* config/pa/tm-hppa.h: Define lots register offsets needed by
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
4386eff2 2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
1ab3bf1b 3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
9745ba07
JK
24FIXME: Do we need to generate dependencies in partial symtabs?
25(Perhaps we don't need to).
35f5886e 26
35f5886e
FF
27FIXME: Resolve minor differences between what information we put in the
28partial symbol table and what dbxread puts in. For example, we don't yet
29put enum constants there. And dbxread seems to invent a lot of typedefs
30we never see. Use the new printpsym command to see the partial symbol table
31contents.
32
35f5886e
FF
33FIXME: Figure out a better way to tell gdb about the name of the function
34contain the user's entry point (I.E. main())
35
35f5886e
FF
36FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37other things to work on, if you get bored. :-)
38
39*/
4d315a07 40
d747e0af 41#include "defs.h"
35f5886e 42#include "symtab.h"
1ab3bf1b 43#include "gdbtypes.h"
35f5886e 44#include "symfile.h"
5e2e79f8 45#include "objfiles.h"
f5f0679a 46#include "elf/dwarf.h"
4d315a07 47#include "buildsym.h"
2dbde378 48#include "demangle.h"
bf229b4e
FF
49#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50#include "language.h"
51b80b00 51#include "complaints.h"
35f5886e 52
d5931d79
JG
53#include <fcntl.h>
54#include <string.h>
51b80b00 55
d5931d79
JG
56#ifndef NO_SYS_FILE
57#include <sys/file.h>
58#endif
59
60/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61#ifndef L_SET
62#define L_SET 0
63#endif
64
51b80b00
FF
65/* Some macros to provide DIE info for complaints. */
66
67#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70/* Complaints that can be issued during DWARF debug info reading. */
71
72struct complaint no_bfd_get_N =
73{
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75};
76
77struct complaint malformed_die =
78{
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80};
81
82struct complaint bad_die_ref =
83{
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85};
86
87struct complaint unknown_attribute_form =
88{
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90};
91
92struct complaint unknown_attribute_length =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95};
96
97struct complaint unexpected_fund_type =
98{
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100};
101
102struct complaint unknown_type_modifier =
103{
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105};
106
107struct complaint volatile_ignored =
108{
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110};
111
112struct complaint const_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115};
116
117struct complaint botched_modified_type =
118{
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120};
121
122struct complaint op_deref2 =
123{
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125};
126
127struct complaint op_deref4 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130};
131
132struct complaint basereg_not_handled =
133{
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135};
136
137struct complaint dup_user_type_allocation =
138{
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140};
141
142struct complaint dup_user_type_definition =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145};
146
147struct complaint missing_tag =
148{
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150};
151
152struct complaint bad_array_element_type =
153{
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155};
156
157struct complaint subscript_data_items =
158{
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160};
161
162struct complaint unhandled_array_subscript_format =
163{
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165};
166
167struct complaint unknown_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170};
171
172struct complaint not_row_major =
173{
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175};
35f5886e 176
13b5a7ff 177typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 178
4d315a07
FF
179#ifndef GCC_PRODUCER
180#define GCC_PRODUCER "GNU C "
181#endif
35f5886e 182
2dbde378
FF
183#ifndef GPLUS_PRODUCER
184#define GPLUS_PRODUCER "GNU C++ "
185#endif
186
187#ifndef LCC_PRODUCER
3dc755fb 188#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
189#endif
190
93bb6e65
FF
191#ifndef CHILL_PRODUCER
192#define CHILL_PRODUCER "GNU Chill "
193#endif
93bb6e65 194
84bdfea6
PS
195/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
196#ifndef DWARF_REG_TO_REGNUM
197#define DWARF_REG_TO_REGNUM(num) (num)
198#endif
199
13b5a7ff
FF
200/* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207#define GET_UNSIGNED 0 /* No sign extension required */
208#define GET_SIGNED 1 /* Sign extension required */
209
210/* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214#define SIZEOF_DIE_LENGTH 4
215#define SIZEOF_DIE_TAG 2
216#define SIZEOF_ATTRIBUTE 2
217#define SIZEOF_FORMAT_SPECIFIER 1
218#define SIZEOF_FMT_FT 2
219#define SIZEOF_LINETBL_LENGTH 4
220#define SIZEOF_LINETBL_LINENO 4
221#define SIZEOF_LINETBL_STMT 2
222#define SIZEOF_LINETBL_DELTA 4
223#define SIZEOF_LOC_ATOM_CODE 1
224
225#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227/* Macros that return the sizes of various types of data in the target
228 environment.
229
2d6d969c
FF
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 239
768be6e1
FF
240/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247#define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249/* External variables referenced. */
250
35f5886e 251extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 252extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
253
254/* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
13b5a7ff 260 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
2d6186f4 276 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
277 we need someway to note that we found such an attribute.
278
279 */
280
281typedef char BLOCK;
282
283struct dieinfo {
13b5a7ff
FF
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
306d27ca
DE
303 CORE_ADDR at_low_pc;
304 CORE_ADDR at_high_pc;
13b5a7ff
FF
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
13b5a7ff
FF
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
13b5a7ff
FF
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
50055e94 318 unsigned int has_at_byte_size:1;
13b5a7ff 319 unsigned int short_element_list:1;
35f5886e
FF
320};
321
322static int diecount; /* Approximate count of dies for compilation unit */
323static struct dieinfo *curdie; /* For warnings and such */
324
325static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 326static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
327static int dbroff; /* Relative offset from start of .debug section */
328static char *lnbase; /* Base pointer to line section */
329static int isreg; /* Kludge to identify register variables */
a1c8d76e
JK
330/* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332static int offreg;
333/* Which base register is it relative to? */
334static int basereg;
35f5886e 335
2670f34d 336/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
35f5886e
FF
339static CORE_ADDR baseaddr; /* Add to each symbol value */
340
2670f34d
JG
341/* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343static struct section_offsets *base_section_offsets;
344
35f5886e
FF
345/* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371struct dwfinfo {
d5931d79 372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
376};
377
378#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
4d315a07
FF
383/* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 387
4d315a07
FF
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 391
99140c31 392struct pending **list_in_scope = &file_symbols;
35f5886e
FF
393
394/* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
35f5886e
FF
419
420static struct type **utypes; /* Pointer to array of user type pointers */
421static int numutypes; /* Max number of user type pointers */
422
bf229b4e
FF
423/* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
95ff889e
FF
435/* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
95ff889e
FF
444
445static enum language cu_language;
bf229b4e 446static const struct language_defn *cu_language_defn;
95ff889e 447
35f5886e 448/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
449 about ordering within this file. */
450
13b5a7ff
FF
451static int
452attribute_size PARAMS ((unsigned int));
453
306d27ca 454static CORE_ADDR
13b5a7ff 455target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 456
1ab3bf1b
JG
457static void
458add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
2dbde378
FF
460static void
461handle_producer PARAMS ((char *));
462
1ab3bf1b
JG
463static void
464read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 465
58050209 466static void
1ab3bf1b 467read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
468
469static void
1ab3bf1b
JG
470read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
35f5886e 472
35f5886e 473static void
1ab3bf1b 474scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 475
35f5886e 476static void
d5931d79
JG
477scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
35f5886e
FF
479
480static void
1ab3bf1b 481add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
482
483static void
1ab3bf1b 484init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
485
486static void
95967e73 487basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
488
489static void
95967e73 490completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
491
492static void
493dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495static void
496psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 497
c701c14c 498static void
1ab3bf1b 499read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
500
501static void
1ab3bf1b 502process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
503
504static void
1ab3bf1b
JG
505read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
35f5886e
FF
507
508static struct type *
84ffdec2 509decode_array_element_type PARAMS ((char *));
35f5886e
FF
510
511static struct type *
85f0a848 512decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
513
514static void
1ab3bf1b 515dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 516
9e4c1921 517static void
1ab3bf1b 518read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 519
ec16f701
FF
520static void
521read_tag_string_type PARAMS ((struct dieinfo *dip));
522
35f5886e 523static void
1ab3bf1b 524read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
525
526static void
1ab3bf1b 527read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
528
529static struct type *
1ab3bf1b 530struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
531
532static struct type *
1ab3bf1b 533enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 534
35f5886e 535static void
1ab3bf1b 536decode_line_numbers PARAMS ((char *));
35f5886e
FF
537
538static struct type *
1ab3bf1b 539decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
540
541static struct type *
1ab3bf1b 542decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
543
544static struct type *
1ab3bf1b 545decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
546
547static struct type *
1c92ca6f 548decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
549
550static struct type *
1ab3bf1b 551decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
552
553static char *
1ab3bf1b 554create_name PARAMS ((char *, struct obstack *));
35f5886e 555
35f5886e 556static struct type *
13b5a7ff 557lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
558
559static struct type *
13b5a7ff 560alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
561
562static struct symbol *
1ab3bf1b 563new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 564
95ff889e
FF
565static void
566synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
35f5886e 569static int
1ab3bf1b 570locval PARAMS ((char *));
35f5886e 571
95ff889e
FF
572static void
573set_cu_language PARAMS ((struct dieinfo *));
574
bf229b4e
FF
575static struct type *
576dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579/*
580
581LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607RETURNS
608
609 Pointer to a fundamental type.
610
611*/
612
613static struct type *
614dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617{
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633}
634
95ff889e
FF
635/*
636
637LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652RETURNS
653
654 No return value.
655
656 */
657
658static void
659set_cu_language (dip)
660 struct dieinfo *dip;
661{
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
e58de8a2
FF
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
95ff889e
FF
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
2e4964ad 683 /* We don't know anything special about these yet. */
95ff889e
FF
684 cu_language = language_unknown;
685 break;
2e4964ad
FF
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
95ff889e 690 }
bf229b4e 691 cu_language_defn = language_def (cu_language);
95ff889e
FF
692}
693
35f5886e
FF
694/*
695
696GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700SYNOPSIS
701
d5931d79 702 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 703 struct section_offsets *section_offsets,
d5931d79
JG
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
706
707DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
d5931d79 712 It is passed a bfd* containing the DIES
35f5886e
FF
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720RETURNS
721
722 No return value.
723
724 */
725
726void
d5931d79
JG
727dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
2670f34d 730 struct section_offsets *section_offsets;
1ab3bf1b 731 int mainline;
d5931d79 732 file_ptr dbfoff;
4090fe1c 733 unsigned int dbfsize;
d5931d79 734 file_ptr lnoffset;
1ab3bf1b 735 unsigned int lnsize;
35f5886e 736{
d5931d79 737 bfd *abfd = objfile->obfd;
35f5886e
FF
738 struct cleanup *back_to;
739
95967e73 740 current_objfile = objfile;
4090fe1c 741 dbsize = dbfsize;
35f5886e
FF
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
d5931d79
JG
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
746 {
747 free (dbbase);
d5931d79 748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
13b5a7ff
FF
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
35f5886e 758 {
1ab3bf1b 759 init_psymbol_list (objfile, 1024);
35f5886e
FF
760 }
761
84ffdec2 762 /* Save the relocation factor where everybody can see it. */
f8b76e70 763
2670f34d
JG
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 766
35f5886e
FF
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
d5931d79 771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 772
35f5886e 773 do_cleanups (back_to);
95967e73 774 current_objfile = NULL;
35f5886e
FF
775}
776
35f5886e
FF
777/*
778
35f5886e
FF
779LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795static void
1ab3bf1b
JG
796read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
35f5886e 801{
4d315a07
FF
802 register struct context_stack *new;
803
4ed3a9ea 804 push_context (0, dip -> at_low_pc);
13b5a7ff 805 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 810 dip -> at_high_pc, objfile);
4d315a07
FF
811 }
812 local_symbols = new -> locals;
35f5886e
FF
813}
814
815/*
816
817LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821SYNOPSIS
822
13b5a7ff 823 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
824
825DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834static struct type *
13b5a7ff
FF
835lookup_utype (die_ref)
836 DIE_REF die_ref;
35f5886e
FF
837{
838 struct type *type = NULL;
839 int utypeidx;
840
13b5a7ff 841 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
51b80b00 844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851}
852
853
854/*
855
856LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860SYNOPSIS
861
13b5a7ff 862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
863
864DESCRIPTION
865
13b5a7ff 866 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
13b5a7ff 872 there is not currently a type registered for DIE_REF.
35f5886e
FF
873 */
874
875static struct type *
13b5a7ff
FF
876alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
1ab3bf1b 878 struct type *utypep;
35f5886e
FF
879{
880 struct type **typep;
881 int utypeidx;
882
13b5a7ff 883 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
bf229b4e 887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
51b80b00 893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
8050a57b 899 utypep = alloc_type (current_objfile);
35f5886e
FF
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904}
905
906/*
907
908LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923static struct type *
1ab3bf1b
JG
924decode_die_type (dip)
925 struct dieinfo *dip;
35f5886e
FF
926{
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
bf229b4e 950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
951 }
952 return (type);
953}
954
955/*
956
957LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 964 char *enddie, struct objfile *objfile)
35f5886e
FF
965
966DESCRIPTION
967
968 Given pointer to a die information structure for a die which
715cafcb
FF
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
35f5886e
FF
973 */
974
975static struct type *
1ab3bf1b
JG
976struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
35f5886e
FF
981{
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
35f5886e 991 struct dieinfo mbr;
8b5b6fae 992 char *nextdie;
50055e94 993 int anonymous_size;
35f5886e 994
13b5a7ff 995 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 996 {
5edf98d7 997 /* No forward references created an empty type, so install one now */
13b5a7ff 998 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 999 }
a3723a43 1000 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1001 switch (dip -> die_tag)
35f5886e 1002 {
95ff889e
FF
1003 case TAG_class_type:
1004 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1005 break;
715cafcb 1006 case TAG_structure_type:
5edf98d7 1007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1008 break;
1009 case TAG_union_type:
1010 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1011 break;
1012 default:
1013 /* Should never happen */
1014 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1015 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1016 break;
35f5886e 1017 }
5edf98d7
FF
1018 /* Some compilers try to be helpful by inventing "fake" names for
1019 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1020 Thanks, but no thanks... */
715cafcb
FF
1021 if (dip -> at_name != NULL
1022 && *dip -> at_name != '~'
1023 && *dip -> at_name != '.')
35f5886e 1024 {
b2bebdb0
JK
1025 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1026 "", "", dip -> at_name);
35f5886e 1027 }
50055e94
FF
1028 /* Use whatever size is known. Zero is a valid size. We might however
1029 wish to check has_at_byte_size to make sure that some byte size was
1030 given explicitly, but DWARF doesn't specify that explicit sizes of
1031 zero have to present, so complaining about missing sizes should
1032 probably not be the default. */
1033 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1034 thisdie += dip -> die_length;
35f5886e
FF
1035 while (thisdie < enddie)
1036 {
95967e73
FF
1037 basicdieinfo (&mbr, thisdie, objfile);
1038 completedieinfo (&mbr, objfile);
13b5a7ff 1039 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1040 {
1041 break;
1042 }
8b5b6fae
FF
1043 else if (mbr.at_sibling != 0)
1044 {
1045 nextdie = dbbase + mbr.at_sibling - dbroff;
1046 }
1047 else
1048 {
13b5a7ff 1049 nextdie = thisdie + mbr.die_length;
8b5b6fae 1050 }
13b5a7ff 1051 switch (mbr.die_tag)
35f5886e
FF
1052 {
1053 case TAG_member:
1054 /* Get space to record the next field's data. */
1055 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1056 new -> next = list;
1057 list = new;
1058 /* Save the data. */
50e0dc41
FF
1059 list -> field.name =
1060 obsavestring (mbr.at_name, strlen (mbr.at_name),
1061 &objfile -> type_obstack);
35f5886e
FF
1062 list -> field.type = decode_die_type (&mbr);
1063 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1064 /* Handle bit fields. */
1065 list -> field.bitsize = mbr.at_bit_size;
b8176214 1066 if (BITS_BIG_ENDIAN)
4db8e515 1067 {
b8176214
ILT
1068 /* For big endian bits, the at_bit_offset gives the
1069 additional bit offset from the MSB of the containing
1070 anonymous object to the MSB of the field. We don't
1071 have to do anything special since we don't need to
1072 know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074 }
1075 else
1076 {
1077 /* For little endian bits, we need to have a non-zero
1078 at_bit_size, so that we know we are in fact dealing
1079 with a bitfield. Compute the bit offset to the MSB
1080 of the anonymous object, subtract off the number of
1081 bits from the MSB of the field to the MSB of the
1082 object, and then subtract off the number of bits of
1083 the field itself. The result is the bit offset of
1084 the LSB of the field. */
1085 if (mbr.at_bit_size > 0)
50055e94 1086 {
b8176214
ILT
1087 if (mbr.has_at_byte_size)
1088 {
1089 /* The size of the anonymous object containing
1090 the bit field is explicit, so use the
1091 indicated size (in bytes). */
1092 anonymous_size = mbr.at_byte_size;
1093 }
1094 else
1095 {
1096 /* The size of the anonymous object containing
1097 the bit field matches the size of an object
1098 of the bit field's type. DWARF allows
1099 at_byte_size to be left out in such cases, as
1100 a debug information size optimization. */
1101 anonymous_size = TYPE_LENGTH (list -> field.type);
1102 }
1103 list -> field.bitpos +=
1104 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
50055e94 1105 }
4db8e515 1106 }
35f5886e
FF
1107 nfields++;
1108 break;
1109 default:
8b5b6fae 1110 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1111 break;
1112 }
8b5b6fae 1113 thisdie = nextdie;
35f5886e 1114 }
5edf98d7
FF
1115 /* Now create the vector of fields, and record how big it is. We may
1116 not even have any fields, if this DIE was generated due to a reference
1117 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1118 set, which clues gdb in to the fact that it needs to search elsewhere
1119 for the full structure definition. */
1120 if (nfields == 0)
35f5886e 1121 {
5edf98d7
FF
1122 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1123 }
1124 else
1125 {
1126 TYPE_NFIELDS (type) = nfields;
1127 TYPE_FIELDS (type) = (struct field *)
dac9734e 1128 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1129 /* Copy the saved-up fields into the field vector. */
1130 for (n = nfields; list; list = list -> next)
1131 {
1132 TYPE_FIELD (type, --n) = list -> field;
1133 }
1134 }
35f5886e
FF
1135 return (type);
1136}
1137
1138/*
1139
1140LOCAL FUNCTION
1141
1142 read_structure_scope -- process all dies within struct or union
1143
1144SYNOPSIS
1145
1146 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1147 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1148
1149DESCRIPTION
1150
1151 Called when we find the DIE that starts a structure or union
1152 scope (definition) to process all dies that define the members
1153 of the structure or union. DIP is a pointer to the die info
1154 struct for the DIE that names the structure or union.
1155
1156NOTES
1157
1158 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1159 the DIE has an at_name attribute, since it might be an anonymous
1160 structure or union. This gets the type entered into our set of
1161 user defined types.
1162
1163 However, if the structure is incomplete (an opaque struct/union)
1164 then suppress creating a symbol table entry for it since gdb only
1165 wants to find the one with the complete definition. Note that if
1166 it is complete, we just call new_symbol, which does it's own
1167 checking about whether the struct/union is anonymous or not (and
1168 suppresses creating a symbol table entry itself).
1169
35f5886e
FF
1170 */
1171
1172static void
1ab3bf1b
JG
1173read_structure_scope (dip, thisdie, enddie, objfile)
1174 struct dieinfo *dip;
1175 char *thisdie;
1176 char *enddie;
1177 struct objfile *objfile;
35f5886e
FF
1178{
1179 struct type *type;
1180 struct symbol *sym;
1181
8b5b6fae 1182 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1183 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1184 {
95ff889e
FF
1185 sym = new_symbol (dip, objfile);
1186 if (sym != NULL)
84ce6717
FF
1187 {
1188 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1189 if (cu_language == language_cplus)
1190 {
1191 synthesize_typedef (dip, objfile, type);
1192 }
84ce6717 1193 }
35f5886e
FF
1194 }
1195}
1196
1197/*
1198
1199LOCAL FUNCTION
1200
1201 decode_array_element_type -- decode type of the array elements
1202
1203SYNOPSIS
1204
1205 static struct type *decode_array_element_type (char *scan, char *end)
1206
1207DESCRIPTION
1208
1209 As the last step in decoding the array subscript information for an
1210 array DIE, we need to decode the type of the array elements. We are
1211 passed a pointer to this last part of the subscript information and
1212 must return the appropriate type. If the type attribute is not
1213 recognized, just warn about the problem and return type int.
1214 */
1215
1216static struct type *
84ffdec2 1217decode_array_element_type (scan)
1ab3bf1b 1218 char *scan;
35f5886e
FF
1219{
1220 struct type *typep;
13b5a7ff
FF
1221 DIE_REF die_ref;
1222 unsigned short attribute;
35f5886e 1223 unsigned short fundtype;
13b5a7ff 1224 int nbytes;
35f5886e 1225
13b5a7ff
FF
1226 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1227 current_objfile);
1228 scan += SIZEOF_ATTRIBUTE;
1229 if ((nbytes = attribute_size (attribute)) == -1)
1230 {
51b80b00 1231 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1232 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1233 }
1234 else
1235 {
1236 switch (attribute)
1237 {
1238 case AT_fund_type:
1239 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1240 current_objfile);
1241 typep = decode_fund_type (fundtype);
1242 break;
1243 case AT_mod_fund_type:
1244 typep = decode_mod_fund_type (scan);
1245 break;
1246 case AT_user_def_type:
1247 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1248 current_objfile);
1249 if ((typep = lookup_utype (die_ref)) == NULL)
1250 {
1251 typep = alloc_utype (die_ref, NULL);
1252 }
1253 break;
1254 case AT_mod_u_d_type:
1255 typep = decode_mod_u_d_type (scan);
1256 break;
1257 default:
51b80b00 1258 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1260 break;
1261 }
35f5886e
FF
1262 }
1263 return (typep);
1264}
1265
1266/*
1267
1268LOCAL FUNCTION
1269
85f0a848 1270 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1271
1272SYNOPSIS
1273
85f0a848
FF
1274 static struct type *
1275 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1276
1277DESCRIPTION
1278
1279 The array subscripts and the data type of the elements of an
1280 array are described by a list of data items, stored as a block
1281 of contiguous bytes. There is a data item describing each array
1282 dimension, and a final data item describing the element type.
1283 The data items are ordered the same as their appearance in the
1284 source (I.E. leftmost dimension first, next to leftmost second,
1285 etc).
1286
85f0a848
FF
1287 The data items describing each array dimension consist of four
1288 parts: (1) a format specifier, (2) type type of the subscript
1289 index, (3) a description of the low bound of the array dimension,
1290 and (4) a description of the high bound of the array dimension.
1291
1292 The last data item is the description of the type of each of
1293 the array elements.
1294
35f5886e 1295 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1296 containing the remaining data items, and a pointer to the first
1297 byte past the data. This function recursively decodes the
1298 remaining data items and returns a type.
1299
1300 If we somehow fail to decode some data, we complain about it
1301 and return a type "array of int".
35f5886e
FF
1302
1303BUGS
1304 FIXME: This code only implements the forms currently used
1305 by the AT&T and GNU C compilers.
1306
1307 The end pointer is supplied for error checking, maybe we should
1308 use it for that...
1309 */
1310
1311static struct type *
85f0a848 1312decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1313 char *scan;
1314 char *end;
35f5886e 1315{
85f0a848
FF
1316 struct type *typep = NULL; /* Array type we are building */
1317 struct type *nexttype; /* Type of each element (may be array) */
1318 struct type *indextype; /* Type of this index */
a8a69e63 1319 struct type *rangetype;
13b5a7ff
FF
1320 unsigned int format;
1321 unsigned short fundtype;
1322 unsigned long lowbound;
1323 unsigned long highbound;
1324 int nbytes;
35f5886e 1325
13b5a7ff
FF
1326 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1327 current_objfile);
1328 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1329 switch (format)
1330 {
1331 case FMT_ET:
84ffdec2 1332 typep = decode_array_element_type (scan);
35f5886e
FF
1333 break;
1334 case FMT_FT_C_C:
13b5a7ff
FF
1335 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1336 current_objfile);
85f0a848 1337 indextype = decode_fund_type (fundtype);
13b5a7ff 1338 scan += SIZEOF_FMT_FT;
160be0de
FF
1339 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1340 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1341 scan += nbytes;
1342 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1343 scan += nbytes;
85f0a848
FF
1344 nexttype = decode_subscript_data_item (scan, end);
1345 if (nexttype == NULL)
35f5886e 1346 {
85f0a848 1347 /* Munged subscript data or other problem, fake it. */
51b80b00 1348 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1349 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1350 }
a8a69e63
FF
1351 rangetype = create_range_type ((struct type *) NULL, indextype,
1352 lowbound, highbound);
1353 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1354 break;
1355 case FMT_FT_C_X:
1356 case FMT_FT_X_C:
1357 case FMT_FT_X_X:
1358 case FMT_UT_C_C:
1359 case FMT_UT_C_X:
1360 case FMT_UT_X_C:
1361 case FMT_UT_X_X:
51b80b00 1362 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1366 break;
1367 default:
51b80b00 1368 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1369 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1370 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1371 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1372 break;
1373 }
1374 return (typep);
1375}
1376
1377/*
1378
1379LOCAL FUNCTION
1380
4d315a07 1381 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1382
1383SYNOPSIS
1384
4d315a07 1385 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1386
1387DESCRIPTION
1388
1389 Extract all information from a TAG_array_type DIE and add to
1390 the user defined type vector.
1391 */
1392
1393static void
1ab3bf1b
JG
1394dwarf_read_array_type (dip)
1395 struct dieinfo *dip;
35f5886e
FF
1396{
1397 struct type *type;
af213624 1398 struct type *utype;
35f5886e
FF
1399 char *sub;
1400 char *subend;
13b5a7ff
FF
1401 unsigned short blocksz;
1402 int nbytes;
35f5886e
FF
1403
1404 if (dip -> at_ordering != ORD_row_major)
1405 {
1406 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1407 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1408 }
1409 if ((sub = dip -> at_subscr_data) != NULL)
1410 {
13b5a7ff
FF
1411 nbytes = attribute_size (AT_subscr_data);
1412 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1413 subend = sub + nbytes + blocksz;
1414 sub += nbytes;
85f0a848
FF
1415 type = decode_subscript_data_item (sub, subend);
1416 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1417 {
85f0a848
FF
1418 /* Install user defined type that has not been referenced yet. */
1419 alloc_utype (dip -> die_ref, type);
1420 }
1421 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1422 {
1423 /* Ick! A forward ref has already generated a blank type in our
1424 slot, and this type probably already has things pointing to it
1425 (which is what caused it to be created in the first place).
1426 If it's just a place holder we can plop our fully defined type
1427 on top of it. We can't recover the space allocated for our
1428 new type since it might be on an obstack, but we could reuse
1429 it if we kept a list of them, but it might not be worth it
1430 (FIXME). */
1431 *utype = *type;
35f5886e
FF
1432 }
1433 else
1434 {
85f0a848
FF
1435 /* Double ick! Not only is a type already in our slot, but
1436 someone has decorated it. Complain and leave it alone. */
51b80b00 1437 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1438 }
1439 }
1440}
1441
1442/*
1443
9e4c1921
FF
1444LOCAL FUNCTION
1445
1446 read_tag_pointer_type -- read TAG_pointer_type DIE
1447
1448SYNOPSIS
1449
1450 static void read_tag_pointer_type (struct dieinfo *dip)
1451
1452DESCRIPTION
1453
1454 Extract all information from a TAG_pointer_type DIE and add to
1455 the user defined type vector.
1456 */
1457
1458static void
1ab3bf1b
JG
1459read_tag_pointer_type (dip)
1460 struct dieinfo *dip;
9e4c1921
FF
1461{
1462 struct type *type;
1463 struct type *utype;
9e4c1921
FF
1464
1465 type = decode_die_type (dip);
13b5a7ff 1466 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1467 {
1468 utype = lookup_pointer_type (type);
4ed3a9ea 1469 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1470 }
1471 else
1472 {
1473 TYPE_TARGET_TYPE (utype) = type;
1474 TYPE_POINTER_TYPE (type) = utype;
1475
1476 /* We assume the machine has only one representation for pointers! */
1477 /* FIXME: This confuses host<->target data representations, and is a
1478 poor assumption besides. */
1479
1480 TYPE_LENGTH (utype) = sizeof (char *);
1481 TYPE_CODE (utype) = TYPE_CODE_PTR;
1482 }
1483}
1484
1485/*
1486
ec16f701
FF
1487LOCAL FUNCTION
1488
1489 read_tag_string_type -- read TAG_string_type DIE
1490
1491SYNOPSIS
1492
1493 static void read_tag_string_type (struct dieinfo *dip)
1494
1495DESCRIPTION
1496
1497 Extract all information from a TAG_string_type DIE and add to
1498 the user defined type vector. It isn't really a user defined
1499 type, but it behaves like one, with other DIE's using an
1500 AT_user_def_type attribute to reference it.
1501 */
1502
1503static void
1504read_tag_string_type (dip)
1505 struct dieinfo *dip;
1506{
1507 struct type *utype;
1508 struct type *indextype;
1509 struct type *rangetype;
1510 unsigned long lowbound = 0;
1511 unsigned long highbound;
1512
b6236d6e 1513 if (dip -> has_at_byte_size)
ec16f701 1514 {
b6236d6e
FF
1515 /* A fixed bounds string */
1516 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1517 }
1518 else
1519 {
b6236d6e
FF
1520 /* A varying length string. Stub for now. (FIXME) */
1521 highbound = 1;
1522 }
1523 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1524 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1525 highbound);
1526
1527 utype = lookup_utype (dip -> die_ref);
1528 if (utype == NULL)
1529 {
1530 /* No type defined, go ahead and create a blank one to use. */
1531 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1532 }
1533 else
1534 {
1535 /* Already a type in our slot due to a forward reference. Make sure it
1536 is a blank one. If not, complain and leave it alone. */
1537 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1538 {
b6236d6e
FF
1539 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1540 return;
ec16f701 1541 }
ec16f701 1542 }
b6236d6e
FF
1543
1544 /* Create the string type using the blank type we either found or created. */
1545 utype = create_string_type (utype, rangetype);
ec16f701
FF
1546}
1547
1548/*
1549
35f5886e
FF
1550LOCAL FUNCTION
1551
1552 read_subroutine_type -- process TAG_subroutine_type dies
1553
1554SYNOPSIS
1555
1556 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1557 char *enddie)
1558
1559DESCRIPTION
1560
1561 Handle DIES due to C code like:
1562
1563 struct foo {
1564 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1565 int b;
1566 };
1567
1568NOTES
1569
1570 The parameter DIES are currently ignored. See if gdb has a way to
1571 include this info in it's type system, and decode them if so. Is
1572 this what the type structure's "arg_types" field is for? (FIXME)
1573 */
1574
1575static void
1ab3bf1b
JG
1576read_subroutine_type (dip, thisdie, enddie)
1577 struct dieinfo *dip;
1578 char *thisdie;
1579 char *enddie;
35f5886e 1580{
af213624
FF
1581 struct type *type; /* Type that this function returns */
1582 struct type *ftype; /* Function that returns above type */
35f5886e 1583
af213624
FF
1584 /* Decode the type that this subroutine returns */
1585
35f5886e 1586 type = decode_die_type (dip);
af213624
FF
1587
1588 /* Check to see if we already have a partially constructed user
1589 defined type for this DIE, from a forward reference. */
1590
13b5a7ff 1591 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1592 {
1593 /* This is the first reference to one of these types. Make
1594 a new one and place it in the user defined types. */
1595 ftype = lookup_function_type (type);
4ed3a9ea 1596 alloc_utype (dip -> die_ref, ftype);
af213624 1597 }
85f0a848 1598 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1599 {
1600 /* We have an existing partially constructed type, so bash it
1601 into the correct type. */
1602 TYPE_TARGET_TYPE (ftype) = type;
af213624
FF
1603 TYPE_LENGTH (ftype) = 1;
1604 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1605 }
85f0a848
FF
1606 else
1607 {
51b80b00 1608 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1609 }
35f5886e
FF
1610}
1611
1612/*
1613
1614LOCAL FUNCTION
1615
1616 read_enumeration -- process dies which define an enumeration
1617
1618SYNOPSIS
1619
1620 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1621 char *enddie, struct objfile *objfile)
35f5886e
FF
1622
1623DESCRIPTION
1624
1625 Given a pointer to a die which begins an enumeration, process all
1626 the dies that define the members of the enumeration.
1627
1628NOTES
1629
1630 Note that we need to call enum_type regardless of whether or not we
1631 have a symbol, since we might have an enum without a tag name (thus
1632 no symbol for the tagname).
1633 */
1634
1635static void
1ab3bf1b
JG
1636read_enumeration (dip, thisdie, enddie, objfile)
1637 struct dieinfo *dip;
1638 char *thisdie;
1639 char *enddie;
1640 struct objfile *objfile;
35f5886e
FF
1641{
1642 struct type *type;
1643 struct symbol *sym;
1644
1ab3bf1b 1645 type = enum_type (dip, objfile);
95ff889e
FF
1646 sym = new_symbol (dip, objfile);
1647 if (sym != NULL)
35f5886e
FF
1648 {
1649 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1650 if (cu_language == language_cplus)
1651 {
1652 synthesize_typedef (dip, objfile, type);
1653 }
35f5886e
FF
1654 }
1655}
1656
1657/*
1658
1659LOCAL FUNCTION
1660
1661 enum_type -- decode and return a type for an enumeration
1662
1663SYNOPSIS
1664
1ab3bf1b 1665 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1666
1667DESCRIPTION
1668
1669 Given a pointer to a die information structure for the die which
1670 starts an enumeration, process all the dies that define the members
1671 of the enumeration and return a type pointer for the enumeration.
98618bf7 1672
715cafcb
FF
1673 At the same time, for each member of the enumeration, create a
1674 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1675 and give it the type of the enumeration itself.
1676
1677NOTES
1678
98618bf7
FF
1679 Note that the DWARF specification explicitly mandates that enum
1680 constants occur in reverse order from the source program order,
1681 for "consistency" and because this ordering is easier for many
1ab3bf1b 1682 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1683 Entries). Because gdb wants to see the enum members in program
1684 source order, we have to ensure that the order gets reversed while
98618bf7 1685 we are processing them.
35f5886e
FF
1686 */
1687
1688static struct type *
1ab3bf1b
JG
1689enum_type (dip, objfile)
1690 struct dieinfo *dip;
1691 struct objfile *objfile;
35f5886e
FF
1692{
1693 struct type *type;
1694 struct nextfield {
1695 struct nextfield *next;
1696 struct field field;
1697 };
1698 struct nextfield *list = NULL;
1699 struct nextfield *new;
1700 int nfields = 0;
1701 int n;
35f5886e
FF
1702 char *scan;
1703 char *listend;
13b5a7ff 1704 unsigned short blocksz;
715cafcb 1705 struct symbol *sym;
13b5a7ff 1706 int nbytes;
35f5886e 1707
13b5a7ff 1708 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1709 {
84ce6717 1710 /* No forward references created an empty type, so install one now */
13b5a7ff 1711 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1712 }
1713 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1714 /* Some compilers try to be helpful by inventing "fake" names for
1715 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1716 Thanks, but no thanks... */
715cafcb
FF
1717 if (dip -> at_name != NULL
1718 && *dip -> at_name != '~'
1719 && *dip -> at_name != '.')
35f5886e 1720 {
b2bebdb0
JK
1721 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1722 "", "", dip -> at_name);
35f5886e 1723 }
715cafcb 1724 if (dip -> at_byte_size != 0)
35f5886e
FF
1725 {
1726 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1727 }
35f5886e
FF
1728 if ((scan = dip -> at_element_list) != NULL)
1729 {
768be6e1
FF
1730 if (dip -> short_element_list)
1731 {
13b5a7ff 1732 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1733 }
1734 else
1735 {
13b5a7ff 1736 nbytes = attribute_size (AT_element_list);
768be6e1 1737 }
13b5a7ff
FF
1738 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1739 listend = scan + nbytes + blocksz;
1740 scan += nbytes;
35f5886e
FF
1741 while (scan < listend)
1742 {
1743 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1744 new -> next = list;
1745 list = new;
1746 list -> field.type = NULL;
1747 list -> field.bitsize = 0;
13b5a7ff
FF
1748 list -> field.bitpos =
1749 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1750 objfile);
1751 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1752 list -> field.name = obsavestring (scan, strlen (scan),
1753 &objfile -> type_obstack);
35f5886e
FF
1754 scan += strlen (scan) + 1;
1755 nfields++;
715cafcb 1756 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1757 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1758 sizeof (struct symbol));
4ed3a9ea 1759 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1760 SYMBOL_NAME (sym) = create_name (list -> field.name,
1761 &objfile->symbol_obstack);
7532cf10 1762 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1764 SYMBOL_CLASS (sym) = LOC_CONST;
1765 SYMBOL_TYPE (sym) = type;
1766 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1767 add_symbol_to_list (sym, list_in_scope);
35f5886e 1768 }
84ce6717 1769 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1770 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1771 reverse order from how they were inserted. If we have no fields
1772 (this is apparently possible in C++) then skip building a field
1773 vector. */
1774 if (nfields > 0)
1775 {
1776 TYPE_NFIELDS (type) = nfields;
1777 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1778 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1779 /* Copy the saved-up fields into the field vector. */
1780 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1781 {
1782 TYPE_FIELD (type, n++) = list -> field;
1783 }
1784 }
35f5886e 1785 }
35f5886e
FF
1786 return (type);
1787}
1788
1789/*
1790
1791LOCAL FUNCTION
1792
1793 read_func_scope -- process all dies within a function scope
1794
35f5886e
FF
1795DESCRIPTION
1796
1797 Process all dies within a given function scope. We are passed
1798 a die information structure pointer DIP for the die which
1799 starts the function scope, and pointers into the raw die data
1800 that define the dies within the function scope.
1801
1802 For now, we ignore lexical block scopes within the function.
1803 The problem is that AT&T cc does not define a DWARF lexical
1804 block scope for the function itself, while gcc defines a
1805 lexical block scope for the function. We need to think about
1806 how to handle this difference, or if it is even a problem.
1807 (FIXME)
1808 */
1809
1810static void
1ab3bf1b
JG
1811read_func_scope (dip, thisdie, enddie, objfile)
1812 struct dieinfo *dip;
1813 char *thisdie;
1814 char *enddie;
1815 struct objfile *objfile;
35f5886e 1816{
4d315a07 1817 register struct context_stack *new;
35f5886e 1818
5e2e79f8
FF
1819 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1820 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1821 {
5e2e79f8
FF
1822 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1824 }
4d315a07 1825 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1826 {
5e2e79f8
FF
1827 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1828 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1829 }
4d315a07 1830 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1831 new -> name = new_symbol (dip, objfile);
4d315a07 1832 list_in_scope = &local_symbols;
13b5a7ff 1833 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1834 new = pop_context ();
1835 /* Make a block for the local symbols within. */
1836 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1837 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1838 list_in_scope = &file_symbols;
35f5886e
FF
1839}
1840
2dbde378
FF
1841
1842/*
1843
1844LOCAL FUNCTION
1845
1846 handle_producer -- process the AT_producer attribute
1847
1848DESCRIPTION
1849
1850 Perform any operations that depend on finding a particular
1851 AT_producer attribute.
1852
1853 */
1854
1855static void
1856handle_producer (producer)
1857 char *producer;
1858{
1859
1860 /* If this compilation unit was compiled with g++ or gcc, then set the
1861 processing_gcc_compilation flag. */
1862
1863 processing_gcc_compilation =
1864 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1865 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1866 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1867
1868 /* Select a demangling style if we can identify the producer and if
1869 the current style is auto. We leave the current style alone if it
1870 is not auto. We also leave the demangling style alone if we find a
1871 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1872
3dc755fb 1873 if (AUTO_DEMANGLING)
2dbde378
FF
1874 {
1875 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1876 {
1877 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1878 }
1879 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1880 {
1881 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1882 }
2dbde378 1883 }
2dbde378
FF
1884}
1885
1886
35f5886e
FF
1887/*
1888
1889LOCAL FUNCTION
1890
1891 read_file_scope -- process all dies within a file scope
1892
35f5886e
FF
1893DESCRIPTION
1894
1895 Process all dies within a given file scope. We are passed a
1896 pointer to the die information structure for the die which
1897 starts the file scope, and pointers into the raw die data which
1898 mark the range of dies within the file scope.
1899
1900 When the partial symbol table is built, the file offset for the line
1901 number table for each compilation unit is saved in the partial symbol
1902 table entry for that compilation unit. As the symbols for each
1903 compilation unit are read, the line number table is read into memory
1904 and the variable lnbase is set to point to it. Thus all we have to
1905 do is use lnbase to access the line number table for the current
1906 compilation unit.
1907 */
1908
1909static void
1ab3bf1b
JG
1910read_file_scope (dip, thisdie, enddie, objfile)
1911 struct dieinfo *dip;
1912 char *thisdie;
1913 char *enddie;
1914 struct objfile *objfile;
35f5886e
FF
1915{
1916 struct cleanup *back_to;
4d315a07 1917 struct symtab *symtab;
35f5886e 1918
5e2e79f8
FF
1919 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1920 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1921 {
5e2e79f8
FF
1922 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1923 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1924 }
95ff889e 1925 set_cu_language (dip);
4d315a07
FF
1926 if (dip -> at_producer != NULL)
1927 {
2dbde378 1928 handle_producer (dip -> at_producer);
4d315a07 1929 }
35f5886e
FF
1930 numutypes = (enddie - thisdie) / 4;
1931 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1932 back_to = make_cleanup (free, utypes);
4ed3a9ea 1933 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1934 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1935 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1936 decode_line_numbers (lnbase);
13b5a7ff 1937 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1938
1939 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1940 if (symtab != NULL)
4d315a07 1941 {
95ff889e 1942 symtab -> language = cu_language;
7b5d9650 1943 }
35f5886e
FF
1944 do_cleanups (back_to);
1945 utypes = NULL;
1946 numutypes = 0;
1947}
1948
1949/*
1950
35f5886e
FF
1951LOCAL FUNCTION
1952
1953 process_dies -- process a range of DWARF Information Entries
1954
1955SYNOPSIS
1956
8b5b6fae
FF
1957 static void process_dies (char *thisdie, char *enddie,
1958 struct objfile *objfile)
35f5886e
FF
1959
1960DESCRIPTION
1961
1962 Process all DIE's in a specified range. May be (and almost
1963 certainly will be) called recursively.
1964 */
1965
1966static void
1ab3bf1b
JG
1967process_dies (thisdie, enddie, objfile)
1968 char *thisdie;
1969 char *enddie;
1970 struct objfile *objfile;
35f5886e
FF
1971{
1972 char *nextdie;
1973 struct dieinfo di;
1974
1975 while (thisdie < enddie)
1976 {
95967e73 1977 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 1978 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
1979 {
1980 break;
1981 }
13b5a7ff 1982 else if (di.die_tag == TAG_padding)
35f5886e 1983 {
13b5a7ff 1984 nextdie = thisdie + di.die_length;
35f5886e
FF
1985 }
1986 else
1987 {
95967e73 1988 completedieinfo (&di, objfile);
35f5886e
FF
1989 if (di.at_sibling != 0)
1990 {
1991 nextdie = dbbase + di.at_sibling - dbroff;
1992 }
1993 else
1994 {
13b5a7ff 1995 nextdie = thisdie + di.die_length;
35f5886e 1996 }
9fdb3f7a
JK
1997#ifdef SMASH_TEXT_ADDRESS
1998 /* I think that these are always text, not data, addresses. */
1999 SMASH_TEXT_ADDRESS (di.at_low_pc);
2000 SMASH_TEXT_ADDRESS (di.at_high_pc);
2001#endif
13b5a7ff 2002 switch (di.die_tag)
35f5886e
FF
2003 {
2004 case TAG_compile_unit:
4386eff2
PS
2005 /* Skip Tag_compile_unit if we are already inside a compilation
2006 unit, we are unable to handle nested compilation units
2007 properly (FIXME). */
2008 if (current_subfile == NULL)
2009 read_file_scope (&di, thisdie, nextdie, objfile);
2010 else
2011 nextdie = thisdie + di.die_length;
35f5886e
FF
2012 break;
2013 case TAG_global_subroutine:
2014 case TAG_subroutine:
2d6186f4 2015 if (di.has_at_low_pc)
35f5886e 2016 {
a048c8f5 2017 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2018 }
2019 break;
2020 case TAG_lexical_block:
a048c8f5 2021 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2022 break;
95ff889e 2023 case TAG_class_type:
35f5886e
FF
2024 case TAG_structure_type:
2025 case TAG_union_type:
8b5b6fae 2026 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2027 break;
2028 case TAG_enumeration_type:
1ab3bf1b 2029 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2030 break;
2031 case TAG_subroutine_type:
2032 read_subroutine_type (&di, thisdie, nextdie);
2033 break;
2034 case TAG_array_type:
4d315a07 2035 dwarf_read_array_type (&di);
35f5886e 2036 break;
9e4c1921
FF
2037 case TAG_pointer_type:
2038 read_tag_pointer_type (&di);
2039 break;
ec16f701
FF
2040 case TAG_string_type:
2041 read_tag_string_type (&di);
2042 break;
35f5886e 2043 default:
4ed3a9ea 2044 new_symbol (&di, objfile);
35f5886e
FF
2045 break;
2046 }
2047 }
2048 thisdie = nextdie;
2049 }
2050}
2051
2052/*
2053
35f5886e
FF
2054LOCAL FUNCTION
2055
2056 decode_line_numbers -- decode a line number table fragment
2057
2058SYNOPSIS
2059
2060 static void decode_line_numbers (char *tblscan, char *tblend,
2061 long length, long base, long line, long pc)
2062
2063DESCRIPTION
2064
2065 Translate the DWARF line number information to gdb form.
2066
2067 The ".line" section contains one or more line number tables, one for
2068 each ".line" section from the objects that were linked.
2069
2070 The AT_stmt_list attribute for each TAG_source_file entry in the
2071 ".debug" section contains the offset into the ".line" section for the
2072 start of the table for that file.
2073
2074 The table itself has the following structure:
2075
2076 <table length><base address><source statement entry>
2077 4 bytes 4 bytes 10 bytes
2078
2079 The table length is the total size of the table, including the 4 bytes
2080 for the length information.
2081
2082 The base address is the address of the first instruction generated
2083 for the source file.
2084
2085 Each source statement entry has the following structure:
2086
2087 <line number><statement position><address delta>
2088 4 bytes 2 bytes 4 bytes
2089
2090 The line number is relative to the start of the file, starting with
2091 line 1.
2092
2093 The statement position either -1 (0xFFFF) or the number of characters
2094 from the beginning of the line to the beginning of the statement.
2095
2096 The address delta is the difference between the base address and
2097 the address of the first instruction for the statement.
2098
2099 Note that we must copy the bytes from the packed table to our local
2100 variables before attempting to use them, to avoid alignment problems
2101 on some machines, particularly RISC processors.
2102
2103BUGS
2104
2105 Does gdb expect the line numbers to be sorted? They are now by
2106 chance/luck, but are not required to be. (FIXME)
2107
2108 The line with number 0 is unused, gdb apparently can discover the
2109 span of the last line some other way. How? (FIXME)
2110 */
2111
2112static void
1ab3bf1b
JG
2113decode_line_numbers (linetable)
2114 char *linetable;
35f5886e
FF
2115{
2116 char *tblscan;
2117 char *tblend;
13b5a7ff
FF
2118 unsigned long length;
2119 unsigned long base;
2120 unsigned long line;
2121 unsigned long pc;
35f5886e
FF
2122
2123 if (linetable != NULL)
2124 {
2125 tblscan = tblend = linetable;
13b5a7ff
FF
2126 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2127 current_objfile);
2128 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2129 tblend += length;
13b5a7ff
FF
2130 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2131 GET_UNSIGNED, current_objfile);
2132 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2133 base += baseaddr;
35f5886e
FF
2134 while (tblscan < tblend)
2135 {
13b5a7ff
FF
2136 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2137 current_objfile);
2138 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2139 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2140 current_objfile);
2141 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2142 pc += base;
13b5a7ff 2143 if (line != 0)
35f5886e 2144 {
4d315a07 2145 record_line (current_subfile, line, pc);
35f5886e
FF
2146 }
2147 }
2148 }
2149}
2150
2151/*
2152
35f5886e
FF
2153LOCAL FUNCTION
2154
2155 locval -- compute the value of a location attribute
2156
2157SYNOPSIS
2158
2159 static int locval (char *loc)
2160
2161DESCRIPTION
2162
2163 Given pointer to a string of bytes that define a location, compute
2164 the location and return the value.
2165
2166 When computing values involving the current value of the frame pointer,
2167 the value zero is used, which results in a value relative to the frame
2168 pointer, rather than the absolute value. This is what GDB wants
2169 anyway.
2170
2171 When the result is a register number, the global isreg flag is set,
2172 otherwise it is cleared. This is a kludge until we figure out a better
2173 way to handle the problem. Gdb's design does not mesh well with the
2174 DWARF notion of a location computing interpreter, which is a shame
2175 because the flexibility goes unused.
2176
2177NOTES
2178
2179 Note that stack[0] is unused except as a default error return.
2180 Note that stack overflow is not yet handled.
2181 */
2182
2183static int
1ab3bf1b
JG
2184locval (loc)
2185 char *loc;
35f5886e
FF
2186{
2187 unsigned short nbytes;
13b5a7ff
FF
2188 unsigned short locsize;
2189 auto long stack[64];
35f5886e
FF
2190 int stacki;
2191 char *end;
13b5a7ff
FF
2192 int loc_atom_code;
2193 int loc_value_size;
35f5886e 2194
13b5a7ff
FF
2195 nbytes = attribute_size (AT_location);
2196 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2197 loc += nbytes;
2198 end = loc + locsize;
35f5886e
FF
2199 stacki = 0;
2200 stack[stacki] = 0;
2201 isreg = 0;
a5bd5ba6 2202 offreg = 0;
13b5a7ff
FF
2203 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2204 while (loc < end)
35f5886e 2205 {
13b5a7ff
FF
2206 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2207 current_objfile);
2208 loc += SIZEOF_LOC_ATOM_CODE;
2209 switch (loc_atom_code)
2210 {
2211 case 0:
2212 /* error */
2213 loc = end;
2214 break;
2215 case OP_REG:
2216 /* push register (number) */
84bdfea6
PS
2217 stack[++stacki]
2218 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2219 GET_UNSIGNED,
2220 current_objfile));
13b5a7ff
FF
2221 loc += loc_value_size;
2222 isreg = 1;
2223 break;
2224 case OP_BASEREG:
2225 /* push value of register (number) */
a1c8d76e
JK
2226 /* Actually, we compute the value as if register has 0, so the
2227 value ends up being the offset from that register. */
13b5a7ff 2228 offreg = 1;
a1c8d76e
JK
2229 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2230 current_objfile);
13b5a7ff 2231 loc += loc_value_size;
a1c8d76e 2232 stack[++stacki] = 0;
13b5a7ff
FF
2233 break;
2234 case OP_ADDR:
2235 /* push address (relocated address) */
2236 stack[++stacki] = target_to_host (loc, loc_value_size,
2237 GET_UNSIGNED, current_objfile);
2238 loc += loc_value_size;
2239 break;
2240 case OP_CONST:
2241 /* push constant (number) FIXME: signed or unsigned! */
2242 stack[++stacki] = target_to_host (loc, loc_value_size,
2243 GET_SIGNED, current_objfile);
2244 loc += loc_value_size;
2245 break;
2246 case OP_DEREF2:
2247 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2248 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2249 break;
2250 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2251 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2252 break;
2253 case OP_ADD: /* pop top 2 items, add, push result */
2254 stack[stacki - 1] += stack[stacki];
2255 stacki--;
2256 break;
2257 }
35f5886e
FF
2258 }
2259 return (stack[stacki]);
2260}
2261
2262/*
2263
2264LOCAL FUNCTION
2265
2266 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2267
2268SYNOPSIS
2269
c701c14c 2270 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2271
2272DESCRIPTION
2273
1ab3bf1b
JG
2274 When expanding a partial symbol table entry to a full symbol table
2275 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2276 for the compilation unit. A pointer to the newly constructed symtab,
2277 which is now the new first one on the objfile's symtab list, is
2278 stashed in the partial symbol table entry.
35f5886e
FF
2279 */
2280
c701c14c 2281static void
1ab3bf1b
JG
2282read_ofile_symtab (pst)
2283 struct partial_symtab *pst;
35f5886e
FF
2284{
2285 struct cleanup *back_to;
13b5a7ff 2286 unsigned long lnsize;
d5931d79 2287 file_ptr foffset;
1ab3bf1b 2288 bfd *abfd;
13b5a7ff 2289 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2290
2291 abfd = pst -> objfile -> obfd;
2292 current_objfile = pst -> objfile;
2293
35f5886e
FF
2294 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2295 unit, seek to the location in the file, and read in all the DIE's. */
2296
2297 diecount = 0;
4090fe1c
FF
2298 dbsize = DBLENGTH (pst);
2299 dbbase = xmalloc (dbsize);
35f5886e
FF
2300 dbroff = DBROFF(pst);
2301 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2302 base_section_offsets = pst->section_offsets;
2303 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2304 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2305 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2306 {
2307 free (dbbase);
2308 error ("can't read DWARF data");
2309 }
2310 back_to = make_cleanup (free, dbbase);
2311
2312 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2313 then read the size of this fragment in bytes, from the fragment itself.
2314 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2315 processing. */
2316
2317 lnbase = NULL;
2318 if (LNFOFF (pst))
2319 {
d5931d79 2320 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2321 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2322 sizeof (lnsizedata)))
35f5886e
FF
2323 {
2324 error ("can't read DWARF line number table size");
2325 }
13b5a7ff
FF
2326 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2327 GET_UNSIGNED, pst -> objfile);
35f5886e 2328 lnbase = xmalloc (lnsize);
d5931d79 2329 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2330 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2331 {
2332 free (lnbase);
2333 error ("can't read DWARF line numbers");
2334 }
2335 make_cleanup (free, lnbase);
2336 }
2337
4090fe1c 2338 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2339 do_cleanups (back_to);
1ab3bf1b 2340 current_objfile = NULL;
c701c14c 2341 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2342}
2343
2344/*
2345
2346LOCAL FUNCTION
2347
2348 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2349
2350SYNOPSIS
2351
a048c8f5 2352 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2353
2354DESCRIPTION
2355
2356 Called once for each partial symbol table entry that needs to be
2357 expanded into a full symbol table entry.
2358
2359*/
2360
2361static void
1ab3bf1b
JG
2362psymtab_to_symtab_1 (pst)
2363 struct partial_symtab *pst;
35f5886e
FF
2364{
2365 int i;
d07734e3 2366 struct cleanup *old_chain;
35f5886e 2367
1ab3bf1b 2368 if (pst != NULL)
35f5886e 2369 {
1ab3bf1b 2370 if (pst->readin)
35f5886e 2371 {
318bf84f 2372 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2373 pst -> filename);
2374 }
2375 else
2376 {
2377 /* Read in all partial symtabs on which this one is dependent */
2378 for (i = 0; i < pst -> number_of_dependencies; i++)
2379 {
2380 if (!pst -> dependencies[i] -> readin)
2381 {
2382 /* Inform about additional files that need to be read in. */
2383 if (info_verbose)
2384 {
199b2450 2385 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2386 wrap_here ("");
199b2450 2387 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2388 wrap_here ("");
2389 printf_filtered ("%s...",
2390 pst -> dependencies[i] -> filename);
2391 wrap_here ("");
199b2450 2392 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2393 }
2394 psymtab_to_symtab_1 (pst -> dependencies[i]);
2395 }
2396 }
2397 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2398 {
d07734e3
FF
2399 buildsym_init ();
2400 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2401 read_ofile_symtab (pst);
1ab3bf1b
JG
2402 if (info_verbose)
2403 {
2404 printf_filtered ("%d DIE's, sorting...", diecount);
2405 wrap_here ("");
199b2450 2406 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2407 }
2408 sort_symtab_syms (pst -> symtab);
d07734e3 2409 do_cleanups (old_chain);
1ab3bf1b
JG
2410 }
2411 pst -> readin = 1;
35f5886e 2412 }
35f5886e 2413 }
35f5886e
FF
2414}
2415
2416/*
2417
2418LOCAL FUNCTION
2419
2420 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2421
2422SYNOPSIS
2423
2424 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2425
2426DESCRIPTION
2427
2428 This is the DWARF support entry point for building a full symbol
2429 table entry from a partial symbol table entry. We are passed a
2430 pointer to the partial symbol table entry that needs to be expanded.
2431
2432*/
2433
2434static void
1ab3bf1b
JG
2435dwarf_psymtab_to_symtab (pst)
2436 struct partial_symtab *pst;
35f5886e 2437{
7d9884b9 2438
1ab3bf1b 2439 if (pst != NULL)
35f5886e 2440 {
1ab3bf1b 2441 if (pst -> readin)
35f5886e 2442 {
318bf84f 2443 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2444 pst -> filename);
35f5886e 2445 }
1ab3bf1b 2446 else
35f5886e 2447 {
1ab3bf1b
JG
2448 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2449 {
2450 /* Print the message now, before starting serious work, to avoid
2451 disconcerting pauses. */
2452 if (info_verbose)
2453 {
2454 printf_filtered ("Reading in symbols for %s...",
2455 pst -> filename);
199b2450 2456 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2457 }
2458
2459 psymtab_to_symtab_1 (pst);
2460
2461#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2462 we need to do an equivalent or is this something peculiar to
2463 stabs/a.out format.
2464 Match with global symbols. This only needs to be done once,
2465 after all of the symtabs and dependencies have been read in.
2466 */
2467 scan_file_globals (pst -> objfile);
2468#endif
2469
2470 /* Finish up the verbose info message. */
2471 if (info_verbose)
2472 {
2473 printf_filtered ("done.\n");
199b2450 2474 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2475 }
2476 }
35f5886e
FF
2477 }
2478 }
2479}
2480
2481/*
2482
2483LOCAL FUNCTION
2484
2485 init_psymbol_list -- initialize storage for partial symbols
2486
2487SYNOPSIS
2488
1ab3bf1b 2489 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2490
2491DESCRIPTION
2492
2493 Initializes storage for all of the partial symbols that will be
2494 created by dwarf_build_psymtabs and subsidiaries.
2495 */
2496
2497static void
1ab3bf1b
JG
2498init_psymbol_list (objfile, total_symbols)
2499 struct objfile *objfile;
2500 int total_symbols;
35f5886e
FF
2501{
2502 /* Free any previously allocated psymbol lists. */
2503
1ab3bf1b 2504 if (objfile -> global_psymbols.list)
35f5886e 2505 {
84ffdec2 2506 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2507 }
1ab3bf1b 2508 if (objfile -> static_psymbols.list)
35f5886e 2509 {
84ffdec2 2510 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2511 }
2512
2513 /* Current best guess is that there are approximately a twentieth
2514 of the total symbols (in a debugging file) are global or static
2515 oriented symbols */
2516
1ab3bf1b
JG
2517 objfile -> global_psymbols.size = total_symbols / 10;
2518 objfile -> static_psymbols.size = total_symbols / 10;
2519 objfile -> global_psymbols.next =
2520 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2521 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2522 * sizeof (struct partial_symbol));
2523 objfile -> static_psymbols.next =
2524 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2525 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2526 * sizeof (struct partial_symbol));
35f5886e
FF
2527}
2528
35f5886e
FF
2529/*
2530
715cafcb
FF
2531LOCAL FUNCTION
2532
2533 add_enum_psymbol -- add enumeration members to partial symbol table
2534
2535DESCRIPTION
2536
2537 Given pointer to a DIE that is known to be for an enumeration,
2538 extract the symbolic names of the enumeration members and add
2539 partial symbols for them.
2540*/
2541
2542static void
1ab3bf1b
JG
2543add_enum_psymbol (dip, objfile)
2544 struct dieinfo *dip;
2545 struct objfile *objfile;
715cafcb
FF
2546{
2547 char *scan;
2548 char *listend;
13b5a7ff
FF
2549 unsigned short blocksz;
2550 int nbytes;
715cafcb
FF
2551
2552 if ((scan = dip -> at_element_list) != NULL)
2553 {
2554 if (dip -> short_element_list)
2555 {
13b5a7ff 2556 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2557 }
2558 else
2559 {
13b5a7ff 2560 nbytes = attribute_size (AT_element_list);
715cafcb 2561 }
13b5a7ff
FF
2562 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2563 scan += nbytes;
2564 listend = scan + blocksz;
715cafcb
FF
2565 while (scan < listend)
2566 {
13b5a7ff 2567 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2568 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2569 objfile -> static_psymbols, 0, cu_language,
2570 objfile);
715cafcb
FF
2571 scan += strlen (scan) + 1;
2572 }
2573 }
2574}
2575
2576/*
2577
35f5886e
FF
2578LOCAL FUNCTION
2579
2580 add_partial_symbol -- add symbol to partial symbol table
2581
2582DESCRIPTION
2583
2584 Given a DIE, if it is one of the types that we want to
2585 add to a partial symbol table, finish filling in the die info
2586 and then add a partial symbol table entry for it.
2587
95ff889e
FF
2588NOTES
2589
2590 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2591*/
2592
2593static void
1ab3bf1b
JG
2594add_partial_symbol (dip, objfile)
2595 struct dieinfo *dip;
2596 struct objfile *objfile;
35f5886e 2597{
13b5a7ff 2598 switch (dip -> die_tag)
35f5886e
FF
2599 {
2600 case TAG_global_subroutine:
b440b1e9 2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2602 VAR_NAMESPACE, LOC_BLOCK,
2603 objfile -> global_psymbols,
2e4964ad 2604 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2605 break;
2606 case TAG_global_variable:
b440b1e9 2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2608 VAR_NAMESPACE, LOC_STATIC,
2609 objfile -> global_psymbols,
2e4964ad 2610 0, cu_language, objfile);
35f5886e
FF
2611 break;
2612 case TAG_subroutine:
b440b1e9 2613 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2614 VAR_NAMESPACE, LOC_BLOCK,
2615 objfile -> static_psymbols,
2e4964ad 2616 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2617 break;
2618 case TAG_local_variable:
b440b1e9 2619 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2620 VAR_NAMESPACE, LOC_STATIC,
2621 objfile -> static_psymbols,
2e4964ad 2622 0, cu_language, objfile);
35f5886e
FF
2623 break;
2624 case TAG_typedef:
b440b1e9 2625 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2626 VAR_NAMESPACE, LOC_TYPEDEF,
2627 objfile -> static_psymbols,
2e4964ad 2628 0, cu_language, objfile);
35f5886e 2629 break;
95ff889e 2630 case TAG_class_type:
35f5886e
FF
2631 case TAG_structure_type:
2632 case TAG_union_type:
95ff889e 2633 case TAG_enumeration_type:
4386eff2
PS
2634 /* Do not add opaque aggregate definitions to the psymtab. */
2635 if (!dip -> has_at_byte_size)
2636 break;
b440b1e9 2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2638 STRUCT_NAMESPACE, LOC_TYPEDEF,
2639 objfile -> static_psymbols,
2e4964ad 2640 0, cu_language, objfile);
95ff889e 2641 if (cu_language == language_cplus)
715cafcb 2642 {
95ff889e 2643 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2644 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2645 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2646 objfile -> static_psymbols,
2e4964ad 2647 0, cu_language, objfile);
715cafcb 2648 }
715cafcb 2649 break;
35f5886e
FF
2650 }
2651}
2652
2653/*
2654
2655LOCAL FUNCTION
2656
2657 scan_partial_symbols -- scan DIE's within a single compilation unit
2658
2659DESCRIPTION
2660
2661 Process the DIE's within a single compilation unit, looking for
2662 interesting DIE's that contribute to the partial symbol table entry
a679650f 2663 for this compilation unit.
35f5886e 2664
2d6186f4
FF
2665NOTES
2666
a679650f
FF
2667 There are some DIE's that may appear both at file scope and within
2668 the scope of a function. We are only interested in the ones at file
2669 scope, and the only way to tell them apart is to keep track of the
2670 scope. For example, consider the test case:
2671
2672 static int i;
2673 main () { int j; }
2674
2675 for which the relevant DWARF segment has the structure:
2676
2677 0x51:
2678 0x23 global subrtn sibling 0x9b
2679 name main
2680 fund_type FT_integer
2681 low_pc 0x800004cc
2682 high_pc 0x800004d4
2683
2684 0x74:
2685 0x23 local var sibling 0x97
2686 name j
2687 fund_type FT_integer
2688 location OP_BASEREG 0xe
2689 OP_CONST 0xfffffffc
2690 OP_ADD
2691 0x97:
2692 0x4
2693
2694 0x9b:
2695 0x1d local var sibling 0xb8
2696 name i
2697 fund_type FT_integer
2698 location OP_ADDR 0x800025dc
2699
2700 0xb8:
2701 0x4
2702
2703 We want to include the symbol 'i' in the partial symbol table, but
2704 not the symbol 'j'. In essence, we want to skip all the dies within
2705 the scope of a TAG_global_subroutine DIE.
2706
715cafcb
FF
2707 Don't attempt to add anonymous structures or unions since they have
2708 no name. Anonymous enumerations however are processed, because we
2709 want to extract their member names (the check for a tag name is
2710 done later).
2d6186f4 2711
715cafcb
FF
2712 Also, for variables and subroutines, check that this is the place
2713 where the actual definition occurs, rather than just a reference
2714 to an external.
35f5886e
FF
2715 */
2716
2717static void
1ab3bf1b
JG
2718scan_partial_symbols (thisdie, enddie, objfile)
2719 char *thisdie;
2720 char *enddie;
2721 struct objfile *objfile;
35f5886e
FF
2722{
2723 char *nextdie;
a679650f 2724 char *temp;
35f5886e
FF
2725 struct dieinfo di;
2726
2727 while (thisdie < enddie)
2728 {
95967e73 2729 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2730 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2731 {
2732 break;
2733 }
2734 else
2735 {
13b5a7ff 2736 nextdie = thisdie + di.die_length;
715cafcb
FF
2737 /* To avoid getting complete die information for every die, we
2738 only do it (below) for the cases we are interested in. */
13b5a7ff 2739 switch (di.die_tag)
35f5886e
FF
2740 {
2741 case TAG_global_subroutine:
35f5886e 2742 case TAG_subroutine:
a679650f
FF
2743 completedieinfo (&di, objfile);
2744 if (di.at_name && (di.has_at_low_pc || di.at_location))
2745 {
2746 add_partial_symbol (&di, objfile);
2747 /* If there is a sibling attribute, adjust the nextdie
2748 pointer to skip the entire scope of the subroutine.
2749 Apply some sanity checking to make sure we don't
2750 overrun or underrun the range of remaining DIE's */
2751 if (di.at_sibling != 0)
2752 {
2753 temp = dbbase + di.at_sibling - dbroff;
2754 if ((temp < thisdie) || (temp >= enddie))
2755 {
51b80b00
FF
2756 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2757 di.at_sibling);
a679650f
FF
2758 }
2759 else
2760 {
2761 nextdie = temp;
2762 }
2763 }
2764 }
2765 break;
2d6186f4 2766 case TAG_global_variable:
35f5886e 2767 case TAG_local_variable:
95967e73 2768 completedieinfo (&di, objfile);
2d6186f4
FF
2769 if (di.at_name && (di.has_at_low_pc || di.at_location))
2770 {
1ab3bf1b 2771 add_partial_symbol (&di, objfile);
2d6186f4
FF
2772 }
2773 break;
35f5886e 2774 case TAG_typedef:
95ff889e 2775 case TAG_class_type:
35f5886e
FF
2776 case TAG_structure_type:
2777 case TAG_union_type:
95967e73 2778 completedieinfo (&di, objfile);
2d6186f4 2779 if (di.at_name)
35f5886e 2780 {
1ab3bf1b 2781 add_partial_symbol (&di, objfile);
35f5886e
FF
2782 }
2783 break;
715cafcb 2784 case TAG_enumeration_type:
95967e73 2785 completedieinfo (&di, objfile);
95ff889e
FF
2786 if (di.at_name)
2787 {
2788 add_partial_symbol (&di, objfile);
2789 }
2790 add_enum_psymbol (&di, objfile);
715cafcb 2791 break;
35f5886e
FF
2792 }
2793 }
2794 thisdie = nextdie;
2795 }
2796}
2797
2798/*
2799
2800LOCAL FUNCTION
2801
2802 scan_compilation_units -- build a psymtab entry for each compilation
2803
2804DESCRIPTION
2805
2806 This is the top level dwarf parsing routine for building partial
2807 symbol tables.
2808
2809 It scans from the beginning of the DWARF table looking for the first
2810 TAG_compile_unit DIE, and then follows the sibling chain to locate
2811 each additional TAG_compile_unit DIE.
2812
2813 For each TAG_compile_unit DIE it creates a partial symtab structure,
2814 calls a subordinate routine to collect all the compilation unit's
2815 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2816 new partial symtab structure into the partial symbol table. It also
2817 records the appropriate information in the partial symbol table entry
2818 to allow the chunk of DIE's and line number table for this compilation
2819 unit to be located and re-read later, to generate a complete symbol
2820 table entry for the compilation unit.
2821
2822 Thus it effectively partitions up a chunk of DIE's for multiple
2823 compilation units into smaller DIE chunks and line number tables,
2824 and associates them with a partial symbol table entry.
2825
2826NOTES
2827
2828 If any compilation unit has no line number table associated with
2829 it for some reason (a missing at_stmt_list attribute, rather than
2830 just one with a value of zero, which is valid) then we ensure that
2831 the recorded file offset is zero so that the routine which later
2832 reads line number table fragments knows that there is no fragment
2833 to read.
2834
2835RETURNS
2836
2837 Returns no value.
2838
2839 */
2840
2841static void
d5931d79 2842scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2843 char *thisdie;
2844 char *enddie;
d5931d79
JG
2845 file_ptr dbfoff;
2846 file_ptr lnoffset;
1ab3bf1b 2847 struct objfile *objfile;
35f5886e
FF
2848{
2849 char *nextdie;
2850 struct dieinfo di;
2851 struct partial_symtab *pst;
2852 int culength;
2853 int curoff;
d5931d79 2854 file_ptr curlnoffset;
35f5886e
FF
2855
2856 while (thisdie < enddie)
2857 {
95967e73 2858 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2859 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2860 {
2861 break;
2862 }
13b5a7ff 2863 else if (di.die_tag != TAG_compile_unit)
35f5886e 2864 {
13b5a7ff 2865 nextdie = thisdie + di.die_length;
35f5886e
FF
2866 }
2867 else
2868 {
95967e73 2869 completedieinfo (&di, objfile);
95ff889e 2870 set_cu_language (&di);
35f5886e
FF
2871 if (di.at_sibling != 0)
2872 {
2873 nextdie = dbbase + di.at_sibling - dbroff;
2874 }
2875 else
2876 {
13b5a7ff 2877 nextdie = thisdie + di.die_length;
35f5886e
FF
2878 }
2879 curoff = thisdie - dbbase;
2880 culength = nextdie - thisdie;
2d6186f4 2881 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2882
2883 /* First allocate a new partial symbol table structure */
2884
95ff889e
FF
2885 pst = start_psymtab_common (objfile, base_section_offsets,
2886 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2887 objfile -> global_psymbols.next,
2888 objfile -> static_psymbols.next);
2889
2890 pst -> texthigh = di.at_high_pc;
2891 pst -> read_symtab_private = (char *)
2892 obstack_alloc (&objfile -> psymbol_obstack,
2893 sizeof (struct dwfinfo));
2894 DBFOFF (pst) = dbfoff;
2895 DBROFF (pst) = curoff;
2896 DBLENGTH (pst) = culength;
2897 LNFOFF (pst) = curlnoffset;
2898 pst -> read_symtab = dwarf_psymtab_to_symtab;
2899
2900 /* Now look for partial symbols */
2901
13b5a7ff 2902 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2903
2904 pst -> n_global_syms = objfile -> global_psymbols.next -
2905 (objfile -> global_psymbols.list + pst -> globals_offset);
2906 pst -> n_static_syms = objfile -> static_psymbols.next -
2907 (objfile -> static_psymbols.list + pst -> statics_offset);
2908 sort_pst_symbols (pst);
35f5886e
FF
2909 /* If there is already a psymtab or symtab for a file of this name,
2910 remove it. (If there is a symtab, more drastic things also
2911 happen.) This happens in VxWorks. */
2912 free_named_symtabs (pst -> filename);
35f5886e
FF
2913 }
2914 thisdie = nextdie;
2915 }
2916}
2917
2918/*
2919
2920LOCAL FUNCTION
2921
2922 new_symbol -- make a symbol table entry for a new symbol
2923
2924SYNOPSIS
2925
1ab3bf1b
JG
2926 static struct symbol *new_symbol (struct dieinfo *dip,
2927 struct objfile *objfile)
35f5886e
FF
2928
2929DESCRIPTION
2930
2931 Given a pointer to a DWARF information entry, figure out if we need
2932 to make a symbol table entry for it, and if so, create a new entry
2933 and return a pointer to it.
2934 */
2935
2936static struct symbol *
1ab3bf1b
JG
2937new_symbol (dip, objfile)
2938 struct dieinfo *dip;
2939 struct objfile *objfile;
35f5886e
FF
2940{
2941 struct symbol *sym = NULL;
2942
2943 if (dip -> at_name != NULL)
2944 {
1ab3bf1b 2945 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2946 sizeof (struct symbol));
4ed3a9ea 2947 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2948 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2949 &objfile->symbol_obstack);
35f5886e
FF
2950 /* default assumptions */
2951 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2952 SYMBOL_CLASS (sym) = LOC_STATIC;
2953 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2954
2955 /* If this symbol is from a C++ compilation, then attempt to cache the
2956 demangled form for future reference. This is a typical time versus
2957 space tradeoff, that was decided in favor of time because it sped up
2958 C++ symbol lookups by a factor of about 20. */
2959
2960 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2961 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2962 switch (dip -> die_tag)
35f5886e
FF
2963 {
2964 case TAG_label:
4d315a07 2965 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2966 SYMBOL_CLASS (sym) = LOC_LABEL;
2967 break;
2968 case TAG_global_subroutine:
2969 case TAG_subroutine:
4d315a07 2970 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2971 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2972 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2973 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2974 {
2975 add_symbol_to_list (sym, &global_symbols);
2976 }
2977 else
2978 {
4d315a07 2979 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2980 }
2981 break;
2982 case TAG_global_variable:
35f5886e
FF
2983 if (dip -> at_location != NULL)
2984 {
2985 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
2986 add_symbol_to_list (sym, &global_symbols);
2987 SYMBOL_CLASS (sym) = LOC_STATIC;
2988 SYMBOL_VALUE (sym) += baseaddr;
2989 }
a5bd5ba6
FF
2990 break;
2991 case TAG_local_variable:
2992 if (dip -> at_location != NULL)
35f5886e 2993 {
a5bd5ba6 2994 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 2995 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
2996 if (isreg)
2997 {
2998 SYMBOL_CLASS (sym) = LOC_REGISTER;
2999 }
3000 else if (offreg)
35f5886e 3001 {
a1c8d76e
JK
3002 SYMBOL_CLASS (sym) = LOC_BASEREG;
3003 SYMBOL_BASEREG (sym) = basereg;
35f5886e
FF
3004 }
3005 else
3006 {
3007 SYMBOL_CLASS (sym) = LOC_STATIC;
3008 SYMBOL_VALUE (sym) += baseaddr;
3009 }
3010 }
3011 break;
3012 case TAG_formal_parameter:
3013 if (dip -> at_location != NULL)
3014 {
3015 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3016 }
4d315a07 3017 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3018 if (isreg)
3019 {
3020 SYMBOL_CLASS (sym) = LOC_REGPARM;
3021 }
a1c8d76e
JK
3022 else if (offreg)
3023 {
3024 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3025 SYMBOL_BASEREG (sym) = basereg;
3026 }
35f5886e
FF
3027 else
3028 {
3029 SYMBOL_CLASS (sym) = LOC_ARG;
3030 }
3031 break;
3032 case TAG_unspecified_parameters:
3033 /* From varargs functions; gdb doesn't seem to have any interest in
3034 this information, so just ignore it for now. (FIXME?) */
3035 break;
95ff889e 3036 case TAG_class_type:
35f5886e
FF
3037 case TAG_structure_type:
3038 case TAG_union_type:
3039 case TAG_enumeration_type:
3040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3041 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3042 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3043 break;
3044 case TAG_typedef:
3045 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3046 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3047 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3048 break;
3049 default:
3050 /* Not a tag we recognize. Hopefully we aren't processing trash
3051 data, but since we must specifically ignore things we don't
3052 recognize, there is nothing else we should do at this point. */
3053 break;
3054 }
3055 }
3056 return (sym);
3057}
3058
3059/*
3060
95ff889e
FF
3061LOCAL FUNCTION
3062
3063 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3064
3065SYNOPSIS
3066
3067 static void synthesize_typedef (struct dieinfo *dip,
3068 struct objfile *objfile,
3069 struct type *type);
3070
3071DESCRIPTION
3072
3073 Given a pointer to a DWARF information entry, synthesize a typedef
3074 for the name in the DIE, using the specified type.
3075
3076 This is used for C++ class, structs, unions, and enumerations to
3077 set up the tag name as a type.
3078
3079 */
3080
3081static void
3082synthesize_typedef (dip, objfile, type)
3083 struct dieinfo *dip;
3084 struct objfile *objfile;
3085 struct type *type;
3086{
3087 struct symbol *sym = NULL;
3088
3089 if (dip -> at_name != NULL)
3090 {
3091 sym = (struct symbol *)
3092 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3093 memset (sym, 0, sizeof (struct symbol));
3094 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3095 &objfile->symbol_obstack);
7532cf10 3096 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3097 SYMBOL_TYPE (sym) = type;
3098 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3099 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3100 add_symbol_to_list (sym, list_in_scope);
3101 }
3102}
3103
3104/*
3105
35f5886e
FF
3106LOCAL FUNCTION
3107
3108 decode_mod_fund_type -- decode a modified fundamental type
3109
3110SYNOPSIS
3111
3112 static struct type *decode_mod_fund_type (char *typedata)
3113
3114DESCRIPTION
3115
3116 Decode a block of data containing a modified fundamental
3117 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3118 which starts with a length containing the size of the rest
3119 of the block. At the end of the block is a fundmental type
3120 code value that gives the fundamental type. Everything
35f5886e
FF
3121 in between are type modifiers.
3122
3123 We simply compute the number of modifiers and call the general
3124 function decode_modified_type to do the actual work.
3125*/
3126
3127static struct type *
1ab3bf1b
JG
3128decode_mod_fund_type (typedata)
3129 char *typedata;
35f5886e
FF
3130{
3131 struct type *typep = NULL;
3132 unsigned short modcount;
13b5a7ff 3133 int nbytes;
35f5886e
FF
3134
3135 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3136
3137 nbytes = attribute_size (AT_mod_fund_type);
3138 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3139 typedata += nbytes;
3140
35f5886e 3141 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3142
3143 modcount -= attribute_size (AT_fund_type);
3144
35f5886e 3145 /* Now do the actual decoding */
13b5a7ff
FF
3146
3147 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3148 return (typep);
3149}
3150
3151/*
3152
3153LOCAL FUNCTION
3154
3155 decode_mod_u_d_type -- decode a modified user defined type
3156
3157SYNOPSIS
3158
3159 static struct type *decode_mod_u_d_type (char *typedata)
3160
3161DESCRIPTION
3162
3163 Decode a block of data containing a modified user defined
3164 type specification. TYPEDATA is a pointer to the block,
3165 which consists of a two byte length, containing the size
3166 of the rest of the block. At the end of the block is a
3167 four byte value that gives a reference to a user defined type.
3168 Everything in between are type modifiers.
3169
3170 We simply compute the number of modifiers and call the general
3171 function decode_modified_type to do the actual work.
3172*/
3173
3174static struct type *
1ab3bf1b
JG
3175decode_mod_u_d_type (typedata)
3176 char *typedata;
35f5886e
FF
3177{
3178 struct type *typep = NULL;
3179 unsigned short modcount;
13b5a7ff 3180 int nbytes;
35f5886e
FF
3181
3182 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3183
3184 nbytes = attribute_size (AT_mod_u_d_type);
3185 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3186 typedata += nbytes;
3187
35f5886e 3188 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3189
3190 modcount -= attribute_size (AT_user_def_type);
3191
35f5886e 3192 /* Now do the actual decoding */
13b5a7ff
FF
3193
3194 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3195 return (typep);
3196}
3197
3198/*
3199
3200LOCAL FUNCTION
3201
3202 decode_modified_type -- decode modified user or fundamental type
3203
3204SYNOPSIS
3205
1c92ca6f 3206 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3207 unsigned short modcount, int mtype)
3208
3209DESCRIPTION
3210
3211 Decode a modified type, either a modified fundamental type or
3212 a modified user defined type. MODIFIERS is a pointer to the
3213 block of bytes that define MODCOUNT modifiers. Immediately
3214 following the last modifier is a short containing the fundamental
3215 type or a long containing the reference to the user defined
3216 type. Which one is determined by MTYPE, which is either
3217 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3218 type we are generating.
3219
3220 We call ourself recursively to generate each modified type,`
3221 until MODCOUNT reaches zero, at which point we have consumed
3222 all the modifiers and generate either the fundamental type or
3223 user defined type. When the recursion unwinds, each modifier
3224 is applied in turn to generate the full modified type.
3225
3226NOTES
3227
3228 If we find a modifier that we don't recognize, and it is not one
3229 of those reserved for application specific use, then we issue a
3230 warning and simply ignore the modifier.
3231
3232BUGS
3233
3234 We currently ignore MOD_const and MOD_volatile. (FIXME)
3235
3236 */
3237
3238static struct type *
1ab3bf1b 3239decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3240 char *modifiers;
1ab3bf1b
JG
3241 unsigned int modcount;
3242 int mtype;
35f5886e
FF
3243{
3244 struct type *typep = NULL;
3245 unsigned short fundtype;
13b5a7ff 3246 DIE_REF die_ref;
1c92ca6f 3247 char modifier;
13b5a7ff 3248 int nbytes;
35f5886e
FF
3249
3250 if (modcount == 0)
3251 {
3252 switch (mtype)
3253 {
3254 case AT_mod_fund_type:
13b5a7ff
FF
3255 nbytes = attribute_size (AT_fund_type);
3256 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3257 current_objfile);
35f5886e
FF
3258 typep = decode_fund_type (fundtype);
3259 break;
3260 case AT_mod_u_d_type:
13b5a7ff
FF
3261 nbytes = attribute_size (AT_user_def_type);
3262 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3263 current_objfile);
3264 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3265 {
13b5a7ff 3266 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3267 }
3268 break;
3269 default:
51b80b00 3270 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3271 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3272 break;
3273 }
3274 }
3275 else
3276 {
3277 modifier = *modifiers++;
3278 typep = decode_modified_type (modifiers, --modcount, mtype);
3279 switch (modifier)
3280 {
13b5a7ff
FF
3281 case MOD_pointer_to:
3282 typep = lookup_pointer_type (typep);
3283 break;
3284 case MOD_reference_to:
3285 typep = lookup_reference_type (typep);
3286 break;
3287 case MOD_const:
51b80b00 3288 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3289 break;
3290 case MOD_volatile:
51b80b00 3291 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3292 break;
3293 default:
1c92ca6f
FF
3294 if (!(MOD_lo_user <= (unsigned char) modifier
3295 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3296 {
51b80b00 3297 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3298 }
3299 break;
35f5886e
FF
3300 }
3301 }
3302 return (typep);
3303}
3304
3305/*
3306
3307LOCAL FUNCTION
3308
3309 decode_fund_type -- translate basic DWARF type to gdb base type
3310
3311DESCRIPTION
3312
3313 Given an integer that is one of the fundamental DWARF types,
3314 translate it to one of the basic internal gdb types and return
3315 a pointer to the appropriate gdb type (a "struct type *").
3316
3317NOTES
3318
85f0a848
FF
3319 For robustness, if we are asked to translate a fundamental
3320 type that we are unprepared to deal with, we return int so
3321 callers can always depend upon a valid type being returned,
3322 and so gdb may at least do something reasonable by default.
3323 If the type is not in the range of those types defined as
3324 application specific types, we also issue a warning.
35f5886e
FF
3325*/
3326
3327static struct type *
1ab3bf1b
JG
3328decode_fund_type (fundtype)
3329 unsigned int fundtype;
35f5886e
FF
3330{
3331 struct type *typep = NULL;
3332
3333 switch (fundtype)
3334 {
3335
3336 case FT_void:
bf229b4e 3337 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3338 break;
3339
1ab3bf1b 3340 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3341 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3342 break;
3343
35f5886e 3344 case FT_pointer: /* (void *) */
bf229b4e 3345 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3346 typep = lookup_pointer_type (typep);
35f5886e
FF
3347 break;
3348
3349 case FT_char:
bf229b4e 3350 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3351 break;
3352
35f5886e 3353 case FT_signed_char:
bf229b4e 3354 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3355 break;
3356
3357 case FT_unsigned_char:
bf229b4e 3358 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3359 break;
3360
3361 case FT_short:
bf229b4e 3362 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3363 break;
3364
35f5886e 3365 case FT_signed_short:
bf229b4e 3366 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3367 break;
3368
3369 case FT_unsigned_short:
bf229b4e 3370 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3371 break;
3372
3373 case FT_integer:
bf229b4e 3374 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3375 break;
3376
35f5886e 3377 case FT_signed_integer:
bf229b4e 3378 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3379 break;
3380
3381 case FT_unsigned_integer:
bf229b4e 3382 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3383 break;
3384
3385 case FT_long:
bf229b4e 3386 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3387 break;
3388
35f5886e 3389 case FT_signed_long:
bf229b4e 3390 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3391 break;
3392
1ab3bf1b 3393 case FT_unsigned_long:
bf229b4e 3394 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3395 break;
3396
1ab3bf1b 3397 case FT_long_long:
bf229b4e 3398 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3399 break;
1ab3bf1b
JG
3400
3401 case FT_signed_long_long:
bf229b4e 3402 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3403 break;
1ab3bf1b
JG
3404
3405 case FT_unsigned_long_long:
bf229b4e 3406 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3407 break;
1ab3bf1b
JG
3408
3409 case FT_float:
bf229b4e 3410 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3411 break;
3412
1ab3bf1b 3413 case FT_dbl_prec_float:
bf229b4e 3414 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3415 break;
3416
3417 case FT_ext_prec_float:
bf229b4e 3418 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3419 break;
3420
3421 case FT_complex:
bf229b4e 3422 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3423 break;
3424
3425 case FT_dbl_prec_complex:
bf229b4e 3426 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3427 break;
3428
1ab3bf1b 3429 case FT_ext_prec_complex:
bf229b4e 3430 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3431 break;
1ab3bf1b 3432
35f5886e
FF
3433 }
3434
85f0a848 3435 if (typep == NULL)
35f5886e 3436 {
85f0a848
FF
3437 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3438 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3439 {
51b80b00 3440 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3441 }
35f5886e
FF
3442 }
3443
3444 return (typep);
3445}
3446
3447/*
3448
3449LOCAL FUNCTION
3450
3451 create_name -- allocate a fresh copy of a string on an obstack
3452
3453DESCRIPTION
3454
3455 Given a pointer to a string and a pointer to an obstack, allocates
3456 a fresh copy of the string on the specified obstack.
3457
3458*/
3459
3460static char *
1ab3bf1b
JG
3461create_name (name, obstackp)
3462 char *name;
3463 struct obstack *obstackp;
35f5886e
FF
3464{
3465 int length;
3466 char *newname;
3467
3468 length = strlen (name) + 1;
3469 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3470 strcpy (newname, name);
35f5886e
FF
3471 return (newname);
3472}
3473
3474/*
3475
3476LOCAL FUNCTION
3477
3478 basicdieinfo -- extract the minimal die info from raw die data
3479
3480SYNOPSIS
3481
95967e73
FF
3482 void basicdieinfo (char *diep, struct dieinfo *dip,
3483 struct objfile *objfile)
35f5886e
FF
3484
3485DESCRIPTION
3486
3487 Given a pointer to raw DIE data, and a pointer to an instance of a
3488 die info structure, this function extracts the basic information
3489 from the DIE data required to continue processing this DIE, along
3490 with some bookkeeping information about the DIE.
3491
3492 The information we absolutely must have includes the DIE tag,
3493 and the DIE length. If we need the sibling reference, then we
3494 will have to call completedieinfo() to process all the remaining
3495 DIE information.
3496
3497 Note that since there is no guarantee that the data is properly
3498 aligned in memory for the type of access required (indirection
95967e73
FF
3499 through anything other than a char pointer), and there is no
3500 guarantee that it is in the same byte order as the gdb host,
3501 we call a function which deals with both alignment and byte
3502 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3503
3504 We also take care of some other basic things at this point, such
3505 as ensuring that the instance of the die info structure starts
3506 out completely zero'd and that curdie is initialized for use
3507 in error reporting if we have a problem with the current die.
3508
3509NOTES
3510
3511 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3512 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3513 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3514 are forced to be TAG_padding DIES.
3515
13b5a7ff
FF
3516 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3517 that if a padding DIE is used for alignment and the amount needed is
3518 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3519 enough to align to the next alignment boundry.
4090fe1c
FF
3520
3521 We do some basic sanity checking here, such as verifying that the
3522 length of the die would not cause it to overrun the recorded end of
3523 the buffer holding the DIE info. If we find a DIE that is either
3524 too small or too large, we force it's length to zero which should
3525 cause the caller to take appropriate action.
35f5886e
FF
3526 */
3527
3528static void
95967e73 3529basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3530 struct dieinfo *dip;
3531 char *diep;
95967e73 3532 struct objfile *objfile;
35f5886e
FF
3533{
3534 curdie = dip;
4ed3a9ea 3535 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3536 dip -> die = diep;
13b5a7ff
FF
3537 dip -> die_ref = dbroff + (diep - dbbase);
3538 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3539 objfile);
4090fe1c
FF
3540 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3541 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3542 {
51b80b00 3543 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3544 dip -> die_length = 0;
35f5886e 3545 }
13b5a7ff 3546 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3547 {
13b5a7ff 3548 dip -> die_tag = TAG_padding;
35f5886e
FF
3549 }
3550 else
3551 {
13b5a7ff
FF
3552 diep += SIZEOF_DIE_LENGTH;
3553 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3554 objfile);
35f5886e
FF
3555 }
3556}
3557
3558/*
3559
3560LOCAL FUNCTION
3561
3562 completedieinfo -- finish reading the information for a given DIE
3563
3564SYNOPSIS
3565
95967e73 3566 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3567
3568DESCRIPTION
3569
3570 Given a pointer to an already partially initialized die info structure,
3571 scan the raw DIE data and finish filling in the die info structure
3572 from the various attributes found.
3573
3574 Note that since there is no guarantee that the data is properly
3575 aligned in memory for the type of access required (indirection
95967e73
FF
3576 through anything other than a char pointer), and there is no
3577 guarantee that it is in the same byte order as the gdb host,
3578 we call a function which deals with both alignment and byte
3579 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3580
3581NOTES
3582
3583 Each time we are called, we increment the diecount variable, which
3584 keeps an approximate count of the number of dies processed for
3585 each compilation unit. This information is presented to the user
3586 if the info_verbose flag is set.
3587
3588 */
3589
3590static void
95967e73 3591completedieinfo (dip, objfile)
1ab3bf1b 3592 struct dieinfo *dip;
95967e73 3593 struct objfile *objfile;
35f5886e
FF
3594{
3595 char *diep; /* Current pointer into raw DIE data */
3596 char *end; /* Terminate DIE scan here */
3597 unsigned short attr; /* Current attribute being scanned */
3598 unsigned short form; /* Form of the attribute */
13b5a7ff 3599 int nbytes; /* Size of next field to read */
35f5886e
FF
3600
3601 diecount++;
3602 diep = dip -> die;
13b5a7ff
FF
3603 end = diep + dip -> die_length;
3604 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3605 while (diep < end)
3606 {
13b5a7ff
FF
3607 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3608 diep += SIZEOF_ATTRIBUTE;
3609 if ((nbytes = attribute_size (attr)) == -1)
3610 {
51b80b00 3611 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3612 diep = end;
3613 continue;
3614 }
35f5886e
FF
3615 switch (attr)
3616 {
3617 case AT_fund_type:
13b5a7ff
FF
3618 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
35f5886e
FF
3620 break;
3621 case AT_ordering:
13b5a7ff
FF
3622 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
35f5886e
FF
3624 break;
3625 case AT_bit_offset:
13b5a7ff
FF
3626 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3627 objfile);
35f5886e 3628 break;
35f5886e 3629 case AT_sibling:
13b5a7ff
FF
3630 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3631 objfile);
35f5886e
FF
3632 break;
3633 case AT_stmt_list:
13b5a7ff
FF
3634 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 objfile);
2d6186f4 3636 dip -> has_at_stmt_list = 1;
35f5886e
FF
3637 break;
3638 case AT_low_pc:
13b5a7ff
FF
3639 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3640 objfile);
4d315a07 3641 dip -> at_low_pc += baseaddr;
2d6186f4 3642 dip -> has_at_low_pc = 1;
35f5886e
FF
3643 break;
3644 case AT_high_pc:
13b5a7ff
FF
3645 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 objfile);
4d315a07 3647 dip -> at_high_pc += baseaddr;
35f5886e
FF
3648 break;
3649 case AT_language:
13b5a7ff
FF
3650 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
35f5886e
FF
3652 break;
3653 case AT_user_def_type:
13b5a7ff
FF
3654 dip -> at_user_def_type = target_to_host (diep, nbytes,
3655 GET_UNSIGNED, objfile);
35f5886e
FF
3656 break;
3657 case AT_byte_size:
13b5a7ff
FF
3658 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 objfile);
50055e94 3660 dip -> has_at_byte_size = 1;
35f5886e
FF
3661 break;
3662 case AT_bit_size:
13b5a7ff
FF
3663 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
35f5886e
FF
3665 break;
3666 case AT_member:
13b5a7ff
FF
3667 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3668 objfile);
35f5886e
FF
3669 break;
3670 case AT_discr:
13b5a7ff
FF
3671 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 objfile);
35f5886e 3673 break;
35f5886e
FF
3674 case AT_location:
3675 dip -> at_location = diep;
3676 break;
3677 case AT_mod_fund_type:
3678 dip -> at_mod_fund_type = diep;
3679 break;
3680 case AT_subscr_data:
3681 dip -> at_subscr_data = diep;
3682 break;
3683 case AT_mod_u_d_type:
3684 dip -> at_mod_u_d_type = diep;
3685 break;
35f5886e
FF
3686 case AT_element_list:
3687 dip -> at_element_list = diep;
768be6e1
FF
3688 dip -> short_element_list = 0;
3689 break;
3690 case AT_short_element_list:
3691 dip -> at_element_list = diep;
3692 dip -> short_element_list = 1;
35f5886e
FF
3693 break;
3694 case AT_discr_value:
3695 dip -> at_discr_value = diep;
3696 break;
3697 case AT_string_length:
3698 dip -> at_string_length = diep;
3699 break;
3700 case AT_name:
3701 dip -> at_name = diep;
3702 break;
3703 case AT_comp_dir:
d4902ab0
FF
3704 /* For now, ignore any "hostname:" portion, since gdb doesn't
3705 know how to deal with it. (FIXME). */
3706 dip -> at_comp_dir = strrchr (diep, ':');
3707 if (dip -> at_comp_dir != NULL)
3708 {
3709 dip -> at_comp_dir++;
3710 }
3711 else
3712 {
3713 dip -> at_comp_dir = diep;
3714 }
35f5886e
FF
3715 break;
3716 case AT_producer:
3717 dip -> at_producer = diep;
3718 break;
35f5886e 3719 case AT_start_scope:
13b5a7ff
FF
3720 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3721 objfile);
35f5886e
FF
3722 break;
3723 case AT_stride_size:
13b5a7ff
FF
3724 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3725 objfile);
35f5886e
FF
3726 break;
3727 case AT_src_info:
13b5a7ff
FF
3728 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3729 objfile);
35f5886e
FF
3730 break;
3731 case AT_prototyped:
13b5a7ff 3732 dip -> at_prototyped = diep;
35f5886e 3733 break;
35f5886e
FF
3734 default:
3735 /* Found an attribute that we are unprepared to handle. However
3736 it is specifically one of the design goals of DWARF that
3737 consumers should ignore unknown attributes. As long as the
3738 form is one that we recognize (so we know how to skip it),
3739 we can just ignore the unknown attribute. */
3740 break;
3741 }
13b5a7ff 3742 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3743 switch (form)
3744 {
3745 case FORM_DATA2:
13b5a7ff 3746 diep += 2;
35f5886e
FF
3747 break;
3748 case FORM_DATA4:
13b5a7ff
FF
3749 case FORM_REF:
3750 diep += 4;
35f5886e
FF
3751 break;
3752 case FORM_DATA8:
13b5a7ff 3753 diep += 8;
35f5886e
FF
3754 break;
3755 case FORM_ADDR:
13b5a7ff 3756 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3757 break;
3758 case FORM_BLOCK2:
13b5a7ff 3759 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3760 break;
3761 case FORM_BLOCK4:
13b5a7ff 3762 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3763 break;
3764 case FORM_STRING:
3765 diep += strlen (diep) + 1;
3766 break;
3767 default:
51b80b00 3768 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3769 diep = end;
3770 break;
3771 }
3772 }
3773}
95967e73 3774
13b5a7ff 3775/*
95967e73 3776
13b5a7ff
FF
3777LOCAL FUNCTION
3778
3779 target_to_host -- swap in target data to host
3780
3781SYNOPSIS
3782
3783 target_to_host (char *from, int nbytes, int signextend,
3784 struct objfile *objfile)
3785
3786DESCRIPTION
3787
3788 Given pointer to data in target format in FROM, a byte count for
3789 the size of the data in NBYTES, a flag indicating whether or not
3790 the data is signed in SIGNEXTEND, and a pointer to the current
3791 objfile in OBJFILE, convert the data to host format and return
3792 the converted value.
3793
3794NOTES
3795
3796 FIXME: If we read data that is known to be signed, and expect to
3797 use it as signed data, then we need to explicitly sign extend the
3798 result until the bfd library is able to do this for us.
3799
306d27ca
DE
3800 FIXME: Would a 32 bit target ever need an 8 byte result?
3801
13b5a7ff
FF
3802 */
3803
306d27ca 3804static CORE_ADDR
13b5a7ff 3805target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3806 char *from;
3807 int nbytes;
13b5a7ff 3808 int signextend; /* FIXME: Unused */
95967e73
FF
3809 struct objfile *objfile;
3810{
306d27ca 3811 CORE_ADDR rtnval;
95967e73
FF
3812
3813 switch (nbytes)
3814 {
95967e73 3815 case 8:
13b5a7ff 3816 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3817 break;
95967e73 3818 case 4:
13b5a7ff 3819 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3820 break;
3821 case 2:
13b5a7ff 3822 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3823 break;
3824 case 1:
13b5a7ff 3825 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3826 break;
3827 default:
51b80b00 3828 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3829 rtnval = 0;
95967e73
FF
3830 break;
3831 }
13b5a7ff 3832 return (rtnval);
95967e73
FF
3833}
3834
13b5a7ff
FF
3835/*
3836
3837LOCAL FUNCTION
3838
3839 attribute_size -- compute size of data for a DWARF attribute
3840
3841SYNOPSIS
3842
3843 static int attribute_size (unsigned int attr)
3844
3845DESCRIPTION
3846
3847 Given a DWARF attribute in ATTR, compute the size of the first
3848 piece of data associated with this attribute and return that
3849 size.
3850
3851 Returns -1 for unrecognized attributes.
3852
3853 */
3854
3855static int
3856attribute_size (attr)
3857 unsigned int attr;
3858{
3859 int nbytes; /* Size of next data for this attribute */
3860 unsigned short form; /* Form of the attribute */
3861
3862 form = FORM_FROM_ATTR (attr);
3863 switch (form)
3864 {
3865 case FORM_STRING: /* A variable length field is next */
3866 nbytes = 0;
3867 break;
3868 case FORM_DATA2: /* Next 2 byte field is the data itself */
3869 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3870 nbytes = 2;
3871 break;
3872 case FORM_DATA4: /* Next 4 byte field is the data itself */
3873 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3874 case FORM_REF: /* Next 4 byte field is a DIE offset */
3875 nbytes = 4;
3876 break;
3877 case FORM_DATA8: /* Next 8 byte field is the data itself */
3878 nbytes = 8;
3879 break;
3880 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3881 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3882 break;
3883 default:
51b80b00 3884 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3885 nbytes = -1;
3886 break;
3887 }
3888 return (nbytes);
3889}
This page took 0.369224 seconds and 4 git commands to generate.