Commit | Line | Data |
---|---|---|
456f8b9d | 1 | /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger. |
0fd88904 | 2 | |
28e7fd62 | 3 | Copyright (C) 2002-2013 Free Software Foundation, Inc. |
456f8b9d DB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
456f8b9d DB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
456f8b9d DB |
19 | |
20 | #include "defs.h" | |
8baa6f92 | 21 | #include "gdb_string.h" |
456f8b9d | 22 | #include "inferior.h" |
456f8b9d DB |
23 | #include "gdbcore.h" |
24 | #include "arch-utils.h" | |
25 | #include "regcache.h" | |
8baa6f92 | 26 | #include "frame.h" |
1cb761c7 KB |
27 | #include "frame-unwind.h" |
28 | #include "frame-base.h" | |
8baa6f92 | 29 | #include "trad-frame.h" |
dcc6aaff | 30 | #include "dis-asm.h" |
526eef89 KB |
31 | #include "gdb_assert.h" |
32 | #include "sim-regno.h" | |
33 | #include "gdb/sim-frv.h" | |
34 | #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */ | |
634aa483 | 35 | #include "symtab.h" |
7e295833 KB |
36 | #include "elf-bfd.h" |
37 | #include "elf/frv.h" | |
38 | #include "osabi.h" | |
7d9b040b | 39 | #include "infcall.h" |
917630e4 | 40 | #include "solib.h" |
7e295833 | 41 | #include "frv-tdep.h" |
456f8b9d DB |
42 | |
43 | extern void _initialize_frv_tdep (void); | |
44 | ||
1cb761c7 | 45 | struct frv_unwind_cache /* was struct frame_extra_info */ |
456f8b9d | 46 | { |
1cb761c7 KB |
47 | /* The previous frame's inner-most stack address. Used as this |
48 | frame ID's stack_addr. */ | |
49 | CORE_ADDR prev_sp; | |
456f8b9d | 50 | |
1cb761c7 KB |
51 | /* The frame's base, optionally used by the high-level debug info. */ |
52 | CORE_ADDR base; | |
8baa6f92 KB |
53 | |
54 | /* Table indicating the location of each and every register. */ | |
55 | struct trad_frame_saved_reg *saved_regs; | |
456f8b9d DB |
56 | }; |
57 | ||
456f8b9d DB |
58 | /* A structure describing a particular variant of the FRV. |
59 | We allocate and initialize one of these structures when we create | |
60 | the gdbarch object for a variant. | |
61 | ||
62 | At the moment, all the FR variants we support differ only in which | |
63 | registers are present; the portable code of GDB knows that | |
64 | registers whose names are the empty string don't exist, so the | |
65 | `register_names' array captures all the per-variant information we | |
66 | need. | |
67 | ||
68 | in the future, if we need to have per-variant maps for raw size, | |
69 | virtual type, etc., we should replace register_names with an array | |
70 | of structures, each of which gives all the necessary info for one | |
71 | register. Don't stick parallel arrays in here --- that's so | |
72 | Fortran. */ | |
73 | struct gdbarch_tdep | |
74 | { | |
7e295833 KB |
75 | /* Which ABI is in use? */ |
76 | enum frv_abi frv_abi; | |
77 | ||
456f8b9d DB |
78 | /* How many general-purpose registers does this variant have? */ |
79 | int num_gprs; | |
80 | ||
81 | /* How many floating-point registers does this variant have? */ | |
82 | int num_fprs; | |
83 | ||
84 | /* How many hardware watchpoints can it support? */ | |
85 | int num_hw_watchpoints; | |
86 | ||
87 | /* How many hardware breakpoints can it support? */ | |
88 | int num_hw_breakpoints; | |
89 | ||
90 | /* Register names. */ | |
91 | char **register_names; | |
92 | }; | |
93 | ||
7e295833 KB |
94 | /* Return the FR-V ABI associated with GDBARCH. */ |
95 | enum frv_abi | |
96 | frv_abi (struct gdbarch *gdbarch) | |
97 | { | |
98 | return gdbarch_tdep (gdbarch)->frv_abi; | |
99 | } | |
100 | ||
101 | /* Fetch the interpreter and executable loadmap addresses (for shared | |
102 | library support) for the FDPIC ABI. Return 0 if successful, -1 if | |
103 | not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */ | |
104 | int | |
105 | frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr, | |
106 | CORE_ADDR *exec_addr) | |
107 | { | |
108 | if (frv_abi (gdbarch) != FRV_ABI_FDPIC) | |
109 | return -1; | |
110 | else | |
111 | { | |
594f7785 UW |
112 | struct regcache *regcache = get_current_regcache (); |
113 | ||
7e295833 KB |
114 | if (interp_addr != NULL) |
115 | { | |
116 | ULONGEST val; | |
594f7785 | 117 | regcache_cooked_read_unsigned (regcache, |
7e295833 KB |
118 | fdpic_loadmap_interp_regnum, &val); |
119 | *interp_addr = val; | |
120 | } | |
121 | if (exec_addr != NULL) | |
122 | { | |
123 | ULONGEST val; | |
594f7785 | 124 | regcache_cooked_read_unsigned (regcache, |
7e295833 KB |
125 | fdpic_loadmap_exec_regnum, &val); |
126 | *exec_addr = val; | |
127 | } | |
128 | return 0; | |
129 | } | |
130 | } | |
456f8b9d DB |
131 | |
132 | /* Allocate a new variant structure, and set up default values for all | |
133 | the fields. */ | |
134 | static struct gdbarch_tdep * | |
5ae5f592 | 135 | new_variant (void) |
456f8b9d DB |
136 | { |
137 | struct gdbarch_tdep *var; | |
138 | int r; | |
456f8b9d DB |
139 | |
140 | var = xmalloc (sizeof (*var)); | |
141 | memset (var, 0, sizeof (*var)); | |
142 | ||
7e295833 | 143 | var->frv_abi = FRV_ABI_EABI; |
456f8b9d DB |
144 | var->num_gprs = 64; |
145 | var->num_fprs = 64; | |
146 | var->num_hw_watchpoints = 0; | |
147 | var->num_hw_breakpoints = 0; | |
148 | ||
149 | /* By default, don't supply any general-purpose or floating-point | |
150 | register names. */ | |
6a748db6 KB |
151 | var->register_names |
152 | = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs) | |
153 | * sizeof (char *)); | |
154 | for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++) | |
456f8b9d DB |
155 | var->register_names[r] = ""; |
156 | ||
526eef89 | 157 | /* Do, however, supply default names for the known special-purpose |
456f8b9d | 158 | registers. */ |
456f8b9d DB |
159 | |
160 | var->register_names[pc_regnum] = "pc"; | |
161 | var->register_names[lr_regnum] = "lr"; | |
162 | var->register_names[lcr_regnum] = "lcr"; | |
163 | ||
164 | var->register_names[psr_regnum] = "psr"; | |
165 | var->register_names[ccr_regnum] = "ccr"; | |
166 | var->register_names[cccr_regnum] = "cccr"; | |
167 | var->register_names[tbr_regnum] = "tbr"; | |
168 | ||
169 | /* Debug registers. */ | |
170 | var->register_names[brr_regnum] = "brr"; | |
171 | var->register_names[dbar0_regnum] = "dbar0"; | |
172 | var->register_names[dbar1_regnum] = "dbar1"; | |
173 | var->register_names[dbar2_regnum] = "dbar2"; | |
174 | var->register_names[dbar3_regnum] = "dbar3"; | |
175 | ||
526eef89 KB |
176 | /* iacc0 (Only found on MB93405.) */ |
177 | var->register_names[iacc0h_regnum] = "iacc0h"; | |
178 | var->register_names[iacc0l_regnum] = "iacc0l"; | |
6a748db6 | 179 | var->register_names[iacc0_regnum] = "iacc0"; |
526eef89 | 180 | |
8b67aa36 KB |
181 | /* fsr0 (Found on FR555 and FR501.) */ |
182 | var->register_names[fsr0_regnum] = "fsr0"; | |
183 | ||
184 | /* acc0 - acc7. The architecture provides for the possibility of many | |
185 | more (up to 64 total), but we don't want to make that big of a hole | |
186 | in the G packet. If we need more in the future, we'll add them | |
187 | elsewhere. */ | |
188 | for (r = acc0_regnum; r <= acc7_regnum; r++) | |
189 | { | |
190 | char *buf; | |
b435e160 | 191 | buf = xstrprintf ("acc%d", r - acc0_regnum); |
8b67aa36 KB |
192 | var->register_names[r] = buf; |
193 | } | |
194 | ||
195 | /* accg0 - accg7: These are one byte registers. The remote protocol | |
196 | provides the raw values packed four into a slot. accg0123 and | |
197 | accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively. | |
198 | We don't provide names for accg0123 and accg4567 since the user will | |
199 | likely not want to see these raw values. */ | |
200 | ||
201 | for (r = accg0_regnum; r <= accg7_regnum; r++) | |
202 | { | |
203 | char *buf; | |
b435e160 | 204 | buf = xstrprintf ("accg%d", r - accg0_regnum); |
8b67aa36 KB |
205 | var->register_names[r] = buf; |
206 | } | |
207 | ||
208 | /* msr0 and msr1. */ | |
209 | ||
210 | var->register_names[msr0_regnum] = "msr0"; | |
211 | var->register_names[msr1_regnum] = "msr1"; | |
212 | ||
213 | /* gner and fner registers. */ | |
214 | var->register_names[gner0_regnum] = "gner0"; | |
215 | var->register_names[gner1_regnum] = "gner1"; | |
216 | var->register_names[fner0_regnum] = "fner0"; | |
217 | var->register_names[fner1_regnum] = "fner1"; | |
218 | ||
456f8b9d DB |
219 | return var; |
220 | } | |
221 | ||
222 | ||
223 | /* Indicate that the variant VAR has NUM_GPRS general-purpose | |
224 | registers, and fill in the names array appropriately. */ | |
225 | static void | |
226 | set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs) | |
227 | { | |
228 | int r; | |
229 | ||
230 | var->num_gprs = num_gprs; | |
231 | ||
232 | for (r = 0; r < num_gprs; ++r) | |
233 | { | |
234 | char buf[20]; | |
235 | ||
08850b56 | 236 | xsnprintf (buf, sizeof (buf), "gr%d", r); |
456f8b9d DB |
237 | var->register_names[first_gpr_regnum + r] = xstrdup (buf); |
238 | } | |
239 | } | |
240 | ||
241 | ||
242 | /* Indicate that the variant VAR has NUM_FPRS floating-point | |
243 | registers, and fill in the names array appropriately. */ | |
244 | static void | |
245 | set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs) | |
246 | { | |
247 | int r; | |
248 | ||
249 | var->num_fprs = num_fprs; | |
250 | ||
251 | for (r = 0; r < num_fprs; ++r) | |
252 | { | |
253 | char buf[20]; | |
254 | ||
08850b56 | 255 | xsnprintf (buf, sizeof (buf), "fr%d", r); |
456f8b9d DB |
256 | var->register_names[first_fpr_regnum + r] = xstrdup (buf); |
257 | } | |
258 | } | |
259 | ||
7e295833 KB |
260 | static void |
261 | set_variant_abi_fdpic (struct gdbarch_tdep *var) | |
262 | { | |
263 | var->frv_abi = FRV_ABI_FDPIC; | |
264 | var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec"); | |
0963b4bd MS |
265 | var->register_names[fdpic_loadmap_interp_regnum] |
266 | = xstrdup ("loadmap_interp"); | |
7e295833 | 267 | } |
456f8b9d | 268 | |
b2d6d697 KB |
269 | static void |
270 | set_variant_scratch_registers (struct gdbarch_tdep *var) | |
271 | { | |
272 | var->register_names[scr0_regnum] = xstrdup ("scr0"); | |
273 | var->register_names[scr1_regnum] = xstrdup ("scr1"); | |
274 | var->register_names[scr2_regnum] = xstrdup ("scr2"); | |
275 | var->register_names[scr3_regnum] = xstrdup ("scr3"); | |
276 | } | |
277 | ||
456f8b9d | 278 | static const char * |
d93859e2 | 279 | frv_register_name (struct gdbarch *gdbarch, int reg) |
456f8b9d DB |
280 | { |
281 | if (reg < 0) | |
282 | return "?toosmall?"; | |
6a748db6 | 283 | if (reg >= frv_num_regs + frv_num_pseudo_regs) |
456f8b9d DB |
284 | return "?toolarge?"; |
285 | ||
7a22ecfc | 286 | return gdbarch_tdep (gdbarch)->register_names[reg]; |
456f8b9d DB |
287 | } |
288 | ||
526eef89 | 289 | |
456f8b9d | 290 | static struct type * |
7f398216 | 291 | frv_register_type (struct gdbarch *gdbarch, int reg) |
456f8b9d | 292 | { |
526eef89 | 293 | if (reg >= first_fpr_regnum && reg <= last_fpr_regnum) |
0dfff4cb | 294 | return builtin_type (gdbarch)->builtin_float; |
6a748db6 | 295 | else if (reg == iacc0_regnum) |
df4df182 | 296 | return builtin_type (gdbarch)->builtin_int64; |
456f8b9d | 297 | else |
df4df182 | 298 | return builtin_type (gdbarch)->builtin_int32; |
456f8b9d DB |
299 | } |
300 | ||
05d1431c | 301 | static enum register_status |
6a748db6 | 302 | frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
e2b7c966 | 303 | int reg, gdb_byte *buffer) |
6a748db6 | 304 | { |
05d1431c PA |
305 | enum register_status status; |
306 | ||
6a748db6 KB |
307 | if (reg == iacc0_regnum) |
308 | { | |
05d1431c PA |
309 | status = regcache_raw_read (regcache, iacc0h_regnum, buffer); |
310 | if (status == REG_VALID) | |
311 | status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4); | |
6a748db6 | 312 | } |
8b67aa36 KB |
313 | else if (accg0_regnum <= reg && reg <= accg7_regnum) |
314 | { | |
315 | /* The accg raw registers have four values in each slot with the | |
316 | lowest register number occupying the first byte. */ | |
317 | ||
318 | int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4; | |
319 | int byte_num = (reg - accg0_regnum) % 4; | |
05d1431c | 320 | gdb_byte buf[4]; |
8b67aa36 | 321 | |
05d1431c PA |
322 | status = regcache_raw_read (regcache, raw_regnum, buf); |
323 | if (status == REG_VALID) | |
324 | { | |
325 | memset (buffer, 0, 4); | |
326 | /* FR-V is big endian, so put the requested byte in the | |
327 | first byte of the buffer allocated to hold the | |
328 | pseudo-register. */ | |
329 | buffer[0] = buf[byte_num]; | |
330 | } | |
8b67aa36 | 331 | } |
05d1431c PA |
332 | else |
333 | gdb_assert_not_reached ("invalid pseudo register number"); | |
334 | ||
335 | return status; | |
6a748db6 KB |
336 | } |
337 | ||
338 | static void | |
339 | frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
e2b7c966 | 340 | int reg, const gdb_byte *buffer) |
6a748db6 KB |
341 | { |
342 | if (reg == iacc0_regnum) | |
343 | { | |
344 | regcache_raw_write (regcache, iacc0h_regnum, buffer); | |
345 | regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4); | |
346 | } | |
8b67aa36 KB |
347 | else if (accg0_regnum <= reg && reg <= accg7_regnum) |
348 | { | |
349 | /* The accg raw registers have four values in each slot with the | |
350 | lowest register number occupying the first byte. */ | |
351 | ||
352 | int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4; | |
353 | int byte_num = (reg - accg0_regnum) % 4; | |
e362b510 | 354 | gdb_byte buf[4]; |
8b67aa36 KB |
355 | |
356 | regcache_raw_read (regcache, raw_regnum, buf); | |
357 | buf[byte_num] = ((bfd_byte *) buffer)[0]; | |
358 | regcache_raw_write (regcache, raw_regnum, buf); | |
359 | } | |
6a748db6 KB |
360 | } |
361 | ||
526eef89 | 362 | static int |
e7faf938 | 363 | frv_register_sim_regno (struct gdbarch *gdbarch, int reg) |
526eef89 KB |
364 | { |
365 | static const int spr_map[] = | |
366 | { | |
367 | H_SPR_PSR, /* psr_regnum */ | |
368 | H_SPR_CCR, /* ccr_regnum */ | |
369 | H_SPR_CCCR, /* cccr_regnum */ | |
8b67aa36 KB |
370 | -1, /* fdpic_loadmap_exec_regnum */ |
371 | -1, /* fdpic_loadmap_interp_regnum */ | |
526eef89 KB |
372 | -1, /* 134 */ |
373 | H_SPR_TBR, /* tbr_regnum */ | |
374 | H_SPR_BRR, /* brr_regnum */ | |
375 | H_SPR_DBAR0, /* dbar0_regnum */ | |
376 | H_SPR_DBAR1, /* dbar1_regnum */ | |
377 | H_SPR_DBAR2, /* dbar2_regnum */ | |
378 | H_SPR_DBAR3, /* dbar3_regnum */ | |
8b67aa36 KB |
379 | H_SPR_SCR0, /* scr0_regnum */ |
380 | H_SPR_SCR1, /* scr1_regnum */ | |
381 | H_SPR_SCR2, /* scr2_regnum */ | |
382 | H_SPR_SCR3, /* scr3_regnum */ | |
526eef89 KB |
383 | H_SPR_LR, /* lr_regnum */ |
384 | H_SPR_LCR, /* lcr_regnum */ | |
385 | H_SPR_IACC0H, /* iacc0h_regnum */ | |
8b67aa36 KB |
386 | H_SPR_IACC0L, /* iacc0l_regnum */ |
387 | H_SPR_FSR0, /* fsr0_regnum */ | |
388 | /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */ | |
389 | -1, /* acc0_regnum */ | |
390 | -1, /* acc1_regnum */ | |
391 | -1, /* acc2_regnum */ | |
392 | -1, /* acc3_regnum */ | |
393 | -1, /* acc4_regnum */ | |
394 | -1, /* acc5_regnum */ | |
395 | -1, /* acc6_regnum */ | |
396 | -1, /* acc7_regnum */ | |
397 | -1, /* acc0123_regnum */ | |
398 | -1, /* acc4567_regnum */ | |
399 | H_SPR_MSR0, /* msr0_regnum */ | |
400 | H_SPR_MSR1, /* msr1_regnum */ | |
401 | H_SPR_GNER0, /* gner0_regnum */ | |
402 | H_SPR_GNER1, /* gner1_regnum */ | |
403 | H_SPR_FNER0, /* fner0_regnum */ | |
404 | H_SPR_FNER1, /* fner1_regnum */ | |
526eef89 KB |
405 | }; |
406 | ||
e7faf938 | 407 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
526eef89 KB |
408 | |
409 | if (first_gpr_regnum <= reg && reg <= last_gpr_regnum) | |
410 | return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM; | |
411 | else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum) | |
412 | return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM; | |
413 | else if (pc_regnum == reg) | |
414 | return SIM_FRV_PC_REGNUM; | |
415 | else if (reg >= first_spr_regnum | |
416 | && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0])) | |
417 | { | |
418 | int spr_reg_offset = spr_map[reg - first_spr_regnum]; | |
419 | ||
420 | if (spr_reg_offset < 0) | |
421 | return SIM_REGNO_DOES_NOT_EXIST; | |
422 | else | |
423 | return SIM_FRV_SPR0_REGNUM + spr_reg_offset; | |
424 | } | |
425 | ||
e2e0b3e5 | 426 | internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg); |
526eef89 KB |
427 | } |
428 | ||
456f8b9d | 429 | static const unsigned char * |
67d57894 | 430 | frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp) |
456f8b9d DB |
431 | { |
432 | static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01}; | |
433 | *lenp = sizeof (breakpoint); | |
434 | return breakpoint; | |
435 | } | |
436 | ||
46a16dba KB |
437 | /* Define the maximum number of instructions which may be packed into a |
438 | bundle (VLIW instruction). */ | |
439 | static const int max_instrs_per_bundle = 8; | |
440 | ||
441 | /* Define the size (in bytes) of an FR-V instruction. */ | |
442 | static const int frv_instr_size = 4; | |
443 | ||
444 | /* Adjust a breakpoint's address to account for the FR-V architecture's | |
445 | constraint that a break instruction must not appear as any but the | |
446 | first instruction in the bundle. */ | |
447 | static CORE_ADDR | |
1208538e | 448 | frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) |
46a16dba KB |
449 | { |
450 | int count = max_instrs_per_bundle; | |
451 | CORE_ADDR addr = bpaddr - frv_instr_size; | |
452 | CORE_ADDR func_start = get_pc_function_start (bpaddr); | |
453 | ||
454 | /* Find the end of the previous packing sequence. This will be indicated | |
455 | by either attempting to access some inaccessible memory or by finding | |
0963b4bd | 456 | an instruction word whose packing bit is set to one. */ |
46a16dba KB |
457 | while (count-- > 0 && addr >= func_start) |
458 | { | |
948f8e3d | 459 | gdb_byte instr[frv_instr_size]; |
46a16dba KB |
460 | int status; |
461 | ||
8defab1a | 462 | status = target_read_memory (addr, instr, sizeof instr); |
46a16dba KB |
463 | |
464 | if (status != 0) | |
465 | break; | |
466 | ||
467 | /* This is a big endian architecture, so byte zero will have most | |
468 | significant byte. The most significant bit of this byte is the | |
469 | packing bit. */ | |
470 | if (instr[0] & 0x80) | |
471 | break; | |
472 | ||
473 | addr -= frv_instr_size; | |
474 | } | |
475 | ||
476 | if (count > 0) | |
477 | bpaddr = addr + frv_instr_size; | |
478 | ||
479 | return bpaddr; | |
480 | } | |
481 | ||
456f8b9d DB |
482 | |
483 | /* Return true if REG is a caller-saves ("scratch") register, | |
484 | false otherwise. */ | |
485 | static int | |
486 | is_caller_saves_reg (int reg) | |
487 | { | |
488 | return ((4 <= reg && reg <= 7) | |
489 | || (14 <= reg && reg <= 15) | |
490 | || (32 <= reg && reg <= 47)); | |
491 | } | |
492 | ||
493 | ||
494 | /* Return true if REG is a callee-saves register, false otherwise. */ | |
495 | static int | |
496 | is_callee_saves_reg (int reg) | |
497 | { | |
498 | return ((16 <= reg && reg <= 31) | |
499 | || (48 <= reg && reg <= 63)); | |
500 | } | |
501 | ||
502 | ||
503 | /* Return true if REG is an argument register, false otherwise. */ | |
504 | static int | |
505 | is_argument_reg (int reg) | |
506 | { | |
507 | return (8 <= reg && reg <= 13); | |
508 | } | |
509 | ||
456f8b9d DB |
510 | /* Scan an FR-V prologue, starting at PC, until frame->PC. |
511 | If FRAME is non-zero, fill in its saved_regs with appropriate addresses. | |
512 | We assume FRAME's saved_regs array has already been allocated and cleared. | |
513 | Return the first PC value after the prologue. | |
514 | ||
515 | Note that, for unoptimized code, we almost don't need this function | |
516 | at all; all arguments and locals live on the stack, so we just need | |
517 | the FP to find everything. The catch: structures passed by value | |
518 | have their addresses living in registers; they're never spilled to | |
519 | the stack. So if you ever want to be able to get to these | |
520 | arguments in any frame but the top, you'll need to do this serious | |
521 | prologue analysis. */ | |
522 | static CORE_ADDR | |
d80b854b UW |
523 | frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, |
524 | struct frame_info *this_frame, | |
1cb761c7 | 525 | struct frv_unwind_cache *info) |
456f8b9d | 526 | { |
e17a4113 UW |
527 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
528 | ||
456f8b9d DB |
529 | /* When writing out instruction bitpatterns, we use the following |
530 | letters to label instruction fields: | |
531 | P - The parallel bit. We don't use this. | |
532 | J - The register number of GRj in the instruction description. | |
533 | K - The register number of GRk in the instruction description. | |
534 | I - The register number of GRi. | |
535 | S - a signed imediate offset. | |
536 | U - an unsigned immediate offset. | |
537 | ||
538 | The dots below the numbers indicate where hex digit boundaries | |
539 | fall, to make it easier to check the numbers. */ | |
540 | ||
541 | /* Non-zero iff we've seen the instruction that initializes the | |
542 | frame pointer for this function's frame. */ | |
543 | int fp_set = 0; | |
544 | ||
545 | /* If fp_set is non_zero, then this is the distance from | |
546 | the stack pointer to frame pointer: fp = sp + fp_offset. */ | |
547 | int fp_offset = 0; | |
548 | ||
0963b4bd | 549 | /* Total size of frame prior to any alloca operations. */ |
456f8b9d DB |
550 | int framesize = 0; |
551 | ||
1cb761c7 KB |
552 | /* Flag indicating if lr has been saved on the stack. */ |
553 | int lr_saved_on_stack = 0; | |
554 | ||
456f8b9d DB |
555 | /* The number of the general-purpose register we saved the return |
556 | address ("link register") in, or -1 if we haven't moved it yet. */ | |
557 | int lr_save_reg = -1; | |
558 | ||
1cb761c7 KB |
559 | /* Offset (from sp) at which lr has been saved on the stack. */ |
560 | ||
561 | int lr_sp_offset = 0; | |
456f8b9d DB |
562 | |
563 | /* If gr_saved[i] is non-zero, then we've noticed that general | |
564 | register i has been saved at gr_sp_offset[i] from the stack | |
565 | pointer. */ | |
566 | char gr_saved[64]; | |
567 | int gr_sp_offset[64]; | |
568 | ||
d40fcd7b KB |
569 | /* The address of the most recently scanned prologue instruction. */ |
570 | CORE_ADDR last_prologue_pc; | |
571 | ||
0963b4bd | 572 | /* The address of the next instruction. */ |
d40fcd7b KB |
573 | CORE_ADDR next_pc; |
574 | ||
575 | /* The upper bound to of the pc values to scan. */ | |
576 | CORE_ADDR lim_pc; | |
577 | ||
456f8b9d DB |
578 | memset (gr_saved, 0, sizeof (gr_saved)); |
579 | ||
d40fcd7b KB |
580 | last_prologue_pc = pc; |
581 | ||
582 | /* Try to compute an upper limit (on how far to scan) based on the | |
583 | line number info. */ | |
d80b854b | 584 | lim_pc = skip_prologue_using_sal (gdbarch, pc); |
d40fcd7b KB |
585 | /* If there's no line number info, lim_pc will be 0. In that case, |
586 | set the limit to be 100 instructions away from pc. Hopefully, this | |
587 | will be far enough away to account for the entire prologue. Don't | |
588 | worry about overshooting the end of the function. The scan loop | |
589 | below contains some checks to avoid scanning unreasonably far. */ | |
590 | if (lim_pc == 0) | |
591 | lim_pc = pc + 400; | |
592 | ||
593 | /* If we have a frame, we don't want to scan past the frame's pc. This | |
594 | will catch those cases where the pc is in the prologue. */ | |
94afd7a6 | 595 | if (this_frame) |
d40fcd7b | 596 | { |
94afd7a6 | 597 | CORE_ADDR frame_pc = get_frame_pc (this_frame); |
d40fcd7b KB |
598 | if (frame_pc < lim_pc) |
599 | lim_pc = frame_pc; | |
600 | } | |
601 | ||
602 | /* Scan the prologue. */ | |
603 | while (pc < lim_pc) | |
456f8b9d | 604 | { |
e362b510 | 605 | gdb_byte buf[frv_instr_size]; |
1ccda5e9 KB |
606 | LONGEST op; |
607 | ||
608 | if (target_read_memory (pc, buf, sizeof buf) != 0) | |
609 | break; | |
e17a4113 | 610 | op = extract_signed_integer (buf, sizeof buf, byte_order); |
1ccda5e9 | 611 | |
d40fcd7b | 612 | next_pc = pc + 4; |
456f8b9d DB |
613 | |
614 | /* The tests in this chain of ifs should be in order of | |
615 | decreasing selectivity, so that more particular patterns get | |
616 | to fire before less particular patterns. */ | |
617 | ||
d40fcd7b KB |
618 | /* Some sort of control transfer instruction: stop scanning prologue. |
619 | Integer Conditional Branch: | |
620 | X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX | |
621 | Floating-point / media Conditional Branch: | |
622 | X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX | |
623 | LCR Conditional Branch to LR | |
624 | X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX | |
625 | Integer conditional Branches to LR | |
626 | X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX | |
627 | X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX | |
628 | Floating-point/Media Branches to LR | |
629 | X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX | |
630 | X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX | |
631 | Jump and Link | |
632 | X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX | |
633 | X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX | |
634 | Call | |
635 | X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX | |
636 | Return from Trap | |
637 | X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX | |
638 | Integer Conditional Trap | |
639 | X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX | |
640 | X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX | |
641 | Floating-point /media Conditional Trap | |
642 | X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX | |
643 | X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX | |
644 | Break | |
645 | X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX | |
646 | Media Trap | |
647 | X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */ | |
648 | if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */ | |
649 | || (op & 0x01f80000) == 0x00300000 /* Jump and Link */ | |
650 | || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */ | |
651 | || (op & 0x01f80000) == 0x00700000) /* Trap immediate */ | |
652 | { | |
653 | /* Stop scanning; not in prologue any longer. */ | |
654 | break; | |
655 | } | |
656 | ||
657 | /* Loading something from memory into fp probably means that | |
658 | we're in the epilogue. Stop scanning the prologue. | |
659 | ld @(GRi, GRk), fp | |
660 | X 000010 0000010 XXXXXX 000100 XXXXXX | |
661 | ldi @(GRi, d12), fp | |
662 | X 000010 0110010 XXXXXX XXXXXXXXXXXX */ | |
663 | else if ((op & 0x7ffc0fc0) == 0x04080100 | |
664 | || (op & 0x7ffc0000) == 0x04c80000) | |
665 | { | |
666 | break; | |
667 | } | |
668 | ||
456f8b9d DB |
669 | /* Setting the FP from the SP: |
670 | ori sp, 0, fp | |
671 | P 000010 0100010 000001 000000000000 = 0x04881000 | |
672 | 0 111111 1111111 111111 111111111111 = 0x7fffffff | |
673 | . . . . . . . . | |
674 | We treat this as part of the prologue. */ | |
d40fcd7b | 675 | else if ((op & 0x7fffffff) == 0x04881000) |
456f8b9d DB |
676 | { |
677 | fp_set = 1; | |
678 | fp_offset = 0; | |
d40fcd7b | 679 | last_prologue_pc = next_pc; |
456f8b9d DB |
680 | } |
681 | ||
682 | /* Move the link register to the scratch register grJ, before saving: | |
683 | movsg lr, grJ | |
684 | P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0 | |
685 | 0 111111 1111111 111111 111111 000000 = 0x7fffffc0 | |
686 | . . . . . . . . | |
687 | We treat this as part of the prologue. */ | |
688 | else if ((op & 0x7fffffc0) == 0x080d01c0) | |
689 | { | |
690 | int gr_j = op & 0x3f; | |
691 | ||
692 | /* If we're moving it to a scratch register, that's fine. */ | |
693 | if (is_caller_saves_reg (gr_j)) | |
d40fcd7b KB |
694 | { |
695 | lr_save_reg = gr_j; | |
696 | last_prologue_pc = next_pc; | |
697 | } | |
456f8b9d DB |
698 | } |
699 | ||
700 | /* To save multiple callee-saves registers on the stack, at | |
701 | offset zero: | |
702 | ||
703 | std grK,@(sp,gr0) | |
704 | P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0 | |
705 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
706 | ||
707 | stq grK,@(sp,gr0) | |
708 | P KKKKKK 0000011 000001 000100 000000 = 0x000c1100 | |
709 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
710 | . . . . . . . . | |
711 | We treat this as part of the prologue, and record the register's | |
712 | saved address in the frame structure. */ | |
713 | else if ((op & 0x01ffffff) == 0x000c10c0 | |
714 | || (op & 0x01ffffff) == 0x000c1100) | |
715 | { | |
716 | int gr_k = ((op >> 25) & 0x3f); | |
717 | int ope = ((op >> 6) & 0x3f); | |
718 | int count; | |
719 | int i; | |
720 | ||
721 | /* Is it an std or an stq? */ | |
722 | if (ope == 0x03) | |
723 | count = 2; | |
724 | else | |
725 | count = 4; | |
726 | ||
727 | /* Is it really a callee-saves register? */ | |
728 | if (is_callee_saves_reg (gr_k)) | |
729 | { | |
730 | for (i = 0; i < count; i++) | |
731 | { | |
732 | gr_saved[gr_k + i] = 1; | |
733 | gr_sp_offset[gr_k + i] = 4 * i; | |
734 | } | |
d40fcd7b | 735 | last_prologue_pc = next_pc; |
456f8b9d | 736 | } |
456f8b9d DB |
737 | } |
738 | ||
739 | /* Adjusting the stack pointer. (The stack pointer is GR1.) | |
740 | addi sp, S, sp | |
741 | P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000 | |
742 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
743 | . . . . . . . . | |
744 | We treat this as part of the prologue. */ | |
745 | else if ((op & 0x7ffff000) == 0x02401000) | |
746 | { | |
d40fcd7b KB |
747 | if (framesize == 0) |
748 | { | |
749 | /* Sign-extend the twelve-bit field. | |
750 | (Isn't there a better way to do this?) */ | |
751 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
456f8b9d | 752 | |
d40fcd7b KB |
753 | framesize -= s; |
754 | last_prologue_pc = pc; | |
755 | } | |
756 | else | |
757 | { | |
758 | /* If the prologue is being adjusted again, we've | |
759 | likely gone too far; i.e. we're probably in the | |
760 | epilogue. */ | |
761 | break; | |
762 | } | |
456f8b9d DB |
763 | } |
764 | ||
765 | /* Setting the FP to a constant distance from the SP: | |
766 | addi sp, S, fp | |
767 | P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000 | |
768 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
769 | . . . . . . . . | |
770 | We treat this as part of the prologue. */ | |
771 | else if ((op & 0x7ffff000) == 0x04401000) | |
772 | { | |
773 | /* Sign-extend the twelve-bit field. | |
774 | (Isn't there a better way to do this?) */ | |
775 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
776 | fp_set = 1; | |
777 | fp_offset = s; | |
d40fcd7b | 778 | last_prologue_pc = pc; |
456f8b9d DB |
779 | } |
780 | ||
781 | /* To spill an argument register to a scratch register: | |
782 | ori GRi, 0, GRk | |
783 | P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000 | |
784 | 0 000000 1111111 000000 111111111111 = 0x01fc0fff | |
785 | . . . . . . . . | |
786 | For the time being, we treat this as a prologue instruction, | |
787 | assuming that GRi is an argument register. This one's kind | |
788 | of suspicious, because it seems like it could be part of a | |
789 | legitimate body instruction. But we only come here when the | |
790 | source info wasn't helpful, so we have to do the best we can. | |
791 | Hopefully once GCC and GDB agree on how to emit line number | |
792 | info for prologues, then this code will never come into play. */ | |
793 | else if ((op & 0x01fc0fff) == 0x00880000) | |
794 | { | |
795 | int gr_i = ((op >> 12) & 0x3f); | |
796 | ||
d40fcd7b KB |
797 | /* Make sure that the source is an arg register; if it is, we'll |
798 | treat it as a prologue instruction. */ | |
799 | if (is_argument_reg (gr_i)) | |
800 | last_prologue_pc = next_pc; | |
456f8b9d DB |
801 | } |
802 | ||
803 | /* To spill 16-bit values to the stack: | |
804 | sthi GRk, @(fp, s) | |
805 | P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000 | |
806 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
807 | . . . . . . . . | |
808 | And for 8-bit values, we use STB instructions. | |
809 | stbi GRk, @(fp, s) | |
810 | P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000 | |
811 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
812 | . . . . . . . . | |
813 | We check that GRk is really an argument register, and treat | |
814 | all such as part of the prologue. */ | |
815 | else if ( (op & 0x01fff000) == 0x01442000 | |
816 | || (op & 0x01fff000) == 0x01402000) | |
817 | { | |
818 | int gr_k = ((op >> 25) & 0x3f); | |
819 | ||
d40fcd7b KB |
820 | /* Make sure that GRk is really an argument register; treat |
821 | it as a prologue instruction if so. */ | |
822 | if (is_argument_reg (gr_k)) | |
823 | last_prologue_pc = next_pc; | |
456f8b9d DB |
824 | } |
825 | ||
826 | /* To save multiple callee-saves register on the stack, at a | |
827 | non-zero offset: | |
828 | ||
829 | stdi GRk, @(sp, s) | |
830 | P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000 | |
831 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
832 | . . . . . . . . | |
833 | stqi GRk, @(sp, s) | |
834 | P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000 | |
835 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
836 | . . . . . . . . | |
837 | We treat this as part of the prologue, and record the register's | |
838 | saved address in the frame structure. */ | |
839 | else if ((op & 0x01fff000) == 0x014c1000 | |
840 | || (op & 0x01fff000) == 0x01501000) | |
841 | { | |
842 | int gr_k = ((op >> 25) & 0x3f); | |
843 | int count; | |
844 | int i; | |
845 | ||
846 | /* Is it a stdi or a stqi? */ | |
847 | if ((op & 0x01fff000) == 0x014c1000) | |
848 | count = 2; | |
849 | else | |
850 | count = 4; | |
851 | ||
852 | /* Is it really a callee-saves register? */ | |
853 | if (is_callee_saves_reg (gr_k)) | |
854 | { | |
855 | /* Sign-extend the twelve-bit field. | |
856 | (Isn't there a better way to do this?) */ | |
857 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
858 | ||
859 | for (i = 0; i < count; i++) | |
860 | { | |
861 | gr_saved[gr_k + i] = 1; | |
862 | gr_sp_offset[gr_k + i] = s + (4 * i); | |
863 | } | |
d40fcd7b | 864 | last_prologue_pc = next_pc; |
456f8b9d | 865 | } |
456f8b9d DB |
866 | } |
867 | ||
868 | /* Storing any kind of integer register at any constant offset | |
869 | from any other register. | |
870 | ||
871 | st GRk, @(GRi, gr0) | |
872 | P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080 | |
873 | 0 000000 1111111 000000 111111 111111 = 0x01fc0fff | |
874 | . . . . . . . . | |
875 | sti GRk, @(GRi, d12) | |
876 | P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000 | |
877 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
878 | . . . . . . . . | |
879 | These could be almost anything, but a lot of prologue | |
880 | instructions fall into this pattern, so let's decode the | |
881 | instruction once, and then work at a higher level. */ | |
882 | else if (((op & 0x01fc0fff) == 0x000c0080) | |
883 | || ((op & 0x01fc0000) == 0x01480000)) | |
884 | { | |
885 | int gr_k = ((op >> 25) & 0x3f); | |
886 | int gr_i = ((op >> 12) & 0x3f); | |
887 | int offset; | |
888 | ||
889 | /* Are we storing with gr0 as an offset, or using an | |
890 | immediate value? */ | |
891 | if ((op & 0x01fc0fff) == 0x000c0080) | |
892 | offset = 0; | |
893 | else | |
894 | offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
895 | ||
896 | /* If the address isn't relative to the SP or FP, it's not a | |
897 | prologue instruction. */ | |
898 | if (gr_i != sp_regnum && gr_i != fp_regnum) | |
d40fcd7b KB |
899 | { |
900 | /* Do nothing; not a prologue instruction. */ | |
901 | } | |
456f8b9d DB |
902 | |
903 | /* Saving the old FP in the new frame (relative to the SP). */ | |
d40fcd7b | 904 | else if (gr_k == fp_regnum && gr_i == sp_regnum) |
1cb761c7 KB |
905 | { |
906 | gr_saved[fp_regnum] = 1; | |
907 | gr_sp_offset[fp_regnum] = offset; | |
d40fcd7b | 908 | last_prologue_pc = next_pc; |
1cb761c7 | 909 | } |
456f8b9d DB |
910 | |
911 | /* Saving callee-saves register(s) on the stack, relative to | |
912 | the SP. */ | |
913 | else if (gr_i == sp_regnum | |
914 | && is_callee_saves_reg (gr_k)) | |
915 | { | |
916 | gr_saved[gr_k] = 1; | |
1cb761c7 KB |
917 | if (gr_i == sp_regnum) |
918 | gr_sp_offset[gr_k] = offset; | |
919 | else | |
920 | gr_sp_offset[gr_k] = offset + fp_offset; | |
d40fcd7b | 921 | last_prologue_pc = next_pc; |
456f8b9d DB |
922 | } |
923 | ||
924 | /* Saving the scratch register holding the return address. */ | |
925 | else if (lr_save_reg != -1 | |
926 | && gr_k == lr_save_reg) | |
1cb761c7 KB |
927 | { |
928 | lr_saved_on_stack = 1; | |
929 | if (gr_i == sp_regnum) | |
930 | lr_sp_offset = offset; | |
931 | else | |
932 | lr_sp_offset = offset + fp_offset; | |
d40fcd7b | 933 | last_prologue_pc = next_pc; |
1cb761c7 | 934 | } |
456f8b9d DB |
935 | |
936 | /* Spilling int-sized arguments to the stack. */ | |
937 | else if (is_argument_reg (gr_k)) | |
d40fcd7b | 938 | last_prologue_pc = next_pc; |
456f8b9d | 939 | } |
d40fcd7b | 940 | pc = next_pc; |
456f8b9d DB |
941 | } |
942 | ||
94afd7a6 | 943 | if (this_frame && info) |
456f8b9d | 944 | { |
1cb761c7 KB |
945 | int i; |
946 | ULONGEST this_base; | |
456f8b9d DB |
947 | |
948 | /* If we know the relationship between the stack and frame | |
949 | pointers, record the addresses of the registers we noticed. | |
950 | Note that we have to do this as a separate step at the end, | |
951 | because instructions may save relative to the SP, but we need | |
952 | their addresses relative to the FP. */ | |
953 | if (fp_set) | |
94afd7a6 | 954 | this_base = get_frame_register_unsigned (this_frame, fp_regnum); |
1cb761c7 | 955 | else |
94afd7a6 | 956 | this_base = get_frame_register_unsigned (this_frame, sp_regnum); |
456f8b9d | 957 | |
1cb761c7 KB |
958 | for (i = 0; i < 64; i++) |
959 | if (gr_saved[i]) | |
960 | info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i]; | |
456f8b9d | 961 | |
1cb761c7 KB |
962 | info->prev_sp = this_base - fp_offset + framesize; |
963 | info->base = this_base; | |
964 | ||
965 | /* If LR was saved on the stack, record its location. */ | |
966 | if (lr_saved_on_stack) | |
0963b4bd MS |
967 | info->saved_regs[lr_regnum].addr |
968 | = this_base - fp_offset + lr_sp_offset; | |
1cb761c7 KB |
969 | |
970 | /* The call instruction moves the caller's PC in the callee's LR. | |
971 | Since this is an unwind, do the reverse. Copy the location of LR | |
972 | into PC (the address / regnum) so that a request for PC will be | |
973 | converted into a request for the LR. */ | |
974 | info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum]; | |
975 | ||
976 | /* Save the previous frame's computed SP value. */ | |
977 | trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp); | |
456f8b9d DB |
978 | } |
979 | ||
d40fcd7b | 980 | return last_prologue_pc; |
456f8b9d DB |
981 | } |
982 | ||
983 | ||
984 | static CORE_ADDR | |
6093d2eb | 985 | frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
456f8b9d DB |
986 | { |
987 | CORE_ADDR func_addr, func_end, new_pc; | |
988 | ||
989 | new_pc = pc; | |
990 | ||
991 | /* If the line table has entry for a line *within* the function | |
992 | (i.e., not in the prologue, and not past the end), then that's | |
993 | our location. */ | |
994 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
995 | { | |
996 | struct symtab_and_line sal; | |
997 | ||
998 | sal = find_pc_line (func_addr, 0); | |
999 | ||
1000 | if (sal.line != 0 && sal.end < func_end) | |
1001 | { | |
1002 | new_pc = sal.end; | |
1003 | } | |
1004 | } | |
1005 | ||
1006 | /* The FR-V prologue is at least five instructions long (twenty bytes). | |
1007 | If we didn't find a real source location past that, then | |
1008 | do a full analysis of the prologue. */ | |
1009 | if (new_pc < pc + 20) | |
d80b854b | 1010 | new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0); |
456f8b9d DB |
1011 | |
1012 | return new_pc; | |
1013 | } | |
1014 | ||
1cb761c7 | 1015 | |
9bc7b6c6 KB |
1016 | /* Examine the instruction pointed to by PC. If it corresponds to |
1017 | a call to __main, return the address of the next instruction. | |
1018 | Otherwise, return PC. */ | |
1019 | ||
1020 | static CORE_ADDR | |
1021 | frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1022 | { | |
e17a4113 | 1023 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
9bc7b6c6 KB |
1024 | gdb_byte buf[4]; |
1025 | unsigned long op; | |
1026 | CORE_ADDR orig_pc = pc; | |
1027 | ||
1028 | if (target_read_memory (pc, buf, 4)) | |
1029 | return pc; | |
e17a4113 | 1030 | op = extract_unsigned_integer (buf, 4, byte_order); |
9bc7b6c6 KB |
1031 | |
1032 | /* In PIC code, GR15 may be loaded from some offset off of FP prior | |
1033 | to the call instruction. | |
1034 | ||
1035 | Skip over this instruction if present. It won't be present in | |
0963b4bd | 1036 | non-PIC code, and even in PIC code, it might not be present. |
9bc7b6c6 KB |
1037 | (This is due to the fact that GR15, the FDPIC register, already |
1038 | contains the correct value.) | |
1039 | ||
1040 | The general form of the LDI is given first, followed by the | |
1041 | specific instruction with the GRi and GRk filled in as FP and | |
1042 | GR15. | |
1043 | ||
1044 | ldi @(GRi, d12), GRk | |
1045 | P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000 | |
1046 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
1047 | . . . . . . . . | |
1048 | ldi @(FP, d12), GR15 | |
1049 | P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000 | |
1050 | 0 001111 1111111 000010 000000000000 = 0x7ffff000 | |
1051 | . . . . . . . . */ | |
1052 | ||
1053 | if ((op & 0x7ffff000) == 0x1ec82000) | |
1054 | { | |
1055 | pc += 4; | |
1056 | if (target_read_memory (pc, buf, 4)) | |
1057 | return orig_pc; | |
e17a4113 | 1058 | op = extract_unsigned_integer (buf, 4, byte_order); |
9bc7b6c6 KB |
1059 | } |
1060 | ||
1061 | /* The format of an FRV CALL instruction is as follows: | |
1062 | ||
1063 | call label24 | |
1064 | P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000 | |
1065 | 0 000000 1111111 000000000000000000 = 0x01fc0000 | |
1066 | . . . . . . . . | |
1067 | ||
1068 | where label24 is constructed by concatenating the H bits with the | |
1069 | L bits. The call target is PC + (4 * sign_ext(label24)). */ | |
1070 | ||
1071 | if ((op & 0x01fc0000) == 0x003c0000) | |
1072 | { | |
1073 | LONGEST displ; | |
1074 | CORE_ADDR call_dest; | |
7cbd4a93 | 1075 | struct bound_minimal_symbol s; |
9bc7b6c6 KB |
1076 | |
1077 | displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff); | |
1078 | if ((displ & 0x00800000) != 0) | |
1079 | displ |= ~((LONGEST) 0x00ffffff); | |
1080 | ||
1081 | call_dest = pc + 4 * displ; | |
1082 | s = lookup_minimal_symbol_by_pc (call_dest); | |
1083 | ||
7cbd4a93 TT |
1084 | if (s.minsym != NULL |
1085 | && SYMBOL_LINKAGE_NAME (s.minsym) != NULL | |
1086 | && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0) | |
9bc7b6c6 KB |
1087 | { |
1088 | pc += 4; | |
1089 | return pc; | |
1090 | } | |
1091 | } | |
1092 | return orig_pc; | |
1093 | } | |
1094 | ||
1095 | ||
1cb761c7 | 1096 | static struct frv_unwind_cache * |
94afd7a6 | 1097 | frv_frame_unwind_cache (struct frame_info *this_frame, |
1cb761c7 | 1098 | void **this_prologue_cache) |
456f8b9d | 1099 | { |
94afd7a6 | 1100 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1cb761c7 | 1101 | struct frv_unwind_cache *info; |
8baa6f92 | 1102 | |
1cb761c7 KB |
1103 | if ((*this_prologue_cache)) |
1104 | return (*this_prologue_cache); | |
456f8b9d | 1105 | |
1cb761c7 KB |
1106 | info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache); |
1107 | (*this_prologue_cache) = info; | |
94afd7a6 | 1108 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
456f8b9d | 1109 | |
1cb761c7 | 1110 | /* Prologue analysis does the rest... */ |
d80b854b UW |
1111 | frv_analyze_prologue (gdbarch, |
1112 | get_frame_func (this_frame), this_frame, info); | |
456f8b9d | 1113 | |
1cb761c7 | 1114 | return info; |
456f8b9d DB |
1115 | } |
1116 | ||
456f8b9d | 1117 | static void |
cd31fb03 | 1118 | frv_extract_return_value (struct type *type, struct regcache *regcache, |
e2b7c966 | 1119 | gdb_byte *valbuf) |
456f8b9d | 1120 | { |
e17a4113 UW |
1121 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1122 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
cd31fb03 KB |
1123 | int len = TYPE_LENGTH (type); |
1124 | ||
1125 | if (len <= 4) | |
1126 | { | |
1127 | ULONGEST gpr8_val; | |
1128 | regcache_cooked_read_unsigned (regcache, 8, &gpr8_val); | |
e17a4113 | 1129 | store_unsigned_integer (valbuf, len, byte_order, gpr8_val); |
cd31fb03 KB |
1130 | } |
1131 | else if (len == 8) | |
1132 | { | |
1133 | ULONGEST regval; | |
0963b4bd | 1134 | |
cd31fb03 | 1135 | regcache_cooked_read_unsigned (regcache, 8, ®val); |
e17a4113 | 1136 | store_unsigned_integer (valbuf, 4, byte_order, regval); |
cd31fb03 | 1137 | regcache_cooked_read_unsigned (regcache, 9, ®val); |
e17a4113 | 1138 | store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval); |
cd31fb03 KB |
1139 | } |
1140 | else | |
0963b4bd MS |
1141 | internal_error (__FILE__, __LINE__, |
1142 | _("Illegal return value length: %d"), len); | |
456f8b9d DB |
1143 | } |
1144 | ||
1cb761c7 KB |
1145 | static CORE_ADDR |
1146 | frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
456f8b9d | 1147 | { |
1cb761c7 | 1148 | /* Require dword alignment. */ |
5b03f266 | 1149 | return align_down (sp, 8); |
456f8b9d DB |
1150 | } |
1151 | ||
c4d10515 KB |
1152 | static CORE_ADDR |
1153 | find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point) | |
1154 | { | |
e17a4113 | 1155 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c4d10515 | 1156 | CORE_ADDR descr; |
948f8e3d | 1157 | gdb_byte valbuf[4]; |
35e08e03 KB |
1158 | CORE_ADDR start_addr; |
1159 | ||
1160 | /* If we can't find the function in the symbol table, then we assume | |
1161 | that the function address is already in descriptor form. */ | |
1162 | if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL) | |
1163 | || entry_point != start_addr) | |
1164 | return entry_point; | |
c4d10515 KB |
1165 | |
1166 | descr = frv_fdpic_find_canonical_descriptor (entry_point); | |
1167 | ||
1168 | if (descr != 0) | |
1169 | return descr; | |
1170 | ||
1171 | /* Construct a non-canonical descriptor from space allocated on | |
1172 | the stack. */ | |
1173 | ||
1174 | descr = value_as_long (value_allocate_space_in_inferior (8)); | |
e17a4113 | 1175 | store_unsigned_integer (valbuf, 4, byte_order, entry_point); |
c4d10515 | 1176 | write_memory (descr, valbuf, 4); |
e17a4113 | 1177 | store_unsigned_integer (valbuf, 4, byte_order, |
c4d10515 KB |
1178 | frv_fdpic_find_global_pointer (entry_point)); |
1179 | write_memory (descr + 4, valbuf, 4); | |
1180 | return descr; | |
1181 | } | |
1182 | ||
1183 | static CORE_ADDR | |
1184 | frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, | |
1185 | struct target_ops *targ) | |
1186 | { | |
e17a4113 | 1187 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c4d10515 KB |
1188 | CORE_ADDR entry_point; |
1189 | CORE_ADDR got_address; | |
1190 | ||
e17a4113 UW |
1191 | entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order); |
1192 | got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order); | |
c4d10515 KB |
1193 | |
1194 | if (got_address == frv_fdpic_find_global_pointer (entry_point)) | |
1195 | return entry_point; | |
1196 | else | |
1197 | return addr; | |
1198 | } | |
1199 | ||
456f8b9d | 1200 | static CORE_ADDR |
7d9b040b | 1201 | frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
1cb761c7 KB |
1202 | struct regcache *regcache, CORE_ADDR bp_addr, |
1203 | int nargs, struct value **args, CORE_ADDR sp, | |
1204 | int struct_return, CORE_ADDR struct_addr) | |
456f8b9d | 1205 | { |
e17a4113 | 1206 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
456f8b9d DB |
1207 | int argreg; |
1208 | int argnum; | |
948f8e3d PA |
1209 | const gdb_byte *val; |
1210 | gdb_byte valbuf[4]; | |
456f8b9d DB |
1211 | struct value *arg; |
1212 | struct type *arg_type; | |
1213 | int len; | |
1214 | enum type_code typecode; | |
1215 | CORE_ADDR regval; | |
1216 | int stack_space; | |
1217 | int stack_offset; | |
c4d10515 | 1218 | enum frv_abi abi = frv_abi (gdbarch); |
7d9b040b | 1219 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
456f8b9d DB |
1220 | |
1221 | #if 0 | |
1222 | printf("Push %d args at sp = %x, struct_return=%d (%x)\n", | |
1223 | nargs, (int) sp, struct_return, struct_addr); | |
1224 | #endif | |
1225 | ||
1226 | stack_space = 0; | |
1227 | for (argnum = 0; argnum < nargs; ++argnum) | |
4991999e | 1228 | stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4); |
456f8b9d DB |
1229 | |
1230 | stack_space -= (6 * 4); | |
1231 | if (stack_space > 0) | |
1232 | sp -= stack_space; | |
1233 | ||
0963b4bd | 1234 | /* Make sure stack is dword aligned. */ |
5b03f266 | 1235 | sp = align_down (sp, 8); |
456f8b9d DB |
1236 | |
1237 | stack_offset = 0; | |
1238 | ||
1239 | argreg = 8; | |
1240 | ||
1241 | if (struct_return) | |
1cb761c7 KB |
1242 | regcache_cooked_write_unsigned (regcache, struct_return_regnum, |
1243 | struct_addr); | |
456f8b9d DB |
1244 | |
1245 | for (argnum = 0; argnum < nargs; ++argnum) | |
1246 | { | |
1247 | arg = args[argnum]; | |
4991999e | 1248 | arg_type = check_typedef (value_type (arg)); |
456f8b9d DB |
1249 | len = TYPE_LENGTH (arg_type); |
1250 | typecode = TYPE_CODE (arg_type); | |
1251 | ||
1252 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
1253 | { | |
e17a4113 UW |
1254 | store_unsigned_integer (valbuf, 4, byte_order, |
1255 | value_address (arg)); | |
456f8b9d DB |
1256 | typecode = TYPE_CODE_PTR; |
1257 | len = 4; | |
1258 | val = valbuf; | |
1259 | } | |
c4d10515 KB |
1260 | else if (abi == FRV_ABI_FDPIC |
1261 | && len == 4 | |
1262 | && typecode == TYPE_CODE_PTR | |
1263 | && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC) | |
1264 | { | |
1265 | /* The FDPIC ABI requires function descriptors to be passed instead | |
1266 | of entry points. */ | |
e17a4113 UW |
1267 | CORE_ADDR addr = extract_unsigned_integer |
1268 | (value_contents (arg), 4, byte_order); | |
1269 | addr = find_func_descr (gdbarch, addr); | |
1270 | store_unsigned_integer (valbuf, 4, byte_order, addr); | |
c4d10515 KB |
1271 | typecode = TYPE_CODE_PTR; |
1272 | len = 4; | |
1273 | val = valbuf; | |
1274 | } | |
456f8b9d DB |
1275 | else |
1276 | { | |
948f8e3d | 1277 | val = value_contents (arg); |
456f8b9d DB |
1278 | } |
1279 | ||
1280 | while (len > 0) | |
1281 | { | |
1282 | int partial_len = (len < 4 ? len : 4); | |
1283 | ||
1284 | if (argreg < 14) | |
1285 | { | |
e17a4113 | 1286 | regval = extract_unsigned_integer (val, partial_len, byte_order); |
456f8b9d DB |
1287 | #if 0 |
1288 | printf(" Argnum %d data %x -> reg %d\n", | |
1289 | argnum, (int) regval, argreg); | |
1290 | #endif | |
1cb761c7 | 1291 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
456f8b9d DB |
1292 | ++argreg; |
1293 | } | |
1294 | else | |
1295 | { | |
1296 | #if 0 | |
1297 | printf(" Argnum %d data %x -> offset %d (%x)\n", | |
0963b4bd MS |
1298 | argnum, *((int *)val), stack_offset, |
1299 | (int) (sp + stack_offset)); | |
456f8b9d DB |
1300 | #endif |
1301 | write_memory (sp + stack_offset, val, partial_len); | |
5b03f266 | 1302 | stack_offset += align_up (partial_len, 4); |
456f8b9d DB |
1303 | } |
1304 | len -= partial_len; | |
1305 | val += partial_len; | |
1306 | } | |
1307 | } | |
456f8b9d | 1308 | |
1cb761c7 KB |
1309 | /* Set the return address. For the frv, the return breakpoint is |
1310 | always at BP_ADDR. */ | |
1311 | regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr); | |
1312 | ||
c4d10515 KB |
1313 | if (abi == FRV_ABI_FDPIC) |
1314 | { | |
1315 | /* Set the GOT register for the FDPIC ABI. */ | |
1316 | regcache_cooked_write_unsigned | |
1317 | (regcache, first_gpr_regnum + 15, | |
1318 | frv_fdpic_find_global_pointer (func_addr)); | |
1319 | } | |
1320 | ||
1cb761c7 KB |
1321 | /* Finally, update the SP register. */ |
1322 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); | |
1323 | ||
456f8b9d DB |
1324 | return sp; |
1325 | } | |
1326 | ||
1327 | static void | |
cd31fb03 | 1328 | frv_store_return_value (struct type *type, struct regcache *regcache, |
e2b7c966 | 1329 | const gdb_byte *valbuf) |
456f8b9d | 1330 | { |
cd31fb03 KB |
1331 | int len = TYPE_LENGTH (type); |
1332 | ||
1333 | if (len <= 4) | |
1334 | { | |
1335 | bfd_byte val[4]; | |
1336 | memset (val, 0, sizeof (val)); | |
1337 | memcpy (val + (4 - len), valbuf, len); | |
1338 | regcache_cooked_write (regcache, 8, val); | |
1339 | } | |
1340 | else if (len == 8) | |
1341 | { | |
1342 | regcache_cooked_write (regcache, 8, valbuf); | |
1343 | regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4); | |
1344 | } | |
456f8b9d DB |
1345 | else |
1346 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 1347 | _("Don't know how to return a %d-byte value."), len); |
456f8b9d DB |
1348 | } |
1349 | ||
63807e1d | 1350 | static enum return_value_convention |
6a3a010b | 1351 | frv_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
1352 | struct type *valtype, struct regcache *regcache, |
1353 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 UW |
1354 | { |
1355 | int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
1356 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
1357 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY; | |
1358 | ||
1359 | if (writebuf != NULL) | |
1360 | { | |
1361 | gdb_assert (!struct_return); | |
1362 | frv_store_return_value (valtype, regcache, writebuf); | |
1363 | } | |
1364 | ||
1365 | if (readbuf != NULL) | |
1366 | { | |
1367 | gdb_assert (!struct_return); | |
1368 | frv_extract_return_value (valtype, regcache, readbuf); | |
1369 | } | |
1370 | ||
1371 | if (struct_return) | |
1372 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1373 | else | |
1374 | return RETURN_VALUE_REGISTER_CONVENTION; | |
456f8b9d DB |
1375 | } |
1376 | ||
1cb761c7 KB |
1377 | static CORE_ADDR |
1378 | frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1379 | { | |
1380 | return frame_unwind_register_unsigned (next_frame, pc_regnum); | |
1381 | } | |
1382 | ||
1383 | /* Given a GDB frame, determine the address of the calling function's | |
1384 | frame. This will be used to create a new GDB frame struct. */ | |
1385 | ||
1386 | static void | |
94afd7a6 | 1387 | frv_frame_this_id (struct frame_info *this_frame, |
1cb761c7 KB |
1388 | void **this_prologue_cache, struct frame_id *this_id) |
1389 | { | |
1390 | struct frv_unwind_cache *info | |
94afd7a6 | 1391 | = frv_frame_unwind_cache (this_frame, this_prologue_cache); |
1cb761c7 KB |
1392 | CORE_ADDR base; |
1393 | CORE_ADDR func; | |
1394 | struct minimal_symbol *msym_stack; | |
1395 | struct frame_id id; | |
1396 | ||
1397 | /* The FUNC is easy. */ | |
94afd7a6 | 1398 | func = get_frame_func (this_frame); |
1cb761c7 | 1399 | |
1cb761c7 KB |
1400 | /* Check if the stack is empty. */ |
1401 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
1402 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
1403 | return; | |
1404 | ||
1405 | /* Hopefully the prologue analysis either correctly determined the | |
1406 | frame's base (which is the SP from the previous frame), or set | |
1407 | that base to "NULL". */ | |
1408 | base = info->prev_sp; | |
1409 | if (base == 0) | |
1410 | return; | |
1411 | ||
1412 | id = frame_id_build (base, func); | |
1cb761c7 KB |
1413 | (*this_id) = id; |
1414 | } | |
1415 | ||
94afd7a6 UW |
1416 | static struct value * |
1417 | frv_frame_prev_register (struct frame_info *this_frame, | |
1418 | void **this_prologue_cache, int regnum) | |
1cb761c7 KB |
1419 | { |
1420 | struct frv_unwind_cache *info | |
94afd7a6 UW |
1421 | = frv_frame_unwind_cache (this_frame, this_prologue_cache); |
1422 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
1cb761c7 KB |
1423 | } |
1424 | ||
1425 | static const struct frame_unwind frv_frame_unwind = { | |
1426 | NORMAL_FRAME, | |
8fbca658 | 1427 | default_frame_unwind_stop_reason, |
1cb761c7 | 1428 | frv_frame_this_id, |
94afd7a6 UW |
1429 | frv_frame_prev_register, |
1430 | NULL, | |
1431 | default_frame_sniffer | |
1cb761c7 KB |
1432 | }; |
1433 | ||
1cb761c7 | 1434 | static CORE_ADDR |
94afd7a6 | 1435 | frv_frame_base_address (struct frame_info *this_frame, void **this_cache) |
1cb761c7 KB |
1436 | { |
1437 | struct frv_unwind_cache *info | |
94afd7a6 | 1438 | = frv_frame_unwind_cache (this_frame, this_cache); |
1cb761c7 KB |
1439 | return info->base; |
1440 | } | |
1441 | ||
1442 | static const struct frame_base frv_frame_base = { | |
1443 | &frv_frame_unwind, | |
1444 | frv_frame_base_address, | |
1445 | frv_frame_base_address, | |
1446 | frv_frame_base_address | |
1447 | }; | |
1448 | ||
1449 | static CORE_ADDR | |
1450 | frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1451 | { | |
1452 | return frame_unwind_register_unsigned (next_frame, sp_regnum); | |
1453 | } | |
1454 | ||
1455 | ||
94afd7a6 UW |
1456 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1457 | frame. The frame ID's base needs to match the TOS value saved by | |
1458 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
1cb761c7 KB |
1459 | |
1460 | static struct frame_id | |
94afd7a6 | 1461 | frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
1cb761c7 | 1462 | { |
94afd7a6 UW |
1463 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum); |
1464 | return frame_id_build (sp, get_frame_pc (this_frame)); | |
1cb761c7 KB |
1465 | } |
1466 | ||
456f8b9d DB |
1467 | static struct gdbarch * |
1468 | frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1469 | { | |
1470 | struct gdbarch *gdbarch; | |
1471 | struct gdbarch_tdep *var; | |
7e295833 | 1472 | int elf_flags = 0; |
456f8b9d DB |
1473 | |
1474 | /* Check to see if we've already built an appropriate architecture | |
1475 | object for this executable. */ | |
1476 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1477 | if (arches) | |
1478 | return arches->gdbarch; | |
1479 | ||
1480 | /* Select the right tdep structure for this variant. */ | |
1481 | var = new_variant (); | |
1482 | switch (info.bfd_arch_info->mach) | |
1483 | { | |
1484 | case bfd_mach_frv: | |
1485 | case bfd_mach_frvsimple: | |
1486 | case bfd_mach_fr500: | |
1487 | case bfd_mach_frvtomcat: | |
251a3ae3 | 1488 | case bfd_mach_fr550: |
456f8b9d DB |
1489 | set_variant_num_gprs (var, 64); |
1490 | set_variant_num_fprs (var, 64); | |
1491 | break; | |
1492 | ||
1493 | case bfd_mach_fr400: | |
b2d6d697 | 1494 | case bfd_mach_fr450: |
456f8b9d DB |
1495 | set_variant_num_gprs (var, 32); |
1496 | set_variant_num_fprs (var, 32); | |
1497 | break; | |
1498 | ||
1499 | default: | |
1500 | /* Never heard of this variant. */ | |
1501 | return 0; | |
1502 | } | |
7e295833 KB |
1503 | |
1504 | /* Extract the ELF flags, if available. */ | |
1505 | if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1506 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
1507 | ||
1508 | if (elf_flags & EF_FRV_FDPIC) | |
1509 | set_variant_abi_fdpic (var); | |
1510 | ||
b2d6d697 KB |
1511 | if (elf_flags & EF_FRV_CPU_FR450) |
1512 | set_variant_scratch_registers (var); | |
1513 | ||
456f8b9d DB |
1514 | gdbarch = gdbarch_alloc (&info, var); |
1515 | ||
1516 | set_gdbarch_short_bit (gdbarch, 16); | |
1517 | set_gdbarch_int_bit (gdbarch, 32); | |
1518 | set_gdbarch_long_bit (gdbarch, 32); | |
1519 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1520 | set_gdbarch_float_bit (gdbarch, 32); | |
1521 | set_gdbarch_double_bit (gdbarch, 64); | |
1522 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1523 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1524 | ||
1525 | set_gdbarch_num_regs (gdbarch, frv_num_regs); | |
6a748db6 KB |
1526 | set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs); |
1527 | ||
456f8b9d | 1528 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
0ba6dca9 | 1529 | set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum); |
456f8b9d DB |
1530 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); |
1531 | ||
1532 | set_gdbarch_register_name (gdbarch, frv_register_name); | |
7f398216 | 1533 | set_gdbarch_register_type (gdbarch, frv_register_type); |
526eef89 | 1534 | set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno); |
456f8b9d | 1535 | |
6a748db6 KB |
1536 | set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read); |
1537 | set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write); | |
1538 | ||
456f8b9d | 1539 | set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue); |
9bc7b6c6 | 1540 | set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue); |
456f8b9d | 1541 | set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc); |
1208538e MK |
1542 | set_gdbarch_adjust_breakpoint_address |
1543 | (gdbarch, frv_adjust_breakpoint_address); | |
456f8b9d | 1544 | |
4c8b6ae0 | 1545 | set_gdbarch_return_value (gdbarch, frv_return_value); |
456f8b9d | 1546 | |
1cb761c7 KB |
1547 | /* Frame stuff. */ |
1548 | set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc); | |
1549 | set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp); | |
1550 | set_gdbarch_frame_align (gdbarch, frv_frame_align); | |
1cb761c7 | 1551 | frame_base_set_default (gdbarch, &frv_frame_base); |
5ecb7103 KB |
1552 | /* We set the sniffer lower down after the OSABI hooks have been |
1553 | established. */ | |
456f8b9d | 1554 | |
1cb761c7 KB |
1555 | /* Settings for calling functions in the inferior. */ |
1556 | set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call); | |
94afd7a6 | 1557 | set_gdbarch_dummy_id (gdbarch, frv_dummy_id); |
456f8b9d DB |
1558 | |
1559 | /* Settings that should be unnecessary. */ | |
1560 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1561 | ||
456f8b9d DB |
1562 | /* Hardware watchpoint / breakpoint support. */ |
1563 | switch (info.bfd_arch_info->mach) | |
1564 | { | |
1565 | case bfd_mach_frv: | |
1566 | case bfd_mach_frvsimple: | |
1567 | case bfd_mach_fr500: | |
1568 | case bfd_mach_frvtomcat: | |
1569 | /* fr500-style hardware debugging support. */ | |
1570 | var->num_hw_watchpoints = 4; | |
1571 | var->num_hw_breakpoints = 4; | |
1572 | break; | |
1573 | ||
1574 | case bfd_mach_fr400: | |
b2d6d697 | 1575 | case bfd_mach_fr450: |
456f8b9d DB |
1576 | /* fr400-style hardware debugging support. */ |
1577 | var->num_hw_watchpoints = 2; | |
1578 | var->num_hw_breakpoints = 4; | |
1579 | break; | |
1580 | ||
1581 | default: | |
1582 | /* Otherwise, assume we don't have hardware debugging support. */ | |
1583 | var->num_hw_watchpoints = 0; | |
1584 | var->num_hw_breakpoints = 0; | |
1585 | break; | |
1586 | } | |
1587 | ||
36482093 | 1588 | set_gdbarch_print_insn (gdbarch, print_insn_frv); |
c4d10515 KB |
1589 | if (frv_abi (gdbarch) == FRV_ABI_FDPIC) |
1590 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1591 | frv_convert_from_func_ptr_addr); | |
36482093 | 1592 | |
917630e4 UW |
1593 | set_solib_ops (gdbarch, &frv_so_ops); |
1594 | ||
5ecb7103 KB |
1595 | /* Hook in ABI-specific overrides, if they have been registered. */ |
1596 | gdbarch_init_osabi (info, gdbarch); | |
1597 | ||
5ecb7103 | 1598 | /* Set the fallback (prologue based) frame sniffer. */ |
94afd7a6 | 1599 | frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind); |
5ecb7103 | 1600 | |
186993b4 KB |
1601 | /* Enable TLS support. */ |
1602 | set_gdbarch_fetch_tls_load_module_address (gdbarch, | |
1603 | frv_fetch_objfile_link_map); | |
1604 | ||
456f8b9d DB |
1605 | return gdbarch; |
1606 | } | |
1607 | ||
1608 | void | |
1609 | _initialize_frv_tdep (void) | |
1610 | { | |
1611 | register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init); | |
456f8b9d | 1612 | } |