2004-04-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b
AC
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
b99607ea 4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
1bac305b 5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c 24
5ae7ca1d
MC
25/*
26 If you are looking for DWARF-2 support, you are in the wrong file.
013be872
MC
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
29
30 DWARF-1 is slowly headed for obsoletion.
31
32 In gcc HEAD 2003-11-29 16:28:31 UTC, no targets prefer dwarf-1.
33
34 In gcc 3.3.2, these targets prefer dwarf-1:
35
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
38 mips-sni-sysv4
39 sparc-hal-solaris2*
40
41 In gcc 3.2.2, these targets prefer dwarf-1:
42
43 i[34567]86-dg-dgux*
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
46 m88k-dg-dgux*
47 mips-sni-sysv4
48 sparc-hal-solaris2*
49
50 In gcc 2.95.3, these targets prefer dwarf-1:
51
52 i[34567]86-dg-dgux*
53 i[34567]86-ncr-sysv4*
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
56 i[34567]86-*-osf1*
57 i[34567]86-*-sco3.2v5*
58 i[34567]86-*-sysv4*
59 i860-alliant-*
60 i860-*-sysv4*
61 m68k-atari-sysv4*
62 m68k-cbm-sysv4*
63 m68k-*-sysv4*
64 m88k-dg-dgux*
65 m88k-*-sysv4*
66 mips-sni-sysv4
67 mips-*-gnu*
68 sh-*-elf*
69 sh-*-rtemself*
70 sparc-hal-solaris2*
71 sparc-*-sysv4*
72
73 Some non-gcc compilers produce dwarf-1:
74
75 PR gdb/1179 was from a user with Diab C++ 4.3.
76 Other users have also reported using Diab compilers with dwarf-1.
77 On 2003-06-09 the gdb list received a report from a user
78 with Absoft ProFortran f77 which is dwarf-1.
79
80 -- chastain 2003-12-01
5ae7ca1d
MC
81*/
82
c906108c
SS
83/*
84
c5aa993b
JM
85 FIXME: Do we need to generate dependencies in partial symtabs?
86 (Perhaps we don't need to).
c906108c 87
c5aa993b
JM
88 FIXME: Resolve minor differences between what information we put in the
89 partial symbol table and what dbxread puts in. For example, we don't yet
90 put enum constants there. And dbxread seems to invent a lot of typedefs
91 we never see. Use the new printpsym command to see the partial symbol table
92 contents.
c906108c 93
c5aa993b
JM
94 FIXME: Figure out a better way to tell gdb about the name of the function
95 contain the user's entry point (I.E. main())
c906108c 96
c5aa993b
JM
97 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
98 other things to work on, if you get bored. :-)
c906108c 99
c5aa993b 100 */
c906108c
SS
101
102#include "defs.h"
103#include "symtab.h"
104#include "gdbtypes.h"
c906108c
SS
105#include "objfiles.h"
106#include "elf/dwarf.h"
107#include "buildsym.h"
108#include "demangle.h"
c5aa993b 109#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
110#include "language.h"
111#include "complaints.h"
112
113#include <fcntl.h>
114#include "gdb_string.h"
115
116/* Some macros to provide DIE info for complaints. */
117
118#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
119#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
120
121/* Complaints that can be issued during DWARF debug info reading. */
122
23136709
KB
123static void
124bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 125{
23136709
KB
126 complaint (&symfile_complaints,
127 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
128 arg1, arg2, arg3);
129}
c906108c 130
23136709
KB
131static void
132unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 133{
23136709
KB
134 complaint (&symfile_complaints,
135 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
136 arg3);
137}
c906108c 138
23136709
KB
139static void
140dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 141{
23136709
KB
142 complaint (&symfile_complaints,
143 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
144 arg1, arg2);
145}
c906108c 146
23136709
KB
147static void
148bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 149{
23136709
KB
150 complaint (&symfile_complaints,
151 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
152 arg2, arg3);
153}
c906108c
SS
154
155typedef unsigned int DIE_REF; /* Reference to a DIE */
156
157#ifndef GCC_PRODUCER
158#define GCC_PRODUCER "GNU C "
159#endif
160
161#ifndef GPLUS_PRODUCER
162#define GPLUS_PRODUCER "GNU C++ "
163#endif
164
165#ifndef LCC_PRODUCER
166#define LCC_PRODUCER "NCR C/C++"
167#endif
168
c906108c
SS
169/* Flags to target_to_host() that tell whether or not the data object is
170 expected to be signed. Used, for example, when fetching a signed
171 integer in the target environment which is used as a signed integer
172 in the host environment, and the two environments have different sized
173 ints. In this case, *somebody* has to sign extend the smaller sized
174 int. */
175
176#define GET_UNSIGNED 0 /* No sign extension required */
177#define GET_SIGNED 1 /* Sign extension required */
178
179/* Defines for things which are specified in the document "DWARF Debugging
180 Information Format" published by UNIX International, Programming Languages
181 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
182
183#define SIZEOF_DIE_LENGTH 4
184#define SIZEOF_DIE_TAG 2
185#define SIZEOF_ATTRIBUTE 2
186#define SIZEOF_FORMAT_SPECIFIER 1
187#define SIZEOF_FMT_FT 2
188#define SIZEOF_LINETBL_LENGTH 4
189#define SIZEOF_LINETBL_LINENO 4
190#define SIZEOF_LINETBL_STMT 2
191#define SIZEOF_LINETBL_DELTA 4
192#define SIZEOF_LOC_ATOM_CODE 1
193
194#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
195
196/* Macros that return the sizes of various types of data in the target
197 environment.
198
199 FIXME: Currently these are just compile time constants (as they are in
200 other parts of gdb as well). They need to be able to get the right size
201 either from the bfd or possibly from the DWARF info. It would be nice if
202 the DWARF producer inserted DIES that describe the fundamental types in
203 the target environment into the DWARF info, similar to the way dbx stabs
204 producers produce information about their fundamental types. */
205
206#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
207#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
208
209/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
210 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
211 However, the Issue 2 DWARF specification from AT&T defines it as
212 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
213 For backwards compatibility with the AT&T compiler produced executables
214 we define AT_short_element_list for this variant. */
215
216#define AT_short_element_list (0x00f0|FORM_BLOCK2)
217
c906108c
SS
218/* The DWARF debugging information consists of two major pieces,
219 one is a block of DWARF Information Entries (DIE's) and the other
220 is a line number table. The "struct dieinfo" structure contains
221 the information for a single DIE, the one currently being processed.
222
223 In order to make it easier to randomly access the attribute fields
224 of the current DIE, which are specifically unordered within the DIE,
225 each DIE is scanned and an instance of the "struct dieinfo"
226 structure is initialized.
227
228 Initialization is done in two levels. The first, done by basicdieinfo(),
229 just initializes those fields that are vital to deciding whether or not
230 to use this DIE, how to skip past it, etc. The second, done by the
231 function completedieinfo(), fills in the rest of the information.
232
233 Attributes which have block forms are not interpreted at the time
234 the DIE is scanned, instead we just save pointers to the start
235 of their value fields.
236
237 Some fields have a flag <name>_p that is set when the value of the
238 field is valid (I.E. we found a matching attribute in the DIE). Since
239 we may want to test for the presence of some attributes in the DIE,
240 such as AT_low_pc, without restricting the values of the field,
241 we need someway to note that we found such an attribute.
c5aa993b 242
c906108c 243 */
c5aa993b 244
c906108c
SS
245typedef char BLOCK;
246
c5aa993b
JM
247struct dieinfo
248 {
249 char *die; /* Pointer to the raw DIE data */
250 unsigned long die_length; /* Length of the raw DIE data */
251 DIE_REF die_ref; /* Offset of this DIE */
252 unsigned short die_tag; /* Tag for this DIE */
253 unsigned long at_padding;
254 unsigned long at_sibling;
255 BLOCK *at_location;
256 char *at_name;
257 unsigned short at_fund_type;
258 BLOCK *at_mod_fund_type;
259 unsigned long at_user_def_type;
260 BLOCK *at_mod_u_d_type;
261 unsigned short at_ordering;
262 BLOCK *at_subscr_data;
263 unsigned long at_byte_size;
264 unsigned short at_bit_offset;
265 unsigned long at_bit_size;
266 BLOCK *at_element_list;
267 unsigned long at_stmt_list;
268 CORE_ADDR at_low_pc;
269 CORE_ADDR at_high_pc;
270 unsigned long at_language;
271 unsigned long at_member;
272 unsigned long at_discr;
273 BLOCK *at_discr_value;
274 BLOCK *at_string_length;
275 char *at_comp_dir;
276 char *at_producer;
277 unsigned long at_start_scope;
278 unsigned long at_stride_size;
279 unsigned long at_src_info;
280 char *at_prototyped;
281 unsigned int has_at_low_pc:1;
282 unsigned int has_at_stmt_list:1;
283 unsigned int has_at_byte_size:1;
284 unsigned int short_element_list:1;
285
286 /* Kludge to identify register variables */
287
288 unsigned int isreg;
289
290 /* Kludge to identify optimized out variables */
291
292 unsigned int optimized_out;
293
294 /* Kludge to identify basereg references.
295 Nonzero if we have an offset relative to a basereg. */
296
297 unsigned int offreg;
298
299 /* Kludge to identify which base register is it relative to. */
300
301 unsigned int basereg;
302 };
c906108c 303
c5aa993b 304static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
305static struct dieinfo *curdie; /* For warnings and such */
306
c5aa993b
JM
307static char *dbbase; /* Base pointer to dwarf info */
308static int dbsize; /* Size of dwarf info in bytes */
309static int dbroff; /* Relative offset from start of .debug section */
310static char *lnbase; /* Base pointer to line section */
c906108c
SS
311
312/* This value is added to each symbol value. FIXME: Generalize to
313 the section_offsets structure used by dbxread (once this is done,
314 pass the appropriate section number to end_symtab). */
315static CORE_ADDR baseaddr; /* Add to each symbol value */
316
317/* The section offsets used in the current psymtab or symtab. FIXME,
318 only used to pass one value (baseaddr) at the moment. */
319static struct section_offsets *base_section_offsets;
320
321/* We put a pointer to this structure in the read_symtab_private field
322 of the psymtab. */
323
c5aa993b
JM
324struct dwfinfo
325 {
326 /* Always the absolute file offset to the start of the ".debug"
327 section for the file containing the DIE's being accessed. */
328 file_ptr dbfoff;
329 /* Relative offset from the start of the ".debug" section to the
330 first DIE to be accessed. When building the partial symbol
331 table, this value will be zero since we are accessing the
332 entire ".debug" section. When expanding a partial symbol
333 table entry, this value will be the offset to the first
334 DIE for the compilation unit containing the symbol that
335 triggers the expansion. */
336 int dbroff;
337 /* The size of the chunk of DIE's being examined, in bytes. */
338 int dblength;
339 /* The absolute file offset to the line table fragment. Ignored
340 when building partial symbol tables, but used when expanding
341 them, and contains the absolute file offset to the fragment
342 of the ".line" section containing the line numbers for the
343 current compilation unit. */
344 file_ptr lnfoff;
345 };
c906108c
SS
346
347#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
348#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
349#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
350#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
351
352/* The generic symbol table building routines have separate lists for
353 file scope symbols and all all other scopes (local scopes). So
354 we need to select the right one to pass to add_symbol_to_list().
355 We do it by keeping a pointer to the correct list in list_in_scope.
356
357 FIXME: The original dwarf code just treated the file scope as the first
358 local scope, and all other local scopes as nested local scopes, and worked
359 fine. Check to see if we really need to distinguish these in buildsym.c */
360
361struct pending **list_in_scope = &file_symbols;
362
363/* DIES which have user defined types or modified user defined types refer to
364 other DIES for the type information. Thus we need to associate the offset
365 of a DIE for a user defined type with a pointer to the type information.
366
367 Originally this was done using a simple but expensive algorithm, with an
368 array of unsorted structures, each containing an offset/type-pointer pair.
369 This array was scanned linearly each time a lookup was done. The result
370 was that gdb was spending over half it's startup time munging through this
371 array of pointers looking for a structure that had the right offset member.
372
373 The second attempt used the same array of structures, but the array was
374 sorted using qsort each time a new offset/type was recorded, and a binary
375 search was used to find the type pointer for a given DIE offset. This was
376 even slower, due to the overhead of sorting the array each time a new
377 offset/type pair was entered.
378
379 The third attempt uses a fixed size array of type pointers, indexed by a
380 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
381 we can divide any DIE offset by 4 to obtain a unique index into this fixed
382 size array. Since each element is a 4 byte pointer, it takes exactly as
383 much memory to hold this array as to hold the DWARF info for a given
384 compilation unit. But it gets freed as soon as we are done with it.
385 This has worked well in practice, as a reasonable tradeoff between memory
386 consumption and speed, without having to resort to much more complicated
387 algorithms. */
388
389static struct type **utypes; /* Pointer to array of user type pointers */
390static int numutypes; /* Max number of user type pointers */
391
392/* Maintain an array of referenced fundamental types for the current
393 compilation unit being read. For DWARF version 1, we have to construct
394 the fundamental types on the fly, since no information about the
395 fundamental types is supplied. Each such fundamental type is created by
396 calling a language dependent routine to create the type, and then a
397 pointer to that type is then placed in the array at the index specified
398 by it's FT_<TYPENAME> value. The array has a fixed size set by the
399 FT_NUM_MEMBERS compile time constant, which is the number of predefined
400 fundamental types gdb knows how to construct. */
401
c5aa993b 402static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
403
404/* Record the language for the compilation unit which is currently being
405 processed. We know it once we have seen the TAG_compile_unit DIE,
406 and we need it while processing the DIE's for that compilation unit.
407 It is eventually saved in the symtab structure, but we don't finalize
408 the symtab struct until we have processed all the DIE's for the
409 compilation unit. We also need to get and save a pointer to the
410 language struct for this language, so we can call the language
411 dependent routines for doing things such as creating fundamental
412 types. */
413
414static enum language cu_language;
415static const struct language_defn *cu_language_defn;
416
417/* Forward declarations of static functions so we don't have to worry
418 about ordering within this file. */
419
4efb68b1 420static void free_utypes (void *);
c906108c 421
a14ed312 422static int attribute_size (unsigned int);
c906108c 423
a14ed312 424static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 425
a14ed312 426static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 427
a14ed312 428static void handle_producer (char *);
c906108c 429
570b8f7c
AC
430static void read_file_scope (struct dieinfo *, char *, char *,
431 struct objfile *);
c906108c 432
570b8f7c
AC
433static void read_func_scope (struct dieinfo *, char *, char *,
434 struct objfile *);
c906108c 435
570b8f7c
AC
436static void read_lexical_block_scope (struct dieinfo *, char *, char *,
437 struct objfile *);
c906108c 438
a14ed312 439static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 440
570b8f7c
AC
441static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
442 struct objfile *);
c906108c 443
a14ed312 444static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 445
a14ed312 446static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 447
a14ed312 448static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 449
a14ed312 450static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 451
a14ed312 452static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 453
a14ed312 454static void read_ofile_symtab (struct partial_symtab *);
c906108c 455
a14ed312 456static void process_dies (char *, char *, struct objfile *);
c906108c 457
570b8f7c
AC
458static void read_structure_scope (struct dieinfo *, char *, char *,
459 struct objfile *);
c906108c 460
a14ed312 461static struct type *decode_array_element_type (char *);
c906108c 462
a14ed312 463static struct type *decode_subscript_data_item (char *, char *);
c906108c 464
a14ed312 465static void dwarf_read_array_type (struct dieinfo *);
c906108c 466
a14ed312 467static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 468
a14ed312 469static void read_tag_string_type (struct dieinfo *dip);
c906108c 470
a14ed312 471static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 472
570b8f7c
AC
473static void read_enumeration (struct dieinfo *, char *, char *,
474 struct objfile *);
c906108c 475
a14ed312
KB
476static struct type *struct_type (struct dieinfo *, char *, char *,
477 struct objfile *);
c906108c 478
a14ed312 479static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 480
a14ed312 481static void decode_line_numbers (char *);
c906108c 482
a14ed312 483static struct type *decode_die_type (struct dieinfo *);
c906108c 484
a14ed312 485static struct type *decode_mod_fund_type (char *);
c906108c 486
a14ed312 487static struct type *decode_mod_u_d_type (char *);
c906108c 488
a14ed312 489static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 490
a14ed312 491static struct type *decode_fund_type (unsigned int);
c906108c 492
a14ed312 493static char *create_name (char *, struct obstack *);
c906108c 494
a14ed312 495static struct type *lookup_utype (DIE_REF);
c906108c 496
a14ed312 497static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 498
a14ed312 499static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 500
570b8f7c
AC
501static void synthesize_typedef (struct dieinfo *, struct objfile *,
502 struct type *);
c906108c 503
a14ed312 504static int locval (struct dieinfo *);
c906108c 505
a14ed312 506static void set_cu_language (struct dieinfo *);
c906108c 507
a14ed312 508static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
509
510
511/*
512
c5aa993b 513 LOCAL FUNCTION
c906108c 514
c5aa993b 515 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 516
c5aa993b 517 SYNOPSIS
c906108c 518
c5aa993b
JM
519 struct type *
520 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 521
c5aa993b 522 DESCRIPTION
c906108c 523
c5aa993b
JM
524 DWARF version 1 doesn't supply any fundamental type information,
525 so gdb has to construct such types. It has a fixed number of
526 fundamental types that it knows how to construct, which is the
527 union of all types that it knows how to construct for all languages
528 that it knows about. These are enumerated in gdbtypes.h.
c906108c 529
c5aa993b
JM
530 As an example, assume we find a DIE that references a DWARF
531 fundamental type of FT_integer. We first look in the ftypes
532 array to see if we already have such a type, indexed by the
533 gdb internal value of FT_INTEGER. If so, we simply return a
534 pointer to that type. If not, then we ask an appropriate
535 language dependent routine to create a type FT_INTEGER, using
536 defaults reasonable for the current target machine, and install
537 that type in ftypes for future reference.
c906108c 538
c5aa993b 539 RETURNS
c906108c 540
c5aa993b 541 Pointer to a fundamental type.
c906108c 542
c5aa993b 543 */
c906108c
SS
544
545static struct type *
fba45db2 546dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
547{
548 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
549 {
550 error ("internal error - invalid fundamental type id %d", typeid);
551 }
552
553 /* Look for this particular type in the fundamental type vector. If one is
554 not found, create and install one appropriate for the current language
555 and the current target machine. */
556
557 if (ftypes[typeid] == NULL)
558 {
c5aa993b 559 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
560 }
561
562 return (ftypes[typeid]);
563}
564
565/*
566
c5aa993b 567 LOCAL FUNCTION
c906108c 568
c5aa993b 569 set_cu_language -- set local copy of language for compilation unit
c906108c 570
c5aa993b 571 SYNOPSIS
c906108c 572
c5aa993b
JM
573 void
574 set_cu_language (struct dieinfo *dip)
c906108c 575
c5aa993b 576 DESCRIPTION
c906108c 577
c5aa993b
JM
578 Decode the language attribute for a compilation unit DIE and
579 remember what the language was. We use this at various times
580 when processing DIE's for a given compilation unit.
c906108c 581
c5aa993b 582 RETURNS
c906108c 583
c5aa993b 584 No return value.
c906108c
SS
585
586 */
587
588static void
fba45db2 589set_cu_language (struct dieinfo *dip)
c906108c 590{
c5aa993b 591 switch (dip->at_language)
c906108c 592 {
c5aa993b
JM
593 case LANG_C89:
594 case LANG_C:
595 cu_language = language_c;
596 break;
597 case LANG_C_PLUS_PLUS:
598 cu_language = language_cplus;
599 break;
c5aa993b
JM
600 case LANG_MODULA2:
601 cu_language = language_m2;
602 break;
603 case LANG_FORTRAN77:
604 case LANG_FORTRAN90:
605 cu_language = language_fortran;
606 break;
607 case LANG_ADA83:
608 case LANG_COBOL74:
609 case LANG_COBOL85:
610 case LANG_PASCAL83:
611 /* We don't know anything special about these yet. */
612 cu_language = language_unknown;
613 break;
614 default:
615 /* If no at_language, try to deduce one from the filename */
616 cu_language = deduce_language_from_filename (dip->at_name);
617 break;
c906108c
SS
618 }
619 cu_language_defn = language_def (cu_language);
620}
621
622/*
623
c5aa993b 624 GLOBAL FUNCTION
c906108c 625
c5aa993b 626 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 627
c5aa993b 628 SYNOPSIS
c906108c 629
c5aa993b 630 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
631 int mainline, file_ptr dbfoff, unsigned int dbfsize,
632 file_ptr lnoffset, unsigned int lnsize)
c906108c 633
c5aa993b 634 DESCRIPTION
c906108c 635
c5aa993b
JM
636 This function is called upon to build partial symtabs from files
637 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 638
c5aa993b
JM
639 It is passed a bfd* containing the DIES
640 and line number information, the corresponding filename for that
641 file, a base address for relocating the symbols, a flag indicating
642 whether or not this debugging information is from a "main symbol
643 table" rather than a shared library or dynamically linked file,
644 and file offset/size pairs for the DIE information and line number
645 information.
c906108c 646
c5aa993b 647 RETURNS
c906108c 648
c5aa993b 649 No return value.
c906108c
SS
650
651 */
652
653void
fba45db2
KB
654dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
655 unsigned int dbfsize, file_ptr lnoffset,
656 unsigned int lnsize)
c906108c
SS
657{
658 bfd *abfd = objfile->obfd;
659 struct cleanup *back_to;
c5aa993b 660
c906108c
SS
661 current_objfile = objfile;
662 dbsize = dbfsize;
663 dbbase = xmalloc (dbsize);
664 dbroff = 0;
665 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 666 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 667 {
b8c9b27d 668 xfree (dbbase);
c906108c
SS
669 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
670 }
b8c9b27d 671 back_to = make_cleanup (xfree, dbbase);
c5aa993b 672
c906108c
SS
673 /* If we are reinitializing, or if we have never loaded syms yet, init.
674 Since we have no idea how many DIES we are looking at, we just guess
675 some arbitrary value. */
c5aa993b 676
ef96bde8
EZ
677 if (mainline
678 || (objfile->global_psymbols.size == 0
679 && objfile->static_psymbols.size == 0))
c906108c
SS
680 {
681 init_psymbol_list (objfile, 1024);
682 }
c5aa993b 683
c906108c
SS
684 /* Save the relocation factor where everybody can see it. */
685
d4f3574e
SS
686 base_section_offsets = objfile->section_offsets;
687 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
688
689 /* Follow the compilation unit sibling chain, building a partial symbol
690 table entry for each one. Save enough information about each compilation
691 unit to locate the full DWARF information later. */
c5aa993b 692
c906108c 693 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 694
c906108c
SS
695 do_cleanups (back_to);
696 current_objfile = NULL;
697}
698
699/*
700
c5aa993b 701 LOCAL FUNCTION
c906108c 702
c5aa993b 703 read_lexical_block_scope -- process all dies in a lexical block
c906108c 704
c5aa993b 705 SYNOPSIS
c906108c 706
c5aa993b
JM
707 static void read_lexical_block_scope (struct dieinfo *dip,
708 char *thisdie, char *enddie)
c906108c 709
c5aa993b 710 DESCRIPTION
c906108c 711
c5aa993b
JM
712 Process all the DIES contained within a lexical block scope.
713 Start a new scope, process the dies, and then close the scope.
c906108c
SS
714
715 */
716
717static void
fba45db2
KB
718read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
719 struct objfile *objfile)
c906108c 720{
b59661bd 721 struct context_stack *new;
c906108c 722
c5aa993b
JM
723 push_context (0, dip->at_low_pc);
724 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
725 new = pop_context ();
726 if (local_symbols != NULL)
727 {
c5aa993b
JM
728 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
729 dip->at_high_pc, objfile);
c906108c 730 }
c5aa993b 731 local_symbols = new->locals;
c906108c
SS
732}
733
734/*
735
c5aa993b 736 LOCAL FUNCTION
c906108c 737
c5aa993b 738 lookup_utype -- look up a user defined type from die reference
c906108c 739
c5aa993b 740 SYNOPSIS
c906108c 741
c5aa993b 742 static type *lookup_utype (DIE_REF die_ref)
c906108c 743
c5aa993b 744 DESCRIPTION
c906108c 745
c5aa993b
JM
746 Given a DIE reference, lookup the user defined type associated with
747 that DIE, if it has been registered already. If not registered, then
748 return NULL. Alloc_utype() can be called to register an empty
749 type for this reference, which will be filled in later when the
750 actual referenced DIE is processed.
c906108c
SS
751 */
752
753static struct type *
fba45db2 754lookup_utype (DIE_REF die_ref)
c906108c
SS
755{
756 struct type *type = NULL;
757 int utypeidx;
c5aa993b 758
c906108c
SS
759 utypeidx = (die_ref - dbroff) / 4;
760 if ((utypeidx < 0) || (utypeidx >= numutypes))
761 {
23136709 762 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
763 }
764 else
765 {
766 type = *(utypes + utypeidx);
767 }
768 return (type);
769}
770
771
772/*
773
c5aa993b 774 LOCAL FUNCTION
c906108c 775
c5aa993b 776 alloc_utype -- add a user defined type for die reference
c906108c 777
c5aa993b 778 SYNOPSIS
c906108c 779
c5aa993b 780 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 781
c5aa993b 782 DESCRIPTION
c906108c 783
c5aa993b
JM
784 Given a die reference DIE_REF, and a possible pointer to a user
785 defined type UTYPEP, register that this reference has a user
786 defined type and either use the specified type in UTYPEP or
787 make a new empty type that will be filled in later.
c906108c 788
c5aa993b
JM
789 We should only be called after calling lookup_utype() to verify that
790 there is not currently a type registered for DIE_REF.
c906108c
SS
791 */
792
793static struct type *
fba45db2 794alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
795{
796 struct type **typep;
797 int utypeidx;
c5aa993b 798
c906108c
SS
799 utypeidx = (die_ref - dbroff) / 4;
800 typep = utypes + utypeidx;
801 if ((utypeidx < 0) || (utypeidx >= numutypes))
802 {
803 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 804 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
805 }
806 else if (*typep != NULL)
807 {
808 utypep = *typep;
23136709
KB
809 complaint (&symfile_complaints,
810 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
811 DIE_ID, DIE_NAME);
c906108c
SS
812 }
813 else
814 {
815 if (utypep == NULL)
816 {
817 utypep = alloc_type (current_objfile);
818 }
819 *typep = utypep;
820 }
821 return (utypep);
822}
823
824/*
825
c5aa993b 826 LOCAL FUNCTION
c906108c 827
c5aa993b 828 free_utypes -- free the utypes array and reset pointer & count
c906108c 829
c5aa993b 830 SYNOPSIS
c906108c 831
4efb68b1 832 static void free_utypes (void *dummy)
c906108c 833
c5aa993b 834 DESCRIPTION
c906108c 835
c5aa993b
JM
836 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
837 and set numutypes back to zero. This ensures that the utypes does not get
838 referenced after being freed.
c906108c
SS
839 */
840
841static void
4efb68b1 842free_utypes (void *dummy)
c906108c 843{
b8c9b27d 844 xfree (utypes);
c906108c
SS
845 utypes = NULL;
846 numutypes = 0;
847}
848
849
850/*
851
c5aa993b 852 LOCAL FUNCTION
c906108c 853
c5aa993b 854 decode_die_type -- return a type for a specified die
c906108c 855
c5aa993b 856 SYNOPSIS
c906108c 857
c5aa993b 858 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 859
c5aa993b 860 DESCRIPTION
c906108c 861
c5aa993b
JM
862 Given a pointer to a die information structure DIP, decode the
863 type of the die and return a pointer to the decoded type. All
864 dies without specific types default to type int.
c906108c
SS
865 */
866
867static struct type *
fba45db2 868decode_die_type (struct dieinfo *dip)
c906108c
SS
869{
870 struct type *type = NULL;
c5aa993b
JM
871
872 if (dip->at_fund_type != 0)
c906108c 873 {
c5aa993b 874 type = decode_fund_type (dip->at_fund_type);
c906108c 875 }
c5aa993b 876 else if (dip->at_mod_fund_type != NULL)
c906108c 877 {
c5aa993b 878 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 879 }
c5aa993b 880 else if (dip->at_user_def_type)
c906108c 881 {
b59661bd
AC
882 type = lookup_utype (dip->at_user_def_type);
883 if (type == NULL)
c906108c 884 {
c5aa993b 885 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
886 }
887 }
c5aa993b 888 else if (dip->at_mod_u_d_type)
c906108c 889 {
c5aa993b 890 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
891 }
892 else
893 {
894 type = dwarf_fundamental_type (current_objfile, FT_VOID);
895 }
896 return (type);
897}
898
899/*
900
c5aa993b 901 LOCAL FUNCTION
c906108c 902
c5aa993b 903 struct_type -- compute and return the type for a struct or union
c906108c 904
c5aa993b 905 SYNOPSIS
c906108c 906
c5aa993b
JM
907 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
908 char *enddie, struct objfile *objfile)
c906108c 909
c5aa993b 910 DESCRIPTION
c906108c 911
c5aa993b
JM
912 Given pointer to a die information structure for a die which
913 defines a union or structure (and MUST define one or the other),
914 and pointers to the raw die data that define the range of dies which
915 define the members, compute and return the user defined type for the
916 structure or union.
c906108c
SS
917 */
918
919static struct type *
fba45db2
KB
920struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
921 struct objfile *objfile)
c906108c
SS
922{
923 struct type *type;
c5aa993b
JM
924 struct nextfield
925 {
926 struct nextfield *next;
927 struct field field;
928 };
c906108c
SS
929 struct nextfield *list = NULL;
930 struct nextfield *new;
931 int nfields = 0;
932 int n;
933 struct dieinfo mbr;
934 char *nextdie;
935 int anonymous_size;
c5aa993b 936
b59661bd
AC
937 type = lookup_utype (dip->die_ref);
938 if (type == NULL)
c906108c
SS
939 {
940 /* No forward references created an empty type, so install one now */
c5aa993b 941 type = alloc_utype (dip->die_ref, NULL);
c906108c 942 }
c5aa993b
JM
943 INIT_CPLUS_SPECIFIC (type);
944 switch (dip->die_tag)
c906108c 945 {
c5aa993b
JM
946 case TAG_class_type:
947 TYPE_CODE (type) = TYPE_CODE_CLASS;
948 break;
949 case TAG_structure_type:
950 TYPE_CODE (type) = TYPE_CODE_STRUCT;
951 break;
952 case TAG_union_type:
953 TYPE_CODE (type) = TYPE_CODE_UNION;
954 break;
955 default:
956 /* Should never happen */
957 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709
KB
958 complaint (&symfile_complaints,
959 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
960 DIE_ID, DIE_NAME);
c5aa993b 961 break;
c906108c
SS
962 }
963 /* Some compilers try to be helpful by inventing "fake" names for
964 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
965 Thanks, but no thanks... */
c5aa993b
JM
966 if (dip->at_name != NULL
967 && *dip->at_name != '~'
968 && *dip->at_name != '.')
c906108c 969 {
b99607ea 970 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 971 "", "", dip->at_name);
c906108c
SS
972 }
973 /* Use whatever size is known. Zero is a valid size. We might however
974 wish to check has_at_byte_size to make sure that some byte size was
975 given explicitly, but DWARF doesn't specify that explicit sizes of
976 zero have to present, so complaining about missing sizes should
977 probably not be the default. */
c5aa993b
JM
978 TYPE_LENGTH (type) = dip->at_byte_size;
979 thisdie += dip->die_length;
c906108c
SS
980 while (thisdie < enddie)
981 {
982 basicdieinfo (&mbr, thisdie, objfile);
983 completedieinfo (&mbr, objfile);
984 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
985 {
986 break;
987 }
988 else if (mbr.at_sibling != 0)
989 {
990 nextdie = dbbase + mbr.at_sibling - dbroff;
991 }
992 else
993 {
994 nextdie = thisdie + mbr.die_length;
995 }
996 switch (mbr.die_tag)
997 {
998 case TAG_member:
fba3138e
DJ
999 /* Static fields can be either TAG_global_variable (GCC) or else
1000 TAG_member with no location (Diab). We could treat the latter like
1001 the former... but since we don't support the former, just avoid
1002 crashing on the latter for now. */
1003 if (mbr.at_location == NULL)
1004 break;
1005
c906108c
SS
1006 /* Get space to record the next field's data. */
1007 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1008 new->next = list;
c906108c
SS
1009 list = new;
1010 /* Save the data. */
c5aa993b
JM
1011 list->field.name =
1012 obsavestring (mbr.at_name, strlen (mbr.at_name),
b99607ea 1013 &objfile->objfile_obstack);
c906108c
SS
1014 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1015 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 1016 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1017 /* Handle bit fields. */
1018 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1019 if (BITS_BIG_ENDIAN)
1020 {
1021 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1022 additional bit offset from the MSB of the containing
1023 anonymous object to the MSB of the field. We don't
1024 have to do anything special since we don't need to
1025 know the size of the anonymous object. */
c906108c
SS
1026 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1027 }
1028 else
1029 {
1030 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1031 at_bit_size, so that we know we are in fact dealing
1032 with a bitfield. Compute the bit offset to the MSB
1033 of the anonymous object, subtract off the number of
1034 bits from the MSB of the field to the MSB of the
1035 object, and then subtract off the number of bits of
1036 the field itself. The result is the bit offset of
1037 the LSB of the field. */
c906108c
SS
1038 if (mbr.at_bit_size > 0)
1039 {
1040 if (mbr.has_at_byte_size)
1041 {
1042 /* The size of the anonymous object containing
c5aa993b
JM
1043 the bit field is explicit, so use the
1044 indicated size (in bytes). */
c906108c
SS
1045 anonymous_size = mbr.at_byte_size;
1046 }
1047 else
1048 {
1049 /* The size of the anonymous object containing
c5aa993b
JM
1050 the bit field matches the size of an object
1051 of the bit field's type. DWARF allows
1052 at_byte_size to be left out in such cases, as
1053 a debug information size optimization. */
1054 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1055 }
1056 FIELD_BITPOS (list->field) +=
1057 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1058 }
1059 }
1060 nfields++;
1061 break;
1062 default:
1063 process_dies (thisdie, nextdie, objfile);
1064 break;
1065 }
1066 thisdie = nextdie;
1067 }
1068 /* Now create the vector of fields, and record how big it is. We may
1069 not even have any fields, if this DIE was generated due to a reference
1070 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1071 set, which clues gdb in to the fact that it needs to search elsewhere
1072 for the full structure definition. */
1073 if (nfields == 0)
1074 {
1075 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1076 }
1077 else
1078 {
1079 TYPE_NFIELDS (type) = nfields;
1080 TYPE_FIELDS (type) = (struct field *)
1081 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1082 /* Copy the saved-up fields into the field vector. */
c5aa993b 1083 for (n = nfields; list; list = list->next)
c906108c 1084 {
c5aa993b
JM
1085 TYPE_FIELD (type, --n) = list->field;
1086 }
c906108c
SS
1087 }
1088 return (type);
1089}
1090
1091/*
1092
c5aa993b 1093 LOCAL FUNCTION
c906108c 1094
c5aa993b 1095 read_structure_scope -- process all dies within struct or union
c906108c 1096
c5aa993b 1097 SYNOPSIS
c906108c 1098
c5aa993b
JM
1099 static void read_structure_scope (struct dieinfo *dip,
1100 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1101
c5aa993b 1102 DESCRIPTION
c906108c 1103
c5aa993b
JM
1104 Called when we find the DIE that starts a structure or union
1105 scope (definition) to process all dies that define the members
1106 of the structure or union. DIP is a pointer to the die info
1107 struct for the DIE that names the structure or union.
c906108c 1108
c5aa993b
JM
1109 NOTES
1110
1111 Note that we need to call struct_type regardless of whether or not
1112 the DIE has an at_name attribute, since it might be an anonymous
1113 structure or union. This gets the type entered into our set of
1114 user defined types.
1115
1116 However, if the structure is incomplete (an opaque struct/union)
1117 then suppress creating a symbol table entry for it since gdb only
1118 wants to find the one with the complete definition. Note that if
1119 it is complete, we just call new_symbol, which does it's own
1120 checking about whether the struct/union is anonymous or not (and
1121 suppresses creating a symbol table entry itself).
c906108c 1122
c906108c
SS
1123 */
1124
1125static void
fba45db2
KB
1126read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1127 struct objfile *objfile)
c906108c
SS
1128{
1129 struct type *type;
1130 struct symbol *sym;
c5aa993b 1131
c906108c 1132 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1133 if (!TYPE_STUB (type))
c906108c
SS
1134 {
1135 sym = new_symbol (dip, objfile);
1136 if (sym != NULL)
1137 {
1138 SYMBOL_TYPE (sym) = type;
1139 if (cu_language == language_cplus)
1140 {
1141 synthesize_typedef (dip, objfile, type);
1142 }
1143 }
1144 }
1145}
1146
1147/*
1148
c5aa993b 1149 LOCAL FUNCTION
c906108c 1150
c5aa993b 1151 decode_array_element_type -- decode type of the array elements
c906108c 1152
c5aa993b 1153 SYNOPSIS
c906108c 1154
c5aa993b 1155 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1156
c5aa993b 1157 DESCRIPTION
c906108c 1158
c5aa993b
JM
1159 As the last step in decoding the array subscript information for an
1160 array DIE, we need to decode the type of the array elements. We are
1161 passed a pointer to this last part of the subscript information and
1162 must return the appropriate type. If the type attribute is not
1163 recognized, just warn about the problem and return type int.
c906108c
SS
1164 */
1165
1166static struct type *
fba45db2 1167decode_array_element_type (char *scan)
c906108c
SS
1168{
1169 struct type *typep;
1170 DIE_REF die_ref;
1171 unsigned short attribute;
1172 unsigned short fundtype;
1173 int nbytes;
c5aa993b 1174
c906108c
SS
1175 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1176 current_objfile);
1177 scan += SIZEOF_ATTRIBUTE;
b59661bd
AC
1178 nbytes = attribute_size (attribute);
1179 if (nbytes == -1)
c906108c 1180 {
23136709 1181 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1182 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1183 }
1184 else
1185 {
1186 switch (attribute)
1187 {
c5aa993b
JM
1188 case AT_fund_type:
1189 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1190 current_objfile);
1191 typep = decode_fund_type (fundtype);
1192 break;
1193 case AT_mod_fund_type:
1194 typep = decode_mod_fund_type (scan);
1195 break;
1196 case AT_user_def_type:
1197 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1198 current_objfile);
b59661bd
AC
1199 typep = lookup_utype (die_ref);
1200 if (typep == NULL)
c5aa993b
JM
1201 {
1202 typep = alloc_utype (die_ref, NULL);
1203 }
1204 break;
1205 case AT_mod_u_d_type:
1206 typep = decode_mod_u_d_type (scan);
1207 break;
1208 default:
23136709 1209 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1210 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1211 break;
1212 }
c906108c
SS
1213 }
1214 return (typep);
1215}
1216
1217/*
1218
c5aa993b 1219 LOCAL FUNCTION
c906108c 1220
c5aa993b 1221 decode_subscript_data_item -- decode array subscript item
c906108c 1222
c5aa993b 1223 SYNOPSIS
c906108c 1224
c5aa993b
JM
1225 static struct type *
1226 decode_subscript_data_item (char *scan, char *end)
c906108c 1227
c5aa993b 1228 DESCRIPTION
c906108c 1229
c5aa993b
JM
1230 The array subscripts and the data type of the elements of an
1231 array are described by a list of data items, stored as a block
1232 of contiguous bytes. There is a data item describing each array
1233 dimension, and a final data item describing the element type.
1234 The data items are ordered the same as their appearance in the
1235 source (I.E. leftmost dimension first, next to leftmost second,
1236 etc).
c906108c 1237
c5aa993b
JM
1238 The data items describing each array dimension consist of four
1239 parts: (1) a format specifier, (2) type type of the subscript
1240 index, (3) a description of the low bound of the array dimension,
1241 and (4) a description of the high bound of the array dimension.
c906108c 1242
c5aa993b
JM
1243 The last data item is the description of the type of each of
1244 the array elements.
c906108c 1245
c5aa993b
JM
1246 We are passed a pointer to the start of the block of bytes
1247 containing the remaining data items, and a pointer to the first
1248 byte past the data. This function recursively decodes the
1249 remaining data items and returns a type.
c906108c 1250
c5aa993b
JM
1251 If we somehow fail to decode some data, we complain about it
1252 and return a type "array of int".
c906108c 1253
c5aa993b
JM
1254 BUGS
1255 FIXME: This code only implements the forms currently used
1256 by the AT&T and GNU C compilers.
c906108c 1257
c5aa993b
JM
1258 The end pointer is supplied for error checking, maybe we should
1259 use it for that...
c906108c
SS
1260 */
1261
1262static struct type *
fba45db2 1263decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1264{
1265 struct type *typep = NULL; /* Array type we are building */
1266 struct type *nexttype; /* Type of each element (may be array) */
1267 struct type *indextype; /* Type of this index */
1268 struct type *rangetype;
1269 unsigned int format;
1270 unsigned short fundtype;
1271 unsigned long lowbound;
1272 unsigned long highbound;
1273 int nbytes;
c5aa993b 1274
c906108c
SS
1275 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1276 current_objfile);
1277 scan += SIZEOF_FORMAT_SPECIFIER;
1278 switch (format)
1279 {
1280 case FMT_ET:
1281 typep = decode_array_element_type (scan);
1282 break;
1283 case FMT_FT_C_C:
1284 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1285 current_objfile);
1286 indextype = decode_fund_type (fundtype);
1287 scan += SIZEOF_FMT_FT;
1288 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1289 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1290 scan += nbytes;
1291 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1292 scan += nbytes;
1293 nexttype = decode_subscript_data_item (scan, end);
1294 if (nexttype == NULL)
1295 {
1296 /* Munged subscript data or other problem, fake it. */
23136709
KB
1297 complaint (&symfile_complaints,
1298 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1299 DIE_ID, DIE_NAME);
c906108c
SS
1300 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1301 }
1302 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1303 lowbound, highbound);
c906108c
SS
1304 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1305 break;
1306 case FMT_FT_C_X:
1307 case FMT_FT_X_C:
1308 case FMT_FT_X_X:
1309 case FMT_UT_C_C:
1310 case FMT_UT_C_X:
1311 case FMT_UT_X_C:
1312 case FMT_UT_X_X:
23136709
KB
1313 complaint (&symfile_complaints,
1314 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1315 DIE_ID, DIE_NAME, format);
c906108c
SS
1316 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1317 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1318 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1319 break;
1320 default:
23136709
KB
1321 complaint (&symfile_complaints,
1322 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1323 DIE_NAME, format);
c906108c
SS
1324 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1325 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1326 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1327 break;
1328 }
1329 return (typep);
1330}
1331
1332/*
1333
c5aa993b 1334 LOCAL FUNCTION
c906108c 1335
c5aa993b 1336 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1337
c5aa993b 1338 SYNOPSIS
c906108c 1339
c5aa993b 1340 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1341
c5aa993b 1342 DESCRIPTION
c906108c 1343
c5aa993b
JM
1344 Extract all information from a TAG_array_type DIE and add to
1345 the user defined type vector.
c906108c
SS
1346 */
1347
1348static void
fba45db2 1349dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1350{
1351 struct type *type;
1352 struct type *utype;
1353 char *sub;
1354 char *subend;
1355 unsigned short blocksz;
1356 int nbytes;
c5aa993b
JM
1357
1358 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1359 {
1360 /* FIXME: Can gdb even handle column major arrays? */
23136709
KB
1361 complaint (&symfile_complaints,
1362 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1363 DIE_ID, DIE_NAME);
c906108c 1364 }
b59661bd
AC
1365 sub = dip->at_subscr_data;
1366 if (sub != NULL)
c906108c
SS
1367 {
1368 nbytes = attribute_size (AT_subscr_data);
1369 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1370 subend = sub + nbytes + blocksz;
1371 sub += nbytes;
1372 type = decode_subscript_data_item (sub, subend);
b59661bd
AC
1373 utype = lookup_utype (dip->die_ref);
1374 if (utype == NULL)
c906108c
SS
1375 {
1376 /* Install user defined type that has not been referenced yet. */
c5aa993b 1377 alloc_utype (dip->die_ref, type);
c906108c
SS
1378 }
1379 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1380 {
1381 /* Ick! A forward ref has already generated a blank type in our
1382 slot, and this type probably already has things pointing to it
1383 (which is what caused it to be created in the first place).
1384 If it's just a place holder we can plop our fully defined type
1385 on top of it. We can't recover the space allocated for our
1386 new type since it might be on an obstack, but we could reuse
1387 it if we kept a list of them, but it might not be worth it
1388 (FIXME). */
1389 *utype = *type;
1390 }
1391 else
1392 {
1393 /* Double ick! Not only is a type already in our slot, but
1394 someone has decorated it. Complain and leave it alone. */
23136709 1395 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1396 }
1397 }
1398}
1399
1400/*
1401
c5aa993b 1402 LOCAL FUNCTION
c906108c 1403
c5aa993b 1404 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1405
c5aa993b 1406 SYNOPSIS
c906108c 1407
c5aa993b 1408 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1409
c5aa993b 1410 DESCRIPTION
c906108c 1411
c5aa993b
JM
1412 Extract all information from a TAG_pointer_type DIE and add to
1413 the user defined type vector.
c906108c
SS
1414 */
1415
1416static void
fba45db2 1417read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1418{
1419 struct type *type;
1420 struct type *utype;
c5aa993b 1421
c906108c 1422 type = decode_die_type (dip);
b59661bd
AC
1423 utype = lookup_utype (dip->die_ref);
1424 if (utype == NULL)
c906108c
SS
1425 {
1426 utype = lookup_pointer_type (type);
c5aa993b 1427 alloc_utype (dip->die_ref, utype);
c906108c
SS
1428 }
1429 else
1430 {
1431 TYPE_TARGET_TYPE (utype) = type;
1432 TYPE_POINTER_TYPE (type) = utype;
1433
1434 /* We assume the machine has only one representation for pointers! */
1435 /* FIXME: Possably a poor assumption */
c5aa993b 1436 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1437 TYPE_CODE (utype) = TYPE_CODE_PTR;
1438 }
1439}
1440
1441/*
1442
c5aa993b 1443 LOCAL FUNCTION
c906108c 1444
c5aa993b 1445 read_tag_string_type -- read TAG_string_type DIE
c906108c 1446
c5aa993b 1447 SYNOPSIS
c906108c 1448
c5aa993b 1449 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1450
c5aa993b 1451 DESCRIPTION
c906108c 1452
c5aa993b
JM
1453 Extract all information from a TAG_string_type DIE and add to
1454 the user defined type vector. It isn't really a user defined
1455 type, but it behaves like one, with other DIE's using an
1456 AT_user_def_type attribute to reference it.
c906108c
SS
1457 */
1458
1459static void
fba45db2 1460read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1461{
1462 struct type *utype;
1463 struct type *indextype;
1464 struct type *rangetype;
1465 unsigned long lowbound = 0;
1466 unsigned long highbound;
1467
c5aa993b 1468 if (dip->has_at_byte_size)
c906108c
SS
1469 {
1470 /* A fixed bounds string */
c5aa993b 1471 highbound = dip->at_byte_size - 1;
c906108c
SS
1472 }
1473 else
1474 {
1475 /* A varying length string. Stub for now. (FIXME) */
1476 highbound = 1;
1477 }
1478 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1479 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1480 highbound);
c5aa993b
JM
1481
1482 utype = lookup_utype (dip->die_ref);
c906108c
SS
1483 if (utype == NULL)
1484 {
1485 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1486 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1487 }
1488 else
1489 {
1490 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1491 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1492 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1493 {
23136709 1494 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1495 return;
1496 }
1497 }
1498
1499 /* Create the string type using the blank type we either found or created. */
1500 utype = create_string_type (utype, rangetype);
1501}
1502
1503/*
1504
c5aa993b 1505 LOCAL FUNCTION
c906108c 1506
c5aa993b 1507 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1508
c5aa993b 1509 SYNOPSIS
c906108c 1510
c5aa993b
JM
1511 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1512 char *enddie)
c906108c 1513
c5aa993b 1514 DESCRIPTION
c906108c 1515
c5aa993b 1516 Handle DIES due to C code like:
c906108c 1517
c5aa993b
JM
1518 struct foo {
1519 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1520 int b;
1521 };
c906108c 1522
c5aa993b 1523 NOTES
c906108c 1524
c5aa993b
JM
1525 The parameter DIES are currently ignored. See if gdb has a way to
1526 include this info in it's type system, and decode them if so. Is
1527 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1528 */
1529
1530static void
fba45db2 1531read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1532{
1533 struct type *type; /* Type that this function returns */
1534 struct type *ftype; /* Function that returns above type */
c5aa993b 1535
c906108c
SS
1536 /* Decode the type that this subroutine returns */
1537
1538 type = decode_die_type (dip);
1539
1540 /* Check to see if we already have a partially constructed user
1541 defined type for this DIE, from a forward reference. */
1542
b59661bd
AC
1543 ftype = lookup_utype (dip->die_ref);
1544 if (ftype == NULL)
c906108c
SS
1545 {
1546 /* This is the first reference to one of these types. Make
c5aa993b 1547 a new one and place it in the user defined types. */
c906108c 1548 ftype = lookup_function_type (type);
c5aa993b 1549 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1550 }
1551 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1552 {
1553 /* We have an existing partially constructed type, so bash it
c5aa993b 1554 into the correct type. */
c906108c
SS
1555 TYPE_TARGET_TYPE (ftype) = type;
1556 TYPE_LENGTH (ftype) = 1;
1557 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1558 }
1559 else
1560 {
23136709 1561 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1562 }
1563}
1564
1565/*
1566
c5aa993b 1567 LOCAL FUNCTION
c906108c 1568
c5aa993b 1569 read_enumeration -- process dies which define an enumeration
c906108c 1570
c5aa993b 1571 SYNOPSIS
c906108c 1572
c5aa993b
JM
1573 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1574 char *enddie, struct objfile *objfile)
c906108c 1575
c5aa993b 1576 DESCRIPTION
c906108c 1577
c5aa993b
JM
1578 Given a pointer to a die which begins an enumeration, process all
1579 the dies that define the members of the enumeration.
c906108c 1580
c5aa993b 1581 NOTES
c906108c 1582
c5aa993b
JM
1583 Note that we need to call enum_type regardless of whether or not we
1584 have a symbol, since we might have an enum without a tag name (thus
1585 no symbol for the tagname).
c906108c
SS
1586 */
1587
1588static void
fba45db2
KB
1589read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1590 struct objfile *objfile)
c906108c
SS
1591{
1592 struct type *type;
1593 struct symbol *sym;
c5aa993b 1594
c906108c
SS
1595 type = enum_type (dip, objfile);
1596 sym = new_symbol (dip, objfile);
1597 if (sym != NULL)
1598 {
1599 SYMBOL_TYPE (sym) = type;
1600 if (cu_language == language_cplus)
1601 {
1602 synthesize_typedef (dip, objfile, type);
1603 }
1604 }
1605}
1606
1607/*
1608
c5aa993b 1609 LOCAL FUNCTION
c906108c 1610
c5aa993b 1611 enum_type -- decode and return a type for an enumeration
c906108c 1612
c5aa993b 1613 SYNOPSIS
c906108c 1614
c5aa993b 1615 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1616
c5aa993b 1617 DESCRIPTION
c906108c 1618
c5aa993b
JM
1619 Given a pointer to a die information structure for the die which
1620 starts an enumeration, process all the dies that define the members
1621 of the enumeration and return a type pointer for the enumeration.
c906108c 1622
c5aa993b 1623 At the same time, for each member of the enumeration, create a
176620f1 1624 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
c5aa993b 1625 and give it the type of the enumeration itself.
c906108c 1626
c5aa993b 1627 NOTES
c906108c 1628
c5aa993b
JM
1629 Note that the DWARF specification explicitly mandates that enum
1630 constants occur in reverse order from the source program order,
1631 for "consistency" and because this ordering is easier for many
1632 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1633 Entries). Because gdb wants to see the enum members in program
1634 source order, we have to ensure that the order gets reversed while
1635 we are processing them.
c906108c
SS
1636 */
1637
1638static struct type *
fba45db2 1639enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1640{
1641 struct type *type;
c5aa993b
JM
1642 struct nextfield
1643 {
1644 struct nextfield *next;
1645 struct field field;
1646 };
c906108c
SS
1647 struct nextfield *list = NULL;
1648 struct nextfield *new;
1649 int nfields = 0;
1650 int n;
1651 char *scan;
1652 char *listend;
1653 unsigned short blocksz;
1654 struct symbol *sym;
1655 int nbytes;
1656 int unsigned_enum = 1;
c5aa993b 1657
b59661bd
AC
1658 type = lookup_utype (dip->die_ref);
1659 if (type == NULL)
c906108c
SS
1660 {
1661 /* No forward references created an empty type, so install one now */
c5aa993b 1662 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1663 }
1664 TYPE_CODE (type) = TYPE_CODE_ENUM;
1665 /* Some compilers try to be helpful by inventing "fake" names for
1666 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1667 Thanks, but no thanks... */
c5aa993b
JM
1668 if (dip->at_name != NULL
1669 && *dip->at_name != '~'
1670 && *dip->at_name != '.')
c906108c 1671 {
b99607ea 1672 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 1673 "", "", dip->at_name);
c906108c 1674 }
c5aa993b 1675 if (dip->at_byte_size != 0)
c906108c 1676 {
c5aa993b 1677 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1678 }
b59661bd
AC
1679 scan = dip->at_element_list;
1680 if (scan != NULL)
c906108c 1681 {
c5aa993b 1682 if (dip->short_element_list)
c906108c
SS
1683 {
1684 nbytes = attribute_size (AT_short_element_list);
1685 }
1686 else
1687 {
1688 nbytes = attribute_size (AT_element_list);
1689 }
1690 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1691 listend = scan + nbytes + blocksz;
1692 scan += nbytes;
1693 while (scan < listend)
1694 {
1695 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1696 new->next = list;
c906108c
SS
1697 list = new;
1698 FIELD_TYPE (list->field) = NULL;
1699 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1700 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1701 FIELD_BITPOS (list->field) =
1702 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1703 objfile);
1704 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b 1705 list->field.name = obsavestring (scan, strlen (scan),
b99607ea 1706 &objfile->objfile_obstack);
c906108c
SS
1707 scan += strlen (scan) + 1;
1708 nfields++;
1709 /* Handcraft a new symbol for this enum member. */
4a146b47 1710 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
1711 sizeof (struct symbol));
1712 memset (sym, 0, sizeof (struct symbol));
22abf04a 1713 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
4a146b47 1714 &objfile->objfile_obstack);
c906108c 1715 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
176620f1 1716 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1717 SYMBOL_CLASS (sym) = LOC_CONST;
1718 SYMBOL_TYPE (sym) = type;
1719 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1720 if (SYMBOL_VALUE (sym) < 0)
1721 unsigned_enum = 0;
1722 add_symbol_to_list (sym, list_in_scope);
1723 }
1724 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1725 where we reverse the order, by pulling the members off the list in
1726 reverse order from how they were inserted. If we have no fields
1727 (this is apparently possible in C++) then skip building a field
1728 vector. */
c906108c
SS
1729 if (nfields > 0)
1730 {
1731 if (unsigned_enum)
1732 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1733 TYPE_NFIELDS (type) = nfields;
1734 TYPE_FIELDS (type) = (struct field *)
4a146b47 1735 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
c906108c 1736 /* Copy the saved-up fields into the field vector. */
c5aa993b 1737 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1738 {
c5aa993b
JM
1739 TYPE_FIELD (type, n++) = list->field;
1740 }
c906108c
SS
1741 }
1742 }
1743 return (type);
1744}
1745
1746/*
1747
c5aa993b 1748 LOCAL FUNCTION
c906108c 1749
c5aa993b 1750 read_func_scope -- process all dies within a function scope
c906108c 1751
c5aa993b 1752 DESCRIPTION
c906108c 1753
c5aa993b
JM
1754 Process all dies within a given function scope. We are passed
1755 a die information structure pointer DIP for the die which
1756 starts the function scope, and pointers into the raw die data
1757 that define the dies within the function scope.
1758
1759 For now, we ignore lexical block scopes within the function.
1760 The problem is that AT&T cc does not define a DWARF lexical
1761 block scope for the function itself, while gcc defines a
1762 lexical block scope for the function. We need to think about
1763 how to handle this difference, or if it is even a problem.
1764 (FIXME)
c906108c
SS
1765 */
1766
1767static void
fba45db2
KB
1768read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1769 struct objfile *objfile)
c906108c 1770{
b59661bd 1771 struct context_stack *new;
c5aa993b 1772
c906108c
SS
1773 /* AT_name is absent if the function is described with an
1774 AT_abstract_origin tag.
1775 Ignore the function description for now to avoid GDB core dumps.
1776 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1777 if (dip->at_name == NULL)
c906108c 1778 {
23136709
KB
1779 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1780 DIE_ID);
c906108c
SS
1781 return;
1782 }
1783
c5aa993b
JM
1784 if (objfile->ei.entry_point >= dip->at_low_pc &&
1785 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1786 {
c5aa993b
JM
1787 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1788 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1789 }
c5aa993b
JM
1790 new = push_context (0, dip->at_low_pc);
1791 new->name = new_symbol (dip, objfile);
c906108c 1792 list_in_scope = &local_symbols;
c5aa993b 1793 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1794 new = pop_context ();
1795 /* Make a block for the local symbols within. */
c5aa993b
JM
1796 finish_block (new->name, &local_symbols, new->old_blocks,
1797 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1798 list_in_scope = &file_symbols;
1799}
1800
1801
1802/*
1803
c5aa993b 1804 LOCAL FUNCTION
c906108c 1805
c5aa993b 1806 handle_producer -- process the AT_producer attribute
c906108c 1807
c5aa993b 1808 DESCRIPTION
c906108c 1809
c5aa993b
JM
1810 Perform any operations that depend on finding a particular
1811 AT_producer attribute.
c906108c
SS
1812
1813 */
1814
1815static void
fba45db2 1816handle_producer (char *producer)
c906108c
SS
1817{
1818
1819 /* If this compilation unit was compiled with g++ or gcc, then set the
1820 processing_gcc_compilation flag. */
1821
cb137aa5 1822 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
c906108c
SS
1823 {
1824 char version = producer[strlen (GCC_PRODUCER)];
1825 processing_gcc_compilation = (version == '2' ? 2 : 1);
1826 }
1827 else
1828 {
1829 processing_gcc_compilation =
bf896cb0 1830 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
c906108c
SS
1831 }
1832
1833 /* Select a demangling style if we can identify the producer and if
1834 the current style is auto. We leave the current style alone if it
1835 is not auto. We also leave the demangling style alone if we find a
1836 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1837
1838 if (AUTO_DEMANGLING)
1839 {
cb137aa5 1840 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
c906108c 1841 {
8052a17a
JM
1842#if 0
1843 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1844 know whether it will use the old style or v3 mangling. */
c906108c 1845 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1846#endif
c906108c 1847 }
cb137aa5 1848 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
c906108c
SS
1849 {
1850 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1851 }
1852 }
1853}
1854
1855
1856/*
1857
c5aa993b 1858 LOCAL FUNCTION
c906108c 1859
c5aa993b 1860 read_file_scope -- process all dies within a file scope
c906108c 1861
c5aa993b
JM
1862 DESCRIPTION
1863
1864 Process all dies within a given file scope. We are passed a
1865 pointer to the die information structure for the die which
1866 starts the file scope, and pointers into the raw die data which
1867 mark the range of dies within the file scope.
c906108c 1868
c5aa993b
JM
1869 When the partial symbol table is built, the file offset for the line
1870 number table for each compilation unit is saved in the partial symbol
1871 table entry for that compilation unit. As the symbols for each
1872 compilation unit are read, the line number table is read into memory
1873 and the variable lnbase is set to point to it. Thus all we have to
1874 do is use lnbase to access the line number table for the current
1875 compilation unit.
c906108c
SS
1876 */
1877
1878static void
fba45db2
KB
1879read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1880 struct objfile *objfile)
c906108c
SS
1881{
1882 struct cleanup *back_to;
1883 struct symtab *symtab;
c5aa993b
JM
1884
1885 if (objfile->ei.entry_point >= dip->at_low_pc &&
1886 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1887 {
627b3ba2
AC
1888 objfile->ei.deprecated_entry_file_lowpc = dip->at_low_pc;
1889 objfile->ei.deprecated_entry_file_highpc = dip->at_high_pc;
c906108c
SS
1890 }
1891 set_cu_language (dip);
c5aa993b 1892 if (dip->at_producer != NULL)
c906108c 1893 {
c5aa993b 1894 handle_producer (dip->at_producer);
c906108c
SS
1895 }
1896 numutypes = (enddie - thisdie) / 4;
1897 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898 back_to = make_cleanup (free_utypes, NULL);
1899 memset (utypes, 0, numutypes * sizeof (struct type *));
1900 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1901 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase);
c5aa993b 1904 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1905
c5aa993b 1906 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1907 if (symtab != NULL)
1908 {
c5aa993b
JM
1909 symtab->language = cu_language;
1910 }
c906108c
SS
1911 do_cleanups (back_to);
1912}
1913
1914/*
1915
c5aa993b 1916 LOCAL FUNCTION
c906108c 1917
c5aa993b 1918 process_dies -- process a range of DWARF Information Entries
c906108c 1919
c5aa993b 1920 SYNOPSIS
c906108c 1921
c5aa993b
JM
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
c906108c 1924
c5aa993b 1925 DESCRIPTION
c906108c 1926
c5aa993b
JM
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
c906108c
SS
1929 */
1930
1931static void
fba45db2 1932process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1933{
1934 char *nextdie;
1935 struct dieinfo di;
c5aa993b 1936
c906108c
SS
1937 while (thisdie < enddie)
1938 {
1939 basicdieinfo (&di, thisdie, objfile);
1940 if (di.die_length < SIZEOF_DIE_LENGTH)
1941 {
1942 break;
1943 }
1944 else if (di.die_tag == TAG_padding)
1945 {
1946 nextdie = thisdie + di.die_length;
1947 }
1948 else
1949 {
1950 completedieinfo (&di, objfile);
1951 if (di.at_sibling != 0)
1952 {
1953 nextdie = dbbase + di.at_sibling - dbroff;
1954 }
1955 else
1956 {
1957 nextdie = thisdie + di.die_length;
1958 }
c906108c 1959 /* I think that these are always text, not data, addresses. */
181c1381
RE
1960 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1961 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1962 switch (di.die_tag)
1963 {
1964 case TAG_compile_unit:
1965 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1966 unit, we are unable to handle nested compilation units
1967 properly (FIXME). */
c906108c
SS
1968 if (current_subfile == NULL)
1969 read_file_scope (&di, thisdie, nextdie, objfile);
1970 else
1971 nextdie = thisdie + di.die_length;
1972 break;
1973 case TAG_global_subroutine:
1974 case TAG_subroutine:
1975 if (di.has_at_low_pc)
1976 {
1977 read_func_scope (&di, thisdie, nextdie, objfile);
1978 }
1979 break;
1980 case TAG_lexical_block:
1981 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1982 break;
1983 case TAG_class_type:
1984 case TAG_structure_type:
1985 case TAG_union_type:
1986 read_structure_scope (&di, thisdie, nextdie, objfile);
1987 break;
1988 case TAG_enumeration_type:
1989 read_enumeration (&di, thisdie, nextdie, objfile);
1990 break;
1991 case TAG_subroutine_type:
1992 read_subroutine_type (&di, thisdie, nextdie);
1993 break;
1994 case TAG_array_type:
1995 dwarf_read_array_type (&di);
1996 break;
1997 case TAG_pointer_type:
1998 read_tag_pointer_type (&di);
1999 break;
2000 case TAG_string_type:
2001 read_tag_string_type (&di);
2002 break;
2003 default:
2004 new_symbol (&di, objfile);
2005 break;
2006 }
2007 }
2008 thisdie = nextdie;
2009 }
2010}
2011
2012/*
2013
c5aa993b 2014 LOCAL FUNCTION
c906108c 2015
c5aa993b 2016 decode_line_numbers -- decode a line number table fragment
c906108c 2017
c5aa993b 2018 SYNOPSIS
c906108c 2019
c5aa993b
JM
2020 static void decode_line_numbers (char *tblscan, char *tblend,
2021 long length, long base, long line, long pc)
c906108c 2022
c5aa993b 2023 DESCRIPTION
c906108c 2024
c5aa993b 2025 Translate the DWARF line number information to gdb form.
c906108c 2026
c5aa993b
JM
2027 The ".line" section contains one or more line number tables, one for
2028 each ".line" section from the objects that were linked.
c906108c 2029
c5aa993b
JM
2030 The AT_stmt_list attribute for each TAG_source_file entry in the
2031 ".debug" section contains the offset into the ".line" section for the
2032 start of the table for that file.
c906108c 2033
c5aa993b 2034 The table itself has the following structure:
c906108c 2035
c5aa993b
JM
2036 <table length><base address><source statement entry>
2037 4 bytes 4 bytes 10 bytes
c906108c 2038
c5aa993b
JM
2039 The table length is the total size of the table, including the 4 bytes
2040 for the length information.
c906108c 2041
c5aa993b
JM
2042 The base address is the address of the first instruction generated
2043 for the source file.
c906108c 2044
c5aa993b 2045 Each source statement entry has the following structure:
c906108c 2046
c5aa993b
JM
2047 <line number><statement position><address delta>
2048 4 bytes 2 bytes 4 bytes
c906108c 2049
c5aa993b
JM
2050 The line number is relative to the start of the file, starting with
2051 line 1.
c906108c 2052
c5aa993b
JM
2053 The statement position either -1 (0xFFFF) or the number of characters
2054 from the beginning of the line to the beginning of the statement.
c906108c 2055
c5aa993b
JM
2056 The address delta is the difference between the base address and
2057 the address of the first instruction for the statement.
c906108c 2058
c5aa993b
JM
2059 Note that we must copy the bytes from the packed table to our local
2060 variables before attempting to use them, to avoid alignment problems
2061 on some machines, particularly RISC processors.
c906108c 2062
c5aa993b 2063 BUGS
c906108c 2064
c5aa993b
JM
2065 Does gdb expect the line numbers to be sorted? They are now by
2066 chance/luck, but are not required to be. (FIXME)
c906108c 2067
c5aa993b
JM
2068 The line with number 0 is unused, gdb apparently can discover the
2069 span of the last line some other way. How? (FIXME)
c906108c
SS
2070 */
2071
2072static void
fba45db2 2073decode_line_numbers (char *linetable)
c906108c
SS
2074{
2075 char *tblscan;
2076 char *tblend;
2077 unsigned long length;
2078 unsigned long base;
2079 unsigned long line;
2080 unsigned long pc;
c5aa993b 2081
c906108c
SS
2082 if (linetable != NULL)
2083 {
2084 tblscan = tblend = linetable;
2085 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2086 current_objfile);
2087 tblscan += SIZEOF_LINETBL_LENGTH;
2088 tblend += length;
2089 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2090 GET_UNSIGNED, current_objfile);
2091 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2092 base += baseaddr;
2093 while (tblscan < tblend)
2094 {
2095 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2096 current_objfile);
2097 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2098 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2099 current_objfile);
2100 tblscan += SIZEOF_LINETBL_DELTA;
2101 pc += base;
2102 if (line != 0)
2103 {
2104 record_line (current_subfile, line, pc);
2105 }
2106 }
2107 }
2108}
2109
2110/*
2111
c5aa993b 2112 LOCAL FUNCTION
c906108c 2113
c5aa993b 2114 locval -- compute the value of a location attribute
c906108c 2115
c5aa993b 2116 SYNOPSIS
c906108c 2117
c5aa993b 2118 static int locval (struct dieinfo *dip)
c906108c 2119
c5aa993b 2120 DESCRIPTION
c906108c 2121
c5aa993b
JM
2122 Given pointer to a string of bytes that define a location, compute
2123 the location and return the value.
2124 A location description containing no atoms indicates that the
2125 object is optimized out. The optimized_out flag is set for those,
2126 the return value is meaningless.
c906108c 2127
c5aa993b
JM
2128 When computing values involving the current value of the frame pointer,
2129 the value zero is used, which results in a value relative to the frame
2130 pointer, rather than the absolute value. This is what GDB wants
2131 anyway.
c906108c 2132
c5aa993b
JM
2133 When the result is a register number, the isreg flag is set, otherwise
2134 it is cleared. This is a kludge until we figure out a better
2135 way to handle the problem. Gdb's design does not mesh well with the
2136 DWARF notion of a location computing interpreter, which is a shame
2137 because the flexibility goes unused.
2138
2139 NOTES
2140
2141 Note that stack[0] is unused except as a default error return.
2142 Note that stack overflow is not yet handled.
c906108c
SS
2143 */
2144
2145static int
fba45db2 2146locval (struct dieinfo *dip)
c906108c
SS
2147{
2148 unsigned short nbytes;
2149 unsigned short locsize;
2150 auto long stack[64];
2151 int stacki;
2152 char *loc;
2153 char *end;
2154 int loc_atom_code;
2155 int loc_value_size;
c5aa993b
JM
2156
2157 loc = dip->at_location;
c906108c
SS
2158 nbytes = attribute_size (AT_location);
2159 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2160 loc += nbytes;
2161 end = loc + locsize;
2162 stacki = 0;
2163 stack[stacki] = 0;
c5aa993b
JM
2164 dip->isreg = 0;
2165 dip->offreg = 0;
2166 dip->optimized_out = 1;
c906108c
SS
2167 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2168 while (loc < end)
2169 {
c5aa993b 2170 dip->optimized_out = 0;
c906108c
SS
2171 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2172 current_objfile);
2173 loc += SIZEOF_LOC_ATOM_CODE;
2174 switch (loc_atom_code)
2175 {
c5aa993b
JM
2176 case 0:
2177 /* error */
2178 loc = end;
2179 break;
2180 case OP_REG:
2181 /* push register (number) */
2182 stack[++stacki]
2183 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2184 GET_UNSIGNED,
2185 current_objfile));
2186 loc += loc_value_size;
2187 dip->isreg = 1;
2188 break;
2189 case OP_BASEREG:
2190 /* push value of register (number) */
2191 /* Actually, we compute the value as if register has 0, so the
2192 value ends up being the offset from that register. */
2193 dip->offreg = 1;
2194 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2195 current_objfile);
2196 loc += loc_value_size;
2197 stack[++stacki] = 0;
2198 break;
2199 case OP_ADDR:
2200 /* push address (relocated address) */
2201 stack[++stacki] = target_to_host (loc, loc_value_size,
2202 GET_UNSIGNED, current_objfile);
2203 loc += loc_value_size;
2204 break;
2205 case OP_CONST:
2206 /* push constant (number) FIXME: signed or unsigned! */
2207 stack[++stacki] = target_to_host (loc, loc_value_size,
2208 GET_SIGNED, current_objfile);
2209 loc += loc_value_size;
2210 break;
2211 case OP_DEREF2:
2212 /* pop, deref and push 2 bytes (as a long) */
23136709
KB
2213 complaint (&symfile_complaints,
2214 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2215 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2216 break;
2217 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709
KB
2218 complaint (&symfile_complaints,
2219 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2220 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2221 break;
2222 case OP_ADD: /* pop top 2 items, add, push result */
2223 stack[stacki - 1] += stack[stacki];
2224 stacki--;
2225 break;
c906108c
SS
2226 }
2227 }
2228 return (stack[stacki]);
2229}
2230
2231/*
2232
c5aa993b 2233 LOCAL FUNCTION
c906108c 2234
c5aa993b 2235 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2236
c5aa993b 2237 SYNOPSIS
c906108c 2238
c5aa993b 2239 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2240
c5aa993b 2241 DESCRIPTION
c906108c 2242
c5aa993b
JM
2243 When expanding a partial symbol table entry to a full symbol table
2244 entry, this is the function that gets called to read in the symbols
2245 for the compilation unit. A pointer to the newly constructed symtab,
2246 which is now the new first one on the objfile's symtab list, is
2247 stashed in the partial symbol table entry.
c906108c
SS
2248 */
2249
2250static void
fba45db2 2251read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2252{
2253 struct cleanup *back_to;
2254 unsigned long lnsize;
2255 file_ptr foffset;
2256 bfd *abfd;
2257 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2258
c5aa993b
JM
2259 abfd = pst->objfile->obfd;
2260 current_objfile = pst->objfile;
c906108c
SS
2261
2262 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2263 unit, seek to the location in the file, and read in all the DIE's. */
2264
2265 diecount = 0;
2266 dbsize = DBLENGTH (pst);
2267 dbbase = xmalloc (dbsize);
c5aa993b
JM
2268 dbroff = DBROFF (pst);
2269 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2270 base_section_offsets = pst->section_offsets;
2271 baseaddr = ANOFFSET (pst->section_offsets, 0);
2272 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2273 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2274 {
b8c9b27d 2275 xfree (dbbase);
c906108c
SS
2276 error ("can't read DWARF data");
2277 }
b8c9b27d 2278 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2279
2280 /* If there is a line number table associated with this compilation unit
2281 then read the size of this fragment in bytes, from the fragment itself.
2282 Allocate a buffer for the fragment and read it in for future
2283 processing. */
2284
2285 lnbase = NULL;
2286 if (LNFOFF (pst))
2287 {
2288 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2289 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2290 != sizeof (lnsizedata)))
c906108c
SS
2291 {
2292 error ("can't read DWARF line number table size");
2293 }
2294 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2295 GET_UNSIGNED, pst->objfile);
c906108c
SS
2296 lnbase = xmalloc (lnsize);
2297 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2298 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2299 {
b8c9b27d 2300 xfree (lnbase);
c906108c
SS
2301 error ("can't read DWARF line numbers");
2302 }
b8c9b27d 2303 make_cleanup (xfree, lnbase);
c906108c
SS
2304 }
2305
c5aa993b 2306 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2307 do_cleanups (back_to);
2308 current_objfile = NULL;
c5aa993b 2309 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2310}
2311
2312/*
2313
c5aa993b 2314 LOCAL FUNCTION
c906108c 2315
c5aa993b 2316 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2317
c5aa993b 2318 SYNOPSIS
c906108c 2319
c5aa993b 2320 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2321
c5aa993b 2322 DESCRIPTION
c906108c 2323
c5aa993b
JM
2324 Called once for each partial symbol table entry that needs to be
2325 expanded into a full symbol table entry.
c906108c 2326
c5aa993b 2327 */
c906108c
SS
2328
2329static void
fba45db2 2330psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2331{
2332 int i;
2333 struct cleanup *old_chain;
c5aa993b 2334
c906108c
SS
2335 if (pst != NULL)
2336 {
2337 if (pst->readin)
2338 {
2339 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2340 pst->filename);
c906108c
SS
2341 }
2342 else
2343 {
2344 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2345 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2346 {
c5aa993b 2347 if (!pst->dependencies[i]->readin)
c906108c
SS
2348 {
2349 /* Inform about additional files that need to be read in. */
2350 if (info_verbose)
2351 {
2352 fputs_filtered (" ", gdb_stdout);
2353 wrap_here ("");
2354 fputs_filtered ("and ", gdb_stdout);
2355 wrap_here ("");
2356 printf_filtered ("%s...",
c5aa993b 2357 pst->dependencies[i]->filename);
c906108c 2358 wrap_here ("");
c5aa993b 2359 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2360 }
c5aa993b 2361 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2362 }
c5aa993b
JM
2363 }
2364 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2365 {
2366 buildsym_init ();
a0b3c4fd 2367 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2368 read_ofile_symtab (pst);
2369 if (info_verbose)
2370 {
2371 printf_filtered ("%d DIE's, sorting...", diecount);
2372 wrap_here ("");
2373 gdb_flush (gdb_stdout);
2374 }
c906108c
SS
2375 do_cleanups (old_chain);
2376 }
c5aa993b 2377 pst->readin = 1;
c906108c
SS
2378 }
2379 }
2380}
2381
2382/*
2383
c5aa993b 2384 LOCAL FUNCTION
c906108c 2385
c5aa993b 2386 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2387
c5aa993b 2388 SYNOPSIS
c906108c 2389
c5aa993b 2390 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2391
c5aa993b 2392 DESCRIPTION
c906108c 2393
c5aa993b
JM
2394 This is the DWARF support entry point for building a full symbol
2395 table entry from a partial symbol table entry. We are passed a
2396 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2397
c5aa993b 2398 */
c906108c
SS
2399
2400static void
fba45db2 2401dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2402{
2403
2404 if (pst != NULL)
2405 {
c5aa993b 2406 if (pst->readin)
c906108c
SS
2407 {
2408 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2409 pst->filename);
c906108c
SS
2410 }
2411 else
2412 {
c5aa993b 2413 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2414 {
2415 /* Print the message now, before starting serious work, to avoid
c5aa993b 2416 disconcerting pauses. */
c906108c
SS
2417 if (info_verbose)
2418 {
2419 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2420 pst->filename);
c906108c
SS
2421 gdb_flush (gdb_stdout);
2422 }
c5aa993b 2423
c906108c 2424 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2425
2426#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2427 we need to do an equivalent or is this something peculiar to
2428 stabs/a.out format.
2429 Match with global symbols. This only needs to be done once,
2430 after all of the symtabs and dependencies have been read in.
2431 */
2432 scan_file_globals (pst->objfile);
c906108c 2433#endif
c5aa993b 2434
c906108c
SS
2435 /* Finish up the verbose info message. */
2436 if (info_verbose)
2437 {
2438 printf_filtered ("done.\n");
2439 gdb_flush (gdb_stdout);
2440 }
2441 }
2442 }
2443 }
2444}
2445
2446/*
2447
c5aa993b 2448 LOCAL FUNCTION
c906108c 2449
c5aa993b 2450 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2451
c5aa993b 2452 DESCRIPTION
c906108c 2453
c5aa993b
JM
2454 Given pointer to a DIE that is known to be for an enumeration,
2455 extract the symbolic names of the enumeration members and add
2456 partial symbols for them.
2457 */
c906108c
SS
2458
2459static void
fba45db2 2460add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2461{
2462 char *scan;
2463 char *listend;
2464 unsigned short blocksz;
2465 int nbytes;
c5aa993b 2466
b59661bd
AC
2467 scan = dip->at_element_list;
2468 if (scan != NULL)
c906108c 2469 {
c5aa993b 2470 if (dip->short_element_list)
c906108c
SS
2471 {
2472 nbytes = attribute_size (AT_short_element_list);
2473 }
2474 else
2475 {
2476 nbytes = attribute_size (AT_element_list);
2477 }
2478 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2479 scan += nbytes;
2480 listend = scan + blocksz;
2481 while (scan < listend)
2482 {
2483 scan += TARGET_FT_LONG_SIZE (objfile);
176620f1 2484 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
c5aa993b 2485 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2486 objfile);
2487 scan += strlen (scan) + 1;
2488 }
2489 }
2490}
2491
2492/*
2493
c5aa993b 2494 LOCAL FUNCTION
c906108c 2495
c5aa993b 2496 add_partial_symbol -- add symbol to partial symbol table
c906108c 2497
c5aa993b 2498 DESCRIPTION
c906108c 2499
c5aa993b
JM
2500 Given a DIE, if it is one of the types that we want to
2501 add to a partial symbol table, finish filling in the die info
2502 and then add a partial symbol table entry for it.
c906108c 2503
c5aa993b 2504 NOTES
c906108c 2505
c5aa993b
JM
2506 The caller must ensure that the DIE has a valid name attribute.
2507 */
c906108c
SS
2508
2509static void
fba45db2 2510add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2511{
c5aa993b 2512 switch (dip->die_tag)
c906108c
SS
2513 {
2514 case TAG_global_subroutine:
c5aa993b 2515 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2516 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2517 &objfile->global_psymbols,
2518 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2519 break;
2520 case TAG_global_variable:
c5aa993b 2521 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2522 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2523 &objfile->global_psymbols,
c906108c
SS
2524 0, 0, cu_language, objfile);
2525 break;
2526 case TAG_subroutine:
c5aa993b 2527 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2528 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2529 &objfile->static_psymbols,
2530 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2531 break;
2532 case TAG_local_variable:
c5aa993b 2533 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2534 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2535 &objfile->static_psymbols,
c906108c
SS
2536 0, 0, cu_language, objfile);
2537 break;
2538 case TAG_typedef:
c5aa993b 2539 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2540 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2541 &objfile->static_psymbols,
c906108c
SS
2542 0, 0, cu_language, objfile);
2543 break;
2544 case TAG_class_type:
2545 case TAG_structure_type:
2546 case TAG_union_type:
2547 case TAG_enumeration_type:
2548 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2549 if (!dip->has_at_byte_size)
c906108c 2550 break;
c5aa993b 2551 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2552 STRUCT_DOMAIN, LOC_TYPEDEF,
c5aa993b 2553 &objfile->static_psymbols,
c906108c
SS
2554 0, 0, cu_language, objfile);
2555 if (cu_language == language_cplus)
2556 {
2557 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2558 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2559 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2560 &objfile->static_psymbols,
c906108c
SS
2561 0, 0, cu_language, objfile);
2562 }
2563 break;
2564 }
2565}
9846de1b 2566/* *INDENT-OFF* */
c906108c
SS
2567/*
2568
2569LOCAL FUNCTION
2570
2571 scan_partial_symbols -- scan DIE's within a single compilation unit
2572
2573DESCRIPTION
2574
2575 Process the DIE's within a single compilation unit, looking for
2576 interesting DIE's that contribute to the partial symbol table entry
2577 for this compilation unit.
2578
2579NOTES
2580
2581 There are some DIE's that may appear both at file scope and within
2582 the scope of a function. We are only interested in the ones at file
2583 scope, and the only way to tell them apart is to keep track of the
2584 scope. For example, consider the test case:
2585
2586 static int i;
2587 main () { int j; }
2588
2589 for which the relevant DWARF segment has the structure:
2590
2591 0x51:
2592 0x23 global subrtn sibling 0x9b
2593 name main
2594 fund_type FT_integer
2595 low_pc 0x800004cc
2596 high_pc 0x800004d4
2597
2598 0x74:
2599 0x23 local var sibling 0x97
2600 name j
2601 fund_type FT_integer
2602 location OP_BASEREG 0xe
2603 OP_CONST 0xfffffffc
2604 OP_ADD
2605 0x97:
2606 0x4
2607
2608 0x9b:
2609 0x1d local var sibling 0xb8
2610 name i
2611 fund_type FT_integer
2612 location OP_ADDR 0x800025dc
2613
2614 0xb8:
2615 0x4
2616
2617 We want to include the symbol 'i' in the partial symbol table, but
2618 not the symbol 'j'. In essence, we want to skip all the dies within
2619 the scope of a TAG_global_subroutine DIE.
2620
2621 Don't attempt to add anonymous structures or unions since they have
2622 no name. Anonymous enumerations however are processed, because we
2623 want to extract their member names (the check for a tag name is
2624 done later).
2625
2626 Also, for variables and subroutines, check that this is the place
2627 where the actual definition occurs, rather than just a reference
2628 to an external.
2629 */
9846de1b 2630/* *INDENT-ON* */
c906108c 2631
c5aa993b
JM
2632
2633
c906108c 2634static void
fba45db2 2635scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2636{
2637 char *nextdie;
2638 char *temp;
2639 struct dieinfo di;
c5aa993b 2640
c906108c
SS
2641 while (thisdie < enddie)
2642 {
2643 basicdieinfo (&di, thisdie, objfile);
2644 if (di.die_length < SIZEOF_DIE_LENGTH)
2645 {
2646 break;
2647 }
2648 else
2649 {
2650 nextdie = thisdie + di.die_length;
2651 /* To avoid getting complete die information for every die, we
2652 only do it (below) for the cases we are interested in. */
2653 switch (di.die_tag)
2654 {
2655 case TAG_global_subroutine:
2656 case TAG_subroutine:
2657 completedieinfo (&di, objfile);
2658 if (di.at_name && (di.has_at_low_pc || di.at_location))
2659 {
2660 add_partial_symbol (&di, objfile);
2661 /* If there is a sibling attribute, adjust the nextdie
2662 pointer to skip the entire scope of the subroutine.
2663 Apply some sanity checking to make sure we don't
2664 overrun or underrun the range of remaining DIE's */
2665 if (di.at_sibling != 0)
2666 {
2667 temp = dbbase + di.at_sibling - dbroff;
2668 if ((temp < thisdie) || (temp >= enddie))
2669 {
23136709
KB
2670 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2671 di.at_sibling);
c906108c
SS
2672 }
2673 else
2674 {
2675 nextdie = temp;
2676 }
2677 }
2678 }
2679 break;
2680 case TAG_global_variable:
2681 case TAG_local_variable:
2682 completedieinfo (&di, objfile);
2683 if (di.at_name && (di.has_at_low_pc || di.at_location))
2684 {
2685 add_partial_symbol (&di, objfile);
2686 }
2687 break;
2688 case TAG_typedef:
2689 case TAG_class_type:
2690 case TAG_structure_type:
2691 case TAG_union_type:
2692 completedieinfo (&di, objfile);
2693 if (di.at_name)
2694 {
2695 add_partial_symbol (&di, objfile);
2696 }
2697 break;
2698 case TAG_enumeration_type:
2699 completedieinfo (&di, objfile);
2700 if (di.at_name)
2701 {
2702 add_partial_symbol (&di, objfile);
2703 }
2704 add_enum_psymbol (&di, objfile);
2705 break;
2706 }
2707 }
2708 thisdie = nextdie;
2709 }
2710}
2711
2712/*
2713
c5aa993b 2714 LOCAL FUNCTION
c906108c 2715
c5aa993b 2716 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2717
c5aa993b 2718 DESCRIPTION
c906108c 2719
c5aa993b
JM
2720 This is the top level dwarf parsing routine for building partial
2721 symbol tables.
c906108c 2722
c5aa993b
JM
2723 It scans from the beginning of the DWARF table looking for the first
2724 TAG_compile_unit DIE, and then follows the sibling chain to locate
2725 each additional TAG_compile_unit DIE.
2726
2727 For each TAG_compile_unit DIE it creates a partial symtab structure,
2728 calls a subordinate routine to collect all the compilation unit's
2729 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2730 new partial symtab structure into the partial symbol table. It also
2731 records the appropriate information in the partial symbol table entry
2732 to allow the chunk of DIE's and line number table for this compilation
2733 unit to be located and re-read later, to generate a complete symbol
2734 table entry for the compilation unit.
2735
2736 Thus it effectively partitions up a chunk of DIE's for multiple
2737 compilation units into smaller DIE chunks and line number tables,
2738 and associates them with a partial symbol table entry.
2739
2740 NOTES
c906108c 2741
c5aa993b
JM
2742 If any compilation unit has no line number table associated with
2743 it for some reason (a missing at_stmt_list attribute, rather than
2744 just one with a value of zero, which is valid) then we ensure that
2745 the recorded file offset is zero so that the routine which later
2746 reads line number table fragments knows that there is no fragment
2747 to read.
c906108c 2748
c5aa993b 2749 RETURNS
c906108c 2750
c5aa993b 2751 Returns no value.
c906108c
SS
2752
2753 */
2754
2755static void
fba45db2
KB
2756scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2757 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2758{
2759 char *nextdie;
2760 struct dieinfo di;
2761 struct partial_symtab *pst;
2762 int culength;
2763 int curoff;
2764 file_ptr curlnoffset;
2765
2766 while (thisdie < enddie)
2767 {
2768 basicdieinfo (&di, thisdie, objfile);
2769 if (di.die_length < SIZEOF_DIE_LENGTH)
2770 {
2771 break;
2772 }
2773 else if (di.die_tag != TAG_compile_unit)
2774 {
2775 nextdie = thisdie + di.die_length;
2776 }
2777 else
2778 {
2779 completedieinfo (&di, objfile);
2780 set_cu_language (&di);
2781 if (di.at_sibling != 0)
2782 {
2783 nextdie = dbbase + di.at_sibling - dbroff;
2784 }
2785 else
2786 {
2787 nextdie = thisdie + di.die_length;
2788 }
2789 curoff = thisdie - dbbase;
2790 culength = nextdie - thisdie;
2791 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2792
2793 /* First allocate a new partial symbol table structure */
2794
2795 pst = start_psymtab_common (objfile, base_section_offsets,
2796 di.at_name, di.at_low_pc,
c5aa993b
JM
2797 objfile->global_psymbols.next,
2798 objfile->static_psymbols.next);
c906108c 2799
c5aa993b
JM
2800 pst->texthigh = di.at_high_pc;
2801 pst->read_symtab_private = (char *)
8b92e4d5 2802 obstack_alloc (&objfile->objfile_obstack,
c5aa993b 2803 sizeof (struct dwfinfo));
c906108c
SS
2804 DBFOFF (pst) = dbfoff;
2805 DBROFF (pst) = curoff;
2806 DBLENGTH (pst) = culength;
c5aa993b
JM
2807 LNFOFF (pst) = curlnoffset;
2808 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2809
2810 /* Now look for partial symbols */
2811
2812 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2813
c5aa993b
JM
2814 pst->n_global_syms = objfile->global_psymbols.next -
2815 (objfile->global_psymbols.list + pst->globals_offset);
2816 pst->n_static_syms = objfile->static_psymbols.next -
2817 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2818 sort_pst_symbols (pst);
2819 /* If there is already a psymtab or symtab for a file of this name,
2820 remove it. (If there is a symtab, more drastic things also
2821 happen.) This happens in VxWorks. */
c5aa993b 2822 free_named_symtabs (pst->filename);
c906108c 2823 }
c5aa993b 2824 thisdie = nextdie;
c906108c
SS
2825 }
2826}
2827
2828/*
2829
c5aa993b 2830 LOCAL FUNCTION
c906108c 2831
c5aa993b 2832 new_symbol -- make a symbol table entry for a new symbol
c906108c 2833
c5aa993b 2834 SYNOPSIS
c906108c 2835
c5aa993b
JM
2836 static struct symbol *new_symbol (struct dieinfo *dip,
2837 struct objfile *objfile)
c906108c 2838
c5aa993b 2839 DESCRIPTION
c906108c 2840
c5aa993b
JM
2841 Given a pointer to a DWARF information entry, figure out if we need
2842 to make a symbol table entry for it, and if so, create a new entry
2843 and return a pointer to it.
c906108c
SS
2844 */
2845
2846static struct symbol *
fba45db2 2847new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2848{
2849 struct symbol *sym = NULL;
c5aa993b
JM
2850
2851 if (dip->at_name != NULL)
c906108c 2852 {
4a146b47 2853 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2854 sizeof (struct symbol));
2855 OBJSTAT (objfile, n_syms++);
2856 memset (sym, 0, sizeof (struct symbol));
c906108c 2857 /* default assumptions */
176620f1 2858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2859 SYMBOL_CLASS (sym) = LOC_STATIC;
2860 SYMBOL_TYPE (sym) = decode_die_type (dip);
2861
2862 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2863 demangled form for future reference. This is a typical time versus
2864 space tradeoff, that was decided in favor of time because it sped up
2865 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2866
2867 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2868 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2869 switch (dip->die_tag)
c906108c
SS
2870 {
2871 case TAG_label:
c5aa993b 2872 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2873 SYMBOL_CLASS (sym) = LOC_LABEL;
2874 break;
2875 case TAG_global_subroutine:
2876 case TAG_subroutine:
c5aa993b 2877 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2878 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2879 if (dip->at_prototyped)
c906108c
SS
2880 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2881 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2882 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2883 {
2884 add_symbol_to_list (sym, &global_symbols);
2885 }
2886 else
2887 {
2888 add_symbol_to_list (sym, list_in_scope);
2889 }
2890 break;
2891 case TAG_global_variable:
c5aa993b 2892 if (dip->at_location != NULL)
c906108c
SS
2893 {
2894 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2895 add_symbol_to_list (sym, &global_symbols);
2896 SYMBOL_CLASS (sym) = LOC_STATIC;
2897 SYMBOL_VALUE (sym) += baseaddr;
2898 }
2899 break;
2900 case TAG_local_variable:
c5aa993b 2901 if (dip->at_location != NULL)
c906108c
SS
2902 {
2903 int loc = locval (dip);
c5aa993b 2904 if (dip->optimized_out)
c906108c
SS
2905 {
2906 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2907 }
c5aa993b 2908 else if (dip->isreg)
c906108c
SS
2909 {
2910 SYMBOL_CLASS (sym) = LOC_REGISTER;
2911 }
c5aa993b 2912 else if (dip->offreg)
c906108c
SS
2913 {
2914 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2915 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2916 }
2917 else
2918 {
2919 SYMBOL_CLASS (sym) = LOC_STATIC;
2920 SYMBOL_VALUE (sym) += baseaddr;
2921 }
2922 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2923 {
2924 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2925 which may store to a bigger location than SYMBOL_VALUE. */
2926 SYMBOL_VALUE_ADDRESS (sym) = loc;
2927 }
2928 else
2929 {
2930 SYMBOL_VALUE (sym) = loc;
2931 }
2932 add_symbol_to_list (sym, list_in_scope);
2933 }
2934 break;
2935 case TAG_formal_parameter:
c5aa993b 2936 if (dip->at_location != NULL)
c906108c
SS
2937 {
2938 SYMBOL_VALUE (sym) = locval (dip);
2939 }
2940 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2941 if (dip->isreg)
c906108c
SS
2942 {
2943 SYMBOL_CLASS (sym) = LOC_REGPARM;
2944 }
c5aa993b 2945 else if (dip->offreg)
c906108c
SS
2946 {
2947 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2948 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2949 }
2950 else
2951 {
2952 SYMBOL_CLASS (sym) = LOC_ARG;
2953 }
2954 break;
2955 case TAG_unspecified_parameters:
2956 /* From varargs functions; gdb doesn't seem to have any interest in
2957 this information, so just ignore it for now. (FIXME?) */
2958 break;
2959 case TAG_class_type:
2960 case TAG_structure_type:
2961 case TAG_union_type:
2962 case TAG_enumeration_type:
2963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2964 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c
SS
2965 add_symbol_to_list (sym, list_in_scope);
2966 break;
2967 case TAG_typedef:
2968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2969 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2970 add_symbol_to_list (sym, list_in_scope);
2971 break;
2972 default:
2973 /* Not a tag we recognize. Hopefully we aren't processing trash
2974 data, but since we must specifically ignore things we don't
2975 recognize, there is nothing else we should do at this point. */
2976 break;
2977 }
2978 }
2979 return (sym);
2980}
2981
2982/*
2983
c5aa993b 2984 LOCAL FUNCTION
c906108c 2985
c5aa993b 2986 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2987
c5aa993b 2988 SYNOPSIS
c906108c 2989
c5aa993b
JM
2990 static void synthesize_typedef (struct dieinfo *dip,
2991 struct objfile *objfile,
2992 struct type *type);
c906108c 2993
c5aa993b 2994 DESCRIPTION
c906108c 2995
c5aa993b
JM
2996 Given a pointer to a DWARF information entry, synthesize a typedef
2997 for the name in the DIE, using the specified type.
c906108c 2998
c5aa993b
JM
2999 This is used for C++ class, structs, unions, and enumerations to
3000 set up the tag name as a type.
c906108c
SS
3001
3002 */
3003
3004static void
fba45db2
KB
3005synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3006 struct type *type)
c906108c
SS
3007{
3008 struct symbol *sym = NULL;
c5aa993b
JM
3009
3010 if (dip->at_name != NULL)
c906108c
SS
3011 {
3012 sym = (struct symbol *)
4a146b47 3013 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
3014 OBJSTAT (objfile, n_syms++);
3015 memset (sym, 0, sizeof (struct symbol));
22abf04a 3016 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
4a146b47 3017 &objfile->objfile_obstack);
c906108c
SS
3018 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3019 SYMBOL_TYPE (sym) = type;
3020 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 3021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3022 add_symbol_to_list (sym, list_in_scope);
3023 }
3024}
3025
3026/*
3027
c5aa993b 3028 LOCAL FUNCTION
c906108c 3029
c5aa993b 3030 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3031
c5aa993b 3032 SYNOPSIS
c906108c 3033
c5aa993b 3034 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3035
c5aa993b 3036 DESCRIPTION
c906108c 3037
c5aa993b
JM
3038 Decode a block of data containing a modified fundamental
3039 type specification. TYPEDATA is a pointer to the block,
3040 which starts with a length containing the size of the rest
3041 of the block. At the end of the block is a fundmental type
3042 code value that gives the fundamental type. Everything
3043 in between are type modifiers.
c906108c 3044
c5aa993b
JM
3045 We simply compute the number of modifiers and call the general
3046 function decode_modified_type to do the actual work.
3047 */
c906108c
SS
3048
3049static struct type *
fba45db2 3050decode_mod_fund_type (char *typedata)
c906108c
SS
3051{
3052 struct type *typep = NULL;
3053 unsigned short modcount;
3054 int nbytes;
c5aa993b 3055
c906108c
SS
3056 /* Get the total size of the block, exclusive of the size itself */
3057
3058 nbytes = attribute_size (AT_mod_fund_type);
3059 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3060 typedata += nbytes;
3061
3062 /* Deduct the size of the fundamental type bytes at the end of the block. */
3063
3064 modcount -= attribute_size (AT_fund_type);
3065
3066 /* Now do the actual decoding */
3067
3068 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3069 return (typep);
3070}
3071
3072/*
3073
c5aa993b 3074 LOCAL FUNCTION
c906108c 3075
c5aa993b 3076 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3077
c5aa993b 3078 SYNOPSIS
c906108c 3079
c5aa993b 3080 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3081
c5aa993b 3082 DESCRIPTION
c906108c 3083
c5aa993b
JM
3084 Decode a block of data containing a modified user defined
3085 type specification. TYPEDATA is a pointer to the block,
3086 which consists of a two byte length, containing the size
3087 of the rest of the block. At the end of the block is a
3088 four byte value that gives a reference to a user defined type.
3089 Everything in between are type modifiers.
c906108c 3090
c5aa993b
JM
3091 We simply compute the number of modifiers and call the general
3092 function decode_modified_type to do the actual work.
3093 */
c906108c
SS
3094
3095static struct type *
fba45db2 3096decode_mod_u_d_type (char *typedata)
c906108c
SS
3097{
3098 struct type *typep = NULL;
3099 unsigned short modcount;
3100 int nbytes;
c5aa993b 3101
c906108c
SS
3102 /* Get the total size of the block, exclusive of the size itself */
3103
3104 nbytes = attribute_size (AT_mod_u_d_type);
3105 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3106 typedata += nbytes;
3107
3108 /* Deduct the size of the reference type bytes at the end of the block. */
3109
3110 modcount -= attribute_size (AT_user_def_type);
3111
3112 /* Now do the actual decoding */
3113
3114 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3115 return (typep);
3116}
3117
3118/*
3119
c5aa993b 3120 LOCAL FUNCTION
c906108c 3121
c5aa993b 3122 decode_modified_type -- decode modified user or fundamental type
c906108c 3123
c5aa993b 3124 SYNOPSIS
c906108c 3125
c5aa993b
JM
3126 static struct type *decode_modified_type (char *modifiers,
3127 unsigned short modcount, int mtype)
c906108c 3128
c5aa993b 3129 DESCRIPTION
c906108c 3130
c5aa993b
JM
3131 Decode a modified type, either a modified fundamental type or
3132 a modified user defined type. MODIFIERS is a pointer to the
3133 block of bytes that define MODCOUNT modifiers. Immediately
3134 following the last modifier is a short containing the fundamental
3135 type or a long containing the reference to the user defined
3136 type. Which one is determined by MTYPE, which is either
3137 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3138 type we are generating.
c906108c 3139
c5aa993b
JM
3140 We call ourself recursively to generate each modified type,`
3141 until MODCOUNT reaches zero, at which point we have consumed
3142 all the modifiers and generate either the fundamental type or
3143 user defined type. When the recursion unwinds, each modifier
3144 is applied in turn to generate the full modified type.
3145
3146 NOTES
c906108c 3147
c5aa993b
JM
3148 If we find a modifier that we don't recognize, and it is not one
3149 of those reserved for application specific use, then we issue a
3150 warning and simply ignore the modifier.
c906108c 3151
c5aa993b 3152 BUGS
c906108c 3153
c5aa993b 3154 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3155
3156 */
3157
3158static struct type *
fba45db2 3159decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3160{
3161 struct type *typep = NULL;
3162 unsigned short fundtype;
3163 DIE_REF die_ref;
3164 char modifier;
3165 int nbytes;
c5aa993b 3166
c906108c
SS
3167 if (modcount == 0)
3168 {
3169 switch (mtype)
3170 {
3171 case AT_mod_fund_type:
3172 nbytes = attribute_size (AT_fund_type);
3173 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3174 current_objfile);
3175 typep = decode_fund_type (fundtype);
3176 break;
3177 case AT_mod_u_d_type:
3178 nbytes = attribute_size (AT_user_def_type);
3179 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3180 current_objfile);
b59661bd
AC
3181 typep = lookup_utype (die_ref);
3182 if (typep == NULL)
c906108c
SS
3183 {
3184 typep = alloc_utype (die_ref, NULL);
3185 }
3186 break;
3187 default:
23136709
KB
3188 complaint (&symfile_complaints,
3189 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3190 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3191 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3192 break;
3193 }
3194 }
3195 else
3196 {
3197 modifier = *modifiers++;
3198 typep = decode_modified_type (modifiers, --modcount, mtype);
3199 switch (modifier)
3200 {
c5aa993b
JM
3201 case MOD_pointer_to:
3202 typep = lookup_pointer_type (typep);
3203 break;
3204 case MOD_reference_to:
3205 typep = lookup_reference_type (typep);
3206 break;
3207 case MOD_const:
23136709
KB
3208 complaint (&symfile_complaints,
3209 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3210 DIE_NAME); /* FIXME */
c5aa993b
JM
3211 break;
3212 case MOD_volatile:
23136709
KB
3213 complaint (&symfile_complaints,
3214 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3215 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3216 break;
3217 default:
3cb3398d
EZ
3218 if (!(MOD_lo_user <= (unsigned char) modifier))
3219#if 0
3220/* This part of the test would always be true, and it triggers a compiler
3221 warning. */
c5aa993b 3222 && (unsigned char) modifier <= MOD_hi_user))
3cb3398d 3223#endif
c5aa993b 3224 {
23136709
KB
3225 complaint (&symfile_complaints,
3226 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3227 DIE_NAME, modifier);
c5aa993b
JM
3228 }
3229 break;
c906108c
SS
3230 }
3231 }
3232 return (typep);
3233}
3234
3235/*
3236
c5aa993b 3237 LOCAL FUNCTION
c906108c 3238
c5aa993b 3239 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3240
c5aa993b 3241 DESCRIPTION
c906108c 3242
c5aa993b
JM
3243 Given an integer that is one of the fundamental DWARF types,
3244 translate it to one of the basic internal gdb types and return
3245 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3246
c5aa993b 3247 NOTES
c906108c 3248
c5aa993b
JM
3249 For robustness, if we are asked to translate a fundamental
3250 type that we are unprepared to deal with, we return int so
3251 callers can always depend upon a valid type being returned,
3252 and so gdb may at least do something reasonable by default.
3253 If the type is not in the range of those types defined as
3254 application specific types, we also issue a warning.
3255 */
c906108c
SS
3256
3257static struct type *
fba45db2 3258decode_fund_type (unsigned int fundtype)
c906108c
SS
3259{
3260 struct type *typep = NULL;
c5aa993b 3261
c906108c
SS
3262 switch (fundtype)
3263 {
3264
3265 case FT_void:
3266 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3267 break;
c5aa993b 3268
c906108c
SS
3269 case FT_boolean: /* Was FT_set in AT&T version */
3270 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3271 break;
3272
3273 case FT_pointer: /* (void *) */
3274 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3275 typep = lookup_pointer_type (typep);
3276 break;
c5aa993b 3277
c906108c
SS
3278 case FT_char:
3279 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3280 break;
c5aa993b 3281
c906108c
SS
3282 case FT_signed_char:
3283 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3284 break;
3285
3286 case FT_unsigned_char:
3287 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3288 break;
c5aa993b 3289
c906108c
SS
3290 case FT_short:
3291 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3292 break;
3293
3294 case FT_signed_short:
3295 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3296 break;
c5aa993b 3297
c906108c
SS
3298 case FT_unsigned_short:
3299 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3300 break;
c5aa993b 3301
c906108c
SS
3302 case FT_integer:
3303 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3304 break;
3305
3306 case FT_signed_integer:
3307 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3308 break;
c5aa993b 3309
c906108c
SS
3310 case FT_unsigned_integer:
3311 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3312 break;
c5aa993b 3313
c906108c
SS
3314 case FT_long:
3315 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3316 break;
3317
3318 case FT_signed_long:
3319 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3320 break;
c5aa993b 3321
c906108c
SS
3322 case FT_unsigned_long:
3323 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3324 break;
c5aa993b 3325
c906108c
SS
3326 case FT_long_long:
3327 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3328 break;
3329
3330 case FT_signed_long_long:
3331 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3332 break;
3333
3334 case FT_unsigned_long_long:
3335 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3336 break;
3337
3338 case FT_float:
3339 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3340 break;
c5aa993b 3341
c906108c
SS
3342 case FT_dbl_prec_float:
3343 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3344 break;
c5aa993b 3345
c906108c
SS
3346 case FT_ext_prec_float:
3347 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3348 break;
c5aa993b 3349
c906108c
SS
3350 case FT_complex:
3351 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3352 break;
c5aa993b 3353
c906108c
SS
3354 case FT_dbl_prec_complex:
3355 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3356 break;
c5aa993b 3357
c906108c
SS
3358 case FT_ext_prec_complex:
3359 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3360 break;
c5aa993b 3361
c906108c
SS
3362 }
3363
3364 if (typep == NULL)
3365 {
3366 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3367 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3368 {
23136709
KB
3369 complaint (&symfile_complaints,
3370 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3371 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3372 }
3373 }
c5aa993b 3374
c906108c
SS
3375 return (typep);
3376}
3377
3378/*
3379
c5aa993b 3380 LOCAL FUNCTION
c906108c 3381
c5aa993b 3382 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3383
c5aa993b 3384 DESCRIPTION
c906108c 3385
c5aa993b
JM
3386 Given a pointer to a string and a pointer to an obstack, allocates
3387 a fresh copy of the string on the specified obstack.
c906108c 3388
c5aa993b 3389 */
c906108c
SS
3390
3391static char *
fba45db2 3392create_name (char *name, struct obstack *obstackp)
c906108c
SS
3393{
3394 int length;
3395 char *newname;
3396
3397 length = strlen (name) + 1;
3398 newname = (char *) obstack_alloc (obstackp, length);
3399 strcpy (newname, name);
3400 return (newname);
3401}
3402
3403/*
3404
c5aa993b 3405 LOCAL FUNCTION
c906108c 3406
c5aa993b 3407 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3408
c5aa993b 3409 SYNOPSIS
c906108c 3410
c5aa993b
JM
3411 void basicdieinfo (char *diep, struct dieinfo *dip,
3412 struct objfile *objfile)
c906108c 3413
c5aa993b 3414 DESCRIPTION
c906108c 3415
c5aa993b
JM
3416 Given a pointer to raw DIE data, and a pointer to an instance of a
3417 die info structure, this function extracts the basic information
3418 from the DIE data required to continue processing this DIE, along
3419 with some bookkeeping information about the DIE.
c906108c 3420
c5aa993b
JM
3421 The information we absolutely must have includes the DIE tag,
3422 and the DIE length. If we need the sibling reference, then we
3423 will have to call completedieinfo() to process all the remaining
3424 DIE information.
c906108c 3425
c5aa993b
JM
3426 Note that since there is no guarantee that the data is properly
3427 aligned in memory for the type of access required (indirection
3428 through anything other than a char pointer), and there is no
3429 guarantee that it is in the same byte order as the gdb host,
3430 we call a function which deals with both alignment and byte
3431 swapping issues. Possibly inefficient, but quite portable.
c906108c 3432
c5aa993b
JM
3433 We also take care of some other basic things at this point, such
3434 as ensuring that the instance of the die info structure starts
3435 out completely zero'd and that curdie is initialized for use
3436 in error reporting if we have a problem with the current die.
c906108c 3437
c5aa993b
JM
3438 NOTES
3439
3440 All DIE's must have at least a valid length, thus the minimum
3441 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3442 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3443 are forced to be TAG_padding DIES.
c906108c 3444
c5aa993b
JM
3445 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3446 that if a padding DIE is used for alignment and the amount needed is
3447 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3448 enough to align to the next alignment boundry.
3449
3450 We do some basic sanity checking here, such as verifying that the
3451 length of the die would not cause it to overrun the recorded end of
3452 the buffer holding the DIE info. If we find a DIE that is either
3453 too small or too large, we force it's length to zero which should
3454 cause the caller to take appropriate action.
c906108c
SS
3455 */
3456
3457static void
fba45db2 3458basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3459{
3460 curdie = dip;
3461 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3462 dip->die = diep;
3463 dip->die_ref = dbroff + (diep - dbbase);
3464 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3465 objfile);
3466 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3467 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3468 {
23136709
KB
3469 complaint (&symfile_complaints,
3470 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3471 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3472 dip->die_length = 0;
c906108c 3473 }
c5aa993b 3474 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3475 {
c5aa993b 3476 dip->die_tag = TAG_padding;
c906108c
SS
3477 }
3478 else
3479 {
3480 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3481 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3482 objfile);
c906108c
SS
3483 }
3484}
3485
3486/*
3487
c5aa993b 3488 LOCAL FUNCTION
c906108c 3489
c5aa993b 3490 completedieinfo -- finish reading the information for a given DIE
c906108c 3491
c5aa993b 3492 SYNOPSIS
c906108c 3493
c5aa993b 3494 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3495
c5aa993b 3496 DESCRIPTION
c906108c 3497
c5aa993b
JM
3498 Given a pointer to an already partially initialized die info structure,
3499 scan the raw DIE data and finish filling in the die info structure
3500 from the various attributes found.
c906108c 3501
c5aa993b
JM
3502 Note that since there is no guarantee that the data is properly
3503 aligned in memory for the type of access required (indirection
3504 through anything other than a char pointer), and there is no
3505 guarantee that it is in the same byte order as the gdb host,
3506 we call a function which deals with both alignment and byte
3507 swapping issues. Possibly inefficient, but quite portable.
c906108c 3508
c5aa993b
JM
3509 NOTES
3510
3511 Each time we are called, we increment the diecount variable, which
3512 keeps an approximate count of the number of dies processed for
3513 each compilation unit. This information is presented to the user
3514 if the info_verbose flag is set.
c906108c
SS
3515
3516 */
3517
3518static void
fba45db2 3519completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3520{
3521 char *diep; /* Current pointer into raw DIE data */
3522 char *end; /* Terminate DIE scan here */
3523 unsigned short attr; /* Current attribute being scanned */
3524 unsigned short form; /* Form of the attribute */
3525 int nbytes; /* Size of next field to read */
c5aa993b 3526
c906108c 3527 diecount++;
c5aa993b
JM
3528 diep = dip->die;
3529 end = diep + dip->die_length;
c906108c
SS
3530 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3531 while (diep < end)
3532 {
3533 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3534 diep += SIZEOF_ATTRIBUTE;
b59661bd
AC
3535 nbytes = attribute_size (attr);
3536 if (nbytes == -1)
c906108c 3537 {
23136709
KB
3538 complaint (&symfile_complaints,
3539 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3540 DIE_ID, DIE_NAME);
c906108c
SS
3541 diep = end;
3542 continue;
3543 }
3544 switch (attr)
3545 {
3546 case AT_fund_type:
c5aa993b
JM
3547 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3548 objfile);
c906108c
SS
3549 break;
3550 case AT_ordering:
c5aa993b
JM
3551 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 objfile);
c906108c
SS
3553 break;
3554 case AT_bit_offset:
c5aa993b
JM
3555 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3556 objfile);
c906108c
SS
3557 break;
3558 case AT_sibling:
c5aa993b
JM
3559 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3560 objfile);
c906108c
SS
3561 break;
3562 case AT_stmt_list:
c5aa993b
JM
3563 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3564 objfile);
3565 dip->has_at_stmt_list = 1;
c906108c
SS
3566 break;
3567 case AT_low_pc:
c5aa993b
JM
3568 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 objfile);
3570 dip->at_low_pc += baseaddr;
3571 dip->has_at_low_pc = 1;
c906108c
SS
3572 break;
3573 case AT_high_pc:
c5aa993b
JM
3574 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3575 objfile);
3576 dip->at_high_pc += baseaddr;
c906108c
SS
3577 break;
3578 case AT_language:
c5aa993b
JM
3579 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
c906108c
SS
3581 break;
3582 case AT_user_def_type:
c5aa993b
JM
3583 dip->at_user_def_type = target_to_host (diep, nbytes,
3584 GET_UNSIGNED, objfile);
c906108c
SS
3585 break;
3586 case AT_byte_size:
c5aa993b
JM
3587 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3588 objfile);
3589 dip->has_at_byte_size = 1;
c906108c
SS
3590 break;
3591 case AT_bit_size:
c5aa993b
JM
3592 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3593 objfile);
c906108c
SS
3594 break;
3595 case AT_member:
c5aa993b
JM
3596 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
c906108c
SS
3598 break;
3599 case AT_discr:
c5aa993b
JM
3600 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3601 objfile);
c906108c
SS
3602 break;
3603 case AT_location:
c5aa993b 3604 dip->at_location = diep;
c906108c
SS
3605 break;
3606 case AT_mod_fund_type:
c5aa993b 3607 dip->at_mod_fund_type = diep;
c906108c
SS
3608 break;
3609 case AT_subscr_data:
c5aa993b 3610 dip->at_subscr_data = diep;
c906108c
SS
3611 break;
3612 case AT_mod_u_d_type:
c5aa993b 3613 dip->at_mod_u_d_type = diep;
c906108c
SS
3614 break;
3615 case AT_element_list:
c5aa993b
JM
3616 dip->at_element_list = diep;
3617 dip->short_element_list = 0;
c906108c
SS
3618 break;
3619 case AT_short_element_list:
c5aa993b
JM
3620 dip->at_element_list = diep;
3621 dip->short_element_list = 1;
c906108c
SS
3622 break;
3623 case AT_discr_value:
c5aa993b 3624 dip->at_discr_value = diep;
c906108c
SS
3625 break;
3626 case AT_string_length:
c5aa993b 3627 dip->at_string_length = diep;
c906108c
SS
3628 break;
3629 case AT_name:
c5aa993b 3630 dip->at_name = diep;
c906108c
SS
3631 break;
3632 case AT_comp_dir:
3633 /* For now, ignore any "hostname:" portion, since gdb doesn't
3634 know how to deal with it. (FIXME). */
c5aa993b
JM
3635 dip->at_comp_dir = strrchr (diep, ':');
3636 if (dip->at_comp_dir != NULL)
c906108c 3637 {
c5aa993b 3638 dip->at_comp_dir++;
c906108c
SS
3639 }
3640 else
3641 {
c5aa993b 3642 dip->at_comp_dir = diep;
c906108c
SS
3643 }
3644 break;
3645 case AT_producer:
c5aa993b 3646 dip->at_producer = diep;
c906108c
SS
3647 break;
3648 case AT_start_scope:
c5aa993b
JM
3649 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3650 objfile);
c906108c
SS
3651 break;
3652 case AT_stride_size:
c5aa993b
JM
3653 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3654 objfile);
c906108c
SS
3655 break;
3656 case AT_src_info:
c5aa993b
JM
3657 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
c906108c
SS
3659 break;
3660 case AT_prototyped:
c5aa993b 3661 dip->at_prototyped = diep;
c906108c
SS
3662 break;
3663 default:
3664 /* Found an attribute that we are unprepared to handle. However
3665 it is specifically one of the design goals of DWARF that
3666 consumers should ignore unknown attributes. As long as the
3667 form is one that we recognize (so we know how to skip it),
3668 we can just ignore the unknown attribute. */
3669 break;
3670 }
3671 form = FORM_FROM_ATTR (attr);
3672 switch (form)
3673 {
3674 case FORM_DATA2:
3675 diep += 2;
3676 break;
3677 case FORM_DATA4:
3678 case FORM_REF:
3679 diep += 4;
3680 break;
3681 case FORM_DATA8:
3682 diep += 8;
3683 break;
3684 case FORM_ADDR:
3685 diep += TARGET_FT_POINTER_SIZE (objfile);
3686 break;
3687 case FORM_BLOCK2:
3688 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3689 break;
3690 case FORM_BLOCK4:
3691 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3692 break;
3693 case FORM_STRING:
3694 diep += strlen (diep) + 1;
3695 break;
3696 default:
23136709 3697 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3698 diep = end;
3699 break;
3700 }
3701 }
3702}
3703
3704/*
3705
c5aa993b 3706 LOCAL FUNCTION
c906108c 3707
c5aa993b 3708 target_to_host -- swap in target data to host
c906108c 3709
c5aa993b 3710 SYNOPSIS
c906108c 3711
c5aa993b
JM
3712 target_to_host (char *from, int nbytes, int signextend,
3713 struct objfile *objfile)
c906108c 3714
c5aa993b 3715 DESCRIPTION
c906108c 3716
c5aa993b
JM
3717 Given pointer to data in target format in FROM, a byte count for
3718 the size of the data in NBYTES, a flag indicating whether or not
3719 the data is signed in SIGNEXTEND, and a pointer to the current
3720 objfile in OBJFILE, convert the data to host format and return
3721 the converted value.
c906108c 3722
c5aa993b 3723 NOTES
c906108c 3724
c5aa993b
JM
3725 FIXME: If we read data that is known to be signed, and expect to
3726 use it as signed data, then we need to explicitly sign extend the
3727 result until the bfd library is able to do this for us.
c906108c 3728
c5aa993b 3729 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3730
3731 */
3732
3733static CORE_ADDR
fba45db2
KB
3734target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3735 struct objfile *objfile)
c906108c
SS
3736{
3737 CORE_ADDR rtnval;
3738
3739 switch (nbytes)
3740 {
c5aa993b
JM
3741 case 8:
3742 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3743 break;
3744 case 4:
3745 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3746 break;
3747 case 2:
3748 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3749 break;
3750 case 1:
3751 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3752 break;
3753 default:
23136709
KB
3754 complaint (&symfile_complaints,
3755 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3756 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3757 rtnval = 0;
3758 break;
c906108c
SS
3759 }
3760 return (rtnval);
3761}
3762
3763/*
3764
c5aa993b 3765 LOCAL FUNCTION
c906108c 3766
c5aa993b 3767 attribute_size -- compute size of data for a DWARF attribute
c906108c 3768
c5aa993b 3769 SYNOPSIS
c906108c 3770
c5aa993b 3771 static int attribute_size (unsigned int attr)
c906108c 3772
c5aa993b 3773 DESCRIPTION
c906108c 3774
c5aa993b
JM
3775 Given a DWARF attribute in ATTR, compute the size of the first
3776 piece of data associated with this attribute and return that
3777 size.
c906108c 3778
c5aa993b 3779 Returns -1 for unrecognized attributes.
c906108c
SS
3780
3781 */
3782
3783static int
fba45db2 3784attribute_size (unsigned int attr)
c906108c
SS
3785{
3786 int nbytes; /* Size of next data for this attribute */
3787 unsigned short form; /* Form of the attribute */
3788
3789 form = FORM_FROM_ATTR (attr);
3790 switch (form)
3791 {
c5aa993b
JM
3792 case FORM_STRING: /* A variable length field is next */
3793 nbytes = 0;
3794 break;
3795 case FORM_DATA2: /* Next 2 byte field is the data itself */
3796 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3797 nbytes = 2;
3798 break;
3799 case FORM_DATA4: /* Next 4 byte field is the data itself */
3800 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3801 case FORM_REF: /* Next 4 byte field is a DIE offset */
3802 nbytes = 4;
3803 break;
3804 case FORM_DATA8: /* Next 8 byte field is the data itself */
3805 nbytes = 8;
3806 break;
3807 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3808 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3809 break;
3810 default:
23136709 3811 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3812 nbytes = -1;
3813 break;
3814 }
c906108c
SS
3815 return (nbytes);
3816}
This page took 0.52216 seconds and 4 git commands to generate.