Introduce objfile::intern
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
b811d2c2 3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
c906108c 54
3c0aa29a
PA
55/* Forward declarations. */
56extern const struct sym_fns elf_sym_fns_gdb_index;
57extern const struct sym_fns elf_sym_fns_debug_names;
58extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
c906108c 60/* The struct elfinfo is available only during ELF symbol table and
6426a772 61 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
62 It's local to elf_symfile_read. */
63
c5aa993b
JM
64struct elfinfo
65 {
c5aa993b 66 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 67 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 68 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 69 };
c906108c 70
814cf43a
TT
71/* Type for per-BFD data. */
72
73typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
5d9cf8a4 75/* Per-BFD data for probe info. */
55aa24fb 76
814cf43a 77static const struct bfd_key<elfread_data> probe_key;
55aa24fb 78
07be84bf
JK
79/* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
31d99776
DJ
86/* Locate the segments in ABFD. */
87
88static struct symfile_segment_data *
89elf_symfile_segments (bfd *abfd)
90{
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95 struct symfile_segment_data *data;
96
97 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
98 if (phdrs_size == -1)
99 return NULL;
100
224c3ddb 101 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
102 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
103 if (num_phdrs == -1)
104 return NULL;
105
106 num_segments = 0;
8d749320 107 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
108 for (i = 0; i < num_phdrs; i++)
109 if (phdrs[i].p_type == PT_LOAD)
110 segments[num_segments++] = &phdrs[i];
111
112 if (num_segments == 0)
113 return NULL;
114
41bf6aca 115 data = XCNEW (struct symfile_segment_data);
31d99776 116 data->num_segments = num_segments;
fc270c35
TT
117 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
118 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
119
120 for (i = 0; i < num_segments; i++)
121 {
122 data->segment_bases[i] = segments[i]->p_vaddr;
123 data->segment_sizes[i] = segments[i]->p_memsz;
124 }
125
126 num_sections = bfd_count_sections (abfd);
fc270c35 127 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
128
129 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
130 {
131 int j;
31d99776 132
fd361982 133 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
134 continue;
135
62b74cb8 136 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
137
138 for (j = 0; j < num_segments; j++)
62b74cb8 139 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
140 {
141 data->segment_info[i] = j + 1;
142 break;
143 }
144
ad09a548
DJ
145 /* We should have found a segment for every non-empty section.
146 If we haven't, we will not relocate this section by any
147 offsets we apply to the segments. As an exception, do not
148 warn about SHT_NOBITS sections; in normal ELF execution
149 environments, SHT_NOBITS means zero-initialized and belongs
150 in a segment, but in no-OS environments some tools (e.g. ARM
151 RealView) use SHT_NOBITS for uninitialized data. Since it is
152 uninitialized, it doesn't need a program header. Such
153 binaries are not relocatable. */
fd361982
AM
154 if (bfd_section_size (sect) > 0 && j == num_segments
155 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
28ee876a 156 warning (_("Loadable section \"%s\" outside of ELF segments"),
fd361982 157 bfd_section_name (sect));
31d99776
DJ
158 }
159
160 return data;
161}
162
c906108c
SS
163/* We are called once per section from elf_symfile_read. We
164 need to examine each section we are passed, check to see
165 if it is something we are interested in processing, and
166 if so, stash away some access information for the section.
167
168 For now we recognize the dwarf debug information sections and
169 line number sections from matching their section names. The
170 ELF definition is no real help here since it has no direct
171 knowledge of DWARF (by design, so any debugging format can be
172 used).
173
174 We also recognize the ".stab" sections used by the Sun compilers
175 released with Solaris 2.
176
177 FIXME: The section names should not be hardwired strings (what
178 should they be? I don't think most object file formats have enough
0963b4bd 179 section flags to specify what kind of debug section it is.
c906108c
SS
180 -kingdon). */
181
182static void
12b9c64f 183elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 184{
52f0bd74 185 struct elfinfo *ei;
c906108c
SS
186
187 ei = (struct elfinfo *) eip;
7ce59000 188 if (strcmp (sectp->name, ".stab") == 0)
c906108c 189 {
c5aa993b 190 ei->stabsect = sectp;
c906108c 191 }
6314a349 192 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 193 {
c5aa993b 194 ei->mdebugsect = sectp;
c906108c 195 }
30d1f018
WP
196 else if (strcmp (sectp->name, ".ctf") == 0)
197 {
198 ei->ctfsect = sectp;
199 }
c906108c
SS
200}
201
c906108c 202static struct minimal_symbol *
8dddcb8f 203record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 204 gdb::string_view name, bool copy_name,
04a679b8 205 CORE_ADDR address,
f594e5e9
MC
206 enum minimal_symbol_type ms_type,
207 asection *bfd_section, struct objfile *objfile)
c906108c 208{
5e2b427d
UW
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210
0875794a
JK
211 if (ms_type == mst_text || ms_type == mst_file_text
212 || ms_type == mst_text_gnu_ifunc)
85ddcc70 213 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 214
44e4c775
AB
215 /* We only setup section information for allocatable sections. Usually
216 we'd only expect to find msymbols for allocatable sections, but if the
217 ELF is malformed then this might not be the case. In that case don't
218 create an msymbol that references an uninitialised section object. */
219 int section_index = 0;
220 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
221 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
222
4b610737 223 struct minimal_symbol *result
44e4c775 224 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
225 if ((objfile->flags & OBJF_MAINLINE) == 0
226 && (ms_type == mst_data || ms_type == mst_bss))
227 result->maybe_copied = 1;
228
229 return result;
c906108c
SS
230}
231
7f86f058 232/* Read the symbol table of an ELF file.
c906108c 233
62553543 234 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
235 symbol table contains regular, dynamic, or synthetic symbols, add all
236 the global function and data symbols to the minimal symbol table.
c906108c 237
c5aa993b
JM
238 In stabs-in-ELF, as implemented by Sun, there are some local symbols
239 defined in the ELF symbol table, which can be used to locate
240 the beginnings of sections from each ".o" file that was linked to
241 form the executable objfile. We gather any such info and record it
7f86f058 242 in data structures hung off the objfile's private data. */
c906108c 243
6f610d07
UW
244#define ST_REGULAR 0
245#define ST_DYNAMIC 1
246#define ST_SYNTHETIC 2
247
c906108c 248static void
8dddcb8f
TT
249elf_symtab_read (minimal_symbol_reader &reader,
250 struct objfile *objfile, int type,
04a679b8 251 long number_of_symbols, asymbol **symbol_table,
ce6c454e 252 bool copy_names)
c906108c 253{
5e2b427d 254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 255 asymbol *sym;
c906108c 256 long i;
c906108c
SS
257 CORE_ADDR symaddr;
258 enum minimal_symbol_type ms_type;
18a94d75
DE
259 /* Name of the last file symbol. This is either a constant string or is
260 saved on the objfile's filename cache. */
0af1e9a5 261 const char *filesymname = "";
d4f3574e 262 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
263 int elf_make_msymbol_special_p
264 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 265
0cc7b392 266 for (i = 0; i < number_of_symbols; i++)
c906108c 267 {
0cc7b392
DJ
268 sym = symbol_table[i];
269 if (sym->name == NULL || *sym->name == '\0')
c906108c 270 {
0cc7b392 271 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 272 that are null strings (may happen). */
0cc7b392
DJ
273 continue;
274 }
c906108c 275
74763737
DJ
276 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
277 symbols which do not correspond to objects in the symbol table,
278 but have some other target-specific meaning. */
279 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
280 {
281 if (gdbarch_record_special_symbol_p (gdbarch))
282 gdbarch_record_special_symbol (gdbarch, objfile, sym);
283 continue;
284 }
74763737 285
6f610d07 286 if (type == ST_DYNAMIC
45dfa85a 287 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
288 && (sym->flags & BSF_FUNCTION))
289 {
290 struct minimal_symbol *msym;
02c75f72 291 bfd *abfd = objfile->obfd;
dea91a5c 292 asection *sect;
0cc7b392
DJ
293
294 /* Symbol is a reference to a function defined in
295 a shared library.
296 If its value is non zero then it is usually the address
297 of the corresponding entry in the procedure linkage table,
298 plus the desired section offset.
299 If its value is zero then the dynamic linker has to resolve
0963b4bd 300 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
301 for this symbol in the executable file, so we skip it. */
302 symaddr = sym->value;
303 if (symaddr == 0)
304 continue;
02c75f72
UW
305
306 /* sym->section is the undefined section. However, we want to
307 record the section where the PLT stub resides with the
308 minimal symbol. Search the section table for the one that
309 covers the stub's address. */
310 for (sect = abfd->sections; sect != NULL; sect = sect->next)
311 {
fd361982 312 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
313 continue;
314
fd361982
AM
315 if (symaddr >= bfd_section_vma (sect)
316 && symaddr < bfd_section_vma (sect)
317 + bfd_section_size (sect))
02c75f72
UW
318 break;
319 }
320 if (!sect)
321 continue;
322
828cfa8d
JB
323 /* On ia64-hpux, we have discovered that the system linker
324 adds undefined symbols with nonzero addresses that cannot
325 be right (their address points inside the code of another
326 function in the .text section). This creates problems
327 when trying to determine which symbol corresponds to
328 a given address.
329
330 We try to detect those buggy symbols by checking which
331 section we think they correspond to. Normally, PLT symbols
332 are stored inside their own section, and the typical name
333 for that section is ".plt". So, if there is a ".plt"
334 section, and yet the section name of our symbol does not
335 start with ".plt", we ignore that symbol. */
61012eef 336 if (!startswith (sect->name, ".plt")
828cfa8d
JB
337 && bfd_get_section_by_name (abfd, ".plt") != NULL)
338 continue;
339
0cc7b392 340 msym = record_minimal_symbol
31edb802 341 (reader, sym->name, copy_names,
04a679b8 342 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 343 if (msym != NULL)
9b807e7b
MR
344 {
345 msym->filename = filesymname;
3e29f34a
MR
346 if (elf_make_msymbol_special_p)
347 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 348 }
0cc7b392
DJ
349 continue;
350 }
c906108c 351
0cc7b392
DJ
352 /* If it is a nonstripped executable, do not enter dynamic
353 symbols, as the dynamic symbol table is usually a subset
354 of the main symbol table. */
6f610d07 355 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
356 continue;
357 if (sym->flags & BSF_FILE)
be1e3d3e 358 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
359 else if (sym->flags & BSF_SECTION_SYM)
360 continue;
bb869963
SDJ
361 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
362 | BSF_GNU_UNIQUE))
0cc7b392
DJ
363 {
364 struct minimal_symbol *msym;
365
366 /* Select global/local/weak symbols. Note that bfd puts abs
367 symbols in their own section, so all symbols we are
0963b4bd
MS
368 interested in will have a section. */
369 /* Bfd symbols are section relative. */
0cc7b392 370 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
371 /* For non-absolute symbols, use the type of the section
372 they are relative to, to intuit text/data. Bfd provides
0963b4bd 373 no way of figuring this out for absolute symbols. */
45dfa85a 374 if (sym->section == bfd_abs_section_ptr)
c906108c 375 {
0cc7b392
DJ
376 /* This is a hack to get the minimal symbol type
377 right for Irix 5, which has absolute addresses
6f610d07
UW
378 with special section indices for dynamic symbols.
379
380 NOTE: uweigand-20071112: Synthetic symbols do not
381 have an ELF-private part, so do not touch those. */
dea91a5c 382 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
383 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
384
385 switch (shndx)
c906108c 386 {
0cc7b392
DJ
387 case SHN_MIPS_TEXT:
388 ms_type = mst_text;
389 break;
390 case SHN_MIPS_DATA:
391 ms_type = mst_data;
392 break;
393 case SHN_MIPS_ACOMMON:
394 ms_type = mst_bss;
395 break;
396 default:
397 ms_type = mst_abs;
398 }
399
400 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 401 symbols, relocate all others by section offset. */
0cc7b392
DJ
402 if (ms_type != mst_abs)
403 {
404 if (sym->name[0] == '.')
405 continue;
c906108c 406 }
0cc7b392
DJ
407 }
408 else if (sym->section->flags & SEC_CODE)
409 {
bb869963 410 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 411 {
0875794a
JK
412 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
413 ms_type = mst_text_gnu_ifunc;
414 else
415 ms_type = mst_text;
0cc7b392 416 }
90359a16
JK
417 /* The BSF_SYNTHETIC check is there to omit ppc64 function
418 descriptors mistaken for static functions starting with 'L'.
419 */
420 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
421 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
422 || ((sym->flags & BSF_LOCAL)
423 && sym->name[0] == '$'
424 && sym->name[1] == 'L'))
425 /* Looks like a compiler-generated label. Skip
426 it. The assembler should be skipping these (to
427 keep executables small), but apparently with
428 gcc on the (deleted) delta m88k SVR4, it loses.
429 So to have us check too should be harmless (but
430 I encourage people to fix this in the assembler
431 instead of adding checks here). */
432 continue;
433 else
434 {
435 ms_type = mst_file_text;
c906108c 436 }
0cc7b392
DJ
437 }
438 else if (sym->section->flags & SEC_ALLOC)
439 {
bb869963 440 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 441 {
f50776aa
PA
442 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
443 {
444 ms_type = mst_data_gnu_ifunc;
445 }
446 else if (sym->section->flags & SEC_LOAD)
c906108c 447 {
0cc7b392 448 ms_type = mst_data;
c906108c 449 }
c906108c
SS
450 else
451 {
0cc7b392 452 ms_type = mst_bss;
c906108c
SS
453 }
454 }
0cc7b392 455 else if (sym->flags & BSF_LOCAL)
c906108c 456 {
0cc7b392
DJ
457 if (sym->section->flags & SEC_LOAD)
458 {
459 ms_type = mst_file_data;
c906108c
SS
460 }
461 else
462 {
0cc7b392 463 ms_type = mst_file_bss;
c906108c
SS
464 }
465 }
466 else
467 {
0cc7b392 468 ms_type = mst_unknown;
c906108c 469 }
0cc7b392
DJ
470 }
471 else
472 {
473 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 474 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
475 hob with actions like finding what function the PC
476 is in. Ignore them if they aren't text, data, or bss. */
477 /* ms_type = mst_unknown; */
0963b4bd 478 continue; /* Skip this symbol. */
0cc7b392
DJ
479 }
480 msym = record_minimal_symbol
31edb802 481 (reader, sym->name, copy_names, symaddr,
0cc7b392 482 ms_type, sym->section, objfile);
6f610d07 483
0cc7b392
DJ
484 if (msym)
485 {
6f610d07 486 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 487 ELF-private part. */
6f610d07 488 if (type != ST_SYNTHETIC)
24c274a1
AM
489 {
490 /* Pass symbol size field in via BFD. FIXME!!! */
491 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
492 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
493 }
dea91a5c 494
a103a963 495 msym->filename = filesymname;
3e29f34a
MR
496 if (elf_make_msymbol_special_p)
497 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 498 }
2eaf8d2a 499
715c6909
TT
500 /* If we see a default versioned symbol, install it under
501 its version-less name. */
502 if (msym != NULL)
503 {
504 const char *atsign = strchr (sym->name, '@');
505
506 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
507 {
508 int len = atsign - sym->name;
509
31edb802
CB
510 record_minimal_symbol (reader,
511 gdb::string_view (sym->name, len),
512 true, symaddr, ms_type, sym->section,
513 objfile);
715c6909
TT
514 }
515 }
516
2eaf8d2a
DJ
517 /* For @plt symbols, also record a trampoline to the
518 destination symbol. The @plt symbol will be used in
519 disassembly, and the trampoline will be used when we are
520 trying to find the target. */
521 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
522 {
523 int len = strlen (sym->name);
524
525 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
526 {
2eaf8d2a
DJ
527 struct minimal_symbol *mtramp;
528
31edb802
CB
529 mtramp = record_minimal_symbol
530 (reader, gdb::string_view (sym->name, len - 4), true,
531 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
532 if (mtramp)
533 {
d9eaeb59 534 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 535 mtramp->created_by_gdb = 1;
2eaf8d2a 536 mtramp->filename = filesymname;
3e29f34a
MR
537 if (elf_make_msymbol_special_p)
538 gdbarch_elf_make_msymbol_special (gdbarch,
539 sym, mtramp);
2eaf8d2a
DJ
540 }
541 }
542 }
c906108c 543 }
c906108c
SS
544 }
545}
546
07be84bf
JK
547/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
548 for later look ups of which function to call when user requests
549 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
550 library defining `function' we cannot yet know while reading OBJFILE which
551 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
552 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
553
554static void
8dddcb8f
TT
555elf_rel_plt_read (minimal_symbol_reader &reader,
556 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
557{
558 bfd *obfd = objfile->obfd;
559 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 560 asection *relplt, *got_plt;
07be84bf 561 bfd_size_type reloc_count, reloc;
df6d5441 562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
563 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
564 size_t ptr_size = TYPE_LENGTH (ptr_type);
565
566 if (objfile->separate_debug_objfile_backlink)
567 return;
568
07be84bf
JK
569 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
570 if (got_plt == NULL)
4b7d1f7f
WN
571 {
572 /* For platforms where there is no separate .got.plt. */
573 got_plt = bfd_get_section_by_name (obfd, ".got");
574 if (got_plt == NULL)
575 return;
576 }
07be84bf 577
02e169e2
PA
578 /* Depending on system, we may find jump slots in a relocation
579 section for either .got.plt or .plt. */
580 asection *plt = bfd_get_section_by_name (obfd, ".plt");
581 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
582
583 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
584
07be84bf
JK
585 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
586 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
587 {
588 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
589
590 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
591 {
592 if (this_hdr.sh_info == plt_elf_idx
593 || this_hdr.sh_info == got_plt_elf_idx)
594 break;
595 }
596 }
07be84bf
JK
597 if (relplt == NULL)
598 return;
599
600 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
601 return;
602
26fcd5d7 603 std::string string_buffer;
07be84bf 604
02e169e2
PA
605 /* Does ADDRESS reside in SECTION of OBFD? */
606 auto within_section = [obfd] (asection *section, CORE_ADDR address)
607 {
608 if (section == NULL)
609 return false;
610
fd361982
AM
611 return (bfd_section_vma (section) <= address
612 && (address < bfd_section_vma (section)
613 + bfd_section_size (section)));
02e169e2
PA
614 };
615
07be84bf
JK
616 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
617 for (reloc = 0; reloc < reloc_count; reloc++)
618 {
22e048c9 619 const char *name;
07be84bf
JK
620 struct minimal_symbol *msym;
621 CORE_ADDR address;
26fcd5d7 622 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 623 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
624
625 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
626 address = relplt->relocation[reloc].address;
627
02e169e2
PA
628 asection *msym_section;
629
630 /* Does the pointer reside in either the .got.plt or .plt
631 sections? */
632 if (within_section (got_plt, address))
633 msym_section = got_plt;
634 else if (within_section (plt, address))
635 msym_section = plt;
636 else
07be84bf
JK
637 continue;
638
f50776aa
PA
639 /* We cannot check if NAME is a reference to
640 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
641 symbol is undefined and the objfile having NAME defined may
642 not yet have been loaded. */
07be84bf 643
26fcd5d7
TT
644 string_buffer.assign (name);
645 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 646
31edb802 647 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
648 true, address, mst_slot_got_plt,
649 msym_section, objfile);
07be84bf 650 if (msym)
d9eaeb59 651 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 652 }
07be84bf
JK
653}
654
655/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
656
8127a2fa
TT
657static const struct objfile_key<htab, htab_deleter>
658 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
659
660/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
661
662struct elf_gnu_ifunc_cache
663{
664 /* This is always a function entry address, not a function descriptor. */
665 CORE_ADDR addr;
666
667 char name[1];
668};
669
670/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
671
672static hashval_t
673elf_gnu_ifunc_cache_hash (const void *a_voidp)
674{
9a3c8263
SM
675 const struct elf_gnu_ifunc_cache *a
676 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
677
678 return htab_hash_string (a->name);
679}
680
681/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
682
683static int
684elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
685{
9a3c8263
SM
686 const struct elf_gnu_ifunc_cache *a
687 = (const struct elf_gnu_ifunc_cache *) a_voidp;
688 const struct elf_gnu_ifunc_cache *b
689 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
690
691 return strcmp (a->name, b->name) == 0;
692}
693
694/* Record the target function address of a STT_GNU_IFUNC function NAME is the
695 function entry address ADDR. Return 1 if NAME and ADDR are considered as
696 valid and therefore they were successfully recorded, return 0 otherwise.
697
698 Function does not expect a duplicate entry. Use
699 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
700 exists. */
701
702static int
703elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
704{
7cbd4a93 705 struct bound_minimal_symbol msym;
07be84bf
JK
706 struct objfile *objfile;
707 htab_t htab;
708 struct elf_gnu_ifunc_cache entry_local, *entry_p;
709 void **slot;
710
711 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 712 if (msym.minsym == NULL)
07be84bf 713 return 0;
77e371c0 714 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 715 return 0;
e27d198c 716 objfile = msym.objfile;
07be84bf
JK
717
718 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 719 resolution and it has no use for GDB. */
c9d95fa3 720 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
721 size_t len = strlen (target_name);
722
723 /* Note we check the symbol's name instead of checking whether the
724 symbol is in the .plt section because some systems have @plt
725 symbols in the .text section. */
726 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
727 return 0;
728
8127a2fa 729 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
730 if (htab == NULL)
731 {
8127a2fa
TT
732 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
733 elf_gnu_ifunc_cache_eq,
734 NULL, xcalloc, xfree);
735 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
736 }
737
738 entry_local.addr = addr;
739 obstack_grow (&objfile->objfile_obstack, &entry_local,
740 offsetof (struct elf_gnu_ifunc_cache, name));
741 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
742 entry_p
743 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
744
745 slot = htab_find_slot (htab, entry_p, INSERT);
746 if (*slot != NULL)
747 {
9a3c8263
SM
748 struct elf_gnu_ifunc_cache *entry_found_p
749 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 750 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
751
752 if (entry_found_p->addr != addr)
753 {
754 /* This case indicates buggy inferior program, the resolved address
755 should never change. */
756
757 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
758 "function_address from %s to %s"),
759 name, paddress (gdbarch, entry_found_p->addr),
760 paddress (gdbarch, addr));
761 }
762
763 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
764 }
765 *slot = entry_p;
766
767 return 1;
768}
769
770/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
771 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
772 is not NULL) and the function returns 1. It returns 0 otherwise.
773
774 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
775 function. */
776
777static int
778elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
779{
2030c079 780 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
781 {
782 htab_t htab;
783 struct elf_gnu_ifunc_cache *entry_p;
784 void **slot;
785
8127a2fa 786 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
787 if (htab == NULL)
788 continue;
789
224c3ddb
SM
790 entry_p = ((struct elf_gnu_ifunc_cache *)
791 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
792 strcpy (entry_p->name, name);
793
794 slot = htab_find_slot (htab, entry_p, NO_INSERT);
795 if (slot == NULL)
796 continue;
9a3c8263 797 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
798 gdb_assert (entry_p != NULL);
799
800 if (addr_p)
801 *addr_p = entry_p->addr;
802 return 1;
803 }
804
805 return 0;
806}
807
808/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
809 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
810 is not NULL) and the function returns 1. It returns 0 otherwise.
811
812 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
813 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
814 prevent cache entries duplicates. */
815
816static int
817elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
818{
819 char *name_got_plt;
07be84bf
JK
820 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
821
224c3ddb 822 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
823 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
824
2030c079 825 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
826 {
827 bfd *obfd = objfile->obfd;
df6d5441 828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
829 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
830 size_t ptr_size = TYPE_LENGTH (ptr_type);
831 CORE_ADDR pointer_address, addr;
832 asection *plt;
224c3ddb 833 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 834 struct bound_minimal_symbol msym;
07be84bf
JK
835
836 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 837 if (msym.minsym == NULL)
07be84bf 838 continue;
3b7344d5 839 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 840 continue;
77e371c0 841 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
842
843 plt = bfd_get_section_by_name (obfd, ".plt");
844 if (plt == NULL)
845 continue;
846
3b7344d5 847 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
848 continue;
849 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
850 continue;
851 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
852 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
853 current_top_target ());
4b7d1f7f 854 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 855
07be84bf 856 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
857 {
858 if (addr_p != NULL)
859 *addr_p = addr;
860 return 1;
861 }
07be84bf
JK
862 }
863
864 return 0;
865}
866
867/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
868 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 869 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
870
871 Both the elf_objfile_gnu_ifunc_cache_data hash table and
872 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
873
ececd218 874static bool
07be84bf
JK
875elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
876{
877 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 878 return true;
dea91a5c 879
07be84bf 880 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 881 return true;
07be84bf 882
ececd218 883 return false;
07be84bf
JK
884}
885
886/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
887 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
888 is the entry point of the resolved STT_GNU_IFUNC target function to call.
889 */
890
891static CORE_ADDR
892elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
893{
2c02bd72 894 const char *name_at_pc;
07be84bf
JK
895 CORE_ADDR start_at_pc, address;
896 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
897 struct value *function, *address_val;
e1b2624a
AA
898 CORE_ADDR hwcap = 0;
899 struct value *hwcap_val;
07be84bf
JK
900
901 /* Try first any non-intrusive methods without an inferior call. */
902
903 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
904 && start_at_pc == pc)
905 {
906 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
907 return address;
908 }
909 else
910 name_at_pc = NULL;
911
912 function = allocate_value (func_func_type);
1a088441 913 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
914 set_value_address (function, pc);
915
e1b2624a
AA
916 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
917 parameter. FUNCTION is the function entry address. ADDRESS may be a
918 function descriptor. */
07be84bf 919
8b88a78e 920 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
921 hwcap_val = value_from_longest (builtin_type (gdbarch)
922 ->builtin_unsigned_long, hwcap);
e71585ff 923 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 924 address = value_as_address (address_val);
8b88a78e 925 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 926 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
927
928 if (name_at_pc)
929 elf_gnu_ifunc_record_cache (name_at_pc, address);
930
931 return address;
932}
933
0e30163f
JK
934/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
935
936static void
937elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
938{
939 struct breakpoint *b_return;
940 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
941 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
942 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 943 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
944
945 gdb_assert (b->type == bp_gnu_ifunc_resolver);
946
947 for (b_return = b->related_breakpoint; b_return != b;
948 b_return = b_return->related_breakpoint)
949 {
950 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
951 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
952 gdb_assert (frame_id_p (b_return->frame_id));
953
954 if (b_return->thread == thread_id
955 && b_return->loc->requested_address == prev_pc
956 && frame_id_eq (b_return->frame_id, prev_frame_id))
957 break;
958 }
959
960 if (b_return == b)
961 {
0e30163f
JK
962 /* No need to call find_pc_line for symbols resolving as this is only
963 a helper breakpointer never shown to the user. */
964
51abb421 965 symtab_and_line sal;
0e30163f
JK
966 sal.pspace = current_inferior ()->pspace;
967 sal.pc = prev_pc;
968 sal.section = find_pc_overlay (sal.pc);
969 sal.explicit_pc = 1;
454dafbd
TT
970 b_return
971 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
972 prev_frame_id,
973 bp_gnu_ifunc_resolver_return).release ();
0e30163f 974
c70a6932
JK
975 /* set_momentary_breakpoint invalidates PREV_FRAME. */
976 prev_frame = NULL;
977
0e30163f
JK
978 /* Add new b_return to the ring list b->related_breakpoint. */
979 gdb_assert (b_return->related_breakpoint == b_return);
980 b_return->related_breakpoint = b->related_breakpoint;
981 b->related_breakpoint = b_return;
982 }
983}
984
985/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
986
987static void
988elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
989{
00431a78 990 thread_info *thread = inferior_thread ();
0e30163f
JK
991 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
992 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
993 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 994 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 995 struct value *func_func;
0e30163f
JK
996 struct value *value;
997 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
998
999 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1000
0e30163f
JK
1001 while (b->related_breakpoint != b)
1002 {
1003 struct breakpoint *b_next = b->related_breakpoint;
1004
1005 switch (b->type)
1006 {
1007 case bp_gnu_ifunc_resolver:
1008 break;
1009 case bp_gnu_ifunc_resolver_return:
1010 delete_breakpoint (b);
1011 break;
1012 default:
1013 internal_error (__FILE__, __LINE__,
1014 _("handle_inferior_event: Invalid "
1015 "gnu-indirect-function breakpoint type %d"),
1016 (int) b->type);
1017 }
1018 b = b_next;
1019 }
1020 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1021 gdb_assert (b->loc->next == NULL);
1022
1023 func_func = allocate_value (func_func_type);
1a088441 1024 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1025 set_value_address (func_func, b->loc->related_address);
1026
1027 value = allocate_value (value_type);
1028 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1029 value_contents_raw (value), NULL);
1030 resolved_address = value_as_address (value);
1031 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1032 resolved_address,
8b88a78e 1033 current_top_target ());
4b7d1f7f 1034 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1035
f8eba3c6 1036 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1037 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1038 resolved_pc);
0e30163f 1039
0e30163f 1040 b->type = bp_breakpoint;
6c5b2ebe 1041 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1042 find_function_start_sal (resolved_pc, NULL, true),
1043 {});
0e30163f
JK
1044}
1045
2750ef27
TT
1046/* A helper function for elf_symfile_read that reads the minimal
1047 symbols. */
c906108c
SS
1048
1049static void
5f6cac40
TT
1050elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1051 const struct elfinfo *ei)
c906108c 1052{
63524580 1053 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1054 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1055 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1056 asymbol *synthsyms;
c906108c 1057
45cfd468
DE
1058 if (symtab_create_debug)
1059 {
1060 fprintf_unfiltered (gdb_stdlog,
1061 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1062 objfile_name (objfile));
45cfd468
DE
1063 }
1064
5f6cac40
TT
1065 /* If we already have minsyms, then we can skip some work here.
1066 However, if there were stabs or mdebug sections, we go ahead and
1067 redo all the work anyway, because the psym readers for those
1068 kinds of debuginfo need extra information found here. This can
1069 go away once all types of symbols are in the per-BFD object. */
1070 if (objfile->per_bfd->minsyms_read
1071 && ei->stabsect == NULL
30d1f018
WP
1072 && ei->mdebugsect == NULL
1073 && ei->ctfsect == NULL)
5f6cac40
TT
1074 {
1075 if (symtab_create_debug)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "... minimal symbols previously read\n");
1078 return;
1079 }
1080
d25e8719 1081 minimal_symbol_reader reader (objfile);
c906108c 1082
18a94d75 1083 /* Process the normal ELF symbol table first. */
c906108c 1084
62553543
EZ
1085 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1086 if (storage_needed < 0)
3e43a32a
MS
1087 error (_("Can't read symbols from %s: %s"),
1088 bfd_get_filename (objfile->obfd),
62553543
EZ
1089 bfd_errmsg (bfd_get_error ()));
1090
1091 if (storage_needed > 0)
1092 {
80c57053
JK
1093 /* Memory gets permanently referenced from ABFD after
1094 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1095
224c3ddb 1096 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1097 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1098
1099 if (symcount < 0)
3e43a32a
MS
1100 error (_("Can't read symbols from %s: %s"),
1101 bfd_get_filename (objfile->obfd),
62553543
EZ
1102 bfd_errmsg (bfd_get_error ()));
1103
ce6c454e
TT
1104 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1105 false);
62553543 1106 }
c906108c
SS
1107
1108 /* Add the dynamic symbols. */
1109
62553543
EZ
1110 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1111
1112 if (storage_needed > 0)
1113 {
3f1eff0a
JK
1114 /* Memory gets permanently referenced from ABFD after
1115 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1116 It happens only in the case when elf_slurp_reloc_table sees
1117 asection->relocation NULL. Determining which section is asection is
1118 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1119 implementation detail, though. */
1120
224c3ddb 1121 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1122 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1123 dyn_symbol_table);
1124
1125 if (dynsymcount < 0)
3e43a32a
MS
1126 error (_("Can't read symbols from %s: %s"),
1127 bfd_get_filename (objfile->obfd),
62553543
EZ
1128 bfd_errmsg (bfd_get_error ()));
1129
8dddcb8f 1130 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1131 dyn_symbol_table, false);
07be84bf 1132
8dddcb8f 1133 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1134 }
1135
63524580
JK
1136 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1137 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1138
1139 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1140 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1141 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1142 read the code address from .opd while it reads the .symtab section from
1143 a separate debug info file as the .opd section is SHT_NOBITS there.
1144
1145 With SYNTH_ABFD the .opd section will be read from the original
1146 backlinked binary where it is valid. */
1147
1148 if (objfile->separate_debug_objfile_backlink)
1149 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1150 else
1151 synth_abfd = abfd;
1152
62553543
EZ
1153 /* Add synthetic symbols - for instance, names for any PLT entries. */
1154
63524580 1155 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1156 dynsymcount, dyn_symbol_table,
1157 &synthsyms);
1158 if (synthcount > 0)
1159 {
62553543
EZ
1160 long i;
1161
b22e99fd 1162 std::unique_ptr<asymbol *[]>
d1e4a624 1163 synth_symbol_table (new asymbol *[synthcount]);
62553543 1164 for (i = 0; i < synthcount; i++)
9f20e3da 1165 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1166 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1167 synth_symbol_table.get (), true);
ba713918
AL
1168
1169 xfree (synthsyms);
1170 synthsyms = NULL;
62553543 1171 }
c906108c 1172
7134143f
DJ
1173 /* Install any minimal symbols that have been collected as the current
1174 minimal symbols for this objfile. The debug readers below this point
1175 should not generate new minimal symbols; if they do it's their
1176 responsibility to install them. "mdebug" appears to be the only one
1177 which will do this. */
1178
d25e8719 1179 reader.install ();
7134143f 1180
4f00dda3
DE
1181 if (symtab_create_debug)
1182 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1183}
1184
1185/* Scan and build partial symbols for a symbol file.
1186 We have been initialized by a call to elf_symfile_init, which
1187 currently does nothing.
1188
2750ef27
TT
1189 This function only does the minimum work necessary for letting the
1190 user "name" things symbolically; it does not read the entire symtab.
1191 Instead, it reads the external and static symbols and puts them in partial
1192 symbol tables. When more extensive information is requested of a
1193 file, the corresponding partial symbol table is mutated into a full
1194 fledged symbol table by going back and reading the symbols
1195 for real.
1196
1197 We look for sections with specific names, to tell us what debug
1198 format to look for: FIXME!!!
1199
1200 elfstab_build_psymtabs() handles STABS symbols;
1201 mdebug_build_psymtabs() handles ECOFF debugging information.
1202
1203 Note that ELF files have a "minimal" symbol table, which looks a lot
1204 like a COFF symbol table, but has only the minimal information necessary
1205 for linking. We process this also, and use the information to
1206 build gdb's minimal symbol table. This gives us some minimal debugging
1207 capability even for files compiled without -g. */
1208
1209static void
b15cc25c 1210elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1211{
1212 bfd *abfd = objfile->obfd;
1213 struct elfinfo ei;
30d1f018 1214 bool has_dwarf2 = true;
2750ef27 1215
2750ef27 1216 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1217 if (!(objfile->flags & OBJF_READNEVER))
1218 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1219
5f6cac40
TT
1220 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1221
c906108c
SS
1222 /* ELF debugging information is inserted into the psymtab in the
1223 order of least informative first - most informative last. Since
1224 the psymtab table is searched `most recent insertion first' this
1225 increases the probability that more detailed debug information
1226 for a section is found.
1227
1228 For instance, an object file might contain both .mdebug (XCOFF)
1229 and .debug_info (DWARF2) sections then .mdebug is inserted first
1230 (searched last) and DWARF2 is inserted last (searched first). If
1231 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1232 an included file XCOFF info is useless. */
c906108c
SS
1233
1234 if (ei.mdebugsect)
1235 {
1236 const struct ecoff_debug_swap *swap;
1237
1238 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1239 information. */
c906108c
SS
1240 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1241 if (swap)
d4f3574e 1242 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1243 }
1244 if (ei.stabsect)
1245 {
1246 asection *str_sect;
1247
1248 /* Stab sections have an associated string table that looks like
c5aa993b 1249 a separate section. */
c906108c
SS
1250 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1251
1252 /* FIXME should probably warn about a stab section without a stabstr. */
1253 if (str_sect)
1254 elfstab_build_psymtabs (objfile,
086df311 1255 ei.stabsect,
c906108c 1256 str_sect->filepos,
fd361982 1257 bfd_section_size (str_sect));
c906108c 1258 }
9291a0cd 1259
4b610737 1260 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1261 {
3c0aa29a 1262 dw_index_kind index_kind;
3e03848b 1263
3c0aa29a
PA
1264 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1265 debug information present in OBJFILE. If there is such debug
1266 info present never use an index. */
1267 if (!objfile_has_partial_symbols (objfile)
1268 && dwarf2_initialize_objfile (objfile, &index_kind))
1269 {
1270 switch (index_kind)
1271 {
1272 case dw_index_kind::GDB_INDEX:
1273 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1274 break;
1275 case dw_index_kind::DEBUG_NAMES:
1276 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1277 break;
1278 }
1279 }
1280 else
b11896a5
TT
1281 {
1282 /* It is ok to do this even if the stabs reader made some
1283 partial symbols, because OBJF_PSYMTABS_READ has not been
1284 set, and so our lazy reader function will still be called
1285 when needed. */
8fb8eb5c 1286 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1287 }
1288 }
3e43a32a
MS
1289 /* If the file has its own symbol tables it has no separate debug
1290 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1291 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1292 `.note.gnu.build-id'.
1293
1294 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1295 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1296 an objfile via find_separate_debug_file_in_section there was no separate
1297 debug info available. Therefore do not attempt to search for another one,
1298 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1299 be NULL and we would possibly violate it. */
1300
1301 else if (!objfile_has_partial_symbols (objfile)
1302 && objfile->separate_debug_objfile == NULL
1303 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1304 {
a8dbfd58 1305 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1306
a8dbfd58
SM
1307 if (debugfile.empty ())
1308 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1309
a8dbfd58 1310 if (!debugfile.empty ())
9cce227f 1311 {
b926417a 1312 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1313
b926417a 1314 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1315 symfile_flags, objfile);
9cce227f 1316 }
0d79cdc4
AM
1317 else
1318 {
30d1f018 1319 has_dwarf2 = false;
0d79cdc4
AM
1320 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1321
1322 if (build_id != nullptr)
1323 {
1324 gdb::unique_xmalloc_ptr<char> symfile_path;
1325 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1326 build_id->size,
1327 objfile->original_name,
1328 &symfile_path));
1329
1330 if (fd.get () >= 0)
1331 {
1332 /* File successfully retrieved from server. */
1333 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1334
1335 if (debug_bfd == nullptr)
1336 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1337 objfile->original_name);
1338 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1339 {
1340 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1341 symfile_flags, objfile);
1342 has_dwarf2 = true;
1343 }
1344 }
1345 }
1346 }
30d1f018
WP
1347 }
1348
1349 /* Read the CTF section only if there is no DWARF info. */
1350 if (!has_dwarf2 && ei.ctfsect)
1351 {
1352 elfctf_build_psymtabs (objfile);
9cce227f 1353 }
c906108c
SS
1354}
1355
b11896a5
TT
1356/* Callback to lazily read psymtabs. */
1357
1358static void
1359read_psyms (struct objfile *objfile)
1360{
251d32d9 1361 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1362 dwarf2_build_psymtabs (objfile);
1363}
1364
c906108c
SS
1365/* Initialize anything that needs initializing when a completely new symbol
1366 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1367 shared library). */
c906108c
SS
1368
1369static void
fba45db2 1370elf_new_init (struct objfile *ignore)
c906108c 1371{
c906108c
SS
1372}
1373
1374/* Perform any local cleanups required when we are done with a particular
1375 objfile. I.E, we are in the process of discarding all symbol information
1376 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1377 objfile struct from the global list of known objfiles. */
c906108c
SS
1378
1379static void
fba45db2 1380elf_symfile_finish (struct objfile *objfile)
c906108c 1381{
c906108c
SS
1382}
1383
db7a9bcd 1384/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1385
1386static void
fba45db2 1387elf_symfile_init (struct objfile *objfile)
c906108c
SS
1388{
1389 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1390 find this causes a significant slowdown in gdb then we could
1391 set it in the debug symbol readers only when necessary. */
1392 objfile->flags |= OBJF_REORDERED;
1393}
1394
55aa24fb
SDJ
1395/* Implementation of `sym_get_probes', as documented in symfile.h. */
1396
814cf43a 1397static const elfread_data &
55aa24fb
SDJ
1398elf_get_probes (struct objfile *objfile)
1399{
814cf43a 1400 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1401
aaa63a31 1402 if (probes_per_bfd == NULL)
55aa24fb 1403 {
814cf43a 1404 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1405
1406 /* Here we try to gather information about all types of probes from the
1407 objfile. */
935676c9 1408 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1409 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1410 }
1411
aaa63a31 1412 return *probes_per_bfd;
55aa24fb
SDJ
1413}
1414
c906108c 1415\f
55aa24fb
SDJ
1416
1417/* Implementation `sym_probe_fns', as documented in symfile.h. */
1418
1419static const struct sym_probe_fns elf_probe_fns =
1420{
25f9533e 1421 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1422};
1423
c906108c
SS
1424/* Register that we are able to handle ELF object file formats. */
1425
00b5771c 1426static const struct sym_fns elf_sym_fns =
c906108c 1427{
3e43a32a
MS
1428 elf_new_init, /* init anything gbl to entire symtab */
1429 elf_symfile_init, /* read initial info, setup for sym_read() */
1430 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1431 NULL, /* sym_read_psymbols */
1432 elf_symfile_finish, /* finished with file, cleanup */
1433 default_symfile_offsets, /* Translate ext. to int. relocation */
1434 elf_symfile_segments, /* Get segment information from a file. */
1435 NULL,
1436 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1437 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1438 &psym_functions
1439};
1440
1441/* The same as elf_sym_fns, but not registered and lazily reads
1442 psymbols. */
1443
e36122e9 1444const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1445{
b11896a5
TT
1446 elf_new_init, /* init anything gbl to entire symtab */
1447 elf_symfile_init, /* read initial info, setup for sym_read() */
1448 elf_symfile_read, /* read a symbol file into symtab */
1449 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1450 elf_symfile_finish, /* finished with file, cleanup */
1451 default_symfile_offsets, /* Translate ext. to int. relocation */
1452 elf_symfile_segments, /* Get segment information from a file. */
1453 NULL,
1454 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1455 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1456 &psym_functions
c906108c
SS
1457};
1458
9291a0cd
TT
1459/* The same as elf_sym_fns, but not registered and uses the
1460 DWARF-specific GNU index rather than psymtab. */
e36122e9 1461const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1462{
3e43a32a
MS
1463 elf_new_init, /* init anything gbl to entire symab */
1464 elf_symfile_init, /* read initial info, setup for sym_red() */
1465 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1466 NULL, /* sym_read_psymbols */
3e43a32a 1467 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1468 default_symfile_offsets, /* Translate ext. to int. relocation */
3e43a32a
MS
1469 elf_symfile_segments, /* Get segment information from a file. */
1470 NULL,
1471 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1472 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1473 &dwarf2_gdb_index_functions
9291a0cd
TT
1474};
1475
927aa2e7
JK
1476/* The same as elf_sym_fns, but not registered and uses the
1477 DWARF-specific .debug_names index rather than psymtab. */
1478const struct sym_fns elf_sym_fns_debug_names =
1479{
1480 elf_new_init, /* init anything gbl to entire symab */
1481 elf_symfile_init, /* read initial info, setup for sym_red() */
1482 elf_symfile_read, /* read a symbol file into symtab */
1483 NULL, /* sym_read_psymbols */
1484 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1485 default_symfile_offsets, /* Translate ext. to int. relocation */
927aa2e7
JK
1486 elf_symfile_segments, /* Get segment information from a file. */
1487 NULL,
1488 default_symfile_relocate, /* Relocate a debug section. */
1489 &elf_probe_fns, /* sym_probe_fns */
1490 &dwarf2_debug_names_functions
1491};
1492
07be84bf
JK
1493/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1494
1495static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1496{
1497 elf_gnu_ifunc_resolve_addr,
1498 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1499 elf_gnu_ifunc_resolver_stop,
1500 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1501};
1502
6c265988 1503void _initialize_elfread ();
c906108c 1504void
6c265988 1505_initialize_elfread ()
c906108c 1506{
c256e171 1507 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1508
07be84bf 1509 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1510}
This page took 2.074166 seconds and 4 git commands to generate.