Make probe_ops::get_probes fill an std::vector
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
61baf725 3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
e1b2624a 49#include "auxv.h"
c906108c 50
b11896a5 51/* Forward declarations. */
e36122e9
TT
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 54
c906108c 55/* The struct elfinfo is available only during ELF symbol table and
6426a772 56 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
57 It's local to elf_symfile_read. */
58
c5aa993b
JM
59struct elfinfo
60 {
c5aa993b 61 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
c906108c 64
5d9cf8a4 65/* Per-BFD data for probe info. */
55aa24fb 66
5d9cf8a4 67static const struct bfd_data *probe_key = NULL;
55aa24fb 68
07be84bf
JK
69/* Minimal symbols located at the GOT entries for .plt - that is the real
70 pointer where the given entry will jump to. It gets updated by the real
71 function address during lazy ld.so resolving in the inferior. These
72 minimal symbols are indexed for <tab>-completion. */
73
74#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
75
31d99776
DJ
76/* Locate the segments in ABFD. */
77
78static struct symfile_segment_data *
79elf_symfile_segments (bfd *abfd)
80{
81 Elf_Internal_Phdr *phdrs, **segments;
82 long phdrs_size;
83 int num_phdrs, num_segments, num_sections, i;
84 asection *sect;
85 struct symfile_segment_data *data;
86
87 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 if (phdrs_size == -1)
89 return NULL;
90
224c3ddb 91 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
92 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
93 if (num_phdrs == -1)
94 return NULL;
95
96 num_segments = 0;
8d749320 97 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
98 for (i = 0; i < num_phdrs; i++)
99 if (phdrs[i].p_type == PT_LOAD)
100 segments[num_segments++] = &phdrs[i];
101
102 if (num_segments == 0)
103 return NULL;
104
41bf6aca 105 data = XCNEW (struct symfile_segment_data);
31d99776 106 data->num_segments = num_segments;
fc270c35
TT
107 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
108 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
109
110 for (i = 0; i < num_segments; i++)
111 {
112 data->segment_bases[i] = segments[i]->p_vaddr;
113 data->segment_sizes[i] = segments[i]->p_memsz;
114 }
115
116 num_sections = bfd_count_sections (abfd);
fc270c35 117 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
118
119 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
120 {
121 int j;
122 CORE_ADDR vma;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 vma = bfd_get_section_vma (abfd, sect);
128
129 for (j = 0; j < num_segments; j++)
130 if (segments[j]->p_memsz > 0
131 && vma >= segments[j]->p_vaddr
a366c65a 132 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
133 {
134 data->segment_info[i] = j + 1;
135 break;
136 }
137
ad09a548
DJ
138 /* We should have found a segment for every non-empty section.
139 If we haven't, we will not relocate this section by any
140 offsets we apply to the segments. As an exception, do not
141 warn about SHT_NOBITS sections; in normal ELF execution
142 environments, SHT_NOBITS means zero-initialized and belongs
143 in a segment, but in no-OS environments some tools (e.g. ARM
144 RealView) use SHT_NOBITS for uninitialized data. Since it is
145 uninitialized, it doesn't need a program header. Such
146 binaries are not relocatable. */
147 if (bfd_get_section_size (sect) > 0 && j == num_segments
148 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 149 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
150 bfd_section_name (abfd, sect));
151 }
152
153 return data;
154}
155
c906108c
SS
156/* We are called once per section from elf_symfile_read. We
157 need to examine each section we are passed, check to see
158 if it is something we are interested in processing, and
159 if so, stash away some access information for the section.
160
161 For now we recognize the dwarf debug information sections and
162 line number sections from matching their section names. The
163 ELF definition is no real help here since it has no direct
164 knowledge of DWARF (by design, so any debugging format can be
165 used).
166
167 We also recognize the ".stab" sections used by the Sun compilers
168 released with Solaris 2.
169
170 FIXME: The section names should not be hardwired strings (what
171 should they be? I don't think most object file formats have enough
0963b4bd 172 section flags to specify what kind of debug section it is.
c906108c
SS
173 -kingdon). */
174
175static void
12b9c64f 176elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 177{
52f0bd74 178 struct elfinfo *ei;
c906108c
SS
179
180 ei = (struct elfinfo *) eip;
7ce59000 181 if (strcmp (sectp->name, ".stab") == 0)
c906108c 182 {
c5aa993b 183 ei->stabsect = sectp;
c906108c 184 }
6314a349 185 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 186 {
c5aa993b 187 ei->mdebugsect = sectp;
c906108c
SS
188 }
189}
190
c906108c 191static struct minimal_symbol *
8dddcb8f 192record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 193 const char *name, int name_len, bool copy_name,
04a679b8 194 CORE_ADDR address,
f594e5e9
MC
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
c906108c 197{
5e2b427d
UW
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
0875794a
JK
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
85ddcc70 202 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 203
8dddcb8f
TT
204 return reader.record_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section));
c906108c
SS
208}
209
7f86f058 210/* Read the symbol table of an ELF file.
c906108c 211
62553543 212 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
c906108c 215
c5aa993b
JM
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
7f86f058 220 in data structures hung off the objfile's private data. */
c906108c 221
6f610d07
UW
222#define ST_REGULAR 0
223#define ST_DYNAMIC 1
224#define ST_SYNTHETIC 2
225
c906108c 226static void
8dddcb8f
TT
227elf_symtab_read (minimal_symbol_reader &reader,
228 struct objfile *objfile, int type,
04a679b8 229 long number_of_symbols, asymbol **symbol_table,
ce6c454e 230 bool copy_names)
c906108c 231{
5e2b427d 232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 233 asymbol *sym;
c906108c 234 long i;
c906108c
SS
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
18a94d75
DE
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
0af1e9a5 239 const char *filesymname = "";
d2f4b8fe 240 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 244
0cc7b392 245 for (i = 0; i < number_of_symbols; i++)
c906108c 246 {
0cc7b392
DJ
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
c906108c 249 {
0cc7b392 250 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 251 that are null strings (may happen). */
0cc7b392
DJ
252 continue;
253 }
c906108c 254
74763737
DJ
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
74763737 264
6f610d07 265 if (type == ST_DYNAMIC
45dfa85a 266 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
02c75f72 270 bfd *abfd = objfile->obfd;
dea91a5c 271 asection *sect;
0cc7b392
DJ
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
0963b4bd 279 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
02c75f72
UW
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
828cfa8d
JB
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
61012eef 315 if (!startswith (sect->name, ".plt")
828cfa8d
JB
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
0cc7b392 319 msym = record_minimal_symbol
8dddcb8f 320 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 321 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 322 if (msym != NULL)
9b807e7b
MR
323 {
324 msym->filename = filesymname;
3e29f34a
MR
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 327 }
0cc7b392
DJ
328 continue;
329 }
c906108c 330
0cc7b392
DJ
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
6f610d07 334 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
9a3c8263
SM
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
0cc7b392
DJ
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
bb869963
SDJ
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
0cc7b392
DJ
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
0963b4bd
MS
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
0cc7b392 353 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
0963b4bd 356 no way of figuring this out for absolute symbols. */
45dfa85a 357 if (sym->section == bfd_abs_section_ptr)
c906108c 358 {
0cc7b392
DJ
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
6f610d07
UW
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
dea91a5c 365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
c906108c 369 {
0cc7b392
DJ
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 384 symbols, relocate all others by section offset. */
0cc7b392
DJ
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
c906108c 389 }
0cc7b392
DJ
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
bb869963 393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 394 {
0875794a
JK
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
0cc7b392 399 }
90359a16
JK
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
c906108c 419 }
0cc7b392
DJ
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
bb869963 423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 424 {
0cc7b392 425 if (sym->section->flags & SEC_LOAD)
c906108c 426 {
0cc7b392 427 ms_type = mst_data;
c906108c 428 }
c906108c
SS
429 else
430 {
0cc7b392 431 ms_type = mst_bss;
c906108c
SS
432 }
433 }
0cc7b392 434 else if (sym->flags & BSF_LOCAL)
c906108c 435 {
0cc7b392
DJ
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
c906108c
SS
439 }
440 else
441 {
0cc7b392 442 ms_type = mst_file_bss;
c906108c
SS
443 }
444 }
445 else
446 {
0cc7b392 447 ms_type = mst_unknown;
c906108c 448 }
0cc7b392
DJ
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 453 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
0963b4bd 457 continue; /* Skip this symbol. */
0cc7b392
DJ
458 }
459 msym = record_minimal_symbol
8dddcb8f 460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 461 ms_type, sym->section, objfile);
6f610d07 462
0cc7b392
DJ
463 if (msym)
464 {
6f610d07 465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 466 ELF-private part. */
6f610d07 467 if (type != ST_SYNTHETIC)
24c274a1
AM
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
dea91a5c 473
a103a963 474 msym->filename = filesymname;
3e29f34a
MR
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 477 }
2eaf8d2a 478
715c6909
TT
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
ce6c454e 489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
490 ms_type, sym->section, objfile);
491 }
492 }
493
2eaf8d2a
DJ
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
2eaf8d2a
DJ
504 struct minimal_symbol *mtramp;
505
ce6c454e
TT
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
2eaf8d2a
DJ
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
d9eaeb59 512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 513 mtramp->created_by_gdb = 1;
2eaf8d2a 514 mtramp->filename = filesymname;
3e29f34a
MR
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
2eaf8d2a
DJ
518 }
519 }
520 }
c906108c 521 }
c906108c
SS
522 }
523}
524
07be84bf
JK
525/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532static void
8dddcb8f
TT
533elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
535{
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *plt, *relplt, *got_plt;
07be84bf
JK
539 int plt_elf_idx;
540 bfd_size_type reloc_count, reloc;
df6d5441 541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
548 plt = bfd_get_section_by_name (obfd, ".plt");
549 if (plt == NULL)
550 return;
551 plt_elf_idx = elf_section_data (plt)->this_idx;
552
553 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
554 if (got_plt == NULL)
4b7d1f7f
WN
555 {
556 /* For platforms where there is no separate .got.plt. */
557 got_plt = bfd_get_section_by_name (obfd, ".got");
558 if (got_plt == NULL)
559 return;
560 }
07be84bf
JK
561
562 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
563 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
564 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
565 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
566 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
567 break;
568 if (relplt == NULL)
569 return;
570
571 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
572 return;
573
26fcd5d7 574 std::string string_buffer;
07be84bf
JK
575
576 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
577 for (reloc = 0; reloc < reloc_count; reloc++)
578 {
22e048c9 579 const char *name;
07be84bf
JK
580 struct minimal_symbol *msym;
581 CORE_ADDR address;
26fcd5d7 582 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 583 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
584
585 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
586 address = relplt->relocation[reloc].address;
587
588 /* Does the pointer reside in the .got.plt section? */
589 if (!(bfd_get_section_vma (obfd, got_plt) <= address
590 && address < bfd_get_section_vma (obfd, got_plt)
591 + bfd_get_section_size (got_plt)))
592 continue;
593
594 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
595 OBJFILE the symbol is undefined and the objfile having NAME defined
596 may not yet have been loaded. */
597
26fcd5d7
TT
598 string_buffer.assign (name);
599 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 600
26fcd5d7
TT
601 msym = record_minimal_symbol (reader, string_buffer.c_str (),
602 string_buffer.size (),
ce6c454e 603 true, address, mst_slot_got_plt, got_plt,
07be84bf
JK
604 objfile);
605 if (msym)
d9eaeb59 606 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 607 }
07be84bf
JK
608}
609
610/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
611
612static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
613
614/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
615
616struct elf_gnu_ifunc_cache
617{
618 /* This is always a function entry address, not a function descriptor. */
619 CORE_ADDR addr;
620
621 char name[1];
622};
623
624/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
625
626static hashval_t
627elf_gnu_ifunc_cache_hash (const void *a_voidp)
628{
9a3c8263
SM
629 const struct elf_gnu_ifunc_cache *a
630 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
631
632 return htab_hash_string (a->name);
633}
634
635/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
636
637static int
638elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
639{
9a3c8263
SM
640 const struct elf_gnu_ifunc_cache *a
641 = (const struct elf_gnu_ifunc_cache *) a_voidp;
642 const struct elf_gnu_ifunc_cache *b
643 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
644
645 return strcmp (a->name, b->name) == 0;
646}
647
648/* Record the target function address of a STT_GNU_IFUNC function NAME is the
649 function entry address ADDR. Return 1 if NAME and ADDR are considered as
650 valid and therefore they were successfully recorded, return 0 otherwise.
651
652 Function does not expect a duplicate entry. Use
653 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
654 exists. */
655
656static int
657elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
658{
7cbd4a93 659 struct bound_minimal_symbol msym;
07be84bf
JK
660 asection *sect;
661 struct objfile *objfile;
662 htab_t htab;
663 struct elf_gnu_ifunc_cache entry_local, *entry_p;
664 void **slot;
665
666 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 667 if (msym.minsym == NULL)
07be84bf 668 return 0;
77e371c0 669 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
670 return 0;
671 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 672 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 673 objfile = msym.objfile;
07be84bf
JK
674
675 /* If .plt jumps back to .plt the symbol is still deferred for later
676 resolution and it has no use for GDB. Besides ".text" this symbol can
677 reside also in ".opd" for ppc64 function descriptor. */
678 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
679 return 0;
680
9a3c8263 681 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
682 if (htab == NULL)
683 {
684 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
685 elf_gnu_ifunc_cache_eq,
686 NULL, &objfile->objfile_obstack,
687 hashtab_obstack_allocate,
688 dummy_obstack_deallocate);
689 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
690 }
691
692 entry_local.addr = addr;
693 obstack_grow (&objfile->objfile_obstack, &entry_local,
694 offsetof (struct elf_gnu_ifunc_cache, name));
695 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
696 entry_p
697 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
698
699 slot = htab_find_slot (htab, entry_p, INSERT);
700 if (*slot != NULL)
701 {
9a3c8263
SM
702 struct elf_gnu_ifunc_cache *entry_found_p
703 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
705
706 if (entry_found_p->addr != addr)
707 {
708 /* This case indicates buggy inferior program, the resolved address
709 should never change. */
710
711 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
712 "function_address from %s to %s"),
713 name, paddress (gdbarch, entry_found_p->addr),
714 paddress (gdbarch, addr));
715 }
716
717 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
718 }
719 *slot = entry_p;
720
721 return 1;
722}
723
724/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
725 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
726 is not NULL) and the function returns 1. It returns 0 otherwise.
727
728 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
729 function. */
730
731static int
732elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
733{
734 struct objfile *objfile;
735
736 ALL_PSPACE_OBJFILES (current_program_space, objfile)
737 {
738 htab_t htab;
739 struct elf_gnu_ifunc_cache *entry_p;
740 void **slot;
741
9a3c8263 742 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
743 if (htab == NULL)
744 continue;
745
224c3ddb
SM
746 entry_p = ((struct elf_gnu_ifunc_cache *)
747 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
748 strcpy (entry_p->name, name);
749
750 slot = htab_find_slot (htab, entry_p, NO_INSERT);
751 if (slot == NULL)
752 continue;
9a3c8263 753 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
754 gdb_assert (entry_p != NULL);
755
756 if (addr_p)
757 *addr_p = entry_p->addr;
758 return 1;
759 }
760
761 return 0;
762}
763
764/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
765 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
766 is not NULL) and the function returns 1. It returns 0 otherwise.
767
768 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
769 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
770 prevent cache entries duplicates. */
771
772static int
773elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
774{
775 char *name_got_plt;
776 struct objfile *objfile;
777 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
778
224c3ddb 779 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
780 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
781
782 ALL_PSPACE_OBJFILES (current_program_space, objfile)
783 {
784 bfd *obfd = objfile->obfd;
df6d5441 785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
786 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
787 size_t ptr_size = TYPE_LENGTH (ptr_type);
788 CORE_ADDR pointer_address, addr;
789 asection *plt;
224c3ddb 790 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 791 struct bound_minimal_symbol msym;
07be84bf
JK
792
793 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 794 if (msym.minsym == NULL)
07be84bf 795 continue;
3b7344d5 796 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 797 continue;
77e371c0 798 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
799
800 plt = bfd_get_section_by_name (obfd, ".plt");
801 if (plt == NULL)
802 continue;
803
3b7344d5 804 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
805 continue;
806 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
807 continue;
808 addr = extract_typed_address (buf, ptr_type);
809 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
810 &current_target);
4b7d1f7f 811 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
812
813 if (addr_p)
814 *addr_p = addr;
815 if (elf_gnu_ifunc_record_cache (name, addr))
816 return 1;
817 }
818
819 return 0;
820}
821
822/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
823 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
824 is not NULL) and the function returns 1. It returns 0 otherwise.
825
826 Both the elf_objfile_gnu_ifunc_cache_data hash table and
827 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
828
829static int
830elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
831{
832 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
833 return 1;
dea91a5c 834
07be84bf
JK
835 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
836 return 1;
837
838 return 0;
839}
840
841/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
842 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
843 is the entry point of the resolved STT_GNU_IFUNC target function to call.
844 */
845
846static CORE_ADDR
847elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
848{
2c02bd72 849 const char *name_at_pc;
07be84bf
JK
850 CORE_ADDR start_at_pc, address;
851 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
852 struct value *function, *address_val;
e1b2624a
AA
853 CORE_ADDR hwcap = 0;
854 struct value *hwcap_val;
07be84bf
JK
855
856 /* Try first any non-intrusive methods without an inferior call. */
857
858 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
859 && start_at_pc == pc)
860 {
861 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
862 return address;
863 }
864 else
865 name_at_pc = NULL;
866
867 function = allocate_value (func_func_type);
1a088441 868 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
869 set_value_address (function, pc);
870
e1b2624a
AA
871 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
872 parameter. FUNCTION is the function entry address. ADDRESS may be a
873 function descriptor. */
07be84bf 874
e1b2624a
AA
875 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
876 hwcap_val = value_from_longest (builtin_type (gdbarch)
877 ->builtin_unsigned_long, hwcap);
7022349d 878 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf
JK
879 address = value_as_address (address_val);
880 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
881 &current_target);
4b7d1f7f 882 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
883
884 if (name_at_pc)
885 elf_gnu_ifunc_record_cache (name_at_pc, address);
886
887 return address;
888}
889
0e30163f
JK
890/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
891
892static void
893elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
894{
895 struct breakpoint *b_return;
896 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
897 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
898 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 899 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
900
901 gdb_assert (b->type == bp_gnu_ifunc_resolver);
902
903 for (b_return = b->related_breakpoint; b_return != b;
904 b_return = b_return->related_breakpoint)
905 {
906 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
907 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
908 gdb_assert (frame_id_p (b_return->frame_id));
909
910 if (b_return->thread == thread_id
911 && b_return->loc->requested_address == prev_pc
912 && frame_id_eq (b_return->frame_id, prev_frame_id))
913 break;
914 }
915
916 if (b_return == b)
917 {
0e30163f
JK
918 /* No need to call find_pc_line for symbols resolving as this is only
919 a helper breakpointer never shown to the user. */
920
51abb421 921 symtab_and_line sal;
0e30163f
JK
922 sal.pspace = current_inferior ()->pspace;
923 sal.pc = prev_pc;
924 sal.section = find_pc_overlay (sal.pc);
925 sal.explicit_pc = 1;
926 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
927 prev_frame_id,
928 bp_gnu_ifunc_resolver_return);
929
c70a6932
JK
930 /* set_momentary_breakpoint invalidates PREV_FRAME. */
931 prev_frame = NULL;
932
0e30163f
JK
933 /* Add new b_return to the ring list b->related_breakpoint. */
934 gdb_assert (b_return->related_breakpoint == b_return);
935 b_return->related_breakpoint = b->related_breakpoint;
936 b->related_breakpoint = b_return;
937 }
938}
939
940/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
941
942static void
943elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
944{
945 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
946 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
947 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
948 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 949 struct value *func_func;
0e30163f
JK
950 struct value *value;
951 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
952
953 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
954
0e30163f
JK
955 while (b->related_breakpoint != b)
956 {
957 struct breakpoint *b_next = b->related_breakpoint;
958
959 switch (b->type)
960 {
961 case bp_gnu_ifunc_resolver:
962 break;
963 case bp_gnu_ifunc_resolver_return:
964 delete_breakpoint (b);
965 break;
966 default:
967 internal_error (__FILE__, __LINE__,
968 _("handle_inferior_event: Invalid "
969 "gnu-indirect-function breakpoint type %d"),
970 (int) b->type);
971 }
972 b = b_next;
973 }
974 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
975 gdb_assert (b->loc->next == NULL);
976
977 func_func = allocate_value (func_func_type);
1a088441 978 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
979 set_value_address (func_func, b->loc->related_address);
980
981 value = allocate_value (value_type);
982 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
983 value_contents_raw (value), NULL);
984 resolved_address = value_as_address (value);
985 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
986 resolved_address,
987 &current_target);
4b7d1f7f 988 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 989
f8eba3c6 990 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 991 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 992 resolved_pc);
0e30163f 993
0e30163f 994 b->type = bp_breakpoint;
6c5b2ebe
PA
995 update_breakpoint_locations (b, current_program_space,
996 find_pc_line (resolved_pc, 0), {});
0e30163f
JK
997}
998
2750ef27
TT
999/* A helper function for elf_symfile_read that reads the minimal
1000 symbols. */
c906108c
SS
1001
1002static void
5f6cac40
TT
1003elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1004 const struct elfinfo *ei)
c906108c 1005{
63524580 1006 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1007 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1008 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1009 asymbol *synthsyms;
d2f4b8fe 1010 struct dbx_symfile_info *dbx;
c906108c 1011
45cfd468
DE
1012 if (symtab_create_debug)
1013 {
1014 fprintf_unfiltered (gdb_stdlog,
1015 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1016 objfile_name (objfile));
45cfd468
DE
1017 }
1018
5f6cac40
TT
1019 /* If we already have minsyms, then we can skip some work here.
1020 However, if there were stabs or mdebug sections, we go ahead and
1021 redo all the work anyway, because the psym readers for those
1022 kinds of debuginfo need extra information found here. This can
1023 go away once all types of symbols are in the per-BFD object. */
1024 if (objfile->per_bfd->minsyms_read
1025 && ei->stabsect == NULL
1026 && ei->mdebugsect == NULL)
1027 {
1028 if (symtab_create_debug)
1029 fprintf_unfiltered (gdb_stdlog,
1030 "... minimal symbols previously read\n");
1031 return;
1032 }
1033
d25e8719 1034 minimal_symbol_reader reader (objfile);
c906108c 1035
0963b4bd 1036 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1037 dbx = XCNEW (struct dbx_symfile_info);
1038 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1039
18a94d75 1040 /* Process the normal ELF symbol table first. */
c906108c 1041
62553543
EZ
1042 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1043 if (storage_needed < 0)
3e43a32a
MS
1044 error (_("Can't read symbols from %s: %s"),
1045 bfd_get_filename (objfile->obfd),
62553543
EZ
1046 bfd_errmsg (bfd_get_error ()));
1047
1048 if (storage_needed > 0)
1049 {
80c57053
JK
1050 /* Memory gets permanently referenced from ABFD after
1051 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1052
224c3ddb 1053 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1054 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1055
1056 if (symcount < 0)
3e43a32a
MS
1057 error (_("Can't read symbols from %s: %s"),
1058 bfd_get_filename (objfile->obfd),
62553543
EZ
1059 bfd_errmsg (bfd_get_error ()));
1060
ce6c454e
TT
1061 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1062 false);
62553543 1063 }
c906108c
SS
1064
1065 /* Add the dynamic symbols. */
1066
62553543
EZ
1067 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1068
1069 if (storage_needed > 0)
1070 {
3f1eff0a
JK
1071 /* Memory gets permanently referenced from ABFD after
1072 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1073 It happens only in the case when elf_slurp_reloc_table sees
1074 asection->relocation NULL. Determining which section is asection is
1075 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1076 implementation detail, though. */
1077
224c3ddb 1078 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1079 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1080 dyn_symbol_table);
1081
1082 if (dynsymcount < 0)
3e43a32a
MS
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
62553543
EZ
1085 bfd_errmsg (bfd_get_error ()));
1086
8dddcb8f 1087 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1088 dyn_symbol_table, false);
07be84bf 1089
8dddcb8f 1090 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1091 }
1092
63524580
JK
1093 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1094 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1095
1096 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1097 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1098 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1099 read the code address from .opd while it reads the .symtab section from
1100 a separate debug info file as the .opd section is SHT_NOBITS there.
1101
1102 With SYNTH_ABFD the .opd section will be read from the original
1103 backlinked binary where it is valid. */
1104
1105 if (objfile->separate_debug_objfile_backlink)
1106 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1107 else
1108 synth_abfd = abfd;
1109
62553543
EZ
1110 /* Add synthetic symbols - for instance, names for any PLT entries. */
1111
63524580 1112 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1113 dynsymcount, dyn_symbol_table,
1114 &synthsyms);
1115 if (synthcount > 0)
1116 {
62553543
EZ
1117 long i;
1118
b22e99fd 1119 std::unique_ptr<asymbol *[]>
d1e4a624 1120 synth_symbol_table (new asymbol *[synthcount]);
62553543 1121 for (i = 0; i < synthcount; i++)
9f20e3da 1122 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1123 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1124 synth_symbol_table.get (), true);
ba713918
AL
1125
1126 xfree (synthsyms);
1127 synthsyms = NULL;
62553543 1128 }
c906108c 1129
7134143f
DJ
1130 /* Install any minimal symbols that have been collected as the current
1131 minimal symbols for this objfile. The debug readers below this point
1132 should not generate new minimal symbols; if they do it's their
1133 responsibility to install them. "mdebug" appears to be the only one
1134 which will do this. */
1135
d25e8719 1136 reader.install ();
7134143f 1137
4f00dda3
DE
1138 if (symtab_create_debug)
1139 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1140}
1141
1142/* Scan and build partial symbols for a symbol file.
1143 We have been initialized by a call to elf_symfile_init, which
1144 currently does nothing.
1145
2750ef27
TT
1146 This function only does the minimum work necessary for letting the
1147 user "name" things symbolically; it does not read the entire symtab.
1148 Instead, it reads the external and static symbols and puts them in partial
1149 symbol tables. When more extensive information is requested of a
1150 file, the corresponding partial symbol table is mutated into a full
1151 fledged symbol table by going back and reading the symbols
1152 for real.
1153
1154 We look for sections with specific names, to tell us what debug
1155 format to look for: FIXME!!!
1156
1157 elfstab_build_psymtabs() handles STABS symbols;
1158 mdebug_build_psymtabs() handles ECOFF debugging information.
1159
1160 Note that ELF files have a "minimal" symbol table, which looks a lot
1161 like a COFF symbol table, but has only the minimal information necessary
1162 for linking. We process this also, and use the information to
1163 build gdb's minimal symbol table. This gives us some minimal debugging
1164 capability even for files compiled without -g. */
1165
1166static void
b15cc25c 1167elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1168{
1169 bfd *abfd = objfile->obfd;
1170 struct elfinfo ei;
1171
2750ef27 1172 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1173 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1174
5f6cac40
TT
1175 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1176
c906108c
SS
1177 /* ELF debugging information is inserted into the psymtab in the
1178 order of least informative first - most informative last. Since
1179 the psymtab table is searched `most recent insertion first' this
1180 increases the probability that more detailed debug information
1181 for a section is found.
1182
1183 For instance, an object file might contain both .mdebug (XCOFF)
1184 and .debug_info (DWARF2) sections then .mdebug is inserted first
1185 (searched last) and DWARF2 is inserted last (searched first). If
1186 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1187 an included file XCOFF info is useless. */
c906108c
SS
1188
1189 if (ei.mdebugsect)
1190 {
1191 const struct ecoff_debug_swap *swap;
1192
1193 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1194 information. */
c906108c
SS
1195 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1196 if (swap)
d4f3574e 1197 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1198 }
1199 if (ei.stabsect)
1200 {
1201 asection *str_sect;
1202
1203 /* Stab sections have an associated string table that looks like
c5aa993b 1204 a separate section. */
c906108c
SS
1205 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1206
1207 /* FIXME should probably warn about a stab section without a stabstr. */
1208 if (str_sect)
1209 elfstab_build_psymtabs (objfile,
086df311 1210 ei.stabsect,
c906108c
SS
1211 str_sect->filepos,
1212 bfd_section_size (abfd, str_sect));
1213 }
9291a0cd 1214
251d32d9 1215 if (dwarf2_has_info (objfile, NULL))
b11896a5 1216 {
3e03848b
JK
1217 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1218 information present in OBJFILE. If there is such debug info present
1219 never use .gdb_index. */
1220
1221 if (!objfile_has_partial_symbols (objfile)
1222 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1223 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1224 else
1225 {
1226 /* It is ok to do this even if the stabs reader made some
1227 partial symbols, because OBJF_PSYMTABS_READ has not been
1228 set, and so our lazy reader function will still be called
1229 when needed. */
8fb8eb5c 1230 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1231 }
1232 }
3e43a32a
MS
1233 /* If the file has its own symbol tables it has no separate debug
1234 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1235 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1236 `.note.gnu.build-id'.
1237
1238 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1239 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1240 an objfile via find_separate_debug_file_in_section there was no separate
1241 debug info available. Therefore do not attempt to search for another one,
1242 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1243 be NULL and we would possibly violate it. */
1244
1245 else if (!objfile_has_partial_symbols (objfile)
1246 && objfile->separate_debug_objfile == NULL
1247 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1248 {
192b62ce
TT
1249 gdb::unique_xmalloc_ptr<char> debugfile
1250 (find_separate_debug_file_by_buildid (objfile));
9cce227f
TG
1251
1252 if (debugfile == NULL)
192b62ce 1253 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
9cce227f 1254
192b62ce 1255 if (debugfile != NULL)
9cce227f 1256 {
192b62ce 1257 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
d7f9d729 1258
192b62ce
TT
1259 symbol_file_add_separate (abfd.get (), debugfile.get (),
1260 symfile_flags, objfile);
9cce227f
TG
1261 }
1262 }
c906108c
SS
1263}
1264
b11896a5
TT
1265/* Callback to lazily read psymtabs. */
1266
1267static void
1268read_psyms (struct objfile *objfile)
1269{
251d32d9 1270 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1271 dwarf2_build_psymtabs (objfile);
1272}
1273
c906108c
SS
1274/* Initialize anything that needs initializing when a completely new symbol
1275 file is specified (not just adding some symbols from another file, e.g. a
1276 shared library).
1277
3e43a32a
MS
1278 We reinitialize buildsym, since we may be reading stabs from an ELF
1279 file. */
c906108c
SS
1280
1281static void
fba45db2 1282elf_new_init (struct objfile *ignore)
c906108c
SS
1283{
1284 stabsread_new_init ();
1285 buildsym_new_init ();
1286}
1287
1288/* Perform any local cleanups required when we are done with a particular
1289 objfile. I.E, we are in the process of discarding all symbol information
1290 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1291 objfile struct from the global list of known objfiles. */
c906108c
SS
1292
1293static void
fba45db2 1294elf_symfile_finish (struct objfile *objfile)
c906108c 1295{
fe3e1990 1296 dwarf2_free_objfile (objfile);
c906108c
SS
1297}
1298
db7a9bcd 1299/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1300
1301static void
fba45db2 1302elf_symfile_init (struct objfile *objfile)
c906108c
SS
1303{
1304 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1305 find this causes a significant slowdown in gdb then we could
1306 set it in the debug symbol readers only when necessary. */
1307 objfile->flags |= OBJF_REORDERED;
1308}
1309
55aa24fb
SDJ
1310/* Implementation of `sym_get_probes', as documented in symfile.h. */
1311
aaa63a31 1312static const std::vector<probe *> &
55aa24fb
SDJ
1313elf_get_probes (struct objfile *objfile)
1314{
aaa63a31 1315 std::vector<probe *> *probes_per_bfd;
55aa24fb
SDJ
1316
1317 /* Have we parsed this objfile's probes already? */
aaa63a31 1318 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1319
aaa63a31 1320 if (probes_per_bfd == NULL)
55aa24fb
SDJ
1321 {
1322 int ix;
1323 const struct probe_ops *probe_ops;
aaa63a31 1324 probes_per_bfd = new std::vector<probe *>;
55aa24fb
SDJ
1325
1326 /* Here we try to gather information about all types of probes from the
1327 objfile. */
1328 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1329 ix++)
aaa63a31 1330 probe_ops->get_probes (probes_per_bfd, objfile);
55aa24fb 1331
5d9cf8a4 1332 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1333 }
1334
aaa63a31 1335 return *probes_per_bfd;
55aa24fb
SDJ
1336}
1337
55aa24fb
SDJ
1338/* Helper function used to free the space allocated for storing SystemTap
1339 probe information. */
1340
1341static void
5d9cf8a4 1342probe_key_free (bfd *abfd, void *d)
55aa24fb 1343{
aaa63a31 1344 std::vector<probe *> *probes = (std::vector<probe *> *) d;
55aa24fb 1345
aaa63a31 1346 for (struct probe *probe : *probes)
55aa24fb
SDJ
1347 probe->pops->destroy (probe);
1348
aaa63a31 1349 delete probes;
55aa24fb
SDJ
1350}
1351
c906108c 1352\f
55aa24fb
SDJ
1353
1354/* Implementation `sym_probe_fns', as documented in symfile.h. */
1355
1356static const struct sym_probe_fns elf_probe_fns =
1357{
25f9533e 1358 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1359};
1360
c906108c
SS
1361/* Register that we are able to handle ELF object file formats. */
1362
00b5771c 1363static const struct sym_fns elf_sym_fns =
c906108c 1364{
3e43a32a
MS
1365 elf_new_init, /* init anything gbl to entire symtab */
1366 elf_symfile_init, /* read initial info, setup for sym_read() */
1367 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1368 NULL, /* sym_read_psymbols */
1369 elf_symfile_finish, /* finished with file, cleanup */
1370 default_symfile_offsets, /* Translate ext. to int. relocation */
1371 elf_symfile_segments, /* Get segment information from a file. */
1372 NULL,
1373 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1374 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1375 &psym_functions
1376};
1377
1378/* The same as elf_sym_fns, but not registered and lazily reads
1379 psymbols. */
1380
e36122e9 1381const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1382{
b11896a5
TT
1383 elf_new_init, /* init anything gbl to entire symtab */
1384 elf_symfile_init, /* read initial info, setup for sym_read() */
1385 elf_symfile_read, /* read a symbol file into symtab */
1386 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1387 elf_symfile_finish, /* finished with file, cleanup */
1388 default_symfile_offsets, /* Translate ext. to int. relocation */
1389 elf_symfile_segments, /* Get segment information from a file. */
1390 NULL,
1391 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1392 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1393 &psym_functions
c906108c
SS
1394};
1395
9291a0cd
TT
1396/* The same as elf_sym_fns, but not registered and uses the
1397 DWARF-specific GNU index rather than psymtab. */
e36122e9 1398const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1399{
3e43a32a
MS
1400 elf_new_init, /* init anything gbl to entire symab */
1401 elf_symfile_init, /* read initial info, setup for sym_red() */
1402 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1403 NULL, /* sym_read_psymbols */
3e43a32a
MS
1404 elf_symfile_finish, /* finished with file, cleanup */
1405 default_symfile_offsets, /* Translate ext. to int. relocatin */
1406 elf_symfile_segments, /* Get segment information from a file. */
1407 NULL,
1408 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1409 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1410 &dwarf2_gdb_index_functions
9291a0cd
TT
1411};
1412
07be84bf
JK
1413/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1414
1415static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1416{
1417 elf_gnu_ifunc_resolve_addr,
1418 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1419 elf_gnu_ifunc_resolver_stop,
1420 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1421};
1422
c906108c 1423void
fba45db2 1424_initialize_elfread (void)
c906108c 1425{
5d9cf8a4 1426 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1427 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1428
1429 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1430 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1431}
This page took 1.650748 seconds and 4 git commands to generate.