Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
28e7fd62 | 3 | Copyright (C) 1991-2013 Free Software Foundation, Inc. |
1bac305b | 4 | |
c906108c SS |
5 | Written by Fred Fish at Cygnus Support. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "bfd.h" | |
24 | #include "gdb_string.h" | |
25 | #include "elf-bfd.h" | |
31d99776 DJ |
26 | #include "elf/common.h" |
27 | #include "elf/internal.h" | |
c906108c SS |
28 | #include "elf/mips.h" |
29 | #include "symtab.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
32 | #include "buildsym.h" | |
33 | #include "stabsread.h" | |
34 | #include "gdb-stabs.h" | |
35 | #include "complaints.h" | |
36 | #include "demangle.h" | |
ccefe4c4 | 37 | #include "psympriv.h" |
0ba1096a | 38 | #include "filenames.h" |
55aa24fb SDJ |
39 | #include "probe.h" |
40 | #include "arch-utils.h" | |
07be84bf JK |
41 | #include "gdbtypes.h" |
42 | #include "value.h" | |
43 | #include "infcall.h" | |
0e30163f JK |
44 | #include "gdbthread.h" |
45 | #include "regcache.h" | |
0af1e9a5 | 46 | #include "bcache.h" |
cbb099e8 | 47 | #include "gdb_bfd.h" |
dc294be5 | 48 | #include "build-id.h" |
c906108c | 49 | |
a14ed312 | 50 | extern void _initialize_elfread (void); |
392a587b | 51 | |
b11896a5 | 52 | /* Forward declarations. */ |
00b5771c | 53 | static const struct sym_fns elf_sym_fns_gdb_index; |
b11896a5 | 54 | static const struct sym_fns elf_sym_fns_lazy_psyms; |
9291a0cd | 55 | |
c906108c | 56 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 57 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
58 | It's local to elf_symfile_read. */ |
59 | ||
c5aa993b JM |
60 | struct elfinfo |
61 | { | |
c5aa993b | 62 | asection *stabsect; /* Section pointer for .stab section */ |
c5aa993b JM |
63 | asection *mdebugsect; /* Section pointer for .mdebug section */ |
64 | }; | |
c906108c | 65 | |
55aa24fb SDJ |
66 | /* Per-objfile data for probe info. */ |
67 | ||
68 | static const struct objfile_data *probe_key = NULL; | |
69 | ||
12b9c64f | 70 | static void free_elfinfo (void *); |
c906108c | 71 | |
07be84bf JK |
72 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
73 | pointer where the given entry will jump to. It gets updated by the real | |
74 | function address during lazy ld.so resolving in the inferior. These | |
75 | minimal symbols are indexed for <tab>-completion. */ | |
76 | ||
77 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
78 | ||
31d99776 DJ |
79 | /* Locate the segments in ABFD. */ |
80 | ||
81 | static struct symfile_segment_data * | |
82 | elf_symfile_segments (bfd *abfd) | |
83 | { | |
84 | Elf_Internal_Phdr *phdrs, **segments; | |
85 | long phdrs_size; | |
86 | int num_phdrs, num_segments, num_sections, i; | |
87 | asection *sect; | |
88 | struct symfile_segment_data *data; | |
89 | ||
90 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
91 | if (phdrs_size == -1) | |
92 | return NULL; | |
93 | ||
94 | phdrs = alloca (phdrs_size); | |
95 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); | |
96 | if (num_phdrs == -1) | |
97 | return NULL; | |
98 | ||
99 | num_segments = 0; | |
100 | segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); | |
101 | for (i = 0; i < num_phdrs; i++) | |
102 | if (phdrs[i].p_type == PT_LOAD) | |
103 | segments[num_segments++] = &phdrs[i]; | |
104 | ||
105 | if (num_segments == 0) | |
106 | return NULL; | |
107 | ||
108 | data = XZALLOC (struct symfile_segment_data); | |
109 | data->num_segments = num_segments; | |
110 | data->segment_bases = XCALLOC (num_segments, CORE_ADDR); | |
111 | data->segment_sizes = XCALLOC (num_segments, CORE_ADDR); | |
112 | ||
113 | for (i = 0; i < num_segments; i++) | |
114 | { | |
115 | data->segment_bases[i] = segments[i]->p_vaddr; | |
116 | data->segment_sizes[i] = segments[i]->p_memsz; | |
117 | } | |
118 | ||
119 | num_sections = bfd_count_sections (abfd); | |
120 | data->segment_info = XCALLOC (num_sections, int); | |
121 | ||
122 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
123 | { | |
124 | int j; | |
125 | CORE_ADDR vma; | |
126 | ||
127 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
128 | continue; | |
129 | ||
130 | vma = bfd_get_section_vma (abfd, sect); | |
131 | ||
132 | for (j = 0; j < num_segments; j++) | |
133 | if (segments[j]->p_memsz > 0 | |
134 | && vma >= segments[j]->p_vaddr | |
a366c65a | 135 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
31d99776 DJ |
136 | { |
137 | data->segment_info[i] = j + 1; | |
138 | break; | |
139 | } | |
140 | ||
ad09a548 DJ |
141 | /* We should have found a segment for every non-empty section. |
142 | If we haven't, we will not relocate this section by any | |
143 | offsets we apply to the segments. As an exception, do not | |
144 | warn about SHT_NOBITS sections; in normal ELF execution | |
145 | environments, SHT_NOBITS means zero-initialized and belongs | |
146 | in a segment, but in no-OS environments some tools (e.g. ARM | |
147 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
148 | uninitialized, it doesn't need a program header. Such | |
149 | binaries are not relocatable. */ | |
150 | if (bfd_get_section_size (sect) > 0 && j == num_segments | |
151 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) | |
28ee876a | 152 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
31d99776 DJ |
153 | bfd_section_name (abfd, sect)); |
154 | } | |
155 | ||
156 | return data; | |
157 | } | |
158 | ||
c906108c SS |
159 | /* We are called once per section from elf_symfile_read. We |
160 | need to examine each section we are passed, check to see | |
161 | if it is something we are interested in processing, and | |
162 | if so, stash away some access information for the section. | |
163 | ||
164 | For now we recognize the dwarf debug information sections and | |
165 | line number sections from matching their section names. The | |
166 | ELF definition is no real help here since it has no direct | |
167 | knowledge of DWARF (by design, so any debugging format can be | |
168 | used). | |
169 | ||
170 | We also recognize the ".stab" sections used by the Sun compilers | |
171 | released with Solaris 2. | |
172 | ||
173 | FIXME: The section names should not be hardwired strings (what | |
174 | should they be? I don't think most object file formats have enough | |
0963b4bd | 175 | section flags to specify what kind of debug section it is. |
c906108c SS |
176 | -kingdon). */ |
177 | ||
178 | static void | |
12b9c64f | 179 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
c906108c | 180 | { |
52f0bd74 | 181 | struct elfinfo *ei; |
c906108c SS |
182 | |
183 | ei = (struct elfinfo *) eip; | |
7ce59000 | 184 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 185 | { |
c5aa993b | 186 | ei->stabsect = sectp; |
c906108c | 187 | } |
6314a349 | 188 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 189 | { |
c5aa993b | 190 | ei->mdebugsect = sectp; |
c906108c SS |
191 | } |
192 | } | |
193 | ||
c906108c | 194 | static struct minimal_symbol * |
04a679b8 TT |
195 | record_minimal_symbol (const char *name, int name_len, int copy_name, |
196 | CORE_ADDR address, | |
f594e5e9 MC |
197 | enum minimal_symbol_type ms_type, |
198 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 199 | { |
5e2b427d UW |
200 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
201 | ||
0875794a JK |
202 | if (ms_type == mst_text || ms_type == mst_file_text |
203 | || ms_type == mst_text_gnu_ifunc) | |
85ddcc70 | 204 | address = gdbarch_addr_bits_remove (gdbarch, address); |
c906108c | 205 | |
04a679b8 | 206 | return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
65cf3563 TT |
207 | ms_type, |
208 | gdb_bfd_section_index (objfile->obfd, | |
209 | bfd_section), | |
e6dc44a8 | 210 | objfile); |
c906108c SS |
211 | } |
212 | ||
7f86f058 | 213 | /* Read the symbol table of an ELF file. |
c906108c | 214 | |
62553543 | 215 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
216 | symbol table contains regular, dynamic, or synthetic symbols, add all |
217 | the global function and data symbols to the minimal symbol table. | |
c906108c | 218 | |
c5aa993b JM |
219 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
220 | defined in the ELF symbol table, which can be used to locate | |
221 | the beginnings of sections from each ".o" file that was linked to | |
222 | form the executable objfile. We gather any such info and record it | |
7f86f058 | 223 | in data structures hung off the objfile's private data. */ |
c906108c | 224 | |
6f610d07 UW |
225 | #define ST_REGULAR 0 |
226 | #define ST_DYNAMIC 1 | |
227 | #define ST_SYNTHETIC 2 | |
228 | ||
c906108c | 229 | static void |
6f610d07 | 230 | elf_symtab_read (struct objfile *objfile, int type, |
04a679b8 TT |
231 | long number_of_symbols, asymbol **symbol_table, |
232 | int copy_names) | |
c906108c | 233 | { |
5e2b427d | 234 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c | 235 | asymbol *sym; |
c906108c | 236 | long i; |
c906108c | 237 | CORE_ADDR symaddr; |
d4f3574e | 238 | CORE_ADDR offset; |
c906108c SS |
239 | enum minimal_symbol_type ms_type; |
240 | /* If sectinfo is nonNULL, it contains section info that should end up | |
241 | filed in the objfile. */ | |
242 | struct stab_section_info *sectinfo = NULL; | |
243 | /* If filesym is nonzero, it points to a file symbol, but we haven't | |
244 | seen any section info for it yet. */ | |
245 | asymbol *filesym = 0; | |
1c9e8358 | 246 | /* Name of filesym. This is either a constant string or is saved on |
0af1e9a5 TT |
247 | the objfile's filename cache. */ |
248 | const char *filesymname = ""; | |
d2f4b8fe | 249 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
d4f3574e | 250 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
c5aa993b | 251 | |
0cc7b392 | 252 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 253 | { |
0cc7b392 DJ |
254 | sym = symbol_table[i]; |
255 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 256 | { |
0cc7b392 | 257 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 258 | that are null strings (may happen). */ |
0cc7b392 DJ |
259 | continue; |
260 | } | |
c906108c | 261 | |
74763737 DJ |
262 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
263 | symbols which do not correspond to objects in the symbol table, | |
264 | but have some other target-specific meaning. */ | |
265 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
266 | { |
267 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
268 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
269 | continue; | |
270 | } | |
74763737 | 271 | |
65cf3563 TT |
272 | offset = ANOFFSET (objfile->section_offsets, |
273 | gdb_bfd_section_index (objfile->obfd, sym->section)); | |
6f610d07 | 274 | if (type == ST_DYNAMIC |
45dfa85a | 275 | && sym->section == bfd_und_section_ptr |
0cc7b392 DJ |
276 | && (sym->flags & BSF_FUNCTION)) |
277 | { | |
278 | struct minimal_symbol *msym; | |
02c75f72 | 279 | bfd *abfd = objfile->obfd; |
dea91a5c | 280 | asection *sect; |
0cc7b392 DJ |
281 | |
282 | /* Symbol is a reference to a function defined in | |
283 | a shared library. | |
284 | If its value is non zero then it is usually the address | |
285 | of the corresponding entry in the procedure linkage table, | |
286 | plus the desired section offset. | |
287 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 288 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
289 | for this symbol in the executable file, so we skip it. */ |
290 | symaddr = sym->value; | |
291 | if (symaddr == 0) | |
292 | continue; | |
02c75f72 UW |
293 | |
294 | /* sym->section is the undefined section. However, we want to | |
295 | record the section where the PLT stub resides with the | |
296 | minimal symbol. Search the section table for the one that | |
297 | covers the stub's address. */ | |
298 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
299 | { | |
300 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
301 | continue; | |
302 | ||
303 | if (symaddr >= bfd_get_section_vma (abfd, sect) | |
304 | && symaddr < bfd_get_section_vma (abfd, sect) | |
305 | + bfd_get_section_size (sect)) | |
306 | break; | |
307 | } | |
308 | if (!sect) | |
309 | continue; | |
310 | ||
828cfa8d JB |
311 | /* On ia64-hpux, we have discovered that the system linker |
312 | adds undefined symbols with nonzero addresses that cannot | |
313 | be right (their address points inside the code of another | |
314 | function in the .text section). This creates problems | |
315 | when trying to determine which symbol corresponds to | |
316 | a given address. | |
317 | ||
318 | We try to detect those buggy symbols by checking which | |
319 | section we think they correspond to. Normally, PLT symbols | |
320 | are stored inside their own section, and the typical name | |
321 | for that section is ".plt". So, if there is a ".plt" | |
322 | section, and yet the section name of our symbol does not | |
323 | start with ".plt", we ignore that symbol. */ | |
324 | if (strncmp (sect->name, ".plt", 4) != 0 | |
325 | && bfd_get_section_by_name (abfd, ".plt") != NULL) | |
326 | continue; | |
327 | ||
65cf3563 TT |
328 | symaddr += ANOFFSET (objfile->section_offsets, |
329 | gdb_bfd_section_index (objfile->obfd, sect)); | |
02c75f72 | 330 | |
0cc7b392 | 331 | msym = record_minimal_symbol |
04a679b8 TT |
332 | (sym->name, strlen (sym->name), copy_names, |
333 | symaddr, mst_solib_trampoline, sect, objfile); | |
0cc7b392 DJ |
334 | if (msym != NULL) |
335 | msym->filename = filesymname; | |
0cc7b392 DJ |
336 | continue; |
337 | } | |
c906108c | 338 | |
0cc7b392 DJ |
339 | /* If it is a nonstripped executable, do not enter dynamic |
340 | symbols, as the dynamic symbol table is usually a subset | |
341 | of the main symbol table. */ | |
6f610d07 | 342 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
343 | continue; |
344 | if (sym->flags & BSF_FILE) | |
345 | { | |
346 | /* STT_FILE debugging symbol that helps stabs-in-elf debugging. | |
347 | Chain any old one onto the objfile; remember new sym. */ | |
348 | if (sectinfo != NULL) | |
c906108c | 349 | { |
0cc7b392 DJ |
350 | sectinfo->next = dbx->stab_section_info; |
351 | dbx->stab_section_info = sectinfo; | |
352 | sectinfo = NULL; | |
353 | } | |
354 | filesym = sym; | |
0af1e9a5 | 355 | filesymname = bcache (filesym->name, strlen (filesym->name) + 1, |
706e3705 | 356 | objfile->per_bfd->filename_cache); |
0cc7b392 DJ |
357 | } |
358 | else if (sym->flags & BSF_SECTION_SYM) | |
359 | continue; | |
bb869963 SDJ |
360 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK |
361 | | BSF_GNU_UNIQUE)) | |
0cc7b392 DJ |
362 | { |
363 | struct minimal_symbol *msym; | |
364 | ||
365 | /* Select global/local/weak symbols. Note that bfd puts abs | |
366 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
367 | interested in will have a section. */ |
368 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 369 | symaddr = sym->value + sym->section->vma; |
45148c2e UW |
370 | /* Relocate all non-absolute and non-TLS symbols by the |
371 | section offset. */ | |
45dfa85a | 372 | if (sym->section != bfd_abs_section_ptr |
45148c2e | 373 | && !(sym->section->flags & SEC_THREAD_LOCAL)) |
0cc7b392 DJ |
374 | { |
375 | symaddr += offset; | |
c906108c | 376 | } |
0cc7b392 DJ |
377 | /* For non-absolute symbols, use the type of the section |
378 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 379 | no way of figuring this out for absolute symbols. */ |
45dfa85a | 380 | if (sym->section == bfd_abs_section_ptr) |
c906108c | 381 | { |
0cc7b392 DJ |
382 | /* This is a hack to get the minimal symbol type |
383 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
384 | with special section indices for dynamic symbols. |
385 | ||
386 | NOTE: uweigand-20071112: Synthetic symbols do not | |
387 | have an ELF-private part, so do not touch those. */ | |
dea91a5c | 388 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
389 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
390 | ||
391 | switch (shndx) | |
c906108c | 392 | { |
0cc7b392 DJ |
393 | case SHN_MIPS_TEXT: |
394 | ms_type = mst_text; | |
395 | break; | |
396 | case SHN_MIPS_DATA: | |
397 | ms_type = mst_data; | |
398 | break; | |
399 | case SHN_MIPS_ACOMMON: | |
400 | ms_type = mst_bss; | |
401 | break; | |
402 | default: | |
403 | ms_type = mst_abs; | |
404 | } | |
405 | ||
406 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 407 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
408 | if (ms_type != mst_abs) |
409 | { | |
410 | if (sym->name[0] == '.') | |
411 | continue; | |
d4f3574e | 412 | symaddr += offset; |
c906108c | 413 | } |
0cc7b392 DJ |
414 | } |
415 | else if (sym->section->flags & SEC_CODE) | |
416 | { | |
bb869963 | 417 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 418 | { |
0875794a JK |
419 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
420 | ms_type = mst_text_gnu_ifunc; | |
421 | else | |
422 | ms_type = mst_text; | |
0cc7b392 | 423 | } |
90359a16 JK |
424 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
425 | descriptors mistaken for static functions starting with 'L'. | |
426 | */ | |
427 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' | |
428 | && (sym->flags & BSF_SYNTHETIC) == 0) | |
0cc7b392 DJ |
429 | || ((sym->flags & BSF_LOCAL) |
430 | && sym->name[0] == '$' | |
431 | && sym->name[1] == 'L')) | |
432 | /* Looks like a compiler-generated label. Skip | |
433 | it. The assembler should be skipping these (to | |
434 | keep executables small), but apparently with | |
435 | gcc on the (deleted) delta m88k SVR4, it loses. | |
436 | So to have us check too should be harmless (but | |
437 | I encourage people to fix this in the assembler | |
438 | instead of adding checks here). */ | |
439 | continue; | |
440 | else | |
441 | { | |
442 | ms_type = mst_file_text; | |
c906108c | 443 | } |
0cc7b392 DJ |
444 | } |
445 | else if (sym->section->flags & SEC_ALLOC) | |
446 | { | |
bb869963 | 447 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 448 | { |
0cc7b392 | 449 | if (sym->section->flags & SEC_LOAD) |
c906108c | 450 | { |
0cc7b392 | 451 | ms_type = mst_data; |
c906108c | 452 | } |
c906108c SS |
453 | else |
454 | { | |
0cc7b392 | 455 | ms_type = mst_bss; |
c906108c SS |
456 | } |
457 | } | |
0cc7b392 | 458 | else if (sym->flags & BSF_LOCAL) |
c906108c | 459 | { |
0cc7b392 DJ |
460 | /* Named Local variable in a Data section. |
461 | Check its name for stabs-in-elf. */ | |
462 | int special_local_sect; | |
d7f9d729 | 463 | |
0cc7b392 DJ |
464 | if (strcmp ("Bbss.bss", sym->name) == 0) |
465 | special_local_sect = SECT_OFF_BSS (objfile); | |
466 | else if (strcmp ("Ddata.data", sym->name) == 0) | |
467 | special_local_sect = SECT_OFF_DATA (objfile); | |
468 | else if (strcmp ("Drodata.rodata", sym->name) == 0) | |
469 | special_local_sect = SECT_OFF_RODATA (objfile); | |
470 | else | |
471 | special_local_sect = -1; | |
472 | if (special_local_sect >= 0) | |
c906108c | 473 | { |
0cc7b392 DJ |
474 | /* Found a special local symbol. Allocate a |
475 | sectinfo, if needed, and fill it in. */ | |
476 | if (sectinfo == NULL) | |
c906108c | 477 | { |
0cc7b392 DJ |
478 | int max_index; |
479 | size_t size; | |
480 | ||
25c2f6ab PP |
481 | max_index = SECT_OFF_BSS (objfile); |
482 | if (objfile->sect_index_data > max_index) | |
483 | max_index = objfile->sect_index_data; | |
484 | if (objfile->sect_index_rodata > max_index) | |
485 | max_index = objfile->sect_index_rodata; | |
0cc7b392 DJ |
486 | |
487 | /* max_index is the largest index we'll | |
488 | use into this array, so we must | |
489 | allocate max_index+1 elements for it. | |
490 | However, 'struct stab_section_info' | |
491 | already includes one element, so we | |
492 | need to allocate max_index aadditional | |
493 | elements. */ | |
dea91a5c | 494 | size = (sizeof (struct stab_section_info) |
c05d19c5 | 495 | + (sizeof (CORE_ADDR) * max_index)); |
0cc7b392 DJ |
496 | sectinfo = (struct stab_section_info *) |
497 | xmalloc (size); | |
498 | memset (sectinfo, 0, size); | |
499 | sectinfo->num_sections = max_index; | |
500 | if (filesym == NULL) | |
c906108c | 501 | { |
0cc7b392 | 502 | complaint (&symfile_complaints, |
3e43a32a MS |
503 | _("elf/stab section information %s " |
504 | "without a preceding file symbol"), | |
0cc7b392 DJ |
505 | sym->name); |
506 | } | |
507 | else | |
508 | { | |
509 | sectinfo->filename = | |
510 | (char *) filesym->name; | |
c906108c | 511 | } |
c906108c | 512 | } |
0cc7b392 DJ |
513 | if (sectinfo->sections[special_local_sect] != 0) |
514 | complaint (&symfile_complaints, | |
3e43a32a MS |
515 | _("duplicated elf/stab section " |
516 | "information for %s"), | |
0cc7b392 DJ |
517 | sectinfo->filename); |
518 | /* BFD symbols are section relative. */ | |
519 | symaddr = sym->value + sym->section->vma; | |
520 | /* Relocate non-absolute symbols by the | |
521 | section offset. */ | |
45dfa85a | 522 | if (sym->section != bfd_abs_section_ptr) |
0cc7b392 DJ |
523 | symaddr += offset; |
524 | sectinfo->sections[special_local_sect] = symaddr; | |
525 | /* The special local symbols don't go in the | |
526 | minimal symbol table, so ignore this one. */ | |
527 | continue; | |
528 | } | |
529 | /* Not a special stabs-in-elf symbol, do regular | |
530 | symbol processing. */ | |
531 | if (sym->section->flags & SEC_LOAD) | |
532 | { | |
533 | ms_type = mst_file_data; | |
c906108c SS |
534 | } |
535 | else | |
536 | { | |
0cc7b392 | 537 | ms_type = mst_file_bss; |
c906108c SS |
538 | } |
539 | } | |
540 | else | |
541 | { | |
0cc7b392 | 542 | ms_type = mst_unknown; |
c906108c | 543 | } |
0cc7b392 DJ |
544 | } |
545 | else | |
546 | { | |
547 | /* FIXME: Solaris2 shared libraries include lots of | |
dea91a5c | 548 | odd "absolute" and "undefined" symbols, that play |
0cc7b392 DJ |
549 | hob with actions like finding what function the PC |
550 | is in. Ignore them if they aren't text, data, or bss. */ | |
551 | /* ms_type = mst_unknown; */ | |
0963b4bd | 552 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
553 | } |
554 | msym = record_minimal_symbol | |
04a679b8 | 555 | (sym->name, strlen (sym->name), copy_names, symaddr, |
0cc7b392 | 556 | ms_type, sym->section, objfile); |
6f610d07 | 557 | |
0cc7b392 DJ |
558 | if (msym) |
559 | { | |
6f610d07 | 560 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
24c274a1 | 561 | ELF-private part. */ |
6f610d07 | 562 | if (type != ST_SYNTHETIC) |
24c274a1 AM |
563 | { |
564 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
565 | elf_symbol_type *elf_sym = (elf_symbol_type *) sym; | |
566 | SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size); | |
567 | } | |
dea91a5c | 568 | |
a103a963 DJ |
569 | msym->filename = filesymname; |
570 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 571 | } |
2eaf8d2a | 572 | |
715c6909 TT |
573 | /* If we see a default versioned symbol, install it under |
574 | its version-less name. */ | |
575 | if (msym != NULL) | |
576 | { | |
577 | const char *atsign = strchr (sym->name, '@'); | |
578 | ||
579 | if (atsign != NULL && atsign[1] == '@' && atsign > sym->name) | |
580 | { | |
581 | int len = atsign - sym->name; | |
582 | ||
583 | record_minimal_symbol (sym->name, len, 1, symaddr, | |
584 | ms_type, sym->section, objfile); | |
585 | } | |
586 | } | |
587 | ||
2eaf8d2a DJ |
588 | /* For @plt symbols, also record a trampoline to the |
589 | destination symbol. The @plt symbol will be used in | |
590 | disassembly, and the trampoline will be used when we are | |
591 | trying to find the target. */ | |
592 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
593 | { | |
594 | int len = strlen (sym->name); | |
595 | ||
596 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
597 | { | |
2eaf8d2a DJ |
598 | struct minimal_symbol *mtramp; |
599 | ||
04a679b8 TT |
600 | mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
601 | symaddr, | |
2eaf8d2a DJ |
602 | mst_solib_trampoline, |
603 | sym->section, objfile); | |
604 | if (mtramp) | |
605 | { | |
d9eaeb59 | 606 | SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym)); |
422d65e7 | 607 | mtramp->created_by_gdb = 1; |
2eaf8d2a DJ |
608 | mtramp->filename = filesymname; |
609 | gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp); | |
610 | } | |
611 | } | |
612 | } | |
c906108c | 613 | } |
c906108c SS |
614 | } |
615 | } | |
616 | ||
07be84bf JK |
617 | /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX) |
618 | for later look ups of which function to call when user requests | |
619 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
620 | library defining `function' we cannot yet know while reading OBJFILE which | |
621 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
622 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
623 | ||
624 | static void | |
625 | elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table) | |
626 | { | |
627 | bfd *obfd = objfile->obfd; | |
628 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
629 | asection *plt, *relplt, *got_plt; | |
07be84bf JK |
630 | int plt_elf_idx; |
631 | bfd_size_type reloc_count, reloc; | |
632 | char *string_buffer = NULL; | |
633 | size_t string_buffer_size = 0; | |
634 | struct cleanup *back_to; | |
df6d5441 | 635 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
636 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
637 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
638 | ||
639 | if (objfile->separate_debug_objfile_backlink) | |
640 | return; | |
641 | ||
642 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
643 | if (plt == NULL) | |
644 | return; | |
645 | plt_elf_idx = elf_section_data (plt)->this_idx; | |
646 | ||
647 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); | |
648 | if (got_plt == NULL) | |
649 | return; | |
650 | ||
651 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ | |
652 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
653 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx | |
654 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL | |
655 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) | |
656 | break; | |
657 | if (relplt == NULL) | |
658 | return; | |
659 | ||
660 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
661 | return; | |
662 | ||
663 | back_to = make_cleanup (free_current_contents, &string_buffer); | |
664 | ||
665 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; | |
666 | for (reloc = 0; reloc < reloc_count; reloc++) | |
667 | { | |
22e048c9 | 668 | const char *name; |
07be84bf JK |
669 | struct minimal_symbol *msym; |
670 | CORE_ADDR address; | |
671 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
672 | size_t name_len; | |
673 | ||
674 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
675 | name_len = strlen (name); | |
676 | address = relplt->relocation[reloc].address; | |
677 | ||
678 | /* Does the pointer reside in the .got.plt section? */ | |
679 | if (!(bfd_get_section_vma (obfd, got_plt) <= address | |
680 | && address < bfd_get_section_vma (obfd, got_plt) | |
681 | + bfd_get_section_size (got_plt))) | |
682 | continue; | |
683 | ||
684 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in | |
685 | OBJFILE the symbol is undefined and the objfile having NAME defined | |
686 | may not yet have been loaded. */ | |
687 | ||
3807f613 | 688 | if (string_buffer_size < name_len + got_suffix_len + 1) |
07be84bf JK |
689 | { |
690 | string_buffer_size = 2 * (name_len + got_suffix_len); | |
691 | string_buffer = xrealloc (string_buffer, string_buffer_size); | |
692 | } | |
693 | memcpy (string_buffer, name, name_len); | |
694 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, | |
3807f613 | 695 | got_suffix_len + 1); |
07be84bf JK |
696 | |
697 | msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len, | |
698 | 1, address, mst_slot_got_plt, got_plt, | |
699 | objfile); | |
700 | if (msym) | |
d9eaeb59 | 701 | SET_MSYMBOL_SIZE (msym, ptr_size); |
07be84bf JK |
702 | } |
703 | ||
704 | do_cleanups (back_to); | |
705 | } | |
706 | ||
707 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
708 | ||
709 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; | |
710 | ||
711 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
712 | ||
713 | struct elf_gnu_ifunc_cache | |
714 | { | |
715 | /* This is always a function entry address, not a function descriptor. */ | |
716 | CORE_ADDR addr; | |
717 | ||
718 | char name[1]; | |
719 | }; | |
720 | ||
721 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
722 | ||
723 | static hashval_t | |
724 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
725 | { | |
726 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
727 | ||
728 | return htab_hash_string (a->name); | |
729 | } | |
730 | ||
731 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
732 | ||
733 | static int | |
734 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
735 | { | |
736 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
737 | const struct elf_gnu_ifunc_cache *b = b_voidp; | |
738 | ||
739 | return strcmp (a->name, b->name) == 0; | |
740 | } | |
741 | ||
742 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
743 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
744 | valid and therefore they were successfully recorded, return 0 otherwise. | |
745 | ||
746 | Function does not expect a duplicate entry. Use | |
747 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
748 | exists. */ | |
749 | ||
750 | static int | |
751 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
752 | { | |
7cbd4a93 | 753 | struct bound_minimal_symbol msym; |
07be84bf JK |
754 | asection *sect; |
755 | struct objfile *objfile; | |
756 | htab_t htab; | |
757 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
758 | void **slot; | |
759 | ||
760 | msym = lookup_minimal_symbol_by_pc (addr); | |
7cbd4a93 | 761 | if (msym.minsym == NULL) |
07be84bf | 762 | return 0; |
7cbd4a93 | 763 | if (SYMBOL_VALUE_ADDRESS (msym.minsym) != addr) |
07be84bf JK |
764 | return 0; |
765 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ | |
e27d198c TT |
766 | sect = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section; |
767 | objfile = msym.objfile; | |
07be84bf JK |
768 | |
769 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
770 | resolution and it has no use for GDB. Besides ".text" this symbol can | |
771 | reside also in ".opd" for ppc64 function descriptor. */ | |
772 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) | |
773 | return 0; | |
774 | ||
775 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
776 | if (htab == NULL) | |
777 | { | |
778 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, | |
779 | elf_gnu_ifunc_cache_eq, | |
780 | NULL, &objfile->objfile_obstack, | |
781 | hashtab_obstack_allocate, | |
782 | dummy_obstack_deallocate); | |
783 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); | |
784 | } | |
785 | ||
786 | entry_local.addr = addr; | |
787 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
788 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
789 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
790 | entry_p = obstack_finish (&objfile->objfile_obstack); | |
791 | ||
792 | slot = htab_find_slot (htab, entry_p, INSERT); | |
793 | if (*slot != NULL) | |
794 | { | |
795 | struct elf_gnu_ifunc_cache *entry_found_p = *slot; | |
df6d5441 | 796 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
797 | |
798 | if (entry_found_p->addr != addr) | |
799 | { | |
800 | /* This case indicates buggy inferior program, the resolved address | |
801 | should never change. */ | |
802 | ||
803 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
804 | "function_address from %s to %s"), | |
805 | name, paddress (gdbarch, entry_found_p->addr), | |
806 | paddress (gdbarch, addr)); | |
807 | } | |
808 | ||
809 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
810 | } | |
811 | *slot = entry_p; | |
812 | ||
813 | return 1; | |
814 | } | |
815 | ||
816 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
817 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
818 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
819 | ||
820 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
821 | function. */ | |
822 | ||
823 | static int | |
824 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
825 | { | |
826 | struct objfile *objfile; | |
827 | ||
828 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
829 | { | |
830 | htab_t htab; | |
831 | struct elf_gnu_ifunc_cache *entry_p; | |
832 | void **slot; | |
833 | ||
834 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
835 | if (htab == NULL) | |
836 | continue; | |
837 | ||
838 | entry_p = alloca (sizeof (*entry_p) + strlen (name)); | |
839 | strcpy (entry_p->name, name); | |
840 | ||
841 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
842 | if (slot == NULL) | |
843 | continue; | |
844 | entry_p = *slot; | |
845 | gdb_assert (entry_p != NULL); | |
846 | ||
847 | if (addr_p) | |
848 | *addr_p = entry_p->addr; | |
849 | return 1; | |
850 | } | |
851 | ||
852 | return 0; | |
853 | } | |
854 | ||
855 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
856 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
857 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
858 | ||
859 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
860 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
861 | prevent cache entries duplicates. */ | |
862 | ||
863 | static int | |
864 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
865 | { | |
866 | char *name_got_plt; | |
867 | struct objfile *objfile; | |
868 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
869 | ||
870 | name_got_plt = alloca (strlen (name) + got_suffix_len + 1); | |
871 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); | |
872 | ||
873 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
874 | { | |
875 | bfd *obfd = objfile->obfd; | |
df6d5441 | 876 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
877 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
878 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
879 | CORE_ADDR pointer_address, addr; | |
880 | asection *plt; | |
881 | gdb_byte *buf = alloca (ptr_size); | |
882 | struct minimal_symbol *msym; | |
883 | ||
884 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
885 | if (msym == NULL) | |
886 | continue; | |
887 | if (MSYMBOL_TYPE (msym) != mst_slot_got_plt) | |
888 | continue; | |
889 | pointer_address = SYMBOL_VALUE_ADDRESS (msym); | |
890 | ||
891 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
892 | if (plt == NULL) | |
893 | continue; | |
894 | ||
895 | if (MSYMBOL_SIZE (msym) != ptr_size) | |
896 | continue; | |
897 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
898 | continue; | |
899 | addr = extract_typed_address (buf, ptr_type); | |
900 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, | |
901 | ¤t_target); | |
902 | ||
903 | if (addr_p) | |
904 | *addr_p = addr; | |
905 | if (elf_gnu_ifunc_record_cache (name, addr)) | |
906 | return 1; | |
907 | } | |
908 | ||
909 | return 0; | |
910 | } | |
911 | ||
912 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
913 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
914 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
915 | ||
916 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
917 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
918 | ||
919 | static int | |
920 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) | |
921 | { | |
922 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
923 | return 1; | |
dea91a5c | 924 | |
07be84bf JK |
925 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
926 | return 1; | |
927 | ||
928 | return 0; | |
929 | } | |
930 | ||
931 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
932 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
933 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
934 | */ | |
935 | ||
936 | static CORE_ADDR | |
937 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
938 | { | |
2c02bd72 | 939 | const char *name_at_pc; |
07be84bf JK |
940 | CORE_ADDR start_at_pc, address; |
941 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
942 | struct value *function, *address_val; | |
943 | ||
944 | /* Try first any non-intrusive methods without an inferior call. */ | |
945 | ||
946 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
947 | && start_at_pc == pc) | |
948 | { | |
949 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
950 | return address; | |
951 | } | |
952 | else | |
953 | name_at_pc = NULL; | |
954 | ||
955 | function = allocate_value (func_func_type); | |
956 | set_value_address (function, pc); | |
957 | ||
958 | /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the | |
959 | function entry address. ADDRESS may be a function descriptor. */ | |
960 | ||
961 | address_val = call_function_by_hand (function, 0, NULL); | |
962 | address = value_as_address (address_val); | |
963 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
964 | ¤t_target); | |
965 | ||
966 | if (name_at_pc) | |
967 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
968 | ||
969 | return address; | |
970 | } | |
971 | ||
0e30163f JK |
972 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
973 | ||
974 | static void | |
975 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) | |
976 | { | |
977 | struct breakpoint *b_return; | |
978 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); | |
979 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); | |
980 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); | |
981 | int thread_id = pid_to_thread_id (inferior_ptid); | |
982 | ||
983 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
984 | ||
985 | for (b_return = b->related_breakpoint; b_return != b; | |
986 | b_return = b_return->related_breakpoint) | |
987 | { | |
988 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); | |
989 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); | |
990 | gdb_assert (frame_id_p (b_return->frame_id)); | |
991 | ||
992 | if (b_return->thread == thread_id | |
993 | && b_return->loc->requested_address == prev_pc | |
994 | && frame_id_eq (b_return->frame_id, prev_frame_id)) | |
995 | break; | |
996 | } | |
997 | ||
998 | if (b_return == b) | |
999 | { | |
1000 | struct symtab_and_line sal; | |
1001 | ||
1002 | /* No need to call find_pc_line for symbols resolving as this is only | |
1003 | a helper breakpointer never shown to the user. */ | |
1004 | ||
1005 | init_sal (&sal); | |
1006 | sal.pspace = current_inferior ()->pspace; | |
1007 | sal.pc = prev_pc; | |
1008 | sal.section = find_pc_overlay (sal.pc); | |
1009 | sal.explicit_pc = 1; | |
1010 | b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, | |
1011 | prev_frame_id, | |
1012 | bp_gnu_ifunc_resolver_return); | |
1013 | ||
c70a6932 JK |
1014 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
1015 | prev_frame = NULL; | |
1016 | ||
0e30163f JK |
1017 | /* Add new b_return to the ring list b->related_breakpoint. */ |
1018 | gdb_assert (b_return->related_breakpoint == b_return); | |
1019 | b_return->related_breakpoint = b->related_breakpoint; | |
1020 | b->related_breakpoint = b_return; | |
1021 | } | |
1022 | } | |
1023 | ||
1024 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ | |
1025 | ||
1026 | static void | |
1027 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) | |
1028 | { | |
1029 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); | |
1030 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
1031 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); | |
1032 | struct regcache *regcache = get_thread_regcache (inferior_ptid); | |
6a3a010b | 1033 | struct value *func_func; |
0e30163f JK |
1034 | struct value *value; |
1035 | CORE_ADDR resolved_address, resolved_pc; | |
1036 | struct symtab_and_line sal; | |
f1310107 | 1037 | struct symtabs_and_lines sals, sals_end; |
0e30163f JK |
1038 | |
1039 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); | |
1040 | ||
0e30163f JK |
1041 | while (b->related_breakpoint != b) |
1042 | { | |
1043 | struct breakpoint *b_next = b->related_breakpoint; | |
1044 | ||
1045 | switch (b->type) | |
1046 | { | |
1047 | case bp_gnu_ifunc_resolver: | |
1048 | break; | |
1049 | case bp_gnu_ifunc_resolver_return: | |
1050 | delete_breakpoint (b); | |
1051 | break; | |
1052 | default: | |
1053 | internal_error (__FILE__, __LINE__, | |
1054 | _("handle_inferior_event: Invalid " | |
1055 | "gnu-indirect-function breakpoint type %d"), | |
1056 | (int) b->type); | |
1057 | } | |
1058 | b = b_next; | |
1059 | } | |
1060 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
6a3a010b MR |
1061 | gdb_assert (b->loc->next == NULL); |
1062 | ||
1063 | func_func = allocate_value (func_func_type); | |
1064 | set_value_address (func_func, b->loc->related_address); | |
1065 | ||
1066 | value = allocate_value (value_type); | |
1067 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, | |
1068 | value_contents_raw (value), NULL); | |
1069 | resolved_address = value_as_address (value); | |
1070 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1071 | resolved_address, | |
1072 | ¤t_target); | |
0e30163f | 1073 | |
f8eba3c6 | 1074 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
0e30163f JK |
1075 | elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc); |
1076 | ||
1077 | sal = find_pc_line (resolved_pc, 0); | |
1078 | sals.nelts = 1; | |
1079 | sals.sals = &sal; | |
f1310107 | 1080 | sals_end.nelts = 0; |
0e30163f JK |
1081 | |
1082 | b->type = bp_breakpoint; | |
f1310107 | 1083 | update_breakpoint_locations (b, sals, sals_end); |
0e30163f JK |
1084 | } |
1085 | ||
c906108c | 1086 | /* Scan and build partial symbols for a symbol file. |
dea91a5c | 1087 | We have been initialized by a call to elf_symfile_init, which |
c906108c SS |
1088 | currently does nothing. |
1089 | ||
1090 | SECTION_OFFSETS is a set of offsets to apply to relocate the symbols | |
1091 | in each section. We simplify it down to a single offset for all | |
1092 | symbols. FIXME. | |
1093 | ||
c906108c SS |
1094 | This function only does the minimum work necessary for letting the |
1095 | user "name" things symbolically; it does not read the entire symtab. | |
1096 | Instead, it reads the external and static symbols and puts them in partial | |
1097 | symbol tables. When more extensive information is requested of a | |
1098 | file, the corresponding partial symbol table is mutated into a full | |
1099 | fledged symbol table by going back and reading the symbols | |
1100 | for real. | |
1101 | ||
1102 | We look for sections with specific names, to tell us what debug | |
1103 | format to look for: FIXME!!! | |
1104 | ||
c906108c SS |
1105 | elfstab_build_psymtabs() handles STABS symbols; |
1106 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1107 | ||
1108 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1109 | like a COFF symbol table, but has only the minimal information necessary | |
1110 | for linking. We process this also, and use the information to | |
1111 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1112 | capability even for files compiled without -g. */ | |
1113 | ||
1114 | static void | |
f4352531 | 1115 | elf_symfile_read (struct objfile *objfile, int symfile_flags) |
c906108c | 1116 | { |
63524580 | 1117 | bfd *synth_abfd, *abfd = objfile->obfd; |
c906108c SS |
1118 | struct elfinfo ei; |
1119 | struct cleanup *back_to; | |
62553543 EZ |
1120 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1121 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1122 | asymbol *synthsyms; | |
d2f4b8fe | 1123 | struct dbx_symfile_info *dbx; |
c906108c | 1124 | |
45cfd468 DE |
1125 | if (symtab_create_debug) |
1126 | { | |
1127 | fprintf_unfiltered (gdb_stdlog, | |
1128 | "Reading minimal symbols of objfile %s ...\n", | |
4262abfb | 1129 | objfile_name (objfile)); |
45cfd468 DE |
1130 | } |
1131 | ||
c906108c | 1132 | init_minimal_symbol_collection (); |
56e290f4 | 1133 | back_to = make_cleanup_discard_minimal_symbols (); |
c906108c SS |
1134 | |
1135 | memset ((char *) &ei, 0, sizeof (ei)); | |
1136 | ||
0963b4bd | 1137 | /* Allocate struct to keep track of the symfile. */ |
d2f4b8fe TT |
1138 | dbx = XCNEW (struct dbx_symfile_info); |
1139 | set_objfile_data (objfile, dbx_objfile_data_key, dbx); | |
12b9c64f | 1140 | make_cleanup (free_elfinfo, (void *) objfile); |
c906108c | 1141 | |
3e43a32a | 1142 | /* Process the normal ELF symbol table first. This may write some |
d2f4b8fe TT |
1143 | chain of info into the dbx_symfile_info of the objfile, which can |
1144 | later be used by elfstab_offset_sections. */ | |
c906108c | 1145 | |
62553543 EZ |
1146 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1147 | if (storage_needed < 0) | |
3e43a32a MS |
1148 | error (_("Can't read symbols from %s: %s"), |
1149 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1150 | bfd_errmsg (bfd_get_error ())); |
1151 | ||
1152 | if (storage_needed > 0) | |
1153 | { | |
1154 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
1155 | make_cleanup (xfree, symbol_table); | |
1156 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); | |
1157 | ||
1158 | if (symcount < 0) | |
3e43a32a MS |
1159 | error (_("Can't read symbols from %s: %s"), |
1160 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1161 | bfd_errmsg (bfd_get_error ())); |
1162 | ||
04a679b8 | 1163 | elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
62553543 | 1164 | } |
c906108c SS |
1165 | |
1166 | /* Add the dynamic symbols. */ | |
1167 | ||
62553543 EZ |
1168 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1169 | ||
1170 | if (storage_needed > 0) | |
1171 | { | |
3f1eff0a JK |
1172 | /* Memory gets permanently referenced from ABFD after |
1173 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1174 | It happens only in the case when elf_slurp_reloc_table sees | |
1175 | asection->relocation NULL. Determining which section is asection is | |
1176 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1177 | implementation detail, though. */ | |
1178 | ||
1179 | dyn_symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1180 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1181 | dyn_symbol_table); | |
1182 | ||
1183 | if (dynsymcount < 0) | |
3e43a32a MS |
1184 | error (_("Can't read symbols from %s: %s"), |
1185 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1186 | bfd_errmsg (bfd_get_error ())); |
1187 | ||
04a679b8 | 1188 | elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
07be84bf JK |
1189 | |
1190 | elf_rel_plt_read (objfile, dyn_symbol_table); | |
62553543 EZ |
1191 | } |
1192 | ||
63524580 JK |
1193 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
1194 | elfutils (eu-strip) moves even the .symtab section into the .debug file. | |
1195 | ||
1196 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol | |
1197 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code | |
1198 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to | |
1199 | read the code address from .opd while it reads the .symtab section from | |
1200 | a separate debug info file as the .opd section is SHT_NOBITS there. | |
1201 | ||
1202 | With SYNTH_ABFD the .opd section will be read from the original | |
1203 | backlinked binary where it is valid. */ | |
1204 | ||
1205 | if (objfile->separate_debug_objfile_backlink) | |
1206 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; | |
1207 | else | |
1208 | synth_abfd = abfd; | |
1209 | ||
62553543 EZ |
1210 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
1211 | ||
63524580 | 1212 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
62553543 EZ |
1213 | dynsymcount, dyn_symbol_table, |
1214 | &synthsyms); | |
1215 | if (synthcount > 0) | |
1216 | { | |
1217 | asymbol **synth_symbol_table; | |
1218 | long i; | |
1219 | ||
1220 | make_cleanup (xfree, synthsyms); | |
1221 | synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); | |
1222 | for (i = 0; i < synthcount; i++) | |
9f20e3da | 1223 | synth_symbol_table[i] = synthsyms + i; |
62553543 | 1224 | make_cleanup (xfree, synth_symbol_table); |
3e43a32a MS |
1225 | elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, |
1226 | synth_symbol_table, 1); | |
62553543 | 1227 | } |
c906108c | 1228 | |
7134143f DJ |
1229 | /* Install any minimal symbols that have been collected as the current |
1230 | minimal symbols for this objfile. The debug readers below this point | |
1231 | should not generate new minimal symbols; if they do it's their | |
1232 | responsibility to install them. "mdebug" appears to be the only one | |
1233 | which will do this. */ | |
1234 | ||
1235 | install_minimal_symbols (objfile); | |
1236 | do_cleanups (back_to); | |
1237 | ||
4f00dda3 DE |
1238 | if (symtab_create_debug) |
1239 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); | |
1240 | ||
c906108c | 1241 | /* Now process debugging information, which is contained in |
0963b4bd | 1242 | special ELF sections. */ |
c906108c | 1243 | |
0963b4bd | 1244 | /* We first have to find them... */ |
12b9c64f | 1245 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
c906108c SS |
1246 | |
1247 | /* ELF debugging information is inserted into the psymtab in the | |
1248 | order of least informative first - most informative last. Since | |
1249 | the psymtab table is searched `most recent insertion first' this | |
1250 | increases the probability that more detailed debug information | |
1251 | for a section is found. | |
1252 | ||
1253 | For instance, an object file might contain both .mdebug (XCOFF) | |
1254 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1255 | (searched last) and DWARF2 is inserted last (searched first). If | |
1256 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1257 | an included file XCOFF info is useless. */ |
c906108c SS |
1258 | |
1259 | if (ei.mdebugsect) | |
1260 | { | |
1261 | const struct ecoff_debug_swap *swap; | |
1262 | ||
1263 | /* .mdebug section, presumably holding ECOFF debugging | |
c5aa993b | 1264 | information. */ |
c906108c SS |
1265 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1266 | if (swap) | |
d4f3574e | 1267 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1268 | } |
1269 | if (ei.stabsect) | |
1270 | { | |
1271 | asection *str_sect; | |
1272 | ||
1273 | /* Stab sections have an associated string table that looks like | |
c5aa993b | 1274 | a separate section. */ |
c906108c SS |
1275 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1276 | ||
1277 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1278 | if (str_sect) | |
1279 | elfstab_build_psymtabs (objfile, | |
086df311 | 1280 | ei.stabsect, |
c906108c SS |
1281 | str_sect->filepos, |
1282 | bfd_section_size (abfd, str_sect)); | |
1283 | } | |
9291a0cd | 1284 | |
251d32d9 | 1285 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 | 1286 | { |
3e03848b JK |
1287 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug |
1288 | information present in OBJFILE. If there is such debug info present | |
1289 | never use .gdb_index. */ | |
1290 | ||
1291 | if (!objfile_has_partial_symbols (objfile) | |
1292 | && dwarf2_initialize_objfile (objfile)) | |
8fb8eb5c | 1293 | objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index); |
b11896a5 TT |
1294 | else |
1295 | { | |
1296 | /* It is ok to do this even if the stabs reader made some | |
1297 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1298 | set, and so our lazy reader function will still be called | |
1299 | when needed. */ | |
8fb8eb5c | 1300 | objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms); |
b11896a5 TT |
1301 | } |
1302 | } | |
3e43a32a MS |
1303 | /* If the file has its own symbol tables it has no separate debug |
1304 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1305 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
8a92335b JK |
1306 | `.note.gnu.build-id'. |
1307 | ||
1308 | .gnu_debugdata is !objfile_has_partial_symbols because it contains only | |
1309 | .symtab, not .debug_* section. But if we already added .gnu_debugdata as | |
1310 | an objfile via find_separate_debug_file_in_section there was no separate | |
1311 | debug info available. Therefore do not attempt to search for another one, | |
1312 | objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to | |
1313 | be NULL and we would possibly violate it. */ | |
1314 | ||
1315 | else if (!objfile_has_partial_symbols (objfile) | |
1316 | && objfile->separate_debug_objfile == NULL | |
1317 | && objfile->separate_debug_objfile_backlink == NULL) | |
9cce227f TG |
1318 | { |
1319 | char *debugfile; | |
1320 | ||
1321 | debugfile = find_separate_debug_file_by_buildid (objfile); | |
1322 | ||
1323 | if (debugfile == NULL) | |
1324 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
1325 | ||
1326 | if (debugfile) | |
1327 | { | |
8ac244b4 | 1328 | struct cleanup *cleanup = make_cleanup (xfree, debugfile); |
9cce227f | 1329 | bfd *abfd = symfile_bfd_open (debugfile); |
d7f9d729 | 1330 | |
8ac244b4 | 1331 | make_cleanup_bfd_unref (abfd); |
24ba069a | 1332 | symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile); |
8ac244b4 | 1333 | do_cleanups (cleanup); |
9cce227f TG |
1334 | } |
1335 | } | |
c906108c SS |
1336 | } |
1337 | ||
b11896a5 TT |
1338 | /* Callback to lazily read psymtabs. */ |
1339 | ||
1340 | static void | |
1341 | read_psyms (struct objfile *objfile) | |
1342 | { | |
251d32d9 | 1343 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 TT |
1344 | dwarf2_build_psymtabs (objfile); |
1345 | } | |
1346 | ||
d2f4b8fe TT |
1347 | /* This cleans up the objfile's dbx symfile info, and the chain of |
1348 | stab_section_info's, that might be dangling from it. */ | |
c906108c SS |
1349 | |
1350 | static void | |
12b9c64f | 1351 | free_elfinfo (void *objp) |
c906108c | 1352 | { |
c5aa993b | 1353 | struct objfile *objfile = (struct objfile *) objp; |
d2f4b8fe | 1354 | struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile); |
c906108c SS |
1355 | struct stab_section_info *ssi, *nssi; |
1356 | ||
1357 | ssi = dbxinfo->stab_section_info; | |
1358 | while (ssi) | |
1359 | { | |
1360 | nssi = ssi->next; | |
2dc74dc1 | 1361 | xfree (ssi); |
c906108c SS |
1362 | ssi = nssi; |
1363 | } | |
1364 | ||
1365 | dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */ | |
1366 | } | |
1367 | ||
1368 | ||
1369 | /* Initialize anything that needs initializing when a completely new symbol | |
1370 | file is specified (not just adding some symbols from another file, e.g. a | |
1371 | shared library). | |
1372 | ||
3e43a32a MS |
1373 | We reinitialize buildsym, since we may be reading stabs from an ELF |
1374 | file. */ | |
c906108c SS |
1375 | |
1376 | static void | |
fba45db2 | 1377 | elf_new_init (struct objfile *ignore) |
c906108c SS |
1378 | { |
1379 | stabsread_new_init (); | |
1380 | buildsym_new_init (); | |
1381 | } | |
1382 | ||
1383 | /* Perform any local cleanups required when we are done with a particular | |
1384 | objfile. I.E, we are in the process of discarding all symbol information | |
1385 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1386 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1387 | |
1388 | static void | |
fba45db2 | 1389 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1390 | { |
fe3e1990 | 1391 | dwarf2_free_objfile (objfile); |
c906108c SS |
1392 | } |
1393 | ||
1394 | /* ELF specific initialization routine for reading symbols. | |
1395 | ||
1396 | It is passed a pointer to a struct sym_fns which contains, among other | |
1397 | things, the BFD for the file whose symbols are being read, and a slot for | |
1398 | a pointer to "private data" which we can fill with goodies. | |
1399 | ||
1400 | For now at least, we have nothing in particular to do, so this function is | |
0963b4bd | 1401 | just a stub. */ |
c906108c SS |
1402 | |
1403 | static void | |
fba45db2 | 1404 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1405 | { |
1406 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1407 | find this causes a significant slowdown in gdb then we could | |
1408 | set it in the debug symbol readers only when necessary. */ | |
1409 | objfile->flags |= OBJF_REORDERED; | |
1410 | } | |
1411 | ||
1412 | /* When handling an ELF file that contains Sun STABS debug info, | |
1413 | some of the debug info is relative to the particular chunk of the | |
1414 | section that was generated in its individual .o file. E.g. | |
1415 | offsets to static variables are relative to the start of the data | |
1416 | segment *for that module before linking*. This information is | |
1417 | painfully squirreled away in the ELF symbol table as local symbols | |
1418 | with wierd names. Go get 'em when needed. */ | |
1419 | ||
1420 | void | |
fba45db2 | 1421 | elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst) |
c906108c | 1422 | { |
72b9f47f | 1423 | const char *filename = pst->filename; |
d2f4b8fe | 1424 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
c906108c SS |
1425 | struct stab_section_info *maybe = dbx->stab_section_info; |
1426 | struct stab_section_info *questionable = 0; | |
1427 | int i; | |
c906108c SS |
1428 | |
1429 | /* The ELF symbol info doesn't include path names, so strip the path | |
1430 | (if any) from the psymtab filename. */ | |
0ba1096a | 1431 | filename = lbasename (filename); |
c906108c SS |
1432 | |
1433 | /* FIXME: This linear search could speed up significantly | |
1434 | if it was chained in the right order to match how we search it, | |
0963b4bd | 1435 | and if we unchained when we found a match. */ |
c906108c SS |
1436 | for (; maybe; maybe = maybe->next) |
1437 | { | |
1438 | if (filename[0] == maybe->filename[0] | |
0ba1096a | 1439 | && filename_cmp (filename, maybe->filename) == 0) |
c906108c SS |
1440 | { |
1441 | /* We found a match. But there might be several source files | |
1442 | (from different directories) with the same name. */ | |
1443 | if (0 == maybe->found) | |
1444 | break; | |
c5aa993b | 1445 | questionable = maybe; /* Might use it later. */ |
c906108c SS |
1446 | } |
1447 | } | |
1448 | ||
1449 | if (maybe == 0 && questionable != 0) | |
1450 | { | |
23136709 | 1451 | complaint (&symfile_complaints, |
3e43a32a MS |
1452 | _("elf/stab section information questionable for %s"), |
1453 | filename); | |
c906108c SS |
1454 | maybe = questionable; |
1455 | } | |
1456 | ||
1457 | if (maybe) | |
1458 | { | |
1459 | /* Found it! Allocate a new psymtab struct, and fill it in. */ | |
1460 | maybe->found++; | |
1461 | pst->section_offsets = (struct section_offsets *) | |
dea91a5c | 1462 | obstack_alloc (&objfile->objfile_obstack, |
a39a16c4 MM |
1463 | SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
1464 | for (i = 0; i < maybe->num_sections; i++) | |
a4c8257b | 1465 | (pst->section_offsets)->offsets[i] = maybe->sections[i]; |
c906108c SS |
1466 | return; |
1467 | } | |
1468 | ||
1469 | /* We were unable to find any offsets for this file. Complain. */ | |
c5aa993b | 1470 | if (dbx->stab_section_info) /* If there *is* any info, */ |
23136709 | 1471 | complaint (&symfile_complaints, |
e2e0b3e5 | 1472 | _("elf/stab section information missing for %s"), filename); |
c906108c | 1473 | } |
55aa24fb SDJ |
1474 | |
1475 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ | |
1476 | ||
1477 | static VEC (probe_p) * | |
1478 | elf_get_probes (struct objfile *objfile) | |
1479 | { | |
1480 | VEC (probe_p) *probes_per_objfile; | |
1481 | ||
1482 | /* Have we parsed this objfile's probes already? */ | |
1483 | probes_per_objfile = objfile_data (objfile, probe_key); | |
1484 | ||
1485 | if (!probes_per_objfile) | |
1486 | { | |
1487 | int ix; | |
1488 | const struct probe_ops *probe_ops; | |
1489 | ||
1490 | /* Here we try to gather information about all types of probes from the | |
1491 | objfile. */ | |
1492 | for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops); | |
1493 | ix++) | |
1494 | probe_ops->get_probes (&probes_per_objfile, objfile); | |
1495 | ||
1496 | if (probes_per_objfile == NULL) | |
1497 | { | |
1498 | VEC_reserve (probe_p, probes_per_objfile, 1); | |
1499 | gdb_assert (probes_per_objfile != NULL); | |
1500 | } | |
1501 | ||
1502 | set_objfile_data (objfile, probe_key, probes_per_objfile); | |
1503 | } | |
1504 | ||
1505 | return probes_per_objfile; | |
1506 | } | |
1507 | ||
1508 | /* Implementation of `sym_get_probe_argument_count', as documented in | |
1509 | symfile.h. */ | |
1510 | ||
1511 | static unsigned | |
6bac7473 | 1512 | elf_get_probe_argument_count (struct probe *probe) |
55aa24fb | 1513 | { |
6bac7473 | 1514 | return probe->pops->get_probe_argument_count (probe); |
55aa24fb SDJ |
1515 | } |
1516 | ||
25f9533e SDJ |
1517 | /* Implementation of `sym_can_evaluate_probe_arguments', as documented in |
1518 | symfile.h. */ | |
1519 | ||
1520 | static int | |
1521 | elf_can_evaluate_probe_arguments (struct probe *probe) | |
1522 | { | |
1523 | return probe->pops->can_evaluate_probe_arguments (probe); | |
1524 | } | |
1525 | ||
55aa24fb SDJ |
1526 | /* Implementation of `sym_evaluate_probe_argument', as documented in |
1527 | symfile.h. */ | |
1528 | ||
1529 | static struct value * | |
6bac7473 | 1530 | elf_evaluate_probe_argument (struct probe *probe, unsigned n) |
55aa24fb | 1531 | { |
6bac7473 | 1532 | return probe->pops->evaluate_probe_argument (probe, n); |
55aa24fb SDJ |
1533 | } |
1534 | ||
1535 | /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */ | |
1536 | ||
1537 | static void | |
6bac7473 | 1538 | elf_compile_to_ax (struct probe *probe, |
55aa24fb SDJ |
1539 | struct agent_expr *expr, |
1540 | struct axs_value *value, | |
1541 | unsigned n) | |
1542 | { | |
6bac7473 | 1543 | probe->pops->compile_to_ax (probe, expr, value, n); |
55aa24fb SDJ |
1544 | } |
1545 | ||
1546 | /* Implementation of `sym_relocate_probe', as documented in symfile.h. */ | |
1547 | ||
1548 | static void | |
1549 | elf_symfile_relocate_probe (struct objfile *objfile, | |
3189cb12 DE |
1550 | const struct section_offsets *new_offsets, |
1551 | const struct section_offsets *delta) | |
55aa24fb SDJ |
1552 | { |
1553 | int ix; | |
1554 | VEC (probe_p) *probes = objfile_data (objfile, probe_key); | |
1555 | struct probe *probe; | |
1556 | ||
1557 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1558 | probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile))); | |
1559 | } | |
1560 | ||
1561 | /* Helper function used to free the space allocated for storing SystemTap | |
1562 | probe information. */ | |
1563 | ||
1564 | static void | |
1565 | probe_key_free (struct objfile *objfile, void *d) | |
1566 | { | |
1567 | int ix; | |
1568 | VEC (probe_p) *probes = d; | |
1569 | struct probe *probe; | |
1570 | ||
1571 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1572 | probe->pops->destroy (probe); | |
1573 | ||
1574 | VEC_free (probe_p, probes); | |
1575 | } | |
1576 | ||
c906108c | 1577 | \f |
55aa24fb SDJ |
1578 | |
1579 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ | |
1580 | ||
1581 | static const struct sym_probe_fns elf_probe_fns = | |
1582 | { | |
25f9533e SDJ |
1583 | elf_get_probes, /* sym_get_probes */ |
1584 | elf_get_probe_argument_count, /* sym_get_probe_argument_count */ | |
1585 | elf_can_evaluate_probe_arguments, /* sym_can_evaluate_probe_arguments */ | |
1586 | elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */ | |
1587 | elf_compile_to_ax, /* sym_compile_to_ax */ | |
1588 | elf_symfile_relocate_probe, /* sym_relocate_probe */ | |
55aa24fb SDJ |
1589 | }; |
1590 | ||
c906108c SS |
1591 | /* Register that we are able to handle ELF object file formats. */ |
1592 | ||
00b5771c | 1593 | static const struct sym_fns elf_sym_fns = |
c906108c | 1594 | { |
3e43a32a MS |
1595 | elf_new_init, /* init anything gbl to entire symtab */ |
1596 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1597 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1598 | NULL, /* sym_read_psymbols */ |
1599 | elf_symfile_finish, /* finished with file, cleanup */ | |
1600 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1601 | elf_symfile_segments, /* Get segment information from a file. */ | |
1602 | NULL, | |
1603 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1604 | &elf_probe_fns, /* sym_probe_fns */ |
b11896a5 TT |
1605 | &psym_functions |
1606 | }; | |
1607 | ||
1608 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1609 | psymbols. */ | |
1610 | ||
1611 | static const struct sym_fns elf_sym_fns_lazy_psyms = | |
1612 | { | |
b11896a5 TT |
1613 | elf_new_init, /* init anything gbl to entire symtab */ |
1614 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1615 | elf_symfile_read, /* read a symbol file into symtab */ | |
1616 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1617 | elf_symfile_finish, /* finished with file, cleanup */ |
1618 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1619 | elf_symfile_segments, /* Get segment information from a file. */ | |
1620 | NULL, | |
1621 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1622 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1623 | &psym_functions |
c906108c SS |
1624 | }; |
1625 | ||
9291a0cd TT |
1626 | /* The same as elf_sym_fns, but not registered and uses the |
1627 | DWARF-specific GNU index rather than psymtab. */ | |
00b5771c | 1628 | static const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd | 1629 | { |
3e43a32a MS |
1630 | elf_new_init, /* init anything gbl to entire symab */ |
1631 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1632 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1633 | NULL, /* sym_read_psymbols */ |
3e43a32a MS |
1634 | elf_symfile_finish, /* finished with file, cleanup */ |
1635 | default_symfile_offsets, /* Translate ext. to int. relocatin */ | |
1636 | elf_symfile_segments, /* Get segment information from a file. */ | |
1637 | NULL, | |
1638 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1639 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1640 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1641 | }; |
1642 | ||
07be84bf JK |
1643 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1644 | ||
1645 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1646 | { | |
1647 | elf_gnu_ifunc_resolve_addr, | |
1648 | elf_gnu_ifunc_resolve_name, | |
0e30163f JK |
1649 | elf_gnu_ifunc_resolver_stop, |
1650 | elf_gnu_ifunc_resolver_return_stop | |
07be84bf JK |
1651 | }; |
1652 | ||
c906108c | 1653 | void |
fba45db2 | 1654 | _initialize_elfread (void) |
c906108c | 1655 | { |
55aa24fb | 1656 | probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free); |
c256e171 | 1657 | add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); |
07be84bf JK |
1658 | |
1659 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); | |
1660 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; | |
c906108c | 1661 | } |