fixup position of #ifdef BFD64 for powerpc delta recently applied.
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d
DB
1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
22#include "inferior.h"
23#include "symfile.h" /* for entry_point_address */
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
27
28extern void _initialize_frv_tdep (void);
29
30static gdbarch_init_ftype frv_gdbarch_init;
31
32static gdbarch_register_name_ftype frv_register_name;
33static gdbarch_register_raw_size_ftype frv_register_raw_size;
34static gdbarch_register_virtual_size_ftype frv_register_virtual_size;
35static gdbarch_register_virtual_type_ftype frv_register_virtual_type;
36static gdbarch_register_byte_ftype frv_register_byte;
37static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
38static gdbarch_frame_chain_ftype frv_frame_chain;
39static gdbarch_frame_saved_pc_ftype frv_frame_saved_pc;
40static gdbarch_skip_prologue_ftype frv_skip_prologue;
41static gdbarch_frame_init_saved_regs_ftype frv_frame_init_saved_regs;
42static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
43static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
44static gdbarch_use_struct_convention_ftype frv_use_struct_convention;
45static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
46static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info;
47static gdbarch_store_return_value_ftype frv_store_return_value;
48static gdbarch_store_struct_return_ftype frv_store_struct_return;
49static gdbarch_push_arguments_ftype frv_push_arguments;
50static gdbarch_push_return_address_ftype frv_push_return_address;
51static gdbarch_pop_frame_ftype frv_pop_frame;
52static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call;
53
54static void frv_pop_frame_regular (struct frame_info *frame);
55
56/* Register numbers. You can change these as needed, but don't forget
57 to update the simulator accordingly. */
58enum {
59 /* The total number of registers we know exist. */
60 frv_num_regs = 147,
61
62 /* Register numbers 0 -- 63 are always reserved for general-purpose
63 registers. The chip at hand may have less. */
64 first_gpr_regnum = 0,
65 sp_regnum = 1,
66 fp_regnum = 2,
67 struct_return_regnum = 3,
68 last_gpr_regnum = 63,
69
70 /* Register numbers 64 -- 127 are always reserved for floating-point
71 registers. The chip at hand may have less. */
72 first_fpr_regnum = 64,
73 last_fpr_regnum = 127,
74
75 /* Register numbers 128 on up are always reserved for special-purpose
76 registers. */
77 first_spr_regnum = 128,
78 pc_regnum = 128,
79 psr_regnum = 129,
80 ccr_regnum = 130,
81 cccr_regnum = 131,
82 tbr_regnum = 135,
83 brr_regnum = 136,
84 dbar0_regnum = 137,
85 dbar1_regnum = 138,
86 dbar2_regnum = 139,
87 dbar3_regnum = 140,
88 lr_regnum = 145,
89 lcr_regnum = 146,
90 last_spr_regnum = 146
91};
92
93static LONGEST frv_call_dummy_words[] =
94{0};
95
96
97/* The contents of this structure can only be trusted after we've
98 frv_frame_init_saved_regs on the frame. */
99struct frame_extra_info
100 {
101 /* The offset from our frame pointer to our caller's stack
102 pointer. */
103 int fp_to_callers_sp_offset;
104
105 /* Non-zero if we've saved our return address on the stack yet.
106 Zero if it's still sitting in the link register. */
107 int lr_saved_on_stack;
108 };
109
110
111/* A structure describing a particular variant of the FRV.
112 We allocate and initialize one of these structures when we create
113 the gdbarch object for a variant.
114
115 At the moment, all the FR variants we support differ only in which
116 registers are present; the portable code of GDB knows that
117 registers whose names are the empty string don't exist, so the
118 `register_names' array captures all the per-variant information we
119 need.
120
121 in the future, if we need to have per-variant maps for raw size,
122 virtual type, etc., we should replace register_names with an array
123 of structures, each of which gives all the necessary info for one
124 register. Don't stick parallel arrays in here --- that's so
125 Fortran. */
126struct gdbarch_tdep
127{
128 /* How many general-purpose registers does this variant have? */
129 int num_gprs;
130
131 /* How many floating-point registers does this variant have? */
132 int num_fprs;
133
134 /* How many hardware watchpoints can it support? */
135 int num_hw_watchpoints;
136
137 /* How many hardware breakpoints can it support? */
138 int num_hw_breakpoints;
139
140 /* Register names. */
141 char **register_names;
142};
143
144#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
145
146
147/* Allocate a new variant structure, and set up default values for all
148 the fields. */
149static struct gdbarch_tdep *
150new_variant ()
151{
152 struct gdbarch_tdep *var;
153 int r;
154 char buf[20];
155
156 var = xmalloc (sizeof (*var));
157 memset (var, 0, sizeof (*var));
158
159 var->num_gprs = 64;
160 var->num_fprs = 64;
161 var->num_hw_watchpoints = 0;
162 var->num_hw_breakpoints = 0;
163
164 /* By default, don't supply any general-purpose or floating-point
165 register names. */
166 var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
167 for (r = 0; r < frv_num_regs; r++)
168 var->register_names[r] = "";
169
170 /* Do, however, supply default names for the special-purpose
171 registers. */
172 for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
173 {
174 sprintf (buf, "x%d", r);
175 var->register_names[r] = xstrdup (buf);
176 }
177
178 var->register_names[pc_regnum] = "pc";
179 var->register_names[lr_regnum] = "lr";
180 var->register_names[lcr_regnum] = "lcr";
181
182 var->register_names[psr_regnum] = "psr";
183 var->register_names[ccr_regnum] = "ccr";
184 var->register_names[cccr_regnum] = "cccr";
185 var->register_names[tbr_regnum] = "tbr";
186
187 /* Debug registers. */
188 var->register_names[brr_regnum] = "brr";
189 var->register_names[dbar0_regnum] = "dbar0";
190 var->register_names[dbar1_regnum] = "dbar1";
191 var->register_names[dbar2_regnum] = "dbar2";
192 var->register_names[dbar3_regnum] = "dbar3";
193
194 return var;
195}
196
197
198/* Indicate that the variant VAR has NUM_GPRS general-purpose
199 registers, and fill in the names array appropriately. */
200static void
201set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
202{
203 int r;
204
205 var->num_gprs = num_gprs;
206
207 for (r = 0; r < num_gprs; ++r)
208 {
209 char buf[20];
210
211 sprintf (buf, "gr%d", r);
212 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
213 }
214}
215
216
217/* Indicate that the variant VAR has NUM_FPRS floating-point
218 registers, and fill in the names array appropriately. */
219static void
220set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
221{
222 int r;
223
224 var->num_fprs = num_fprs;
225
226 for (r = 0; r < num_fprs; ++r)
227 {
228 char buf[20];
229
230 sprintf (buf, "fr%d", r);
231 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
232 }
233}
234
235
236static const char *
237frv_register_name (int reg)
238{
239 if (reg < 0)
240 return "?toosmall?";
241 if (reg >= frv_num_regs)
242 return "?toolarge?";
243
244 return CURRENT_VARIANT->register_names[reg];
245}
246
247
248static int
249frv_register_raw_size (int reg)
250{
251 return 4;
252}
253
254static int
255frv_register_virtual_size (int reg)
256{
257 return 4;
258}
259
260static struct type *
261frv_register_virtual_type (int reg)
262{
263 if (reg >= 64 && reg <= 127)
264 return builtin_type_float;
265 else
266 return builtin_type_int;
267}
268
269static int
270frv_register_byte (int reg)
271{
272 return (reg * 4);
273}
274
275static const unsigned char *
276frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
277{
278 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
279 *lenp = sizeof (breakpoint);
280 return breakpoint;
281}
282
283static CORE_ADDR
284frv_frame_chain (struct frame_info *frame)
285{
286 CORE_ADDR saved_fp_addr;
287
288 if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0)
289 saved_fp_addr = frame->saved_regs[fp_regnum];
290 else
291 /* Just assume it was saved in the usual place. */
292 saved_fp_addr = frame->frame;
293
294 return read_memory_integer (saved_fp_addr, 4);
295}
296
297static CORE_ADDR
298frv_frame_saved_pc (struct frame_info *frame)
299{
300 frv_frame_init_saved_regs (frame);
301
302 /* Perhaps the prologue analyzer recorded where it was stored.
303 (As of 14 Oct 2001, it never does.) */
304 if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0)
305 return read_memory_integer (frame->saved_regs[pc_regnum], 4);
306
307 /* If the prologue analyzer tells us the link register was saved on
308 the stack, get it from there. */
309 if (frame->extra_info->lr_saved_on_stack)
310 return read_memory_integer (frame->frame + 8, 4);
311
312 /* Otherwise, it's still in LR.
313 However, if FRAME isn't the youngest frame, this is kind of
314 suspicious --- if this frame called somebody else, then its LR
315 has certainly been overwritten. */
316 if (! frame->next)
317 return read_register (lr_regnum);
318
319 /* By default, assume it's saved in the standard place, relative to
320 the frame pointer. */
321 return read_memory_integer (frame->frame + 8, 4);
322}
323
324
325/* Return true if REG is a caller-saves ("scratch") register,
326 false otherwise. */
327static int
328is_caller_saves_reg (int reg)
329{
330 return ((4 <= reg && reg <= 7)
331 || (14 <= reg && reg <= 15)
332 || (32 <= reg && reg <= 47));
333}
334
335
336/* Return true if REG is a callee-saves register, false otherwise. */
337static int
338is_callee_saves_reg (int reg)
339{
340 return ((16 <= reg && reg <= 31)
341 || (48 <= reg && reg <= 63));
342}
343
344
345/* Return true if REG is an argument register, false otherwise. */
346static int
347is_argument_reg (int reg)
348{
349 return (8 <= reg && reg <= 13);
350}
351
352
353/* Scan an FR-V prologue, starting at PC, until frame->PC.
354 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
355 We assume FRAME's saved_regs array has already been allocated and cleared.
356 Return the first PC value after the prologue.
357
358 Note that, for unoptimized code, we almost don't need this function
359 at all; all arguments and locals live on the stack, so we just need
360 the FP to find everything. The catch: structures passed by value
361 have their addresses living in registers; they're never spilled to
362 the stack. So if you ever want to be able to get to these
363 arguments in any frame but the top, you'll need to do this serious
364 prologue analysis. */
365static CORE_ADDR
366frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame)
367{
368 /* When writing out instruction bitpatterns, we use the following
369 letters to label instruction fields:
370 P - The parallel bit. We don't use this.
371 J - The register number of GRj in the instruction description.
372 K - The register number of GRk in the instruction description.
373 I - The register number of GRi.
374 S - a signed imediate offset.
375 U - an unsigned immediate offset.
376
377 The dots below the numbers indicate where hex digit boundaries
378 fall, to make it easier to check the numbers. */
379
380 /* Non-zero iff we've seen the instruction that initializes the
381 frame pointer for this function's frame. */
382 int fp_set = 0;
383
384 /* If fp_set is non_zero, then this is the distance from
385 the stack pointer to frame pointer: fp = sp + fp_offset. */
386 int fp_offset = 0;
387
388 /* Total size of frame prior to any alloca operations. */
389 int framesize = 0;
390
391 /* The number of the general-purpose register we saved the return
392 address ("link register") in, or -1 if we haven't moved it yet. */
393 int lr_save_reg = -1;
394
395 /* Non-zero iff we've saved the LR onto the stack. */
396 int lr_saved_on_stack = 0;
397
398 /* If gr_saved[i] is non-zero, then we've noticed that general
399 register i has been saved at gr_sp_offset[i] from the stack
400 pointer. */
401 char gr_saved[64];
402 int gr_sp_offset[64];
403
404 memset (gr_saved, 0, sizeof (gr_saved));
405
406 while (! frame || pc < frame->pc)
407 {
408 LONGEST op = read_memory_integer (pc, 4);
409
410 /* The tests in this chain of ifs should be in order of
411 decreasing selectivity, so that more particular patterns get
412 to fire before less particular patterns. */
413
414 /* Setting the FP from the SP:
415 ori sp, 0, fp
416 P 000010 0100010 000001 000000000000 = 0x04881000
417 0 111111 1111111 111111 111111111111 = 0x7fffffff
418 . . . . . . . .
419 We treat this as part of the prologue. */
420 if ((op & 0x7fffffff) == 0x04881000)
421 {
422 fp_set = 1;
423 fp_offset = 0;
424 }
425
426 /* Move the link register to the scratch register grJ, before saving:
427 movsg lr, grJ
428 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
429 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
430 . . . . . . . .
431 We treat this as part of the prologue. */
432 else if ((op & 0x7fffffc0) == 0x080d01c0)
433 {
434 int gr_j = op & 0x3f;
435
436 /* If we're moving it to a scratch register, that's fine. */
437 if (is_caller_saves_reg (gr_j))
438 lr_save_reg = gr_j;
439 /* Otherwise it's not a prologue instruction that we
440 recognize. */
441 else
442 break;
443 }
444
445 /* To save multiple callee-saves registers on the stack, at
446 offset zero:
447
448 std grK,@(sp,gr0)
449 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
450 0 000000 1111111 111111 111111 111111 = 0x01ffffff
451
452 stq grK,@(sp,gr0)
453 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
454 0 000000 1111111 111111 111111 111111 = 0x01ffffff
455 . . . . . . . .
456 We treat this as part of the prologue, and record the register's
457 saved address in the frame structure. */
458 else if ((op & 0x01ffffff) == 0x000c10c0
459 || (op & 0x01ffffff) == 0x000c1100)
460 {
461 int gr_k = ((op >> 25) & 0x3f);
462 int ope = ((op >> 6) & 0x3f);
463 int count;
464 int i;
465
466 /* Is it an std or an stq? */
467 if (ope == 0x03)
468 count = 2;
469 else
470 count = 4;
471
472 /* Is it really a callee-saves register? */
473 if (is_callee_saves_reg (gr_k))
474 {
475 for (i = 0; i < count; i++)
476 {
477 gr_saved[gr_k + i] = 1;
478 gr_sp_offset[gr_k + i] = 4 * i;
479 }
480 }
481 else
482 /* It's not a prologue instruction. */
483 break;
484 }
485
486 /* Adjusting the stack pointer. (The stack pointer is GR1.)
487 addi sp, S, sp
488 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
489 0 111111 1111111 111111 000000000000 = 0x7ffff000
490 . . . . . . . .
491 We treat this as part of the prologue. */
492 else if ((op & 0x7ffff000) == 0x02401000)
493 {
494 /* Sign-extend the twelve-bit field.
495 (Isn't there a better way to do this?) */
496 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
497
498 framesize -= s;
499 }
500
501 /* Setting the FP to a constant distance from the SP:
502 addi sp, S, fp
503 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
504 0 111111 1111111 111111 000000000000 = 0x7ffff000
505 . . . . . . . .
506 We treat this as part of the prologue. */
507 else if ((op & 0x7ffff000) == 0x04401000)
508 {
509 /* Sign-extend the twelve-bit field.
510 (Isn't there a better way to do this?) */
511 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
512 fp_set = 1;
513 fp_offset = s;
514 }
515
516 /* To spill an argument register to a scratch register:
517 ori GRi, 0, GRk
518 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
519 0 000000 1111111 000000 111111111111 = 0x01fc0fff
520 . . . . . . . .
521 For the time being, we treat this as a prologue instruction,
522 assuming that GRi is an argument register. This one's kind
523 of suspicious, because it seems like it could be part of a
524 legitimate body instruction. But we only come here when the
525 source info wasn't helpful, so we have to do the best we can.
526 Hopefully once GCC and GDB agree on how to emit line number
527 info for prologues, then this code will never come into play. */
528 else if ((op & 0x01fc0fff) == 0x00880000)
529 {
530 int gr_i = ((op >> 12) & 0x3f);
531
532 /* If the source isn't an arg register, then this isn't a
533 prologue instruction. */
534 if (! is_argument_reg (gr_i))
535 break;
536 }
537
538 /* To spill 16-bit values to the stack:
539 sthi GRk, @(fp, s)
540 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
541 0 000000 1111111 111111 000000000000 = 0x01fff000
542 . . . . . . . .
543 And for 8-bit values, we use STB instructions.
544 stbi GRk, @(fp, s)
545 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
546 0 000000 1111111 111111 000000000000 = 0x01fff000
547 . . . . . . . .
548 We check that GRk is really an argument register, and treat
549 all such as part of the prologue. */
550 else if ( (op & 0x01fff000) == 0x01442000
551 || (op & 0x01fff000) == 0x01402000)
552 {
553 int gr_k = ((op >> 25) & 0x3f);
554
555 if (! is_argument_reg (gr_k))
556 break; /* Source isn't an arg register. */
557 }
558
559 /* To save multiple callee-saves register on the stack, at a
560 non-zero offset:
561
562 stdi GRk, @(sp, s)
563 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
564 0 000000 1111111 111111 000000000000 = 0x01fff000
565 . . . . . . . .
566 stqi GRk, @(sp, s)
567 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
568 0 000000 1111111 111111 000000000000 = 0x01fff000
569 . . . . . . . .
570 We treat this as part of the prologue, and record the register's
571 saved address in the frame structure. */
572 else if ((op & 0x01fff000) == 0x014c1000
573 || (op & 0x01fff000) == 0x01501000)
574 {
575 int gr_k = ((op >> 25) & 0x3f);
576 int count;
577 int i;
578
579 /* Is it a stdi or a stqi? */
580 if ((op & 0x01fff000) == 0x014c1000)
581 count = 2;
582 else
583 count = 4;
584
585 /* Is it really a callee-saves register? */
586 if (is_callee_saves_reg (gr_k))
587 {
588 /* Sign-extend the twelve-bit field.
589 (Isn't there a better way to do this?) */
590 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
591
592 for (i = 0; i < count; i++)
593 {
594 gr_saved[gr_k + i] = 1;
595 gr_sp_offset[gr_k + i] = s + (4 * i);
596 }
597 }
598 else
599 /* It's not a prologue instruction. */
600 break;
601 }
602
603 /* Storing any kind of integer register at any constant offset
604 from any other register.
605
606 st GRk, @(GRi, gr0)
607 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
608 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
609 . . . . . . . .
610 sti GRk, @(GRi, d12)
611 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
612 0 000000 1111111 000000 000000000000 = 0x01fc0000
613 . . . . . . . .
614 These could be almost anything, but a lot of prologue
615 instructions fall into this pattern, so let's decode the
616 instruction once, and then work at a higher level. */
617 else if (((op & 0x01fc0fff) == 0x000c0080)
618 || ((op & 0x01fc0000) == 0x01480000))
619 {
620 int gr_k = ((op >> 25) & 0x3f);
621 int gr_i = ((op >> 12) & 0x3f);
622 int offset;
623
624 /* Are we storing with gr0 as an offset, or using an
625 immediate value? */
626 if ((op & 0x01fc0fff) == 0x000c0080)
627 offset = 0;
628 else
629 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
630
631 /* If the address isn't relative to the SP or FP, it's not a
632 prologue instruction. */
633 if (gr_i != sp_regnum && gr_i != fp_regnum)
634 break;
635
636 /* Saving the old FP in the new frame (relative to the SP). */
637 if (gr_k == fp_regnum && gr_i == sp_regnum)
638 ;
639
640 /* Saving callee-saves register(s) on the stack, relative to
641 the SP. */
642 else if (gr_i == sp_regnum
643 && is_callee_saves_reg (gr_k))
644 {
645 gr_saved[gr_k] = 1;
646 gr_sp_offset[gr_k] = offset;
647 }
648
649 /* Saving the scratch register holding the return address. */
650 else if (lr_save_reg != -1
651 && gr_k == lr_save_reg)
652 lr_saved_on_stack = 1;
653
654 /* Spilling int-sized arguments to the stack. */
655 else if (is_argument_reg (gr_k))
656 ;
657
658 /* It's not a store instruction we recognize, so this must
659 be the end of the prologue. */
660 else
661 break;
662 }
663
664 /* It's not any instruction we recognize, so this must be the end
665 of the prologue. */
666 else
667 break;
668
669 pc += 4;
670 }
671
672 if (frame)
673 {
674 frame->extra_info->lr_saved_on_stack = lr_saved_on_stack;
675
676 /* If we know the relationship between the stack and frame
677 pointers, record the addresses of the registers we noticed.
678 Note that we have to do this as a separate step at the end,
679 because instructions may save relative to the SP, but we need
680 their addresses relative to the FP. */
681 if (fp_set)
682 {
683 int i;
684
685 for (i = 0; i < 64; i++)
686 if (gr_saved[i])
687 frame->saved_regs[i] = (frame->frame
688 - fp_offset + gr_sp_offset[i]);
689
690 frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset;
691 }
692 }
693
694 return pc;
695}
696
697
698static CORE_ADDR
699frv_skip_prologue (CORE_ADDR pc)
700{
701 CORE_ADDR func_addr, func_end, new_pc;
702
703 new_pc = pc;
704
705 /* If the line table has entry for a line *within* the function
706 (i.e., not in the prologue, and not past the end), then that's
707 our location. */
708 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
709 {
710 struct symtab_and_line sal;
711
712 sal = find_pc_line (func_addr, 0);
713
714 if (sal.line != 0 && sal.end < func_end)
715 {
716 new_pc = sal.end;
717 }
718 }
719
720 /* The FR-V prologue is at least five instructions long (twenty bytes).
721 If we didn't find a real source location past that, then
722 do a full analysis of the prologue. */
723 if (new_pc < pc + 20)
724 new_pc = frv_analyze_prologue (pc, 0);
725
726 return new_pc;
727}
728
729static void
730frv_frame_init_saved_regs (struct frame_info *frame)
731{
732 if (frame->saved_regs)
733 return;
734
735 frame_saved_regs_zalloc (frame);
736 frame->saved_regs[fp_regnum] = frame->frame;
737
738 /* Find the beginning of this function, so we can analyze its
739 prologue. */
740 {
741 CORE_ADDR func_addr, func_end;
742
743 if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end))
744 frv_analyze_prologue (func_addr, frame);
745 }
746}
747
748/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
749 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
750 and TYPE is the type (which is known to be struct, union or array).
751
752 The frv returns all structs in memory. */
753
754static int
755frv_use_struct_convention (int gcc_p, struct type *type)
756{
757 return 1;
758}
759
760static void
761frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
762{
763 memcpy (valbuf, (regbuf
764 + frv_register_byte (8)
765 + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
766 TYPE_LENGTH (type));
767}
768
769static CORE_ADDR
770frv_extract_struct_value_address (char *regbuf)
771{
772 return extract_address (regbuf + frv_register_byte (struct_return_regnum),
773 4);
774}
775
776static void
777frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
778{
779 write_register (struct_return_regnum, addr);
780}
781
782static int
783frv_frameless_function_invocation (struct frame_info *frame)
784{
785 return frameless_look_for_prologue (frame);
786}
787
788static CORE_ADDR
789frv_saved_pc_after_call (struct frame_info *frame)
790{
791 return read_register (lr_regnum);
792}
793
794static void
795frv_init_extra_frame_info (int fromleaf, struct frame_info *frame)
796{
797 frame->extra_info = (struct frame_extra_info *)
798 frame_obstack_alloc (sizeof (struct frame_extra_info));
799 frame->extra_info->fp_to_callers_sp_offset = 0;
800 frame->extra_info->lr_saved_on_stack = 0;
801}
802
803#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
804#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
805
806static CORE_ADDR
807frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
808 int struct_return, CORE_ADDR struct_addr)
809{
810 int argreg;
811 int argnum;
812 char *val;
813 char valbuf[4];
814 struct value *arg;
815 struct type *arg_type;
816 int len;
817 enum type_code typecode;
818 CORE_ADDR regval;
819 int stack_space;
820 int stack_offset;
821
822#if 0
823 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
824 nargs, (int) sp, struct_return, struct_addr);
825#endif
826
827 stack_space = 0;
828 for (argnum = 0; argnum < nargs; ++argnum)
829 stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
830
831 stack_space -= (6 * 4);
832 if (stack_space > 0)
833 sp -= stack_space;
834
835 /* Make sure stack is dword aligned. */
836 sp = ROUND_DOWN (sp, 8);
837
838 stack_offset = 0;
839
840 argreg = 8;
841
842 if (struct_return)
843 write_register (struct_return_regnum, struct_addr);
844
845 for (argnum = 0; argnum < nargs; ++argnum)
846 {
847 arg = args[argnum];
848 arg_type = check_typedef (VALUE_TYPE (arg));
849 len = TYPE_LENGTH (arg_type);
850 typecode = TYPE_CODE (arg_type);
851
852 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
853 {
854 store_address (valbuf, 4, VALUE_ADDRESS (arg));
855 typecode = TYPE_CODE_PTR;
856 len = 4;
857 val = valbuf;
858 }
859 else
860 {
861 val = (char *) VALUE_CONTENTS (arg);
862 }
863
864 while (len > 0)
865 {
866 int partial_len = (len < 4 ? len : 4);
867
868 if (argreg < 14)
869 {
870 regval = extract_address (val, partial_len);
871#if 0
872 printf(" Argnum %d data %x -> reg %d\n",
873 argnum, (int) regval, argreg);
874#endif
875 write_register (argreg, regval);
876 ++argreg;
877 }
878 else
879 {
880#if 0
881 printf(" Argnum %d data %x -> offset %d (%x)\n",
882 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
883#endif
884 write_memory (sp + stack_offset, val, partial_len);
885 stack_offset += ROUND_UP(partial_len, 4);
886 }
887 len -= partial_len;
888 val += partial_len;
889 }
890 }
891 return sp;
892}
893
894static CORE_ADDR
895frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
896{
897 write_register (lr_regnum, CALL_DUMMY_ADDRESS ());
898 return sp;
899}
900
901static void
902frv_store_return_value (struct type *type, char *valbuf)
903{
904 int length = TYPE_LENGTH (type);
905 int reg8_offset = frv_register_byte (8);
906
907 if (length <= 4)
908 write_register_bytes (reg8_offset + (4 - length), valbuf, length);
909 else if (length == 8)
910 write_register_bytes (reg8_offset, valbuf, length);
911 else
912 internal_error (__FILE__, __LINE__,
913 "Don't know how to return a %d-byte value.", length);
914}
915
916static void
917frv_pop_frame (void)
918{
919 generic_pop_current_frame (frv_pop_frame_regular);
920}
921
922static void
923frv_pop_frame_regular (struct frame_info *frame)
924{
925 CORE_ADDR fp;
926 int regno;
927
928 fp = frame->frame;
929
930 frv_frame_init_saved_regs (frame);
931
932 write_register (pc_regnum, frv_frame_saved_pc (frame));
933 for (regno = 0; regno < frv_num_regs; ++regno)
934 {
935 if (frame->saved_regs[regno]
936 && regno != pc_regnum
937 && regno != sp_regnum)
938 {
939 write_register (regno,
940 read_memory_integer (frame->saved_regs[regno], 4));
941 }
942 }
943 write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset);
944 flush_cached_frames ();
945}
946
947
948static void
949frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
950 CORE_ADDR *targ_addr, int *targ_len)
951{
952 *targ_addr = memaddr;
953 *targ_len = nr_bytes;
954}
955
956
957/* Hardware watchpoint / breakpoint support for the FR500
958 and FR400. */
959
960int
961frv_check_watch_resources (int type, int cnt, int ot)
962{
963 struct gdbarch_tdep *var = CURRENT_VARIANT;
964
965 /* Watchpoints not supported on simulator. */
966 if (strcmp (target_shortname, "sim") == 0)
967 return 0;
968
969 if (type == bp_hardware_breakpoint)
970 {
971 if (var->num_hw_breakpoints == 0)
972 return 0;
973 else if (cnt <= var->num_hw_breakpoints)
974 return 1;
975 }
976 else
977 {
978 if (var->num_hw_watchpoints == 0)
979 return 0;
980 else if (ot)
981 return -1;
982 else if (cnt <= var->num_hw_watchpoints)
983 return 1;
984 }
985 return -1;
986}
987
988
989CORE_ADDR
990frv_stopped_data_address ()
991{
992 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
993
994 brr = read_register (brr_regnum);
995 dbar0 = read_register (dbar0_regnum);
996 dbar1 = read_register (dbar1_regnum);
997 dbar2 = read_register (dbar2_regnum);
998 dbar3 = read_register (dbar3_regnum);
999
1000 if (brr & (1<<11))
1001 return dbar0;
1002 else if (brr & (1<<10))
1003 return dbar1;
1004 else if (brr & (1<<9))
1005 return dbar2;
1006 else if (brr & (1<<8))
1007 return dbar3;
1008 else
1009 return 0;
1010}
1011
1012static struct gdbarch *
1013frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1014{
1015 struct gdbarch *gdbarch;
1016 struct gdbarch_tdep *var;
1017
1018 /* Check to see if we've already built an appropriate architecture
1019 object for this executable. */
1020 arches = gdbarch_list_lookup_by_info (arches, &info);
1021 if (arches)
1022 return arches->gdbarch;
1023
1024 /* Select the right tdep structure for this variant. */
1025 var = new_variant ();
1026 switch (info.bfd_arch_info->mach)
1027 {
1028 case bfd_mach_frv:
1029 case bfd_mach_frvsimple:
1030 case bfd_mach_fr500:
1031 case bfd_mach_frvtomcat:
1032 set_variant_num_gprs (var, 64);
1033 set_variant_num_fprs (var, 64);
1034 break;
1035
1036 case bfd_mach_fr400:
1037 set_variant_num_gprs (var, 32);
1038 set_variant_num_fprs (var, 32);
1039 break;
1040
1041 default:
1042 /* Never heard of this variant. */
1043 return 0;
1044 }
1045
1046 gdbarch = gdbarch_alloc (&info, var);
1047
1048 set_gdbarch_short_bit (gdbarch, 16);
1049 set_gdbarch_int_bit (gdbarch, 32);
1050 set_gdbarch_long_bit (gdbarch, 32);
1051 set_gdbarch_long_long_bit (gdbarch, 64);
1052 set_gdbarch_float_bit (gdbarch, 32);
1053 set_gdbarch_double_bit (gdbarch, 64);
1054 set_gdbarch_long_double_bit (gdbarch, 64);
1055 set_gdbarch_ptr_bit (gdbarch, 32);
1056
1057 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1058 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1059 set_gdbarch_fp_regnum (gdbarch, fp_regnum);
1060 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1061
1062 set_gdbarch_register_name (gdbarch, frv_register_name);
1063 set_gdbarch_register_size (gdbarch, 4);
1064 set_gdbarch_register_bytes (gdbarch, frv_num_regs * 4);
1065 set_gdbarch_register_byte (gdbarch, frv_register_byte);
1066 set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size);
1067 set_gdbarch_max_register_raw_size (gdbarch, 4);
1068 set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size);
1069 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1070 set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type);
1071
1072 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1073 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1074
1075 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1076 set_gdbarch_frame_args_skip (gdbarch, 0);
1077 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1078
1079 set_gdbarch_saved_pc_after_call (gdbarch, frv_saved_pc_after_call);
1080
1081 set_gdbarch_frame_chain (gdbarch, frv_frame_chain);
1082 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1083 set_gdbarch_frame_saved_pc (gdbarch, frv_frame_saved_pc);
1084 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1085 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1086
1087 set_gdbarch_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs);
1088
1089 set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention);
1090 set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1091
1092 set_gdbarch_store_struct_return (gdbarch, frv_store_struct_return);
1093 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1094 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1095
1096 /* Settings for calling functions in the inferior. */
1097 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1098 set_gdbarch_call_dummy_length (gdbarch, 0);
1099 set_gdbarch_coerce_float_to_double (gdbarch,
1100 standard_coerce_float_to_double);
1101 set_gdbarch_push_arguments (gdbarch, frv_push_arguments);
1102 set_gdbarch_push_return_address (gdbarch, frv_push_return_address);
1103 set_gdbarch_pop_frame (gdbarch, frv_pop_frame);
1104
1105 set_gdbarch_call_dummy_p (gdbarch, 1);
1106 set_gdbarch_call_dummy_words (gdbarch, frv_call_dummy_words);
1107 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words));
1108 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1109 set_gdbarch_init_extra_frame_info (gdbarch, frv_init_extra_frame_info);
1110
1111 /* Settings that should be unnecessary. */
1112 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1113
1114 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1115 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1116 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1117 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1118 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1119
1120 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1121 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1122 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1123 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1124 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1125 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1126 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1127 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1128
1129 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1130
1131 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1132 set_gdbarch_function_start_offset (gdbarch, 0);
1133 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1134
1135 set_gdbarch_remote_translate_xfer_address
1136 (gdbarch, frv_remote_translate_xfer_address);
1137
1138 /* Hardware watchpoint / breakpoint support. */
1139 switch (info.bfd_arch_info->mach)
1140 {
1141 case bfd_mach_frv:
1142 case bfd_mach_frvsimple:
1143 case bfd_mach_fr500:
1144 case bfd_mach_frvtomcat:
1145 /* fr500-style hardware debugging support. */
1146 var->num_hw_watchpoints = 4;
1147 var->num_hw_breakpoints = 4;
1148 break;
1149
1150 case bfd_mach_fr400:
1151 /* fr400-style hardware debugging support. */
1152 var->num_hw_watchpoints = 2;
1153 var->num_hw_breakpoints = 4;
1154 break;
1155
1156 default:
1157 /* Otherwise, assume we don't have hardware debugging support. */
1158 var->num_hw_watchpoints = 0;
1159 var->num_hw_breakpoints = 0;
1160 break;
1161 }
1162
1163 return gdbarch;
1164}
1165
1166void
1167_initialize_frv_tdep (void)
1168{
1169 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1170
1171 tm_print_insn = print_insn_frv;
1172}
1173
1174\f
This page took 0.065468 seconds and 4 git commands to generate.