split out elf_read_minimal_symbols
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
ecd75fc8 3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
0e9f083f 24#include <string.h>
c906108c 25#include "elf-bfd.h"
31d99776
DJ
26#include "elf/common.h"
27#include "elf/internal.h"
c906108c
SS
28#include "elf/mips.h"
29#include "symtab.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "buildsym.h"
33#include "stabsread.h"
34#include "gdb-stabs.h"
35#include "complaints.h"
36#include "demangle.h"
ccefe4c4 37#include "psympriv.h"
0ba1096a 38#include "filenames.h"
55aa24fb
SDJ
39#include "probe.h"
40#include "arch-utils.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
cbb099e8 47#include "gdb_bfd.h"
dc294be5 48#include "build-id.h"
c906108c 49
a14ed312 50extern void _initialize_elfread (void);
392a587b 51
b11896a5 52/* Forward declarations. */
00b5771c 53static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 54static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
55aa24fb
SDJ
66/* Per-objfile data for probe info. */
67
68static const struct objfile_data *probe_key = NULL;
69
12b9c64f 70static void free_elfinfo (void *);
c906108c 71
07be84bf
JK
72/* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
31d99776
DJ
79/* Locate the segments in ABFD. */
80
81static struct symfile_segment_data *
82elf_symfile_segments (bfd *abfd)
83{
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
41bf6aca 108 data = XCNEW (struct symfile_segment_data);
31d99776 109 data->num_segments = num_segments;
fc270c35
TT
110 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
111 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
fc270c35 120 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
a366c65a 135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 152 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
12b9c64f 179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 180{
52f0bd74 181 struct elfinfo *ei;
c906108c
SS
182
183 ei = (struct elfinfo *) eip;
7ce59000 184 if (strcmp (sectp->name, ".stab") == 0)
c906108c 185 {
c5aa993b 186 ei->stabsect = sectp;
c906108c 187 }
6314a349 188 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 189 {
c5aa993b 190 ei->mdebugsect = sectp;
c906108c
SS
191 }
192}
193
c906108c 194static struct minimal_symbol *
04a679b8
TT
195record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
f594e5e9
MC
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
c906108c 199{
5e2b427d
UW
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
0875794a
JK
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
85ddcc70 204 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 205
04a679b8 206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
e6dc44a8 210 objfile);
c906108c
SS
211}
212
7f86f058 213/* Read the symbol table of an ELF file.
c906108c 214
62553543 215 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
c906108c 218
c5aa993b
JM
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
7f86f058 223 in data structures hung off the objfile's private data. */
c906108c 224
6f610d07
UW
225#define ST_REGULAR 0
226#define ST_DYNAMIC 1
227#define ST_SYNTHETIC 2
228
c906108c 229static void
6f610d07 230elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
c906108c 233{
5e2b427d 234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 235 asymbol *sym;
c906108c 236 long i;
c906108c 237 CORE_ADDR symaddr;
d4f3574e 238 CORE_ADDR offset;
c906108c
SS
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
1c9e8358 246 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
247 the objfile's filename cache. */
248 const char *filesymname = "";
d2f4b8fe 249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 251
0cc7b392 252 for (i = 0; i < number_of_symbols; i++)
c906108c 253 {
0cc7b392
DJ
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
c906108c 256 {
0cc7b392 257 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 258 that are null strings (may happen). */
0cc7b392
DJ
259 continue;
260 }
c906108c 261
74763737
DJ
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
74763737 271
65cf3563
TT
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
6f610d07 274 if (type == ST_DYNAMIC
45dfa85a 275 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
02c75f72 279 bfd *abfd = objfile->obfd;
dea91a5c 280 asection *sect;
0cc7b392
DJ
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
0963b4bd 288 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
02c75f72
UW
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
828cfa8d
JB
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
0cc7b392 328 msym = record_minimal_symbol
04a679b8
TT
329 (sym->name, strlen (sym->name), copy_names,
330 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
331 if (msym != NULL)
332 msym->filename = filesymname;
0cc7b392
DJ
333 continue;
334 }
c906108c 335
0cc7b392
DJ
336 /* If it is a nonstripped executable, do not enter dynamic
337 symbols, as the dynamic symbol table is usually a subset
338 of the main symbol table. */
6f610d07 339 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
340 continue;
341 if (sym->flags & BSF_FILE)
342 {
343 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
344 Chain any old one onto the objfile; remember new sym. */
345 if (sectinfo != NULL)
c906108c 346 {
0cc7b392
DJ
347 sectinfo->next = dbx->stab_section_info;
348 dbx->stab_section_info = sectinfo;
349 sectinfo = NULL;
350 }
351 filesym = sym;
0af1e9a5 352 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
706e3705 353 objfile->per_bfd->filename_cache);
0cc7b392
DJ
354 }
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
bb869963
SDJ
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
0cc7b392
DJ
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
0963b4bd
MS
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
0cc7b392 366 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
0963b4bd 369 no way of figuring this out for absolute symbols. */
45dfa85a 370 if (sym->section == bfd_abs_section_ptr)
c906108c 371 {
0cc7b392
DJ
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
6f610d07
UW
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
dea91a5c 378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
c906108c 382 {
0cc7b392
DJ
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 397 symbols, relocate all others by section offset. */
0cc7b392
DJ
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
c906108c 402 }
0cc7b392
DJ
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
bb869963 406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 407 {
0875794a
JK
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
0cc7b392 412 }
90359a16
JK
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
c906108c 432 }
0cc7b392
DJ
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
bb869963 436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 437 {
0cc7b392 438 if (sym->section->flags & SEC_LOAD)
c906108c 439 {
0cc7b392 440 ms_type = mst_data;
c906108c 441 }
c906108c
SS
442 else
443 {
0cc7b392 444 ms_type = mst_bss;
c906108c
SS
445 }
446 }
0cc7b392 447 else if (sym->flags & BSF_LOCAL)
c906108c 448 {
0cc7b392
DJ
449 /* Named Local variable in a Data section.
450 Check its name for stabs-in-elf. */
451 int special_local_sect;
d7f9d729 452
0cc7b392
DJ
453 if (strcmp ("Bbss.bss", sym->name) == 0)
454 special_local_sect = SECT_OFF_BSS (objfile);
455 else if (strcmp ("Ddata.data", sym->name) == 0)
456 special_local_sect = SECT_OFF_DATA (objfile);
457 else if (strcmp ("Drodata.rodata", sym->name) == 0)
458 special_local_sect = SECT_OFF_RODATA (objfile);
459 else
460 special_local_sect = -1;
461 if (special_local_sect >= 0)
c906108c 462 {
0cc7b392
DJ
463 /* Found a special local symbol. Allocate a
464 sectinfo, if needed, and fill it in. */
465 if (sectinfo == NULL)
c906108c 466 {
0cc7b392
DJ
467 int max_index;
468 size_t size;
469
25c2f6ab
PP
470 max_index = SECT_OFF_BSS (objfile);
471 if (objfile->sect_index_data > max_index)
472 max_index = objfile->sect_index_data;
473 if (objfile->sect_index_rodata > max_index)
474 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
475
476 /* max_index is the largest index we'll
477 use into this array, so we must
478 allocate max_index+1 elements for it.
479 However, 'struct stab_section_info'
480 already includes one element, so we
481 need to allocate max_index aadditional
482 elements. */
dea91a5c 483 size = (sizeof (struct stab_section_info)
c05d19c5 484 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
485 sectinfo = (struct stab_section_info *)
486 xmalloc (size);
487 memset (sectinfo, 0, size);
488 sectinfo->num_sections = max_index;
489 if (filesym == NULL)
c906108c 490 {
0cc7b392 491 complaint (&symfile_complaints,
3e43a32a
MS
492 _("elf/stab section information %s "
493 "without a preceding file symbol"),
0cc7b392
DJ
494 sym->name);
495 }
496 else
497 {
498 sectinfo->filename =
499 (char *) filesym->name;
c906108c 500 }
c906108c 501 }
0cc7b392
DJ
502 if (sectinfo->sections[special_local_sect] != 0)
503 complaint (&symfile_complaints,
3e43a32a
MS
504 _("duplicated elf/stab section "
505 "information for %s"),
0cc7b392
DJ
506 sectinfo->filename);
507 /* BFD symbols are section relative. */
508 symaddr = sym->value + sym->section->vma;
509 /* Relocate non-absolute symbols by the
510 section offset. */
45dfa85a 511 if (sym->section != bfd_abs_section_ptr)
0cc7b392
DJ
512 symaddr += offset;
513 sectinfo->sections[special_local_sect] = symaddr;
514 /* The special local symbols don't go in the
515 minimal symbol table, so ignore this one. */
516 continue;
517 }
518 /* Not a special stabs-in-elf symbol, do regular
519 symbol processing. */
520 if (sym->section->flags & SEC_LOAD)
521 {
522 ms_type = mst_file_data;
c906108c
SS
523 }
524 else
525 {
0cc7b392 526 ms_type = mst_file_bss;
c906108c
SS
527 }
528 }
529 else
530 {
0cc7b392 531 ms_type = mst_unknown;
c906108c 532 }
0cc7b392
DJ
533 }
534 else
535 {
536 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 537 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
538 hob with actions like finding what function the PC
539 is in. Ignore them if they aren't text, data, or bss. */
540 /* ms_type = mst_unknown; */
0963b4bd 541 continue; /* Skip this symbol. */
0cc7b392
DJ
542 }
543 msym = record_minimal_symbol
04a679b8 544 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 545 ms_type, sym->section, objfile);
6f610d07 546
0cc7b392
DJ
547 if (msym)
548 {
6f610d07 549 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 550 ELF-private part. */
6f610d07 551 if (type != ST_SYNTHETIC)
24c274a1
AM
552 {
553 /* Pass symbol size field in via BFD. FIXME!!! */
554 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
555 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
556 }
dea91a5c 557
a103a963
DJ
558 msym->filename = filesymname;
559 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 560 }
2eaf8d2a 561
715c6909
TT
562 /* If we see a default versioned symbol, install it under
563 its version-less name. */
564 if (msym != NULL)
565 {
566 const char *atsign = strchr (sym->name, '@');
567
568 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
569 {
570 int len = atsign - sym->name;
571
572 record_minimal_symbol (sym->name, len, 1, symaddr,
573 ms_type, sym->section, objfile);
574 }
575 }
576
2eaf8d2a
DJ
577 /* For @plt symbols, also record a trampoline to the
578 destination symbol. The @plt symbol will be used in
579 disassembly, and the trampoline will be used when we are
580 trying to find the target. */
581 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
582 {
583 int len = strlen (sym->name);
584
585 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
586 {
2eaf8d2a
DJ
587 struct minimal_symbol *mtramp;
588
04a679b8
TT
589 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
590 symaddr,
2eaf8d2a
DJ
591 mst_solib_trampoline,
592 sym->section, objfile);
593 if (mtramp)
594 {
d9eaeb59 595 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 596 mtramp->created_by_gdb = 1;
2eaf8d2a
DJ
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
c906108c 602 }
c906108c
SS
603 }
604}
605
07be84bf
JK
606/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613static void
614elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615{
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
07be84bf
JK
619 int plt_elf_idx;
620 bfd_size_type reloc_count, reloc;
621 char *string_buffer = NULL;
622 size_t string_buffer_size = 0;
623 struct cleanup *back_to;
df6d5441 624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
625 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
626 size_t ptr_size = TYPE_LENGTH (ptr_type);
627
628 if (objfile->separate_debug_objfile_backlink)
629 return;
630
631 plt = bfd_get_section_by_name (obfd, ".plt");
632 if (plt == NULL)
633 return;
634 plt_elf_idx = elf_section_data (plt)->this_idx;
635
636 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
637 if (got_plt == NULL)
4b7d1f7f
WN
638 {
639 /* For platforms where there is no separate .got.plt. */
640 got_plt = bfd_get_section_by_name (obfd, ".got");
641 if (got_plt == NULL)
642 return;
643 }
07be84bf
JK
644
645 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
646 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
647 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
648 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
649 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
650 break;
651 if (relplt == NULL)
652 return;
653
654 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
655 return;
656
657 back_to = make_cleanup (free_current_contents, &string_buffer);
658
659 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
660 for (reloc = 0; reloc < reloc_count; reloc++)
661 {
22e048c9 662 const char *name;
07be84bf
JK
663 struct minimal_symbol *msym;
664 CORE_ADDR address;
665 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
666 size_t name_len;
667
668 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
669 name_len = strlen (name);
670 address = relplt->relocation[reloc].address;
671
672 /* Does the pointer reside in the .got.plt section? */
673 if (!(bfd_get_section_vma (obfd, got_plt) <= address
674 && address < bfd_get_section_vma (obfd, got_plt)
675 + bfd_get_section_size (got_plt)))
676 continue;
677
678 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
679 OBJFILE the symbol is undefined and the objfile having NAME defined
680 may not yet have been loaded. */
681
3807f613 682 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
683 {
684 string_buffer_size = 2 * (name_len + got_suffix_len);
685 string_buffer = xrealloc (string_buffer, string_buffer_size);
686 }
687 memcpy (string_buffer, name, name_len);
688 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 689 got_suffix_len + 1);
07be84bf
JK
690
691 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
692 1, address, mst_slot_got_plt, got_plt,
693 objfile);
694 if (msym)
d9eaeb59 695 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
696 }
697
698 do_cleanups (back_to);
699}
700
701/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
702
703static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
704
705/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
706
707struct elf_gnu_ifunc_cache
708{
709 /* This is always a function entry address, not a function descriptor. */
710 CORE_ADDR addr;
711
712 char name[1];
713};
714
715/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
716
717static hashval_t
718elf_gnu_ifunc_cache_hash (const void *a_voidp)
719{
720 const struct elf_gnu_ifunc_cache *a = a_voidp;
721
722 return htab_hash_string (a->name);
723}
724
725/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
726
727static int
728elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
729{
730 const struct elf_gnu_ifunc_cache *a = a_voidp;
731 const struct elf_gnu_ifunc_cache *b = b_voidp;
732
733 return strcmp (a->name, b->name) == 0;
734}
735
736/* Record the target function address of a STT_GNU_IFUNC function NAME is the
737 function entry address ADDR. Return 1 if NAME and ADDR are considered as
738 valid and therefore they were successfully recorded, return 0 otherwise.
739
740 Function does not expect a duplicate entry. Use
741 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
742 exists. */
743
744static int
745elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
746{
7cbd4a93 747 struct bound_minimal_symbol msym;
07be84bf
JK
748 asection *sect;
749 struct objfile *objfile;
750 htab_t htab;
751 struct elf_gnu_ifunc_cache entry_local, *entry_p;
752 void **slot;
753
754 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 755 if (msym.minsym == NULL)
07be84bf 756 return 0;
77e371c0 757 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
758 return 0;
759 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 760 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 761 objfile = msym.objfile;
07be84bf
JK
762
763 /* If .plt jumps back to .plt the symbol is still deferred for later
764 resolution and it has no use for GDB. Besides ".text" this symbol can
765 reside also in ".opd" for ppc64 function descriptor. */
766 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
767 return 0;
768
769 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
770 if (htab == NULL)
771 {
772 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
773 elf_gnu_ifunc_cache_eq,
774 NULL, &objfile->objfile_obstack,
775 hashtab_obstack_allocate,
776 dummy_obstack_deallocate);
777 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
778 }
779
780 entry_local.addr = addr;
781 obstack_grow (&objfile->objfile_obstack, &entry_local,
782 offsetof (struct elf_gnu_ifunc_cache, name));
783 obstack_grow_str0 (&objfile->objfile_obstack, name);
784 entry_p = obstack_finish (&objfile->objfile_obstack);
785
786 slot = htab_find_slot (htab, entry_p, INSERT);
787 if (*slot != NULL)
788 {
789 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
df6d5441 790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
791
792 if (entry_found_p->addr != addr)
793 {
794 /* This case indicates buggy inferior program, the resolved address
795 should never change. */
796
797 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
798 "function_address from %s to %s"),
799 name, paddress (gdbarch, entry_found_p->addr),
800 paddress (gdbarch, addr));
801 }
802
803 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
804 }
805 *slot = entry_p;
806
807 return 1;
808}
809
810/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
813
814 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
815 function. */
816
817static int
818elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
819{
820 struct objfile *objfile;
821
822 ALL_PSPACE_OBJFILES (current_program_space, objfile)
823 {
824 htab_t htab;
825 struct elf_gnu_ifunc_cache *entry_p;
826 void **slot;
827
828 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
829 if (htab == NULL)
830 continue;
831
832 entry_p = alloca (sizeof (*entry_p) + strlen (name));
833 strcpy (entry_p->name, name);
834
835 slot = htab_find_slot (htab, entry_p, NO_INSERT);
836 if (slot == NULL)
837 continue;
838 entry_p = *slot;
839 gdb_assert (entry_p != NULL);
840
841 if (addr_p)
842 *addr_p = entry_p->addr;
843 return 1;
844 }
845
846 return 0;
847}
848
849/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
850 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
851 is not NULL) and the function returns 1. It returns 0 otherwise.
852
853 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
854 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
855 prevent cache entries duplicates. */
856
857static int
858elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
859{
860 char *name_got_plt;
861 struct objfile *objfile;
862 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
863
864 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
865 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
866
867 ALL_PSPACE_OBJFILES (current_program_space, objfile)
868 {
869 bfd *obfd = objfile->obfd;
df6d5441 870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
871 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
872 size_t ptr_size = TYPE_LENGTH (ptr_type);
873 CORE_ADDR pointer_address, addr;
874 asection *plt;
875 gdb_byte *buf = alloca (ptr_size);
3b7344d5 876 struct bound_minimal_symbol msym;
07be84bf
JK
877
878 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 879 if (msym.minsym == NULL)
07be84bf 880 continue;
3b7344d5 881 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 882 continue;
77e371c0 883 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
884
885 plt = bfd_get_section_by_name (obfd, ".plt");
886 if (plt == NULL)
887 continue;
888
3b7344d5 889 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
890 continue;
891 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
892 continue;
893 addr = extract_typed_address (buf, ptr_type);
894 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
895 &current_target);
4b7d1f7f 896 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
897
898 if (addr_p)
899 *addr_p = addr;
900 if (elf_gnu_ifunc_record_cache (name, addr))
901 return 1;
902 }
903
904 return 0;
905}
906
907/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
908 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
909 is not NULL) and the function returns 1. It returns 0 otherwise.
910
911 Both the elf_objfile_gnu_ifunc_cache_data hash table and
912 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
913
914static int
915elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
916{
917 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
918 return 1;
dea91a5c 919
07be84bf
JK
920 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
921 return 1;
922
923 return 0;
924}
925
926/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
927 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
928 is the entry point of the resolved STT_GNU_IFUNC target function to call.
929 */
930
931static CORE_ADDR
932elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
933{
2c02bd72 934 const char *name_at_pc;
07be84bf
JK
935 CORE_ADDR start_at_pc, address;
936 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
937 struct value *function, *address_val;
938
939 /* Try first any non-intrusive methods without an inferior call. */
940
941 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
942 && start_at_pc == pc)
943 {
944 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
945 return address;
946 }
947 else
948 name_at_pc = NULL;
949
950 function = allocate_value (func_func_type);
951 set_value_address (function, pc);
952
953 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
954 function entry address. ADDRESS may be a function descriptor. */
955
956 address_val = call_function_by_hand (function, 0, NULL);
957 address = value_as_address (address_val);
958 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
959 &current_target);
4b7d1f7f 960 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
961
962 if (name_at_pc)
963 elf_gnu_ifunc_record_cache (name_at_pc, address);
964
965 return address;
966}
967
0e30163f
JK
968/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
969
970static void
971elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
972{
973 struct breakpoint *b_return;
974 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
975 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
976 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
977 int thread_id = pid_to_thread_id (inferior_ptid);
978
979 gdb_assert (b->type == bp_gnu_ifunc_resolver);
980
981 for (b_return = b->related_breakpoint; b_return != b;
982 b_return = b_return->related_breakpoint)
983 {
984 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
985 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
986 gdb_assert (frame_id_p (b_return->frame_id));
987
988 if (b_return->thread == thread_id
989 && b_return->loc->requested_address == prev_pc
990 && frame_id_eq (b_return->frame_id, prev_frame_id))
991 break;
992 }
993
994 if (b_return == b)
995 {
996 struct symtab_and_line sal;
997
998 /* No need to call find_pc_line for symbols resolving as this is only
999 a helper breakpointer never shown to the user. */
1000
1001 init_sal (&sal);
1002 sal.pspace = current_inferior ()->pspace;
1003 sal.pc = prev_pc;
1004 sal.section = find_pc_overlay (sal.pc);
1005 sal.explicit_pc = 1;
1006 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1007 prev_frame_id,
1008 bp_gnu_ifunc_resolver_return);
1009
c70a6932
JK
1010 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1011 prev_frame = NULL;
1012
0e30163f
JK
1013 /* Add new b_return to the ring list b->related_breakpoint. */
1014 gdb_assert (b_return->related_breakpoint == b_return);
1015 b_return->related_breakpoint = b->related_breakpoint;
1016 b->related_breakpoint = b_return;
1017 }
1018}
1019
1020/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1021
1022static void
1023elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1024{
1025 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1026 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1027 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1028 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 1029 struct value *func_func;
0e30163f
JK
1030 struct value *value;
1031 CORE_ADDR resolved_address, resolved_pc;
1032 struct symtab_and_line sal;
f1310107 1033 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1034
1035 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1036
0e30163f
JK
1037 while (b->related_breakpoint != b)
1038 {
1039 struct breakpoint *b_next = b->related_breakpoint;
1040
1041 switch (b->type)
1042 {
1043 case bp_gnu_ifunc_resolver:
1044 break;
1045 case bp_gnu_ifunc_resolver_return:
1046 delete_breakpoint (b);
1047 break;
1048 default:
1049 internal_error (__FILE__, __LINE__,
1050 _("handle_inferior_event: Invalid "
1051 "gnu-indirect-function breakpoint type %d"),
1052 (int) b->type);
1053 }
1054 b = b_next;
1055 }
1056 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1057 gdb_assert (b->loc->next == NULL);
1058
1059 func_func = allocate_value (func_func_type);
1060 set_value_address (func_func, b->loc->related_address);
1061
1062 value = allocate_value (value_type);
1063 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1064 value_contents_raw (value), NULL);
1065 resolved_address = value_as_address (value);
1066 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1067 resolved_address,
1068 &current_target);
4b7d1f7f 1069 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1070
f8eba3c6 1071 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1072 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1073
1074 sal = find_pc_line (resolved_pc, 0);
1075 sals.nelts = 1;
1076 sals.sals = &sal;
f1310107 1077 sals_end.nelts = 0;
0e30163f
JK
1078
1079 b->type = bp_breakpoint;
f1310107 1080 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1081}
1082
2750ef27
TT
1083/* A helper function for elf_symfile_read that reads the minimal
1084 symbols. */
c906108c
SS
1085
1086static void
2750ef27 1087elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags)
c906108c 1088{
63524580 1089 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c 1090 struct cleanup *back_to;
62553543
EZ
1091 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1092 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1093 asymbol *synthsyms;
d2f4b8fe 1094 struct dbx_symfile_info *dbx;
c906108c 1095
45cfd468
DE
1096 if (symtab_create_debug)
1097 {
1098 fprintf_unfiltered (gdb_stdlog,
1099 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1100 objfile_name (objfile));
45cfd468
DE
1101 }
1102
c906108c 1103 init_minimal_symbol_collection ();
56e290f4 1104 back_to = make_cleanup_discard_minimal_symbols ();
c906108c 1105
0963b4bd 1106 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1107 dbx = XCNEW (struct dbx_symfile_info);
1108 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
12b9c64f 1109 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1110
3e43a32a 1111 /* Process the normal ELF symbol table first. This may write some
d2f4b8fe
TT
1112 chain of info into the dbx_symfile_info of the objfile, which can
1113 later be used by elfstab_offset_sections. */
c906108c 1114
62553543
EZ
1115 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1116 if (storage_needed < 0)
3e43a32a
MS
1117 error (_("Can't read symbols from %s: %s"),
1118 bfd_get_filename (objfile->obfd),
62553543
EZ
1119 bfd_errmsg (bfd_get_error ()));
1120
1121 if (storage_needed > 0)
1122 {
1123 symbol_table = (asymbol **) xmalloc (storage_needed);
1124 make_cleanup (xfree, symbol_table);
1125 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1126
1127 if (symcount < 0)
3e43a32a
MS
1128 error (_("Can't read symbols from %s: %s"),
1129 bfd_get_filename (objfile->obfd),
62553543
EZ
1130 bfd_errmsg (bfd_get_error ()));
1131
04a679b8 1132 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1133 }
c906108c
SS
1134
1135 /* Add the dynamic symbols. */
1136
62553543
EZ
1137 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1138
1139 if (storage_needed > 0)
1140 {
3f1eff0a
JK
1141 /* Memory gets permanently referenced from ABFD after
1142 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1143 It happens only in the case when elf_slurp_reloc_table sees
1144 asection->relocation NULL. Determining which section is asection is
1145 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1146 implementation detail, though. */
1147
1148 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1149 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1150 dyn_symbol_table);
1151
1152 if (dynsymcount < 0)
3e43a32a
MS
1153 error (_("Can't read symbols from %s: %s"),
1154 bfd_get_filename (objfile->obfd),
62553543
EZ
1155 bfd_errmsg (bfd_get_error ()));
1156
04a679b8 1157 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1158
1159 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1160 }
1161
63524580
JK
1162 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1163 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1164
1165 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1166 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1167 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1168 read the code address from .opd while it reads the .symtab section from
1169 a separate debug info file as the .opd section is SHT_NOBITS there.
1170
1171 With SYNTH_ABFD the .opd section will be read from the original
1172 backlinked binary where it is valid. */
1173
1174 if (objfile->separate_debug_objfile_backlink)
1175 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1176 else
1177 synth_abfd = abfd;
1178
62553543
EZ
1179 /* Add synthetic symbols - for instance, names for any PLT entries. */
1180
63524580 1181 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1182 dynsymcount, dyn_symbol_table,
1183 &synthsyms);
1184 if (synthcount > 0)
1185 {
1186 asymbol **synth_symbol_table;
1187 long i;
1188
1189 make_cleanup (xfree, synthsyms);
1190 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1191 for (i = 0; i < synthcount; i++)
9f20e3da 1192 synth_symbol_table[i] = synthsyms + i;
62553543 1193 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1194 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1195 synth_symbol_table, 1);
62553543 1196 }
c906108c 1197
7134143f
DJ
1198 /* Install any minimal symbols that have been collected as the current
1199 minimal symbols for this objfile. The debug readers below this point
1200 should not generate new minimal symbols; if they do it's their
1201 responsibility to install them. "mdebug" appears to be the only one
1202 which will do this. */
1203
1204 install_minimal_symbols (objfile);
1205 do_cleanups (back_to);
1206
4f00dda3
DE
1207 if (symtab_create_debug)
1208 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1209}
1210
1211/* Scan and build partial symbols for a symbol file.
1212 We have been initialized by a call to elf_symfile_init, which
1213 currently does nothing.
1214
1215 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1216 in each section. We simplify it down to a single offset for all
1217 symbols. FIXME.
1218
1219 This function only does the minimum work necessary for letting the
1220 user "name" things symbolically; it does not read the entire symtab.
1221 Instead, it reads the external and static symbols and puts them in partial
1222 symbol tables. When more extensive information is requested of a
1223 file, the corresponding partial symbol table is mutated into a full
1224 fledged symbol table by going back and reading the symbols
1225 for real.
1226
1227 We look for sections with specific names, to tell us what debug
1228 format to look for: FIXME!!!
1229
1230 elfstab_build_psymtabs() handles STABS symbols;
1231 mdebug_build_psymtabs() handles ECOFF debugging information.
1232
1233 Note that ELF files have a "minimal" symbol table, which looks a lot
1234 like a COFF symbol table, but has only the minimal information necessary
1235 for linking. We process this also, and use the information to
1236 build gdb's minimal symbol table. This gives us some minimal debugging
1237 capability even for files compiled without -g. */
1238
1239static void
1240elf_symfile_read (struct objfile *objfile, int symfile_flags)
1241{
1242 bfd *abfd = objfile->obfd;
1243 struct elfinfo ei;
1244
1245 elf_read_minimal_symbols (objfile, symfile_flags);
1246
1247 memset ((char *) &ei, 0, sizeof (ei));
4f00dda3 1248
c906108c 1249 /* Now process debugging information, which is contained in
0963b4bd 1250 special ELF sections. */
c906108c 1251
0963b4bd 1252 /* We first have to find them... */
12b9c64f 1253 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c
SS
1254
1255 /* ELF debugging information is inserted into the psymtab in the
1256 order of least informative first - most informative last. Since
1257 the psymtab table is searched `most recent insertion first' this
1258 increases the probability that more detailed debug information
1259 for a section is found.
1260
1261 For instance, an object file might contain both .mdebug (XCOFF)
1262 and .debug_info (DWARF2) sections then .mdebug is inserted first
1263 (searched last) and DWARF2 is inserted last (searched first). If
1264 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1265 an included file XCOFF info is useless. */
c906108c
SS
1266
1267 if (ei.mdebugsect)
1268 {
1269 const struct ecoff_debug_swap *swap;
1270
1271 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1272 information. */
c906108c
SS
1273 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1274 if (swap)
d4f3574e 1275 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1276 }
1277 if (ei.stabsect)
1278 {
1279 asection *str_sect;
1280
1281 /* Stab sections have an associated string table that looks like
c5aa993b 1282 a separate section. */
c906108c
SS
1283 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1284
1285 /* FIXME should probably warn about a stab section without a stabstr. */
1286 if (str_sect)
1287 elfstab_build_psymtabs (objfile,
086df311 1288 ei.stabsect,
c906108c
SS
1289 str_sect->filepos,
1290 bfd_section_size (abfd, str_sect));
1291 }
9291a0cd 1292
251d32d9 1293 if (dwarf2_has_info (objfile, NULL))
b11896a5 1294 {
3e03848b
JK
1295 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1296 information present in OBJFILE. If there is such debug info present
1297 never use .gdb_index. */
1298
1299 if (!objfile_has_partial_symbols (objfile)
1300 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1301 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1302 else
1303 {
1304 /* It is ok to do this even if the stabs reader made some
1305 partial symbols, because OBJF_PSYMTABS_READ has not been
1306 set, and so our lazy reader function will still be called
1307 when needed. */
8fb8eb5c 1308 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1309 }
1310 }
3e43a32a
MS
1311 /* If the file has its own symbol tables it has no separate debug
1312 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1313 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1314 `.note.gnu.build-id'.
1315
1316 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1317 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1318 an objfile via find_separate_debug_file_in_section there was no separate
1319 debug info available. Therefore do not attempt to search for another one,
1320 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1321 be NULL and we would possibly violate it. */
1322
1323 else if (!objfile_has_partial_symbols (objfile)
1324 && objfile->separate_debug_objfile == NULL
1325 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1326 {
1327 char *debugfile;
1328
1329 debugfile = find_separate_debug_file_by_buildid (objfile);
1330
1331 if (debugfile == NULL)
1332 debugfile = find_separate_debug_file_by_debuglink (objfile);
1333
1334 if (debugfile)
1335 {
8ac244b4 1336 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1337 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1338
8ac244b4 1339 make_cleanup_bfd_unref (abfd);
24ba069a 1340 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
8ac244b4 1341 do_cleanups (cleanup);
9cce227f
TG
1342 }
1343 }
c906108c
SS
1344}
1345
b11896a5
TT
1346/* Callback to lazily read psymtabs. */
1347
1348static void
1349read_psyms (struct objfile *objfile)
1350{
251d32d9 1351 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1352 dwarf2_build_psymtabs (objfile);
1353}
1354
d2f4b8fe
TT
1355/* This cleans up the objfile's dbx symfile info, and the chain of
1356 stab_section_info's, that might be dangling from it. */
c906108c
SS
1357
1358static void
12b9c64f 1359free_elfinfo (void *objp)
c906108c 1360{
c5aa993b 1361 struct objfile *objfile = (struct objfile *) objp;
d2f4b8fe 1362 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1363 struct stab_section_info *ssi, *nssi;
1364
1365 ssi = dbxinfo->stab_section_info;
1366 while (ssi)
1367 {
1368 nssi = ssi->next;
2dc74dc1 1369 xfree (ssi);
c906108c
SS
1370 ssi = nssi;
1371 }
1372
1373 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1374}
1375
1376
1377/* Initialize anything that needs initializing when a completely new symbol
1378 file is specified (not just adding some symbols from another file, e.g. a
1379 shared library).
1380
3e43a32a
MS
1381 We reinitialize buildsym, since we may be reading stabs from an ELF
1382 file. */
c906108c
SS
1383
1384static void
fba45db2 1385elf_new_init (struct objfile *ignore)
c906108c
SS
1386{
1387 stabsread_new_init ();
1388 buildsym_new_init ();
1389}
1390
1391/* Perform any local cleanups required when we are done with a particular
1392 objfile. I.E, we are in the process of discarding all symbol information
1393 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1394 objfile struct from the global list of known objfiles. */
c906108c
SS
1395
1396static void
fba45db2 1397elf_symfile_finish (struct objfile *objfile)
c906108c 1398{
fe3e1990 1399 dwarf2_free_objfile (objfile);
c906108c
SS
1400}
1401
1402/* ELF specific initialization routine for reading symbols.
1403
1404 It is passed a pointer to a struct sym_fns which contains, among other
1405 things, the BFD for the file whose symbols are being read, and a slot for
1406 a pointer to "private data" which we can fill with goodies.
1407
1408 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1409 just a stub. */
c906108c
SS
1410
1411static void
fba45db2 1412elf_symfile_init (struct objfile *objfile)
c906108c
SS
1413{
1414 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1415 find this causes a significant slowdown in gdb then we could
1416 set it in the debug symbol readers only when necessary. */
1417 objfile->flags |= OBJF_REORDERED;
1418}
1419
1420/* When handling an ELF file that contains Sun STABS debug info,
1421 some of the debug info is relative to the particular chunk of the
1422 section that was generated in its individual .o file. E.g.
1423 offsets to static variables are relative to the start of the data
1424 segment *for that module before linking*. This information is
1425 painfully squirreled away in the ELF symbol table as local symbols
1426 with wierd names. Go get 'em when needed. */
1427
1428void
fba45db2 1429elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1430{
72b9f47f 1431 const char *filename = pst->filename;
d2f4b8fe 1432 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1433 struct stab_section_info *maybe = dbx->stab_section_info;
1434 struct stab_section_info *questionable = 0;
1435 int i;
c906108c
SS
1436
1437 /* The ELF symbol info doesn't include path names, so strip the path
1438 (if any) from the psymtab filename. */
0ba1096a 1439 filename = lbasename (filename);
c906108c
SS
1440
1441 /* FIXME: This linear search could speed up significantly
1442 if it was chained in the right order to match how we search it,
0963b4bd 1443 and if we unchained when we found a match. */
c906108c
SS
1444 for (; maybe; maybe = maybe->next)
1445 {
1446 if (filename[0] == maybe->filename[0]
0ba1096a 1447 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1448 {
1449 /* We found a match. But there might be several source files
1450 (from different directories) with the same name. */
1451 if (0 == maybe->found)
1452 break;
c5aa993b 1453 questionable = maybe; /* Might use it later. */
c906108c
SS
1454 }
1455 }
1456
1457 if (maybe == 0 && questionable != 0)
1458 {
23136709 1459 complaint (&symfile_complaints,
3e43a32a
MS
1460 _("elf/stab section information questionable for %s"),
1461 filename);
c906108c
SS
1462 maybe = questionable;
1463 }
1464
1465 if (maybe)
1466 {
1467 /* Found it! Allocate a new psymtab struct, and fill it in. */
1468 maybe->found++;
1469 pst->section_offsets = (struct section_offsets *)
dea91a5c 1470 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1471 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1472 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1473 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1474 return;
1475 }
1476
1477 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1478 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1479 complaint (&symfile_complaints,
e2e0b3e5 1480 _("elf/stab section information missing for %s"), filename);
c906108c 1481}
55aa24fb
SDJ
1482
1483/* Implementation of `sym_get_probes', as documented in symfile.h. */
1484
1485static VEC (probe_p) *
1486elf_get_probes (struct objfile *objfile)
1487{
1488 VEC (probe_p) *probes_per_objfile;
1489
1490 /* Have we parsed this objfile's probes already? */
1491 probes_per_objfile = objfile_data (objfile, probe_key);
1492
1493 if (!probes_per_objfile)
1494 {
1495 int ix;
1496 const struct probe_ops *probe_ops;
1497
1498 /* Here we try to gather information about all types of probes from the
1499 objfile. */
1500 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1501 ix++)
1502 probe_ops->get_probes (&probes_per_objfile, objfile);
1503
1504 if (probes_per_objfile == NULL)
1505 {
1506 VEC_reserve (probe_p, probes_per_objfile, 1);
1507 gdb_assert (probes_per_objfile != NULL);
1508 }
1509
1510 set_objfile_data (objfile, probe_key, probes_per_objfile);
1511 }
1512
1513 return probes_per_objfile;
1514}
1515
55aa24fb
SDJ
1516/* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1517
1518static void
1519elf_symfile_relocate_probe (struct objfile *objfile,
3189cb12
DE
1520 const struct section_offsets *new_offsets,
1521 const struct section_offsets *delta)
55aa24fb
SDJ
1522{
1523 int ix;
1524 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1525 struct probe *probe;
1526
1527 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1528 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1529}
1530
1531/* Helper function used to free the space allocated for storing SystemTap
1532 probe information. */
1533
1534static void
1535probe_key_free (struct objfile *objfile, void *d)
1536{
1537 int ix;
1538 VEC (probe_p) *probes = d;
1539 struct probe *probe;
1540
1541 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1542 probe->pops->destroy (probe);
1543
1544 VEC_free (probe_p, probes);
1545}
1546
c906108c 1547\f
55aa24fb
SDJ
1548
1549/* Implementation `sym_probe_fns', as documented in symfile.h. */
1550
1551static const struct sym_probe_fns elf_probe_fns =
1552{
25f9533e 1553 elf_get_probes, /* sym_get_probes */
25f9533e 1554 elf_symfile_relocate_probe, /* sym_relocate_probe */
55aa24fb
SDJ
1555};
1556
c906108c
SS
1557/* Register that we are able to handle ELF object file formats. */
1558
00b5771c 1559static const struct sym_fns elf_sym_fns =
c906108c 1560{
3e43a32a
MS
1561 elf_new_init, /* init anything gbl to entire symtab */
1562 elf_symfile_init, /* read initial info, setup for sym_read() */
1563 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1564 NULL, /* sym_read_psymbols */
1565 elf_symfile_finish, /* finished with file, cleanup */
1566 default_symfile_offsets, /* Translate ext. to int. relocation */
1567 elf_symfile_segments, /* Get segment information from a file. */
1568 NULL,
1569 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1570 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1571 &psym_functions
1572};
1573
1574/* The same as elf_sym_fns, but not registered and lazily reads
1575 psymbols. */
1576
1577static const struct sym_fns elf_sym_fns_lazy_psyms =
1578{
b11896a5
TT
1579 elf_new_init, /* init anything gbl to entire symtab */
1580 elf_symfile_init, /* read initial info, setup for sym_read() */
1581 elf_symfile_read, /* read a symbol file into symtab */
1582 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1583 elf_symfile_finish, /* finished with file, cleanup */
1584 default_symfile_offsets, /* Translate ext. to int. relocation */
1585 elf_symfile_segments, /* Get segment information from a file. */
1586 NULL,
1587 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1588 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1589 &psym_functions
c906108c
SS
1590};
1591
9291a0cd
TT
1592/* The same as elf_sym_fns, but not registered and uses the
1593 DWARF-specific GNU index rather than psymtab. */
00b5771c 1594static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1595{
3e43a32a
MS
1596 elf_new_init, /* init anything gbl to entire symab */
1597 elf_symfile_init, /* read initial info, setup for sym_red() */
1598 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1599 NULL, /* sym_read_psymbols */
3e43a32a
MS
1600 elf_symfile_finish, /* finished with file, cleanup */
1601 default_symfile_offsets, /* Translate ext. to int. relocatin */
1602 elf_symfile_segments, /* Get segment information from a file. */
1603 NULL,
1604 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1605 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1606 &dwarf2_gdb_index_functions
9291a0cd
TT
1607};
1608
07be84bf
JK
1609/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1610
1611static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1612{
1613 elf_gnu_ifunc_resolve_addr,
1614 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1615 elf_gnu_ifunc_resolver_stop,
1616 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1617};
1618
c906108c 1619void
fba45db2 1620_initialize_elfread (void)
c906108c 1621{
55aa24fb 1622 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
c256e171 1623 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1624
1625 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1626 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1627}
This page took 1.553909 seconds and 4 git commands to generate.