import strstr and strerror modules
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
28e7fd62 3 Copyright (C) 1991-2013 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
24#include "gdb_string.h"
25#include "elf-bfd.h"
31d99776
DJ
26#include "elf/common.h"
27#include "elf/internal.h"
c906108c
SS
28#include "elf/mips.h"
29#include "symtab.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "buildsym.h"
33#include "stabsread.h"
34#include "gdb-stabs.h"
35#include "complaints.h"
36#include "demangle.h"
ccefe4c4 37#include "psympriv.h"
0ba1096a 38#include "filenames.h"
55aa24fb
SDJ
39#include "probe.h"
40#include "arch-utils.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
cbb099e8 47#include "gdb_bfd.h"
dc294be5 48#include "build-id.h"
c906108c 49
a14ed312 50extern void _initialize_elfread (void);
392a587b 51
b11896a5 52/* Forward declarations. */
00b5771c 53static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 54static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
55aa24fb
SDJ
66/* Per-objfile data for probe info. */
67
68static const struct objfile_data *probe_key = NULL;
69
12b9c64f 70static void free_elfinfo (void *);
c906108c 71
07be84bf
JK
72/* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
31d99776
DJ
79/* Locate the segments in ABFD. */
80
81static struct symfile_segment_data *
82elf_symfile_segments (bfd *abfd)
83{
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
a366c65a 135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 152 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
12b9c64f 179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 180{
52f0bd74 181 struct elfinfo *ei;
c906108c
SS
182
183 ei = (struct elfinfo *) eip;
7ce59000 184 if (strcmp (sectp->name, ".stab") == 0)
c906108c 185 {
c5aa993b 186 ei->stabsect = sectp;
c906108c 187 }
6314a349 188 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 189 {
c5aa993b 190 ei->mdebugsect = sectp;
c906108c
SS
191 }
192}
193
c906108c 194static struct minimal_symbol *
04a679b8
TT
195record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
f594e5e9
MC
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
c906108c 199{
5e2b427d
UW
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
0875794a
JK
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
85ddcc70 204 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 205
04a679b8 206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
e6dc44a8 210 objfile);
c906108c
SS
211}
212
7f86f058 213/* Read the symbol table of an ELF file.
c906108c 214
62553543 215 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
c906108c 218
c5aa993b
JM
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
7f86f058 223 in data structures hung off the objfile's private data. */
c906108c 224
6f610d07
UW
225#define ST_REGULAR 0
226#define ST_DYNAMIC 1
227#define ST_SYNTHETIC 2
228
c906108c 229static void
6f610d07 230elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
c906108c 233{
5e2b427d 234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 235 asymbol *sym;
c906108c 236 long i;
c906108c 237 CORE_ADDR symaddr;
d4f3574e 238 CORE_ADDR offset;
c906108c
SS
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
1c9e8358 246 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
247 the objfile's filename cache. */
248 const char *filesymname = "";
d2f4b8fe 249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 251
0cc7b392 252 for (i = 0; i < number_of_symbols; i++)
c906108c 253 {
0cc7b392
DJ
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
c906108c 256 {
0cc7b392 257 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 258 that are null strings (may happen). */
0cc7b392
DJ
259 continue;
260 }
c906108c 261
74763737
DJ
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
74763737 271
65cf3563
TT
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
6f610d07 274 if (type == ST_DYNAMIC
45dfa85a 275 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
02c75f72 279 bfd *abfd = objfile->obfd;
dea91a5c 280 asection *sect;
0cc7b392
DJ
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
0963b4bd 288 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
02c75f72
UW
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
828cfa8d
JB
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
65cf3563
TT
328 symaddr += ANOFFSET (objfile->section_offsets,
329 gdb_bfd_section_index (objfile->obfd, sect));
02c75f72 330
0cc7b392 331 msym = record_minimal_symbol
04a679b8
TT
332 (sym->name, strlen (sym->name), copy_names,
333 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
334 if (msym != NULL)
335 msym->filename = filesymname;
0cc7b392
DJ
336 continue;
337 }
c906108c 338
0cc7b392
DJ
339 /* If it is a nonstripped executable, do not enter dynamic
340 symbols, as the dynamic symbol table is usually a subset
341 of the main symbol table. */
6f610d07 342 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
343 continue;
344 if (sym->flags & BSF_FILE)
345 {
346 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 Chain any old one onto the objfile; remember new sym. */
348 if (sectinfo != NULL)
c906108c 349 {
0cc7b392
DJ
350 sectinfo->next = dbx->stab_section_info;
351 dbx->stab_section_info = sectinfo;
352 sectinfo = NULL;
353 }
354 filesym = sym;
0af1e9a5 355 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
706e3705 356 objfile->per_bfd->filename_cache);
0cc7b392
DJ
357 }
358 else if (sym->flags & BSF_SECTION_SYM)
359 continue;
bb869963
SDJ
360 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
361 | BSF_GNU_UNIQUE))
0cc7b392
DJ
362 {
363 struct minimal_symbol *msym;
364
365 /* Select global/local/weak symbols. Note that bfd puts abs
366 symbols in their own section, so all symbols we are
0963b4bd
MS
367 interested in will have a section. */
368 /* Bfd symbols are section relative. */
0cc7b392 369 symaddr = sym->value + sym->section->vma;
45148c2e
UW
370 /* Relocate all non-absolute and non-TLS symbols by the
371 section offset. */
45dfa85a 372 if (sym->section != bfd_abs_section_ptr
45148c2e 373 && !(sym->section->flags & SEC_THREAD_LOCAL))
0cc7b392
DJ
374 {
375 symaddr += offset;
c906108c 376 }
0cc7b392
DJ
377 /* For non-absolute symbols, use the type of the section
378 they are relative to, to intuit text/data. Bfd provides
0963b4bd 379 no way of figuring this out for absolute symbols. */
45dfa85a 380 if (sym->section == bfd_abs_section_ptr)
c906108c 381 {
0cc7b392
DJ
382 /* This is a hack to get the minimal symbol type
383 right for Irix 5, which has absolute addresses
6f610d07
UW
384 with special section indices for dynamic symbols.
385
386 NOTE: uweigand-20071112: Synthetic symbols do not
387 have an ELF-private part, so do not touch those. */
dea91a5c 388 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
389 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
390
391 switch (shndx)
c906108c 392 {
0cc7b392
DJ
393 case SHN_MIPS_TEXT:
394 ms_type = mst_text;
395 break;
396 case SHN_MIPS_DATA:
397 ms_type = mst_data;
398 break;
399 case SHN_MIPS_ACOMMON:
400 ms_type = mst_bss;
401 break;
402 default:
403 ms_type = mst_abs;
404 }
405
406 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 407 symbols, relocate all others by section offset. */
0cc7b392
DJ
408 if (ms_type != mst_abs)
409 {
410 if (sym->name[0] == '.')
411 continue;
d4f3574e 412 symaddr += offset;
c906108c 413 }
0cc7b392
DJ
414 }
415 else if (sym->section->flags & SEC_CODE)
416 {
bb869963 417 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 418 {
0875794a
JK
419 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
420 ms_type = mst_text_gnu_ifunc;
421 else
422 ms_type = mst_text;
0cc7b392 423 }
90359a16
JK
424 /* The BSF_SYNTHETIC check is there to omit ppc64 function
425 descriptors mistaken for static functions starting with 'L'.
426 */
427 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
428 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
429 || ((sym->flags & BSF_LOCAL)
430 && sym->name[0] == '$'
431 && sym->name[1] == 'L'))
432 /* Looks like a compiler-generated label. Skip
433 it. The assembler should be skipping these (to
434 keep executables small), but apparently with
435 gcc on the (deleted) delta m88k SVR4, it loses.
436 So to have us check too should be harmless (but
437 I encourage people to fix this in the assembler
438 instead of adding checks here). */
439 continue;
440 else
441 {
442 ms_type = mst_file_text;
c906108c 443 }
0cc7b392
DJ
444 }
445 else if (sym->section->flags & SEC_ALLOC)
446 {
bb869963 447 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 448 {
0cc7b392 449 if (sym->section->flags & SEC_LOAD)
c906108c 450 {
0cc7b392 451 ms_type = mst_data;
c906108c 452 }
c906108c
SS
453 else
454 {
0cc7b392 455 ms_type = mst_bss;
c906108c
SS
456 }
457 }
0cc7b392 458 else if (sym->flags & BSF_LOCAL)
c906108c 459 {
0cc7b392
DJ
460 /* Named Local variable in a Data section.
461 Check its name for stabs-in-elf. */
462 int special_local_sect;
d7f9d729 463
0cc7b392
DJ
464 if (strcmp ("Bbss.bss", sym->name) == 0)
465 special_local_sect = SECT_OFF_BSS (objfile);
466 else if (strcmp ("Ddata.data", sym->name) == 0)
467 special_local_sect = SECT_OFF_DATA (objfile);
468 else if (strcmp ("Drodata.rodata", sym->name) == 0)
469 special_local_sect = SECT_OFF_RODATA (objfile);
470 else
471 special_local_sect = -1;
472 if (special_local_sect >= 0)
c906108c 473 {
0cc7b392
DJ
474 /* Found a special local symbol. Allocate a
475 sectinfo, if needed, and fill it in. */
476 if (sectinfo == NULL)
c906108c 477 {
0cc7b392
DJ
478 int max_index;
479 size_t size;
480
25c2f6ab
PP
481 max_index = SECT_OFF_BSS (objfile);
482 if (objfile->sect_index_data > max_index)
483 max_index = objfile->sect_index_data;
484 if (objfile->sect_index_rodata > max_index)
485 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
486
487 /* max_index is the largest index we'll
488 use into this array, so we must
489 allocate max_index+1 elements for it.
490 However, 'struct stab_section_info'
491 already includes one element, so we
492 need to allocate max_index aadditional
493 elements. */
dea91a5c 494 size = (sizeof (struct stab_section_info)
c05d19c5 495 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
496 sectinfo = (struct stab_section_info *)
497 xmalloc (size);
498 memset (sectinfo, 0, size);
499 sectinfo->num_sections = max_index;
500 if (filesym == NULL)
c906108c 501 {
0cc7b392 502 complaint (&symfile_complaints,
3e43a32a
MS
503 _("elf/stab section information %s "
504 "without a preceding file symbol"),
0cc7b392
DJ
505 sym->name);
506 }
507 else
508 {
509 sectinfo->filename =
510 (char *) filesym->name;
c906108c 511 }
c906108c 512 }
0cc7b392
DJ
513 if (sectinfo->sections[special_local_sect] != 0)
514 complaint (&symfile_complaints,
3e43a32a
MS
515 _("duplicated elf/stab section "
516 "information for %s"),
0cc7b392
DJ
517 sectinfo->filename);
518 /* BFD symbols are section relative. */
519 symaddr = sym->value + sym->section->vma;
520 /* Relocate non-absolute symbols by the
521 section offset. */
45dfa85a 522 if (sym->section != bfd_abs_section_ptr)
0cc7b392
DJ
523 symaddr += offset;
524 sectinfo->sections[special_local_sect] = symaddr;
525 /* The special local symbols don't go in the
526 minimal symbol table, so ignore this one. */
527 continue;
528 }
529 /* Not a special stabs-in-elf symbol, do regular
530 symbol processing. */
531 if (sym->section->flags & SEC_LOAD)
532 {
533 ms_type = mst_file_data;
c906108c
SS
534 }
535 else
536 {
0cc7b392 537 ms_type = mst_file_bss;
c906108c
SS
538 }
539 }
540 else
541 {
0cc7b392 542 ms_type = mst_unknown;
c906108c 543 }
0cc7b392
DJ
544 }
545 else
546 {
547 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 548 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
549 hob with actions like finding what function the PC
550 is in. Ignore them if they aren't text, data, or bss. */
551 /* ms_type = mst_unknown; */
0963b4bd 552 continue; /* Skip this symbol. */
0cc7b392
DJ
553 }
554 msym = record_minimal_symbol
04a679b8 555 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 556 ms_type, sym->section, objfile);
6f610d07 557
0cc7b392
DJ
558 if (msym)
559 {
6f610d07 560 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 561 ELF-private part. */
6f610d07 562 if (type != ST_SYNTHETIC)
24c274a1
AM
563 {
564 /* Pass symbol size field in via BFD. FIXME!!! */
565 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
566 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
567 }
dea91a5c 568
a103a963
DJ
569 msym->filename = filesymname;
570 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 571 }
2eaf8d2a 572
715c6909
TT
573 /* If we see a default versioned symbol, install it under
574 its version-less name. */
575 if (msym != NULL)
576 {
577 const char *atsign = strchr (sym->name, '@');
578
579 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
580 {
581 int len = atsign - sym->name;
582
583 record_minimal_symbol (sym->name, len, 1, symaddr,
584 ms_type, sym->section, objfile);
585 }
586 }
587
2eaf8d2a
DJ
588 /* For @plt symbols, also record a trampoline to the
589 destination symbol. The @plt symbol will be used in
590 disassembly, and the trampoline will be used when we are
591 trying to find the target. */
592 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
593 {
594 int len = strlen (sym->name);
595
596 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
597 {
2eaf8d2a
DJ
598 struct minimal_symbol *mtramp;
599
04a679b8
TT
600 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
601 symaddr,
2eaf8d2a
DJ
602 mst_solib_trampoline,
603 sym->section, objfile);
604 if (mtramp)
605 {
d9eaeb59 606 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 607 mtramp->created_by_gdb = 1;
2eaf8d2a
DJ
608 mtramp->filename = filesymname;
609 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
610 }
611 }
612 }
c906108c 613 }
c906108c
SS
614 }
615}
616
07be84bf
JK
617/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
618 for later look ups of which function to call when user requests
619 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
620 library defining `function' we cannot yet know while reading OBJFILE which
621 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
622 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
623
624static void
625elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
626{
627 bfd *obfd = objfile->obfd;
628 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
629 asection *plt, *relplt, *got_plt;
07be84bf
JK
630 int plt_elf_idx;
631 bfd_size_type reloc_count, reloc;
632 char *string_buffer = NULL;
633 size_t string_buffer_size = 0;
634 struct cleanup *back_to;
df6d5441 635 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
636 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
637 size_t ptr_size = TYPE_LENGTH (ptr_type);
638
639 if (objfile->separate_debug_objfile_backlink)
640 return;
641
642 plt = bfd_get_section_by_name (obfd, ".plt");
643 if (plt == NULL)
644 return;
645 plt_elf_idx = elf_section_data (plt)->this_idx;
646
647 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
648 if (got_plt == NULL)
649 return;
650
651 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
652 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
653 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
654 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
655 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
656 break;
657 if (relplt == NULL)
658 return;
659
660 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
661 return;
662
663 back_to = make_cleanup (free_current_contents, &string_buffer);
664
665 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
666 for (reloc = 0; reloc < reloc_count; reloc++)
667 {
22e048c9 668 const char *name;
07be84bf
JK
669 struct minimal_symbol *msym;
670 CORE_ADDR address;
671 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
672 size_t name_len;
673
674 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
675 name_len = strlen (name);
676 address = relplt->relocation[reloc].address;
677
678 /* Does the pointer reside in the .got.plt section? */
679 if (!(bfd_get_section_vma (obfd, got_plt) <= address
680 && address < bfd_get_section_vma (obfd, got_plt)
681 + bfd_get_section_size (got_plt)))
682 continue;
683
684 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
685 OBJFILE the symbol is undefined and the objfile having NAME defined
686 may not yet have been loaded. */
687
3807f613 688 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
689 {
690 string_buffer_size = 2 * (name_len + got_suffix_len);
691 string_buffer = xrealloc (string_buffer, string_buffer_size);
692 }
693 memcpy (string_buffer, name, name_len);
694 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 695 got_suffix_len + 1);
07be84bf
JK
696
697 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
698 1, address, mst_slot_got_plt, got_plt,
699 objfile);
700 if (msym)
d9eaeb59 701 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
702 }
703
704 do_cleanups (back_to);
705}
706
707/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
708
709static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
710
711/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
712
713struct elf_gnu_ifunc_cache
714{
715 /* This is always a function entry address, not a function descriptor. */
716 CORE_ADDR addr;
717
718 char name[1];
719};
720
721/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
722
723static hashval_t
724elf_gnu_ifunc_cache_hash (const void *a_voidp)
725{
726 const struct elf_gnu_ifunc_cache *a = a_voidp;
727
728 return htab_hash_string (a->name);
729}
730
731/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
732
733static int
734elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
735{
736 const struct elf_gnu_ifunc_cache *a = a_voidp;
737 const struct elf_gnu_ifunc_cache *b = b_voidp;
738
739 return strcmp (a->name, b->name) == 0;
740}
741
742/* Record the target function address of a STT_GNU_IFUNC function NAME is the
743 function entry address ADDR. Return 1 if NAME and ADDR are considered as
744 valid and therefore they were successfully recorded, return 0 otherwise.
745
746 Function does not expect a duplicate entry. Use
747 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
748 exists. */
749
750static int
751elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
752{
7cbd4a93 753 struct bound_minimal_symbol msym;
07be84bf
JK
754 asection *sect;
755 struct objfile *objfile;
756 htab_t htab;
757 struct elf_gnu_ifunc_cache entry_local, *entry_p;
758 void **slot;
759
760 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 761 if (msym.minsym == NULL)
07be84bf 762 return 0;
7cbd4a93 763 if (SYMBOL_VALUE_ADDRESS (msym.minsym) != addr)
07be84bf
JK
764 return 0;
765 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
e27d198c
TT
766 sect = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
767 objfile = msym.objfile;
07be84bf
JK
768
769 /* If .plt jumps back to .plt the symbol is still deferred for later
770 resolution and it has no use for GDB. Besides ".text" this symbol can
771 reside also in ".opd" for ppc64 function descriptor. */
772 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
773 return 0;
774
775 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
776 if (htab == NULL)
777 {
778 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
779 elf_gnu_ifunc_cache_eq,
780 NULL, &objfile->objfile_obstack,
781 hashtab_obstack_allocate,
782 dummy_obstack_deallocate);
783 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
784 }
785
786 entry_local.addr = addr;
787 obstack_grow (&objfile->objfile_obstack, &entry_local,
788 offsetof (struct elf_gnu_ifunc_cache, name));
789 obstack_grow_str0 (&objfile->objfile_obstack, name);
790 entry_p = obstack_finish (&objfile->objfile_obstack);
791
792 slot = htab_find_slot (htab, entry_p, INSERT);
793 if (*slot != NULL)
794 {
795 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
df6d5441 796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
797
798 if (entry_found_p->addr != addr)
799 {
800 /* This case indicates buggy inferior program, the resolved address
801 should never change. */
802
803 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
804 "function_address from %s to %s"),
805 name, paddress (gdbarch, entry_found_p->addr),
806 paddress (gdbarch, addr));
807 }
808
809 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
810 }
811 *slot = entry_p;
812
813 return 1;
814}
815
816/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
817 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
818 is not NULL) and the function returns 1. It returns 0 otherwise.
819
820 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
821 function. */
822
823static int
824elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
825{
826 struct objfile *objfile;
827
828 ALL_PSPACE_OBJFILES (current_program_space, objfile)
829 {
830 htab_t htab;
831 struct elf_gnu_ifunc_cache *entry_p;
832 void **slot;
833
834 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
835 if (htab == NULL)
836 continue;
837
838 entry_p = alloca (sizeof (*entry_p) + strlen (name));
839 strcpy (entry_p->name, name);
840
841 slot = htab_find_slot (htab, entry_p, NO_INSERT);
842 if (slot == NULL)
843 continue;
844 entry_p = *slot;
845 gdb_assert (entry_p != NULL);
846
847 if (addr_p)
848 *addr_p = entry_p->addr;
849 return 1;
850 }
851
852 return 0;
853}
854
855/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
856 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
857 is not NULL) and the function returns 1. It returns 0 otherwise.
858
859 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
860 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
861 prevent cache entries duplicates. */
862
863static int
864elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
865{
866 char *name_got_plt;
867 struct objfile *objfile;
868 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
869
870 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
871 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
872
873 ALL_PSPACE_OBJFILES (current_program_space, objfile)
874 {
875 bfd *obfd = objfile->obfd;
df6d5441 876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
877 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
878 size_t ptr_size = TYPE_LENGTH (ptr_type);
879 CORE_ADDR pointer_address, addr;
880 asection *plt;
881 gdb_byte *buf = alloca (ptr_size);
882 struct minimal_symbol *msym;
883
884 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
885 if (msym == NULL)
886 continue;
887 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
888 continue;
889 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
890
891 plt = bfd_get_section_by_name (obfd, ".plt");
892 if (plt == NULL)
893 continue;
894
895 if (MSYMBOL_SIZE (msym) != ptr_size)
896 continue;
897 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
898 continue;
899 addr = extract_typed_address (buf, ptr_type);
900 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
901 &current_target);
902
903 if (addr_p)
904 *addr_p = addr;
905 if (elf_gnu_ifunc_record_cache (name, addr))
906 return 1;
907 }
908
909 return 0;
910}
911
912/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
913 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
914 is not NULL) and the function returns 1. It returns 0 otherwise.
915
916 Both the elf_objfile_gnu_ifunc_cache_data hash table and
917 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
918
919static int
920elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
921{
922 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
923 return 1;
dea91a5c 924
07be84bf
JK
925 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
926 return 1;
927
928 return 0;
929}
930
931/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
932 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
933 is the entry point of the resolved STT_GNU_IFUNC target function to call.
934 */
935
936static CORE_ADDR
937elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
938{
2c02bd72 939 const char *name_at_pc;
07be84bf
JK
940 CORE_ADDR start_at_pc, address;
941 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
942 struct value *function, *address_val;
943
944 /* Try first any non-intrusive methods without an inferior call. */
945
946 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
947 && start_at_pc == pc)
948 {
949 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
950 return address;
951 }
952 else
953 name_at_pc = NULL;
954
955 function = allocate_value (func_func_type);
956 set_value_address (function, pc);
957
958 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
959 function entry address. ADDRESS may be a function descriptor. */
960
961 address_val = call_function_by_hand (function, 0, NULL);
962 address = value_as_address (address_val);
963 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
964 &current_target);
965
966 if (name_at_pc)
967 elf_gnu_ifunc_record_cache (name_at_pc, address);
968
969 return address;
970}
971
0e30163f
JK
972/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
973
974static void
975elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
976{
977 struct breakpoint *b_return;
978 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
979 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
980 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
981 int thread_id = pid_to_thread_id (inferior_ptid);
982
983 gdb_assert (b->type == bp_gnu_ifunc_resolver);
984
985 for (b_return = b->related_breakpoint; b_return != b;
986 b_return = b_return->related_breakpoint)
987 {
988 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
989 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
990 gdb_assert (frame_id_p (b_return->frame_id));
991
992 if (b_return->thread == thread_id
993 && b_return->loc->requested_address == prev_pc
994 && frame_id_eq (b_return->frame_id, prev_frame_id))
995 break;
996 }
997
998 if (b_return == b)
999 {
1000 struct symtab_and_line sal;
1001
1002 /* No need to call find_pc_line for symbols resolving as this is only
1003 a helper breakpointer never shown to the user. */
1004
1005 init_sal (&sal);
1006 sal.pspace = current_inferior ()->pspace;
1007 sal.pc = prev_pc;
1008 sal.section = find_pc_overlay (sal.pc);
1009 sal.explicit_pc = 1;
1010 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1011 prev_frame_id,
1012 bp_gnu_ifunc_resolver_return);
1013
c70a6932
JK
1014 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1015 prev_frame = NULL;
1016
0e30163f
JK
1017 /* Add new b_return to the ring list b->related_breakpoint. */
1018 gdb_assert (b_return->related_breakpoint == b_return);
1019 b_return->related_breakpoint = b->related_breakpoint;
1020 b->related_breakpoint = b_return;
1021 }
1022}
1023
1024/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1025
1026static void
1027elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1028{
1029 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1030 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1031 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1032 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 1033 struct value *func_func;
0e30163f
JK
1034 struct value *value;
1035 CORE_ADDR resolved_address, resolved_pc;
1036 struct symtab_and_line sal;
f1310107 1037 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1038
1039 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1040
0e30163f
JK
1041 while (b->related_breakpoint != b)
1042 {
1043 struct breakpoint *b_next = b->related_breakpoint;
1044
1045 switch (b->type)
1046 {
1047 case bp_gnu_ifunc_resolver:
1048 break;
1049 case bp_gnu_ifunc_resolver_return:
1050 delete_breakpoint (b);
1051 break;
1052 default:
1053 internal_error (__FILE__, __LINE__,
1054 _("handle_inferior_event: Invalid "
1055 "gnu-indirect-function breakpoint type %d"),
1056 (int) b->type);
1057 }
1058 b = b_next;
1059 }
1060 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1061 gdb_assert (b->loc->next == NULL);
1062
1063 func_func = allocate_value (func_func_type);
1064 set_value_address (func_func, b->loc->related_address);
1065
1066 value = allocate_value (value_type);
1067 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1068 value_contents_raw (value), NULL);
1069 resolved_address = value_as_address (value);
1070 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1071 resolved_address,
1072 &current_target);
0e30163f 1073
f8eba3c6 1074 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1075 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1076
1077 sal = find_pc_line (resolved_pc, 0);
1078 sals.nelts = 1;
1079 sals.sals = &sal;
f1310107 1080 sals_end.nelts = 0;
0e30163f
JK
1081
1082 b->type = bp_breakpoint;
f1310107 1083 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1084}
1085
c906108c 1086/* Scan and build partial symbols for a symbol file.
dea91a5c 1087 We have been initialized by a call to elf_symfile_init, which
c906108c
SS
1088 currently does nothing.
1089
1090 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1091 in each section. We simplify it down to a single offset for all
1092 symbols. FIXME.
1093
c906108c
SS
1094 This function only does the minimum work necessary for letting the
1095 user "name" things symbolically; it does not read the entire symtab.
1096 Instead, it reads the external and static symbols and puts them in partial
1097 symbol tables. When more extensive information is requested of a
1098 file, the corresponding partial symbol table is mutated into a full
1099 fledged symbol table by going back and reading the symbols
1100 for real.
1101
1102 We look for sections with specific names, to tell us what debug
1103 format to look for: FIXME!!!
1104
c906108c
SS
1105 elfstab_build_psymtabs() handles STABS symbols;
1106 mdebug_build_psymtabs() handles ECOFF debugging information.
1107
1108 Note that ELF files have a "minimal" symbol table, which looks a lot
1109 like a COFF symbol table, but has only the minimal information necessary
1110 for linking. We process this also, and use the information to
1111 build gdb's minimal symbol table. This gives us some minimal debugging
1112 capability even for files compiled without -g. */
1113
1114static void
f4352531 1115elf_symfile_read (struct objfile *objfile, int symfile_flags)
c906108c 1116{
63524580 1117 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c
SS
1118 struct elfinfo ei;
1119 struct cleanup *back_to;
62553543
EZ
1120 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1121 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1122 asymbol *synthsyms;
d2f4b8fe 1123 struct dbx_symfile_info *dbx;
c906108c 1124
45cfd468
DE
1125 if (symtab_create_debug)
1126 {
1127 fprintf_unfiltered (gdb_stdlog,
1128 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1129 objfile_name (objfile));
45cfd468
DE
1130 }
1131
c906108c 1132 init_minimal_symbol_collection ();
56e290f4 1133 back_to = make_cleanup_discard_minimal_symbols ();
c906108c
SS
1134
1135 memset ((char *) &ei, 0, sizeof (ei));
1136
0963b4bd 1137 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1138 dbx = XCNEW (struct dbx_symfile_info);
1139 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
12b9c64f 1140 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1141
3e43a32a 1142 /* Process the normal ELF symbol table first. This may write some
d2f4b8fe
TT
1143 chain of info into the dbx_symfile_info of the objfile, which can
1144 later be used by elfstab_offset_sections. */
c906108c 1145
62553543
EZ
1146 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1147 if (storage_needed < 0)
3e43a32a
MS
1148 error (_("Can't read symbols from %s: %s"),
1149 bfd_get_filename (objfile->obfd),
62553543
EZ
1150 bfd_errmsg (bfd_get_error ()));
1151
1152 if (storage_needed > 0)
1153 {
1154 symbol_table = (asymbol **) xmalloc (storage_needed);
1155 make_cleanup (xfree, symbol_table);
1156 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1157
1158 if (symcount < 0)
3e43a32a
MS
1159 error (_("Can't read symbols from %s: %s"),
1160 bfd_get_filename (objfile->obfd),
62553543
EZ
1161 bfd_errmsg (bfd_get_error ()));
1162
04a679b8 1163 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1164 }
c906108c
SS
1165
1166 /* Add the dynamic symbols. */
1167
62553543
EZ
1168 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1169
1170 if (storage_needed > 0)
1171 {
3f1eff0a
JK
1172 /* Memory gets permanently referenced from ABFD after
1173 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1174 It happens only in the case when elf_slurp_reloc_table sees
1175 asection->relocation NULL. Determining which section is asection is
1176 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1177 implementation detail, though. */
1178
1179 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1180 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1181 dyn_symbol_table);
1182
1183 if (dynsymcount < 0)
3e43a32a
MS
1184 error (_("Can't read symbols from %s: %s"),
1185 bfd_get_filename (objfile->obfd),
62553543
EZ
1186 bfd_errmsg (bfd_get_error ()));
1187
04a679b8 1188 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1189
1190 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1191 }
1192
63524580
JK
1193 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1194 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1195
1196 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1197 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1198 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1199 read the code address from .opd while it reads the .symtab section from
1200 a separate debug info file as the .opd section is SHT_NOBITS there.
1201
1202 With SYNTH_ABFD the .opd section will be read from the original
1203 backlinked binary where it is valid. */
1204
1205 if (objfile->separate_debug_objfile_backlink)
1206 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1207 else
1208 synth_abfd = abfd;
1209
62553543
EZ
1210 /* Add synthetic symbols - for instance, names for any PLT entries. */
1211
63524580 1212 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1213 dynsymcount, dyn_symbol_table,
1214 &synthsyms);
1215 if (synthcount > 0)
1216 {
1217 asymbol **synth_symbol_table;
1218 long i;
1219
1220 make_cleanup (xfree, synthsyms);
1221 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1222 for (i = 0; i < synthcount; i++)
9f20e3da 1223 synth_symbol_table[i] = synthsyms + i;
62553543 1224 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1225 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1226 synth_symbol_table, 1);
62553543 1227 }
c906108c 1228
7134143f
DJ
1229 /* Install any minimal symbols that have been collected as the current
1230 minimal symbols for this objfile. The debug readers below this point
1231 should not generate new minimal symbols; if they do it's their
1232 responsibility to install them. "mdebug" appears to be the only one
1233 which will do this. */
1234
1235 install_minimal_symbols (objfile);
1236 do_cleanups (back_to);
1237
4f00dda3
DE
1238 if (symtab_create_debug)
1239 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1240
c906108c 1241 /* Now process debugging information, which is contained in
0963b4bd 1242 special ELF sections. */
c906108c 1243
0963b4bd 1244 /* We first have to find them... */
12b9c64f 1245 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c
SS
1246
1247 /* ELF debugging information is inserted into the psymtab in the
1248 order of least informative first - most informative last. Since
1249 the psymtab table is searched `most recent insertion first' this
1250 increases the probability that more detailed debug information
1251 for a section is found.
1252
1253 For instance, an object file might contain both .mdebug (XCOFF)
1254 and .debug_info (DWARF2) sections then .mdebug is inserted first
1255 (searched last) and DWARF2 is inserted last (searched first). If
1256 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1257 an included file XCOFF info is useless. */
c906108c
SS
1258
1259 if (ei.mdebugsect)
1260 {
1261 const struct ecoff_debug_swap *swap;
1262
1263 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1264 information. */
c906108c
SS
1265 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1266 if (swap)
d4f3574e 1267 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1268 }
1269 if (ei.stabsect)
1270 {
1271 asection *str_sect;
1272
1273 /* Stab sections have an associated string table that looks like
c5aa993b 1274 a separate section. */
c906108c
SS
1275 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1276
1277 /* FIXME should probably warn about a stab section without a stabstr. */
1278 if (str_sect)
1279 elfstab_build_psymtabs (objfile,
086df311 1280 ei.stabsect,
c906108c
SS
1281 str_sect->filepos,
1282 bfd_section_size (abfd, str_sect));
1283 }
9291a0cd 1284
251d32d9 1285 if (dwarf2_has_info (objfile, NULL))
b11896a5 1286 {
3e03848b
JK
1287 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1288 information present in OBJFILE. If there is such debug info present
1289 never use .gdb_index. */
1290
1291 if (!objfile_has_partial_symbols (objfile)
1292 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1293 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1294 else
1295 {
1296 /* It is ok to do this even if the stabs reader made some
1297 partial symbols, because OBJF_PSYMTABS_READ has not been
1298 set, and so our lazy reader function will still be called
1299 when needed. */
8fb8eb5c 1300 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1301 }
1302 }
3e43a32a
MS
1303 /* If the file has its own symbol tables it has no separate debug
1304 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1305 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1306 `.note.gnu.build-id'.
1307
1308 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1309 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1310 an objfile via find_separate_debug_file_in_section there was no separate
1311 debug info available. Therefore do not attempt to search for another one,
1312 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1313 be NULL and we would possibly violate it. */
1314
1315 else if (!objfile_has_partial_symbols (objfile)
1316 && objfile->separate_debug_objfile == NULL
1317 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1318 {
1319 char *debugfile;
1320
1321 debugfile = find_separate_debug_file_by_buildid (objfile);
1322
1323 if (debugfile == NULL)
1324 debugfile = find_separate_debug_file_by_debuglink (objfile);
1325
1326 if (debugfile)
1327 {
8ac244b4 1328 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1329 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1330
8ac244b4 1331 make_cleanup_bfd_unref (abfd);
24ba069a 1332 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
8ac244b4 1333 do_cleanups (cleanup);
9cce227f
TG
1334 }
1335 }
c906108c
SS
1336}
1337
b11896a5
TT
1338/* Callback to lazily read psymtabs. */
1339
1340static void
1341read_psyms (struct objfile *objfile)
1342{
251d32d9 1343 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1344 dwarf2_build_psymtabs (objfile);
1345}
1346
d2f4b8fe
TT
1347/* This cleans up the objfile's dbx symfile info, and the chain of
1348 stab_section_info's, that might be dangling from it. */
c906108c
SS
1349
1350static void
12b9c64f 1351free_elfinfo (void *objp)
c906108c 1352{
c5aa993b 1353 struct objfile *objfile = (struct objfile *) objp;
d2f4b8fe 1354 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1355 struct stab_section_info *ssi, *nssi;
1356
1357 ssi = dbxinfo->stab_section_info;
1358 while (ssi)
1359 {
1360 nssi = ssi->next;
2dc74dc1 1361 xfree (ssi);
c906108c
SS
1362 ssi = nssi;
1363 }
1364
1365 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1366}
1367
1368
1369/* Initialize anything that needs initializing when a completely new symbol
1370 file is specified (not just adding some symbols from another file, e.g. a
1371 shared library).
1372
3e43a32a
MS
1373 We reinitialize buildsym, since we may be reading stabs from an ELF
1374 file. */
c906108c
SS
1375
1376static void
fba45db2 1377elf_new_init (struct objfile *ignore)
c906108c
SS
1378{
1379 stabsread_new_init ();
1380 buildsym_new_init ();
1381}
1382
1383/* Perform any local cleanups required when we are done with a particular
1384 objfile. I.E, we are in the process of discarding all symbol information
1385 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1386 objfile struct from the global list of known objfiles. */
c906108c
SS
1387
1388static void
fba45db2 1389elf_symfile_finish (struct objfile *objfile)
c906108c 1390{
fe3e1990 1391 dwarf2_free_objfile (objfile);
c906108c
SS
1392}
1393
1394/* ELF specific initialization routine for reading symbols.
1395
1396 It is passed a pointer to a struct sym_fns which contains, among other
1397 things, the BFD for the file whose symbols are being read, and a slot for
1398 a pointer to "private data" which we can fill with goodies.
1399
1400 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1401 just a stub. */
c906108c
SS
1402
1403static void
fba45db2 1404elf_symfile_init (struct objfile *objfile)
c906108c
SS
1405{
1406 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1407 find this causes a significant slowdown in gdb then we could
1408 set it in the debug symbol readers only when necessary. */
1409 objfile->flags |= OBJF_REORDERED;
1410}
1411
1412/* When handling an ELF file that contains Sun STABS debug info,
1413 some of the debug info is relative to the particular chunk of the
1414 section that was generated in its individual .o file. E.g.
1415 offsets to static variables are relative to the start of the data
1416 segment *for that module before linking*. This information is
1417 painfully squirreled away in the ELF symbol table as local symbols
1418 with wierd names. Go get 'em when needed. */
1419
1420void
fba45db2 1421elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1422{
72b9f47f 1423 const char *filename = pst->filename;
d2f4b8fe 1424 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1425 struct stab_section_info *maybe = dbx->stab_section_info;
1426 struct stab_section_info *questionable = 0;
1427 int i;
c906108c
SS
1428
1429 /* The ELF symbol info doesn't include path names, so strip the path
1430 (if any) from the psymtab filename. */
0ba1096a 1431 filename = lbasename (filename);
c906108c
SS
1432
1433 /* FIXME: This linear search could speed up significantly
1434 if it was chained in the right order to match how we search it,
0963b4bd 1435 and if we unchained when we found a match. */
c906108c
SS
1436 for (; maybe; maybe = maybe->next)
1437 {
1438 if (filename[0] == maybe->filename[0]
0ba1096a 1439 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1440 {
1441 /* We found a match. But there might be several source files
1442 (from different directories) with the same name. */
1443 if (0 == maybe->found)
1444 break;
c5aa993b 1445 questionable = maybe; /* Might use it later. */
c906108c
SS
1446 }
1447 }
1448
1449 if (maybe == 0 && questionable != 0)
1450 {
23136709 1451 complaint (&symfile_complaints,
3e43a32a
MS
1452 _("elf/stab section information questionable for %s"),
1453 filename);
c906108c
SS
1454 maybe = questionable;
1455 }
1456
1457 if (maybe)
1458 {
1459 /* Found it! Allocate a new psymtab struct, and fill it in. */
1460 maybe->found++;
1461 pst->section_offsets = (struct section_offsets *)
dea91a5c 1462 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1463 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1464 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1465 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1466 return;
1467 }
1468
1469 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1470 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1471 complaint (&symfile_complaints,
e2e0b3e5 1472 _("elf/stab section information missing for %s"), filename);
c906108c 1473}
55aa24fb
SDJ
1474
1475/* Implementation of `sym_get_probes', as documented in symfile.h. */
1476
1477static VEC (probe_p) *
1478elf_get_probes (struct objfile *objfile)
1479{
1480 VEC (probe_p) *probes_per_objfile;
1481
1482 /* Have we parsed this objfile's probes already? */
1483 probes_per_objfile = objfile_data (objfile, probe_key);
1484
1485 if (!probes_per_objfile)
1486 {
1487 int ix;
1488 const struct probe_ops *probe_ops;
1489
1490 /* Here we try to gather information about all types of probes from the
1491 objfile. */
1492 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1493 ix++)
1494 probe_ops->get_probes (&probes_per_objfile, objfile);
1495
1496 if (probes_per_objfile == NULL)
1497 {
1498 VEC_reserve (probe_p, probes_per_objfile, 1);
1499 gdb_assert (probes_per_objfile != NULL);
1500 }
1501
1502 set_objfile_data (objfile, probe_key, probes_per_objfile);
1503 }
1504
1505 return probes_per_objfile;
1506}
1507
1508/* Implementation of `sym_get_probe_argument_count', as documented in
1509 symfile.h. */
1510
1511static unsigned
6bac7473 1512elf_get_probe_argument_count (struct probe *probe)
55aa24fb 1513{
6bac7473 1514 return probe->pops->get_probe_argument_count (probe);
55aa24fb
SDJ
1515}
1516
25f9533e
SDJ
1517/* Implementation of `sym_can_evaluate_probe_arguments', as documented in
1518 symfile.h. */
1519
1520static int
1521elf_can_evaluate_probe_arguments (struct probe *probe)
1522{
1523 return probe->pops->can_evaluate_probe_arguments (probe);
1524}
1525
55aa24fb
SDJ
1526/* Implementation of `sym_evaluate_probe_argument', as documented in
1527 symfile.h. */
1528
1529static struct value *
6bac7473 1530elf_evaluate_probe_argument (struct probe *probe, unsigned n)
55aa24fb 1531{
6bac7473 1532 return probe->pops->evaluate_probe_argument (probe, n);
55aa24fb
SDJ
1533}
1534
1535/* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1536
1537static void
6bac7473 1538elf_compile_to_ax (struct probe *probe,
55aa24fb
SDJ
1539 struct agent_expr *expr,
1540 struct axs_value *value,
1541 unsigned n)
1542{
6bac7473 1543 probe->pops->compile_to_ax (probe, expr, value, n);
55aa24fb
SDJ
1544}
1545
1546/* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1547
1548static void
1549elf_symfile_relocate_probe (struct objfile *objfile,
3189cb12
DE
1550 const struct section_offsets *new_offsets,
1551 const struct section_offsets *delta)
55aa24fb
SDJ
1552{
1553 int ix;
1554 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1555 struct probe *probe;
1556
1557 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1558 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1559}
1560
1561/* Helper function used to free the space allocated for storing SystemTap
1562 probe information. */
1563
1564static void
1565probe_key_free (struct objfile *objfile, void *d)
1566{
1567 int ix;
1568 VEC (probe_p) *probes = d;
1569 struct probe *probe;
1570
1571 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1572 probe->pops->destroy (probe);
1573
1574 VEC_free (probe_p, probes);
1575}
1576
c906108c 1577\f
55aa24fb
SDJ
1578
1579/* Implementation `sym_probe_fns', as documented in symfile.h. */
1580
1581static const struct sym_probe_fns elf_probe_fns =
1582{
25f9533e
SDJ
1583 elf_get_probes, /* sym_get_probes */
1584 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1585 elf_can_evaluate_probe_arguments, /* sym_can_evaluate_probe_arguments */
1586 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1587 elf_compile_to_ax, /* sym_compile_to_ax */
1588 elf_symfile_relocate_probe, /* sym_relocate_probe */
55aa24fb
SDJ
1589};
1590
c906108c
SS
1591/* Register that we are able to handle ELF object file formats. */
1592
00b5771c 1593static const struct sym_fns elf_sym_fns =
c906108c 1594{
3e43a32a
MS
1595 elf_new_init, /* init anything gbl to entire symtab */
1596 elf_symfile_init, /* read initial info, setup for sym_read() */
1597 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1598 NULL, /* sym_read_psymbols */
1599 elf_symfile_finish, /* finished with file, cleanup */
1600 default_symfile_offsets, /* Translate ext. to int. relocation */
1601 elf_symfile_segments, /* Get segment information from a file. */
1602 NULL,
1603 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1604 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1605 &psym_functions
1606};
1607
1608/* The same as elf_sym_fns, but not registered and lazily reads
1609 psymbols. */
1610
1611static const struct sym_fns elf_sym_fns_lazy_psyms =
1612{
b11896a5
TT
1613 elf_new_init, /* init anything gbl to entire symtab */
1614 elf_symfile_init, /* read initial info, setup for sym_read() */
1615 elf_symfile_read, /* read a symbol file into symtab */
1616 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1617 elf_symfile_finish, /* finished with file, cleanup */
1618 default_symfile_offsets, /* Translate ext. to int. relocation */
1619 elf_symfile_segments, /* Get segment information from a file. */
1620 NULL,
1621 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1622 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1623 &psym_functions
c906108c
SS
1624};
1625
9291a0cd
TT
1626/* The same as elf_sym_fns, but not registered and uses the
1627 DWARF-specific GNU index rather than psymtab. */
00b5771c 1628static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1629{
3e43a32a
MS
1630 elf_new_init, /* init anything gbl to entire symab */
1631 elf_symfile_init, /* read initial info, setup for sym_red() */
1632 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1633 NULL, /* sym_read_psymbols */
3e43a32a
MS
1634 elf_symfile_finish, /* finished with file, cleanup */
1635 default_symfile_offsets, /* Translate ext. to int. relocatin */
1636 elf_symfile_segments, /* Get segment information from a file. */
1637 NULL,
1638 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1639 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1640 &dwarf2_gdb_index_functions
9291a0cd
TT
1641};
1642
07be84bf
JK
1643/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1644
1645static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1646{
1647 elf_gnu_ifunc_resolve_addr,
1648 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1649 elf_gnu_ifunc_resolver_stop,
1650 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1651};
1652
c906108c 1653void
fba45db2 1654_initialize_elfread (void)
c906108c 1655{
55aa24fb 1656 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
c256e171 1657 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1658
1659 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1660 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1661}
This page took 1.028166 seconds and 4 git commands to generate.