gdb/testsuite: Reduce test name duplication in gdb.python tests
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
42a4f53d 3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
c906108c 50
3c0aa29a
PA
51/* Forward declarations. */
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_debug_names;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
814cf43a
TT
66/* Type for per-BFD data. */
67
68typedef std::vector<std::unique_ptr<probe>> elfread_data;
69
5d9cf8a4 70/* Per-BFD data for probe info. */
55aa24fb 71
814cf43a 72static const struct bfd_key<elfread_data> probe_key;
55aa24fb 73
07be84bf
JK
74/* Minimal symbols located at the GOT entries for .plt - that is the real
75 pointer where the given entry will jump to. It gets updated by the real
76 function address during lazy ld.so resolving in the inferior. These
77 minimal symbols are indexed for <tab>-completion. */
78
79#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
80
31d99776
DJ
81/* Locate the segments in ABFD. */
82
83static struct symfile_segment_data *
84elf_symfile_segments (bfd *abfd)
85{
86 Elf_Internal_Phdr *phdrs, **segments;
87 long phdrs_size;
88 int num_phdrs, num_segments, num_sections, i;
89 asection *sect;
90 struct symfile_segment_data *data;
91
92 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
93 if (phdrs_size == -1)
94 return NULL;
95
224c3ddb 96 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
97 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
98 if (num_phdrs == -1)
99 return NULL;
100
101 num_segments = 0;
8d749320 102 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
103 for (i = 0; i < num_phdrs; i++)
104 if (phdrs[i].p_type == PT_LOAD)
105 segments[num_segments++] = &phdrs[i];
106
107 if (num_segments == 0)
108 return NULL;
109
41bf6aca 110 data = XCNEW (struct symfile_segment_data);
31d99776 111 data->num_segments = num_segments;
fc270c35
TT
112 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
113 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
114
115 for (i = 0; i < num_segments; i++)
116 {
117 data->segment_bases[i] = segments[i]->p_vaddr;
118 data->segment_sizes[i] = segments[i]->p_memsz;
119 }
120
121 num_sections = bfd_count_sections (abfd);
fc270c35 122 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
123
124 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
125 {
126 int j;
31d99776 127
fd361982 128 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
129 continue;
130
62b74cb8 131 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
132
133 for (j = 0; j < num_segments; j++)
62b74cb8 134 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
ad09a548
DJ
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
fd361982
AM
149 if (bfd_section_size (sect) > 0 && j == num_segments
150 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
28ee876a 151 warning (_("Loadable section \"%s\" outside of ELF segments"),
fd361982 152 bfd_section_name (sect));
31d99776
DJ
153 }
154
155 return data;
156}
157
c906108c
SS
158/* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
0963b4bd 174 section flags to specify what kind of debug section it is.
c906108c
SS
175 -kingdon). */
176
177static void
12b9c64f 178elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 179{
52f0bd74 180 struct elfinfo *ei;
c906108c
SS
181
182 ei = (struct elfinfo *) eip;
7ce59000 183 if (strcmp (sectp->name, ".stab") == 0)
c906108c 184 {
c5aa993b 185 ei->stabsect = sectp;
c906108c 186 }
6314a349 187 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 188 {
c5aa993b 189 ei->mdebugsect = sectp;
c906108c
SS
190 }
191}
192
c906108c 193static struct minimal_symbol *
8dddcb8f 194record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 195 const char *name, int name_len, bool copy_name,
04a679b8 196 CORE_ADDR address,
f594e5e9
MC
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
c906108c 199{
5e2b427d
UW
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
0875794a
JK
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
85ddcc70 204 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 205
4b610737
TT
206 struct minimal_symbol *result
207 = reader.record_full (name, name_len, copy_name, address,
208 ms_type,
209 gdb_bfd_section_index (objfile->obfd,
210 bfd_section));
211 if ((objfile->flags & OBJF_MAINLINE) == 0
212 && (ms_type == mst_data || ms_type == mst_bss))
213 result->maybe_copied = 1;
214
215 return result;
c906108c
SS
216}
217
7f86f058 218/* Read the symbol table of an ELF file.
c906108c 219
62553543 220 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
221 symbol table contains regular, dynamic, or synthetic symbols, add all
222 the global function and data symbols to the minimal symbol table.
c906108c 223
c5aa993b
JM
224 In stabs-in-ELF, as implemented by Sun, there are some local symbols
225 defined in the ELF symbol table, which can be used to locate
226 the beginnings of sections from each ".o" file that was linked to
227 form the executable objfile. We gather any such info and record it
7f86f058 228 in data structures hung off the objfile's private data. */
c906108c 229
6f610d07
UW
230#define ST_REGULAR 0
231#define ST_DYNAMIC 1
232#define ST_SYNTHETIC 2
233
c906108c 234static void
8dddcb8f
TT
235elf_symtab_read (minimal_symbol_reader &reader,
236 struct objfile *objfile, int type,
04a679b8 237 long number_of_symbols, asymbol **symbol_table,
ce6c454e 238 bool copy_names)
c906108c 239{
5e2b427d 240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 241 asymbol *sym;
c906108c 242 long i;
c906108c
SS
243 CORE_ADDR symaddr;
244 enum minimal_symbol_type ms_type;
18a94d75
DE
245 /* Name of the last file symbol. This is either a constant string or is
246 saved on the objfile's filename cache. */
0af1e9a5 247 const char *filesymname = "";
d4f3574e 248 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
249 int elf_make_msymbol_special_p
250 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 251
0cc7b392 252 for (i = 0; i < number_of_symbols; i++)
c906108c 253 {
0cc7b392
DJ
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
c906108c 256 {
0cc7b392 257 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 258 that are null strings (may happen). */
0cc7b392
DJ
259 continue;
260 }
c906108c 261
74763737
DJ
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
74763737 271
6f610d07 272 if (type == ST_DYNAMIC
45dfa85a 273 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
274 && (sym->flags & BSF_FUNCTION))
275 {
276 struct minimal_symbol *msym;
02c75f72 277 bfd *abfd = objfile->obfd;
dea91a5c 278 asection *sect;
0cc7b392
DJ
279
280 /* Symbol is a reference to a function defined in
281 a shared library.
282 If its value is non zero then it is usually the address
283 of the corresponding entry in the procedure linkage table,
284 plus the desired section offset.
285 If its value is zero then the dynamic linker has to resolve
0963b4bd 286 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
287 for this symbol in the executable file, so we skip it. */
288 symaddr = sym->value;
289 if (symaddr == 0)
290 continue;
02c75f72
UW
291
292 /* sym->section is the undefined section. However, we want to
293 record the section where the PLT stub resides with the
294 minimal symbol. Search the section table for the one that
295 covers the stub's address. */
296 for (sect = abfd->sections; sect != NULL; sect = sect->next)
297 {
fd361982 298 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
299 continue;
300
fd361982
AM
301 if (symaddr >= bfd_section_vma (sect)
302 && symaddr < bfd_section_vma (sect)
303 + bfd_section_size (sect))
02c75f72
UW
304 break;
305 }
306 if (!sect)
307 continue;
308
828cfa8d
JB
309 /* On ia64-hpux, we have discovered that the system linker
310 adds undefined symbols with nonzero addresses that cannot
311 be right (their address points inside the code of another
312 function in the .text section). This creates problems
313 when trying to determine which symbol corresponds to
314 a given address.
315
316 We try to detect those buggy symbols by checking which
317 section we think they correspond to. Normally, PLT symbols
318 are stored inside their own section, and the typical name
319 for that section is ".plt". So, if there is a ".plt"
320 section, and yet the section name of our symbol does not
321 start with ".plt", we ignore that symbol. */
61012eef 322 if (!startswith (sect->name, ".plt")
828cfa8d
JB
323 && bfd_get_section_by_name (abfd, ".plt") != NULL)
324 continue;
325
0cc7b392 326 msym = record_minimal_symbol
8dddcb8f 327 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 328 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 329 if (msym != NULL)
9b807e7b
MR
330 {
331 msym->filename = filesymname;
3e29f34a
MR
332 if (elf_make_msymbol_special_p)
333 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 334 }
0cc7b392
DJ
335 continue;
336 }
c906108c 337
0cc7b392
DJ
338 /* If it is a nonstripped executable, do not enter dynamic
339 symbols, as the dynamic symbol table is usually a subset
340 of the main symbol table. */
6f610d07 341 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
342 continue;
343 if (sym->flags & BSF_FILE)
344 {
9a3c8263 345 filesymname
25629dfd
TT
346 = ((const char *) objfile->per_bfd->filename_cache.insert
347 (sym->name, strlen (sym->name) + 1));
0cc7b392
DJ
348 }
349 else if (sym->flags & BSF_SECTION_SYM)
350 continue;
bb869963
SDJ
351 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
352 | BSF_GNU_UNIQUE))
0cc7b392
DJ
353 {
354 struct minimal_symbol *msym;
355
356 /* Select global/local/weak symbols. Note that bfd puts abs
357 symbols in their own section, so all symbols we are
0963b4bd
MS
358 interested in will have a section. */
359 /* Bfd symbols are section relative. */
0cc7b392 360 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
361 /* For non-absolute symbols, use the type of the section
362 they are relative to, to intuit text/data. Bfd provides
0963b4bd 363 no way of figuring this out for absolute symbols. */
45dfa85a 364 if (sym->section == bfd_abs_section_ptr)
c906108c 365 {
0cc7b392
DJ
366 /* This is a hack to get the minimal symbol type
367 right for Irix 5, which has absolute addresses
6f610d07
UW
368 with special section indices for dynamic symbols.
369
370 NOTE: uweigand-20071112: Synthetic symbols do not
371 have an ELF-private part, so do not touch those. */
dea91a5c 372 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
373 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
374
375 switch (shndx)
c906108c 376 {
0cc7b392
DJ
377 case SHN_MIPS_TEXT:
378 ms_type = mst_text;
379 break;
380 case SHN_MIPS_DATA:
381 ms_type = mst_data;
382 break;
383 case SHN_MIPS_ACOMMON:
384 ms_type = mst_bss;
385 break;
386 default:
387 ms_type = mst_abs;
388 }
389
390 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 391 symbols, relocate all others by section offset. */
0cc7b392
DJ
392 if (ms_type != mst_abs)
393 {
394 if (sym->name[0] == '.')
395 continue;
c906108c 396 }
0cc7b392
DJ
397 }
398 else if (sym->section->flags & SEC_CODE)
399 {
bb869963 400 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 401 {
0875794a
JK
402 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
403 ms_type = mst_text_gnu_ifunc;
404 else
405 ms_type = mst_text;
0cc7b392 406 }
90359a16
JK
407 /* The BSF_SYNTHETIC check is there to omit ppc64 function
408 descriptors mistaken for static functions starting with 'L'.
409 */
410 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
411 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
412 || ((sym->flags & BSF_LOCAL)
413 && sym->name[0] == '$'
414 && sym->name[1] == 'L'))
415 /* Looks like a compiler-generated label. Skip
416 it. The assembler should be skipping these (to
417 keep executables small), but apparently with
418 gcc on the (deleted) delta m88k SVR4, it loses.
419 So to have us check too should be harmless (but
420 I encourage people to fix this in the assembler
421 instead of adding checks here). */
422 continue;
423 else
424 {
425 ms_type = mst_file_text;
c906108c 426 }
0cc7b392
DJ
427 }
428 else if (sym->section->flags & SEC_ALLOC)
429 {
bb869963 430 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 431 {
f50776aa
PA
432 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
433 {
434 ms_type = mst_data_gnu_ifunc;
435 }
436 else if (sym->section->flags & SEC_LOAD)
c906108c 437 {
0cc7b392 438 ms_type = mst_data;
c906108c 439 }
c906108c
SS
440 else
441 {
0cc7b392 442 ms_type = mst_bss;
c906108c
SS
443 }
444 }
0cc7b392 445 else if (sym->flags & BSF_LOCAL)
c906108c 446 {
0cc7b392
DJ
447 if (sym->section->flags & SEC_LOAD)
448 {
449 ms_type = mst_file_data;
c906108c
SS
450 }
451 else
452 {
0cc7b392 453 ms_type = mst_file_bss;
c906108c
SS
454 }
455 }
456 else
457 {
0cc7b392 458 ms_type = mst_unknown;
c906108c 459 }
0cc7b392
DJ
460 }
461 else
462 {
463 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 464 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
465 hob with actions like finding what function the PC
466 is in. Ignore them if they aren't text, data, or bss. */
467 /* ms_type = mst_unknown; */
0963b4bd 468 continue; /* Skip this symbol. */
0cc7b392
DJ
469 }
470 msym = record_minimal_symbol
8dddcb8f 471 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 472 ms_type, sym->section, objfile);
6f610d07 473
0cc7b392
DJ
474 if (msym)
475 {
6f610d07 476 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 477 ELF-private part. */
6f610d07 478 if (type != ST_SYNTHETIC)
24c274a1
AM
479 {
480 /* Pass symbol size field in via BFD. FIXME!!! */
481 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
482 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
483 }
dea91a5c 484
a103a963 485 msym->filename = filesymname;
3e29f34a
MR
486 if (elf_make_msymbol_special_p)
487 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 488 }
2eaf8d2a 489
715c6909
TT
490 /* If we see a default versioned symbol, install it under
491 its version-less name. */
492 if (msym != NULL)
493 {
494 const char *atsign = strchr (sym->name, '@');
495
496 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
497 {
498 int len = atsign - sym->name;
499
ce6c454e 500 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
501 ms_type, sym->section, objfile);
502 }
503 }
504
2eaf8d2a
DJ
505 /* For @plt symbols, also record a trampoline to the
506 destination symbol. The @plt symbol will be used in
507 disassembly, and the trampoline will be used when we are
508 trying to find the target. */
509 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
510 {
511 int len = strlen (sym->name);
512
513 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
514 {
2eaf8d2a
DJ
515 struct minimal_symbol *mtramp;
516
ce6c454e
TT
517 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
518 true, symaddr,
2eaf8d2a
DJ
519 mst_solib_trampoline,
520 sym->section, objfile);
521 if (mtramp)
522 {
d9eaeb59 523 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 524 mtramp->created_by_gdb = 1;
2eaf8d2a 525 mtramp->filename = filesymname;
3e29f34a
MR
526 if (elf_make_msymbol_special_p)
527 gdbarch_elf_make_msymbol_special (gdbarch,
528 sym, mtramp);
2eaf8d2a
DJ
529 }
530 }
531 }
c906108c 532 }
c906108c
SS
533 }
534}
535
07be84bf
JK
536/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
537 for later look ups of which function to call when user requests
538 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
539 library defining `function' we cannot yet know while reading OBJFILE which
540 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
541 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
542
543static void
8dddcb8f
TT
544elf_rel_plt_read (minimal_symbol_reader &reader,
545 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
546{
547 bfd *obfd = objfile->obfd;
548 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 549 asection *relplt, *got_plt;
07be84bf 550 bfd_size_type reloc_count, reloc;
df6d5441 551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
552 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
553 size_t ptr_size = TYPE_LENGTH (ptr_type);
554
555 if (objfile->separate_debug_objfile_backlink)
556 return;
557
07be84bf
JK
558 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
559 if (got_plt == NULL)
4b7d1f7f
WN
560 {
561 /* For platforms where there is no separate .got.plt. */
562 got_plt = bfd_get_section_by_name (obfd, ".got");
563 if (got_plt == NULL)
564 return;
565 }
07be84bf 566
02e169e2
PA
567 /* Depending on system, we may find jump slots in a relocation
568 section for either .got.plt or .plt. */
569 asection *plt = bfd_get_section_by_name (obfd, ".plt");
570 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
571
572 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
573
07be84bf
JK
574 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
575 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
576 {
577 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
578
579 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
580 {
581 if (this_hdr.sh_info == plt_elf_idx
582 || this_hdr.sh_info == got_plt_elf_idx)
583 break;
584 }
585 }
07be84bf
JK
586 if (relplt == NULL)
587 return;
588
589 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
590 return;
591
26fcd5d7 592 std::string string_buffer;
07be84bf 593
02e169e2
PA
594 /* Does ADDRESS reside in SECTION of OBFD? */
595 auto within_section = [obfd] (asection *section, CORE_ADDR address)
596 {
597 if (section == NULL)
598 return false;
599
fd361982
AM
600 return (bfd_section_vma (section) <= address
601 && (address < bfd_section_vma (section)
602 + bfd_section_size (section)));
02e169e2
PA
603 };
604
07be84bf
JK
605 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
606 for (reloc = 0; reloc < reloc_count; reloc++)
607 {
22e048c9 608 const char *name;
07be84bf
JK
609 struct minimal_symbol *msym;
610 CORE_ADDR address;
26fcd5d7 611 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 612 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
613
614 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
615 address = relplt->relocation[reloc].address;
616
02e169e2
PA
617 asection *msym_section;
618
619 /* Does the pointer reside in either the .got.plt or .plt
620 sections? */
621 if (within_section (got_plt, address))
622 msym_section = got_plt;
623 else if (within_section (plt, address))
624 msym_section = plt;
625 else
07be84bf
JK
626 continue;
627
f50776aa
PA
628 /* We cannot check if NAME is a reference to
629 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
630 symbol is undefined and the objfile having NAME defined may
631 not yet have been loaded. */
07be84bf 632
26fcd5d7
TT
633 string_buffer.assign (name);
634 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 635
26fcd5d7
TT
636 msym = record_minimal_symbol (reader, string_buffer.c_str (),
637 string_buffer.size (),
02e169e2
PA
638 true, address, mst_slot_got_plt,
639 msym_section, objfile);
07be84bf 640 if (msym)
d9eaeb59 641 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 642 }
07be84bf
JK
643}
644
645/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
646
8127a2fa
TT
647static const struct objfile_key<htab, htab_deleter>
648 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
649
650/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
651
652struct elf_gnu_ifunc_cache
653{
654 /* This is always a function entry address, not a function descriptor. */
655 CORE_ADDR addr;
656
657 char name[1];
658};
659
660/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
661
662static hashval_t
663elf_gnu_ifunc_cache_hash (const void *a_voidp)
664{
9a3c8263
SM
665 const struct elf_gnu_ifunc_cache *a
666 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
667
668 return htab_hash_string (a->name);
669}
670
671/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
672
673static int
674elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
675{
9a3c8263
SM
676 const struct elf_gnu_ifunc_cache *a
677 = (const struct elf_gnu_ifunc_cache *) a_voidp;
678 const struct elf_gnu_ifunc_cache *b
679 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
680
681 return strcmp (a->name, b->name) == 0;
682}
683
684/* Record the target function address of a STT_GNU_IFUNC function NAME is the
685 function entry address ADDR. Return 1 if NAME and ADDR are considered as
686 valid and therefore they were successfully recorded, return 0 otherwise.
687
688 Function does not expect a duplicate entry. Use
689 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
690 exists. */
691
692static int
693elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
694{
7cbd4a93 695 struct bound_minimal_symbol msym;
07be84bf
JK
696 struct objfile *objfile;
697 htab_t htab;
698 struct elf_gnu_ifunc_cache entry_local, *entry_p;
699 void **slot;
700
701 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 702 if (msym.minsym == NULL)
07be84bf 703 return 0;
77e371c0 704 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 705 return 0;
e27d198c 706 objfile = msym.objfile;
07be84bf
JK
707
708 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822
PA
709 resolution and it has no use for GDB. */
710 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
711 size_t len = strlen (target_name);
712
713 /* Note we check the symbol's name instead of checking whether the
714 symbol is in the .plt section because some systems have @plt
715 symbols in the .text section. */
716 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
717 return 0;
718
8127a2fa 719 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
720 if (htab == NULL)
721 {
8127a2fa
TT
722 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
723 elf_gnu_ifunc_cache_eq,
724 NULL, xcalloc, xfree);
725 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
726 }
727
728 entry_local.addr = addr;
729 obstack_grow (&objfile->objfile_obstack, &entry_local,
730 offsetof (struct elf_gnu_ifunc_cache, name));
731 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
732 entry_p
733 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
734
735 slot = htab_find_slot (htab, entry_p, INSERT);
736 if (*slot != NULL)
737 {
9a3c8263
SM
738 struct elf_gnu_ifunc_cache *entry_found_p
739 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 740 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
741
742 if (entry_found_p->addr != addr)
743 {
744 /* This case indicates buggy inferior program, the resolved address
745 should never change. */
746
747 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
748 "function_address from %s to %s"),
749 name, paddress (gdbarch, entry_found_p->addr),
750 paddress (gdbarch, addr));
751 }
752
753 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
754 }
755 *slot = entry_p;
756
757 return 1;
758}
759
760/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
761 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
762 is not NULL) and the function returns 1. It returns 0 otherwise.
763
764 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
765 function. */
766
767static int
768elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
769{
2030c079 770 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
771 {
772 htab_t htab;
773 struct elf_gnu_ifunc_cache *entry_p;
774 void **slot;
775
8127a2fa 776 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
777 if (htab == NULL)
778 continue;
779
224c3ddb
SM
780 entry_p = ((struct elf_gnu_ifunc_cache *)
781 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
782 strcpy (entry_p->name, name);
783
784 slot = htab_find_slot (htab, entry_p, NO_INSERT);
785 if (slot == NULL)
786 continue;
9a3c8263 787 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
788 gdb_assert (entry_p != NULL);
789
790 if (addr_p)
791 *addr_p = entry_p->addr;
792 return 1;
793 }
794
795 return 0;
796}
797
798/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
799 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
800 is not NULL) and the function returns 1. It returns 0 otherwise.
801
802 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
803 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
804 prevent cache entries duplicates. */
805
806static int
807elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
808{
809 char *name_got_plt;
07be84bf
JK
810 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
811
224c3ddb 812 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
813 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
814
2030c079 815 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
816 {
817 bfd *obfd = objfile->obfd;
df6d5441 818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
819 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
820 size_t ptr_size = TYPE_LENGTH (ptr_type);
821 CORE_ADDR pointer_address, addr;
822 asection *plt;
224c3ddb 823 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 824 struct bound_minimal_symbol msym;
07be84bf
JK
825
826 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 827 if (msym.minsym == NULL)
07be84bf 828 continue;
3b7344d5 829 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 830 continue;
77e371c0 831 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
832
833 plt = bfd_get_section_by_name (obfd, ".plt");
834 if (plt == NULL)
835 continue;
836
3b7344d5 837 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
838 continue;
839 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
840 continue;
841 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
842 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
843 current_top_target ());
4b7d1f7f 844 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 845
07be84bf 846 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
847 {
848 if (addr_p != NULL)
849 *addr_p = addr;
850 return 1;
851 }
07be84bf
JK
852 }
853
854 return 0;
855}
856
857/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
858 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 859 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
860
861 Both the elf_objfile_gnu_ifunc_cache_data hash table and
862 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
863
ececd218 864static bool
07be84bf
JK
865elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
866{
867 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 868 return true;
dea91a5c 869
07be84bf 870 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 871 return true;
07be84bf 872
ececd218 873 return false;
07be84bf
JK
874}
875
876/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
877 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
878 is the entry point of the resolved STT_GNU_IFUNC target function to call.
879 */
880
881static CORE_ADDR
882elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
883{
2c02bd72 884 const char *name_at_pc;
07be84bf
JK
885 CORE_ADDR start_at_pc, address;
886 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
887 struct value *function, *address_val;
e1b2624a
AA
888 CORE_ADDR hwcap = 0;
889 struct value *hwcap_val;
07be84bf
JK
890
891 /* Try first any non-intrusive methods without an inferior call. */
892
893 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
894 && start_at_pc == pc)
895 {
896 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
897 return address;
898 }
899 else
900 name_at_pc = NULL;
901
902 function = allocate_value (func_func_type);
1a088441 903 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
904 set_value_address (function, pc);
905
e1b2624a
AA
906 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
907 parameter. FUNCTION is the function entry address. ADDRESS may be a
908 function descriptor. */
07be84bf 909
8b88a78e 910 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
911 hwcap_val = value_from_longest (builtin_type (gdbarch)
912 ->builtin_unsigned_long, hwcap);
e71585ff 913 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 914 address = value_as_address (address_val);
8b88a78e 915 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 916 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
917
918 if (name_at_pc)
919 elf_gnu_ifunc_record_cache (name_at_pc, address);
920
921 return address;
922}
923
0e30163f
JK
924/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
925
926static void
927elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
928{
929 struct breakpoint *b_return;
930 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
931 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
932 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 933 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
934
935 gdb_assert (b->type == bp_gnu_ifunc_resolver);
936
937 for (b_return = b->related_breakpoint; b_return != b;
938 b_return = b_return->related_breakpoint)
939 {
940 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
941 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
942 gdb_assert (frame_id_p (b_return->frame_id));
943
944 if (b_return->thread == thread_id
945 && b_return->loc->requested_address == prev_pc
946 && frame_id_eq (b_return->frame_id, prev_frame_id))
947 break;
948 }
949
950 if (b_return == b)
951 {
0e30163f
JK
952 /* No need to call find_pc_line for symbols resolving as this is only
953 a helper breakpointer never shown to the user. */
954
51abb421 955 symtab_and_line sal;
0e30163f
JK
956 sal.pspace = current_inferior ()->pspace;
957 sal.pc = prev_pc;
958 sal.section = find_pc_overlay (sal.pc);
959 sal.explicit_pc = 1;
454dafbd
TT
960 b_return
961 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
962 prev_frame_id,
963 bp_gnu_ifunc_resolver_return).release ();
0e30163f 964
c70a6932
JK
965 /* set_momentary_breakpoint invalidates PREV_FRAME. */
966 prev_frame = NULL;
967
0e30163f
JK
968 /* Add new b_return to the ring list b->related_breakpoint. */
969 gdb_assert (b_return->related_breakpoint == b_return);
970 b_return->related_breakpoint = b->related_breakpoint;
971 b->related_breakpoint = b_return;
972 }
973}
974
975/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
976
977static void
978elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
979{
00431a78 980 thread_info *thread = inferior_thread ();
0e30163f
JK
981 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
982 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
983 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 984 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 985 struct value *func_func;
0e30163f
JK
986 struct value *value;
987 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
988
989 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
990
0e30163f
JK
991 while (b->related_breakpoint != b)
992 {
993 struct breakpoint *b_next = b->related_breakpoint;
994
995 switch (b->type)
996 {
997 case bp_gnu_ifunc_resolver:
998 break;
999 case bp_gnu_ifunc_resolver_return:
1000 delete_breakpoint (b);
1001 break;
1002 default:
1003 internal_error (__FILE__, __LINE__,
1004 _("handle_inferior_event: Invalid "
1005 "gnu-indirect-function breakpoint type %d"),
1006 (int) b->type);
1007 }
1008 b = b_next;
1009 }
1010 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1011 gdb_assert (b->loc->next == NULL);
1012
1013 func_func = allocate_value (func_func_type);
1a088441 1014 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1015 set_value_address (func_func, b->loc->related_address);
1016
1017 value = allocate_value (value_type);
1018 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1019 value_contents_raw (value), NULL);
1020 resolved_address = value_as_address (value);
1021 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1022 resolved_address,
8b88a78e 1023 current_top_target ());
4b7d1f7f 1024 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1025
f8eba3c6 1026 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1027 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1028 resolved_pc);
0e30163f 1029
0e30163f 1030 b->type = bp_breakpoint;
6c5b2ebe 1031 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1032 find_function_start_sal (resolved_pc, NULL, true),
1033 {});
0e30163f
JK
1034}
1035
2750ef27
TT
1036/* A helper function for elf_symfile_read that reads the minimal
1037 symbols. */
c906108c
SS
1038
1039static void
5f6cac40
TT
1040elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1041 const struct elfinfo *ei)
c906108c 1042{
63524580 1043 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1044 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1045 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1046 asymbol *synthsyms;
c906108c 1047
45cfd468
DE
1048 if (symtab_create_debug)
1049 {
1050 fprintf_unfiltered (gdb_stdlog,
1051 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1052 objfile_name (objfile));
45cfd468
DE
1053 }
1054
5f6cac40
TT
1055 /* If we already have minsyms, then we can skip some work here.
1056 However, if there were stabs or mdebug sections, we go ahead and
1057 redo all the work anyway, because the psym readers for those
1058 kinds of debuginfo need extra information found here. This can
1059 go away once all types of symbols are in the per-BFD object. */
1060 if (objfile->per_bfd->minsyms_read
1061 && ei->stabsect == NULL
1062 && ei->mdebugsect == NULL)
1063 {
1064 if (symtab_create_debug)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "... minimal symbols previously read\n");
1067 return;
1068 }
1069
d25e8719 1070 minimal_symbol_reader reader (objfile);
c906108c 1071
18a94d75 1072 /* Process the normal ELF symbol table first. */
c906108c 1073
62553543
EZ
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
3e43a32a
MS
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
62553543
EZ
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 if (storage_needed > 0)
1081 {
80c57053
JK
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1084
224c3ddb 1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1087
1088 if (symcount < 0)
3e43a32a
MS
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
62553543
EZ
1091 bfd_errmsg (bfd_get_error ()));
1092
ce6c454e
TT
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1094 false);
62553543 1095 }
c906108c
SS
1096
1097 /* Add the dynamic symbols. */
1098
62553543
EZ
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1100
1101 if (storage_needed > 0)
1102 {
3f1eff0a
JK
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1109
224c3ddb 1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1112 dyn_symbol_table);
1113
1114 if (dynsymcount < 0)
3e43a32a
MS
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
62553543
EZ
1117 bfd_errmsg (bfd_get_error ()));
1118
8dddcb8f 1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1120 dyn_symbol_table, false);
07be84bf 1121
8dddcb8f 1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1123 }
1124
63524580
JK
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1127
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1133
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1136
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1139 else
1140 synth_abfd = abfd;
1141
62553543
EZ
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1143
63524580 1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1145 dynsymcount, dyn_symbol_table,
1146 &synthsyms);
1147 if (synthcount > 0)
1148 {
62553543
EZ
1149 long i;
1150
b22e99fd 1151 std::unique_ptr<asymbol *[]>
d1e4a624 1152 synth_symbol_table (new asymbol *[synthcount]);
62553543 1153 for (i = 0; i < synthcount; i++)
9f20e3da 1154 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1156 synth_symbol_table.get (), true);
ba713918
AL
1157
1158 xfree (synthsyms);
1159 synthsyms = NULL;
62553543 1160 }
c906108c 1161
7134143f
DJ
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1167
d25e8719 1168 reader.install ();
7134143f 1169
4f00dda3
DE
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1172}
1173
1174/* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1177
2750ef27
TT
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1184 for real.
1185
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1188
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1191
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1197
1198static void
b15cc25c 1199elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1200{
1201 bfd *abfd = objfile->obfd;
1202 struct elfinfo ei;
1203
2750ef27 1204 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1207
5f6cac40
TT
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1209
c906108c
SS
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1215
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1220 an included file XCOFF info is useless. */
c906108c
SS
1221
1222 if (ei.mdebugsect)
1223 {
1224 const struct ecoff_debug_swap *swap;
1225
1226 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1227 information. */
c906108c
SS
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 if (swap)
d4f3574e 1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1231 }
1232 if (ei.stabsect)
1233 {
1234 asection *str_sect;
1235
1236 /* Stab sections have an associated string table that looks like
c5aa993b 1237 a separate section. */
c906108c
SS
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1239
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1241 if (str_sect)
1242 elfstab_build_psymtabs (objfile,
086df311 1243 ei.stabsect,
c906108c 1244 str_sect->filepos,
fd361982 1245 bfd_section_size (str_sect));
c906108c 1246 }
9291a0cd 1247
4b610737 1248 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1249 {
3c0aa29a 1250 dw_index_kind index_kind;
3e03848b 1251
3c0aa29a
PA
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1257 {
1258 switch (index_kind)
1259 {
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1262 break;
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1265 break;
1266 }
1267 }
1268 else
b11896a5
TT
1269 {
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1273 when needed. */
8fb8eb5c 1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1275 }
1276 }
3e43a32a
MS
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1280 `.note.gnu.build-id'.
1281
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1288
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1292 {
a8dbfd58 1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1294
a8dbfd58
SM
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1297
a8dbfd58 1298 if (!debugfile.empty ())
9cce227f 1299 {
b926417a 1300 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1301
b926417a 1302 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1303 symfile_flags, objfile);
9cce227f
TG
1304 }
1305 }
c906108c
SS
1306}
1307
b11896a5
TT
1308/* Callback to lazily read psymtabs. */
1309
1310static void
1311read_psyms (struct objfile *objfile)
1312{
251d32d9 1313 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1314 dwarf2_build_psymtabs (objfile);
1315}
1316
c906108c
SS
1317/* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1319 shared library). */
c906108c
SS
1320
1321static void
fba45db2 1322elf_new_init (struct objfile *ignore)
c906108c 1323{
c906108c
SS
1324}
1325
1326/* Perform any local cleanups required when we are done with a particular
1327 objfile. I.E, we are in the process of discarding all symbol information
1328 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1329 objfile struct from the global list of known objfiles. */
c906108c
SS
1330
1331static void
fba45db2 1332elf_symfile_finish (struct objfile *objfile)
c906108c 1333{
c906108c
SS
1334}
1335
db7a9bcd 1336/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1337
1338static void
fba45db2 1339elf_symfile_init (struct objfile *objfile)
c906108c
SS
1340{
1341 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1342 find this causes a significant slowdown in gdb then we could
1343 set it in the debug symbol readers only when necessary. */
1344 objfile->flags |= OBJF_REORDERED;
1345}
1346
55aa24fb
SDJ
1347/* Implementation of `sym_get_probes', as documented in symfile.h. */
1348
814cf43a 1349static const elfread_data &
55aa24fb
SDJ
1350elf_get_probes (struct objfile *objfile)
1351{
814cf43a 1352 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1353
aaa63a31 1354 if (probes_per_bfd == NULL)
55aa24fb 1355 {
814cf43a 1356 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1357
1358 /* Here we try to gather information about all types of probes from the
1359 objfile. */
935676c9 1360 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1361 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1362 }
1363
aaa63a31 1364 return *probes_per_bfd;
55aa24fb
SDJ
1365}
1366
c906108c 1367\f
55aa24fb
SDJ
1368
1369/* Implementation `sym_probe_fns', as documented in symfile.h. */
1370
1371static const struct sym_probe_fns elf_probe_fns =
1372{
25f9533e 1373 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1374};
1375
c906108c
SS
1376/* Register that we are able to handle ELF object file formats. */
1377
00b5771c 1378static const struct sym_fns elf_sym_fns =
c906108c 1379{
3e43a32a
MS
1380 elf_new_init, /* init anything gbl to entire symtab */
1381 elf_symfile_init, /* read initial info, setup for sym_read() */
1382 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1383 NULL, /* sym_read_psymbols */
1384 elf_symfile_finish, /* finished with file, cleanup */
1385 default_symfile_offsets, /* Translate ext. to int. relocation */
1386 elf_symfile_segments, /* Get segment information from a file. */
1387 NULL,
1388 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1389 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1390 &psym_functions
1391};
1392
1393/* The same as elf_sym_fns, but not registered and lazily reads
1394 psymbols. */
1395
e36122e9 1396const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1397{
b11896a5
TT
1398 elf_new_init, /* init anything gbl to entire symtab */
1399 elf_symfile_init, /* read initial info, setup for sym_read() */
1400 elf_symfile_read, /* read a symbol file into symtab */
1401 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1402 elf_symfile_finish, /* finished with file, cleanup */
1403 default_symfile_offsets, /* Translate ext. to int. relocation */
1404 elf_symfile_segments, /* Get segment information from a file. */
1405 NULL,
1406 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1407 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1408 &psym_functions
c906108c
SS
1409};
1410
9291a0cd
TT
1411/* The same as elf_sym_fns, but not registered and uses the
1412 DWARF-specific GNU index rather than psymtab. */
e36122e9 1413const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1414{
3e43a32a
MS
1415 elf_new_init, /* init anything gbl to entire symab */
1416 elf_symfile_init, /* read initial info, setup for sym_red() */
1417 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1418 NULL, /* sym_read_psymbols */
3e43a32a
MS
1419 elf_symfile_finish, /* finished with file, cleanup */
1420 default_symfile_offsets, /* Translate ext. to int. relocatin */
1421 elf_symfile_segments, /* Get segment information from a file. */
1422 NULL,
1423 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1424 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1425 &dwarf2_gdb_index_functions
9291a0cd
TT
1426};
1427
927aa2e7
JK
1428/* The same as elf_sym_fns, but not registered and uses the
1429 DWARF-specific .debug_names index rather than psymtab. */
1430const struct sym_fns elf_sym_fns_debug_names =
1431{
1432 elf_new_init, /* init anything gbl to entire symab */
1433 elf_symfile_init, /* read initial info, setup for sym_red() */
1434 elf_symfile_read, /* read a symbol file into symtab */
1435 NULL, /* sym_read_psymbols */
1436 elf_symfile_finish, /* finished with file, cleanup */
1437 default_symfile_offsets, /* Translate ext. to int. relocatin */
1438 elf_symfile_segments, /* Get segment information from a file. */
1439 NULL,
1440 default_symfile_relocate, /* Relocate a debug section. */
1441 &elf_probe_fns, /* sym_probe_fns */
1442 &dwarf2_debug_names_functions
1443};
1444
07be84bf
JK
1445/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1446
1447static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1448{
1449 elf_gnu_ifunc_resolve_addr,
1450 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1451 elf_gnu_ifunc_resolver_stop,
1452 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1453};
1454
c906108c 1455void
fba45db2 1456_initialize_elfread (void)
c906108c 1457{
c256e171 1458 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1459
07be84bf 1460 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1461}
This page took 1.453908 seconds and 4 git commands to generate.