import gdb-19990422 snapshot
[deliverable/binutils-gdb.git] / gdb / fr30-tdep.c
CommitLineData
c906108c
SS
1/* Target-dependent code for the Fujitsu FR30.
2 Copyright 1999, Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
23#include "obstack.h"
24#include "target.h"
25#include "value.h"
26#include "bfd.h"
27#include "gdb_string.h"
28#include "gdbcore.h"
29#include "symfile.h"
30
31/* Function: pop_frame
32 This routine gets called when either the user uses the `return'
33 command, or the call dummy breakpoint gets hit. */
34
35void
36fr30_pop_frame ()
37{
38 struct frame_info *frame = get_current_frame();
39 int regnum;
40 CORE_ADDR sp = read_register(SP_REGNUM);
41
42 if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
43 generic_pop_dummy_frame ();
44 else
45 {
46 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
47
48 for (regnum = 0; regnum < NUM_REGS; regnum++)
49 if (frame->fsr.regs[regnum] != 0) {
50 write_register (regnum,
51 read_memory_unsigned_integer (frame->fsr.regs[regnum],
52 REGISTER_RAW_SIZE(regnum)));
53 }
54 write_register (SP_REGNUM, sp + frame->framesize);
55 }
56 flush_cached_frames ();
57}
58
59/* Function: skip_prologue
60 Return the address of the first code past the prologue of the function. */
61
62CORE_ADDR
63fr30_skip_prologue(CORE_ADDR pc)
64{
65 CORE_ADDR func_addr, func_end;
66
67 /* See what the symbol table says */
68
69 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
70 {
71 struct symtab_and_line sal;
72
73 sal = find_pc_line (func_addr, 0);
74
75 if (sal.line != 0 && sal.end < func_end) {
76 return sal.end;
77 }
78 }
79
80/* Either we didn't find the start of this function (nothing we can do),
81 or there's no line info, or the line after the prologue is after
82 the end of the function (there probably isn't a prologue). */
83
84 return pc;
85}
86
87
88/* Function: push_arguments
89 Setup arguments and RP for a call to the target. First four args
90 go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
91 Structs are passed by reference. XXX not right now Z.R.
92 64 bit quantities (doubles and long longs) may be split between
93 the regs and the stack.
94 When calling a function that returns a struct, a pointer to the struct
95 is passed in as a secret first argument (always in FIRST_ARGREG).
96
97 Stack space for the args has NOT been allocated: that job is up to us.
98*/
99
100CORE_ADDR
101fr30_push_arguments(nargs, args, sp, struct_return, struct_addr)
102 int nargs;
103 value_ptr * args;
104 CORE_ADDR sp;
105 int struct_return;
106 CORE_ADDR struct_addr;
107{
108 int argreg;
109 int argnum;
110 int stack_offset;
111 struct stack_arg {
112 char *val;
113 int len;
114 int offset;
115 };
116 struct stack_arg *stack_args =
117 (struct stack_arg*)alloca (nargs * sizeof (struct stack_arg));
118 int nstack_args = 0;
119
120 argreg = FIRST_ARGREG;
121
122 /* the struct_return pointer occupies the first parameter-passing reg */
123 if (struct_return)
124 write_register (argreg++, struct_addr);
125
126 stack_offset = 0;
127
128 /* Process args from left to right. Store as many as allowed in
129 registers, save the rest to be pushed on the stack */
130 for(argnum = 0; argnum < nargs; argnum++)
131 {
132 char * val;
133 value_ptr arg = args[argnum];
134 struct type * arg_type = check_typedef (VALUE_TYPE (arg));
135 struct type * target_type = TYPE_TARGET_TYPE (arg_type);
136 int len = TYPE_LENGTH (arg_type);
137 enum type_code typecode = TYPE_CODE (arg_type);
138 CORE_ADDR regval;
139 int newarg;
140
141 val = (char *) VALUE_CONTENTS (arg);
142
143 {
144 /* Copy the argument to general registers or the stack in
145 register-sized pieces. Large arguments are split between
146 registers and stack. */
147 while (len > 0)
148 {
149 if (argreg <= LAST_ARGREG)
150 {
151 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
152 regval = extract_address (val, partial_len);
153
154 /* It's a simple argument being passed in a general
155 register. */
156 write_register (argreg, regval);
157 argreg++;
158 len -= partial_len;
159 val += partial_len;
160 }
161 else
162 {
163 /* keep for later pushing */
164 stack_args[nstack_args].val = val;
165 stack_args[nstack_args++].len = len;
166 break;
167 }
168 }
169 }
170 }
171 /* now do the real stack pushing, process args right to left */
172 while(nstack_args--)
173 {
174 sp -= stack_args[nstack_args].len;
175 write_memory(sp, stack_args[nstack_args].val,
176 stack_args[nstack_args].len);
177 }
178
179 /* Return adjusted stack pointer. */
180 return sp;
181}
182
183_initialize_fr30_tdep()
184{
185 extern int print_insn_fr30(bfd_vma, disassemble_info *);
186
187 tm_print_insn = print_insn_fr30;
188}
189
190/* Function: check_prologue_cache
191 Check if prologue for this frame's PC has already been scanned.
192 If it has, copy the relevant information about that prologue and
193 return non-zero. Otherwise do not copy anything and return zero.
194
195 The information saved in the cache includes:
196 * the frame register number;
197 * the size of the stack frame;
198 * the offsets of saved regs (relative to the old SP); and
199 * the offset from the stack pointer to the frame pointer
200
201 The cache contains only one entry, since this is adequate
202 for the typical sequence of prologue scan requests we get.
203 When performing a backtrace, GDB will usually ask to scan
204 the same function twice in a row (once to get the frame chain,
205 and once to fill in the extra frame information).
206*/
207
208static struct frame_info prologue_cache;
209
210static int
211check_prologue_cache (fi)
212 struct frame_info * fi;
213{
214 int i;
215
216 if (fi->pc == prologue_cache.pc)
217 {
218 fi->framereg = prologue_cache.framereg;
219 fi->framesize = prologue_cache.framesize;
220 fi->frameoffset = prologue_cache.frameoffset;
221 for (i = 0; i <= NUM_REGS; i++)
222 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
223 return 1;
224 }
225 else
226 return 0;
227}
228
229
230/* Function: save_prologue_cache
231 Copy the prologue information from fi to the prologue cache.
232*/
233
234static void
235save_prologue_cache (fi)
236 struct frame_info * fi;
237{
238 int i;
239
240 prologue_cache.pc = fi->pc;
241 prologue_cache.framereg = fi->framereg;
242 prologue_cache.framesize = fi->framesize;
243 prologue_cache.frameoffset = fi->frameoffset;
244
245 for (i = 0; i <= NUM_REGS; i++) {
246 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
247 }
248}
249
250
251/* Function: scan_prologue
252 Scan the prologue of the function that contains PC, and record what
253 we find in PI. PI->fsr must be zeroed by the called. Returns the
254 pc after the prologue. Note that the addresses saved in pi->fsr
255 are actually just frame relative (negative offsets from the frame
256 pointer). This is because we don't know the actual value of the
257 frame pointer yet. In some circumstances, the frame pointer can't
258 be determined till after we have scanned the prologue. */
259
260static void
261fr30_scan_prologue (fi)
262 struct frame_info * fi;
263{
264 int sp_offset, fp_offset;
265 CORE_ADDR prologue_start, prologue_end, current_pc;
266
267 /* Check if this function is already in the cache of frame information. */
268 if (check_prologue_cache (fi))
269 return;
270
271 /* Assume there is no frame until proven otherwise. */
272 fi->framereg = SP_REGNUM;
273 fi->framesize = 0;
274 fi->frameoffset = 0;
275
276 /* Find the function prologue. If we can't find the function in
277 the symbol table, peek in the stack frame to find the PC. */
278 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
279 {
280 /* Assume the prologue is everything between the first instruction
281 in the function and the first source line. */
282 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
283
284 if (sal.line == 0) /* no line info, use current PC */
285 prologue_end = fi->pc;
286 else if (sal.end < prologue_end) /* next line begins after fn end */
287 prologue_end = sal.end; /* (probably means no prologue) */
288 }
289 else
290 {
291 /* XXX Z.R. What now??? The following is entirely bogus */
292 prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
293 prologue_end = prologue_start + 40;
294 }
295
296 /* Now search the prologue looking for instructions that set up the
297 frame pointer, adjust the stack pointer, and save registers. */
298
299 sp_offset = fp_offset = 0;
300 for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
301 {
302 unsigned int insn;
303
304 insn = read_memory_unsigned_integer (current_pc, 2);
305
306 if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */
307 {
308 int reg, mask = insn & 0xff;
309
310 /* scan in one sweep - create virtual 16-bit mask from either insn's mask */
311 if((insn & 0x0100) == 0)
312 {
313 mask <<= 8; /* stm0 - move to upper byte in virtual mask */
314 }
315
316 /* Calculate offsets of saved registers (to be turned later into addresses). */
317 for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
318 if (mask & (1 << (15 - reg)))
319 {
320 sp_offset -= 4;
321 fi->fsr.regs[reg] = sp_offset;
322 }
323 }
324 else if((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */
325 {
326 int reg = insn & 0xf;
327
328 sp_offset -= 4;
329 fi->fsr.regs[reg] = sp_offset;
330 }
331 else if((insn & 0xff00) == 0x0f00) /* enter */
332 {
333 fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
334 sp_offset -= 4 * (insn & 0xff);
335 fi->framereg = FP_REGNUM;
336 }
337 else if(insn == 0x1781) /* st rp,@-sp */
338 {
339 sp_offset -= 4;
340 fi->fsr.regs[RP_REGNUM] = sp_offset;
341 }
342 else if(insn == 0x170e) /* st fp,@-sp */
343 {
344 sp_offset -= 4;
345 fi->fsr.regs[FP_REGNUM] = sp_offset;
346 }
347 else if(insn == 0x8bfe) /* mov sp,fp */
348 {
349 fi->framereg = FP_REGNUM;
350 }
351 else if((insn & 0xff00) == 0xa300) /* addsp xx */
352 {
353 sp_offset += 4 * (signed char)(insn & 0xff);
354 }
355 else if((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */
356 read_memory_unsigned_integer(current_pc+4, 2)
357 == 0xac0f) /* sub r0,sp */
358 {
359 /* large stack adjustment */
360 sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer(current_pc+2, 2));
361 current_pc += 4;
362 }
363 else if(insn == 0x9f80 && /* ldi:32 xx,r0 */
364 read_memory_unsigned_integer(current_pc+6, 2)
365 == 0xac0f) /* sub r0,sp */
366 {
367 /* large stack adjustment */
368 sp_offset -=
369 (read_memory_unsigned_integer(current_pc+2, 2) << 16 |
370 read_memory_unsigned_integer(current_pc+4, 2));
371 current_pc += 6;
372 }
373 }
374
375 /* The frame size is just the negative of the offset (from the original SP)
376 of the last thing thing we pushed on the stack. The frame offset is
377 [new FP] - [new SP]. */
378 fi->framesize = -sp_offset;
379 fi->frameoffset = fp_offset - sp_offset;
380
381 save_prologue_cache (fi);
382}
383
384/* Function: init_extra_frame_info
385 Setup the frame's frame pointer, pc, and frame addresses for saved
386 registers. Most of the work is done in scan_prologue().
387
388 Note that when we are called for the last frame (currently active frame),
389 that fi->pc and fi->frame will already be setup. However, fi->frame will
390 be valid only if this routine uses FP. For previous frames, fi-frame will
391 always be correct (since that is derived from fr30_frame_chain ()).
392
393 We can be called with the PC in the call dummy under two circumstances.
394 First, during normal backtracing, second, while figuring out the frame
395 pointer just prior to calling the target function (see run_stack_dummy). */
396
397void
398fr30_init_extra_frame_info (fi)
399 struct frame_info * fi;
400{
401 int reg;
402
403 if (fi->next)
404 fi->pc = FRAME_SAVED_PC (fi->next);
405
406 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
407
408 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
409 {
410 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
411 by assuming it's always FP. */
412 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
413 fi->framesize = 0;
414 fi->frameoffset = 0;
415 return;
416 }
417 fr30_scan_prologue (fi);
418
419 if (!fi->next) /* this is the innermost frame? */
420 fi->frame = read_register (fi->framereg);
421 else /* not the innermost frame */
422 /* If we have an FP, the callee saved it. */
423 if (fi->framereg == FP_REGNUM)
424 if (fi->next->fsr.regs[fi->framereg] != 0)
425 fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
426 4);
427 /* Calculate actual addresses of saved registers using offsets determined
428 by fr30_scan_prologue. */
429 for (reg = 0; reg < NUM_REGS; reg++)
430 if (fi->fsr.regs[reg] != 0) {
431 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
432 }
433}
434
435/* Function: find_callers_reg
436 Find REGNUM on the stack. Otherwise, it's in an active register.
437 One thing we might want to do here is to check REGNUM against the
438 clobber mask, and somehow flag it as invalid if it isn't saved on
439 the stack somewhere. This would provide a graceful failure mode
440 when trying to get the value of caller-saves registers for an inner
441 frame. */
442
443CORE_ADDR
444fr30_find_callers_reg (fi, regnum)
445 struct frame_info *fi;
446 int regnum;
447{
448 for (; fi; fi = fi->next)
449 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
450 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
451 else if (fi->fsr.regs[regnum] != 0)
452 return read_memory_unsigned_integer (fi->fsr.regs[regnum],
453 REGISTER_RAW_SIZE(regnum));
454
455 return read_register (regnum);
456}
457
458
459/* Function: frame_chain
460 Figure out the frame prior to FI. Unfortunately, this involves
461 scanning the prologue of the caller, which will also be done
462 shortly by fr30_init_extra_frame_info. For the dummy frame, we
463 just return the stack pointer that was in use at the time the
464 function call was made. */
465
466
467CORE_ADDR
468fr30_frame_chain (fi)
469 struct frame_info * fi;
470{
471 CORE_ADDR fn_start, callers_pc, fp;
472 struct frame_info caller_fi;
473 int framereg;
474
475 /* is this a dummy frame? */
476 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
477 return fi->frame; /* dummy frame same as caller's frame */
478
479 /* is caller-of-this a dummy frame? */
480 callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */
481 fp = fr30_find_callers_reg (fi, FP_REGNUM);
482 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
483 return fp; /* dummy frame's frame may bear no relation to ours */
484
485 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
486 if (fn_start == entry_point_address ())
487 return 0; /* in _start fn, don't chain further */
488
489 framereg = fi->framereg;
490
491 /* If the caller is the startup code, we're at the end of the chain. */
492 if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
493 if (fn_start == entry_point_address ())
494 return 0;
495
496 memset (& caller_fi, 0, sizeof (caller_fi));
497 caller_fi.pc = callers_pc;
498 fr30_scan_prologue (& caller_fi);
499 framereg = caller_fi.framereg;
500
501 /* If the caller used a frame register, return its value.
502 Otherwise, return the caller's stack pointer. */
503 if (framereg == FP_REGNUM)
504 return fr30_find_callers_reg (fi, framereg);
505 else
506 return fi->frame + fi->framesize;
507}
508
509/* Function: frame_saved_pc
510 Find the caller of this frame. We do this by seeing if RP_REGNUM
511 is saved in the stack anywhere, otherwise we get it from the
512 registers. If the inner frame is a dummy frame, return its PC
513 instead of RP, because that's where "caller" of the dummy-frame
514 will be found. */
515
516CORE_ADDR
517fr30_frame_saved_pc (fi)
518 struct frame_info *fi;
519{
520 if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
521 return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
522 else
523 return fr30_find_callers_reg (fi, RP_REGNUM);
524}
525
526/* Function: fix_call_dummy
527 Pokes the callee function's address into the CALL_DUMMY assembly stub.
528 Assumes that the CALL_DUMMY looks like this:
529 jarl <offset24>, r31
530 trap
531 */
532
533int
534fr30_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
535 char *dummy;
536 CORE_ADDR sp;
537 CORE_ADDR fun;
538 int nargs;
539 value_ptr *args;
540 struct type *type;
541 int gcc_p;
542{
543 long offset24;
544
545 offset24 = (long) fun - (long) entry_point_address ();
546 offset24 &= 0x3fffff;
547 offset24 |= 0xff800000; /* jarl <offset24>, r31 */
548
549 store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff);
550 store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16);
551 return 0;
552}
This page took 0.045354 seconds and 4 git commands to generate.