Do not build gdbserver with -Werror by default if development=false
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
ecd75fc8 3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
0e9f083f 24#include <string.h>
c906108c 25#include "elf-bfd.h"
31d99776
DJ
26#include "elf/common.h"
27#include "elf/internal.h"
c906108c
SS
28#include "elf/mips.h"
29#include "symtab.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "buildsym.h"
33#include "stabsread.h"
34#include "gdb-stabs.h"
35#include "complaints.h"
36#include "demangle.h"
ccefe4c4 37#include "psympriv.h"
0ba1096a 38#include "filenames.h"
55aa24fb
SDJ
39#include "probe.h"
40#include "arch-utils.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
cbb099e8 47#include "gdb_bfd.h"
dc294be5 48#include "build-id.h"
c906108c 49
a14ed312 50extern void _initialize_elfread (void);
392a587b 51
b11896a5 52/* Forward declarations. */
00b5771c 53static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 54static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
5d9cf8a4 66/* Per-BFD data for probe info. */
55aa24fb 67
5d9cf8a4 68static const struct bfd_data *probe_key = NULL;
55aa24fb 69
12b9c64f 70static void free_elfinfo (void *);
c906108c 71
07be84bf
JK
72/* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
31d99776
DJ
79/* Locate the segments in ABFD. */
80
81static struct symfile_segment_data *
82elf_symfile_segments (bfd *abfd)
83{
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
41bf6aca 108 data = XCNEW (struct symfile_segment_data);
31d99776 109 data->num_segments = num_segments;
fc270c35
TT
110 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
111 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
fc270c35 120 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
a366c65a 135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 152 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
12b9c64f 179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 180{
52f0bd74 181 struct elfinfo *ei;
c906108c
SS
182
183 ei = (struct elfinfo *) eip;
7ce59000 184 if (strcmp (sectp->name, ".stab") == 0)
c906108c 185 {
c5aa993b 186 ei->stabsect = sectp;
c906108c 187 }
6314a349 188 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 189 {
c5aa993b 190 ei->mdebugsect = sectp;
c906108c
SS
191 }
192}
193
c906108c 194static struct minimal_symbol *
04a679b8
TT
195record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
f594e5e9
MC
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
c906108c 199{
5e2b427d
UW
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
0875794a
JK
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
85ddcc70 204 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 205
04a679b8 206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
e6dc44a8 210 objfile);
c906108c
SS
211}
212
7f86f058 213/* Read the symbol table of an ELF file.
c906108c 214
62553543 215 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
c906108c 218
c5aa993b
JM
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
7f86f058 223 in data structures hung off the objfile's private data. */
c906108c 224
6f610d07
UW
225#define ST_REGULAR 0
226#define ST_DYNAMIC 1
227#define ST_SYNTHETIC 2
228
c906108c 229static void
6f610d07 230elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
c906108c 233{
5e2b427d 234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 235 asymbol *sym;
c906108c 236 long i;
c906108c 237 CORE_ADDR symaddr;
d4f3574e 238 CORE_ADDR offset;
c906108c
SS
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
1c9e8358 246 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
247 the objfile's filename cache. */
248 const char *filesymname = "";
d2f4b8fe 249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 251
0cc7b392 252 for (i = 0; i < number_of_symbols; i++)
c906108c 253 {
0cc7b392
DJ
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
c906108c 256 {
0cc7b392 257 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 258 that are null strings (may happen). */
0cc7b392
DJ
259 continue;
260 }
c906108c 261
74763737
DJ
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
74763737 271
65cf3563
TT
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
6f610d07 274 if (type == ST_DYNAMIC
45dfa85a 275 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
02c75f72 279 bfd *abfd = objfile->obfd;
dea91a5c 280 asection *sect;
0cc7b392
DJ
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
0963b4bd 288 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
02c75f72
UW
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
828cfa8d
JB
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
0cc7b392 328 msym = record_minimal_symbol
04a679b8
TT
329 (sym->name, strlen (sym->name), copy_names,
330 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
331 if (msym != NULL)
332 msym->filename = filesymname;
0cc7b392
DJ
333 continue;
334 }
c906108c 335
0cc7b392
DJ
336 /* If it is a nonstripped executable, do not enter dynamic
337 symbols, as the dynamic symbol table is usually a subset
338 of the main symbol table. */
6f610d07 339 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
340 continue;
341 if (sym->flags & BSF_FILE)
342 {
343 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
344 Chain any old one onto the objfile; remember new sym. */
345 if (sectinfo != NULL)
c906108c 346 {
0cc7b392
DJ
347 sectinfo->next = dbx->stab_section_info;
348 dbx->stab_section_info = sectinfo;
349 sectinfo = NULL;
350 }
351 filesym = sym;
0af1e9a5 352 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
706e3705 353 objfile->per_bfd->filename_cache);
0cc7b392
DJ
354 }
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
bb869963
SDJ
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
0cc7b392
DJ
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
0963b4bd
MS
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
0cc7b392 366 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
0963b4bd 369 no way of figuring this out for absolute symbols. */
45dfa85a 370 if (sym->section == bfd_abs_section_ptr)
c906108c 371 {
0cc7b392
DJ
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
6f610d07
UW
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
dea91a5c 378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
c906108c 382 {
0cc7b392
DJ
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 397 symbols, relocate all others by section offset. */
0cc7b392
DJ
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
c906108c 402 }
0cc7b392
DJ
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
bb869963 406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 407 {
0875794a
JK
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
0cc7b392 412 }
90359a16
JK
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
c906108c 432 }
0cc7b392
DJ
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
bb869963 436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 437 {
0cc7b392 438 if (sym->section->flags & SEC_LOAD)
c906108c 439 {
0cc7b392 440 ms_type = mst_data;
c906108c 441 }
c906108c
SS
442 else
443 {
0cc7b392 444 ms_type = mst_bss;
c906108c
SS
445 }
446 }
0cc7b392 447 else if (sym->flags & BSF_LOCAL)
c906108c 448 {
0cc7b392
DJ
449 /* Named Local variable in a Data section.
450 Check its name for stabs-in-elf. */
451 int special_local_sect;
d7f9d729 452
0cc7b392
DJ
453 if (strcmp ("Bbss.bss", sym->name) == 0)
454 special_local_sect = SECT_OFF_BSS (objfile);
455 else if (strcmp ("Ddata.data", sym->name) == 0)
456 special_local_sect = SECT_OFF_DATA (objfile);
457 else if (strcmp ("Drodata.rodata", sym->name) == 0)
458 special_local_sect = SECT_OFF_RODATA (objfile);
459 else
460 special_local_sect = -1;
461 if (special_local_sect >= 0)
c906108c 462 {
0cc7b392
DJ
463 /* Found a special local symbol. Allocate a
464 sectinfo, if needed, and fill it in. */
465 if (sectinfo == NULL)
c906108c 466 {
0cc7b392
DJ
467 int max_index;
468 size_t size;
469
25c2f6ab
PP
470 max_index = SECT_OFF_BSS (objfile);
471 if (objfile->sect_index_data > max_index)
472 max_index = objfile->sect_index_data;
473 if (objfile->sect_index_rodata > max_index)
474 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
475
476 /* max_index is the largest index we'll
477 use into this array, so we must
478 allocate max_index+1 elements for it.
479 However, 'struct stab_section_info'
480 already includes one element, so we
481 need to allocate max_index aadditional
482 elements. */
dea91a5c 483 size = (sizeof (struct stab_section_info)
c05d19c5 484 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
485 sectinfo = (struct stab_section_info *)
486 xmalloc (size);
487 memset (sectinfo, 0, size);
488 sectinfo->num_sections = max_index;
489 if (filesym == NULL)
c906108c 490 {
0cc7b392 491 complaint (&symfile_complaints,
3e43a32a
MS
492 _("elf/stab section information %s "
493 "without a preceding file symbol"),
0cc7b392
DJ
494 sym->name);
495 }
496 else
497 {
498 sectinfo->filename =
499 (char *) filesym->name;
c906108c 500 }
c906108c 501 }
0cc7b392
DJ
502 if (sectinfo->sections[special_local_sect] != 0)
503 complaint (&symfile_complaints,
3e43a32a
MS
504 _("duplicated elf/stab section "
505 "information for %s"),
0cc7b392
DJ
506 sectinfo->filename);
507 /* BFD symbols are section relative. */
508 symaddr = sym->value + sym->section->vma;
509 /* Relocate non-absolute symbols by the
510 section offset. */
45dfa85a 511 if (sym->section != bfd_abs_section_ptr)
0cc7b392
DJ
512 symaddr += offset;
513 sectinfo->sections[special_local_sect] = symaddr;
514 /* The special local symbols don't go in the
515 minimal symbol table, so ignore this one. */
516 continue;
517 }
518 /* Not a special stabs-in-elf symbol, do regular
519 symbol processing. */
520 if (sym->section->flags & SEC_LOAD)
521 {
522 ms_type = mst_file_data;
c906108c
SS
523 }
524 else
525 {
0cc7b392 526 ms_type = mst_file_bss;
c906108c
SS
527 }
528 }
529 else
530 {
0cc7b392 531 ms_type = mst_unknown;
c906108c 532 }
0cc7b392
DJ
533 }
534 else
535 {
536 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 537 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
538 hob with actions like finding what function the PC
539 is in. Ignore them if they aren't text, data, or bss. */
540 /* ms_type = mst_unknown; */
0963b4bd 541 continue; /* Skip this symbol. */
0cc7b392
DJ
542 }
543 msym = record_minimal_symbol
04a679b8 544 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 545 ms_type, sym->section, objfile);
6f610d07 546
0cc7b392
DJ
547 if (msym)
548 {
6f610d07 549 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 550 ELF-private part. */
6f610d07 551 if (type != ST_SYNTHETIC)
24c274a1
AM
552 {
553 /* Pass symbol size field in via BFD. FIXME!!! */
554 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
555 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
556 }
dea91a5c 557
a103a963
DJ
558 msym->filename = filesymname;
559 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 560 }
2eaf8d2a 561
715c6909
TT
562 /* If we see a default versioned symbol, install it under
563 its version-less name. */
564 if (msym != NULL)
565 {
566 const char *atsign = strchr (sym->name, '@');
567
568 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
569 {
570 int len = atsign - sym->name;
571
572 record_minimal_symbol (sym->name, len, 1, symaddr,
573 ms_type, sym->section, objfile);
574 }
575 }
576
2eaf8d2a
DJ
577 /* For @plt symbols, also record a trampoline to the
578 destination symbol. The @plt symbol will be used in
579 disassembly, and the trampoline will be used when we are
580 trying to find the target. */
581 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
582 {
583 int len = strlen (sym->name);
584
585 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
586 {
2eaf8d2a
DJ
587 struct minimal_symbol *mtramp;
588
04a679b8
TT
589 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
590 symaddr,
2eaf8d2a
DJ
591 mst_solib_trampoline,
592 sym->section, objfile);
593 if (mtramp)
594 {
d9eaeb59 595 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 596 mtramp->created_by_gdb = 1;
2eaf8d2a
DJ
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
c906108c 602 }
c906108c
SS
603 }
604}
605
07be84bf
JK
606/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613static void
614elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615{
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
07be84bf
JK
619 int plt_elf_idx;
620 bfd_size_type reloc_count, reloc;
621 char *string_buffer = NULL;
622 size_t string_buffer_size = 0;
623 struct cleanup *back_to;
df6d5441 624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
625 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
626 size_t ptr_size = TYPE_LENGTH (ptr_type);
627
628 if (objfile->separate_debug_objfile_backlink)
629 return;
630
631 plt = bfd_get_section_by_name (obfd, ".plt");
632 if (plt == NULL)
633 return;
634 plt_elf_idx = elf_section_data (plt)->this_idx;
635
636 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
637 if (got_plt == NULL)
4b7d1f7f
WN
638 {
639 /* For platforms where there is no separate .got.plt. */
640 got_plt = bfd_get_section_by_name (obfd, ".got");
641 if (got_plt == NULL)
642 return;
643 }
07be84bf
JK
644
645 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
646 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
647 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
648 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
649 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
650 break;
651 if (relplt == NULL)
652 return;
653
654 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
655 return;
656
657 back_to = make_cleanup (free_current_contents, &string_buffer);
658
659 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
660 for (reloc = 0; reloc < reloc_count; reloc++)
661 {
22e048c9 662 const char *name;
07be84bf
JK
663 struct minimal_symbol *msym;
664 CORE_ADDR address;
665 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
666 size_t name_len;
667
668 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
669 name_len = strlen (name);
670 address = relplt->relocation[reloc].address;
671
672 /* Does the pointer reside in the .got.plt section? */
673 if (!(bfd_get_section_vma (obfd, got_plt) <= address
674 && address < bfd_get_section_vma (obfd, got_plt)
675 + bfd_get_section_size (got_plt)))
676 continue;
677
678 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
679 OBJFILE the symbol is undefined and the objfile having NAME defined
680 may not yet have been loaded. */
681
3807f613 682 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
683 {
684 string_buffer_size = 2 * (name_len + got_suffix_len);
685 string_buffer = xrealloc (string_buffer, string_buffer_size);
686 }
687 memcpy (string_buffer, name, name_len);
688 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 689 got_suffix_len + 1);
07be84bf
JK
690
691 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
692 1, address, mst_slot_got_plt, got_plt,
693 objfile);
694 if (msym)
d9eaeb59 695 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
696 }
697
698 do_cleanups (back_to);
699}
700
701/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
702
703static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
704
705/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
706
707struct elf_gnu_ifunc_cache
708{
709 /* This is always a function entry address, not a function descriptor. */
710 CORE_ADDR addr;
711
712 char name[1];
713};
714
715/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
716
717static hashval_t
718elf_gnu_ifunc_cache_hash (const void *a_voidp)
719{
720 const struct elf_gnu_ifunc_cache *a = a_voidp;
721
722 return htab_hash_string (a->name);
723}
724
725/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
726
727static int
728elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
729{
730 const struct elf_gnu_ifunc_cache *a = a_voidp;
731 const struct elf_gnu_ifunc_cache *b = b_voidp;
732
733 return strcmp (a->name, b->name) == 0;
734}
735
736/* Record the target function address of a STT_GNU_IFUNC function NAME is the
737 function entry address ADDR. Return 1 if NAME and ADDR are considered as
738 valid and therefore they were successfully recorded, return 0 otherwise.
739
740 Function does not expect a duplicate entry. Use
741 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
742 exists. */
743
744static int
745elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
746{
7cbd4a93 747 struct bound_minimal_symbol msym;
07be84bf
JK
748 asection *sect;
749 struct objfile *objfile;
750 htab_t htab;
751 struct elf_gnu_ifunc_cache entry_local, *entry_p;
752 void **slot;
753
754 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 755 if (msym.minsym == NULL)
07be84bf 756 return 0;
77e371c0 757 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
758 return 0;
759 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 760 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 761 objfile = msym.objfile;
07be84bf
JK
762
763 /* If .plt jumps back to .plt the symbol is still deferred for later
764 resolution and it has no use for GDB. Besides ".text" this symbol can
765 reside also in ".opd" for ppc64 function descriptor. */
766 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
767 return 0;
768
769 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
770 if (htab == NULL)
771 {
772 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
773 elf_gnu_ifunc_cache_eq,
774 NULL, &objfile->objfile_obstack,
775 hashtab_obstack_allocate,
776 dummy_obstack_deallocate);
777 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
778 }
779
780 entry_local.addr = addr;
781 obstack_grow (&objfile->objfile_obstack, &entry_local,
782 offsetof (struct elf_gnu_ifunc_cache, name));
783 obstack_grow_str0 (&objfile->objfile_obstack, name);
784 entry_p = obstack_finish (&objfile->objfile_obstack);
785
786 slot = htab_find_slot (htab, entry_p, INSERT);
787 if (*slot != NULL)
788 {
789 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
df6d5441 790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
791
792 if (entry_found_p->addr != addr)
793 {
794 /* This case indicates buggy inferior program, the resolved address
795 should never change. */
796
797 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
798 "function_address from %s to %s"),
799 name, paddress (gdbarch, entry_found_p->addr),
800 paddress (gdbarch, addr));
801 }
802
803 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
804 }
805 *slot = entry_p;
806
807 return 1;
808}
809
810/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
813
814 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
815 function. */
816
817static int
818elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
819{
820 struct objfile *objfile;
821
822 ALL_PSPACE_OBJFILES (current_program_space, objfile)
823 {
824 htab_t htab;
825 struct elf_gnu_ifunc_cache *entry_p;
826 void **slot;
827
828 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
829 if (htab == NULL)
830 continue;
831
832 entry_p = alloca (sizeof (*entry_p) + strlen (name));
833 strcpy (entry_p->name, name);
834
835 slot = htab_find_slot (htab, entry_p, NO_INSERT);
836 if (slot == NULL)
837 continue;
838 entry_p = *slot;
839 gdb_assert (entry_p != NULL);
840
841 if (addr_p)
842 *addr_p = entry_p->addr;
843 return 1;
844 }
845
846 return 0;
847}
848
849/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
850 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
851 is not NULL) and the function returns 1. It returns 0 otherwise.
852
853 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
854 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
855 prevent cache entries duplicates. */
856
857static int
858elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
859{
860 char *name_got_plt;
861 struct objfile *objfile;
862 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
863
864 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
865 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
866
867 ALL_PSPACE_OBJFILES (current_program_space, objfile)
868 {
869 bfd *obfd = objfile->obfd;
df6d5441 870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
871 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
872 size_t ptr_size = TYPE_LENGTH (ptr_type);
873 CORE_ADDR pointer_address, addr;
874 asection *plt;
875 gdb_byte *buf = alloca (ptr_size);
3b7344d5 876 struct bound_minimal_symbol msym;
07be84bf
JK
877
878 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 879 if (msym.minsym == NULL)
07be84bf 880 continue;
3b7344d5 881 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 882 continue;
77e371c0 883 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
884
885 plt = bfd_get_section_by_name (obfd, ".plt");
886 if (plt == NULL)
887 continue;
888
3b7344d5 889 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
890 continue;
891 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
892 continue;
893 addr = extract_typed_address (buf, ptr_type);
894 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
895 &current_target);
4b7d1f7f 896 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
897
898 if (addr_p)
899 *addr_p = addr;
900 if (elf_gnu_ifunc_record_cache (name, addr))
901 return 1;
902 }
903
904 return 0;
905}
906
907/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
908 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
909 is not NULL) and the function returns 1. It returns 0 otherwise.
910
911 Both the elf_objfile_gnu_ifunc_cache_data hash table and
912 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
913
914static int
915elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
916{
917 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
918 return 1;
dea91a5c 919
07be84bf
JK
920 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
921 return 1;
922
923 return 0;
924}
925
926/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
927 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
928 is the entry point of the resolved STT_GNU_IFUNC target function to call.
929 */
930
931static CORE_ADDR
932elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
933{
2c02bd72 934 const char *name_at_pc;
07be84bf
JK
935 CORE_ADDR start_at_pc, address;
936 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
937 struct value *function, *address_val;
938
939 /* Try first any non-intrusive methods without an inferior call. */
940
941 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
942 && start_at_pc == pc)
943 {
944 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
945 return address;
946 }
947 else
948 name_at_pc = NULL;
949
950 function = allocate_value (func_func_type);
951 set_value_address (function, pc);
952
953 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
954 function entry address. ADDRESS may be a function descriptor. */
955
956 address_val = call_function_by_hand (function, 0, NULL);
957 address = value_as_address (address_val);
958 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
959 &current_target);
4b7d1f7f 960 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
961
962 if (name_at_pc)
963 elf_gnu_ifunc_record_cache (name_at_pc, address);
964
965 return address;
966}
967
0e30163f
JK
968/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
969
970static void
971elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
972{
973 struct breakpoint *b_return;
974 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
975 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
976 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
977 int thread_id = pid_to_thread_id (inferior_ptid);
978
979 gdb_assert (b->type == bp_gnu_ifunc_resolver);
980
981 for (b_return = b->related_breakpoint; b_return != b;
982 b_return = b_return->related_breakpoint)
983 {
984 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
985 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
986 gdb_assert (frame_id_p (b_return->frame_id));
987
988 if (b_return->thread == thread_id
989 && b_return->loc->requested_address == prev_pc
990 && frame_id_eq (b_return->frame_id, prev_frame_id))
991 break;
992 }
993
994 if (b_return == b)
995 {
996 struct symtab_and_line sal;
997
998 /* No need to call find_pc_line for symbols resolving as this is only
999 a helper breakpointer never shown to the user. */
1000
1001 init_sal (&sal);
1002 sal.pspace = current_inferior ()->pspace;
1003 sal.pc = prev_pc;
1004 sal.section = find_pc_overlay (sal.pc);
1005 sal.explicit_pc = 1;
1006 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1007 prev_frame_id,
1008 bp_gnu_ifunc_resolver_return);
1009
c70a6932
JK
1010 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1011 prev_frame = NULL;
1012
0e30163f
JK
1013 /* Add new b_return to the ring list b->related_breakpoint. */
1014 gdb_assert (b_return->related_breakpoint == b_return);
1015 b_return->related_breakpoint = b->related_breakpoint;
1016 b->related_breakpoint = b_return;
1017 }
1018}
1019
1020/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1021
1022static void
1023elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1024{
1025 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1026 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1027 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1028 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 1029 struct value *func_func;
0e30163f
JK
1030 struct value *value;
1031 CORE_ADDR resolved_address, resolved_pc;
1032 struct symtab_and_line sal;
f1310107 1033 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1034
1035 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1036
0e30163f
JK
1037 while (b->related_breakpoint != b)
1038 {
1039 struct breakpoint *b_next = b->related_breakpoint;
1040
1041 switch (b->type)
1042 {
1043 case bp_gnu_ifunc_resolver:
1044 break;
1045 case bp_gnu_ifunc_resolver_return:
1046 delete_breakpoint (b);
1047 break;
1048 default:
1049 internal_error (__FILE__, __LINE__,
1050 _("handle_inferior_event: Invalid "
1051 "gnu-indirect-function breakpoint type %d"),
1052 (int) b->type);
1053 }
1054 b = b_next;
1055 }
1056 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1057 gdb_assert (b->loc->next == NULL);
1058
1059 func_func = allocate_value (func_func_type);
1060 set_value_address (func_func, b->loc->related_address);
1061
1062 value = allocate_value (value_type);
1063 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1064 value_contents_raw (value), NULL);
1065 resolved_address = value_as_address (value);
1066 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1067 resolved_address,
1068 &current_target);
4b7d1f7f 1069 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1070
f8eba3c6 1071 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1072 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1073
1074 sal = find_pc_line (resolved_pc, 0);
1075 sals.nelts = 1;
1076 sals.sals = &sal;
f1310107 1077 sals_end.nelts = 0;
0e30163f
JK
1078
1079 b->type = bp_breakpoint;
f1310107 1080 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1081}
1082
2750ef27
TT
1083/* A helper function for elf_symfile_read that reads the minimal
1084 symbols. */
c906108c
SS
1085
1086static void
5f6cac40
TT
1087elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1088 const struct elfinfo *ei)
c906108c 1089{
63524580 1090 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c 1091 struct cleanup *back_to;
62553543
EZ
1092 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1093 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1094 asymbol *synthsyms;
d2f4b8fe 1095 struct dbx_symfile_info *dbx;
c906108c 1096
45cfd468
DE
1097 if (symtab_create_debug)
1098 {
1099 fprintf_unfiltered (gdb_stdlog,
1100 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1101 objfile_name (objfile));
45cfd468
DE
1102 }
1103
5f6cac40
TT
1104 /* If we already have minsyms, then we can skip some work here.
1105 However, if there were stabs or mdebug sections, we go ahead and
1106 redo all the work anyway, because the psym readers for those
1107 kinds of debuginfo need extra information found here. This can
1108 go away once all types of symbols are in the per-BFD object. */
1109 if (objfile->per_bfd->minsyms_read
1110 && ei->stabsect == NULL
1111 && ei->mdebugsect == NULL)
1112 {
1113 if (symtab_create_debug)
1114 fprintf_unfiltered (gdb_stdlog,
1115 "... minimal symbols previously read\n");
1116 return;
1117 }
1118
c906108c 1119 init_minimal_symbol_collection ();
56e290f4 1120 back_to = make_cleanup_discard_minimal_symbols ();
c906108c 1121
0963b4bd 1122 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1123 dbx = XCNEW (struct dbx_symfile_info);
1124 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
12b9c64f 1125 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1126
3e43a32a 1127 /* Process the normal ELF symbol table first. This may write some
d2f4b8fe
TT
1128 chain of info into the dbx_symfile_info of the objfile, which can
1129 later be used by elfstab_offset_sections. */
c906108c 1130
62553543
EZ
1131 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1132 if (storage_needed < 0)
3e43a32a
MS
1133 error (_("Can't read symbols from %s: %s"),
1134 bfd_get_filename (objfile->obfd),
62553543
EZ
1135 bfd_errmsg (bfd_get_error ()));
1136
1137 if (storage_needed > 0)
1138 {
1139 symbol_table = (asymbol **) xmalloc (storage_needed);
1140 make_cleanup (xfree, symbol_table);
1141 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1142
1143 if (symcount < 0)
3e43a32a
MS
1144 error (_("Can't read symbols from %s: %s"),
1145 bfd_get_filename (objfile->obfd),
62553543
EZ
1146 bfd_errmsg (bfd_get_error ()));
1147
04a679b8 1148 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1149 }
c906108c
SS
1150
1151 /* Add the dynamic symbols. */
1152
62553543
EZ
1153 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1154
1155 if (storage_needed > 0)
1156 {
3f1eff0a
JK
1157 /* Memory gets permanently referenced from ABFD after
1158 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1159 It happens only in the case when elf_slurp_reloc_table sees
1160 asection->relocation NULL. Determining which section is asection is
1161 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1162 implementation detail, though. */
1163
1164 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1165 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1166 dyn_symbol_table);
1167
1168 if (dynsymcount < 0)
3e43a32a
MS
1169 error (_("Can't read symbols from %s: %s"),
1170 bfd_get_filename (objfile->obfd),
62553543
EZ
1171 bfd_errmsg (bfd_get_error ()));
1172
04a679b8 1173 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1174
1175 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1176 }
1177
63524580
JK
1178 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1179 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1180
1181 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1182 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1183 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1184 read the code address from .opd while it reads the .symtab section from
1185 a separate debug info file as the .opd section is SHT_NOBITS there.
1186
1187 With SYNTH_ABFD the .opd section will be read from the original
1188 backlinked binary where it is valid. */
1189
1190 if (objfile->separate_debug_objfile_backlink)
1191 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1192 else
1193 synth_abfd = abfd;
1194
62553543
EZ
1195 /* Add synthetic symbols - for instance, names for any PLT entries. */
1196
63524580 1197 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1198 dynsymcount, dyn_symbol_table,
1199 &synthsyms);
1200 if (synthcount > 0)
1201 {
1202 asymbol **synth_symbol_table;
1203 long i;
1204
1205 make_cleanup (xfree, synthsyms);
1206 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1207 for (i = 0; i < synthcount; i++)
9f20e3da 1208 synth_symbol_table[i] = synthsyms + i;
62553543 1209 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1210 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1211 synth_symbol_table, 1);
62553543 1212 }
c906108c 1213
7134143f
DJ
1214 /* Install any minimal symbols that have been collected as the current
1215 minimal symbols for this objfile. The debug readers below this point
1216 should not generate new minimal symbols; if they do it's their
1217 responsibility to install them. "mdebug" appears to be the only one
1218 which will do this. */
1219
1220 install_minimal_symbols (objfile);
1221 do_cleanups (back_to);
1222
4f00dda3
DE
1223 if (symtab_create_debug)
1224 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1225}
1226
1227/* Scan and build partial symbols for a symbol file.
1228 We have been initialized by a call to elf_symfile_init, which
1229 currently does nothing.
1230
1231 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1232 in each section. We simplify it down to a single offset for all
1233 symbols. FIXME.
1234
1235 This function only does the minimum work necessary for letting the
1236 user "name" things symbolically; it does not read the entire symtab.
1237 Instead, it reads the external and static symbols and puts them in partial
1238 symbol tables. When more extensive information is requested of a
1239 file, the corresponding partial symbol table is mutated into a full
1240 fledged symbol table by going back and reading the symbols
1241 for real.
1242
1243 We look for sections with specific names, to tell us what debug
1244 format to look for: FIXME!!!
1245
1246 elfstab_build_psymtabs() handles STABS symbols;
1247 mdebug_build_psymtabs() handles ECOFF debugging information.
1248
1249 Note that ELF files have a "minimal" symbol table, which looks a lot
1250 like a COFF symbol table, but has only the minimal information necessary
1251 for linking. We process this also, and use the information to
1252 build gdb's minimal symbol table. This gives us some minimal debugging
1253 capability even for files compiled without -g. */
1254
1255static void
1256elf_symfile_read (struct objfile *objfile, int symfile_flags)
1257{
1258 bfd *abfd = objfile->obfd;
1259 struct elfinfo ei;
1260
2750ef27 1261 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1262 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1263
5f6cac40
TT
1264 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1265
c906108c
SS
1266 /* ELF debugging information is inserted into the psymtab in the
1267 order of least informative first - most informative last. Since
1268 the psymtab table is searched `most recent insertion first' this
1269 increases the probability that more detailed debug information
1270 for a section is found.
1271
1272 For instance, an object file might contain both .mdebug (XCOFF)
1273 and .debug_info (DWARF2) sections then .mdebug is inserted first
1274 (searched last) and DWARF2 is inserted last (searched first). If
1275 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1276 an included file XCOFF info is useless. */
c906108c
SS
1277
1278 if (ei.mdebugsect)
1279 {
1280 const struct ecoff_debug_swap *swap;
1281
1282 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1283 information. */
c906108c
SS
1284 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1285 if (swap)
d4f3574e 1286 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1287 }
1288 if (ei.stabsect)
1289 {
1290 asection *str_sect;
1291
1292 /* Stab sections have an associated string table that looks like
c5aa993b 1293 a separate section. */
c906108c
SS
1294 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1295
1296 /* FIXME should probably warn about a stab section without a stabstr. */
1297 if (str_sect)
1298 elfstab_build_psymtabs (objfile,
086df311 1299 ei.stabsect,
c906108c
SS
1300 str_sect->filepos,
1301 bfd_section_size (abfd, str_sect));
1302 }
9291a0cd 1303
251d32d9 1304 if (dwarf2_has_info (objfile, NULL))
b11896a5 1305 {
3e03848b
JK
1306 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1307 information present in OBJFILE. If there is such debug info present
1308 never use .gdb_index. */
1309
1310 if (!objfile_has_partial_symbols (objfile)
1311 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1312 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1313 else
1314 {
1315 /* It is ok to do this even if the stabs reader made some
1316 partial symbols, because OBJF_PSYMTABS_READ has not been
1317 set, and so our lazy reader function will still be called
1318 when needed. */
8fb8eb5c 1319 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1320 }
1321 }
3e43a32a
MS
1322 /* If the file has its own symbol tables it has no separate debug
1323 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1324 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1325 `.note.gnu.build-id'.
1326
1327 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1328 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1329 an objfile via find_separate_debug_file_in_section there was no separate
1330 debug info available. Therefore do not attempt to search for another one,
1331 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1332 be NULL and we would possibly violate it. */
1333
1334 else if (!objfile_has_partial_symbols (objfile)
1335 && objfile->separate_debug_objfile == NULL
1336 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1337 {
1338 char *debugfile;
1339
1340 debugfile = find_separate_debug_file_by_buildid (objfile);
1341
1342 if (debugfile == NULL)
1343 debugfile = find_separate_debug_file_by_debuglink (objfile);
1344
1345 if (debugfile)
1346 {
8ac244b4 1347 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1348 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1349
8ac244b4 1350 make_cleanup_bfd_unref (abfd);
24ba069a 1351 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
8ac244b4 1352 do_cleanups (cleanup);
9cce227f
TG
1353 }
1354 }
c906108c
SS
1355}
1356
b11896a5
TT
1357/* Callback to lazily read psymtabs. */
1358
1359static void
1360read_psyms (struct objfile *objfile)
1361{
251d32d9 1362 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1363 dwarf2_build_psymtabs (objfile);
1364}
1365
d2f4b8fe
TT
1366/* This cleans up the objfile's dbx symfile info, and the chain of
1367 stab_section_info's, that might be dangling from it. */
c906108c
SS
1368
1369static void
12b9c64f 1370free_elfinfo (void *objp)
c906108c 1371{
c5aa993b 1372 struct objfile *objfile = (struct objfile *) objp;
d2f4b8fe 1373 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1374 struct stab_section_info *ssi, *nssi;
1375
1376 ssi = dbxinfo->stab_section_info;
1377 while (ssi)
1378 {
1379 nssi = ssi->next;
2dc74dc1 1380 xfree (ssi);
c906108c
SS
1381 ssi = nssi;
1382 }
1383
1384 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1385}
1386
1387
1388/* Initialize anything that needs initializing when a completely new symbol
1389 file is specified (not just adding some symbols from another file, e.g. a
1390 shared library).
1391
3e43a32a
MS
1392 We reinitialize buildsym, since we may be reading stabs from an ELF
1393 file. */
c906108c
SS
1394
1395static void
fba45db2 1396elf_new_init (struct objfile *ignore)
c906108c
SS
1397{
1398 stabsread_new_init ();
1399 buildsym_new_init ();
1400}
1401
1402/* Perform any local cleanups required when we are done with a particular
1403 objfile. I.E, we are in the process of discarding all symbol information
1404 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1405 objfile struct from the global list of known objfiles. */
c906108c
SS
1406
1407static void
fba45db2 1408elf_symfile_finish (struct objfile *objfile)
c906108c 1409{
fe3e1990 1410 dwarf2_free_objfile (objfile);
c906108c
SS
1411}
1412
1413/* ELF specific initialization routine for reading symbols.
1414
1415 It is passed a pointer to a struct sym_fns which contains, among other
1416 things, the BFD for the file whose symbols are being read, and a slot for
1417 a pointer to "private data" which we can fill with goodies.
1418
1419 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1420 just a stub. */
c906108c
SS
1421
1422static void
fba45db2 1423elf_symfile_init (struct objfile *objfile)
c906108c
SS
1424{
1425 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1426 find this causes a significant slowdown in gdb then we could
1427 set it in the debug symbol readers only when necessary. */
1428 objfile->flags |= OBJF_REORDERED;
1429}
1430
1431/* When handling an ELF file that contains Sun STABS debug info,
1432 some of the debug info is relative to the particular chunk of the
1433 section that was generated in its individual .o file. E.g.
1434 offsets to static variables are relative to the start of the data
1435 segment *for that module before linking*. This information is
1436 painfully squirreled away in the ELF symbol table as local symbols
1437 with wierd names. Go get 'em when needed. */
1438
1439void
fba45db2 1440elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1441{
72b9f47f 1442 const char *filename = pst->filename;
d2f4b8fe 1443 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1444 struct stab_section_info *maybe = dbx->stab_section_info;
1445 struct stab_section_info *questionable = 0;
1446 int i;
c906108c
SS
1447
1448 /* The ELF symbol info doesn't include path names, so strip the path
1449 (if any) from the psymtab filename. */
0ba1096a 1450 filename = lbasename (filename);
c906108c
SS
1451
1452 /* FIXME: This linear search could speed up significantly
1453 if it was chained in the right order to match how we search it,
0963b4bd 1454 and if we unchained when we found a match. */
c906108c
SS
1455 for (; maybe; maybe = maybe->next)
1456 {
1457 if (filename[0] == maybe->filename[0]
0ba1096a 1458 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1459 {
1460 /* We found a match. But there might be several source files
1461 (from different directories) with the same name. */
1462 if (0 == maybe->found)
1463 break;
c5aa993b 1464 questionable = maybe; /* Might use it later. */
c906108c
SS
1465 }
1466 }
1467
1468 if (maybe == 0 && questionable != 0)
1469 {
23136709 1470 complaint (&symfile_complaints,
3e43a32a
MS
1471 _("elf/stab section information questionable for %s"),
1472 filename);
c906108c
SS
1473 maybe = questionable;
1474 }
1475
1476 if (maybe)
1477 {
1478 /* Found it! Allocate a new psymtab struct, and fill it in. */
1479 maybe->found++;
1480 pst->section_offsets = (struct section_offsets *)
dea91a5c 1481 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1482 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1483 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1484 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1485 return;
1486 }
1487
1488 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1489 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1490 complaint (&symfile_complaints,
e2e0b3e5 1491 _("elf/stab section information missing for %s"), filename);
c906108c 1492}
55aa24fb
SDJ
1493
1494/* Implementation of `sym_get_probes', as documented in symfile.h. */
1495
1496static VEC (probe_p) *
1497elf_get_probes (struct objfile *objfile)
1498{
5d9cf8a4 1499 VEC (probe_p) *probes_per_bfd;
55aa24fb
SDJ
1500
1501 /* Have we parsed this objfile's probes already? */
5d9cf8a4 1502 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
55aa24fb 1503
5d9cf8a4 1504 if (!probes_per_bfd)
55aa24fb
SDJ
1505 {
1506 int ix;
1507 const struct probe_ops *probe_ops;
1508
1509 /* Here we try to gather information about all types of probes from the
1510 objfile. */
1511 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1512 ix++)
5d9cf8a4 1513 probe_ops->get_probes (&probes_per_bfd, objfile);
55aa24fb 1514
5d9cf8a4 1515 if (probes_per_bfd == NULL)
55aa24fb 1516 {
5d9cf8a4
TT
1517 VEC_reserve (probe_p, probes_per_bfd, 1);
1518 gdb_assert (probes_per_bfd != NULL);
55aa24fb
SDJ
1519 }
1520
5d9cf8a4 1521 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1522 }
1523
5d9cf8a4 1524 return probes_per_bfd;
55aa24fb
SDJ
1525}
1526
55aa24fb
SDJ
1527/* Helper function used to free the space allocated for storing SystemTap
1528 probe information. */
1529
1530static void
5d9cf8a4 1531probe_key_free (bfd *abfd, void *d)
55aa24fb
SDJ
1532{
1533 int ix;
1534 VEC (probe_p) *probes = d;
1535 struct probe *probe;
1536
1537 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1538 probe->pops->destroy (probe);
1539
1540 VEC_free (probe_p, probes);
1541}
1542
c906108c 1543\f
55aa24fb
SDJ
1544
1545/* Implementation `sym_probe_fns', as documented in symfile.h. */
1546
1547static const struct sym_probe_fns elf_probe_fns =
1548{
25f9533e 1549 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1550};
1551
c906108c
SS
1552/* Register that we are able to handle ELF object file formats. */
1553
00b5771c 1554static const struct sym_fns elf_sym_fns =
c906108c 1555{
3e43a32a
MS
1556 elf_new_init, /* init anything gbl to entire symtab */
1557 elf_symfile_init, /* read initial info, setup for sym_read() */
1558 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1559 NULL, /* sym_read_psymbols */
1560 elf_symfile_finish, /* finished with file, cleanup */
1561 default_symfile_offsets, /* Translate ext. to int. relocation */
1562 elf_symfile_segments, /* Get segment information from a file. */
1563 NULL,
1564 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1565 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1566 &psym_functions
1567};
1568
1569/* The same as elf_sym_fns, but not registered and lazily reads
1570 psymbols. */
1571
1572static const struct sym_fns elf_sym_fns_lazy_psyms =
1573{
b11896a5
TT
1574 elf_new_init, /* init anything gbl to entire symtab */
1575 elf_symfile_init, /* read initial info, setup for sym_read() */
1576 elf_symfile_read, /* read a symbol file into symtab */
1577 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1578 elf_symfile_finish, /* finished with file, cleanup */
1579 default_symfile_offsets, /* Translate ext. to int. relocation */
1580 elf_symfile_segments, /* Get segment information from a file. */
1581 NULL,
1582 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1583 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1584 &psym_functions
c906108c
SS
1585};
1586
9291a0cd
TT
1587/* The same as elf_sym_fns, but not registered and uses the
1588 DWARF-specific GNU index rather than psymtab. */
00b5771c 1589static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1590{
3e43a32a
MS
1591 elf_new_init, /* init anything gbl to entire symab */
1592 elf_symfile_init, /* read initial info, setup for sym_red() */
1593 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1594 NULL, /* sym_read_psymbols */
3e43a32a
MS
1595 elf_symfile_finish, /* finished with file, cleanup */
1596 default_symfile_offsets, /* Translate ext. to int. relocatin */
1597 elf_symfile_segments, /* Get segment information from a file. */
1598 NULL,
1599 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1600 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1601 &dwarf2_gdb_index_functions
9291a0cd
TT
1602};
1603
07be84bf
JK
1604/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1605
1606static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1607{
1608 elf_gnu_ifunc_resolve_addr,
1609 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1610 elf_gnu_ifunc_resolver_stop,
1611 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1612};
1613
c906108c 1614void
fba45db2 1615_initialize_elfread (void)
c906108c 1616{
5d9cf8a4 1617 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1618 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1619
1620 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1621 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1622}
This page took 1.130525 seconds and 4 git commands to generate.