expression.h: New ops OP_NSSTRING, OP_SELECTOR, OP_MSGCALL, and OP_SELF.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
b6ba6518 2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
181c1381 3 2001, 2002
c906108c
SS
4 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
6 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c
SS
23
24/*
25
c5aa993b
JM
26 FIXME: Do we need to generate dependencies in partial symtabs?
27 (Perhaps we don't need to).
c906108c 28
c5aa993b
JM
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
c906108c 34
c5aa993b
JM
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
c906108c 37
c5aa993b
JM
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
c906108c 40
c5aa993b 41 */
c906108c
SS
42
43#include "defs.h"
44#include "symtab.h"
45#include "gdbtypes.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "elf/dwarf.h"
49#include "buildsym.h"
50#include "demangle.h"
c5aa993b 51#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
52#include "language.h"
53#include "complaints.h"
54
55#include <fcntl.h>
56#include "gdb_string.h"
57
58/* Some macros to provide DIE info for complaints. */
59
60#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
61#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
62
63/* Complaints that can be issued during DWARF debug info reading. */
64
65struct complaint no_bfd_get_N =
66{
67 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
68};
69
70struct complaint malformed_die =
71{
72 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
73};
74
75struct complaint bad_die_ref =
76{
77 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
78};
79
80struct complaint unknown_attribute_form =
81{
82 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
83};
84
85struct complaint unknown_attribute_length =
86{
87 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
88};
89
90struct complaint unexpected_fund_type =
91{
92 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
93};
94
95struct complaint unknown_type_modifier =
96{
97 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
98};
99
100struct complaint volatile_ignored =
101{
102 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
103};
104
105struct complaint const_ignored =
106{
107 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
108};
109
110struct complaint botched_modified_type =
111{
112 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
113};
114
115struct complaint op_deref2 =
116{
117 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
118};
119
120struct complaint op_deref4 =
121{
122 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
123};
124
125struct complaint basereg_not_handled =
126{
127 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
128};
129
130struct complaint dup_user_type_allocation =
131{
132 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
133};
134
135struct complaint dup_user_type_definition =
136{
137 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
138};
139
140struct complaint missing_tag =
141{
142 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
143};
144
145struct complaint bad_array_element_type =
146{
147 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
148};
149
150struct complaint subscript_data_items =
151{
152 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
153};
154
155struct complaint unhandled_array_subscript_format =
156{
157 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
158};
159
160struct complaint unknown_array_subscript_format =
161{
162 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
163};
164
165struct complaint not_row_major =
166{
167 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
168};
169
170struct complaint missing_at_name =
171{
172 "DIE @ 0x%x, AT_name tag missing", 0, 0
173};
174
175typedef unsigned int DIE_REF; /* Reference to a DIE */
176
177#ifndef GCC_PRODUCER
178#define GCC_PRODUCER "GNU C "
179#endif
180
181#ifndef GPLUS_PRODUCER
182#define GPLUS_PRODUCER "GNU C++ "
183#endif
184
185#ifndef LCC_PRODUCER
186#define LCC_PRODUCER "NCR C/C++"
187#endif
188
db034ac5
AC
189/* OBSOLETE #ifndef CHILL_PRODUCER */
190/* OBSOLETE #define CHILL_PRODUCER "GNU Chill " */
191/* OBSOLETE #endif */
c906108c 192
c906108c
SS
193/* Flags to target_to_host() that tell whether or not the data object is
194 expected to be signed. Used, for example, when fetching a signed
195 integer in the target environment which is used as a signed integer
196 in the host environment, and the two environments have different sized
197 ints. In this case, *somebody* has to sign extend the smaller sized
198 int. */
199
200#define GET_UNSIGNED 0 /* No sign extension required */
201#define GET_SIGNED 1 /* Sign extension required */
202
203/* Defines for things which are specified in the document "DWARF Debugging
204 Information Format" published by UNIX International, Programming Languages
205 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
206
207#define SIZEOF_DIE_LENGTH 4
208#define SIZEOF_DIE_TAG 2
209#define SIZEOF_ATTRIBUTE 2
210#define SIZEOF_FORMAT_SPECIFIER 1
211#define SIZEOF_FMT_FT 2
212#define SIZEOF_LINETBL_LENGTH 4
213#define SIZEOF_LINETBL_LINENO 4
214#define SIZEOF_LINETBL_STMT 2
215#define SIZEOF_LINETBL_DELTA 4
216#define SIZEOF_LOC_ATOM_CODE 1
217
218#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
219
220/* Macros that return the sizes of various types of data in the target
221 environment.
222
223 FIXME: Currently these are just compile time constants (as they are in
224 other parts of gdb as well). They need to be able to get the right size
225 either from the bfd or possibly from the DWARF info. It would be nice if
226 the DWARF producer inserted DIES that describe the fundamental types in
227 the target environment into the DWARF info, similar to the way dbx stabs
228 producers produce information about their fundamental types. */
229
230#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
231#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
232
233/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
234 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
235 However, the Issue 2 DWARF specification from AT&T defines it as
236 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
237 For backwards compatibility with the AT&T compiler produced executables
238 we define AT_short_element_list for this variant. */
239
240#define AT_short_element_list (0x00f0|FORM_BLOCK2)
241
c906108c
SS
242/* The DWARF debugging information consists of two major pieces,
243 one is a block of DWARF Information Entries (DIE's) and the other
244 is a line number table. The "struct dieinfo" structure contains
245 the information for a single DIE, the one currently being processed.
246
247 In order to make it easier to randomly access the attribute fields
248 of the current DIE, which are specifically unordered within the DIE,
249 each DIE is scanned and an instance of the "struct dieinfo"
250 structure is initialized.
251
252 Initialization is done in two levels. The first, done by basicdieinfo(),
253 just initializes those fields that are vital to deciding whether or not
254 to use this DIE, how to skip past it, etc. The second, done by the
255 function completedieinfo(), fills in the rest of the information.
256
257 Attributes which have block forms are not interpreted at the time
258 the DIE is scanned, instead we just save pointers to the start
259 of their value fields.
260
261 Some fields have a flag <name>_p that is set when the value of the
262 field is valid (I.E. we found a matching attribute in the DIE). Since
263 we may want to test for the presence of some attributes in the DIE,
264 such as AT_low_pc, without restricting the values of the field,
265 we need someway to note that we found such an attribute.
c5aa993b 266
c906108c 267 */
c5aa993b 268
c906108c
SS
269typedef char BLOCK;
270
c5aa993b
JM
271struct dieinfo
272 {
273 char *die; /* Pointer to the raw DIE data */
274 unsigned long die_length; /* Length of the raw DIE data */
275 DIE_REF die_ref; /* Offset of this DIE */
276 unsigned short die_tag; /* Tag for this DIE */
277 unsigned long at_padding;
278 unsigned long at_sibling;
279 BLOCK *at_location;
280 char *at_name;
281 unsigned short at_fund_type;
282 BLOCK *at_mod_fund_type;
283 unsigned long at_user_def_type;
284 BLOCK *at_mod_u_d_type;
285 unsigned short at_ordering;
286 BLOCK *at_subscr_data;
287 unsigned long at_byte_size;
288 unsigned short at_bit_offset;
289 unsigned long at_bit_size;
290 BLOCK *at_element_list;
291 unsigned long at_stmt_list;
292 CORE_ADDR at_low_pc;
293 CORE_ADDR at_high_pc;
294 unsigned long at_language;
295 unsigned long at_member;
296 unsigned long at_discr;
297 BLOCK *at_discr_value;
298 BLOCK *at_string_length;
299 char *at_comp_dir;
300 char *at_producer;
301 unsigned long at_start_scope;
302 unsigned long at_stride_size;
303 unsigned long at_src_info;
304 char *at_prototyped;
305 unsigned int has_at_low_pc:1;
306 unsigned int has_at_stmt_list:1;
307 unsigned int has_at_byte_size:1;
308 unsigned int short_element_list:1;
309
310 /* Kludge to identify register variables */
311
312 unsigned int isreg;
313
314 /* Kludge to identify optimized out variables */
315
316 unsigned int optimized_out;
317
318 /* Kludge to identify basereg references.
319 Nonzero if we have an offset relative to a basereg. */
320
321 unsigned int offreg;
322
323 /* Kludge to identify which base register is it relative to. */
324
325 unsigned int basereg;
326 };
c906108c 327
c5aa993b 328static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
329static struct dieinfo *curdie; /* For warnings and such */
330
c5aa993b
JM
331static char *dbbase; /* Base pointer to dwarf info */
332static int dbsize; /* Size of dwarf info in bytes */
333static int dbroff; /* Relative offset from start of .debug section */
334static char *lnbase; /* Base pointer to line section */
c906108c
SS
335
336/* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341/* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343static struct section_offsets *base_section_offsets;
344
345/* We put a pointer to this structure in the read_symtab_private field
346 of the psymtab. */
347
c5aa993b
JM
348struct dwfinfo
349 {
350 /* Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed. */
352 file_ptr dbfoff;
353 /* Relative offset from the start of the ".debug" section to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion. */
360 int dbroff;
361 /* The size of the chunk of DIE's being examined, in bytes. */
362 int dblength;
363 /* The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit. */
368 file_ptr lnfoff;
369 };
c906108c
SS
370
371#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
372#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
373#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
374#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
375
376/* The generic symbol table building routines have separate lists for
377 file scope symbols and all all other scopes (local scopes). So
378 we need to select the right one to pass to add_symbol_to_list().
379 We do it by keeping a pointer to the correct list in list_in_scope.
380
381 FIXME: The original dwarf code just treated the file scope as the first
382 local scope, and all other local scopes as nested local scopes, and worked
383 fine. Check to see if we really need to distinguish these in buildsym.c */
384
385struct pending **list_in_scope = &file_symbols;
386
387/* DIES which have user defined types or modified user defined types refer to
388 other DIES for the type information. Thus we need to associate the offset
389 of a DIE for a user defined type with a pointer to the type information.
390
391 Originally this was done using a simple but expensive algorithm, with an
392 array of unsorted structures, each containing an offset/type-pointer pair.
393 This array was scanned linearly each time a lookup was done. The result
394 was that gdb was spending over half it's startup time munging through this
395 array of pointers looking for a structure that had the right offset member.
396
397 The second attempt used the same array of structures, but the array was
398 sorted using qsort each time a new offset/type was recorded, and a binary
399 search was used to find the type pointer for a given DIE offset. This was
400 even slower, due to the overhead of sorting the array each time a new
401 offset/type pair was entered.
402
403 The third attempt uses a fixed size array of type pointers, indexed by a
404 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
405 we can divide any DIE offset by 4 to obtain a unique index into this fixed
406 size array. Since each element is a 4 byte pointer, it takes exactly as
407 much memory to hold this array as to hold the DWARF info for a given
408 compilation unit. But it gets freed as soon as we are done with it.
409 This has worked well in practice, as a reasonable tradeoff between memory
410 consumption and speed, without having to resort to much more complicated
411 algorithms. */
412
413static struct type **utypes; /* Pointer to array of user type pointers */
414static int numutypes; /* Max number of user type pointers */
415
416/* Maintain an array of referenced fundamental types for the current
417 compilation unit being read. For DWARF version 1, we have to construct
418 the fundamental types on the fly, since no information about the
419 fundamental types is supplied. Each such fundamental type is created by
420 calling a language dependent routine to create the type, and then a
421 pointer to that type is then placed in the array at the index specified
422 by it's FT_<TYPENAME> value. The array has a fixed size set by the
423 FT_NUM_MEMBERS compile time constant, which is the number of predefined
424 fundamental types gdb knows how to construct. */
425
c5aa993b 426static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
427
428/* Record the language for the compilation unit which is currently being
429 processed. We know it once we have seen the TAG_compile_unit DIE,
430 and we need it while processing the DIE's for that compilation unit.
431 It is eventually saved in the symtab structure, but we don't finalize
432 the symtab struct until we have processed all the DIE's for the
433 compilation unit. We also need to get and save a pointer to the
434 language struct for this language, so we can call the language
435 dependent routines for doing things such as creating fundamental
436 types. */
437
438static enum language cu_language;
439static const struct language_defn *cu_language_defn;
440
441/* Forward declarations of static functions so we don't have to worry
442 about ordering within this file. */
443
a14ed312 444static void free_utypes (PTR);
c906108c 445
a14ed312 446static int attribute_size (unsigned int);
c906108c 447
a14ed312 448static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 449
a14ed312 450static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 451
a14ed312 452static void handle_producer (char *);
c906108c
SS
453
454static void
a14ed312 455read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c
SS
456
457static void
a14ed312 458read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c
SS
459
460static void
a14ed312 461read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c 462
a14ed312 463static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c
SS
464
465static void
a14ed312 466scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
c906108c 467
a14ed312 468static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 469
a14ed312 470static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 471
a14ed312 472static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 473
a14ed312 474static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 475
a14ed312 476static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 477
a14ed312 478static void read_ofile_symtab (struct partial_symtab *);
c906108c 479
a14ed312 480static void process_dies (char *, char *, struct objfile *);
c906108c
SS
481
482static void
a14ed312 483read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c 484
a14ed312 485static struct type *decode_array_element_type (char *);
c906108c 486
a14ed312 487static struct type *decode_subscript_data_item (char *, char *);
c906108c 488
a14ed312 489static void dwarf_read_array_type (struct dieinfo *);
c906108c 490
a14ed312 491static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 492
a14ed312 493static void read_tag_string_type (struct dieinfo *dip);
c906108c 494
a14ed312 495static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c
SS
496
497static void
a14ed312 498read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
c906108c 499
a14ed312
KB
500static struct type *struct_type (struct dieinfo *, char *, char *,
501 struct objfile *);
c906108c 502
a14ed312 503static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 504
a14ed312 505static void decode_line_numbers (char *);
c906108c 506
a14ed312 507static struct type *decode_die_type (struct dieinfo *);
c906108c 508
a14ed312 509static struct type *decode_mod_fund_type (char *);
c906108c 510
a14ed312 511static struct type *decode_mod_u_d_type (char *);
c906108c 512
a14ed312 513static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 514
a14ed312 515static struct type *decode_fund_type (unsigned int);
c906108c 516
a14ed312 517static char *create_name (char *, struct obstack *);
c906108c 518
a14ed312 519static struct type *lookup_utype (DIE_REF);
c906108c 520
a14ed312 521static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 522
a14ed312 523static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c
SS
524
525static void
a14ed312 526synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
c906108c 527
a14ed312 528static int locval (struct dieinfo *);
c906108c 529
a14ed312 530static void set_cu_language (struct dieinfo *);
c906108c 531
a14ed312 532static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
533
534
535/*
536
c5aa993b 537 LOCAL FUNCTION
c906108c 538
c5aa993b 539 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 540
c5aa993b 541 SYNOPSIS
c906108c 542
c5aa993b
JM
543 struct type *
544 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 545
c5aa993b 546 DESCRIPTION
c906108c 547
c5aa993b
JM
548 DWARF version 1 doesn't supply any fundamental type information,
549 so gdb has to construct such types. It has a fixed number of
550 fundamental types that it knows how to construct, which is the
551 union of all types that it knows how to construct for all languages
552 that it knows about. These are enumerated in gdbtypes.h.
c906108c 553
c5aa993b
JM
554 As an example, assume we find a DIE that references a DWARF
555 fundamental type of FT_integer. We first look in the ftypes
556 array to see if we already have such a type, indexed by the
557 gdb internal value of FT_INTEGER. If so, we simply return a
558 pointer to that type. If not, then we ask an appropriate
559 language dependent routine to create a type FT_INTEGER, using
560 defaults reasonable for the current target machine, and install
561 that type in ftypes for future reference.
c906108c 562
c5aa993b 563 RETURNS
c906108c 564
c5aa993b 565 Pointer to a fundamental type.
c906108c 566
c5aa993b 567 */
c906108c
SS
568
569static struct type *
fba45db2 570dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
571{
572 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
573 {
574 error ("internal error - invalid fundamental type id %d", typeid);
575 }
576
577 /* Look for this particular type in the fundamental type vector. If one is
578 not found, create and install one appropriate for the current language
579 and the current target machine. */
580
581 if (ftypes[typeid] == NULL)
582 {
c5aa993b 583 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
584 }
585
586 return (ftypes[typeid]);
587}
588
589/*
590
c5aa993b 591 LOCAL FUNCTION
c906108c 592
c5aa993b 593 set_cu_language -- set local copy of language for compilation unit
c906108c 594
c5aa993b 595 SYNOPSIS
c906108c 596
c5aa993b
JM
597 void
598 set_cu_language (struct dieinfo *dip)
c906108c 599
c5aa993b 600 DESCRIPTION
c906108c 601
c5aa993b
JM
602 Decode the language attribute for a compilation unit DIE and
603 remember what the language was. We use this at various times
604 when processing DIE's for a given compilation unit.
c906108c 605
c5aa993b 606 RETURNS
c906108c 607
c5aa993b 608 No return value.
c906108c
SS
609
610 */
611
612static void
fba45db2 613set_cu_language (struct dieinfo *dip)
c906108c 614{
c5aa993b 615 switch (dip->at_language)
c906108c 616 {
c5aa993b
JM
617 case LANG_C89:
618 case LANG_C:
619 cu_language = language_c;
620 break;
621 case LANG_C_PLUS_PLUS:
622 cu_language = language_cplus;
623 break;
db034ac5
AC
624 /* OBSOLETE case LANG_CHILL: */
625 /* OBSOLETE cu_language = language_chill; */
626 /* OBSOLETE break; */
c5aa993b
JM
627 case LANG_MODULA2:
628 cu_language = language_m2;
629 break;
630 case LANG_FORTRAN77:
631 case LANG_FORTRAN90:
632 cu_language = language_fortran;
633 break;
634 case LANG_ADA83:
635 case LANG_COBOL74:
636 case LANG_COBOL85:
637 case LANG_PASCAL83:
638 /* We don't know anything special about these yet. */
639 cu_language = language_unknown;
640 break;
641 default:
642 /* If no at_language, try to deduce one from the filename */
643 cu_language = deduce_language_from_filename (dip->at_name);
644 break;
c906108c
SS
645 }
646 cu_language_defn = language_def (cu_language);
647}
648
649/*
650
c5aa993b 651 GLOBAL FUNCTION
c906108c 652
c5aa993b 653 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 654
c5aa993b 655 SYNOPSIS
c906108c 656
c5aa993b 657 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
658 int mainline, file_ptr dbfoff, unsigned int dbfsize,
659 file_ptr lnoffset, unsigned int lnsize)
c906108c 660
c5aa993b 661 DESCRIPTION
c906108c 662
c5aa993b
JM
663 This function is called upon to build partial symtabs from files
664 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 665
c5aa993b
JM
666 It is passed a bfd* containing the DIES
667 and line number information, the corresponding filename for that
668 file, a base address for relocating the symbols, a flag indicating
669 whether or not this debugging information is from a "main symbol
670 table" rather than a shared library or dynamically linked file,
671 and file offset/size pairs for the DIE information and line number
672 information.
c906108c 673
c5aa993b 674 RETURNS
c906108c 675
c5aa993b 676 No return value.
c906108c
SS
677
678 */
679
680void
fba45db2
KB
681dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
682 unsigned int dbfsize, file_ptr lnoffset,
683 unsigned int lnsize)
c906108c
SS
684{
685 bfd *abfd = objfile->obfd;
686 struct cleanup *back_to;
c5aa993b 687
c906108c
SS
688 current_objfile = objfile;
689 dbsize = dbfsize;
690 dbbase = xmalloc (dbsize);
691 dbroff = 0;
692 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 693 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 694 {
b8c9b27d 695 xfree (dbbase);
c906108c
SS
696 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
697 }
b8c9b27d 698 back_to = make_cleanup (xfree, dbbase);
c5aa993b 699
c906108c
SS
700 /* If we are reinitializing, or if we have never loaded syms yet, init.
701 Since we have no idea how many DIES we are looking at, we just guess
702 some arbitrary value. */
c5aa993b 703
ef96bde8
EZ
704 if (mainline
705 || (objfile->global_psymbols.size == 0
706 && objfile->static_psymbols.size == 0))
c906108c
SS
707 {
708 init_psymbol_list (objfile, 1024);
709 }
c5aa993b 710
c906108c
SS
711 /* Save the relocation factor where everybody can see it. */
712
d4f3574e
SS
713 base_section_offsets = objfile->section_offsets;
714 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
715
716 /* Follow the compilation unit sibling chain, building a partial symbol
717 table entry for each one. Save enough information about each compilation
718 unit to locate the full DWARF information later. */
c5aa993b 719
c906108c 720 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 721
c906108c
SS
722 do_cleanups (back_to);
723 current_objfile = NULL;
724}
725
726/*
727
c5aa993b 728 LOCAL FUNCTION
c906108c 729
c5aa993b 730 read_lexical_block_scope -- process all dies in a lexical block
c906108c 731
c5aa993b 732 SYNOPSIS
c906108c 733
c5aa993b
JM
734 static void read_lexical_block_scope (struct dieinfo *dip,
735 char *thisdie, char *enddie)
c906108c 736
c5aa993b 737 DESCRIPTION
c906108c 738
c5aa993b
JM
739 Process all the DIES contained within a lexical block scope.
740 Start a new scope, process the dies, and then close the scope.
c906108c
SS
741
742 */
743
744static void
fba45db2
KB
745read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
746 struct objfile *objfile)
c906108c
SS
747{
748 register struct context_stack *new;
749
c5aa993b
JM
750 push_context (0, dip->at_low_pc);
751 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
752 new = pop_context ();
753 if (local_symbols != NULL)
754 {
c5aa993b
JM
755 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
756 dip->at_high_pc, objfile);
c906108c 757 }
c5aa993b 758 local_symbols = new->locals;
c906108c
SS
759}
760
761/*
762
c5aa993b 763 LOCAL FUNCTION
c906108c 764
c5aa993b 765 lookup_utype -- look up a user defined type from die reference
c906108c 766
c5aa993b 767 SYNOPSIS
c906108c 768
c5aa993b 769 static type *lookup_utype (DIE_REF die_ref)
c906108c 770
c5aa993b 771 DESCRIPTION
c906108c 772
c5aa993b
JM
773 Given a DIE reference, lookup the user defined type associated with
774 that DIE, if it has been registered already. If not registered, then
775 return NULL. Alloc_utype() can be called to register an empty
776 type for this reference, which will be filled in later when the
777 actual referenced DIE is processed.
c906108c
SS
778 */
779
780static struct type *
fba45db2 781lookup_utype (DIE_REF die_ref)
c906108c
SS
782{
783 struct type *type = NULL;
784 int utypeidx;
c5aa993b 785
c906108c
SS
786 utypeidx = (die_ref - dbroff) / 4;
787 if ((utypeidx < 0) || (utypeidx >= numutypes))
788 {
789 complain (&bad_die_ref, DIE_ID, DIE_NAME);
790 }
791 else
792 {
793 type = *(utypes + utypeidx);
794 }
795 return (type);
796}
797
798
799/*
800
c5aa993b 801 LOCAL FUNCTION
c906108c 802
c5aa993b 803 alloc_utype -- add a user defined type for die reference
c906108c 804
c5aa993b 805 SYNOPSIS
c906108c 806
c5aa993b 807 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 808
c5aa993b 809 DESCRIPTION
c906108c 810
c5aa993b
JM
811 Given a die reference DIE_REF, and a possible pointer to a user
812 defined type UTYPEP, register that this reference has a user
813 defined type and either use the specified type in UTYPEP or
814 make a new empty type that will be filled in later.
c906108c 815
c5aa993b
JM
816 We should only be called after calling lookup_utype() to verify that
817 there is not currently a type registered for DIE_REF.
c906108c
SS
818 */
819
820static struct type *
fba45db2 821alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
822{
823 struct type **typep;
824 int utypeidx;
c5aa993b 825
c906108c
SS
826 utypeidx = (die_ref - dbroff) / 4;
827 typep = utypes + utypeidx;
828 if ((utypeidx < 0) || (utypeidx >= numutypes))
829 {
830 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
831 complain (&bad_die_ref, DIE_ID, DIE_NAME);
832 }
833 else if (*typep != NULL)
834 {
835 utypep = *typep;
836 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
837 }
838 else
839 {
840 if (utypep == NULL)
841 {
842 utypep = alloc_type (current_objfile);
843 }
844 *typep = utypep;
845 }
846 return (utypep);
847}
848
849/*
850
c5aa993b 851 LOCAL FUNCTION
c906108c 852
c5aa993b 853 free_utypes -- free the utypes array and reset pointer & count
c906108c 854
c5aa993b 855 SYNOPSIS
c906108c 856
c5aa993b 857 static void free_utypes (PTR dummy)
c906108c 858
c5aa993b 859 DESCRIPTION
c906108c 860
c5aa993b
JM
861 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
862 and set numutypes back to zero. This ensures that the utypes does not get
863 referenced after being freed.
c906108c
SS
864 */
865
866static void
fba45db2 867free_utypes (PTR dummy)
c906108c 868{
b8c9b27d 869 xfree (utypes);
c906108c
SS
870 utypes = NULL;
871 numutypes = 0;
872}
873
874
875/*
876
c5aa993b 877 LOCAL FUNCTION
c906108c 878
c5aa993b 879 decode_die_type -- return a type for a specified die
c906108c 880
c5aa993b 881 SYNOPSIS
c906108c 882
c5aa993b 883 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 884
c5aa993b 885 DESCRIPTION
c906108c 886
c5aa993b
JM
887 Given a pointer to a die information structure DIP, decode the
888 type of the die and return a pointer to the decoded type. All
889 dies without specific types default to type int.
c906108c
SS
890 */
891
892static struct type *
fba45db2 893decode_die_type (struct dieinfo *dip)
c906108c
SS
894{
895 struct type *type = NULL;
c5aa993b
JM
896
897 if (dip->at_fund_type != 0)
c906108c 898 {
c5aa993b 899 type = decode_fund_type (dip->at_fund_type);
c906108c 900 }
c5aa993b 901 else if (dip->at_mod_fund_type != NULL)
c906108c 902 {
c5aa993b 903 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 904 }
c5aa993b 905 else if (dip->at_user_def_type)
c906108c 906 {
c5aa993b 907 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
c906108c 908 {
c5aa993b 909 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
910 }
911 }
c5aa993b 912 else if (dip->at_mod_u_d_type)
c906108c 913 {
c5aa993b 914 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
915 }
916 else
917 {
918 type = dwarf_fundamental_type (current_objfile, FT_VOID);
919 }
920 return (type);
921}
922
923/*
924
c5aa993b 925 LOCAL FUNCTION
c906108c 926
c5aa993b 927 struct_type -- compute and return the type for a struct or union
c906108c 928
c5aa993b 929 SYNOPSIS
c906108c 930
c5aa993b
JM
931 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
932 char *enddie, struct objfile *objfile)
c906108c 933
c5aa993b 934 DESCRIPTION
c906108c 935
c5aa993b
JM
936 Given pointer to a die information structure for a die which
937 defines a union or structure (and MUST define one or the other),
938 and pointers to the raw die data that define the range of dies which
939 define the members, compute and return the user defined type for the
940 structure or union.
c906108c
SS
941 */
942
943static struct type *
fba45db2
KB
944struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
945 struct objfile *objfile)
c906108c
SS
946{
947 struct type *type;
c5aa993b
JM
948 struct nextfield
949 {
950 struct nextfield *next;
951 struct field field;
952 };
c906108c
SS
953 struct nextfield *list = NULL;
954 struct nextfield *new;
955 int nfields = 0;
956 int n;
957 struct dieinfo mbr;
958 char *nextdie;
959 int anonymous_size;
c5aa993b
JM
960
961 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
962 {
963 /* No forward references created an empty type, so install one now */
c5aa993b 964 type = alloc_utype (dip->die_ref, NULL);
c906108c 965 }
c5aa993b
JM
966 INIT_CPLUS_SPECIFIC (type);
967 switch (dip->die_tag)
c906108c 968 {
c5aa993b
JM
969 case TAG_class_type:
970 TYPE_CODE (type) = TYPE_CODE_CLASS;
971 break;
972 case TAG_structure_type:
973 TYPE_CODE (type) = TYPE_CODE_STRUCT;
974 break;
975 case TAG_union_type:
976 TYPE_CODE (type) = TYPE_CODE_UNION;
977 break;
978 default:
979 /* Should never happen */
980 TYPE_CODE (type) = TYPE_CODE_UNDEF;
981 complain (&missing_tag, DIE_ID, DIE_NAME);
982 break;
c906108c
SS
983 }
984 /* Some compilers try to be helpful by inventing "fake" names for
985 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
986 Thanks, but no thanks... */
c5aa993b
JM
987 if (dip->at_name != NULL
988 && *dip->at_name != '~'
989 && *dip->at_name != '.')
c906108c 990 {
c5aa993b
JM
991 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
992 "", "", dip->at_name);
c906108c
SS
993 }
994 /* Use whatever size is known. Zero is a valid size. We might however
995 wish to check has_at_byte_size to make sure that some byte size was
996 given explicitly, but DWARF doesn't specify that explicit sizes of
997 zero have to present, so complaining about missing sizes should
998 probably not be the default. */
c5aa993b
JM
999 TYPE_LENGTH (type) = dip->at_byte_size;
1000 thisdie += dip->die_length;
c906108c
SS
1001 while (thisdie < enddie)
1002 {
1003 basicdieinfo (&mbr, thisdie, objfile);
1004 completedieinfo (&mbr, objfile);
1005 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1006 {
1007 break;
1008 }
1009 else if (mbr.at_sibling != 0)
1010 {
1011 nextdie = dbbase + mbr.at_sibling - dbroff;
1012 }
1013 else
1014 {
1015 nextdie = thisdie + mbr.die_length;
1016 }
1017 switch (mbr.die_tag)
1018 {
1019 case TAG_member:
1020 /* Get space to record the next field's data. */
1021 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1022 new->next = list;
c906108c
SS
1023 list = new;
1024 /* Save the data. */
c5aa993b
JM
1025 list->field.name =
1026 obsavestring (mbr.at_name, strlen (mbr.at_name),
1027 &objfile->type_obstack);
c906108c
SS
1028 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1029 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1030 /* Handle bit fields. */
1031 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1032 if (BITS_BIG_ENDIAN)
1033 {
1034 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1035 additional bit offset from the MSB of the containing
1036 anonymous object to the MSB of the field. We don't
1037 have to do anything special since we don't need to
1038 know the size of the anonymous object. */
c906108c
SS
1039 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1040 }
1041 else
1042 {
1043 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1044 at_bit_size, so that we know we are in fact dealing
1045 with a bitfield. Compute the bit offset to the MSB
1046 of the anonymous object, subtract off the number of
1047 bits from the MSB of the field to the MSB of the
1048 object, and then subtract off the number of bits of
1049 the field itself. The result is the bit offset of
1050 the LSB of the field. */
c906108c
SS
1051 if (mbr.at_bit_size > 0)
1052 {
1053 if (mbr.has_at_byte_size)
1054 {
1055 /* The size of the anonymous object containing
c5aa993b
JM
1056 the bit field is explicit, so use the
1057 indicated size (in bytes). */
c906108c
SS
1058 anonymous_size = mbr.at_byte_size;
1059 }
1060 else
1061 {
1062 /* The size of the anonymous object containing
c5aa993b
JM
1063 the bit field matches the size of an object
1064 of the bit field's type. DWARF allows
1065 at_byte_size to be left out in such cases, as
1066 a debug information size optimization. */
1067 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1068 }
1069 FIELD_BITPOS (list->field) +=
1070 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1071 }
1072 }
1073 nfields++;
1074 break;
1075 default:
1076 process_dies (thisdie, nextdie, objfile);
1077 break;
1078 }
1079 thisdie = nextdie;
1080 }
1081 /* Now create the vector of fields, and record how big it is. We may
1082 not even have any fields, if this DIE was generated due to a reference
1083 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1084 set, which clues gdb in to the fact that it needs to search elsewhere
1085 for the full structure definition. */
1086 if (nfields == 0)
1087 {
1088 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1089 }
1090 else
1091 {
1092 TYPE_NFIELDS (type) = nfields;
1093 TYPE_FIELDS (type) = (struct field *)
1094 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1095 /* Copy the saved-up fields into the field vector. */
c5aa993b 1096 for (n = nfields; list; list = list->next)
c906108c 1097 {
c5aa993b
JM
1098 TYPE_FIELD (type, --n) = list->field;
1099 }
c906108c
SS
1100 }
1101 return (type);
1102}
1103
1104/*
1105
c5aa993b 1106 LOCAL FUNCTION
c906108c 1107
c5aa993b 1108 read_structure_scope -- process all dies within struct or union
c906108c 1109
c5aa993b 1110 SYNOPSIS
c906108c 1111
c5aa993b
JM
1112 static void read_structure_scope (struct dieinfo *dip,
1113 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1114
c5aa993b 1115 DESCRIPTION
c906108c 1116
c5aa993b
JM
1117 Called when we find the DIE that starts a structure or union
1118 scope (definition) to process all dies that define the members
1119 of the structure or union. DIP is a pointer to the die info
1120 struct for the DIE that names the structure or union.
c906108c 1121
c5aa993b
JM
1122 NOTES
1123
1124 Note that we need to call struct_type regardless of whether or not
1125 the DIE has an at_name attribute, since it might be an anonymous
1126 structure or union. This gets the type entered into our set of
1127 user defined types.
1128
1129 However, if the structure is incomplete (an opaque struct/union)
1130 then suppress creating a symbol table entry for it since gdb only
1131 wants to find the one with the complete definition. Note that if
1132 it is complete, we just call new_symbol, which does it's own
1133 checking about whether the struct/union is anonymous or not (and
1134 suppresses creating a symbol table entry itself).
c906108c 1135
c906108c
SS
1136 */
1137
1138static void
fba45db2
KB
1139read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1140 struct objfile *objfile)
c906108c
SS
1141{
1142 struct type *type;
1143 struct symbol *sym;
c5aa993b 1144
c906108c 1145 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1146 if (!TYPE_STUB (type))
c906108c
SS
1147 {
1148 sym = new_symbol (dip, objfile);
1149 if (sym != NULL)
1150 {
1151 SYMBOL_TYPE (sym) = type;
1152 if (cu_language == language_cplus)
1153 {
1154 synthesize_typedef (dip, objfile, type);
1155 }
1156 }
1157 }
1158}
1159
1160/*
1161
c5aa993b 1162 LOCAL FUNCTION
c906108c 1163
c5aa993b 1164 decode_array_element_type -- decode type of the array elements
c906108c 1165
c5aa993b 1166 SYNOPSIS
c906108c 1167
c5aa993b 1168 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1169
c5aa993b 1170 DESCRIPTION
c906108c 1171
c5aa993b
JM
1172 As the last step in decoding the array subscript information for an
1173 array DIE, we need to decode the type of the array elements. We are
1174 passed a pointer to this last part of the subscript information and
1175 must return the appropriate type. If the type attribute is not
1176 recognized, just warn about the problem and return type int.
c906108c
SS
1177 */
1178
1179static struct type *
fba45db2 1180decode_array_element_type (char *scan)
c906108c
SS
1181{
1182 struct type *typep;
1183 DIE_REF die_ref;
1184 unsigned short attribute;
1185 unsigned short fundtype;
1186 int nbytes;
c5aa993b 1187
c906108c
SS
1188 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1189 current_objfile);
1190 scan += SIZEOF_ATTRIBUTE;
1191 if ((nbytes = attribute_size (attribute)) == -1)
1192 {
1193 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1194 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1195 }
1196 else
1197 {
1198 switch (attribute)
1199 {
c5aa993b
JM
1200 case AT_fund_type:
1201 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1202 current_objfile);
1203 typep = decode_fund_type (fundtype);
1204 break;
1205 case AT_mod_fund_type:
1206 typep = decode_mod_fund_type (scan);
1207 break;
1208 case AT_user_def_type:
1209 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1210 current_objfile);
1211 if ((typep = lookup_utype (die_ref)) == NULL)
1212 {
1213 typep = alloc_utype (die_ref, NULL);
1214 }
1215 break;
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1218 break;
1219 default:
1220 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1222 break;
1223 }
c906108c
SS
1224 }
1225 return (typep);
1226}
1227
1228/*
1229
c5aa993b 1230 LOCAL FUNCTION
c906108c 1231
c5aa993b 1232 decode_subscript_data_item -- decode array subscript item
c906108c 1233
c5aa993b 1234 SYNOPSIS
c906108c 1235
c5aa993b
JM
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
c906108c 1238
c5aa993b 1239 DESCRIPTION
c906108c 1240
c5aa993b
JM
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1247 etc).
c906108c 1248
c5aa993b
JM
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
c906108c 1253
c5aa993b
JM
1254 The last data item is the description of the type of each of
1255 the array elements.
c906108c 1256
c5aa993b
JM
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
c906108c 1261
c5aa993b
JM
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
c906108c 1264
c5aa993b
JM
1265 BUGS
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
c906108c 1268
c5aa993b
JM
1269 The end pointer is supplied for error checking, maybe we should
1270 use it for that...
c906108c
SS
1271 */
1272
1273static struct type *
fba45db2 1274decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1275{
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1284 int nbytes;
c5aa993b 1285
c906108c
SS
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1287 current_objfile);
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1289 switch (format)
1290 {
1291 case FMT_ET:
1292 typep = decode_array_element_type (scan);
1293 break;
1294 case FMT_FT_C_C:
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1296 current_objfile);
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1301 scan += nbytes;
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1303 scan += nbytes;
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1306 {
1307 /* Munged subscript data or other problem, fake it. */
1308 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1309 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1310 }
1311 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1312 lowbound, highbound);
c906108c
SS
1313 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1314 break;
1315 case FMT_FT_C_X:
1316 case FMT_FT_X_C:
1317 case FMT_FT_X_X:
1318 case FMT_UT_C_C:
1319 case FMT_UT_C_X:
1320 case FMT_UT_X_C:
1321 case FMT_UT_X_X:
1322 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1323 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1324 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1325 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1326 break;
1327 default:
1328 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1329 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1330 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1331 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1332 break;
1333 }
1334 return (typep);
1335}
1336
1337/*
1338
c5aa993b 1339 LOCAL FUNCTION
c906108c 1340
c5aa993b 1341 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1342
c5aa993b 1343 SYNOPSIS
c906108c 1344
c5aa993b 1345 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1346
c5aa993b 1347 DESCRIPTION
c906108c 1348
c5aa993b
JM
1349 Extract all information from a TAG_array_type DIE and add to
1350 the user defined type vector.
c906108c
SS
1351 */
1352
1353static void
fba45db2 1354dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1355{
1356 struct type *type;
1357 struct type *utype;
1358 char *sub;
1359 char *subend;
1360 unsigned short blocksz;
1361 int nbytes;
c5aa993b
JM
1362
1363 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1364 {
1365 /* FIXME: Can gdb even handle column major arrays? */
1366 complain (&not_row_major, DIE_ID, DIE_NAME);
1367 }
c5aa993b 1368 if ((sub = dip->at_subscr_data) != NULL)
c906108c
SS
1369 {
1370 nbytes = attribute_size (AT_subscr_data);
1371 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1372 subend = sub + nbytes + blocksz;
1373 sub += nbytes;
1374 type = decode_subscript_data_item (sub, subend);
c5aa993b 1375 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1376 {
1377 /* Install user defined type that has not been referenced yet. */
c5aa993b 1378 alloc_utype (dip->die_ref, type);
c906108c
SS
1379 }
1380 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1381 {
1382 /* Ick! A forward ref has already generated a blank type in our
1383 slot, and this type probably already has things pointing to it
1384 (which is what caused it to be created in the first place).
1385 If it's just a place holder we can plop our fully defined type
1386 on top of it. We can't recover the space allocated for our
1387 new type since it might be on an obstack, but we could reuse
1388 it if we kept a list of them, but it might not be worth it
1389 (FIXME). */
1390 *utype = *type;
1391 }
1392 else
1393 {
1394 /* Double ick! Not only is a type already in our slot, but
1395 someone has decorated it. Complain and leave it alone. */
1396 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1397 }
1398 }
1399}
1400
1401/*
1402
c5aa993b 1403 LOCAL FUNCTION
c906108c 1404
c5aa993b 1405 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1406
c5aa993b 1407 SYNOPSIS
c906108c 1408
c5aa993b 1409 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1410
c5aa993b 1411 DESCRIPTION
c906108c 1412
c5aa993b
JM
1413 Extract all information from a TAG_pointer_type DIE and add to
1414 the user defined type vector.
c906108c
SS
1415 */
1416
1417static void
fba45db2 1418read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1419{
1420 struct type *type;
1421 struct type *utype;
c5aa993b 1422
c906108c 1423 type = decode_die_type (dip);
c5aa993b 1424 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1425 {
1426 utype = lookup_pointer_type (type);
c5aa993b 1427 alloc_utype (dip->die_ref, utype);
c906108c
SS
1428 }
1429 else
1430 {
1431 TYPE_TARGET_TYPE (utype) = type;
1432 TYPE_POINTER_TYPE (type) = utype;
1433
1434 /* We assume the machine has only one representation for pointers! */
1435 /* FIXME: Possably a poor assumption */
c5aa993b 1436 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1437 TYPE_CODE (utype) = TYPE_CODE_PTR;
1438 }
1439}
1440
1441/*
1442
c5aa993b 1443 LOCAL FUNCTION
c906108c 1444
c5aa993b 1445 read_tag_string_type -- read TAG_string_type DIE
c906108c 1446
c5aa993b 1447 SYNOPSIS
c906108c 1448
c5aa993b 1449 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1450
c5aa993b 1451 DESCRIPTION
c906108c 1452
c5aa993b
JM
1453 Extract all information from a TAG_string_type DIE and add to
1454 the user defined type vector. It isn't really a user defined
1455 type, but it behaves like one, with other DIE's using an
1456 AT_user_def_type attribute to reference it.
c906108c
SS
1457 */
1458
1459static void
fba45db2 1460read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1461{
1462 struct type *utype;
1463 struct type *indextype;
1464 struct type *rangetype;
1465 unsigned long lowbound = 0;
1466 unsigned long highbound;
1467
c5aa993b 1468 if (dip->has_at_byte_size)
c906108c
SS
1469 {
1470 /* A fixed bounds string */
c5aa993b 1471 highbound = dip->at_byte_size - 1;
c906108c
SS
1472 }
1473 else
1474 {
1475 /* A varying length string. Stub for now. (FIXME) */
1476 highbound = 1;
1477 }
1478 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1479 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1480 highbound);
c5aa993b
JM
1481
1482 utype = lookup_utype (dip->die_ref);
c906108c
SS
1483 if (utype == NULL)
1484 {
1485 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1486 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1487 }
1488 else
1489 {
1490 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1491 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1492 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1493 {
1494 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1495 return;
1496 }
1497 }
1498
1499 /* Create the string type using the blank type we either found or created. */
1500 utype = create_string_type (utype, rangetype);
1501}
1502
1503/*
1504
c5aa993b 1505 LOCAL FUNCTION
c906108c 1506
c5aa993b 1507 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1508
c5aa993b 1509 SYNOPSIS
c906108c 1510
c5aa993b
JM
1511 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1512 char *enddie)
c906108c 1513
c5aa993b 1514 DESCRIPTION
c906108c 1515
c5aa993b 1516 Handle DIES due to C code like:
c906108c 1517
c5aa993b
JM
1518 struct foo {
1519 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1520 int b;
1521 };
c906108c 1522
c5aa993b 1523 NOTES
c906108c 1524
c5aa993b
JM
1525 The parameter DIES are currently ignored. See if gdb has a way to
1526 include this info in it's type system, and decode them if so. Is
1527 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1528 */
1529
1530static void
fba45db2 1531read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1532{
1533 struct type *type; /* Type that this function returns */
1534 struct type *ftype; /* Function that returns above type */
c5aa993b 1535
c906108c
SS
1536 /* Decode the type that this subroutine returns */
1537
1538 type = decode_die_type (dip);
1539
1540 /* Check to see if we already have a partially constructed user
1541 defined type for this DIE, from a forward reference. */
1542
c5aa993b 1543 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1544 {
1545 /* This is the first reference to one of these types. Make
c5aa993b 1546 a new one and place it in the user defined types. */
c906108c 1547 ftype = lookup_function_type (type);
c5aa993b 1548 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1549 }
1550 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1551 {
1552 /* We have an existing partially constructed type, so bash it
c5aa993b 1553 into the correct type. */
c906108c
SS
1554 TYPE_TARGET_TYPE (ftype) = type;
1555 TYPE_LENGTH (ftype) = 1;
1556 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1557 }
1558 else
1559 {
1560 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1561 }
1562}
1563
1564/*
1565
c5aa993b 1566 LOCAL FUNCTION
c906108c 1567
c5aa993b 1568 read_enumeration -- process dies which define an enumeration
c906108c 1569
c5aa993b 1570 SYNOPSIS
c906108c 1571
c5aa993b
JM
1572 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1573 char *enddie, struct objfile *objfile)
c906108c 1574
c5aa993b 1575 DESCRIPTION
c906108c 1576
c5aa993b
JM
1577 Given a pointer to a die which begins an enumeration, process all
1578 the dies that define the members of the enumeration.
c906108c 1579
c5aa993b 1580 NOTES
c906108c 1581
c5aa993b
JM
1582 Note that we need to call enum_type regardless of whether or not we
1583 have a symbol, since we might have an enum without a tag name (thus
1584 no symbol for the tagname).
c906108c
SS
1585 */
1586
1587static void
fba45db2
KB
1588read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1589 struct objfile *objfile)
c906108c
SS
1590{
1591 struct type *type;
1592 struct symbol *sym;
c5aa993b 1593
c906108c
SS
1594 type = enum_type (dip, objfile);
1595 sym = new_symbol (dip, objfile);
1596 if (sym != NULL)
1597 {
1598 SYMBOL_TYPE (sym) = type;
1599 if (cu_language == language_cplus)
1600 {
1601 synthesize_typedef (dip, objfile, type);
1602 }
1603 }
1604}
1605
1606/*
1607
c5aa993b 1608 LOCAL FUNCTION
c906108c 1609
c5aa993b 1610 enum_type -- decode and return a type for an enumeration
c906108c 1611
c5aa993b 1612 SYNOPSIS
c906108c 1613
c5aa993b 1614 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1615
c5aa993b 1616 DESCRIPTION
c906108c 1617
c5aa993b
JM
1618 Given a pointer to a die information structure for the die which
1619 starts an enumeration, process all the dies that define the members
1620 of the enumeration and return a type pointer for the enumeration.
c906108c 1621
c5aa993b
JM
1622 At the same time, for each member of the enumeration, create a
1623 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1624 and give it the type of the enumeration itself.
c906108c 1625
c5aa993b 1626 NOTES
c906108c 1627
c5aa993b
JM
1628 Note that the DWARF specification explicitly mandates that enum
1629 constants occur in reverse order from the source program order,
1630 for "consistency" and because this ordering is easier for many
1631 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1632 Entries). Because gdb wants to see the enum members in program
1633 source order, we have to ensure that the order gets reversed while
1634 we are processing them.
c906108c
SS
1635 */
1636
1637static struct type *
fba45db2 1638enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1639{
1640 struct type *type;
c5aa993b
JM
1641 struct nextfield
1642 {
1643 struct nextfield *next;
1644 struct field field;
1645 };
c906108c
SS
1646 struct nextfield *list = NULL;
1647 struct nextfield *new;
1648 int nfields = 0;
1649 int n;
1650 char *scan;
1651 char *listend;
1652 unsigned short blocksz;
1653 struct symbol *sym;
1654 int nbytes;
1655 int unsigned_enum = 1;
c5aa993b
JM
1656
1657 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1658 {
1659 /* No forward references created an empty type, so install one now */
c5aa993b 1660 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1661 }
1662 TYPE_CODE (type) = TYPE_CODE_ENUM;
1663 /* Some compilers try to be helpful by inventing "fake" names for
1664 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1665 Thanks, but no thanks... */
c5aa993b
JM
1666 if (dip->at_name != NULL
1667 && *dip->at_name != '~'
1668 && *dip->at_name != '.')
c906108c 1669 {
c5aa993b
JM
1670 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1671 "", "", dip->at_name);
c906108c 1672 }
c5aa993b 1673 if (dip->at_byte_size != 0)
c906108c 1674 {
c5aa993b 1675 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1676 }
c5aa993b 1677 if ((scan = dip->at_element_list) != NULL)
c906108c 1678 {
c5aa993b 1679 if (dip->short_element_list)
c906108c
SS
1680 {
1681 nbytes = attribute_size (AT_short_element_list);
1682 }
1683 else
1684 {
1685 nbytes = attribute_size (AT_element_list);
1686 }
1687 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1688 listend = scan + nbytes + blocksz;
1689 scan += nbytes;
1690 while (scan < listend)
1691 {
1692 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1693 new->next = list;
c906108c
SS
1694 list = new;
1695 FIELD_TYPE (list->field) = NULL;
1696 FIELD_BITSIZE (list->field) = 0;
1697 FIELD_BITPOS (list->field) =
1698 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1699 objfile);
1700 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1701 list->field.name = obsavestring (scan, strlen (scan),
1702 &objfile->type_obstack);
c906108c
SS
1703 scan += strlen (scan) + 1;
1704 nfields++;
1705 /* Handcraft a new symbol for this enum member. */
1706 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1707 sizeof (struct symbol));
1708 memset (sym, 0, sizeof (struct symbol));
c5aa993b 1709 SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1710 &objfile->symbol_obstack);
1711 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1712 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1713 SYMBOL_CLASS (sym) = LOC_CONST;
1714 SYMBOL_TYPE (sym) = type;
1715 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1716 if (SYMBOL_VALUE (sym) < 0)
1717 unsigned_enum = 0;
1718 add_symbol_to_list (sym, list_in_scope);
1719 }
1720 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1721 where we reverse the order, by pulling the members off the list in
1722 reverse order from how they were inserted. If we have no fields
1723 (this is apparently possible in C++) then skip building a field
1724 vector. */
c906108c
SS
1725 if (nfields > 0)
1726 {
1727 if (unsigned_enum)
1728 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1729 TYPE_NFIELDS (type) = nfields;
1730 TYPE_FIELDS (type) = (struct field *)
1731 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1732 /* Copy the saved-up fields into the field vector. */
c5aa993b 1733 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1734 {
c5aa993b
JM
1735 TYPE_FIELD (type, n++) = list->field;
1736 }
c906108c
SS
1737 }
1738 }
1739 return (type);
1740}
1741
1742/*
1743
c5aa993b 1744 LOCAL FUNCTION
c906108c 1745
c5aa993b 1746 read_func_scope -- process all dies within a function scope
c906108c 1747
c5aa993b 1748 DESCRIPTION
c906108c 1749
c5aa993b
JM
1750 Process all dies within a given function scope. We are passed
1751 a die information structure pointer DIP for the die which
1752 starts the function scope, and pointers into the raw die data
1753 that define the dies within the function scope.
1754
1755 For now, we ignore lexical block scopes within the function.
1756 The problem is that AT&T cc does not define a DWARF lexical
1757 block scope for the function itself, while gcc defines a
1758 lexical block scope for the function. We need to think about
1759 how to handle this difference, or if it is even a problem.
1760 (FIXME)
c906108c
SS
1761 */
1762
1763static void
fba45db2
KB
1764read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1765 struct objfile *objfile)
c906108c
SS
1766{
1767 register struct context_stack *new;
c5aa993b 1768
c906108c
SS
1769 /* AT_name is absent if the function is described with an
1770 AT_abstract_origin tag.
1771 Ignore the function description for now to avoid GDB core dumps.
1772 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1773 if (dip->at_name == NULL)
c906108c
SS
1774 {
1775 complain (&missing_at_name, DIE_ID);
1776 return;
1777 }
1778
c5aa993b
JM
1779 if (objfile->ei.entry_point >= dip->at_low_pc &&
1780 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1781 {
c5aa993b
JM
1782 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1783 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1784 }
c5aa993b
JM
1785 new = push_context (0, dip->at_low_pc);
1786 new->name = new_symbol (dip, objfile);
c906108c 1787 list_in_scope = &local_symbols;
c5aa993b 1788 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1789 new = pop_context ();
1790 /* Make a block for the local symbols within. */
c5aa993b
JM
1791 finish_block (new->name, &local_symbols, new->old_blocks,
1792 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1793 list_in_scope = &file_symbols;
1794}
1795
1796
1797/*
1798
c5aa993b 1799 LOCAL FUNCTION
c906108c 1800
c5aa993b 1801 handle_producer -- process the AT_producer attribute
c906108c 1802
c5aa993b 1803 DESCRIPTION
c906108c 1804
c5aa993b
JM
1805 Perform any operations that depend on finding a particular
1806 AT_producer attribute.
c906108c
SS
1807
1808 */
1809
1810static void
fba45db2 1811handle_producer (char *producer)
c906108c
SS
1812{
1813
1814 /* If this compilation unit was compiled with g++ or gcc, then set the
1815 processing_gcc_compilation flag. */
1816
1817 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1818 {
1819 char version = producer[strlen (GCC_PRODUCER)];
1820 processing_gcc_compilation = (version == '2' ? 2 : 1);
1821 }
1822 else
1823 {
1824 processing_gcc_compilation =
db034ac5
AC
1825 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
1826 /* OBSOLETE || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); */
c906108c
SS
1827 }
1828
1829 /* Select a demangling style if we can identify the producer and if
1830 the current style is auto. We leave the current style alone if it
1831 is not auto. We also leave the demangling style alone if we find a
1832 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1833
1834 if (AUTO_DEMANGLING)
1835 {
1836 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1837 {
8052a17a
JM
1838#if 0
1839 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1840 know whether it will use the old style or v3 mangling. */
c906108c 1841 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1842#endif
c906108c
SS
1843 }
1844 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1845 {
1846 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1847 }
1848 }
1849}
1850
1851
1852/*
1853
c5aa993b 1854 LOCAL FUNCTION
c906108c 1855
c5aa993b 1856 read_file_scope -- process all dies within a file scope
c906108c 1857
c5aa993b
JM
1858 DESCRIPTION
1859
1860 Process all dies within a given file scope. We are passed a
1861 pointer to the die information structure for the die which
1862 starts the file scope, and pointers into the raw die data which
1863 mark the range of dies within the file scope.
c906108c 1864
c5aa993b
JM
1865 When the partial symbol table is built, the file offset for the line
1866 number table for each compilation unit is saved in the partial symbol
1867 table entry for that compilation unit. As the symbols for each
1868 compilation unit are read, the line number table is read into memory
1869 and the variable lnbase is set to point to it. Thus all we have to
1870 do is use lnbase to access the line number table for the current
1871 compilation unit.
c906108c
SS
1872 */
1873
1874static void
fba45db2
KB
1875read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1876 struct objfile *objfile)
c906108c
SS
1877{
1878 struct cleanup *back_to;
1879 struct symtab *symtab;
c5aa993b
JM
1880
1881 if (objfile->ei.entry_point >= dip->at_low_pc &&
1882 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1883 {
c5aa993b
JM
1884 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1885 objfile->ei.entry_file_highpc = dip->at_high_pc;
c906108c
SS
1886 }
1887 set_cu_language (dip);
c5aa993b 1888 if (dip->at_producer != NULL)
c906108c 1889 {
c5aa993b 1890 handle_producer (dip->at_producer);
c906108c
SS
1891 }
1892 numutypes = (enddie - thisdie) / 4;
1893 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1894 back_to = make_cleanup (free_utypes, NULL);
1895 memset (utypes, 0, numutypes * sizeof (struct type *));
1896 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1897 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1898 record_debugformat ("DWARF 1");
1899 decode_line_numbers (lnbase);
c5aa993b 1900 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1901
c5aa993b 1902 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1903 if (symtab != NULL)
1904 {
c5aa993b
JM
1905 symtab->language = cu_language;
1906 }
c906108c
SS
1907 do_cleanups (back_to);
1908}
1909
1910/*
1911
c5aa993b 1912 LOCAL FUNCTION
c906108c 1913
c5aa993b 1914 process_dies -- process a range of DWARF Information Entries
c906108c 1915
c5aa993b 1916 SYNOPSIS
c906108c 1917
c5aa993b
JM
1918 static void process_dies (char *thisdie, char *enddie,
1919 struct objfile *objfile)
c906108c 1920
c5aa993b 1921 DESCRIPTION
c906108c 1922
c5aa993b
JM
1923 Process all DIE's in a specified range. May be (and almost
1924 certainly will be) called recursively.
c906108c
SS
1925 */
1926
1927static void
fba45db2 1928process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1929{
1930 char *nextdie;
1931 struct dieinfo di;
c5aa993b 1932
c906108c
SS
1933 while (thisdie < enddie)
1934 {
1935 basicdieinfo (&di, thisdie, objfile);
1936 if (di.die_length < SIZEOF_DIE_LENGTH)
1937 {
1938 break;
1939 }
1940 else if (di.die_tag == TAG_padding)
1941 {
1942 nextdie = thisdie + di.die_length;
1943 }
1944 else
1945 {
1946 completedieinfo (&di, objfile);
1947 if (di.at_sibling != 0)
1948 {
1949 nextdie = dbbase + di.at_sibling - dbroff;
1950 }
1951 else
1952 {
1953 nextdie = thisdie + di.die_length;
1954 }
c906108c 1955 /* I think that these are always text, not data, addresses. */
181c1381
RE
1956 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1957 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1958 switch (di.die_tag)
1959 {
1960 case TAG_compile_unit:
1961 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1962 unit, we are unable to handle nested compilation units
1963 properly (FIXME). */
c906108c
SS
1964 if (current_subfile == NULL)
1965 read_file_scope (&di, thisdie, nextdie, objfile);
1966 else
1967 nextdie = thisdie + di.die_length;
1968 break;
1969 case TAG_global_subroutine:
1970 case TAG_subroutine:
1971 if (di.has_at_low_pc)
1972 {
1973 read_func_scope (&di, thisdie, nextdie, objfile);
1974 }
1975 break;
1976 case TAG_lexical_block:
1977 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1978 break;
1979 case TAG_class_type:
1980 case TAG_structure_type:
1981 case TAG_union_type:
1982 read_structure_scope (&di, thisdie, nextdie, objfile);
1983 break;
1984 case TAG_enumeration_type:
1985 read_enumeration (&di, thisdie, nextdie, objfile);
1986 break;
1987 case TAG_subroutine_type:
1988 read_subroutine_type (&di, thisdie, nextdie);
1989 break;
1990 case TAG_array_type:
1991 dwarf_read_array_type (&di);
1992 break;
1993 case TAG_pointer_type:
1994 read_tag_pointer_type (&di);
1995 break;
1996 case TAG_string_type:
1997 read_tag_string_type (&di);
1998 break;
1999 default:
2000 new_symbol (&di, objfile);
2001 break;
2002 }
2003 }
2004 thisdie = nextdie;
2005 }
2006}
2007
2008/*
2009
c5aa993b 2010 LOCAL FUNCTION
c906108c 2011
c5aa993b 2012 decode_line_numbers -- decode a line number table fragment
c906108c 2013
c5aa993b 2014 SYNOPSIS
c906108c 2015
c5aa993b
JM
2016 static void decode_line_numbers (char *tblscan, char *tblend,
2017 long length, long base, long line, long pc)
c906108c 2018
c5aa993b 2019 DESCRIPTION
c906108c 2020
c5aa993b 2021 Translate the DWARF line number information to gdb form.
c906108c 2022
c5aa993b
JM
2023 The ".line" section contains one or more line number tables, one for
2024 each ".line" section from the objects that were linked.
c906108c 2025
c5aa993b
JM
2026 The AT_stmt_list attribute for each TAG_source_file entry in the
2027 ".debug" section contains the offset into the ".line" section for the
2028 start of the table for that file.
c906108c 2029
c5aa993b 2030 The table itself has the following structure:
c906108c 2031
c5aa993b
JM
2032 <table length><base address><source statement entry>
2033 4 bytes 4 bytes 10 bytes
c906108c 2034
c5aa993b
JM
2035 The table length is the total size of the table, including the 4 bytes
2036 for the length information.
c906108c 2037
c5aa993b
JM
2038 The base address is the address of the first instruction generated
2039 for the source file.
c906108c 2040
c5aa993b 2041 Each source statement entry has the following structure:
c906108c 2042
c5aa993b
JM
2043 <line number><statement position><address delta>
2044 4 bytes 2 bytes 4 bytes
c906108c 2045
c5aa993b
JM
2046 The line number is relative to the start of the file, starting with
2047 line 1.
c906108c 2048
c5aa993b
JM
2049 The statement position either -1 (0xFFFF) or the number of characters
2050 from the beginning of the line to the beginning of the statement.
c906108c 2051
c5aa993b
JM
2052 The address delta is the difference between the base address and
2053 the address of the first instruction for the statement.
c906108c 2054
c5aa993b
JM
2055 Note that we must copy the bytes from the packed table to our local
2056 variables before attempting to use them, to avoid alignment problems
2057 on some machines, particularly RISC processors.
c906108c 2058
c5aa993b 2059 BUGS
c906108c 2060
c5aa993b
JM
2061 Does gdb expect the line numbers to be sorted? They are now by
2062 chance/luck, but are not required to be. (FIXME)
c906108c 2063
c5aa993b
JM
2064 The line with number 0 is unused, gdb apparently can discover the
2065 span of the last line some other way. How? (FIXME)
c906108c
SS
2066 */
2067
2068static void
fba45db2 2069decode_line_numbers (char *linetable)
c906108c
SS
2070{
2071 char *tblscan;
2072 char *tblend;
2073 unsigned long length;
2074 unsigned long base;
2075 unsigned long line;
2076 unsigned long pc;
c5aa993b 2077
c906108c
SS
2078 if (linetable != NULL)
2079 {
2080 tblscan = tblend = linetable;
2081 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2082 current_objfile);
2083 tblscan += SIZEOF_LINETBL_LENGTH;
2084 tblend += length;
2085 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2086 GET_UNSIGNED, current_objfile);
2087 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2088 base += baseaddr;
2089 while (tblscan < tblend)
2090 {
2091 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2092 current_objfile);
2093 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2094 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2095 current_objfile);
2096 tblscan += SIZEOF_LINETBL_DELTA;
2097 pc += base;
2098 if (line != 0)
2099 {
2100 record_line (current_subfile, line, pc);
2101 }
2102 }
2103 }
2104}
2105
2106/*
2107
c5aa993b 2108 LOCAL FUNCTION
c906108c 2109
c5aa993b 2110 locval -- compute the value of a location attribute
c906108c 2111
c5aa993b 2112 SYNOPSIS
c906108c 2113
c5aa993b 2114 static int locval (struct dieinfo *dip)
c906108c 2115
c5aa993b 2116 DESCRIPTION
c906108c 2117
c5aa993b
JM
2118 Given pointer to a string of bytes that define a location, compute
2119 the location and return the value.
2120 A location description containing no atoms indicates that the
2121 object is optimized out. The optimized_out flag is set for those,
2122 the return value is meaningless.
c906108c 2123
c5aa993b
JM
2124 When computing values involving the current value of the frame pointer,
2125 the value zero is used, which results in a value relative to the frame
2126 pointer, rather than the absolute value. This is what GDB wants
2127 anyway.
c906108c 2128
c5aa993b
JM
2129 When the result is a register number, the isreg flag is set, otherwise
2130 it is cleared. This is a kludge until we figure out a better
2131 way to handle the problem. Gdb's design does not mesh well with the
2132 DWARF notion of a location computing interpreter, which is a shame
2133 because the flexibility goes unused.
2134
2135 NOTES
2136
2137 Note that stack[0] is unused except as a default error return.
2138 Note that stack overflow is not yet handled.
c906108c
SS
2139 */
2140
2141static int
fba45db2 2142locval (struct dieinfo *dip)
c906108c
SS
2143{
2144 unsigned short nbytes;
2145 unsigned short locsize;
2146 auto long stack[64];
2147 int stacki;
2148 char *loc;
2149 char *end;
2150 int loc_atom_code;
2151 int loc_value_size;
c5aa993b
JM
2152
2153 loc = dip->at_location;
c906108c
SS
2154 nbytes = attribute_size (AT_location);
2155 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2156 loc += nbytes;
2157 end = loc + locsize;
2158 stacki = 0;
2159 stack[stacki] = 0;
c5aa993b
JM
2160 dip->isreg = 0;
2161 dip->offreg = 0;
2162 dip->optimized_out = 1;
c906108c
SS
2163 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2164 while (loc < end)
2165 {
c5aa993b 2166 dip->optimized_out = 0;
c906108c
SS
2167 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2168 current_objfile);
2169 loc += SIZEOF_LOC_ATOM_CODE;
2170 switch (loc_atom_code)
2171 {
c5aa993b
JM
2172 case 0:
2173 /* error */
2174 loc = end;
2175 break;
2176 case OP_REG:
2177 /* push register (number) */
2178 stack[++stacki]
2179 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2180 GET_UNSIGNED,
2181 current_objfile));
2182 loc += loc_value_size;
2183 dip->isreg = 1;
2184 break;
2185 case OP_BASEREG:
2186 /* push value of register (number) */
2187 /* Actually, we compute the value as if register has 0, so the
2188 value ends up being the offset from that register. */
2189 dip->offreg = 1;
2190 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2191 current_objfile);
2192 loc += loc_value_size;
2193 stack[++stacki] = 0;
2194 break;
2195 case OP_ADDR:
2196 /* push address (relocated address) */
2197 stack[++stacki] = target_to_host (loc, loc_value_size,
2198 GET_UNSIGNED, current_objfile);
2199 loc += loc_value_size;
2200 break;
2201 case OP_CONST:
2202 /* push constant (number) FIXME: signed or unsigned! */
2203 stack[++stacki] = target_to_host (loc, loc_value_size,
2204 GET_SIGNED, current_objfile);
2205 loc += loc_value_size;
2206 break;
2207 case OP_DEREF2:
2208 /* pop, deref and push 2 bytes (as a long) */
2209 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2210 break;
2211 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2212 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2213 break;
2214 case OP_ADD: /* pop top 2 items, add, push result */
2215 stack[stacki - 1] += stack[stacki];
2216 stacki--;
2217 break;
c906108c
SS
2218 }
2219 }
2220 return (stack[stacki]);
2221}
2222
2223/*
2224
c5aa993b 2225 LOCAL FUNCTION
c906108c 2226
c5aa993b 2227 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2228
c5aa993b 2229 SYNOPSIS
c906108c 2230
c5aa993b 2231 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2232
c5aa993b 2233 DESCRIPTION
c906108c 2234
c5aa993b
JM
2235 When expanding a partial symbol table entry to a full symbol table
2236 entry, this is the function that gets called to read in the symbols
2237 for the compilation unit. A pointer to the newly constructed symtab,
2238 which is now the new first one on the objfile's symtab list, is
2239 stashed in the partial symbol table entry.
c906108c
SS
2240 */
2241
2242static void
fba45db2 2243read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2244{
2245 struct cleanup *back_to;
2246 unsigned long lnsize;
2247 file_ptr foffset;
2248 bfd *abfd;
2249 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2250
c5aa993b
JM
2251 abfd = pst->objfile->obfd;
2252 current_objfile = pst->objfile;
c906108c
SS
2253
2254 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2255 unit, seek to the location in the file, and read in all the DIE's. */
2256
2257 diecount = 0;
2258 dbsize = DBLENGTH (pst);
2259 dbbase = xmalloc (dbsize);
c5aa993b
JM
2260 dbroff = DBROFF (pst);
2261 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2262 base_section_offsets = pst->section_offsets;
2263 baseaddr = ANOFFSET (pst->section_offsets, 0);
2264 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2265 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2266 {
b8c9b27d 2267 xfree (dbbase);
c906108c
SS
2268 error ("can't read DWARF data");
2269 }
b8c9b27d 2270 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2271
2272 /* If there is a line number table associated with this compilation unit
2273 then read the size of this fragment in bytes, from the fragment itself.
2274 Allocate a buffer for the fragment and read it in for future
2275 processing. */
2276
2277 lnbase = NULL;
2278 if (LNFOFF (pst))
2279 {
2280 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0
AM
2281 (bfd_bread ((PTR) lnsizedata, sizeof (lnsizedata), abfd)
2282 != sizeof (lnsizedata)))
c906108c
SS
2283 {
2284 error ("can't read DWARF line number table size");
2285 }
2286 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2287 GET_UNSIGNED, pst->objfile);
c906108c
SS
2288 lnbase = xmalloc (lnsize);
2289 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2290 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2291 {
b8c9b27d 2292 xfree (lnbase);
c906108c
SS
2293 error ("can't read DWARF line numbers");
2294 }
b8c9b27d 2295 make_cleanup (xfree, lnbase);
c906108c
SS
2296 }
2297
c5aa993b 2298 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2299 do_cleanups (back_to);
2300 current_objfile = NULL;
c5aa993b 2301 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2302}
2303
2304/*
2305
c5aa993b 2306 LOCAL FUNCTION
c906108c 2307
c5aa993b 2308 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2309
c5aa993b 2310 SYNOPSIS
c906108c 2311
c5aa993b 2312 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2313
c5aa993b 2314 DESCRIPTION
c906108c 2315
c5aa993b
JM
2316 Called once for each partial symbol table entry that needs to be
2317 expanded into a full symbol table entry.
c906108c 2318
c5aa993b 2319 */
c906108c
SS
2320
2321static void
fba45db2 2322psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2323{
2324 int i;
2325 struct cleanup *old_chain;
c5aa993b 2326
c906108c
SS
2327 if (pst != NULL)
2328 {
2329 if (pst->readin)
2330 {
2331 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2332 pst->filename);
c906108c
SS
2333 }
2334 else
2335 {
2336 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2337 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2338 {
c5aa993b 2339 if (!pst->dependencies[i]->readin)
c906108c
SS
2340 {
2341 /* Inform about additional files that need to be read in. */
2342 if (info_verbose)
2343 {
2344 fputs_filtered (" ", gdb_stdout);
2345 wrap_here ("");
2346 fputs_filtered ("and ", gdb_stdout);
2347 wrap_here ("");
2348 printf_filtered ("%s...",
c5aa993b 2349 pst->dependencies[i]->filename);
c906108c 2350 wrap_here ("");
c5aa993b 2351 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2352 }
c5aa993b 2353 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2354 }
c5aa993b
JM
2355 }
2356 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2357 {
2358 buildsym_init ();
a0b3c4fd 2359 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2360 read_ofile_symtab (pst);
2361 if (info_verbose)
2362 {
2363 printf_filtered ("%d DIE's, sorting...", diecount);
2364 wrap_here ("");
2365 gdb_flush (gdb_stdout);
2366 }
c5aa993b 2367 sort_symtab_syms (pst->symtab);
c906108c
SS
2368 do_cleanups (old_chain);
2369 }
c5aa993b 2370 pst->readin = 1;
c906108c
SS
2371 }
2372 }
2373}
2374
2375/*
2376
c5aa993b 2377 LOCAL FUNCTION
c906108c 2378
c5aa993b 2379 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2380
c5aa993b 2381 SYNOPSIS
c906108c 2382
c5aa993b 2383 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2384
c5aa993b 2385 DESCRIPTION
c906108c 2386
c5aa993b
JM
2387 This is the DWARF support entry point for building a full symbol
2388 table entry from a partial symbol table entry. We are passed a
2389 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2390
c5aa993b 2391 */
c906108c
SS
2392
2393static void
fba45db2 2394dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2395{
2396
2397 if (pst != NULL)
2398 {
c5aa993b 2399 if (pst->readin)
c906108c
SS
2400 {
2401 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2402 pst->filename);
c906108c
SS
2403 }
2404 else
2405 {
c5aa993b 2406 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2407 {
2408 /* Print the message now, before starting serious work, to avoid
c5aa993b 2409 disconcerting pauses. */
c906108c
SS
2410 if (info_verbose)
2411 {
2412 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2413 pst->filename);
c906108c
SS
2414 gdb_flush (gdb_stdout);
2415 }
c5aa993b 2416
c906108c 2417 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2418
2419#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2420 we need to do an equivalent or is this something peculiar to
2421 stabs/a.out format.
2422 Match with global symbols. This only needs to be done once,
2423 after all of the symtabs and dependencies have been read in.
2424 */
2425 scan_file_globals (pst->objfile);
c906108c 2426#endif
c5aa993b 2427
c906108c
SS
2428 /* Finish up the verbose info message. */
2429 if (info_verbose)
2430 {
2431 printf_filtered ("done.\n");
2432 gdb_flush (gdb_stdout);
2433 }
2434 }
2435 }
2436 }
2437}
2438
2439/*
2440
c5aa993b 2441 LOCAL FUNCTION
c906108c 2442
c5aa993b 2443 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2444
c5aa993b 2445 DESCRIPTION
c906108c 2446
c5aa993b
JM
2447 Given pointer to a DIE that is known to be for an enumeration,
2448 extract the symbolic names of the enumeration members and add
2449 partial symbols for them.
2450 */
c906108c
SS
2451
2452static void
fba45db2 2453add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2454{
2455 char *scan;
2456 char *listend;
2457 unsigned short blocksz;
2458 int nbytes;
c5aa993b
JM
2459
2460 if ((scan = dip->at_element_list) != NULL)
c906108c 2461 {
c5aa993b 2462 if (dip->short_element_list)
c906108c
SS
2463 {
2464 nbytes = attribute_size (AT_short_element_list);
2465 }
2466 else
2467 {
2468 nbytes = attribute_size (AT_element_list);
2469 }
2470 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2471 scan += nbytes;
2472 listend = scan + blocksz;
2473 while (scan < listend)
2474 {
2475 scan += TARGET_FT_LONG_SIZE (objfile);
2476 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
c5aa993b 2477 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2478 objfile);
2479 scan += strlen (scan) + 1;
2480 }
2481 }
2482}
2483
2484/*
2485
c5aa993b 2486 LOCAL FUNCTION
c906108c 2487
c5aa993b 2488 add_partial_symbol -- add symbol to partial symbol table
c906108c 2489
c5aa993b 2490 DESCRIPTION
c906108c 2491
c5aa993b
JM
2492 Given a DIE, if it is one of the types that we want to
2493 add to a partial symbol table, finish filling in the die info
2494 and then add a partial symbol table entry for it.
c906108c 2495
c5aa993b 2496 NOTES
c906108c 2497
c5aa993b
JM
2498 The caller must ensure that the DIE has a valid name attribute.
2499 */
c906108c
SS
2500
2501static void
fba45db2 2502add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2503{
c5aa993b 2504 switch (dip->die_tag)
c906108c
SS
2505 {
2506 case TAG_global_subroutine:
c5aa993b
JM
2507 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2508 VAR_NAMESPACE, LOC_BLOCK,
2509 &objfile->global_psymbols,
2510 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2511 break;
2512 case TAG_global_variable:
c5aa993b 2513 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2514 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2515 &objfile->global_psymbols,
c906108c
SS
2516 0, 0, cu_language, objfile);
2517 break;
2518 case TAG_subroutine:
c5aa993b
JM
2519 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2520 VAR_NAMESPACE, LOC_BLOCK,
2521 &objfile->static_psymbols,
2522 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2523 break;
2524 case TAG_local_variable:
c5aa993b 2525 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2526 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2527 &objfile->static_psymbols,
c906108c
SS
2528 0, 0, cu_language, objfile);
2529 break;
2530 case TAG_typedef:
c5aa993b 2531 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2532 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2533 &objfile->static_psymbols,
c906108c
SS
2534 0, 0, cu_language, objfile);
2535 break;
2536 case TAG_class_type:
2537 case TAG_structure_type:
2538 case TAG_union_type:
2539 case TAG_enumeration_type:
2540 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2541 if (!dip->has_at_byte_size)
c906108c 2542 break;
c5aa993b 2543 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2544 STRUCT_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2545 &objfile->static_psymbols,
c906108c
SS
2546 0, 0, cu_language, objfile);
2547 if (cu_language == language_cplus)
2548 {
2549 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2550 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2551 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2552 &objfile->static_psymbols,
c906108c
SS
2553 0, 0, cu_language, objfile);
2554 }
2555 break;
2556 }
2557}
9846de1b 2558/* *INDENT-OFF* */
c906108c
SS
2559/*
2560
2561LOCAL FUNCTION
2562
2563 scan_partial_symbols -- scan DIE's within a single compilation unit
2564
2565DESCRIPTION
2566
2567 Process the DIE's within a single compilation unit, looking for
2568 interesting DIE's that contribute to the partial symbol table entry
2569 for this compilation unit.
2570
2571NOTES
2572
2573 There are some DIE's that may appear both at file scope and within
2574 the scope of a function. We are only interested in the ones at file
2575 scope, and the only way to tell them apart is to keep track of the
2576 scope. For example, consider the test case:
2577
2578 static int i;
2579 main () { int j; }
2580
2581 for which the relevant DWARF segment has the structure:
2582
2583 0x51:
2584 0x23 global subrtn sibling 0x9b
2585 name main
2586 fund_type FT_integer
2587 low_pc 0x800004cc
2588 high_pc 0x800004d4
2589
2590 0x74:
2591 0x23 local var sibling 0x97
2592 name j
2593 fund_type FT_integer
2594 location OP_BASEREG 0xe
2595 OP_CONST 0xfffffffc
2596 OP_ADD
2597 0x97:
2598 0x4
2599
2600 0x9b:
2601 0x1d local var sibling 0xb8
2602 name i
2603 fund_type FT_integer
2604 location OP_ADDR 0x800025dc
2605
2606 0xb8:
2607 0x4
2608
2609 We want to include the symbol 'i' in the partial symbol table, but
2610 not the symbol 'j'. In essence, we want to skip all the dies within
2611 the scope of a TAG_global_subroutine DIE.
2612
2613 Don't attempt to add anonymous structures or unions since they have
2614 no name. Anonymous enumerations however are processed, because we
2615 want to extract their member names (the check for a tag name is
2616 done later).
2617
2618 Also, for variables and subroutines, check that this is the place
2619 where the actual definition occurs, rather than just a reference
2620 to an external.
2621 */
9846de1b 2622/* *INDENT-ON* */
c906108c 2623
c5aa993b
JM
2624
2625
c906108c 2626static void
fba45db2 2627scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2628{
2629 char *nextdie;
2630 char *temp;
2631 struct dieinfo di;
c5aa993b 2632
c906108c
SS
2633 while (thisdie < enddie)
2634 {
2635 basicdieinfo (&di, thisdie, objfile);
2636 if (di.die_length < SIZEOF_DIE_LENGTH)
2637 {
2638 break;
2639 }
2640 else
2641 {
2642 nextdie = thisdie + di.die_length;
2643 /* To avoid getting complete die information for every die, we
2644 only do it (below) for the cases we are interested in. */
2645 switch (di.die_tag)
2646 {
2647 case TAG_global_subroutine:
2648 case TAG_subroutine:
2649 completedieinfo (&di, objfile);
2650 if (di.at_name && (di.has_at_low_pc || di.at_location))
2651 {
2652 add_partial_symbol (&di, objfile);
2653 /* If there is a sibling attribute, adjust the nextdie
2654 pointer to skip the entire scope of the subroutine.
2655 Apply some sanity checking to make sure we don't
2656 overrun or underrun the range of remaining DIE's */
2657 if (di.at_sibling != 0)
2658 {
2659 temp = dbbase + di.at_sibling - dbroff;
2660 if ((temp < thisdie) || (temp >= enddie))
2661 {
2662 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2663 di.at_sibling);
2664 }
2665 else
2666 {
2667 nextdie = temp;
2668 }
2669 }
2670 }
2671 break;
2672 case TAG_global_variable:
2673 case TAG_local_variable:
2674 completedieinfo (&di, objfile);
2675 if (di.at_name && (di.has_at_low_pc || di.at_location))
2676 {
2677 add_partial_symbol (&di, objfile);
2678 }
2679 break;
2680 case TAG_typedef:
2681 case TAG_class_type:
2682 case TAG_structure_type:
2683 case TAG_union_type:
2684 completedieinfo (&di, objfile);
2685 if (di.at_name)
2686 {
2687 add_partial_symbol (&di, objfile);
2688 }
2689 break;
2690 case TAG_enumeration_type:
2691 completedieinfo (&di, objfile);
2692 if (di.at_name)
2693 {
2694 add_partial_symbol (&di, objfile);
2695 }
2696 add_enum_psymbol (&di, objfile);
2697 break;
2698 }
2699 }
2700 thisdie = nextdie;
2701 }
2702}
2703
2704/*
2705
c5aa993b 2706 LOCAL FUNCTION
c906108c 2707
c5aa993b 2708 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2709
c5aa993b 2710 DESCRIPTION
c906108c 2711
c5aa993b
JM
2712 This is the top level dwarf parsing routine for building partial
2713 symbol tables.
c906108c 2714
c5aa993b
JM
2715 It scans from the beginning of the DWARF table looking for the first
2716 TAG_compile_unit DIE, and then follows the sibling chain to locate
2717 each additional TAG_compile_unit DIE.
2718
2719 For each TAG_compile_unit DIE it creates a partial symtab structure,
2720 calls a subordinate routine to collect all the compilation unit's
2721 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2722 new partial symtab structure into the partial symbol table. It also
2723 records the appropriate information in the partial symbol table entry
2724 to allow the chunk of DIE's and line number table for this compilation
2725 unit to be located and re-read later, to generate a complete symbol
2726 table entry for the compilation unit.
2727
2728 Thus it effectively partitions up a chunk of DIE's for multiple
2729 compilation units into smaller DIE chunks and line number tables,
2730 and associates them with a partial symbol table entry.
2731
2732 NOTES
c906108c 2733
c5aa993b
JM
2734 If any compilation unit has no line number table associated with
2735 it for some reason (a missing at_stmt_list attribute, rather than
2736 just one with a value of zero, which is valid) then we ensure that
2737 the recorded file offset is zero so that the routine which later
2738 reads line number table fragments knows that there is no fragment
2739 to read.
c906108c 2740
c5aa993b 2741 RETURNS
c906108c 2742
c5aa993b 2743 Returns no value.
c906108c
SS
2744
2745 */
2746
2747static void
fba45db2
KB
2748scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2749 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2750{
2751 char *nextdie;
2752 struct dieinfo di;
2753 struct partial_symtab *pst;
2754 int culength;
2755 int curoff;
2756 file_ptr curlnoffset;
2757
2758 while (thisdie < enddie)
2759 {
2760 basicdieinfo (&di, thisdie, objfile);
2761 if (di.die_length < SIZEOF_DIE_LENGTH)
2762 {
2763 break;
2764 }
2765 else if (di.die_tag != TAG_compile_unit)
2766 {
2767 nextdie = thisdie + di.die_length;
2768 }
2769 else
2770 {
2771 completedieinfo (&di, objfile);
2772 set_cu_language (&di);
2773 if (di.at_sibling != 0)
2774 {
2775 nextdie = dbbase + di.at_sibling - dbroff;
2776 }
2777 else
2778 {
2779 nextdie = thisdie + di.die_length;
2780 }
2781 curoff = thisdie - dbbase;
2782 culength = nextdie - thisdie;
2783 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2784
2785 /* First allocate a new partial symbol table structure */
2786
2787 pst = start_psymtab_common (objfile, base_section_offsets,
2788 di.at_name, di.at_low_pc,
c5aa993b
JM
2789 objfile->global_psymbols.next,
2790 objfile->static_psymbols.next);
c906108c 2791
c5aa993b
JM
2792 pst->texthigh = di.at_high_pc;
2793 pst->read_symtab_private = (char *)
2794 obstack_alloc (&objfile->psymbol_obstack,
2795 sizeof (struct dwfinfo));
c906108c
SS
2796 DBFOFF (pst) = dbfoff;
2797 DBROFF (pst) = curoff;
2798 DBLENGTH (pst) = culength;
c5aa993b
JM
2799 LNFOFF (pst) = curlnoffset;
2800 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2801
2802 /* Now look for partial symbols */
2803
2804 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2805
c5aa993b
JM
2806 pst->n_global_syms = objfile->global_psymbols.next -
2807 (objfile->global_psymbols.list + pst->globals_offset);
2808 pst->n_static_syms = objfile->static_psymbols.next -
2809 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2810 sort_pst_symbols (pst);
2811 /* If there is already a psymtab or symtab for a file of this name,
2812 remove it. (If there is a symtab, more drastic things also
2813 happen.) This happens in VxWorks. */
c5aa993b 2814 free_named_symtabs (pst->filename);
c906108c 2815 }
c5aa993b 2816 thisdie = nextdie;
c906108c
SS
2817 }
2818}
2819
2820/*
2821
c5aa993b 2822 LOCAL FUNCTION
c906108c 2823
c5aa993b 2824 new_symbol -- make a symbol table entry for a new symbol
c906108c 2825
c5aa993b 2826 SYNOPSIS
c906108c 2827
c5aa993b
JM
2828 static struct symbol *new_symbol (struct dieinfo *dip,
2829 struct objfile *objfile)
c906108c 2830
c5aa993b 2831 DESCRIPTION
c906108c 2832
c5aa993b
JM
2833 Given a pointer to a DWARF information entry, figure out if we need
2834 to make a symbol table entry for it, and if so, create a new entry
2835 and return a pointer to it.
c906108c
SS
2836 */
2837
2838static struct symbol *
fba45db2 2839new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2840{
2841 struct symbol *sym = NULL;
c5aa993b
JM
2842
2843 if (dip->at_name != NULL)
c906108c 2844 {
c5aa993b 2845 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2846 sizeof (struct symbol));
2847 OBJSTAT (objfile, n_syms++);
2848 memset (sym, 0, sizeof (struct symbol));
c5aa993b 2849 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
2850 &objfile->symbol_obstack);
2851 /* default assumptions */
2852 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2853 SYMBOL_CLASS (sym) = LOC_STATIC;
2854 SYMBOL_TYPE (sym) = decode_die_type (dip);
2855
2856 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2857 demangled form for future reference. This is a typical time versus
2858 space tradeoff, that was decided in favor of time because it sped up
2859 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2860
2861 SYMBOL_LANGUAGE (sym) = cu_language;
c5aa993b
JM
2862 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2863 switch (dip->die_tag)
c906108c
SS
2864 {
2865 case TAG_label:
c5aa993b 2866 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2867 SYMBOL_CLASS (sym) = LOC_LABEL;
2868 break;
2869 case TAG_global_subroutine:
2870 case TAG_subroutine:
c5aa993b 2871 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2872 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2873 if (dip->at_prototyped)
c906108c
SS
2874 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2875 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2876 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2877 {
2878 add_symbol_to_list (sym, &global_symbols);
2879 }
2880 else
2881 {
2882 add_symbol_to_list (sym, list_in_scope);
2883 }
2884 break;
2885 case TAG_global_variable:
c5aa993b 2886 if (dip->at_location != NULL)
c906108c
SS
2887 {
2888 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2889 add_symbol_to_list (sym, &global_symbols);
2890 SYMBOL_CLASS (sym) = LOC_STATIC;
2891 SYMBOL_VALUE (sym) += baseaddr;
2892 }
2893 break;
2894 case TAG_local_variable:
c5aa993b 2895 if (dip->at_location != NULL)
c906108c
SS
2896 {
2897 int loc = locval (dip);
c5aa993b 2898 if (dip->optimized_out)
c906108c
SS
2899 {
2900 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2901 }
c5aa993b 2902 else if (dip->isreg)
c906108c
SS
2903 {
2904 SYMBOL_CLASS (sym) = LOC_REGISTER;
2905 }
c5aa993b 2906 else if (dip->offreg)
c906108c
SS
2907 {
2908 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2909 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2910 }
2911 else
2912 {
2913 SYMBOL_CLASS (sym) = LOC_STATIC;
2914 SYMBOL_VALUE (sym) += baseaddr;
2915 }
2916 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2917 {
2918 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2919 which may store to a bigger location than SYMBOL_VALUE. */
2920 SYMBOL_VALUE_ADDRESS (sym) = loc;
2921 }
2922 else
2923 {
2924 SYMBOL_VALUE (sym) = loc;
2925 }
2926 add_symbol_to_list (sym, list_in_scope);
2927 }
2928 break;
2929 case TAG_formal_parameter:
c5aa993b 2930 if (dip->at_location != NULL)
c906108c
SS
2931 {
2932 SYMBOL_VALUE (sym) = locval (dip);
2933 }
2934 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2935 if (dip->isreg)
c906108c
SS
2936 {
2937 SYMBOL_CLASS (sym) = LOC_REGPARM;
2938 }
c5aa993b 2939 else if (dip->offreg)
c906108c
SS
2940 {
2941 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2942 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2943 }
2944 else
2945 {
2946 SYMBOL_CLASS (sym) = LOC_ARG;
2947 }
2948 break;
2949 case TAG_unspecified_parameters:
2950 /* From varargs functions; gdb doesn't seem to have any interest in
2951 this information, so just ignore it for now. (FIXME?) */
2952 break;
2953 case TAG_class_type:
2954 case TAG_structure_type:
2955 case TAG_union_type:
2956 case TAG_enumeration_type:
2957 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2958 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2959 add_symbol_to_list (sym, list_in_scope);
2960 break;
2961 case TAG_typedef:
2962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2963 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2964 add_symbol_to_list (sym, list_in_scope);
2965 break;
2966 default:
2967 /* Not a tag we recognize. Hopefully we aren't processing trash
2968 data, but since we must specifically ignore things we don't
2969 recognize, there is nothing else we should do at this point. */
2970 break;
2971 }
2972 }
2973 return (sym);
2974}
2975
2976/*
2977
c5aa993b 2978 LOCAL FUNCTION
c906108c 2979
c5aa993b 2980 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2981
c5aa993b 2982 SYNOPSIS
c906108c 2983
c5aa993b
JM
2984 static void synthesize_typedef (struct dieinfo *dip,
2985 struct objfile *objfile,
2986 struct type *type);
c906108c 2987
c5aa993b 2988 DESCRIPTION
c906108c 2989
c5aa993b
JM
2990 Given a pointer to a DWARF information entry, synthesize a typedef
2991 for the name in the DIE, using the specified type.
c906108c 2992
c5aa993b
JM
2993 This is used for C++ class, structs, unions, and enumerations to
2994 set up the tag name as a type.
c906108c
SS
2995
2996 */
2997
2998static void
fba45db2
KB
2999synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3000 struct type *type)
c906108c
SS
3001{
3002 struct symbol *sym = NULL;
c5aa993b
JM
3003
3004 if (dip->at_name != NULL)
c906108c
SS
3005 {
3006 sym = (struct symbol *)
c5aa993b 3007 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
3008 OBJSTAT (objfile, n_syms++);
3009 memset (sym, 0, sizeof (struct symbol));
c5aa993b 3010 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
3011 &objfile->symbol_obstack);
3012 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3013 SYMBOL_TYPE (sym) = type;
3014 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3015 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3016 add_symbol_to_list (sym, list_in_scope);
3017 }
3018}
3019
3020/*
3021
c5aa993b 3022 LOCAL FUNCTION
c906108c 3023
c5aa993b 3024 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3025
c5aa993b 3026 SYNOPSIS
c906108c 3027
c5aa993b 3028 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3029
c5aa993b 3030 DESCRIPTION
c906108c 3031
c5aa993b
JM
3032 Decode a block of data containing a modified fundamental
3033 type specification. TYPEDATA is a pointer to the block,
3034 which starts with a length containing the size of the rest
3035 of the block. At the end of the block is a fundmental type
3036 code value that gives the fundamental type. Everything
3037 in between are type modifiers.
c906108c 3038
c5aa993b
JM
3039 We simply compute the number of modifiers and call the general
3040 function decode_modified_type to do the actual work.
3041 */
c906108c
SS
3042
3043static struct type *
fba45db2 3044decode_mod_fund_type (char *typedata)
c906108c
SS
3045{
3046 struct type *typep = NULL;
3047 unsigned short modcount;
3048 int nbytes;
c5aa993b 3049
c906108c
SS
3050 /* Get the total size of the block, exclusive of the size itself */
3051
3052 nbytes = attribute_size (AT_mod_fund_type);
3053 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3054 typedata += nbytes;
3055
3056 /* Deduct the size of the fundamental type bytes at the end of the block. */
3057
3058 modcount -= attribute_size (AT_fund_type);
3059
3060 /* Now do the actual decoding */
3061
3062 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3063 return (typep);
3064}
3065
3066/*
3067
c5aa993b 3068 LOCAL FUNCTION
c906108c 3069
c5aa993b 3070 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3071
c5aa993b 3072 SYNOPSIS
c906108c 3073
c5aa993b 3074 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3075
c5aa993b 3076 DESCRIPTION
c906108c 3077
c5aa993b
JM
3078 Decode a block of data containing a modified user defined
3079 type specification. TYPEDATA is a pointer to the block,
3080 which consists of a two byte length, containing the size
3081 of the rest of the block. At the end of the block is a
3082 four byte value that gives a reference to a user defined type.
3083 Everything in between are type modifiers.
c906108c 3084
c5aa993b
JM
3085 We simply compute the number of modifiers and call the general
3086 function decode_modified_type to do the actual work.
3087 */
c906108c
SS
3088
3089static struct type *
fba45db2 3090decode_mod_u_d_type (char *typedata)
c906108c
SS
3091{
3092 struct type *typep = NULL;
3093 unsigned short modcount;
3094 int nbytes;
c5aa993b 3095
c906108c
SS
3096 /* Get the total size of the block, exclusive of the size itself */
3097
3098 nbytes = attribute_size (AT_mod_u_d_type);
3099 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3100 typedata += nbytes;
3101
3102 /* Deduct the size of the reference type bytes at the end of the block. */
3103
3104 modcount -= attribute_size (AT_user_def_type);
3105
3106 /* Now do the actual decoding */
3107
3108 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3109 return (typep);
3110}
3111
3112/*
3113
c5aa993b 3114 LOCAL FUNCTION
c906108c 3115
c5aa993b 3116 decode_modified_type -- decode modified user or fundamental type
c906108c 3117
c5aa993b 3118 SYNOPSIS
c906108c 3119
c5aa993b
JM
3120 static struct type *decode_modified_type (char *modifiers,
3121 unsigned short modcount, int mtype)
c906108c 3122
c5aa993b 3123 DESCRIPTION
c906108c 3124
c5aa993b
JM
3125 Decode a modified type, either a modified fundamental type or
3126 a modified user defined type. MODIFIERS is a pointer to the
3127 block of bytes that define MODCOUNT modifiers. Immediately
3128 following the last modifier is a short containing the fundamental
3129 type or a long containing the reference to the user defined
3130 type. Which one is determined by MTYPE, which is either
3131 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3132 type we are generating.
c906108c 3133
c5aa993b
JM
3134 We call ourself recursively to generate each modified type,`
3135 until MODCOUNT reaches zero, at which point we have consumed
3136 all the modifiers and generate either the fundamental type or
3137 user defined type. When the recursion unwinds, each modifier
3138 is applied in turn to generate the full modified type.
3139
3140 NOTES
c906108c 3141
c5aa993b
JM
3142 If we find a modifier that we don't recognize, and it is not one
3143 of those reserved for application specific use, then we issue a
3144 warning and simply ignore the modifier.
c906108c 3145
c5aa993b 3146 BUGS
c906108c 3147
c5aa993b 3148 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3149
3150 */
3151
3152static struct type *
fba45db2 3153decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3154{
3155 struct type *typep = NULL;
3156 unsigned short fundtype;
3157 DIE_REF die_ref;
3158 char modifier;
3159 int nbytes;
c5aa993b 3160
c906108c
SS
3161 if (modcount == 0)
3162 {
3163 switch (mtype)
3164 {
3165 case AT_mod_fund_type:
3166 nbytes = attribute_size (AT_fund_type);
3167 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3168 current_objfile);
3169 typep = decode_fund_type (fundtype);
3170 break;
3171 case AT_mod_u_d_type:
3172 nbytes = attribute_size (AT_user_def_type);
3173 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3174 current_objfile);
3175 if ((typep = lookup_utype (die_ref)) == NULL)
3176 {
3177 typep = alloc_utype (die_ref, NULL);
3178 }
3179 break;
3180 default:
3181 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3182 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3183 break;
3184 }
3185 }
3186 else
3187 {
3188 modifier = *modifiers++;
3189 typep = decode_modified_type (modifiers, --modcount, mtype);
3190 switch (modifier)
3191 {
c5aa993b
JM
3192 case MOD_pointer_to:
3193 typep = lookup_pointer_type (typep);
3194 break;
3195 case MOD_reference_to:
3196 typep = lookup_reference_type (typep);
3197 break;
3198 case MOD_const:
3199 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3200 break;
3201 case MOD_volatile:
3202 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3203 break;
3204 default:
3205 if (!(MOD_lo_user <= (unsigned char) modifier
3206 && (unsigned char) modifier <= MOD_hi_user))
3207 {
3208 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3209 }
3210 break;
c906108c
SS
3211 }
3212 }
3213 return (typep);
3214}
3215
3216/*
3217
c5aa993b 3218 LOCAL FUNCTION
c906108c 3219
c5aa993b 3220 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3221
c5aa993b 3222 DESCRIPTION
c906108c 3223
c5aa993b
JM
3224 Given an integer that is one of the fundamental DWARF types,
3225 translate it to one of the basic internal gdb types and return
3226 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3227
c5aa993b 3228 NOTES
c906108c 3229
c5aa993b
JM
3230 For robustness, if we are asked to translate a fundamental
3231 type that we are unprepared to deal with, we return int so
3232 callers can always depend upon a valid type being returned,
3233 and so gdb may at least do something reasonable by default.
3234 If the type is not in the range of those types defined as
3235 application specific types, we also issue a warning.
3236 */
c906108c
SS
3237
3238static struct type *
fba45db2 3239decode_fund_type (unsigned int fundtype)
c906108c
SS
3240{
3241 struct type *typep = NULL;
c5aa993b 3242
c906108c
SS
3243 switch (fundtype)
3244 {
3245
3246 case FT_void:
3247 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3248 break;
c5aa993b 3249
c906108c
SS
3250 case FT_boolean: /* Was FT_set in AT&T version */
3251 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3252 break;
3253
3254 case FT_pointer: /* (void *) */
3255 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3256 typep = lookup_pointer_type (typep);
3257 break;
c5aa993b 3258
c906108c
SS
3259 case FT_char:
3260 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3261 break;
c5aa993b 3262
c906108c
SS
3263 case FT_signed_char:
3264 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3265 break;
3266
3267 case FT_unsigned_char:
3268 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3269 break;
c5aa993b 3270
c906108c
SS
3271 case FT_short:
3272 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3273 break;
3274
3275 case FT_signed_short:
3276 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3277 break;
c5aa993b 3278
c906108c
SS
3279 case FT_unsigned_short:
3280 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3281 break;
c5aa993b 3282
c906108c
SS
3283 case FT_integer:
3284 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3285 break;
3286
3287 case FT_signed_integer:
3288 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3289 break;
c5aa993b 3290
c906108c
SS
3291 case FT_unsigned_integer:
3292 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3293 break;
c5aa993b 3294
c906108c
SS
3295 case FT_long:
3296 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3297 break;
3298
3299 case FT_signed_long:
3300 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3301 break;
c5aa993b 3302
c906108c
SS
3303 case FT_unsigned_long:
3304 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3305 break;
c5aa993b 3306
c906108c
SS
3307 case FT_long_long:
3308 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3309 break;
3310
3311 case FT_signed_long_long:
3312 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3313 break;
3314
3315 case FT_unsigned_long_long:
3316 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3317 break;
3318
3319 case FT_float:
3320 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3321 break;
c5aa993b 3322
c906108c
SS
3323 case FT_dbl_prec_float:
3324 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3325 break;
c5aa993b 3326
c906108c
SS
3327 case FT_ext_prec_float:
3328 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3329 break;
c5aa993b 3330
c906108c
SS
3331 case FT_complex:
3332 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3333 break;
c5aa993b 3334
c906108c
SS
3335 case FT_dbl_prec_complex:
3336 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3337 break;
c5aa993b 3338
c906108c
SS
3339 case FT_ext_prec_complex:
3340 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3341 break;
c5aa993b 3342
c906108c
SS
3343 }
3344
3345 if (typep == NULL)
3346 {
3347 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3348 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3349 {
3350 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3351 }
3352 }
c5aa993b 3353
c906108c
SS
3354 return (typep);
3355}
3356
3357/*
3358
c5aa993b 3359 LOCAL FUNCTION
c906108c 3360
c5aa993b 3361 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3362
c5aa993b 3363 DESCRIPTION
c906108c 3364
c5aa993b
JM
3365 Given a pointer to a string and a pointer to an obstack, allocates
3366 a fresh copy of the string on the specified obstack.
c906108c 3367
c5aa993b 3368 */
c906108c
SS
3369
3370static char *
fba45db2 3371create_name (char *name, struct obstack *obstackp)
c906108c
SS
3372{
3373 int length;
3374 char *newname;
3375
3376 length = strlen (name) + 1;
3377 newname = (char *) obstack_alloc (obstackp, length);
3378 strcpy (newname, name);
3379 return (newname);
3380}
3381
3382/*
3383
c5aa993b 3384 LOCAL FUNCTION
c906108c 3385
c5aa993b 3386 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3387
c5aa993b 3388 SYNOPSIS
c906108c 3389
c5aa993b
JM
3390 void basicdieinfo (char *diep, struct dieinfo *dip,
3391 struct objfile *objfile)
c906108c 3392
c5aa993b 3393 DESCRIPTION
c906108c 3394
c5aa993b
JM
3395 Given a pointer to raw DIE data, and a pointer to an instance of a
3396 die info structure, this function extracts the basic information
3397 from the DIE data required to continue processing this DIE, along
3398 with some bookkeeping information about the DIE.
c906108c 3399
c5aa993b
JM
3400 The information we absolutely must have includes the DIE tag,
3401 and the DIE length. If we need the sibling reference, then we
3402 will have to call completedieinfo() to process all the remaining
3403 DIE information.
c906108c 3404
c5aa993b
JM
3405 Note that since there is no guarantee that the data is properly
3406 aligned in memory for the type of access required (indirection
3407 through anything other than a char pointer), and there is no
3408 guarantee that it is in the same byte order as the gdb host,
3409 we call a function which deals with both alignment and byte
3410 swapping issues. Possibly inefficient, but quite portable.
c906108c 3411
c5aa993b
JM
3412 We also take care of some other basic things at this point, such
3413 as ensuring that the instance of the die info structure starts
3414 out completely zero'd and that curdie is initialized for use
3415 in error reporting if we have a problem with the current die.
c906108c 3416
c5aa993b
JM
3417 NOTES
3418
3419 All DIE's must have at least a valid length, thus the minimum
3420 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3421 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3422 are forced to be TAG_padding DIES.
c906108c 3423
c5aa993b
JM
3424 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3425 that if a padding DIE is used for alignment and the amount needed is
3426 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3427 enough to align to the next alignment boundry.
3428
3429 We do some basic sanity checking here, such as verifying that the
3430 length of the die would not cause it to overrun the recorded end of
3431 the buffer holding the DIE info. If we find a DIE that is either
3432 too small or too large, we force it's length to zero which should
3433 cause the caller to take appropriate action.
c906108c
SS
3434 */
3435
3436static void
fba45db2 3437basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3438{
3439 curdie = dip;
3440 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3441 dip->die = diep;
3442 dip->die_ref = dbroff + (diep - dbbase);
3443 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3444 objfile);
3445 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3446 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3447 {
c5aa993b
JM
3448 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3449 dip->die_length = 0;
c906108c 3450 }
c5aa993b 3451 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3452 {
c5aa993b 3453 dip->die_tag = TAG_padding;
c906108c
SS
3454 }
3455 else
3456 {
3457 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3458 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3459 objfile);
c906108c
SS
3460 }
3461}
3462
3463/*
3464
c5aa993b 3465 LOCAL FUNCTION
c906108c 3466
c5aa993b 3467 completedieinfo -- finish reading the information for a given DIE
c906108c 3468
c5aa993b 3469 SYNOPSIS
c906108c 3470
c5aa993b 3471 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3472
c5aa993b 3473 DESCRIPTION
c906108c 3474
c5aa993b
JM
3475 Given a pointer to an already partially initialized die info structure,
3476 scan the raw DIE data and finish filling in the die info structure
3477 from the various attributes found.
c906108c 3478
c5aa993b
JM
3479 Note that since there is no guarantee that the data is properly
3480 aligned in memory for the type of access required (indirection
3481 through anything other than a char pointer), and there is no
3482 guarantee that it is in the same byte order as the gdb host,
3483 we call a function which deals with both alignment and byte
3484 swapping issues. Possibly inefficient, but quite portable.
c906108c 3485
c5aa993b
JM
3486 NOTES
3487
3488 Each time we are called, we increment the diecount variable, which
3489 keeps an approximate count of the number of dies processed for
3490 each compilation unit. This information is presented to the user
3491 if the info_verbose flag is set.
c906108c
SS
3492
3493 */
3494
3495static void
fba45db2 3496completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3497{
3498 char *diep; /* Current pointer into raw DIE data */
3499 char *end; /* Terminate DIE scan here */
3500 unsigned short attr; /* Current attribute being scanned */
3501 unsigned short form; /* Form of the attribute */
3502 int nbytes; /* Size of next field to read */
c5aa993b 3503
c906108c 3504 diecount++;
c5aa993b
JM
3505 diep = dip->die;
3506 end = diep + dip->die_length;
c906108c
SS
3507 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3508 while (diep < end)
3509 {
3510 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3511 diep += SIZEOF_ATTRIBUTE;
3512 if ((nbytes = attribute_size (attr)) == -1)
3513 {
3514 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3515 diep = end;
3516 continue;
3517 }
3518 switch (attr)
3519 {
3520 case AT_fund_type:
c5aa993b
JM
3521 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3522 objfile);
c906108c
SS
3523 break;
3524 case AT_ordering:
c5aa993b
JM
3525 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3526 objfile);
c906108c
SS
3527 break;
3528 case AT_bit_offset:
c5aa993b
JM
3529 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3530 objfile);
c906108c
SS
3531 break;
3532 case AT_sibling:
c5aa993b
JM
3533 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3534 objfile);
c906108c
SS
3535 break;
3536 case AT_stmt_list:
c5aa993b
JM
3537 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3538 objfile);
3539 dip->has_at_stmt_list = 1;
c906108c
SS
3540 break;
3541 case AT_low_pc:
c5aa993b
JM
3542 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3543 objfile);
3544 dip->at_low_pc += baseaddr;
3545 dip->has_at_low_pc = 1;
c906108c
SS
3546 break;
3547 case AT_high_pc:
c5aa993b
JM
3548 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3549 objfile);
3550 dip->at_high_pc += baseaddr;
c906108c
SS
3551 break;
3552 case AT_language:
c5aa993b
JM
3553 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3554 objfile);
c906108c
SS
3555 break;
3556 case AT_user_def_type:
c5aa993b
JM
3557 dip->at_user_def_type = target_to_host (diep, nbytes,
3558 GET_UNSIGNED, objfile);
c906108c
SS
3559 break;
3560 case AT_byte_size:
c5aa993b
JM
3561 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3562 objfile);
3563 dip->has_at_byte_size = 1;
c906108c
SS
3564 break;
3565 case AT_bit_size:
c5aa993b
JM
3566 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3567 objfile);
c906108c
SS
3568 break;
3569 case AT_member:
c5aa993b
JM
3570 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 objfile);
c906108c
SS
3572 break;
3573 case AT_discr:
c5aa993b
JM
3574 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3575 objfile);
c906108c
SS
3576 break;
3577 case AT_location:
c5aa993b 3578 dip->at_location = diep;
c906108c
SS
3579 break;
3580 case AT_mod_fund_type:
c5aa993b 3581 dip->at_mod_fund_type = diep;
c906108c
SS
3582 break;
3583 case AT_subscr_data:
c5aa993b 3584 dip->at_subscr_data = diep;
c906108c
SS
3585 break;
3586 case AT_mod_u_d_type:
c5aa993b 3587 dip->at_mod_u_d_type = diep;
c906108c
SS
3588 break;
3589 case AT_element_list:
c5aa993b
JM
3590 dip->at_element_list = diep;
3591 dip->short_element_list = 0;
c906108c
SS
3592 break;
3593 case AT_short_element_list:
c5aa993b
JM
3594 dip->at_element_list = diep;
3595 dip->short_element_list = 1;
c906108c
SS
3596 break;
3597 case AT_discr_value:
c5aa993b 3598 dip->at_discr_value = diep;
c906108c
SS
3599 break;
3600 case AT_string_length:
c5aa993b 3601 dip->at_string_length = diep;
c906108c
SS
3602 break;
3603 case AT_name:
c5aa993b 3604 dip->at_name = diep;
c906108c
SS
3605 break;
3606 case AT_comp_dir:
3607 /* For now, ignore any "hostname:" portion, since gdb doesn't
3608 know how to deal with it. (FIXME). */
c5aa993b
JM
3609 dip->at_comp_dir = strrchr (diep, ':');
3610 if (dip->at_comp_dir != NULL)
c906108c 3611 {
c5aa993b 3612 dip->at_comp_dir++;
c906108c
SS
3613 }
3614 else
3615 {
c5aa993b 3616 dip->at_comp_dir = diep;
c906108c
SS
3617 }
3618 break;
3619 case AT_producer:
c5aa993b 3620 dip->at_producer = diep;
c906108c
SS
3621 break;
3622 case AT_start_scope:
c5aa993b
JM
3623 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
c906108c
SS
3625 break;
3626 case AT_stride_size:
c5aa993b
JM
3627 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 objfile);
c906108c
SS
3629 break;
3630 case AT_src_info:
c5aa993b
JM
3631 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3632 objfile);
c906108c
SS
3633 break;
3634 case AT_prototyped:
c5aa993b 3635 dip->at_prototyped = diep;
c906108c
SS
3636 break;
3637 default:
3638 /* Found an attribute that we are unprepared to handle. However
3639 it is specifically one of the design goals of DWARF that
3640 consumers should ignore unknown attributes. As long as the
3641 form is one that we recognize (so we know how to skip it),
3642 we can just ignore the unknown attribute. */
3643 break;
3644 }
3645 form = FORM_FROM_ATTR (attr);
3646 switch (form)
3647 {
3648 case FORM_DATA2:
3649 diep += 2;
3650 break;
3651 case FORM_DATA4:
3652 case FORM_REF:
3653 diep += 4;
3654 break;
3655 case FORM_DATA8:
3656 diep += 8;
3657 break;
3658 case FORM_ADDR:
3659 diep += TARGET_FT_POINTER_SIZE (objfile);
3660 break;
3661 case FORM_BLOCK2:
3662 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3663 break;
3664 case FORM_BLOCK4:
3665 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3666 break;
3667 case FORM_STRING:
3668 diep += strlen (diep) + 1;
3669 break;
3670 default:
3671 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3672 diep = end;
3673 break;
3674 }
3675 }
3676}
3677
3678/*
3679
c5aa993b 3680 LOCAL FUNCTION
c906108c 3681
c5aa993b 3682 target_to_host -- swap in target data to host
c906108c 3683
c5aa993b 3684 SYNOPSIS
c906108c 3685
c5aa993b
JM
3686 target_to_host (char *from, int nbytes, int signextend,
3687 struct objfile *objfile)
c906108c 3688
c5aa993b 3689 DESCRIPTION
c906108c 3690
c5aa993b
JM
3691 Given pointer to data in target format in FROM, a byte count for
3692 the size of the data in NBYTES, a flag indicating whether or not
3693 the data is signed in SIGNEXTEND, and a pointer to the current
3694 objfile in OBJFILE, convert the data to host format and return
3695 the converted value.
c906108c 3696
c5aa993b 3697 NOTES
c906108c 3698
c5aa993b
JM
3699 FIXME: If we read data that is known to be signed, and expect to
3700 use it as signed data, then we need to explicitly sign extend the
3701 result until the bfd library is able to do this for us.
c906108c 3702
c5aa993b 3703 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3704
3705 */
3706
3707static CORE_ADDR
fba45db2
KB
3708target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3709 struct objfile *objfile)
c906108c
SS
3710{
3711 CORE_ADDR rtnval;
3712
3713 switch (nbytes)
3714 {
c5aa993b
JM
3715 case 8:
3716 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3717 break;
3718 case 4:
3719 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3720 break;
3721 case 2:
3722 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3723 break;
3724 case 1:
3725 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3726 break;
3727 default:
3728 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3729 rtnval = 0;
3730 break;
c906108c
SS
3731 }
3732 return (rtnval);
3733}
3734
3735/*
3736
c5aa993b 3737 LOCAL FUNCTION
c906108c 3738
c5aa993b 3739 attribute_size -- compute size of data for a DWARF attribute
c906108c 3740
c5aa993b 3741 SYNOPSIS
c906108c 3742
c5aa993b 3743 static int attribute_size (unsigned int attr)
c906108c 3744
c5aa993b 3745 DESCRIPTION
c906108c 3746
c5aa993b
JM
3747 Given a DWARF attribute in ATTR, compute the size of the first
3748 piece of data associated with this attribute and return that
3749 size.
c906108c 3750
c5aa993b 3751 Returns -1 for unrecognized attributes.
c906108c
SS
3752
3753 */
3754
3755static int
fba45db2 3756attribute_size (unsigned int attr)
c906108c
SS
3757{
3758 int nbytes; /* Size of next data for this attribute */
3759 unsigned short form; /* Form of the attribute */
3760
3761 form = FORM_FROM_ATTR (attr);
3762 switch (form)
3763 {
c5aa993b
JM
3764 case FORM_STRING: /* A variable length field is next */
3765 nbytes = 0;
3766 break;
3767 case FORM_DATA2: /* Next 2 byte field is the data itself */
3768 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3769 nbytes = 2;
3770 break;
3771 case FORM_DATA4: /* Next 4 byte field is the data itself */
3772 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3773 case FORM_REF: /* Next 4 byte field is a DIE offset */
3774 nbytes = 4;
3775 break;
3776 case FORM_DATA8: /* Next 8 byte field is the data itself */
3777 nbytes = 8;
3778 break;
3779 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3780 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3781 break;
3782 default:
3783 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3784 nbytes = -1;
3785 break;
3786 }
c906108c
SS
3787 return (nbytes);
3788}
This page took 0.459493 seconds and 4 git commands to generate.