removed rcs cruft
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
1ab3bf1b
JG
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
9745ba07
JK
24FIXME: Do we need to generate dependencies in partial symtabs?
25(Perhaps we don't need to).
35f5886e 26
35f5886e
FF
27FIXME: Resolve minor differences between what information we put in the
28partial symbol table and what dbxread puts in. For example, we don't yet
29put enum constants there. And dbxread seems to invent a lot of typedefs
30we never see. Use the new printpsym command to see the partial symbol table
31contents.
32
35f5886e
FF
33FIXME: Figure out a better way to tell gdb about the name of the function
34contain the user's entry point (I.E. main())
35
35f5886e
FF
36FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37other things to work on, if you get bored. :-)
38
39*/
4d315a07 40
d747e0af 41#include "defs.h"
35f5886e
FF
42#include "bfd.h"
43#include "symtab.h"
1ab3bf1b 44#include "gdbtypes.h"
35f5886e 45#include "symfile.h"
5e2e79f8 46#include "objfiles.h"
791e4513 47#include <time.h> /* For time_t in libbfd.h. */
ddf5d7e8 48#include <sys/types.h> /* For time_t, if not in time.h. */
13b5a7ff 49#include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
f5f0679a 50#include "elf/dwarf.h"
4d315a07 51#include "buildsym.h"
2dbde378 52#include "demangle.h"
bf229b4e
FF
53#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54#include "language.h"
51b80b00 55#include "complaints.h"
35f5886e 56
d5931d79
JG
57#include <fcntl.h>
58#include <string.h>
603900c7 59#include <sys/types.h>
51b80b00 60
d5931d79
JG
61#ifndef NO_SYS_FILE
62#include <sys/file.h>
63#endif
64
65/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66#ifndef L_SET
67#define L_SET 0
68#endif
69
51b80b00
FF
70/* Some macros to provide DIE info for complaints. */
71
72#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75/* Complaints that can be issued during DWARF debug info reading. */
76
77struct complaint no_bfd_get_N =
78{
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80};
81
82struct complaint malformed_die =
83{
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85};
86
87struct complaint bad_die_ref =
88{
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90};
91
92struct complaint unknown_attribute_form =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95};
96
97struct complaint unknown_attribute_length =
98{
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100};
101
102struct complaint unexpected_fund_type =
103{
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105};
106
107struct complaint unknown_type_modifier =
108{
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110};
111
112struct complaint volatile_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115};
116
117struct complaint const_ignored =
118{
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120};
121
122struct complaint botched_modified_type =
123{
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125};
126
127struct complaint op_deref2 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130};
131
132struct complaint op_deref4 =
133{
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135};
136
137struct complaint basereg_not_handled =
138{
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140};
141
142struct complaint dup_user_type_allocation =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145};
146
147struct complaint dup_user_type_definition =
148{
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150};
151
152struct complaint missing_tag =
153{
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155};
156
157struct complaint bad_array_element_type =
158{
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160};
161
162struct complaint subscript_data_items =
163{
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165};
166
167struct complaint unhandled_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170};
171
172struct complaint unknown_array_subscript_format =
173{
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175};
176
177struct complaint not_row_major =
178{
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180};
35f5886e 181
13b5a7ff 182typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 183
4d315a07
FF
184#ifndef GCC_PRODUCER
185#define GCC_PRODUCER "GNU C "
186#endif
35f5886e 187
2dbde378
FF
188#ifndef GPLUS_PRODUCER
189#define GPLUS_PRODUCER "GNU C++ "
190#endif
191
192#ifndef LCC_PRODUCER
3dc755fb 193#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
194#endif
195
93bb6e65
FF
196#ifndef CHILL_PRODUCER
197#define CHILL_PRODUCER "GNU Chill "
198#endif
93bb6e65 199
13b5a7ff
FF
200/* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207#define GET_UNSIGNED 0 /* No sign extension required */
208#define GET_SIGNED 1 /* Sign extension required */
209
210/* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214#define SIZEOF_DIE_LENGTH 4
215#define SIZEOF_DIE_TAG 2
216#define SIZEOF_ATTRIBUTE 2
217#define SIZEOF_FORMAT_SPECIFIER 1
218#define SIZEOF_FMT_FT 2
219#define SIZEOF_LINETBL_LENGTH 4
220#define SIZEOF_LINETBL_LINENO 4
221#define SIZEOF_LINETBL_STMT 2
222#define SIZEOF_LINETBL_DELTA 4
223#define SIZEOF_LOC_ATOM_CODE 1
224
225#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227/* Macros that return the sizes of various types of data in the target
228 environment.
229
2d6d969c
FF
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 239
768be6e1
FF
240/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247#define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249/* External variables referenced. */
250
35f5886e 251extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 252extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
253
254/* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
13b5a7ff 260 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
2d6186f4 276 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
277 we need someway to note that we found such an attribute.
278
279 */
280
281typedef char BLOCK;
282
283struct dieinfo {
13b5a7ff
FF
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 unsigned long at_low_pc;
304 unsigned long at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
13b5a7ff
FF
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
13b5a7ff
FF
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
50055e94 318 unsigned int has_at_byte_size:1;
13b5a7ff 319 unsigned int short_element_list:1;
35f5886e
FF
320};
321
322static int diecount; /* Approximate count of dies for compilation unit */
323static struct dieinfo *curdie; /* For warnings and such */
324
325static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 326static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
327static int dbroff; /* Relative offset from start of .debug section */
328static char *lnbase; /* Base pointer to line section */
329static int isreg; /* Kludge to identify register variables */
a1c8d76e
JK
330/* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332static int offreg;
333/* Which base register is it relative to? */
334static int basereg;
35f5886e 335
2670f34d 336/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
35f5886e
FF
339static CORE_ADDR baseaddr; /* Add to each symbol value */
340
2670f34d
JG
341/* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343static struct section_offsets *base_section_offsets;
344
35f5886e
FF
345/* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371struct dwfinfo {
d5931d79 372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
376};
377
378#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
4d315a07
FF
383/* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 387
4d315a07
FF
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 391
99140c31 392struct pending **list_in_scope = &file_symbols;
35f5886e
FF
393
394/* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
35f5886e
FF
419
420static struct type **utypes; /* Pointer to array of user type pointers */
421static int numutypes; /* Max number of user type pointers */
422
bf229b4e
FF
423/* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
95ff889e
FF
435/* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
95ff889e
FF
444
445static enum language cu_language;
bf229b4e 446static const struct language_defn *cu_language_defn;
95ff889e 447
35f5886e 448/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
449 about ordering within this file. */
450
13b5a7ff
FF
451static int
452attribute_size PARAMS ((unsigned int));
453
454static unsigned long
455target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 456
1ab3bf1b
JG
457static void
458add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
2dbde378
FF
460static void
461handle_producer PARAMS ((char *));
462
1ab3bf1b
JG
463static void
464read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 465
58050209 466static void
1ab3bf1b 467read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
468
469static void
1ab3bf1b
JG
470read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
35f5886e 472
35f5886e 473static void
1ab3bf1b 474scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 475
35f5886e 476static void
d5931d79
JG
477scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
35f5886e
FF
479
480static void
1ab3bf1b 481add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
482
483static void
1ab3bf1b 484init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
485
486static void
95967e73 487basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
488
489static void
95967e73 490completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
491
492static void
493dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495static void
496psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 497
c701c14c 498static void
1ab3bf1b 499read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
500
501static void
1ab3bf1b 502process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
503
504static void
1ab3bf1b
JG
505read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
35f5886e
FF
507
508static struct type *
84ffdec2 509decode_array_element_type PARAMS ((char *));
35f5886e
FF
510
511static struct type *
85f0a848 512decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
513
514static void
1ab3bf1b 515dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 516
9e4c1921 517static void
1ab3bf1b 518read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 519
ec16f701
FF
520static void
521read_tag_string_type PARAMS ((struct dieinfo *dip));
522
35f5886e 523static void
1ab3bf1b 524read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
525
526static void
1ab3bf1b 527read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
528
529static struct type *
1ab3bf1b 530struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
531
532static struct type *
1ab3bf1b 533enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 534
35f5886e 535static void
1ab3bf1b 536decode_line_numbers PARAMS ((char *));
35f5886e
FF
537
538static struct type *
1ab3bf1b 539decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
540
541static struct type *
1ab3bf1b 542decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
543
544static struct type *
1ab3bf1b 545decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
546
547static struct type *
1c92ca6f 548decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
549
550static struct type *
1ab3bf1b 551decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
552
553static char *
1ab3bf1b 554create_name PARAMS ((char *, struct obstack *));
35f5886e 555
35f5886e 556static struct type *
13b5a7ff 557lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
558
559static struct type *
13b5a7ff 560alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
561
562static struct symbol *
1ab3bf1b 563new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 564
95ff889e
FF
565static void
566synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
35f5886e 569static int
1ab3bf1b 570locval PARAMS ((char *));
35f5886e 571
95ff889e
FF
572static void
573set_cu_language PARAMS ((struct dieinfo *));
574
bf229b4e
FF
575static struct type *
576dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579/*
580
581LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607RETURNS
608
609 Pointer to a fundamental type.
610
611*/
612
613static struct type *
614dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617{
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633}
634
95ff889e
FF
635/*
636
637LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652RETURNS
653
654 No return value.
655
656 */
657
658static void
659set_cu_language (dip)
660 struct dieinfo *dip;
661{
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
e58de8a2
FF
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
95ff889e
FF
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
2e4964ad 683 /* We don't know anything special about these yet. */
95ff889e
FF
684 cu_language = language_unknown;
685 break;
2e4964ad
FF
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
95ff889e 690 }
bf229b4e 691 cu_language_defn = language_def (cu_language);
95ff889e
FF
692}
693
35f5886e
FF
694/*
695
696GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700SYNOPSIS
701
d5931d79 702 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 703 struct section_offsets *section_offsets,
d5931d79
JG
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
706
707DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
d5931d79 712 It is passed a bfd* containing the DIES
35f5886e
FF
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720RETURNS
721
722 No return value.
723
724 */
725
726void
d5931d79
JG
727dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
2670f34d 730 struct section_offsets *section_offsets;
1ab3bf1b 731 int mainline;
d5931d79 732 file_ptr dbfoff;
4090fe1c 733 unsigned int dbfsize;
d5931d79 734 file_ptr lnoffset;
1ab3bf1b 735 unsigned int lnsize;
35f5886e 736{
d5931d79 737 bfd *abfd = objfile->obfd;
35f5886e
FF
738 struct cleanup *back_to;
739
95967e73 740 current_objfile = objfile;
4090fe1c 741 dbsize = dbfsize;
35f5886e
FF
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
d5931d79
JG
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
746 {
747 free (dbbase);
d5931d79 748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
13b5a7ff
FF
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
35f5886e 758 {
1ab3bf1b 759 init_psymbol_list (objfile, 1024);
35f5886e
FF
760 }
761
84ffdec2 762 /* Save the relocation factor where everybody can see it. */
f8b76e70 763
2670f34d
JG
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 766
35f5886e
FF
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
d5931d79 771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 772
35f5886e 773 do_cleanups (back_to);
95967e73 774 current_objfile = NULL;
35f5886e
FF
775}
776
35f5886e
FF
777/*
778
35f5886e
FF
779LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795static void
1ab3bf1b
JG
796read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
35f5886e 801{
4d315a07
FF
802 register struct context_stack *new;
803
4ed3a9ea 804 push_context (0, dip -> at_low_pc);
13b5a7ff 805 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 810 dip -> at_high_pc, objfile);
4d315a07
FF
811 }
812 local_symbols = new -> locals;
35f5886e
FF
813}
814
815/*
816
817LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821SYNOPSIS
822
13b5a7ff 823 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
824
825DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834static struct type *
13b5a7ff
FF
835lookup_utype (die_ref)
836 DIE_REF die_ref;
35f5886e
FF
837{
838 struct type *type = NULL;
839 int utypeidx;
840
13b5a7ff 841 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
51b80b00 844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851}
852
853
854/*
855
856LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860SYNOPSIS
861
13b5a7ff 862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
863
864DESCRIPTION
865
13b5a7ff 866 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
13b5a7ff 872 there is not currently a type registered for DIE_REF.
35f5886e
FF
873 */
874
875static struct type *
13b5a7ff
FF
876alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
1ab3bf1b 878 struct type *utypep;
35f5886e
FF
879{
880 struct type **typep;
881 int utypeidx;
882
13b5a7ff 883 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
bf229b4e 887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
51b80b00 893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
8050a57b 899 utypep = alloc_type (current_objfile);
35f5886e
FF
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904}
905
906/*
907
908LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923static struct type *
1ab3bf1b
JG
924decode_die_type (dip)
925 struct dieinfo *dip;
35f5886e
FF
926{
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
bf229b4e 950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
951 }
952 return (type);
953}
954
955/*
956
957LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 964 char *enddie, struct objfile *objfile)
35f5886e
FF
965
966DESCRIPTION
967
968 Given pointer to a die information structure for a die which
715cafcb
FF
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
35f5886e
FF
973 */
974
975static struct type *
1ab3bf1b
JG
976struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
35f5886e
FF
981{
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
35f5886e 991 struct dieinfo mbr;
8b5b6fae 992 char *nextdie;
a8a69e63 993#if !BITS_BIG_ENDIAN
50055e94 994 int anonymous_size;
a8a69e63 995#endif
35f5886e 996
13b5a7ff 997 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 998 {
5edf98d7 999 /* No forward references created an empty type, so install one now */
13b5a7ff 1000 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1001 }
a3723a43 1002 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1003 switch (dip -> die_tag)
35f5886e 1004 {
95ff889e
FF
1005 case TAG_class_type:
1006 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1007 break;
715cafcb 1008 case TAG_structure_type:
5edf98d7 1009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1010 break;
1011 case TAG_union_type:
1012 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1013 break;
1014 default:
1015 /* Should never happen */
1016 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1017 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1018 break;
35f5886e 1019 }
5edf98d7
FF
1020 /* Some compilers try to be helpful by inventing "fake" names for
1021 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1022 Thanks, but no thanks... */
715cafcb
FF
1023 if (dip -> at_name != NULL
1024 && *dip -> at_name != '~'
1025 && *dip -> at_name != '.')
35f5886e 1026 {
b2bebdb0
JK
1027 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1028 "", "", dip -> at_name);
35f5886e 1029 }
50055e94
FF
1030 /* Use whatever size is known. Zero is a valid size. We might however
1031 wish to check has_at_byte_size to make sure that some byte size was
1032 given explicitly, but DWARF doesn't specify that explicit sizes of
1033 zero have to present, so complaining about missing sizes should
1034 probably not be the default. */
1035 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1036 thisdie += dip -> die_length;
35f5886e
FF
1037 while (thisdie < enddie)
1038 {
95967e73
FF
1039 basicdieinfo (&mbr, thisdie, objfile);
1040 completedieinfo (&mbr, objfile);
13b5a7ff 1041 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1042 {
1043 break;
1044 }
8b5b6fae
FF
1045 else if (mbr.at_sibling != 0)
1046 {
1047 nextdie = dbbase + mbr.at_sibling - dbroff;
1048 }
1049 else
1050 {
13b5a7ff 1051 nextdie = thisdie + mbr.die_length;
8b5b6fae 1052 }
13b5a7ff 1053 switch (mbr.die_tag)
35f5886e
FF
1054 {
1055 case TAG_member:
1056 /* Get space to record the next field's data. */
1057 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1058 new -> next = list;
1059 list = new;
1060 /* Save the data. */
50e0dc41
FF
1061 list -> field.name =
1062 obsavestring (mbr.at_name, strlen (mbr.at_name),
1063 &objfile -> type_obstack);
35f5886e
FF
1064 list -> field.type = decode_die_type (&mbr);
1065 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1066 /* Handle bit fields. */
1067 list -> field.bitsize = mbr.at_bit_size;
1068#if BITS_BIG_ENDIAN
1069 /* For big endian bits, the at_bit_offset gives the additional
1070 bit offset from the MSB of the containing anonymous object to
1071 the MSB of the field. We don't have to do anything special
1072 since we don't need to know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074#else
1075 /* For little endian bits, we need to have a non-zero at_bit_size,
1076 so that we know we are in fact dealing with a bitfield. Compute
1077 the bit offset to the MSB of the anonymous object, subtract off
1078 the number of bits from the MSB of the field to the MSB of the
1079 object, and then subtract off the number of bits of the field
1080 itself. The result is the bit offset of the LSB of the field. */
1081 if (mbr.at_bit_size > 0)
1082 {
50055e94
FF
1083 if (mbr.has_at_byte_size)
1084 {
1085 /* The size of the anonymous object containing the bit field
1086 is explicit, so use the indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing the bit field
1092 matches the size of an object of the bit field's type.
1093 DWARF allows at_byte_size to be left out in such cases,
1094 as a debug information size optimization. */
1095 anonymous_size = TYPE_LENGTH (list -> field.type);
1096 }
4db8e515 1097 list -> field.bitpos +=
50055e94 1098 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
4db8e515
FF
1099 }
1100#endif
35f5886e
FF
1101 nfields++;
1102 break;
1103 default:
8b5b6fae 1104 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1105 break;
1106 }
8b5b6fae 1107 thisdie = nextdie;
35f5886e 1108 }
5edf98d7
FF
1109 /* Now create the vector of fields, and record how big it is. We may
1110 not even have any fields, if this DIE was generated due to a reference
1111 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1112 set, which clues gdb in to the fact that it needs to search elsewhere
1113 for the full structure definition. */
1114 if (nfields == 0)
35f5886e 1115 {
5edf98d7
FF
1116 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1117 }
1118 else
1119 {
1120 TYPE_NFIELDS (type) = nfields;
1121 TYPE_FIELDS (type) = (struct field *)
dac9734e 1122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1123 /* Copy the saved-up fields into the field vector. */
1124 for (n = nfields; list; list = list -> next)
1125 {
1126 TYPE_FIELD (type, --n) = list -> field;
1127 }
1128 }
35f5886e
FF
1129 return (type);
1130}
1131
1132/*
1133
1134LOCAL FUNCTION
1135
1136 read_structure_scope -- process all dies within struct or union
1137
1138SYNOPSIS
1139
1140 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1141 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1142
1143DESCRIPTION
1144
1145 Called when we find the DIE that starts a structure or union
1146 scope (definition) to process all dies that define the members
1147 of the structure or union. DIP is a pointer to the die info
1148 struct for the DIE that names the structure or union.
1149
1150NOTES
1151
1152 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1153 the DIE has an at_name attribute, since it might be an anonymous
1154 structure or union. This gets the type entered into our set of
1155 user defined types.
1156
1157 However, if the structure is incomplete (an opaque struct/union)
1158 then suppress creating a symbol table entry for it since gdb only
1159 wants to find the one with the complete definition. Note that if
1160 it is complete, we just call new_symbol, which does it's own
1161 checking about whether the struct/union is anonymous or not (and
1162 suppresses creating a symbol table entry itself).
1163
35f5886e
FF
1164 */
1165
1166static void
1ab3bf1b
JG
1167read_structure_scope (dip, thisdie, enddie, objfile)
1168 struct dieinfo *dip;
1169 char *thisdie;
1170 char *enddie;
1171 struct objfile *objfile;
35f5886e
FF
1172{
1173 struct type *type;
1174 struct symbol *sym;
1175
8b5b6fae 1176 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1177 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1178 {
95ff889e
FF
1179 sym = new_symbol (dip, objfile);
1180 if (sym != NULL)
84ce6717
FF
1181 {
1182 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1183 if (cu_language == language_cplus)
1184 {
1185 synthesize_typedef (dip, objfile, type);
1186 }
84ce6717 1187 }
35f5886e
FF
1188 }
1189}
1190
1191/*
1192
1193LOCAL FUNCTION
1194
1195 decode_array_element_type -- decode type of the array elements
1196
1197SYNOPSIS
1198
1199 static struct type *decode_array_element_type (char *scan, char *end)
1200
1201DESCRIPTION
1202
1203 As the last step in decoding the array subscript information for an
1204 array DIE, we need to decode the type of the array elements. We are
1205 passed a pointer to this last part of the subscript information and
1206 must return the appropriate type. If the type attribute is not
1207 recognized, just warn about the problem and return type int.
1208 */
1209
1210static struct type *
84ffdec2 1211decode_array_element_type (scan)
1ab3bf1b 1212 char *scan;
35f5886e
FF
1213{
1214 struct type *typep;
13b5a7ff
FF
1215 DIE_REF die_ref;
1216 unsigned short attribute;
35f5886e 1217 unsigned short fundtype;
13b5a7ff 1218 int nbytes;
35f5886e 1219
13b5a7ff
FF
1220 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1221 current_objfile);
1222 scan += SIZEOF_ATTRIBUTE;
1223 if ((nbytes = attribute_size (attribute)) == -1)
1224 {
51b80b00 1225 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1226 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1227 }
1228 else
1229 {
1230 switch (attribute)
1231 {
1232 case AT_fund_type:
1233 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1234 current_objfile);
1235 typep = decode_fund_type (fundtype);
1236 break;
1237 case AT_mod_fund_type:
1238 typep = decode_mod_fund_type (scan);
1239 break;
1240 case AT_user_def_type:
1241 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1242 current_objfile);
1243 if ((typep = lookup_utype (die_ref)) == NULL)
1244 {
1245 typep = alloc_utype (die_ref, NULL);
1246 }
1247 break;
1248 case AT_mod_u_d_type:
1249 typep = decode_mod_u_d_type (scan);
1250 break;
1251 default:
51b80b00 1252 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1253 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1254 break;
1255 }
35f5886e
FF
1256 }
1257 return (typep);
1258}
1259
1260/*
1261
1262LOCAL FUNCTION
1263
85f0a848 1264 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1265
1266SYNOPSIS
1267
85f0a848
FF
1268 static struct type *
1269 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1270
1271DESCRIPTION
1272
1273 The array subscripts and the data type of the elements of an
1274 array are described by a list of data items, stored as a block
1275 of contiguous bytes. There is a data item describing each array
1276 dimension, and a final data item describing the element type.
1277 The data items are ordered the same as their appearance in the
1278 source (I.E. leftmost dimension first, next to leftmost second,
1279 etc).
1280
85f0a848
FF
1281 The data items describing each array dimension consist of four
1282 parts: (1) a format specifier, (2) type type of the subscript
1283 index, (3) a description of the low bound of the array dimension,
1284 and (4) a description of the high bound of the array dimension.
1285
1286 The last data item is the description of the type of each of
1287 the array elements.
1288
35f5886e 1289 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1290 containing the remaining data items, and a pointer to the first
1291 byte past the data. This function recursively decodes the
1292 remaining data items and returns a type.
1293
1294 If we somehow fail to decode some data, we complain about it
1295 and return a type "array of int".
35f5886e
FF
1296
1297BUGS
1298 FIXME: This code only implements the forms currently used
1299 by the AT&T and GNU C compilers.
1300
1301 The end pointer is supplied for error checking, maybe we should
1302 use it for that...
1303 */
1304
1305static struct type *
85f0a848 1306decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1307 char *scan;
1308 char *end;
35f5886e 1309{
85f0a848
FF
1310 struct type *typep = NULL; /* Array type we are building */
1311 struct type *nexttype; /* Type of each element (may be array) */
1312 struct type *indextype; /* Type of this index */
a8a69e63 1313 struct type *rangetype;
13b5a7ff
FF
1314 unsigned int format;
1315 unsigned short fundtype;
1316 unsigned long lowbound;
1317 unsigned long highbound;
1318 int nbytes;
35f5886e 1319
13b5a7ff
FF
1320 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1321 current_objfile);
1322 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1323 switch (format)
1324 {
1325 case FMT_ET:
84ffdec2 1326 typep = decode_array_element_type (scan);
35f5886e
FF
1327 break;
1328 case FMT_FT_C_C:
13b5a7ff
FF
1329 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1330 current_objfile);
85f0a848 1331 indextype = decode_fund_type (fundtype);
13b5a7ff 1332 scan += SIZEOF_FMT_FT;
160be0de
FF
1333 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1334 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1337 scan += nbytes;
85f0a848
FF
1338 nexttype = decode_subscript_data_item (scan, end);
1339 if (nexttype == NULL)
35f5886e 1340 {
85f0a848 1341 /* Munged subscript data or other problem, fake it. */
51b80b00 1342 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1343 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1344 }
a8a69e63
FF
1345 rangetype = create_range_type ((struct type *) NULL, indextype,
1346 lowbound, highbound);
1347 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1348 break;
1349 case FMT_FT_C_X:
1350 case FMT_FT_X_C:
1351 case FMT_FT_X_X:
1352 case FMT_UT_C_C:
1353 case FMT_UT_C_X:
1354 case FMT_UT_X_C:
1355 case FMT_UT_X_X:
51b80b00 1356 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1357 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1358 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1359 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1360 break;
1361 default:
51b80b00 1362 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1366 break;
1367 }
1368 return (typep);
1369}
1370
1371/*
1372
1373LOCAL FUNCTION
1374
4d315a07 1375 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1376
1377SYNOPSIS
1378
4d315a07 1379 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1380
1381DESCRIPTION
1382
1383 Extract all information from a TAG_array_type DIE and add to
1384 the user defined type vector.
1385 */
1386
1387static void
1ab3bf1b
JG
1388dwarf_read_array_type (dip)
1389 struct dieinfo *dip;
35f5886e
FF
1390{
1391 struct type *type;
af213624 1392 struct type *utype;
35f5886e
FF
1393 char *sub;
1394 char *subend;
13b5a7ff
FF
1395 unsigned short blocksz;
1396 int nbytes;
35f5886e
FF
1397
1398 if (dip -> at_ordering != ORD_row_major)
1399 {
1400 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1401 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1402 }
1403 if ((sub = dip -> at_subscr_data) != NULL)
1404 {
13b5a7ff
FF
1405 nbytes = attribute_size (AT_subscr_data);
1406 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1407 subend = sub + nbytes + blocksz;
1408 sub += nbytes;
85f0a848
FF
1409 type = decode_subscript_data_item (sub, subend);
1410 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1411 {
85f0a848
FF
1412 /* Install user defined type that has not been referenced yet. */
1413 alloc_utype (dip -> die_ref, type);
1414 }
1415 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1416 {
1417 /* Ick! A forward ref has already generated a blank type in our
1418 slot, and this type probably already has things pointing to it
1419 (which is what caused it to be created in the first place).
1420 If it's just a place holder we can plop our fully defined type
1421 on top of it. We can't recover the space allocated for our
1422 new type since it might be on an obstack, but we could reuse
1423 it if we kept a list of them, but it might not be worth it
1424 (FIXME). */
1425 *utype = *type;
35f5886e
FF
1426 }
1427 else
1428 {
85f0a848
FF
1429 /* Double ick! Not only is a type already in our slot, but
1430 someone has decorated it. Complain and leave it alone. */
51b80b00 1431 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1432 }
1433 }
1434}
1435
1436/*
1437
9e4c1921
FF
1438LOCAL FUNCTION
1439
1440 read_tag_pointer_type -- read TAG_pointer_type DIE
1441
1442SYNOPSIS
1443
1444 static void read_tag_pointer_type (struct dieinfo *dip)
1445
1446DESCRIPTION
1447
1448 Extract all information from a TAG_pointer_type DIE and add to
1449 the user defined type vector.
1450 */
1451
1452static void
1ab3bf1b
JG
1453read_tag_pointer_type (dip)
1454 struct dieinfo *dip;
9e4c1921
FF
1455{
1456 struct type *type;
1457 struct type *utype;
9e4c1921
FF
1458
1459 type = decode_die_type (dip);
13b5a7ff 1460 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1461 {
1462 utype = lookup_pointer_type (type);
4ed3a9ea 1463 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1464 }
1465 else
1466 {
1467 TYPE_TARGET_TYPE (utype) = type;
1468 TYPE_POINTER_TYPE (type) = utype;
1469
1470 /* We assume the machine has only one representation for pointers! */
1471 /* FIXME: This confuses host<->target data representations, and is a
1472 poor assumption besides. */
1473
1474 TYPE_LENGTH (utype) = sizeof (char *);
1475 TYPE_CODE (utype) = TYPE_CODE_PTR;
1476 }
1477}
1478
1479/*
1480
ec16f701
FF
1481LOCAL FUNCTION
1482
1483 read_tag_string_type -- read TAG_string_type DIE
1484
1485SYNOPSIS
1486
1487 static void read_tag_string_type (struct dieinfo *dip)
1488
1489DESCRIPTION
1490
1491 Extract all information from a TAG_string_type DIE and add to
1492 the user defined type vector. It isn't really a user defined
1493 type, but it behaves like one, with other DIE's using an
1494 AT_user_def_type attribute to reference it.
1495 */
1496
1497static void
1498read_tag_string_type (dip)
1499 struct dieinfo *dip;
1500{
1501 struct type *utype;
1502 struct type *indextype;
1503 struct type *rangetype;
1504 unsigned long lowbound = 0;
1505 unsigned long highbound;
1506
b6236d6e 1507 if (dip -> has_at_byte_size)
ec16f701 1508 {
b6236d6e
FF
1509 /* A fixed bounds string */
1510 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1511 }
1512 else
1513 {
b6236d6e
FF
1514 /* A varying length string. Stub for now. (FIXME) */
1515 highbound = 1;
1516 }
1517 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1518 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1519 highbound);
1520
1521 utype = lookup_utype (dip -> die_ref);
1522 if (utype == NULL)
1523 {
1524 /* No type defined, go ahead and create a blank one to use. */
1525 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1526 }
1527 else
1528 {
1529 /* Already a type in our slot due to a forward reference. Make sure it
1530 is a blank one. If not, complain and leave it alone. */
1531 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1532 {
b6236d6e
FF
1533 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1534 return;
ec16f701 1535 }
ec16f701 1536 }
b6236d6e
FF
1537
1538 /* Create the string type using the blank type we either found or created. */
1539 utype = create_string_type (utype, rangetype);
ec16f701
FF
1540}
1541
1542/*
1543
35f5886e
FF
1544LOCAL FUNCTION
1545
1546 read_subroutine_type -- process TAG_subroutine_type dies
1547
1548SYNOPSIS
1549
1550 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1551 char *enddie)
1552
1553DESCRIPTION
1554
1555 Handle DIES due to C code like:
1556
1557 struct foo {
1558 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1559 int b;
1560 };
1561
1562NOTES
1563
1564 The parameter DIES are currently ignored. See if gdb has a way to
1565 include this info in it's type system, and decode them if so. Is
1566 this what the type structure's "arg_types" field is for? (FIXME)
1567 */
1568
1569static void
1ab3bf1b
JG
1570read_subroutine_type (dip, thisdie, enddie)
1571 struct dieinfo *dip;
1572 char *thisdie;
1573 char *enddie;
35f5886e 1574{
af213624
FF
1575 struct type *type; /* Type that this function returns */
1576 struct type *ftype; /* Function that returns above type */
35f5886e 1577
af213624
FF
1578 /* Decode the type that this subroutine returns */
1579
35f5886e 1580 type = decode_die_type (dip);
af213624
FF
1581
1582 /* Check to see if we already have a partially constructed user
1583 defined type for this DIE, from a forward reference. */
1584
13b5a7ff 1585 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1586 {
1587 /* This is the first reference to one of these types. Make
1588 a new one and place it in the user defined types. */
1589 ftype = lookup_function_type (type);
4ed3a9ea 1590 alloc_utype (dip -> die_ref, ftype);
af213624 1591 }
85f0a848 1592 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1593 {
1594 /* We have an existing partially constructed type, so bash it
1595 into the correct type. */
1596 TYPE_TARGET_TYPE (ftype) = type;
1597 TYPE_FUNCTION_TYPE (type) = ftype;
1598 TYPE_LENGTH (ftype) = 1;
1599 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1600 }
85f0a848
FF
1601 else
1602 {
51b80b00 1603 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1604 }
35f5886e
FF
1605}
1606
1607/*
1608
1609LOCAL FUNCTION
1610
1611 read_enumeration -- process dies which define an enumeration
1612
1613SYNOPSIS
1614
1615 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1616 char *enddie, struct objfile *objfile)
35f5886e
FF
1617
1618DESCRIPTION
1619
1620 Given a pointer to a die which begins an enumeration, process all
1621 the dies that define the members of the enumeration.
1622
1623NOTES
1624
1625 Note that we need to call enum_type regardless of whether or not we
1626 have a symbol, since we might have an enum without a tag name (thus
1627 no symbol for the tagname).
1628 */
1629
1630static void
1ab3bf1b
JG
1631read_enumeration (dip, thisdie, enddie, objfile)
1632 struct dieinfo *dip;
1633 char *thisdie;
1634 char *enddie;
1635 struct objfile *objfile;
35f5886e
FF
1636{
1637 struct type *type;
1638 struct symbol *sym;
1639
1ab3bf1b 1640 type = enum_type (dip, objfile);
95ff889e
FF
1641 sym = new_symbol (dip, objfile);
1642 if (sym != NULL)
35f5886e
FF
1643 {
1644 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1645 if (cu_language == language_cplus)
1646 {
1647 synthesize_typedef (dip, objfile, type);
1648 }
35f5886e
FF
1649 }
1650}
1651
1652/*
1653
1654LOCAL FUNCTION
1655
1656 enum_type -- decode and return a type for an enumeration
1657
1658SYNOPSIS
1659
1ab3bf1b 1660 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1661
1662DESCRIPTION
1663
1664 Given a pointer to a die information structure for the die which
1665 starts an enumeration, process all the dies that define the members
1666 of the enumeration and return a type pointer for the enumeration.
98618bf7 1667
715cafcb
FF
1668 At the same time, for each member of the enumeration, create a
1669 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1670 and give it the type of the enumeration itself.
1671
1672NOTES
1673
98618bf7
FF
1674 Note that the DWARF specification explicitly mandates that enum
1675 constants occur in reverse order from the source program order,
1676 for "consistency" and because this ordering is easier for many
1ab3bf1b 1677 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1678 Entries). Because gdb wants to see the enum members in program
1679 source order, we have to ensure that the order gets reversed while
98618bf7 1680 we are processing them.
35f5886e
FF
1681 */
1682
1683static struct type *
1ab3bf1b
JG
1684enum_type (dip, objfile)
1685 struct dieinfo *dip;
1686 struct objfile *objfile;
35f5886e
FF
1687{
1688 struct type *type;
1689 struct nextfield {
1690 struct nextfield *next;
1691 struct field field;
1692 };
1693 struct nextfield *list = NULL;
1694 struct nextfield *new;
1695 int nfields = 0;
1696 int n;
35f5886e
FF
1697 char *scan;
1698 char *listend;
13b5a7ff 1699 unsigned short blocksz;
715cafcb 1700 struct symbol *sym;
13b5a7ff 1701 int nbytes;
35f5886e 1702
13b5a7ff 1703 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1704 {
84ce6717 1705 /* No forward references created an empty type, so install one now */
13b5a7ff 1706 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1707 }
1708 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1709 /* Some compilers try to be helpful by inventing "fake" names for
1710 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1711 Thanks, but no thanks... */
715cafcb
FF
1712 if (dip -> at_name != NULL
1713 && *dip -> at_name != '~'
1714 && *dip -> at_name != '.')
35f5886e 1715 {
b2bebdb0
JK
1716 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1717 "", "", dip -> at_name);
35f5886e 1718 }
715cafcb 1719 if (dip -> at_byte_size != 0)
35f5886e
FF
1720 {
1721 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1722 }
35f5886e
FF
1723 if ((scan = dip -> at_element_list) != NULL)
1724 {
768be6e1
FF
1725 if (dip -> short_element_list)
1726 {
13b5a7ff 1727 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1728 }
1729 else
1730 {
13b5a7ff 1731 nbytes = attribute_size (AT_element_list);
768be6e1 1732 }
13b5a7ff
FF
1733 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1734 listend = scan + nbytes + blocksz;
1735 scan += nbytes;
35f5886e
FF
1736 while (scan < listend)
1737 {
1738 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1739 new -> next = list;
1740 list = new;
1741 list -> field.type = NULL;
1742 list -> field.bitsize = 0;
13b5a7ff
FF
1743 list -> field.bitpos =
1744 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1745 objfile);
1746 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1747 list -> field.name = obsavestring (scan, strlen (scan),
1748 &objfile -> type_obstack);
35f5886e
FF
1749 scan += strlen (scan) + 1;
1750 nfields++;
715cafcb 1751 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1752 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1753 sizeof (struct symbol));
4ed3a9ea 1754 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1755 SYMBOL_NAME (sym) = create_name (list -> field.name,
1756 &objfile->symbol_obstack);
7532cf10 1757 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1758 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1759 SYMBOL_CLASS (sym) = LOC_CONST;
1760 SYMBOL_TYPE (sym) = type;
1761 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1762 add_symbol_to_list (sym, list_in_scope);
35f5886e 1763 }
84ce6717 1764 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1765 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1766 reverse order from how they were inserted. If we have no fields
1767 (this is apparently possible in C++) then skip building a field
1768 vector. */
1769 if (nfields > 0)
1770 {
1771 TYPE_NFIELDS (type) = nfields;
1772 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1773 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1774 /* Copy the saved-up fields into the field vector. */
1775 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1776 {
1777 TYPE_FIELD (type, n++) = list -> field;
1778 }
1779 }
35f5886e 1780 }
35f5886e
FF
1781 return (type);
1782}
1783
1784/*
1785
1786LOCAL FUNCTION
1787
1788 read_func_scope -- process all dies within a function scope
1789
35f5886e
FF
1790DESCRIPTION
1791
1792 Process all dies within a given function scope. We are passed
1793 a die information structure pointer DIP for the die which
1794 starts the function scope, and pointers into the raw die data
1795 that define the dies within the function scope.
1796
1797 For now, we ignore lexical block scopes within the function.
1798 The problem is that AT&T cc does not define a DWARF lexical
1799 block scope for the function itself, while gcc defines a
1800 lexical block scope for the function. We need to think about
1801 how to handle this difference, or if it is even a problem.
1802 (FIXME)
1803 */
1804
1805static void
1ab3bf1b
JG
1806read_func_scope (dip, thisdie, enddie, objfile)
1807 struct dieinfo *dip;
1808 char *thisdie;
1809 char *enddie;
1810 struct objfile *objfile;
35f5886e 1811{
4d315a07 1812 register struct context_stack *new;
35f5886e 1813
5e2e79f8
FF
1814 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1815 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1816 {
5e2e79f8
FF
1817 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1819 }
4d315a07 1820 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1821 {
5e2e79f8
FF
1822 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1824 }
4d315a07 1825 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1826 new -> name = new_symbol (dip, objfile);
4d315a07 1827 list_in_scope = &local_symbols;
13b5a7ff 1828 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1829 new = pop_context ();
1830 /* Make a block for the local symbols within. */
1831 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1832 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1833 list_in_scope = &file_symbols;
35f5886e
FF
1834}
1835
2dbde378
FF
1836
1837/*
1838
1839LOCAL FUNCTION
1840
1841 handle_producer -- process the AT_producer attribute
1842
1843DESCRIPTION
1844
1845 Perform any operations that depend on finding a particular
1846 AT_producer attribute.
1847
1848 */
1849
1850static void
1851handle_producer (producer)
1852 char *producer;
1853{
1854
1855 /* If this compilation unit was compiled with g++ or gcc, then set the
1856 processing_gcc_compilation flag. */
1857
1858 processing_gcc_compilation =
1859 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1860 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1861 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1862
1863 /* Select a demangling style if we can identify the producer and if
1864 the current style is auto. We leave the current style alone if it
1865 is not auto. We also leave the demangling style alone if we find a
1866 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1867
3dc755fb 1868 if (AUTO_DEMANGLING)
2dbde378
FF
1869 {
1870 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1871 {
1872 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1873 }
1874 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1875 {
1876 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1877 }
2dbde378 1878 }
2dbde378
FF
1879}
1880
1881
35f5886e
FF
1882/*
1883
1884LOCAL FUNCTION
1885
1886 read_file_scope -- process all dies within a file scope
1887
35f5886e
FF
1888DESCRIPTION
1889
1890 Process all dies within a given file scope. We are passed a
1891 pointer to the die information structure for the die which
1892 starts the file scope, and pointers into the raw die data which
1893 mark the range of dies within the file scope.
1894
1895 When the partial symbol table is built, the file offset for the line
1896 number table for each compilation unit is saved in the partial symbol
1897 table entry for that compilation unit. As the symbols for each
1898 compilation unit are read, the line number table is read into memory
1899 and the variable lnbase is set to point to it. Thus all we have to
1900 do is use lnbase to access the line number table for the current
1901 compilation unit.
1902 */
1903
1904static void
1ab3bf1b
JG
1905read_file_scope (dip, thisdie, enddie, objfile)
1906 struct dieinfo *dip;
1907 char *thisdie;
1908 char *enddie;
1909 struct objfile *objfile;
35f5886e
FF
1910{
1911 struct cleanup *back_to;
4d315a07 1912 struct symtab *symtab;
35f5886e 1913
5e2e79f8
FF
1914 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1915 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1916 {
5e2e79f8
FF
1917 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1918 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1919 }
95ff889e 1920 set_cu_language (dip);
4d315a07
FF
1921 if (dip -> at_producer != NULL)
1922 {
2dbde378 1923 handle_producer (dip -> at_producer);
4d315a07 1924 }
35f5886e
FF
1925 numutypes = (enddie - thisdie) / 4;
1926 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1927 back_to = make_cleanup (free, utypes);
4ed3a9ea 1928 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1929 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1930 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1931 decode_line_numbers (lnbase);
13b5a7ff 1932 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1933
1934 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1935 if (symtab != NULL)
4d315a07 1936 {
95ff889e 1937 symtab -> language = cu_language;
7b5d9650 1938 }
35f5886e
FF
1939 do_cleanups (back_to);
1940 utypes = NULL;
1941 numutypes = 0;
1942}
1943
1944/*
1945
35f5886e
FF
1946LOCAL FUNCTION
1947
1948 process_dies -- process a range of DWARF Information Entries
1949
1950SYNOPSIS
1951
8b5b6fae
FF
1952 static void process_dies (char *thisdie, char *enddie,
1953 struct objfile *objfile)
35f5886e
FF
1954
1955DESCRIPTION
1956
1957 Process all DIE's in a specified range. May be (and almost
1958 certainly will be) called recursively.
1959 */
1960
1961static void
1ab3bf1b
JG
1962process_dies (thisdie, enddie, objfile)
1963 char *thisdie;
1964 char *enddie;
1965 struct objfile *objfile;
35f5886e
FF
1966{
1967 char *nextdie;
1968 struct dieinfo di;
1969
1970 while (thisdie < enddie)
1971 {
95967e73 1972 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 1973 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
1974 {
1975 break;
1976 }
13b5a7ff 1977 else if (di.die_tag == TAG_padding)
35f5886e 1978 {
13b5a7ff 1979 nextdie = thisdie + di.die_length;
35f5886e
FF
1980 }
1981 else
1982 {
95967e73 1983 completedieinfo (&di, objfile);
35f5886e
FF
1984 if (di.at_sibling != 0)
1985 {
1986 nextdie = dbbase + di.at_sibling - dbroff;
1987 }
1988 else
1989 {
13b5a7ff 1990 nextdie = thisdie + di.die_length;
35f5886e 1991 }
13b5a7ff 1992 switch (di.die_tag)
35f5886e
FF
1993 {
1994 case TAG_compile_unit:
a048c8f5 1995 read_file_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
1996 break;
1997 case TAG_global_subroutine:
1998 case TAG_subroutine:
2d6186f4 1999 if (di.has_at_low_pc)
35f5886e 2000 {
a048c8f5 2001 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2002 }
2003 break;
2004 case TAG_lexical_block:
a048c8f5 2005 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2006 break;
95ff889e 2007 case TAG_class_type:
35f5886e
FF
2008 case TAG_structure_type:
2009 case TAG_union_type:
8b5b6fae 2010 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2011 break;
2012 case TAG_enumeration_type:
1ab3bf1b 2013 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2014 break;
2015 case TAG_subroutine_type:
2016 read_subroutine_type (&di, thisdie, nextdie);
2017 break;
2018 case TAG_array_type:
4d315a07 2019 dwarf_read_array_type (&di);
35f5886e 2020 break;
9e4c1921
FF
2021 case TAG_pointer_type:
2022 read_tag_pointer_type (&di);
2023 break;
ec16f701
FF
2024 case TAG_string_type:
2025 read_tag_string_type (&di);
2026 break;
35f5886e 2027 default:
4ed3a9ea 2028 new_symbol (&di, objfile);
35f5886e
FF
2029 break;
2030 }
2031 }
2032 thisdie = nextdie;
2033 }
2034}
2035
2036/*
2037
35f5886e
FF
2038LOCAL FUNCTION
2039
2040 decode_line_numbers -- decode a line number table fragment
2041
2042SYNOPSIS
2043
2044 static void decode_line_numbers (char *tblscan, char *tblend,
2045 long length, long base, long line, long pc)
2046
2047DESCRIPTION
2048
2049 Translate the DWARF line number information to gdb form.
2050
2051 The ".line" section contains one or more line number tables, one for
2052 each ".line" section from the objects that were linked.
2053
2054 The AT_stmt_list attribute for each TAG_source_file entry in the
2055 ".debug" section contains the offset into the ".line" section for the
2056 start of the table for that file.
2057
2058 The table itself has the following structure:
2059
2060 <table length><base address><source statement entry>
2061 4 bytes 4 bytes 10 bytes
2062
2063 The table length is the total size of the table, including the 4 bytes
2064 for the length information.
2065
2066 The base address is the address of the first instruction generated
2067 for the source file.
2068
2069 Each source statement entry has the following structure:
2070
2071 <line number><statement position><address delta>
2072 4 bytes 2 bytes 4 bytes
2073
2074 The line number is relative to the start of the file, starting with
2075 line 1.
2076
2077 The statement position either -1 (0xFFFF) or the number of characters
2078 from the beginning of the line to the beginning of the statement.
2079
2080 The address delta is the difference between the base address and
2081 the address of the first instruction for the statement.
2082
2083 Note that we must copy the bytes from the packed table to our local
2084 variables before attempting to use them, to avoid alignment problems
2085 on some machines, particularly RISC processors.
2086
2087BUGS
2088
2089 Does gdb expect the line numbers to be sorted? They are now by
2090 chance/luck, but are not required to be. (FIXME)
2091
2092 The line with number 0 is unused, gdb apparently can discover the
2093 span of the last line some other way. How? (FIXME)
2094 */
2095
2096static void
1ab3bf1b
JG
2097decode_line_numbers (linetable)
2098 char *linetable;
35f5886e
FF
2099{
2100 char *tblscan;
2101 char *tblend;
13b5a7ff
FF
2102 unsigned long length;
2103 unsigned long base;
2104 unsigned long line;
2105 unsigned long pc;
35f5886e
FF
2106
2107 if (linetable != NULL)
2108 {
2109 tblscan = tblend = linetable;
13b5a7ff
FF
2110 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2111 current_objfile);
2112 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2113 tblend += length;
13b5a7ff
FF
2114 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2115 GET_UNSIGNED, current_objfile);
2116 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2117 base += baseaddr;
35f5886e
FF
2118 while (tblscan < tblend)
2119 {
13b5a7ff
FF
2120 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2121 current_objfile);
2122 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2123 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2124 current_objfile);
2125 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2126 pc += base;
13b5a7ff 2127 if (line != 0)
35f5886e 2128 {
4d315a07 2129 record_line (current_subfile, line, pc);
35f5886e
FF
2130 }
2131 }
2132 }
2133}
2134
2135/*
2136
35f5886e
FF
2137LOCAL FUNCTION
2138
2139 locval -- compute the value of a location attribute
2140
2141SYNOPSIS
2142
2143 static int locval (char *loc)
2144
2145DESCRIPTION
2146
2147 Given pointer to a string of bytes that define a location, compute
2148 the location and return the value.
2149
2150 When computing values involving the current value of the frame pointer,
2151 the value zero is used, which results in a value relative to the frame
2152 pointer, rather than the absolute value. This is what GDB wants
2153 anyway.
2154
2155 When the result is a register number, the global isreg flag is set,
2156 otherwise it is cleared. This is a kludge until we figure out a better
2157 way to handle the problem. Gdb's design does not mesh well with the
2158 DWARF notion of a location computing interpreter, which is a shame
2159 because the flexibility goes unused.
2160
2161NOTES
2162
2163 Note that stack[0] is unused except as a default error return.
2164 Note that stack overflow is not yet handled.
2165 */
2166
2167static int
1ab3bf1b
JG
2168locval (loc)
2169 char *loc;
35f5886e
FF
2170{
2171 unsigned short nbytes;
13b5a7ff
FF
2172 unsigned short locsize;
2173 auto long stack[64];
35f5886e
FF
2174 int stacki;
2175 char *end;
13b5a7ff
FF
2176 int loc_atom_code;
2177 int loc_value_size;
35f5886e 2178
13b5a7ff
FF
2179 nbytes = attribute_size (AT_location);
2180 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2181 loc += nbytes;
2182 end = loc + locsize;
35f5886e
FF
2183 stacki = 0;
2184 stack[stacki] = 0;
2185 isreg = 0;
a5bd5ba6 2186 offreg = 0;
13b5a7ff
FF
2187 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2188 while (loc < end)
35f5886e 2189 {
13b5a7ff
FF
2190 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2191 current_objfile);
2192 loc += SIZEOF_LOC_ATOM_CODE;
2193 switch (loc_atom_code)
2194 {
2195 case 0:
2196 /* error */
2197 loc = end;
2198 break;
2199 case OP_REG:
2200 /* push register (number) */
2201 stack[++stacki] = target_to_host (loc, loc_value_size,
2202 GET_UNSIGNED, current_objfile);
2203 loc += loc_value_size;
2204 isreg = 1;
2205 break;
2206 case OP_BASEREG:
2207 /* push value of register (number) */
a1c8d76e
JK
2208 /* Actually, we compute the value as if register has 0, so the
2209 value ends up being the offset from that register. */
13b5a7ff 2210 offreg = 1;
a1c8d76e
JK
2211 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2212 current_objfile);
13b5a7ff 2213 loc += loc_value_size;
a1c8d76e 2214 stack[++stacki] = 0;
13b5a7ff
FF
2215 break;
2216 case OP_ADDR:
2217 /* push address (relocated address) */
2218 stack[++stacki] = target_to_host (loc, loc_value_size,
2219 GET_UNSIGNED, current_objfile);
2220 loc += loc_value_size;
2221 break;
2222 case OP_CONST:
2223 /* push constant (number) FIXME: signed or unsigned! */
2224 stack[++stacki] = target_to_host (loc, loc_value_size,
2225 GET_SIGNED, current_objfile);
2226 loc += loc_value_size;
2227 break;
2228 case OP_DEREF2:
2229 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2230 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2231 break;
2232 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2233 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2234 break;
2235 case OP_ADD: /* pop top 2 items, add, push result */
2236 stack[stacki - 1] += stack[stacki];
2237 stacki--;
2238 break;
2239 }
35f5886e
FF
2240 }
2241 return (stack[stacki]);
2242}
2243
2244/*
2245
2246LOCAL FUNCTION
2247
2248 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2249
2250SYNOPSIS
2251
c701c14c 2252 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2253
2254DESCRIPTION
2255
1ab3bf1b
JG
2256 When expanding a partial symbol table entry to a full symbol table
2257 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2258 for the compilation unit. A pointer to the newly constructed symtab,
2259 which is now the new first one on the objfile's symtab list, is
2260 stashed in the partial symbol table entry.
35f5886e
FF
2261 */
2262
c701c14c 2263static void
1ab3bf1b
JG
2264read_ofile_symtab (pst)
2265 struct partial_symtab *pst;
35f5886e
FF
2266{
2267 struct cleanup *back_to;
13b5a7ff 2268 unsigned long lnsize;
d5931d79 2269 file_ptr foffset;
1ab3bf1b 2270 bfd *abfd;
13b5a7ff 2271 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2272
2273 abfd = pst -> objfile -> obfd;
2274 current_objfile = pst -> objfile;
2275
35f5886e
FF
2276 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2277 unit, seek to the location in the file, and read in all the DIE's. */
2278
2279 diecount = 0;
4090fe1c
FF
2280 dbsize = DBLENGTH (pst);
2281 dbbase = xmalloc (dbsize);
35f5886e
FF
2282 dbroff = DBROFF(pst);
2283 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2284 base_section_offsets = pst->section_offsets;
2285 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2286 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2287 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2288 {
2289 free (dbbase);
2290 error ("can't read DWARF data");
2291 }
2292 back_to = make_cleanup (free, dbbase);
2293
2294 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2295 then read the size of this fragment in bytes, from the fragment itself.
2296 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2297 processing. */
2298
2299 lnbase = NULL;
2300 if (LNFOFF (pst))
2301 {
d5931d79 2302 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2303 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2304 sizeof (lnsizedata)))
35f5886e
FF
2305 {
2306 error ("can't read DWARF line number table size");
2307 }
13b5a7ff
FF
2308 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2309 GET_UNSIGNED, pst -> objfile);
35f5886e 2310 lnbase = xmalloc (lnsize);
d5931d79 2311 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2312 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2313 {
2314 free (lnbase);
2315 error ("can't read DWARF line numbers");
2316 }
2317 make_cleanup (free, lnbase);
2318 }
2319
4090fe1c 2320 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2321 do_cleanups (back_to);
1ab3bf1b 2322 current_objfile = NULL;
c701c14c 2323 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2324}
2325
2326/*
2327
2328LOCAL FUNCTION
2329
2330 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2331
2332SYNOPSIS
2333
a048c8f5 2334 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2335
2336DESCRIPTION
2337
2338 Called once for each partial symbol table entry that needs to be
2339 expanded into a full symbol table entry.
2340
2341*/
2342
2343static void
1ab3bf1b
JG
2344psymtab_to_symtab_1 (pst)
2345 struct partial_symtab *pst;
35f5886e
FF
2346{
2347 int i;
d07734e3 2348 struct cleanup *old_chain;
35f5886e 2349
1ab3bf1b 2350 if (pst != NULL)
35f5886e 2351 {
1ab3bf1b 2352 if (pst->readin)
35f5886e 2353 {
318bf84f 2354 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2355 pst -> filename);
2356 }
2357 else
2358 {
2359 /* Read in all partial symtabs on which this one is dependent */
2360 for (i = 0; i < pst -> number_of_dependencies; i++)
2361 {
2362 if (!pst -> dependencies[i] -> readin)
2363 {
2364 /* Inform about additional files that need to be read in. */
2365 if (info_verbose)
2366 {
199b2450 2367 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2368 wrap_here ("");
199b2450 2369 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2370 wrap_here ("");
2371 printf_filtered ("%s...",
2372 pst -> dependencies[i] -> filename);
2373 wrap_here ("");
199b2450 2374 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2375 }
2376 psymtab_to_symtab_1 (pst -> dependencies[i]);
2377 }
2378 }
2379 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2380 {
d07734e3
FF
2381 buildsym_init ();
2382 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2383 read_ofile_symtab (pst);
1ab3bf1b
JG
2384 if (info_verbose)
2385 {
2386 printf_filtered ("%d DIE's, sorting...", diecount);
2387 wrap_here ("");
199b2450 2388 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2389 }
2390 sort_symtab_syms (pst -> symtab);
d07734e3 2391 do_cleanups (old_chain);
1ab3bf1b
JG
2392 }
2393 pst -> readin = 1;
35f5886e 2394 }
35f5886e 2395 }
35f5886e
FF
2396}
2397
2398/*
2399
2400LOCAL FUNCTION
2401
2402 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2403
2404SYNOPSIS
2405
2406 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2407
2408DESCRIPTION
2409
2410 This is the DWARF support entry point for building a full symbol
2411 table entry from a partial symbol table entry. We are passed a
2412 pointer to the partial symbol table entry that needs to be expanded.
2413
2414*/
2415
2416static void
1ab3bf1b
JG
2417dwarf_psymtab_to_symtab (pst)
2418 struct partial_symtab *pst;
35f5886e 2419{
7d9884b9 2420
1ab3bf1b 2421 if (pst != NULL)
35f5886e 2422 {
1ab3bf1b 2423 if (pst -> readin)
35f5886e 2424 {
318bf84f 2425 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2426 pst -> filename);
35f5886e 2427 }
1ab3bf1b 2428 else
35f5886e 2429 {
1ab3bf1b
JG
2430 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2431 {
2432 /* Print the message now, before starting serious work, to avoid
2433 disconcerting pauses. */
2434 if (info_verbose)
2435 {
2436 printf_filtered ("Reading in symbols for %s...",
2437 pst -> filename);
199b2450 2438 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2439 }
2440
2441 psymtab_to_symtab_1 (pst);
2442
2443#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2444 we need to do an equivalent or is this something peculiar to
2445 stabs/a.out format.
2446 Match with global symbols. This only needs to be done once,
2447 after all of the symtabs and dependencies have been read in.
2448 */
2449 scan_file_globals (pst -> objfile);
2450#endif
2451
2452 /* Finish up the verbose info message. */
2453 if (info_verbose)
2454 {
2455 printf_filtered ("done.\n");
199b2450 2456 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2457 }
2458 }
35f5886e
FF
2459 }
2460 }
2461}
2462
2463/*
2464
2465LOCAL FUNCTION
2466
2467 init_psymbol_list -- initialize storage for partial symbols
2468
2469SYNOPSIS
2470
1ab3bf1b 2471 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2472
2473DESCRIPTION
2474
2475 Initializes storage for all of the partial symbols that will be
2476 created by dwarf_build_psymtabs and subsidiaries.
2477 */
2478
2479static void
1ab3bf1b
JG
2480init_psymbol_list (objfile, total_symbols)
2481 struct objfile *objfile;
2482 int total_symbols;
35f5886e
FF
2483{
2484 /* Free any previously allocated psymbol lists. */
2485
1ab3bf1b 2486 if (objfile -> global_psymbols.list)
35f5886e 2487 {
84ffdec2 2488 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2489 }
1ab3bf1b 2490 if (objfile -> static_psymbols.list)
35f5886e 2491 {
84ffdec2 2492 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2493 }
2494
2495 /* Current best guess is that there are approximately a twentieth
2496 of the total symbols (in a debugging file) are global or static
2497 oriented symbols */
2498
1ab3bf1b
JG
2499 objfile -> global_psymbols.size = total_symbols / 10;
2500 objfile -> static_psymbols.size = total_symbols / 10;
2501 objfile -> global_psymbols.next =
2502 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2503 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2504 * sizeof (struct partial_symbol));
2505 objfile -> static_psymbols.next =
2506 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2507 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2508 * sizeof (struct partial_symbol));
35f5886e
FF
2509}
2510
35f5886e
FF
2511/*
2512
715cafcb
FF
2513LOCAL FUNCTION
2514
2515 add_enum_psymbol -- add enumeration members to partial symbol table
2516
2517DESCRIPTION
2518
2519 Given pointer to a DIE that is known to be for an enumeration,
2520 extract the symbolic names of the enumeration members and add
2521 partial symbols for them.
2522*/
2523
2524static void
1ab3bf1b
JG
2525add_enum_psymbol (dip, objfile)
2526 struct dieinfo *dip;
2527 struct objfile *objfile;
715cafcb
FF
2528{
2529 char *scan;
2530 char *listend;
13b5a7ff
FF
2531 unsigned short blocksz;
2532 int nbytes;
715cafcb
FF
2533
2534 if ((scan = dip -> at_element_list) != NULL)
2535 {
2536 if (dip -> short_element_list)
2537 {
13b5a7ff 2538 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2539 }
2540 else
2541 {
13b5a7ff 2542 nbytes = attribute_size (AT_element_list);
715cafcb 2543 }
13b5a7ff
FF
2544 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2545 scan += nbytes;
2546 listend = scan + blocksz;
715cafcb
FF
2547 while (scan < listend)
2548 {
13b5a7ff 2549 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2550 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2551 objfile -> static_psymbols, 0, cu_language,
2552 objfile);
715cafcb
FF
2553 scan += strlen (scan) + 1;
2554 }
2555 }
2556}
2557
2558/*
2559
35f5886e
FF
2560LOCAL FUNCTION
2561
2562 add_partial_symbol -- add symbol to partial symbol table
2563
2564DESCRIPTION
2565
2566 Given a DIE, if it is one of the types that we want to
2567 add to a partial symbol table, finish filling in the die info
2568 and then add a partial symbol table entry for it.
2569
95ff889e
FF
2570NOTES
2571
2572 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2573*/
2574
2575static void
1ab3bf1b
JG
2576add_partial_symbol (dip, objfile)
2577 struct dieinfo *dip;
2578 struct objfile *objfile;
35f5886e 2579{
13b5a7ff 2580 switch (dip -> die_tag)
35f5886e
FF
2581 {
2582 case TAG_global_subroutine:
b440b1e9 2583 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2584 VAR_NAMESPACE, LOC_BLOCK,
2585 objfile -> global_psymbols,
2e4964ad 2586 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2587 break;
2588 case TAG_global_variable:
b440b1e9 2589 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2590 VAR_NAMESPACE, LOC_STATIC,
2591 objfile -> global_psymbols,
2e4964ad 2592 0, cu_language, objfile);
35f5886e
FF
2593 break;
2594 case TAG_subroutine:
b440b1e9 2595 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2596 VAR_NAMESPACE, LOC_BLOCK,
2597 objfile -> static_psymbols,
2e4964ad 2598 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2599 break;
2600 case TAG_local_variable:
b440b1e9 2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2602 VAR_NAMESPACE, LOC_STATIC,
2603 objfile -> static_psymbols,
2e4964ad 2604 0, cu_language, objfile);
35f5886e
FF
2605 break;
2606 case TAG_typedef:
b440b1e9 2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2608 VAR_NAMESPACE, LOC_TYPEDEF,
2609 objfile -> static_psymbols,
2e4964ad 2610 0, cu_language, objfile);
35f5886e 2611 break;
95ff889e 2612 case TAG_class_type:
35f5886e
FF
2613 case TAG_structure_type:
2614 case TAG_union_type:
95ff889e 2615 case TAG_enumeration_type:
b440b1e9 2616 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2617 STRUCT_NAMESPACE, LOC_TYPEDEF,
2618 objfile -> static_psymbols,
2e4964ad 2619 0, cu_language, objfile);
95ff889e 2620 if (cu_language == language_cplus)
715cafcb 2621 {
95ff889e 2622 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2623 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2624 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2625 objfile -> static_psymbols,
2e4964ad 2626 0, cu_language, objfile);
715cafcb 2627 }
715cafcb 2628 break;
35f5886e
FF
2629 }
2630}
2631
2632/*
2633
2634LOCAL FUNCTION
2635
2636 scan_partial_symbols -- scan DIE's within a single compilation unit
2637
2638DESCRIPTION
2639
2640 Process the DIE's within a single compilation unit, looking for
2641 interesting DIE's that contribute to the partial symbol table entry
a679650f 2642 for this compilation unit.
35f5886e 2643
2d6186f4
FF
2644NOTES
2645
a679650f
FF
2646 There are some DIE's that may appear both at file scope and within
2647 the scope of a function. We are only interested in the ones at file
2648 scope, and the only way to tell them apart is to keep track of the
2649 scope. For example, consider the test case:
2650
2651 static int i;
2652 main () { int j; }
2653
2654 for which the relevant DWARF segment has the structure:
2655
2656 0x51:
2657 0x23 global subrtn sibling 0x9b
2658 name main
2659 fund_type FT_integer
2660 low_pc 0x800004cc
2661 high_pc 0x800004d4
2662
2663 0x74:
2664 0x23 local var sibling 0x97
2665 name j
2666 fund_type FT_integer
2667 location OP_BASEREG 0xe
2668 OP_CONST 0xfffffffc
2669 OP_ADD
2670 0x97:
2671 0x4
2672
2673 0x9b:
2674 0x1d local var sibling 0xb8
2675 name i
2676 fund_type FT_integer
2677 location OP_ADDR 0x800025dc
2678
2679 0xb8:
2680 0x4
2681
2682 We want to include the symbol 'i' in the partial symbol table, but
2683 not the symbol 'j'. In essence, we want to skip all the dies within
2684 the scope of a TAG_global_subroutine DIE.
2685
715cafcb
FF
2686 Don't attempt to add anonymous structures or unions since they have
2687 no name. Anonymous enumerations however are processed, because we
2688 want to extract their member names (the check for a tag name is
2689 done later).
2d6186f4 2690
715cafcb
FF
2691 Also, for variables and subroutines, check that this is the place
2692 where the actual definition occurs, rather than just a reference
2693 to an external.
35f5886e
FF
2694 */
2695
2696static void
1ab3bf1b
JG
2697scan_partial_symbols (thisdie, enddie, objfile)
2698 char *thisdie;
2699 char *enddie;
2700 struct objfile *objfile;
35f5886e
FF
2701{
2702 char *nextdie;
a679650f 2703 char *temp;
35f5886e
FF
2704 struct dieinfo di;
2705
2706 while (thisdie < enddie)
2707 {
95967e73 2708 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2709 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2710 {
2711 break;
2712 }
2713 else
2714 {
13b5a7ff 2715 nextdie = thisdie + di.die_length;
715cafcb
FF
2716 /* To avoid getting complete die information for every die, we
2717 only do it (below) for the cases we are interested in. */
13b5a7ff 2718 switch (di.die_tag)
35f5886e
FF
2719 {
2720 case TAG_global_subroutine:
35f5886e 2721 case TAG_subroutine:
a679650f
FF
2722 completedieinfo (&di, objfile);
2723 if (di.at_name && (di.has_at_low_pc || di.at_location))
2724 {
2725 add_partial_symbol (&di, objfile);
2726 /* If there is a sibling attribute, adjust the nextdie
2727 pointer to skip the entire scope of the subroutine.
2728 Apply some sanity checking to make sure we don't
2729 overrun or underrun the range of remaining DIE's */
2730 if (di.at_sibling != 0)
2731 {
2732 temp = dbbase + di.at_sibling - dbroff;
2733 if ((temp < thisdie) || (temp >= enddie))
2734 {
51b80b00
FF
2735 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2736 di.at_sibling);
a679650f
FF
2737 }
2738 else
2739 {
2740 nextdie = temp;
2741 }
2742 }
2743 }
2744 break;
2d6186f4 2745 case TAG_global_variable:
35f5886e 2746 case TAG_local_variable:
95967e73 2747 completedieinfo (&di, objfile);
2d6186f4
FF
2748 if (di.at_name && (di.has_at_low_pc || di.at_location))
2749 {
1ab3bf1b 2750 add_partial_symbol (&di, objfile);
2d6186f4
FF
2751 }
2752 break;
35f5886e 2753 case TAG_typedef:
95ff889e 2754 case TAG_class_type:
35f5886e
FF
2755 case TAG_structure_type:
2756 case TAG_union_type:
95967e73 2757 completedieinfo (&di, objfile);
2d6186f4 2758 if (di.at_name)
35f5886e 2759 {
1ab3bf1b 2760 add_partial_symbol (&di, objfile);
35f5886e
FF
2761 }
2762 break;
715cafcb 2763 case TAG_enumeration_type:
95967e73 2764 completedieinfo (&di, objfile);
95ff889e
FF
2765 if (di.at_name)
2766 {
2767 add_partial_symbol (&di, objfile);
2768 }
2769 add_enum_psymbol (&di, objfile);
715cafcb 2770 break;
35f5886e
FF
2771 }
2772 }
2773 thisdie = nextdie;
2774 }
2775}
2776
2777/*
2778
2779LOCAL FUNCTION
2780
2781 scan_compilation_units -- build a psymtab entry for each compilation
2782
2783DESCRIPTION
2784
2785 This is the top level dwarf parsing routine for building partial
2786 symbol tables.
2787
2788 It scans from the beginning of the DWARF table looking for the first
2789 TAG_compile_unit DIE, and then follows the sibling chain to locate
2790 each additional TAG_compile_unit DIE.
2791
2792 For each TAG_compile_unit DIE it creates a partial symtab structure,
2793 calls a subordinate routine to collect all the compilation unit's
2794 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2795 new partial symtab structure into the partial symbol table. It also
2796 records the appropriate information in the partial symbol table entry
2797 to allow the chunk of DIE's and line number table for this compilation
2798 unit to be located and re-read later, to generate a complete symbol
2799 table entry for the compilation unit.
2800
2801 Thus it effectively partitions up a chunk of DIE's for multiple
2802 compilation units into smaller DIE chunks and line number tables,
2803 and associates them with a partial symbol table entry.
2804
2805NOTES
2806
2807 If any compilation unit has no line number table associated with
2808 it for some reason (a missing at_stmt_list attribute, rather than
2809 just one with a value of zero, which is valid) then we ensure that
2810 the recorded file offset is zero so that the routine which later
2811 reads line number table fragments knows that there is no fragment
2812 to read.
2813
2814RETURNS
2815
2816 Returns no value.
2817
2818 */
2819
2820static void
d5931d79 2821scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2822 char *thisdie;
2823 char *enddie;
d5931d79
JG
2824 file_ptr dbfoff;
2825 file_ptr lnoffset;
1ab3bf1b 2826 struct objfile *objfile;
35f5886e
FF
2827{
2828 char *nextdie;
2829 struct dieinfo di;
2830 struct partial_symtab *pst;
2831 int culength;
2832 int curoff;
d5931d79 2833 file_ptr curlnoffset;
35f5886e
FF
2834
2835 while (thisdie < enddie)
2836 {
95967e73 2837 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2838 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2839 {
2840 break;
2841 }
13b5a7ff 2842 else if (di.die_tag != TAG_compile_unit)
35f5886e 2843 {
13b5a7ff 2844 nextdie = thisdie + di.die_length;
35f5886e
FF
2845 }
2846 else
2847 {
95967e73 2848 completedieinfo (&di, objfile);
95ff889e 2849 set_cu_language (&di);
35f5886e
FF
2850 if (di.at_sibling != 0)
2851 {
2852 nextdie = dbbase + di.at_sibling - dbroff;
2853 }
2854 else
2855 {
13b5a7ff 2856 nextdie = thisdie + di.die_length;
35f5886e
FF
2857 }
2858 curoff = thisdie - dbbase;
2859 culength = nextdie - thisdie;
2d6186f4 2860 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2861
2862 /* First allocate a new partial symbol table structure */
2863
95ff889e
FF
2864 pst = start_psymtab_common (objfile, base_section_offsets,
2865 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2866 objfile -> global_psymbols.next,
2867 objfile -> static_psymbols.next);
2868
2869 pst -> texthigh = di.at_high_pc;
2870 pst -> read_symtab_private = (char *)
2871 obstack_alloc (&objfile -> psymbol_obstack,
2872 sizeof (struct dwfinfo));
2873 DBFOFF (pst) = dbfoff;
2874 DBROFF (pst) = curoff;
2875 DBLENGTH (pst) = culength;
2876 LNFOFF (pst) = curlnoffset;
2877 pst -> read_symtab = dwarf_psymtab_to_symtab;
2878
2879 /* Now look for partial symbols */
2880
13b5a7ff 2881 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2882
2883 pst -> n_global_syms = objfile -> global_psymbols.next -
2884 (objfile -> global_psymbols.list + pst -> globals_offset);
2885 pst -> n_static_syms = objfile -> static_psymbols.next -
2886 (objfile -> static_psymbols.list + pst -> statics_offset);
2887 sort_pst_symbols (pst);
35f5886e
FF
2888 /* If there is already a psymtab or symtab for a file of this name,
2889 remove it. (If there is a symtab, more drastic things also
2890 happen.) This happens in VxWorks. */
2891 free_named_symtabs (pst -> filename);
35f5886e
FF
2892 }
2893 thisdie = nextdie;
2894 }
2895}
2896
2897/*
2898
2899LOCAL FUNCTION
2900
2901 new_symbol -- make a symbol table entry for a new symbol
2902
2903SYNOPSIS
2904
1ab3bf1b
JG
2905 static struct symbol *new_symbol (struct dieinfo *dip,
2906 struct objfile *objfile)
35f5886e
FF
2907
2908DESCRIPTION
2909
2910 Given a pointer to a DWARF information entry, figure out if we need
2911 to make a symbol table entry for it, and if so, create a new entry
2912 and return a pointer to it.
2913 */
2914
2915static struct symbol *
1ab3bf1b
JG
2916new_symbol (dip, objfile)
2917 struct dieinfo *dip;
2918 struct objfile *objfile;
35f5886e
FF
2919{
2920 struct symbol *sym = NULL;
2921
2922 if (dip -> at_name != NULL)
2923 {
1ab3bf1b 2924 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2925 sizeof (struct symbol));
4ed3a9ea 2926 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2927 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2928 &objfile->symbol_obstack);
35f5886e
FF
2929 /* default assumptions */
2930 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2931 SYMBOL_CLASS (sym) = LOC_STATIC;
2932 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2933
2934 /* If this symbol is from a C++ compilation, then attempt to cache the
2935 demangled form for future reference. This is a typical time versus
2936 space tradeoff, that was decided in favor of time because it sped up
2937 C++ symbol lookups by a factor of about 20. */
2938
2939 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2940 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2941 switch (dip -> die_tag)
35f5886e
FF
2942 {
2943 case TAG_label:
4d315a07 2944 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2945 SYMBOL_CLASS (sym) = LOC_LABEL;
2946 break;
2947 case TAG_global_subroutine:
2948 case TAG_subroutine:
4d315a07 2949 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2950 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2951 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2952 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2953 {
2954 add_symbol_to_list (sym, &global_symbols);
2955 }
2956 else
2957 {
4d315a07 2958 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2959 }
2960 break;
2961 case TAG_global_variable:
35f5886e
FF
2962 if (dip -> at_location != NULL)
2963 {
2964 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
2965 add_symbol_to_list (sym, &global_symbols);
2966 SYMBOL_CLASS (sym) = LOC_STATIC;
2967 SYMBOL_VALUE (sym) += baseaddr;
2968 }
a5bd5ba6
FF
2969 break;
2970 case TAG_local_variable:
2971 if (dip -> at_location != NULL)
35f5886e 2972 {
a5bd5ba6 2973 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 2974 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
2975 if (isreg)
2976 {
2977 SYMBOL_CLASS (sym) = LOC_REGISTER;
2978 }
2979 else if (offreg)
35f5886e 2980 {
a1c8d76e
JK
2981 SYMBOL_CLASS (sym) = LOC_BASEREG;
2982 SYMBOL_BASEREG (sym) = basereg;
35f5886e
FF
2983 }
2984 else
2985 {
2986 SYMBOL_CLASS (sym) = LOC_STATIC;
2987 SYMBOL_VALUE (sym) += baseaddr;
2988 }
2989 }
2990 break;
2991 case TAG_formal_parameter:
2992 if (dip -> at_location != NULL)
2993 {
2994 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2995 }
4d315a07 2996 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2997 if (isreg)
2998 {
2999 SYMBOL_CLASS (sym) = LOC_REGPARM;
3000 }
a1c8d76e
JK
3001 else if (offreg)
3002 {
3003 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3004 SYMBOL_BASEREG (sym) = basereg;
3005 }
35f5886e
FF
3006 else
3007 {
3008 SYMBOL_CLASS (sym) = LOC_ARG;
3009 }
3010 break;
3011 case TAG_unspecified_parameters:
3012 /* From varargs functions; gdb doesn't seem to have any interest in
3013 this information, so just ignore it for now. (FIXME?) */
3014 break;
95ff889e 3015 case TAG_class_type:
35f5886e
FF
3016 case TAG_structure_type:
3017 case TAG_union_type:
3018 case TAG_enumeration_type:
3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3020 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3021 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3022 break;
3023 case TAG_typedef:
3024 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3025 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3026 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3027 break;
3028 default:
3029 /* Not a tag we recognize. Hopefully we aren't processing trash
3030 data, but since we must specifically ignore things we don't
3031 recognize, there is nothing else we should do at this point. */
3032 break;
3033 }
3034 }
3035 return (sym);
3036}
3037
3038/*
3039
95ff889e
FF
3040LOCAL FUNCTION
3041
3042 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3043
3044SYNOPSIS
3045
3046 static void synthesize_typedef (struct dieinfo *dip,
3047 struct objfile *objfile,
3048 struct type *type);
3049
3050DESCRIPTION
3051
3052 Given a pointer to a DWARF information entry, synthesize a typedef
3053 for the name in the DIE, using the specified type.
3054
3055 This is used for C++ class, structs, unions, and enumerations to
3056 set up the tag name as a type.
3057
3058 */
3059
3060static void
3061synthesize_typedef (dip, objfile, type)
3062 struct dieinfo *dip;
3063 struct objfile *objfile;
3064 struct type *type;
3065{
3066 struct symbol *sym = NULL;
3067
3068 if (dip -> at_name != NULL)
3069 {
3070 sym = (struct symbol *)
3071 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3072 memset (sym, 0, sizeof (struct symbol));
3073 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3074 &objfile->symbol_obstack);
7532cf10 3075 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3076 SYMBOL_TYPE (sym) = type;
3077 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3078 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3079 add_symbol_to_list (sym, list_in_scope);
3080 }
3081}
3082
3083/*
3084
35f5886e
FF
3085LOCAL FUNCTION
3086
3087 decode_mod_fund_type -- decode a modified fundamental type
3088
3089SYNOPSIS
3090
3091 static struct type *decode_mod_fund_type (char *typedata)
3092
3093DESCRIPTION
3094
3095 Decode a block of data containing a modified fundamental
3096 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3097 which starts with a length containing the size of the rest
3098 of the block. At the end of the block is a fundmental type
3099 code value that gives the fundamental type. Everything
35f5886e
FF
3100 in between are type modifiers.
3101
3102 We simply compute the number of modifiers and call the general
3103 function decode_modified_type to do the actual work.
3104*/
3105
3106static struct type *
1ab3bf1b
JG
3107decode_mod_fund_type (typedata)
3108 char *typedata;
35f5886e
FF
3109{
3110 struct type *typep = NULL;
3111 unsigned short modcount;
13b5a7ff 3112 int nbytes;
35f5886e
FF
3113
3114 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3115
3116 nbytes = attribute_size (AT_mod_fund_type);
3117 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3118 typedata += nbytes;
3119
35f5886e 3120 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3121
3122 modcount -= attribute_size (AT_fund_type);
3123
35f5886e 3124 /* Now do the actual decoding */
13b5a7ff
FF
3125
3126 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3127 return (typep);
3128}
3129
3130/*
3131
3132LOCAL FUNCTION
3133
3134 decode_mod_u_d_type -- decode a modified user defined type
3135
3136SYNOPSIS
3137
3138 static struct type *decode_mod_u_d_type (char *typedata)
3139
3140DESCRIPTION
3141
3142 Decode a block of data containing a modified user defined
3143 type specification. TYPEDATA is a pointer to the block,
3144 which consists of a two byte length, containing the size
3145 of the rest of the block. At the end of the block is a
3146 four byte value that gives a reference to a user defined type.
3147 Everything in between are type modifiers.
3148
3149 We simply compute the number of modifiers and call the general
3150 function decode_modified_type to do the actual work.
3151*/
3152
3153static struct type *
1ab3bf1b
JG
3154decode_mod_u_d_type (typedata)
3155 char *typedata;
35f5886e
FF
3156{
3157 struct type *typep = NULL;
3158 unsigned short modcount;
13b5a7ff 3159 int nbytes;
35f5886e
FF
3160
3161 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3162
3163 nbytes = attribute_size (AT_mod_u_d_type);
3164 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3165 typedata += nbytes;
3166
35f5886e 3167 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3168
3169 modcount -= attribute_size (AT_user_def_type);
3170
35f5886e 3171 /* Now do the actual decoding */
13b5a7ff
FF
3172
3173 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3174 return (typep);
3175}
3176
3177/*
3178
3179LOCAL FUNCTION
3180
3181 decode_modified_type -- decode modified user or fundamental type
3182
3183SYNOPSIS
3184
1c92ca6f 3185 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3186 unsigned short modcount, int mtype)
3187
3188DESCRIPTION
3189
3190 Decode a modified type, either a modified fundamental type or
3191 a modified user defined type. MODIFIERS is a pointer to the
3192 block of bytes that define MODCOUNT modifiers. Immediately
3193 following the last modifier is a short containing the fundamental
3194 type or a long containing the reference to the user defined
3195 type. Which one is determined by MTYPE, which is either
3196 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3197 type we are generating.
3198
3199 We call ourself recursively to generate each modified type,`
3200 until MODCOUNT reaches zero, at which point we have consumed
3201 all the modifiers and generate either the fundamental type or
3202 user defined type. When the recursion unwinds, each modifier
3203 is applied in turn to generate the full modified type.
3204
3205NOTES
3206
3207 If we find a modifier that we don't recognize, and it is not one
3208 of those reserved for application specific use, then we issue a
3209 warning and simply ignore the modifier.
3210
3211BUGS
3212
3213 We currently ignore MOD_const and MOD_volatile. (FIXME)
3214
3215 */
3216
3217static struct type *
1ab3bf1b 3218decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3219 char *modifiers;
1ab3bf1b
JG
3220 unsigned int modcount;
3221 int mtype;
35f5886e
FF
3222{
3223 struct type *typep = NULL;
3224 unsigned short fundtype;
13b5a7ff 3225 DIE_REF die_ref;
1c92ca6f 3226 char modifier;
13b5a7ff 3227 int nbytes;
35f5886e
FF
3228
3229 if (modcount == 0)
3230 {
3231 switch (mtype)
3232 {
3233 case AT_mod_fund_type:
13b5a7ff
FF
3234 nbytes = attribute_size (AT_fund_type);
3235 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3236 current_objfile);
35f5886e
FF
3237 typep = decode_fund_type (fundtype);
3238 break;
3239 case AT_mod_u_d_type:
13b5a7ff
FF
3240 nbytes = attribute_size (AT_user_def_type);
3241 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3242 current_objfile);
3243 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3244 {
13b5a7ff 3245 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3246 }
3247 break;
3248 default:
51b80b00 3249 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3250 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3251 break;
3252 }
3253 }
3254 else
3255 {
3256 modifier = *modifiers++;
3257 typep = decode_modified_type (modifiers, --modcount, mtype);
3258 switch (modifier)
3259 {
13b5a7ff
FF
3260 case MOD_pointer_to:
3261 typep = lookup_pointer_type (typep);
3262 break;
3263 case MOD_reference_to:
3264 typep = lookup_reference_type (typep);
3265 break;
3266 case MOD_const:
51b80b00 3267 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3268 break;
3269 case MOD_volatile:
51b80b00 3270 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3271 break;
3272 default:
1c92ca6f
FF
3273 if (!(MOD_lo_user <= (unsigned char) modifier
3274 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3275 {
51b80b00 3276 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3277 }
3278 break;
35f5886e
FF
3279 }
3280 }
3281 return (typep);
3282}
3283
3284/*
3285
3286LOCAL FUNCTION
3287
3288 decode_fund_type -- translate basic DWARF type to gdb base type
3289
3290DESCRIPTION
3291
3292 Given an integer that is one of the fundamental DWARF types,
3293 translate it to one of the basic internal gdb types and return
3294 a pointer to the appropriate gdb type (a "struct type *").
3295
3296NOTES
3297
85f0a848
FF
3298 For robustness, if we are asked to translate a fundamental
3299 type that we are unprepared to deal with, we return int so
3300 callers can always depend upon a valid type being returned,
3301 and so gdb may at least do something reasonable by default.
3302 If the type is not in the range of those types defined as
3303 application specific types, we also issue a warning.
35f5886e
FF
3304*/
3305
3306static struct type *
1ab3bf1b
JG
3307decode_fund_type (fundtype)
3308 unsigned int fundtype;
35f5886e
FF
3309{
3310 struct type *typep = NULL;
3311
3312 switch (fundtype)
3313 {
3314
3315 case FT_void:
bf229b4e 3316 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3317 break;
3318
1ab3bf1b 3319 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3320 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3321 break;
3322
35f5886e 3323 case FT_pointer: /* (void *) */
bf229b4e 3324 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3325 typep = lookup_pointer_type (typep);
35f5886e
FF
3326 break;
3327
3328 case FT_char:
bf229b4e 3329 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3330 break;
3331
35f5886e 3332 case FT_signed_char:
bf229b4e 3333 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3334 break;
3335
3336 case FT_unsigned_char:
bf229b4e 3337 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3338 break;
3339
3340 case FT_short:
bf229b4e 3341 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3342 break;
3343
35f5886e 3344 case FT_signed_short:
bf229b4e 3345 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3346 break;
3347
3348 case FT_unsigned_short:
bf229b4e 3349 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3350 break;
3351
3352 case FT_integer:
bf229b4e 3353 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3354 break;
3355
35f5886e 3356 case FT_signed_integer:
bf229b4e 3357 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3358 break;
3359
3360 case FT_unsigned_integer:
bf229b4e 3361 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3362 break;
3363
3364 case FT_long:
bf229b4e 3365 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3366 break;
3367
35f5886e 3368 case FT_signed_long:
bf229b4e 3369 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3370 break;
3371
1ab3bf1b 3372 case FT_unsigned_long:
bf229b4e 3373 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3374 break;
3375
1ab3bf1b 3376 case FT_long_long:
bf229b4e 3377 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3378 break;
1ab3bf1b
JG
3379
3380 case FT_signed_long_long:
bf229b4e 3381 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3382 break;
1ab3bf1b
JG
3383
3384 case FT_unsigned_long_long:
bf229b4e 3385 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3386 break;
1ab3bf1b
JG
3387
3388 case FT_float:
bf229b4e 3389 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3390 break;
3391
1ab3bf1b 3392 case FT_dbl_prec_float:
bf229b4e 3393 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3394 break;
3395
3396 case FT_ext_prec_float:
bf229b4e 3397 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3398 break;
3399
3400 case FT_complex:
bf229b4e 3401 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3402 break;
3403
3404 case FT_dbl_prec_complex:
bf229b4e 3405 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3406 break;
3407
1ab3bf1b 3408 case FT_ext_prec_complex:
bf229b4e 3409 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3410 break;
1ab3bf1b 3411
35f5886e
FF
3412 }
3413
85f0a848 3414 if (typep == NULL)
35f5886e 3415 {
85f0a848
FF
3416 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3417 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3418 {
51b80b00 3419 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3420 }
35f5886e
FF
3421 }
3422
3423 return (typep);
3424}
3425
3426/*
3427
3428LOCAL FUNCTION
3429
3430 create_name -- allocate a fresh copy of a string on an obstack
3431
3432DESCRIPTION
3433
3434 Given a pointer to a string and a pointer to an obstack, allocates
3435 a fresh copy of the string on the specified obstack.
3436
3437*/
3438
3439static char *
1ab3bf1b
JG
3440create_name (name, obstackp)
3441 char *name;
3442 struct obstack *obstackp;
35f5886e
FF
3443{
3444 int length;
3445 char *newname;
3446
3447 length = strlen (name) + 1;
3448 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3449 strcpy (newname, name);
35f5886e
FF
3450 return (newname);
3451}
3452
3453/*
3454
3455LOCAL FUNCTION
3456
3457 basicdieinfo -- extract the minimal die info from raw die data
3458
3459SYNOPSIS
3460
95967e73
FF
3461 void basicdieinfo (char *diep, struct dieinfo *dip,
3462 struct objfile *objfile)
35f5886e
FF
3463
3464DESCRIPTION
3465
3466 Given a pointer to raw DIE data, and a pointer to an instance of a
3467 die info structure, this function extracts the basic information
3468 from the DIE data required to continue processing this DIE, along
3469 with some bookkeeping information about the DIE.
3470
3471 The information we absolutely must have includes the DIE tag,
3472 and the DIE length. If we need the sibling reference, then we
3473 will have to call completedieinfo() to process all the remaining
3474 DIE information.
3475
3476 Note that since there is no guarantee that the data is properly
3477 aligned in memory for the type of access required (indirection
95967e73
FF
3478 through anything other than a char pointer), and there is no
3479 guarantee that it is in the same byte order as the gdb host,
3480 we call a function which deals with both alignment and byte
3481 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3482
3483 We also take care of some other basic things at this point, such
3484 as ensuring that the instance of the die info structure starts
3485 out completely zero'd and that curdie is initialized for use
3486 in error reporting if we have a problem with the current die.
3487
3488NOTES
3489
3490 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3491 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3492 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3493 are forced to be TAG_padding DIES.
3494
13b5a7ff
FF
3495 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3496 that if a padding DIE is used for alignment and the amount needed is
3497 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3498 enough to align to the next alignment boundry.
4090fe1c
FF
3499
3500 We do some basic sanity checking here, such as verifying that the
3501 length of the die would not cause it to overrun the recorded end of
3502 the buffer holding the DIE info. If we find a DIE that is either
3503 too small or too large, we force it's length to zero which should
3504 cause the caller to take appropriate action.
35f5886e
FF
3505 */
3506
3507static void
95967e73 3508basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3509 struct dieinfo *dip;
3510 char *diep;
95967e73 3511 struct objfile *objfile;
35f5886e
FF
3512{
3513 curdie = dip;
4ed3a9ea 3514 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3515 dip -> die = diep;
13b5a7ff
FF
3516 dip -> die_ref = dbroff + (diep - dbbase);
3517 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3518 objfile);
4090fe1c
FF
3519 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3520 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3521 {
51b80b00 3522 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3523 dip -> die_length = 0;
35f5886e 3524 }
13b5a7ff 3525 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3526 {
13b5a7ff 3527 dip -> die_tag = TAG_padding;
35f5886e
FF
3528 }
3529 else
3530 {
13b5a7ff
FF
3531 diep += SIZEOF_DIE_LENGTH;
3532 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3533 objfile);
35f5886e
FF
3534 }
3535}
3536
3537/*
3538
3539LOCAL FUNCTION
3540
3541 completedieinfo -- finish reading the information for a given DIE
3542
3543SYNOPSIS
3544
95967e73 3545 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3546
3547DESCRIPTION
3548
3549 Given a pointer to an already partially initialized die info structure,
3550 scan the raw DIE data and finish filling in the die info structure
3551 from the various attributes found.
3552
3553 Note that since there is no guarantee that the data is properly
3554 aligned in memory for the type of access required (indirection
95967e73
FF
3555 through anything other than a char pointer), and there is no
3556 guarantee that it is in the same byte order as the gdb host,
3557 we call a function which deals with both alignment and byte
3558 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3559
3560NOTES
3561
3562 Each time we are called, we increment the diecount variable, which
3563 keeps an approximate count of the number of dies processed for
3564 each compilation unit. This information is presented to the user
3565 if the info_verbose flag is set.
3566
3567 */
3568
3569static void
95967e73 3570completedieinfo (dip, objfile)
1ab3bf1b 3571 struct dieinfo *dip;
95967e73 3572 struct objfile *objfile;
35f5886e
FF
3573{
3574 char *diep; /* Current pointer into raw DIE data */
3575 char *end; /* Terminate DIE scan here */
3576 unsigned short attr; /* Current attribute being scanned */
3577 unsigned short form; /* Form of the attribute */
13b5a7ff 3578 int nbytes; /* Size of next field to read */
35f5886e
FF
3579
3580 diecount++;
3581 diep = dip -> die;
13b5a7ff
FF
3582 end = diep + dip -> die_length;
3583 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3584 while (diep < end)
3585 {
13b5a7ff
FF
3586 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3587 diep += SIZEOF_ATTRIBUTE;
3588 if ((nbytes = attribute_size (attr)) == -1)
3589 {
51b80b00 3590 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3591 diep = end;
3592 continue;
3593 }
35f5886e
FF
3594 switch (attr)
3595 {
3596 case AT_fund_type:
13b5a7ff
FF
3597 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3598 objfile);
35f5886e
FF
3599 break;
3600 case AT_ordering:
13b5a7ff
FF
3601 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
35f5886e
FF
3603 break;
3604 case AT_bit_offset:
13b5a7ff
FF
3605 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3606 objfile);
35f5886e 3607 break;
35f5886e 3608 case AT_sibling:
13b5a7ff
FF
3609 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
35f5886e
FF
3611 break;
3612 case AT_stmt_list:
13b5a7ff
FF
3613 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
2d6186f4 3615 dip -> has_at_stmt_list = 1;
35f5886e
FF
3616 break;
3617 case AT_low_pc:
13b5a7ff
FF
3618 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
4d315a07 3620 dip -> at_low_pc += baseaddr;
2d6186f4 3621 dip -> has_at_low_pc = 1;
35f5886e
FF
3622 break;
3623 case AT_high_pc:
13b5a7ff
FF
3624 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3625 objfile);
4d315a07 3626 dip -> at_high_pc += baseaddr;
35f5886e
FF
3627 break;
3628 case AT_language:
13b5a7ff
FF
3629 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
35f5886e
FF
3631 break;
3632 case AT_user_def_type:
13b5a7ff
FF
3633 dip -> at_user_def_type = target_to_host (diep, nbytes,
3634 GET_UNSIGNED, objfile);
35f5886e
FF
3635 break;
3636 case AT_byte_size:
13b5a7ff
FF
3637 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3638 objfile);
50055e94 3639 dip -> has_at_byte_size = 1;
35f5886e
FF
3640 break;
3641 case AT_bit_size:
13b5a7ff
FF
3642 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
35f5886e
FF
3644 break;
3645 case AT_member:
13b5a7ff
FF
3646 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
35f5886e
FF
3648 break;
3649 case AT_discr:
13b5a7ff
FF
3650 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
35f5886e 3652 break;
35f5886e
FF
3653 case AT_location:
3654 dip -> at_location = diep;
3655 break;
3656 case AT_mod_fund_type:
3657 dip -> at_mod_fund_type = diep;
3658 break;
3659 case AT_subscr_data:
3660 dip -> at_subscr_data = diep;
3661 break;
3662 case AT_mod_u_d_type:
3663 dip -> at_mod_u_d_type = diep;
3664 break;
35f5886e
FF
3665 case AT_element_list:
3666 dip -> at_element_list = diep;
768be6e1
FF
3667 dip -> short_element_list = 0;
3668 break;
3669 case AT_short_element_list:
3670 dip -> at_element_list = diep;
3671 dip -> short_element_list = 1;
35f5886e
FF
3672 break;
3673 case AT_discr_value:
3674 dip -> at_discr_value = diep;
3675 break;
3676 case AT_string_length:
3677 dip -> at_string_length = diep;
3678 break;
3679 case AT_name:
3680 dip -> at_name = diep;
3681 break;
3682 case AT_comp_dir:
d4902ab0
FF
3683 /* For now, ignore any "hostname:" portion, since gdb doesn't
3684 know how to deal with it. (FIXME). */
3685 dip -> at_comp_dir = strrchr (diep, ':');
3686 if (dip -> at_comp_dir != NULL)
3687 {
3688 dip -> at_comp_dir++;
3689 }
3690 else
3691 {
3692 dip -> at_comp_dir = diep;
3693 }
35f5886e
FF
3694 break;
3695 case AT_producer:
3696 dip -> at_producer = diep;
3697 break;
35f5886e 3698 case AT_start_scope:
13b5a7ff
FF
3699 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3700 objfile);
35f5886e
FF
3701 break;
3702 case AT_stride_size:
13b5a7ff
FF
3703 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3704 objfile);
35f5886e
FF
3705 break;
3706 case AT_src_info:
13b5a7ff
FF
3707 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3708 objfile);
35f5886e
FF
3709 break;
3710 case AT_prototyped:
13b5a7ff 3711 dip -> at_prototyped = diep;
35f5886e 3712 break;
35f5886e
FF
3713 default:
3714 /* Found an attribute that we are unprepared to handle. However
3715 it is specifically one of the design goals of DWARF that
3716 consumers should ignore unknown attributes. As long as the
3717 form is one that we recognize (so we know how to skip it),
3718 we can just ignore the unknown attribute. */
3719 break;
3720 }
13b5a7ff 3721 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3722 switch (form)
3723 {
3724 case FORM_DATA2:
13b5a7ff 3725 diep += 2;
35f5886e
FF
3726 break;
3727 case FORM_DATA4:
13b5a7ff
FF
3728 case FORM_REF:
3729 diep += 4;
35f5886e
FF
3730 break;
3731 case FORM_DATA8:
13b5a7ff 3732 diep += 8;
35f5886e
FF
3733 break;
3734 case FORM_ADDR:
13b5a7ff 3735 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3736 break;
3737 case FORM_BLOCK2:
13b5a7ff 3738 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3739 break;
3740 case FORM_BLOCK4:
13b5a7ff 3741 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3742 break;
3743 case FORM_STRING:
3744 diep += strlen (diep) + 1;
3745 break;
3746 default:
51b80b00 3747 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3748 diep = end;
3749 break;
3750 }
3751 }
3752}
95967e73 3753
13b5a7ff 3754/*
95967e73 3755
13b5a7ff
FF
3756LOCAL FUNCTION
3757
3758 target_to_host -- swap in target data to host
3759
3760SYNOPSIS
3761
3762 target_to_host (char *from, int nbytes, int signextend,
3763 struct objfile *objfile)
3764
3765DESCRIPTION
3766
3767 Given pointer to data in target format in FROM, a byte count for
3768 the size of the data in NBYTES, a flag indicating whether or not
3769 the data is signed in SIGNEXTEND, and a pointer to the current
3770 objfile in OBJFILE, convert the data to host format and return
3771 the converted value.
3772
3773NOTES
3774
3775 FIXME: If we read data that is known to be signed, and expect to
3776 use it as signed data, then we need to explicitly sign extend the
3777 result until the bfd library is able to do this for us.
3778
3779 */
3780
3781static unsigned long
3782target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3783 char *from;
3784 int nbytes;
13b5a7ff 3785 int signextend; /* FIXME: Unused */
95967e73
FF
3786 struct objfile *objfile;
3787{
13b5a7ff 3788 unsigned long rtnval;
95967e73
FF
3789
3790 switch (nbytes)
3791 {
95967e73 3792 case 8:
13b5a7ff 3793 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3794 break;
95967e73 3795 case 4:
13b5a7ff 3796 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3797 break;
3798 case 2:
13b5a7ff 3799 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3800 break;
3801 case 1:
13b5a7ff 3802 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3803 break;
3804 default:
51b80b00 3805 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3806 rtnval = 0;
95967e73
FF
3807 break;
3808 }
13b5a7ff 3809 return (rtnval);
95967e73
FF
3810}
3811
13b5a7ff
FF
3812/*
3813
3814LOCAL FUNCTION
3815
3816 attribute_size -- compute size of data for a DWARF attribute
3817
3818SYNOPSIS
3819
3820 static int attribute_size (unsigned int attr)
3821
3822DESCRIPTION
3823
3824 Given a DWARF attribute in ATTR, compute the size of the first
3825 piece of data associated with this attribute and return that
3826 size.
3827
3828 Returns -1 for unrecognized attributes.
3829
3830 */
3831
3832static int
3833attribute_size (attr)
3834 unsigned int attr;
3835{
3836 int nbytes; /* Size of next data for this attribute */
3837 unsigned short form; /* Form of the attribute */
3838
3839 form = FORM_FROM_ATTR (attr);
3840 switch (form)
3841 {
3842 case FORM_STRING: /* A variable length field is next */
3843 nbytes = 0;
3844 break;
3845 case FORM_DATA2: /* Next 2 byte field is the data itself */
3846 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3847 nbytes = 2;
3848 break;
3849 case FORM_DATA4: /* Next 4 byte field is the data itself */
3850 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3851 case FORM_REF: /* Next 4 byte field is a DIE offset */
3852 nbytes = 4;
3853 break;
3854 case FORM_DATA8: /* Next 8 byte field is the data itself */
3855 nbytes = 8;
3856 break;
3857 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3858 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3859 break;
3860 default:
51b80b00 3861 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3862 nbytes = -1;
3863 break;
3864 }
3865 return (nbytes);
3866}
This page took 0.312969 seconds and 4 git commands to generate.