */ | |
664 | ||
665 | void | |
fba45db2 KB |
666 | dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff, |
667 | unsigned int dbfsize, file_ptr lnoffset, | |
668 | unsigned int lnsize) | |
c906108c SS |
669 | { |
670 | bfd *abfd = objfile->obfd; | |
671 | struct cleanup *back_to; | |
c5aa993b | 672 | |
c906108c SS |
673 | current_objfile = objfile; |
674 | dbsize = dbfsize; | |
675 | dbbase = xmalloc (dbsize); | |
676 | dbroff = 0; | |
677 | if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || | |
3a42e9d0 | 678 | (bfd_bread (dbbase, dbsize, abfd) != dbsize)) |
c906108c | 679 | { |
b8c9b27d | 680 | xfree (dbbase); |
8a3fe4f8 | 681 | error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd)); |
c906108c | 682 | } |
b8c9b27d | 683 | back_to = make_cleanup (xfree, dbbase); |
c5aa993b | 684 | |
c906108c SS |
685 | /* If we are reinitializing, or if we have never loaded syms yet, init. |
686 | Since we have no idea how many DIES we are looking at, we just guess | |
687 | some arbitrary value. */ | |
c5aa993b | 688 | |
ef96bde8 EZ |
689 | if (mainline |
690 | || (objfile->global_psymbols.size == 0 | |
691 | && objfile->static_psymbols.size == 0)) | |
c906108c SS |
692 | { |
693 | init_psymbol_list (objfile, 1024); | |
694 | } | |
c5aa993b | 695 | |
c906108c SS |
696 | /* Save the relocation factor where everybody can see it. */ |
697 | ||
d4f3574e SS |
698 | base_section_offsets = objfile->section_offsets; |
699 | baseaddr = ANOFFSET (objfile->section_offsets, 0); | |
c906108c SS |
700 | |
701 | /* Follow the compilation unit sibling chain, building a partial symbol | |
702 | table entry for each one. Save enough information about each compilation | |
703 | unit to locate the full DWARF information later. */ | |
c5aa993b | 704 | |
c906108c | 705 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); |
c5aa993b | 706 | |
c906108c SS |
707 | do_cleanups (back_to); |
708 | current_objfile = NULL; | |
709 | } | |
710 | ||
711 | /* | |
712 | ||
c5aa993b | 713 | LOCAL FUNCTION |
c906108c | 714 | |
c5aa993b | 715 | read_lexical_block_scope -- process all dies in a lexical block |
c906108c | 716 | |
c5aa993b | 717 | SYNOPSIS |
c906108c | 718 | |
c5aa993b JM |
719 | static void read_lexical_block_scope (struct dieinfo *dip, |
720 | char *thisdie, char *enddie) | |
c906108c | 721 | |
c5aa993b | 722 | DESCRIPTION |
c906108c | 723 | |
c5aa993b JM |
724 | Process all the DIES contained within a lexical block scope. |
725 | Start a new scope, process the dies, and then close the scope. | |
c906108c SS |
726 | |
727 | */ | |
728 | ||
729 | static void | |
fba45db2 KB |
730 | read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
731 | struct objfile *objfile) | |
c906108c | 732 | { |
b59661bd | 733 | struct context_stack *new; |
c906108c | 734 | |
c5aa993b JM |
735 | push_context (0, dip->at_low_pc); |
736 | process_dies (thisdie + dip->die_length, enddie, objfile); | |
c906108c SS |
737 | new = pop_context (); |
738 | if (local_symbols != NULL) | |
739 | { | |
c5aa993b JM |
740 | finish_block (0, &local_symbols, new->old_blocks, new->start_addr, |
741 | dip->at_high_pc, objfile); | |
c906108c | 742 | } |
c5aa993b | 743 | local_symbols = new->locals; |
c906108c SS |
744 | } |
745 | ||
746 | /* | |
747 | ||
c5aa993b | 748 | LOCAL FUNCTION |
c906108c | 749 | |
c5aa993b | 750 | lookup_utype -- look up a user defined type from die reference |
c906108c | 751 | |
c5aa993b | 752 | SYNOPSIS |
c906108c | 753 | |
c5aa993b | 754 | static type *lookup_utype (DIE_REF die_ref) |
c906108c | 755 | |
c5aa993b | 756 | DESCRIPTION |
c906108c | 757 | |
c5aa993b JM |
758 | Given a DIE reference, lookup the user defined type associated with |
759 | that DIE, if it has been registered already. If not registered, then | |
760 | return NULL. Alloc_utype() can be called to register an empty | |
761 | type for this reference, which will be filled in later when the | |
762 | actual referenced DIE is processed. | |
c906108c SS |
763 | */ |
764 | ||
765 | static struct type * | |
fba45db2 | 766 | lookup_utype (DIE_REF die_ref) |
c906108c SS |
767 | { |
768 | struct type *type = NULL; | |
769 | int utypeidx; | |
c5aa993b | 770 | |
c906108c SS |
771 | utypeidx = (die_ref - dbroff) / 4; |
772 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
773 | { | |
23136709 | 774 | bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref); |
c906108c SS |
775 | } |
776 | else | |
777 | { | |
778 | type = *(utypes + utypeidx); | |
779 | } | |
780 | return (type); | |
781 | } | |
782 | ||
783 | ||
784 | /* | |
785 | ||
c5aa993b | 786 | LOCAL FUNCTION |
c906108c | 787 | |
c5aa993b | 788 | alloc_utype -- add a user defined type for die reference |
c906108c | 789 | |
c5aa993b | 790 | SYNOPSIS |
c906108c | 791 | |
c5aa993b | 792 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c | 793 | |
c5aa993b | 794 | DESCRIPTION |
c906108c | 795 | |
c5aa993b JM |
796 | Given a die reference DIE_REF, and a possible pointer to a user |
797 | defined type UTYPEP, register that this reference has a user | |
798 | defined type and either use the specified type in UTYPEP or | |
799 | make a new empty type that will be filled in later. | |
c906108c | 800 | |
c5aa993b JM |
801 | We should only be called after calling lookup_utype() to verify that |
802 | there is not currently a type registered for DIE_REF. | |
c906108c SS |
803 | */ |
804 | ||
805 | static struct type * | |
fba45db2 | 806 | alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c SS |
807 | { |
808 | struct type **typep; | |
809 | int utypeidx; | |
c5aa993b | 810 | |
c906108c SS |
811 | utypeidx = (die_ref - dbroff) / 4; |
812 | typep = utypes + utypeidx; | |
813 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
814 | { | |
815 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
23136709 | 816 | bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref); |
c906108c SS |
817 | } |
818 | else if (*typep != NULL) | |
819 | { | |
820 | utypep = *typep; | |
23136709 | 821 | complaint (&symfile_complaints, |
e2e0b3e5 | 822 | _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"), |
23136709 | 823 | DIE_ID, DIE_NAME); |
c906108c SS |
824 | } |
825 | else | |
826 | { | |
827 | if (utypep == NULL) | |
828 | { | |
829 | utypep = alloc_type (current_objfile); | |
830 | } | |
831 | *typep = utypep; | |
832 | } | |
833 | return (utypep); | |
834 | } | |
835 | ||
836 | /* | |
837 | ||
c5aa993b | 838 | LOCAL FUNCTION |
c906108c | 839 | |
c5aa993b | 840 | free_utypes -- free the utypes array and reset pointer & count |
c906108c | 841 | |
c5aa993b | 842 | SYNOPSIS |
c906108c | 843 | |
4efb68b1 | 844 | static void free_utypes (void *dummy) |
c906108c | 845 | |
c5aa993b | 846 | DESCRIPTION |
c906108c | 847 | |
c5aa993b JM |
848 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, |
849 | and set numutypes back to zero. This ensures that the utypes does not get | |
850 | referenced after being freed. | |
c906108c SS |
851 | */ |
852 | ||
853 | static void | |
4efb68b1 | 854 | free_utypes (void *dummy) |
c906108c | 855 | { |
b8c9b27d | 856 | xfree (utypes); |
c906108c SS |
857 | utypes = NULL; |
858 | numutypes = 0; | |
859 | } | |
860 | ||
861 | ||
862 | /* | |
863 | ||
c5aa993b | 864 | LOCAL FUNCTION |
c906108c | 865 | |
c5aa993b | 866 | decode_die_type -- return a type for a specified die |
c906108c | 867 | |
c5aa993b | 868 | SYNOPSIS |
c906108c | 869 | |
c5aa993b | 870 | static struct type *decode_die_type (struct dieinfo *dip) |
c906108c | 871 | |
c5aa993b | 872 | DESCRIPTION |
c906108c | 873 | |
c5aa993b JM |
874 | Given a pointer to a die information structure DIP, decode the |
875 | type of the die and return a pointer to the decoded type. All | |
876 | dies without specific types default to type int. | |
c906108c SS |
877 | */ |
878 | ||
879 | static struct type * | |
fba45db2 | 880 | decode_die_type (struct dieinfo *dip) |
c906108c SS |
881 | { |
882 | struct type *type = NULL; | |
c5aa993b JM |
883 | |
884 | if (dip->at_fund_type != 0) | |
c906108c | 885 | { |
c5aa993b | 886 | type = decode_fund_type (dip->at_fund_type); |
c906108c | 887 | } |
c5aa993b | 888 | else if (dip->at_mod_fund_type != NULL) |
c906108c | 889 | { |
c5aa993b | 890 | type = decode_mod_fund_type (dip->at_mod_fund_type); |
c906108c | 891 | } |
c5aa993b | 892 | else if (dip->at_user_def_type) |
c906108c | 893 | { |
b59661bd AC |
894 | type = lookup_utype (dip->at_user_def_type); |
895 | if (type == NULL) | |
c906108c | 896 | { |
c5aa993b | 897 | type = alloc_utype (dip->at_user_def_type, NULL); |
c906108c SS |
898 | } |
899 | } | |
c5aa993b | 900 | else if (dip->at_mod_u_d_type) |
c906108c | 901 | { |
c5aa993b | 902 | type = decode_mod_u_d_type (dip->at_mod_u_d_type); |
c906108c SS |
903 | } |
904 | else | |
905 | { | |
906 | type = dwarf_fundamental_type (current_objfile, FT_VOID); | |
907 | } | |
908 | return (type); | |
909 | } | |
910 | ||
911 | /* | |
912 | ||
c5aa993b | 913 | LOCAL FUNCTION |
c906108c | 914 | |
c5aa993b | 915 | struct_type -- compute and return the type for a struct or union |
c906108c | 916 | |
c5aa993b | 917 | SYNOPSIS |
c906108c | 918 | |
c5aa993b JM |
919 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, |
920 | char *enddie, struct objfile *objfile) | |
c906108c | 921 | |
c5aa993b | 922 | DESCRIPTION |
c906108c | 923 | |
c5aa993b JM |
924 | Given pointer to a die information structure for a die which |
925 | defines a union or structure (and MUST define one or the other), | |
926 | and pointers to the raw die data that define the range of dies which | |
927 | define the members, compute and return the user defined type for the | |
928 | structure or union. | |
c906108c SS |
929 | */ |
930 | ||
931 | static struct type * | |
fba45db2 KB |
932 | struct_type (struct dieinfo *dip, char *thisdie, char *enddie, |
933 | struct objfile *objfile) | |
c906108c SS |
934 | { |
935 | struct type *type; | |
c5aa993b JM |
936 | struct nextfield |
937 | { | |
938 | struct nextfield *next; | |
939 | struct field field; | |
940 | }; | |
c906108c SS |
941 | struct nextfield *list = NULL; |
942 | struct nextfield *new; | |
943 | int nfields = 0; | |
944 | int n; | |
945 | struct dieinfo mbr; | |
946 | char *nextdie; | |
947 | int anonymous_size; | |
c5aa993b | 948 | |
b59661bd AC |
949 | type = lookup_utype (dip->die_ref); |
950 | if (type == NULL) | |
c906108c SS |
951 | { |
952 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 953 | type = alloc_utype (dip->die_ref, NULL); |
c906108c | 954 | } |
c5aa993b JM |
955 | INIT_CPLUS_SPECIFIC (type); |
956 | switch (dip->die_tag) | |
c906108c | 957 | { |
c5aa993b JM |
958 | case TAG_class_type: |
959 | TYPE_CODE (type) = TYPE_CODE_CLASS; | |
960 | break; | |
961 | case TAG_structure_type: | |
962 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
963 | break; | |
964 | case TAG_union_type: | |
965 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
966 | break; | |
967 | default: | |
968 | /* Should never happen */ | |
969 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
23136709 | 970 | complaint (&symfile_complaints, |
e2e0b3e5 | 971 | _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"), |
23136709 | 972 | DIE_ID, DIE_NAME); |
c5aa993b | 973 | break; |
c906108c SS |
974 | } |
975 | /* Some compilers try to be helpful by inventing "fake" names for | |
976 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
977 | Thanks, but no thanks... */ | |
c5aa993b JM |
978 | if (dip->at_name != NULL |
979 | && *dip->at_name != '~' | |
980 | && *dip->at_name != '.') | |
c906108c | 981 | { |
b99607ea | 982 | TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack, |
c5aa993b | 983 | "", "", dip->at_name); |
c906108c SS |
984 | } |
985 | /* Use whatever size is known. Zero is a valid size. We might however | |
986 | wish to check has_at_byte_size to make sure that some byte size was | |
987 | given explicitly, but DWARF doesn't specify that explicit sizes of | |
988 | zero have to present, so complaining about missing sizes should | |
989 | probably not be the default. */ | |
c5aa993b JM |
990 | TYPE_LENGTH (type) = dip->at_byte_size; |
991 | thisdie += dip->die_length; | |
c906108c SS |
992 | while (thisdie < enddie) |
993 | { | |
994 | basicdieinfo (&mbr, thisdie, objfile); | |
995 | completedieinfo (&mbr, objfile); | |
996 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) | |
997 | { | |
998 | break; | |
999 | } | |
1000 | else if (mbr.at_sibling != 0) | |
1001 | { | |
1002 | nextdie = dbbase + mbr.at_sibling - dbroff; | |
1003 | } | |
1004 | else | |
1005 | { | |
1006 | nextdie = thisdie + mbr.die_length; | |
1007 | } | |
1008 | switch (mbr.die_tag) | |
1009 | { | |
1010 | case TAG_member: | |
fba3138e DJ |
1011 | /* Static fields can be either TAG_global_variable (GCC) or else |
1012 | TAG_member with no location (Diab). We could treat the latter like | |
1013 | the former... but since we don't support the former, just avoid | |
1014 | crashing on the latter for now. */ | |
1015 | if (mbr.at_location == NULL) | |
1016 | break; | |
1017 | ||
c906108c SS |
1018 | /* Get space to record the next field's data. */ |
1019 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1020 | new->next = list; |
c906108c SS |
1021 | list = new; |
1022 | /* Save the data. */ | |
c5aa993b JM |
1023 | list->field.name = |
1024 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |
b99607ea | 1025 | &objfile->objfile_obstack); |
c906108c SS |
1026 | FIELD_TYPE (list->field) = decode_die_type (&mbr); |
1027 | FIELD_BITPOS (list->field) = 8 * locval (&mbr); | |
01ad7f36 | 1028 | FIELD_STATIC_KIND (list->field) = 0; |
c906108c SS |
1029 | /* Handle bit fields. */ |
1030 | FIELD_BITSIZE (list->field) = mbr.at_bit_size; | |
1031 | if (BITS_BIG_ENDIAN) | |
1032 | { | |
1033 | /* For big endian bits, the at_bit_offset gives the | |
c5aa993b JM |
1034 | additional bit offset from the MSB of the containing |
1035 | anonymous object to the MSB of the field. We don't | |
1036 | have to do anything special since we don't need to | |
1037 | know the size of the anonymous object. */ | |
c906108c SS |
1038 | FIELD_BITPOS (list->field) += mbr.at_bit_offset; |
1039 | } | |
1040 | else | |
1041 | { | |
1042 | /* For little endian bits, we need to have a non-zero | |
c5aa993b JM |
1043 | at_bit_size, so that we know we are in fact dealing |
1044 | with a bitfield. Compute the bit offset to the MSB | |
1045 | of the anonymous object, subtract off the number of | |
1046 | bits from the MSB of the field to the MSB of the | |
1047 | object, and then subtract off the number of bits of | |
1048 | the field itself. The result is the bit offset of | |
1049 | the LSB of the field. */ | |
c906108c SS |
1050 | if (mbr.at_bit_size > 0) |
1051 | { | |
1052 | if (mbr.has_at_byte_size) | |
1053 | { | |
1054 | /* The size of the anonymous object containing | |
c5aa993b JM |
1055 | the bit field is explicit, so use the |
1056 | indicated size (in bytes). */ | |
c906108c SS |
1057 | anonymous_size = mbr.at_byte_size; |
1058 | } | |
1059 | else | |
1060 | { | |
1061 | /* The size of the anonymous object containing | |
c5aa993b JM |
1062 | the bit field matches the size of an object |
1063 | of the bit field's type. DWARF allows | |
1064 | at_byte_size to be left out in such cases, as | |
1065 | a debug information size optimization. */ | |
1066 | anonymous_size = TYPE_LENGTH (list->field.type); | |
c906108c SS |
1067 | } |
1068 | FIELD_BITPOS (list->field) += | |
1069 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |
1070 | } | |
1071 | } | |
1072 | nfields++; | |
1073 | break; | |
1074 | default: | |
1075 | process_dies (thisdie, nextdie, objfile); | |
1076 | break; | |
1077 | } | |
1078 | thisdie = nextdie; | |
1079 | } | |
1080 | /* Now create the vector of fields, and record how big it is. We may | |
1081 | not even have any fields, if this DIE was generated due to a reference | |
1082 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |
1083 | set, which clues gdb in to the fact that it needs to search elsewhere | |
1084 | for the full structure definition. */ | |
1085 | if (nfields == 0) | |
1086 | { | |
1087 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1088 | } | |
1089 | else | |
1090 | { | |
1091 | TYPE_NFIELDS (type) = nfields; | |
1092 | TYPE_FIELDS (type) = (struct field *) | |
1093 | TYPE_ALLOC (type, sizeof (struct field) * nfields); | |
1094 | /* Copy the saved-up fields into the field vector. */ | |
c5aa993b | 1095 | for (n = nfields; list; list = list->next) |
c906108c | 1096 | { |
c5aa993b JM |
1097 | TYPE_FIELD (type, --n) = list->field; |
1098 | } | |
c906108c SS |
1099 | } |
1100 | return (type); | |
1101 | } | |
1102 | ||
1103 | /* | |
1104 | ||
c5aa993b | 1105 | LOCAL FUNCTION |
c906108c | 1106 | |
c5aa993b | 1107 | read_structure_scope -- process all dies within struct or union |
c906108c | 1108 | |
c5aa993b | 1109 | SYNOPSIS |
c906108c | 1110 | |
c5aa993b JM |
1111 | static void read_structure_scope (struct dieinfo *dip, |
1112 | char *thisdie, char *enddie, struct objfile *objfile) | |
c906108c | 1113 | |
c5aa993b | 1114 | DESCRIPTION |
c906108c | 1115 | |
c5aa993b JM |
1116 | Called when we find the DIE that starts a structure or union |
1117 | scope (definition) to process all dies that define the members | |
1118 | of the structure or union. DIP is a pointer to the die info | |
1119 | struct for the DIE that names the structure or union. | |
c906108c | 1120 | |
c5aa993b JM |
1121 | NOTES |
1122 | ||
1123 | Note that we need to call struct_type regardless of whether or not | |
1124 | the DIE has an at_name attribute, since it might be an anonymous | |
1125 | structure or union. This gets the type entered into our set of | |
1126 | user defined types. | |
1127 | ||
1128 | However, if the structure is incomplete (an opaque struct/union) | |
1129 | then suppress creating a symbol table entry for it since gdb only | |
1130 | wants to find the one with the complete definition. Note that if | |
1131 | it is complete, we just call new_symbol, which does it's own | |
1132 | checking about whether the struct/union is anonymous or not (and | |
1133 | suppresses creating a symbol table entry itself). | |
c906108c | 1134 | |
c906108c SS |
1135 | */ |
1136 | ||
1137 | static void | |
fba45db2 KB |
1138 | read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1139 | struct objfile *objfile) | |
c906108c SS |
1140 | { |
1141 | struct type *type; | |
1142 | struct symbol *sym; | |
c5aa993b | 1143 | |
c906108c | 1144 | type = struct_type (dip, thisdie, enddie, objfile); |
74a9bb82 | 1145 | if (!TYPE_STUB (type)) |
c906108c SS |
1146 | { |
1147 | sym = new_symbol (dip, objfile); | |
1148 | if (sym != NULL) | |
1149 | { | |
1150 | SYMBOL_TYPE (sym) = type; | |
1151 | if (cu_language == language_cplus) | |
1152 | { | |
1153 | synthesize_typedef (dip, objfile, type); | |
1154 | } | |
1155 | } | |
1156 | } | |
1157 | } | |
1158 | ||
1159 | /* | |
1160 | ||
c5aa993b | 1161 | LOCAL FUNCTION |
c906108c | 1162 | |
c5aa993b | 1163 | decode_array_element_type -- decode type of the array elements |
c906108c | 1164 | |
c5aa993b | 1165 | SYNOPSIS |
c906108c | 1166 | |
c5aa993b | 1167 | static struct type *decode_array_element_type (char *scan, char *end) |
c906108c | 1168 | |
c5aa993b | 1169 | DESCRIPTION |
c906108c | 1170 | |
c5aa993b JM |
1171 | As the last step in decoding the array subscript information for an |
1172 | array DIE, we need to decode the type of the array elements. We are | |
1173 | passed a pointer to this last part of the subscript information and | |
1174 | must return the appropriate type. If the type attribute is not | |
1175 | recognized, just warn about the problem and return type int. | |
c906108c SS |
1176 | */ |
1177 | ||
1178 | static struct type * | |
fba45db2 | 1179 | decode_array_element_type (char *scan) |
c906108c SS |
1180 | { |
1181 | struct type *typep; | |
1182 | DIE_REF die_ref; | |
1183 | unsigned short attribute; | |
1184 | unsigned short fundtype; | |
1185 | int nbytes; | |
c5aa993b | 1186 | |
c906108c SS |
1187 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, |
1188 | current_objfile); | |
1189 | scan += SIZEOF_ATTRIBUTE; | |
b59661bd AC |
1190 | nbytes = attribute_size (attribute); |
1191 | if (nbytes == -1) | |
c906108c | 1192 | { |
23136709 | 1193 | bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute); |
c906108c SS |
1194 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1195 | } | |
1196 | else | |
1197 | { | |
1198 | switch (attribute) | |
1199 | { | |
c5aa993b JM |
1200 | case AT_fund_type: |
1201 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1202 | current_objfile); | |
1203 | typep = decode_fund_type (fundtype); | |
1204 | break; | |
1205 | case AT_mod_fund_type: | |
1206 | typep = decode_mod_fund_type (scan); | |
1207 | break; | |
1208 | case AT_user_def_type: | |
1209 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1210 | current_objfile); | |
b59661bd AC |
1211 | typep = lookup_utype (die_ref); |
1212 | if (typep == NULL) | |
c5aa993b JM |
1213 | { |
1214 | typep = alloc_utype (die_ref, NULL); | |
1215 | } | |
1216 | break; | |
1217 | case AT_mod_u_d_type: | |
1218 | typep = decode_mod_u_d_type (scan); | |
1219 | break; | |
1220 | default: | |
23136709 | 1221 | bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute); |
c5aa993b JM |
1222 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1223 | break; | |
1224 | } | |
c906108c SS |
1225 | } |
1226 | return (typep); | |
1227 | } | |
1228 | ||
1229 | /* | |
1230 | ||
c5aa993b | 1231 | LOCAL FUNCTION |
c906108c | 1232 | |
c5aa993b | 1233 | decode_subscript_data_item -- decode array subscript item |
c906108c | 1234 | |
c5aa993b | 1235 | SYNOPSIS |
c906108c | 1236 | |
c5aa993b JM |
1237 | static struct type * |
1238 | decode_subscript_data_item (char *scan, char *end) | |
c906108c | 1239 | |
c5aa993b | 1240 | DESCRIPTION |
c906108c | 1241 | |
c5aa993b JM |
1242 | The array subscripts and the data type of the elements of an |
1243 | array are described by a list of data items, stored as a block | |
1244 | of contiguous bytes. There is a data item describing each array | |
1245 | dimension, and a final data item describing the element type. | |
1246 | The data items are ordered the same as their appearance in the | |
1247 | source (I.E. leftmost dimension first, next to leftmost second, | |
1248 | etc). | |
c906108c | 1249 | |
c5aa993b JM |
1250 | The data items describing each array dimension consist of four |
1251 | parts: (1) a format specifier, (2) type type of the subscript | |
1252 | index, (3) a description of the low bound of the array dimension, | |
1253 | and (4) a description of the high bound of the array dimension. | |
c906108c | 1254 | |
c5aa993b JM |
1255 | The last data item is the description of the type of each of |
1256 | the array elements. | |
c906108c | 1257 | |
c5aa993b JM |
1258 | We are passed a pointer to the start of the block of bytes |
1259 | containing the remaining data items, and a pointer to the first | |
1260 | byte past the data. This function recursively decodes the | |
1261 | remaining data items and returns a type. | |
c906108c | 1262 | |
c5aa993b JM |
1263 | If we somehow fail to decode some data, we complain about it |
1264 | and return a type "array of int". | |
c906108c | 1265 | |
c5aa993b JM |
1266 | BUGS |
1267 | FIXME: This code only implements the forms currently used | |
1268 | by the AT&T and GNU C compilers. | |
c906108c | 1269 | |
c5aa993b JM |
1270 | The end pointer is supplied for error checking, maybe we should |
1271 | use it for that... | |
c906108c SS |
1272 | */ |
1273 | ||
1274 | static struct type * | |
fba45db2 | 1275 | decode_subscript_data_item (char *scan, char *end) |
c906108c SS |
1276 | { |
1277 | struct type *typep = NULL; /* Array type we are building */ | |
1278 | struct type *nexttype; /* Type of each element (may be array) */ | |
1279 | struct type *indextype; /* Type of this index */ | |
1280 | struct type *rangetype; | |
1281 | unsigned int format; | |
1282 | unsigned short fundtype; | |
1283 | unsigned long lowbound; | |
1284 | unsigned long highbound; | |
1285 | int nbytes; | |
c5aa993b | 1286 | |
c906108c SS |
1287 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, |
1288 | current_objfile); | |
1289 | scan += SIZEOF_FORMAT_SPECIFIER; | |
1290 | switch (format) | |
1291 | { | |
1292 | case FMT_ET: | |
1293 | typep = decode_array_element_type (scan); | |
1294 | break; | |
1295 | case FMT_FT_C_C: | |
1296 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, | |
1297 | current_objfile); | |
1298 | indextype = decode_fund_type (fundtype); | |
1299 | scan += SIZEOF_FMT_FT; | |
1300 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); | |
1301 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1302 | scan += nbytes; | |
1303 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1304 | scan += nbytes; | |
1305 | nexttype = decode_subscript_data_item (scan, end); | |
1306 | if (nexttype == NULL) | |
1307 | { | |
1308 | /* Munged subscript data or other problem, fake it. */ | |
23136709 | 1309 | complaint (&symfile_complaints, |
e2e0b3e5 | 1310 | _("DIE @ 0x%x \"%s\", can't decode subscript data items"), |
23136709 | 1311 | DIE_ID, DIE_NAME); |
c906108c SS |
1312 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1313 | } | |
1314 | rangetype = create_range_type ((struct type *) NULL, indextype, | |
c5aa993b | 1315 | lowbound, highbound); |
c906108c SS |
1316 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
1317 | break; | |
1318 | case FMT_FT_C_X: | |
1319 | case FMT_FT_X_C: | |
1320 | case FMT_FT_X_X: | |
1321 | case FMT_UT_C_C: | |
1322 | case FMT_UT_C_X: | |
1323 | case FMT_UT_X_C: | |
1324 | case FMT_UT_X_X: | |
23136709 | 1325 | complaint (&symfile_complaints, |
e2e0b3e5 | 1326 | _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"), |
23136709 | 1327 | DIE_ID, DIE_NAME, format); |
c906108c SS |
1328 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1329 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1330 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1331 | break; | |
1332 | default: | |
23136709 | 1333 | complaint (&symfile_complaints, |
e2e0b3e5 | 1334 | _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID, |
23136709 | 1335 | DIE_NAME, format); |
c906108c SS |
1336 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
1337 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1338 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1339 | break; | |
1340 | } | |
1341 | return (typep); | |
1342 | } | |
1343 | ||
1344 | /* | |
1345 | ||
c5aa993b | 1346 | LOCAL FUNCTION |
c906108c | 1347 | |
c5aa993b | 1348 | dwarf_read_array_type -- read TAG_array_type DIE |
c906108c | 1349 | |
c5aa993b | 1350 | SYNOPSIS |
c906108c | 1351 | |
c5aa993b | 1352 | static void dwarf_read_array_type (struct dieinfo *dip) |
c906108c | 1353 | |
c5aa993b | 1354 | DESCRIPTION |
c906108c | 1355 | |
c5aa993b JM |
1356 | Extract all information from a TAG_array_type DIE and add to |
1357 | the user defined type vector. | |
c906108c SS |
1358 | */ |
1359 | ||
1360 | static void | |
fba45db2 | 1361 | dwarf_read_array_type (struct dieinfo *dip) |
c906108c SS |
1362 | { |
1363 | struct type *type; | |
1364 | struct type *utype; | |
1365 | char *sub; | |
1366 | char *subend; | |
1367 | unsigned short blocksz; | |
1368 | int nbytes; | |
c5aa993b JM |
1369 | |
1370 | if (dip->at_ordering != ORD_row_major) | |
c906108c SS |
1371 | { |
1372 | /* FIXME: Can gdb even handle column major arrays? */ | |
23136709 | 1373 | complaint (&symfile_complaints, |
e2e0b3e5 | 1374 | _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"), |
23136709 | 1375 | DIE_ID, DIE_NAME); |
c906108c | 1376 | } |
b59661bd AC |
1377 | sub = dip->at_subscr_data; |
1378 | if (sub != NULL) | |
c906108c SS |
1379 | { |
1380 | nbytes = attribute_size (AT_subscr_data); | |
1381 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); | |
1382 | subend = sub + nbytes + blocksz; | |
1383 | sub += nbytes; | |
1384 | type = decode_subscript_data_item (sub, subend); | |
b59661bd AC |
1385 | utype = lookup_utype (dip->die_ref); |
1386 | if (utype == NULL) | |
c906108c SS |
1387 | { |
1388 | /* Install user defined type that has not been referenced yet. */ | |
c5aa993b | 1389 | alloc_utype (dip->die_ref, type); |
c906108c SS |
1390 | } |
1391 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) | |
1392 | { | |
1393 | /* Ick! A forward ref has already generated a blank type in our | |
1394 | slot, and this type probably already has things pointing to it | |
1395 | (which is what caused it to be created in the first place). | |
1396 | If it's just a place holder we can plop our fully defined type | |
1397 | on top of it. We can't recover the space allocated for our | |
1398 | new type since it might be on an obstack, but we could reuse | |
1399 | it if we kept a list of them, but it might not be worth it | |
1400 | (FIXME). */ | |
1401 | *utype = *type; | |
1402 | } | |
1403 | else | |
1404 | { | |
1405 | /* Double ick! Not only is a type already in our slot, but | |
1406 | someone has decorated it. Complain and leave it alone. */ | |
23136709 | 1407 | dup_user_type_definition_complaint (DIE_ID, DIE_NAME); |
c906108c SS |
1408 | } |
1409 | } | |
1410 | } | |
1411 | ||
1412 | /* | |
1413 | ||
c5aa993b | 1414 | LOCAL FUNCTION |
c906108c | 1415 | |
c5aa993b | 1416 | read_tag_pointer_type -- read TAG_pointer_type DIE |
c906108c | 1417 | |
c5aa993b | 1418 | SYNOPSIS |
c906108c | 1419 | |
c5aa993b | 1420 | static void read_tag_pointer_type (struct dieinfo *dip) |
c906108c | 1421 | |
c5aa993b | 1422 | DESCRIPTION |
c906108c | 1423 | |
c5aa993b JM |
1424 | Extract all information from a TAG_pointer_type DIE and add to |
1425 | the user defined type vector. | |
c906108c SS |
1426 | */ |
1427 | ||
1428 | static void | |
fba45db2 | 1429 | read_tag_pointer_type (struct dieinfo *dip) |
c906108c SS |
1430 | { |
1431 | struct type *type; | |
1432 | struct type *utype; | |
c5aa993b | 1433 | |
c906108c | 1434 | type = decode_die_type (dip); |
b59661bd AC |
1435 | utype = lookup_utype (dip->die_ref); |
1436 | if (utype == NULL) | |
c906108c SS |
1437 | { |
1438 | utype = lookup_pointer_type (type); | |
c5aa993b | 1439 | alloc_utype (dip->die_ref, utype); |
c906108c SS |
1440 | } |
1441 | else | |
1442 | { | |
1443 | TYPE_TARGET_TYPE (utype) = type; | |
1444 | TYPE_POINTER_TYPE (type) = utype; | |
1445 | ||
1446 | /* We assume the machine has only one representation for pointers! */ | |
1447 | /* FIXME: Possably a poor assumption */ | |
c5aa993b | 1448 | TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; |
c906108c SS |
1449 | TYPE_CODE (utype) = TYPE_CODE_PTR; |
1450 | } | |
1451 | } | |
1452 | ||
1453 | /* | |
1454 | ||
c5aa993b | 1455 | LOCAL FUNCTION |
c906108c | 1456 | |
c5aa993b | 1457 | read_tag_string_type -- read TAG_string_type DIE |
c906108c | 1458 | |
c5aa993b | 1459 | SYNOPSIS |
c906108c | 1460 | |
c5aa993b | 1461 | static void read_tag_string_type (struct dieinfo *dip) |
c906108c | 1462 | |
c5aa993b | 1463 | DESCRIPTION |
c906108c | 1464 | |
c5aa993b JM |
1465 | Extract all information from a TAG_string_type DIE and add to |
1466 | the user defined type vector. It isn't really a user defined | |
1467 | type, but it behaves like one, with other DIE's using an | |
1468 | AT_user_def_type attribute to reference it. | |
c906108c SS |
1469 | */ |
1470 | ||
1471 | static void | |
fba45db2 | 1472 | read_tag_string_type (struct dieinfo *dip) |
c906108c SS |
1473 | { |
1474 | struct type *utype; | |
1475 | struct type *indextype; | |
1476 | struct type *rangetype; | |
1477 | unsigned long lowbound = 0; | |
1478 | unsigned long highbound; | |
1479 | ||
c5aa993b | 1480 | if (dip->has_at_byte_size) |
c906108c SS |
1481 | { |
1482 | /* A fixed bounds string */ | |
c5aa993b | 1483 | highbound = dip->at_byte_size - 1; |
c906108c SS |
1484 | } |
1485 | else | |
1486 | { | |
1487 | /* A varying length string. Stub for now. (FIXME) */ | |
1488 | highbound = 1; | |
1489 | } | |
1490 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1491 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, | |
1492 | highbound); | |
c5aa993b JM |
1493 | |
1494 | utype = lookup_utype (dip->die_ref); | |
c906108c SS |
1495 | if (utype == NULL) |
1496 | { | |
1497 | /* No type defined, go ahead and create a blank one to use. */ | |
c5aa993b | 1498 | utype = alloc_utype (dip->die_ref, (struct type *) NULL); |
c906108c SS |
1499 | } |
1500 | else | |
1501 | { | |
1502 | /* Already a type in our slot due to a forward reference. Make sure it | |
c5aa993b | 1503 | is a blank one. If not, complain and leave it alone. */ |
c906108c SS |
1504 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) |
1505 | { | |
23136709 | 1506 | dup_user_type_definition_complaint (DIE_ID, DIE_NAME); |
c906108c SS |
1507 | return; |
1508 | } | |
1509 | } | |
1510 | ||
1511 | /* Create the string type using the blank type we either found or created. */ | |
1512 | utype = create_string_type (utype, rangetype); | |
1513 | } | |
1514 | ||
1515 | /* | |
1516 | ||
c5aa993b | 1517 | LOCAL FUNCTION |
c906108c | 1518 | |
c5aa993b | 1519 | read_subroutine_type -- process TAG_subroutine_type dies |
c906108c | 1520 | |
c5aa993b | 1521 | SYNOPSIS |
c906108c | 1522 | |
c5aa993b JM |
1523 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, |
1524 | char *enddie) | |
c906108c | 1525 | |
c5aa993b | 1526 | DESCRIPTION |
c906108c | 1527 | |
c5aa993b | 1528 | Handle DIES due to C code like: |
c906108c | 1529 | |
c5aa993b JM |
1530 | struct foo { |
1531 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1532 | int b; | |
1533 | }; | |
c906108c | 1534 | |
c5aa993b | 1535 | NOTES |
c906108c | 1536 | |
c5aa993b JM |
1537 | The parameter DIES are currently ignored. See if gdb has a way to |
1538 | include this info in it's type system, and decode them if so. Is | |
1539 | this what the type structure's "arg_types" field is for? (FIXME) | |
c906108c SS |
1540 | */ |
1541 | ||
1542 | static void | |
fba45db2 | 1543 | read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie) |
c906108c SS |
1544 | { |
1545 | struct type *type; /* Type that this function returns */ | |
1546 | struct type *ftype; /* Function that returns above type */ | |
c5aa993b | 1547 | |
c906108c SS |
1548 | /* Decode the type that this subroutine returns */ |
1549 | ||
1550 | type = decode_die_type (dip); | |
1551 | ||
1552 | /* Check to see if we already have a partially constructed user | |
1553 | defined type for this DIE, from a forward reference. */ | |
1554 | ||
b59661bd AC |
1555 | ftype = lookup_utype (dip->die_ref); |
1556 | if (ftype == NULL) | |
c906108c SS |
1557 | { |
1558 | /* This is the first reference to one of these types. Make | |
c5aa993b | 1559 | a new one and place it in the user defined types. */ |
c906108c | 1560 | ftype = lookup_function_type (type); |
c5aa993b | 1561 | alloc_utype (dip->die_ref, ftype); |
c906108c SS |
1562 | } |
1563 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) | |
1564 | { | |
1565 | /* We have an existing partially constructed type, so bash it | |
c5aa993b | 1566 | into the correct type. */ |
c906108c SS |
1567 | TYPE_TARGET_TYPE (ftype) = type; |
1568 | TYPE_LENGTH (ftype) = 1; | |
1569 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; | |
1570 | } | |
1571 | else | |
1572 | { | |
23136709 | 1573 | dup_user_type_definition_complaint (DIE_ID, DIE_NAME); |
c906108c SS |
1574 | } |
1575 | } | |
1576 | ||
1577 | /* | |
1578 | ||
c5aa993b | 1579 | LOCAL FUNCTION |
c906108c | 1580 | |
c5aa993b | 1581 | read_enumeration -- process dies which define an enumeration |
c906108c | 1582 | |
c5aa993b | 1583 | SYNOPSIS |
c906108c | 1584 | |
c5aa993b JM |
1585 | static void read_enumeration (struct dieinfo *dip, char *thisdie, |
1586 | char *enddie, struct objfile *objfile) | |
c906108c | 1587 | |
c5aa993b | 1588 | DESCRIPTION |
c906108c | 1589 | |
c5aa993b JM |
1590 | Given a pointer to a die which begins an enumeration, process all |
1591 | the dies that define the members of the enumeration. | |
c906108c | 1592 | |
c5aa993b | 1593 | NOTES |
c906108c | 1594 | |
c5aa993b JM |
1595 | Note that we need to call enum_type regardless of whether or not we |
1596 | have a symbol, since we might have an enum without a tag name (thus | |
1597 | no symbol for the tagname). | |
c906108c SS |
1598 | */ |
1599 | ||
1600 | static void | |
fba45db2 KB |
1601 | read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie, |
1602 | struct objfile *objfile) | |
c906108c SS |
1603 | { |
1604 | struct type *type; | |
1605 | struct symbol *sym; | |
c5aa993b | 1606 | |
c906108c SS |
1607 | type = enum_type (dip, objfile); |
1608 | sym = new_symbol (dip, objfile); | |
1609 | if (sym != NULL) | |
1610 | { | |
1611 | SYMBOL_TYPE (sym) = type; | |
1612 | if (cu_language == language_cplus) | |
1613 | { | |
1614 | synthesize_typedef (dip, objfile, type); | |
1615 | } | |
1616 | } | |
1617 | } | |
1618 | ||
1619 | /* | |
1620 | ||
c5aa993b | 1621 | LOCAL FUNCTION |
c906108c | 1622 | |
c5aa993b | 1623 | enum_type -- decode and return a type for an enumeration |
c906108c | 1624 | |
c5aa993b | 1625 | SYNOPSIS |
c906108c | 1626 | |
c5aa993b | 1627 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 1628 | |
c5aa993b | 1629 | DESCRIPTION |
c906108c | 1630 | |
c5aa993b JM |
1631 | Given a pointer to a die information structure for the die which |
1632 | starts an enumeration, process all the dies that define the members | |
1633 | of the enumeration and return a type pointer for the enumeration. | |
c906108c | 1634 | |
c5aa993b | 1635 | At the same time, for each member of the enumeration, create a |
176620f1 | 1636 | symbol for it with domain VAR_DOMAIN and class LOC_CONST, |
c5aa993b | 1637 | and give it the type of the enumeration itself. |
c906108c | 1638 | |
c5aa993b | 1639 | NOTES |
c906108c | 1640 | |
c5aa993b JM |
1641 | Note that the DWARF specification explicitly mandates that enum |
1642 | constants occur in reverse order from the source program order, | |
1643 | for "consistency" and because this ordering is easier for many | |
1644 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |
1645 | Entries). Because gdb wants to see the enum members in program | |
1646 | source order, we have to ensure that the order gets reversed while | |
1647 | we are processing them. | |
c906108c SS |
1648 | */ |
1649 | ||
1650 | static struct type * | |
fba45db2 | 1651 | enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
1652 | { |
1653 | struct type *type; | |
c5aa993b JM |
1654 | struct nextfield |
1655 | { | |
1656 | struct nextfield *next; | |
1657 | struct field field; | |
1658 | }; | |
c906108c SS |
1659 | struct nextfield *list = NULL; |
1660 | struct nextfield *new; | |
1661 | int nfields = 0; | |
1662 | int n; | |
1663 | char *scan; | |
1664 | char *listend; | |
1665 | unsigned short blocksz; | |
1666 | struct symbol *sym; | |
1667 | int nbytes; | |
1668 | int unsigned_enum = 1; | |
c5aa993b | 1669 | |
b59661bd AC |
1670 | type = lookup_utype (dip->die_ref); |
1671 | if (type == NULL) | |
c906108c SS |
1672 | { |
1673 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 1674 | type = alloc_utype (dip->die_ref, NULL); |
c906108c SS |
1675 | } |
1676 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1677 | /* Some compilers try to be helpful by inventing "fake" names for | |
1678 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1679 | Thanks, but no thanks... */ | |
c5aa993b JM |
1680 | if (dip->at_name != NULL |
1681 | && *dip->at_name != '~' | |
1682 | && *dip->at_name != '.') | |
c906108c | 1683 | { |
b99607ea | 1684 | TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack, |
c5aa993b | 1685 | "", "", dip->at_name); |
c906108c | 1686 | } |
c5aa993b | 1687 | if (dip->at_byte_size != 0) |
c906108c | 1688 | { |
c5aa993b | 1689 | TYPE_LENGTH (type) = dip->at_byte_size; |
c906108c | 1690 | } |
b59661bd AC |
1691 | scan = dip->at_element_list; |
1692 | if (scan != NULL) | |
c906108c | 1693 | { |
c5aa993b | 1694 | if (dip->short_element_list) |
c906108c SS |
1695 | { |
1696 | nbytes = attribute_size (AT_short_element_list); | |
1697 | } | |
1698 | else | |
1699 | { | |
1700 | nbytes = attribute_size (AT_element_list); | |
1701 | } | |
1702 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
1703 | listend = scan + nbytes + blocksz; | |
1704 | scan += nbytes; | |
1705 | while (scan < listend) | |
1706 | { | |
1707 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1708 | new->next = list; |
c906108c SS |
1709 | list = new; |
1710 | FIELD_TYPE (list->field) = NULL; | |
1711 | FIELD_BITSIZE (list->field) = 0; | |
01ad7f36 | 1712 | FIELD_STATIC_KIND (list->field) = 0; |
c906108c SS |
1713 | FIELD_BITPOS (list->field) = |
1714 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, | |
1715 | objfile); | |
1716 | scan += TARGET_FT_LONG_SIZE (objfile); | |
c5aa993b | 1717 | list->field.name = obsavestring (scan, strlen (scan), |
b99607ea | 1718 | &objfile->objfile_obstack); |
c906108c SS |
1719 | scan += strlen (scan) + 1; |
1720 | nfields++; | |
1721 | /* Handcraft a new symbol for this enum member. */ | |
4a146b47 | 1722 | sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, |
c906108c SS |
1723 | sizeof (struct symbol)); |
1724 | memset (sym, 0, sizeof (struct symbol)); | |
22abf04a | 1725 | DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name, |
4a146b47 | 1726 | &objfile->objfile_obstack); |
c906108c | 1727 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); |
176620f1 | 1728 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
1729 | SYMBOL_CLASS (sym) = LOC_CONST; |
1730 | SYMBOL_TYPE (sym) = type; | |
1731 | SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); | |
1732 | if (SYMBOL_VALUE (sym) < 0) | |
1733 | unsigned_enum = 0; | |
1734 | add_symbol_to_list (sym, list_in_scope); | |
1735 | } | |
1736 | /* Now create the vector of fields, and record how big it is. This is | |
c5aa993b JM |
1737 | where we reverse the order, by pulling the members off the list in |
1738 | reverse order from how they were inserted. If we have no fields | |
1739 | (this is apparently possible in C++) then skip building a field | |
1740 | vector. */ | |
c906108c SS |
1741 | if (nfields > 0) |
1742 | { | |
1743 | if (unsigned_enum) | |
1744 | TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; | |
1745 | TYPE_NFIELDS (type) = nfields; | |
1746 | TYPE_FIELDS (type) = (struct field *) | |
4a146b47 | 1747 | obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields); |
c906108c | 1748 | /* Copy the saved-up fields into the field vector. */ |
c5aa993b | 1749 | for (n = 0; (n < nfields) && (list != NULL); list = list->next) |
c906108c | 1750 | { |
c5aa993b JM |
1751 | TYPE_FIELD (type, n++) = list->field; |
1752 | } | |
c906108c SS |
1753 | } |
1754 | } | |
1755 | return (type); | |
1756 | } | |
1757 | ||
1758 | /* | |
1759 | ||
c5aa993b | 1760 | LOCAL FUNCTION |
c906108c | 1761 | |
c5aa993b | 1762 | read_func_scope -- process all dies within a function scope |
c906108c | 1763 | |
c5aa993b | 1764 | DESCRIPTION |
c906108c | 1765 | |
c5aa993b JM |
1766 | Process all dies within a given function scope. We are passed |
1767 | a die information structure pointer DIP for the die which | |
1768 | starts the function scope, and pointers into the raw die data | |
1769 | that define the dies within the function scope. | |
1770 | ||
1771 | For now, we ignore lexical block scopes within the function. | |
1772 | The problem is that AT&T cc does not define a DWARF lexical | |
1773 | block scope for the function itself, while gcc defines a | |
1774 | lexical block scope for the function. We need to think about | |
1775 | how to handle this difference, or if it is even a problem. | |
1776 | (FIXME) | |
c906108c SS |
1777 | */ |
1778 | ||
1779 | static void | |
fba45db2 KB |
1780 | read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1781 | struct objfile *objfile) | |
c906108c | 1782 | { |
b59661bd | 1783 | struct context_stack *new; |
c5aa993b | 1784 | |
c906108c SS |
1785 | /* AT_name is absent if the function is described with an |
1786 | AT_abstract_origin tag. | |
1787 | Ignore the function description for now to avoid GDB core dumps. | |
1788 | FIXME: Add code to handle AT_abstract_origin tags properly. */ | |
c5aa993b | 1789 | if (dip->at_name == NULL) |
c906108c | 1790 | { |
e2e0b3e5 | 1791 | complaint (&symfile_complaints, _("DIE @ 0x%x, AT_name tag missing"), |
23136709 | 1792 | DIE_ID); |
c906108c SS |
1793 | return; |
1794 | } | |
1795 | ||
c5aa993b JM |
1796 | new = push_context (0, dip->at_low_pc); |
1797 | new->name = new_symbol (dip, objfile); | |
c906108c | 1798 | list_in_scope = &local_symbols; |
c5aa993b | 1799 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c SS |
1800 | new = pop_context (); |
1801 | /* Make a block for the local symbols within. */ | |
c5aa993b JM |
1802 | finish_block (new->name, &local_symbols, new->old_blocks, |
1803 | new->start_addr, dip->at_high_pc, objfile); | |
c906108c SS |
1804 | list_in_scope = &file_symbols; |
1805 | } | |
1806 | ||
1807 | ||
1808 | /* | |
1809 | ||
c5aa993b | 1810 | LOCAL FUNCTION |
c906108c | 1811 | |
c5aa993b | 1812 | handle_producer -- process the AT_producer attribute |
c906108c | 1813 | |
c5aa993b | 1814 | DESCRIPTION |
c906108c | 1815 | |
c5aa993b JM |
1816 | Perform any operations that depend on finding a particular |
1817 | AT_producer attribute. | |
c906108c SS |
1818 | |
1819 | */ | |
1820 | ||
1821 | static void | |
fba45db2 | 1822 | handle_producer (char *producer) |
c906108c SS |
1823 | { |
1824 | ||
1825 | /* If this compilation unit was compiled with g++ or gcc, then set the | |
1826 | processing_gcc_compilation flag. */ | |
1827 | ||
cb137aa5 | 1828 | if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) |
c906108c SS |
1829 | { |
1830 | char version = producer[strlen (GCC_PRODUCER)]; | |
1831 | processing_gcc_compilation = (version == '2' ? 2 : 1); | |
1832 | } | |
1833 | else | |
1834 | { | |
1835 | processing_gcc_compilation = | |
bf896cb0 | 1836 | strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0; |
c906108c SS |
1837 | } |
1838 | ||
1839 | /* Select a demangling style if we can identify the producer and if | |
1840 | the current style is auto. We leave the current style alone if it | |
1841 | is not auto. We also leave the demangling style alone if we find a | |
1842 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |
1843 | ||
1844 | if (AUTO_DEMANGLING) | |
1845 | { | |
cb137aa5 | 1846 | if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) |
c906108c | 1847 | { |
8052a17a JM |
1848 | #if 0 |
1849 | /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't | |
1850 | know whether it will use the old style or v3 mangling. */ | |
c906108c | 1851 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); |
8052a17a | 1852 | #endif |
c906108c | 1853 | } |
cb137aa5 | 1854 | else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) |
c906108c SS |
1855 | { |
1856 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); | |
1857 | } | |
1858 | } | |
1859 | } | |
1860 | ||
1861 | ||
1862 | /* | |
1863 | ||
c5aa993b | 1864 | LOCAL FUNCTION |
c906108c | 1865 | |
c5aa993b | 1866 | read_file_scope -- process all dies within a file scope |
c906108c | 1867 | |
c5aa993b JM |
1868 | DESCRIPTION |
1869 | ||
1870 | Process all dies within a given file scope. We are passed a | |
1871 | pointer to the die information structure for the die which | |
1872 | starts the file scope, and pointers into the raw die data which | |
1873 | mark the range of dies within the file scope. | |
c906108c | 1874 | |
c5aa993b JM |
1875 | When the partial symbol table is built, the file offset for the line |
1876 | number table for each compilation unit is saved in the partial symbol | |
1877 | table entry for that compilation unit. As the symbols for each | |
1878 | compilation unit are read, the line number table is read into memory | |
1879 | and the variable lnbase is set to point to it. Thus all we have to | |
1880 | do is use lnbase to access the line number table for the current | |
1881 | compilation unit. | |
c906108c SS |
1882 | */ |
1883 | ||
1884 | static void | |
fba45db2 KB |
1885 | read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1886 | struct objfile *objfile) | |
c906108c SS |
1887 | { |
1888 | struct cleanup *back_to; | |
1889 | struct symtab *symtab; | |
c5aa993b | 1890 | |
c906108c | 1891 | set_cu_language (dip); |
c5aa993b | 1892 | if (dip->at_producer != NULL) |
c906108c | 1893 | { |
c5aa993b | 1894 | handle_producer (dip->at_producer); |
c906108c SS |
1895 | } |
1896 | numutypes = (enddie - thisdie) / 4; | |
1897 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1898 | back_to = make_cleanup (free_utypes, NULL); | |
1899 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1900 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); | |
c5aa993b | 1901 | start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); |
c906108c SS |
1902 | record_debugformat ("DWARF 1"); |
1903 | decode_line_numbers (lnbase); | |
c5aa993b | 1904 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c | 1905 | |
c5aa993b | 1906 | symtab = end_symtab (dip->at_high_pc, objfile, 0); |
c906108c SS |
1907 | if (symtab != NULL) |
1908 | { | |
c5aa993b JM |
1909 | symtab->language = cu_language; |
1910 | } | |
c906108c SS |
1911 | do_cleanups (back_to); |
1912 | } | |
1913 | ||
1914 | /* | |
1915 | ||
c5aa993b | 1916 | LOCAL FUNCTION |
c906108c | 1917 | |
c5aa993b | 1918 | process_dies -- process a range of DWARF Information Entries |
c906108c | 1919 | |
c5aa993b | 1920 | SYNOPSIS |
c906108c | 1921 | |
c5aa993b JM |
1922 | static void process_dies (char *thisdie, char *enddie, |
1923 | struct objfile *objfile) | |
c906108c | 1924 | |
c5aa993b | 1925 | DESCRIPTION |
c906108c | 1926 | |
c5aa993b JM |
1927 | Process all DIE's in a specified range. May be (and almost |
1928 | certainly will be) called recursively. | |
c906108c SS |
1929 | */ |
1930 | ||
1931 | static void | |
fba45db2 | 1932 | process_dies (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
1933 | { |
1934 | char *nextdie; | |
1935 | struct dieinfo di; | |
c5aa993b | 1936 | |
c906108c SS |
1937 | while (thisdie < enddie) |
1938 | { | |
1939 | basicdieinfo (&di, thisdie, objfile); | |
1940 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
1941 | { | |
1942 | break; | |
1943 | } | |
1944 | else if (di.die_tag == TAG_padding) | |
1945 | { | |
1946 | nextdie = thisdie + di.die_length; | |
1947 | } | |
1948 | else | |
1949 | { | |
1950 | completedieinfo (&di, objfile); | |
1951 | if (di.at_sibling != 0) | |
1952 | { | |
1953 | nextdie = dbbase + di.at_sibling - dbroff; | |
1954 | } | |
1955 | else | |
1956 | { | |
1957 | nextdie = thisdie + di.die_length; | |
1958 | } | |
c906108c | 1959 | /* I think that these are always text, not data, addresses. */ |
181c1381 RE |
1960 | di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc); |
1961 | di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc); | |
c906108c SS |
1962 | switch (di.die_tag) |
1963 | { | |
1964 | case TAG_compile_unit: | |
1965 | /* Skip Tag_compile_unit if we are already inside a compilation | |
c5aa993b JM |
1966 | unit, we are unable to handle nested compilation units |
1967 | properly (FIXME). */ | |
c906108c SS |
1968 | if (current_subfile == NULL) |
1969 | read_file_scope (&di, thisdie, nextdie, objfile); | |
1970 | else | |
1971 | nextdie = thisdie + di.die_length; | |
1972 | break; | |
1973 | case TAG_global_subroutine: | |
1974 | case TAG_subroutine: | |
1975 | if (di.has_at_low_pc) | |
1976 | { | |
1977 | read_func_scope (&di, thisdie, nextdie, objfile); | |
1978 | } | |
1979 | break; | |
1980 | case TAG_lexical_block: | |
1981 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |
1982 | break; | |
1983 | case TAG_class_type: | |
1984 | case TAG_structure_type: | |
1985 | case TAG_union_type: | |
1986 | read_structure_scope (&di, thisdie, nextdie, objfile); | |
1987 | break; | |
1988 | case TAG_enumeration_type: | |
1989 | read_enumeration (&di, thisdie, nextdie, objfile); | |
1990 | break; | |
1991 | case TAG_subroutine_type: | |
1992 | read_subroutine_type (&di, thisdie, nextdie); | |
1993 | break; | |
1994 | case TAG_array_type: | |
1995 | dwarf_read_array_type (&di); | |
1996 | break; | |
1997 | case TAG_pointer_type: | |
1998 | read_tag_pointer_type (&di); | |
1999 | break; | |
2000 | case TAG_string_type: | |
2001 | read_tag_string_type (&di); | |
2002 | break; | |
2003 | default: | |
2004 | new_symbol (&di, objfile); | |
2005 | break; | |
2006 | } | |
2007 | } | |
2008 | thisdie = nextdie; | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | /* | |
2013 | ||
c5aa993b | 2014 | LOCAL FUNCTION |
c906108c | 2015 | |
c5aa993b | 2016 | decode_line_numbers -- decode a line number table fragment |
c906108c | 2017 | |
c5aa993b | 2018 | SYNOPSIS |
c906108c | 2019 | |
c5aa993b JM |
2020 | static void decode_line_numbers (char *tblscan, char *tblend, |
2021 | long length, long base, long line, long pc) | |
c906108c | 2022 | |
c5aa993b | 2023 | DESCRIPTION |
c906108c | 2024 | |
c5aa993b | 2025 | Translate the DWARF line number information to gdb form. |
c906108c | 2026 | |
c5aa993b JM |
2027 | The ".line" section contains one or more line number tables, one for |
2028 | each ".line" section from the objects that were linked. | |
c906108c | 2029 | |
c5aa993b JM |
2030 | The AT_stmt_list attribute for each TAG_source_file entry in the |
2031 | ".debug" section contains the offset into the ".line" section for the | |
2032 | start of the table for that file. | |
c906108c | 2033 | |
c5aa993b | 2034 | The table itself has the following structure: |
c906108c | 2035 | |
c5aa993b JM |
2036 | <table length><base address><source statement entry> |
2037 | 4 bytes 4 bytes 10 bytes | |
c906108c | 2038 | |
c5aa993b JM |
2039 | The table length is the total size of the table, including the 4 bytes |
2040 | for the length information. | |
c906108c | 2041 | |
c5aa993b JM |
2042 | The base address is the address of the first instruction generated |
2043 | for the source file. | |
c906108c | 2044 | |
c5aa993b | 2045 | Each source statement entry has the following structure: |
c906108c | 2046 | |
c5aa993b JM |
2047 | <line number><statement position><address delta> |
2048 | 4 bytes 2 bytes 4 bytes | |
c906108c | 2049 | |
c5aa993b JM |
2050 | The line number is relative to the start of the file, starting with |
2051 | line 1. | |
c906108c | 2052 | |
c5aa993b JM |
2053 | The statement position either -1 (0xFFFF) or the number of characters |
2054 | from the beginning of the line to the beginning of the statement. | |
c906108c | 2055 | |
c5aa993b JM |
2056 | The address delta is the difference between the base address and |
2057 | the address of the first instruction for the statement. | |
c906108c | 2058 | |
c5aa993b JM |
2059 | Note that we must copy the bytes from the packed table to our local |
2060 | variables before attempting to use them, to avoid alignment problems | |
2061 | on some machines, particularly RISC processors. | |
c906108c | 2062 | |
c5aa993b | 2063 | BUGS |
c906108c | 2064 | |
c5aa993b JM |
2065 | Does gdb expect the line numbers to be sorted? They are now by |
2066 | chance/luck, but are not required to be. (FIXME) | |
c906108c | 2067 | |
c5aa993b JM |
2068 | The line with number 0 is unused, gdb apparently can discover the |
2069 | span of the last line some other way. How? (FIXME) | |
c906108c SS |
2070 | */ |
2071 | ||
2072 | static void | |
fba45db2 | 2073 | decode_line_numbers (char *linetable) |
c906108c SS |
2074 | { |
2075 | char *tblscan; | |
2076 | char *tblend; | |
2077 | unsigned long length; | |
2078 | unsigned long base; | |
2079 | unsigned long line; | |
2080 | unsigned long pc; | |
c5aa993b | 2081 | |
c906108c SS |
2082 | if (linetable != NULL) |
2083 | { | |
2084 | tblscan = tblend = linetable; | |
2085 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, | |
2086 | current_objfile); | |
2087 | tblscan += SIZEOF_LINETBL_LENGTH; | |
2088 | tblend += length; | |
2089 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), | |
2090 | GET_UNSIGNED, current_objfile); | |
2091 | tblscan += TARGET_FT_POINTER_SIZE (objfile); | |
2092 | base += baseaddr; | |
2093 | while (tblscan < tblend) | |
2094 | { | |
2095 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, | |
2096 | current_objfile); | |
2097 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; | |
2098 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, | |
2099 | current_objfile); | |
2100 | tblscan += SIZEOF_LINETBL_DELTA; | |
2101 | pc += base; | |
2102 | if (line != 0) | |
2103 | { | |
2104 | record_line (current_subfile, line, pc); | |
2105 | } | |
2106 | } | |
2107 | } | |
2108 | } | |
2109 | ||
2110 | /* | |
2111 | ||
c5aa993b | 2112 | LOCAL FUNCTION |
c906108c | 2113 | |
c5aa993b | 2114 | locval -- compute the value of a location attribute |
c906108c | 2115 | |
c5aa993b | 2116 | SYNOPSIS |
c906108c | 2117 | |
c5aa993b | 2118 | static int locval (struct dieinfo *dip) |
c906108c | 2119 | |
c5aa993b | 2120 | DESCRIPTION |
c906108c | 2121 | |
c5aa993b JM |
2122 | Given pointer to a string of bytes that define a location, compute |
2123 | the location and return the value. | |
2124 | A location description containing no atoms indicates that the | |
2125 | object is optimized out. The optimized_out flag is set for those, | |
2126 | the return value is meaningless. | |
c906108c | 2127 | |
c5aa993b JM |
2128 | When computing values involving the current value of the frame pointer, |
2129 | the value zero is used, which results in a value relative to the frame | |
2130 | pointer, rather than the absolute value. This is what GDB wants | |
2131 | anyway. | |
c906108c | 2132 | |
c5aa993b JM |
2133 | When the result is a register number, the isreg flag is set, otherwise |
2134 | it is cleared. This is a kludge until we figure out a better | |
2135 | way to handle the problem. Gdb's design does not mesh well with the | |
2136 | DWARF notion of a location computing interpreter, which is a shame | |
2137 | because the flexibility goes unused. | |
2138 | ||
2139 | NOTES | |
2140 | ||
2141 | Note that stack[0] is unused except as a default error return. | |
2142 | Note that stack overflow is not yet handled. | |
c906108c SS |
2143 | */ |
2144 | ||
2145 | static int | |
fba45db2 | 2146 | locval (struct dieinfo *dip) |
c906108c SS |
2147 | { |
2148 | unsigned short nbytes; | |
2149 | unsigned short locsize; | |
2150 | auto long stack[64]; | |
2151 | int stacki; | |
2152 | char *loc; | |
2153 | char *end; | |
2154 | int loc_atom_code; | |
2155 | int loc_value_size; | |
c5aa993b JM |
2156 | |
2157 | loc = dip->at_location; | |
c906108c SS |
2158 | nbytes = attribute_size (AT_location); |
2159 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); | |
2160 | loc += nbytes; | |
2161 | end = loc + locsize; | |
2162 | stacki = 0; | |
2163 | stack[stacki] = 0; | |
c5aa993b JM |
2164 | dip->isreg = 0; |
2165 | dip->offreg = 0; | |
2166 | dip->optimized_out = 1; | |
c906108c SS |
2167 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); |
2168 | while (loc < end) | |
2169 | { | |
c5aa993b | 2170 | dip->optimized_out = 0; |
c906108c SS |
2171 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, |
2172 | current_objfile); | |
2173 | loc += SIZEOF_LOC_ATOM_CODE; | |
2174 | switch (loc_atom_code) | |
2175 | { | |
c5aa993b JM |
2176 | case 0: |
2177 | /* error */ | |
2178 | loc = end; | |
2179 | break; | |
2180 | case OP_REG: | |
2181 | /* push register (number) */ | |
2182 | stack[++stacki] | |
2183 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, | |
2184 | GET_UNSIGNED, | |
2185 | current_objfile)); | |
2186 | loc += loc_value_size; | |
2187 | dip->isreg = 1; | |
2188 | break; | |
2189 | case OP_BASEREG: | |
2190 | /* push value of register (number) */ | |
2191 | /* Actually, we compute the value as if register has 0, so the | |
2192 | value ends up being the offset from that register. */ | |
2193 | dip->offreg = 1; | |
2194 | dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, | |
2195 | current_objfile); | |
2196 | loc += loc_value_size; | |
2197 | stack[++stacki] = 0; | |
2198 | break; | |
2199 | case OP_ADDR: | |
2200 | /* push address (relocated address) */ | |
2201 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2202 | GET_UNSIGNED, current_objfile); | |
2203 | loc += loc_value_size; | |
2204 | break; | |
2205 | case OP_CONST: | |
2206 | /* push constant (number) FIXME: signed or unsigned! */ | |
2207 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2208 | GET_SIGNED, current_objfile); | |
2209 | loc += loc_value_size; | |
2210 | break; | |
2211 | case OP_DEREF2: | |
2212 | /* pop, deref and push 2 bytes (as a long) */ | |
23136709 | 2213 | complaint (&symfile_complaints, |
e2e0b3e5 | 2214 | _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"), |
23136709 | 2215 | DIE_ID, DIE_NAME, stack[stacki]); |
c5aa993b JM |
2216 | break; |
2217 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
23136709 | 2218 | complaint (&symfile_complaints, |
e2e0b3e5 | 2219 | _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"), |
23136709 | 2220 | DIE_ID, DIE_NAME, stack[stacki]); |
c5aa993b JM |
2221 | break; |
2222 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2223 | stack[stacki - 1] += stack[stacki]; | |
2224 | stacki--; | |
2225 | break; | |
c906108c SS |
2226 | } |
2227 | } | |
2228 | return (stack[stacki]); | |
2229 | } | |
2230 | ||
2231 | /* | |
2232 | ||
c5aa993b | 2233 | LOCAL FUNCTION |
c906108c | 2234 | |
c5aa993b | 2235 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's |
c906108c | 2236 | |
c5aa993b | 2237 | SYNOPSIS |
c906108c | 2238 | |
c5aa993b | 2239 | static void read_ofile_symtab (struct partial_symtab *pst) |
c906108c | 2240 | |
c5aa993b | 2241 | DESCRIPTION |
c906108c | 2242 | |
c5aa993b JM |
2243 | When expanding a partial symbol table entry to a full symbol table |
2244 | entry, this is the function that gets called to read in the symbols | |
2245 | for the compilation unit. A pointer to the newly constructed symtab, | |
2246 | which is now the new first one on the objfile's symtab list, is | |
2247 | stashed in the partial symbol table entry. | |
c906108c SS |
2248 | */ |
2249 | ||
2250 | static void | |
fba45db2 | 2251 | read_ofile_symtab (struct partial_symtab *pst) |
c906108c SS |
2252 | { |
2253 | struct cleanup *back_to; | |
2254 | unsigned long lnsize; | |
2255 | file_ptr foffset; | |
2256 | bfd *abfd; | |
2257 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; | |
2258 | ||
c5aa993b JM |
2259 | abfd = pst->objfile->obfd; |
2260 | current_objfile = pst->objfile; | |
c906108c SS |
2261 | |
2262 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2263 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2264 | ||
2265 | diecount = 0; | |
2266 | dbsize = DBLENGTH (pst); | |
2267 | dbbase = xmalloc (dbsize); | |
c5aa993b JM |
2268 | dbroff = DBROFF (pst); |
2269 | foffset = DBFOFF (pst) + dbroff; | |
c906108c SS |
2270 | base_section_offsets = pst->section_offsets; |
2271 | baseaddr = ANOFFSET (pst->section_offsets, 0); | |
2272 | if (bfd_seek (abfd, foffset, SEEK_SET) || | |
3a42e9d0 | 2273 | (bfd_bread (dbbase, dbsize, abfd) != dbsize)) |
c906108c | 2274 | { |
b8c9b27d | 2275 | xfree (dbbase); |
8a3fe4f8 | 2276 | error (_("can't read DWARF data")); |
c906108c | 2277 | } |
b8c9b27d | 2278 | back_to = make_cleanup (xfree, dbbase); |
c906108c SS |
2279 | |
2280 | /* If there is a line number table associated with this compilation unit | |
2281 | then read the size of this fragment in bytes, from the fragment itself. | |
2282 | Allocate a buffer for the fragment and read it in for future | |
2283 | processing. */ | |
2284 | ||
2285 | lnbase = NULL; | |
2286 | if (LNFOFF (pst)) | |
2287 | { | |
2288 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
4efb68b1 | 2289 | (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd) |
3a42e9d0 | 2290 | != sizeof (lnsizedata))) |
c906108c | 2291 | { |
8a3fe4f8 | 2292 | error (_("can't read DWARF line number table size")); |
c906108c SS |
2293 | } |
2294 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, | |
c5aa993b | 2295 | GET_UNSIGNED, pst->objfile); |
c906108c SS |
2296 | lnbase = xmalloc (lnsize); |
2297 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
3a42e9d0 | 2298 | (bfd_bread (lnbase, lnsize, abfd) != lnsize)) |
c906108c | 2299 | { |
b8c9b27d | 2300 | xfree (lnbase); |
8a3fe4f8 | 2301 | error (_("can't read DWARF line numbers")); |
c906108c | 2302 | } |
b8c9b27d | 2303 | make_cleanup (xfree, lnbase); |
c906108c SS |
2304 | } |
2305 | ||
c5aa993b | 2306 | process_dies (dbbase, dbbase + dbsize, pst->objfile); |
c906108c SS |
2307 | do_cleanups (back_to); |
2308 | current_objfile = NULL; | |
c5aa993b | 2309 | pst->symtab = pst->objfile->symtabs; |
c906108c SS |
2310 | } |
2311 | ||
2312 | /* | |
2313 | ||
c5aa993b | 2314 | LOCAL FUNCTION |
c906108c | 2315 | |
c5aa993b | 2316 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry |
c906108c | 2317 | |
c5aa993b | 2318 | SYNOPSIS |
c906108c | 2319 | |
c5aa993b | 2320 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c | 2321 | |
c5aa993b | 2322 | DESCRIPTION |
c906108c | 2323 | |
c5aa993b JM |
2324 | Called once for each partial symbol table entry that needs to be |
2325 | expanded into a full symbol table entry. | |
c906108c | 2326 | |
c5aa993b | 2327 | */ |
c906108c SS |
2328 | |
2329 | static void | |
fba45db2 | 2330 | psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c SS |
2331 | { |
2332 | int i; | |
2333 | struct cleanup *old_chain; | |
c5aa993b | 2334 | |
c906108c SS |
2335 | if (pst != NULL) |
2336 | { | |
2337 | if (pst->readin) | |
2338 | { | |
8a3fe4f8 | 2339 | warning (_("psymtab for %s already read in. Shouldn't happen."), |
c5aa993b | 2340 | pst->filename); |
c906108c SS |
2341 | } |
2342 | else | |
2343 | { | |
2344 | /* Read in all partial symtabs on which this one is dependent */ | |
c5aa993b | 2345 | for (i = 0; i < pst->number_of_dependencies; i++) |
c906108c | 2346 | { |
c5aa993b | 2347 | if (!pst->dependencies[i]->readin) |
c906108c SS |
2348 | { |
2349 | /* Inform about additional files that need to be read in. */ | |
2350 | if (info_verbose) | |
2351 | { | |
a3f17187 AC |
2352 | /* FIXME: i18n: Need to make this a single |
2353 | string. */ | |
c906108c SS |
2354 | fputs_filtered (" ", gdb_stdout); |
2355 | wrap_here (""); | |
2356 | fputs_filtered ("and ", gdb_stdout); | |
2357 | wrap_here (""); | |
2358 | printf_filtered ("%s...", | |
c5aa993b | 2359 | pst->dependencies[i]->filename); |
c906108c | 2360 | wrap_here (""); |
c5aa993b | 2361 | gdb_flush (gdb_stdout); /* Flush output */ |
c906108c | 2362 | } |
c5aa993b | 2363 | psymtab_to_symtab_1 (pst->dependencies[i]); |
c906108c | 2364 | } |
c5aa993b JM |
2365 | } |
2366 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ | |
c906108c SS |
2367 | { |
2368 | buildsym_init (); | |
a0b3c4fd | 2369 | old_chain = make_cleanup (really_free_pendings, 0); |
c906108c SS |
2370 | read_ofile_symtab (pst); |
2371 | if (info_verbose) | |
2372 | { | |
a3f17187 | 2373 | printf_filtered (_("%d DIE's, sorting..."), diecount); |
c906108c SS |
2374 | wrap_here (""); |
2375 | gdb_flush (gdb_stdout); | |
2376 | } | |
c906108c SS |
2377 | do_cleanups (old_chain); |
2378 | } | |
c5aa993b | 2379 | pst->readin = 1; |
c906108c SS |
2380 | } |
2381 | } | |
2382 | } | |
2383 | ||
2384 | /* | |
2385 | ||
c5aa993b | 2386 | LOCAL FUNCTION |
c906108c | 2387 | |
c5aa993b | 2388 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one |
c906108c | 2389 | |
c5aa993b | 2390 | SYNOPSIS |
c906108c | 2391 | |
c5aa993b | 2392 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c | 2393 | |
c5aa993b | 2394 | DESCRIPTION |
c906108c | 2395 | |
c5aa993b JM |
2396 | This is the DWARF support entry point for building a full symbol |
2397 | table entry from a partial symbol table entry. We are passed a | |
2398 | pointer to the partial symbol table entry that needs to be expanded. | |
c906108c | 2399 | |
c5aa993b | 2400 | */ |
c906108c SS |
2401 | |
2402 | static void | |
fba45db2 | 2403 | dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c SS |
2404 | { |
2405 | ||
2406 | if (pst != NULL) | |
2407 | { | |
c5aa993b | 2408 | if (pst->readin) |
c906108c | 2409 | { |
8a3fe4f8 | 2410 | warning (_("psymtab for %s already read in. Shouldn't happen."), |
c5aa993b | 2411 | pst->filename); |
c906108c SS |
2412 | } |
2413 | else | |
2414 | { | |
c5aa993b | 2415 | if (DBLENGTH (pst) || pst->number_of_dependencies) |
c906108c SS |
2416 | { |
2417 | /* Print the message now, before starting serious work, to avoid | |
c5aa993b | 2418 | disconcerting pauses. */ |
c906108c SS |
2419 | if (info_verbose) |
2420 | { | |
a3f17187 | 2421 | printf_filtered (_("Reading in symbols for %s..."), |
c5aa993b | 2422 | pst->filename); |
c906108c SS |
2423 | gdb_flush (gdb_stdout); |
2424 | } | |
c5aa993b | 2425 | |
c906108c | 2426 | psymtab_to_symtab_1 (pst); |
c5aa993b JM |
2427 | |
2428 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2429 | we need to do an equivalent or is this something peculiar to | |
2430 | stabs/a.out format. | |
2431 | Match with global symbols. This only needs to be done once, | |
2432 | after all of the symtabs and dependencies have been read in. | |
2433 | */ | |
2434 | scan_file_globals (pst->objfile); | |
c906108c | 2435 | #endif |
c5aa993b | 2436 | |
c906108c SS |
2437 | /* Finish up the verbose info message. */ |
2438 | if (info_verbose) | |
2439 | { | |
a3f17187 | 2440 | printf_filtered (_("done.\n")); |
c906108c SS |
2441 | gdb_flush (gdb_stdout); |
2442 | } | |
2443 | } | |
2444 | } | |
2445 | } | |
2446 | } | |
2447 | ||
2448 | /* | |
2449 | ||
c5aa993b | 2450 | LOCAL FUNCTION |
c906108c | 2451 | |
c5aa993b | 2452 | add_enum_psymbol -- add enumeration members to partial symbol table |
c906108c | 2453 | |
c5aa993b | 2454 | DESCRIPTION |
c906108c | 2455 | |
c5aa993b JM |
2456 | Given pointer to a DIE that is known to be for an enumeration, |
2457 | extract the symbolic names of the enumeration members and add | |
2458 | partial symbols for them. | |
2459 | */ | |
c906108c SS |
2460 | |
2461 | static void | |
fba45db2 | 2462 | add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2463 | { |
2464 | char *scan; | |
2465 | char *listend; | |
2466 | unsigned short blocksz; | |
2467 | int nbytes; | |
c5aa993b | 2468 | |
b59661bd AC |
2469 | scan = dip->at_element_list; |
2470 | if (scan != NULL) | |
c906108c | 2471 | { |
c5aa993b | 2472 | if (dip->short_element_list) |
c906108c SS |
2473 | { |
2474 | nbytes = attribute_size (AT_short_element_list); | |
2475 | } | |
2476 | else | |
2477 | { | |
2478 | nbytes = attribute_size (AT_element_list); | |
2479 | } | |
2480 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
2481 | scan += nbytes; | |
2482 | listend = scan + blocksz; | |
2483 | while (scan < listend) | |
2484 | { | |
2485 | scan += TARGET_FT_LONG_SIZE (objfile); | |
176620f1 | 2486 | add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST, |
c5aa993b | 2487 | &objfile->static_psymbols, 0, 0, cu_language, |
c906108c SS |
2488 | objfile); |
2489 | scan += strlen (scan) + 1; | |
2490 | } | |
2491 | } | |
2492 | } | |
2493 | ||
2494 | /* | |
2495 | ||
c5aa993b | 2496 | LOCAL FUNCTION |
c906108c | 2497 | |
c5aa993b | 2498 | add_partial_symbol -- add symbol to partial symbol table |
c906108c | 2499 | |
c5aa993b | 2500 | DESCRIPTION |
c906108c | 2501 | |
c5aa993b JM |
2502 | Given a DIE, if it is one of the types that we want to |
2503 | add to a partial symbol table, finish filling in the die info | |
2504 | and then add a partial symbol table entry for it. | |
c906108c | 2505 | |
c5aa993b | 2506 | NOTES |
c906108c | 2507 | |
c5aa993b JM |
2508 | The caller must ensure that the DIE has a valid name attribute. |
2509 | */ | |
c906108c SS |
2510 | |
2511 | static void | |
fba45db2 | 2512 | add_partial_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 2513 | { |
c5aa993b | 2514 | switch (dip->die_tag) |
c906108c SS |
2515 | { |
2516 | case TAG_global_subroutine: | |
c5aa993b | 2517 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2518 | VAR_DOMAIN, LOC_BLOCK, |
c5aa993b JM |
2519 | &objfile->global_psymbols, |
2520 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2521 | break; |
2522 | case TAG_global_variable: | |
c5aa993b | 2523 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2524 | VAR_DOMAIN, LOC_STATIC, |
c5aa993b | 2525 | &objfile->global_psymbols, |
c906108c SS |
2526 | 0, 0, cu_language, objfile); |
2527 | break; | |
2528 | case TAG_subroutine: | |
c5aa993b | 2529 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2530 | VAR_DOMAIN, LOC_BLOCK, |
c5aa993b JM |
2531 | &objfile->static_psymbols, |
2532 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2533 | break; |
2534 | case TAG_local_variable: | |
c5aa993b | 2535 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2536 | VAR_DOMAIN, LOC_STATIC, |
c5aa993b | 2537 | &objfile->static_psymbols, |
c906108c SS |
2538 | 0, 0, cu_language, objfile); |
2539 | break; | |
2540 | case TAG_typedef: | |
c5aa993b | 2541 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2542 | VAR_DOMAIN, LOC_TYPEDEF, |
c5aa993b | 2543 | &objfile->static_psymbols, |
c906108c SS |
2544 | 0, 0, cu_language, objfile); |
2545 | break; | |
2546 | case TAG_class_type: | |
2547 | case TAG_structure_type: | |
2548 | case TAG_union_type: | |
2549 | case TAG_enumeration_type: | |
2550 | /* Do not add opaque aggregate definitions to the psymtab. */ | |
c5aa993b | 2551 | if (!dip->has_at_byte_size) |
c906108c | 2552 | break; |
c5aa993b | 2553 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2554 | STRUCT_DOMAIN, LOC_TYPEDEF, |
c5aa993b | 2555 | &objfile->static_psymbols, |
c906108c SS |
2556 | 0, 0, cu_language, objfile); |
2557 | if (cu_language == language_cplus) | |
2558 | { | |
2559 | /* For C++, these implicitly act as typedefs as well. */ | |
c5aa993b | 2560 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
176620f1 | 2561 | VAR_DOMAIN, LOC_TYPEDEF, |
c5aa993b | 2562 | &objfile->static_psymbols, |
c906108c SS |
2563 | 0, 0, cu_language, objfile); |
2564 | } | |
2565 | break; | |
2566 | } | |
2567 | } | |
9846de1b | 2568 | /* *INDENT-OFF* */ |
c906108c SS |
2569 | /* |
2570 | ||
2571 | LOCAL FUNCTION | |
2572 | ||
2573 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2574 | ||
2575 | DESCRIPTION | |
2576 | ||
2577 | Process the DIE's within a single compilation unit, looking for | |
2578 | interesting DIE's that contribute to the partial symbol table entry | |
2579 | for this compilation unit. | |
2580 | ||
2581 | NOTES | |
2582 | ||
2583 | There are some DIE's that may appear both at file scope and within | |
2584 | the scope of a function. We are only interested in the ones at file | |
2585 | scope, and the only way to tell them apart is to keep track of the | |
2586 | scope. For example, consider the test case: | |
2587 | ||
2588 | static int i; | |
2589 | main () { int j; } | |
2590 | ||
2591 | for which the relevant DWARF segment has the structure: | |
2592 | ||
2593 | 0x51: | |
2594 | 0x23 global subrtn sibling 0x9b | |
2595 | name main | |
2596 | fund_type FT_integer | |
2597 | low_pc 0x800004cc | |
2598 | high_pc 0x800004d4 | |
2599 | ||
2600 | 0x74: | |
2601 | 0x23 local var sibling 0x97 | |
2602 | name j | |
2603 | fund_type FT_integer | |
2604 | location OP_BASEREG 0xe | |
2605 | OP_CONST 0xfffffffc | |
2606 | OP_ADD | |
2607 | 0x97: | |
2608 | 0x4 | |
2609 | ||
2610 | 0x9b: | |
2611 | 0x1d local var sibling 0xb8 | |
2612 | name i | |
2613 | fund_type FT_integer | |
2614 | location OP_ADDR 0x800025dc | |
2615 | ||
2616 | 0xb8: | |
2617 | 0x4 | |
2618 | ||
2619 | We want to include the symbol 'i' in the partial symbol table, but | |
2620 | not the symbol 'j'. In essence, we want to skip all the dies within | |
2621 | the scope of a TAG_global_subroutine DIE. | |
2622 | ||
2623 | Don't attempt to add anonymous structures or unions since they have | |
2624 | no name. Anonymous enumerations however are processed, because we | |
2625 | want to extract their member names (the check for a tag name is | |
2626 | done later). | |
2627 | ||
2628 | Also, for variables and subroutines, check that this is the place | |
2629 | where the actual definition occurs, rather than just a reference | |
2630 | to an external. | |
2631 | */ | |
9846de1b | 2632 | /* *INDENT-ON* */ |
c906108c | 2633 | |
c5aa993b JM |
2634 | |
2635 | ||
c906108c | 2636 | static void |
fba45db2 | 2637 | scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
2638 | { |
2639 | char *nextdie; | |
2640 | char *temp; | |
2641 | struct dieinfo di; | |
c5aa993b | 2642 | |
c906108c SS |
2643 | while (thisdie < enddie) |
2644 | { | |
2645 | basicdieinfo (&di, thisdie, objfile); | |
2646 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2647 | { | |
2648 | break; | |
2649 | } | |
2650 | else | |
2651 | { | |
2652 | nextdie = thisdie + di.die_length; | |
2653 | /* To avoid getting complete die information for every die, we | |
2654 | only do it (below) for the cases we are interested in. */ | |
2655 | switch (di.die_tag) | |
2656 | { | |
2657 | case TAG_global_subroutine: | |
2658 | case TAG_subroutine: | |
2659 | completedieinfo (&di, objfile); | |
2660 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2661 | { | |
2662 | add_partial_symbol (&di, objfile); | |
2663 | /* If there is a sibling attribute, adjust the nextdie | |
2664 | pointer to skip the entire scope of the subroutine. | |
2665 | Apply some sanity checking to make sure we don't | |
2666 | overrun or underrun the range of remaining DIE's */ | |
2667 | if (di.at_sibling != 0) | |
2668 | { | |
2669 | temp = dbbase + di.at_sibling - dbroff; | |
2670 | if ((temp < thisdie) || (temp >= enddie)) | |
2671 | { | |
23136709 KB |
2672 | bad_die_ref_complaint (DIE_ID, DIE_NAME, |
2673 | di.at_sibling); | |
c906108c SS |
2674 | } |
2675 | else | |
2676 | { | |
2677 | nextdie = temp; | |
2678 | } | |
2679 | } | |
2680 | } | |
2681 | break; | |
2682 | case TAG_global_variable: | |
2683 | case TAG_local_variable: | |
2684 | completedieinfo (&di, objfile); | |
2685 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2686 | { | |
2687 | add_partial_symbol (&di, objfile); | |
2688 | } | |
2689 | break; | |
2690 | case TAG_typedef: | |
2691 | case TAG_class_type: | |
2692 | case TAG_structure_type: | |
2693 | case TAG_union_type: | |
2694 | completedieinfo (&di, objfile); | |
2695 | if (di.at_name) | |
2696 | { | |
2697 | add_partial_symbol (&di, objfile); | |
2698 | } | |
2699 | break; | |
2700 | case TAG_enumeration_type: | |
2701 | completedieinfo (&di, objfile); | |
2702 | if (di.at_name) | |
2703 | { | |
2704 | add_partial_symbol (&di, objfile); | |
2705 | } | |
2706 | add_enum_psymbol (&di, objfile); | |
2707 | break; | |
2708 | } | |
2709 | } | |
2710 | thisdie = nextdie; | |
2711 | } | |
2712 | } | |
2713 | ||
2714 | /* | |
2715 | ||
c5aa993b | 2716 | LOCAL FUNCTION |
c906108c | 2717 | |
c5aa993b | 2718 | scan_compilation_units -- build a psymtab entry for each compilation |
c906108c | 2719 | |
c5aa993b | 2720 | DESCRIPTION |
c906108c | 2721 | |
c5aa993b JM |
2722 | This is the top level dwarf parsing routine for building partial |
2723 | symbol tables. | |
c906108c | 2724 | |
c5aa993b JM |
2725 | It scans from the beginning of the DWARF table looking for the first |
2726 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2727 | each additional TAG_compile_unit DIE. | |
2728 | ||
2729 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2730 | calls a subordinate routine to collect all the compilation unit's | |
2731 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2732 | new partial symtab structure into the partial symbol table. It also | |
2733 | records the appropriate information in the partial symbol table entry | |
2734 | to allow the chunk of DIE's and line number table for this compilation | |
2735 | unit to be located and re-read later, to generate a complete symbol | |
2736 | table entry for the compilation unit. | |
2737 | ||
2738 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2739 | compilation units into smaller DIE chunks and line number tables, | |
2740 | and associates them with a partial symbol table entry. | |
2741 | ||
2742 | NOTES | |
c906108c | 2743 | |
c5aa993b JM |
2744 | If any compilation unit has no line number table associated with |
2745 | it for some reason (a missing at_stmt_list attribute, rather than | |
2746 | just one with a value of zero, which is valid) then we ensure that | |
2747 | the recorded file offset is zero so that the routine which later | |
2748 | reads line number table fragments knows that there is no fragment | |
2749 | to read. | |
c906108c | 2750 | |
c5aa993b | 2751 | RETURNS |
c906108c | 2752 | |
c5aa993b | 2753 | Returns no value. |
c906108c SS |
2754 | |
2755 | */ | |
2756 | ||
2757 | static void | |
fba45db2 KB |
2758 | scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff, |
2759 | file_ptr lnoffset, struct objfile *objfile) | |
c906108c SS |
2760 | { |
2761 | char *nextdie; | |
2762 | struct dieinfo di; | |
2763 | struct partial_symtab *pst; | |
2764 | int culength; | |
2765 | int curoff; | |
2766 | file_ptr curlnoffset; | |
2767 | ||
2768 | while (thisdie < enddie) | |
2769 | { | |
2770 | basicdieinfo (&di, thisdie, objfile); | |
2771 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2772 | { | |
2773 | break; | |
2774 | } | |
2775 | else if (di.die_tag != TAG_compile_unit) | |
2776 | { | |
2777 | nextdie = thisdie + di.die_length; | |
2778 | } | |
2779 | else | |
2780 | { | |
2781 | completedieinfo (&di, objfile); | |
2782 | set_cu_language (&di); | |
2783 | if (di.at_sibling != 0) | |
2784 | { | |
2785 | nextdie = dbbase + di.at_sibling - dbroff; | |
2786 | } | |
2787 | else | |
2788 | { | |
2789 | nextdie = thisdie + di.die_length; | |
2790 | } | |
2791 | curoff = thisdie - dbbase; | |
2792 | culength = nextdie - thisdie; | |
2793 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |
2794 | ||
2795 | /* First allocate a new partial symbol table structure */ | |
2796 | ||
2797 | pst = start_psymtab_common (objfile, base_section_offsets, | |
2798 | di.at_name, di.at_low_pc, | |
c5aa993b JM |
2799 | objfile->global_psymbols.next, |
2800 | objfile->static_psymbols.next); | |
c906108c | 2801 | |
c5aa993b JM |
2802 | pst->texthigh = di.at_high_pc; |
2803 | pst->read_symtab_private = (char *) | |
8b92e4d5 | 2804 | obstack_alloc (&objfile->objfile_obstack, |
c5aa993b | 2805 | sizeof (struct dwfinfo)); |
c906108c SS |
2806 | DBFOFF (pst) = dbfoff; |
2807 | DBROFF (pst) = curoff; | |
2808 | DBLENGTH (pst) = culength; | |
c5aa993b JM |
2809 | LNFOFF (pst) = curlnoffset; |
2810 | pst->read_symtab = dwarf_psymtab_to_symtab; | |
c906108c SS |
2811 | |
2812 | /* Now look for partial symbols */ | |
2813 | ||
2814 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |
2815 | ||
c5aa993b JM |
2816 | pst->n_global_syms = objfile->global_psymbols.next - |
2817 | (objfile->global_psymbols.list + pst->globals_offset); | |
2818 | pst->n_static_syms = objfile->static_psymbols.next - | |
2819 | (objfile->static_psymbols.list + pst->statics_offset); | |
c906108c SS |
2820 | sort_pst_symbols (pst); |
2821 | /* If there is already a psymtab or symtab for a file of this name, | |
2822 | remove it. (If there is a symtab, more drastic things also | |
2823 | happen.) This happens in VxWorks. */ | |
c5aa993b | 2824 | free_named_symtabs (pst->filename); |
c906108c | 2825 | } |
c5aa993b | 2826 | thisdie = nextdie; |
c906108c SS |
2827 | } |
2828 | } | |
2829 | ||
2830 | /* | |
2831 | ||
c5aa993b | 2832 | LOCAL FUNCTION |
c906108c | 2833 | |
c5aa993b | 2834 | new_symbol -- make a symbol table entry for a new symbol |
c906108c | 2835 | |
c5aa993b | 2836 | SYNOPSIS |
c906108c | 2837 | |
c5aa993b JM |
2838 | static struct symbol *new_symbol (struct dieinfo *dip, |
2839 | struct objfile *objfile) | |
c906108c | 2840 | |
c5aa993b | 2841 | DESCRIPTION |
c906108c | 2842 | |
c5aa993b JM |
2843 | Given a pointer to a DWARF information entry, figure out if we need |
2844 | to make a symbol table entry for it, and if so, create a new entry | |
2845 | and return a pointer to it. | |
c906108c SS |
2846 | */ |
2847 | ||
2848 | static struct symbol * | |
fba45db2 | 2849 | new_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2850 | { |
2851 | struct symbol *sym = NULL; | |
c5aa993b JM |
2852 | |
2853 | if (dip->at_name != NULL) | |
c906108c | 2854 | { |
4a146b47 | 2855 | sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, |
c906108c SS |
2856 | sizeof (struct symbol)); |
2857 | OBJSTAT (objfile, n_syms++); | |
2858 | memset (sym, 0, sizeof (struct symbol)); | |
c906108c | 2859 | /* default assumptions */ |
176620f1 | 2860 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
2861 | SYMBOL_CLASS (sym) = LOC_STATIC; |
2862 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2863 | ||
2864 | /* If this symbol is from a C++ compilation, then attempt to cache the | |
c5aa993b JM |
2865 | demangled form for future reference. This is a typical time versus |
2866 | space tradeoff, that was decided in favor of time because it sped up | |
2867 | C++ symbol lookups by a factor of about 20. */ | |
c906108c SS |
2868 | |
2869 | SYMBOL_LANGUAGE (sym) = cu_language; | |
2de7ced7 | 2870 | SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile); |
c5aa993b | 2871 | switch (dip->die_tag) |
c906108c SS |
2872 | { |
2873 | case TAG_label: | |
c5aa993b | 2874 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c SS |
2875 | SYMBOL_CLASS (sym) = LOC_LABEL; |
2876 | break; | |
2877 | case TAG_global_subroutine: | |
2878 | case TAG_subroutine: | |
c5aa993b | 2879 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c | 2880 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); |
c5aa993b | 2881 | if (dip->at_prototyped) |
c906108c SS |
2882 | TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; |
2883 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
c5aa993b | 2884 | if (dip->die_tag == TAG_global_subroutine) |
c906108c SS |
2885 | { |
2886 | add_symbol_to_list (sym, &global_symbols); | |
2887 | } | |
2888 | else | |
2889 | { | |
2890 | add_symbol_to_list (sym, list_in_scope); | |
2891 | } | |
2892 | break; | |
2893 | case TAG_global_variable: | |
c5aa993b | 2894 | if (dip->at_location != NULL) |
c906108c SS |
2895 | { |
2896 | SYMBOL_VALUE_ADDRESS (sym) = locval (dip); | |
2897 | add_symbol_to_list (sym, &global_symbols); | |
2898 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2899 | SYMBOL_VALUE (sym) += baseaddr; | |
2900 | } | |
2901 | break; | |
2902 | case TAG_local_variable: | |
c5aa993b | 2903 | if (dip->at_location != NULL) |
c906108c SS |
2904 | { |
2905 | int loc = locval (dip); | |
c5aa993b | 2906 | if (dip->optimized_out) |
c906108c SS |
2907 | { |
2908 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; | |
2909 | } | |
c5aa993b | 2910 | else if (dip->isreg) |
c906108c SS |
2911 | { |
2912 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2913 | } | |
c5aa993b | 2914 | else if (dip->offreg) |
c906108c SS |
2915 | { |
2916 | SYMBOL_CLASS (sym) = LOC_BASEREG; | |
c5aa993b | 2917 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2918 | } |
2919 | else | |
2920 | { | |
2921 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2922 | SYMBOL_VALUE (sym) += baseaddr; | |
2923 | } | |
2924 | if (SYMBOL_CLASS (sym) == LOC_STATIC) | |
2925 | { | |
2926 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, | |
2927 | which may store to a bigger location than SYMBOL_VALUE. */ | |
2928 | SYMBOL_VALUE_ADDRESS (sym) = loc; | |
2929 | } | |
2930 | else | |
2931 | { | |
2932 | SYMBOL_VALUE (sym) = loc; | |
2933 | } | |
2934 | add_symbol_to_list (sym, list_in_scope); | |
2935 | } | |
2936 | break; | |
2937 | case TAG_formal_parameter: | |
c5aa993b | 2938 | if (dip->at_location != NULL) |
c906108c SS |
2939 | { |
2940 | SYMBOL_VALUE (sym) = locval (dip); | |
2941 | } | |
2942 | add_symbol_to_list (sym, list_in_scope); | |
c5aa993b | 2943 | if (dip->isreg) |
c906108c SS |
2944 | { |
2945 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2946 | } | |
c5aa993b | 2947 | else if (dip->offreg) |
c906108c SS |
2948 | { |
2949 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; | |
c5aa993b | 2950 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2951 | } |
2952 | else | |
2953 | { | |
2954 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2955 | } | |
2956 | break; | |
2957 | case TAG_unspecified_parameters: | |
2958 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2959 | this information, so just ignore it for now. (FIXME?) */ | |
2960 | break; | |
2961 | case TAG_class_type: | |
2962 | case TAG_structure_type: | |
2963 | case TAG_union_type: | |
2964 | case TAG_enumeration_type: | |
2965 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
176620f1 | 2966 | SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; |
c906108c SS |
2967 | add_symbol_to_list (sym, list_in_scope); |
2968 | break; | |
2969 | case TAG_typedef: | |
2970 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
176620f1 | 2971 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
2972 | add_symbol_to_list (sym, list_in_scope); |
2973 | break; | |
2974 | default: | |
2975 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
2976 | data, but since we must specifically ignore things we don't | |
2977 | recognize, there is nothing else we should do at this point. */ | |
2978 | break; | |
2979 | } | |
2980 | } | |
2981 | return (sym); | |
2982 | } | |
2983 | ||
2984 | /* | |
2985 | ||
c5aa993b | 2986 | LOCAL FUNCTION |
c906108c | 2987 | |
c5aa993b | 2988 | synthesize_typedef -- make a symbol table entry for a "fake" typedef |
c906108c | 2989 | |
c5aa993b | 2990 | SYNOPSIS |
c906108c | 2991 | |
c5aa993b JM |
2992 | static void synthesize_typedef (struct dieinfo *dip, |
2993 | struct objfile *objfile, | |
2994 | struct type *type); | |
c906108c | 2995 | |
c5aa993b | 2996 | DESCRIPTION |
c906108c | 2997 | |
c5aa993b JM |
2998 | Given a pointer to a DWARF information entry, synthesize a typedef |
2999 | for the name in the DIE, using the specified type. | |
c906108c | 3000 | |
c5aa993b JM |
3001 | This is used for C++ class, structs, unions, and enumerations to |
3002 | set up the tag name as a type. | |
c906108c SS |
3003 | |
3004 | */ | |
3005 | ||
3006 | static void | |
fba45db2 KB |
3007 | synthesize_typedef (struct dieinfo *dip, struct objfile *objfile, |
3008 | struct type *type) | |
c906108c SS |
3009 | { |
3010 | struct symbol *sym = NULL; | |
c5aa993b JM |
3011 | |
3012 | if (dip->at_name != NULL) | |
c906108c SS |
3013 | { |
3014 | sym = (struct symbol *) | |
4a146b47 | 3015 | obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol)); |
c906108c SS |
3016 | OBJSTAT (objfile, n_syms++); |
3017 | memset (sym, 0, sizeof (struct symbol)); | |
22abf04a | 3018 | DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name, |
4a146b47 | 3019 | &objfile->objfile_obstack); |
c906108c SS |
3020 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); |
3021 | SYMBOL_TYPE (sym) = type; | |
3022 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
176620f1 | 3023 | SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
c906108c SS |
3024 | add_symbol_to_list (sym, list_in_scope); |
3025 | } | |
3026 | } | |
3027 | ||
3028 | /* | |
3029 | ||
c5aa993b | 3030 | LOCAL FUNCTION |
c906108c | 3031 | |
c5aa993b | 3032 | decode_mod_fund_type -- decode a modified fundamental type |
c906108c | 3033 | |
c5aa993b | 3034 | SYNOPSIS |
c906108c | 3035 | |
c5aa993b | 3036 | static struct type *decode_mod_fund_type (char *typedata) |
c906108c | 3037 | |
c5aa993b | 3038 | DESCRIPTION |
c906108c | 3039 | |
c5aa993b JM |
3040 | Decode a block of data containing a modified fundamental |
3041 | type specification. TYPEDATA is a pointer to the block, | |
3042 | which starts with a length containing the size of the rest | |
3043 | of the block. At the end of the block is a fundmental type | |
3044 | code value that gives the fundamental type. Everything | |
3045 | in between are type modifiers. | |
c906108c | 3046 | |
c5aa993b JM |
3047 | We simply compute the number of modifiers and call the general |
3048 | function decode_modified_type to do the actual work. | |
3049 | */ | |
c906108c SS |
3050 | |
3051 | static struct type * | |
fba45db2 | 3052 | decode_mod_fund_type (char *typedata) |
c906108c SS |
3053 | { |
3054 | struct type *typep = NULL; | |
3055 | unsigned short modcount; | |
3056 | int nbytes; | |
c5aa993b | 3057 | |
c906108c SS |
3058 | /* Get the total size of the block, exclusive of the size itself */ |
3059 | ||
3060 | nbytes = attribute_size (AT_mod_fund_type); | |
3061 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3062 | typedata += nbytes; | |
3063 | ||
3064 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3065 | ||
3066 | modcount -= attribute_size (AT_fund_type); | |
3067 | ||
3068 | /* Now do the actual decoding */ | |
3069 | ||
3070 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |
3071 | return (typep); | |
3072 | } | |
3073 | ||
3074 | /* | |
3075 | ||
c5aa993b | 3076 | LOCAL FUNCTION |
c906108c | 3077 | |
c5aa993b | 3078 | decode_mod_u_d_type -- decode a modified user defined type |
c906108c | 3079 | |
c5aa993b | 3080 | SYNOPSIS |
c906108c | 3081 | |
c5aa993b | 3082 | static struct type *decode_mod_u_d_type (char *typedata) |
c906108c | 3083 | |
c5aa993b | 3084 | DESCRIPTION |
c906108c | 3085 | |
c5aa993b JM |
3086 | Decode a block of data containing a modified user defined |
3087 | type specification. TYPEDATA is a pointer to the block, | |
3088 | which consists of a two byte length, containing the size | |
3089 | of the rest of the block. At the end of the block is a | |
3090 | four byte value that gives a reference to a user defined type. | |
3091 | Everything in between are type modifiers. | |
c906108c | 3092 | |
c5aa993b JM |
3093 | We simply compute the number of modifiers and call the general |
3094 | function decode_modified_type to do the actual work. | |
3095 | */ | |
c906108c SS |
3096 | |
3097 | static struct type * | |
fba45db2 | 3098 | decode_mod_u_d_type (char *typedata) |
c906108c SS |
3099 | { |
3100 | struct type *typep = NULL; | |
3101 | unsigned short modcount; | |
3102 | int nbytes; | |
c5aa993b | 3103 | |
c906108c SS |
3104 | /* Get the total size of the block, exclusive of the size itself */ |
3105 | ||
3106 | nbytes = attribute_size (AT_mod_u_d_type); | |
3107 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3108 | typedata += nbytes; | |
3109 | ||
3110 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3111 | ||
3112 | modcount -= attribute_size (AT_user_def_type); | |
3113 | ||
3114 | /* Now do the actual decoding */ | |
3115 | ||
3116 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |
3117 | return (typep); | |
3118 | } | |
3119 | ||
3120 | /* | |
3121 | ||
c5aa993b | 3122 | LOCAL FUNCTION |
c906108c | 3123 | |
c5aa993b | 3124 | decode_modified_type -- decode modified user or fundamental type |
c906108c | 3125 | |
c5aa993b | 3126 | SYNOPSIS |
c906108c | 3127 | |
c5aa993b JM |
3128 | static struct type *decode_modified_type (char *modifiers, |
3129 | unsigned short modcount, int mtype) | |
c906108c | 3130 | |
c5aa993b | 3131 | DESCRIPTION |
c906108c | 3132 | |
c5aa993b JM |
3133 | Decode a modified type, either a modified fundamental type or |
3134 | a modified user defined type. MODIFIERS is a pointer to the | |
3135 | block of bytes that define MODCOUNT modifiers. Immediately | |
3136 | following the last modifier is a short containing the fundamental | |
3137 | type or a long containing the reference to the user defined | |
3138 | type. Which one is determined by MTYPE, which is either | |
3139 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3140 | type we are generating. | |
c906108c | 3141 | |
c5aa993b JM |
3142 | We call ourself recursively to generate each modified type,` |
3143 | until MODCOUNT reaches zero, at which point we have consumed | |
3144 | all the modifiers and generate either the fundamental type or | |
3145 | user defined type. When the recursion unwinds, each modifier | |
3146 | is applied in turn to generate the full modified type. | |
3147 | ||
3148 | NOTES | |
c906108c | 3149 | |
c5aa993b JM |
3150 | If we find a modifier that we don't recognize, and it is not one |
3151 | of those reserved for application specific use, then we issue a | |
3152 | warning and simply ignore the modifier. | |
c906108c | 3153 | |
c5aa993b | 3154 | BUGS |
c906108c | 3155 | |
c5aa993b | 3156 | We currently ignore MOD_const and MOD_volatile. (FIXME) |
c906108c SS |
3157 | |
3158 | */ | |
3159 | ||
3160 | static struct type * | |
fba45db2 | 3161 | decode_modified_type (char *modifiers, unsigned int modcount, int mtype) |
c906108c SS |
3162 | { |
3163 | struct type *typep = NULL; | |
3164 | unsigned short fundtype; | |
3165 | DIE_REF die_ref; | |
3166 | char modifier; | |
3167 | int nbytes; | |
c5aa993b | 3168 | |
c906108c SS |
3169 | if (modcount == 0) |
3170 | { | |
3171 | switch (mtype) | |
3172 | { | |
3173 | case AT_mod_fund_type: | |
3174 | nbytes = attribute_size (AT_fund_type); | |
3175 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3176 | current_objfile); | |
3177 | typep = decode_fund_type (fundtype); | |
3178 | break; | |
3179 | case AT_mod_u_d_type: | |
3180 | nbytes = attribute_size (AT_user_def_type); | |
3181 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3182 | current_objfile); | |
b59661bd AC |
3183 | typep = lookup_utype (die_ref); |
3184 | if (typep == NULL) | |
c906108c SS |
3185 | { |
3186 | typep = alloc_utype (die_ref, NULL); | |
3187 | } | |
3188 | break; | |
3189 | default: | |
23136709 | 3190 | complaint (&symfile_complaints, |
e2e0b3e5 | 3191 | _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"), |
23136709 | 3192 | DIE_ID, DIE_NAME, mtype); |
c906108c SS |
3193 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
3194 | break; | |
3195 | } | |
3196 | } | |
3197 | else | |
3198 | { | |
3199 | modifier = *modifiers++; | |
3200 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3201 | switch (modifier) | |
3202 | { | |
c5aa993b JM |
3203 | case MOD_pointer_to: |
3204 | typep = lookup_pointer_type (typep); | |
3205 | break; | |
3206 | case MOD_reference_to: | |
3207 | typep = lookup_reference_type (typep); | |
3208 | break; | |
3209 | case MOD_const: | |
23136709 | 3210 | complaint (&symfile_complaints, |
e2e0b3e5 | 3211 | _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID, |
23136709 | 3212 | DIE_NAME); /* FIXME */ |
c5aa993b JM |
3213 | break; |
3214 | case MOD_volatile: | |
23136709 | 3215 | complaint (&symfile_complaints, |
e2e0b3e5 | 3216 | _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"), |
23136709 | 3217 | DIE_ID, DIE_NAME); /* FIXME */ |
c5aa993b JM |
3218 | break; |
3219 | default: | |
3cb3398d EZ |
3220 | if (!(MOD_lo_user <= (unsigned char) modifier)) |
3221 | #if 0 | |
3222 | /* This part of the test would always be true, and it triggers a compiler | |
3223 | warning. */ | |
c5aa993b | 3224 | && (unsigned char) modifier <= MOD_hi_user)) |
3cb3398d | 3225 | #endif |
c5aa993b | 3226 | { |
23136709 | 3227 | complaint (&symfile_complaints, |
e2e0b3e5 | 3228 | _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID, |
23136709 | 3229 | DIE_NAME, modifier); |
c5aa993b JM |
3230 | } |
3231 | break; | |
c906108c SS |
3232 | } |
3233 | } | |
3234 | return (typep); | |
3235 | } | |
3236 | ||
3237 | /* | |
3238 | ||
c5aa993b | 3239 | LOCAL FUNCTION |
c906108c | 3240 | |
c5aa993b | 3241 | decode_fund_type -- translate basic DWARF type to gdb base type |
c906108c | 3242 | |
c5aa993b | 3243 | DESCRIPTION |
c906108c | 3244 | |
c5aa993b JM |
3245 | Given an integer that is one of the fundamental DWARF types, |
3246 | translate it to one of the basic internal gdb types and return | |
3247 | a pointer to the appropriate gdb type (a "struct type *"). | |
c906108c | 3248 | |
c5aa993b | 3249 | NOTES |
c906108c | 3250 | |
c5aa993b JM |
3251 | For robustness, if we are asked to translate a fundamental |
3252 | type that we are unprepared to deal with, we return int so | |
3253 | callers can always depend upon a valid type being returned, | |
3254 | and so gdb may at least do something reasonable by default. | |
3255 | If the type is not in the range of those types defined as | |
3256 | application specific types, we also issue a warning. | |
3257 | */ | |
c906108c SS |
3258 | |
3259 | static struct type * | |
fba45db2 | 3260 | decode_fund_type (unsigned int fundtype) |
c906108c SS |
3261 | { |
3262 | struct type *typep = NULL; | |
c5aa993b | 3263 | |
c906108c SS |
3264 | switch (fundtype) |
3265 | { | |
3266 | ||
3267 | case FT_void: | |
3268 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3269 | break; | |
c5aa993b | 3270 | |
c906108c SS |
3271 | case FT_boolean: /* Was FT_set in AT&T version */ |
3272 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); | |
3273 | break; | |
3274 | ||
3275 | case FT_pointer: /* (void *) */ | |
3276 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3277 | typep = lookup_pointer_type (typep); | |
3278 | break; | |
c5aa993b | 3279 | |
c906108c SS |
3280 | case FT_char: |
3281 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); | |
3282 | break; | |
c5aa993b | 3283 | |
c906108c SS |
3284 | case FT_signed_char: |
3285 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); | |
3286 | break; | |
3287 | ||
3288 | case FT_unsigned_char: | |
3289 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); | |
3290 | break; | |
c5aa993b | 3291 | |
c906108c SS |
3292 | case FT_short: |
3293 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); | |
3294 | break; | |
3295 | ||
3296 | case FT_signed_short: | |
3297 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); | |
3298 | break; | |
c5aa993b | 3299 | |
c906108c SS |
3300 | case FT_unsigned_short: |
3301 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); | |
3302 | break; | |
c5aa993b | 3303 | |
c906108c SS |
3304 | case FT_integer: |
3305 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3306 | break; | |
3307 | ||
3308 | case FT_signed_integer: | |
3309 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); | |
3310 | break; | |
c5aa993b | 3311 | |
c906108c SS |
3312 | case FT_unsigned_integer: |
3313 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); | |
3314 | break; | |
c5aa993b | 3315 | |
c906108c SS |
3316 | case FT_long: |
3317 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); | |
3318 | break; | |
3319 | ||
3320 | case FT_signed_long: | |
3321 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); | |
3322 | break; | |
c5aa993b | 3323 | |
c906108c SS |
3324 | case FT_unsigned_long: |
3325 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); | |
3326 | break; | |
c5aa993b | 3327 | |
c906108c SS |
3328 | case FT_long_long: |
3329 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); | |
3330 | break; | |
3331 | ||
3332 | case FT_signed_long_long: | |
3333 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); | |
3334 | break; | |
3335 | ||
3336 | case FT_unsigned_long_long: | |
3337 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); | |
3338 | break; | |
3339 | ||
3340 | case FT_float: | |
3341 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); | |
3342 | break; | |
c5aa993b | 3343 | |
c906108c SS |
3344 | case FT_dbl_prec_float: |
3345 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); | |
3346 | break; | |
c5aa993b | 3347 | |
c906108c SS |
3348 | case FT_ext_prec_float: |
3349 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); | |
3350 | break; | |
c5aa993b | 3351 | |
c906108c SS |
3352 | case FT_complex: |
3353 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); | |
3354 | break; | |
c5aa993b | 3355 | |
c906108c SS |
3356 | case FT_dbl_prec_complex: |
3357 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); | |
3358 | break; | |
c5aa993b | 3359 | |
c906108c SS |
3360 | case FT_ext_prec_complex: |
3361 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); | |
3362 | break; | |
c5aa993b | 3363 | |
c906108c SS |
3364 | } |
3365 | ||
3366 | if (typep == NULL) | |
3367 | { | |
3368 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3369 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3370 | { | |
23136709 | 3371 | complaint (&symfile_complaints, |
e2e0b3e5 | 3372 | _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"), |
23136709 | 3373 | DIE_ID, DIE_NAME, fundtype); |
c906108c SS |
3374 | } |
3375 | } | |
c5aa993b | 3376 | |
c906108c SS |
3377 | return (typep); |
3378 | } | |
3379 | ||
3380 | /* | |
3381 | ||
c5aa993b | 3382 | LOCAL FUNCTION |
c906108c | 3383 | |
c5aa993b | 3384 | create_name -- allocate a fresh copy of a string on an obstack |
c906108c | 3385 | |
c5aa993b | 3386 | DESCRIPTION |
c906108c | 3387 | |
c5aa993b JM |
3388 | Given a pointer to a string and a pointer to an obstack, allocates |
3389 | a fresh copy of the string on the specified obstack. | |
c906108c | 3390 | |
c5aa993b | 3391 | */ |
c906108c SS |
3392 | |
3393 | static char * | |
fba45db2 | 3394 | create_name (char *name, struct obstack *obstackp) |
c906108c SS |
3395 | { |
3396 | int length; | |
3397 | char *newname; | |
3398 | ||
3399 | length = strlen (name) + 1; | |
3400 | newname = (char *) obstack_alloc (obstackp, length); | |
3401 | strcpy (newname, name); | |
3402 | return (newname); | |
3403 | } | |
3404 | ||
3405 | /* | |
3406 | ||
c5aa993b | 3407 | LOCAL FUNCTION |
c906108c | 3408 | |
c5aa993b | 3409 | basicdieinfo -- extract the minimal die info from raw die data |
c906108c | 3410 | |
c5aa993b | 3411 | SYNOPSIS |
c906108c | 3412 | |
c5aa993b JM |
3413 | void basicdieinfo (char *diep, struct dieinfo *dip, |
3414 | struct objfile *objfile) | |
c906108c | 3415 | |
c5aa993b | 3416 | DESCRIPTION |
c906108c | 3417 | |
c5aa993b JM |
3418 | Given a pointer to raw DIE data, and a pointer to an instance of a |
3419 | die info structure, this function extracts the basic information | |
3420 | from the DIE data required to continue processing this DIE, along | |
3421 | with some bookkeeping information about the DIE. | |
c906108c | 3422 | |
c5aa993b JM |
3423 | The information we absolutely must have includes the DIE tag, |
3424 | and the DIE length. If we need the sibling reference, then we | |
3425 | will have to call completedieinfo() to process all the remaining | |
3426 | DIE information. | |
c906108c | 3427 | |
c5aa993b JM |
3428 | Note that since there is no guarantee that the data is properly |
3429 | aligned in memory for the type of access required (indirection | |
3430 | through anything other than a char pointer), and there is no | |
3431 | guarantee that it is in the same byte order as the gdb host, | |
3432 | we call a function which deals with both alignment and byte | |
3433 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3434 | |
c5aa993b JM |
3435 | We also take care of some other basic things at this point, such |
3436 | as ensuring that the instance of the die info structure starts | |
3437 | out completely zero'd and that curdie is initialized for use | |
3438 | in error reporting if we have a problem with the current die. | |
c906108c | 3439 | |
c5aa993b JM |
3440 | NOTES |
3441 | ||
3442 | All DIE's must have at least a valid length, thus the minimum | |
3443 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |
3444 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |
3445 | are forced to be TAG_padding DIES. | |
c906108c | 3446 | |
c5aa993b JM |
3447 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying |
3448 | that if a padding DIE is used for alignment and the amount needed is | |
3449 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |
3450 | enough to align to the next alignment boundry. | |
3451 | ||
3452 | We do some basic sanity checking here, such as verifying that the | |
3453 | length of the die would not cause it to overrun the recorded end of | |
3454 | the buffer holding the DIE info. If we find a DIE that is either | |
3455 | too small or too large, we force it's length to zero which should | |
3456 | cause the caller to take appropriate action. | |
c906108c SS |
3457 | */ |
3458 | ||
3459 | static void | |
fba45db2 | 3460 | basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile) |
c906108c SS |
3461 | { |
3462 | curdie = dip; | |
3463 | memset (dip, 0, sizeof (struct dieinfo)); | |
c5aa993b JM |
3464 | dip->die = diep; |
3465 | dip->die_ref = dbroff + (diep - dbbase); | |
3466 | dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, | |
3467 | objfile); | |
3468 | if ((dip->die_length < SIZEOF_DIE_LENGTH) || | |
3469 | ((diep + dip->die_length) > (dbbase + dbsize))) | |
c906108c | 3470 | { |
23136709 | 3471 | complaint (&symfile_complaints, |
e2e0b3e5 | 3472 | _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"), |
23136709 | 3473 | DIE_ID, DIE_NAME, dip->die_length); |
c5aa993b | 3474 | dip->die_length = 0; |
c906108c | 3475 | } |
c5aa993b | 3476 | else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) |
c906108c | 3477 | { |
c5aa993b | 3478 | dip->die_tag = TAG_padding; |
c906108c SS |
3479 | } |
3480 | else | |
3481 | { | |
3482 | diep += SIZEOF_DIE_LENGTH; | |
c5aa993b JM |
3483 | dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, |
3484 | objfile); | |
c906108c SS |
3485 | } |
3486 | } | |
3487 | ||
3488 | /* | |
3489 | ||
c5aa993b | 3490 | LOCAL FUNCTION |
c906108c | 3491 | |
c5aa993b | 3492 | completedieinfo -- finish reading the information for a given DIE |
c906108c | 3493 | |
c5aa993b | 3494 | SYNOPSIS |
c906108c | 3495 | |
c5aa993b | 3496 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 3497 | |
c5aa993b | 3498 | DESCRIPTION |
c906108c | 3499 | |
c5aa993b JM |
3500 | Given a pointer to an already partially initialized die info structure, |
3501 | scan the raw DIE data and finish filling in the die info structure | |
3502 | from the various attributes found. | |
c906108c | 3503 | |
c5aa993b JM |
3504 | Note that since there is no guarantee that the data is properly |
3505 | aligned in memory for the type of access required (indirection | |
3506 | through anything other than a char pointer), and there is no | |
3507 | guarantee that it is in the same byte order as the gdb host, | |
3508 | we call a function which deals with both alignment and byte | |
3509 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3510 | |
c5aa993b JM |
3511 | NOTES |
3512 | ||
3513 | Each time we are called, we increment the diecount variable, which | |
3514 | keeps an approximate count of the number of dies processed for | |
3515 | each compilation unit. This information is presented to the user | |
3516 | if the info_verbose flag is set. | |
c906108c SS |
3517 | |
3518 | */ | |
3519 | ||
3520 | static void | |
fba45db2 | 3521 | completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
3522 | { |
3523 | char *diep; /* Current pointer into raw DIE data */ | |
3524 | char *end; /* Terminate DIE scan here */ | |
3525 | unsigned short attr; /* Current attribute being scanned */ | |
3526 | unsigned short form; /* Form of the attribute */ | |
3527 | int nbytes; /* Size of next field to read */ | |
c5aa993b | 3528 | |
c906108c | 3529 | diecount++; |
c5aa993b JM |
3530 | diep = dip->die; |
3531 | end = diep + dip->die_length; | |
c906108c SS |
3532 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; |
3533 | while (diep < end) | |
3534 | { | |
3535 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); | |
3536 | diep += SIZEOF_ATTRIBUTE; | |
b59661bd AC |
3537 | nbytes = attribute_size (attr); |
3538 | if (nbytes == -1) | |
c906108c | 3539 | { |
23136709 | 3540 | complaint (&symfile_complaints, |
e2e0b3e5 | 3541 | _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"), |
23136709 | 3542 | DIE_ID, DIE_NAME); |
c906108c SS |
3543 | diep = end; |
3544 | continue; | |
3545 | } | |
3546 | switch (attr) | |
3547 | { | |
3548 | case AT_fund_type: | |
c5aa993b JM |
3549 | dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, |
3550 | objfile); | |
c906108c SS |
3551 | break; |
3552 | case AT_ordering: | |
c5aa993b JM |
3553 | dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, |
3554 | objfile); | |
c906108c SS |
3555 | break; |
3556 | case AT_bit_offset: | |
c5aa993b JM |
3557 | dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, |
3558 | objfile); | |
c906108c SS |
3559 | break; |
3560 | case AT_sibling: | |
c5aa993b JM |
3561 | dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, |
3562 | objfile); | |
c906108c SS |
3563 | break; |
3564 | case AT_stmt_list: | |
c5aa993b JM |
3565 | dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, |
3566 | objfile); | |
3567 | dip->has_at_stmt_list = 1; | |
c906108c SS |
3568 | break; |
3569 | case AT_low_pc: | |
c5aa993b JM |
3570 | dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3571 | objfile); | |
3572 | dip->at_low_pc += baseaddr; | |
3573 | dip->has_at_low_pc = 1; | |
c906108c SS |
3574 | break; |
3575 | case AT_high_pc: | |
c5aa993b JM |
3576 | dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3577 | objfile); | |
3578 | dip->at_high_pc += baseaddr; | |
c906108c SS |
3579 | break; |
3580 | case AT_language: | |
c5aa993b JM |
3581 | dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED, |
3582 | objfile); | |
c906108c SS |
3583 | break; |
3584 | case AT_user_def_type: | |
c5aa993b JM |
3585 | dip->at_user_def_type = target_to_host (diep, nbytes, |
3586 | GET_UNSIGNED, objfile); | |
c906108c SS |
3587 | break; |
3588 | case AT_byte_size: | |
c5aa993b JM |
3589 | dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3590 | objfile); | |
3591 | dip->has_at_byte_size = 1; | |
c906108c SS |
3592 | break; |
3593 | case AT_bit_size: | |
c5aa993b JM |
3594 | dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3595 | objfile); | |
c906108c SS |
3596 | break; |
3597 | case AT_member: | |
c5aa993b JM |
3598 | dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED, |
3599 | objfile); | |
c906108c SS |
3600 | break; |
3601 | case AT_discr: | |
c5aa993b JM |
3602 | dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, |
3603 | objfile); | |
c906108c SS |
3604 | break; |
3605 | case AT_location: | |
c5aa993b | 3606 | dip->at_location = diep; |
c906108c SS |
3607 | break; |
3608 | case AT_mod_fund_type: | |
c5aa993b | 3609 | dip->at_mod_fund_type = diep; |
c906108c SS |
3610 | break; |
3611 | case AT_subscr_data: | |
c5aa993b | 3612 | dip->at_subscr_data = diep; |
c906108c SS |
3613 | break; |
3614 | case AT_mod_u_d_type: | |
c5aa993b | 3615 | dip->at_mod_u_d_type = diep; |
c906108c SS |
3616 | break; |
3617 | case AT_element_list: | |
c5aa993b JM |
3618 | dip->at_element_list = diep; |
3619 | dip->short_element_list = 0; | |
c906108c SS |
3620 | break; |
3621 | case AT_short_element_list: | |
c5aa993b JM |
3622 | dip->at_element_list = diep; |
3623 | dip->short_element_list = 1; | |
c906108c SS |
3624 | break; |
3625 | case AT_discr_value: | |
c5aa993b | 3626 | dip->at_discr_value = diep; |
c906108c SS |
3627 | break; |
3628 | case AT_string_length: | |
c5aa993b | 3629 | dip->at_string_length = diep; |
c906108c SS |
3630 | break; |
3631 | case AT_name: | |
c5aa993b | 3632 | dip->at_name = diep; |
c906108c SS |
3633 | break; |
3634 | case AT_comp_dir: | |
3635 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |
3636 | know how to deal with it. (FIXME). */ | |
c5aa993b JM |
3637 | dip->at_comp_dir = strrchr (diep, ':'); |
3638 | if (dip->at_comp_dir != NULL) | |
c906108c | 3639 | { |
c5aa993b | 3640 | dip->at_comp_dir++; |
c906108c SS |
3641 | } |
3642 | else | |
3643 | { | |
c5aa993b | 3644 | dip->at_comp_dir = diep; |
c906108c SS |
3645 | } |
3646 | break; | |
3647 | case AT_producer: | |
c5aa993b | 3648 | dip->at_producer = diep; |
c906108c SS |
3649 | break; |
3650 | case AT_start_scope: | |
c5aa993b JM |
3651 | dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, |
3652 | objfile); | |
c906108c SS |
3653 | break; |
3654 | case AT_stride_size: | |
c5aa993b JM |
3655 | dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3656 | objfile); | |
c906108c SS |
3657 | break; |
3658 | case AT_src_info: | |
c5aa993b JM |
3659 | dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, |
3660 | objfile); | |
c906108c SS |
3661 | break; |
3662 | case AT_prototyped: | |
c5aa993b | 3663 | dip->at_prototyped = diep; |
c906108c SS |
3664 | break; |
3665 | default: | |
3666 | /* Found an attribute that we are unprepared to handle. However | |
3667 | it is specifically one of the design goals of DWARF that | |
3668 | consumers should ignore unknown attributes. As long as the | |
3669 | form is one that we recognize (so we know how to skip it), | |
3670 | we can just ignore the unknown attribute. */ | |
3671 | break; | |
3672 | } | |
3673 | form = FORM_FROM_ATTR (attr); | |
3674 | switch (form) | |
3675 | { | |
3676 | case FORM_DATA2: | |
3677 | diep += 2; | |
3678 | break; | |
3679 | case FORM_DATA4: | |
3680 | case FORM_REF: | |
3681 | diep += 4; | |
3682 | break; | |
3683 | case FORM_DATA8: | |
3684 | diep += 8; | |
3685 | break; | |
3686 | case FORM_ADDR: | |
3687 | diep += TARGET_FT_POINTER_SIZE (objfile); | |
3688 | break; | |
3689 | case FORM_BLOCK2: | |
3690 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3691 | break; | |
3692 | case FORM_BLOCK4: | |
3693 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3694 | break; | |
3695 | case FORM_STRING: | |
3696 | diep += strlen (diep) + 1; | |
3697 | break; | |
3698 | default: | |
23136709 | 3699 | unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form); |
c906108c SS |
3700 | diep = end; |
3701 | break; | |
3702 | } | |
3703 | } | |
3704 | } | |
3705 | ||
3706 | /* | |
3707 | ||
c5aa993b | 3708 | LOCAL FUNCTION |
c906108c | 3709 | |
c5aa993b | 3710 | target_to_host -- swap in target data to host |
c906108c | 3711 | |
c5aa993b | 3712 | SYNOPSIS |
c906108c | 3713 | |
c5aa993b JM |
3714 | target_to_host (char *from, int nbytes, int signextend, |
3715 | struct objfile *objfile) | |
c906108c | 3716 | |
c5aa993b | 3717 | DESCRIPTION |
c906108c | 3718 | |
c5aa993b JM |
3719 | Given pointer to data in target format in FROM, a byte count for |
3720 | the size of the data in NBYTES, a flag indicating whether or not | |
3721 | the data is signed in SIGNEXTEND, and a pointer to the current | |
3722 | objfile in OBJFILE, convert the data to host format and return | |
3723 | the converted value. | |
c906108c | 3724 | |
c5aa993b | 3725 | NOTES |
c906108c | 3726 | |
c5aa993b JM |
3727 | FIXME: If we read data that is known to be signed, and expect to |
3728 | use it as signed data, then we need to explicitly sign extend the | |
3729 | result until the bfd library is able to do this for us. | |
c906108c | 3730 | |
c5aa993b | 3731 | FIXME: Would a 32 bit target ever need an 8 byte result? |
c906108c SS |
3732 | |
3733 | */ | |
3734 | ||
3735 | static CORE_ADDR | |
fba45db2 KB |
3736 | target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */ |
3737 | struct objfile *objfile) | |
c906108c SS |
3738 | { |
3739 | CORE_ADDR rtnval; | |
3740 | ||
3741 | switch (nbytes) | |
3742 | { | |
c5aa993b JM |
3743 | case 8: |
3744 | rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from); | |
3745 | break; | |
3746 | case 4: | |
3747 | rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from); | |
3748 | break; | |
3749 | case 2: | |
3750 | rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from); | |
3751 | break; | |
3752 | case 1: | |
3753 | rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from); | |
3754 | break; | |
3755 | default: | |
23136709 | 3756 | complaint (&symfile_complaints, |
e2e0b3e5 | 3757 | _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"), |
23136709 | 3758 | DIE_ID, DIE_NAME, nbytes); |
c5aa993b JM |
3759 | rtnval = 0; |
3760 | break; | |
c906108c SS |
3761 | } |
3762 | return (rtnval); | |
3763 | } | |
3764 | ||
3765 | /* | |
3766 | ||
c5aa993b | 3767 | LOCAL FUNCTION |
c906108c | 3768 | |
c5aa993b | 3769 | attribute_size -- compute size of data for a DWARF attribute |
c906108c | 3770 | |
c5aa993b | 3771 | SYNOPSIS |
c906108c | 3772 | |
c5aa993b | 3773 | static int attribute_size (unsigned int attr) |
c906108c | 3774 | |
c5aa993b | 3775 | DESCRIPTION |
c906108c | 3776 | |
c5aa993b JM |
3777 | Given a DWARF attribute in ATTR, compute the size of the first |
3778 | piece of data associated with this attribute and return that | |
3779 | size. | |
c906108c | 3780 | |
c5aa993b | 3781 | Returns -1 for unrecognized attributes. |
c906108c SS |
3782 | |
3783 | */ | |
3784 | ||
3785 | static int | |
fba45db2 | 3786 | attribute_size (unsigned int attr) |
c906108c SS |
3787 | { |
3788 | int nbytes; /* Size of next data for this attribute */ | |
3789 | unsigned short form; /* Form of the attribute */ | |
3790 | ||
3791 | form = FORM_FROM_ATTR (attr); | |
3792 | switch (form) | |
3793 | { | |
c5aa993b JM |
3794 | case FORM_STRING: /* A variable length field is next */ |
3795 | nbytes = 0; | |
3796 | break; | |
3797 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |
3798 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |
3799 | nbytes = 2; | |
3800 | break; | |
3801 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |
3802 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |
3803 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |
3804 | nbytes = 4; | |
3805 | break; | |
3806 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |
3807 | nbytes = 8; | |
3808 | break; | |
3809 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |
3810 | nbytes = TARGET_FT_POINTER_SIZE (objfile); | |
3811 | break; | |
3812 | default: | |
23136709 | 3813 | unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form); |
c5aa993b JM |
3814 | nbytes = -1; |
3815 | break; | |
3816 | } | |
c906108c SS |
3817 | return (nbytes); |
3818 | } |