Implement Ada operator overloading
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
3666a048 3 Copyright (C) 1991-2021 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
c906108c 54
3c0aa29a
PA
55/* Forward declarations. */
56extern const struct sym_fns elf_sym_fns_gdb_index;
57extern const struct sym_fns elf_sym_fns_debug_names;
58extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
c906108c 60/* The struct elfinfo is available only during ELF symbol table and
6426a772 61 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
62 It's local to elf_symfile_read. */
63
c5aa993b
JM
64struct elfinfo
65 {
c5aa993b 66 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 67 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 68 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 69 };
c906108c 70
814cf43a
TT
71/* Type for per-BFD data. */
72
73typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
5d9cf8a4 75/* Per-BFD data for probe info. */
55aa24fb 76
814cf43a 77static const struct bfd_key<elfread_data> probe_key;
55aa24fb 78
07be84bf
JK
79/* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
31d99776
DJ
86/* Locate the segments in ABFD. */
87
62982abd 88static symfile_segment_data_up
31d99776
DJ
89elf_symfile_segments (bfd *abfd)
90{
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
31d99776
DJ
95
96 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97 if (phdrs_size == -1)
98 return NULL;
99
224c3ddb 100 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
101 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102 if (num_phdrs == -1)
103 return NULL;
104
105 num_segments = 0;
8d749320 106 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
107 for (i = 0; i < num_phdrs; i++)
108 if (phdrs[i].p_type == PT_LOAD)
109 segments[num_segments++] = &phdrs[i];
110
111 if (num_segments == 0)
112 return NULL;
113
62982abd 114 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 115 data->segments.reserve (num_segments);
31d99776
DJ
116
117 for (i = 0; i < num_segments; i++)
68b888ff 118 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
119
120 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
121
122 /* All elements are initialized to 0 (map to no segment). */
123 data->segment_info.resize (num_sections);
31d99776
DJ
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
31d99776 128
fd361982 129 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
130 continue;
131
62b74cb8 132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
133
134 for (j = 0; j < num_segments; j++)
62b74cb8 135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
25f4c262
KS
150
151 /* Exclude debuginfo files from this warning, too, since those
152 are often not strictly compliant with the standard. See, e.g.,
153 ld/24717 for more discussion. */
154 if (!is_debuginfo_file (abfd)
155 && bfd_section_size (sect) > 0 && j == num_segments
fd361982 156 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
9d3ab915
KS
157 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
158 bfd_section_name (sect), bfd_get_filename (abfd));
31d99776
DJ
159 }
160
161 return data;
162}
163
c906108c
SS
164/* We are called once per section from elf_symfile_read. We
165 need to examine each section we are passed, check to see
166 if it is something we are interested in processing, and
167 if so, stash away some access information for the section.
168
169 For now we recognize the dwarf debug information sections and
170 line number sections from matching their section names. The
171 ELF definition is no real help here since it has no direct
172 knowledge of DWARF (by design, so any debugging format can be
173 used).
174
175 We also recognize the ".stab" sections used by the Sun compilers
176 released with Solaris 2.
177
178 FIXME: The section names should not be hardwired strings (what
179 should they be? I don't think most object file formats have enough
0963b4bd 180 section flags to specify what kind of debug section it is.
c906108c
SS
181 -kingdon). */
182
183static void
08f93a1a 184elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 185{
7ce59000 186 if (strcmp (sectp->name, ".stab") == 0)
c906108c 187 {
c5aa993b 188 ei->stabsect = sectp;
c906108c 189 }
6314a349 190 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 191 {
c5aa993b 192 ei->mdebugsect = sectp;
c906108c 193 }
30d1f018
WP
194 else if (strcmp (sectp->name, ".ctf") == 0)
195 {
196 ei->ctfsect = sectp;
197 }
c906108c
SS
198}
199
c906108c 200static struct minimal_symbol *
8dddcb8f 201record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 202 gdb::string_view name, bool copy_name,
04a679b8 203 CORE_ADDR address,
f594e5e9
MC
204 enum minimal_symbol_type ms_type,
205 asection *bfd_section, struct objfile *objfile)
c906108c 206{
08feed99 207 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 208
0875794a
JK
209 if (ms_type == mst_text || ms_type == mst_file_text
210 || ms_type == mst_text_gnu_ifunc)
85ddcc70 211 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 212
44e4c775
AB
213 /* We only setup section information for allocatable sections. Usually
214 we'd only expect to find msymbols for allocatable sections, but if the
215 ELF is malformed then this might not be the case. In that case don't
216 create an msymbol that references an uninitialised section object. */
217 int section_index = 0;
218 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
219 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
220
4b610737 221 struct minimal_symbol *result
44e4c775 222 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
223 if ((objfile->flags & OBJF_MAINLINE) == 0
224 && (ms_type == mst_data || ms_type == mst_bss))
225 result->maybe_copied = 1;
226
227 return result;
c906108c
SS
228}
229
7f86f058 230/* Read the symbol table of an ELF file.
c906108c 231
62553543 232 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
233 symbol table contains regular, dynamic, or synthetic symbols, add all
234 the global function and data symbols to the minimal symbol table.
c906108c 235
c5aa993b
JM
236 In stabs-in-ELF, as implemented by Sun, there are some local symbols
237 defined in the ELF symbol table, which can be used to locate
238 the beginnings of sections from each ".o" file that was linked to
239 form the executable objfile. We gather any such info and record it
7f86f058 240 in data structures hung off the objfile's private data. */
c906108c 241
6f610d07
UW
242#define ST_REGULAR 0
243#define ST_DYNAMIC 1
244#define ST_SYNTHETIC 2
245
c906108c 246static void
8dddcb8f
TT
247elf_symtab_read (minimal_symbol_reader &reader,
248 struct objfile *objfile, int type,
04a679b8 249 long number_of_symbols, asymbol **symbol_table,
ce6c454e 250 bool copy_names)
c906108c 251{
08feed99 252 struct gdbarch *gdbarch = objfile->arch ();
c906108c 253 asymbol *sym;
c906108c 254 long i;
c906108c
SS
255 CORE_ADDR symaddr;
256 enum minimal_symbol_type ms_type;
18a94d75
DE
257 /* Name of the last file symbol. This is either a constant string or is
258 saved on the objfile's filename cache. */
0af1e9a5 259 const char *filesymname = "";
d4f3574e 260 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
261 int elf_make_msymbol_special_p
262 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 263
0cc7b392 264 for (i = 0; i < number_of_symbols; i++)
c906108c 265 {
0cc7b392
DJ
266 sym = symbol_table[i];
267 if (sym->name == NULL || *sym->name == '\0')
c906108c 268 {
0cc7b392 269 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 270 that are null strings (may happen). */
0cc7b392
DJ
271 continue;
272 }
c906108c 273
74763737
DJ
274 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
275 symbols which do not correspond to objects in the symbol table,
276 but have some other target-specific meaning. */
277 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
278 {
279 if (gdbarch_record_special_symbol_p (gdbarch))
280 gdbarch_record_special_symbol (gdbarch, objfile, sym);
281 continue;
282 }
74763737 283
6f610d07 284 if (type == ST_DYNAMIC
45dfa85a 285 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
286 && (sym->flags & BSF_FUNCTION))
287 {
288 struct minimal_symbol *msym;
02c75f72 289 bfd *abfd = objfile->obfd;
dea91a5c 290 asection *sect;
0cc7b392
DJ
291
292 /* Symbol is a reference to a function defined in
293 a shared library.
294 If its value is non zero then it is usually the address
295 of the corresponding entry in the procedure linkage table,
296 plus the desired section offset.
297 If its value is zero then the dynamic linker has to resolve
0963b4bd 298 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
299 for this symbol in the executable file, so we skip it. */
300 symaddr = sym->value;
301 if (symaddr == 0)
302 continue;
02c75f72
UW
303
304 /* sym->section is the undefined section. However, we want to
305 record the section where the PLT stub resides with the
306 minimal symbol. Search the section table for the one that
307 covers the stub's address. */
308 for (sect = abfd->sections; sect != NULL; sect = sect->next)
309 {
fd361982 310 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
311 continue;
312
fd361982
AM
313 if (symaddr >= bfd_section_vma (sect)
314 && symaddr < bfd_section_vma (sect)
315 + bfd_section_size (sect))
02c75f72
UW
316 break;
317 }
318 if (!sect)
319 continue;
320
828cfa8d
JB
321 /* On ia64-hpux, we have discovered that the system linker
322 adds undefined symbols with nonzero addresses that cannot
323 be right (their address points inside the code of another
324 function in the .text section). This creates problems
325 when trying to determine which symbol corresponds to
326 a given address.
327
328 We try to detect those buggy symbols by checking which
329 section we think they correspond to. Normally, PLT symbols
330 are stored inside their own section, and the typical name
331 for that section is ".plt". So, if there is a ".plt"
332 section, and yet the section name of our symbol does not
333 start with ".plt", we ignore that symbol. */
61012eef 334 if (!startswith (sect->name, ".plt")
828cfa8d
JB
335 && bfd_get_section_by_name (abfd, ".plt") != NULL)
336 continue;
337
0cc7b392 338 msym = record_minimal_symbol
31edb802 339 (reader, sym->name, copy_names,
04a679b8 340 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 341 if (msym != NULL)
9b807e7b
MR
342 {
343 msym->filename = filesymname;
3e29f34a
MR
344 if (elf_make_msymbol_special_p)
345 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 346 }
0cc7b392
DJ
347 continue;
348 }
c906108c 349
0cc7b392
DJ
350 /* If it is a nonstripped executable, do not enter dynamic
351 symbols, as the dynamic symbol table is usually a subset
352 of the main symbol table. */
6f610d07 353 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
354 continue;
355 if (sym->flags & BSF_FILE)
be1e3d3e 356 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
357 else if (sym->flags & BSF_SECTION_SYM)
358 continue;
bb869963
SDJ
359 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
360 | BSF_GNU_UNIQUE))
0cc7b392
DJ
361 {
362 struct minimal_symbol *msym;
363
364 /* Select global/local/weak symbols. Note that bfd puts abs
365 symbols in their own section, so all symbols we are
0963b4bd
MS
366 interested in will have a section. */
367 /* Bfd symbols are section relative. */
0cc7b392 368 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
369 /* For non-absolute symbols, use the type of the section
370 they are relative to, to intuit text/data. Bfd provides
0963b4bd 371 no way of figuring this out for absolute symbols. */
45dfa85a 372 if (sym->section == bfd_abs_section_ptr)
c906108c 373 {
0cc7b392
DJ
374 /* This is a hack to get the minimal symbol type
375 right for Irix 5, which has absolute addresses
6f610d07
UW
376 with special section indices for dynamic symbols.
377
378 NOTE: uweigand-20071112: Synthetic symbols do not
379 have an ELF-private part, so do not touch those. */
dea91a5c 380 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
381 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
382
383 switch (shndx)
c906108c 384 {
0cc7b392
DJ
385 case SHN_MIPS_TEXT:
386 ms_type = mst_text;
387 break;
388 case SHN_MIPS_DATA:
389 ms_type = mst_data;
390 break;
391 case SHN_MIPS_ACOMMON:
392 ms_type = mst_bss;
393 break;
394 default:
395 ms_type = mst_abs;
396 }
397
398 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 399 symbols, relocate all others by section offset. */
0cc7b392
DJ
400 if (ms_type != mst_abs)
401 {
402 if (sym->name[0] == '.')
403 continue;
c906108c 404 }
0cc7b392
DJ
405 }
406 else if (sym->section->flags & SEC_CODE)
407 {
bb869963 408 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 409 {
0875794a
JK
410 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
411 ms_type = mst_text_gnu_ifunc;
412 else
413 ms_type = mst_text;
0cc7b392 414 }
90359a16
JK
415 /* The BSF_SYNTHETIC check is there to omit ppc64 function
416 descriptors mistaken for static functions starting with 'L'.
417 */
418 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
419 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
420 || ((sym->flags & BSF_LOCAL)
421 && sym->name[0] == '$'
422 && sym->name[1] == 'L'))
423 /* Looks like a compiler-generated label. Skip
424 it. The assembler should be skipping these (to
425 keep executables small), but apparently with
426 gcc on the (deleted) delta m88k SVR4, it loses.
427 So to have us check too should be harmless (but
428 I encourage people to fix this in the assembler
429 instead of adding checks here). */
430 continue;
431 else
432 {
433 ms_type = mst_file_text;
c906108c 434 }
0cc7b392
DJ
435 }
436 else if (sym->section->flags & SEC_ALLOC)
437 {
bb869963 438 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 439 {
f50776aa
PA
440 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
441 {
442 ms_type = mst_data_gnu_ifunc;
443 }
444 else if (sym->section->flags & SEC_LOAD)
c906108c 445 {
0cc7b392 446 ms_type = mst_data;
c906108c 447 }
c906108c
SS
448 else
449 {
0cc7b392 450 ms_type = mst_bss;
c906108c
SS
451 }
452 }
0cc7b392 453 else if (sym->flags & BSF_LOCAL)
c906108c 454 {
0cc7b392
DJ
455 if (sym->section->flags & SEC_LOAD)
456 {
457 ms_type = mst_file_data;
c906108c
SS
458 }
459 else
460 {
0cc7b392 461 ms_type = mst_file_bss;
c906108c
SS
462 }
463 }
464 else
465 {
0cc7b392 466 ms_type = mst_unknown;
c906108c 467 }
0cc7b392
DJ
468 }
469 else
470 {
471 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 472 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
473 hob with actions like finding what function the PC
474 is in. Ignore them if they aren't text, data, or bss. */
475 /* ms_type = mst_unknown; */
0963b4bd 476 continue; /* Skip this symbol. */
0cc7b392
DJ
477 }
478 msym = record_minimal_symbol
31edb802 479 (reader, sym->name, copy_names, symaddr,
0cc7b392 480 ms_type, sym->section, objfile);
6f610d07 481
0cc7b392
DJ
482 if (msym)
483 {
6f610d07 484 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 485 ELF-private part. */
6f610d07 486 if (type != ST_SYNTHETIC)
24c274a1
AM
487 {
488 /* Pass symbol size field in via BFD. FIXME!!! */
489 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
490 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
491 }
dea91a5c 492
a103a963 493 msym->filename = filesymname;
3e29f34a
MR
494 if (elf_make_msymbol_special_p)
495 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 496 }
2eaf8d2a 497
715c6909
TT
498 /* If we see a default versioned symbol, install it under
499 its version-less name. */
500 if (msym != NULL)
501 {
502 const char *atsign = strchr (sym->name, '@');
503
504 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
505 {
506 int len = atsign - sym->name;
507
31edb802
CB
508 record_minimal_symbol (reader,
509 gdb::string_view (sym->name, len),
510 true, symaddr, ms_type, sym->section,
511 objfile);
715c6909
TT
512 }
513 }
514
2eaf8d2a
DJ
515 /* For @plt symbols, also record a trampoline to the
516 destination symbol. The @plt symbol will be used in
517 disassembly, and the trampoline will be used when we are
518 trying to find the target. */
519 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
520 {
521 int len = strlen (sym->name);
522
523 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
524 {
2eaf8d2a
DJ
525 struct minimal_symbol *mtramp;
526
31edb802
CB
527 mtramp = record_minimal_symbol
528 (reader, gdb::string_view (sym->name, len - 4), true,
529 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
530 if (mtramp)
531 {
d9eaeb59 532 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 533 mtramp->created_by_gdb = 1;
2eaf8d2a 534 mtramp->filename = filesymname;
3e29f34a
MR
535 if (elf_make_msymbol_special_p)
536 gdbarch_elf_make_msymbol_special (gdbarch,
537 sym, mtramp);
2eaf8d2a
DJ
538 }
539 }
540 }
c906108c 541 }
c906108c
SS
542 }
543}
544
07be84bf
JK
545/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
546 for later look ups of which function to call when user requests
547 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
548 library defining `function' we cannot yet know while reading OBJFILE which
549 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
550 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
551
552static void
8dddcb8f
TT
553elf_rel_plt_read (minimal_symbol_reader &reader,
554 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
555{
556 bfd *obfd = objfile->obfd;
557 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 558 asection *relplt, *got_plt;
07be84bf 559 bfd_size_type reloc_count, reloc;
08feed99 560 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
561 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
562 size_t ptr_size = TYPE_LENGTH (ptr_type);
563
564 if (objfile->separate_debug_objfile_backlink)
565 return;
566
07be84bf
JK
567 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
568 if (got_plt == NULL)
4b7d1f7f
WN
569 {
570 /* For platforms where there is no separate .got.plt. */
571 got_plt = bfd_get_section_by_name (obfd, ".got");
572 if (got_plt == NULL)
573 return;
574 }
07be84bf 575
02e169e2
PA
576 /* Depending on system, we may find jump slots in a relocation
577 section for either .got.plt or .plt. */
578 asection *plt = bfd_get_section_by_name (obfd, ".plt");
579 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
580
581 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
582
07be84bf
JK
583 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
584 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
585 {
586 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
587
588 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
589 {
590 if (this_hdr.sh_info == plt_elf_idx
591 || this_hdr.sh_info == got_plt_elf_idx)
592 break;
593 }
594 }
07be84bf
JK
595 if (relplt == NULL)
596 return;
597
598 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
599 return;
600
26fcd5d7 601 std::string string_buffer;
07be84bf 602
02e169e2
PA
603 /* Does ADDRESS reside in SECTION of OBFD? */
604 auto within_section = [obfd] (asection *section, CORE_ADDR address)
605 {
606 if (section == NULL)
607 return false;
608
fd361982
AM
609 return (bfd_section_vma (section) <= address
610 && (address < bfd_section_vma (section)
611 + bfd_section_size (section)));
02e169e2
PA
612 };
613
07be84bf
JK
614 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
615 for (reloc = 0; reloc < reloc_count; reloc++)
616 {
22e048c9 617 const char *name;
07be84bf
JK
618 struct minimal_symbol *msym;
619 CORE_ADDR address;
26fcd5d7 620 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 621 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
622
623 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
624 address = relplt->relocation[reloc].address;
625
02e169e2
PA
626 asection *msym_section;
627
628 /* Does the pointer reside in either the .got.plt or .plt
629 sections? */
630 if (within_section (got_plt, address))
631 msym_section = got_plt;
632 else if (within_section (plt, address))
633 msym_section = plt;
634 else
07be84bf
JK
635 continue;
636
f50776aa
PA
637 /* We cannot check if NAME is a reference to
638 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
639 symbol is undefined and the objfile having NAME defined may
640 not yet have been loaded. */
07be84bf 641
26fcd5d7
TT
642 string_buffer.assign (name);
643 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 644
31edb802 645 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
646 true, address, mst_slot_got_plt,
647 msym_section, objfile);
07be84bf 648 if (msym)
d9eaeb59 649 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 650 }
07be84bf
JK
651}
652
653/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
654
8127a2fa
TT
655static const struct objfile_key<htab, htab_deleter>
656 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
657
658/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
659
660struct elf_gnu_ifunc_cache
661{
662 /* This is always a function entry address, not a function descriptor. */
663 CORE_ADDR addr;
664
665 char name[1];
666};
667
668/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
669
670static hashval_t
671elf_gnu_ifunc_cache_hash (const void *a_voidp)
672{
9a3c8263
SM
673 const struct elf_gnu_ifunc_cache *a
674 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
675
676 return htab_hash_string (a->name);
677}
678
679/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
680
681static int
682elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
683{
9a3c8263
SM
684 const struct elf_gnu_ifunc_cache *a
685 = (const struct elf_gnu_ifunc_cache *) a_voidp;
686 const struct elf_gnu_ifunc_cache *b
687 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
688
689 return strcmp (a->name, b->name) == 0;
690}
691
692/* Record the target function address of a STT_GNU_IFUNC function NAME is the
693 function entry address ADDR. Return 1 if NAME and ADDR are considered as
694 valid and therefore they were successfully recorded, return 0 otherwise.
695
696 Function does not expect a duplicate entry. Use
697 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
698 exists. */
699
700static int
701elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
702{
7cbd4a93 703 struct bound_minimal_symbol msym;
07be84bf
JK
704 struct objfile *objfile;
705 htab_t htab;
706 struct elf_gnu_ifunc_cache entry_local, *entry_p;
707 void **slot;
708
709 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 710 if (msym.minsym == NULL)
07be84bf 711 return 0;
77e371c0 712 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 713 return 0;
e27d198c 714 objfile = msym.objfile;
07be84bf
JK
715
716 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 717 resolution and it has no use for GDB. */
c9d95fa3 718 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
719 size_t len = strlen (target_name);
720
721 /* Note we check the symbol's name instead of checking whether the
722 symbol is in the .plt section because some systems have @plt
723 symbols in the .text section. */
724 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
725 return 0;
726
8127a2fa 727 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
728 if (htab == NULL)
729 {
8127a2fa
TT
730 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
731 elf_gnu_ifunc_cache_eq,
732 NULL, xcalloc, xfree);
733 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
734 }
735
736 entry_local.addr = addr;
737 obstack_grow (&objfile->objfile_obstack, &entry_local,
738 offsetof (struct elf_gnu_ifunc_cache, name));
739 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
740 entry_p
741 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
742
743 slot = htab_find_slot (htab, entry_p, INSERT);
744 if (*slot != NULL)
745 {
9a3c8263
SM
746 struct elf_gnu_ifunc_cache *entry_found_p
747 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 748 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
749
750 if (entry_found_p->addr != addr)
751 {
752 /* This case indicates buggy inferior program, the resolved address
753 should never change. */
754
755 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
756 "function_address from %s to %s"),
757 name, paddress (gdbarch, entry_found_p->addr),
758 paddress (gdbarch, addr));
759 }
760
761 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
762 }
763 *slot = entry_p;
764
765 return 1;
766}
767
768/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
769 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
770 is not NULL) and the function returns 1. It returns 0 otherwise.
771
772 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
773 function. */
774
775static int
776elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
777{
2030c079 778 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
779 {
780 htab_t htab;
781 struct elf_gnu_ifunc_cache *entry_p;
782 void **slot;
783
8127a2fa 784 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
785 if (htab == NULL)
786 continue;
787
224c3ddb
SM
788 entry_p = ((struct elf_gnu_ifunc_cache *)
789 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
790 strcpy (entry_p->name, name);
791
792 slot = htab_find_slot (htab, entry_p, NO_INSERT);
793 if (slot == NULL)
794 continue;
9a3c8263 795 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
796 gdb_assert (entry_p != NULL);
797
798 if (addr_p)
799 *addr_p = entry_p->addr;
800 return 1;
801 }
802
803 return 0;
804}
805
806/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
807 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
808 is not NULL) and the function returns 1. It returns 0 otherwise.
809
810 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
811 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
812 prevent cache entries duplicates. */
813
814static int
815elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
816{
817 char *name_got_plt;
07be84bf
JK
818 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
819
224c3ddb 820 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
821 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
822
2030c079 823 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
824 {
825 bfd *obfd = objfile->obfd;
08feed99 826 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
827 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
828 size_t ptr_size = TYPE_LENGTH (ptr_type);
829 CORE_ADDR pointer_address, addr;
830 asection *plt;
224c3ddb 831 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 832 struct bound_minimal_symbol msym;
07be84bf
JK
833
834 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 835 if (msym.minsym == NULL)
07be84bf 836 continue;
3b7344d5 837 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 838 continue;
77e371c0 839 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
840
841 plt = bfd_get_section_by_name (obfd, ".plt");
842 if (plt == NULL)
843 continue;
844
3b7344d5 845 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
846 continue;
847 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
848 continue;
849 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
850 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
851 current_top_target ());
4b7d1f7f 852 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 853
07be84bf 854 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
855 {
856 if (addr_p != NULL)
857 *addr_p = addr;
858 return 1;
859 }
07be84bf
JK
860 }
861
862 return 0;
863}
864
865/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
866 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 867 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
868
869 Both the elf_objfile_gnu_ifunc_cache_data hash table and
870 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
871
ececd218 872static bool
07be84bf
JK
873elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
874{
875 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 876 return true;
dea91a5c 877
07be84bf 878 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 879 return true;
07be84bf 880
ececd218 881 return false;
07be84bf
JK
882}
883
884/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
885 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
886 is the entry point of the resolved STT_GNU_IFUNC target function to call.
887 */
888
889static CORE_ADDR
890elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
891{
2c02bd72 892 const char *name_at_pc;
07be84bf
JK
893 CORE_ADDR start_at_pc, address;
894 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
895 struct value *function, *address_val;
e1b2624a
AA
896 CORE_ADDR hwcap = 0;
897 struct value *hwcap_val;
07be84bf
JK
898
899 /* Try first any non-intrusive methods without an inferior call. */
900
901 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
902 && start_at_pc == pc)
903 {
904 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
905 return address;
906 }
907 else
908 name_at_pc = NULL;
909
910 function = allocate_value (func_func_type);
1a088441 911 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
912 set_value_address (function, pc);
913
e1b2624a
AA
914 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
915 parameter. FUNCTION is the function entry address. ADDRESS may be a
916 function descriptor. */
07be84bf 917
8b88a78e 918 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
919 hwcap_val = value_from_longest (builtin_type (gdbarch)
920 ->builtin_unsigned_long, hwcap);
e71585ff 921 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 922 address = value_as_address (address_val);
8b88a78e 923 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 924 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
925
926 if (name_at_pc)
927 elf_gnu_ifunc_record_cache (name_at_pc, address);
928
929 return address;
930}
931
0e30163f
JK
932/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
933
934static void
935elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
936{
937 struct breakpoint *b_return;
938 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
939 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
940 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 941 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
942
943 gdb_assert (b->type == bp_gnu_ifunc_resolver);
944
945 for (b_return = b->related_breakpoint; b_return != b;
946 b_return = b_return->related_breakpoint)
947 {
948 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
949 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
950 gdb_assert (frame_id_p (b_return->frame_id));
951
952 if (b_return->thread == thread_id
953 && b_return->loc->requested_address == prev_pc
954 && frame_id_eq (b_return->frame_id, prev_frame_id))
955 break;
956 }
957
958 if (b_return == b)
959 {
0e30163f
JK
960 /* No need to call find_pc_line for symbols resolving as this is only
961 a helper breakpointer never shown to the user. */
962
51abb421 963 symtab_and_line sal;
0e30163f
JK
964 sal.pspace = current_inferior ()->pspace;
965 sal.pc = prev_pc;
966 sal.section = find_pc_overlay (sal.pc);
967 sal.explicit_pc = 1;
454dafbd
TT
968 b_return
969 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
970 prev_frame_id,
971 bp_gnu_ifunc_resolver_return).release ();
0e30163f 972
c70a6932
JK
973 /* set_momentary_breakpoint invalidates PREV_FRAME. */
974 prev_frame = NULL;
975
0e30163f
JK
976 /* Add new b_return to the ring list b->related_breakpoint. */
977 gdb_assert (b_return->related_breakpoint == b_return);
978 b_return->related_breakpoint = b->related_breakpoint;
979 b->related_breakpoint = b_return;
980 }
981}
982
983/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
984
985static void
986elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
987{
00431a78 988 thread_info *thread = inferior_thread ();
0e30163f
JK
989 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
990 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
991 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 992 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 993 struct value *func_func;
0e30163f
JK
994 struct value *value;
995 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
996
997 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
998
0e30163f
JK
999 while (b->related_breakpoint != b)
1000 {
1001 struct breakpoint *b_next = b->related_breakpoint;
1002
1003 switch (b->type)
1004 {
1005 case bp_gnu_ifunc_resolver:
1006 break;
1007 case bp_gnu_ifunc_resolver_return:
1008 delete_breakpoint (b);
1009 break;
1010 default:
1011 internal_error (__FILE__, __LINE__,
1012 _("handle_inferior_event: Invalid "
1013 "gnu-indirect-function breakpoint type %d"),
1014 (int) b->type);
1015 }
1016 b = b_next;
1017 }
1018 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1019 gdb_assert (b->loc->next == NULL);
1020
1021 func_func = allocate_value (func_func_type);
1a088441 1022 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1023 set_value_address (func_func, b->loc->related_address);
1024
1025 value = allocate_value (value_type);
1026 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1027 value_contents_raw (value), NULL);
1028 resolved_address = value_as_address (value);
1029 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1030 resolved_address,
8b88a78e 1031 current_top_target ());
4b7d1f7f 1032 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1033
f8eba3c6 1034 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1035 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1036 resolved_pc);
0e30163f 1037
0e30163f 1038 b->type = bp_breakpoint;
6c5b2ebe 1039 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1040 find_function_start_sal (resolved_pc, NULL, true),
1041 {});
0e30163f
JK
1042}
1043
2750ef27
TT
1044/* A helper function for elf_symfile_read that reads the minimal
1045 symbols. */
c906108c
SS
1046
1047static void
5f6cac40
TT
1048elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1049 const struct elfinfo *ei)
c906108c 1050{
63524580 1051 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1052 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1053 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1054 asymbol *synthsyms;
c906108c 1055
45cfd468
DE
1056 if (symtab_create_debug)
1057 {
1058 fprintf_unfiltered (gdb_stdlog,
1059 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1060 objfile_name (objfile));
45cfd468
DE
1061 }
1062
5f6cac40
TT
1063 /* If we already have minsyms, then we can skip some work here.
1064 However, if there were stabs or mdebug sections, we go ahead and
1065 redo all the work anyway, because the psym readers for those
1066 kinds of debuginfo need extra information found here. This can
1067 go away once all types of symbols are in the per-BFD object. */
1068 if (objfile->per_bfd->minsyms_read
1069 && ei->stabsect == NULL
30d1f018
WP
1070 && ei->mdebugsect == NULL
1071 && ei->ctfsect == NULL)
5f6cac40
TT
1072 {
1073 if (symtab_create_debug)
1074 fprintf_unfiltered (gdb_stdlog,
1075 "... minimal symbols previously read\n");
1076 return;
1077 }
1078
d25e8719 1079 minimal_symbol_reader reader (objfile);
c906108c 1080
18a94d75 1081 /* Process the normal ELF symbol table first. */
c906108c 1082
62553543
EZ
1083 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1084 if (storage_needed < 0)
3e43a32a
MS
1085 error (_("Can't read symbols from %s: %s"),
1086 bfd_get_filename (objfile->obfd),
62553543
EZ
1087 bfd_errmsg (bfd_get_error ()));
1088
1089 if (storage_needed > 0)
1090 {
80c57053
JK
1091 /* Memory gets permanently referenced from ABFD after
1092 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1093
224c3ddb 1094 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1095 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1096
1097 if (symcount < 0)
3e43a32a
MS
1098 error (_("Can't read symbols from %s: %s"),
1099 bfd_get_filename (objfile->obfd),
62553543
EZ
1100 bfd_errmsg (bfd_get_error ()));
1101
ce6c454e
TT
1102 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1103 false);
62553543 1104 }
c906108c
SS
1105
1106 /* Add the dynamic symbols. */
1107
62553543
EZ
1108 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1109
1110 if (storage_needed > 0)
1111 {
3f1eff0a
JK
1112 /* Memory gets permanently referenced from ABFD after
1113 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1114 It happens only in the case when elf_slurp_reloc_table sees
1115 asection->relocation NULL. Determining which section is asection is
1116 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1117 implementation detail, though. */
1118
224c3ddb 1119 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1120 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1121 dyn_symbol_table);
1122
1123 if (dynsymcount < 0)
3e43a32a
MS
1124 error (_("Can't read symbols from %s: %s"),
1125 bfd_get_filename (objfile->obfd),
62553543
EZ
1126 bfd_errmsg (bfd_get_error ()));
1127
8dddcb8f 1128 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1129 dyn_symbol_table, false);
07be84bf 1130
8dddcb8f 1131 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1132 }
1133
63524580
JK
1134 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1135 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1136
1137 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1138 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1139 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1140 read the code address from .opd while it reads the .symtab section from
1141 a separate debug info file as the .opd section is SHT_NOBITS there.
1142
1143 With SYNTH_ABFD the .opd section will be read from the original
1144 backlinked binary where it is valid. */
1145
1146 if (objfile->separate_debug_objfile_backlink)
1147 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1148 else
1149 synth_abfd = abfd;
1150
62553543
EZ
1151 /* Add synthetic symbols - for instance, names for any PLT entries. */
1152
63524580 1153 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1154 dynsymcount, dyn_symbol_table,
1155 &synthsyms);
1156 if (synthcount > 0)
1157 {
62553543
EZ
1158 long i;
1159
b22e99fd 1160 std::unique_ptr<asymbol *[]>
d1e4a624 1161 synth_symbol_table (new asymbol *[synthcount]);
62553543 1162 for (i = 0; i < synthcount; i++)
9f20e3da 1163 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1164 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1165 synth_symbol_table.get (), true);
ba713918
AL
1166
1167 xfree (synthsyms);
1168 synthsyms = NULL;
62553543 1169 }
c906108c 1170
7134143f
DJ
1171 /* Install any minimal symbols that have been collected as the current
1172 minimal symbols for this objfile. The debug readers below this point
1173 should not generate new minimal symbols; if they do it's their
1174 responsibility to install them. "mdebug" appears to be the only one
1175 which will do this. */
1176
d25e8719 1177 reader.install ();
7134143f 1178
4f00dda3
DE
1179 if (symtab_create_debug)
1180 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1181}
1182
1183/* Scan and build partial symbols for a symbol file.
1184 We have been initialized by a call to elf_symfile_init, which
1185 currently does nothing.
1186
2750ef27
TT
1187 This function only does the minimum work necessary for letting the
1188 user "name" things symbolically; it does not read the entire symtab.
1189 Instead, it reads the external and static symbols and puts them in partial
1190 symbol tables. When more extensive information is requested of a
1191 file, the corresponding partial symbol table is mutated into a full
1192 fledged symbol table by going back and reading the symbols
1193 for real.
1194
1195 We look for sections with specific names, to tell us what debug
1196 format to look for: FIXME!!!
1197
1198 elfstab_build_psymtabs() handles STABS symbols;
1199 mdebug_build_psymtabs() handles ECOFF debugging information.
1200
1201 Note that ELF files have a "minimal" symbol table, which looks a lot
1202 like a COFF symbol table, but has only the minimal information necessary
1203 for linking. We process this also, and use the information to
1204 build gdb's minimal symbol table. This gives us some minimal debugging
1205 capability even for files compiled without -g. */
1206
1207static void
b15cc25c 1208elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1209{
1210 bfd *abfd = objfile->obfd;
1211 struct elfinfo ei;
30d1f018 1212 bool has_dwarf2 = true;
2750ef27 1213
2750ef27 1214 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1215 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1216 {
1217 for (asection *sect : gdb_bfd_sections (abfd))
1218 elf_locate_sections (sect, &ei);
1219 }
c906108c 1220
5f6cac40
TT
1221 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1222
c906108c
SS
1223 /* ELF debugging information is inserted into the psymtab in the
1224 order of least informative first - most informative last. Since
1225 the psymtab table is searched `most recent insertion first' this
1226 increases the probability that more detailed debug information
1227 for a section is found.
1228
1229 For instance, an object file might contain both .mdebug (XCOFF)
1230 and .debug_info (DWARF2) sections then .mdebug is inserted first
1231 (searched last) and DWARF2 is inserted last (searched first). If
1232 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1233 an included file XCOFF info is useless. */
c906108c
SS
1234
1235 if (ei.mdebugsect)
1236 {
1237 const struct ecoff_debug_swap *swap;
1238
1239 /* .mdebug section, presumably holding ECOFF debugging
dda83cd7 1240 information. */
c906108c
SS
1241 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1242 if (swap)
d4f3574e 1243 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1244 }
1245 if (ei.stabsect)
1246 {
1247 asection *str_sect;
1248
1249 /* Stab sections have an associated string table that looks like
dda83cd7 1250 a separate section. */
c906108c
SS
1251 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1252
1253 /* FIXME should probably warn about a stab section without a stabstr. */
1254 if (str_sect)
1255 elfstab_build_psymtabs (objfile,
086df311 1256 ei.stabsect,
c906108c 1257 str_sect->filepos,
fd361982 1258 bfd_section_size (str_sect));
c906108c 1259 }
9291a0cd 1260
4b610737 1261 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1262 {
3c0aa29a 1263 dw_index_kind index_kind;
3e03848b 1264
3c0aa29a
PA
1265 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1266 debug information present in OBJFILE. If there is such debug
1267 info present never use an index. */
1268 if (!objfile_has_partial_symbols (objfile)
1269 && dwarf2_initialize_objfile (objfile, &index_kind))
1270 {
1271 switch (index_kind)
1272 {
1273 case dw_index_kind::GDB_INDEX:
1274 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1275 break;
1276 case dw_index_kind::DEBUG_NAMES:
1277 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1278 break;
1279 }
1280 }
1281 else
b11896a5
TT
1282 {
1283 /* It is ok to do this even if the stabs reader made some
1284 partial symbols, because OBJF_PSYMTABS_READ has not been
1285 set, and so our lazy reader function will still be called
1286 when needed. */
8fb8eb5c 1287 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1288 }
1289 }
3e43a32a
MS
1290 /* If the file has its own symbol tables it has no separate debug
1291 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1292 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1293 `.note.gnu.build-id'.
1294
1295 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1296 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1297 an objfile via find_separate_debug_file_in_section there was no separate
1298 debug info available. Therefore do not attempt to search for another one,
1299 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1300 be NULL and we would possibly violate it. */
1301
1302 else if (!objfile_has_partial_symbols (objfile)
1303 && objfile->separate_debug_objfile == NULL
1304 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1305 {
a8dbfd58 1306 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1307
a8dbfd58
SM
1308 if (debugfile.empty ())
1309 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1310
a8dbfd58 1311 if (!debugfile.empty ())
9cce227f 1312 {
b926417a 1313 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1314
b926417a 1315 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1316 symfile_flags, objfile);
9cce227f 1317 }
0d79cdc4
AM
1318 else
1319 {
30d1f018 1320 has_dwarf2 = false;
0d79cdc4
AM
1321 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1322
1323 if (build_id != nullptr)
1324 {
1325 gdb::unique_xmalloc_ptr<char> symfile_path;
1326 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1327 build_id->size,
1328 objfile->original_name,
1329 &symfile_path));
1330
1331 if (fd.get () >= 0)
1332 {
1333 /* File successfully retrieved from server. */
1334 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1335
1336 if (debug_bfd == nullptr)
1337 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1338 objfile->original_name);
1339 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1340 {
1341 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1342 symfile_flags, objfile);
1343 has_dwarf2 = true;
1344 }
1345 }
1346 }
1347 }
30d1f018
WP
1348 }
1349
1350 /* Read the CTF section only if there is no DWARF info. */
1351 if (!has_dwarf2 && ei.ctfsect)
1352 {
1353 elfctf_build_psymtabs (objfile);
9cce227f 1354 }
c906108c
SS
1355}
1356
b11896a5
TT
1357/* Callback to lazily read psymtabs. */
1358
1359static void
1360read_psyms (struct objfile *objfile)
1361{
251d32d9 1362 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1363 dwarf2_build_psymtabs (objfile);
1364}
1365
c906108c
SS
1366/* Initialize anything that needs initializing when a completely new symbol
1367 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1368 shared library). */
c906108c
SS
1369
1370static void
fba45db2 1371elf_new_init (struct objfile *ignore)
c906108c 1372{
c906108c
SS
1373}
1374
1375/* Perform any local cleanups required when we are done with a particular
1376 objfile. I.E, we are in the process of discarding all symbol information
1377 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1378 objfile struct from the global list of known objfiles. */
c906108c
SS
1379
1380static void
fba45db2 1381elf_symfile_finish (struct objfile *objfile)
c906108c 1382{
c906108c
SS
1383}
1384
db7a9bcd 1385/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1386
1387static void
fba45db2 1388elf_symfile_init (struct objfile *objfile)
c906108c
SS
1389{
1390 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1391 find this causes a significant slowdown in gdb then we could
1392 set it in the debug symbol readers only when necessary. */
1393 objfile->flags |= OBJF_REORDERED;
1394}
1395
55aa24fb
SDJ
1396/* Implementation of `sym_get_probes', as documented in symfile.h. */
1397
814cf43a 1398static const elfread_data &
55aa24fb
SDJ
1399elf_get_probes (struct objfile *objfile)
1400{
814cf43a 1401 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1402
aaa63a31 1403 if (probes_per_bfd == NULL)
55aa24fb 1404 {
814cf43a 1405 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1406
1407 /* Here we try to gather information about all types of probes from the
1408 objfile. */
935676c9 1409 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1410 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1411 }
1412
aaa63a31 1413 return *probes_per_bfd;
55aa24fb
SDJ
1414}
1415
c906108c 1416\f
55aa24fb
SDJ
1417
1418/* Implementation `sym_probe_fns', as documented in symfile.h. */
1419
1420static const struct sym_probe_fns elf_probe_fns =
1421{
25f9533e 1422 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1423};
1424
c906108c
SS
1425/* Register that we are able to handle ELF object file formats. */
1426
00b5771c 1427static const struct sym_fns elf_sym_fns =
c906108c 1428{
3e43a32a
MS
1429 elf_new_init, /* init anything gbl to entire symtab */
1430 elf_symfile_init, /* read initial info, setup for sym_read() */
1431 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1432 NULL, /* sym_read_psymbols */
1433 elf_symfile_finish, /* finished with file, cleanup */
1434 default_symfile_offsets, /* Translate ext. to int. relocation */
1435 elf_symfile_segments, /* Get segment information from a file. */
1436 NULL,
1437 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1438 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1439 &psym_functions
1440};
1441
1442/* The same as elf_sym_fns, but not registered and lazily reads
1443 psymbols. */
1444
e36122e9 1445const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1446{
b11896a5
TT
1447 elf_new_init, /* init anything gbl to entire symtab */
1448 elf_symfile_init, /* read initial info, setup for sym_read() */
1449 elf_symfile_read, /* read a symbol file into symtab */
1450 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1451 elf_symfile_finish, /* finished with file, cleanup */
1452 default_symfile_offsets, /* Translate ext. to int. relocation */
1453 elf_symfile_segments, /* Get segment information from a file. */
1454 NULL,
1455 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1456 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1457 &psym_functions
c906108c
SS
1458};
1459
9291a0cd
TT
1460/* The same as elf_sym_fns, but not registered and uses the
1461 DWARF-specific GNU index rather than psymtab. */
e36122e9 1462const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1463{
3e43a32a
MS
1464 elf_new_init, /* init anything gbl to entire symab */
1465 elf_symfile_init, /* read initial info, setup for sym_red() */
1466 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1467 NULL, /* sym_read_psymbols */
3e43a32a 1468 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1469 default_symfile_offsets, /* Translate ext. to int. relocation */
3e43a32a
MS
1470 elf_symfile_segments, /* Get segment information from a file. */
1471 NULL,
1472 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1473 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1474 &dwarf2_gdb_index_functions
9291a0cd
TT
1475};
1476
927aa2e7
JK
1477/* The same as elf_sym_fns, but not registered and uses the
1478 DWARF-specific .debug_names index rather than psymtab. */
1479const struct sym_fns elf_sym_fns_debug_names =
1480{
1481 elf_new_init, /* init anything gbl to entire symab */
1482 elf_symfile_init, /* read initial info, setup for sym_red() */
1483 elf_symfile_read, /* read a symbol file into symtab */
1484 NULL, /* sym_read_psymbols */
1485 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1486 default_symfile_offsets, /* Translate ext. to int. relocation */
927aa2e7
JK
1487 elf_symfile_segments, /* Get segment information from a file. */
1488 NULL,
1489 default_symfile_relocate, /* Relocate a debug section. */
1490 &elf_probe_fns, /* sym_probe_fns */
1491 &dwarf2_debug_names_functions
1492};
1493
07be84bf
JK
1494/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1495
1496static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1497{
1498 elf_gnu_ifunc_resolve_addr,
1499 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1500 elf_gnu_ifunc_resolver_stop,
1501 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1502};
1503
6c265988 1504void _initialize_elfread ();
c906108c 1505void
6c265988 1506_initialize_elfread ()
c906108c 1507{
c256e171 1508 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1509
07be84bf 1510 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1511}
This page took 1.545447 seconds and 4 git commands to generate.