Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
32d0add0 | 3 | Copyright (C) 1991-2015 Free Software Foundation, Inc. |
1bac305b | 4 | |
c906108c SS |
5 | Written by Fred Fish at Cygnus Support. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "bfd.h" | |
c906108c | 24 | #include "elf-bfd.h" |
31d99776 DJ |
25 | #include "elf/common.h" |
26 | #include "elf/internal.h" | |
c906108c SS |
27 | #include "elf/mips.h" |
28 | #include "symtab.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "buildsym.h" | |
32 | #include "stabsread.h" | |
33 | #include "gdb-stabs.h" | |
34 | #include "complaints.h" | |
35 | #include "demangle.h" | |
ccefe4c4 | 36 | #include "psympriv.h" |
0ba1096a | 37 | #include "filenames.h" |
55aa24fb SDJ |
38 | #include "probe.h" |
39 | #include "arch-utils.h" | |
07be84bf JK |
40 | #include "gdbtypes.h" |
41 | #include "value.h" | |
42 | #include "infcall.h" | |
0e30163f JK |
43 | #include "gdbthread.h" |
44 | #include "regcache.h" | |
0af1e9a5 | 45 | #include "bcache.h" |
cbb099e8 | 46 | #include "gdb_bfd.h" |
dc294be5 | 47 | #include "build-id.h" |
c906108c | 48 | |
a14ed312 | 49 | extern void _initialize_elfread (void); |
392a587b | 50 | |
b11896a5 | 51 | /* Forward declarations. */ |
e36122e9 TT |
52 | extern const struct sym_fns elf_sym_fns_gdb_index; |
53 | extern const struct sym_fns elf_sym_fns_lazy_psyms; | |
9291a0cd | 54 | |
c906108c | 55 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 56 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
57 | It's local to elf_symfile_read. */ |
58 | ||
c5aa993b JM |
59 | struct elfinfo |
60 | { | |
c5aa993b | 61 | asection *stabsect; /* Section pointer for .stab section */ |
c5aa993b JM |
62 | asection *mdebugsect; /* Section pointer for .mdebug section */ |
63 | }; | |
c906108c | 64 | |
5d9cf8a4 | 65 | /* Per-BFD data for probe info. */ |
55aa24fb | 66 | |
5d9cf8a4 | 67 | static const struct bfd_data *probe_key = NULL; |
55aa24fb | 68 | |
07be84bf JK |
69 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
70 | pointer where the given entry will jump to. It gets updated by the real | |
71 | function address during lazy ld.so resolving in the inferior. These | |
72 | minimal symbols are indexed for <tab>-completion. */ | |
73 | ||
74 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
75 | ||
31d99776 DJ |
76 | /* Locate the segments in ABFD. */ |
77 | ||
78 | static struct symfile_segment_data * | |
79 | elf_symfile_segments (bfd *abfd) | |
80 | { | |
81 | Elf_Internal_Phdr *phdrs, **segments; | |
82 | long phdrs_size; | |
83 | int num_phdrs, num_segments, num_sections, i; | |
84 | asection *sect; | |
85 | struct symfile_segment_data *data; | |
86 | ||
87 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
88 | if (phdrs_size == -1) | |
89 | return NULL; | |
90 | ||
91 | phdrs = alloca (phdrs_size); | |
92 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); | |
93 | if (num_phdrs == -1) | |
94 | return NULL; | |
95 | ||
96 | num_segments = 0; | |
97 | segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); | |
98 | for (i = 0; i < num_phdrs; i++) | |
99 | if (phdrs[i].p_type == PT_LOAD) | |
100 | segments[num_segments++] = &phdrs[i]; | |
101 | ||
102 | if (num_segments == 0) | |
103 | return NULL; | |
104 | ||
41bf6aca | 105 | data = XCNEW (struct symfile_segment_data); |
31d99776 | 106 | data->num_segments = num_segments; |
fc270c35 TT |
107 | data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments); |
108 | data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments); | |
31d99776 DJ |
109 | |
110 | for (i = 0; i < num_segments; i++) | |
111 | { | |
112 | data->segment_bases[i] = segments[i]->p_vaddr; | |
113 | data->segment_sizes[i] = segments[i]->p_memsz; | |
114 | } | |
115 | ||
116 | num_sections = bfd_count_sections (abfd); | |
fc270c35 | 117 | data->segment_info = XCNEWVEC (int, num_sections); |
31d99776 DJ |
118 | |
119 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
120 | { | |
121 | int j; | |
122 | CORE_ADDR vma; | |
123 | ||
124 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
125 | continue; | |
126 | ||
127 | vma = bfd_get_section_vma (abfd, sect); | |
128 | ||
129 | for (j = 0; j < num_segments; j++) | |
130 | if (segments[j]->p_memsz > 0 | |
131 | && vma >= segments[j]->p_vaddr | |
a366c65a | 132 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
31d99776 DJ |
133 | { |
134 | data->segment_info[i] = j + 1; | |
135 | break; | |
136 | } | |
137 | ||
ad09a548 DJ |
138 | /* We should have found a segment for every non-empty section. |
139 | If we haven't, we will not relocate this section by any | |
140 | offsets we apply to the segments. As an exception, do not | |
141 | warn about SHT_NOBITS sections; in normal ELF execution | |
142 | environments, SHT_NOBITS means zero-initialized and belongs | |
143 | in a segment, but in no-OS environments some tools (e.g. ARM | |
144 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
145 | uninitialized, it doesn't need a program header. Such | |
146 | binaries are not relocatable. */ | |
147 | if (bfd_get_section_size (sect) > 0 && j == num_segments | |
148 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) | |
28ee876a | 149 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
31d99776 DJ |
150 | bfd_section_name (abfd, sect)); |
151 | } | |
152 | ||
153 | return data; | |
154 | } | |
155 | ||
c906108c SS |
156 | /* We are called once per section from elf_symfile_read. We |
157 | need to examine each section we are passed, check to see | |
158 | if it is something we are interested in processing, and | |
159 | if so, stash away some access information for the section. | |
160 | ||
161 | For now we recognize the dwarf debug information sections and | |
162 | line number sections from matching their section names. The | |
163 | ELF definition is no real help here since it has no direct | |
164 | knowledge of DWARF (by design, so any debugging format can be | |
165 | used). | |
166 | ||
167 | We also recognize the ".stab" sections used by the Sun compilers | |
168 | released with Solaris 2. | |
169 | ||
170 | FIXME: The section names should not be hardwired strings (what | |
171 | should they be? I don't think most object file formats have enough | |
0963b4bd | 172 | section flags to specify what kind of debug section it is. |
c906108c SS |
173 | -kingdon). */ |
174 | ||
175 | static void | |
12b9c64f | 176 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
c906108c | 177 | { |
52f0bd74 | 178 | struct elfinfo *ei; |
c906108c SS |
179 | |
180 | ei = (struct elfinfo *) eip; | |
7ce59000 | 181 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 182 | { |
c5aa993b | 183 | ei->stabsect = sectp; |
c906108c | 184 | } |
6314a349 | 185 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 186 | { |
c5aa993b | 187 | ei->mdebugsect = sectp; |
c906108c SS |
188 | } |
189 | } | |
190 | ||
c906108c | 191 | static struct minimal_symbol * |
04a679b8 TT |
192 | record_minimal_symbol (const char *name, int name_len, int copy_name, |
193 | CORE_ADDR address, | |
f594e5e9 MC |
194 | enum minimal_symbol_type ms_type, |
195 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 196 | { |
5e2b427d UW |
197 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
198 | ||
0875794a JK |
199 | if (ms_type == mst_text || ms_type == mst_file_text |
200 | || ms_type == mst_text_gnu_ifunc) | |
85ddcc70 | 201 | address = gdbarch_addr_bits_remove (gdbarch, address); |
c906108c | 202 | |
04a679b8 | 203 | return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
65cf3563 TT |
204 | ms_type, |
205 | gdb_bfd_section_index (objfile->obfd, | |
206 | bfd_section), | |
e6dc44a8 | 207 | objfile); |
c906108c SS |
208 | } |
209 | ||
7f86f058 | 210 | /* Read the symbol table of an ELF file. |
c906108c | 211 | |
62553543 | 212 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
213 | symbol table contains regular, dynamic, or synthetic symbols, add all |
214 | the global function and data symbols to the minimal symbol table. | |
c906108c | 215 | |
c5aa993b JM |
216 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
217 | defined in the ELF symbol table, which can be used to locate | |
218 | the beginnings of sections from each ".o" file that was linked to | |
219 | form the executable objfile. We gather any such info and record it | |
7f86f058 | 220 | in data structures hung off the objfile's private data. */ |
c906108c | 221 | |
6f610d07 UW |
222 | #define ST_REGULAR 0 |
223 | #define ST_DYNAMIC 1 | |
224 | #define ST_SYNTHETIC 2 | |
225 | ||
c906108c | 226 | static void |
6f610d07 | 227 | elf_symtab_read (struct objfile *objfile, int type, |
04a679b8 TT |
228 | long number_of_symbols, asymbol **symbol_table, |
229 | int copy_names) | |
c906108c | 230 | { |
5e2b427d | 231 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c | 232 | asymbol *sym; |
c906108c | 233 | long i; |
c906108c | 234 | CORE_ADDR symaddr; |
d4f3574e | 235 | CORE_ADDR offset; |
c906108c | 236 | enum minimal_symbol_type ms_type; |
18a94d75 DE |
237 | /* Name of the last file symbol. This is either a constant string or is |
238 | saved on the objfile's filename cache. */ | |
0af1e9a5 | 239 | const char *filesymname = ""; |
d2f4b8fe | 240 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
d4f3574e | 241 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
3e29f34a MR |
242 | int elf_make_msymbol_special_p |
243 | = gdbarch_elf_make_msymbol_special_p (gdbarch); | |
c5aa993b | 244 | |
0cc7b392 | 245 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 246 | { |
0cc7b392 DJ |
247 | sym = symbol_table[i]; |
248 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 249 | { |
0cc7b392 | 250 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 251 | that are null strings (may happen). */ |
0cc7b392 DJ |
252 | continue; |
253 | } | |
c906108c | 254 | |
74763737 DJ |
255 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
256 | symbols which do not correspond to objects in the symbol table, | |
257 | but have some other target-specific meaning. */ | |
258 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
259 | { |
260 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
261 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
262 | continue; | |
263 | } | |
74763737 | 264 | |
65cf3563 TT |
265 | offset = ANOFFSET (objfile->section_offsets, |
266 | gdb_bfd_section_index (objfile->obfd, sym->section)); | |
6f610d07 | 267 | if (type == ST_DYNAMIC |
45dfa85a | 268 | && sym->section == bfd_und_section_ptr |
0cc7b392 DJ |
269 | && (sym->flags & BSF_FUNCTION)) |
270 | { | |
271 | struct minimal_symbol *msym; | |
02c75f72 | 272 | bfd *abfd = objfile->obfd; |
dea91a5c | 273 | asection *sect; |
0cc7b392 DJ |
274 | |
275 | /* Symbol is a reference to a function defined in | |
276 | a shared library. | |
277 | If its value is non zero then it is usually the address | |
278 | of the corresponding entry in the procedure linkage table, | |
279 | plus the desired section offset. | |
280 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 281 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
282 | for this symbol in the executable file, so we skip it. */ |
283 | symaddr = sym->value; | |
284 | if (symaddr == 0) | |
285 | continue; | |
02c75f72 UW |
286 | |
287 | /* sym->section is the undefined section. However, we want to | |
288 | record the section where the PLT stub resides with the | |
289 | minimal symbol. Search the section table for the one that | |
290 | covers the stub's address. */ | |
291 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
292 | { | |
293 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
294 | continue; | |
295 | ||
296 | if (symaddr >= bfd_get_section_vma (abfd, sect) | |
297 | && symaddr < bfd_get_section_vma (abfd, sect) | |
298 | + bfd_get_section_size (sect)) | |
299 | break; | |
300 | } | |
301 | if (!sect) | |
302 | continue; | |
303 | ||
828cfa8d JB |
304 | /* On ia64-hpux, we have discovered that the system linker |
305 | adds undefined symbols with nonzero addresses that cannot | |
306 | be right (their address points inside the code of another | |
307 | function in the .text section). This creates problems | |
308 | when trying to determine which symbol corresponds to | |
309 | a given address. | |
310 | ||
311 | We try to detect those buggy symbols by checking which | |
312 | section we think they correspond to. Normally, PLT symbols | |
313 | are stored inside their own section, and the typical name | |
314 | for that section is ".plt". So, if there is a ".plt" | |
315 | section, and yet the section name of our symbol does not | |
316 | start with ".plt", we ignore that symbol. */ | |
61012eef | 317 | if (!startswith (sect->name, ".plt") |
828cfa8d JB |
318 | && bfd_get_section_by_name (abfd, ".plt") != NULL) |
319 | continue; | |
320 | ||
0cc7b392 | 321 | msym = record_minimal_symbol |
04a679b8 TT |
322 | (sym->name, strlen (sym->name), copy_names, |
323 | symaddr, mst_solib_trampoline, sect, objfile); | |
0cc7b392 | 324 | if (msym != NULL) |
9b807e7b MR |
325 | { |
326 | msym->filename = filesymname; | |
3e29f34a MR |
327 | if (elf_make_msymbol_special_p) |
328 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
9b807e7b | 329 | } |
0cc7b392 DJ |
330 | continue; |
331 | } | |
c906108c | 332 | |
0cc7b392 DJ |
333 | /* If it is a nonstripped executable, do not enter dynamic |
334 | symbols, as the dynamic symbol table is usually a subset | |
335 | of the main symbol table. */ | |
6f610d07 | 336 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
337 | continue; |
338 | if (sym->flags & BSF_FILE) | |
339 | { | |
18a94d75 | 340 | filesymname = bcache (sym->name, strlen (sym->name) + 1, |
706e3705 | 341 | objfile->per_bfd->filename_cache); |
0cc7b392 DJ |
342 | } |
343 | else if (sym->flags & BSF_SECTION_SYM) | |
344 | continue; | |
bb869963 SDJ |
345 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK |
346 | | BSF_GNU_UNIQUE)) | |
0cc7b392 DJ |
347 | { |
348 | struct minimal_symbol *msym; | |
349 | ||
350 | /* Select global/local/weak symbols. Note that bfd puts abs | |
351 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
352 | interested in will have a section. */ |
353 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 354 | symaddr = sym->value + sym->section->vma; |
0cc7b392 DJ |
355 | /* For non-absolute symbols, use the type of the section |
356 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 357 | no way of figuring this out for absolute symbols. */ |
45dfa85a | 358 | if (sym->section == bfd_abs_section_ptr) |
c906108c | 359 | { |
0cc7b392 DJ |
360 | /* This is a hack to get the minimal symbol type |
361 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
362 | with special section indices for dynamic symbols. |
363 | ||
364 | NOTE: uweigand-20071112: Synthetic symbols do not | |
365 | have an ELF-private part, so do not touch those. */ | |
dea91a5c | 366 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
367 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
368 | ||
369 | switch (shndx) | |
c906108c | 370 | { |
0cc7b392 DJ |
371 | case SHN_MIPS_TEXT: |
372 | ms_type = mst_text; | |
373 | break; | |
374 | case SHN_MIPS_DATA: | |
375 | ms_type = mst_data; | |
376 | break; | |
377 | case SHN_MIPS_ACOMMON: | |
378 | ms_type = mst_bss; | |
379 | break; | |
380 | default: | |
381 | ms_type = mst_abs; | |
382 | } | |
383 | ||
384 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 385 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
386 | if (ms_type != mst_abs) |
387 | { | |
388 | if (sym->name[0] == '.') | |
389 | continue; | |
c906108c | 390 | } |
0cc7b392 DJ |
391 | } |
392 | else if (sym->section->flags & SEC_CODE) | |
393 | { | |
bb869963 | 394 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 395 | { |
0875794a JK |
396 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
397 | ms_type = mst_text_gnu_ifunc; | |
398 | else | |
399 | ms_type = mst_text; | |
0cc7b392 | 400 | } |
90359a16 JK |
401 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
402 | descriptors mistaken for static functions starting with 'L'. | |
403 | */ | |
404 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' | |
405 | && (sym->flags & BSF_SYNTHETIC) == 0) | |
0cc7b392 DJ |
406 | || ((sym->flags & BSF_LOCAL) |
407 | && sym->name[0] == '$' | |
408 | && sym->name[1] == 'L')) | |
409 | /* Looks like a compiler-generated label. Skip | |
410 | it. The assembler should be skipping these (to | |
411 | keep executables small), but apparently with | |
412 | gcc on the (deleted) delta m88k SVR4, it loses. | |
413 | So to have us check too should be harmless (but | |
414 | I encourage people to fix this in the assembler | |
415 | instead of adding checks here). */ | |
416 | continue; | |
417 | else | |
418 | { | |
419 | ms_type = mst_file_text; | |
c906108c | 420 | } |
0cc7b392 DJ |
421 | } |
422 | else if (sym->section->flags & SEC_ALLOC) | |
423 | { | |
bb869963 | 424 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 425 | { |
0cc7b392 | 426 | if (sym->section->flags & SEC_LOAD) |
c906108c | 427 | { |
0cc7b392 | 428 | ms_type = mst_data; |
c906108c | 429 | } |
c906108c SS |
430 | else |
431 | { | |
0cc7b392 | 432 | ms_type = mst_bss; |
c906108c SS |
433 | } |
434 | } | |
0cc7b392 | 435 | else if (sym->flags & BSF_LOCAL) |
c906108c | 436 | { |
0cc7b392 DJ |
437 | if (sym->section->flags & SEC_LOAD) |
438 | { | |
439 | ms_type = mst_file_data; | |
c906108c SS |
440 | } |
441 | else | |
442 | { | |
0cc7b392 | 443 | ms_type = mst_file_bss; |
c906108c SS |
444 | } |
445 | } | |
446 | else | |
447 | { | |
0cc7b392 | 448 | ms_type = mst_unknown; |
c906108c | 449 | } |
0cc7b392 DJ |
450 | } |
451 | else | |
452 | { | |
453 | /* FIXME: Solaris2 shared libraries include lots of | |
dea91a5c | 454 | odd "absolute" and "undefined" symbols, that play |
0cc7b392 DJ |
455 | hob with actions like finding what function the PC |
456 | is in. Ignore them if they aren't text, data, or bss. */ | |
457 | /* ms_type = mst_unknown; */ | |
0963b4bd | 458 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
459 | } |
460 | msym = record_minimal_symbol | |
04a679b8 | 461 | (sym->name, strlen (sym->name), copy_names, symaddr, |
0cc7b392 | 462 | ms_type, sym->section, objfile); |
6f610d07 | 463 | |
0cc7b392 DJ |
464 | if (msym) |
465 | { | |
6f610d07 | 466 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
24c274a1 | 467 | ELF-private part. */ |
6f610d07 | 468 | if (type != ST_SYNTHETIC) |
24c274a1 AM |
469 | { |
470 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
471 | elf_symbol_type *elf_sym = (elf_symbol_type *) sym; | |
472 | SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size); | |
473 | } | |
dea91a5c | 474 | |
a103a963 | 475 | msym->filename = filesymname; |
3e29f34a MR |
476 | if (elf_make_msymbol_special_p) |
477 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 478 | } |
2eaf8d2a | 479 | |
715c6909 TT |
480 | /* If we see a default versioned symbol, install it under |
481 | its version-less name. */ | |
482 | if (msym != NULL) | |
483 | { | |
484 | const char *atsign = strchr (sym->name, '@'); | |
485 | ||
486 | if (atsign != NULL && atsign[1] == '@' && atsign > sym->name) | |
487 | { | |
488 | int len = atsign - sym->name; | |
489 | ||
490 | record_minimal_symbol (sym->name, len, 1, symaddr, | |
491 | ms_type, sym->section, objfile); | |
492 | } | |
493 | } | |
494 | ||
2eaf8d2a DJ |
495 | /* For @plt symbols, also record a trampoline to the |
496 | destination symbol. The @plt symbol will be used in | |
497 | disassembly, and the trampoline will be used when we are | |
498 | trying to find the target. */ | |
499 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
500 | { | |
501 | int len = strlen (sym->name); | |
502 | ||
503 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
504 | { | |
2eaf8d2a DJ |
505 | struct minimal_symbol *mtramp; |
506 | ||
04a679b8 TT |
507 | mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
508 | symaddr, | |
2eaf8d2a DJ |
509 | mst_solib_trampoline, |
510 | sym->section, objfile); | |
511 | if (mtramp) | |
512 | { | |
d9eaeb59 | 513 | SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym)); |
422d65e7 | 514 | mtramp->created_by_gdb = 1; |
2eaf8d2a | 515 | mtramp->filename = filesymname; |
3e29f34a MR |
516 | if (elf_make_msymbol_special_p) |
517 | gdbarch_elf_make_msymbol_special (gdbarch, | |
518 | sym, mtramp); | |
2eaf8d2a DJ |
519 | } |
520 | } | |
521 | } | |
c906108c | 522 | } |
c906108c SS |
523 | } |
524 | } | |
525 | ||
07be84bf JK |
526 | /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX) |
527 | for later look ups of which function to call when user requests | |
528 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
529 | library defining `function' we cannot yet know while reading OBJFILE which | |
530 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
531 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
532 | ||
533 | static void | |
534 | elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table) | |
535 | { | |
536 | bfd *obfd = objfile->obfd; | |
537 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
538 | asection *plt, *relplt, *got_plt; | |
07be84bf JK |
539 | int plt_elf_idx; |
540 | bfd_size_type reloc_count, reloc; | |
541 | char *string_buffer = NULL; | |
542 | size_t string_buffer_size = 0; | |
543 | struct cleanup *back_to; | |
df6d5441 | 544 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
545 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
546 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
547 | ||
548 | if (objfile->separate_debug_objfile_backlink) | |
549 | return; | |
550 | ||
551 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
552 | if (plt == NULL) | |
553 | return; | |
554 | plt_elf_idx = elf_section_data (plt)->this_idx; | |
555 | ||
556 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); | |
557 | if (got_plt == NULL) | |
4b7d1f7f WN |
558 | { |
559 | /* For platforms where there is no separate .got.plt. */ | |
560 | got_plt = bfd_get_section_by_name (obfd, ".got"); | |
561 | if (got_plt == NULL) | |
562 | return; | |
563 | } | |
07be84bf JK |
564 | |
565 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ | |
566 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
567 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx | |
568 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL | |
569 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) | |
570 | break; | |
571 | if (relplt == NULL) | |
572 | return; | |
573 | ||
574 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
575 | return; | |
576 | ||
577 | back_to = make_cleanup (free_current_contents, &string_buffer); | |
578 | ||
579 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; | |
580 | for (reloc = 0; reloc < reloc_count; reloc++) | |
581 | { | |
22e048c9 | 582 | const char *name; |
07be84bf JK |
583 | struct minimal_symbol *msym; |
584 | CORE_ADDR address; | |
585 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
586 | size_t name_len; | |
587 | ||
588 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
589 | name_len = strlen (name); | |
590 | address = relplt->relocation[reloc].address; | |
591 | ||
592 | /* Does the pointer reside in the .got.plt section? */ | |
593 | if (!(bfd_get_section_vma (obfd, got_plt) <= address | |
594 | && address < bfd_get_section_vma (obfd, got_plt) | |
595 | + bfd_get_section_size (got_plt))) | |
596 | continue; | |
597 | ||
598 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in | |
599 | OBJFILE the symbol is undefined and the objfile having NAME defined | |
600 | may not yet have been loaded. */ | |
601 | ||
3807f613 | 602 | if (string_buffer_size < name_len + got_suffix_len + 1) |
07be84bf JK |
603 | { |
604 | string_buffer_size = 2 * (name_len + got_suffix_len); | |
605 | string_buffer = xrealloc (string_buffer, string_buffer_size); | |
606 | } | |
607 | memcpy (string_buffer, name, name_len); | |
608 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, | |
3807f613 | 609 | got_suffix_len + 1); |
07be84bf JK |
610 | |
611 | msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len, | |
612 | 1, address, mst_slot_got_plt, got_plt, | |
613 | objfile); | |
614 | if (msym) | |
d9eaeb59 | 615 | SET_MSYMBOL_SIZE (msym, ptr_size); |
07be84bf JK |
616 | } |
617 | ||
618 | do_cleanups (back_to); | |
619 | } | |
620 | ||
621 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
622 | ||
623 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; | |
624 | ||
625 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
626 | ||
627 | struct elf_gnu_ifunc_cache | |
628 | { | |
629 | /* This is always a function entry address, not a function descriptor. */ | |
630 | CORE_ADDR addr; | |
631 | ||
632 | char name[1]; | |
633 | }; | |
634 | ||
635 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
636 | ||
637 | static hashval_t | |
638 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
639 | { | |
640 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
641 | ||
642 | return htab_hash_string (a->name); | |
643 | } | |
644 | ||
645 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
646 | ||
647 | static int | |
648 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
649 | { | |
650 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
651 | const struct elf_gnu_ifunc_cache *b = b_voidp; | |
652 | ||
653 | return strcmp (a->name, b->name) == 0; | |
654 | } | |
655 | ||
656 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
657 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
658 | valid and therefore they were successfully recorded, return 0 otherwise. | |
659 | ||
660 | Function does not expect a duplicate entry. Use | |
661 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
662 | exists. */ | |
663 | ||
664 | static int | |
665 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
666 | { | |
7cbd4a93 | 667 | struct bound_minimal_symbol msym; |
07be84bf JK |
668 | asection *sect; |
669 | struct objfile *objfile; | |
670 | htab_t htab; | |
671 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
672 | void **slot; | |
673 | ||
674 | msym = lookup_minimal_symbol_by_pc (addr); | |
7cbd4a93 | 675 | if (msym.minsym == NULL) |
07be84bf | 676 | return 0; |
77e371c0 | 677 | if (BMSYMBOL_VALUE_ADDRESS (msym) != addr) |
07be84bf JK |
678 | return 0; |
679 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ | |
efd66ac6 | 680 | sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section; |
e27d198c | 681 | objfile = msym.objfile; |
07be84bf JK |
682 | |
683 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
684 | resolution and it has no use for GDB. Besides ".text" this symbol can | |
685 | reside also in ".opd" for ppc64 function descriptor. */ | |
686 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) | |
687 | return 0; | |
688 | ||
689 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
690 | if (htab == NULL) | |
691 | { | |
692 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, | |
693 | elf_gnu_ifunc_cache_eq, | |
694 | NULL, &objfile->objfile_obstack, | |
695 | hashtab_obstack_allocate, | |
696 | dummy_obstack_deallocate); | |
697 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); | |
698 | } | |
699 | ||
700 | entry_local.addr = addr; | |
701 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
702 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
703 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
704 | entry_p = obstack_finish (&objfile->objfile_obstack); | |
705 | ||
706 | slot = htab_find_slot (htab, entry_p, INSERT); | |
707 | if (*slot != NULL) | |
708 | { | |
709 | struct elf_gnu_ifunc_cache *entry_found_p = *slot; | |
df6d5441 | 710 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
711 | |
712 | if (entry_found_p->addr != addr) | |
713 | { | |
714 | /* This case indicates buggy inferior program, the resolved address | |
715 | should never change. */ | |
716 | ||
717 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
718 | "function_address from %s to %s"), | |
719 | name, paddress (gdbarch, entry_found_p->addr), | |
720 | paddress (gdbarch, addr)); | |
721 | } | |
722 | ||
723 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
724 | } | |
725 | *slot = entry_p; | |
726 | ||
727 | return 1; | |
728 | } | |
729 | ||
730 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
731 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
732 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
733 | ||
734 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
735 | function. */ | |
736 | ||
737 | static int | |
738 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
739 | { | |
740 | struct objfile *objfile; | |
741 | ||
742 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
743 | { | |
744 | htab_t htab; | |
745 | struct elf_gnu_ifunc_cache *entry_p; | |
746 | void **slot; | |
747 | ||
748 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
749 | if (htab == NULL) | |
750 | continue; | |
751 | ||
752 | entry_p = alloca (sizeof (*entry_p) + strlen (name)); | |
753 | strcpy (entry_p->name, name); | |
754 | ||
755 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
756 | if (slot == NULL) | |
757 | continue; | |
758 | entry_p = *slot; | |
759 | gdb_assert (entry_p != NULL); | |
760 | ||
761 | if (addr_p) | |
762 | *addr_p = entry_p->addr; | |
763 | return 1; | |
764 | } | |
765 | ||
766 | return 0; | |
767 | } | |
768 | ||
769 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
770 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
771 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
772 | ||
773 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
774 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
775 | prevent cache entries duplicates. */ | |
776 | ||
777 | static int | |
778 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
779 | { | |
780 | char *name_got_plt; | |
781 | struct objfile *objfile; | |
782 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
783 | ||
784 | name_got_plt = alloca (strlen (name) + got_suffix_len + 1); | |
785 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); | |
786 | ||
787 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
788 | { | |
789 | bfd *obfd = objfile->obfd; | |
df6d5441 | 790 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
791 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
792 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
793 | CORE_ADDR pointer_address, addr; | |
794 | asection *plt; | |
795 | gdb_byte *buf = alloca (ptr_size); | |
3b7344d5 | 796 | struct bound_minimal_symbol msym; |
07be84bf JK |
797 | |
798 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
3b7344d5 | 799 | if (msym.minsym == NULL) |
07be84bf | 800 | continue; |
3b7344d5 | 801 | if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt) |
07be84bf | 802 | continue; |
77e371c0 | 803 | pointer_address = BMSYMBOL_VALUE_ADDRESS (msym); |
07be84bf JK |
804 | |
805 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
806 | if (plt == NULL) | |
807 | continue; | |
808 | ||
3b7344d5 | 809 | if (MSYMBOL_SIZE (msym.minsym) != ptr_size) |
07be84bf JK |
810 | continue; |
811 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
812 | continue; | |
813 | addr = extract_typed_address (buf, ptr_type); | |
814 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, | |
815 | ¤t_target); | |
4b7d1f7f | 816 | addr = gdbarch_addr_bits_remove (gdbarch, addr); |
07be84bf JK |
817 | |
818 | if (addr_p) | |
819 | *addr_p = addr; | |
820 | if (elf_gnu_ifunc_record_cache (name, addr)) | |
821 | return 1; | |
822 | } | |
823 | ||
824 | return 0; | |
825 | } | |
826 | ||
827 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
828 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
829 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
830 | ||
831 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
832 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
833 | ||
834 | static int | |
835 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) | |
836 | { | |
837 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
838 | return 1; | |
dea91a5c | 839 | |
07be84bf JK |
840 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
841 | return 1; | |
842 | ||
843 | return 0; | |
844 | } | |
845 | ||
846 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
847 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
848 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
849 | */ | |
850 | ||
851 | static CORE_ADDR | |
852 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
853 | { | |
2c02bd72 | 854 | const char *name_at_pc; |
07be84bf JK |
855 | CORE_ADDR start_at_pc, address; |
856 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
857 | struct value *function, *address_val; | |
858 | ||
859 | /* Try first any non-intrusive methods without an inferior call. */ | |
860 | ||
861 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
862 | && start_at_pc == pc) | |
863 | { | |
864 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
865 | return address; | |
866 | } | |
867 | else | |
868 | name_at_pc = NULL; | |
869 | ||
870 | function = allocate_value (func_func_type); | |
871 | set_value_address (function, pc); | |
872 | ||
873 | /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the | |
874 | function entry address. ADDRESS may be a function descriptor. */ | |
875 | ||
876 | address_val = call_function_by_hand (function, 0, NULL); | |
877 | address = value_as_address (address_val); | |
878 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
879 | ¤t_target); | |
4b7d1f7f | 880 | address = gdbarch_addr_bits_remove (gdbarch, address); |
07be84bf JK |
881 | |
882 | if (name_at_pc) | |
883 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
884 | ||
885 | return address; | |
886 | } | |
887 | ||
0e30163f JK |
888 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
889 | ||
890 | static void | |
891 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) | |
892 | { | |
893 | struct breakpoint *b_return; | |
894 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); | |
895 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); | |
896 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); | |
897 | int thread_id = pid_to_thread_id (inferior_ptid); | |
898 | ||
899 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
900 | ||
901 | for (b_return = b->related_breakpoint; b_return != b; | |
902 | b_return = b_return->related_breakpoint) | |
903 | { | |
904 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); | |
905 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); | |
906 | gdb_assert (frame_id_p (b_return->frame_id)); | |
907 | ||
908 | if (b_return->thread == thread_id | |
909 | && b_return->loc->requested_address == prev_pc | |
910 | && frame_id_eq (b_return->frame_id, prev_frame_id)) | |
911 | break; | |
912 | } | |
913 | ||
914 | if (b_return == b) | |
915 | { | |
916 | struct symtab_and_line sal; | |
917 | ||
918 | /* No need to call find_pc_line for symbols resolving as this is only | |
919 | a helper breakpointer never shown to the user. */ | |
920 | ||
921 | init_sal (&sal); | |
922 | sal.pspace = current_inferior ()->pspace; | |
923 | sal.pc = prev_pc; | |
924 | sal.section = find_pc_overlay (sal.pc); | |
925 | sal.explicit_pc = 1; | |
926 | b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, | |
927 | prev_frame_id, | |
928 | bp_gnu_ifunc_resolver_return); | |
929 | ||
c70a6932 JK |
930 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
931 | prev_frame = NULL; | |
932 | ||
0e30163f JK |
933 | /* Add new b_return to the ring list b->related_breakpoint. */ |
934 | gdb_assert (b_return->related_breakpoint == b_return); | |
935 | b_return->related_breakpoint = b->related_breakpoint; | |
936 | b->related_breakpoint = b_return; | |
937 | } | |
938 | } | |
939 | ||
940 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ | |
941 | ||
942 | static void | |
943 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) | |
944 | { | |
945 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); | |
946 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
947 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); | |
948 | struct regcache *regcache = get_thread_regcache (inferior_ptid); | |
6a3a010b | 949 | struct value *func_func; |
0e30163f JK |
950 | struct value *value; |
951 | CORE_ADDR resolved_address, resolved_pc; | |
952 | struct symtab_and_line sal; | |
f1310107 | 953 | struct symtabs_and_lines sals, sals_end; |
0e30163f JK |
954 | |
955 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); | |
956 | ||
0e30163f JK |
957 | while (b->related_breakpoint != b) |
958 | { | |
959 | struct breakpoint *b_next = b->related_breakpoint; | |
960 | ||
961 | switch (b->type) | |
962 | { | |
963 | case bp_gnu_ifunc_resolver: | |
964 | break; | |
965 | case bp_gnu_ifunc_resolver_return: | |
966 | delete_breakpoint (b); | |
967 | break; | |
968 | default: | |
969 | internal_error (__FILE__, __LINE__, | |
970 | _("handle_inferior_event: Invalid " | |
971 | "gnu-indirect-function breakpoint type %d"), | |
972 | (int) b->type); | |
973 | } | |
974 | b = b_next; | |
975 | } | |
976 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
6a3a010b MR |
977 | gdb_assert (b->loc->next == NULL); |
978 | ||
979 | func_func = allocate_value (func_func_type); | |
980 | set_value_address (func_func, b->loc->related_address); | |
981 | ||
982 | value = allocate_value (value_type); | |
983 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, | |
984 | value_contents_raw (value), NULL); | |
985 | resolved_address = value_as_address (value); | |
986 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, | |
987 | resolved_address, | |
988 | ¤t_target); | |
4b7d1f7f | 989 | resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc); |
0e30163f | 990 | |
f8eba3c6 | 991 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
0e30163f JK |
992 | elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc); |
993 | ||
994 | sal = find_pc_line (resolved_pc, 0); | |
995 | sals.nelts = 1; | |
996 | sals.sals = &sal; | |
f1310107 | 997 | sals_end.nelts = 0; |
0e30163f JK |
998 | |
999 | b->type = bp_breakpoint; | |
f1310107 | 1000 | update_breakpoint_locations (b, sals, sals_end); |
0e30163f JK |
1001 | } |
1002 | ||
2750ef27 TT |
1003 | /* A helper function for elf_symfile_read that reads the minimal |
1004 | symbols. */ | |
c906108c SS |
1005 | |
1006 | static void | |
5f6cac40 TT |
1007 | elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags, |
1008 | const struct elfinfo *ei) | |
c906108c | 1009 | { |
63524580 | 1010 | bfd *synth_abfd, *abfd = objfile->obfd; |
c906108c | 1011 | struct cleanup *back_to; |
62553543 EZ |
1012 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1013 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1014 | asymbol *synthsyms; | |
d2f4b8fe | 1015 | struct dbx_symfile_info *dbx; |
c906108c | 1016 | |
45cfd468 DE |
1017 | if (symtab_create_debug) |
1018 | { | |
1019 | fprintf_unfiltered (gdb_stdlog, | |
1020 | "Reading minimal symbols of objfile %s ...\n", | |
4262abfb | 1021 | objfile_name (objfile)); |
45cfd468 DE |
1022 | } |
1023 | ||
5f6cac40 TT |
1024 | /* If we already have minsyms, then we can skip some work here. |
1025 | However, if there were stabs or mdebug sections, we go ahead and | |
1026 | redo all the work anyway, because the psym readers for those | |
1027 | kinds of debuginfo need extra information found here. This can | |
1028 | go away once all types of symbols are in the per-BFD object. */ | |
1029 | if (objfile->per_bfd->minsyms_read | |
1030 | && ei->stabsect == NULL | |
1031 | && ei->mdebugsect == NULL) | |
1032 | { | |
1033 | if (symtab_create_debug) | |
1034 | fprintf_unfiltered (gdb_stdlog, | |
1035 | "... minimal symbols previously read\n"); | |
1036 | return; | |
1037 | } | |
1038 | ||
c906108c | 1039 | init_minimal_symbol_collection (); |
56e290f4 | 1040 | back_to = make_cleanup_discard_minimal_symbols (); |
c906108c | 1041 | |
0963b4bd | 1042 | /* Allocate struct to keep track of the symfile. */ |
d2f4b8fe TT |
1043 | dbx = XCNEW (struct dbx_symfile_info); |
1044 | set_objfile_data (objfile, dbx_objfile_data_key, dbx); | |
c906108c | 1045 | |
18a94d75 | 1046 | /* Process the normal ELF symbol table first. */ |
c906108c | 1047 | |
62553543 EZ |
1048 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1049 | if (storage_needed < 0) | |
3e43a32a MS |
1050 | error (_("Can't read symbols from %s: %s"), |
1051 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1052 | bfd_errmsg (bfd_get_error ())); |
1053 | ||
1054 | if (storage_needed > 0) | |
1055 | { | |
80c57053 JK |
1056 | /* Memory gets permanently referenced from ABFD after |
1057 | bfd_canonicalize_symtab so it must not get freed before ABFD gets. */ | |
1058 | ||
1059 | symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1060 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); |
1061 | ||
1062 | if (symcount < 0) | |
3e43a32a MS |
1063 | error (_("Can't read symbols from %s: %s"), |
1064 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1065 | bfd_errmsg (bfd_get_error ())); |
1066 | ||
04a679b8 | 1067 | elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
62553543 | 1068 | } |
c906108c SS |
1069 | |
1070 | /* Add the dynamic symbols. */ | |
1071 | ||
62553543 EZ |
1072 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1073 | ||
1074 | if (storage_needed > 0) | |
1075 | { | |
3f1eff0a JK |
1076 | /* Memory gets permanently referenced from ABFD after |
1077 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1078 | It happens only in the case when elf_slurp_reloc_table sees | |
1079 | asection->relocation NULL. Determining which section is asection is | |
1080 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1081 | implementation detail, though. */ | |
1082 | ||
1083 | dyn_symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1084 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1085 | dyn_symbol_table); | |
1086 | ||
1087 | if (dynsymcount < 0) | |
3e43a32a MS |
1088 | error (_("Can't read symbols from %s: %s"), |
1089 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1090 | bfd_errmsg (bfd_get_error ())); |
1091 | ||
04a679b8 | 1092 | elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
07be84bf JK |
1093 | |
1094 | elf_rel_plt_read (objfile, dyn_symbol_table); | |
62553543 EZ |
1095 | } |
1096 | ||
63524580 JK |
1097 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
1098 | elfutils (eu-strip) moves even the .symtab section into the .debug file. | |
1099 | ||
1100 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol | |
1101 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code | |
1102 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to | |
1103 | read the code address from .opd while it reads the .symtab section from | |
1104 | a separate debug info file as the .opd section is SHT_NOBITS there. | |
1105 | ||
1106 | With SYNTH_ABFD the .opd section will be read from the original | |
1107 | backlinked binary where it is valid. */ | |
1108 | ||
1109 | if (objfile->separate_debug_objfile_backlink) | |
1110 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; | |
1111 | else | |
1112 | synth_abfd = abfd; | |
1113 | ||
62553543 EZ |
1114 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
1115 | ||
63524580 | 1116 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
62553543 EZ |
1117 | dynsymcount, dyn_symbol_table, |
1118 | &synthsyms); | |
1119 | if (synthcount > 0) | |
1120 | { | |
1121 | asymbol **synth_symbol_table; | |
1122 | long i; | |
1123 | ||
1124 | make_cleanup (xfree, synthsyms); | |
1125 | synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); | |
1126 | for (i = 0; i < synthcount; i++) | |
9f20e3da | 1127 | synth_symbol_table[i] = synthsyms + i; |
62553543 | 1128 | make_cleanup (xfree, synth_symbol_table); |
3e43a32a MS |
1129 | elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, |
1130 | synth_symbol_table, 1); | |
62553543 | 1131 | } |
c906108c | 1132 | |
7134143f DJ |
1133 | /* Install any minimal symbols that have been collected as the current |
1134 | minimal symbols for this objfile. The debug readers below this point | |
1135 | should not generate new minimal symbols; if they do it's their | |
1136 | responsibility to install them. "mdebug" appears to be the only one | |
1137 | which will do this. */ | |
1138 | ||
1139 | install_minimal_symbols (objfile); | |
1140 | do_cleanups (back_to); | |
1141 | ||
4f00dda3 DE |
1142 | if (symtab_create_debug) |
1143 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); | |
2750ef27 TT |
1144 | } |
1145 | ||
1146 | /* Scan and build partial symbols for a symbol file. | |
1147 | We have been initialized by a call to elf_symfile_init, which | |
1148 | currently does nothing. | |
1149 | ||
2750ef27 TT |
1150 | This function only does the minimum work necessary for letting the |
1151 | user "name" things symbolically; it does not read the entire symtab. | |
1152 | Instead, it reads the external and static symbols and puts them in partial | |
1153 | symbol tables. When more extensive information is requested of a | |
1154 | file, the corresponding partial symbol table is mutated into a full | |
1155 | fledged symbol table by going back and reading the symbols | |
1156 | for real. | |
1157 | ||
1158 | We look for sections with specific names, to tell us what debug | |
1159 | format to look for: FIXME!!! | |
1160 | ||
1161 | elfstab_build_psymtabs() handles STABS symbols; | |
1162 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1163 | ||
1164 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1165 | like a COFF symbol table, but has only the minimal information necessary | |
1166 | for linking. We process this also, and use the information to | |
1167 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1168 | capability even for files compiled without -g. */ | |
1169 | ||
1170 | static void | |
1171 | elf_symfile_read (struct objfile *objfile, int symfile_flags) | |
1172 | { | |
1173 | bfd *abfd = objfile->obfd; | |
1174 | struct elfinfo ei; | |
1175 | ||
2750ef27 | 1176 | memset ((char *) &ei, 0, sizeof (ei)); |
12b9c64f | 1177 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
c906108c | 1178 | |
5f6cac40 TT |
1179 | elf_read_minimal_symbols (objfile, symfile_flags, &ei); |
1180 | ||
c906108c SS |
1181 | /* ELF debugging information is inserted into the psymtab in the |
1182 | order of least informative first - most informative last. Since | |
1183 | the psymtab table is searched `most recent insertion first' this | |
1184 | increases the probability that more detailed debug information | |
1185 | for a section is found. | |
1186 | ||
1187 | For instance, an object file might contain both .mdebug (XCOFF) | |
1188 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1189 | (searched last) and DWARF2 is inserted last (searched first). If | |
1190 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1191 | an included file XCOFF info is useless. */ |
c906108c SS |
1192 | |
1193 | if (ei.mdebugsect) | |
1194 | { | |
1195 | const struct ecoff_debug_swap *swap; | |
1196 | ||
1197 | /* .mdebug section, presumably holding ECOFF debugging | |
c5aa993b | 1198 | information. */ |
c906108c SS |
1199 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1200 | if (swap) | |
d4f3574e | 1201 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1202 | } |
1203 | if (ei.stabsect) | |
1204 | { | |
1205 | asection *str_sect; | |
1206 | ||
1207 | /* Stab sections have an associated string table that looks like | |
c5aa993b | 1208 | a separate section. */ |
c906108c SS |
1209 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1210 | ||
1211 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1212 | if (str_sect) | |
1213 | elfstab_build_psymtabs (objfile, | |
086df311 | 1214 | ei.stabsect, |
c906108c SS |
1215 | str_sect->filepos, |
1216 | bfd_section_size (abfd, str_sect)); | |
1217 | } | |
9291a0cd | 1218 | |
251d32d9 | 1219 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 | 1220 | { |
3e03848b JK |
1221 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug |
1222 | information present in OBJFILE. If there is such debug info present | |
1223 | never use .gdb_index. */ | |
1224 | ||
1225 | if (!objfile_has_partial_symbols (objfile) | |
1226 | && dwarf2_initialize_objfile (objfile)) | |
8fb8eb5c | 1227 | objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index); |
b11896a5 TT |
1228 | else |
1229 | { | |
1230 | /* It is ok to do this even if the stabs reader made some | |
1231 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1232 | set, and so our lazy reader function will still be called | |
1233 | when needed. */ | |
8fb8eb5c | 1234 | objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms); |
b11896a5 TT |
1235 | } |
1236 | } | |
3e43a32a MS |
1237 | /* If the file has its own symbol tables it has no separate debug |
1238 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1239 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
8a92335b JK |
1240 | `.note.gnu.build-id'. |
1241 | ||
1242 | .gnu_debugdata is !objfile_has_partial_symbols because it contains only | |
1243 | .symtab, not .debug_* section. But if we already added .gnu_debugdata as | |
1244 | an objfile via find_separate_debug_file_in_section there was no separate | |
1245 | debug info available. Therefore do not attempt to search for another one, | |
1246 | objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to | |
1247 | be NULL and we would possibly violate it. */ | |
1248 | ||
1249 | else if (!objfile_has_partial_symbols (objfile) | |
1250 | && objfile->separate_debug_objfile == NULL | |
1251 | && objfile->separate_debug_objfile_backlink == NULL) | |
9cce227f TG |
1252 | { |
1253 | char *debugfile; | |
1254 | ||
1255 | debugfile = find_separate_debug_file_by_buildid (objfile); | |
1256 | ||
1257 | if (debugfile == NULL) | |
1258 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
1259 | ||
1260 | if (debugfile) | |
1261 | { | |
8ac244b4 | 1262 | struct cleanup *cleanup = make_cleanup (xfree, debugfile); |
9cce227f | 1263 | bfd *abfd = symfile_bfd_open (debugfile); |
d7f9d729 | 1264 | |
8ac244b4 | 1265 | make_cleanup_bfd_unref (abfd); |
24ba069a | 1266 | symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile); |
8ac244b4 | 1267 | do_cleanups (cleanup); |
9cce227f TG |
1268 | } |
1269 | } | |
c906108c SS |
1270 | } |
1271 | ||
b11896a5 TT |
1272 | /* Callback to lazily read psymtabs. */ |
1273 | ||
1274 | static void | |
1275 | read_psyms (struct objfile *objfile) | |
1276 | { | |
251d32d9 | 1277 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 TT |
1278 | dwarf2_build_psymtabs (objfile); |
1279 | } | |
1280 | ||
c906108c SS |
1281 | /* Initialize anything that needs initializing when a completely new symbol |
1282 | file is specified (not just adding some symbols from another file, e.g. a | |
1283 | shared library). | |
1284 | ||
3e43a32a MS |
1285 | We reinitialize buildsym, since we may be reading stabs from an ELF |
1286 | file. */ | |
c906108c SS |
1287 | |
1288 | static void | |
fba45db2 | 1289 | elf_new_init (struct objfile *ignore) |
c906108c SS |
1290 | { |
1291 | stabsread_new_init (); | |
1292 | buildsym_new_init (); | |
1293 | } | |
1294 | ||
1295 | /* Perform any local cleanups required when we are done with a particular | |
1296 | objfile. I.E, we are in the process of discarding all symbol information | |
1297 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1298 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1299 | |
1300 | static void | |
fba45db2 | 1301 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1302 | { |
fe3e1990 | 1303 | dwarf2_free_objfile (objfile); |
c906108c SS |
1304 | } |
1305 | ||
db7a9bcd | 1306 | /* ELF specific initialization routine for reading symbols. */ |
c906108c SS |
1307 | |
1308 | static void | |
fba45db2 | 1309 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1310 | { |
1311 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1312 | find this causes a significant slowdown in gdb then we could | |
1313 | set it in the debug symbol readers only when necessary. */ | |
1314 | objfile->flags |= OBJF_REORDERED; | |
1315 | } | |
1316 | ||
55aa24fb SDJ |
1317 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ |
1318 | ||
1319 | static VEC (probe_p) * | |
1320 | elf_get_probes (struct objfile *objfile) | |
1321 | { | |
5d9cf8a4 | 1322 | VEC (probe_p) *probes_per_bfd; |
55aa24fb SDJ |
1323 | |
1324 | /* Have we parsed this objfile's probes already? */ | |
5d9cf8a4 | 1325 | probes_per_bfd = bfd_data (objfile->obfd, probe_key); |
55aa24fb | 1326 | |
5d9cf8a4 | 1327 | if (!probes_per_bfd) |
55aa24fb SDJ |
1328 | { |
1329 | int ix; | |
1330 | const struct probe_ops *probe_ops; | |
1331 | ||
1332 | /* Here we try to gather information about all types of probes from the | |
1333 | objfile. */ | |
1334 | for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops); | |
1335 | ix++) | |
5d9cf8a4 | 1336 | probe_ops->get_probes (&probes_per_bfd, objfile); |
55aa24fb | 1337 | |
5d9cf8a4 | 1338 | if (probes_per_bfd == NULL) |
55aa24fb | 1339 | { |
5d9cf8a4 TT |
1340 | VEC_reserve (probe_p, probes_per_bfd, 1); |
1341 | gdb_assert (probes_per_bfd != NULL); | |
55aa24fb SDJ |
1342 | } |
1343 | ||
5d9cf8a4 | 1344 | set_bfd_data (objfile->obfd, probe_key, probes_per_bfd); |
55aa24fb SDJ |
1345 | } |
1346 | ||
5d9cf8a4 | 1347 | return probes_per_bfd; |
55aa24fb SDJ |
1348 | } |
1349 | ||
55aa24fb SDJ |
1350 | /* Helper function used to free the space allocated for storing SystemTap |
1351 | probe information. */ | |
1352 | ||
1353 | static void | |
5d9cf8a4 | 1354 | probe_key_free (bfd *abfd, void *d) |
55aa24fb SDJ |
1355 | { |
1356 | int ix; | |
1357 | VEC (probe_p) *probes = d; | |
1358 | struct probe *probe; | |
1359 | ||
1360 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1361 | probe->pops->destroy (probe); | |
1362 | ||
1363 | VEC_free (probe_p, probes); | |
1364 | } | |
1365 | ||
c906108c | 1366 | \f |
55aa24fb SDJ |
1367 | |
1368 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ | |
1369 | ||
1370 | static const struct sym_probe_fns elf_probe_fns = | |
1371 | { | |
25f9533e | 1372 | elf_get_probes, /* sym_get_probes */ |
55aa24fb SDJ |
1373 | }; |
1374 | ||
c906108c SS |
1375 | /* Register that we are able to handle ELF object file formats. */ |
1376 | ||
00b5771c | 1377 | static const struct sym_fns elf_sym_fns = |
c906108c | 1378 | { |
3e43a32a MS |
1379 | elf_new_init, /* init anything gbl to entire symtab */ |
1380 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1381 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1382 | NULL, /* sym_read_psymbols */ |
1383 | elf_symfile_finish, /* finished with file, cleanup */ | |
1384 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1385 | elf_symfile_segments, /* Get segment information from a file. */ | |
1386 | NULL, | |
1387 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1388 | &elf_probe_fns, /* sym_probe_fns */ |
b11896a5 TT |
1389 | &psym_functions |
1390 | }; | |
1391 | ||
1392 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1393 | psymbols. */ | |
1394 | ||
e36122e9 | 1395 | const struct sym_fns elf_sym_fns_lazy_psyms = |
b11896a5 | 1396 | { |
b11896a5 TT |
1397 | elf_new_init, /* init anything gbl to entire symtab */ |
1398 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1399 | elf_symfile_read, /* read a symbol file into symtab */ | |
1400 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1401 | elf_symfile_finish, /* finished with file, cleanup */ |
1402 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1403 | elf_symfile_segments, /* Get segment information from a file. */ | |
1404 | NULL, | |
1405 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1406 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1407 | &psym_functions |
c906108c SS |
1408 | }; |
1409 | ||
9291a0cd TT |
1410 | /* The same as elf_sym_fns, but not registered and uses the |
1411 | DWARF-specific GNU index rather than psymtab. */ | |
e36122e9 | 1412 | const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd | 1413 | { |
3e43a32a MS |
1414 | elf_new_init, /* init anything gbl to entire symab */ |
1415 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1416 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1417 | NULL, /* sym_read_psymbols */ |
3e43a32a MS |
1418 | elf_symfile_finish, /* finished with file, cleanup */ |
1419 | default_symfile_offsets, /* Translate ext. to int. relocatin */ | |
1420 | elf_symfile_segments, /* Get segment information from a file. */ | |
1421 | NULL, | |
1422 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1423 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1424 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1425 | }; |
1426 | ||
07be84bf JK |
1427 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1428 | ||
1429 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1430 | { | |
1431 | elf_gnu_ifunc_resolve_addr, | |
1432 | elf_gnu_ifunc_resolve_name, | |
0e30163f JK |
1433 | elf_gnu_ifunc_resolver_stop, |
1434 | elf_gnu_ifunc_resolver_return_stop | |
07be84bf JK |
1435 | }; |
1436 | ||
c906108c | 1437 | void |
fba45db2 | 1438 | _initialize_elfread (void) |
c906108c | 1439 | { |
5d9cf8a4 | 1440 | probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free); |
c256e171 | 1441 | add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); |
07be84bf JK |
1442 | |
1443 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); | |
1444 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; | |
c906108c | 1445 | } |