Makefile.in: Add gen-zero-r0 option.
[deliverable/binutils-gdb.git] / gdb / fr30-tdep.c
CommitLineData
7a3085c1
AC
1// OBSOLETE /* Target-dependent code for the Fujitsu FR30.
2// OBSOLETE Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3// OBSOLETE
4// OBSOLETE This file is part of GDB.
5// OBSOLETE
6// OBSOLETE This program is free software; you can redistribute it and/or modify
7// OBSOLETE it under the terms of the GNU General Public License as published by
8// OBSOLETE the Free Software Foundation; either version 2 of the License, or
9// OBSOLETE (at your option) any later version.
10// OBSOLETE
11// OBSOLETE This program is distributed in the hope that it will be useful,
12// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
13// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// OBSOLETE GNU General Public License for more details.
15// OBSOLETE
16// OBSOLETE You should have received a copy of the GNU General Public License
17// OBSOLETE along with this program; if not, write to the Free Software
18// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
19// OBSOLETE Boston, MA 02111-1307, USA. */
20// OBSOLETE
21// OBSOLETE #include "defs.h"
22// OBSOLETE #include "frame.h"
23// OBSOLETE #include "inferior.h"
24// OBSOLETE #include "obstack.h"
25// OBSOLETE #include "target.h"
26// OBSOLETE #include "value.h"
27// OBSOLETE #include "bfd.h"
28// OBSOLETE #include "gdb_string.h"
29// OBSOLETE #include "gdbcore.h"
30// OBSOLETE #include "symfile.h"
31// OBSOLETE #include "regcache.h"
32// OBSOLETE
33// OBSOLETE /* An expression that tells us whether the function invocation represented
34// OBSOLETE by FI does not have a frame on the stack associated with it. */
35// OBSOLETE int
36// OBSOLETE fr30_frameless_function_invocation (struct frame_info *fi)
37// OBSOLETE {
38// OBSOLETE int frameless;
39// OBSOLETE CORE_ADDR func_start, after_prologue;
40// OBSOLETE func_start = (get_pc_function_start ((fi)->pc) +
41// OBSOLETE FUNCTION_START_OFFSET);
42// OBSOLETE after_prologue = func_start;
43// OBSOLETE after_prologue = SKIP_PROLOGUE (after_prologue);
44// OBSOLETE frameless = (after_prologue == func_start);
45// OBSOLETE return frameless;
46// OBSOLETE }
47// OBSOLETE
48// OBSOLETE /* Function: pop_frame
49// OBSOLETE This routine gets called when either the user uses the `return'
50// OBSOLETE command, or the call dummy breakpoint gets hit. */
51// OBSOLETE
52// OBSOLETE void
53// OBSOLETE fr30_pop_frame (void)
54// OBSOLETE {
55// OBSOLETE struct frame_info *frame = get_current_frame ();
56// OBSOLETE int regnum;
57// OBSOLETE CORE_ADDR sp = read_register (SP_REGNUM);
58// OBSOLETE
59// OBSOLETE if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
60// OBSOLETE generic_pop_dummy_frame ();
61// OBSOLETE else
62// OBSOLETE {
63// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
64// OBSOLETE
65// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++)
66// OBSOLETE if (frame->fsr.regs[regnum] != 0)
67// OBSOLETE {
68// OBSOLETE write_register (regnum,
69// OBSOLETE read_memory_unsigned_integer (frame->fsr.regs[regnum],
70// OBSOLETE REGISTER_RAW_SIZE (regnum)));
71// OBSOLETE }
72// OBSOLETE write_register (SP_REGNUM, sp + frame->framesize);
73// OBSOLETE }
74// OBSOLETE flush_cached_frames ();
75// OBSOLETE }
76// OBSOLETE
77// OBSOLETE
78// OBSOLETE /* Function: fr30_store_return_value
79// OBSOLETE Put a value where a caller expects to see it. Used by the 'return'
80// OBSOLETE command. */
81// OBSOLETE void
82// OBSOLETE fr30_store_return_value (struct type *type,
83// OBSOLETE char *valbuf)
84// OBSOLETE {
85// OBSOLETE /* Here's how the FR30 returns values (gleaned from gcc/config/
86// OBSOLETE fr30/fr30.h):
87// OBSOLETE
88// OBSOLETE If the return value is 32 bits long or less, it goes in r4.
89// OBSOLETE
90// OBSOLETE If the return value is 64 bits long or less, it goes in r4 (most
91// OBSOLETE significant word) and r5 (least significant word.
92// OBSOLETE
93// OBSOLETE If the function returns a structure, of any size, the caller
94// OBSOLETE passes the function an invisible first argument where the callee
95// OBSOLETE should store the value. But GDB doesn't let you do that anyway.
96// OBSOLETE
97// OBSOLETE If you're returning a value smaller than a word, it's not really
98// OBSOLETE necessary to zero the upper bytes of the register; the caller is
99// OBSOLETE supposed to ignore them. However, the FR30 typically keeps its
100// OBSOLETE values extended to the full register width, so we should emulate
101// OBSOLETE that. */
102// OBSOLETE
103// OBSOLETE /* The FR30 is big-endian, so if we return a small value (like a
104// OBSOLETE short or a char), we need to position it correctly within the
105// OBSOLETE register. We round the size up to a register boundary, and then
106// OBSOLETE adjust the offset so as to place the value at the right end. */
107// OBSOLETE int value_size = TYPE_LENGTH (type);
108// OBSOLETE int returned_size = (value_size + FR30_REGSIZE - 1) & ~(FR30_REGSIZE - 1);
109// OBSOLETE int offset = (REGISTER_BYTE (RETVAL_REG)
110// OBSOLETE + (returned_size - value_size));
111// OBSOLETE char *zeros = alloca (returned_size);
112// OBSOLETE memset (zeros, 0, returned_size);
113// OBSOLETE
114// OBSOLETE write_register_bytes (REGISTER_BYTE (RETVAL_REG), zeros, returned_size);
115// OBSOLETE write_register_bytes (offset, valbuf, value_size);
116// OBSOLETE }
117// OBSOLETE
118// OBSOLETE
119// OBSOLETE /* Function: skip_prologue
120// OBSOLETE Return the address of the first code past the prologue of the function. */
121// OBSOLETE
122// OBSOLETE CORE_ADDR
123// OBSOLETE fr30_skip_prologue (CORE_ADDR pc)
124// OBSOLETE {
125// OBSOLETE CORE_ADDR func_addr, func_end;
126// OBSOLETE
127// OBSOLETE /* See what the symbol table says */
128// OBSOLETE
129// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
130// OBSOLETE {
131// OBSOLETE struct symtab_and_line sal;
132// OBSOLETE
133// OBSOLETE sal = find_pc_line (func_addr, 0);
134// OBSOLETE
135// OBSOLETE if (sal.line != 0 && sal.end < func_end)
136// OBSOLETE {
137// OBSOLETE return sal.end;
138// OBSOLETE }
139// OBSOLETE }
140// OBSOLETE
141// OBSOLETE /* Either we didn't find the start of this function (nothing we can do),
142// OBSOLETE or there's no line info, or the line after the prologue is after
143// OBSOLETE the end of the function (there probably isn't a prologue). */
144// OBSOLETE
145// OBSOLETE return pc;
146// OBSOLETE }
147// OBSOLETE
148// OBSOLETE
149// OBSOLETE /* Function: push_arguments
150// OBSOLETE Setup arguments and RP for a call to the target. First four args
151// OBSOLETE go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
152// OBSOLETE Structs are passed by reference. XXX not right now Z.R.
153// OBSOLETE 64 bit quantities (doubles and long longs) may be split between
154// OBSOLETE the regs and the stack.
155// OBSOLETE When calling a function that returns a struct, a pointer to the struct
156// OBSOLETE is passed in as a secret first argument (always in FIRST_ARGREG).
157// OBSOLETE
158// OBSOLETE Stack space for the args has NOT been allocated: that job is up to us.
159// OBSOLETE */
160// OBSOLETE
161// OBSOLETE CORE_ADDR
162// OBSOLETE fr30_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
163// OBSOLETE int struct_return, CORE_ADDR struct_addr)
164// OBSOLETE {
165// OBSOLETE int argreg;
166// OBSOLETE int argnum;
167// OBSOLETE int stack_offset;
168// OBSOLETE struct stack_arg
169// OBSOLETE {
170// OBSOLETE char *val;
171// OBSOLETE int len;
172// OBSOLETE int offset;
173// OBSOLETE };
174// OBSOLETE struct stack_arg *stack_args =
175// OBSOLETE (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
176// OBSOLETE int nstack_args = 0;
177// OBSOLETE
178// OBSOLETE argreg = FIRST_ARGREG;
179// OBSOLETE
180// OBSOLETE /* the struct_return pointer occupies the first parameter-passing reg */
181// OBSOLETE if (struct_return)
182// OBSOLETE write_register (argreg++, struct_addr);
183// OBSOLETE
184// OBSOLETE stack_offset = 0;
185// OBSOLETE
186// OBSOLETE /* Process args from left to right. Store as many as allowed in
187// OBSOLETE registers, save the rest to be pushed on the stack */
188// OBSOLETE for (argnum = 0; argnum < nargs; argnum++)
189// OBSOLETE {
190// OBSOLETE char *val;
191// OBSOLETE struct value *arg = args[argnum];
192// OBSOLETE struct type *arg_type = check_typedef (VALUE_TYPE (arg));
193// OBSOLETE struct type *target_type = TYPE_TARGET_TYPE (arg_type);
194// OBSOLETE int len = TYPE_LENGTH (arg_type);
195// OBSOLETE enum type_code typecode = TYPE_CODE (arg_type);
196// OBSOLETE CORE_ADDR regval;
197// OBSOLETE int newarg;
198// OBSOLETE
199// OBSOLETE val = (char *) VALUE_CONTENTS (arg);
200// OBSOLETE
201// OBSOLETE {
202// OBSOLETE /* Copy the argument to general registers or the stack in
203// OBSOLETE register-sized pieces. Large arguments are split between
204// OBSOLETE registers and stack. */
205// OBSOLETE while (len > 0)
206// OBSOLETE {
207// OBSOLETE if (argreg <= LAST_ARGREG)
208// OBSOLETE {
209// OBSOLETE int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
210// OBSOLETE regval = extract_address (val, partial_len);
211// OBSOLETE
212// OBSOLETE /* It's a simple argument being passed in a general
213// OBSOLETE register. */
214// OBSOLETE write_register (argreg, regval);
215// OBSOLETE argreg++;
216// OBSOLETE len -= partial_len;
217// OBSOLETE val += partial_len;
218// OBSOLETE }
219// OBSOLETE else
220// OBSOLETE {
221// OBSOLETE /* keep for later pushing */
222// OBSOLETE stack_args[nstack_args].val = val;
223// OBSOLETE stack_args[nstack_args++].len = len;
224// OBSOLETE break;
225// OBSOLETE }
226// OBSOLETE }
227// OBSOLETE }
228// OBSOLETE }
229// OBSOLETE /* now do the real stack pushing, process args right to left */
230// OBSOLETE while (nstack_args--)
231// OBSOLETE {
232// OBSOLETE sp -= stack_args[nstack_args].len;
233// OBSOLETE write_memory (sp, stack_args[nstack_args].val,
234// OBSOLETE stack_args[nstack_args].len);
235// OBSOLETE }
236// OBSOLETE
237// OBSOLETE /* Return adjusted stack pointer. */
238// OBSOLETE return sp;
239// OBSOLETE }
240// OBSOLETE
241// OBSOLETE void _initialize_fr30_tdep (void);
242// OBSOLETE
243// OBSOLETE void
244// OBSOLETE _initialize_fr30_tdep (void)
245// OBSOLETE {
246// OBSOLETE extern int print_insn_fr30 (bfd_vma, disassemble_info *);
247// OBSOLETE tm_print_insn = print_insn_fr30;
248// OBSOLETE }
249// OBSOLETE
250// OBSOLETE /* Function: check_prologue_cache
251// OBSOLETE Check if prologue for this frame's PC has already been scanned.
252// OBSOLETE If it has, copy the relevant information about that prologue and
253// OBSOLETE return non-zero. Otherwise do not copy anything and return zero.
254// OBSOLETE
255// OBSOLETE The information saved in the cache includes:
256// OBSOLETE * the frame register number;
257// OBSOLETE * the size of the stack frame;
258// OBSOLETE * the offsets of saved regs (relative to the old SP); and
259// OBSOLETE * the offset from the stack pointer to the frame pointer
260// OBSOLETE
261// OBSOLETE The cache contains only one entry, since this is adequate
262// OBSOLETE for the typical sequence of prologue scan requests we get.
263// OBSOLETE When performing a backtrace, GDB will usually ask to scan
264// OBSOLETE the same function twice in a row (once to get the frame chain,
265// OBSOLETE and once to fill in the extra frame information).
266// OBSOLETE */
267// OBSOLETE
268// OBSOLETE static struct frame_info prologue_cache;
269// OBSOLETE
270// OBSOLETE static int
271// OBSOLETE check_prologue_cache (struct frame_info *fi)
272// OBSOLETE {
273// OBSOLETE int i;
274// OBSOLETE
275// OBSOLETE if (fi->pc == prologue_cache.pc)
276// OBSOLETE {
277// OBSOLETE fi->framereg = prologue_cache.framereg;
278// OBSOLETE fi->framesize = prologue_cache.framesize;
279// OBSOLETE fi->frameoffset = prologue_cache.frameoffset;
280// OBSOLETE for (i = 0; i <= NUM_REGS; i++)
281// OBSOLETE fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
282// OBSOLETE return 1;
283// OBSOLETE }
284// OBSOLETE else
285// OBSOLETE return 0;
286// OBSOLETE }
287// OBSOLETE
288// OBSOLETE
289// OBSOLETE /* Function: save_prologue_cache
290// OBSOLETE Copy the prologue information from fi to the prologue cache.
291// OBSOLETE */
292// OBSOLETE
293// OBSOLETE static void
294// OBSOLETE save_prologue_cache (struct frame_info *fi)
295// OBSOLETE {
296// OBSOLETE int i;
297// OBSOLETE
298// OBSOLETE prologue_cache.pc = fi->pc;
299// OBSOLETE prologue_cache.framereg = fi->framereg;
300// OBSOLETE prologue_cache.framesize = fi->framesize;
301// OBSOLETE prologue_cache.frameoffset = fi->frameoffset;
302// OBSOLETE
303// OBSOLETE for (i = 0; i <= NUM_REGS; i++)
304// OBSOLETE {
305// OBSOLETE prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
306// OBSOLETE }
307// OBSOLETE }
308// OBSOLETE
309// OBSOLETE
310// OBSOLETE /* Function: scan_prologue
311// OBSOLETE Scan the prologue of the function that contains PC, and record what
312// OBSOLETE we find in PI. PI->fsr must be zeroed by the called. Returns the
313// OBSOLETE pc after the prologue. Note that the addresses saved in pi->fsr
314// OBSOLETE are actually just frame relative (negative offsets from the frame
315// OBSOLETE pointer). This is because we don't know the actual value of the
316// OBSOLETE frame pointer yet. In some circumstances, the frame pointer can't
317// OBSOLETE be determined till after we have scanned the prologue. */
318// OBSOLETE
319// OBSOLETE static void
320// OBSOLETE fr30_scan_prologue (struct frame_info *fi)
321// OBSOLETE {
322// OBSOLETE int sp_offset, fp_offset;
323// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc;
324// OBSOLETE
325// OBSOLETE /* Check if this function is already in the cache of frame information. */
326// OBSOLETE if (check_prologue_cache (fi))
327// OBSOLETE return;
328// OBSOLETE
329// OBSOLETE /* Assume there is no frame until proven otherwise. */
330// OBSOLETE fi->framereg = SP_REGNUM;
331// OBSOLETE fi->framesize = 0;
332// OBSOLETE fi->frameoffset = 0;
333// OBSOLETE
334// OBSOLETE /* Find the function prologue. If we can't find the function in
335// OBSOLETE the symbol table, peek in the stack frame to find the PC. */
336// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
337// OBSOLETE {
338// OBSOLETE /* Assume the prologue is everything between the first instruction
339// OBSOLETE in the function and the first source line. */
340// OBSOLETE struct symtab_and_line sal = find_pc_line (prologue_start, 0);
341// OBSOLETE
342// OBSOLETE if (sal.line == 0) /* no line info, use current PC */
343// OBSOLETE prologue_end = fi->pc;
344// OBSOLETE else if (sal.end < prologue_end) /* next line begins after fn end */
345// OBSOLETE prologue_end = sal.end; /* (probably means no prologue) */
346// OBSOLETE }
347// OBSOLETE else
348// OBSOLETE {
349// OBSOLETE /* XXX Z.R. What now??? The following is entirely bogus */
350// OBSOLETE prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
351// OBSOLETE prologue_end = prologue_start + 40;
352// OBSOLETE }
353// OBSOLETE
354// OBSOLETE /* Now search the prologue looking for instructions that set up the
355// OBSOLETE frame pointer, adjust the stack pointer, and save registers. */
356// OBSOLETE
357// OBSOLETE sp_offset = fp_offset = 0;
358// OBSOLETE for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
359// OBSOLETE {
360// OBSOLETE unsigned int insn;
361// OBSOLETE
362// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2);
363// OBSOLETE
364// OBSOLETE if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */
365// OBSOLETE {
366// OBSOLETE int reg, mask = insn & 0xff;
367// OBSOLETE
368// OBSOLETE /* scan in one sweep - create virtual 16-bit mask from either insn's mask */
369// OBSOLETE if ((insn & 0x0100) == 0)
370// OBSOLETE {
371// OBSOLETE mask <<= 8; /* stm0 - move to upper byte in virtual mask */
372// OBSOLETE }
373// OBSOLETE
374// OBSOLETE /* Calculate offsets of saved registers (to be turned later into addresses). */
375// OBSOLETE for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
376// OBSOLETE if (mask & (1 << (15 - reg)))
377// OBSOLETE {
378// OBSOLETE sp_offset -= 4;
379// OBSOLETE fi->fsr.regs[reg] = sp_offset;
380// OBSOLETE }
381// OBSOLETE }
382// OBSOLETE else if ((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */
383// OBSOLETE {
384// OBSOLETE int reg = insn & 0xf;
385// OBSOLETE
386// OBSOLETE sp_offset -= 4;
387// OBSOLETE fi->fsr.regs[reg] = sp_offset;
388// OBSOLETE }
389// OBSOLETE else if ((insn & 0xff00) == 0x0f00) /* enter */
390// OBSOLETE {
391// OBSOLETE fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
392// OBSOLETE sp_offset -= 4 * (insn & 0xff);
393// OBSOLETE fi->framereg = FP_REGNUM;
394// OBSOLETE }
395// OBSOLETE else if (insn == 0x1781) /* st rp,@-sp */
396// OBSOLETE {
397// OBSOLETE sp_offset -= 4;
398// OBSOLETE fi->fsr.regs[RP_REGNUM] = sp_offset;
399// OBSOLETE }
400// OBSOLETE else if (insn == 0x170e) /* st fp,@-sp */
401// OBSOLETE {
402// OBSOLETE sp_offset -= 4;
403// OBSOLETE fi->fsr.regs[FP_REGNUM] = sp_offset;
404// OBSOLETE }
405// OBSOLETE else if (insn == 0x8bfe) /* mov sp,fp */
406// OBSOLETE {
407// OBSOLETE fi->framereg = FP_REGNUM;
408// OBSOLETE }
409// OBSOLETE else if ((insn & 0xff00) == 0xa300) /* addsp xx */
410// OBSOLETE {
411// OBSOLETE sp_offset += 4 * (signed char) (insn & 0xff);
412// OBSOLETE }
413// OBSOLETE else if ((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */
414// OBSOLETE read_memory_unsigned_integer (current_pc + 4, 2)
415// OBSOLETE == 0xac0f) /* sub r0,sp */
416// OBSOLETE {
417// OBSOLETE /* large stack adjustment */
418// OBSOLETE sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer (current_pc + 2, 2));
419// OBSOLETE current_pc += 4;
420// OBSOLETE }
421// OBSOLETE else if (insn == 0x9f80 && /* ldi:32 xx,r0 */
422// OBSOLETE read_memory_unsigned_integer (current_pc + 6, 2)
423// OBSOLETE == 0xac0f) /* sub r0,sp */
424// OBSOLETE {
425// OBSOLETE /* large stack adjustment */
426// OBSOLETE sp_offset -=
427// OBSOLETE (read_memory_unsigned_integer (current_pc + 2, 2) << 16 |
428// OBSOLETE read_memory_unsigned_integer (current_pc + 4, 2));
429// OBSOLETE current_pc += 6;
430// OBSOLETE }
431// OBSOLETE }
432// OBSOLETE
433// OBSOLETE /* The frame size is just the negative of the offset (from the original SP)
434// OBSOLETE of the last thing thing we pushed on the stack. The frame offset is
435// OBSOLETE [new FP] - [new SP]. */
436// OBSOLETE fi->framesize = -sp_offset;
437// OBSOLETE fi->frameoffset = fp_offset - sp_offset;
438// OBSOLETE
439// OBSOLETE save_prologue_cache (fi);
440// OBSOLETE }
441// OBSOLETE
442// OBSOLETE /* Function: init_extra_frame_info
443// OBSOLETE Setup the frame's frame pointer, pc, and frame addresses for saved
444// OBSOLETE registers. Most of the work is done in scan_prologue().
445// OBSOLETE
446// OBSOLETE Note that when we are called for the last frame (currently active frame),
447// OBSOLETE that fi->pc and fi->frame will already be setup. However, fi->frame will
448// OBSOLETE be valid only if this routine uses FP. For previous frames, fi-frame will
449// OBSOLETE always be correct (since that is derived from fr30_frame_chain ()).
450// OBSOLETE
451// OBSOLETE We can be called with the PC in the call dummy under two circumstances.
452// OBSOLETE First, during normal backtracing, second, while figuring out the frame
453// OBSOLETE pointer just prior to calling the target function (see run_stack_dummy). */
454// OBSOLETE
455// OBSOLETE void
456// OBSOLETE fr30_init_extra_frame_info (struct frame_info *fi)
457// OBSOLETE {
458// OBSOLETE int reg;
459// OBSOLETE
460// OBSOLETE if (fi->next)
461// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next);
462// OBSOLETE
463// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
464// OBSOLETE
465// OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
466// OBSOLETE {
467// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong
468// OBSOLETE by assuming it's always FP. */
469// OBSOLETE fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
470// OBSOLETE fi->framesize = 0;
471// OBSOLETE fi->frameoffset = 0;
472// OBSOLETE return;
473// OBSOLETE }
474// OBSOLETE fr30_scan_prologue (fi);
475// OBSOLETE
476// OBSOLETE if (!fi->next) /* this is the innermost frame? */
477// OBSOLETE fi->frame = read_register (fi->framereg);
478// OBSOLETE else
479// OBSOLETE /* not the innermost frame */
480// OBSOLETE /* If we have an FP, the callee saved it. */
481// OBSOLETE if (fi->framereg == FP_REGNUM)
482// OBSOLETE if (fi->next->fsr.regs[fi->framereg] != 0)
483// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
484// OBSOLETE
485// OBSOLETE /* Calculate actual addresses of saved registers using offsets determined
486// OBSOLETE by fr30_scan_prologue. */
487// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++)
488// OBSOLETE if (fi->fsr.regs[reg] != 0)
489// OBSOLETE {
490// OBSOLETE fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
491// OBSOLETE }
492// OBSOLETE }
493// OBSOLETE
494// OBSOLETE /* Function: find_callers_reg
495// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register.
496// OBSOLETE One thing we might want to do here is to check REGNUM against the
497// OBSOLETE clobber mask, and somehow flag it as invalid if it isn't saved on
498// OBSOLETE the stack somewhere. This would provide a graceful failure mode
499// OBSOLETE when trying to get the value of caller-saves registers for an inner
500// OBSOLETE frame. */
501// OBSOLETE
502// OBSOLETE CORE_ADDR
503// OBSOLETE fr30_find_callers_reg (struct frame_info *fi, int regnum)
504// OBSOLETE {
505// OBSOLETE for (; fi; fi = fi->next)
506// OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
507// OBSOLETE return generic_read_register_dummy (fi->pc, fi->frame, regnum);
508// OBSOLETE else if (fi->fsr.regs[regnum] != 0)
509// OBSOLETE return read_memory_unsigned_integer (fi->fsr.regs[regnum],
510// OBSOLETE REGISTER_RAW_SIZE (regnum));
511// OBSOLETE
512// OBSOLETE return read_register (regnum);
513// OBSOLETE }
514// OBSOLETE
515// OBSOLETE
516// OBSOLETE /* Function: frame_chain
517// OBSOLETE Figure out the frame prior to FI. Unfortunately, this involves
518// OBSOLETE scanning the prologue of the caller, which will also be done
519// OBSOLETE shortly by fr30_init_extra_frame_info. For the dummy frame, we
520// OBSOLETE just return the stack pointer that was in use at the time the
521// OBSOLETE function call was made. */
522// OBSOLETE
523// OBSOLETE
524// OBSOLETE CORE_ADDR
525// OBSOLETE fr30_frame_chain (struct frame_info *fi)
526// OBSOLETE {
527// OBSOLETE CORE_ADDR fn_start, callers_pc, fp;
528// OBSOLETE struct frame_info caller_fi;
529// OBSOLETE int framereg;
530// OBSOLETE
531// OBSOLETE /* is this a dummy frame? */
532// OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
533// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */
534// OBSOLETE
535// OBSOLETE /* is caller-of-this a dummy frame? */
536// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
537// OBSOLETE fp = fr30_find_callers_reg (fi, FP_REGNUM);
538// OBSOLETE if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
539// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */
540// OBSOLETE
541// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
542// OBSOLETE if (fn_start == entry_point_address ())
543// OBSOLETE return 0; /* in _start fn, don't chain further */
544// OBSOLETE
545// OBSOLETE framereg = fi->framereg;
546// OBSOLETE
547// OBSOLETE /* If the caller is the startup code, we're at the end of the chain. */
548// OBSOLETE if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
549// OBSOLETE if (fn_start == entry_point_address ())
550// OBSOLETE return 0;
551// OBSOLETE
552// OBSOLETE memset (&caller_fi, 0, sizeof (caller_fi));
553// OBSOLETE caller_fi.pc = callers_pc;
554// OBSOLETE fr30_scan_prologue (&caller_fi);
555// OBSOLETE framereg = caller_fi.framereg;
556// OBSOLETE
557// OBSOLETE /* If the caller used a frame register, return its value.
558// OBSOLETE Otherwise, return the caller's stack pointer. */
559// OBSOLETE if (framereg == FP_REGNUM)
560// OBSOLETE return fr30_find_callers_reg (fi, framereg);
561// OBSOLETE else
562// OBSOLETE return fi->frame + fi->framesize;
563// OBSOLETE }
564// OBSOLETE
565// OBSOLETE /* Function: frame_saved_pc
566// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM
567// OBSOLETE is saved in the stack anywhere, otherwise we get it from the
568// OBSOLETE registers. If the inner frame is a dummy frame, return its PC
569// OBSOLETE instead of RP, because that's where "caller" of the dummy-frame
570// OBSOLETE will be found. */
571// OBSOLETE
572// OBSOLETE CORE_ADDR
573// OBSOLETE fr30_frame_saved_pc (struct frame_info *fi)
574// OBSOLETE {
575// OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
576// OBSOLETE return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
577// OBSOLETE else
578// OBSOLETE return fr30_find_callers_reg (fi, RP_REGNUM);
579// OBSOLETE }
580// OBSOLETE
581// OBSOLETE /* Function: fix_call_dummy
582// OBSOLETE Pokes the callee function's address into the CALL_DUMMY assembly stub.
583// OBSOLETE Assumes that the CALL_DUMMY looks like this:
584// OBSOLETE jarl <offset24>, r31
585// OBSOLETE trap
586// OBSOLETE */
587// OBSOLETE
588// OBSOLETE int
589// OBSOLETE fr30_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
590// OBSOLETE struct value **args, struct type *type, int gcc_p)
591// OBSOLETE {
592// OBSOLETE long offset24;
593// OBSOLETE
594// OBSOLETE offset24 = (long) fun - (long) entry_point_address ();
595// OBSOLETE offset24 &= 0x3fffff;
596// OBSOLETE offset24 |= 0xff800000; /* jarl <offset24>, r31 */
597// OBSOLETE
598// OBSOLETE store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
599// OBSOLETE store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
600// OBSOLETE return 0;
601// OBSOLETE }
This page took 0.056828 seconds and 4 git commands to generate.