Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / frame.c
CommitLineData
4f460812 1/* Cache and manage frames for GDB, the GNU debugger.
96cb11df 2
42a4f53d 3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
d65fe839
AC
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
d65fe839
AC
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
d65fe839
AC
19
20#include "defs.h"
d55e5aa6
TT
21
22/* Local non-gdb includes. */
4c1e7e9d 23#include "annotate.h"
d55e5aa6 24#include "block.h"
eb4f72c5 25#include "command.h"
d55e5aa6
TT
26#include "dummy-frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "frame.h"
30#include "gdb_obstack.h"
eb4f72c5 31#include "gdbcmd.h"
d55e5aa6 32#include "gdbcore.h"
8ea051c5 33#include "gdbthread.h"
d55e5aa6
TT
34#include "hashtab.h"
35#include "inferior.h"
edb3359d 36#include "inline-frame.h"
d55e5aa6
TT
37#include "language.h"
38#include "objfiles.h"
39#include "observable.h"
40#include "regcache.h"
41#include "sentinel-frame.h"
42#include "target.h"
983dc440 43#include "tracepoint.h"
d55e5aa6 44#include "user-regs.h"
f6c01fc5 45#include "valprint.h"
d55e5aa6 46#include "value.h"
eb4f72c5 47
df433d31
KB
48/* The sentinel frame terminates the innermost end of the frame chain.
49 If unwound, it returns the information needed to construct an
50 innermost frame.
51
52 The current frame, which is the innermost frame, can be found at
53 sentinel_frame->prev. */
54
55static struct frame_info *sentinel_frame;
56
edb3359d 57static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
a7300869 58static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
5613d8d3 59
782d47df
PA
60/* Status of some values cached in the frame_info object. */
61
62enum cached_copy_status
63{
64 /* Value is unknown. */
65 CC_UNKNOWN,
66
67 /* We have a value. */
68 CC_VALUE,
69
70 /* Value was not saved. */
71 CC_NOT_SAVED,
72
73 /* Value is unavailable. */
74 CC_UNAVAILABLE
75};
76
bd013d54
AC
77/* We keep a cache of stack frames, each of which is a "struct
78 frame_info". The innermost one gets allocated (in
df433d31 79 wait_for_inferior) each time the inferior stops; sentinel_frame
bd013d54
AC
80 points to it. Additional frames get allocated (in get_prev_frame)
81 as needed, and are chained through the next and prev fields. Any
82 time that the frame cache becomes invalid (most notably when we
83 execute something, but also if we change how we interpret the
84 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
85 which reads new symbols)), we should call reinit_frame_cache. */
86
87struct frame_info
88{
89 /* Level of this frame. The inner-most (youngest) frame is at level
90 0. As you move towards the outer-most (oldest) frame, the level
91 increases. This is a cached value. It could just as easily be
92 computed by counting back from the selected frame to the inner
93 most frame. */
bbde78fa 94 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
bd013d54
AC
95 reserved to indicate a bogus frame - one that has been created
96 just to keep GDB happy (GDB always needs a frame). For the
97 moment leave this as speculation. */
98 int level;
99
6c95b8df
PA
100 /* The frame's program space. */
101 struct program_space *pspace;
102
103 /* The frame's address space. */
8b86c959 104 const address_space *aspace;
6c95b8df 105
bd013d54
AC
106 /* The frame's low-level unwinder and corresponding cache. The
107 low-level unwinder is responsible for unwinding register values
108 for the previous frame. The low-level unwind methods are
bbde78fa 109 selected based on the presence, or otherwise, of register unwind
bd013d54
AC
110 information such as CFI. */
111 void *prologue_cache;
112 const struct frame_unwind *unwind;
113
36f15f55
UW
114 /* Cached copy of the previous frame's architecture. */
115 struct
116 {
117 int p;
118 struct gdbarch *arch;
119 } prev_arch;
120
bd013d54
AC
121 /* Cached copy of the previous frame's resume address. */
122 struct {
782d47df 123 enum cached_copy_status status;
bd013d54
AC
124 CORE_ADDR value;
125 } prev_pc;
126
127 /* Cached copy of the previous frame's function address. */
128 struct
129 {
130 CORE_ADDR addr;
131 int p;
132 } prev_func;
133
134 /* This frame's ID. */
135 struct
136 {
137 int p;
138 struct frame_id value;
139 } this_id;
140
141 /* The frame's high-level base methods, and corresponding cache.
142 The high level base methods are selected based on the frame's
143 debug info. */
144 const struct frame_base *base;
145 void *base_cache;
146
147 /* Pointers to the next (down, inner, younger) and previous (up,
148 outer, older) frame_info's in the frame cache. */
149 struct frame_info *next; /* down, inner, younger */
150 int prev_p;
151 struct frame_info *prev; /* up, outer, older */
55feb689
DJ
152
153 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
154 could. Only valid when PREV_P is set. */
155 enum unwind_stop_reason stop_reason;
53e8a631
AB
156
157 /* A frame specific string describing the STOP_REASON in more detail.
158 Only valid when PREV_P is set, but even then may still be NULL. */
159 const char *stop_string;
bd013d54
AC
160};
161
3de661e6
PM
162/* A frame stash used to speed up frame lookups. Create a hash table
163 to stash frames previously accessed from the frame cache for
164 quicker subsequent retrieval. The hash table is emptied whenever
165 the frame cache is invalidated. */
b83e9eb7 166
3de661e6 167static htab_t frame_stash;
b83e9eb7 168
3de661e6
PM
169/* Internal function to calculate a hash from the frame_id addresses,
170 using as many valid addresses as possible. Frames below level 0
171 are not stored in the hash table. */
172
173static hashval_t
174frame_addr_hash (const void *ap)
175{
9a3c8263 176 const struct frame_info *frame = (const struct frame_info *) ap;
3de661e6
PM
177 const struct frame_id f_id = frame->this_id.value;
178 hashval_t hash = 0;
179
5ce0145d
PA
180 gdb_assert (f_id.stack_status != FID_STACK_INVALID
181 || f_id.code_addr_p
3de661e6
PM
182 || f_id.special_addr_p);
183
5ce0145d 184 if (f_id.stack_status == FID_STACK_VALID)
3de661e6
PM
185 hash = iterative_hash (&f_id.stack_addr,
186 sizeof (f_id.stack_addr), hash);
187 if (f_id.code_addr_p)
188 hash = iterative_hash (&f_id.code_addr,
189 sizeof (f_id.code_addr), hash);
190 if (f_id.special_addr_p)
191 hash = iterative_hash (&f_id.special_addr,
192 sizeof (f_id.special_addr), hash);
193
194 return hash;
195}
196
197/* Internal equality function for the hash table. This function
198 defers equality operations to frame_id_eq. */
199
200static int
201frame_addr_hash_eq (const void *a, const void *b)
202{
9a3c8263
SM
203 const struct frame_info *f_entry = (const struct frame_info *) a;
204 const struct frame_info *f_element = (const struct frame_info *) b;
3de661e6
PM
205
206 return frame_id_eq (f_entry->this_id.value,
207 f_element->this_id.value);
208}
209
210/* Internal function to create the frame_stash hash table. 100 seems
211 to be a good compromise to start the hash table at. */
212
213static void
214frame_stash_create (void)
215{
216 frame_stash = htab_create (100,
217 frame_addr_hash,
218 frame_addr_hash_eq,
219 NULL);
220}
221
194cca41
PA
222/* Internal function to add a frame to the frame_stash hash table.
223 Returns false if a frame with the same ID was already stashed, true
224 otherwise. */
b83e9eb7 225
194cca41 226static int
b83e9eb7
JB
227frame_stash_add (struct frame_info *frame)
228{
194cca41 229 struct frame_info **slot;
f5b0ed3c 230
194cca41
PA
231 /* Do not try to stash the sentinel frame. */
232 gdb_assert (frame->level >= 0);
233
234 slot = (struct frame_info **) htab_find_slot (frame_stash,
235 frame,
236 INSERT);
237
238 /* If we already have a frame in the stack with the same id, we
239 either have a stack cycle (corrupted stack?), or some bug
240 elsewhere in GDB. In any case, ignore the duplicate and return
241 an indication to the caller. */
242 if (*slot != NULL)
243 return 0;
244
245 *slot = frame;
246 return 1;
b83e9eb7
JB
247}
248
3de661e6
PM
249/* Internal function to search the frame stash for an entry with the
250 given frame ID. If found, return that frame. Otherwise return
251 NULL. */
b83e9eb7
JB
252
253static struct frame_info *
254frame_stash_find (struct frame_id id)
255{
3de661e6
PM
256 struct frame_info dummy;
257 struct frame_info *frame;
b83e9eb7 258
3de661e6 259 dummy.this_id.value = id;
9a3c8263 260 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
3de661e6 261 return frame;
b83e9eb7
JB
262}
263
3de661e6
PM
264/* Internal function to invalidate the frame stash by removing all
265 entries in it. This only occurs when the frame cache is
266 invalidated. */
b83e9eb7
JB
267
268static void
269frame_stash_invalidate (void)
270{
3de661e6 271 htab_empty (frame_stash);
b83e9eb7
JB
272}
273
45f25d6c
AB
274/* See frame.h */
275scoped_restore_selected_frame::scoped_restore_selected_frame ()
276{
277 m_fid = get_frame_id (get_selected_frame (NULL));
278}
279
280/* See frame.h */
281scoped_restore_selected_frame::~scoped_restore_selected_frame ()
282{
283 frame_info *frame = frame_find_by_id (m_fid);
284 if (frame == NULL)
285 warning (_("Unable to restore previously selected frame."));
286 else
287 select_frame (frame);
288}
289
ac2bd0a9
AC
290/* Flag to control debugging. */
291
ccce17b0 292unsigned int frame_debug;
920d2a44
AC
293static void
294show_frame_debug (struct ui_file *file, int from_tty,
295 struct cmd_list_element *c, const char *value)
296{
297 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
298}
ac2bd0a9 299
25d29d70
AC
300/* Flag to indicate whether backtraces should stop at main et.al. */
301
302static int backtrace_past_main;
920d2a44
AC
303static void
304show_backtrace_past_main (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306{
3e43a32a
MS
307 fprintf_filtered (file,
308 _("Whether backtraces should "
309 "continue past \"main\" is %s.\n"),
920d2a44
AC
310 value);
311}
312
2315ffec 313static int backtrace_past_entry;
920d2a44
AC
314static void
315show_backtrace_past_entry (struct ui_file *file, int from_tty,
316 struct cmd_list_element *c, const char *value)
317{
3e43a32a
MS
318 fprintf_filtered (file, _("Whether backtraces should continue past the "
319 "entry point of a program is %s.\n"),
920d2a44
AC
320 value);
321}
322
883b9c6c 323static unsigned int backtrace_limit = UINT_MAX;
920d2a44
AC
324static void
325show_backtrace_limit (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c, const char *value)
327{
3e43a32a
MS
328 fprintf_filtered (file,
329 _("An upper bound on the number "
330 "of backtrace levels is %s.\n"),
920d2a44
AC
331 value);
332}
333
eb4f72c5 334
ca73dd9d
AC
335static void
336fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
337{
338 if (p)
5af949e3 339 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
ca73dd9d
AC
340 else
341 fprintf_unfiltered (file, "!%s", name);
342}
d65fe839 343
00905d52 344void
7f78e237
AC
345fprint_frame_id (struct ui_file *file, struct frame_id id)
346{
ca73dd9d 347 fprintf_unfiltered (file, "{");
5ce0145d
PA
348
349 if (id.stack_status == FID_STACK_INVALID)
350 fprintf_unfiltered (file, "!stack");
351 else if (id.stack_status == FID_STACK_UNAVAILABLE)
352 fprintf_unfiltered (file, "stack=<unavailable>");
df433d31
KB
353 else if (id.stack_status == FID_STACK_SENTINEL)
354 fprintf_unfiltered (file, "stack=<sentinel>");
5ce0145d
PA
355 else
356 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
ca73dd9d 357 fprintf_unfiltered (file, ",");
5ce0145d 358
ca73dd9d
AC
359 fprint_field (file, "code", id.code_addr_p, id.code_addr);
360 fprintf_unfiltered (file, ",");
5ce0145d 361
ca73dd9d 362 fprint_field (file, "special", id.special_addr_p, id.special_addr);
5ce0145d 363
193facb3
JK
364 if (id.artificial_depth)
365 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
5ce0145d 366
ca73dd9d 367 fprintf_unfiltered (file, "}");
7f78e237
AC
368}
369
370static void
371fprint_frame_type (struct ui_file *file, enum frame_type type)
372{
373 switch (type)
374 {
7f78e237
AC
375 case NORMAL_FRAME:
376 fprintf_unfiltered (file, "NORMAL_FRAME");
377 return;
378 case DUMMY_FRAME:
379 fprintf_unfiltered (file, "DUMMY_FRAME");
380 return;
edb3359d
DJ
381 case INLINE_FRAME:
382 fprintf_unfiltered (file, "INLINE_FRAME");
383 return;
b5eef7aa
JK
384 case TAILCALL_FRAME:
385 fprintf_unfiltered (file, "TAILCALL_FRAME");
edb3359d 386 return;
7f78e237
AC
387 case SIGTRAMP_FRAME:
388 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
389 return;
36f15f55
UW
390 case ARCH_FRAME:
391 fprintf_unfiltered (file, "ARCH_FRAME");
392 return;
b5eef7aa
JK
393 case SENTINEL_FRAME:
394 fprintf_unfiltered (file, "SENTINEL_FRAME");
395 return;
7f78e237
AC
396 default:
397 fprintf_unfiltered (file, "<unknown type>");
398 return;
399 };
400}
401
402static void
403fprint_frame (struct ui_file *file, struct frame_info *fi)
404{
405 if (fi == NULL)
406 {
407 fprintf_unfiltered (file, "<NULL frame>");
408 return;
409 }
410 fprintf_unfiltered (file, "{");
411 fprintf_unfiltered (file, "level=%d", fi->level);
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "type=");
c1bf6f65
AC
414 if (fi->unwind != NULL)
415 fprint_frame_type (file, fi->unwind->type);
416 else
417 fprintf_unfiltered (file, "<unknown>");
7f78e237
AC
418 fprintf_unfiltered (file, ",");
419 fprintf_unfiltered (file, "unwind=");
420 if (fi->unwind != NULL)
421 gdb_print_host_address (fi->unwind, file);
422 else
423 fprintf_unfiltered (file, "<unknown>");
424 fprintf_unfiltered (file, ",");
425 fprintf_unfiltered (file, "pc=");
782d47df 426 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
7f78e237 427 fprintf_unfiltered (file, "<unknown>");
782d47df
PA
428 else if (fi->next->prev_pc.status == CC_VALUE)
429 fprintf_unfiltered (file, "%s",
430 hex_string (fi->next->prev_pc.value));
431 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
432 val_print_not_saved (file);
433 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
434 val_print_unavailable (file);
7f78e237
AC
435 fprintf_unfiltered (file, ",");
436 fprintf_unfiltered (file, "id=");
437 if (fi->this_id.p)
438 fprint_frame_id (file, fi->this_id.value);
439 else
440 fprintf_unfiltered (file, "<unknown>");
441 fprintf_unfiltered (file, ",");
442 fprintf_unfiltered (file, "func=");
443 if (fi->next != NULL && fi->next->prev_func.p)
5af949e3 444 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
7f78e237
AC
445 else
446 fprintf_unfiltered (file, "<unknown>");
447 fprintf_unfiltered (file, "}");
448}
449
193facb3
JK
450/* Given FRAME, return the enclosing frame as found in real frames read-in from
451 inferior memory. Skip any previous frames which were made up by GDB.
33b4777c
MM
452 Return FRAME if FRAME is a non-artificial frame.
453 Return NULL if FRAME is the start of an artificial-only chain. */
edb3359d
DJ
454
455static struct frame_info *
193facb3 456skip_artificial_frames (struct frame_info *frame)
edb3359d 457{
51d48146
PA
458 /* Note we use get_prev_frame_always, and not get_prev_frame. The
459 latter will truncate the frame chain, leading to this function
460 unintentionally returning a null_frame_id (e.g., when the user
33b4777c
MM
461 sets a backtrace limit).
462
463 Note that for record targets we may get a frame chain that consists
464 of artificial frames only. */
1ab3b62c
JK
465 while (get_frame_type (frame) == INLINE_FRAME
466 || get_frame_type (frame) == TAILCALL_FRAME)
33b4777c
MM
467 {
468 frame = get_prev_frame_always (frame);
469 if (frame == NULL)
470 break;
471 }
edb3359d
DJ
472
473 return frame;
474}
475
7eb89530
YQ
476struct frame_info *
477skip_unwritable_frames (struct frame_info *frame)
478{
479 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
480 {
481 frame = get_prev_frame (frame);
482 if (frame == NULL)
483 break;
484 }
485
486 return frame;
487}
488
2f3ef606
MM
489/* See frame.h. */
490
491struct frame_info *
492skip_tailcall_frames (struct frame_info *frame)
493{
494 while (get_frame_type (frame) == TAILCALL_FRAME)
33b4777c
MM
495 {
496 /* Note that for record targets we may get a frame chain that consists of
497 tailcall frames only. */
498 frame = get_prev_frame (frame);
499 if (frame == NULL)
500 break;
501 }
2f3ef606
MM
502
503 return frame;
504}
505
194cca41
PA
506/* Compute the frame's uniq ID that can be used to, later, re-find the
507 frame. */
508
509static void
510compute_frame_id (struct frame_info *fi)
511{
512 gdb_assert (!fi->this_id.p);
513
514 if (frame_debug)
515 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
516 fi->level);
517 /* Find the unwinder. */
518 if (fi->unwind == NULL)
519 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
520 /* Find THIS frame's ID. */
521 /* Default to outermost if no ID is found. */
522 fi->this_id.value = outer_frame_id;
523 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
524 gdb_assert (frame_id_p (fi->this_id.value));
525 fi->this_id.p = 1;
526 if (frame_debug)
527 {
528 fprintf_unfiltered (gdb_stdlog, "-> ");
529 fprint_frame_id (gdb_stdlog, fi->this_id.value);
530 fprintf_unfiltered (gdb_stdlog, " }\n");
531 }
532}
533
7a424e99 534/* Return a frame uniq ID that can be used to, later, re-find the
101dcfbe
AC
535 frame. */
536
7a424e99
AC
537struct frame_id
538get_frame_id (struct frame_info *fi)
101dcfbe
AC
539{
540 if (fi == NULL)
b83e9eb7
JB
541 return null_frame_id;
542
f245535c
PA
543 if (!fi->this_id.p)
544 {
545 int stashed;
546
547 /* If we haven't computed the frame id yet, then it must be that
548 this is the current frame. Compute it now, and stash the
549 result. The IDs of other frames are computed as soon as
550 they're created, in order to detect cycles. See
551 get_prev_frame_if_no_cycle. */
552 gdb_assert (fi->level == 0);
553
554 /* Compute. */
555 compute_frame_id (fi);
556
557 /* Since this is the first frame in the chain, this should
558 always succeed. */
559 stashed = frame_stash_add (fi);
560 gdb_assert (stashed);
561 }
562
18adea3f 563 return fi->this_id.value;
101dcfbe
AC
564}
565
edb3359d
DJ
566struct frame_id
567get_stack_frame_id (struct frame_info *next_frame)
568{
193facb3 569 return get_frame_id (skip_artificial_frames (next_frame));
edb3359d
DJ
570}
571
5613d8d3 572struct frame_id
c7ce8faa 573frame_unwind_caller_id (struct frame_info *next_frame)
5613d8d3 574{
edb3359d
DJ
575 struct frame_info *this_frame;
576
51d48146
PA
577 /* Use get_prev_frame_always, and not get_prev_frame. The latter
578 will truncate the frame chain, leading to this function
579 unintentionally returning a null_frame_id (e.g., when a caller
580 requests the frame ID of "main()"s caller. */
edb3359d 581
193facb3 582 next_frame = skip_artificial_frames (next_frame);
33b4777c
MM
583 if (next_frame == NULL)
584 return null_frame_id;
585
51d48146 586 this_frame = get_prev_frame_always (next_frame);
edb3359d 587 if (this_frame)
193facb3 588 return get_frame_id (skip_artificial_frames (this_frame));
edb3359d
DJ
589 else
590 return null_frame_id;
5613d8d3
AC
591}
592
f8904751 593const struct frame_id null_frame_id = { 0 }; /* All zeros. */
df433d31 594const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
5ce0145d 595const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
7a424e99
AC
596
597struct frame_id
48c66725
JJ
598frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
599 CORE_ADDR special_addr)
7a424e99 600{
12b0b6de 601 struct frame_id id = null_frame_id;
1c4d3f96 602
d0a55772 603 id.stack_addr = stack_addr;
5ce0145d 604 id.stack_status = FID_STACK_VALID;
d0a55772 605 id.code_addr = code_addr;
12b0b6de 606 id.code_addr_p = 1;
48c66725 607 id.special_addr = special_addr;
12b0b6de 608 id.special_addr_p = 1;
7a424e99
AC
609 return id;
610}
611
5ce0145d
PA
612/* See frame.h. */
613
614struct frame_id
615frame_id_build_unavailable_stack (CORE_ADDR code_addr)
616{
617 struct frame_id id = null_frame_id;
618
619 id.stack_status = FID_STACK_UNAVAILABLE;
620 id.code_addr = code_addr;
621 id.code_addr_p = 1;
622 return id;
623}
624
8372a7cb
MM
625/* See frame.h. */
626
627struct frame_id
628frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
629 CORE_ADDR special_addr)
630{
631 struct frame_id id = null_frame_id;
632
633 id.stack_status = FID_STACK_UNAVAILABLE;
634 id.code_addr = code_addr;
635 id.code_addr_p = 1;
636 id.special_addr = special_addr;
637 id.special_addr_p = 1;
638 return id;
639}
640
48c66725
JJ
641struct frame_id
642frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
643{
12b0b6de 644 struct frame_id id = null_frame_id;
1c4d3f96 645
12b0b6de 646 id.stack_addr = stack_addr;
5ce0145d 647 id.stack_status = FID_STACK_VALID;
12b0b6de
UW
648 id.code_addr = code_addr;
649 id.code_addr_p = 1;
650 return id;
651}
652
653struct frame_id
654frame_id_build_wild (CORE_ADDR stack_addr)
655{
656 struct frame_id id = null_frame_id;
1c4d3f96 657
12b0b6de 658 id.stack_addr = stack_addr;
5ce0145d 659 id.stack_status = FID_STACK_VALID;
12b0b6de 660 return id;
48c66725
JJ
661}
662
7a424e99
AC
663int
664frame_id_p (struct frame_id l)
665{
d0a55772 666 int p;
1c4d3f96 667
12b0b6de 668 /* The frame is valid iff it has a valid stack address. */
5ce0145d 669 p = l.stack_status != FID_STACK_INVALID;
005ca36a
JB
670 /* outer_frame_id is also valid. */
671 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
672 p = 1;
7f78e237
AC
673 if (frame_debug)
674 {
675 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
676 fprint_frame_id (gdb_stdlog, l);
677 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
678 }
d0a55772 679 return p;
7a424e99
AC
680}
681
edb3359d 682int
193facb3 683frame_id_artificial_p (struct frame_id l)
edb3359d
DJ
684{
685 if (!frame_id_p (l))
686 return 0;
687
193facb3 688 return (l.artificial_depth != 0);
edb3359d
DJ
689}
690
7a424e99
AC
691int
692frame_id_eq (struct frame_id l, struct frame_id r)
693{
d0a55772 694 int eq;
1c4d3f96 695
5ce0145d
PA
696 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
697 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
005ca36a
JB
698 /* The outermost frame marker is equal to itself. This is the
699 dodgy thing about outer_frame_id, since between execution steps
700 we might step into another function - from which we can't
701 unwind either. More thought required to get rid of
702 outer_frame_id. */
703 eq = 1;
5ce0145d 704 else if (l.stack_status == FID_STACK_INVALID
f0d4ba1f 705 || r.stack_status == FID_STACK_INVALID)
12b0b6de
UW
706 /* Like a NaN, if either ID is invalid, the result is false.
707 Note that a frame ID is invalid iff it is the null frame ID. */
d0a55772 708 eq = 0;
5ce0145d 709 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
d0a55772
AC
710 /* If .stack addresses are different, the frames are different. */
711 eq = 0;
edb3359d
DJ
712 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
713 /* An invalid code addr is a wild card. If .code addresses are
714 different, the frames are different. */
48c66725 715 eq = 0;
edb3359d
DJ
716 else if (l.special_addr_p && r.special_addr_p
717 && l.special_addr != r.special_addr)
718 /* An invalid special addr is a wild card (or unused). Otherwise
719 if special addresses are different, the frames are different. */
720 eq = 0;
193facb3
JK
721 else if (l.artificial_depth != r.artificial_depth)
722 /* If artifical depths are different, the frames must be different. */
edb3359d
DJ
723 eq = 0;
724 else
48c66725 725 /* Frames are equal. */
d0a55772 726 eq = 1;
edb3359d 727
7f78e237
AC
728 if (frame_debug)
729 {
730 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
731 fprint_frame_id (gdb_stdlog, l);
732 fprintf_unfiltered (gdb_stdlog, ",r=");
733 fprint_frame_id (gdb_stdlog, r);
734 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
735 }
d0a55772 736 return eq;
7a424e99
AC
737}
738
a45ae3ed
UW
739/* Safety net to check whether frame ID L should be inner to
740 frame ID R, according to their stack addresses.
741
742 This method cannot be used to compare arbitrary frames, as the
743 ranges of valid stack addresses may be discontiguous (e.g. due
744 to sigaltstack).
745
746 However, it can be used as safety net to discover invalid frame
0963b4bd 747 IDs in certain circumstances. Assuming that NEXT is the immediate
f06eadd9 748 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
a45ae3ed 749
f06eadd9
JB
750 * The stack address of NEXT must be inner-than-or-equal to the stack
751 address of THIS.
a45ae3ed
UW
752
753 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
754 error has occurred.
755
f06eadd9
JB
756 * If NEXT and THIS have different stack addresses, no other frame
757 in the frame chain may have a stack address in between.
a45ae3ed
UW
758
759 Therefore, if frame_id_inner (TEST, THIS) holds, but
760 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
f06eadd9
JB
761 to a valid frame in the frame chain.
762
763 The sanity checks above cannot be performed when a SIGTRAMP frame
764 is involved, because signal handlers might be executed on a different
765 stack than the stack used by the routine that caused the signal
766 to be raised. This can happen for instance when a thread exceeds
0963b4bd 767 its maximum stack size. In this case, certain compilers implement
f06eadd9
JB
768 a stack overflow strategy that cause the handler to be run on a
769 different stack. */
a45ae3ed
UW
770
771static int
09a7aba8 772frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
7a424e99 773{
d0a55772 774 int inner;
1c4d3f96 775
5ce0145d
PA
776 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
777 /* Like NaN, any operation involving an invalid ID always fails.
778 Likewise if either ID has an unavailable stack address. */
d0a55772 779 inner = 0;
193facb3 780 else if (l.artificial_depth > r.artificial_depth
edb3359d
DJ
781 && l.stack_addr == r.stack_addr
782 && l.code_addr_p == r.code_addr_p
783 && l.special_addr_p == r.special_addr_p
784 && l.special_addr == r.special_addr)
785 {
786 /* Same function, different inlined functions. */
3977b71f 787 const struct block *lb, *rb;
edb3359d
DJ
788
789 gdb_assert (l.code_addr_p && r.code_addr_p);
790
791 lb = block_for_pc (l.code_addr);
792 rb = block_for_pc (r.code_addr);
793
794 if (lb == NULL || rb == NULL)
795 /* Something's gone wrong. */
796 inner = 0;
797 else
798 /* This will return true if LB and RB are the same block, or
799 if the block with the smaller depth lexically encloses the
800 block with the greater depth. */
801 inner = contained_in (lb, rb);
802 }
d0a55772
AC
803 else
804 /* Only return non-zero when strictly inner than. Note that, per
805 comment in "frame.h", there is some fuzz here. Frameless
806 functions are not strictly inner than (same .stack but
48c66725 807 different .code and/or .special address). */
09a7aba8 808 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
7f78e237
AC
809 if (frame_debug)
810 {
811 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
812 fprint_frame_id (gdb_stdlog, l);
813 fprintf_unfiltered (gdb_stdlog, ",r=");
814 fprint_frame_id (gdb_stdlog, r);
815 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
816 }
d0a55772 817 return inner;
7a424e99
AC
818}
819
101dcfbe
AC
820struct frame_info *
821frame_find_by_id (struct frame_id id)
822{
a45ae3ed 823 struct frame_info *frame, *prev_frame;
101dcfbe
AC
824
825 /* ZERO denotes the null frame, let the caller decide what to do
826 about it. Should it instead return get_current_frame()? */
7a424e99 827 if (!frame_id_p (id))
101dcfbe
AC
828 return NULL;
829
df433d31
KB
830 /* Check for the sentinel frame. */
831 if (frame_id_eq (id, sentinel_frame_id))
832 return sentinel_frame;
833
b83e9eb7
JB
834 /* Try using the frame stash first. Finding it there removes the need
835 to perform the search by looping over all frames, which can be very
836 CPU-intensive if the number of frames is very high (the loop is O(n)
837 and get_prev_frame performs a series of checks that are relatively
838 expensive). This optimization is particularly useful when this function
839 is called from another function (such as value_fetch_lazy, case
840 VALUE_LVAL (val) == lval_register) which already loops over all frames,
841 making the overall behavior O(n^2). */
842 frame = frame_stash_find (id);
843 if (frame)
844 return frame;
845
a45ae3ed 846 for (frame = get_current_frame (); ; frame = prev_frame)
101dcfbe 847 {
fe978cb0 848 struct frame_id self = get_frame_id (frame);
bb9bcb69 849
fe978cb0 850 if (frame_id_eq (id, self))
7a424e99
AC
851 /* An exact match. */
852 return frame;
a45ae3ed
UW
853
854 prev_frame = get_prev_frame (frame);
855 if (!prev_frame)
856 return NULL;
857
858 /* As a safety net to avoid unnecessary backtracing while trying
859 to find an invalid ID, we check for a common situation where
860 we can detect from comparing stack addresses that no other
861 frame in the current frame chain can have this ID. See the
862 comment at frame_id_inner for details. */
863 if (get_frame_type (frame) == NORMAL_FRAME
fe978cb0 864 && !frame_id_inner (get_frame_arch (frame), id, self)
a45ae3ed
UW
865 && frame_id_inner (get_frame_arch (prev_frame), id,
866 get_frame_id (prev_frame)))
101dcfbe 867 return NULL;
101dcfbe
AC
868 }
869 return NULL;
870}
871
782d47df
PA
872static CORE_ADDR
873frame_unwind_pc (struct frame_info *this_frame)
f18c5a73 874{
782d47df 875 if (this_frame->prev_pc.status == CC_UNKNOWN)
f18c5a73 876 {
8bcb5208
AB
877 struct gdbarch *prev_gdbarch;
878 CORE_ADDR pc = 0;
879 int pc_p = 0;
880
881 /* The right way. The `pure' way. The one true way. This
882 method depends solely on the register-unwind code to
883 determine the value of registers in THIS frame, and hence
884 the value of this frame's PC (resume address). A typical
885 implementation is no more than:
886
887 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
888 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
889
890 Note: this method is very heavily dependent on a correct
891 register-unwind implementation, it pays to fix that
892 method first; this method is frame type agnostic, since
893 it only deals with register values, it works with any
894 frame. This is all in stark contrast to the old
895 FRAME_SAVED_PC which would try to directly handle all the
896 different ways that a PC could be unwound. */
897 prev_gdbarch = frame_unwind_arch (this_frame);
898
899 TRY
12cc2063 900 {
8bcb5208
AB
901 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
902 pc_p = 1;
903 }
904 CATCH (ex, RETURN_MASK_ERROR)
905 {
906 if (ex.error == NOT_AVAILABLE_ERROR)
e3eebbd7 907 {
8bcb5208
AB
908 this_frame->prev_pc.status = CC_UNAVAILABLE;
909
910 if (frame_debug)
911 fprintf_unfiltered (gdb_stdlog,
912 "{ frame_unwind_pc (this_frame=%d)"
913 " -> <unavailable> }\n",
914 this_frame->level);
e3eebbd7 915 }
8bcb5208 916 else if (ex.error == OPTIMIZED_OUT_ERROR)
e3eebbd7 917 {
8bcb5208 918 this_frame->prev_pc.status = CC_NOT_SAVED;
492d29ea 919
e3eebbd7
PA
920 if (frame_debug)
921 fprintf_unfiltered (gdb_stdlog,
8bcb5208
AB
922 "{ frame_unwind_pc (this_frame=%d)"
923 " -> <not saved> }\n",
924 this_frame->level);
e3eebbd7 925 }
8bcb5208
AB
926 else
927 throw_exception (ex);
928 }
929 END_CATCH
930
931 if (pc_p)
932 {
933 this_frame->prev_pc.value = pc;
934 this_frame->prev_pc.status = CC_VALUE;
935 if (frame_debug)
936 fprintf_unfiltered (gdb_stdlog,
937 "{ frame_unwind_pc (this_frame=%d) "
938 "-> %s }\n",
939 this_frame->level,
940 hex_string (this_frame->prev_pc.value));
12cc2063 941 }
f18c5a73 942 }
e3eebbd7 943
782d47df
PA
944 if (this_frame->prev_pc.status == CC_VALUE)
945 return this_frame->prev_pc.value;
946 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
e3eebbd7 947 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
782d47df
PA
948 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
949 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
e3eebbd7 950 else
782d47df
PA
951 internal_error (__FILE__, __LINE__,
952 "unexpected prev_pc status: %d",
953 (int) this_frame->prev_pc.status);
f18c5a73
AC
954}
955
edb3359d
DJ
956CORE_ADDR
957frame_unwind_caller_pc (struct frame_info *this_frame)
958{
33b4777c
MM
959 this_frame = skip_artificial_frames (this_frame);
960
961 /* We must have a non-artificial frame. The caller is supposed to check
962 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
963 in this case. */
964 gdb_assert (this_frame != NULL);
965
966 return frame_unwind_pc (this_frame);
edb3359d
DJ
967}
968
e3eebbd7
PA
969int
970get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
be41e9f4 971{
ef02daa9
DJ
972 struct frame_info *next_frame = this_frame->next;
973
974 if (!next_frame->prev_func.p)
be41e9f4 975 {
e3eebbd7
PA
976 CORE_ADDR addr_in_block;
977
57bfe177
AC
978 /* Make certain that this, and not the adjacent, function is
979 found. */
e3eebbd7
PA
980 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
981 {
982 next_frame->prev_func.p = -1;
983 if (frame_debug)
984 fprintf_unfiltered (gdb_stdlog,
985 "{ get_frame_func (this_frame=%d)"
986 " -> unavailable }\n",
987 this_frame->level);
988 }
989 else
990 {
991 next_frame->prev_func.p = 1;
992 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
993 if (frame_debug)
994 fprintf_unfiltered (gdb_stdlog,
995 "{ get_frame_func (this_frame=%d) -> %s }\n",
996 this_frame->level,
997 hex_string (next_frame->prev_func.addr));
998 }
be41e9f4 999 }
e3eebbd7
PA
1000
1001 if (next_frame->prev_func.p < 0)
1002 {
1003 *pc = -1;
1004 return 0;
1005 }
1006 else
1007 {
1008 *pc = next_frame->prev_func.addr;
1009 return 1;
1010 }
1011}
1012
1013CORE_ADDR
1014get_frame_func (struct frame_info *this_frame)
1015{
1016 CORE_ADDR pc;
1017
1018 if (!get_frame_func_if_available (this_frame, &pc))
1019 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1020
1021 return pc;
be41e9f4
AC
1022}
1023
daf6667d 1024std::unique_ptr<readonly_detached_regcache>
a81dcb05
AC
1025frame_save_as_regcache (struct frame_info *this_frame)
1026{
302abd6e
SM
1027 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1028 {
1029 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1030 return REG_UNAVAILABLE;
1031 else
1032 return REG_VALID;
1033 };
1034
daf6667d 1035 std::unique_ptr<readonly_detached_regcache> regcache
302abd6e 1036 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1c4d3f96 1037
a81dcb05
AC
1038 return regcache;
1039}
1040
dbe9fe58 1041void
7a25a7c1
AC
1042frame_pop (struct frame_info *this_frame)
1043{
348473d5 1044 struct frame_info *prev_frame;
348473d5 1045
b89667eb
DE
1046 if (get_frame_type (this_frame) == DUMMY_FRAME)
1047 {
1048 /* Popping a dummy frame involves restoring more than just registers.
1049 dummy_frame_pop does all the work. */
00431a78 1050 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
b89667eb
DE
1051 return;
1052 }
1053
348473d5 1054 /* Ensure that we have a frame to pop to. */
51d48146 1055 prev_frame = get_prev_frame_always (this_frame);
348473d5
NF
1056
1057 if (!prev_frame)
1058 error (_("Cannot pop the initial frame."));
1059
1ab3b62c
JK
1060 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1061 entering THISFRAME. */
2f3ef606 1062 prev_frame = skip_tailcall_frames (prev_frame);
1ab3b62c 1063
33b4777c
MM
1064 if (prev_frame == NULL)
1065 error (_("Cannot find the caller frame."));
1066
c1bf6f65
AC
1067 /* Make a copy of all the register values unwound from this frame.
1068 Save them in a scratch buffer so that there isn't a race between
594f7785 1069 trying to extract the old values from the current regcache while
c1bf6f65 1070 at the same time writing new values into that same cache. */
daf6667d 1071 std::unique_ptr<readonly_detached_regcache> scratch
9ac86b52 1072 = frame_save_as_regcache (prev_frame);
c1bf6f65
AC
1073
1074 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1075 target's register cache that it is about to be hit with a burst
1076 register transfer and that the sequence of register writes should
1077 be batched. The pair target_prepare_to_store() and
1078 target_store_registers() kind of suggest this functionality.
1079 Unfortunately, they don't implement it. Their lack of a formal
1080 definition can lead to targets writing back bogus values
1081 (arguably a bug in the target code mind). */
fc5b8736
YQ
1082 /* Now copy those saved registers into the current regcache. */
1083 get_current_regcache ()->restore (scratch.get ());
7a25a7c1 1084
7a25a7c1
AC
1085 /* We've made right mess of GDB's local state, just discard
1086 everything. */
35f196d9 1087 reinit_frame_cache ();
dbe9fe58 1088}
c689142b 1089
4f460812 1090void
0ee6c332 1091frame_register_unwind (frame_info *next_frame, int regnum,
0fdb4f18
PA
1092 int *optimizedp, int *unavailablep,
1093 enum lval_type *lvalp, CORE_ADDR *addrp,
1094 int *realnump, gdb_byte *bufferp)
4f460812 1095{
669fac23 1096 struct value *value;
7f78e237 1097
4f460812
AC
1098 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1099 that the value proper does not need to be fetched. */
1100 gdb_assert (optimizedp != NULL);
1101 gdb_assert (lvalp != NULL);
1102 gdb_assert (addrp != NULL);
1103 gdb_assert (realnump != NULL);
1104 /* gdb_assert (bufferp != NULL); */
1105
0ee6c332 1106 value = frame_unwind_register_value (next_frame, regnum);
4f460812 1107
669fac23 1108 gdb_assert (value != NULL);
c50901fd 1109
669fac23 1110 *optimizedp = value_optimized_out (value);
0fdb4f18 1111 *unavailablep = !value_entirely_available (value);
669fac23 1112 *lvalp = VALUE_LVAL (value);
42ae5230 1113 *addrp = value_address (value);
7c2ba67e
YQ
1114 if (*lvalp == lval_register)
1115 *realnump = VALUE_REGNUM (value);
1116 else
1117 *realnump = -1;
6dc42492 1118
0fdb4f18
PA
1119 if (bufferp)
1120 {
1121 if (!*optimizedp && !*unavailablep)
1122 memcpy (bufferp, value_contents_all (value),
1123 TYPE_LENGTH (value_type (value)));
1124 else
1125 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1126 }
669fac23
DJ
1127
1128 /* Dispose of the new value. This prevents watchpoints from
1129 trying to watch the saved frame pointer. */
1130 release_value (value);
4f460812
AC
1131}
1132
a216a322
AC
1133void
1134frame_register (struct frame_info *frame, int regnum,
0fdb4f18 1135 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
10c42a71 1136 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
a216a322
AC
1137{
1138 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1139 that the value proper does not need to be fetched. */
1140 gdb_assert (optimizedp != NULL);
1141 gdb_assert (lvalp != NULL);
1142 gdb_assert (addrp != NULL);
1143 gdb_assert (realnump != NULL);
1144 /* gdb_assert (bufferp != NULL); */
1145
a94dd1fd
AC
1146 /* Obtain the register value by unwinding the register from the next
1147 (more inner frame). */
1148 gdb_assert (frame != NULL && frame->next != NULL);
0fdb4f18
PA
1149 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1150 lvalp, addrp, realnump, bufferp);
a216a322
AC
1151}
1152
135c175f 1153void
0ee6c332 1154frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
135c175f
AC
1155{
1156 int optimized;
0fdb4f18 1157 int unavailable;
135c175f
AC
1158 CORE_ADDR addr;
1159 int realnum;
1160 enum lval_type lval;
1c4d3f96 1161
0ee6c332 1162 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
0fdb4f18 1163 &lval, &addr, &realnum, buf);
8fbca658
PA
1164
1165 if (optimized)
710409a2
PA
1166 throw_error (OPTIMIZED_OUT_ERROR,
1167 _("Register %d was not saved"), regnum);
8fbca658
PA
1168 if (unavailable)
1169 throw_error (NOT_AVAILABLE_ERROR,
1170 _("Register %d is not available"), regnum);
5b181d62
AC
1171}
1172
f0e7d0e8
AC
1173void
1174get_frame_register (struct frame_info *frame,
10c42a71 1175 int regnum, gdb_byte *buf)
f0e7d0e8
AC
1176{
1177 frame_unwind_register (frame->next, regnum, buf);
1178}
1179
669fac23 1180struct value *
0ee6c332 1181frame_unwind_register_value (frame_info *next_frame, int regnum)
669fac23 1182{
36f15f55 1183 struct gdbarch *gdbarch;
669fac23
DJ
1184 struct value *value;
1185
0ee6c332
SM
1186 gdb_assert (next_frame != NULL);
1187 gdbarch = frame_unwind_arch (next_frame);
669fac23
DJ
1188
1189 if (frame_debug)
1190 {
3e43a32a
MS
1191 fprintf_unfiltered (gdb_stdlog,
1192 "{ frame_unwind_register_value "
1193 "(frame=%d,regnum=%d(%s),...) ",
0ee6c332 1194 next_frame->level, regnum,
36f15f55 1195 user_reg_map_regnum_to_name (gdbarch, regnum));
669fac23
DJ
1196 }
1197
1198 /* Find the unwinder. */
0ee6c332
SM
1199 if (next_frame->unwind == NULL)
1200 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
669fac23
DJ
1201
1202 /* Ask this frame to unwind its register. */
0ee6c332
SM
1203 value = next_frame->unwind->prev_register (next_frame,
1204 &next_frame->prologue_cache,
1205 regnum);
669fac23
DJ
1206
1207 if (frame_debug)
1208 {
1209 fprintf_unfiltered (gdb_stdlog, "->");
1210 if (value_optimized_out (value))
f6c01fc5
AB
1211 {
1212 fprintf_unfiltered (gdb_stdlog, " ");
1213 val_print_optimized_out (value, gdb_stdlog);
1214 }
669fac23
DJ
1215 else
1216 {
1217 if (VALUE_LVAL (value) == lval_register)
1218 fprintf_unfiltered (gdb_stdlog, " register=%d",
1219 VALUE_REGNUM (value));
1220 else if (VALUE_LVAL (value) == lval_memory)
5af949e3
UW
1221 fprintf_unfiltered (gdb_stdlog, " address=%s",
1222 paddress (gdbarch,
1223 value_address (value)));
669fac23
DJ
1224 else
1225 fprintf_unfiltered (gdb_stdlog, " computed");
1226
1227 if (value_lazy (value))
1228 fprintf_unfiltered (gdb_stdlog, " lazy");
1229 else
1230 {
1231 int i;
1232 const gdb_byte *buf = value_contents (value);
1233
1234 fprintf_unfiltered (gdb_stdlog, " bytes=");
1235 fprintf_unfiltered (gdb_stdlog, "[");
36f15f55 1236 for (i = 0; i < register_size (gdbarch, regnum); i++)
669fac23
DJ
1237 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1238 fprintf_unfiltered (gdb_stdlog, "]");
1239 }
1240 }
1241
1242 fprintf_unfiltered (gdb_stdlog, " }\n");
1243 }
1244
1245 return value;
1246}
1247
1248struct value *
1249get_frame_register_value (struct frame_info *frame, int regnum)
1250{
1251 return frame_unwind_register_value (frame->next, regnum);
1252}
1253
f0e7d0e8 1254LONGEST
0ee6c332 1255frame_unwind_register_signed (frame_info *next_frame, int regnum)
f0e7d0e8 1256{
0ee6c332 1257 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
e17a4113
UW
1258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1259 int size = register_size (gdbarch, regnum);
0ee6c332 1260 struct value *value = frame_unwind_register_value (next_frame, regnum);
1c4d3f96 1261
9f7fb0aa
AH
1262 gdb_assert (value != NULL);
1263
1264 if (value_optimized_out (value))
1265 {
1266 throw_error (OPTIMIZED_OUT_ERROR,
1267 _("Register %d was not saved"), regnum);
1268 }
1269 if (!value_entirely_available (value))
1270 {
1271 throw_error (NOT_AVAILABLE_ERROR,
1272 _("Register %d is not available"), regnum);
1273 }
1274
1275 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1276 byte_order);
1277
1278 release_value (value);
9f7fb0aa 1279 return r;
f0e7d0e8
AC
1280}
1281
1282LONGEST
1283get_frame_register_signed (struct frame_info *frame, int regnum)
1284{
1285 return frame_unwind_register_signed (frame->next, regnum);
1286}
1287
1288ULONGEST
0ee6c332 1289frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
f0e7d0e8 1290{
0ee6c332 1291 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
e17a4113
UW
1292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1293 int size = register_size (gdbarch, regnum);
0ee6c332 1294 struct value *value = frame_unwind_register_value (next_frame, regnum);
1c4d3f96 1295
2cad08ea
YQ
1296 gdb_assert (value != NULL);
1297
1298 if (value_optimized_out (value))
1299 {
1300 throw_error (OPTIMIZED_OUT_ERROR,
1301 _("Register %d was not saved"), regnum);
1302 }
1303 if (!value_entirely_available (value))
1304 {
1305 throw_error (NOT_AVAILABLE_ERROR,
1306 _("Register %d is not available"), regnum);
1307 }
1308
1309 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1310 byte_order);
1311
1312 release_value (value);
2cad08ea 1313 return r;
f0e7d0e8
AC
1314}
1315
1316ULONGEST
1317get_frame_register_unsigned (struct frame_info *frame, int regnum)
1318{
1319 return frame_unwind_register_unsigned (frame->next, regnum);
1320}
1321
ad5f7d6e
PA
1322int
1323read_frame_register_unsigned (struct frame_info *frame, int regnum,
1324 ULONGEST *val)
1325{
1326 struct value *regval = get_frame_register_value (frame, regnum);
1327
1328 if (!value_optimized_out (regval)
1329 && value_entirely_available (regval))
1330 {
1331 struct gdbarch *gdbarch = get_frame_arch (frame);
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1334
1335 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1336 return 1;
1337 }
1338
1339 return 0;
1340}
1341
ff2e87ac 1342void
10c42a71
AC
1343put_frame_register (struct frame_info *frame, int regnum,
1344 const gdb_byte *buf)
ff2e87ac
AC
1345{
1346 struct gdbarch *gdbarch = get_frame_arch (frame);
1347 int realnum;
1348 int optim;
0fdb4f18 1349 int unavail;
ff2e87ac
AC
1350 enum lval_type lval;
1351 CORE_ADDR addr;
1c4d3f96 1352
0fdb4f18
PA
1353 frame_register (frame, regnum, &optim, &unavail,
1354 &lval, &addr, &realnum, NULL);
ff2e87ac 1355 if (optim)
901461f8 1356 error (_("Attempt to assign to a register that was not saved."));
ff2e87ac
AC
1357 switch (lval)
1358 {
1359 case lval_memory:
1360 {
954b50b3 1361 write_memory (addr, buf, register_size (gdbarch, regnum));
ff2e87ac
AC
1362 break;
1363 }
1364 case lval_register:
b66f5587 1365 get_current_regcache ()->cooked_write (realnum, buf);
ff2e87ac
AC
1366 break;
1367 default:
8a3fe4f8 1368 error (_("Attempt to assign to an unmodifiable value."));
ff2e87ac
AC
1369 }
1370}
1371
b2c7d45a
JB
1372/* This function is deprecated. Use get_frame_register_value instead,
1373 which provides more accurate information.
d65fe839 1374
cda5a58a 1375 Find and return the value of REGNUM for the specified stack frame.
5bc602c7 1376 The number of bytes copied is REGISTER_SIZE (REGNUM).
d65fe839 1377
cda5a58a 1378 Returns 0 if the register value could not be found. */
d65fe839 1379
cda5a58a 1380int
ca9d61b9 1381deprecated_frame_register_read (struct frame_info *frame, int regnum,
10c42a71 1382 gdb_byte *myaddr)
d65fe839 1383{
a216a322 1384 int optimized;
0fdb4f18 1385 int unavailable;
a216a322
AC
1386 enum lval_type lval;
1387 CORE_ADDR addr;
1388 int realnum;
1c4d3f96 1389
0fdb4f18
PA
1390 frame_register (frame, regnum, &optimized, &unavailable,
1391 &lval, &addr, &realnum, myaddr);
d65fe839 1392
0fdb4f18 1393 return !optimized && !unavailable;
d65fe839 1394}
e36180d7 1395
00fa51f6
UW
1396int
1397get_frame_register_bytes (struct frame_info *frame, int regnum,
8dccd430
PA
1398 CORE_ADDR offset, int len, gdb_byte *myaddr,
1399 int *optimizedp, int *unavailablep)
00fa51f6
UW
1400{
1401 struct gdbarch *gdbarch = get_frame_arch (frame);
3f27f2a4
AS
1402 int i;
1403 int maxsize;
68e007ca 1404 int numregs;
00fa51f6
UW
1405
1406 /* Skip registers wholly inside of OFFSET. */
1407 while (offset >= register_size (gdbarch, regnum))
1408 {
1409 offset -= register_size (gdbarch, regnum);
1410 regnum++;
1411 }
1412
26fae1d6
AS
1413 /* Ensure that we will not read beyond the end of the register file.
1414 This can only ever happen if the debug information is bad. */
3f27f2a4 1415 maxsize = -offset;
f6efe3f8 1416 numregs = gdbarch_num_cooked_regs (gdbarch);
68e007ca 1417 for (i = regnum; i < numregs; i++)
3f27f2a4
AS
1418 {
1419 int thissize = register_size (gdbarch, i);
bb9bcb69 1420
3f27f2a4 1421 if (thissize == 0)
26fae1d6 1422 break; /* This register is not available on this architecture. */
3f27f2a4
AS
1423 maxsize += thissize;
1424 }
1425 if (len > maxsize)
8dccd430
PA
1426 error (_("Bad debug information detected: "
1427 "Attempt to read %d bytes from registers."), len);
3f27f2a4 1428
00fa51f6
UW
1429 /* Copy the data. */
1430 while (len > 0)
1431 {
1432 int curr_len = register_size (gdbarch, regnum) - offset;
bb9bcb69 1433
00fa51f6
UW
1434 if (curr_len > len)
1435 curr_len = len;
1436
1437 if (curr_len == register_size (gdbarch, regnum))
1438 {
8dccd430
PA
1439 enum lval_type lval;
1440 CORE_ADDR addr;
1441 int realnum;
1442
1443 frame_register (frame, regnum, optimizedp, unavailablep,
1444 &lval, &addr, &realnum, myaddr);
1445 if (*optimizedp || *unavailablep)
00fa51f6
UW
1446 return 0;
1447 }
1448 else
1449 {
db3a1dc7
AH
1450 struct value *value = frame_unwind_register_value (frame->next,
1451 regnum);
1452 gdb_assert (value != NULL);
1453 *optimizedp = value_optimized_out (value);
1454 *unavailablep = !value_entirely_available (value);
bb9bcb69 1455
8dccd430 1456 if (*optimizedp || *unavailablep)
db3a1dc7
AH
1457 {
1458 release_value (value);
db3a1dc7
AH
1459 return 0;
1460 }
1461 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1462 release_value (value);
00fa51f6
UW
1463 }
1464
765f065a 1465 myaddr += curr_len;
00fa51f6
UW
1466 len -= curr_len;
1467 offset = 0;
1468 regnum++;
1469 }
1470
8dccd430
PA
1471 *optimizedp = 0;
1472 *unavailablep = 0;
00fa51f6
UW
1473 return 1;
1474}
1475
1476void
1477put_frame_register_bytes (struct frame_info *frame, int regnum,
1478 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1479{
1480 struct gdbarch *gdbarch = get_frame_arch (frame);
1481
1482 /* Skip registers wholly inside of OFFSET. */
1483 while (offset >= register_size (gdbarch, regnum))
1484 {
1485 offset -= register_size (gdbarch, regnum);
1486 regnum++;
1487 }
1488
1489 /* Copy the data. */
1490 while (len > 0)
1491 {
1492 int curr_len = register_size (gdbarch, regnum) - offset;
bb9bcb69 1493
00fa51f6
UW
1494 if (curr_len > len)
1495 curr_len = len;
1496
1497 if (curr_len == register_size (gdbarch, regnum))
1498 {
1499 put_frame_register (frame, regnum, myaddr);
1500 }
1501 else
1502 {
db3a1dc7
AH
1503 struct value *value = frame_unwind_register_value (frame->next,
1504 regnum);
1505 gdb_assert (value != NULL);
1506
1507 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1508 curr_len);
1509 put_frame_register (frame, regnum, value_contents_raw (value));
1510 release_value (value);
00fa51f6
UW
1511 }
1512
765f065a 1513 myaddr += curr_len;
00fa51f6
UW
1514 len -= curr_len;
1515 offset = 0;
1516 regnum++;
1517 }
1518}
e36180d7 1519
a94dd1fd
AC
1520/* Create a sentinel frame. */
1521
b9362cc7 1522static struct frame_info *
6c95b8df 1523create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
a94dd1fd
AC
1524{
1525 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1c4d3f96 1526
a94dd1fd 1527 frame->level = -1;
6c95b8df 1528 frame->pspace = pspace;
a01bda52 1529 frame->aspace = regcache->aspace ();
a94dd1fd
AC
1530 /* Explicitly initialize the sentinel frame's cache. Provide it
1531 with the underlying regcache. In the future additional
1532 information, such as the frame's thread will be added. */
6dc42492 1533 frame->prologue_cache = sentinel_frame_cache (regcache);
a94dd1fd 1534 /* For the moment there is only one sentinel frame implementation. */
39d7b0e2 1535 frame->unwind = &sentinel_frame_unwind;
a94dd1fd
AC
1536 /* Link this frame back to itself. The frame is self referential
1537 (the unwound PC is the same as the pc), so make it so. */
1538 frame->next = frame;
df433d31 1539 /* The sentinel frame has a special ID. */
d0a55772 1540 frame->this_id.p = 1;
df433d31 1541 frame->this_id.value = sentinel_frame_id;
7f78e237
AC
1542 if (frame_debug)
1543 {
1544 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1545 fprint_frame (gdb_stdlog, frame);
1546 fprintf_unfiltered (gdb_stdlog, " }\n");
1547 }
a94dd1fd
AC
1548 return frame;
1549}
1550
4c1e7e9d
AC
1551/* Cache for frame addresses already read by gdb. Valid only while
1552 inferior is stopped. Control variables for the frame cache should
1553 be local to this module. */
1554
1555static struct obstack frame_cache_obstack;
1556
1557void *
479ab5a0 1558frame_obstack_zalloc (unsigned long size)
4c1e7e9d 1559{
479ab5a0 1560 void *data = obstack_alloc (&frame_cache_obstack, size);
1c4d3f96 1561
479ab5a0
AC
1562 memset (data, 0, size);
1563 return data;
4c1e7e9d
AC
1564}
1565
f245535c 1566static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
4c1e7e9d
AC
1567
1568struct frame_info *
1569get_current_frame (void)
1570{
df433d31
KB
1571 struct frame_info *current_frame;
1572
0a1e1ca1
AC
1573 /* First check, and report, the lack of registers. Having GDB
1574 report "No stack!" or "No memory" when the target doesn't even
1575 have registers is very confusing. Besides, "printcmd.exp"
1576 explicitly checks that ``print $pc'' with no registers prints "No
1577 registers". */
a94dd1fd 1578 if (!target_has_registers)
8a3fe4f8 1579 error (_("No registers."));
0a1e1ca1 1580 if (!target_has_stack)
8a3fe4f8 1581 error (_("No stack."));
a94dd1fd 1582 if (!target_has_memory)
8a3fe4f8 1583 error (_("No memory."));
2ce6d6bf
SS
1584 /* Traceframes are effectively a substitute for the live inferior. */
1585 if (get_traceframe_number () < 0)
a911d87a 1586 validate_registers_access ();
8ea051c5 1587
df433d31
KB
1588 if (sentinel_frame == NULL)
1589 sentinel_frame =
1590 create_sentinel_frame (current_program_space, get_current_regcache ());
1591
1592 /* Set the current frame before computing the frame id, to avoid
1593 recursion inside compute_frame_id, in case the frame's
1594 unwinder decides to do a symbol lookup (which depends on the
1595 selected frame's block).
1596
1597 This call must always succeed. In particular, nothing inside
1598 get_prev_frame_always_1 should try to unwind from the
1599 sentinel frame, because that could fail/throw, and we always
1600 want to leave with the current frame created and linked in --
1601 we should never end up with the sentinel frame as outermost
1602 frame. */
1603 current_frame = get_prev_frame_always_1 (sentinel_frame);
1604 gdb_assert (current_frame != NULL);
f245535c 1605
4c1e7e9d
AC
1606 return current_frame;
1607}
1608
6e7f8b9c
AC
1609/* The "selected" stack frame is used by default for local and arg
1610 access. May be zero, for no selected frame. */
1611
206415a3 1612static struct frame_info *selected_frame;
6e7f8b9c 1613
9d49bdc2 1614int
8ea051c5
PA
1615has_stack_frames (void)
1616{
1617 if (!target_has_registers || !target_has_stack || !target_has_memory)
1618 return 0;
1619
861152be
LM
1620 /* Traceframes are effectively a substitute for the live inferior. */
1621 if (get_traceframe_number () < 0)
1622 {
1623 /* No current inferior, no frame. */
00431a78 1624 if (inferior_ptid == null_ptid)
861152be 1625 return 0;
d729566a 1626
00431a78 1627 thread_info *tp = inferior_thread ();
861152be 1628 /* Don't try to read from a dead thread. */
00431a78 1629 if (tp->state == THREAD_EXITED)
861152be 1630 return 0;
d729566a 1631
861152be 1632 /* ... or from a spinning thread. */
00431a78 1633 if (tp->executing)
861152be
LM
1634 return 0;
1635 }
8ea051c5
PA
1636
1637 return 1;
1638}
1639
bbde78fa 1640/* Return the selected frame. Always non-NULL (unless there isn't an
6e7f8b9c
AC
1641 inferior sufficient for creating a frame) in which case an error is
1642 thrown. */
1643
1644struct frame_info *
b04f3ab4 1645get_selected_frame (const char *message)
6e7f8b9c 1646{
206415a3 1647 if (selected_frame == NULL)
b04f3ab4 1648 {
8ea051c5 1649 if (message != NULL && !has_stack_frames ())
8a3fe4f8 1650 error (("%s"), message);
b04f3ab4
AC
1651 /* Hey! Don't trust this. It should really be re-finding the
1652 last selected frame of the currently selected thread. This,
1653 though, is better than nothing. */
1654 select_frame (get_current_frame ());
1655 }
6e7f8b9c 1656 /* There is always a frame. */
206415a3
DJ
1657 gdb_assert (selected_frame != NULL);
1658 return selected_frame;
6e7f8b9c
AC
1659}
1660
eb8c0621
TT
1661/* If there is a selected frame, return it. Otherwise, return NULL. */
1662
1663struct frame_info *
1664get_selected_frame_if_set (void)
1665{
1666 return selected_frame;
1667}
1668
bbde78fa 1669/* This is a variant of get_selected_frame() which can be called when
7dd88986 1670 the inferior does not have a frame; in that case it will return
bbde78fa 1671 NULL instead of calling error(). */
7dd88986
DJ
1672
1673struct frame_info *
1674deprecated_safe_get_selected_frame (void)
1675{
8ea051c5 1676 if (!has_stack_frames ())
7dd88986 1677 return NULL;
b04f3ab4 1678 return get_selected_frame (NULL);
7dd88986
DJ
1679}
1680
6e7f8b9c
AC
1681/* Select frame FI (or NULL - to invalidate the current frame). */
1682
1683void
1684select_frame (struct frame_info *fi)
1685{
206415a3 1686 selected_frame = fi;
bbde78fa 1687 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
6e7f8b9c 1688 frame is being invalidated. */
6e7f8b9c
AC
1689
1690 /* FIXME: kseitz/2002-08-28: It would be nice to call
bbde78fa 1691 selected_frame_level_changed_event() right here, but due to limitations
6e7f8b9c 1692 in the current interfaces, we would end up flooding UIs with events
bbde78fa 1693 because select_frame() is used extensively internally.
6e7f8b9c
AC
1694
1695 Once we have frame-parameterized frame (and frame-related) commands,
1696 the event notification can be moved here, since this function will only
0963b4bd 1697 be called when the user's selected frame is being changed. */
6e7f8b9c
AC
1698
1699 /* Ensure that symbols for this frame are read in. Also, determine the
1700 source language of this frame, and switch to it if desired. */
1701 if (fi)
1702 {
e3eebbd7
PA
1703 CORE_ADDR pc;
1704
1705 /* We retrieve the frame's symtab by using the frame PC.
1706 However we cannot use the frame PC as-is, because it usually
1707 points to the instruction following the "call", which is
1708 sometimes the first instruction of another function. So we
1709 rely on get_frame_address_in_block() which provides us with a
1710 PC which is guaranteed to be inside the frame's code
1711 block. */
1712 if (get_frame_address_in_block_if_available (fi, &pc))
6e7f8b9c 1713 {
43f3e411 1714 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
e3eebbd7 1715
43f3e411
DE
1716 if (cust != NULL
1717 && compunit_language (cust) != current_language->la_language
1718 && compunit_language (cust) != language_unknown
e3eebbd7 1719 && language_mode == language_mode_auto)
43f3e411 1720 set_language (compunit_language (cust));
6e7f8b9c
AC
1721 }
1722 }
1723}
e3eebbd7 1724
4c1e7e9d
AC
1725/* Create an arbitrary (i.e. address specified by user) or innermost frame.
1726 Always returns a non-NULL value. */
1727
1728struct frame_info *
1729create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1730{
1731 struct frame_info *fi;
4c1e7e9d 1732
7f78e237
AC
1733 if (frame_debug)
1734 {
1735 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1736 "{ create_new_frame (addr=%s, pc=%s) ",
1737 hex_string (addr), hex_string (pc));
7f78e237
AC
1738 }
1739
35d5d4ee 1740 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
4c1e7e9d 1741
3e43a32a
MS
1742 fi->next = create_sentinel_frame (current_program_space,
1743 get_current_regcache ());
7df05f2b 1744
1e275f79
PA
1745 /* Set/update this frame's cached PC value, found in the next frame.
1746 Do this before looking for this frame's unwinder. A sniffer is
1747 very likely to read this, and the corresponding unwinder is
1748 entitled to rely that the PC doesn't magically change. */
1749 fi->next->prev_pc.value = pc;
782d47df 1750 fi->next->prev_pc.status = CC_VALUE;
1e275f79 1751
6c95b8df
PA
1752 /* We currently assume that frame chain's can't cross spaces. */
1753 fi->pspace = fi->next->pspace;
1754 fi->aspace = fi->next->aspace;
1755
7df05f2b
AC
1756 /* Select/initialize both the unwind function and the frame's type
1757 based on the PC. */
9f9a8002 1758 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
7df05f2b 1759
18adea3f 1760 fi->this_id.p = 1;
1e275f79 1761 fi->this_id.value = frame_id_build (addr, pc);
4c1e7e9d 1762
7f78e237
AC
1763 if (frame_debug)
1764 {
1765 fprintf_unfiltered (gdb_stdlog, "-> ");
1766 fprint_frame (gdb_stdlog, fi);
1767 fprintf_unfiltered (gdb_stdlog, " }\n");
1768 }
1769
4c1e7e9d
AC
1770 return fi;
1771}
1772
03febf99
AC
1773/* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1774 innermost frame). Be careful to not fall off the bottom of the
1775 frame chain and onto the sentinel frame. */
4c1e7e9d
AC
1776
1777struct frame_info *
03febf99 1778get_next_frame (struct frame_info *this_frame)
4c1e7e9d 1779{
03febf99
AC
1780 if (this_frame->level > 0)
1781 return this_frame->next;
a94dd1fd
AC
1782 else
1783 return NULL;
4c1e7e9d
AC
1784}
1785
df433d31
KB
1786/* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1787 innermost (i.e. current) frame, return the sentinel frame. Thus,
1788 unlike get_next_frame(), NULL will never be returned. */
1789
1790struct frame_info *
1791get_next_frame_sentinel_okay (struct frame_info *this_frame)
1792{
1793 gdb_assert (this_frame != NULL);
1794
1795 /* Note that, due to the manner in which the sentinel frame is
1796 constructed, this_frame->next still works even when this_frame
1797 is the sentinel frame. But we disallow it here anyway because
1798 calling get_next_frame_sentinel_okay() on the sentinel frame
1799 is likely a coding error. */
1800 gdb_assert (this_frame != sentinel_frame);
1801
1802 return this_frame->next;
1803}
1804
f4c5303c
OF
1805/* Observer for the target_changed event. */
1806
2c0b251b 1807static void
f4c5303c
OF
1808frame_observer_target_changed (struct target_ops *target)
1809{
35f196d9 1810 reinit_frame_cache ();
f4c5303c
OF
1811}
1812
4c1e7e9d
AC
1813/* Flush the entire frame cache. */
1814
1815void
35f196d9 1816reinit_frame_cache (void)
4c1e7e9d 1817{
272dfcfd
AS
1818 struct frame_info *fi;
1819
1820 /* Tear down all frame caches. */
df433d31 1821 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
272dfcfd
AS
1822 {
1823 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1824 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1825 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1826 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1827 }
1828
0963b4bd 1829 /* Since we can't really be sure what the first object allocated was. */
4c1e7e9d
AC
1830 obstack_free (&frame_cache_obstack, 0);
1831 obstack_init (&frame_cache_obstack);
1832
df433d31 1833 if (sentinel_frame != NULL)
0d6ba1b1
DJ
1834 annotate_frames_invalid ();
1835
df433d31 1836 sentinel_frame = NULL; /* Invalidate cache */
4c1e7e9d 1837 select_frame (NULL);
b83e9eb7 1838 frame_stash_invalidate ();
7f78e237 1839 if (frame_debug)
35f196d9 1840 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
4c1e7e9d
AC
1841}
1842
e48af409
DJ
1843/* Find where a register is saved (in memory or another register).
1844 The result of frame_register_unwind is just where it is saved
5efde112 1845 relative to this particular frame. */
e48af409
DJ
1846
1847static void
1848frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1849 int *optimizedp, enum lval_type *lvalp,
1850 CORE_ADDR *addrp, int *realnump)
1851{
1852 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1853
1854 while (this_frame != NULL)
1855 {
0fdb4f18
PA
1856 int unavailable;
1857
1858 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1859 lvalp, addrp, realnump, NULL);
e48af409
DJ
1860
1861 if (*optimizedp)
1862 break;
1863
1864 if (*lvalp != lval_register)
1865 break;
1866
1867 regnum = *realnump;
1868 this_frame = get_next_frame (this_frame);
1869 }
1870}
1871
194cca41
PA
1872/* Get the previous raw frame, and check that it is not identical to
1873 same other frame frame already in the chain. If it is, there is
1874 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1875 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1876 validity tests, that compare THIS_FRAME and the next frame, we do
1877 this right after creating the previous frame, to avoid ever ending
1878 up with two frames with the same id in the frame chain. */
1879
1880static struct frame_info *
1881get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1882{
1883 struct frame_info *prev_frame;
1884
1885 prev_frame = get_prev_frame_raw (this_frame);
f245535c
PA
1886
1887 /* Don't compute the frame id of the current frame yet. Unwinding
1888 the sentinel frame can fail (e.g., if the thread is gone and we
1889 can't thus read its registers). If we let the cycle detection
1890 code below try to compute a frame ID, then an error thrown from
1891 within the frame ID computation would result in the sentinel
1892 frame as outermost frame, which is bogus. Instead, we'll compute
1893 the current frame's ID lazily in get_frame_id. Note that there's
1894 no point in doing cycle detection when there's only one frame, so
1895 nothing is lost here. */
1896 if (prev_frame->level == 0)
1897 return prev_frame;
194cca41 1898
09a5e1b5 1899 TRY
194cca41 1900 {
09a5e1b5
TT
1901 compute_frame_id (prev_frame);
1902 if (!frame_stash_add (prev_frame))
938f0e2f 1903 {
09a5e1b5
TT
1904 /* Another frame with the same id was already in the stash. We just
1905 detected a cycle. */
1906 if (frame_debug)
1907 {
1908 fprintf_unfiltered (gdb_stdlog, "-> ");
1909 fprint_frame (gdb_stdlog, NULL);
1910 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1911 }
1912 this_frame->stop_reason = UNWIND_SAME_ID;
1913 /* Unlink. */
1914 prev_frame->next = NULL;
1915 this_frame->prev = NULL;
1916 prev_frame = NULL;
938f0e2f 1917 }
09a5e1b5
TT
1918 }
1919 CATCH (ex, RETURN_MASK_ALL)
1920 {
938f0e2f
AB
1921 prev_frame->next = NULL;
1922 this_frame->prev = NULL;
09a5e1b5
TT
1923
1924 throw_exception (ex);
194cca41 1925 }
09a5e1b5 1926 END_CATCH
938f0e2f 1927
938f0e2f 1928 return prev_frame;
194cca41
PA
1929}
1930
53e8a631
AB
1931/* Helper function for get_prev_frame_always, this is called inside a
1932 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1933 there is no such frame. This may throw an exception. */
eb4f72c5 1934
53e8a631
AB
1935static struct frame_info *
1936get_prev_frame_always_1 (struct frame_info *this_frame)
eb4f72c5 1937{
b1bd0044 1938 struct gdbarch *gdbarch;
eb4f72c5 1939
5613d8d3 1940 gdb_assert (this_frame != NULL);
b1bd0044 1941 gdbarch = get_frame_arch (this_frame);
5613d8d3 1942
7f78e237
AC
1943 if (frame_debug)
1944 {
51d48146 1945 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
7f78e237
AC
1946 if (this_frame != NULL)
1947 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1948 else
1949 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1950 fprintf_unfiltered (gdb_stdlog, ") ");
1951 }
1952
5613d8d3
AC
1953 /* Only try to do the unwind once. */
1954 if (this_frame->prev_p)
1955 {
1956 if (frame_debug)
1957 {
1958 fprintf_unfiltered (gdb_stdlog, "-> ");
1959 fprint_frame (gdb_stdlog, this_frame->prev);
1960 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1961 }
1962 return this_frame->prev;
1963 }
8fa75a5d 1964
0d254d6f
DJ
1965 /* If the frame unwinder hasn't been selected yet, we must do so
1966 before setting prev_p; otherwise the check for misbehaved
1967 sniffers will think that this frame's sniffer tried to unwind
1968 further (see frame_cleanup_after_sniffer). */
1969 if (this_frame->unwind == NULL)
9f9a8002 1970 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
8fa75a5d 1971
5613d8d3 1972 this_frame->prev_p = 1;
55feb689 1973 this_frame->stop_reason = UNWIND_NO_REASON;
5613d8d3 1974
edb3359d
DJ
1975 /* If we are unwinding from an inline frame, all of the below tests
1976 were already performed when we unwound from the next non-inline
1977 frame. We must skip them, since we can not get THIS_FRAME's ID
1978 until we have unwound all the way down to the previous non-inline
1979 frame. */
1980 if (get_frame_type (this_frame) == INLINE_FRAME)
194cca41 1981 return get_prev_frame_if_no_cycle (this_frame);
edb3359d 1982
8fbca658
PA
1983 /* Check that this frame is unwindable. If it isn't, don't try to
1984 unwind to the prev frame. */
1985 this_frame->stop_reason
1986 = this_frame->unwind->stop_reason (this_frame,
1987 &this_frame->prologue_cache);
1988
1989 if (this_frame->stop_reason != UNWIND_NO_REASON)
a7300869
PA
1990 {
1991 if (frame_debug)
1992 {
1993 enum unwind_stop_reason reason = this_frame->stop_reason;
1994
1995 fprintf_unfiltered (gdb_stdlog, "-> ");
1996 fprint_frame (gdb_stdlog, NULL);
1997 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1998 frame_stop_reason_symbol_string (reason));
1999 }
2000 return NULL;
2001 }
8fbca658 2002
5613d8d3
AC
2003 /* Check that this frame's ID isn't inner to (younger, below, next)
2004 the next frame. This happens when a frame unwind goes backwards.
f06eadd9
JB
2005 This check is valid only if this frame and the next frame are NORMAL.
2006 See the comment at frame_id_inner for details. */
2007 if (get_frame_type (this_frame) == NORMAL_FRAME
2008 && this_frame->next->unwind->type == NORMAL_FRAME
da361ebd
JB
2009 && frame_id_inner (get_frame_arch (this_frame->next),
2010 get_frame_id (this_frame),
09a7aba8 2011 get_frame_id (this_frame->next)))
55feb689 2012 {
ebedcab5
JK
2013 CORE_ADDR this_pc_in_block;
2014 struct minimal_symbol *morestack_msym;
2015 const char *morestack_name = NULL;
2016
2017 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2018 this_pc_in_block = get_frame_address_in_block (this_frame);
7cbd4a93 2019 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
ebedcab5 2020 if (morestack_msym)
efd66ac6 2021 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
ebedcab5 2022 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
55feb689 2023 {
ebedcab5
JK
2024 if (frame_debug)
2025 {
2026 fprintf_unfiltered (gdb_stdlog, "-> ");
2027 fprint_frame (gdb_stdlog, NULL);
3e43a32a
MS
2028 fprintf_unfiltered (gdb_stdlog,
2029 " // this frame ID is inner }\n");
ebedcab5
JK
2030 }
2031 this_frame->stop_reason = UNWIND_INNER_ID;
2032 return NULL;
55feb689 2033 }
55feb689 2034 }
5613d8d3 2035
e48af409
DJ
2036 /* Check that this and the next frame do not unwind the PC register
2037 to the same memory location. If they do, then even though they
2038 have different frame IDs, the new frame will be bogus; two
2039 functions can't share a register save slot for the PC. This can
2040 happen when the prologue analyzer finds a stack adjustment, but
d57df5e4
DJ
2041 no PC save.
2042
2043 This check does assume that the "PC register" is roughly a
2044 traditional PC, even if the gdbarch_unwind_pc method adjusts
2045 it (we do not rely on the value, only on the unwound PC being
2046 dependent on this value). A potential improvement would be
2047 to have the frame prev_pc method and the gdbarch unwind_pc
2048 method set the same lval and location information as
2049 frame_register_unwind. */
e48af409 2050 if (this_frame->level > 0
b1bd0044 2051 && gdbarch_pc_regnum (gdbarch) >= 0
e48af409 2052 && get_frame_type (this_frame) == NORMAL_FRAME
edb3359d
DJ
2053 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2054 || get_frame_type (this_frame->next) == INLINE_FRAME))
e48af409 2055 {
32276632 2056 int optimized, realnum, nrealnum;
e48af409
DJ
2057 enum lval_type lval, nlval;
2058 CORE_ADDR addr, naddr;
2059
3e8c568d 2060 frame_register_unwind_location (this_frame,
b1bd0044 2061 gdbarch_pc_regnum (gdbarch),
3e8c568d
UW
2062 &optimized, &lval, &addr, &realnum);
2063 frame_register_unwind_location (get_next_frame (this_frame),
b1bd0044 2064 gdbarch_pc_regnum (gdbarch),
32276632 2065 &optimized, &nlval, &naddr, &nrealnum);
e48af409 2066
32276632
DJ
2067 if ((lval == lval_memory && lval == nlval && addr == naddr)
2068 || (lval == lval_register && lval == nlval && realnum == nrealnum))
e48af409
DJ
2069 {
2070 if (frame_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog, "-> ");
2073 fprint_frame (gdb_stdlog, NULL);
2074 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2075 }
2076
2077 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2078 this_frame->prev = NULL;
2079 return NULL;
2080 }
2081 }
2082
194cca41 2083 return get_prev_frame_if_no_cycle (this_frame);
edb3359d
DJ
2084}
2085
53e8a631
AB
2086/* Return a "struct frame_info" corresponding to the frame that called
2087 THIS_FRAME. Returns NULL if there is no such frame.
2088
2089 Unlike get_prev_frame, this function always tries to unwind the
2090 frame. */
2091
2092struct frame_info *
2093get_prev_frame_always (struct frame_info *this_frame)
2094{
53e8a631
AB
2095 struct frame_info *prev_frame = NULL;
2096
492d29ea 2097 TRY
53e8a631
AB
2098 {
2099 prev_frame = get_prev_frame_always_1 (this_frame);
2100 }
492d29ea 2101 CATCH (ex, RETURN_MASK_ERROR)
53e8a631
AB
2102 {
2103 if (ex.error == MEMORY_ERROR)
2104 {
2105 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2106 if (ex.message != NULL)
2107 {
2108 char *stop_string;
2109 size_t size;
2110
2111 /* The error needs to live as long as the frame does.
2112 Allocate using stack local STOP_STRING then assign the
2113 pointer to the frame, this allows the STOP_STRING on the
2114 frame to be of type 'const char *'. */
2115 size = strlen (ex.message) + 1;
224c3ddb 2116 stop_string = (char *) frame_obstack_zalloc (size);
53e8a631
AB
2117 memcpy (stop_string, ex.message, size);
2118 this_frame->stop_string = stop_string;
2119 }
2120 prev_frame = NULL;
2121 }
2122 else
2123 throw_exception (ex);
2124 }
492d29ea 2125 END_CATCH
53e8a631
AB
2126
2127 return prev_frame;
2128}
2129
edb3359d
DJ
2130/* Construct a new "struct frame_info" and link it previous to
2131 this_frame. */
2132
2133static struct frame_info *
2134get_prev_frame_raw (struct frame_info *this_frame)
2135{
2136 struct frame_info *prev_frame;
2137
5613d8d3
AC
2138 /* Allocate the new frame but do not wire it in to the frame chain.
2139 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2140 frame->next to pull some fancy tricks (of course such code is, by
2141 definition, recursive). Try to prevent it.
2142
2143 There is no reason to worry about memory leaks, should the
2144 remainder of the function fail. The allocated memory will be
2145 quickly reclaimed when the frame cache is flushed, and the `we've
2146 been here before' check above will stop repeated memory
2147 allocation calls. */
2148 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2149 prev_frame->level = this_frame->level + 1;
2150
6c95b8df
PA
2151 /* For now, assume we don't have frame chains crossing address
2152 spaces. */
2153 prev_frame->pspace = this_frame->pspace;
2154 prev_frame->aspace = this_frame->aspace;
2155
5613d8d3
AC
2156 /* Don't yet compute ->unwind (and hence ->type). It is computed
2157 on-demand in get_frame_type, frame_register_unwind, and
2158 get_frame_id. */
2159
2160 /* Don't yet compute the frame's ID. It is computed on-demand by
2161 get_frame_id(). */
2162
2163 /* The unwound frame ID is validate at the start of this function,
2164 as part of the logic to decide if that frame should be further
2165 unwound, and not here while the prev frame is being created.
2166 Doing this makes it possible for the user to examine a frame that
2167 has an invalid frame ID.
2168
2169 Some very old VAX code noted: [...] For the sake of argument,
2170 suppose that the stack is somewhat trashed (which is one reason
2171 that "info frame" exists). So, return 0 (indicating we don't
2172 know the address of the arglist) if we don't know what frame this
2173 frame calls. */
2174
2175 /* Link it in. */
2176 this_frame->prev = prev_frame;
2177 prev_frame->next = this_frame;
2178
2179 if (frame_debug)
2180 {
2181 fprintf_unfiltered (gdb_stdlog, "-> ");
2182 fprint_frame (gdb_stdlog, prev_frame);
2183 fprintf_unfiltered (gdb_stdlog, " }\n");
2184 }
2185
2186 return prev_frame;
2187}
2188
2189/* Debug routine to print a NULL frame being returned. */
2190
2191static void
d2bf72c0 2192frame_debug_got_null_frame (struct frame_info *this_frame,
5613d8d3
AC
2193 const char *reason)
2194{
2195 if (frame_debug)
2196 {
2197 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2198 if (this_frame != NULL)
2199 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2200 else
2201 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2202 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2203 }
2204}
2205
c8cd9f6c
AC
2206/* Is this (non-sentinel) frame in the "main"() function? */
2207
2208static int
2209inside_main_func (struct frame_info *this_frame)
2210{
3b7344d5 2211 struct bound_minimal_symbol msymbol;
c8cd9f6c
AC
2212 CORE_ADDR maddr;
2213
2214 if (symfile_objfile == 0)
2215 return 0;
2216 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
3b7344d5 2217 if (msymbol.minsym == NULL)
c8cd9f6c
AC
2218 return 0;
2219 /* Make certain that the code, and not descriptor, address is
2220 returned. */
b1bd0044 2221 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
77e371c0 2222 BMSYMBOL_VALUE_ADDRESS (msymbol),
8b88a78e 2223 current_top_target ());
c8cd9f6c
AC
2224 return maddr == get_frame_func (this_frame);
2225}
2226
2315ffec
RC
2227/* Test whether THIS_FRAME is inside the process entry point function. */
2228
2229static int
2230inside_entry_func (struct frame_info *this_frame)
2231{
abd0a5fa
JK
2232 CORE_ADDR entry_point;
2233
2234 if (!entry_point_address_query (&entry_point))
2235 return 0;
2236
2237 return get_frame_func (this_frame) == entry_point;
2315ffec
RC
2238}
2239
5613d8d3
AC
2240/* Return a structure containing various interesting information about
2241 the frame that called THIS_FRAME. Returns NULL if there is entier
2242 no such frame or the frame fails any of a set of target-independent
2243 condition that should terminate the frame chain (e.g., as unwinding
2244 past main()).
2245
2246 This function should not contain target-dependent tests, such as
2247 checking whether the program-counter is zero. */
2248
2249struct frame_info *
2250get_prev_frame (struct frame_info *this_frame)
2251{
e3eebbd7
PA
2252 CORE_ADDR frame_pc;
2253 int frame_pc_p;
2254
eb4f72c5
AC
2255 /* There is always a frame. If this assertion fails, suspect that
2256 something should be calling get_selected_frame() or
2257 get_current_frame(). */
03febf99 2258 gdb_assert (this_frame != NULL);
256ae5db
KB
2259
2260 /* If this_frame is the current frame, then compute and stash
2261 its frame id prior to fetching and computing the frame id of the
2262 previous frame. Otherwise, the cycle detection code in
2263 get_prev_frame_if_no_cycle() will not work correctly. When
2264 get_frame_id() is called later on, an assertion error will
2265 be triggered in the event of a cycle between the current
2266 frame and its previous frame. */
2267 if (this_frame->level == 0)
2268 get_frame_id (this_frame);
2269
e3eebbd7 2270 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
eb4f72c5 2271
cc9bed83
RC
2272 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2273 sense to stop unwinding at a dummy frame. One place where a dummy
2274 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2275 pcsqh register (space register for the instruction at the head of the
2276 instruction queue) cannot be written directly; the only way to set it
2277 is to branch to code that is in the target space. In order to implement
2278 frame dummies on HPUX, the called function is made to jump back to where
2279 the inferior was when the user function was called. If gdb was inside
2280 the main function when we created the dummy frame, the dummy frame will
2281 point inside the main function. */
03febf99 2282 if (this_frame->level >= 0
edb3359d 2283 && get_frame_type (this_frame) == NORMAL_FRAME
25d29d70 2284 && !backtrace_past_main
e3eebbd7 2285 && frame_pc_p
c8cd9f6c
AC
2286 && inside_main_func (this_frame))
2287 /* Don't unwind past main(). Note, this is done _before_ the
2288 frame has been marked as previously unwound. That way if the
2289 user later decides to enable unwinds past main(), that will
2290 automatically happen. */
ac2bd0a9 2291 {
d2bf72c0 2292 frame_debug_got_null_frame (this_frame, "inside main func");
ac2bd0a9
AC
2293 return NULL;
2294 }
eb4f72c5 2295
4a5e53e8
DJ
2296 /* If the user's backtrace limit has been exceeded, stop. We must
2297 add two to the current level; one of those accounts for backtrace_limit
2298 being 1-based and the level being 0-based, and the other accounts for
2299 the level of the new frame instead of the level of the current
2300 frame. */
2301 if (this_frame->level + 2 > backtrace_limit)
25d29d70 2302 {
d2bf72c0 2303 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
4a5e53e8 2304 return NULL;
25d29d70
AC
2305 }
2306
0714963c
AC
2307 /* If we're already inside the entry function for the main objfile,
2308 then it isn't valid. Don't apply this test to a dummy frame -
bbde78fa 2309 dummy frame PCs typically land in the entry func. Don't apply
0714963c
AC
2310 this test to the sentinel frame. Sentinel frames should always
2311 be allowed to unwind. */
2f72f850
AC
2312 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2313 wasn't checking for "main" in the minimal symbols. With that
2314 fixed asm-source tests now stop in "main" instead of halting the
bbde78fa 2315 backtrace in weird and wonderful ways somewhere inside the entry
2f72f850
AC
2316 file. Suspect that tests for inside the entry file/func were
2317 added to work around that (now fixed) case. */
0714963c
AC
2318 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2319 suggested having the inside_entry_func test use the
bbde78fa
JM
2320 inside_main_func() msymbol trick (along with entry_point_address()
2321 I guess) to determine the address range of the start function.
0714963c
AC
2322 That should provide a far better stopper than the current
2323 heuristics. */
2315ffec
RC
2324 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2325 applied tail-call optimizations to main so that a function called
2326 from main returns directly to the caller of main. Since we don't
2327 stop at main, we should at least stop at the entry point of the
2328 application. */
edb3359d
DJ
2329 if (this_frame->level >= 0
2330 && get_frame_type (this_frame) == NORMAL_FRAME
2331 && !backtrace_past_entry
e3eebbd7 2332 && frame_pc_p
6e4c6c91 2333 && inside_entry_func (this_frame))
0714963c 2334 {
d2bf72c0 2335 frame_debug_got_null_frame (this_frame, "inside entry func");
0714963c
AC
2336 return NULL;
2337 }
2338
39ee2ff0
AC
2339 /* Assume that the only way to get a zero PC is through something
2340 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2341 will never unwind a zero PC. */
2342 if (this_frame->level > 0
edb3359d
DJ
2343 && (get_frame_type (this_frame) == NORMAL_FRAME
2344 || get_frame_type (this_frame) == INLINE_FRAME)
39ee2ff0 2345 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
e3eebbd7 2346 && frame_pc_p && frame_pc == 0)
39ee2ff0 2347 {
d2bf72c0 2348 frame_debug_got_null_frame (this_frame, "zero PC");
39ee2ff0
AC
2349 return NULL;
2350 }
2351
51d48146 2352 return get_prev_frame_always (this_frame);
eb4f72c5
AC
2353}
2354
41b56feb
KB
2355struct frame_id
2356get_prev_frame_id_by_id (struct frame_id id)
2357{
2358 struct frame_id prev_id;
2359 struct frame_info *frame;
2360
2361 frame = frame_find_by_id (id);
2362
2363 if (frame != NULL)
2364 prev_id = get_frame_id (get_prev_frame (frame));
2365 else
2366 prev_id = null_frame_id;
2367
2368 return prev_id;
2369}
2370
4c1e7e9d
AC
2371CORE_ADDR
2372get_frame_pc (struct frame_info *frame)
2373{
d1340264 2374 gdb_assert (frame->next != NULL);
edb3359d 2375 return frame_unwind_pc (frame->next);
4c1e7e9d
AC
2376}
2377
e3eebbd7
PA
2378int
2379get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2380{
e3eebbd7
PA
2381
2382 gdb_assert (frame->next != NULL);
2383
492d29ea 2384 TRY
e3eebbd7
PA
2385 {
2386 *pc = frame_unwind_pc (frame->next);
2387 }
492d29ea 2388 CATCH (ex, RETURN_MASK_ERROR)
e3eebbd7
PA
2389 {
2390 if (ex.error == NOT_AVAILABLE_ERROR)
2391 return 0;
2392 else
2393 throw_exception (ex);
2394 }
492d29ea 2395 END_CATCH
e3eebbd7
PA
2396
2397 return 1;
2398}
2399
ad1193e7 2400/* Return an address that falls within THIS_FRAME's code block. */
8edd5d01
AC
2401
2402CORE_ADDR
ad1193e7 2403get_frame_address_in_block (struct frame_info *this_frame)
8edd5d01
AC
2404{
2405 /* A draft address. */
ad1193e7 2406 CORE_ADDR pc = get_frame_pc (this_frame);
8edd5d01 2407
ad1193e7
DJ
2408 struct frame_info *next_frame = this_frame->next;
2409
2410 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2411 Normally the resume address is inside the body of the function
2412 associated with THIS_FRAME, but there is a special case: when
2413 calling a function which the compiler knows will never return
2414 (for instance abort), the call may be the very last instruction
2415 in the calling function. The resume address will point after the
2416 call and may be at the beginning of a different function
2417 entirely.
2418
2419 If THIS_FRAME is a signal frame or dummy frame, then we should
2420 not adjust the unwound PC. For a dummy frame, GDB pushed the
2421 resume address manually onto the stack. For a signal frame, the
2422 OS may have pushed the resume address manually and invoked the
2423 handler (e.g. GNU/Linux), or invoked the trampoline which called
2424 the signal handler - but in either case the signal handler is
2425 expected to return to the trampoline. So in both of these
2426 cases we know that the resume address is executable and
2427 related. So we only need to adjust the PC if THIS_FRAME
2428 is a normal function.
2429
2430 If the program has been interrupted while THIS_FRAME is current,
2431 then clearly the resume address is inside the associated
2432 function. There are three kinds of interruption: debugger stop
2433 (next frame will be SENTINEL_FRAME), operating system
2434 signal or exception (next frame will be SIGTRAMP_FRAME),
2435 or debugger-induced function call (next frame will be
2436 DUMMY_FRAME). So we only need to adjust the PC if
2437 NEXT_FRAME is a normal function.
2438
2439 We check the type of NEXT_FRAME first, since it is already
2440 known; frame type is determined by the unwinder, and since
2441 we have THIS_FRAME we've already selected an unwinder for
edb3359d
DJ
2442 NEXT_FRAME.
2443
2444 If the next frame is inlined, we need to keep going until we find
2445 the real function - for instance, if a signal handler is invoked
2446 while in an inlined function, then the code address of the
2447 "calling" normal function should not be adjusted either. */
2448
2449 while (get_frame_type (next_frame) == INLINE_FRAME)
2450 next_frame = next_frame->next;
2451
111c6489
JK
2452 if ((get_frame_type (next_frame) == NORMAL_FRAME
2453 || get_frame_type (next_frame) == TAILCALL_FRAME)
edb3359d 2454 && (get_frame_type (this_frame) == NORMAL_FRAME
111c6489 2455 || get_frame_type (this_frame) == TAILCALL_FRAME
edb3359d 2456 || get_frame_type (this_frame) == INLINE_FRAME))
ad1193e7
DJ
2457 return pc - 1;
2458
2459 return pc;
8edd5d01
AC
2460}
2461
e3eebbd7
PA
2462int
2463get_frame_address_in_block_if_available (struct frame_info *this_frame,
2464 CORE_ADDR *pc)
2465{
e3eebbd7 2466
492d29ea 2467 TRY
e3eebbd7
PA
2468 {
2469 *pc = get_frame_address_in_block (this_frame);
2470 }
492d29ea 2471 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2472 {
2473 if (ex.error == NOT_AVAILABLE_ERROR)
2474 return 0;
2475 throw_exception (ex);
2476 }
492d29ea 2477 END_CATCH
7556d4a4
PA
2478
2479 return 1;
e3eebbd7
PA
2480}
2481
51abb421
PA
2482symtab_and_line
2483find_frame_sal (frame_info *frame)
1058bca7 2484{
edb3359d
DJ
2485 struct frame_info *next_frame;
2486 int notcurrent;
e3eebbd7 2487 CORE_ADDR pc;
edb3359d
DJ
2488
2489 /* If the next frame represents an inlined function call, this frame's
2490 sal is the "call site" of that inlined function, which can not
2491 be inferred from get_frame_pc. */
2492 next_frame = get_next_frame (frame);
2493 if (frame_inlined_callees (frame) > 0)
2494 {
2495 struct symbol *sym;
2496
2497 if (next_frame)
2498 sym = get_frame_function (next_frame);
2499 else
00431a78 2500 sym = inline_skipped_symbol (inferior_thread ());
edb3359d 2501
f3df5b08
MS
2502 /* If frame is inline, it certainly has symbols. */
2503 gdb_assert (sym);
51abb421
PA
2504
2505 symtab_and_line sal;
edb3359d
DJ
2506 if (SYMBOL_LINE (sym) != 0)
2507 {
51abb421
PA
2508 sal.symtab = symbol_symtab (sym);
2509 sal.line = SYMBOL_LINE (sym);
edb3359d
DJ
2510 }
2511 else
2512 /* If the symbol does not have a location, we don't know where
2513 the call site is. Do not pretend to. This is jarring, but
2514 we can't do much better. */
51abb421 2515 sal.pc = get_frame_pc (frame);
edb3359d 2516
51abb421
PA
2517 sal.pspace = get_frame_program_space (frame);
2518 return sal;
edb3359d
DJ
2519 }
2520
1058bca7
AC
2521 /* If FRAME is not the innermost frame, that normally means that
2522 FRAME->pc points at the return instruction (which is *after* the
2523 call instruction), and we want to get the line containing the
2524 call (because the call is where the user thinks the program is).
2525 However, if the next frame is either a SIGTRAMP_FRAME or a
2526 DUMMY_FRAME, then the next frame will contain a saved interrupt
2527 PC and such a PC indicates the current (rather than next)
2528 instruction/line, consequently, for such cases, want to get the
2529 line containing fi->pc. */
e3eebbd7 2530 if (!get_frame_pc_if_available (frame, &pc))
51abb421 2531 return {};
e3eebbd7
PA
2532
2533 notcurrent = (pc != get_frame_address_in_block (frame));
51abb421 2534 return find_pc_line (pc, notcurrent);
1058bca7
AC
2535}
2536
c193f6ac
AC
2537/* Per "frame.h", return the ``address'' of the frame. Code should
2538 really be using get_frame_id(). */
2539CORE_ADDR
2540get_frame_base (struct frame_info *fi)
2541{
d0a55772 2542 return get_frame_id (fi).stack_addr;
c193f6ac
AC
2543}
2544
da62e633
AC
2545/* High-level offsets into the frame. Used by the debug info. */
2546
2547CORE_ADDR
2548get_frame_base_address (struct frame_info *fi)
2549{
7df05f2b 2550 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2551 return 0;
2552 if (fi->base == NULL)
86c31399 2553 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2554 /* Sneaky: If the low-level unwind and high-level base code share a
2555 common unwinder, let them share the prologue cache. */
2556 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2557 return fi->base->this_base (fi, &fi->prologue_cache);
2558 return fi->base->this_base (fi, &fi->base_cache);
da62e633
AC
2559}
2560
2561CORE_ADDR
2562get_frame_locals_address (struct frame_info *fi)
2563{
7df05f2b 2564 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2565 return 0;
2566 /* If there isn't a frame address method, find it. */
2567 if (fi->base == NULL)
86c31399 2568 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2569 /* Sneaky: If the low-level unwind and high-level base code share a
2570 common unwinder, let them share the prologue cache. */
2571 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2572 return fi->base->this_locals (fi, &fi->prologue_cache);
2573 return fi->base->this_locals (fi, &fi->base_cache);
da62e633
AC
2574}
2575
2576CORE_ADDR
2577get_frame_args_address (struct frame_info *fi)
2578{
7df05f2b 2579 if (get_frame_type (fi) != NORMAL_FRAME)
da62e633
AC
2580 return 0;
2581 /* If there isn't a frame address method, find it. */
2582 if (fi->base == NULL)
86c31399 2583 fi->base = frame_base_find_by_frame (fi);
da62e633
AC
2584 /* Sneaky: If the low-level unwind and high-level base code share a
2585 common unwinder, let them share the prologue cache. */
2586 if (fi->base->unwind == fi->unwind)
669fac23
DJ
2587 return fi->base->this_args (fi, &fi->prologue_cache);
2588 return fi->base->this_args (fi, &fi->base_cache);
da62e633
AC
2589}
2590
e7802207
TT
2591/* Return true if the frame unwinder for frame FI is UNWINDER; false
2592 otherwise. */
2593
2594int
2595frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2596{
2597 if (fi->unwind == NULL)
9f9a8002 2598 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
e7802207
TT
2599 return fi->unwind == unwinder;
2600}
2601
85cf597a
AC
2602/* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2603 or -1 for a NULL frame. */
2604
2605int
2606frame_relative_level (struct frame_info *fi)
2607{
2608 if (fi == NULL)
2609 return -1;
2610 else
2611 return fi->level;
2612}
2613
5a203e44
AC
2614enum frame_type
2615get_frame_type (struct frame_info *frame)
2616{
c1bf6f65
AC
2617 if (frame->unwind == NULL)
2618 /* Initialize the frame's unwinder because that's what
2619 provides the frame's type. */
9f9a8002 2620 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
c1bf6f65 2621 return frame->unwind->type;
5a203e44
AC
2622}
2623
6c95b8df
PA
2624struct program_space *
2625get_frame_program_space (struct frame_info *frame)
2626{
2627 return frame->pspace;
2628}
2629
2630struct program_space *
2631frame_unwind_program_space (struct frame_info *this_frame)
2632{
2633 gdb_assert (this_frame);
2634
2635 /* This is really a placeholder to keep the API consistent --- we
2636 assume for now that we don't have frame chains crossing
2637 spaces. */
2638 return this_frame->pspace;
2639}
2640
8b86c959 2641const address_space *
6c95b8df
PA
2642get_frame_address_space (struct frame_info *frame)
2643{
2644 return frame->aspace;
2645}
2646
ae1e7417
AC
2647/* Memory access methods. */
2648
2649void
10c42a71
AC
2650get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2651 gdb_byte *buf, int len)
ae1e7417
AC
2652{
2653 read_memory (addr, buf, len);
2654}
2655
2656LONGEST
2657get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2658 int len)
2659{
e17a4113
UW
2660 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c4d3f96 2662
e17a4113 2663 return read_memory_integer (addr, len, byte_order);
ae1e7417
AC
2664}
2665
2666ULONGEST
2667get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2668 int len)
2669{
e17a4113
UW
2670 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c4d3f96 2672
e17a4113 2673 return read_memory_unsigned_integer (addr, len, byte_order);
ae1e7417
AC
2674}
2675
304396fb
AC
2676int
2677safe_frame_unwind_memory (struct frame_info *this_frame,
10c42a71 2678 CORE_ADDR addr, gdb_byte *buf, int len)
304396fb 2679{
8defab1a
DJ
2680 /* NOTE: target_read_memory returns zero on success! */
2681 return !target_read_memory (addr, buf, len);
304396fb
AC
2682}
2683
36f15f55 2684/* Architecture methods. */
ae1e7417
AC
2685
2686struct gdbarch *
2687get_frame_arch (struct frame_info *this_frame)
2688{
36f15f55
UW
2689 return frame_unwind_arch (this_frame->next);
2690}
2691
2692struct gdbarch *
2693frame_unwind_arch (struct frame_info *next_frame)
2694{
2695 if (!next_frame->prev_arch.p)
2696 {
2697 struct gdbarch *arch;
0701b271 2698
36f15f55 2699 if (next_frame->unwind == NULL)
9f9a8002 2700 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
36f15f55
UW
2701
2702 if (next_frame->unwind->prev_arch != NULL)
2703 arch = next_frame->unwind->prev_arch (next_frame,
2704 &next_frame->prologue_cache);
2705 else
2706 arch = get_frame_arch (next_frame);
2707
2708 next_frame->prev_arch.arch = arch;
2709 next_frame->prev_arch.p = 1;
2710 if (frame_debug)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2713 next_frame->level,
2714 gdbarch_bfd_arch_info (arch)->printable_name);
2715 }
2716
2717 return next_frame->prev_arch.arch;
2718}
2719
2720struct gdbarch *
2721frame_unwind_caller_arch (struct frame_info *next_frame)
2722{
33b4777c
MM
2723 next_frame = skip_artificial_frames (next_frame);
2724
2725 /* We must have a non-artificial frame. The caller is supposed to check
2726 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2727 in this case. */
2728 gdb_assert (next_frame != NULL);
2729
2730 return frame_unwind_arch (next_frame);
ae1e7417
AC
2731}
2732
06096720
AB
2733/* Gets the language of FRAME. */
2734
2735enum language
2736get_frame_language (struct frame_info *frame)
2737{
2738 CORE_ADDR pc = 0;
2739 int pc_p = 0;
2740
2741 gdb_assert (frame!= NULL);
2742
2743 /* We determine the current frame language by looking up its
2744 associated symtab. To retrieve this symtab, we use the frame
2745 PC. However we cannot use the frame PC as is, because it
2746 usually points to the instruction following the "call", which
2747 is sometimes the first instruction of another function. So
2748 we rely on get_frame_address_in_block(), it provides us with
2749 a PC that is guaranteed to be inside the frame's code
2750 block. */
2751
2752 TRY
2753 {
2754 pc = get_frame_address_in_block (frame);
2755 pc_p = 1;
2756 }
2757 CATCH (ex, RETURN_MASK_ERROR)
2758 {
2759 if (ex.error != NOT_AVAILABLE_ERROR)
2760 throw_exception (ex);
2761 }
2762 END_CATCH
2763
2764 if (pc_p)
2765 {
2766 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2767
2768 if (cust != NULL)
2769 return compunit_language (cust);
2770 }
2771
2772 return language_unknown;
2773}
2774
a9e5fdc2
AC
2775/* Stack pointer methods. */
2776
2777CORE_ADDR
2778get_frame_sp (struct frame_info *this_frame)
2779{
d56907c1 2780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c4d3f96 2781
8bcb5208
AB
2782 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2783 operate on THIS_FRAME now. */
2784 return gdbarch_unwind_sp (gdbarch, this_frame->next);
a9e5fdc2
AC
2785}
2786
55feb689
DJ
2787/* Return the reason why we can't unwind past FRAME. */
2788
2789enum unwind_stop_reason
2790get_frame_unwind_stop_reason (struct frame_info *frame)
2791{
824344ca 2792 /* Fill-in STOP_REASON. */
51d48146 2793 get_prev_frame_always (frame);
824344ca 2794 gdb_assert (frame->prev_p);
55feb689 2795
55feb689
DJ
2796 return frame->stop_reason;
2797}
2798
2799/* Return a string explaining REASON. */
2800
2801const char *
70e38b8e 2802unwind_stop_reason_to_string (enum unwind_stop_reason reason)
55feb689
DJ
2803{
2804 switch (reason)
2805 {
2231f1fb
KP
2806#define SET(name, description) \
2807 case name: return _(description);
2808#include "unwind_stop_reasons.def"
2809#undef SET
55feb689 2810
55feb689
DJ
2811 default:
2812 internal_error (__FILE__, __LINE__,
2813 "Invalid frame stop reason");
2814 }
2815}
2816
53e8a631
AB
2817const char *
2818frame_stop_reason_string (struct frame_info *fi)
2819{
2820 gdb_assert (fi->prev_p);
2821 gdb_assert (fi->prev == NULL);
2822
2823 /* Return the specific string if we have one. */
2824 if (fi->stop_string != NULL)
2825 return fi->stop_string;
2826
2827 /* Return the generic string if we have nothing better. */
2828 return unwind_stop_reason_to_string (fi->stop_reason);
2829}
2830
a7300869
PA
2831/* Return the enum symbol name of REASON as a string, to use in debug
2832 output. */
2833
2834static const char *
2835frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2836{
2837 switch (reason)
2838 {
2839#define SET(name, description) \
2840 case name: return #name;
2841#include "unwind_stop_reasons.def"
2842#undef SET
2843
2844 default:
2845 internal_error (__FILE__, __LINE__,
2846 "Invalid frame stop reason");
2847 }
2848}
2849
669fac23
DJ
2850/* Clean up after a failed (wrong unwinder) attempt to unwind past
2851 FRAME. */
2852
30a9c02f
TT
2853void
2854frame_cleanup_after_sniffer (struct frame_info *frame)
669fac23 2855{
669fac23
DJ
2856 /* The sniffer should not allocate a prologue cache if it did not
2857 match this frame. */
2858 gdb_assert (frame->prologue_cache == NULL);
2859
2860 /* No sniffer should extend the frame chain; sniff based on what is
2861 already certain. */
2862 gdb_assert (!frame->prev_p);
2863
2864 /* The sniffer should not check the frame's ID; that's circular. */
2865 gdb_assert (!frame->this_id.p);
2866
2867 /* Clear cached fields dependent on the unwinder.
2868
2869 The previous PC is independent of the unwinder, but the previous
ad1193e7 2870 function is not (see get_frame_address_in_block). */
669fac23
DJ
2871 frame->prev_func.p = 0;
2872 frame->prev_func.addr = 0;
2873
2874 /* Discard the unwinder last, so that we can easily find it if an assertion
2875 in this function triggers. */
2876 frame->unwind = NULL;
2877}
2878
2879/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
30a9c02f
TT
2880 If sniffing fails, the caller should be sure to call
2881 frame_cleanup_after_sniffer. */
669fac23 2882
30a9c02f 2883void
669fac23
DJ
2884frame_prepare_for_sniffer (struct frame_info *frame,
2885 const struct frame_unwind *unwind)
2886{
2887 gdb_assert (frame->unwind == NULL);
2888 frame->unwind = unwind;
669fac23
DJ
2889}
2890
25d29d70
AC
2891static struct cmd_list_element *set_backtrace_cmdlist;
2892static struct cmd_list_element *show_backtrace_cmdlist;
2893
2894static void
981a3fb3 2895set_backtrace_cmd (const char *args, int from_tty)
25d29d70 2896{
635c7e8a
TT
2897 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2898 gdb_stdout);
25d29d70
AC
2899}
2900
2901static void
981a3fb3 2902show_backtrace_cmd (const char *args, int from_tty)
25d29d70
AC
2903{
2904 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2905}
2906
4c1e7e9d
AC
2907void
2908_initialize_frame (void)
2909{
2910 obstack_init (&frame_cache_obstack);
eb4f72c5 2911
3de661e6
PM
2912 frame_stash_create ();
2913
76727919 2914 gdb::observers::target_changed.attach (frame_observer_target_changed);
f4c5303c 2915
1bedd215 2916 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
25d29d70 2917Set backtrace specific variables.\n\
1bedd215 2918Configure backtrace variables such as the backtrace limit"),
25d29d70
AC
2919 &set_backtrace_cmdlist, "set backtrace ",
2920 0/*allow-unknown*/, &setlist);
1bedd215 2921 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
25d29d70 2922Show backtrace specific variables\n\
1bedd215 2923Show backtrace variables such as the backtrace limit"),
25d29d70
AC
2924 &show_backtrace_cmdlist, "show backtrace ",
2925 0/*allow-unknown*/, &showlist);
2926
2927 add_setshow_boolean_cmd ("past-main", class_obscure,
7915a72c
AC
2928 &backtrace_past_main, _("\
2929Set whether backtraces should continue past \"main\"."), _("\
2930Show whether backtraces should continue past \"main\"."), _("\
eb4f72c5
AC
2931Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2932the backtrace at \"main\". Set this variable if you need to see the rest\n\
7915a72c 2933of the stack trace."),
2c5b56ce 2934 NULL,
920d2a44 2935 show_backtrace_past_main,
2c5b56ce 2936 &set_backtrace_cmdlist,
25d29d70
AC
2937 &show_backtrace_cmdlist);
2938
2315ffec 2939 add_setshow_boolean_cmd ("past-entry", class_obscure,
7915a72c
AC
2940 &backtrace_past_entry, _("\
2941Set whether backtraces should continue past the entry point of a program."),
2942 _("\
2943Show whether backtraces should continue past the entry point of a program."),
2944 _("\
2315ffec 2945Normally there are no callers beyond the entry point of a program, so GDB\n\
cce7e648 2946will terminate the backtrace there. Set this variable if you need to see\n\
7915a72c 2947the rest of the stack trace."),
2c5b56ce 2948 NULL,
920d2a44 2949 show_backtrace_past_entry,
2c5b56ce 2950 &set_backtrace_cmdlist,
2315ffec
RC
2951 &show_backtrace_cmdlist);
2952
883b9c6c
YQ
2953 add_setshow_uinteger_cmd ("limit", class_obscure,
2954 &backtrace_limit, _("\
7915a72c
AC
2955Set an upper bound on the number of backtrace levels."), _("\
2956Show the upper bound on the number of backtrace levels."), _("\
fec74868 2957No more than the specified number of frames can be displayed or examined.\n\
f81d1120 2958Literal \"unlimited\" or zero means no limit."),
883b9c6c
YQ
2959 NULL,
2960 show_backtrace_limit,
2961 &set_backtrace_cmdlist,
2962 &show_backtrace_cmdlist);
ac2bd0a9 2963
0963b4bd 2964 /* Debug this files internals. */
ccce17b0 2965 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
85c07804
AC
2966Set frame debugging."), _("\
2967Show frame debugging."), _("\
2968When non-zero, frame specific internal debugging is enabled."),
ccce17b0
YQ
2969 NULL,
2970 show_frame_debug,
2971 &setdebuglist, &showdebuglist);
4c1e7e9d 2972}
This page took 1.523595 seconds and 4 git commands to generate.