Fix PR python/19438, PR python/18393 - initialize dictionaries
[deliverable/binutils-gdb.git] / gdb / frame.c
CommitLineData
4f460812 1/* Cache and manage frames for GDB, the GNU debugger.
96cb11df 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
d65fe839
AC
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
d65fe839
AC
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
d65fe839
AC
19
20#include "defs.h"
21#include "frame.h"
22#include "target.h"
23#include "value.h"
39f77062 24#include "inferior.h" /* for inferior_ptid */
4e052eda 25#include "regcache.h"
eb8bc282 26#include "user-regs.h"
4c1e7e9d
AC
27#include "gdb_obstack.h"
28#include "dummy-frame.h"
a94dd1fd 29#include "sentinel-frame.h"
4c1e7e9d
AC
30#include "gdbcore.h"
31#include "annotate.h"
6e7f8b9c 32#include "language.h"
494cca16 33#include "frame-unwind.h"
da62e633 34#include "frame-base.h"
eb4f72c5
AC
35#include "command.h"
36#include "gdbcmd.h"
f4c5303c 37#include "observer.h"
c8cd9f6c 38#include "objfiles.h"
8ea051c5 39#include "gdbthread.h"
edb3359d
DJ
40#include "block.h"
41#include "inline-frame.h"
983dc440 42#include "tracepoint.h"
3de661e6 43#include "hashtab.h"
f6c01fc5 44#include "valprint.h"
eb4f72c5 45
edb3359d 46static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
a7300869 47static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
5613d8d3 48
782d47df
PA
49/* Status of some values cached in the frame_info object. */
50
51enum cached_copy_status
52{
53 /* Value is unknown. */
54 CC_UNKNOWN,
55
56 /* We have a value. */
57 CC_VALUE,
58
59 /* Value was not saved. */
60 CC_NOT_SAVED,
61
62 /* Value is unavailable. */
63 CC_UNAVAILABLE
64};
65
bd013d54
AC
66/* We keep a cache of stack frames, each of which is a "struct
67 frame_info". The innermost one gets allocated (in
68 wait_for_inferior) each time the inferior stops; current_frame
69 points to it. Additional frames get allocated (in get_prev_frame)
70 as needed, and are chained through the next and prev fields. Any
71 time that the frame cache becomes invalid (most notably when we
72 execute something, but also if we change how we interpret the
73 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
74 which reads new symbols)), we should call reinit_frame_cache. */
75
76struct frame_info
77{
78 /* Level of this frame. The inner-most (youngest) frame is at level
79 0. As you move towards the outer-most (oldest) frame, the level
80 increases. This is a cached value. It could just as easily be
81 computed by counting back from the selected frame to the inner
82 most frame. */
bbde78fa 83 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
bd013d54
AC
84 reserved to indicate a bogus frame - one that has been created
85 just to keep GDB happy (GDB always needs a frame). For the
86 moment leave this as speculation. */
87 int level;
88
6c95b8df
PA
89 /* The frame's program space. */
90 struct program_space *pspace;
91
92 /* The frame's address space. */
93 struct address_space *aspace;
94
bd013d54
AC
95 /* The frame's low-level unwinder and corresponding cache. The
96 low-level unwinder is responsible for unwinding register values
97 for the previous frame. The low-level unwind methods are
bbde78fa 98 selected based on the presence, or otherwise, of register unwind
bd013d54
AC
99 information such as CFI. */
100 void *prologue_cache;
101 const struct frame_unwind *unwind;
102
36f15f55
UW
103 /* Cached copy of the previous frame's architecture. */
104 struct
105 {
106 int p;
107 struct gdbarch *arch;
108 } prev_arch;
109
bd013d54
AC
110 /* Cached copy of the previous frame's resume address. */
111 struct {
782d47df 112 enum cached_copy_status status;
bd013d54
AC
113 CORE_ADDR value;
114 } prev_pc;
115
116 /* Cached copy of the previous frame's function address. */
117 struct
118 {
119 CORE_ADDR addr;
120 int p;
121 } prev_func;
122
123 /* This frame's ID. */
124 struct
125 {
126 int p;
127 struct frame_id value;
128 } this_id;
129
130 /* The frame's high-level base methods, and corresponding cache.
131 The high level base methods are selected based on the frame's
132 debug info. */
133 const struct frame_base *base;
134 void *base_cache;
135
136 /* Pointers to the next (down, inner, younger) and previous (up,
137 outer, older) frame_info's in the frame cache. */
138 struct frame_info *next; /* down, inner, younger */
139 int prev_p;
140 struct frame_info *prev; /* up, outer, older */
55feb689
DJ
141
142 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
143 could. Only valid when PREV_P is set. */
144 enum unwind_stop_reason stop_reason;
53e8a631
AB
145
146 /* A frame specific string describing the STOP_REASON in more detail.
147 Only valid when PREV_P is set, but even then may still be NULL. */
148 const char *stop_string;
bd013d54
AC
149};
150
3de661e6
PM
151/* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
b83e9eb7 155
3de661e6 156static htab_t frame_stash;
b83e9eb7 157
3de661e6
PM
158/* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
161
162static hashval_t
163frame_addr_hash (const void *ap)
164{
9a3c8263 165 const struct frame_info *frame = (const struct frame_info *) ap;
3de661e6
PM
166 const struct frame_id f_id = frame->this_id.value;
167 hashval_t hash = 0;
168
5ce0145d
PA
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
170 || f_id.code_addr_p
3de661e6
PM
171 || f_id.special_addr_p);
172
5ce0145d 173 if (f_id.stack_status == FID_STACK_VALID)
3de661e6
PM
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
182
183 return hash;
184}
185
186/* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
188
189static int
190frame_addr_hash_eq (const void *a, const void *b)
191{
9a3c8263
SM
192 const struct frame_info *f_entry = (const struct frame_info *) a;
193 const struct frame_info *f_element = (const struct frame_info *) b;
3de661e6
PM
194
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
197}
198
199/* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
201
202static void
203frame_stash_create (void)
204{
205 frame_stash = htab_create (100,
206 frame_addr_hash,
207 frame_addr_hash_eq,
208 NULL);
209}
210
194cca41
PA
211/* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
213 otherwise. */
b83e9eb7 214
194cca41 215static int
b83e9eb7
JB
216frame_stash_add (struct frame_info *frame)
217{
194cca41 218 struct frame_info **slot;
f5b0ed3c 219
194cca41
PA
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
222
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
224 frame,
225 INSERT);
226
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
231 if (*slot != NULL)
232 return 0;
233
234 *slot = frame;
235 return 1;
b83e9eb7
JB
236}
237
3de661e6
PM
238/* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
240 NULL. */
b83e9eb7
JB
241
242static struct frame_info *
243frame_stash_find (struct frame_id id)
244{
3de661e6
PM
245 struct frame_info dummy;
246 struct frame_info *frame;
b83e9eb7 247
3de661e6 248 dummy.this_id.value = id;
9a3c8263 249 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
3de661e6 250 return frame;
b83e9eb7
JB
251}
252
3de661e6
PM
253/* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
255 invalidated. */
b83e9eb7
JB
256
257static void
258frame_stash_invalidate (void)
259{
3de661e6 260 htab_empty (frame_stash);
b83e9eb7
JB
261}
262
ac2bd0a9
AC
263/* Flag to control debugging. */
264
ccce17b0 265unsigned int frame_debug;
920d2a44
AC
266static void
267show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269{
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
271}
ac2bd0a9 272
25d29d70
AC
273/* Flag to indicate whether backtraces should stop at main et.al. */
274
275static int backtrace_past_main;
920d2a44
AC
276static void
277show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279{
3e43a32a
MS
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
920d2a44
AC
283 value);
284}
285
2315ffec 286static int backtrace_past_entry;
920d2a44
AC
287static void
288show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
3e43a32a
MS
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
920d2a44
AC
293 value);
294}
295
883b9c6c 296static unsigned int backtrace_limit = UINT_MAX;
920d2a44
AC
297static void
298show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
300{
3e43a32a
MS
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
920d2a44
AC
304 value);
305}
306
eb4f72c5 307
ca73dd9d
AC
308static void
309fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
310{
311 if (p)
5af949e3 312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
ca73dd9d
AC
313 else
314 fprintf_unfiltered (file, "!%s", name);
315}
d65fe839 316
00905d52 317void
7f78e237
AC
318fprint_frame_id (struct ui_file *file, struct frame_id id)
319{
ca73dd9d 320 fprintf_unfiltered (file, "{");
5ce0145d
PA
321
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
326 else
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
ca73dd9d 328 fprintf_unfiltered (file, ",");
5ce0145d 329
ca73dd9d
AC
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
5ce0145d 332
ca73dd9d 333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
5ce0145d 334
193facb3
JK
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
5ce0145d 337
ca73dd9d 338 fprintf_unfiltered (file, "}");
7f78e237
AC
339}
340
341static void
342fprint_frame_type (struct ui_file *file, enum frame_type type)
343{
344 switch (type)
345 {
7f78e237
AC
346 case NORMAL_FRAME:
347 fprintf_unfiltered (file, "NORMAL_FRAME");
348 return;
349 case DUMMY_FRAME:
350 fprintf_unfiltered (file, "DUMMY_FRAME");
351 return;
edb3359d
DJ
352 case INLINE_FRAME:
353 fprintf_unfiltered (file, "INLINE_FRAME");
354 return;
b5eef7aa
JK
355 case TAILCALL_FRAME:
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
edb3359d 357 return;
7f78e237
AC
358 case SIGTRAMP_FRAME:
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
360 return;
36f15f55
UW
361 case ARCH_FRAME:
362 fprintf_unfiltered (file, "ARCH_FRAME");
363 return;
b5eef7aa
JK
364 case SENTINEL_FRAME:
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
366 return;
7f78e237
AC
367 default:
368 fprintf_unfiltered (file, "<unknown type>");
369 return;
370 };
371}
372
373static void
374fprint_frame (struct ui_file *file, struct frame_info *fi)
375{
376 if (fi == NULL)
377 {
378 fprintf_unfiltered (file, "<NULL frame>");
379 return;
380 }
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
c1bf6f65
AC
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
387 else
388 fprintf_unfiltered (file, "<unknown>");
7f78e237
AC
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
393 else
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
782d47df 397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
7f78e237 398 fprintf_unfiltered (file, "<unknown>");
782d47df
PA
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
7f78e237
AC
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
408 if (fi->this_id.p)
409 fprint_frame_id (file, fi->this_id.value);
410 else
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
5af949e3 415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
7f78e237
AC
416 else
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
419}
420
193facb3
JK
421/* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
33b4777c
MM
423 Return FRAME if FRAME is a non-artificial frame.
424 Return NULL if FRAME is the start of an artificial-only chain. */
edb3359d
DJ
425
426static struct frame_info *
193facb3 427skip_artificial_frames (struct frame_info *frame)
edb3359d 428{
51d48146
PA
429 /* Note we use get_prev_frame_always, and not get_prev_frame. The
430 latter will truncate the frame chain, leading to this function
431 unintentionally returning a null_frame_id (e.g., when the user
33b4777c
MM
432 sets a backtrace limit).
433
434 Note that for record targets we may get a frame chain that consists
435 of artificial frames only. */
1ab3b62c
JK
436 while (get_frame_type (frame) == INLINE_FRAME
437 || get_frame_type (frame) == TAILCALL_FRAME)
33b4777c
MM
438 {
439 frame = get_prev_frame_always (frame);
440 if (frame == NULL)
441 break;
442 }
edb3359d
DJ
443
444 return frame;
445}
446
2f3ef606
MM
447/* See frame.h. */
448
449struct frame_info *
450skip_tailcall_frames (struct frame_info *frame)
451{
452 while (get_frame_type (frame) == TAILCALL_FRAME)
33b4777c
MM
453 {
454 /* Note that for record targets we may get a frame chain that consists of
455 tailcall frames only. */
456 frame = get_prev_frame (frame);
457 if (frame == NULL)
458 break;
459 }
2f3ef606
MM
460
461 return frame;
462}
463
194cca41
PA
464/* Compute the frame's uniq ID that can be used to, later, re-find the
465 frame. */
466
467static void
468compute_frame_id (struct frame_info *fi)
469{
470 gdb_assert (!fi->this_id.p);
471
472 if (frame_debug)
473 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
474 fi->level);
475 /* Find the unwinder. */
476 if (fi->unwind == NULL)
477 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
478 /* Find THIS frame's ID. */
479 /* Default to outermost if no ID is found. */
480 fi->this_id.value = outer_frame_id;
481 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
482 gdb_assert (frame_id_p (fi->this_id.value));
483 fi->this_id.p = 1;
484 if (frame_debug)
485 {
486 fprintf_unfiltered (gdb_stdlog, "-> ");
487 fprint_frame_id (gdb_stdlog, fi->this_id.value);
488 fprintf_unfiltered (gdb_stdlog, " }\n");
489 }
490}
491
7a424e99 492/* Return a frame uniq ID that can be used to, later, re-find the
101dcfbe
AC
493 frame. */
494
7a424e99
AC
495struct frame_id
496get_frame_id (struct frame_info *fi)
101dcfbe
AC
497{
498 if (fi == NULL)
b83e9eb7
JB
499 return null_frame_id;
500
194cca41 501 gdb_assert (fi->this_id.p);
18adea3f 502 return fi->this_id.value;
101dcfbe
AC
503}
504
edb3359d
DJ
505struct frame_id
506get_stack_frame_id (struct frame_info *next_frame)
507{
193facb3 508 return get_frame_id (skip_artificial_frames (next_frame));
edb3359d
DJ
509}
510
5613d8d3 511struct frame_id
c7ce8faa 512frame_unwind_caller_id (struct frame_info *next_frame)
5613d8d3 513{
edb3359d
DJ
514 struct frame_info *this_frame;
515
51d48146
PA
516 /* Use get_prev_frame_always, and not get_prev_frame. The latter
517 will truncate the frame chain, leading to this function
518 unintentionally returning a null_frame_id (e.g., when a caller
519 requests the frame ID of "main()"s caller. */
edb3359d 520
193facb3 521 next_frame = skip_artificial_frames (next_frame);
33b4777c
MM
522 if (next_frame == NULL)
523 return null_frame_id;
524
51d48146 525 this_frame = get_prev_frame_always (next_frame);
edb3359d 526 if (this_frame)
193facb3 527 return get_frame_id (skip_artificial_frames (this_frame));
edb3359d
DJ
528 else
529 return null_frame_id;
5613d8d3
AC
530}
531
f8904751 532const struct frame_id null_frame_id = { 0 }; /* All zeros. */
5ce0145d 533const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
7a424e99
AC
534
535struct frame_id
48c66725
JJ
536frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
537 CORE_ADDR special_addr)
7a424e99 538{
12b0b6de 539 struct frame_id id = null_frame_id;
1c4d3f96 540
d0a55772 541 id.stack_addr = stack_addr;
5ce0145d 542 id.stack_status = FID_STACK_VALID;
d0a55772 543 id.code_addr = code_addr;
12b0b6de 544 id.code_addr_p = 1;
48c66725 545 id.special_addr = special_addr;
12b0b6de 546 id.special_addr_p = 1;
7a424e99
AC
547 return id;
548}
549
5ce0145d
PA
550/* See frame.h. */
551
552struct frame_id
553frame_id_build_unavailable_stack (CORE_ADDR code_addr)
554{
555 struct frame_id id = null_frame_id;
556
557 id.stack_status = FID_STACK_UNAVAILABLE;
558 id.code_addr = code_addr;
559 id.code_addr_p = 1;
560 return id;
561}
562
8372a7cb
MM
563/* See frame.h. */
564
565struct frame_id
566frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
567 CORE_ADDR special_addr)
568{
569 struct frame_id id = null_frame_id;
570
571 id.stack_status = FID_STACK_UNAVAILABLE;
572 id.code_addr = code_addr;
573 id.code_addr_p = 1;
574 id.special_addr = special_addr;
575 id.special_addr_p = 1;
576 return id;
577}
578
48c66725
JJ
579struct frame_id
580frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
581{
12b0b6de 582 struct frame_id id = null_frame_id;
1c4d3f96 583
12b0b6de 584 id.stack_addr = stack_addr;
5ce0145d 585 id.stack_status = FID_STACK_VALID;
12b0b6de
UW
586 id.code_addr = code_addr;
587 id.code_addr_p = 1;
588 return id;
589}
590
591struct frame_id
592frame_id_build_wild (CORE_ADDR stack_addr)
593{
594 struct frame_id id = null_frame_id;
1c4d3f96 595
12b0b6de 596 id.stack_addr = stack_addr;
5ce0145d 597 id.stack_status = FID_STACK_VALID;
12b0b6de 598 return id;
48c66725
JJ
599}
600
7a424e99
AC
601int
602frame_id_p (struct frame_id l)
603{
d0a55772 604 int p;
1c4d3f96 605
12b0b6de 606 /* The frame is valid iff it has a valid stack address. */
5ce0145d 607 p = l.stack_status != FID_STACK_INVALID;
005ca36a
JB
608 /* outer_frame_id is also valid. */
609 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
610 p = 1;
7f78e237
AC
611 if (frame_debug)
612 {
613 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
614 fprint_frame_id (gdb_stdlog, l);
615 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
616 }
d0a55772 617 return p;
7a424e99
AC
618}
619
edb3359d 620int
193facb3 621frame_id_artificial_p (struct frame_id l)
edb3359d
DJ
622{
623 if (!frame_id_p (l))
624 return 0;
625
193facb3 626 return (l.artificial_depth != 0);
edb3359d
DJ
627}
628
7a424e99
AC
629int
630frame_id_eq (struct frame_id l, struct frame_id r)
631{
d0a55772 632 int eq;
1c4d3f96 633
5ce0145d
PA
634 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
635 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
005ca36a
JB
636 /* The outermost frame marker is equal to itself. This is the
637 dodgy thing about outer_frame_id, since between execution steps
638 we might step into another function - from which we can't
639 unwind either. More thought required to get rid of
640 outer_frame_id. */
641 eq = 1;
5ce0145d 642 else if (l.stack_status == FID_STACK_INVALID
f0d4ba1f 643 || r.stack_status == FID_STACK_INVALID)
12b0b6de
UW
644 /* Like a NaN, if either ID is invalid, the result is false.
645 Note that a frame ID is invalid iff it is the null frame ID. */
d0a55772 646 eq = 0;
5ce0145d 647 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
d0a55772
AC
648 /* If .stack addresses are different, the frames are different. */
649 eq = 0;
edb3359d
DJ
650 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
651 /* An invalid code addr is a wild card. If .code addresses are
652 different, the frames are different. */
48c66725 653 eq = 0;
edb3359d
DJ
654 else if (l.special_addr_p && r.special_addr_p
655 && l.special_addr != r.special_addr)
656 /* An invalid special addr is a wild card (or unused). Otherwise
657 if special addresses are different, the frames are different. */
658 eq = 0;
193facb3
JK
659 else if (l.artificial_depth != r.artificial_depth)
660 /* If artifical depths are different, the frames must be different. */
edb3359d
DJ
661 eq = 0;
662 else
48c66725 663 /* Frames are equal. */
d0a55772 664 eq = 1;
edb3359d 665
7f78e237
AC
666 if (frame_debug)
667 {
668 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
669 fprint_frame_id (gdb_stdlog, l);
670 fprintf_unfiltered (gdb_stdlog, ",r=");
671 fprint_frame_id (gdb_stdlog, r);
672 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
673 }
d0a55772 674 return eq;
7a424e99
AC
675}
676
a45ae3ed
UW
677/* Safety net to check whether frame ID L should be inner to
678 frame ID R, according to their stack addresses.
679
680 This method cannot be used to compare arbitrary frames, as the
681 ranges of valid stack addresses may be discontiguous (e.g. due
682 to sigaltstack).
683
684 However, it can be used as safety net to discover invalid frame
0963b4bd 685 IDs in certain circumstances. Assuming that NEXT is the immediate
f06eadd9 686 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
a45ae3ed 687
f06eadd9
JB
688 * The stack address of NEXT must be inner-than-or-equal to the stack
689 address of THIS.
a45ae3ed
UW
690
691 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
692 error has occurred.
693
f06eadd9
JB
694 * If NEXT and THIS have different stack addresses, no other frame
695 in the frame chain may have a stack address in between.
a45ae3ed
UW
696
697 Therefore, if frame_id_inner (TEST, THIS) holds, but
698 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
f06eadd9
JB
699 to a valid frame in the frame chain.
700
701 The sanity checks above cannot be performed when a SIGTRAMP frame
702 is involved, because signal handlers might be executed on a different
703 stack than the stack used by the routine that caused the signal
704 to be raised. This can happen for instance when a thread exceeds
0963b4bd 705 its maximum stack size. In this case, certain compilers implement
f06eadd9
JB
706 a stack overflow strategy that cause the handler to be run on a
707 different stack. */
a45ae3ed
UW
708
709static int
09a7aba8 710frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
7a424e99 711{
d0a55772 712 int inner;
1c4d3f96 713
5ce0145d
PA
714 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
715 /* Like NaN, any operation involving an invalid ID always fails.
716 Likewise if either ID has an unavailable stack address. */
d0a55772 717 inner = 0;
193facb3 718 else if (l.artificial_depth > r.artificial_depth
edb3359d
DJ
719 && l.stack_addr == r.stack_addr
720 && l.code_addr_p == r.code_addr_p
721 && l.special_addr_p == r.special_addr_p
722 && l.special_addr == r.special_addr)
723 {
724 /* Same function, different inlined functions. */
3977b71f 725 const struct block *lb, *rb;
edb3359d
DJ
726
727 gdb_assert (l.code_addr_p && r.code_addr_p);
728
729 lb = block_for_pc (l.code_addr);
730 rb = block_for_pc (r.code_addr);
731
732 if (lb == NULL || rb == NULL)
733 /* Something's gone wrong. */
734 inner = 0;
735 else
736 /* This will return true if LB and RB are the same block, or
737 if the block with the smaller depth lexically encloses the
738 block with the greater depth. */
739 inner = contained_in (lb, rb);
740 }
d0a55772
AC
741 else
742 /* Only return non-zero when strictly inner than. Note that, per
743 comment in "frame.h", there is some fuzz here. Frameless
744 functions are not strictly inner than (same .stack but
48c66725 745 different .code and/or .special address). */
09a7aba8 746 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
7f78e237
AC
747 if (frame_debug)
748 {
749 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
750 fprint_frame_id (gdb_stdlog, l);
751 fprintf_unfiltered (gdb_stdlog, ",r=");
752 fprint_frame_id (gdb_stdlog, r);
753 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
754 }
d0a55772 755 return inner;
7a424e99
AC
756}
757
101dcfbe
AC
758struct frame_info *
759frame_find_by_id (struct frame_id id)
760{
a45ae3ed 761 struct frame_info *frame, *prev_frame;
101dcfbe
AC
762
763 /* ZERO denotes the null frame, let the caller decide what to do
764 about it. Should it instead return get_current_frame()? */
7a424e99 765 if (!frame_id_p (id))
101dcfbe
AC
766 return NULL;
767
b83e9eb7
JB
768 /* Try using the frame stash first. Finding it there removes the need
769 to perform the search by looping over all frames, which can be very
770 CPU-intensive if the number of frames is very high (the loop is O(n)
771 and get_prev_frame performs a series of checks that are relatively
772 expensive). This optimization is particularly useful when this function
773 is called from another function (such as value_fetch_lazy, case
774 VALUE_LVAL (val) == lval_register) which already loops over all frames,
775 making the overall behavior O(n^2). */
776 frame = frame_stash_find (id);
777 if (frame)
778 return frame;
779
a45ae3ed 780 for (frame = get_current_frame (); ; frame = prev_frame)
101dcfbe 781 {
fe978cb0 782 struct frame_id self = get_frame_id (frame);
bb9bcb69 783
fe978cb0 784 if (frame_id_eq (id, self))
7a424e99
AC
785 /* An exact match. */
786 return frame;
a45ae3ed
UW
787
788 prev_frame = get_prev_frame (frame);
789 if (!prev_frame)
790 return NULL;
791
792 /* As a safety net to avoid unnecessary backtracing while trying
793 to find an invalid ID, we check for a common situation where
794 we can detect from comparing stack addresses that no other
795 frame in the current frame chain can have this ID. See the
796 comment at frame_id_inner for details. */
797 if (get_frame_type (frame) == NORMAL_FRAME
fe978cb0 798 && !frame_id_inner (get_frame_arch (frame), id, self)
a45ae3ed
UW
799 && frame_id_inner (get_frame_arch (prev_frame), id,
800 get_frame_id (prev_frame)))
101dcfbe 801 return NULL;
101dcfbe
AC
802 }
803 return NULL;
804}
805
782d47df
PA
806static CORE_ADDR
807frame_unwind_pc (struct frame_info *this_frame)
f18c5a73 808{
782d47df 809 if (this_frame->prev_pc.status == CC_UNKNOWN)
f18c5a73 810 {
36f15f55 811 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
12cc2063 812 {
e3eebbd7
PA
813 struct gdbarch *prev_gdbarch;
814 CORE_ADDR pc = 0;
492d29ea 815 int pc_p = 0;
e3eebbd7 816
12cc2063
AC
817 /* The right way. The `pure' way. The one true way. This
818 method depends solely on the register-unwind code to
819 determine the value of registers in THIS frame, and hence
820 the value of this frame's PC (resume address). A typical
821 implementation is no more than:
822
823 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
af1342ab 824 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
12cc2063
AC
825
826 Note: this method is very heavily dependent on a correct
827 register-unwind implementation, it pays to fix that
828 method first; this method is frame type agnostic, since
829 it only deals with register values, it works with any
830 frame. This is all in stark contrast to the old
831 FRAME_SAVED_PC which would try to directly handle all the
832 different ways that a PC could be unwound. */
e3eebbd7
PA
833 prev_gdbarch = frame_unwind_arch (this_frame);
834
492d29ea 835 TRY
e3eebbd7
PA
836 {
837 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
492d29ea 838 pc_p = 1;
e3eebbd7 839 }
492d29ea 840 CATCH (ex, RETURN_MASK_ERROR)
e3eebbd7 841 {
782d47df
PA
842 if (ex.error == NOT_AVAILABLE_ERROR)
843 {
844 this_frame->prev_pc.status = CC_UNAVAILABLE;
845
846 if (frame_debug)
847 fprintf_unfiltered (gdb_stdlog,
848 "{ frame_unwind_pc (this_frame=%d)"
849 " -> <unavailable> }\n",
850 this_frame->level);
851 }
852 else if (ex.error == OPTIMIZED_OUT_ERROR)
853 {
854 this_frame->prev_pc.status = CC_NOT_SAVED;
855
856 if (frame_debug)
857 fprintf_unfiltered (gdb_stdlog,
858 "{ frame_unwind_pc (this_frame=%d)"
859 " -> <not saved> }\n",
860 this_frame->level);
861 }
862 else
863 throw_exception (ex);
e3eebbd7 864 }
492d29ea
PA
865 END_CATCH
866
867 if (pc_p)
e3eebbd7
PA
868 {
869 this_frame->prev_pc.value = pc;
782d47df 870 this_frame->prev_pc.status = CC_VALUE;
e3eebbd7
PA
871 if (frame_debug)
872 fprintf_unfiltered (gdb_stdlog,
873 "{ frame_unwind_pc (this_frame=%d) "
874 "-> %s }\n",
875 this_frame->level,
876 hex_string (this_frame->prev_pc.value));
877 }
12cc2063 878 }
12cc2063 879 else
e2e0b3e5 880 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
f18c5a73 881 }
e3eebbd7 882
782d47df
PA
883 if (this_frame->prev_pc.status == CC_VALUE)
884 return this_frame->prev_pc.value;
885 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
e3eebbd7 886 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
782d47df
PA
887 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
888 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
e3eebbd7 889 else
782d47df
PA
890 internal_error (__FILE__, __LINE__,
891 "unexpected prev_pc status: %d",
892 (int) this_frame->prev_pc.status);
f18c5a73
AC
893}
894
edb3359d
DJ
895CORE_ADDR
896frame_unwind_caller_pc (struct frame_info *this_frame)
897{
33b4777c
MM
898 this_frame = skip_artificial_frames (this_frame);
899
900 /* We must have a non-artificial frame. The caller is supposed to check
901 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
902 in this case. */
903 gdb_assert (this_frame != NULL);
904
905 return frame_unwind_pc (this_frame);
edb3359d
DJ
906}
907
e3eebbd7
PA
908int
909get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
be41e9f4 910{
ef02daa9
DJ
911 struct frame_info *next_frame = this_frame->next;
912
913 if (!next_frame->prev_func.p)
be41e9f4 914 {
e3eebbd7
PA
915 CORE_ADDR addr_in_block;
916
57bfe177
AC
917 /* Make certain that this, and not the adjacent, function is
918 found. */
e3eebbd7
PA
919 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
920 {
921 next_frame->prev_func.p = -1;
922 if (frame_debug)
923 fprintf_unfiltered (gdb_stdlog,
924 "{ get_frame_func (this_frame=%d)"
925 " -> unavailable }\n",
926 this_frame->level);
927 }
928 else
929 {
930 next_frame->prev_func.p = 1;
931 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
932 if (frame_debug)
933 fprintf_unfiltered (gdb_stdlog,
934 "{ get_frame_func (this_frame=%d) -> %s }\n",
935 this_frame->level,
936 hex_string (next_frame->prev_func.addr));
937 }
be41e9f4 938 }
e3eebbd7
PA
939
940 if (next_frame->prev_func.p < 0)
941 {
942 *pc = -1;
943 return 0;
944 }
945 else
946 {
947 *pc = next_frame->prev_func.addr;
948 return 1;
949 }
950}
951
952CORE_ADDR
953get_frame_func (struct frame_info *this_frame)
954{
955 CORE_ADDR pc;
956
957 if (!get_frame_func_if_available (this_frame, &pc))
958 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
959
960 return pc;
be41e9f4
AC
961}
962
05d1431c 963static enum register_status
2d522557 964do_frame_register_read (void *src, int regnum, gdb_byte *buf)
7a25a7c1 965{
9a3c8263 966 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
05d1431c
PA
967 return REG_UNAVAILABLE;
968 else
969 return REG_VALID;
7a25a7c1
AC
970}
971
a81dcb05
AC
972struct regcache *
973frame_save_as_regcache (struct frame_info *this_frame)
974{
d37346f0
DJ
975 struct address_space *aspace = get_frame_address_space (this_frame);
976 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
977 aspace);
a81dcb05 978 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1c4d3f96 979
a81dcb05
AC
980 regcache_save (regcache, do_frame_register_read, this_frame);
981 discard_cleanups (cleanups);
982 return regcache;
983}
984
dbe9fe58 985void
7a25a7c1
AC
986frame_pop (struct frame_info *this_frame)
987{
348473d5
NF
988 struct frame_info *prev_frame;
989 struct regcache *scratch;
990 struct cleanup *cleanups;
991
b89667eb
DE
992 if (get_frame_type (this_frame) == DUMMY_FRAME)
993 {
994 /* Popping a dummy frame involves restoring more than just registers.
995 dummy_frame_pop does all the work. */
b67a2c6f 996 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
b89667eb
DE
997 return;
998 }
999
348473d5 1000 /* Ensure that we have a frame to pop to. */
51d48146 1001 prev_frame = get_prev_frame_always (this_frame);
348473d5
NF
1002
1003 if (!prev_frame)
1004 error (_("Cannot pop the initial frame."));
1005
1ab3b62c
JK
1006 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1007 entering THISFRAME. */
2f3ef606 1008 prev_frame = skip_tailcall_frames (prev_frame);
1ab3b62c 1009
33b4777c
MM
1010 if (prev_frame == NULL)
1011 error (_("Cannot find the caller frame."));
1012
c1bf6f65
AC
1013 /* Make a copy of all the register values unwound from this frame.
1014 Save them in a scratch buffer so that there isn't a race between
594f7785 1015 trying to extract the old values from the current regcache while
c1bf6f65 1016 at the same time writing new values into that same cache. */
348473d5
NF
1017 scratch = frame_save_as_regcache (prev_frame);
1018 cleanups = make_cleanup_regcache_xfree (scratch);
c1bf6f65
AC
1019
1020 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1021 target's register cache that it is about to be hit with a burst
1022 register transfer and that the sequence of register writes should
1023 be batched. The pair target_prepare_to_store() and
1024 target_store_registers() kind of suggest this functionality.
1025 Unfortunately, they don't implement it. Their lack of a formal
1026 definition can lead to targets writing back bogus values
1027 (arguably a bug in the target code mind). */
1028 /* Now copy those saved registers into the current regcache.
1029 Here, regcache_cpy() calls regcache_restore(). */
594f7785 1030 regcache_cpy (get_current_regcache (), scratch);
c1bf6f65 1031 do_cleanups (cleanups);
7a25a7c1 1032
7a25a7c1
AC
1033 /* We've made right mess of GDB's local state, just discard
1034 everything. */
35f196d9 1035 reinit_frame_cache ();
dbe9fe58 1036}
c689142b 1037
4f460812
AC
1038void
1039frame_register_unwind (struct frame_info *frame, int regnum,
0fdb4f18
PA
1040 int *optimizedp, int *unavailablep,
1041 enum lval_type *lvalp, CORE_ADDR *addrp,
1042 int *realnump, gdb_byte *bufferp)
4f460812 1043{
669fac23 1044 struct value *value;
7f78e237 1045
4f460812
AC
1046 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1047 that the value proper does not need to be fetched. */
1048 gdb_assert (optimizedp != NULL);
1049 gdb_assert (lvalp != NULL);
1050 gdb_assert (addrp != NULL);
1051 gdb_assert (realnump != NULL);
1052 /* gdb_assert (bufferp != NULL); */
1053
669fac23 1054 value = frame_unwind_register_value (frame, regnum);
4f460812 1055
669fac23 1056 gdb_assert (value != NULL);
c50901fd 1057
669fac23 1058 *optimizedp = value_optimized_out (value);
0fdb4f18 1059 *unavailablep = !value_entirely_available (value);
669fac23 1060 *lvalp = VALUE_LVAL (value);
42ae5230 1061 *addrp = value_address (value);
669fac23 1062 *realnump = VALUE_REGNUM (value);
6dc42492 1063
0fdb4f18
PA
1064 if (bufferp)
1065 {
1066 if (!*optimizedp && !*unavailablep)
1067 memcpy (bufferp, value_contents_all (value),
1068 TYPE_LENGTH (value_type (value)));
1069 else
1070 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1071 }
669fac23
DJ
1072
1073 /* Dispose of the new value. This prevents watchpoints from
1074 trying to watch the saved frame pointer. */
1075 release_value (value);
1076 value_free (value);
4f460812
AC
1077}
1078
a216a322
AC
1079void
1080frame_register (struct frame_info *frame, int regnum,
0fdb4f18 1081 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
10c42a71 1082 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
a216a322
AC
1083{
1084 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1085 that the value proper does not need to be fetched. */
1086 gdb_assert (optimizedp != NULL);
1087 gdb_assert (lvalp != NULL);
1088 gdb_assert (addrp != NULL);
1089 gdb_assert (realnump != NULL);
1090 /* gdb_assert (bufferp != NULL); */
1091
a94dd1fd
AC
1092 /* Obtain the register value by unwinding the register from the next
1093 (more inner frame). */
1094 gdb_assert (frame != NULL && frame->next != NULL);
0fdb4f18
PA
1095 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1096 lvalp, addrp, realnump, bufferp);
a216a322
AC
1097}
1098
135c175f 1099void
10c42a71 1100frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
135c175f
AC
1101{
1102 int optimized;
0fdb4f18 1103 int unavailable;
135c175f
AC
1104 CORE_ADDR addr;
1105 int realnum;
1106 enum lval_type lval;
1c4d3f96 1107
0fdb4f18
PA
1108 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1109 &lval, &addr, &realnum, buf);
8fbca658
PA
1110
1111 if (optimized)
710409a2
PA
1112 throw_error (OPTIMIZED_OUT_ERROR,
1113 _("Register %d was not saved"), regnum);
8fbca658
PA
1114 if (unavailable)
1115 throw_error (NOT_AVAILABLE_ERROR,
1116 _("Register %d is not available"), regnum);
5b181d62
AC
1117}
1118
f0e7d0e8
AC
1119void
1120get_frame_register (struct frame_info *frame,
10c42a71 1121 int regnum, gdb_byte *buf)
f0e7d0e8
AC
1122{
1123 frame_unwind_register (frame->next, regnum, buf);
1124}
1125
669fac23
DJ
1126struct value *
1127frame_unwind_register_value (struct frame_info *frame, int regnum)
1128{
36f15f55 1129 struct gdbarch *gdbarch;
669fac23
DJ
1130 struct value *value;
1131
1132 gdb_assert (frame != NULL);
36f15f55 1133 gdbarch = frame_unwind_arch (frame);
669fac23
DJ
1134
1135 if (frame_debug)
1136 {
3e43a32a
MS
1137 fprintf_unfiltered (gdb_stdlog,
1138 "{ frame_unwind_register_value "
1139 "(frame=%d,regnum=%d(%s),...) ",
669fac23 1140 frame->level, regnum,
36f15f55 1141 user_reg_map_regnum_to_name (gdbarch, regnum));
669fac23
DJ
1142 }
1143
1144 /* Find the unwinder. */
1145 if (frame->unwind == NULL)
9f9a8002 1146 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
669fac23
DJ
1147
1148 /* Ask this frame to unwind its register. */
1149 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1150
1151 if (frame_debug)
1152 {
1153 fprintf_unfiltered (gdb_stdlog, "->");
1154 if (value_optimized_out (value))
f6c01fc5
AB
1155 {
1156 fprintf_unfiltered (gdb_stdlog, " ");
1157 val_print_optimized_out (value, gdb_stdlog);
1158 }
669fac23
DJ
1159 else
1160 {
1161 if (VALUE_LVAL (value) == lval_register)
1162 fprintf_unfiltered (gdb_stdlog, " register=%d",
1163 VALUE_REGNUM (value));
1164 else if (VALUE_LVAL (value) == lval_memory)
5af949e3
UW
1165 fprintf_unfiltered (gdb_stdlog, " address=%s",
1166 paddress (gdbarch,
1167 value_address (value)));
669fac23
DJ
1168 else
1169 fprintf_unfiltered (gdb_stdlog, " computed");
1170
1171 if (value_lazy (value))
1172 fprintf_unfiltered (gdb_stdlog, " lazy");
1173 else
1174 {
1175 int i;
1176 const gdb_byte *buf = value_contents (value);
1177
1178 fprintf_unfiltered (gdb_stdlog, " bytes=");
1179 fprintf_unfiltered (gdb_stdlog, "[");
36f15f55 1180 for (i = 0; i < register_size (gdbarch, regnum); i++)
669fac23
DJ
1181 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1182 fprintf_unfiltered (gdb_stdlog, "]");
1183 }
1184 }
1185
1186 fprintf_unfiltered (gdb_stdlog, " }\n");
1187 }
1188
1189 return value;
1190}
1191
1192struct value *
1193get_frame_register_value (struct frame_info *frame, int regnum)
1194{
1195 return frame_unwind_register_value (frame->next, regnum);
1196}
1197
f0e7d0e8
AC
1198LONGEST
1199frame_unwind_register_signed (struct frame_info *frame, int regnum)
1200{
e17a4113
UW
1201 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1203 int size = register_size (gdbarch, regnum);
10c42a71 1204 gdb_byte buf[MAX_REGISTER_SIZE];
1c4d3f96 1205
f0e7d0e8 1206 frame_unwind_register (frame, regnum, buf);
e17a4113 1207 return extract_signed_integer (buf, size, byte_order);
f0e7d0e8
AC
1208}
1209
1210LONGEST
1211get_frame_register_signed (struct frame_info *frame, int regnum)
1212{
1213 return frame_unwind_register_signed (frame->next, regnum);
1214}
1215
1216ULONGEST
1217frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1218{
e17a4113
UW
1219 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 int size = register_size (gdbarch, regnum);
10c42a71 1222 gdb_byte buf[MAX_REGISTER_SIZE];
1c4d3f96 1223
f0e7d0e8 1224 frame_unwind_register (frame, regnum, buf);
e17a4113 1225 return extract_unsigned_integer (buf, size, byte_order);
f0e7d0e8
AC
1226}
1227
1228ULONGEST
1229get_frame_register_unsigned (struct frame_info *frame, int regnum)
1230{
1231 return frame_unwind_register_unsigned (frame->next, regnum);
1232}
1233
ad5f7d6e
PA
1234int
1235read_frame_register_unsigned (struct frame_info *frame, int regnum,
1236 ULONGEST *val)
1237{
1238 struct value *regval = get_frame_register_value (frame, regnum);
1239
1240 if (!value_optimized_out (regval)
1241 && value_entirely_available (regval))
1242 {
1243 struct gdbarch *gdbarch = get_frame_arch (frame);
1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1245 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1246
1247 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1248 return 1;
1249 }
1250
1251 return 0;
1252}
1253
ff2e87ac 1254void
10c42a71
AC
1255put_frame_register (struct frame_info *frame, int regnum,
1256 const gdb_byte *buf)
ff2e87ac
AC
1257{
1258 struct gdbarch *gdbarch = get_frame_arch (frame);
1259 int realnum;
1260 int optim;
0fdb4f18 1261 int unavail;
ff2e87ac
AC
1262 enum lval_type lval;
1263 CORE_ADDR addr;
1c4d3f96 1264
0fdb4f18
PA
1265 frame_register (frame, regnum, &optim, &unavail,
1266 &lval, &addr, &realnum, NULL);
ff2e87ac 1267 if (optim)
901461f8 1268 error (_("Attempt to assign to a register that was not saved."));
ff2e87ac
AC
1269 switch (lval)
1270 {
1271 case lval_memory:
1272 {
954b50b3 1273 write_memory (addr, buf, register_size (gdbarch, regnum));
ff2e87ac
AC
1274 break;
1275 }
1276 case lval_register:
594f7785 1277 regcache_cooked_write (get_current_regcache (), realnum, buf);
ff2e87ac
AC
1278 break;
1279 default:
8a3fe4f8 1280 error (_("Attempt to assign to an unmodifiable value."));
ff2e87ac
AC
1281 }
1282}
1283
b2c7d45a
JB
1284/* This function is deprecated. Use get_frame_register_value instead,
1285 which provides more accurate information.
d65fe839 1286
cda5a58a 1287 Find and return the value of REGNUM for the specified stack frame.
5bc602c7 1288 The number of bytes copied is REGISTER_SIZE (REGNUM).
d65fe839 1289
cda5a58a 1290 Returns 0 if the register value could not be found. */
d65fe839 1291
cda5a58a 1292int
ca9d61b9 1293deprecated_frame_register_read (struct frame_info *frame, int regnum,
10c42a71 1294 gdb_byte *myaddr)
d65fe839 1295{
a216a322 1296 int optimized;
0fdb4f18 1297 int unavailable;
a216a322
AC
1298 enum lval_type lval;
1299 CORE_ADDR addr;
1300 int realnum;
1c4d3f96 1301
0fdb4f18
PA
1302 frame_register (frame, regnum, &optimized, &unavailable,
1303 &lval, &addr, &realnum, myaddr);
d65fe839 1304
0fdb4f18 1305 return !optimized && !unavailable;
d65fe839 1306}
e36180d7 1307
00fa51f6
UW
1308int
1309get_frame_register_bytes (struct frame_info *frame, int regnum,
8dccd430
PA
1310 CORE_ADDR offset, int len, gdb_byte *myaddr,
1311 int *optimizedp, int *unavailablep)
00fa51f6
UW
1312{
1313 struct gdbarch *gdbarch = get_frame_arch (frame);
3f27f2a4
AS
1314 int i;
1315 int maxsize;
68e007ca 1316 int numregs;
00fa51f6
UW
1317
1318 /* Skip registers wholly inside of OFFSET. */
1319 while (offset >= register_size (gdbarch, regnum))
1320 {
1321 offset -= register_size (gdbarch, regnum);
1322 regnum++;
1323 }
1324
26fae1d6
AS
1325 /* Ensure that we will not read beyond the end of the register file.
1326 This can only ever happen if the debug information is bad. */
3f27f2a4 1327 maxsize = -offset;
68e007ca
AS
1328 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1329 for (i = regnum; i < numregs; i++)
3f27f2a4
AS
1330 {
1331 int thissize = register_size (gdbarch, i);
bb9bcb69 1332
3f27f2a4 1333 if (thissize == 0)
26fae1d6 1334 break; /* This register is not available on this architecture. */
3f27f2a4
AS
1335 maxsize += thissize;
1336 }
1337 if (len > maxsize)
8dccd430
PA
1338 error (_("Bad debug information detected: "
1339 "Attempt to read %d bytes from registers."), len);
3f27f2a4 1340
00fa51f6
UW
1341 /* Copy the data. */
1342 while (len > 0)
1343 {
1344 int curr_len = register_size (gdbarch, regnum) - offset;
bb9bcb69 1345
00fa51f6
UW
1346 if (curr_len > len)
1347 curr_len = len;
1348
1349 if (curr_len == register_size (gdbarch, regnum))
1350 {
8dccd430
PA
1351 enum lval_type lval;
1352 CORE_ADDR addr;
1353 int realnum;
1354
1355 frame_register (frame, regnum, optimizedp, unavailablep,
1356 &lval, &addr, &realnum, myaddr);
1357 if (*optimizedp || *unavailablep)
00fa51f6
UW
1358 return 0;
1359 }
1360 else
1361 {
1362 gdb_byte buf[MAX_REGISTER_SIZE];
8dccd430
PA
1363 enum lval_type lval;
1364 CORE_ADDR addr;
1365 int realnum;
bb9bcb69 1366
8dccd430
PA
1367 frame_register (frame, regnum, optimizedp, unavailablep,
1368 &lval, &addr, &realnum, buf);
1369 if (*optimizedp || *unavailablep)
00fa51f6
UW
1370 return 0;
1371 memcpy (myaddr, buf + offset, curr_len);
1372 }
1373
765f065a 1374 myaddr += curr_len;
00fa51f6
UW
1375 len -= curr_len;
1376 offset = 0;
1377 regnum++;
1378 }
1379
8dccd430
PA
1380 *optimizedp = 0;
1381 *unavailablep = 0;
00fa51f6
UW
1382 return 1;
1383}
1384
1385void
1386put_frame_register_bytes (struct frame_info *frame, int regnum,
1387 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1388{
1389 struct gdbarch *gdbarch = get_frame_arch (frame);
1390
1391 /* Skip registers wholly inside of OFFSET. */
1392 while (offset >= register_size (gdbarch, regnum))
1393 {
1394 offset -= register_size (gdbarch, regnum);
1395 regnum++;
1396 }
1397
1398 /* Copy the data. */
1399 while (len > 0)
1400 {
1401 int curr_len = register_size (gdbarch, regnum) - offset;
bb9bcb69 1402
00fa51f6
UW
1403 if (curr_len > len)
1404 curr_len = len;
1405
1406 if (curr_len == register_size (gdbarch, regnum))
1407 {
1408 put_frame_register (frame, regnum, myaddr);
1409 }
1410 else
1411 {
1412 gdb_byte buf[MAX_REGISTER_SIZE];
bb9bcb69 1413
ca9d61b9 1414 deprecated_frame_register_read (frame, regnum, buf);
00fa51f6
UW
1415 memcpy (buf + offset, myaddr, curr_len);
1416 put_frame_register (frame, regnum, buf);
1417 }
1418
765f065a 1419 myaddr += curr_len;
00fa51f6
UW
1420 len -= curr_len;
1421 offset = 0;
1422 regnum++;
1423 }
1424}
e36180d7 1425
a94dd1fd
AC
1426/* Create a sentinel frame. */
1427
b9362cc7 1428static struct frame_info *
6c95b8df 1429create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
a94dd1fd
AC
1430{
1431 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1c4d3f96 1432
a94dd1fd 1433 frame->level = -1;
6c95b8df
PA
1434 frame->pspace = pspace;
1435 frame->aspace = get_regcache_aspace (regcache);
a94dd1fd
AC
1436 /* Explicitly initialize the sentinel frame's cache. Provide it
1437 with the underlying regcache. In the future additional
1438 information, such as the frame's thread will be added. */
6dc42492 1439 frame->prologue_cache = sentinel_frame_cache (regcache);
a94dd1fd 1440 /* For the moment there is only one sentinel frame implementation. */
39d7b0e2 1441 frame->unwind = &sentinel_frame_unwind;
a94dd1fd
AC
1442 /* Link this frame back to itself. The frame is self referential
1443 (the unwound PC is the same as the pc), so make it so. */
1444 frame->next = frame;
50bbdbd9
AC
1445 /* Make the sentinel frame's ID valid, but invalid. That way all
1446 comparisons with it should fail. */
d0a55772
AC
1447 frame->this_id.p = 1;
1448 frame->this_id.value = null_frame_id;
7f78e237
AC
1449 if (frame_debug)
1450 {
1451 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1452 fprint_frame (gdb_stdlog, frame);
1453 fprintf_unfiltered (gdb_stdlog, " }\n");
1454 }
a94dd1fd
AC
1455 return frame;
1456}
1457
0963b4bd 1458/* Info about the innermost stack frame (contents of FP register). */
4c1e7e9d
AC
1459
1460static struct frame_info *current_frame;
1461
1462/* Cache for frame addresses already read by gdb. Valid only while
1463 inferior is stopped. Control variables for the frame cache should
1464 be local to this module. */
1465
1466static struct obstack frame_cache_obstack;
1467
1468void *
479ab5a0 1469frame_obstack_zalloc (unsigned long size)
4c1e7e9d 1470{
479ab5a0 1471 void *data = obstack_alloc (&frame_cache_obstack, size);
1c4d3f96 1472
479ab5a0
AC
1473 memset (data, 0, size);
1474 return data;
4c1e7e9d
AC
1475}
1476
a94dd1fd
AC
1477/* Return the innermost (currently executing) stack frame. This is
1478 split into two functions. The function unwind_to_current_frame()
1479 is wrapped in catch exceptions so that, even when the unwind of the
1480 sentinel frame fails, the function still returns a stack frame. */
1481
1482static int
1483unwind_to_current_frame (struct ui_out *ui_out, void *args)
1484{
9a3c8263 1485 struct frame_info *frame = get_prev_frame ((struct frame_info *) args);
1c4d3f96 1486
bbde78fa 1487 /* A sentinel frame can fail to unwind, e.g., because its PC value
a94dd1fd
AC
1488 lands in somewhere like start. */
1489 if (frame == NULL)
1490 return 1;
1491 current_frame = frame;
1492 return 0;
1493}
4c1e7e9d
AC
1494
1495struct frame_info *
1496get_current_frame (void)
1497{
0a1e1ca1
AC
1498 /* First check, and report, the lack of registers. Having GDB
1499 report "No stack!" or "No memory" when the target doesn't even
1500 have registers is very confusing. Besides, "printcmd.exp"
1501 explicitly checks that ``print $pc'' with no registers prints "No
1502 registers". */
a94dd1fd 1503 if (!target_has_registers)
8a3fe4f8 1504 error (_("No registers."));
0a1e1ca1 1505 if (!target_has_stack)
8a3fe4f8 1506 error (_("No stack."));
a94dd1fd 1507 if (!target_has_memory)
8a3fe4f8 1508 error (_("No memory."));
2ce6d6bf
SS
1509 /* Traceframes are effectively a substitute for the live inferior. */
1510 if (get_traceframe_number () < 0)
a911d87a 1511 validate_registers_access ();
8ea051c5 1512
4c1e7e9d
AC
1513 if (current_frame == NULL)
1514 {
a94dd1fd 1515 struct frame_info *sentinel_frame =
6c95b8df 1516 create_sentinel_frame (current_program_space, get_current_regcache ());
79a45e25
PA
1517 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1518 sentinel_frame, RETURN_MASK_ERROR) != 0)
a94dd1fd
AC
1519 {
1520 /* Oops! Fake a current frame? Is this useful? It has a PC
1521 of zero, for instance. */
1522 current_frame = sentinel_frame;
1523 }
4c1e7e9d
AC
1524 }
1525 return current_frame;
1526}
1527
6e7f8b9c
AC
1528/* The "selected" stack frame is used by default for local and arg
1529 access. May be zero, for no selected frame. */
1530
206415a3 1531static struct frame_info *selected_frame;
6e7f8b9c 1532
9d49bdc2 1533int
8ea051c5
PA
1534has_stack_frames (void)
1535{
1536 if (!target_has_registers || !target_has_stack || !target_has_memory)
1537 return 0;
1538
861152be
LM
1539 /* Traceframes are effectively a substitute for the live inferior. */
1540 if (get_traceframe_number () < 0)
1541 {
1542 /* No current inferior, no frame. */
1543 if (ptid_equal (inferior_ptid, null_ptid))
1544 return 0;
d729566a 1545
861152be
LM
1546 /* Don't try to read from a dead thread. */
1547 if (is_exited (inferior_ptid))
1548 return 0;
d729566a 1549
861152be
LM
1550 /* ... or from a spinning thread. */
1551 if (is_executing (inferior_ptid))
1552 return 0;
1553 }
8ea051c5
PA
1554
1555 return 1;
1556}
1557
bbde78fa 1558/* Return the selected frame. Always non-NULL (unless there isn't an
6e7f8b9c
AC
1559 inferior sufficient for creating a frame) in which case an error is
1560 thrown. */
1561
1562struct frame_info *
b04f3ab4 1563get_selected_frame (const char *message)
6e7f8b9c 1564{
206415a3 1565 if (selected_frame == NULL)
b04f3ab4 1566 {
8ea051c5 1567 if (message != NULL && !has_stack_frames ())
8a3fe4f8 1568 error (("%s"), message);
b04f3ab4
AC
1569 /* Hey! Don't trust this. It should really be re-finding the
1570 last selected frame of the currently selected thread. This,
1571 though, is better than nothing. */
1572 select_frame (get_current_frame ());
1573 }
6e7f8b9c 1574 /* There is always a frame. */
206415a3
DJ
1575 gdb_assert (selected_frame != NULL);
1576 return selected_frame;
6e7f8b9c
AC
1577}
1578
eb8c0621
TT
1579/* If there is a selected frame, return it. Otherwise, return NULL. */
1580
1581struct frame_info *
1582get_selected_frame_if_set (void)
1583{
1584 return selected_frame;
1585}
1586
bbde78fa 1587/* This is a variant of get_selected_frame() which can be called when
7dd88986 1588 the inferior does not have a frame; in that case it will return
bbde78fa 1589 NULL instead of calling error(). */
7dd88986
DJ
1590
1591struct frame_info *
1592deprecated_safe_get_selected_frame (void)
1593{
8ea051c5 1594 if (!has_stack_frames ())
7dd88986 1595 return NULL;
b04f3ab4 1596 return get_selected_frame (NULL);
7dd88986
DJ
1597}
1598
6e7f8b9c
AC
1599/* Select frame FI (or NULL - to invalidate the current frame). */
1600
1601void
1602select_frame (struct frame_info *fi)
1603{
206415a3 1604 selected_frame = fi;
bbde78fa 1605 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
6e7f8b9c 1606 frame is being invalidated. */
6e7f8b9c
AC
1607
1608 /* FIXME: kseitz/2002-08-28: It would be nice to call
bbde78fa 1609 selected_frame_level_changed_event() right here, but due to limitations
6e7f8b9c 1610 in the current interfaces, we would end up flooding UIs with events
bbde78fa 1611 because select_frame() is used extensively internally.
6e7f8b9c
AC
1612
1613 Once we have frame-parameterized frame (and frame-related) commands,
1614 the event notification can be moved here, since this function will only
0963b4bd 1615 be called when the user's selected frame is being changed. */
6e7f8b9c
AC
1616
1617 /* Ensure that symbols for this frame are read in. Also, determine the
1618 source language of this frame, and switch to it if desired. */
1619 if (fi)
1620 {
e3eebbd7
PA
1621 CORE_ADDR pc;
1622
1623 /* We retrieve the frame's symtab by using the frame PC.
1624 However we cannot use the frame PC as-is, because it usually
1625 points to the instruction following the "call", which is
1626 sometimes the first instruction of another function. So we
1627 rely on get_frame_address_in_block() which provides us with a
1628 PC which is guaranteed to be inside the frame's code
1629 block. */
1630 if (get_frame_address_in_block_if_available (fi, &pc))
6e7f8b9c 1631 {
43f3e411 1632 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
e3eebbd7 1633
43f3e411
DE
1634 if (cust != NULL
1635 && compunit_language (cust) != current_language->la_language
1636 && compunit_language (cust) != language_unknown
e3eebbd7 1637 && language_mode == language_mode_auto)
43f3e411 1638 set_language (compunit_language (cust));
6e7f8b9c
AC
1639 }
1640 }
1641}
e3eebbd7 1642
4c1e7e9d
AC
1643/* Create an arbitrary (i.e. address specified by user) or innermost frame.
1644 Always returns a non-NULL value. */
1645
1646struct frame_info *
1647create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1648{
1649 struct frame_info *fi;
4c1e7e9d 1650
7f78e237
AC
1651 if (frame_debug)
1652 {
1653 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1654 "{ create_new_frame (addr=%s, pc=%s) ",
1655 hex_string (addr), hex_string (pc));
7f78e237
AC
1656 }
1657
35d5d4ee 1658 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
4c1e7e9d 1659
3e43a32a
MS
1660 fi->next = create_sentinel_frame (current_program_space,
1661 get_current_regcache ());
7df05f2b 1662
1e275f79
PA
1663 /* Set/update this frame's cached PC value, found in the next frame.
1664 Do this before looking for this frame's unwinder. A sniffer is
1665 very likely to read this, and the corresponding unwinder is
1666 entitled to rely that the PC doesn't magically change. */
1667 fi->next->prev_pc.value = pc;
782d47df 1668 fi->next->prev_pc.status = CC_VALUE;
1e275f79 1669
6c95b8df
PA
1670 /* We currently assume that frame chain's can't cross spaces. */
1671 fi->pspace = fi->next->pspace;
1672 fi->aspace = fi->next->aspace;
1673
7df05f2b
AC
1674 /* Select/initialize both the unwind function and the frame's type
1675 based on the PC. */
9f9a8002 1676 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
7df05f2b 1677
18adea3f 1678 fi->this_id.p = 1;
1e275f79 1679 fi->this_id.value = frame_id_build (addr, pc);
4c1e7e9d 1680
7f78e237
AC
1681 if (frame_debug)
1682 {
1683 fprintf_unfiltered (gdb_stdlog, "-> ");
1684 fprint_frame (gdb_stdlog, fi);
1685 fprintf_unfiltered (gdb_stdlog, " }\n");
1686 }
1687
4c1e7e9d
AC
1688 return fi;
1689}
1690
03febf99
AC
1691/* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1692 innermost frame). Be careful to not fall off the bottom of the
1693 frame chain and onto the sentinel frame. */
4c1e7e9d
AC
1694
1695struct frame_info *
03febf99 1696get_next_frame (struct frame_info *this_frame)
4c1e7e9d 1697{
03febf99
AC
1698 if (this_frame->level > 0)
1699 return this_frame->next;
a94dd1fd
AC
1700 else
1701 return NULL;
4c1e7e9d
AC
1702}
1703
f4c5303c
OF
1704/* Observer for the target_changed event. */
1705
2c0b251b 1706static void
f4c5303c
OF
1707frame_observer_target_changed (struct target_ops *target)
1708{
35f196d9 1709 reinit_frame_cache ();
f4c5303c
OF
1710}
1711
4c1e7e9d
AC
1712/* Flush the entire frame cache. */
1713
1714void
35f196d9 1715reinit_frame_cache (void)
4c1e7e9d 1716{
272dfcfd
AS
1717 struct frame_info *fi;
1718
1719 /* Tear down all frame caches. */
1720 for (fi = current_frame; fi != NULL; fi = fi->prev)
1721 {
1722 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1723 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1724 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1725 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1726 }
1727
0963b4bd 1728 /* Since we can't really be sure what the first object allocated was. */
4c1e7e9d
AC
1729 obstack_free (&frame_cache_obstack, 0);
1730 obstack_init (&frame_cache_obstack);
1731
0d6ba1b1
DJ
1732 if (current_frame != NULL)
1733 annotate_frames_invalid ();
1734
4c1e7e9d
AC
1735 current_frame = NULL; /* Invalidate cache */
1736 select_frame (NULL);
b83e9eb7 1737 frame_stash_invalidate ();
7f78e237 1738 if (frame_debug)
35f196d9 1739 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
4c1e7e9d
AC
1740}
1741
e48af409
DJ
1742/* Find where a register is saved (in memory or another register).
1743 The result of frame_register_unwind is just where it is saved
5efde112 1744 relative to this particular frame. */
e48af409
DJ
1745
1746static void
1747frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1748 int *optimizedp, enum lval_type *lvalp,
1749 CORE_ADDR *addrp, int *realnump)
1750{
1751 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1752
1753 while (this_frame != NULL)
1754 {
0fdb4f18
PA
1755 int unavailable;
1756
1757 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1758 lvalp, addrp, realnump, NULL);
e48af409
DJ
1759
1760 if (*optimizedp)
1761 break;
1762
1763 if (*lvalp != lval_register)
1764 break;
1765
1766 regnum = *realnump;
1767 this_frame = get_next_frame (this_frame);
1768 }
1769}
1770
938f0e2f
AB
1771/* Called during frame unwinding to remove a previous frame pointer from a
1772 frame passed in ARG. */
1773
1774static void
1775remove_prev_frame (void *arg)
1776{
1777 struct frame_info *this_frame, *prev_frame;
1778
1779 this_frame = (struct frame_info *) arg;
1780 prev_frame = this_frame->prev;
1781 gdb_assert (prev_frame != NULL);
1782
1783 prev_frame->next = NULL;
1784 this_frame->prev = NULL;
1785}
1786
194cca41
PA
1787/* Get the previous raw frame, and check that it is not identical to
1788 same other frame frame already in the chain. If it is, there is
1789 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1790 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1791 validity tests, that compare THIS_FRAME and the next frame, we do
1792 this right after creating the previous frame, to avoid ever ending
1793 up with two frames with the same id in the frame chain. */
1794
1795static struct frame_info *
1796get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1797{
1798 struct frame_info *prev_frame;
938f0e2f 1799 struct cleanup *prev_frame_cleanup;
194cca41
PA
1800
1801 prev_frame = get_prev_frame_raw (this_frame);
1802 if (prev_frame == NULL)
1803 return NULL;
1804
938f0e2f
AB
1805 /* The cleanup will remove the previous frame that get_prev_frame_raw
1806 linked onto THIS_FRAME. */
1807 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
194cca41 1808
938f0e2f
AB
1809 compute_frame_id (prev_frame);
1810 if (!frame_stash_add (prev_frame))
194cca41 1811 {
938f0e2f
AB
1812 /* Another frame with the same id was already in the stash. We just
1813 detected a cycle. */
1814 if (frame_debug)
1815 {
1816 fprintf_unfiltered (gdb_stdlog, "-> ");
1817 fprint_frame (gdb_stdlog, NULL);
1818 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1819 }
1820 this_frame->stop_reason = UNWIND_SAME_ID;
1821 /* Unlink. */
1822 prev_frame->next = NULL;
1823 this_frame->prev = NULL;
1824 prev_frame = NULL;
194cca41 1825 }
938f0e2f
AB
1826
1827 discard_cleanups (prev_frame_cleanup);
1828 return prev_frame;
194cca41
PA
1829}
1830
53e8a631
AB
1831/* Helper function for get_prev_frame_always, this is called inside a
1832 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1833 there is no such frame. This may throw an exception. */
eb4f72c5 1834
53e8a631
AB
1835static struct frame_info *
1836get_prev_frame_always_1 (struct frame_info *this_frame)
eb4f72c5 1837{
b1bd0044 1838 struct gdbarch *gdbarch;
eb4f72c5 1839
5613d8d3 1840 gdb_assert (this_frame != NULL);
b1bd0044 1841 gdbarch = get_frame_arch (this_frame);
5613d8d3 1842
7f78e237
AC
1843 if (frame_debug)
1844 {
51d48146 1845 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
7f78e237
AC
1846 if (this_frame != NULL)
1847 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1848 else
1849 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1850 fprintf_unfiltered (gdb_stdlog, ") ");
1851 }
1852
5613d8d3
AC
1853 /* Only try to do the unwind once. */
1854 if (this_frame->prev_p)
1855 {
1856 if (frame_debug)
1857 {
1858 fprintf_unfiltered (gdb_stdlog, "-> ");
1859 fprint_frame (gdb_stdlog, this_frame->prev);
1860 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1861 }
1862 return this_frame->prev;
1863 }
8fa75a5d 1864
0d254d6f
DJ
1865 /* If the frame unwinder hasn't been selected yet, we must do so
1866 before setting prev_p; otherwise the check for misbehaved
1867 sniffers will think that this frame's sniffer tried to unwind
1868 further (see frame_cleanup_after_sniffer). */
1869 if (this_frame->unwind == NULL)
9f9a8002 1870 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
8fa75a5d 1871
5613d8d3 1872 this_frame->prev_p = 1;
55feb689 1873 this_frame->stop_reason = UNWIND_NO_REASON;
5613d8d3 1874
edb3359d
DJ
1875 /* If we are unwinding from an inline frame, all of the below tests
1876 were already performed when we unwound from the next non-inline
1877 frame. We must skip them, since we can not get THIS_FRAME's ID
1878 until we have unwound all the way down to the previous non-inline
1879 frame. */
1880 if (get_frame_type (this_frame) == INLINE_FRAME)
194cca41 1881 return get_prev_frame_if_no_cycle (this_frame);
edb3359d 1882
8fbca658
PA
1883 /* Check that this frame is unwindable. If it isn't, don't try to
1884 unwind to the prev frame. */
1885 this_frame->stop_reason
1886 = this_frame->unwind->stop_reason (this_frame,
1887 &this_frame->prologue_cache);
1888
1889 if (this_frame->stop_reason != UNWIND_NO_REASON)
a7300869
PA
1890 {
1891 if (frame_debug)
1892 {
1893 enum unwind_stop_reason reason = this_frame->stop_reason;
1894
1895 fprintf_unfiltered (gdb_stdlog, "-> ");
1896 fprint_frame (gdb_stdlog, NULL);
1897 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1898 frame_stop_reason_symbol_string (reason));
1899 }
1900 return NULL;
1901 }
8fbca658 1902
5613d8d3
AC
1903 /* Check that this frame's ID isn't inner to (younger, below, next)
1904 the next frame. This happens when a frame unwind goes backwards.
f06eadd9
JB
1905 This check is valid only if this frame and the next frame are NORMAL.
1906 See the comment at frame_id_inner for details. */
1907 if (get_frame_type (this_frame) == NORMAL_FRAME
1908 && this_frame->next->unwind->type == NORMAL_FRAME
da361ebd
JB
1909 && frame_id_inner (get_frame_arch (this_frame->next),
1910 get_frame_id (this_frame),
09a7aba8 1911 get_frame_id (this_frame->next)))
55feb689 1912 {
ebedcab5
JK
1913 CORE_ADDR this_pc_in_block;
1914 struct minimal_symbol *morestack_msym;
1915 const char *morestack_name = NULL;
1916
1917 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1918 this_pc_in_block = get_frame_address_in_block (this_frame);
7cbd4a93 1919 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
ebedcab5 1920 if (morestack_msym)
efd66ac6 1921 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
ebedcab5 1922 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
55feb689 1923 {
ebedcab5
JK
1924 if (frame_debug)
1925 {
1926 fprintf_unfiltered (gdb_stdlog, "-> ");
1927 fprint_frame (gdb_stdlog, NULL);
3e43a32a
MS
1928 fprintf_unfiltered (gdb_stdlog,
1929 " // this frame ID is inner }\n");
ebedcab5
JK
1930 }
1931 this_frame->stop_reason = UNWIND_INNER_ID;
1932 return NULL;
55feb689 1933 }
55feb689 1934 }
5613d8d3 1935
e48af409
DJ
1936 /* Check that this and the next frame do not unwind the PC register
1937 to the same memory location. If they do, then even though they
1938 have different frame IDs, the new frame will be bogus; two
1939 functions can't share a register save slot for the PC. This can
1940 happen when the prologue analyzer finds a stack adjustment, but
d57df5e4
DJ
1941 no PC save.
1942
1943 This check does assume that the "PC register" is roughly a
1944 traditional PC, even if the gdbarch_unwind_pc method adjusts
1945 it (we do not rely on the value, only on the unwound PC being
1946 dependent on this value). A potential improvement would be
1947 to have the frame prev_pc method and the gdbarch unwind_pc
1948 method set the same lval and location information as
1949 frame_register_unwind. */
e48af409 1950 if (this_frame->level > 0
b1bd0044 1951 && gdbarch_pc_regnum (gdbarch) >= 0
e48af409 1952 && get_frame_type (this_frame) == NORMAL_FRAME
edb3359d
DJ
1953 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1954 || get_frame_type (this_frame->next) == INLINE_FRAME))
e48af409 1955 {
32276632 1956 int optimized, realnum, nrealnum;
e48af409
DJ
1957 enum lval_type lval, nlval;
1958 CORE_ADDR addr, naddr;
1959
3e8c568d 1960 frame_register_unwind_location (this_frame,
b1bd0044 1961 gdbarch_pc_regnum (gdbarch),
3e8c568d
UW
1962 &optimized, &lval, &addr, &realnum);
1963 frame_register_unwind_location (get_next_frame (this_frame),
b1bd0044 1964 gdbarch_pc_regnum (gdbarch),
32276632 1965 &optimized, &nlval, &naddr, &nrealnum);
e48af409 1966
32276632
DJ
1967 if ((lval == lval_memory && lval == nlval && addr == naddr)
1968 || (lval == lval_register && lval == nlval && realnum == nrealnum))
e48af409
DJ
1969 {
1970 if (frame_debug)
1971 {
1972 fprintf_unfiltered (gdb_stdlog, "-> ");
1973 fprint_frame (gdb_stdlog, NULL);
1974 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1975 }
1976
1977 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1978 this_frame->prev = NULL;
1979 return NULL;
1980 }
1981 }
1982
194cca41 1983 return get_prev_frame_if_no_cycle (this_frame);
edb3359d
DJ
1984}
1985
53e8a631
AB
1986/* Return a "struct frame_info" corresponding to the frame that called
1987 THIS_FRAME. Returns NULL if there is no such frame.
1988
1989 Unlike get_prev_frame, this function always tries to unwind the
1990 frame. */
1991
1992struct frame_info *
1993get_prev_frame_always (struct frame_info *this_frame)
1994{
53e8a631
AB
1995 struct frame_info *prev_frame = NULL;
1996
492d29ea 1997 TRY
53e8a631
AB
1998 {
1999 prev_frame = get_prev_frame_always_1 (this_frame);
2000 }
492d29ea 2001 CATCH (ex, RETURN_MASK_ERROR)
53e8a631
AB
2002 {
2003 if (ex.error == MEMORY_ERROR)
2004 {
2005 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2006 if (ex.message != NULL)
2007 {
2008 char *stop_string;
2009 size_t size;
2010
2011 /* The error needs to live as long as the frame does.
2012 Allocate using stack local STOP_STRING then assign the
2013 pointer to the frame, this allows the STOP_STRING on the
2014 frame to be of type 'const char *'. */
2015 size = strlen (ex.message) + 1;
224c3ddb 2016 stop_string = (char *) frame_obstack_zalloc (size);
53e8a631
AB
2017 memcpy (stop_string, ex.message, size);
2018 this_frame->stop_string = stop_string;
2019 }
2020 prev_frame = NULL;
2021 }
2022 else
2023 throw_exception (ex);
2024 }
492d29ea 2025 END_CATCH
53e8a631
AB
2026
2027 return prev_frame;
2028}
2029
edb3359d
DJ
2030/* Construct a new "struct frame_info" and link it previous to
2031 this_frame. */
2032
2033static struct frame_info *
2034get_prev_frame_raw (struct frame_info *this_frame)
2035{
2036 struct frame_info *prev_frame;
2037
5613d8d3
AC
2038 /* Allocate the new frame but do not wire it in to the frame chain.
2039 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2040 frame->next to pull some fancy tricks (of course such code is, by
2041 definition, recursive). Try to prevent it.
2042
2043 There is no reason to worry about memory leaks, should the
2044 remainder of the function fail. The allocated memory will be
2045 quickly reclaimed when the frame cache is flushed, and the `we've
2046 been here before' check above will stop repeated memory
2047 allocation calls. */
2048 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2049 prev_frame->level = this_frame->level + 1;
2050
6c95b8df
PA
2051 /* For now, assume we don't have frame chains crossing address
2052 spaces. */
2053 prev_frame->pspace = this_frame->pspace;
2054 prev_frame->aspace = this_frame->aspace;
2055
5613d8d3
AC
2056 /* Don't yet compute ->unwind (and hence ->type). It is computed
2057 on-demand in get_frame_type, frame_register_unwind, and
2058 get_frame_id. */
2059
2060 /* Don't yet compute the frame's ID. It is computed on-demand by
2061 get_frame_id(). */
2062
2063 /* The unwound frame ID is validate at the start of this function,
2064 as part of the logic to decide if that frame should be further
2065 unwound, and not here while the prev frame is being created.
2066 Doing this makes it possible for the user to examine a frame that
2067 has an invalid frame ID.
2068
2069 Some very old VAX code noted: [...] For the sake of argument,
2070 suppose that the stack is somewhat trashed (which is one reason
2071 that "info frame" exists). So, return 0 (indicating we don't
2072 know the address of the arglist) if we don't know what frame this
2073 frame calls. */
2074
2075 /* Link it in. */
2076 this_frame->prev = prev_frame;
2077 prev_frame->next = this_frame;
2078
2079 if (frame_debug)
2080 {
2081 fprintf_unfiltered (gdb_stdlog, "-> ");
2082 fprint_frame (gdb_stdlog, prev_frame);
2083 fprintf_unfiltered (gdb_stdlog, " }\n");
2084 }
2085
2086 return prev_frame;
2087}
2088
2089/* Debug routine to print a NULL frame being returned. */
2090
2091static void
d2bf72c0 2092frame_debug_got_null_frame (struct frame_info *this_frame,
5613d8d3
AC
2093 const char *reason)
2094{
2095 if (frame_debug)
2096 {
2097 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2098 if (this_frame != NULL)
2099 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2100 else
2101 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2102 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2103 }
2104}
2105
c8cd9f6c
AC
2106/* Is this (non-sentinel) frame in the "main"() function? */
2107
2108static int
2109inside_main_func (struct frame_info *this_frame)
2110{
3b7344d5 2111 struct bound_minimal_symbol msymbol;
c8cd9f6c
AC
2112 CORE_ADDR maddr;
2113
2114 if (symfile_objfile == 0)
2115 return 0;
2116 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
3b7344d5 2117 if (msymbol.minsym == NULL)
c8cd9f6c
AC
2118 return 0;
2119 /* Make certain that the code, and not descriptor, address is
2120 returned. */
b1bd0044 2121 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
77e371c0 2122 BMSYMBOL_VALUE_ADDRESS (msymbol),
c8cd9f6c
AC
2123 &current_target);
2124 return maddr == get_frame_func (this_frame);
2125}
2126
2315ffec
RC
2127/* Test whether THIS_FRAME is inside the process entry point function. */
2128
2129static int
2130inside_entry_func (struct frame_info *this_frame)
2131{
abd0a5fa
JK
2132 CORE_ADDR entry_point;
2133
2134 if (!entry_point_address_query (&entry_point))
2135 return 0;
2136
2137 return get_frame_func (this_frame) == entry_point;
2315ffec
RC
2138}
2139
5613d8d3
AC
2140/* Return a structure containing various interesting information about
2141 the frame that called THIS_FRAME. Returns NULL if there is entier
2142 no such frame or the frame fails any of a set of target-independent
2143 condition that should terminate the frame chain (e.g., as unwinding
2144 past main()).
2145
2146 This function should not contain target-dependent tests, such as
2147 checking whether the program-counter is zero. */
2148
2149struct frame_info *
2150get_prev_frame (struct frame_info *this_frame)
2151{
e3eebbd7
PA
2152 CORE_ADDR frame_pc;
2153 int frame_pc_p;
2154
eb4f72c5
AC
2155 /* There is always a frame. If this assertion fails, suspect that
2156 something should be calling get_selected_frame() or
2157 get_current_frame(). */
03febf99 2158 gdb_assert (this_frame != NULL);
e3eebbd7 2159 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
eb4f72c5 2160
cc9bed83
RC
2161 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2162 sense to stop unwinding at a dummy frame. One place where a dummy
2163 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2164 pcsqh register (space register for the instruction at the head of the
2165 instruction queue) cannot be written directly; the only way to set it
2166 is to branch to code that is in the target space. In order to implement
2167 frame dummies on HPUX, the called function is made to jump back to where
2168 the inferior was when the user function was called. If gdb was inside
2169 the main function when we created the dummy frame, the dummy frame will
2170 point inside the main function. */
03febf99 2171 if (this_frame->level >= 0
edb3359d 2172 && get_frame_type (this_frame) == NORMAL_FRAME
25d29d70 2173 && !backtrace_past_main
e3eebbd7 2174 && frame_pc_p
c8cd9f6c
AC
2175 && inside_main_func (this_frame))
2176 /* Don't unwind past main(). Note, this is done _before_ the
2177 frame has been marked as previously unwound. That way if the
2178 user later decides to enable unwinds past main(), that will
2179 automatically happen. */
ac2bd0a9 2180 {
d2bf72c0 2181 frame_debug_got_null_frame (this_frame, "inside main func");
ac2bd0a9
AC
2182 return NULL;
2183 }
eb4f72c5 2184
4a5e53e8
DJ
2185 /* If the user's backtrace limit has been exceeded, stop. We must
2186 add two to the current level; one of those accounts for backtrace_limit
2187 being 1-based and the level being 0-based, and the other accounts for
2188 the level of the new frame instead of the level of the current
2189 frame. */
2190 if (this_frame->level + 2 > backtrace_limit)
25d29d70 2191 {
d2bf72c0 2192 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
4a5e53e8 2193 return NULL;
25d29d70
AC
2194 }
2195
0714963c
AC
2196 /* If we're already inside the entry function for the main objfile,
2197 then it isn't valid. Don't apply this test to a dummy frame -
bbde78fa 2198 dummy frame PCs typically land in the entry func. Don't apply
0714963c
AC
2199 this test to the sentinel frame. Sentinel frames should always
2200 be allowed to unwind. */
2f72f850
AC
2201 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2202 wasn't checking for "main" in the minimal symbols. With that
2203 fixed asm-source tests now stop in "main" instead of halting the
bbde78fa 2204 backtrace in weird and wonderful ways somewhere inside the entry
2f72f850
AC
2205 file. Suspect that tests for inside the entry file/func were
2206 added to work around that (now fixed) case. */
0714963c
AC
2207 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2208 suggested having the inside_entry_func test use the
bbde78fa
JM
2209 inside_main_func() msymbol trick (along with entry_point_address()
2210 I guess) to determine the address range of the start function.
0714963c
AC
2211 That should provide a far better stopper than the current
2212 heuristics. */
2315ffec
RC
2213 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2214 applied tail-call optimizations to main so that a function called
2215 from main returns directly to the caller of main. Since we don't
2216 stop at main, we should at least stop at the entry point of the
2217 application. */
edb3359d
DJ
2218 if (this_frame->level >= 0
2219 && get_frame_type (this_frame) == NORMAL_FRAME
2220 && !backtrace_past_entry
e3eebbd7 2221 && frame_pc_p
6e4c6c91 2222 && inside_entry_func (this_frame))
0714963c 2223 {
d2bf72c0 2224 frame_debug_got_null_frame (this_frame, "inside entry func");
0714963c
AC
2225 return NULL;
2226 }
2227
39ee2ff0
AC
2228 /* Assume that the only way to get a zero PC is through something
2229 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2230 will never unwind a zero PC. */
2231 if (this_frame->level > 0
edb3359d
DJ
2232 && (get_frame_type (this_frame) == NORMAL_FRAME
2233 || get_frame_type (this_frame) == INLINE_FRAME)
39ee2ff0 2234 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
e3eebbd7 2235 && frame_pc_p && frame_pc == 0)
39ee2ff0 2236 {
d2bf72c0 2237 frame_debug_got_null_frame (this_frame, "zero PC");
39ee2ff0
AC
2238 return NULL;
2239 }
2240
51d48146 2241 return get_prev_frame_always (this_frame);
eb4f72c5
AC
2242}
2243
4c1e7e9d
AC
2244CORE_ADDR
2245get_frame_pc (struct frame_info *frame)
2246{
d1340264 2247 gdb_assert (frame->next != NULL);
edb3359d 2248 return frame_unwind_pc (frame->next);
4c1e7e9d
AC
2249}
2250
e3eebbd7
PA
2251int
2252get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2253{
e3eebbd7
PA
2254
2255 gdb_assert (frame->next != NULL);
2256
492d29ea 2257 TRY
e3eebbd7
PA
2258 {
2259 *pc = frame_unwind_pc (frame->next);
2260 }
492d29ea 2261 CATCH (ex, RETURN_MASK_ERROR)
e3eebbd7
PA
2262 {
2263 if (ex.error == NOT_AVAILABLE_ERROR)
2264 return 0;
2265 else
2266 throw_exception (ex);
2267 }
492d29ea 2268 END_CATCH
e3eebbd7
PA
2269
2270 return 1;
2271}
2272
ad1193e7 2273/* Return an address that falls within THIS_FRAME's code block. */
8edd5d01
AC
2274
2275CORE_ADDR
ad1193e7 2276get_frame_address_in_block (struct frame_info *this_frame)
8edd5d01
AC
2277{
2278 /* A draft address. */
ad1193e7 2279 CORE_ADDR pc = get_frame_pc (this_frame);
8edd5d01 2280
ad1193e7
DJ
2281 struct frame_info *next_frame = this_frame->next;
2282
2283 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2284 Normally the resume address is inside the body of the function
2285 associated with THIS_FRAME, but there is a special case: when
2286 calling a function which the compiler knows will never return
2287 (for instance abort), the call may be the very last instruction
2288 in the calling function. The resume address will point after the
2289 call and may be at the beginning of a different function
2290 entirely.
2291
2292 If THIS_FRAME is a signal frame or dummy frame, then we should
2293 not adjust the unwound PC. For a dummy frame, GDB pushed the
2294 resume address manually onto the stack. For a signal frame, the
2295 OS may have pushed the resume address manually and invoked the
2296 handler (e.g. GNU/Linux), or invoked the trampoline which called
2297 the signal handler - but in either case the signal handler is
2298 expected to return to the trampoline. So in both of these
2299 cases we know that the resume address is executable and
2300 related. So we only need to adjust the PC if THIS_FRAME
2301 is a normal function.
2302
2303 If the program has been interrupted while THIS_FRAME is current,
2304 then clearly the resume address is inside the associated
2305 function. There are three kinds of interruption: debugger stop
2306 (next frame will be SENTINEL_FRAME), operating system
2307 signal or exception (next frame will be SIGTRAMP_FRAME),
2308 or debugger-induced function call (next frame will be
2309 DUMMY_FRAME). So we only need to adjust the PC if
2310 NEXT_FRAME is a normal function.
2311
2312 We check the type of NEXT_FRAME first, since it is already
2313 known; frame type is determined by the unwinder, and since
2314 we have THIS_FRAME we've already selected an unwinder for
edb3359d
DJ
2315 NEXT_FRAME.
2316
2317 If the next frame is inlined, we need to keep going until we find
2318 the real function - for instance, if a signal handler is invoked
2319 while in an inlined function, then the code address of the
2320 "calling" normal function should not be adjusted either. */
2321
2322 while (get_frame_type (next_frame) == INLINE_FRAME)
2323 next_frame = next_frame->next;
2324
111c6489
JK
2325 if ((get_frame_type (next_frame) == NORMAL_FRAME
2326 || get_frame_type (next_frame) == TAILCALL_FRAME)
edb3359d 2327 && (get_frame_type (this_frame) == NORMAL_FRAME
111c6489 2328 || get_frame_type (this_frame) == TAILCALL_FRAME
edb3359d 2329 || get_frame_type (this_frame) == INLINE_FRAME))
ad1193e7
DJ
2330 return pc - 1;
2331
2332 return pc;
8edd5d01
AC
2333}
2334
e3eebbd7
PA
2335int
2336get_frame_address_in_block_if_available (struct frame_info *this_frame,
2337 CORE_ADDR *pc)
2338{
e3eebbd7 2339
492d29ea 2340 TRY
e3eebbd7
PA
2341 {
2342 *pc = get_frame_address_in_block (this_frame);
2343 }
492d29ea 2344 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2345 {
2346 if (ex.error == NOT_AVAILABLE_ERROR)
2347 return 0;
2348 throw_exception (ex);
2349 }
492d29ea 2350 END_CATCH
7556d4a4
PA
2351
2352 return 1;
e3eebbd7
PA
2353}
2354
edb3359d
DJ
2355void
2356find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1058bca7 2357{
edb3359d
DJ
2358 struct frame_info *next_frame;
2359 int notcurrent;
e3eebbd7 2360 CORE_ADDR pc;
edb3359d
DJ
2361
2362 /* If the next frame represents an inlined function call, this frame's
2363 sal is the "call site" of that inlined function, which can not
2364 be inferred from get_frame_pc. */
2365 next_frame = get_next_frame (frame);
2366 if (frame_inlined_callees (frame) > 0)
2367 {
2368 struct symbol *sym;
2369
2370 if (next_frame)
2371 sym = get_frame_function (next_frame);
2372 else
2373 sym = inline_skipped_symbol (inferior_ptid);
2374
f3df5b08
MS
2375 /* If frame is inline, it certainly has symbols. */
2376 gdb_assert (sym);
edb3359d
DJ
2377 init_sal (sal);
2378 if (SYMBOL_LINE (sym) != 0)
2379 {
08be3fe3 2380 sal->symtab = symbol_symtab (sym);
edb3359d
DJ
2381 sal->line = SYMBOL_LINE (sym);
2382 }
2383 else
2384 /* If the symbol does not have a location, we don't know where
2385 the call site is. Do not pretend to. This is jarring, but
2386 we can't do much better. */
2387 sal->pc = get_frame_pc (frame);
2388
4cb6da1c
AR
2389 sal->pspace = get_frame_program_space (frame);
2390
edb3359d
DJ
2391 return;
2392 }
2393
1058bca7
AC
2394 /* If FRAME is not the innermost frame, that normally means that
2395 FRAME->pc points at the return instruction (which is *after* the
2396 call instruction), and we want to get the line containing the
2397 call (because the call is where the user thinks the program is).
2398 However, if the next frame is either a SIGTRAMP_FRAME or a
2399 DUMMY_FRAME, then the next frame will contain a saved interrupt
2400 PC and such a PC indicates the current (rather than next)
2401 instruction/line, consequently, for such cases, want to get the
2402 line containing fi->pc. */
e3eebbd7
PA
2403 if (!get_frame_pc_if_available (frame, &pc))
2404 {
2405 init_sal (sal);
2406 return;
2407 }
2408
2409 notcurrent = (pc != get_frame_address_in_block (frame));
2410 (*sal) = find_pc_line (pc, notcurrent);
1058bca7
AC
2411}
2412
c193f6ac
AC
2413/* Per "frame.h", return the ``address'' of the frame. Code should
2414 really be using get_frame_id(). */
2415CORE_ADDR
2416get_frame_base (struct frame_info *fi)
2417{
d0a55772 2418 return get_frame_id (fi).stack_addr;
c193f6ac
AC
2419}
2420
da62e633
AC
2421/* High-level offsets into the frame. Used by the debug info. */
2422
2423CORE_ADDR
2424get_frame_base_address (struct frame_info *fi)
2425{
7df05f2b 2426 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2427 return 0;
2428 if (fi->base == NULL)
86c31399 2429 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2430 /* Sneaky: If the low-level unwind and high-level base code share a
2431 common unwinder, let them share the prologue cache. */
2432 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2433 return fi->base->this_base (fi, &fi->prologue_cache);
2434 return fi->base->this_base (fi, &fi->base_cache);
da62e633
AC
2435}
2436
2437CORE_ADDR
2438get_frame_locals_address (struct frame_info *fi)
2439{
7df05f2b 2440 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2441 return 0;
2442 /* If there isn't a frame address method, find it. */
2443 if (fi->base == NULL)
86c31399 2444 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2445 /* Sneaky: If the low-level unwind and high-level base code share a
2446 common unwinder, let them share the prologue cache. */
2447 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2448 return fi->base->this_locals (fi, &fi->prologue_cache);
2449 return fi->base->this_locals (fi, &fi->base_cache);
da62e633
AC
2450}
2451
2452CORE_ADDR
2453get_frame_args_address (struct frame_info *fi)
2454{
7df05f2b 2455 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2456 return 0;
2457 /* If there isn't a frame address method, find it. */
2458 if (fi->base == NULL)
86c31399 2459 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2460 /* Sneaky: If the low-level unwind and high-level base code share a
2461 common unwinder, let them share the prologue cache. */
2462 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2463 return fi->base->this_args (fi, &fi->prologue_cache);
2464 return fi->base->this_args (fi, &fi->base_cache);
da62e633
AC
2465}
2466
e7802207
TT
2467/* Return true if the frame unwinder for frame FI is UNWINDER; false
2468 otherwise. */
2469
2470int
2471frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2472{
2473 if (fi->unwind == NULL)
9f9a8002 2474 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
e7802207
TT
2475 return fi->unwind == unwinder;
2476}
2477
85cf597a
AC
2478/* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2479 or -1 for a NULL frame. */
2480
2481int
2482frame_relative_level (struct frame_info *fi)
2483{
2484 if (fi == NULL)
2485 return -1;
2486 else
2487 return fi->level;
2488}
2489
5a203e44
AC
2490enum frame_type
2491get_frame_type (struct frame_info *frame)
2492{
c1bf6f65
AC
2493 if (frame->unwind == NULL)
2494 /* Initialize the frame's unwinder because that's what
2495 provides the frame's type. */
9f9a8002 2496 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
c1bf6f65 2497 return frame->unwind->type;
5a203e44
AC
2498}
2499
6c95b8df
PA
2500struct program_space *
2501get_frame_program_space (struct frame_info *frame)
2502{
2503 return frame->pspace;
2504}
2505
2506struct program_space *
2507frame_unwind_program_space (struct frame_info *this_frame)
2508{
2509 gdb_assert (this_frame);
2510
2511 /* This is really a placeholder to keep the API consistent --- we
2512 assume for now that we don't have frame chains crossing
2513 spaces. */
2514 return this_frame->pspace;
2515}
2516
2517struct address_space *
2518get_frame_address_space (struct frame_info *frame)
2519{
2520 return frame->aspace;
2521}
2522
ae1e7417
AC
2523/* Memory access methods. */
2524
2525void
10c42a71
AC
2526get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2527 gdb_byte *buf, int len)
ae1e7417
AC
2528{
2529 read_memory (addr, buf, len);
2530}
2531
2532LONGEST
2533get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2534 int len)
2535{
e17a4113
UW
2536 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c4d3f96 2538
e17a4113 2539 return read_memory_integer (addr, len, byte_order);
ae1e7417
AC
2540}
2541
2542ULONGEST
2543get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2544 int len)
2545{
e17a4113
UW
2546 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c4d3f96 2548
e17a4113 2549 return read_memory_unsigned_integer (addr, len, byte_order);
ae1e7417
AC
2550}
2551
304396fb
AC
2552int
2553safe_frame_unwind_memory (struct frame_info *this_frame,
10c42a71 2554 CORE_ADDR addr, gdb_byte *buf, int len)
304396fb 2555{
8defab1a
DJ
2556 /* NOTE: target_read_memory returns zero on success! */
2557 return !target_read_memory (addr, buf, len);
304396fb
AC
2558}
2559
36f15f55 2560/* Architecture methods. */
ae1e7417
AC
2561
2562struct gdbarch *
2563get_frame_arch (struct frame_info *this_frame)
2564{
36f15f55
UW
2565 return frame_unwind_arch (this_frame->next);
2566}
2567
2568struct gdbarch *
2569frame_unwind_arch (struct frame_info *next_frame)
2570{
2571 if (!next_frame->prev_arch.p)
2572 {
2573 struct gdbarch *arch;
0701b271 2574
36f15f55 2575 if (next_frame->unwind == NULL)
9f9a8002 2576 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
36f15f55
UW
2577
2578 if (next_frame->unwind->prev_arch != NULL)
2579 arch = next_frame->unwind->prev_arch (next_frame,
2580 &next_frame->prologue_cache);
2581 else
2582 arch = get_frame_arch (next_frame);
2583
2584 next_frame->prev_arch.arch = arch;
2585 next_frame->prev_arch.p = 1;
2586 if (frame_debug)
2587 fprintf_unfiltered (gdb_stdlog,
2588 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2589 next_frame->level,
2590 gdbarch_bfd_arch_info (arch)->printable_name);
2591 }
2592
2593 return next_frame->prev_arch.arch;
2594}
2595
2596struct gdbarch *
2597frame_unwind_caller_arch (struct frame_info *next_frame)
2598{
33b4777c
MM
2599 next_frame = skip_artificial_frames (next_frame);
2600
2601 /* We must have a non-artificial frame. The caller is supposed to check
2602 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2603 in this case. */
2604 gdb_assert (next_frame != NULL);
2605
2606 return frame_unwind_arch (next_frame);
ae1e7417
AC
2607}
2608
06096720
AB
2609/* Gets the language of FRAME. */
2610
2611enum language
2612get_frame_language (struct frame_info *frame)
2613{
2614 CORE_ADDR pc = 0;
2615 int pc_p = 0;
2616
2617 gdb_assert (frame!= NULL);
2618
2619 /* We determine the current frame language by looking up its
2620 associated symtab. To retrieve this symtab, we use the frame
2621 PC. However we cannot use the frame PC as is, because it
2622 usually points to the instruction following the "call", which
2623 is sometimes the first instruction of another function. So
2624 we rely on get_frame_address_in_block(), it provides us with
2625 a PC that is guaranteed to be inside the frame's code
2626 block. */
2627
2628 TRY
2629 {
2630 pc = get_frame_address_in_block (frame);
2631 pc_p = 1;
2632 }
2633 CATCH (ex, RETURN_MASK_ERROR)
2634 {
2635 if (ex.error != NOT_AVAILABLE_ERROR)
2636 throw_exception (ex);
2637 }
2638 END_CATCH
2639
2640 if (pc_p)
2641 {
2642 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2643
2644 if (cust != NULL)
2645 return compunit_language (cust);
2646 }
2647
2648 return language_unknown;
2649}
2650
a9e5fdc2
AC
2651/* Stack pointer methods. */
2652
2653CORE_ADDR
2654get_frame_sp (struct frame_info *this_frame)
2655{
d56907c1 2656 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c4d3f96 2657
bbde78fa 2658 /* Normality - an architecture that provides a way of obtaining any
a9e5fdc2 2659 frame inner-most address. */
b1bd0044 2660 if (gdbarch_unwind_sp_p (gdbarch))
d56907c1
DJ
2661 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2662 operate on THIS_FRAME now. */
2663 return gdbarch_unwind_sp (gdbarch, this_frame->next);
a9e5fdc2 2664 /* Now things are really are grim. Hope that the value returned by
3e8c568d 2665 the gdbarch_sp_regnum register is meaningful. */
b1bd0044 2666 if (gdbarch_sp_regnum (gdbarch) >= 0)
d56907c1
DJ
2667 return get_frame_register_unsigned (this_frame,
2668 gdbarch_sp_regnum (gdbarch));
e2e0b3e5 2669 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
a9e5fdc2
AC
2670}
2671
55feb689
DJ
2672/* Return the reason why we can't unwind past FRAME. */
2673
2674enum unwind_stop_reason
2675get_frame_unwind_stop_reason (struct frame_info *frame)
2676{
824344ca 2677 /* Fill-in STOP_REASON. */
51d48146 2678 get_prev_frame_always (frame);
824344ca 2679 gdb_assert (frame->prev_p);
55feb689 2680
55feb689
DJ
2681 return frame->stop_reason;
2682}
2683
2684/* Return a string explaining REASON. */
2685
2686const char *
70e38b8e 2687unwind_stop_reason_to_string (enum unwind_stop_reason reason)
55feb689
DJ
2688{
2689 switch (reason)
2690 {
2231f1fb
KP
2691#define SET(name, description) \
2692 case name: return _(description);
2693#include "unwind_stop_reasons.def"
2694#undef SET
55feb689 2695
55feb689
DJ
2696 default:
2697 internal_error (__FILE__, __LINE__,
2698 "Invalid frame stop reason");
2699 }
2700}
2701
53e8a631
AB
2702const char *
2703frame_stop_reason_string (struct frame_info *fi)
2704{
2705 gdb_assert (fi->prev_p);
2706 gdb_assert (fi->prev == NULL);
2707
2708 /* Return the specific string if we have one. */
2709 if (fi->stop_string != NULL)
2710 return fi->stop_string;
2711
2712 /* Return the generic string if we have nothing better. */
2713 return unwind_stop_reason_to_string (fi->stop_reason);
2714}
2715
a7300869
PA
2716/* Return the enum symbol name of REASON as a string, to use in debug
2717 output. */
2718
2719static const char *
2720frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2721{
2722 switch (reason)
2723 {
2724#define SET(name, description) \
2725 case name: return #name;
2726#include "unwind_stop_reasons.def"
2727#undef SET
2728
2729 default:
2730 internal_error (__FILE__, __LINE__,
2731 "Invalid frame stop reason");
2732 }
2733}
2734
669fac23
DJ
2735/* Clean up after a failed (wrong unwinder) attempt to unwind past
2736 FRAME. */
2737
2738static void
2739frame_cleanup_after_sniffer (void *arg)
2740{
9a3c8263 2741 struct frame_info *frame = (struct frame_info *) arg;
669fac23
DJ
2742
2743 /* The sniffer should not allocate a prologue cache if it did not
2744 match this frame. */
2745 gdb_assert (frame->prologue_cache == NULL);
2746
2747 /* No sniffer should extend the frame chain; sniff based on what is
2748 already certain. */
2749 gdb_assert (!frame->prev_p);
2750
2751 /* The sniffer should not check the frame's ID; that's circular. */
2752 gdb_assert (!frame->this_id.p);
2753
2754 /* Clear cached fields dependent on the unwinder.
2755
2756 The previous PC is independent of the unwinder, but the previous
ad1193e7 2757 function is not (see get_frame_address_in_block). */
669fac23
DJ
2758 frame->prev_func.p = 0;
2759 frame->prev_func.addr = 0;
2760
2761 /* Discard the unwinder last, so that we can easily find it if an assertion
2762 in this function triggers. */
2763 frame->unwind = NULL;
2764}
2765
2766/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2767 Return a cleanup which should be called if unwinding fails, and
2768 discarded if it succeeds. */
2769
2770struct cleanup *
2771frame_prepare_for_sniffer (struct frame_info *frame,
2772 const struct frame_unwind *unwind)
2773{
2774 gdb_assert (frame->unwind == NULL);
2775 frame->unwind = unwind;
2776 return make_cleanup (frame_cleanup_after_sniffer, frame);
2777}
2778
b9362cc7
AC
2779extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2780
25d29d70
AC
2781static struct cmd_list_element *set_backtrace_cmdlist;
2782static struct cmd_list_element *show_backtrace_cmdlist;
2783
2784static void
2785set_backtrace_cmd (char *args, int from_tty)
2786{
635c7e8a
TT
2787 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2788 gdb_stdout);
25d29d70
AC
2789}
2790
2791static void
2792show_backtrace_cmd (char *args, int from_tty)
2793{
2794 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2795}
2796
4c1e7e9d
AC
2797void
2798_initialize_frame (void)
2799{
2800 obstack_init (&frame_cache_obstack);
eb4f72c5 2801
3de661e6
PM
2802 frame_stash_create ();
2803
f4c5303c
OF
2804 observer_attach_target_changed (frame_observer_target_changed);
2805
1bedd215 2806 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
25d29d70 2807Set backtrace specific variables.\n\
1bedd215 2808Configure backtrace variables such as the backtrace limit"),
25d29d70
AC
2809 &set_backtrace_cmdlist, "set backtrace ",
2810 0/*allow-unknown*/, &setlist);
1bedd215 2811 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
25d29d70 2812Show backtrace specific variables\n\
1bedd215 2813Show backtrace variables such as the backtrace limit"),
25d29d70
AC
2814 &show_backtrace_cmdlist, "show backtrace ",
2815 0/*allow-unknown*/, &showlist);
2816
2817 add_setshow_boolean_cmd ("past-main", class_obscure,
7915a72c
AC
2818 &backtrace_past_main, _("\
2819Set whether backtraces should continue past \"main\"."), _("\
2820Show whether backtraces should continue past \"main\"."), _("\
eb4f72c5
AC
2821Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2822the backtrace at \"main\". Set this variable if you need to see the rest\n\
7915a72c 2823of the stack trace."),
2c5b56ce 2824 NULL,
920d2a44 2825 show_backtrace_past_main,
2c5b56ce 2826 &set_backtrace_cmdlist,
25d29d70
AC
2827 &show_backtrace_cmdlist);
2828
2315ffec 2829 add_setshow_boolean_cmd ("past-entry", class_obscure,
7915a72c
AC
2830 &backtrace_past_entry, _("\
2831Set whether backtraces should continue past the entry point of a program."),
2832 _("\
2833Show whether backtraces should continue past the entry point of a program."),
2834 _("\
2315ffec 2835Normally there are no callers beyond the entry point of a program, so GDB\n\
cce7e648 2836will terminate the backtrace there. Set this variable if you need to see\n\
7915a72c 2837the rest of the stack trace."),
2c5b56ce 2838 NULL,
920d2a44 2839 show_backtrace_past_entry,
2c5b56ce 2840 &set_backtrace_cmdlist,
2315ffec
RC
2841 &show_backtrace_cmdlist);
2842
883b9c6c
YQ
2843 add_setshow_uinteger_cmd ("limit", class_obscure,
2844 &backtrace_limit, _("\
7915a72c
AC
2845Set an upper bound on the number of backtrace levels."), _("\
2846Show the upper bound on the number of backtrace levels."), _("\
fec74868 2847No more than the specified number of frames can be displayed or examined.\n\
f81d1120 2848Literal \"unlimited\" or zero means no limit."),
883b9c6c
YQ
2849 NULL,
2850 show_backtrace_limit,
2851 &set_backtrace_cmdlist,
2852 &show_backtrace_cmdlist);
ac2bd0a9 2853
0963b4bd 2854 /* Debug this files internals. */
ccce17b0 2855 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
85c07804
AC
2856Set frame debugging."), _("\
2857Show frame debugging."), _("\
2858When non-zero, frame specific internal debugging is enabled."),
ccce17b0
YQ
2859 NULL,
2860 show_frame_debug,
2861 &setdebuglist, &showdebuglist);
4c1e7e9d 2862}
This page took 1.335294 seconds and 4 git commands to generate.