2002-08-14 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / f-exp.y
CommitLineData
c906108c 1/* YACC parser for Fortran expressions, for GDB.
b6ba6518
KB
2 Copyright 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001
3 Free Software Foundation, Inc.
4fcf66da 4
c906108c
SS
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24/* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
26
27/* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
35
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
43
44%{
45
46#include "defs.h"
47#include "gdb_string.h"
48#include "expression.h"
49#include "value.h"
50#include "parser-defs.h"
51#include "language.h"
52#include "f-lang.h"
53#include "bfd.h" /* Required by objfiles.h. */
54#include "symfile.h" /* Required by objfiles.h. */
55#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
0f6e1ba6 56#include <ctype.h>
c906108c
SS
57
58/* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
59 as well as gratuitiously global symbol names, so we can have multiple
60 yacc generated parsers in gdb. Note that these are only the variables
61 produced by yacc. If other parser generators (bison, byacc, etc) produce
62 additional global names that conflict at link time, then those parser
63 generators need to be fixed instead of adding those names to this list. */
64
65#define yymaxdepth f_maxdepth
66#define yyparse f_parse
67#define yylex f_lex
68#define yyerror f_error
69#define yylval f_lval
70#define yychar f_char
71#define yydebug f_debug
72#define yypact f_pact
73#define yyr1 f_r1
74#define yyr2 f_r2
75#define yydef f_def
76#define yychk f_chk
77#define yypgo f_pgo
78#define yyact f_act
79#define yyexca f_exca
80#define yyerrflag f_errflag
81#define yynerrs f_nerrs
82#define yyps f_ps
83#define yypv f_pv
84#define yys f_s
85#define yy_yys f_yys
86#define yystate f_state
87#define yytmp f_tmp
88#define yyv f_v
89#define yy_yyv f_yyv
90#define yyval f_val
91#define yylloc f_lloc
92#define yyreds f_reds /* With YYDEBUG defined */
93#define yytoks f_toks /* With YYDEBUG defined */
94#define yylhs f_yylhs
95#define yylen f_yylen
96#define yydefred f_yydefred
97#define yydgoto f_yydgoto
98#define yysindex f_yysindex
99#define yyrindex f_yyrindex
100#define yygindex f_yygindex
101#define yytable f_yytable
102#define yycheck f_yycheck
103
104#ifndef YYDEBUG
f461f5cf 105#define YYDEBUG 1 /* Default to yydebug support */
c906108c
SS
106#endif
107
f461f5cf
PM
108#define YYFPRINTF parser_fprintf
109
a14ed312 110int yyparse (void);
c906108c 111
a14ed312 112static int yylex (void);
c906108c 113
a14ed312 114void yyerror (char *);
c906108c 115
a14ed312 116static void growbuf_by_size (int);
c906108c 117
a14ed312 118static int match_string_literal (void);
c906108c
SS
119
120%}
121
122/* Although the yacc "value" of an expression is not used,
123 since the result is stored in the structure being created,
124 other node types do have values. */
125
126%union
127 {
128 LONGEST lval;
129 struct {
130 LONGEST val;
131 struct type *type;
132 } typed_val;
133 DOUBLEST dval;
134 struct symbol *sym;
135 struct type *tval;
136 struct stoken sval;
137 struct ttype tsym;
138 struct symtoken ssym;
139 int voidval;
140 struct block *bval;
141 enum exp_opcode opcode;
142 struct internalvar *ivar;
143
144 struct type **tvec;
145 int *ivec;
146 }
147
148%{
149/* YYSTYPE gets defined by %union */
a14ed312 150static int parse_number (char *, int, int, YYSTYPE *);
c906108c
SS
151%}
152
153%type <voidval> exp type_exp start variable
154%type <tval> type typebase
155%type <tvec> nonempty_typelist
156/* %type <bval> block */
157
158/* Fancy type parsing. */
159%type <voidval> func_mod direct_abs_decl abs_decl
160%type <tval> ptype
161
162%token <typed_val> INT
163%token <dval> FLOAT
164
165/* Both NAME and TYPENAME tokens represent symbols in the input,
166 and both convey their data as strings.
167 But a TYPENAME is a string that happens to be defined as a typedef
168 or builtin type name (such as int or char)
169 and a NAME is any other symbol.
170 Contexts where this distinction is not important can use the
171 nonterminal "name", which matches either NAME or TYPENAME. */
172
173%token <sval> STRING_LITERAL
174%token <lval> BOOLEAN_LITERAL
175%token <ssym> NAME
176%token <tsym> TYPENAME
177%type <sval> name
178%type <ssym> name_not_typename
179%type <tsym> typename
180
181/* A NAME_OR_INT is a symbol which is not known in the symbol table,
182 but which would parse as a valid number in the current input radix.
183 E.g. "c" when input_radix==16. Depending on the parse, it will be
184 turned into a name or into a number. */
185
186%token <ssym> NAME_OR_INT
187
188%token SIZEOF
189%token ERROR
190
191/* Special type cases, put in to allow the parser to distinguish different
192 legal basetypes. */
193%token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
194%token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
195%token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
196%token BOOL_AND BOOL_OR BOOL_NOT
197%token <lval> CHARACTER
198
199%token <voidval> VARIABLE
200
201%token <opcode> ASSIGN_MODIFY
202
203%left ','
204%left ABOVE_COMMA
205%right '=' ASSIGN_MODIFY
206%right '?'
207%left BOOL_OR
208%right BOOL_NOT
209%left BOOL_AND
210%left '|'
211%left '^'
212%left '&'
213%left EQUAL NOTEQUAL
214%left LESSTHAN GREATERTHAN LEQ GEQ
215%left LSH RSH
216%left '@'
217%left '+' '-'
218%left '*' '/' '%'
219%right UNARY
220%right '('
221
222\f
223%%
224
225start : exp
226 | type_exp
227 ;
228
229type_exp: type
230 { write_exp_elt_opcode(OP_TYPE);
231 write_exp_elt_type($1);
232 write_exp_elt_opcode(OP_TYPE); }
233 ;
234
235exp : '(' exp ')'
236 { }
237 ;
238
239/* Expressions, not including the comma operator. */
240exp : '*' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_IND); }
242
243exp : '&' exp %prec UNARY
244 { write_exp_elt_opcode (UNOP_ADDR); }
245
246exp : '-' exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_NEG); }
248 ;
249
250exp : BOOL_NOT exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
252 ;
253
254exp : '~' exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
256 ;
257
258exp : SIZEOF exp %prec UNARY
259 { write_exp_elt_opcode (UNOP_SIZEOF); }
260 ;
261
262/* No more explicit array operators, we treat everything in F77 as
263 a function call. The disambiguation as to whether we are
264 doing a subscript operation or a function call is done
265 later in eval.c. */
266
267exp : exp '('
268 { start_arglist (); }
269 arglist ')'
270 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
271 write_exp_elt_longcst ((LONGEST) end_arglist ());
272 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
273 ;
274
275arglist :
276 ;
277
278arglist : exp
279 { arglist_len = 1; }
280 ;
281
282arglist : substring
283 { arglist_len = 2;}
284
285arglist : arglist ',' exp %prec ABOVE_COMMA
286 { arglist_len++; }
287 ;
288
289substring: exp ':' exp %prec ABOVE_COMMA
290 { }
291 ;
292
293
294complexnum: exp ',' exp
295 { }
296 ;
297
298exp : '(' complexnum ')'
299 { write_exp_elt_opcode(OP_COMPLEX); }
300 ;
301
302exp : '(' type ')' exp %prec UNARY
303 { write_exp_elt_opcode (UNOP_CAST);
304 write_exp_elt_type ($2);
305 write_exp_elt_opcode (UNOP_CAST); }
306 ;
307
308/* Binary operators in order of decreasing precedence. */
309
310exp : exp '@' exp
311 { write_exp_elt_opcode (BINOP_REPEAT); }
312 ;
313
314exp : exp '*' exp
315 { write_exp_elt_opcode (BINOP_MUL); }
316 ;
317
318exp : exp '/' exp
319 { write_exp_elt_opcode (BINOP_DIV); }
320 ;
321
322exp : exp '%' exp
323 { write_exp_elt_opcode (BINOP_REM); }
324 ;
325
326exp : exp '+' exp
327 { write_exp_elt_opcode (BINOP_ADD); }
328 ;
329
330exp : exp '-' exp
331 { write_exp_elt_opcode (BINOP_SUB); }
332 ;
333
334exp : exp LSH exp
335 { write_exp_elt_opcode (BINOP_LSH); }
336 ;
337
338exp : exp RSH exp
339 { write_exp_elt_opcode (BINOP_RSH); }
340 ;
341
342exp : exp EQUAL exp
343 { write_exp_elt_opcode (BINOP_EQUAL); }
344 ;
345
346exp : exp NOTEQUAL exp
347 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
348 ;
349
350exp : exp LEQ exp
351 { write_exp_elt_opcode (BINOP_LEQ); }
352 ;
353
354exp : exp GEQ exp
355 { write_exp_elt_opcode (BINOP_GEQ); }
356 ;
357
358exp : exp LESSTHAN exp
359 { write_exp_elt_opcode (BINOP_LESS); }
360 ;
361
362exp : exp GREATERTHAN exp
363 { write_exp_elt_opcode (BINOP_GTR); }
364 ;
365
366exp : exp '&' exp
367 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
368 ;
369
370exp : exp '^' exp
371 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
372 ;
373
374exp : exp '|' exp
375 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
376 ;
377
378exp : exp BOOL_AND exp
379 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
380 ;
381
382
383exp : exp BOOL_OR exp
384 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
385 ;
386
387exp : exp '=' exp
388 { write_exp_elt_opcode (BINOP_ASSIGN); }
389 ;
390
391exp : exp ASSIGN_MODIFY exp
392 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
393 write_exp_elt_opcode ($2);
394 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
395 ;
396
397exp : INT
398 { write_exp_elt_opcode (OP_LONG);
399 write_exp_elt_type ($1.type);
400 write_exp_elt_longcst ((LONGEST)($1.val));
401 write_exp_elt_opcode (OP_LONG); }
402 ;
403
404exp : NAME_OR_INT
405 { YYSTYPE val;
406 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
407 write_exp_elt_opcode (OP_LONG);
408 write_exp_elt_type (val.typed_val.type);
409 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
410 write_exp_elt_opcode (OP_LONG); }
411 ;
412
413exp : FLOAT
414 { write_exp_elt_opcode (OP_DOUBLE);
415 write_exp_elt_type (builtin_type_f_real_s8);
416 write_exp_elt_dblcst ($1);
417 write_exp_elt_opcode (OP_DOUBLE); }
418 ;
419
420exp : variable
421 ;
422
423exp : VARIABLE
424 ;
425
426exp : SIZEOF '(' type ')' %prec UNARY
427 { write_exp_elt_opcode (OP_LONG);
428 write_exp_elt_type (builtin_type_f_integer);
429 CHECK_TYPEDEF ($3);
430 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
431 write_exp_elt_opcode (OP_LONG); }
432 ;
433
434exp : BOOLEAN_LITERAL
435 { write_exp_elt_opcode (OP_BOOL);
436 write_exp_elt_longcst ((LONGEST) $1);
437 write_exp_elt_opcode (OP_BOOL);
438 }
439 ;
440
441exp : STRING_LITERAL
442 {
443 write_exp_elt_opcode (OP_STRING);
444 write_exp_string ($1);
445 write_exp_elt_opcode (OP_STRING);
446 }
447 ;
448
449variable: name_not_typename
450 { struct symbol *sym = $1.sym;
451
452 if (sym)
453 {
454 if (symbol_read_needs_frame (sym))
455 {
456 if (innermost_block == 0 ||
457 contained_in (block_found,
458 innermost_block))
459 innermost_block = block_found;
460 }
461 write_exp_elt_opcode (OP_VAR_VALUE);
462 /* We want to use the selected frame, not
463 another more inner frame which happens to
464 be in the same block. */
465 write_exp_elt_block (NULL);
466 write_exp_elt_sym (sym);
467 write_exp_elt_opcode (OP_VAR_VALUE);
468 break;
469 }
470 else
471 {
472 struct minimal_symbol *msymbol;
473 register char *arg = copy_name ($1.stoken);
474
475 msymbol =
476 lookup_minimal_symbol (arg, NULL, NULL);
477 if (msymbol != NULL)
478 {
479 write_exp_msymbol (msymbol,
480 lookup_function_type (builtin_type_int),
481 builtin_type_int);
482 }
483 else if (!have_full_symbols () && !have_partial_symbols ())
484 error ("No symbol table is loaded. Use the \"file\" command.");
485 else
486 error ("No symbol \"%s\" in current context.",
487 copy_name ($1.stoken));
488 }
489 }
490 ;
491
492
493type : ptype
494 ;
495
496ptype : typebase
497 | typebase abs_decl
498 {
499 /* This is where the interesting stuff happens. */
500 int done = 0;
501 int array_size;
502 struct type *follow_type = $1;
503 struct type *range_type;
504
505 while (!done)
506 switch (pop_type ())
507 {
508 case tp_end:
509 done = 1;
510 break;
511 case tp_pointer:
512 follow_type = lookup_pointer_type (follow_type);
513 break;
514 case tp_reference:
515 follow_type = lookup_reference_type (follow_type);
516 break;
517 case tp_array:
518 array_size = pop_type_int ();
519 if (array_size != -1)
520 {
521 range_type =
522 create_range_type ((struct type *) NULL,
523 builtin_type_f_integer, 0,
524 array_size - 1);
525 follow_type =
526 create_array_type ((struct type *) NULL,
527 follow_type, range_type);
528 }
529 else
530 follow_type = lookup_pointer_type (follow_type);
531 break;
532 case tp_function:
533 follow_type = lookup_function_type (follow_type);
534 break;
535 }
536 $$ = follow_type;
537 }
538 ;
539
540abs_decl: '*'
541 { push_type (tp_pointer); $$ = 0; }
542 | '*' abs_decl
543 { push_type (tp_pointer); $$ = $2; }
544 | '&'
545 { push_type (tp_reference); $$ = 0; }
546 | '&' abs_decl
547 { push_type (tp_reference); $$ = $2; }
548 | direct_abs_decl
549 ;
550
551direct_abs_decl: '(' abs_decl ')'
552 { $$ = $2; }
553 | direct_abs_decl func_mod
554 { push_type (tp_function); }
555 | func_mod
556 { push_type (tp_function); }
557 ;
558
559func_mod: '(' ')'
560 { $$ = 0; }
561 | '(' nonempty_typelist ')'
562 { free ((PTR)$2); $$ = 0; }
563 ;
564
565typebase /* Implements (approximately): (type-qualifier)* type-specifier */
566 : TYPENAME
567 { $$ = $1.type; }
568 | INT_KEYWORD
569 { $$ = builtin_type_f_integer; }
570 | INT_S2_KEYWORD
571 { $$ = builtin_type_f_integer_s2; }
572 | CHARACTER
573 { $$ = builtin_type_f_character; }
574 | LOGICAL_KEYWORD
575 { $$ = builtin_type_f_logical;}
576 | LOGICAL_S2_KEYWORD
577 { $$ = builtin_type_f_logical_s2;}
578 | LOGICAL_S1_KEYWORD
579 { $$ = builtin_type_f_logical_s1;}
580 | REAL_KEYWORD
581 { $$ = builtin_type_f_real;}
582 | REAL_S8_KEYWORD
583 { $$ = builtin_type_f_real_s8;}
584 | REAL_S16_KEYWORD
585 { $$ = builtin_type_f_real_s16;}
586 | COMPLEX_S8_KEYWORD
587 { $$ = builtin_type_f_complex_s8;}
588 | COMPLEX_S16_KEYWORD
589 { $$ = builtin_type_f_complex_s16;}
590 | COMPLEX_S32_KEYWORD
591 { $$ = builtin_type_f_complex_s32;}
592 ;
593
594typename: TYPENAME
595 ;
596
597nonempty_typelist
598 : type
599 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
600 $<ivec>$[0] = 1; /* Number of types in vector */
601 $$[1] = $1;
602 }
603 | nonempty_typelist ',' type
604 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
605 $$ = (struct type **) realloc ((char *) $1, len);
606 $$[$<ivec>$[0]] = $3;
607 }
608 ;
609
610name : NAME
611 { $$ = $1.stoken; }
612 | TYPENAME
613 { $$ = $1.stoken; }
614 | NAME_OR_INT
615 { $$ = $1.stoken; }
616 ;
617
618name_not_typename : NAME
619/* These would be useful if name_not_typename was useful, but it is just
620 a fake for "variable", so these cause reduce/reduce conflicts because
621 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
622 =exp) or just an exp. If name_not_typename was ever used in an lvalue
623 context where only a name could occur, this might be useful.
624 | NAME_OR_INT
625 */
626 ;
627
628%%
629
630/* Take care of parsing a number (anything that starts with a digit).
631 Set yylval and return the token type; update lexptr.
632 LEN is the number of characters in it. */
633
634/*** Needs some error checking for the float case ***/
635
636static int
637parse_number (p, len, parsed_float, putithere)
638 register char *p;
639 register int len;
640 int parsed_float;
641 YYSTYPE *putithere;
642{
643 register LONGEST n = 0;
644 register LONGEST prevn = 0;
c906108c
SS
645 register int c;
646 register int base = input_radix;
647 int unsigned_p = 0;
648 int long_p = 0;
649 ULONGEST high_bit;
650 struct type *signed_type;
651 struct type *unsigned_type;
652
653 if (parsed_float)
654 {
655 /* It's a float since it contains a point or an exponent. */
656 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
657 char *tmp, *tmp2;
658
4fcf66da 659 tmp = xstrdup (p);
c906108c
SS
660 for (tmp2 = tmp; *tmp2; ++tmp2)
661 if (*tmp2 == 'd' || *tmp2 == 'D')
662 *tmp2 = 'e';
663 putithere->dval = atof (tmp);
664 free (tmp);
665 return FLOAT;
666 }
667
668 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
669 if (p[0] == '0')
670 switch (p[1])
671 {
672 case 'x':
673 case 'X':
674 if (len >= 3)
675 {
676 p += 2;
677 base = 16;
678 len -= 2;
679 }
680 break;
681
682 case 't':
683 case 'T':
684 case 'd':
685 case 'D':
686 if (len >= 3)
687 {
688 p += 2;
689 base = 10;
690 len -= 2;
691 }
692 break;
693
694 default:
695 base = 8;
696 break;
697 }
698
699 while (len-- > 0)
700 {
701 c = *p++;
0f6e1ba6
AC
702 if (isupper (c))
703 c = tolower (c);
704 if (len == 0 && c == 'l')
705 long_p = 1;
706 else if (len == 0 && c == 'u')
707 unsigned_p = 1;
c906108c
SS
708 else
709 {
0f6e1ba6
AC
710 int i;
711 if (c >= '0' && c <= '9')
712 i = c - '0';
713 else if (c >= 'a' && c <= 'f')
714 i = c - 'a' + 10;
c906108c
SS
715 else
716 return ERROR; /* Char not a digit */
0f6e1ba6
AC
717 if (i >= base)
718 return ERROR; /* Invalid digit in this base */
719 n *= base;
720 n += i;
c906108c 721 }
c906108c
SS
722 /* Portably test for overflow (only works for nonzero values, so make
723 a second check for zero). */
724 if ((prevn >= n) && n != 0)
725 unsigned_p=1; /* Try something unsigned */
726 /* If range checking enabled, portably test for unsigned overflow. */
727 if (RANGE_CHECK && n != 0)
728 {
729 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
730 range_error("Overflow on numeric constant.");
731 }
732 prevn = n;
733 }
734
735 /* If the number is too big to be an int, or it's got an l suffix
736 then it's a long. Work out if this has to be a long by
737 shifting right and and seeing if anything remains, and the
738 target int size is different to the target long size.
739
740 In the expression below, we could have tested
741 (n >> TARGET_INT_BIT)
742 to see if it was zero,
743 but too many compilers warn about that, when ints and longs
744 are the same size. So we shift it twice, with fewer bits
745 each time, for the same result. */
746
747 if ((TARGET_INT_BIT != TARGET_LONG_BIT
748 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
749 || long_p)
750 {
751 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
752 unsigned_type = builtin_type_unsigned_long;
753 signed_type = builtin_type_long;
754 }
755 else
756 {
757 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
758 unsigned_type = builtin_type_unsigned_int;
759 signed_type = builtin_type_int;
760 }
761
762 putithere->typed_val.val = n;
763
764 /* If the high bit of the worked out type is set then this number
765 has to be unsigned. */
766
767 if (unsigned_p || (n & high_bit))
768 putithere->typed_val.type = unsigned_type;
769 else
770 putithere->typed_val.type = signed_type;
771
772 return INT;
773}
774
775struct token
776{
777 char *operator;
778 int token;
779 enum exp_opcode opcode;
780};
781
782static const struct token dot_ops[] =
783{
784 { ".and.", BOOL_AND, BINOP_END },
785 { ".AND.", BOOL_AND, BINOP_END },
786 { ".or.", BOOL_OR, BINOP_END },
787 { ".OR.", BOOL_OR, BINOP_END },
788 { ".not.", BOOL_NOT, BINOP_END },
789 { ".NOT.", BOOL_NOT, BINOP_END },
790 { ".eq.", EQUAL, BINOP_END },
791 { ".EQ.", EQUAL, BINOP_END },
792 { ".eqv.", EQUAL, BINOP_END },
793 { ".NEQV.", NOTEQUAL, BINOP_END },
794 { ".neqv.", NOTEQUAL, BINOP_END },
795 { ".EQV.", EQUAL, BINOP_END },
796 { ".ne.", NOTEQUAL, BINOP_END },
797 { ".NE.", NOTEQUAL, BINOP_END },
798 { ".le.", LEQ, BINOP_END },
799 { ".LE.", LEQ, BINOP_END },
800 { ".ge.", GEQ, BINOP_END },
801 { ".GE.", GEQ, BINOP_END },
802 { ".gt.", GREATERTHAN, BINOP_END },
803 { ".GT.", GREATERTHAN, BINOP_END },
804 { ".lt.", LESSTHAN, BINOP_END },
805 { ".LT.", LESSTHAN, BINOP_END },
806 { NULL, 0, 0 }
807};
808
809struct f77_boolean_val
810{
811 char *name;
812 int value;
813};
814
815static const struct f77_boolean_val boolean_values[] =
816{
817 { ".true.", 1 },
818 { ".TRUE.", 1 },
819 { ".false.", 0 },
820 { ".FALSE.", 0 },
821 { NULL, 0 }
822};
823
824static const struct token f77_keywords[] =
825{
826 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
827 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
828 { "character", CHARACTER, BINOP_END },
829 { "integer_2", INT_S2_KEYWORD, BINOP_END },
830 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
831 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
832 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
833 { "integer", INT_KEYWORD, BINOP_END },
834 { "logical", LOGICAL_KEYWORD, BINOP_END },
835 { "real_16", REAL_S16_KEYWORD, BINOP_END },
836 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
837 { "sizeof", SIZEOF, BINOP_END },
838 { "real_8", REAL_S8_KEYWORD, BINOP_END },
839 { "real", REAL_KEYWORD, BINOP_END },
840 { NULL, 0, 0 }
841};
842
843/* Implementation of a dynamically expandable buffer for processing input
844 characters acquired through lexptr and building a value to return in
845 yylval. Ripped off from ch-exp.y */
846
847static char *tempbuf; /* Current buffer contents */
848static int tempbufsize; /* Size of allocated buffer */
849static int tempbufindex; /* Current index into buffer */
850
851#define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
852
853#define CHECKBUF(size) \
854 do { \
855 if (tempbufindex + (size) >= tempbufsize) \
856 { \
857 growbuf_by_size (size); \
858 } \
859 } while (0);
860
861
862/* Grow the static temp buffer if necessary, including allocating the first one
863 on demand. */
864
865static void
866growbuf_by_size (count)
867 int count;
868{
869 int growby;
870
871 growby = max (count, GROWBY_MIN_SIZE);
872 tempbufsize += growby;
873 if (tempbuf == NULL)
874 tempbuf = (char *) malloc (tempbufsize);
875 else
876 tempbuf = (char *) realloc (tempbuf, tempbufsize);
877}
878
879/* Blatantly ripped off from ch-exp.y. This routine recognizes F77
880 string-literals.
881
882 Recognize a string literal. A string literal is a nonzero sequence
883 of characters enclosed in matching single quotes, except that
884 a single character inside single quotes is a character literal, which
885 we reject as a string literal. To embed the terminator character inside
886 a string, it is simply doubled (I.E. 'this''is''one''string') */
887
888static int
889match_string_literal ()
890{
891 char *tokptr = lexptr;
892
893 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
894 {
895 CHECKBUF (1);
896 if (*tokptr == *lexptr)
897 {
898 if (*(tokptr + 1) == *lexptr)
899 tokptr++;
900 else
901 break;
902 }
903 tempbuf[tempbufindex++] = *tokptr;
904 }
905 if (*tokptr == '\0' /* no terminator */
906 || tempbufindex == 0) /* no string */
907 return 0;
908 else
909 {
910 tempbuf[tempbufindex] = '\0';
911 yylval.sval.ptr = tempbuf;
912 yylval.sval.length = tempbufindex;
913 lexptr = ++tokptr;
914 return STRING_LITERAL;
915 }
916}
917
918/* Read one token, getting characters through lexptr. */
919
920static int
921yylex ()
922{
923 int c;
924 int namelen;
925 unsigned int i,token;
926 char *tokstart;
927
928 retry:
065432a8
PM
929
930 prev_lexptr = lexptr;
931
c906108c
SS
932 tokstart = lexptr;
933
934 /* First of all, let us make sure we are not dealing with the
935 special tokens .true. and .false. which evaluate to 1 and 0. */
936
937 if (*lexptr == '.')
938 {
939 for (i = 0; boolean_values[i].name != NULL; i++)
940 {
941 if STREQN (tokstart, boolean_values[i].name,
942 strlen (boolean_values[i].name))
943 {
944 lexptr += strlen (boolean_values[i].name);
945 yylval.lval = boolean_values[i].value;
946 return BOOLEAN_LITERAL;
947 }
948 }
949 }
950
951 /* See if it is a special .foo. operator */
952
953 for (i = 0; dot_ops[i].operator != NULL; i++)
954 if (STREQN (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)))
955 {
956 lexptr += strlen (dot_ops[i].operator);
957 yylval.opcode = dot_ops[i].opcode;
958 return dot_ops[i].token;
959 }
960
961 switch (c = *tokstart)
962 {
963 case 0:
964 return 0;
965
966 case ' ':
967 case '\t':
968 case '\n':
969 lexptr++;
970 goto retry;
971
972 case '\'':
973 token = match_string_literal ();
974 if (token != 0)
975 return (token);
976 break;
977
978 case '(':
979 paren_depth++;
980 lexptr++;
981 return c;
982
983 case ')':
984 if (paren_depth == 0)
985 return 0;
986 paren_depth--;
987 lexptr++;
988 return c;
989
990 case ',':
991 if (comma_terminates && paren_depth == 0)
992 return 0;
993 lexptr++;
994 return c;
995
996 case '.':
997 /* Might be a floating point number. */
998 if (lexptr[1] < '0' || lexptr[1] > '9')
999 goto symbol; /* Nope, must be a symbol. */
1000 /* FALL THRU into number case. */
1001
1002 case '0':
1003 case '1':
1004 case '2':
1005 case '3':
1006 case '4':
1007 case '5':
1008 case '6':
1009 case '7':
1010 case '8':
1011 case '9':
1012 {
1013 /* It's a number. */
1014 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1015 register char *p = tokstart;
1016 int hex = input_radix > 10;
1017
1018 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1019 {
1020 p += 2;
1021 hex = 1;
1022 }
1023 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1024 {
1025 p += 2;
1026 hex = 0;
1027 }
1028
1029 for (;; ++p)
1030 {
1031 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1032 got_dot = got_e = 1;
1033 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1034 got_dot = got_d = 1;
1035 else if (!hex && !got_dot && *p == '.')
1036 got_dot = 1;
1037 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1038 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1039 && (*p == '-' || *p == '+'))
1040 /* This is the sign of the exponent, not the end of the
1041 number. */
1042 continue;
1043 /* We will take any letters or digits. parse_number will
1044 complain if past the radix, or if L or U are not final. */
1045 else if ((*p < '0' || *p > '9')
1046 && ((*p < 'a' || *p > 'z')
1047 && (*p < 'A' || *p > 'Z')))
1048 break;
1049 }
1050 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1051 &yylval);
1052 if (toktype == ERROR)
1053 {
1054 char *err_copy = (char *) alloca (p - tokstart + 1);
1055
1056 memcpy (err_copy, tokstart, p - tokstart);
1057 err_copy[p - tokstart] = 0;
1058 error ("Invalid number \"%s\".", err_copy);
1059 }
1060 lexptr = p;
1061 return toktype;
1062 }
1063
1064 case '+':
1065 case '-':
1066 case '*':
1067 case '/':
1068 case '%':
1069 case '|':
1070 case '&':
1071 case '^':
1072 case '~':
1073 case '!':
1074 case '@':
1075 case '<':
1076 case '>':
1077 case '[':
1078 case ']':
1079 case '?':
1080 case ':':
1081 case '=':
1082 case '{':
1083 case '}':
1084 symbol:
1085 lexptr++;
1086 return c;
1087 }
1088
1089 if (!(c == '_' || c == '$'
1090 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1091 /* We must have come across a bad character (e.g. ';'). */
1092 error ("Invalid character '%c' in expression.", c);
1093
1094 namelen = 0;
1095 for (c = tokstart[namelen];
1096 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1097 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1098 c = tokstart[++namelen]);
1099
1100 /* The token "if" terminates the expression and is NOT
1101 removed from the input stream. */
1102
1103 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1104 return 0;
1105
1106 lexptr += namelen;
1107
1108 /* Catch specific keywords. */
1109
1110 for (i = 0; f77_keywords[i].operator != NULL; i++)
1111 if (STREQN(tokstart, f77_keywords[i].operator,
1112 strlen(f77_keywords[i].operator)))
1113 {
1114 /* lexptr += strlen(f77_keywords[i].operator); */
1115 yylval.opcode = f77_keywords[i].opcode;
1116 return f77_keywords[i].token;
1117 }
1118
1119 yylval.sval.ptr = tokstart;
1120 yylval.sval.length = namelen;
1121
1122 if (*tokstart == '$')
1123 {
1124 write_dollar_variable (yylval.sval);
1125 return VARIABLE;
1126 }
1127
1128 /* Use token-type TYPENAME for symbols that happen to be defined
1129 currently as names of types; NAME for other symbols.
1130 The caller is not constrained to care about the distinction. */
1131 {
1132 char *tmp = copy_name (yylval.sval);
1133 struct symbol *sym;
1134 int is_a_field_of_this = 0;
1135 int hextype;
1136
1137 sym = lookup_symbol (tmp, expression_context_block,
1138 VAR_NAMESPACE,
1139 current_language->la_language == language_cplus
1140 ? &is_a_field_of_this : NULL,
1141 NULL);
1142 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1143 {
1144 yylval.tsym.type = SYMBOL_TYPE (sym);
1145 return TYPENAME;
1146 }
1147 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1148 return TYPENAME;
1149
1150 /* Input names that aren't symbols but ARE valid hex numbers,
1151 when the input radix permits them, can be names or numbers
1152 depending on the parse. Note we support radixes > 16 here. */
1153 if (!sym
1154 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1155 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1156 {
1157 YYSTYPE newlval; /* Its value is ignored. */
1158 hextype = parse_number (tokstart, namelen, 0, &newlval);
1159 if (hextype == INT)
1160 {
1161 yylval.ssym.sym = sym;
1162 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1163 return NAME_OR_INT;
1164 }
1165 }
1166
1167 /* Any other kind of symbol */
1168 yylval.ssym.sym = sym;
1169 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1170 return NAME;
1171 }
1172}
1173
1174void
1175yyerror (msg)
1176 char *msg;
1177{
065432a8
PM
1178 if (prev_lexptr)
1179 lexptr = prev_lexptr;
1180
c906108c
SS
1181 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1182}
This page took 0.223771 seconds and 4 git commands to generate.