Fix warning in gdb.base/signals-state-child.c
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
618f726f 3 Copyright (C) 1991-2016 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
c906108c 49
a14ed312 50extern void _initialize_elfread (void);
392a587b 51
b11896a5 52/* Forward declarations. */
e36122e9
TT
53extern const struct sym_fns elf_sym_fns_gdb_index;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
5d9cf8a4 66/* Per-BFD data for probe info. */
55aa24fb 67
5d9cf8a4 68static const struct bfd_data *probe_key = NULL;
55aa24fb 69
07be84bf
JK
70/* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
31d99776
DJ
77/* Locate the segments in ABFD. */
78
79static struct symfile_segment_data *
80elf_symfile_segments (bfd *abfd)
81{
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
224c3ddb 92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
8d749320 98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
41bf6aca 106 data = XCNEW (struct symfile_segment_data);
31d99776 107 data->num_segments = num_segments;
fc270c35
TT
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
fc270c35 118 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
a366c65a 133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
ad09a548
DJ
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 150 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155}
156
c906108c
SS
157/* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
0963b4bd 173 section flags to specify what kind of debug section it is.
c906108c
SS
174 -kingdon). */
175
176static void
12b9c64f 177elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 178{
52f0bd74 179 struct elfinfo *ei;
c906108c
SS
180
181 ei = (struct elfinfo *) eip;
7ce59000 182 if (strcmp (sectp->name, ".stab") == 0)
c906108c 183 {
c5aa993b 184 ei->stabsect = sectp;
c906108c 185 }
6314a349 186 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 187 {
c5aa993b 188 ei->mdebugsect = sectp;
c906108c
SS
189 }
190}
191
c906108c 192static struct minimal_symbol *
04a679b8
TT
193record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
f594e5e9
MC
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
c906108c 197{
5e2b427d
UW
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
0875794a
JK
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
85ddcc70 202 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 203
04a679b8 204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section),
e6dc44a8 208 objfile);
c906108c
SS
209}
210
7f86f058 211/* Read the symbol table of an ELF file.
c906108c 212
62553543 213 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
c906108c 216
c5aa993b
JM
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
7f86f058 221 in data structures hung off the objfile's private data. */
c906108c 222
6f610d07
UW
223#define ST_REGULAR 0
224#define ST_DYNAMIC 1
225#define ST_SYNTHETIC 2
226
c906108c 227static void
6f610d07 228elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
229 long number_of_symbols, asymbol **symbol_table,
230 int copy_names)
c906108c 231{
5e2b427d 232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 233 asymbol *sym;
c906108c 234 long i;
c906108c
SS
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
18a94d75
DE
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
0af1e9a5 239 const char *filesymname = "";
d2f4b8fe 240 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 244
0cc7b392 245 for (i = 0; i < number_of_symbols; i++)
c906108c 246 {
0cc7b392
DJ
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
c906108c 249 {
0cc7b392 250 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 251 that are null strings (may happen). */
0cc7b392
DJ
252 continue;
253 }
c906108c 254
74763737
DJ
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
74763737 264
6f610d07 265 if (type == ST_DYNAMIC
45dfa85a 266 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
02c75f72 270 bfd *abfd = objfile->obfd;
dea91a5c 271 asection *sect;
0cc7b392
DJ
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
0963b4bd 279 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
02c75f72
UW
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
828cfa8d
JB
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
61012eef 315 if (!startswith (sect->name, ".plt")
828cfa8d
JB
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
0cc7b392 319 msym = record_minimal_symbol
04a679b8
TT
320 (sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 322 if (msym != NULL)
9b807e7b
MR
323 {
324 msym->filename = filesymname;
3e29f34a
MR
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 327 }
0cc7b392
DJ
328 continue;
329 }
c906108c 330
0cc7b392
DJ
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
6f610d07 334 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
9a3c8263
SM
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
0cc7b392
DJ
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
bb869963
SDJ
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
0cc7b392
DJ
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
0963b4bd
MS
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
0cc7b392 353 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
0963b4bd 356 no way of figuring this out for absolute symbols. */
45dfa85a 357 if (sym->section == bfd_abs_section_ptr)
c906108c 358 {
0cc7b392
DJ
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
6f610d07
UW
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
dea91a5c 365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
c906108c 369 {
0cc7b392
DJ
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 384 symbols, relocate all others by section offset. */
0cc7b392
DJ
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
c906108c 389 }
0cc7b392
DJ
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
bb869963 393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 394 {
0875794a
JK
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
0cc7b392 399 }
90359a16
JK
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
c906108c 419 }
0cc7b392
DJ
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
bb869963 423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 424 {
0cc7b392 425 if (sym->section->flags & SEC_LOAD)
c906108c 426 {
0cc7b392 427 ms_type = mst_data;
c906108c 428 }
c906108c
SS
429 else
430 {
0cc7b392 431 ms_type = mst_bss;
c906108c
SS
432 }
433 }
0cc7b392 434 else if (sym->flags & BSF_LOCAL)
c906108c 435 {
0cc7b392
DJ
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
c906108c
SS
439 }
440 else
441 {
0cc7b392 442 ms_type = mst_file_bss;
c906108c
SS
443 }
444 }
445 else
446 {
0cc7b392 447 ms_type = mst_unknown;
c906108c 448 }
0cc7b392
DJ
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 453 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
0963b4bd 457 continue; /* Skip this symbol. */
0cc7b392
DJ
458 }
459 msym = record_minimal_symbol
04a679b8 460 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 461 ms_type, sym->section, objfile);
6f610d07 462
0cc7b392
DJ
463 if (msym)
464 {
6f610d07 465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 466 ELF-private part. */
6f610d07 467 if (type != ST_SYNTHETIC)
24c274a1
AM
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
dea91a5c 473
a103a963 474 msym->filename = filesymname;
3e29f34a
MR
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 477 }
2eaf8d2a 478
715c6909
TT
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
489 record_minimal_symbol (sym->name, len, 1, symaddr,
490 ms_type, sym->section, objfile);
491 }
492 }
493
2eaf8d2a
DJ
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
2eaf8d2a
DJ
504 struct minimal_symbol *mtramp;
505
04a679b8
TT
506 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
507 symaddr,
2eaf8d2a
DJ
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
d9eaeb59 512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 513 mtramp->created_by_gdb = 1;
2eaf8d2a 514 mtramp->filename = filesymname;
3e29f34a
MR
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
2eaf8d2a
DJ
518 }
519 }
520 }
c906108c 521 }
c906108c
SS
522 }
523}
524
07be84bf
JK
525/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532static void
533elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
534{
535 bfd *obfd = objfile->obfd;
536 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
537 asection *plt, *relplt, *got_plt;
07be84bf
JK
538 int plt_elf_idx;
539 bfd_size_type reloc_count, reloc;
540 char *string_buffer = NULL;
541 size_t string_buffer_size = 0;
542 struct cleanup *back_to;
df6d5441 543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
544 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
545 size_t ptr_size = TYPE_LENGTH (ptr_type);
546
547 if (objfile->separate_debug_objfile_backlink)
548 return;
549
550 plt = bfd_get_section_by_name (obfd, ".plt");
551 if (plt == NULL)
552 return;
553 plt_elf_idx = elf_section_data (plt)->this_idx;
554
555 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
556 if (got_plt == NULL)
4b7d1f7f
WN
557 {
558 /* For platforms where there is no separate .got.plt. */
559 got_plt = bfd_get_section_by_name (obfd, ".got");
560 if (got_plt == NULL)
561 return;
562 }
07be84bf
JK
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
567 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
568 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
569 break;
570 if (relplt == NULL)
571 return;
572
573 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
574 return;
575
576 back_to = make_cleanup (free_current_contents, &string_buffer);
577
578 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
579 for (reloc = 0; reloc < reloc_count; reloc++)
580 {
22e048c9 581 const char *name;
07be84bf
JK
582 struct minimal_symbol *msym;
583 CORE_ADDR address;
584 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
585 size_t name_len;
586
587 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
588 name_len = strlen (name);
589 address = relplt->relocation[reloc].address;
590
591 /* Does the pointer reside in the .got.plt section? */
592 if (!(bfd_get_section_vma (obfd, got_plt) <= address
593 && address < bfd_get_section_vma (obfd, got_plt)
594 + bfd_get_section_size (got_plt)))
595 continue;
596
597 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
598 OBJFILE the symbol is undefined and the objfile having NAME defined
599 may not yet have been loaded. */
600
3807f613 601 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
602 {
603 string_buffer_size = 2 * (name_len + got_suffix_len);
224c3ddb 604 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
07be84bf
JK
605 }
606 memcpy (string_buffer, name, name_len);
607 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 608 got_suffix_len + 1);
07be84bf
JK
609
610 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
611 1, address, mst_slot_got_plt, got_plt,
612 objfile);
613 if (msym)
d9eaeb59 614 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
615 }
616
617 do_cleanups (back_to);
618}
619
620/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
621
622static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
623
624/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
625
626struct elf_gnu_ifunc_cache
627{
628 /* This is always a function entry address, not a function descriptor. */
629 CORE_ADDR addr;
630
631 char name[1];
632};
633
634/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
635
636static hashval_t
637elf_gnu_ifunc_cache_hash (const void *a_voidp)
638{
9a3c8263
SM
639 const struct elf_gnu_ifunc_cache *a
640 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
641
642 return htab_hash_string (a->name);
643}
644
645/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
646
647static int
648elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
649{
9a3c8263
SM
650 const struct elf_gnu_ifunc_cache *a
651 = (const struct elf_gnu_ifunc_cache *) a_voidp;
652 const struct elf_gnu_ifunc_cache *b
653 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
654
655 return strcmp (a->name, b->name) == 0;
656}
657
658/* Record the target function address of a STT_GNU_IFUNC function NAME is the
659 function entry address ADDR. Return 1 if NAME and ADDR are considered as
660 valid and therefore they were successfully recorded, return 0 otherwise.
661
662 Function does not expect a duplicate entry. Use
663 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
664 exists. */
665
666static int
667elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
668{
7cbd4a93 669 struct bound_minimal_symbol msym;
07be84bf
JK
670 asection *sect;
671 struct objfile *objfile;
672 htab_t htab;
673 struct elf_gnu_ifunc_cache entry_local, *entry_p;
674 void **slot;
675
676 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 677 if (msym.minsym == NULL)
07be84bf 678 return 0;
77e371c0 679 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
680 return 0;
681 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 682 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 683 objfile = msym.objfile;
07be84bf
JK
684
685 /* If .plt jumps back to .plt the symbol is still deferred for later
686 resolution and it has no use for GDB. Besides ".text" this symbol can
687 reside also in ".opd" for ppc64 function descriptor. */
688 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
689 return 0;
690
9a3c8263 691 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
692 if (htab == NULL)
693 {
694 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
695 elf_gnu_ifunc_cache_eq,
696 NULL, &objfile->objfile_obstack,
697 hashtab_obstack_allocate,
698 dummy_obstack_deallocate);
699 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
700 }
701
702 entry_local.addr = addr;
703 obstack_grow (&objfile->objfile_obstack, &entry_local,
704 offsetof (struct elf_gnu_ifunc_cache, name));
705 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
706 entry_p
707 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
708
709 slot = htab_find_slot (htab, entry_p, INSERT);
710 if (*slot != NULL)
711 {
9a3c8263
SM
712 struct elf_gnu_ifunc_cache *entry_found_p
713 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
715
716 if (entry_found_p->addr != addr)
717 {
718 /* This case indicates buggy inferior program, the resolved address
719 should never change. */
720
721 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
722 "function_address from %s to %s"),
723 name, paddress (gdbarch, entry_found_p->addr),
724 paddress (gdbarch, addr));
725 }
726
727 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
728 }
729 *slot = entry_p;
730
731 return 1;
732}
733
734/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
735 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
736 is not NULL) and the function returns 1. It returns 0 otherwise.
737
738 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
739 function. */
740
741static int
742elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
743{
744 struct objfile *objfile;
745
746 ALL_PSPACE_OBJFILES (current_program_space, objfile)
747 {
748 htab_t htab;
749 struct elf_gnu_ifunc_cache *entry_p;
750 void **slot;
751
9a3c8263 752 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
753 if (htab == NULL)
754 continue;
755
224c3ddb
SM
756 entry_p = ((struct elf_gnu_ifunc_cache *)
757 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
758 strcpy (entry_p->name, name);
759
760 slot = htab_find_slot (htab, entry_p, NO_INSERT);
761 if (slot == NULL)
762 continue;
9a3c8263 763 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
764 gdb_assert (entry_p != NULL);
765
766 if (addr_p)
767 *addr_p = entry_p->addr;
768 return 1;
769 }
770
771 return 0;
772}
773
774/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
775 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
776 is not NULL) and the function returns 1. It returns 0 otherwise.
777
778 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
779 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
780 prevent cache entries duplicates. */
781
782static int
783elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
784{
785 char *name_got_plt;
786 struct objfile *objfile;
787 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
788
224c3ddb 789 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
790 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
791
792 ALL_PSPACE_OBJFILES (current_program_space, objfile)
793 {
794 bfd *obfd = objfile->obfd;
df6d5441 795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
796 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
797 size_t ptr_size = TYPE_LENGTH (ptr_type);
798 CORE_ADDR pointer_address, addr;
799 asection *plt;
224c3ddb 800 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 801 struct bound_minimal_symbol msym;
07be84bf
JK
802
803 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 804 if (msym.minsym == NULL)
07be84bf 805 continue;
3b7344d5 806 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 807 continue;
77e371c0 808 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
809
810 plt = bfd_get_section_by_name (obfd, ".plt");
811 if (plt == NULL)
812 continue;
813
3b7344d5 814 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
815 continue;
816 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
817 continue;
818 addr = extract_typed_address (buf, ptr_type);
819 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
820 &current_target);
4b7d1f7f 821 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
822
823 if (addr_p)
824 *addr_p = addr;
825 if (elf_gnu_ifunc_record_cache (name, addr))
826 return 1;
827 }
828
829 return 0;
830}
831
832/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
833 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
834 is not NULL) and the function returns 1. It returns 0 otherwise.
835
836 Both the elf_objfile_gnu_ifunc_cache_data hash table and
837 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
838
839static int
840elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
841{
842 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
843 return 1;
dea91a5c 844
07be84bf
JK
845 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
846 return 1;
847
848 return 0;
849}
850
851/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
852 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
853 is the entry point of the resolved STT_GNU_IFUNC target function to call.
854 */
855
856static CORE_ADDR
857elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
858{
2c02bd72 859 const char *name_at_pc;
07be84bf
JK
860 CORE_ADDR start_at_pc, address;
861 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
862 struct value *function, *address_val;
863
864 /* Try first any non-intrusive methods without an inferior call. */
865
866 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
867 && start_at_pc == pc)
868 {
869 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
870 return address;
871 }
872 else
873 name_at_pc = NULL;
874
875 function = allocate_value (func_func_type);
876 set_value_address (function, pc);
877
878 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
879 function entry address. ADDRESS may be a function descriptor. */
880
881 address_val = call_function_by_hand (function, 0, NULL);
882 address = value_as_address (address_val);
883 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
884 &current_target);
4b7d1f7f 885 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
886
887 if (name_at_pc)
888 elf_gnu_ifunc_record_cache (name_at_pc, address);
889
890 return address;
891}
892
0e30163f
JK
893/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
894
895static void
896elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
897{
898 struct breakpoint *b_return;
899 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
900 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
901 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 902 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
903
904 gdb_assert (b->type == bp_gnu_ifunc_resolver);
905
906 for (b_return = b->related_breakpoint; b_return != b;
907 b_return = b_return->related_breakpoint)
908 {
909 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
910 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
911 gdb_assert (frame_id_p (b_return->frame_id));
912
913 if (b_return->thread == thread_id
914 && b_return->loc->requested_address == prev_pc
915 && frame_id_eq (b_return->frame_id, prev_frame_id))
916 break;
917 }
918
919 if (b_return == b)
920 {
921 struct symtab_and_line sal;
922
923 /* No need to call find_pc_line for symbols resolving as this is only
924 a helper breakpointer never shown to the user. */
925
926 init_sal (&sal);
927 sal.pspace = current_inferior ()->pspace;
928 sal.pc = prev_pc;
929 sal.section = find_pc_overlay (sal.pc);
930 sal.explicit_pc = 1;
931 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
932 prev_frame_id,
933 bp_gnu_ifunc_resolver_return);
934
c70a6932
JK
935 /* set_momentary_breakpoint invalidates PREV_FRAME. */
936 prev_frame = NULL;
937
0e30163f
JK
938 /* Add new b_return to the ring list b->related_breakpoint. */
939 gdb_assert (b_return->related_breakpoint == b_return);
940 b_return->related_breakpoint = b->related_breakpoint;
941 b->related_breakpoint = b_return;
942 }
943}
944
945/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
946
947static void
948elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
949{
950 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
951 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
952 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
953 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 954 struct value *func_func;
0e30163f
JK
955 struct value *value;
956 CORE_ADDR resolved_address, resolved_pc;
957 struct symtab_and_line sal;
f1310107 958 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
959
960 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
961
0e30163f
JK
962 while (b->related_breakpoint != b)
963 {
964 struct breakpoint *b_next = b->related_breakpoint;
965
966 switch (b->type)
967 {
968 case bp_gnu_ifunc_resolver:
969 break;
970 case bp_gnu_ifunc_resolver_return:
971 delete_breakpoint (b);
972 break;
973 default:
974 internal_error (__FILE__, __LINE__,
975 _("handle_inferior_event: Invalid "
976 "gnu-indirect-function breakpoint type %d"),
977 (int) b->type);
978 }
979 b = b_next;
980 }
981 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
982 gdb_assert (b->loc->next == NULL);
983
984 func_func = allocate_value (func_func_type);
985 set_value_address (func_func, b->loc->related_address);
986
987 value = allocate_value (value_type);
988 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
989 value_contents_raw (value), NULL);
990 resolved_address = value_as_address (value);
991 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
992 resolved_address,
993 &current_target);
4b7d1f7f 994 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 995
f8eba3c6 996 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
f00aae0f
KS
997 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
998 resolved_pc);
0e30163f
JK
999
1000 sal = find_pc_line (resolved_pc, 0);
1001 sals.nelts = 1;
1002 sals.sals = &sal;
f1310107 1003 sals_end.nelts = 0;
0e30163f
JK
1004
1005 b->type = bp_breakpoint;
c2f4122d 1006 update_breakpoint_locations (b, current_program_space, sals, sals_end);
0e30163f
JK
1007}
1008
2750ef27
TT
1009/* A helper function for elf_symfile_read that reads the minimal
1010 symbols. */
c906108c
SS
1011
1012static void
5f6cac40
TT
1013elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1014 const struct elfinfo *ei)
c906108c 1015{
63524580 1016 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c 1017 struct cleanup *back_to;
62553543
EZ
1018 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1019 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1020 asymbol *synthsyms;
d2f4b8fe 1021 struct dbx_symfile_info *dbx;
c906108c 1022
45cfd468
DE
1023 if (symtab_create_debug)
1024 {
1025 fprintf_unfiltered (gdb_stdlog,
1026 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1027 objfile_name (objfile));
45cfd468
DE
1028 }
1029
5f6cac40
TT
1030 /* If we already have minsyms, then we can skip some work here.
1031 However, if there were stabs or mdebug sections, we go ahead and
1032 redo all the work anyway, because the psym readers for those
1033 kinds of debuginfo need extra information found here. This can
1034 go away once all types of symbols are in the per-BFD object. */
1035 if (objfile->per_bfd->minsyms_read
1036 && ei->stabsect == NULL
1037 && ei->mdebugsect == NULL)
1038 {
1039 if (symtab_create_debug)
1040 fprintf_unfiltered (gdb_stdlog,
1041 "... minimal symbols previously read\n");
1042 return;
1043 }
1044
c906108c 1045 init_minimal_symbol_collection ();
56e290f4 1046 back_to = make_cleanup_discard_minimal_symbols ();
c906108c 1047
0963b4bd 1048 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1049 dbx = XCNEW (struct dbx_symfile_info);
1050 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1051
18a94d75 1052 /* Process the normal ELF symbol table first. */
c906108c 1053
62553543
EZ
1054 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1055 if (storage_needed < 0)
3e43a32a
MS
1056 error (_("Can't read symbols from %s: %s"),
1057 bfd_get_filename (objfile->obfd),
62553543
EZ
1058 bfd_errmsg (bfd_get_error ()));
1059
1060 if (storage_needed > 0)
1061 {
80c57053
JK
1062 /* Memory gets permanently referenced from ABFD after
1063 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1064
224c3ddb 1065 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1066 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1067
1068 if (symcount < 0)
3e43a32a
MS
1069 error (_("Can't read symbols from %s: %s"),
1070 bfd_get_filename (objfile->obfd),
62553543
EZ
1071 bfd_errmsg (bfd_get_error ()));
1072
04a679b8 1073 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1074 }
c906108c
SS
1075
1076 /* Add the dynamic symbols. */
1077
62553543
EZ
1078 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1079
1080 if (storage_needed > 0)
1081 {
3f1eff0a
JK
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1084 It happens only in the case when elf_slurp_reloc_table sees
1085 asection->relocation NULL. Determining which section is asection is
1086 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1087 implementation detail, though. */
1088
224c3ddb 1089 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1090 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1091 dyn_symbol_table);
1092
1093 if (dynsymcount < 0)
3e43a32a
MS
1094 error (_("Can't read symbols from %s: %s"),
1095 bfd_get_filename (objfile->obfd),
62553543
EZ
1096 bfd_errmsg (bfd_get_error ()));
1097
04a679b8 1098 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1099
1100 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1101 }
1102
63524580
JK
1103 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1104 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1105
1106 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1107 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1108 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1109 read the code address from .opd while it reads the .symtab section from
1110 a separate debug info file as the .opd section is SHT_NOBITS there.
1111
1112 With SYNTH_ABFD the .opd section will be read from the original
1113 backlinked binary where it is valid. */
1114
1115 if (objfile->separate_debug_objfile_backlink)
1116 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1117 else
1118 synth_abfd = abfd;
1119
62553543
EZ
1120 /* Add synthetic symbols - for instance, names for any PLT entries. */
1121
63524580 1122 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1123 dynsymcount, dyn_symbol_table,
1124 &synthsyms);
1125 if (synthcount > 0)
1126 {
1127 asymbol **synth_symbol_table;
1128 long i;
1129
1130 make_cleanup (xfree, synthsyms);
8d749320 1131 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
62553543 1132 for (i = 0; i < synthcount; i++)
9f20e3da 1133 synth_symbol_table[i] = synthsyms + i;
62553543 1134 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1135 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1136 synth_symbol_table, 1);
62553543 1137 }
c906108c 1138
7134143f
DJ
1139 /* Install any minimal symbols that have been collected as the current
1140 minimal symbols for this objfile. The debug readers below this point
1141 should not generate new minimal symbols; if they do it's their
1142 responsibility to install them. "mdebug" appears to be the only one
1143 which will do this. */
1144
1145 install_minimal_symbols (objfile);
1146 do_cleanups (back_to);
1147
4f00dda3
DE
1148 if (symtab_create_debug)
1149 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1150}
1151
1152/* Scan and build partial symbols for a symbol file.
1153 We have been initialized by a call to elf_symfile_init, which
1154 currently does nothing.
1155
2750ef27
TT
1156 This function only does the minimum work necessary for letting the
1157 user "name" things symbolically; it does not read the entire symtab.
1158 Instead, it reads the external and static symbols and puts them in partial
1159 symbol tables. When more extensive information is requested of a
1160 file, the corresponding partial symbol table is mutated into a full
1161 fledged symbol table by going back and reading the symbols
1162 for real.
1163
1164 We look for sections with specific names, to tell us what debug
1165 format to look for: FIXME!!!
1166
1167 elfstab_build_psymtabs() handles STABS symbols;
1168 mdebug_build_psymtabs() handles ECOFF debugging information.
1169
1170 Note that ELF files have a "minimal" symbol table, which looks a lot
1171 like a COFF symbol table, but has only the minimal information necessary
1172 for linking. We process this also, and use the information to
1173 build gdb's minimal symbol table. This gives us some minimal debugging
1174 capability even for files compiled without -g. */
1175
1176static void
1177elf_symfile_read (struct objfile *objfile, int symfile_flags)
1178{
1179 bfd *abfd = objfile->obfd;
1180 struct elfinfo ei;
1181
2750ef27 1182 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1183 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1184
5f6cac40
TT
1185 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1186
c906108c
SS
1187 /* ELF debugging information is inserted into the psymtab in the
1188 order of least informative first - most informative last. Since
1189 the psymtab table is searched `most recent insertion first' this
1190 increases the probability that more detailed debug information
1191 for a section is found.
1192
1193 For instance, an object file might contain both .mdebug (XCOFF)
1194 and .debug_info (DWARF2) sections then .mdebug is inserted first
1195 (searched last) and DWARF2 is inserted last (searched first). If
1196 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1197 an included file XCOFF info is useless. */
c906108c
SS
1198
1199 if (ei.mdebugsect)
1200 {
1201 const struct ecoff_debug_swap *swap;
1202
1203 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1204 information. */
c906108c
SS
1205 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1206 if (swap)
d4f3574e 1207 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1208 }
1209 if (ei.stabsect)
1210 {
1211 asection *str_sect;
1212
1213 /* Stab sections have an associated string table that looks like
c5aa993b 1214 a separate section. */
c906108c
SS
1215 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1216
1217 /* FIXME should probably warn about a stab section without a stabstr. */
1218 if (str_sect)
1219 elfstab_build_psymtabs (objfile,
086df311 1220 ei.stabsect,
c906108c
SS
1221 str_sect->filepos,
1222 bfd_section_size (abfd, str_sect));
1223 }
9291a0cd 1224
251d32d9 1225 if (dwarf2_has_info (objfile, NULL))
b11896a5 1226 {
3e03848b
JK
1227 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1228 information present in OBJFILE. If there is such debug info present
1229 never use .gdb_index. */
1230
1231 if (!objfile_has_partial_symbols (objfile)
1232 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1233 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1234 else
1235 {
1236 /* It is ok to do this even if the stabs reader made some
1237 partial symbols, because OBJF_PSYMTABS_READ has not been
1238 set, and so our lazy reader function will still be called
1239 when needed. */
8fb8eb5c 1240 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1241 }
1242 }
3e43a32a
MS
1243 /* If the file has its own symbol tables it has no separate debug
1244 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1245 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1246 `.note.gnu.build-id'.
1247
1248 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1249 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1250 an objfile via find_separate_debug_file_in_section there was no separate
1251 debug info available. Therefore do not attempt to search for another one,
1252 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1253 be NULL and we would possibly violate it. */
1254
1255 else if (!objfile_has_partial_symbols (objfile)
1256 && objfile->separate_debug_objfile == NULL
1257 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1258 {
1259 char *debugfile;
1260
1261 debugfile = find_separate_debug_file_by_buildid (objfile);
1262
1263 if (debugfile == NULL)
1264 debugfile = find_separate_debug_file_by_debuglink (objfile);
1265
1266 if (debugfile)
1267 {
8ac244b4 1268 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1269 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1270
8ac244b4 1271 make_cleanup_bfd_unref (abfd);
24ba069a 1272 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
8ac244b4 1273 do_cleanups (cleanup);
9cce227f
TG
1274 }
1275 }
c906108c
SS
1276}
1277
b11896a5
TT
1278/* Callback to lazily read psymtabs. */
1279
1280static void
1281read_psyms (struct objfile *objfile)
1282{
251d32d9 1283 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1284 dwarf2_build_psymtabs (objfile);
1285}
1286
c906108c
SS
1287/* Initialize anything that needs initializing when a completely new symbol
1288 file is specified (not just adding some symbols from another file, e.g. a
1289 shared library).
1290
3e43a32a
MS
1291 We reinitialize buildsym, since we may be reading stabs from an ELF
1292 file. */
c906108c
SS
1293
1294static void
fba45db2 1295elf_new_init (struct objfile *ignore)
c906108c
SS
1296{
1297 stabsread_new_init ();
1298 buildsym_new_init ();
1299}
1300
1301/* Perform any local cleanups required when we are done with a particular
1302 objfile. I.E, we are in the process of discarding all symbol information
1303 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1304 objfile struct from the global list of known objfiles. */
c906108c
SS
1305
1306static void
fba45db2 1307elf_symfile_finish (struct objfile *objfile)
c906108c 1308{
fe3e1990 1309 dwarf2_free_objfile (objfile);
c906108c
SS
1310}
1311
db7a9bcd 1312/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1313
1314static void
fba45db2 1315elf_symfile_init (struct objfile *objfile)
c906108c
SS
1316{
1317 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1318 find this causes a significant slowdown in gdb then we could
1319 set it in the debug symbol readers only when necessary. */
1320 objfile->flags |= OBJF_REORDERED;
1321}
1322
55aa24fb
SDJ
1323/* Implementation of `sym_get_probes', as documented in symfile.h. */
1324
1325static VEC (probe_p) *
1326elf_get_probes (struct objfile *objfile)
1327{
5d9cf8a4 1328 VEC (probe_p) *probes_per_bfd;
55aa24fb
SDJ
1329
1330 /* Have we parsed this objfile's probes already? */
9a3c8263 1331 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1332
5d9cf8a4 1333 if (!probes_per_bfd)
55aa24fb
SDJ
1334 {
1335 int ix;
1336 const struct probe_ops *probe_ops;
1337
1338 /* Here we try to gather information about all types of probes from the
1339 objfile. */
1340 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1341 ix++)
5d9cf8a4 1342 probe_ops->get_probes (&probes_per_bfd, objfile);
55aa24fb 1343
5d9cf8a4 1344 if (probes_per_bfd == NULL)
55aa24fb 1345 {
5d9cf8a4
TT
1346 VEC_reserve (probe_p, probes_per_bfd, 1);
1347 gdb_assert (probes_per_bfd != NULL);
55aa24fb
SDJ
1348 }
1349
5d9cf8a4 1350 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1351 }
1352
5d9cf8a4 1353 return probes_per_bfd;
55aa24fb
SDJ
1354}
1355
55aa24fb
SDJ
1356/* Helper function used to free the space allocated for storing SystemTap
1357 probe information. */
1358
1359static void
5d9cf8a4 1360probe_key_free (bfd *abfd, void *d)
55aa24fb
SDJ
1361{
1362 int ix;
9a3c8263 1363 VEC (probe_p) *probes = (VEC (probe_p) *) d;
55aa24fb
SDJ
1364 struct probe *probe;
1365
1366 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1367 probe->pops->destroy (probe);
1368
1369 VEC_free (probe_p, probes);
1370}
1371
c906108c 1372\f
55aa24fb
SDJ
1373
1374/* Implementation `sym_probe_fns', as documented in symfile.h. */
1375
1376static const struct sym_probe_fns elf_probe_fns =
1377{
25f9533e 1378 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1379};
1380
c906108c
SS
1381/* Register that we are able to handle ELF object file formats. */
1382
00b5771c 1383static const struct sym_fns elf_sym_fns =
c906108c 1384{
3e43a32a
MS
1385 elf_new_init, /* init anything gbl to entire symtab */
1386 elf_symfile_init, /* read initial info, setup for sym_read() */
1387 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1388 NULL, /* sym_read_psymbols */
1389 elf_symfile_finish, /* finished with file, cleanup */
1390 default_symfile_offsets, /* Translate ext. to int. relocation */
1391 elf_symfile_segments, /* Get segment information from a file. */
1392 NULL,
1393 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1394 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1395 &psym_functions
1396};
1397
1398/* The same as elf_sym_fns, but not registered and lazily reads
1399 psymbols. */
1400
e36122e9 1401const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1402{
b11896a5
TT
1403 elf_new_init, /* init anything gbl to entire symtab */
1404 elf_symfile_init, /* read initial info, setup for sym_read() */
1405 elf_symfile_read, /* read a symbol file into symtab */
1406 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1407 elf_symfile_finish, /* finished with file, cleanup */
1408 default_symfile_offsets, /* Translate ext. to int. relocation */
1409 elf_symfile_segments, /* Get segment information from a file. */
1410 NULL,
1411 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1412 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1413 &psym_functions
c906108c
SS
1414};
1415
9291a0cd
TT
1416/* The same as elf_sym_fns, but not registered and uses the
1417 DWARF-specific GNU index rather than psymtab. */
e36122e9 1418const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1419{
3e43a32a
MS
1420 elf_new_init, /* init anything gbl to entire symab */
1421 elf_symfile_init, /* read initial info, setup for sym_red() */
1422 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1423 NULL, /* sym_read_psymbols */
3e43a32a
MS
1424 elf_symfile_finish, /* finished with file, cleanup */
1425 default_symfile_offsets, /* Translate ext. to int. relocatin */
1426 elf_symfile_segments, /* Get segment information from a file. */
1427 NULL,
1428 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1429 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1430 &dwarf2_gdb_index_functions
9291a0cd
TT
1431};
1432
07be84bf
JK
1433/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1434
1435static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1436{
1437 elf_gnu_ifunc_resolve_addr,
1438 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1439 elf_gnu_ifunc_resolver_stop,
1440 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1441};
1442
c906108c 1443void
fba45db2 1444_initialize_elfread (void)
c906108c 1445{
5d9cf8a4 1446 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1447 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1448
1449 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1450 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1451}
This page took 1.245357 seconds and 4 git commands to generate.