Fix test-cp-name-parser build, unused variable
[deliverable/binutils-gdb.git] / gdb / frame.c
CommitLineData
4f460812 1/* Cache and manage frames for GDB, the GNU debugger.
96cb11df 2
42a4f53d 3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
d65fe839
AC
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
d65fe839
AC
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
d65fe839
AC
19
20#include "defs.h"
21#include "frame.h"
22#include "target.h"
23#include "value.h"
39f77062 24#include "inferior.h" /* for inferior_ptid */
4e052eda 25#include "regcache.h"
eb8bc282 26#include "user-regs.h"
4c1e7e9d
AC
27#include "gdb_obstack.h"
28#include "dummy-frame.h"
a94dd1fd 29#include "sentinel-frame.h"
4c1e7e9d
AC
30#include "gdbcore.h"
31#include "annotate.h"
6e7f8b9c 32#include "language.h"
494cca16 33#include "frame-unwind.h"
da62e633 34#include "frame-base.h"
eb4f72c5
AC
35#include "command.h"
36#include "gdbcmd.h"
76727919 37#include "observable.h"
c8cd9f6c 38#include "objfiles.h"
8ea051c5 39#include "gdbthread.h"
edb3359d
DJ
40#include "block.h"
41#include "inline-frame.h"
983dc440 42#include "tracepoint.h"
3de661e6 43#include "hashtab.h"
f6c01fc5 44#include "valprint.h"
eb4f72c5 45
df433d31
KB
46/* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53static struct frame_info *sentinel_frame;
54
edb3359d 55static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
a7300869 56static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
5613d8d3 57
782d47df
PA
58/* Status of some values cached in the frame_info object. */
59
60enum cached_copy_status
61{
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73};
74
bd013d54
AC
75/* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
df433d31 77 wait_for_inferior) each time the inferior stops; sentinel_frame
bd013d54
AC
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85struct frame_info
86{
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
bbde78fa 92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
bd013d54
AC
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
6c95b8df
PA
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
8b86c959 102 const address_space *aspace;
6c95b8df 103
bd013d54
AC
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
bbde78fa 107 selected based on the presence, or otherwise, of register unwind
bd013d54
AC
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
36f15f55
UW
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
bd013d54
AC
119 /* Cached copy of the previous frame's resume address. */
120 struct {
782d47df 121 enum cached_copy_status status;
bd013d54
AC
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
55feb689
DJ
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
53e8a631
AB
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
bd013d54
AC
158};
159
3de661e6
PM
160/* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
b83e9eb7 164
3de661e6 165static htab_t frame_stash;
b83e9eb7 166
3de661e6
PM
167/* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171static hashval_t
172frame_addr_hash (const void *ap)
173{
9a3c8263 174 const struct frame_info *frame = (const struct frame_info *) ap;
3de661e6
PM
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
5ce0145d
PA
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
3de661e6
PM
180 || f_id.special_addr_p);
181
5ce0145d 182 if (f_id.stack_status == FID_STACK_VALID)
3de661e6
PM
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193}
194
195/* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198static int
199frame_addr_hash_eq (const void *a, const void *b)
200{
9a3c8263
SM
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
3de661e6
PM
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206}
207
208/* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211static void
212frame_stash_create (void)
213{
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218}
219
194cca41
PA
220/* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
b83e9eb7 223
194cca41 224static int
b83e9eb7
JB
225frame_stash_add (struct frame_info *frame)
226{
194cca41 227 struct frame_info **slot;
f5b0ed3c 228
194cca41
PA
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
b83e9eb7
JB
245}
246
3de661e6
PM
247/* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
b83e9eb7
JB
250
251static struct frame_info *
252frame_stash_find (struct frame_id id)
253{
3de661e6
PM
254 struct frame_info dummy;
255 struct frame_info *frame;
b83e9eb7 256
3de661e6 257 dummy.this_id.value = id;
9a3c8263 258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
3de661e6 259 return frame;
b83e9eb7
JB
260}
261
3de661e6
PM
262/* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
b83e9eb7
JB
265
266static void
267frame_stash_invalidate (void)
268{
3de661e6 269 htab_empty (frame_stash);
b83e9eb7
JB
270}
271
45f25d6c
AB
272/* See frame.h */
273scoped_restore_selected_frame::scoped_restore_selected_frame ()
274{
275 m_fid = get_frame_id (get_selected_frame (NULL));
276}
277
278/* See frame.h */
279scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280{
281 frame_info *frame = frame_find_by_id (m_fid);
282 if (frame == NULL)
283 warning (_("Unable to restore previously selected frame."));
284 else
285 select_frame (frame);
286}
287
ac2bd0a9
AC
288/* Flag to control debugging. */
289
ccce17b0 290unsigned int frame_debug;
920d2a44
AC
291static void
292show_frame_debug (struct ui_file *file, int from_tty,
293 struct cmd_list_element *c, const char *value)
294{
295 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296}
ac2bd0a9 297
25d29d70
AC
298/* Flag to indicate whether backtraces should stop at main et.al. */
299
300static int backtrace_past_main;
920d2a44
AC
301static void
302show_backtrace_past_main (struct ui_file *file, int from_tty,
303 struct cmd_list_element *c, const char *value)
304{
3e43a32a
MS
305 fprintf_filtered (file,
306 _("Whether backtraces should "
307 "continue past \"main\" is %s.\n"),
920d2a44
AC
308 value);
309}
310
2315ffec 311static int backtrace_past_entry;
920d2a44
AC
312static void
313show_backtrace_past_entry (struct ui_file *file, int from_tty,
314 struct cmd_list_element *c, const char *value)
315{
3e43a32a
MS
316 fprintf_filtered (file, _("Whether backtraces should continue past the "
317 "entry point of a program is %s.\n"),
920d2a44
AC
318 value);
319}
320
883b9c6c 321static unsigned int backtrace_limit = UINT_MAX;
920d2a44
AC
322static void
323show_backtrace_limit (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325{
3e43a32a
MS
326 fprintf_filtered (file,
327 _("An upper bound on the number "
328 "of backtrace levels is %s.\n"),
920d2a44
AC
329 value);
330}
331
eb4f72c5 332
ca73dd9d
AC
333static void
334fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335{
336 if (p)
5af949e3 337 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
ca73dd9d
AC
338 else
339 fprintf_unfiltered (file, "!%s", name);
340}
d65fe839 341
00905d52 342void
7f78e237
AC
343fprint_frame_id (struct ui_file *file, struct frame_id id)
344{
ca73dd9d 345 fprintf_unfiltered (file, "{");
5ce0145d
PA
346
347 if (id.stack_status == FID_STACK_INVALID)
348 fprintf_unfiltered (file, "!stack");
349 else if (id.stack_status == FID_STACK_UNAVAILABLE)
350 fprintf_unfiltered (file, "stack=<unavailable>");
df433d31
KB
351 else if (id.stack_status == FID_STACK_SENTINEL)
352 fprintf_unfiltered (file, "stack=<sentinel>");
5ce0145d
PA
353 else
354 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
ca73dd9d 355 fprintf_unfiltered (file, ",");
5ce0145d 356
ca73dd9d
AC
357 fprint_field (file, "code", id.code_addr_p, id.code_addr);
358 fprintf_unfiltered (file, ",");
5ce0145d 359
ca73dd9d 360 fprint_field (file, "special", id.special_addr_p, id.special_addr);
5ce0145d 361
193facb3
JK
362 if (id.artificial_depth)
363 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
5ce0145d 364
ca73dd9d 365 fprintf_unfiltered (file, "}");
7f78e237
AC
366}
367
368static void
369fprint_frame_type (struct ui_file *file, enum frame_type type)
370{
371 switch (type)
372 {
7f78e237
AC
373 case NORMAL_FRAME:
374 fprintf_unfiltered (file, "NORMAL_FRAME");
375 return;
376 case DUMMY_FRAME:
377 fprintf_unfiltered (file, "DUMMY_FRAME");
378 return;
edb3359d
DJ
379 case INLINE_FRAME:
380 fprintf_unfiltered (file, "INLINE_FRAME");
381 return;
b5eef7aa
JK
382 case TAILCALL_FRAME:
383 fprintf_unfiltered (file, "TAILCALL_FRAME");
edb3359d 384 return;
7f78e237
AC
385 case SIGTRAMP_FRAME:
386 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387 return;
36f15f55
UW
388 case ARCH_FRAME:
389 fprintf_unfiltered (file, "ARCH_FRAME");
390 return;
b5eef7aa
JK
391 case SENTINEL_FRAME:
392 fprintf_unfiltered (file, "SENTINEL_FRAME");
393 return;
7f78e237
AC
394 default:
395 fprintf_unfiltered (file, "<unknown type>");
396 return;
397 };
398}
399
400static void
401fprint_frame (struct ui_file *file, struct frame_info *fi)
402{
403 if (fi == NULL)
404 {
405 fprintf_unfiltered (file, "<NULL frame>");
406 return;
407 }
408 fprintf_unfiltered (file, "{");
409 fprintf_unfiltered (file, "level=%d", fi->level);
410 fprintf_unfiltered (file, ",");
411 fprintf_unfiltered (file, "type=");
c1bf6f65
AC
412 if (fi->unwind != NULL)
413 fprint_frame_type (file, fi->unwind->type);
414 else
415 fprintf_unfiltered (file, "<unknown>");
7f78e237
AC
416 fprintf_unfiltered (file, ",");
417 fprintf_unfiltered (file, "unwind=");
418 if (fi->unwind != NULL)
419 gdb_print_host_address (fi->unwind, file);
420 else
421 fprintf_unfiltered (file, "<unknown>");
422 fprintf_unfiltered (file, ",");
423 fprintf_unfiltered (file, "pc=");
782d47df 424 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
7f78e237 425 fprintf_unfiltered (file, "<unknown>");
782d47df
PA
426 else if (fi->next->prev_pc.status == CC_VALUE)
427 fprintf_unfiltered (file, "%s",
428 hex_string (fi->next->prev_pc.value));
429 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430 val_print_not_saved (file);
431 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432 val_print_unavailable (file);
7f78e237
AC
433 fprintf_unfiltered (file, ",");
434 fprintf_unfiltered (file, "id=");
435 if (fi->this_id.p)
436 fprint_frame_id (file, fi->this_id.value);
437 else
438 fprintf_unfiltered (file, "<unknown>");
439 fprintf_unfiltered (file, ",");
440 fprintf_unfiltered (file, "func=");
441 if (fi->next != NULL && fi->next->prev_func.p)
5af949e3 442 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
7f78e237
AC
443 else
444 fprintf_unfiltered (file, "<unknown>");
445 fprintf_unfiltered (file, "}");
446}
447
193facb3
JK
448/* Given FRAME, return the enclosing frame as found in real frames read-in from
449 inferior memory. Skip any previous frames which were made up by GDB.
33b4777c
MM
450 Return FRAME if FRAME is a non-artificial frame.
451 Return NULL if FRAME is the start of an artificial-only chain. */
edb3359d
DJ
452
453static struct frame_info *
193facb3 454skip_artificial_frames (struct frame_info *frame)
edb3359d 455{
51d48146
PA
456 /* Note we use get_prev_frame_always, and not get_prev_frame. The
457 latter will truncate the frame chain, leading to this function
458 unintentionally returning a null_frame_id (e.g., when the user
33b4777c
MM
459 sets a backtrace limit).
460
461 Note that for record targets we may get a frame chain that consists
462 of artificial frames only. */
1ab3b62c
JK
463 while (get_frame_type (frame) == INLINE_FRAME
464 || get_frame_type (frame) == TAILCALL_FRAME)
33b4777c
MM
465 {
466 frame = get_prev_frame_always (frame);
467 if (frame == NULL)
468 break;
469 }
edb3359d
DJ
470
471 return frame;
472}
473
7eb89530
YQ
474struct frame_info *
475skip_unwritable_frames (struct frame_info *frame)
476{
477 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478 {
479 frame = get_prev_frame (frame);
480 if (frame == NULL)
481 break;
482 }
483
484 return frame;
485}
486
2f3ef606
MM
487/* See frame.h. */
488
489struct frame_info *
490skip_tailcall_frames (struct frame_info *frame)
491{
492 while (get_frame_type (frame) == TAILCALL_FRAME)
33b4777c
MM
493 {
494 /* Note that for record targets we may get a frame chain that consists of
495 tailcall frames only. */
496 frame = get_prev_frame (frame);
497 if (frame == NULL)
498 break;
499 }
2f3ef606
MM
500
501 return frame;
502}
503
194cca41
PA
504/* Compute the frame's uniq ID that can be used to, later, re-find the
505 frame. */
506
507static void
508compute_frame_id (struct frame_info *fi)
509{
510 gdb_assert (!fi->this_id.p);
511
512 if (frame_debug)
513 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514 fi->level);
515 /* Find the unwinder. */
516 if (fi->unwind == NULL)
517 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518 /* Find THIS frame's ID. */
519 /* Default to outermost if no ID is found. */
520 fi->this_id.value = outer_frame_id;
521 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522 gdb_assert (frame_id_p (fi->this_id.value));
523 fi->this_id.p = 1;
524 if (frame_debug)
525 {
526 fprintf_unfiltered (gdb_stdlog, "-> ");
527 fprint_frame_id (gdb_stdlog, fi->this_id.value);
528 fprintf_unfiltered (gdb_stdlog, " }\n");
529 }
530}
531
7a424e99 532/* Return a frame uniq ID that can be used to, later, re-find the
101dcfbe
AC
533 frame. */
534
7a424e99
AC
535struct frame_id
536get_frame_id (struct frame_info *fi)
101dcfbe
AC
537{
538 if (fi == NULL)
b83e9eb7
JB
539 return null_frame_id;
540
f245535c
PA
541 if (!fi->this_id.p)
542 {
543 int stashed;
544
545 /* If we haven't computed the frame id yet, then it must be that
546 this is the current frame. Compute it now, and stash the
547 result. The IDs of other frames are computed as soon as
548 they're created, in order to detect cycles. See
549 get_prev_frame_if_no_cycle. */
550 gdb_assert (fi->level == 0);
551
552 /* Compute. */
553 compute_frame_id (fi);
554
555 /* Since this is the first frame in the chain, this should
556 always succeed. */
557 stashed = frame_stash_add (fi);
558 gdb_assert (stashed);
559 }
560
18adea3f 561 return fi->this_id.value;
101dcfbe
AC
562}
563
edb3359d
DJ
564struct frame_id
565get_stack_frame_id (struct frame_info *next_frame)
566{
193facb3 567 return get_frame_id (skip_artificial_frames (next_frame));
edb3359d
DJ
568}
569
5613d8d3 570struct frame_id
c7ce8faa 571frame_unwind_caller_id (struct frame_info *next_frame)
5613d8d3 572{
edb3359d
DJ
573 struct frame_info *this_frame;
574
51d48146
PA
575 /* Use get_prev_frame_always, and not get_prev_frame. The latter
576 will truncate the frame chain, leading to this function
577 unintentionally returning a null_frame_id (e.g., when a caller
578 requests the frame ID of "main()"s caller. */
edb3359d 579
193facb3 580 next_frame = skip_artificial_frames (next_frame);
33b4777c
MM
581 if (next_frame == NULL)
582 return null_frame_id;
583
51d48146 584 this_frame = get_prev_frame_always (next_frame);
edb3359d 585 if (this_frame)
193facb3 586 return get_frame_id (skip_artificial_frames (this_frame));
edb3359d
DJ
587 else
588 return null_frame_id;
5613d8d3
AC
589}
590
f8904751 591const struct frame_id null_frame_id = { 0 }; /* All zeros. */
df433d31 592const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
5ce0145d 593const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
7a424e99
AC
594
595struct frame_id
48c66725
JJ
596frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597 CORE_ADDR special_addr)
7a424e99 598{
12b0b6de 599 struct frame_id id = null_frame_id;
1c4d3f96 600
d0a55772 601 id.stack_addr = stack_addr;
5ce0145d 602 id.stack_status = FID_STACK_VALID;
d0a55772 603 id.code_addr = code_addr;
12b0b6de 604 id.code_addr_p = 1;
48c66725 605 id.special_addr = special_addr;
12b0b6de 606 id.special_addr_p = 1;
7a424e99
AC
607 return id;
608}
609
5ce0145d
PA
610/* See frame.h. */
611
612struct frame_id
613frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614{
615 struct frame_id id = null_frame_id;
616
617 id.stack_status = FID_STACK_UNAVAILABLE;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621}
622
8372a7cb
MM
623/* See frame.h. */
624
625struct frame_id
626frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627 CORE_ADDR special_addr)
628{
629 struct frame_id id = null_frame_id;
630
631 id.stack_status = FID_STACK_UNAVAILABLE;
632 id.code_addr = code_addr;
633 id.code_addr_p = 1;
634 id.special_addr = special_addr;
635 id.special_addr_p = 1;
636 return id;
637}
638
48c66725
JJ
639struct frame_id
640frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641{
12b0b6de 642 struct frame_id id = null_frame_id;
1c4d3f96 643
12b0b6de 644 id.stack_addr = stack_addr;
5ce0145d 645 id.stack_status = FID_STACK_VALID;
12b0b6de
UW
646 id.code_addr = code_addr;
647 id.code_addr_p = 1;
648 return id;
649}
650
651struct frame_id
652frame_id_build_wild (CORE_ADDR stack_addr)
653{
654 struct frame_id id = null_frame_id;
1c4d3f96 655
12b0b6de 656 id.stack_addr = stack_addr;
5ce0145d 657 id.stack_status = FID_STACK_VALID;
12b0b6de 658 return id;
48c66725
JJ
659}
660
7a424e99
AC
661int
662frame_id_p (struct frame_id l)
663{
d0a55772 664 int p;
1c4d3f96 665
12b0b6de 666 /* The frame is valid iff it has a valid stack address. */
5ce0145d 667 p = l.stack_status != FID_STACK_INVALID;
005ca36a
JB
668 /* outer_frame_id is also valid. */
669 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670 p = 1;
7f78e237
AC
671 if (frame_debug)
672 {
673 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674 fprint_frame_id (gdb_stdlog, l);
675 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676 }
d0a55772 677 return p;
7a424e99
AC
678}
679
edb3359d 680int
193facb3 681frame_id_artificial_p (struct frame_id l)
edb3359d
DJ
682{
683 if (!frame_id_p (l))
684 return 0;
685
193facb3 686 return (l.artificial_depth != 0);
edb3359d
DJ
687}
688
7a424e99
AC
689int
690frame_id_eq (struct frame_id l, struct frame_id r)
691{
d0a55772 692 int eq;
1c4d3f96 693
5ce0145d
PA
694 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
005ca36a
JB
696 /* The outermost frame marker is equal to itself. This is the
697 dodgy thing about outer_frame_id, since between execution steps
698 we might step into another function - from which we can't
699 unwind either. More thought required to get rid of
700 outer_frame_id. */
701 eq = 1;
5ce0145d 702 else if (l.stack_status == FID_STACK_INVALID
f0d4ba1f 703 || r.stack_status == FID_STACK_INVALID)
12b0b6de
UW
704 /* Like a NaN, if either ID is invalid, the result is false.
705 Note that a frame ID is invalid iff it is the null frame ID. */
d0a55772 706 eq = 0;
5ce0145d 707 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
d0a55772
AC
708 /* If .stack addresses are different, the frames are different. */
709 eq = 0;
edb3359d
DJ
710 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711 /* An invalid code addr is a wild card. If .code addresses are
712 different, the frames are different. */
48c66725 713 eq = 0;
edb3359d
DJ
714 else if (l.special_addr_p && r.special_addr_p
715 && l.special_addr != r.special_addr)
716 /* An invalid special addr is a wild card (or unused). Otherwise
717 if special addresses are different, the frames are different. */
718 eq = 0;
193facb3
JK
719 else if (l.artificial_depth != r.artificial_depth)
720 /* If artifical depths are different, the frames must be different. */
edb3359d
DJ
721 eq = 0;
722 else
48c66725 723 /* Frames are equal. */
d0a55772 724 eq = 1;
edb3359d 725
7f78e237
AC
726 if (frame_debug)
727 {
728 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729 fprint_frame_id (gdb_stdlog, l);
730 fprintf_unfiltered (gdb_stdlog, ",r=");
731 fprint_frame_id (gdb_stdlog, r);
732 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733 }
d0a55772 734 return eq;
7a424e99
AC
735}
736
a45ae3ed
UW
737/* Safety net to check whether frame ID L should be inner to
738 frame ID R, according to their stack addresses.
739
740 This method cannot be used to compare arbitrary frames, as the
741 ranges of valid stack addresses may be discontiguous (e.g. due
742 to sigaltstack).
743
744 However, it can be used as safety net to discover invalid frame
0963b4bd 745 IDs in certain circumstances. Assuming that NEXT is the immediate
f06eadd9 746 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
a45ae3ed 747
f06eadd9
JB
748 * The stack address of NEXT must be inner-than-or-equal to the stack
749 address of THIS.
a45ae3ed
UW
750
751 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752 error has occurred.
753
f06eadd9
JB
754 * If NEXT and THIS have different stack addresses, no other frame
755 in the frame chain may have a stack address in between.
a45ae3ed
UW
756
757 Therefore, if frame_id_inner (TEST, THIS) holds, but
758 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
f06eadd9
JB
759 to a valid frame in the frame chain.
760
761 The sanity checks above cannot be performed when a SIGTRAMP frame
762 is involved, because signal handlers might be executed on a different
763 stack than the stack used by the routine that caused the signal
764 to be raised. This can happen for instance when a thread exceeds
0963b4bd 765 its maximum stack size. In this case, certain compilers implement
f06eadd9
JB
766 a stack overflow strategy that cause the handler to be run on a
767 different stack. */
a45ae3ed
UW
768
769static int
09a7aba8 770frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
7a424e99 771{
d0a55772 772 int inner;
1c4d3f96 773
5ce0145d
PA
774 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775 /* Like NaN, any operation involving an invalid ID always fails.
776 Likewise if either ID has an unavailable stack address. */
d0a55772 777 inner = 0;
193facb3 778 else if (l.artificial_depth > r.artificial_depth
edb3359d
DJ
779 && l.stack_addr == r.stack_addr
780 && l.code_addr_p == r.code_addr_p
781 && l.special_addr_p == r.special_addr_p
782 && l.special_addr == r.special_addr)
783 {
784 /* Same function, different inlined functions. */
3977b71f 785 const struct block *lb, *rb;
edb3359d
DJ
786
787 gdb_assert (l.code_addr_p && r.code_addr_p);
788
789 lb = block_for_pc (l.code_addr);
790 rb = block_for_pc (r.code_addr);
791
792 if (lb == NULL || rb == NULL)
793 /* Something's gone wrong. */
794 inner = 0;
795 else
796 /* This will return true if LB and RB are the same block, or
797 if the block with the smaller depth lexically encloses the
798 block with the greater depth. */
799 inner = contained_in (lb, rb);
800 }
d0a55772
AC
801 else
802 /* Only return non-zero when strictly inner than. Note that, per
803 comment in "frame.h", there is some fuzz here. Frameless
804 functions are not strictly inner than (same .stack but
48c66725 805 different .code and/or .special address). */
09a7aba8 806 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
7f78e237
AC
807 if (frame_debug)
808 {
809 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810 fprint_frame_id (gdb_stdlog, l);
811 fprintf_unfiltered (gdb_stdlog, ",r=");
812 fprint_frame_id (gdb_stdlog, r);
813 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814 }
d0a55772 815 return inner;
7a424e99
AC
816}
817
101dcfbe
AC
818struct frame_info *
819frame_find_by_id (struct frame_id id)
820{
a45ae3ed 821 struct frame_info *frame, *prev_frame;
101dcfbe
AC
822
823 /* ZERO denotes the null frame, let the caller decide what to do
824 about it. Should it instead return get_current_frame()? */
7a424e99 825 if (!frame_id_p (id))
101dcfbe
AC
826 return NULL;
827
df433d31
KB
828 /* Check for the sentinel frame. */
829 if (frame_id_eq (id, sentinel_frame_id))
830 return sentinel_frame;
831
b83e9eb7
JB
832 /* Try using the frame stash first. Finding it there removes the need
833 to perform the search by looping over all frames, which can be very
834 CPU-intensive if the number of frames is very high (the loop is O(n)
835 and get_prev_frame performs a series of checks that are relatively
836 expensive). This optimization is particularly useful when this function
837 is called from another function (such as value_fetch_lazy, case
838 VALUE_LVAL (val) == lval_register) which already loops over all frames,
839 making the overall behavior O(n^2). */
840 frame = frame_stash_find (id);
841 if (frame)
842 return frame;
843
a45ae3ed 844 for (frame = get_current_frame (); ; frame = prev_frame)
101dcfbe 845 {
fe978cb0 846 struct frame_id self = get_frame_id (frame);
bb9bcb69 847
fe978cb0 848 if (frame_id_eq (id, self))
7a424e99
AC
849 /* An exact match. */
850 return frame;
a45ae3ed
UW
851
852 prev_frame = get_prev_frame (frame);
853 if (!prev_frame)
854 return NULL;
855
856 /* As a safety net to avoid unnecessary backtracing while trying
857 to find an invalid ID, we check for a common situation where
858 we can detect from comparing stack addresses that no other
859 frame in the current frame chain can have this ID. See the
860 comment at frame_id_inner for details. */
861 if (get_frame_type (frame) == NORMAL_FRAME
fe978cb0 862 && !frame_id_inner (get_frame_arch (frame), id, self)
a45ae3ed
UW
863 && frame_id_inner (get_frame_arch (prev_frame), id,
864 get_frame_id (prev_frame)))
101dcfbe 865 return NULL;
101dcfbe
AC
866 }
867 return NULL;
868}
869
782d47df
PA
870static CORE_ADDR
871frame_unwind_pc (struct frame_info *this_frame)
f18c5a73 872{
782d47df 873 if (this_frame->prev_pc.status == CC_UNKNOWN)
f18c5a73 874 {
8bcb5208
AB
875 struct gdbarch *prev_gdbarch;
876 CORE_ADDR pc = 0;
877 int pc_p = 0;
878
879 /* The right way. The `pure' way. The one true way. This
880 method depends solely on the register-unwind code to
881 determine the value of registers in THIS frame, and hence
882 the value of this frame's PC (resume address). A typical
883 implementation is no more than:
884
885 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
886 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
887
888 Note: this method is very heavily dependent on a correct
889 register-unwind implementation, it pays to fix that
890 method first; this method is frame type agnostic, since
891 it only deals with register values, it works with any
892 frame. This is all in stark contrast to the old
893 FRAME_SAVED_PC which would try to directly handle all the
894 different ways that a PC could be unwound. */
895 prev_gdbarch = frame_unwind_arch (this_frame);
896
897 TRY
12cc2063 898 {
8bcb5208
AB
899 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
900 pc_p = 1;
901 }
902 CATCH (ex, RETURN_MASK_ERROR)
903 {
904 if (ex.error == NOT_AVAILABLE_ERROR)
e3eebbd7 905 {
8bcb5208
AB
906 this_frame->prev_pc.status = CC_UNAVAILABLE;
907
908 if (frame_debug)
909 fprintf_unfiltered (gdb_stdlog,
910 "{ frame_unwind_pc (this_frame=%d)"
911 " -> <unavailable> }\n",
912 this_frame->level);
e3eebbd7 913 }
8bcb5208 914 else if (ex.error == OPTIMIZED_OUT_ERROR)
e3eebbd7 915 {
8bcb5208 916 this_frame->prev_pc.status = CC_NOT_SAVED;
492d29ea 917
e3eebbd7
PA
918 if (frame_debug)
919 fprintf_unfiltered (gdb_stdlog,
8bcb5208
AB
920 "{ frame_unwind_pc (this_frame=%d)"
921 " -> <not saved> }\n",
922 this_frame->level);
e3eebbd7 923 }
8bcb5208
AB
924 else
925 throw_exception (ex);
926 }
927 END_CATCH
928
929 if (pc_p)
930 {
931 this_frame->prev_pc.value = pc;
932 this_frame->prev_pc.status = CC_VALUE;
933 if (frame_debug)
934 fprintf_unfiltered (gdb_stdlog,
935 "{ frame_unwind_pc (this_frame=%d) "
936 "-> %s }\n",
937 this_frame->level,
938 hex_string (this_frame->prev_pc.value));
12cc2063 939 }
f18c5a73 940 }
e3eebbd7 941
782d47df
PA
942 if (this_frame->prev_pc.status == CC_VALUE)
943 return this_frame->prev_pc.value;
944 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
e3eebbd7 945 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
782d47df
PA
946 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
947 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
e3eebbd7 948 else
782d47df
PA
949 internal_error (__FILE__, __LINE__,
950 "unexpected prev_pc status: %d",
951 (int) this_frame->prev_pc.status);
f18c5a73
AC
952}
953
edb3359d
DJ
954CORE_ADDR
955frame_unwind_caller_pc (struct frame_info *this_frame)
956{
33b4777c
MM
957 this_frame = skip_artificial_frames (this_frame);
958
959 /* We must have a non-artificial frame. The caller is supposed to check
960 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
961 in this case. */
962 gdb_assert (this_frame != NULL);
963
964 return frame_unwind_pc (this_frame);
edb3359d
DJ
965}
966
e3eebbd7
PA
967int
968get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
be41e9f4 969{
ef02daa9
DJ
970 struct frame_info *next_frame = this_frame->next;
971
972 if (!next_frame->prev_func.p)
be41e9f4 973 {
e3eebbd7
PA
974 CORE_ADDR addr_in_block;
975
57bfe177
AC
976 /* Make certain that this, and not the adjacent, function is
977 found. */
e3eebbd7
PA
978 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
979 {
980 next_frame->prev_func.p = -1;
981 if (frame_debug)
982 fprintf_unfiltered (gdb_stdlog,
983 "{ get_frame_func (this_frame=%d)"
984 " -> unavailable }\n",
985 this_frame->level);
986 }
987 else
988 {
989 next_frame->prev_func.p = 1;
990 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
991 if (frame_debug)
992 fprintf_unfiltered (gdb_stdlog,
993 "{ get_frame_func (this_frame=%d) -> %s }\n",
994 this_frame->level,
995 hex_string (next_frame->prev_func.addr));
996 }
be41e9f4 997 }
e3eebbd7
PA
998
999 if (next_frame->prev_func.p < 0)
1000 {
1001 *pc = -1;
1002 return 0;
1003 }
1004 else
1005 {
1006 *pc = next_frame->prev_func.addr;
1007 return 1;
1008 }
1009}
1010
1011CORE_ADDR
1012get_frame_func (struct frame_info *this_frame)
1013{
1014 CORE_ADDR pc;
1015
1016 if (!get_frame_func_if_available (this_frame, &pc))
1017 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1018
1019 return pc;
be41e9f4
AC
1020}
1021
daf6667d 1022std::unique_ptr<readonly_detached_regcache>
a81dcb05
AC
1023frame_save_as_regcache (struct frame_info *this_frame)
1024{
302abd6e
SM
1025 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1026 {
1027 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1028 return REG_UNAVAILABLE;
1029 else
1030 return REG_VALID;
1031 };
1032
daf6667d 1033 std::unique_ptr<readonly_detached_regcache> regcache
302abd6e 1034 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1c4d3f96 1035
a81dcb05
AC
1036 return regcache;
1037}
1038
dbe9fe58 1039void
7a25a7c1
AC
1040frame_pop (struct frame_info *this_frame)
1041{
348473d5 1042 struct frame_info *prev_frame;
348473d5 1043
b89667eb
DE
1044 if (get_frame_type (this_frame) == DUMMY_FRAME)
1045 {
1046 /* Popping a dummy frame involves restoring more than just registers.
1047 dummy_frame_pop does all the work. */
00431a78 1048 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
b89667eb
DE
1049 return;
1050 }
1051
348473d5 1052 /* Ensure that we have a frame to pop to. */
51d48146 1053 prev_frame = get_prev_frame_always (this_frame);
348473d5
NF
1054
1055 if (!prev_frame)
1056 error (_("Cannot pop the initial frame."));
1057
1ab3b62c
JK
1058 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1059 entering THISFRAME. */
2f3ef606 1060 prev_frame = skip_tailcall_frames (prev_frame);
1ab3b62c 1061
33b4777c
MM
1062 if (prev_frame == NULL)
1063 error (_("Cannot find the caller frame."));
1064
c1bf6f65
AC
1065 /* Make a copy of all the register values unwound from this frame.
1066 Save them in a scratch buffer so that there isn't a race between
594f7785 1067 trying to extract the old values from the current regcache while
c1bf6f65 1068 at the same time writing new values into that same cache. */
daf6667d 1069 std::unique_ptr<readonly_detached_regcache> scratch
9ac86b52 1070 = frame_save_as_regcache (prev_frame);
c1bf6f65
AC
1071
1072 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1073 target's register cache that it is about to be hit with a burst
1074 register transfer and that the sequence of register writes should
1075 be batched. The pair target_prepare_to_store() and
1076 target_store_registers() kind of suggest this functionality.
1077 Unfortunately, they don't implement it. Their lack of a formal
1078 definition can lead to targets writing back bogus values
1079 (arguably a bug in the target code mind). */
fc5b8736
YQ
1080 /* Now copy those saved registers into the current regcache. */
1081 get_current_regcache ()->restore (scratch.get ());
7a25a7c1 1082
7a25a7c1
AC
1083 /* We've made right mess of GDB's local state, just discard
1084 everything. */
35f196d9 1085 reinit_frame_cache ();
dbe9fe58 1086}
c689142b 1087
4f460812 1088void
0ee6c332 1089frame_register_unwind (frame_info *next_frame, int regnum,
0fdb4f18
PA
1090 int *optimizedp, int *unavailablep,
1091 enum lval_type *lvalp, CORE_ADDR *addrp,
1092 int *realnump, gdb_byte *bufferp)
4f460812 1093{
669fac23 1094 struct value *value;
7f78e237 1095
4f460812
AC
1096 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1097 that the value proper does not need to be fetched. */
1098 gdb_assert (optimizedp != NULL);
1099 gdb_assert (lvalp != NULL);
1100 gdb_assert (addrp != NULL);
1101 gdb_assert (realnump != NULL);
1102 /* gdb_assert (bufferp != NULL); */
1103
0ee6c332 1104 value = frame_unwind_register_value (next_frame, regnum);
4f460812 1105
669fac23 1106 gdb_assert (value != NULL);
c50901fd 1107
669fac23 1108 *optimizedp = value_optimized_out (value);
0fdb4f18 1109 *unavailablep = !value_entirely_available (value);
669fac23 1110 *lvalp = VALUE_LVAL (value);
42ae5230 1111 *addrp = value_address (value);
7c2ba67e
YQ
1112 if (*lvalp == lval_register)
1113 *realnump = VALUE_REGNUM (value);
1114 else
1115 *realnump = -1;
6dc42492 1116
0fdb4f18
PA
1117 if (bufferp)
1118 {
1119 if (!*optimizedp && !*unavailablep)
1120 memcpy (bufferp, value_contents_all (value),
1121 TYPE_LENGTH (value_type (value)));
1122 else
1123 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1124 }
669fac23
DJ
1125
1126 /* Dispose of the new value. This prevents watchpoints from
1127 trying to watch the saved frame pointer. */
1128 release_value (value);
4f460812
AC
1129}
1130
a216a322
AC
1131void
1132frame_register (struct frame_info *frame, int regnum,
0fdb4f18 1133 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
10c42a71 1134 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
a216a322
AC
1135{
1136 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1137 that the value proper does not need to be fetched. */
1138 gdb_assert (optimizedp != NULL);
1139 gdb_assert (lvalp != NULL);
1140 gdb_assert (addrp != NULL);
1141 gdb_assert (realnump != NULL);
1142 /* gdb_assert (bufferp != NULL); */
1143
a94dd1fd
AC
1144 /* Obtain the register value by unwinding the register from the next
1145 (more inner frame). */
1146 gdb_assert (frame != NULL && frame->next != NULL);
0fdb4f18
PA
1147 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1148 lvalp, addrp, realnump, bufferp);
a216a322
AC
1149}
1150
135c175f 1151void
0ee6c332 1152frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
135c175f
AC
1153{
1154 int optimized;
0fdb4f18 1155 int unavailable;
135c175f
AC
1156 CORE_ADDR addr;
1157 int realnum;
1158 enum lval_type lval;
1c4d3f96 1159
0ee6c332 1160 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
0fdb4f18 1161 &lval, &addr, &realnum, buf);
8fbca658
PA
1162
1163 if (optimized)
710409a2
PA
1164 throw_error (OPTIMIZED_OUT_ERROR,
1165 _("Register %d was not saved"), regnum);
8fbca658
PA
1166 if (unavailable)
1167 throw_error (NOT_AVAILABLE_ERROR,
1168 _("Register %d is not available"), regnum);
5b181d62
AC
1169}
1170
f0e7d0e8
AC
1171void
1172get_frame_register (struct frame_info *frame,
10c42a71 1173 int regnum, gdb_byte *buf)
f0e7d0e8
AC
1174{
1175 frame_unwind_register (frame->next, regnum, buf);
1176}
1177
669fac23 1178struct value *
0ee6c332 1179frame_unwind_register_value (frame_info *next_frame, int regnum)
669fac23 1180{
36f15f55 1181 struct gdbarch *gdbarch;
669fac23
DJ
1182 struct value *value;
1183
0ee6c332
SM
1184 gdb_assert (next_frame != NULL);
1185 gdbarch = frame_unwind_arch (next_frame);
669fac23
DJ
1186
1187 if (frame_debug)
1188 {
3e43a32a
MS
1189 fprintf_unfiltered (gdb_stdlog,
1190 "{ frame_unwind_register_value "
1191 "(frame=%d,regnum=%d(%s),...) ",
0ee6c332 1192 next_frame->level, regnum,
36f15f55 1193 user_reg_map_regnum_to_name (gdbarch, regnum));
669fac23
DJ
1194 }
1195
1196 /* Find the unwinder. */
0ee6c332
SM
1197 if (next_frame->unwind == NULL)
1198 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
669fac23
DJ
1199
1200 /* Ask this frame to unwind its register. */
0ee6c332
SM
1201 value = next_frame->unwind->prev_register (next_frame,
1202 &next_frame->prologue_cache,
1203 regnum);
669fac23
DJ
1204
1205 if (frame_debug)
1206 {
1207 fprintf_unfiltered (gdb_stdlog, "->");
1208 if (value_optimized_out (value))
f6c01fc5
AB
1209 {
1210 fprintf_unfiltered (gdb_stdlog, " ");
1211 val_print_optimized_out (value, gdb_stdlog);
1212 }
669fac23
DJ
1213 else
1214 {
1215 if (VALUE_LVAL (value) == lval_register)
1216 fprintf_unfiltered (gdb_stdlog, " register=%d",
1217 VALUE_REGNUM (value));
1218 else if (VALUE_LVAL (value) == lval_memory)
5af949e3
UW
1219 fprintf_unfiltered (gdb_stdlog, " address=%s",
1220 paddress (gdbarch,
1221 value_address (value)));
669fac23
DJ
1222 else
1223 fprintf_unfiltered (gdb_stdlog, " computed");
1224
1225 if (value_lazy (value))
1226 fprintf_unfiltered (gdb_stdlog, " lazy");
1227 else
1228 {
1229 int i;
1230 const gdb_byte *buf = value_contents (value);
1231
1232 fprintf_unfiltered (gdb_stdlog, " bytes=");
1233 fprintf_unfiltered (gdb_stdlog, "[");
36f15f55 1234 for (i = 0; i < register_size (gdbarch, regnum); i++)
669fac23
DJ
1235 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1236 fprintf_unfiltered (gdb_stdlog, "]");
1237 }
1238 }
1239
1240 fprintf_unfiltered (gdb_stdlog, " }\n");
1241 }
1242
1243 return value;
1244}
1245
1246struct value *
1247get_frame_register_value (struct frame_info *frame, int regnum)
1248{
1249 return frame_unwind_register_value (frame->next, regnum);
1250}
1251
f0e7d0e8 1252LONGEST
0ee6c332 1253frame_unwind_register_signed (frame_info *next_frame, int regnum)
f0e7d0e8 1254{
0ee6c332 1255 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
e17a4113
UW
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 int size = register_size (gdbarch, regnum);
0ee6c332 1258 struct value *value = frame_unwind_register_value (next_frame, regnum);
1c4d3f96 1259
9f7fb0aa
AH
1260 gdb_assert (value != NULL);
1261
1262 if (value_optimized_out (value))
1263 {
1264 throw_error (OPTIMIZED_OUT_ERROR,
1265 _("Register %d was not saved"), regnum);
1266 }
1267 if (!value_entirely_available (value))
1268 {
1269 throw_error (NOT_AVAILABLE_ERROR,
1270 _("Register %d is not available"), regnum);
1271 }
1272
1273 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1274 byte_order);
1275
1276 release_value (value);
9f7fb0aa 1277 return r;
f0e7d0e8
AC
1278}
1279
1280LONGEST
1281get_frame_register_signed (struct frame_info *frame, int regnum)
1282{
1283 return frame_unwind_register_signed (frame->next, regnum);
1284}
1285
1286ULONGEST
0ee6c332 1287frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
f0e7d0e8 1288{
0ee6c332 1289 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
e17a4113
UW
1290 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1291 int size = register_size (gdbarch, regnum);
0ee6c332 1292 struct value *value = frame_unwind_register_value (next_frame, regnum);
1c4d3f96 1293
2cad08ea
YQ
1294 gdb_assert (value != NULL);
1295
1296 if (value_optimized_out (value))
1297 {
1298 throw_error (OPTIMIZED_OUT_ERROR,
1299 _("Register %d was not saved"), regnum);
1300 }
1301 if (!value_entirely_available (value))
1302 {
1303 throw_error (NOT_AVAILABLE_ERROR,
1304 _("Register %d is not available"), regnum);
1305 }
1306
1307 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1308 byte_order);
1309
1310 release_value (value);
2cad08ea 1311 return r;
f0e7d0e8
AC
1312}
1313
1314ULONGEST
1315get_frame_register_unsigned (struct frame_info *frame, int regnum)
1316{
1317 return frame_unwind_register_unsigned (frame->next, regnum);
1318}
1319
ad5f7d6e
PA
1320int
1321read_frame_register_unsigned (struct frame_info *frame, int regnum,
1322 ULONGEST *val)
1323{
1324 struct value *regval = get_frame_register_value (frame, regnum);
1325
1326 if (!value_optimized_out (regval)
1327 && value_entirely_available (regval))
1328 {
1329 struct gdbarch *gdbarch = get_frame_arch (frame);
1330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1331 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1332
1333 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1334 return 1;
1335 }
1336
1337 return 0;
1338}
1339
ff2e87ac 1340void
10c42a71
AC
1341put_frame_register (struct frame_info *frame, int regnum,
1342 const gdb_byte *buf)
ff2e87ac
AC
1343{
1344 struct gdbarch *gdbarch = get_frame_arch (frame);
1345 int realnum;
1346 int optim;
0fdb4f18 1347 int unavail;
ff2e87ac
AC
1348 enum lval_type lval;
1349 CORE_ADDR addr;
1c4d3f96 1350
0fdb4f18
PA
1351 frame_register (frame, regnum, &optim, &unavail,
1352 &lval, &addr, &realnum, NULL);
ff2e87ac 1353 if (optim)
901461f8 1354 error (_("Attempt to assign to a register that was not saved."));
ff2e87ac
AC
1355 switch (lval)
1356 {
1357 case lval_memory:
1358 {
954b50b3 1359 write_memory (addr, buf, register_size (gdbarch, regnum));
ff2e87ac
AC
1360 break;
1361 }
1362 case lval_register:
b66f5587 1363 get_current_regcache ()->cooked_write (realnum, buf);
ff2e87ac
AC
1364 break;
1365 default:
8a3fe4f8 1366 error (_("Attempt to assign to an unmodifiable value."));
ff2e87ac
AC
1367 }
1368}
1369
b2c7d45a
JB
1370/* This function is deprecated. Use get_frame_register_value instead,
1371 which provides more accurate information.
d65fe839 1372
cda5a58a 1373 Find and return the value of REGNUM for the specified stack frame.
5bc602c7 1374 The number of bytes copied is REGISTER_SIZE (REGNUM).
d65fe839 1375
cda5a58a 1376 Returns 0 if the register value could not be found. */
d65fe839 1377
cda5a58a 1378int
ca9d61b9 1379deprecated_frame_register_read (struct frame_info *frame, int regnum,
10c42a71 1380 gdb_byte *myaddr)
d65fe839 1381{
a216a322 1382 int optimized;
0fdb4f18 1383 int unavailable;
a216a322
AC
1384 enum lval_type lval;
1385 CORE_ADDR addr;
1386 int realnum;
1c4d3f96 1387
0fdb4f18
PA
1388 frame_register (frame, regnum, &optimized, &unavailable,
1389 &lval, &addr, &realnum, myaddr);
d65fe839 1390
0fdb4f18 1391 return !optimized && !unavailable;
d65fe839 1392}
e36180d7 1393
00fa51f6
UW
1394int
1395get_frame_register_bytes (struct frame_info *frame, int regnum,
8dccd430
PA
1396 CORE_ADDR offset, int len, gdb_byte *myaddr,
1397 int *optimizedp, int *unavailablep)
00fa51f6
UW
1398{
1399 struct gdbarch *gdbarch = get_frame_arch (frame);
3f27f2a4
AS
1400 int i;
1401 int maxsize;
68e007ca 1402 int numregs;
00fa51f6
UW
1403
1404 /* Skip registers wholly inside of OFFSET. */
1405 while (offset >= register_size (gdbarch, regnum))
1406 {
1407 offset -= register_size (gdbarch, regnum);
1408 regnum++;
1409 }
1410
26fae1d6
AS
1411 /* Ensure that we will not read beyond the end of the register file.
1412 This can only ever happen if the debug information is bad. */
3f27f2a4 1413 maxsize = -offset;
f6efe3f8 1414 numregs = gdbarch_num_cooked_regs (gdbarch);
68e007ca 1415 for (i = regnum; i < numregs; i++)
3f27f2a4
AS
1416 {
1417 int thissize = register_size (gdbarch, i);
bb9bcb69 1418
3f27f2a4 1419 if (thissize == 0)
26fae1d6 1420 break; /* This register is not available on this architecture. */
3f27f2a4
AS
1421 maxsize += thissize;
1422 }
1423 if (len > maxsize)
8dccd430
PA
1424 error (_("Bad debug information detected: "
1425 "Attempt to read %d bytes from registers."), len);
3f27f2a4 1426
00fa51f6
UW
1427 /* Copy the data. */
1428 while (len > 0)
1429 {
1430 int curr_len = register_size (gdbarch, regnum) - offset;
bb9bcb69 1431
00fa51f6
UW
1432 if (curr_len > len)
1433 curr_len = len;
1434
1435 if (curr_len == register_size (gdbarch, regnum))
1436 {
8dccd430
PA
1437 enum lval_type lval;
1438 CORE_ADDR addr;
1439 int realnum;
1440
1441 frame_register (frame, regnum, optimizedp, unavailablep,
1442 &lval, &addr, &realnum, myaddr);
1443 if (*optimizedp || *unavailablep)
00fa51f6
UW
1444 return 0;
1445 }
1446 else
1447 {
db3a1dc7
AH
1448 struct value *value = frame_unwind_register_value (frame->next,
1449 regnum);
1450 gdb_assert (value != NULL);
1451 *optimizedp = value_optimized_out (value);
1452 *unavailablep = !value_entirely_available (value);
bb9bcb69 1453
8dccd430 1454 if (*optimizedp || *unavailablep)
db3a1dc7
AH
1455 {
1456 release_value (value);
db3a1dc7
AH
1457 return 0;
1458 }
1459 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1460 release_value (value);
00fa51f6
UW
1461 }
1462
765f065a 1463 myaddr += curr_len;
00fa51f6
UW
1464 len -= curr_len;
1465 offset = 0;
1466 regnum++;
1467 }
1468
8dccd430
PA
1469 *optimizedp = 0;
1470 *unavailablep = 0;
00fa51f6
UW
1471 return 1;
1472}
1473
1474void
1475put_frame_register_bytes (struct frame_info *frame, int regnum,
1476 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1477{
1478 struct gdbarch *gdbarch = get_frame_arch (frame);
1479
1480 /* Skip registers wholly inside of OFFSET. */
1481 while (offset >= register_size (gdbarch, regnum))
1482 {
1483 offset -= register_size (gdbarch, regnum);
1484 regnum++;
1485 }
1486
1487 /* Copy the data. */
1488 while (len > 0)
1489 {
1490 int curr_len = register_size (gdbarch, regnum) - offset;
bb9bcb69 1491
00fa51f6
UW
1492 if (curr_len > len)
1493 curr_len = len;
1494
1495 if (curr_len == register_size (gdbarch, regnum))
1496 {
1497 put_frame_register (frame, regnum, myaddr);
1498 }
1499 else
1500 {
db3a1dc7
AH
1501 struct value *value = frame_unwind_register_value (frame->next,
1502 regnum);
1503 gdb_assert (value != NULL);
1504
1505 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1506 curr_len);
1507 put_frame_register (frame, regnum, value_contents_raw (value));
1508 release_value (value);
00fa51f6
UW
1509 }
1510
765f065a 1511 myaddr += curr_len;
00fa51f6
UW
1512 len -= curr_len;
1513 offset = 0;
1514 regnum++;
1515 }
1516}
e36180d7 1517
a94dd1fd
AC
1518/* Create a sentinel frame. */
1519
b9362cc7 1520static struct frame_info *
6c95b8df 1521create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
a94dd1fd
AC
1522{
1523 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1c4d3f96 1524
a94dd1fd 1525 frame->level = -1;
6c95b8df 1526 frame->pspace = pspace;
a01bda52 1527 frame->aspace = regcache->aspace ();
a94dd1fd
AC
1528 /* Explicitly initialize the sentinel frame's cache. Provide it
1529 with the underlying regcache. In the future additional
1530 information, such as the frame's thread will be added. */
6dc42492 1531 frame->prologue_cache = sentinel_frame_cache (regcache);
a94dd1fd 1532 /* For the moment there is only one sentinel frame implementation. */
39d7b0e2 1533 frame->unwind = &sentinel_frame_unwind;
a94dd1fd
AC
1534 /* Link this frame back to itself. The frame is self referential
1535 (the unwound PC is the same as the pc), so make it so. */
1536 frame->next = frame;
df433d31 1537 /* The sentinel frame has a special ID. */
d0a55772 1538 frame->this_id.p = 1;
df433d31 1539 frame->this_id.value = sentinel_frame_id;
7f78e237
AC
1540 if (frame_debug)
1541 {
1542 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1543 fprint_frame (gdb_stdlog, frame);
1544 fprintf_unfiltered (gdb_stdlog, " }\n");
1545 }
a94dd1fd
AC
1546 return frame;
1547}
1548
4c1e7e9d
AC
1549/* Cache for frame addresses already read by gdb. Valid only while
1550 inferior is stopped. Control variables for the frame cache should
1551 be local to this module. */
1552
1553static struct obstack frame_cache_obstack;
1554
1555void *
479ab5a0 1556frame_obstack_zalloc (unsigned long size)
4c1e7e9d 1557{
479ab5a0 1558 void *data = obstack_alloc (&frame_cache_obstack, size);
1c4d3f96 1559
479ab5a0
AC
1560 memset (data, 0, size);
1561 return data;
4c1e7e9d
AC
1562}
1563
f245535c 1564static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
4c1e7e9d
AC
1565
1566struct frame_info *
1567get_current_frame (void)
1568{
df433d31
KB
1569 struct frame_info *current_frame;
1570
0a1e1ca1
AC
1571 /* First check, and report, the lack of registers. Having GDB
1572 report "No stack!" or "No memory" when the target doesn't even
1573 have registers is very confusing. Besides, "printcmd.exp"
1574 explicitly checks that ``print $pc'' with no registers prints "No
1575 registers". */
a94dd1fd 1576 if (!target_has_registers)
8a3fe4f8 1577 error (_("No registers."));
0a1e1ca1 1578 if (!target_has_stack)
8a3fe4f8 1579 error (_("No stack."));
a94dd1fd 1580 if (!target_has_memory)
8a3fe4f8 1581 error (_("No memory."));
2ce6d6bf
SS
1582 /* Traceframes are effectively a substitute for the live inferior. */
1583 if (get_traceframe_number () < 0)
a911d87a 1584 validate_registers_access ();
8ea051c5 1585
df433d31
KB
1586 if (sentinel_frame == NULL)
1587 sentinel_frame =
1588 create_sentinel_frame (current_program_space, get_current_regcache ());
1589
1590 /* Set the current frame before computing the frame id, to avoid
1591 recursion inside compute_frame_id, in case the frame's
1592 unwinder decides to do a symbol lookup (which depends on the
1593 selected frame's block).
1594
1595 This call must always succeed. In particular, nothing inside
1596 get_prev_frame_always_1 should try to unwind from the
1597 sentinel frame, because that could fail/throw, and we always
1598 want to leave with the current frame created and linked in --
1599 we should never end up with the sentinel frame as outermost
1600 frame. */
1601 current_frame = get_prev_frame_always_1 (sentinel_frame);
1602 gdb_assert (current_frame != NULL);
f245535c 1603
4c1e7e9d
AC
1604 return current_frame;
1605}
1606
6e7f8b9c
AC
1607/* The "selected" stack frame is used by default for local and arg
1608 access. May be zero, for no selected frame. */
1609
206415a3 1610static struct frame_info *selected_frame;
6e7f8b9c 1611
9d49bdc2 1612int
8ea051c5
PA
1613has_stack_frames (void)
1614{
1615 if (!target_has_registers || !target_has_stack || !target_has_memory)
1616 return 0;
1617
861152be
LM
1618 /* Traceframes are effectively a substitute for the live inferior. */
1619 if (get_traceframe_number () < 0)
1620 {
1621 /* No current inferior, no frame. */
00431a78 1622 if (inferior_ptid == null_ptid)
861152be 1623 return 0;
d729566a 1624
00431a78 1625 thread_info *tp = inferior_thread ();
861152be 1626 /* Don't try to read from a dead thread. */
00431a78 1627 if (tp->state == THREAD_EXITED)
861152be 1628 return 0;
d729566a 1629
861152be 1630 /* ... or from a spinning thread. */
00431a78 1631 if (tp->executing)
861152be
LM
1632 return 0;
1633 }
8ea051c5
PA
1634
1635 return 1;
1636}
1637
bbde78fa 1638/* Return the selected frame. Always non-NULL (unless there isn't an
6e7f8b9c
AC
1639 inferior sufficient for creating a frame) in which case an error is
1640 thrown. */
1641
1642struct frame_info *
b04f3ab4 1643get_selected_frame (const char *message)
6e7f8b9c 1644{
206415a3 1645 if (selected_frame == NULL)
b04f3ab4 1646 {
8ea051c5 1647 if (message != NULL && !has_stack_frames ())
8a3fe4f8 1648 error (("%s"), message);
b04f3ab4
AC
1649 /* Hey! Don't trust this. It should really be re-finding the
1650 last selected frame of the currently selected thread. This,
1651 though, is better than nothing. */
1652 select_frame (get_current_frame ());
1653 }
6e7f8b9c 1654 /* There is always a frame. */
206415a3
DJ
1655 gdb_assert (selected_frame != NULL);
1656 return selected_frame;
6e7f8b9c
AC
1657}
1658
eb8c0621
TT
1659/* If there is a selected frame, return it. Otherwise, return NULL. */
1660
1661struct frame_info *
1662get_selected_frame_if_set (void)
1663{
1664 return selected_frame;
1665}
1666
bbde78fa 1667/* This is a variant of get_selected_frame() which can be called when
7dd88986 1668 the inferior does not have a frame; in that case it will return
bbde78fa 1669 NULL instead of calling error(). */
7dd88986
DJ
1670
1671struct frame_info *
1672deprecated_safe_get_selected_frame (void)
1673{
8ea051c5 1674 if (!has_stack_frames ())
7dd88986 1675 return NULL;
b04f3ab4 1676 return get_selected_frame (NULL);
7dd88986
DJ
1677}
1678
6e7f8b9c
AC
1679/* Select frame FI (or NULL - to invalidate the current frame). */
1680
1681void
1682select_frame (struct frame_info *fi)
1683{
206415a3 1684 selected_frame = fi;
bbde78fa 1685 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
6e7f8b9c 1686 frame is being invalidated. */
6e7f8b9c
AC
1687
1688 /* FIXME: kseitz/2002-08-28: It would be nice to call
bbde78fa 1689 selected_frame_level_changed_event() right here, but due to limitations
6e7f8b9c 1690 in the current interfaces, we would end up flooding UIs with events
bbde78fa 1691 because select_frame() is used extensively internally.
6e7f8b9c
AC
1692
1693 Once we have frame-parameterized frame (and frame-related) commands,
1694 the event notification can be moved here, since this function will only
0963b4bd 1695 be called when the user's selected frame is being changed. */
6e7f8b9c
AC
1696
1697 /* Ensure that symbols for this frame are read in. Also, determine the
1698 source language of this frame, and switch to it if desired. */
1699 if (fi)
1700 {
e3eebbd7
PA
1701 CORE_ADDR pc;
1702
1703 /* We retrieve the frame's symtab by using the frame PC.
1704 However we cannot use the frame PC as-is, because it usually
1705 points to the instruction following the "call", which is
1706 sometimes the first instruction of another function. So we
1707 rely on get_frame_address_in_block() which provides us with a
1708 PC which is guaranteed to be inside the frame's code
1709 block. */
1710 if (get_frame_address_in_block_if_available (fi, &pc))
6e7f8b9c 1711 {
43f3e411 1712 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
e3eebbd7 1713
43f3e411
DE
1714 if (cust != NULL
1715 && compunit_language (cust) != current_language->la_language
1716 && compunit_language (cust) != language_unknown
e3eebbd7 1717 && language_mode == language_mode_auto)
43f3e411 1718 set_language (compunit_language (cust));
6e7f8b9c
AC
1719 }
1720 }
1721}
e3eebbd7 1722
4c1e7e9d
AC
1723/* Create an arbitrary (i.e. address specified by user) or innermost frame.
1724 Always returns a non-NULL value. */
1725
1726struct frame_info *
1727create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1728{
1729 struct frame_info *fi;
4c1e7e9d 1730
7f78e237
AC
1731 if (frame_debug)
1732 {
1733 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1734 "{ create_new_frame (addr=%s, pc=%s) ",
1735 hex_string (addr), hex_string (pc));
7f78e237
AC
1736 }
1737
35d5d4ee 1738 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
4c1e7e9d 1739
3e43a32a
MS
1740 fi->next = create_sentinel_frame (current_program_space,
1741 get_current_regcache ());
7df05f2b 1742
1e275f79
PA
1743 /* Set/update this frame's cached PC value, found in the next frame.
1744 Do this before looking for this frame's unwinder. A sniffer is
1745 very likely to read this, and the corresponding unwinder is
1746 entitled to rely that the PC doesn't magically change. */
1747 fi->next->prev_pc.value = pc;
782d47df 1748 fi->next->prev_pc.status = CC_VALUE;
1e275f79 1749
6c95b8df
PA
1750 /* We currently assume that frame chain's can't cross spaces. */
1751 fi->pspace = fi->next->pspace;
1752 fi->aspace = fi->next->aspace;
1753
7df05f2b
AC
1754 /* Select/initialize both the unwind function and the frame's type
1755 based on the PC. */
9f9a8002 1756 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
7df05f2b 1757
18adea3f 1758 fi->this_id.p = 1;
1e275f79 1759 fi->this_id.value = frame_id_build (addr, pc);
4c1e7e9d 1760
7f78e237
AC
1761 if (frame_debug)
1762 {
1763 fprintf_unfiltered (gdb_stdlog, "-> ");
1764 fprint_frame (gdb_stdlog, fi);
1765 fprintf_unfiltered (gdb_stdlog, " }\n");
1766 }
1767
4c1e7e9d
AC
1768 return fi;
1769}
1770
03febf99
AC
1771/* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1772 innermost frame). Be careful to not fall off the bottom of the
1773 frame chain and onto the sentinel frame. */
4c1e7e9d
AC
1774
1775struct frame_info *
03febf99 1776get_next_frame (struct frame_info *this_frame)
4c1e7e9d 1777{
03febf99
AC
1778 if (this_frame->level > 0)
1779 return this_frame->next;
a94dd1fd
AC
1780 else
1781 return NULL;
4c1e7e9d
AC
1782}
1783
df433d31
KB
1784/* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1785 innermost (i.e. current) frame, return the sentinel frame. Thus,
1786 unlike get_next_frame(), NULL will never be returned. */
1787
1788struct frame_info *
1789get_next_frame_sentinel_okay (struct frame_info *this_frame)
1790{
1791 gdb_assert (this_frame != NULL);
1792
1793 /* Note that, due to the manner in which the sentinel frame is
1794 constructed, this_frame->next still works even when this_frame
1795 is the sentinel frame. But we disallow it here anyway because
1796 calling get_next_frame_sentinel_okay() on the sentinel frame
1797 is likely a coding error. */
1798 gdb_assert (this_frame != sentinel_frame);
1799
1800 return this_frame->next;
1801}
1802
f4c5303c
OF
1803/* Observer for the target_changed event. */
1804
2c0b251b 1805static void
f4c5303c
OF
1806frame_observer_target_changed (struct target_ops *target)
1807{
35f196d9 1808 reinit_frame_cache ();
f4c5303c
OF
1809}
1810
4c1e7e9d
AC
1811/* Flush the entire frame cache. */
1812
1813void
35f196d9 1814reinit_frame_cache (void)
4c1e7e9d 1815{
272dfcfd
AS
1816 struct frame_info *fi;
1817
1818 /* Tear down all frame caches. */
df433d31 1819 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
272dfcfd
AS
1820 {
1821 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1822 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1823 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1824 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1825 }
1826
0963b4bd 1827 /* Since we can't really be sure what the first object allocated was. */
4c1e7e9d
AC
1828 obstack_free (&frame_cache_obstack, 0);
1829 obstack_init (&frame_cache_obstack);
1830
df433d31 1831 if (sentinel_frame != NULL)
0d6ba1b1
DJ
1832 annotate_frames_invalid ();
1833
df433d31 1834 sentinel_frame = NULL; /* Invalidate cache */
4c1e7e9d 1835 select_frame (NULL);
b83e9eb7 1836 frame_stash_invalidate ();
7f78e237 1837 if (frame_debug)
35f196d9 1838 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
4c1e7e9d
AC
1839}
1840
e48af409
DJ
1841/* Find where a register is saved (in memory or another register).
1842 The result of frame_register_unwind is just where it is saved
5efde112 1843 relative to this particular frame. */
e48af409
DJ
1844
1845static void
1846frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1847 int *optimizedp, enum lval_type *lvalp,
1848 CORE_ADDR *addrp, int *realnump)
1849{
1850 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1851
1852 while (this_frame != NULL)
1853 {
0fdb4f18
PA
1854 int unavailable;
1855
1856 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1857 lvalp, addrp, realnump, NULL);
e48af409
DJ
1858
1859 if (*optimizedp)
1860 break;
1861
1862 if (*lvalp != lval_register)
1863 break;
1864
1865 regnum = *realnump;
1866 this_frame = get_next_frame (this_frame);
1867 }
1868}
1869
194cca41
PA
1870/* Get the previous raw frame, and check that it is not identical to
1871 same other frame frame already in the chain. If it is, there is
1872 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1873 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1874 validity tests, that compare THIS_FRAME and the next frame, we do
1875 this right after creating the previous frame, to avoid ever ending
1876 up with two frames with the same id in the frame chain. */
1877
1878static struct frame_info *
1879get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1880{
1881 struct frame_info *prev_frame;
1882
1883 prev_frame = get_prev_frame_raw (this_frame);
f245535c
PA
1884
1885 /* Don't compute the frame id of the current frame yet. Unwinding
1886 the sentinel frame can fail (e.g., if the thread is gone and we
1887 can't thus read its registers). If we let the cycle detection
1888 code below try to compute a frame ID, then an error thrown from
1889 within the frame ID computation would result in the sentinel
1890 frame as outermost frame, which is bogus. Instead, we'll compute
1891 the current frame's ID lazily in get_frame_id. Note that there's
1892 no point in doing cycle detection when there's only one frame, so
1893 nothing is lost here. */
1894 if (prev_frame->level == 0)
1895 return prev_frame;
194cca41 1896
09a5e1b5 1897 TRY
194cca41 1898 {
09a5e1b5
TT
1899 compute_frame_id (prev_frame);
1900 if (!frame_stash_add (prev_frame))
938f0e2f 1901 {
09a5e1b5
TT
1902 /* Another frame with the same id was already in the stash. We just
1903 detected a cycle. */
1904 if (frame_debug)
1905 {
1906 fprintf_unfiltered (gdb_stdlog, "-> ");
1907 fprint_frame (gdb_stdlog, NULL);
1908 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1909 }
1910 this_frame->stop_reason = UNWIND_SAME_ID;
1911 /* Unlink. */
1912 prev_frame->next = NULL;
1913 this_frame->prev = NULL;
1914 prev_frame = NULL;
938f0e2f 1915 }
09a5e1b5
TT
1916 }
1917 CATCH (ex, RETURN_MASK_ALL)
1918 {
938f0e2f
AB
1919 prev_frame->next = NULL;
1920 this_frame->prev = NULL;
09a5e1b5
TT
1921
1922 throw_exception (ex);
194cca41 1923 }
09a5e1b5 1924 END_CATCH
938f0e2f 1925
938f0e2f 1926 return prev_frame;
194cca41
PA
1927}
1928
53e8a631
AB
1929/* Helper function for get_prev_frame_always, this is called inside a
1930 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1931 there is no such frame. This may throw an exception. */
eb4f72c5 1932
53e8a631
AB
1933static struct frame_info *
1934get_prev_frame_always_1 (struct frame_info *this_frame)
eb4f72c5 1935{
b1bd0044 1936 struct gdbarch *gdbarch;
eb4f72c5 1937
5613d8d3 1938 gdb_assert (this_frame != NULL);
b1bd0044 1939 gdbarch = get_frame_arch (this_frame);
5613d8d3 1940
7f78e237
AC
1941 if (frame_debug)
1942 {
51d48146 1943 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
7f78e237
AC
1944 if (this_frame != NULL)
1945 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1946 else
1947 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1948 fprintf_unfiltered (gdb_stdlog, ") ");
1949 }
1950
5613d8d3
AC
1951 /* Only try to do the unwind once. */
1952 if (this_frame->prev_p)
1953 {
1954 if (frame_debug)
1955 {
1956 fprintf_unfiltered (gdb_stdlog, "-> ");
1957 fprint_frame (gdb_stdlog, this_frame->prev);
1958 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1959 }
1960 return this_frame->prev;
1961 }
8fa75a5d 1962
0d254d6f
DJ
1963 /* If the frame unwinder hasn't been selected yet, we must do so
1964 before setting prev_p; otherwise the check for misbehaved
1965 sniffers will think that this frame's sniffer tried to unwind
1966 further (see frame_cleanup_after_sniffer). */
1967 if (this_frame->unwind == NULL)
9f9a8002 1968 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
8fa75a5d 1969
5613d8d3 1970 this_frame->prev_p = 1;
55feb689 1971 this_frame->stop_reason = UNWIND_NO_REASON;
5613d8d3 1972
edb3359d
DJ
1973 /* If we are unwinding from an inline frame, all of the below tests
1974 were already performed when we unwound from the next non-inline
1975 frame. We must skip them, since we can not get THIS_FRAME's ID
1976 until we have unwound all the way down to the previous non-inline
1977 frame. */
1978 if (get_frame_type (this_frame) == INLINE_FRAME)
194cca41 1979 return get_prev_frame_if_no_cycle (this_frame);
edb3359d 1980
8fbca658
PA
1981 /* Check that this frame is unwindable. If it isn't, don't try to
1982 unwind to the prev frame. */
1983 this_frame->stop_reason
1984 = this_frame->unwind->stop_reason (this_frame,
1985 &this_frame->prologue_cache);
1986
1987 if (this_frame->stop_reason != UNWIND_NO_REASON)
a7300869
PA
1988 {
1989 if (frame_debug)
1990 {
1991 enum unwind_stop_reason reason = this_frame->stop_reason;
1992
1993 fprintf_unfiltered (gdb_stdlog, "-> ");
1994 fprint_frame (gdb_stdlog, NULL);
1995 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1996 frame_stop_reason_symbol_string (reason));
1997 }
1998 return NULL;
1999 }
8fbca658 2000
5613d8d3
AC
2001 /* Check that this frame's ID isn't inner to (younger, below, next)
2002 the next frame. This happens when a frame unwind goes backwards.
f06eadd9
JB
2003 This check is valid only if this frame and the next frame are NORMAL.
2004 See the comment at frame_id_inner for details. */
2005 if (get_frame_type (this_frame) == NORMAL_FRAME
2006 && this_frame->next->unwind->type == NORMAL_FRAME
da361ebd
JB
2007 && frame_id_inner (get_frame_arch (this_frame->next),
2008 get_frame_id (this_frame),
09a7aba8 2009 get_frame_id (this_frame->next)))
55feb689 2010 {
ebedcab5
JK
2011 CORE_ADDR this_pc_in_block;
2012 struct minimal_symbol *morestack_msym;
2013 const char *morestack_name = NULL;
2014
2015 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2016 this_pc_in_block = get_frame_address_in_block (this_frame);
7cbd4a93 2017 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
ebedcab5 2018 if (morestack_msym)
efd66ac6 2019 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
ebedcab5 2020 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
55feb689 2021 {
ebedcab5
JK
2022 if (frame_debug)
2023 {
2024 fprintf_unfiltered (gdb_stdlog, "-> ");
2025 fprint_frame (gdb_stdlog, NULL);
3e43a32a
MS
2026 fprintf_unfiltered (gdb_stdlog,
2027 " // this frame ID is inner }\n");
ebedcab5
JK
2028 }
2029 this_frame->stop_reason = UNWIND_INNER_ID;
2030 return NULL;
55feb689 2031 }
55feb689 2032 }
5613d8d3 2033
e48af409
DJ
2034 /* Check that this and the next frame do not unwind the PC register
2035 to the same memory location. If they do, then even though they
2036 have different frame IDs, the new frame will be bogus; two
2037 functions can't share a register save slot for the PC. This can
2038 happen when the prologue analyzer finds a stack adjustment, but
d57df5e4
DJ
2039 no PC save.
2040
2041 This check does assume that the "PC register" is roughly a
2042 traditional PC, even if the gdbarch_unwind_pc method adjusts
2043 it (we do not rely on the value, only on the unwound PC being
2044 dependent on this value). A potential improvement would be
2045 to have the frame prev_pc method and the gdbarch unwind_pc
2046 method set the same lval and location information as
2047 frame_register_unwind. */
e48af409 2048 if (this_frame->level > 0
b1bd0044 2049 && gdbarch_pc_regnum (gdbarch) >= 0
e48af409 2050 && get_frame_type (this_frame) == NORMAL_FRAME
edb3359d
DJ
2051 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2052 || get_frame_type (this_frame->next) == INLINE_FRAME))
e48af409 2053 {
32276632 2054 int optimized, realnum, nrealnum;
e48af409
DJ
2055 enum lval_type lval, nlval;
2056 CORE_ADDR addr, naddr;
2057
3e8c568d 2058 frame_register_unwind_location (this_frame,
b1bd0044 2059 gdbarch_pc_regnum (gdbarch),
3e8c568d
UW
2060 &optimized, &lval, &addr, &realnum);
2061 frame_register_unwind_location (get_next_frame (this_frame),
b1bd0044 2062 gdbarch_pc_regnum (gdbarch),
32276632 2063 &optimized, &nlval, &naddr, &nrealnum);
e48af409 2064
32276632
DJ
2065 if ((lval == lval_memory && lval == nlval && addr == naddr)
2066 || (lval == lval_register && lval == nlval && realnum == nrealnum))
e48af409
DJ
2067 {
2068 if (frame_debug)
2069 {
2070 fprintf_unfiltered (gdb_stdlog, "-> ");
2071 fprint_frame (gdb_stdlog, NULL);
2072 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2073 }
2074
2075 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2076 this_frame->prev = NULL;
2077 return NULL;
2078 }
2079 }
2080
194cca41 2081 return get_prev_frame_if_no_cycle (this_frame);
edb3359d
DJ
2082}
2083
53e8a631
AB
2084/* Return a "struct frame_info" corresponding to the frame that called
2085 THIS_FRAME. Returns NULL if there is no such frame.
2086
2087 Unlike get_prev_frame, this function always tries to unwind the
2088 frame. */
2089
2090struct frame_info *
2091get_prev_frame_always (struct frame_info *this_frame)
2092{
53e8a631
AB
2093 struct frame_info *prev_frame = NULL;
2094
492d29ea 2095 TRY
53e8a631
AB
2096 {
2097 prev_frame = get_prev_frame_always_1 (this_frame);
2098 }
492d29ea 2099 CATCH (ex, RETURN_MASK_ERROR)
53e8a631
AB
2100 {
2101 if (ex.error == MEMORY_ERROR)
2102 {
2103 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2104 if (ex.message != NULL)
2105 {
2106 char *stop_string;
2107 size_t size;
2108
2109 /* The error needs to live as long as the frame does.
2110 Allocate using stack local STOP_STRING then assign the
2111 pointer to the frame, this allows the STOP_STRING on the
2112 frame to be of type 'const char *'. */
2113 size = strlen (ex.message) + 1;
224c3ddb 2114 stop_string = (char *) frame_obstack_zalloc (size);
53e8a631
AB
2115 memcpy (stop_string, ex.message, size);
2116 this_frame->stop_string = stop_string;
2117 }
2118 prev_frame = NULL;
2119 }
2120 else
2121 throw_exception (ex);
2122 }
492d29ea 2123 END_CATCH
53e8a631
AB
2124
2125 return prev_frame;
2126}
2127
edb3359d
DJ
2128/* Construct a new "struct frame_info" and link it previous to
2129 this_frame. */
2130
2131static struct frame_info *
2132get_prev_frame_raw (struct frame_info *this_frame)
2133{
2134 struct frame_info *prev_frame;
2135
5613d8d3
AC
2136 /* Allocate the new frame but do not wire it in to the frame chain.
2137 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2138 frame->next to pull some fancy tricks (of course such code is, by
2139 definition, recursive). Try to prevent it.
2140
2141 There is no reason to worry about memory leaks, should the
2142 remainder of the function fail. The allocated memory will be
2143 quickly reclaimed when the frame cache is flushed, and the `we've
2144 been here before' check above will stop repeated memory
2145 allocation calls. */
2146 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2147 prev_frame->level = this_frame->level + 1;
2148
6c95b8df
PA
2149 /* For now, assume we don't have frame chains crossing address
2150 spaces. */
2151 prev_frame->pspace = this_frame->pspace;
2152 prev_frame->aspace = this_frame->aspace;
2153
5613d8d3
AC
2154 /* Don't yet compute ->unwind (and hence ->type). It is computed
2155 on-demand in get_frame_type, frame_register_unwind, and
2156 get_frame_id. */
2157
2158 /* Don't yet compute the frame's ID. It is computed on-demand by
2159 get_frame_id(). */
2160
2161 /* The unwound frame ID is validate at the start of this function,
2162 as part of the logic to decide if that frame should be further
2163 unwound, and not here while the prev frame is being created.
2164 Doing this makes it possible for the user to examine a frame that
2165 has an invalid frame ID.
2166
2167 Some very old VAX code noted: [...] For the sake of argument,
2168 suppose that the stack is somewhat trashed (which is one reason
2169 that "info frame" exists). So, return 0 (indicating we don't
2170 know the address of the arglist) if we don't know what frame this
2171 frame calls. */
2172
2173 /* Link it in. */
2174 this_frame->prev = prev_frame;
2175 prev_frame->next = this_frame;
2176
2177 if (frame_debug)
2178 {
2179 fprintf_unfiltered (gdb_stdlog, "-> ");
2180 fprint_frame (gdb_stdlog, prev_frame);
2181 fprintf_unfiltered (gdb_stdlog, " }\n");
2182 }
2183
2184 return prev_frame;
2185}
2186
2187/* Debug routine to print a NULL frame being returned. */
2188
2189static void
d2bf72c0 2190frame_debug_got_null_frame (struct frame_info *this_frame,
5613d8d3
AC
2191 const char *reason)
2192{
2193 if (frame_debug)
2194 {
2195 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2196 if (this_frame != NULL)
2197 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2198 else
2199 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2200 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2201 }
2202}
2203
c8cd9f6c
AC
2204/* Is this (non-sentinel) frame in the "main"() function? */
2205
2206static int
2207inside_main_func (struct frame_info *this_frame)
2208{
3b7344d5 2209 struct bound_minimal_symbol msymbol;
c8cd9f6c
AC
2210 CORE_ADDR maddr;
2211
2212 if (symfile_objfile == 0)
2213 return 0;
2214 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
3b7344d5 2215 if (msymbol.minsym == NULL)
c8cd9f6c
AC
2216 return 0;
2217 /* Make certain that the code, and not descriptor, address is
2218 returned. */
b1bd0044 2219 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
77e371c0 2220 BMSYMBOL_VALUE_ADDRESS (msymbol),
8b88a78e 2221 current_top_target ());
c8cd9f6c
AC
2222 return maddr == get_frame_func (this_frame);
2223}
2224
2315ffec
RC
2225/* Test whether THIS_FRAME is inside the process entry point function. */
2226
2227static int
2228inside_entry_func (struct frame_info *this_frame)
2229{
abd0a5fa
JK
2230 CORE_ADDR entry_point;
2231
2232 if (!entry_point_address_query (&entry_point))
2233 return 0;
2234
2235 return get_frame_func (this_frame) == entry_point;
2315ffec
RC
2236}
2237
5613d8d3
AC
2238/* Return a structure containing various interesting information about
2239 the frame that called THIS_FRAME. Returns NULL if there is entier
2240 no such frame or the frame fails any of a set of target-independent
2241 condition that should terminate the frame chain (e.g., as unwinding
2242 past main()).
2243
2244 This function should not contain target-dependent tests, such as
2245 checking whether the program-counter is zero. */
2246
2247struct frame_info *
2248get_prev_frame (struct frame_info *this_frame)
2249{
e3eebbd7
PA
2250 CORE_ADDR frame_pc;
2251 int frame_pc_p;
2252
eb4f72c5
AC
2253 /* There is always a frame. If this assertion fails, suspect that
2254 something should be calling get_selected_frame() or
2255 get_current_frame(). */
03febf99 2256 gdb_assert (this_frame != NULL);
256ae5db
KB
2257
2258 /* If this_frame is the current frame, then compute and stash
2259 its frame id prior to fetching and computing the frame id of the
2260 previous frame. Otherwise, the cycle detection code in
2261 get_prev_frame_if_no_cycle() will not work correctly. When
2262 get_frame_id() is called later on, an assertion error will
2263 be triggered in the event of a cycle between the current
2264 frame and its previous frame. */
2265 if (this_frame->level == 0)
2266 get_frame_id (this_frame);
2267
e3eebbd7 2268 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
eb4f72c5 2269
cc9bed83
RC
2270 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2271 sense to stop unwinding at a dummy frame. One place where a dummy
2272 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2273 pcsqh register (space register for the instruction at the head of the
2274 instruction queue) cannot be written directly; the only way to set it
2275 is to branch to code that is in the target space. In order to implement
2276 frame dummies on HPUX, the called function is made to jump back to where
2277 the inferior was when the user function was called. If gdb was inside
2278 the main function when we created the dummy frame, the dummy frame will
2279 point inside the main function. */
03febf99 2280 if (this_frame->level >= 0
edb3359d 2281 && get_frame_type (this_frame) == NORMAL_FRAME
25d29d70 2282 && !backtrace_past_main
e3eebbd7 2283 && frame_pc_p
c8cd9f6c
AC
2284 && inside_main_func (this_frame))
2285 /* Don't unwind past main(). Note, this is done _before_ the
2286 frame has been marked as previously unwound. That way if the
2287 user later decides to enable unwinds past main(), that will
2288 automatically happen. */
ac2bd0a9 2289 {
d2bf72c0 2290 frame_debug_got_null_frame (this_frame, "inside main func");
ac2bd0a9
AC
2291 return NULL;
2292 }
eb4f72c5 2293
4a5e53e8
DJ
2294 /* If the user's backtrace limit has been exceeded, stop. We must
2295 add two to the current level; one of those accounts for backtrace_limit
2296 being 1-based and the level being 0-based, and the other accounts for
2297 the level of the new frame instead of the level of the current
2298 frame. */
2299 if (this_frame->level + 2 > backtrace_limit)
25d29d70 2300 {
d2bf72c0 2301 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
4a5e53e8 2302 return NULL;
25d29d70
AC
2303 }
2304
0714963c
AC
2305 /* If we're already inside the entry function for the main objfile,
2306 then it isn't valid. Don't apply this test to a dummy frame -
bbde78fa 2307 dummy frame PCs typically land in the entry func. Don't apply
0714963c
AC
2308 this test to the sentinel frame. Sentinel frames should always
2309 be allowed to unwind. */
2f72f850
AC
2310 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2311 wasn't checking for "main" in the minimal symbols. With that
2312 fixed asm-source tests now stop in "main" instead of halting the
bbde78fa 2313 backtrace in weird and wonderful ways somewhere inside the entry
2f72f850
AC
2314 file. Suspect that tests for inside the entry file/func were
2315 added to work around that (now fixed) case. */
0714963c
AC
2316 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2317 suggested having the inside_entry_func test use the
bbde78fa
JM
2318 inside_main_func() msymbol trick (along with entry_point_address()
2319 I guess) to determine the address range of the start function.
0714963c
AC
2320 That should provide a far better stopper than the current
2321 heuristics. */
2315ffec
RC
2322 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2323 applied tail-call optimizations to main so that a function called
2324 from main returns directly to the caller of main. Since we don't
2325 stop at main, we should at least stop at the entry point of the
2326 application. */
edb3359d
DJ
2327 if (this_frame->level >= 0
2328 && get_frame_type (this_frame) == NORMAL_FRAME
2329 && !backtrace_past_entry
e3eebbd7 2330 && frame_pc_p
6e4c6c91 2331 && inside_entry_func (this_frame))
0714963c 2332 {
d2bf72c0 2333 frame_debug_got_null_frame (this_frame, "inside entry func");
0714963c
AC
2334 return NULL;
2335 }
2336
39ee2ff0
AC
2337 /* Assume that the only way to get a zero PC is through something
2338 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2339 will never unwind a zero PC. */
2340 if (this_frame->level > 0
edb3359d
DJ
2341 && (get_frame_type (this_frame) == NORMAL_FRAME
2342 || get_frame_type (this_frame) == INLINE_FRAME)
39ee2ff0 2343 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
e3eebbd7 2344 && frame_pc_p && frame_pc == 0)
39ee2ff0 2345 {
d2bf72c0 2346 frame_debug_got_null_frame (this_frame, "zero PC");
39ee2ff0
AC
2347 return NULL;
2348 }
2349
51d48146 2350 return get_prev_frame_always (this_frame);
eb4f72c5
AC
2351}
2352
41b56feb
KB
2353struct frame_id
2354get_prev_frame_id_by_id (struct frame_id id)
2355{
2356 struct frame_id prev_id;
2357 struct frame_info *frame;
2358
2359 frame = frame_find_by_id (id);
2360
2361 if (frame != NULL)
2362 prev_id = get_frame_id (get_prev_frame (frame));
2363 else
2364 prev_id = null_frame_id;
2365
2366 return prev_id;
2367}
2368
4c1e7e9d
AC
2369CORE_ADDR
2370get_frame_pc (struct frame_info *frame)
2371{
d1340264 2372 gdb_assert (frame->next != NULL);
edb3359d 2373 return frame_unwind_pc (frame->next);
4c1e7e9d
AC
2374}
2375
e3eebbd7
PA
2376int
2377get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2378{
e3eebbd7
PA
2379
2380 gdb_assert (frame->next != NULL);
2381
492d29ea 2382 TRY
e3eebbd7
PA
2383 {
2384 *pc = frame_unwind_pc (frame->next);
2385 }
492d29ea 2386 CATCH (ex, RETURN_MASK_ERROR)
e3eebbd7
PA
2387 {
2388 if (ex.error == NOT_AVAILABLE_ERROR)
2389 return 0;
2390 else
2391 throw_exception (ex);
2392 }
492d29ea 2393 END_CATCH
e3eebbd7
PA
2394
2395 return 1;
2396}
2397
ad1193e7 2398/* Return an address that falls within THIS_FRAME's code block. */
8edd5d01
AC
2399
2400CORE_ADDR
ad1193e7 2401get_frame_address_in_block (struct frame_info *this_frame)
8edd5d01
AC
2402{
2403 /* A draft address. */
ad1193e7 2404 CORE_ADDR pc = get_frame_pc (this_frame);
8edd5d01 2405
ad1193e7
DJ
2406 struct frame_info *next_frame = this_frame->next;
2407
2408 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2409 Normally the resume address is inside the body of the function
2410 associated with THIS_FRAME, but there is a special case: when
2411 calling a function which the compiler knows will never return
2412 (for instance abort), the call may be the very last instruction
2413 in the calling function. The resume address will point after the
2414 call and may be at the beginning of a different function
2415 entirely.
2416
2417 If THIS_FRAME is a signal frame or dummy frame, then we should
2418 not adjust the unwound PC. For a dummy frame, GDB pushed the
2419 resume address manually onto the stack. For a signal frame, the
2420 OS may have pushed the resume address manually and invoked the
2421 handler (e.g. GNU/Linux), or invoked the trampoline which called
2422 the signal handler - but in either case the signal handler is
2423 expected to return to the trampoline. So in both of these
2424 cases we know that the resume address is executable and
2425 related. So we only need to adjust the PC if THIS_FRAME
2426 is a normal function.
2427
2428 If the program has been interrupted while THIS_FRAME is current,
2429 then clearly the resume address is inside the associated
2430 function. There are three kinds of interruption: debugger stop
2431 (next frame will be SENTINEL_FRAME), operating system
2432 signal or exception (next frame will be SIGTRAMP_FRAME),
2433 or debugger-induced function call (next frame will be
2434 DUMMY_FRAME). So we only need to adjust the PC if
2435 NEXT_FRAME is a normal function.
2436
2437 We check the type of NEXT_FRAME first, since it is already
2438 known; frame type is determined by the unwinder, and since
2439 we have THIS_FRAME we've already selected an unwinder for
edb3359d
DJ
2440 NEXT_FRAME.
2441
2442 If the next frame is inlined, we need to keep going until we find
2443 the real function - for instance, if a signal handler is invoked
2444 while in an inlined function, then the code address of the
2445 "calling" normal function should not be adjusted either. */
2446
2447 while (get_frame_type (next_frame) == INLINE_FRAME)
2448 next_frame = next_frame->next;
2449
111c6489
JK
2450 if ((get_frame_type (next_frame) == NORMAL_FRAME
2451 || get_frame_type (next_frame) == TAILCALL_FRAME)
edb3359d 2452 && (get_frame_type (this_frame) == NORMAL_FRAME
111c6489 2453 || get_frame_type (this_frame) == TAILCALL_FRAME
edb3359d 2454 || get_frame_type (this_frame) == INLINE_FRAME))
ad1193e7
DJ
2455 return pc - 1;
2456
2457 return pc;
8edd5d01
AC
2458}
2459
e3eebbd7
PA
2460int
2461get_frame_address_in_block_if_available (struct frame_info *this_frame,
2462 CORE_ADDR *pc)
2463{
e3eebbd7 2464
492d29ea 2465 TRY
e3eebbd7
PA
2466 {
2467 *pc = get_frame_address_in_block (this_frame);
2468 }
492d29ea 2469 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2470 {
2471 if (ex.error == NOT_AVAILABLE_ERROR)
2472 return 0;
2473 throw_exception (ex);
2474 }
492d29ea 2475 END_CATCH
7556d4a4
PA
2476
2477 return 1;
e3eebbd7
PA
2478}
2479
51abb421
PA
2480symtab_and_line
2481find_frame_sal (frame_info *frame)
1058bca7 2482{
edb3359d
DJ
2483 struct frame_info *next_frame;
2484 int notcurrent;
e3eebbd7 2485 CORE_ADDR pc;
edb3359d
DJ
2486
2487 /* If the next frame represents an inlined function call, this frame's
2488 sal is the "call site" of that inlined function, which can not
2489 be inferred from get_frame_pc. */
2490 next_frame = get_next_frame (frame);
2491 if (frame_inlined_callees (frame) > 0)
2492 {
2493 struct symbol *sym;
2494
2495 if (next_frame)
2496 sym = get_frame_function (next_frame);
2497 else
00431a78 2498 sym = inline_skipped_symbol (inferior_thread ());
edb3359d 2499
f3df5b08
MS
2500 /* If frame is inline, it certainly has symbols. */
2501 gdb_assert (sym);
51abb421
PA
2502
2503 symtab_and_line sal;
edb3359d
DJ
2504 if (SYMBOL_LINE (sym) != 0)
2505 {
51abb421
PA
2506 sal.symtab = symbol_symtab (sym);
2507 sal.line = SYMBOL_LINE (sym);
edb3359d
DJ
2508 }
2509 else
2510 /* If the symbol does not have a location, we don't know where
2511 the call site is. Do not pretend to. This is jarring, but
2512 we can't do much better. */
51abb421 2513 sal.pc = get_frame_pc (frame);
edb3359d 2514
51abb421
PA
2515 sal.pspace = get_frame_program_space (frame);
2516 return sal;
edb3359d
DJ
2517 }
2518
1058bca7
AC
2519 /* If FRAME is not the innermost frame, that normally means that
2520 FRAME->pc points at the return instruction (which is *after* the
2521 call instruction), and we want to get the line containing the
2522 call (because the call is where the user thinks the program is).
2523 However, if the next frame is either a SIGTRAMP_FRAME or a
2524 DUMMY_FRAME, then the next frame will contain a saved interrupt
2525 PC and such a PC indicates the current (rather than next)
2526 instruction/line, consequently, for such cases, want to get the
2527 line containing fi->pc. */
e3eebbd7 2528 if (!get_frame_pc_if_available (frame, &pc))
51abb421 2529 return {};
e3eebbd7
PA
2530
2531 notcurrent = (pc != get_frame_address_in_block (frame));
51abb421 2532 return find_pc_line (pc, notcurrent);
1058bca7
AC
2533}
2534
c193f6ac
AC
2535/* Per "frame.h", return the ``address'' of the frame. Code should
2536 really be using get_frame_id(). */
2537CORE_ADDR
2538get_frame_base (struct frame_info *fi)
2539{
d0a55772 2540 return get_frame_id (fi).stack_addr;
c193f6ac
AC
2541}
2542
da62e633
AC
2543/* High-level offsets into the frame. Used by the debug info. */
2544
2545CORE_ADDR
2546get_frame_base_address (struct frame_info *fi)
2547{
7df05f2b 2548 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2549 return 0;
2550 if (fi->base == NULL)
86c31399 2551 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2552 /* Sneaky: If the low-level unwind and high-level base code share a
2553 common unwinder, let them share the prologue cache. */
2554 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2555 return fi->base->this_base (fi, &fi->prologue_cache);
2556 return fi->base->this_base (fi, &fi->base_cache);
da62e633
AC
2557}
2558
2559CORE_ADDR
2560get_frame_locals_address (struct frame_info *fi)
2561{
7df05f2b 2562 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2563 return 0;
2564 /* If there isn't a frame address method, find it. */
2565 if (fi->base == NULL)
86c31399 2566 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2567 /* Sneaky: If the low-level unwind and high-level base code share a
2568 common unwinder, let them share the prologue cache. */
2569 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2570 return fi->base->this_locals (fi, &fi->prologue_cache);
2571 return fi->base->this_locals (fi, &fi->base_cache);
da62e633
AC
2572}
2573
2574CORE_ADDR
2575get_frame_args_address (struct frame_info *fi)
2576{
7df05f2b 2577 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2578 return 0;
2579 /* If there isn't a frame address method, find it. */
2580 if (fi->base == NULL)
86c31399 2581 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2582 /* Sneaky: If the low-level unwind and high-level base code share a
2583 common unwinder, let them share the prologue cache. */
2584 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2585 return fi->base->this_args (fi, &fi->prologue_cache);
2586 return fi->base->this_args (fi, &fi->base_cache);
da62e633
AC
2587}
2588
e7802207
TT
2589/* Return true if the frame unwinder for frame FI is UNWINDER; false
2590 otherwise. */
2591
2592int
2593frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2594{
2595 if (fi->unwind == NULL)
9f9a8002 2596 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
e7802207
TT
2597 return fi->unwind == unwinder;
2598}
2599
85cf597a
AC
2600/* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2601 or -1 for a NULL frame. */
2602
2603int
2604frame_relative_level (struct frame_info *fi)
2605{
2606 if (fi == NULL)
2607 return -1;
2608 else
2609 return fi->level;
2610}
2611
5a203e44
AC
2612enum frame_type
2613get_frame_type (struct frame_info *frame)
2614{
c1bf6f65
AC
2615 if (frame->unwind == NULL)
2616 /* Initialize the frame's unwinder because that's what
2617 provides the frame's type. */
9f9a8002 2618 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
c1bf6f65 2619 return frame->unwind->type;
5a203e44
AC
2620}
2621
6c95b8df
PA
2622struct program_space *
2623get_frame_program_space (struct frame_info *frame)
2624{
2625 return frame->pspace;
2626}
2627
2628struct program_space *
2629frame_unwind_program_space (struct frame_info *this_frame)
2630{
2631 gdb_assert (this_frame);
2632
2633 /* This is really a placeholder to keep the API consistent --- we
2634 assume for now that we don't have frame chains crossing
2635 spaces. */
2636 return this_frame->pspace;
2637}
2638
8b86c959 2639const address_space *
6c95b8df
PA
2640get_frame_address_space (struct frame_info *frame)
2641{
2642 return frame->aspace;
2643}
2644
ae1e7417
AC
2645/* Memory access methods. */
2646
2647void
10c42a71
AC
2648get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2649 gdb_byte *buf, int len)
ae1e7417
AC
2650{
2651 read_memory (addr, buf, len);
2652}
2653
2654LONGEST
2655get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2656 int len)
2657{
e17a4113
UW
2658 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2659 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c4d3f96 2660
e17a4113 2661 return read_memory_integer (addr, len, byte_order);
ae1e7417
AC
2662}
2663
2664ULONGEST
2665get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2666 int len)
2667{
e17a4113
UW
2668 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2669 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c4d3f96 2670
e17a4113 2671 return read_memory_unsigned_integer (addr, len, byte_order);
ae1e7417
AC
2672}
2673
304396fb
AC
2674int
2675safe_frame_unwind_memory (struct frame_info *this_frame,
10c42a71 2676 CORE_ADDR addr, gdb_byte *buf, int len)
304396fb 2677{
8defab1a
DJ
2678 /* NOTE: target_read_memory returns zero on success! */
2679 return !target_read_memory (addr, buf, len);
304396fb
AC
2680}
2681
36f15f55 2682/* Architecture methods. */
ae1e7417
AC
2683
2684struct gdbarch *
2685get_frame_arch (struct frame_info *this_frame)
2686{
36f15f55
UW
2687 return frame_unwind_arch (this_frame->next);
2688}
2689
2690struct gdbarch *
2691frame_unwind_arch (struct frame_info *next_frame)
2692{
2693 if (!next_frame->prev_arch.p)
2694 {
2695 struct gdbarch *arch;
0701b271 2696
36f15f55 2697 if (next_frame->unwind == NULL)
9f9a8002 2698 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
36f15f55
UW
2699
2700 if (next_frame->unwind->prev_arch != NULL)
2701 arch = next_frame->unwind->prev_arch (next_frame,
2702 &next_frame->prologue_cache);
2703 else
2704 arch = get_frame_arch (next_frame);
2705
2706 next_frame->prev_arch.arch = arch;
2707 next_frame->prev_arch.p = 1;
2708 if (frame_debug)
2709 fprintf_unfiltered (gdb_stdlog,
2710 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2711 next_frame->level,
2712 gdbarch_bfd_arch_info (arch)->printable_name);
2713 }
2714
2715 return next_frame->prev_arch.arch;
2716}
2717
2718struct gdbarch *
2719frame_unwind_caller_arch (struct frame_info *next_frame)
2720{
33b4777c
MM
2721 next_frame = skip_artificial_frames (next_frame);
2722
2723 /* We must have a non-artificial frame. The caller is supposed to check
2724 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2725 in this case. */
2726 gdb_assert (next_frame != NULL);
2727
2728 return frame_unwind_arch (next_frame);
ae1e7417
AC
2729}
2730
06096720
AB
2731/* Gets the language of FRAME. */
2732
2733enum language
2734get_frame_language (struct frame_info *frame)
2735{
2736 CORE_ADDR pc = 0;
2737 int pc_p = 0;
2738
2739 gdb_assert (frame!= NULL);
2740
2741 /* We determine the current frame language by looking up its
2742 associated symtab. To retrieve this symtab, we use the frame
2743 PC. However we cannot use the frame PC as is, because it
2744 usually points to the instruction following the "call", which
2745 is sometimes the first instruction of another function. So
2746 we rely on get_frame_address_in_block(), it provides us with
2747 a PC that is guaranteed to be inside the frame's code
2748 block. */
2749
2750 TRY
2751 {
2752 pc = get_frame_address_in_block (frame);
2753 pc_p = 1;
2754 }
2755 CATCH (ex, RETURN_MASK_ERROR)
2756 {
2757 if (ex.error != NOT_AVAILABLE_ERROR)
2758 throw_exception (ex);
2759 }
2760 END_CATCH
2761
2762 if (pc_p)
2763 {
2764 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2765
2766 if (cust != NULL)
2767 return compunit_language (cust);
2768 }
2769
2770 return language_unknown;
2771}
2772
a9e5fdc2
AC
2773/* Stack pointer methods. */
2774
2775CORE_ADDR
2776get_frame_sp (struct frame_info *this_frame)
2777{
d56907c1 2778 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c4d3f96 2779
8bcb5208
AB
2780 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2781 operate on THIS_FRAME now. */
2782 return gdbarch_unwind_sp (gdbarch, this_frame->next);
a9e5fdc2
AC
2783}
2784
55feb689
DJ
2785/* Return the reason why we can't unwind past FRAME. */
2786
2787enum unwind_stop_reason
2788get_frame_unwind_stop_reason (struct frame_info *frame)
2789{
824344ca 2790 /* Fill-in STOP_REASON. */
51d48146 2791 get_prev_frame_always (frame);
824344ca 2792 gdb_assert (frame->prev_p);
55feb689 2793
55feb689
DJ
2794 return frame->stop_reason;
2795}
2796
2797/* Return a string explaining REASON. */
2798
2799const char *
70e38b8e 2800unwind_stop_reason_to_string (enum unwind_stop_reason reason)
55feb689
DJ
2801{
2802 switch (reason)
2803 {
2231f1fb
KP
2804#define SET(name, description) \
2805 case name: return _(description);
2806#include "unwind_stop_reasons.def"
2807#undef SET
55feb689 2808
55feb689
DJ
2809 default:
2810 internal_error (__FILE__, __LINE__,
2811 "Invalid frame stop reason");
2812 }
2813}
2814
53e8a631
AB
2815const char *
2816frame_stop_reason_string (struct frame_info *fi)
2817{
2818 gdb_assert (fi->prev_p);
2819 gdb_assert (fi->prev == NULL);
2820
2821 /* Return the specific string if we have one. */
2822 if (fi->stop_string != NULL)
2823 return fi->stop_string;
2824
2825 /* Return the generic string if we have nothing better. */
2826 return unwind_stop_reason_to_string (fi->stop_reason);
2827}
2828
a7300869
PA
2829/* Return the enum symbol name of REASON as a string, to use in debug
2830 output. */
2831
2832static const char *
2833frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2834{
2835 switch (reason)
2836 {
2837#define SET(name, description) \
2838 case name: return #name;
2839#include "unwind_stop_reasons.def"
2840#undef SET
2841
2842 default:
2843 internal_error (__FILE__, __LINE__,
2844 "Invalid frame stop reason");
2845 }
2846}
2847
669fac23
DJ
2848/* Clean up after a failed (wrong unwinder) attempt to unwind past
2849 FRAME. */
2850
30a9c02f
TT
2851void
2852frame_cleanup_after_sniffer (struct frame_info *frame)
669fac23 2853{
669fac23
DJ
2854 /* The sniffer should not allocate a prologue cache if it did not
2855 match this frame. */
2856 gdb_assert (frame->prologue_cache == NULL);
2857
2858 /* No sniffer should extend the frame chain; sniff based on what is
2859 already certain. */
2860 gdb_assert (!frame->prev_p);
2861
2862 /* The sniffer should not check the frame's ID; that's circular. */
2863 gdb_assert (!frame->this_id.p);
2864
2865 /* Clear cached fields dependent on the unwinder.
2866
2867 The previous PC is independent of the unwinder, but the previous
ad1193e7 2868 function is not (see get_frame_address_in_block). */
669fac23
DJ
2869 frame->prev_func.p = 0;
2870 frame->prev_func.addr = 0;
2871
2872 /* Discard the unwinder last, so that we can easily find it if an assertion
2873 in this function triggers. */
2874 frame->unwind = NULL;
2875}
2876
2877/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
30a9c02f
TT
2878 If sniffing fails, the caller should be sure to call
2879 frame_cleanup_after_sniffer. */
669fac23 2880
30a9c02f 2881void
669fac23
DJ
2882frame_prepare_for_sniffer (struct frame_info *frame,
2883 const struct frame_unwind *unwind)
2884{
2885 gdb_assert (frame->unwind == NULL);
2886 frame->unwind = unwind;
669fac23
DJ
2887}
2888
25d29d70
AC
2889static struct cmd_list_element *set_backtrace_cmdlist;
2890static struct cmd_list_element *show_backtrace_cmdlist;
2891
2892static void
981a3fb3 2893set_backtrace_cmd (const char *args, int from_tty)
25d29d70 2894{
635c7e8a
TT
2895 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2896 gdb_stdout);
25d29d70
AC
2897}
2898
2899static void
981a3fb3 2900show_backtrace_cmd (const char *args, int from_tty)
25d29d70
AC
2901{
2902 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2903}
2904
4c1e7e9d
AC
2905void
2906_initialize_frame (void)
2907{
2908 obstack_init (&frame_cache_obstack);
eb4f72c5 2909
3de661e6
PM
2910 frame_stash_create ();
2911
76727919 2912 gdb::observers::target_changed.attach (frame_observer_target_changed);
f4c5303c 2913
1bedd215 2914 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
25d29d70 2915Set backtrace specific variables.\n\
1bedd215 2916Configure backtrace variables such as the backtrace limit"),
25d29d70
AC
2917 &set_backtrace_cmdlist, "set backtrace ",
2918 0/*allow-unknown*/, &setlist);
1bedd215 2919 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
25d29d70 2920Show backtrace specific variables\n\
1bedd215 2921Show backtrace variables such as the backtrace limit"),
25d29d70
AC
2922 &show_backtrace_cmdlist, "show backtrace ",
2923 0/*allow-unknown*/, &showlist);
2924
2925 add_setshow_boolean_cmd ("past-main", class_obscure,
7915a72c
AC
2926 &backtrace_past_main, _("\
2927Set whether backtraces should continue past \"main\"."), _("\
2928Show whether backtraces should continue past \"main\"."), _("\
eb4f72c5
AC
2929Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2930the backtrace at \"main\". Set this variable if you need to see the rest\n\
7915a72c 2931of the stack trace."),
2c5b56ce 2932 NULL,
920d2a44 2933 show_backtrace_past_main,
2c5b56ce 2934 &set_backtrace_cmdlist,
25d29d70
AC
2935 &show_backtrace_cmdlist);
2936
2315ffec 2937 add_setshow_boolean_cmd ("past-entry", class_obscure,
7915a72c
AC
2938 &backtrace_past_entry, _("\
2939Set whether backtraces should continue past the entry point of a program."),
2940 _("\
2941Show whether backtraces should continue past the entry point of a program."),
2942 _("\
2315ffec 2943Normally there are no callers beyond the entry point of a program, so GDB\n\
cce7e648 2944will terminate the backtrace there. Set this variable if you need to see\n\
7915a72c 2945the rest of the stack trace."),
2c5b56ce 2946 NULL,
920d2a44 2947 show_backtrace_past_entry,
2c5b56ce 2948 &set_backtrace_cmdlist,
2315ffec
RC
2949 &show_backtrace_cmdlist);
2950
883b9c6c
YQ
2951 add_setshow_uinteger_cmd ("limit", class_obscure,
2952 &backtrace_limit, _("\
7915a72c
AC
2953Set an upper bound on the number of backtrace levels."), _("\
2954Show the upper bound on the number of backtrace levels."), _("\
fec74868 2955No more than the specified number of frames can be displayed or examined.\n\
f81d1120 2956Literal \"unlimited\" or zero means no limit."),
883b9c6c
YQ
2957 NULL,
2958 show_backtrace_limit,
2959 &set_backtrace_cmdlist,
2960 &show_backtrace_cmdlist);
ac2bd0a9 2961
0963b4bd 2962 /* Debug this files internals. */
ccce17b0 2963 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
85c07804
AC
2964Set frame debugging."), _("\
2965Show frame debugging."), _("\
2966When non-zero, frame specific internal debugging is enabled."),
ccce17b0
YQ
2967 NULL,
2968 show_frame_debug,
2969 &setdebuglist, &showdebuglist);
4c1e7e9d 2970}
This page took 1.793779 seconds and 4 git commands to generate.